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Preface 

Immediately after the first drafts of the human genome sequence were reported almost 
a decade ago, the importance of genomics and functional genomics studies became 
well recognized across the broad disciplines of biological sciences research. The 
initiatives of Leroy Hood and other pioneers on developing systems biology 
approaches for evaluating or addressing global and integrated biological activities, 
mechanisms, and network systems have motivated many of us, as bioscientists, to re-
examine or revisit a whole spectrum of our previous experimental findings or 
observations in a much broader, link-seeking and cross-talk context. Soon thereafter, 
these lines of research efforts generated interesting, fancy and sometimes misleading 
new names for the now well-accepted “omics” research areas, including functional 
genomics, (functional) proteomics, metabolomics, transcriptomics, glycomics, 
lipidomics, and cellomics. It may be interesting for us to try to relate these “omics” 
approaches to one of the oldest omics studies that we all may be quite familiar with, 
and that is “economics”, in a way that all “omics” indeed seemed to have meant to 
address the mechanisms/activities/constituents in a global, inter-connected and 
regulated way or manner. 

The advancement of a spectrum of technological methodologies and assay systems for 
various omics studies has been literally astonishing, including next-generation DNA 
sequencing platforms, whole transcriptome microarrays, micro-RNA arrays, various 
protein chips, polysaccharide or glycomics arrays, advanced LC-MS/MS, GC-MS/MS, 
MALDI-TOF, 2D-NMR, FT-IR, and other systems for proteome and metabolome 
research and investigations on related molecular signaling and networking 
bioactivities. Even more excitingly and encouragingly, many outstanding researchers 
previously trained as mathematicians, information or computation scientists have 
courageously re-educated themselves and turned into a new generation of 
bioinformatics scientists. The collective achievements and breakthroughs made by our 
colleagues have created a number of wonderful database systems which are now 
routinely and extensively used by not only young but also “old” researchers. It is very 
difficult to miss the overwhelming feeling and excitement of this new era in systems 
biology and computational biology research.   

It is now estimated, with good supporting evidence by omics information, that there 
are approximately 25,000 genes in the human genome, about 45,000 total proteins in 
the human proteome, and around 3000 species of primary and between 3000 and 6000 
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species of secondary metabolites, respectively, in the human body fluid/tissue 
metabolome. These numbers and their relative levels to each other are now helping us 
to construct a more comprehensive and realistic view of human biology systems. 
Likewise, but maybe to a lesser extent, various baseline omics databases on mouse, 
fruit fly, Arabidopsis plant, yeast, and E. coli systems are being built to serve as model 
systems for molecular, cellular and systems biology studies; these efforts are projected 
to result in very interesting and important research findings in the coming years. 

Good findings in a new research area may not necessarily translate quickly into good 
or high-impact benefits pertaining to socio-economic needs, as may be witnessed now 
by many of us with regard to research and development in omics science/technology. 
To some of us, the new genes, novel protein functions, unique metabolite profiles or 
PCA clusters, and their signaling systems that we have so far revealed seemed to have 
yielded less than what we have previously (only some 5 to 10 years ago) expected, in 
terms of new targets or strategies for drug or therapeutics development in medical 
sciences, or for improvement of crop plants in agricultural science. Nonetheless, some 
useful new tools for diagnosis and personalized medicine have been developed as a 
result of genomics research. Recent reviews on this subject have helped us more 
realistically and still optimistically to address such issues in a socially responsible 
academic exercise. Therefore, whereas some “microarray” or “bioinformatics” 
scientists among us may have been criticized as doing “cataloging research”, the 
majority of us believe that we are sincerely exploring new scientific and technological 
systems to benefit human health, human food and animal feed production, and 
environmental protections. Indeed, we are humbled by the complexity, extent and 
beauty of cross-talks in various biological systems; on the other hand, we are 
becoming more educated and are able to start addressing honestly and skillfully the 
various important issues concerning translational medicine, global agriculture, and the 
environment. 

I am very honored to serve as the editor of these two volumes on Systems and 
Computational Biology: (I) Molecular and Cellular Experimental Systems, and (II) 
Bioinformatics and Computational Modeling. I believe that we have collectively 
contributed a series of high-quality research or review articles in a timely fashion to 
this emerging research field of our scientific community.  

I sincerely hope that our colleagues and readers worldwide will help us in future 
similar efforts, by providing us feedback in the form of critical comments, 
interdisciplinary ideas and innovative suggestions on our book chapters, as a way to 
pay our high respect to the biological genomes on planet earth.    

Dr. Ning-Sun Yang 
Agricultural Biotechnology Research Center, Academia Sinica 

Taiwan, R.O.C 
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Gene Expression Analysis  
Using RNA-Seq from Organisms  

Lacking Substantial Genomic Resources 
Yingjia Shen, Tzintzuni Garcia and Ronald B. Walter 

Texas State University, 
USA 

1. Introduction 
Development of massively parallel “next generation” sequencing technology (NGS) has 
dramatically revolutionized biological studies. Among the many applications of NGS, RNA-
Seq is one of the most important uses of this technology. RNA-Seq enables investigators to 
accurately probe the current state of a transcriptome and assess many biologically important 
issues, such as; gene expression levels, differential splicing events, and allele-specific gene 
expression. Compared with previous technologies (e.g., microarrays, etc.) NGS has the clear 
advantage of not being limited to experimental systems having well characterized genomes 
or transcript sequence libraries. This positions RNA-seq approaches as important and 
versatile techniques for experimental systems and species where specific genetic 
information may be limited or altogether lacking.  
A major goal of most transcriptomic studies is the identification and characterization of all 
transcripts within a developmental stage or specific tissue. NGS techniques have made the 
massive amount of data required to carry out such studies both inexpensive and available to 
an unprecedented extent. Clever computer algorithms have made the assembly of these 
massive data sets the work of one or two people with reasonably powerful workstations or a 
moderate analytical server.  
Once a reference transcriptome has been assembled, analyses can be carried out that involve 
several steps, such as; mapping short sequence reads to transcriptome, quantifying the 
abundance of genes or gene sets, and comparing differential expression patterns among all 
samples. Herein we outline the processes from obtaining raw short read data to advanced 
comparative gene expression analysis and we review bioinformatic programs currently 
available, such as Tophat, Cufflinks, DESeq, that are specifically designed to address each of 
the above steps. We will discuss both accuracy and ease of use of these tools by biologists 
beginning to pursue these types of analyses. In addition to individual programs, we will 
also discuss integration of multiple programs into pipelines for more rapid and complete 
expression analyses. Overall, the future applications of RNA-Seq will open new avenues for 
transcriptome analyses of less well-studied and/or wild caught species that could not have 
previously been approached. This will yield a wealth of new comparative data highlighting 
the many ways plants and animals have developed to survive in this rapidly changing 
environment.  
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2. De Novo sequence assembly and expression analysis with NGS data 
There are many phases to an NGS research project where the end goal is expression analysis 
in a non-model organism. This chapter is dedicated to the many phases and options 
available to the researcher. In general however, bioinformatic analyses at some point begin 
with gathering raw sequence data from a biological sample of interest and having it 
sequenced. The raw data will often need to be filtered for quality. If any pre-existing 
sequences are available from a closely related species, their use as a reference should be 
considered, but is not necessary. Assembling the short reads derived from one or more of 
the NGS platforms comes next, but should not be considered a definitive, terminal process. 
Most frequently assembly of short read data entails an iterative refinement phase in which a 
wide range of parameters are modified in the search for a sufficiently contiguous and 
complete assembly. Analyzing the assembly can entail searching for signatures of assembly 
errors and trying to identify the assembled contigs. Once a satisfactory group of transcripts 
is produced they are locked for the expression level analysis. Mapping the short reads to the 
assembled transcripts is the first step in assessing gene expression levels. The next is 
determining the expression levels of each contig based on the number of short reads 
mapped to it. Generally a comparative gene expression analysis will follow in which two or 
more samples are compared and alternate regulation patterns or profiles determined. We 
end the chapter with a specialized comparative expression study in F1 hybrid organisms in 
which differential expression may reveal evolutionary divergence in gene regulation 
mechanisms. 

2.1 Next-generation sequencing 
Next-generation sequencing (NGS) techniques produce millions of reads per run but each 
read may be as short as 25 bp. Using NGS allows one to apply complex samples (i.e., total 
DNA or RNA libraries) on the NGS instrument. These mixed samples contain fragments of 
larger molecule targets sheared to some pre-set fragment length distribution. NGS 
techniques allow the sequencing of completely unknown samples in a massively parallel 
fashion. In order to perform massively parallel sequencing most NGS instruments require a 
run time of days to weeks in carefully controlled conditions for complete data acquisition. 
There are many competing technologies, and new challengers are in constant development 
to increase both the speed and quantity of NGS per sample run. It is beyond the scope of 
this chapter to examine all of the current and upcoming techniques so we will briefly focus 
on two most common NGS instruments currently in use: the Illumina Genome Analyzer 
and ABI SOLiD platforms. Each of these platforms has its strengths and weaknesses that are 
very important to understand when designing research strategies. 

2.1.1 The ABI SOLiD platform 
The SOLiD system produces short sequencing lengths (i.e., termed “reads”) ranging from 35 
to 75 bp and has run times of between one and seven days depending on the amount and 
type of reads desired. Typically, instruments will have 6 or 12 independent lanes available 
per run and samples can be multiplexed in each of those for up to 96 unique barcodes. 
Product literature states the daily sequencing throughput is between 10-30 Gbp. 
The SOLiD sequencing process begins by fragmenting high molecular weight DNA into 
smaller fragments to be sequenced (Fig 1A). Fragments are size selected in a narrow range, 
typically around 200 bp, and primers are ligated to both ends of the fragments (Fig 1A). 
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Glass beads coated with complimentary primers are mixed with the fragments (Fig 1A) and 
emulsified in such manner that an aqueous droplet will contain a single bead and a single 
fragment along with the biochemistry necessary for PCR (Fig 1B). Several rounds of 
emulsion PCR later each bead is coated with sequences identical to the original fragment 
(Fig 1B). The DNA coated beads are then released from the emulsion, and washed into tiny 
wells in a plate sized to admit a single bead per well (Fig 1B). Finally the cyclic sequencing 
phase begins during which each position is iteratively read (Fig 1C). 
 

 
Fig. 1. A simplified outline of the ABI SOLiD sequencing procedure. A) Sample preparation 
and the addition of glass beads decorated with primers. B) Emulsion PCR amplifies a single 
template so that its copies are primed by primers bound to a glass bead. C) The sequencing 
reaction repeats through five extension cycles where the primers are offset by one position 
in each cycle so that each position in the template is interrogated twice. 

The most distinctive feature of SOLiD data is the fact that during the sequencing phase 
nucleotides are added in dinucleotide probes. In each cycle a nucleotide pentamer is added 
in which the two 5’ bases are determined by the attached dye (Fig 1C). Once the plate is 
imaged, the dye is removed leaving the newly added pentamer (Fig 1C). Each cycle therafter 
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interrogates two more bases offset by three positions from the previous cycle (Fig 1C). As 
the growing fragment reaches the desired length the entire fragment is washed off and a 
new primer bound at an offset of one so that a different set of bases are interrogated as this 
new strand grows (Fig 1C). This process is repeated five times, each one offset by one base 
from the last so that each position is ultimately interrogated twice (Fig 1C).  
Four fluorescent dyes are used but each dye can be carried by one of four nucleotide dimers. 
As each color is read, the recorded data corresponds to a sequence of colors coded by 0, 1, 2, 
or 3; this is called color-space. This arrangement means that for any given string of numbers 
there are four possible nucleotide sequences that it may encode. Given knowledge of the 
first base it is possible to determine the most likely nucleotide sequence encoded by the 
entire read. However, to do this prior to assembly of the reads into contiguous sequences 
(i.e., contigs) for comparison or alignment to a reference genome would result in losing the 
advantage of SOliD’s built-in error checking (afforded by reading each base twice). For 
example, If a read was determined to possess a position that does not match a consensus 
reference sequence, it would be ambiguous in other technology platforms whether it were a 
real difference or sequencing error. With the double-coverage afforded by SOLiD color-
space the same “error“ is not likely to be made twice in subsequent cycles and it is much 
more likely that a real variation has been identified instead of a sequencing error. 
It should be noted the SOLiD color-space, in which short reads are reported, can be difficult 
to work with for some assembly applications. Most assembly programs are initially 
designed to work with nucleotides and require special pre- and post-processing programs to 
properly assemble color-space reads and these are not always available. Many, but not all, of 
the specialized alignment programs that can align short reads to a reference library are also 
able to handle color-space reads but require special options to be enabled.  

2.1.2 The illumina genome analyzer platform 
The Genome Analyzer (GA) platform typically produces read lengths in the range of 35-150 
bp and requires 2 to 14 days for a sequencing run depending on the amount of data desired. 
Each flow cell contains 8 lanes each of which can produce 80 million reads or more. Daily 
throughput is estimated at 6.5 Gb for a run in which both ends of fragments (i.e., paired 
end) are sequenced to 100bp. 
The Illumina process also begins by shearing sample DNA (or cDNA) into fragments that 
are size selected in a target range, often around 200 bp (Fig 2A). These fragments then 
have short adaptors ligated to both ends of the sample fragments such that unique primer 
sequences are ligated to either end (Fig 2A). The fragments are then washed onto the flow 
cell that has sequences complimentary to the two unique primers bound to its surface (Fig 
2A). The concentration of fragments on the flow cell is controlled such that they bind 
sparsely enough on the surface to be optically distinguished from neighboring fragments. 
Template sequences are only bound by base-paring to primers covalently bound to the 
flow cell. An initial PCR step produces a complimentary copy of the template now 
covalently bound to the flow cell, and following this the original template is removed by 
washing. 
The next steps (Fig 2B) are repeated several times to produce a colony of copies of the 
sequence via ‘bridge’ PCR. The free end of the template pairs with one of the primers 
covalently bound to the flow cell and a PCR cycle produces a new copy bound by one end to 
the flow cell a short distance from the first. After several bridge PCR cycles, a cluster of 
copies is built up around the originally bound sequence. 
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Fig. 2. Simplified outline of the Illumina Genome Analyzer process A) Sample preparation 
and attachment to the flow cell. B) Bridge PCR amplifies each bound fragment producing a 
cluster of copies. C) The sequencing reaction extends the growing strand by one nucleotide, 
excites attached fluorophores which are read optically, and removes the terminator and 
fluorescent dye before repeating with the next nucleotide. 

When spots have reached sufficient density to produce clear signals (Fig 2C) the cyclic 
sequencing reaction can begin. One of the two unique primers is attached to the free ends 
and nucleotide addition cycles commence. Each nucleotide contains a different fluorescent 
reporter tag and a reversible terminator. During each cycle all four bases are flowed onto the 
reaction chamber, but since each contains a replication terminator only a single one can be 
incorporated into any elongating sequence (Fig 2C). Laser sources excite the fluorescent 
reporter of the added nucleotide and an optical sensor detects the wavelength of light 
emitted. The color of each spot is tracked with each cycle and interpreted directly as a 
nucleotide base (Fig 2C). This cycle is repeated until the reads reach the desired length and 
the entire sequencing process is then repeated using the other unique primer to sequence the 
complementary copies of the DNA. 
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We have briefly covered two popular NGS sequencing techniques to introduce the 
capabilities of the technologies and what types of data are produced. There are several other 
sequencing technologies and many recent reviews covering them are available (Metzker, 
2009; Voelkerding et al., 2009; Bräutigam and Gowik, 2010; Nowrousian, 2010). The reader is 
encouraged to seek out the latest reviews as these technologies are advancing with immense 
speed and published information quickly becomes outdated. 

2.2 Sequence assembly algorithms 
When the human genome project first began capillary sequencing base on Sanger 
technology was the primary sequencing tool employed (Lander et al., 2001). It was 
extremely labor intensive yet at the time an amazing amount of sequence data was being 
produced. The Sanger reads produced where about 700 bp in length. Some current NGS 
techniques are now able to produce reads close to this length, while others hold the promise 
of producing several hundreds to thousands of base pair length reads. 
 
Package Availability 

phrap www.phrap.org 

wgs-assembler (celera) sourceforge.net/apps/mediawiki/wgs-assembler/ 

ARACHNE ftp.broadinstitute.org/pub/crd/ARACHNE/ 

Phusion www.sanger.ac.uk/resources/software/phusion/ 

RePS Contact authors at: reps@genomics.org.cn 

PCAP seq.cs.iastate.edu/pcap.html 

Atlas www.hgsc.bcm.tmc.edu/cascade-tech-software_atlas-ti.hgsc 

Table 1. Several overlap assembly programs. 

The basic strategy for assembling sequences of this length is to use an overlap graph. In 
an overlap graph nodes represent whole reads and connections represent overlap 
between the reads. In this case the reads are large and a significant amount of unique 
information is held in each overlap. Many repetitive features and similar sequence 
properties that would stymie a short read assembler are easily resolved by long reads and 
an overlap strategy. Still, assembly problems are not trivial and many packages have 
continued to mature and acquire a variety of tools. A listing of overlap-based assemblers 
is given in Table 1. 

2.2.1 De Bruijn graph assemblers 
As NGS data became available it was quickly apparent that new algorithms were needed to 
assemble the very short sequences being produced. This problem was addressed by 
application of discoveries made independently by both De Bruijn and Good in 1946 (de 
Bruijn, 1946; Good, 1946). All of the most successful short sequence assembly programs in 
use today utilize the De Bruijn graph as a central data structure and then leverage other 
aspects of the data to improve upon the assembly process. 
The first step in a De Bruijn based assembler is to build the graph. To do so, each short read 
is broken into k-mers where k is a pre-defined integer length; each k-mer will be a node in 
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the graph (Fig 3A). The k-mers are defined by recording the sequence in a window of size k 
and sliding that window down by one position for the length of the short read – producing a 
new k-mer at each position (Fig 3A). If a short read has a length of L, it will contribute L-k+1 
k-mers to the graph. The number of occurrences of each k-mer is also counted and will come 
into play in a subsequent step. 
 

 
Fig. 3. Outline of a De Bruijn graph based assembler 

The edges (or connections between nodes) represent a k-1 overlap between the connected 
nodes. Thus, we see that each node can have 8 possible connections (Fig 3B). Connections 
are recorded as they are observed in the raw read data. As reads are passed into the graph 
building algorithm discrete seed graphs begin to expand and are joined as the reads 
connecting them are found. In the end several thousand discrete, internally connected 
graphs exist in the working memory of the computer. An idealized example of one is given 
in Fig 3C. This is a very simple example but several complicating features are represented 
here. At this stage a simplified graph can be constructed in which linear stretches 
(underlined in green in Fig 3C) are condensed into nodes and edges are still k-1 overlaps. 
The resulting simplified graph is given in Fig 3D, and some of the problems can begin to be 
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addressed. The leftmost is a ‘tip’; a dead end likely caused by a sequencing error near the 
beginning or end of a short read. A bubble is also present in the center of the graph 
indicating two alternative possible paths through the k-mer space are present in the short 
read data. This also could be the result of a sequencing error or a genuine sequence variant. 
The depth of coverage for each simplified node is indicated by a red number above each 
node. This information can be used to trim off any tips and remove bubbles with low 
coverage. Higher coverage anomalies may merit incorporation into alternately assembled 
contigs depending on the application.  
The right-most feature in this graph is a cyclic node. This creates a problem for short read 
assemblers when repetitive sequence regions are encountered. It could be the sequence has 
only 4 guanines in a row, or 40, it is impossible to tell from the information generated. This 
sort of assembly problem is more difficult to resolve by addressing coverage alone and 
usually results in breaks in contigs. Paired-end information can rescue some of these 
repetitive situations but scaffold contigs may be broken for many other reasons as well. 
However, if sufficient paired-end sequences are available that join two contigs it is possible 
to estimate the size of the gap between them given the expected fragment size (Fig 3E). 
One major practical drawback of De Bruijn graph based assemblers is the amount of 
memory (RAM) required to build, and traverse the graph during an assembly. For example, 
the Velvet assembler package may require use of 70-100 GB of physical memory to build a 
vertebrate transcriptome assembly from 100 million reads. Although single machines with 
such large amounts of memory are not as rare and expensive as they once were, they remain 
somewhat difficult to find and gain access to. There are several assembler packages that 
have attempted to address this requirement for large memory. For example, a distributed 
approach has been implemented in the Abyss assembler and this spreads the workload 
across several nodes in a computer cluster. Optimizations in the SOAPdenovo package first 
seek to reduce the amount of memory required by attempting to correct erroneous k-mers 
produced by sequencing errors. In one study, this approach allowed the number of 25-mers 
in an assembly of the human genome to be reduced from 14.6 billion to 5.0 billion (Li et al., 
2010a). 
An alternative to purchasing computer capability with very large memory is use of a cloud 
computing services, such as the Amazon Elastic Compute Cloud (aws.amazon.com/ec2/). 
For a fee, computer time is available in dynamically generated computing environments. 
Several instance types are available including some with up to 68.4 GB of memory and two 
cluster instance types optimized for traditional compute nodes or GPU nodes. While no 
assembly process has yet been reported as having used this resource several similarly 
complex analyses have reported favorable experiences (Afgan et al., 2010; Di Tommaso et 
al., 2010; Wall et al., 2010). 
 
De Bruijn Assemblers Availability 
EULER-SR euler-assembler.ucsd.edu/portal/ 
Velvet www.ebi.ac.uk/~zerbino/velvet/ 
ALLPATHS-LG ftp.broadinstitute.org/pub/crd/ALLPATHS/Release-LG/ 
Abyss www.bcgsc.ca/platform/bioinfo/software/abyss 
SOAPdenovo soap.genomics.org.cn/soapdenovo.html 

Table 2. Several De Bruijn graph based assemblers 
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2.3 Overview of sequence assembly process 
We have discussed the basic workings of assembly algorithms in order to provide a 
foundation for further discussion of assembly and the effects that different choices can have 
on the outcome. We now turn to a larger view of the practical assembly process. At each 
step we will give recommendations based on our experience and mention other sources for 
information and help. 

2.3.1 Sequence filtration 
Prior to NGS read assembly it can be beneficial to remove reads that are more likely to carry 
erroneous sequences. This is most important for De Bruijn graph based assemblers because 
each erroneous base call creates up to k erroneous nodes in memory. Thus, large data sets can 
very quickly exceed even very large memory systems. There are many types of sequencing 
errors that may need to be removed and some are unique to certain types of techniques. For 
example, sample DNA can become contaminated by bacterial or vector sequences and so 
screening reads against appropriate libraries can help to remove some of these contaminants.  
Short reads produced by the Illumina GA platform tend to decrease in quality as they are 
lengthened as well as have an increased error rate in the first few bases. To deal with this 
some tools (built in options in BWA and Bowtie short read alignment programs) will 
allow one to trim all reads by a certain length from either end in a set after measuring 
average quality scores across a read set. Other tools such as the FASTX-Toolkit 
(hannonlab.cshl.edu/fastx_toolkit/) are more adaptive and deal with each read 
individually. Another strategy that attempts to correct short reads is to enumerate all the 
k-mers defined by a set and modify those with very low occurrence frequencies (Schröder 
et al., 2009; Li et al., 2010b; Shi et al., 2010). Few papers primarily address this issue but 
the quality of the final assembly can only be as good as data you begin with. 
 

 
Fig. 4. Outline of an assembly process 
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2.3 Overview of sequence assembly process 
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2.3.2 Use of a reference library 
Reference sequences can be used in many ways to aid in assembly. The most straight 
forward is to map reads onto a set of closely related reference sequences (using a tool such 
as BWA, Bowtie, Tophat, etc. section 2.4), then derive a consensus sequence from the reads 
aligned to each reference sequence. Among others, the samtools pileup or mpileup tools can 
aid in this approach. This limits the resulting sequences to the set of previously known 
reference sequences but that is not necessarily a problem. The Cufflinks tool is a unique take 
on reference based assembly. It is specifically designed to find exons and intron-exon 
junctions by mapping transcript sequence to a reference genome. 
Reference sequences can also be used to guide a de novo assembly. It is possible there are 
other tools which enable this procedure but here we describe the use of the Columbus 
extension in the Velvet package. In this case short reads are again aligned with a separate 
tool to reference sequences which may be genome or transcript seqeunces. The resulting 
alignment file and reference sequences are then given as input to Velvet which will initially 
carry out its de novo assembly process as normal. The reference sequences are treated in a 
sense as long reads and are used to scaffold together appropriate contigs that resulted from 
the initial assembly process. This technique uses known sequences to extend assembled 
contigs while also allowing for the discovery of novel sequences.  

2.3.3 Sequence assembly 
While many NGS assembly packages utilize the De Bruijn graph to represent k-mer 
connectivity, each has a slightly different algorithm to traverse the graph, prune it, and 
extract contigs. Most of the freely-available, academically-developed assembly packages 
have extensive manuals and, more importantly, active communities of users and 
developers. An extensive listing of the settings and options that can be modified in even one 
of these packages is far beyond the scope of this discussion. Some considerations however 
transcend all of these software packages and are discussed here. 
The selection of k (k-mer size or hash length) will have a huge impact on assembly. Short k-
mers allow for the assembly of low coverage regions since for any two reads to be linked in 
k-mer space they must overlap by at least k-1. Conversely a too-short k-mer size could allow 
contigs to be linked in k-mer-space which are not truly linked; thus leading to a chimeric 
assembly. Very high k-mer sizes significantly cut down on chimeric contigs but impair the 
assembly of low expression level transcripts and reduce the contiguity overall. A good 
approach is to scan a range of k-mer sizes and compare the results of several assemblies to 
determine a k-mer size that gives the best balance.  
Another important parameter to consider is how the assembler uses the coverage levels to 
assemble contigs. In Velvet, for example, the minimum coverage cutoff and expected 
coverage parameters define a range of coverage levels to consider. This is fine for genomic 
sequences where coverage levels should be much more consistent, but is extremely 
problematic for transcript assembly. The Oases extension in Velvet is designed to adapt to 
varying coverage depth levels and is allowed to report alternative contigs instead of 
selecting only high coverage paths through the graph.  
The diverse range of De Bruijn graph-based assemblers each take different approaches to 
traversing the graph and pre- and post-processing the data. Software documentation is an 
excellent place to begin to understand the various assembly parameter modifications and 
settings allowed. As previously mentioned most of the academically developed packages 
have an associated community that communicate via e-mail listserv (many of which are 
archived online) or internet forum.  
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2.3.4 Assessing assembly quality 
This is likely to be the most challenging step in an assembly. A set of basic statistics that are 
often seen in literature are the N50 value, overall length, number of contigs, and largest 
contig. The N50 is the length-weighted median length. Another way to think about it is to 
say that at the N50 length, half of the length in the set of assembled contigs is in contigs 
equal to or shorter than this value. It is a measure of contiguity since the N50 length 
increases as sequence length is shifted into longer contigs. The overall length is simply the 
sum of the lengths of all contigs, and the number of contigs and largest contig are self-
explanatory. These are basic statistics often seen in literature but they are fairly limited in 
assessing assembly quality. 
It is generally desirable to quantify correctly assembled contigs, but this is a very tricky thing 
to do especially with novel transcriptomes. There is no one good approach to assess this easily 
so we will present several and discuss advantages and disadvantages of each. One approach is 
to use BLAST or other similarity search tool to compare the assembly to a well-annotated 
transcriptome of a closely related species if available or a large curated set like the non-
redundant (nr) database maintained by the NCBI. A tool like Blast2Go (Conesa et al., 2005; 
Conesa and Götz, 2008; Götz et al., 2008) can be used to analyze the BLAST results and select a 
good match for each contig. Trying to maximize unique hits may be a useful indicator but the 
annotation by BLAST may give different results for alternate splice forms.  
Another useful metric is to measure how completely a reference transcriptome from a 
closely related species is covered by the assembled contigs. This depends heavily on the 
quality of the reference transcriptome and may not tell very much about the contiguity of 
the assembled contigs. 
A third indication that contigs have been properly assembled is their ability to map to a 
reference genome. A tool like gmap (Wu and Watanabe, 2005; Wu and Nacu, 2010) can 
quickly map a large set of contigs to a large genome and report its results in a variety of 
formats including some basic statistics for each mapping. This would seem like the best 
method but some software development may be necessary to extract full meaning from such 
an alignment. 
Analyzing the assembly often leads to another round of refinement possibly reaching all the 
way back to doing more sequencing. More stringent or different filtering, replacing the 
reference with the assembled contigs, or modifying assembler settings can all help to refine 
an assembly. Usually this process continues until a ‘good enough’ transcriptome is reached 
and that is defined by each researcher for their specific needs.  

2.4 RNA short read mapping 
After a reference transcriptome or background genome sequence has been efficiently 
assembled, the next step in many experimental designs is to accurately map RNA-seq reads 
derived from specific cell or organisms states to it as a method to profile global gene 
expression (Fig 5). Generally speaking, programs designed for EST mapping [i.e., MUMmer 
and BLAT(Kent, 2002; Kurtz et al., 2004)] are suitable for reads generated from Roche 454 
platfoms, but are not nearly efficient enough for use with short reads generated by Illumina 
Gene Analyzer or ABI SOLiD NGS platforms. Alignment algorithms designed specifically for 
NGS short reads are necessary to map reads from latter two platforms. Over the past two 
years, a wide variety of different programs have been developed to meet the challenge of 
efficiently mapping millions of short reads and the number of available programs seems to be 
continuously growing. The challenge for biological scientists is how to choose the best 
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2.3.2 Use of a reference library 
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2.3.4 Assessing assembly quality 
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an assembly. Usually this process continues until a ‘good enough’ transcriptome is reached 
and that is defined by each researcher for their specific needs.  
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program that is optimally suited to their specific project. Table 3 shows five currently popular 
programs available for short read mapping that will be evaluated herein. 
 

 
Fig. 5. RNA-Seq project pipeline and commonly used programs. (see; 
http://en.wikipedia.org/wiki/List_of_sequence_alignment_software#Short-
Read_Sequence_Alignment) 

To evaluate these programs, we used an X. maculatus reference transcriptome [for 
description of the species see section 2.7 and (Walter and Kazianis, 2001; Kallman and 
Kazianis, 2006; Meierjohann and Schartl, 2006)] built from over 200 million paired-end reads 
sequenced from the brain, heart, and liver tissues of mature individuals using the Illumina 
GAIIx platform (Expression Analysis® Inc. Durham, NC). We used the Velvet assembly 
package (Zerbino and Birney, 2008) to integrate the combined read set with a hash length (k-
mer size) of 43. Oases (http://www.ebi.ac.uk/~zerbino/oases/) was used to perform the 
final assembly and resulted in a final transcriptome having 110,604 transcripts with an 
average length of 2,197 bp, and a total size of 243 Mb. In addition, we employed 34 million 
60 bp paired-end reads (GAIIx, no custom filtration) sequenced from RNA isolated from X. 
maculatus liver tissue and mapped them back to the reference transcriptome described above 
to test and compare all five programs in terms of RAM usage, computing time and mapping 
sensitivity (e.g., the percent of mapped reads).  
As shown in the Table 3, the five different programs required different amount of RAM and 
produced different mapping efficiencies. Bowtie is currently one of the most popular 
mapping programs and has a reputation for very rapid mapping speeds. It employs a 
Burrows-Wheeler Transform (BWT) and full-text minute-space index (for review of 
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alignment algorithms, see (Li and Homer, 2010), which greatly reduces both the memory 
usage and computational time. In our test, Bowtie proved to be the fastest mapping 
program and also used a modest amount of RAM. The small RAM usage and speed of 
Bowtie allows it to run on a standard desktop computer. However, Bowtie’s fast 
performance speed is not without cost. Bowtie only allows non-gapped alignments between 
reads and references, thus sacrificing some sensitivity for faster mapping speed. Therefore, 
it was not surprising that Bowtie had the lowest mapping percentage of all tested programs. 
In addition, using genomic sequences as the reference for mapping RNA-seq reads with 
Bowtie might not be appropriate since reads spanning two exons cannot be mapped without 
the support of gap alignment.  
 

Program 
Maximum 

RAM 
Usage 

Time 
%of 

mapped 
reads 

Feature Reference 

Bowtie 2.6G 40 min 42.51 Ultra fast aligner (Langmead et al., 2009) 

BWA 1.2G 64 min 52.05 Support gap 
alignment (Li and Durbin, 2009) 

Novoalign 1.4G 41 hra 59.81 
High sensitivity 
and allows up to 8 
mismatches 

www.novocraft.com 

SHRiMP 7.0G 14 days 53.08 A collection of 
mapping tools (David et al., 2011) 

Tophatb 63Gb 5.5hrb 52.92b Splice junction 
reads aligner (Trapnell et al., 2009) 

aOnly one thread is used for free version. Licensed user can use multi-threads feature of Novoalign.  
bTranscriptome is used as the reference in this case. Tophat is designed for using genome sequence as 
reference so the actual time and mapping efficiency may vary when genome is used. 

Table 3. Popular short-read alignment software.  

An alternative to Bowtie is BWA (Li and Durbin, 2009), which also uses a full-text minute-
space index based algorithm but supports gapped alignments. In our test, BWA used least 
amount of RAM and was comparable to Bowtie in computing time. The gapped alignment 
feature of BWA makes it more suitable should variations (i.e., small insertion/deletion or 
InDels) exist between the reference genome or transcriptome and the RNA-seq reads being 
mapped. This serves to increase the mapping sensitivity of alignments. In our test, BWA 
reported more reads properly mapped than Bowtie, suggesting BWA is more sensitive in 
identifying possible alignments between short reads and reference sequences.  
Two other programs tested were Novoalign and SHRiMP. They were both noticeably slower 
than Bowtie or BWA programs. Both Novoalign and SHRiMP programs use a hashing 
reference based algorithm, which can be traced back to BLAST searching but is optimized 
for alignment of short reads. For Novoalign, we tested the free version and thus only one 
thread was used while in all other cases four threads were used during the read mapping 
trials. Therefore it is likely the licensed version of Novoalign, employing fully multi-thread 
functions, will exhibit greatly reduced computation time. Novoalign showed the highest 
mapping percentage in all tested program, indicating the excellent sensitivity of the hashing 
reference based algorithm. Unlike Novoalign, SHRiMP employs a k-mer hashing index and 
Smith-Waterman algorithm which gives it robust mapping sensitivity and specificity (David 
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amount of RAM and was comparable to Bowtie in computing time. The gapped alignment 
feature of BWA makes it more suitable should variations (i.e., small insertion/deletion or 
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mapped. This serves to increase the mapping sensitivity of alignments. In our test, BWA 
reported more reads properly mapped than Bowtie, suggesting BWA is more sensitive in 
identifying possible alignments between short reads and reference sequences.  
Two other programs tested were Novoalign and SHRiMP. They were both noticeably slower 
than Bowtie or BWA programs. Both Novoalign and SHRiMP programs use a hashing 
reference based algorithm, which can be traced back to BLAST searching but is optimized 
for alignment of short reads. For Novoalign, we tested the free version and thus only one 
thread was used while in all other cases four threads were used during the read mapping 
trials. Therefore it is likely the licensed version of Novoalign, employing fully multi-thread 
functions, will exhibit greatly reduced computation time. Novoalign showed the highest 
mapping percentage in all tested program, indicating the excellent sensitivity of the hashing 
reference based algorithm. Unlike Novoalign, SHRiMP employs a k-mer hashing index and 
Smith-Waterman algorithm which gives it robust mapping sensitivity and specificity (David 
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et al., 2011). However, SHRiMP requires large amounts of RAM and was the slowest 
program tested. The increased computational time and RAM requirements make SHRiMP 
less attractive for projects needing high-throughput data analyses.  
The final program we tested is Tophat (Trapnell et al., 2009). Tophat is a splice junction 
mapping program quite different from the previous four programs. Tophat is designed to 
align RNA-seq reads to a reference genome. Using Tophat, RNA-seq reads can be analyzed 
to identify novel splice variants of genes. Tophat first employs iterative rounds of Bowtie 
mapping to identify genomic regions with RNA-seq read mapping, and then to generate 
potential splice donor/acceptor sites flanking the sequence. Unmatched reads are then 
mapped to these splice junction sequences again by Bowtie to confirm possible splice 
junctions. Tophat prefers a genome sequence as a reference and mapping results may not be 
reliable if only a transcriptome reference is used. Of all five programs tested, Tophat 
required the most RAM for alignment processing. Thus, Tophat may be best used in a high-
performance computing environment.  
Overall, the choice of which alignment program to use should be based on both the 
available computer resources and experimental design. If the alignment process is to be 
performed on a standard desktop computer (e.g., about 4G RAM), SHRiMP and Tophat 
should be avoided due to memory constraints. However, Bowtie, BWA, and Novoalign can 
map reads efficiently on standard office computers. On the other hand, if a genome 
sequence is available for a reference, or the purpose of study is to identify InDel’s between a 
reference and reads, Bowtie may not be the best choice since it lacks gap alignment 
capabilities. Tophat is preferred when a genome sequence is present because it fully 
considers potential donor/acceptor sites in the genome and allows the alignment to cross 
splice junctions accurately, compared to the other programs. However, should a 
transcriptome be used as mapping reference, Tophat should be avoided as it is designed for 
use with genome sequence data. Finally, although all programs tested herein fully support 
both Illumina and SOLiD single or paired ends reads, SHRiMP and BWA (through its BWA-
SW module) also support mapping of mixed RNA-seq short reads with longer Sanger or 454 
Roche based reads. In such situations, where mixed reads are to be used, employing a single 
program saves both time and effort in the subsequent analyses.  
Overall, with the continuous increase in throughput for recently developed sequencing 
technologies, new algorithms are becoming available almost monthly; while older programs 
are continually refined to reduce computational time and memory demands. However, there 
is not a perfect program suited for all experimental designs and hardware requirements. The 
choice of programs will need to be reviewed and evaluated on a case-by-case basis.  

2.5 Quantification of gene expression level  
Currently most short read alignment programs adopt SAM (or its binary version, BAM) as 
the alignment output format. SAM (Sequence Alignment/Map format) is a tab-delimited 
text format designed for recording short read alignment information. Although it is human 
readable, a typical SAM file will consist of millions of lines of mapping information that is 
required for downstream analyses. In the next steps of data processing, most RNA-Seq 
projects aim to utilize read mapping as a means to quantify gene expression levels across 
entire reference transcriptomes or genomes (Fig 5).  
An early approach of using RNA-seq to quantify gene expression relied on simply counting 
the total number of reads mapping to each transcript in sample. However, since the total 
number of reads varied between each sample, read counts could not be use for direct 
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comparison or determination of differential expression between samples. In addition to total 
read count numbers between samples, the length of transcripts within each sample may 
vary and longer transcripts are generally more likely to have more reads mapped to them 
than shorter ones. Thus, performing tasks such as finding the highest expressed genes in a 
sample via direct read counting proved to be inaccurate. In an effort to normalize the 
sample size and transcript lengths for head-to-head read count comparisons, Mortazavi and 
coworkers (2008) developed the term Reads Per Kilobase per Million of mapped reads 
(RPKM) as a standard to compare different genes within or across different samples 
(Mortazavi et al., 2008). RPKM and its derived term FPKM (Fragments Per Kilobase per 
Million of mapped reads) for paired end reads, have been widely adopted in RNAseq 
studies employing various experimental systems.  
Since RPKM is easy to calculate and understand, it provides a platform to facilitate 
comparison of transcript levels both within and between samples. However, since the 
purpose of most studies involving RPKM is to compare differential gene expression, one 
must be aware that RPKM values may be affected by both experimental and computational 
issues. Experimental issues such as the quality of RNA, contamination of ribosomal RNA 
and length of output reads (Pepke et al., 2009; Costa et al., 2010) and computational 
influences including accuracy of gene modeling, and inclusion/exclusion of multiple 
mapped reads, may all affect the results obtained. One issue deserving special attention is 
the diminished statistical power one accepts when using RPKM to detect differential 
expression of longer transcripts (Oshlack and Wakefield, 2009). Employing RPKM, where 
the number of reads from a given transcript is divided by the length of the transcript, serves 
to deflate statistical power by producing a large sample size (more reads). To illustrate this, 
assume a 1000 bp gene (gene A) has 5 and 10 mapped reads in sample 1 and sample 2, 
respectively. In the same samples, a 10,000 bp gene (gene B) has 50 and 100 mapped reads, 
respectively. By definition of RPKM, since gene B is 10 times longer and has 10 times more 
reads mapped, both genes have identical RPKM values and fold changes in the two 
samples. Thus one would assume the confidence of gene A and gene B being differentially 
expressed is exactly same. However, since gene A has a much smaller sample size (15 reads 
in total) compared with gene B (150 reads), gene A is more prone to statistical error when 
trying to identify a 2 fold-change in expression between samples 1 and 2. Therefore, 
although RPKM is widely used to provide a scalable value to quantify gene expression 
levels, it is affected by variation in a transcript length dependent manner and should not be 
used to directly compare gene expression.  

2.6 Comparison of differential expression 
One common goal of many large-scale transcriptome studies is to identify differentially 
expressed genes between two or more samples. While microarrays have been widely used 
for over a decade to assess transcriptome-wide gene expression levels, RNA-seq 
technologies have displayed several advantages over microarrays, such as the ability to 
identify novel transcripts and to assess quantitative allele-specific gene expression. 
However, it is still debatable which tool is better to accurately assess gene expression values. 
In a recent study (Bloom et al., 2009), microarray and RNA-seq results were compared using 
quantitative RT-PCR (qRT-PCR) assays and it was determined that both methods performed 
similarly in measuring differential gene expression. The microarray had an advantage over 
RNAseq in better measure of low-abundance transcripts (Bloom et al., 2009); however, when 
results of microarray and RNA-seq were further assessed with 2D LC-MS/MS the 
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et al., 2011). However, SHRiMP requires large amounts of RAM and was the slowest 
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technologies have displayed several advantages over microarrays, such as the ability to 
identify novel transcripts and to assess quantitative allele-specific gene expression. 
However, it is still debatable which tool is better to accurately assess gene expression values. 
In a recent study (Bloom et al., 2009), microarray and RNA-seq results were compared using 
quantitative RT-PCR (qRT-PCR) assays and it was determined that both methods performed 
similarly in measuring differential gene expression. The microarray had an advantage over 
RNAseq in better measure of low-abundance transcripts (Bloom et al., 2009); however, when 
results of microarray and RNA-seq were further assessed with 2D LC-MS/MS the 
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expression values estimated by RNA-Seq appeared to be better correlated with the 
proteomics data (Fu et al., 2009). Overall, these studies prove that RNA-Seq may serve as a 
reliable method to accurately estimate absolute transcript levels. 
Since both microarray and RNA-seq are used to quantify expression levels of transcripts, 
statistical methods developed for microarrays have been adopted to compare gene 
expression using RNA-seq. However, there are notable differences between the two 
technologies and methods successfully used for microarray analysis might not be 
appropriate for RNA-seq data (Costa et al., 2010). First, the gold standard for any microarray 
studies is to have at least three replicates in each condition while many RNA-seq projects 
lack the luxury of replicates due to the relatively expensive cost of sequencing RNA-seq 
libraries. Methods that have been used in microarray analysis range from simple t-testing to 
more complicated statistical modeling; but all these techniques rely on having multiple 
replicates to identify differentially expressed genes. The absence of multiple replicates 
greatly reduces the statistical power of RNAseq methods. Secondly, for microarray analysis, 
fluorescence intensity is utilized as the measurement of transcript levels and these data may 
be treated as continuous data. However, RNA-seq studies utilizing read counts (or RPKM) 
to gauge the expression of a particular transcript generate discrete data. Thus, statistical 
models developed for continuous data might not be effective when applied to data 
generated from an RNA-seq experiment.  
Many studies have utilized different statistical tools to identify differentially expressed 
transcripts in RNA-seq experiments. Simple approaches such as classical Z-test and 
Fishers exact test have been employed for this purpose (Bloom et al., 2009; Hashimoto et 
al., 2009). Although these methods are appropriate for hypothesis testing of discrete data, 
they do not consider the global variations of all genes, thus less robust than more 
advanced approaches discussed below. There are several studies reported where more 
sophisticated microarray based methods have been modified and made suitable for RNA-
seq projects. One of the pioneering reports involved RNAs extracted from liver and 
kidney of the same individual that were separated into seven aliquots for each sample 
and sequenced in individual lanes of a Illumina genome analyzer (Marioni et al., 2008). 
The variations of these technological replicates were then calculated and were found to fit 
the variance predicted by a Poisson model. Using the Poisson model allowed the authors 
to identify 30% more differentially expressed genes than a standard statistic analysis and 
employing microarrays with the same samples (Marioni et al., 2008). Based on the notion 
that a Poisson distribution can predict the variations in RNA-seq data, DEGseq, a 
Bioconductor software package, has been developed for examining differential expression 
of RNA-seq read count data (Wang et al., 2010). DEGseq modeled the number of reads 
derived from a gene into a Poisson distribution and used the Fisher’s exact test and 
likelihood ratio test to identify differentially expressed genes (Wang et al., 2010). 
However, it has been argued the Poisson distribution will underestimate actual variations 
in replicated samples and tends to predict smaller variations than are actually present in 
the data (Nagalakshmi et al., 2008). As a result, methods based on the Poisson distribution 
do not control false discoveries very well. In addition to Poisson distributions, two other 
Bioconductor packages, DESeq and EdgeR, both take read counts as input and use 
negative binomial distributions to estimate variations of RNA-seq data (Anders and 
Huber, 2010; Robinson et al., 2010). EdgeR employs negative binomial distributions to 
account for variability and assesses differential expression based on Empirical Bayes 
methods (Robinson et al., 2010). The DESeq package models distributions of read count 
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data by negative binomial distribution, with variance and mean linked by local regression 
(Anders and Huber, 2010). Compared with previous Poisson based program, both DESeq 
and EdgeR control the probability of false discoveries and produce good fits when the 
number of replicates is small (Anders and Huber, 2010).  
In addition to the Bioconductor packages discussed above, another standalone tool 
termed “Cufflinks”, written by same research group that developed Bowtie and Tophat, 
may be used to read SAM files produced from Tophat directly and compare differential 
expression in pair-wise manner (Trapnell et al., 2010). The program extracts read count 
information from SAM files and computes the entropy of the average distribution minus 
the average of the individual entropies [Jensen-Shannon divergence; see (Menendez et al., 
1997)] and the difference between abundances of transcripts in two conditions may be 
calculated as the square root of this divergence. Cufflinks can be easily integrated with 
Bowtie/Tophat workflow and outputs FPKM values for two samples and the significance 
level of the statistics tests. In addition to transcript expression, Cufflinks may also be used 
to find significant changes in transcript splicing and promoter usage between two 
samples.  

2.7 SNP identification and allele specific gene expression 
One major advantage of RNA-seq technology over microarray based approaches is that one 
may quantify not only total gene expression, but also allele specific gene expression (ASGE) 
at same time. To study allele specific gene expression using microarrays, one must have 
very detailed characterization of genome polymorphisms and then specifically design 
probes to assess the abundance of each allele independently on the array. Therefore, it is 
difficult to study ASGE in less well-characterized species or genetic models that possess 
little information of known polymorphisms. With rapid progress in next generation 
sequencing technologies (NGS), RNA-Seq has been shown to provide single-base resolution 
and quantitative information for thousands of genes simultaneously (Pastinen, 2010). 
Notably, this approach does not rely on previous knowledge of known variations and can 
be used for both identifying polymorphisms and quantifying ASGE. Using both 454 and 
Illumina sequencing platforms respectively, allelic expression imbalances have been 
assessed in Drosophila hybrids, Xiphophorus fishes, and in humans (Serre et al., 2008; 
Daelemans et al., 2010; Fontanillas et al., 2010; Shen et al., 2011).  
Here we demonstrate our recent ASGE study using Xiphophorus interspecies hybrid fishes. 
The genus Xiphophorus has at least 27 species of live-bearing fishes found from northern 
Mexico south into Belize and Guatemala (Kallman and Kazianis, 2006). The Xiphophorus 
genus couples extreme genetic variability among Xiphophorus species with the capability of 
producing fertile interspecies hybrids that have allowed chromosomal inheritance of 
complex traits to be followed into individual F1 and backcross hybrid progeny (Kazianis et 
al., 2001; Walter and Kazianis, 2001; Meierjohann and Schartl, 2006). Using interspecies 
hybrids provides a unique opportunity to reveal underlying mechanisms of genetic 
variation.  
We have assembled the transcriptome of X. maculatus Jp163 A, a highly inbred line species 
of Xiphophorus (Fig 6) using RNA-seq sequencing from brain, heart, and liver tissues (see 
section 2.5). We first investigate transcriptome-wide SNP polymorphisms between two 
highly inbred Xiphophorus species: X. maculatus Jp 163 B and X. couchianus. To do this RNA-
seq reads sequenced from X. maculatus Jp163 B were mapped to the reference transcriptome 
of X. maculatus Jp163 A by Bowtie (Langmead et al., 2009) and SNPs were called by 
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kidney of the same individual that were separated into seven aliquots for each sample 
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The variations of these technological replicates were then calculated and were found to fit 
the variance predicted by a Poisson model. Using the Poisson model allowed the authors 
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that a Poisson distribution can predict the variations in RNA-seq data, DEGseq, a 
Bioconductor software package, has been developed for examining differential expression 
of RNA-seq read count data (Wang et al., 2010). DEGseq modeled the number of reads 
derived from a gene into a Poisson distribution and used the Fisher’s exact test and 
likelihood ratio test to identify differentially expressed genes (Wang et al., 2010). 
However, it has been argued the Poisson distribution will underestimate actual variations 
in replicated samples and tends to predict smaller variations than are actually present in 
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do not control false discoveries very well. In addition to Poisson distributions, two other 
Bioconductor packages, DESeq and EdgeR, both take read counts as input and use 
negative binomial distributions to estimate variations of RNA-seq data (Anders and 
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data by negative binomial distribution, with variance and mean linked by local regression 
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number of replicates is small (Anders and Huber, 2010).  
In addition to the Bioconductor packages discussed above, another standalone tool 
termed “Cufflinks”, written by same research group that developed Bowtie and Tophat, 
may be used to read SAM files produced from Tophat directly and compare differential 
expression in pair-wise manner (Trapnell et al., 2010). The program extracts read count 
information from SAM files and computes the entropy of the average distribution minus 
the average of the individual entropies [Jensen-Shannon divergence; see (Menendez et al., 
1997)] and the difference between abundances of transcripts in two conditions may be 
calculated as the square root of this divergence. Cufflinks can be easily integrated with 
Bowtie/Tophat workflow and outputs FPKM values for two samples and the significance 
level of the statistics tests. In addition to transcript expression, Cufflinks may also be used 
to find significant changes in transcript splicing and promoter usage between two 
samples.  

2.7 SNP identification and allele specific gene expression 
One major advantage of RNA-seq technology over microarray based approaches is that one 
may quantify not only total gene expression, but also allele specific gene expression (ASGE) 
at same time. To study allele specific gene expression using microarrays, one must have 
very detailed characterization of genome polymorphisms and then specifically design 
probes to assess the abundance of each allele independently on the array. Therefore, it is 
difficult to study ASGE in less well-characterized species or genetic models that possess 
little information of known polymorphisms. With rapid progress in next generation 
sequencing technologies (NGS), RNA-Seq has been shown to provide single-base resolution 
and quantitative information for thousands of genes simultaneously (Pastinen, 2010). 
Notably, this approach does not rely on previous knowledge of known variations and can 
be used for both identifying polymorphisms and quantifying ASGE. Using both 454 and 
Illumina sequencing platforms respectively, allelic expression imbalances have been 
assessed in Drosophila hybrids, Xiphophorus fishes, and in humans (Serre et al., 2008; 
Daelemans et al., 2010; Fontanillas et al., 2010; Shen et al., 2011).  
Here we demonstrate our recent ASGE study using Xiphophorus interspecies hybrid fishes. 
The genus Xiphophorus has at least 27 species of live-bearing fishes found from northern 
Mexico south into Belize and Guatemala (Kallman and Kazianis, 2006). The Xiphophorus 
genus couples extreme genetic variability among Xiphophorus species with the capability of 
producing fertile interspecies hybrids that have allowed chromosomal inheritance of 
complex traits to be followed into individual F1 and backcross hybrid progeny (Kazianis et 
al., 2001; Walter and Kazianis, 2001; Meierjohann and Schartl, 2006). Using interspecies 
hybrids provides a unique opportunity to reveal underlying mechanisms of genetic 
variation.  
We have assembled the transcriptome of X. maculatus Jp163 A, a highly inbred line species 
of Xiphophorus (Fig 6) using RNA-seq sequencing from brain, heart, and liver tissues (see 
section 2.5). We first investigate transcriptome-wide SNP polymorphisms between two 
highly inbred Xiphophorus species: X. maculatus Jp 163 B and X. couchianus. To do this RNA-
seq reads sequenced from X. maculatus Jp163 B were mapped to the reference transcriptome 
of X. maculatus Jp163 A by Bowtie (Langmead et al., 2009) and SNPs were called by 
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Samtools (Li et al., 2009). The density of intraspecific SNPs was about 1 SNP/49 kb of 
transcriptome [Figure 7; (Shen et al., 2011)].  
 

 
Fig. 6. Fishes used in this study. X. maculatus Jp 163 A carrying the Sd pigment pattern is the 
species utilized for deep transcriptome development and eventual assembly of the reference 
transcriptome. F1 interspecies hybrids utilized in these studies were produced by crossing 
the X. maculatus Jp 163 B (Sp pigment pattern) and X. couchianus parental species. RNA-seq 
reads analyzed in this study were sequenced from X. maculatus Jp 163 B, X. couchianus and 
their F1 interspecies hybrids respectively. 

We wished to ascertain ASGE between X. maculatus Jp 163 B, X. couchianus and an F1 hybrid 
produced from crossing these two species (Fig 6). Thus, we first determined that the 90,788 
SNPs, identified between the X. maculatus reference transcriptome and X. couchianus were 
also polymorphic between the X. maculatus Jp 163 B strain and X. couchianus. To improve the 
accuracy of ASGE analysis in the hybrid, we scored only genes that exhibited greater than 20 
SNP supporting reads. These constraints resulted in 38,746 SNPs between X. maculatus Jp 
163 B and X. couchianus that could be clearly assigned to one or the other parental alleles and 
were unambiguously mapped to 6,524 Xiphophorus transcripts in the reference 
transcriptome.  
After identification of SNPs, ASGE can be calculated as number of reads mapped to each 
allele in the F1 hybrid (for a diagrammatic illustration of the process, see Fig 7). Since most 
short alignment programs only allow a limited number of base mismatches (i.e., 2 in case 
of Bowtie) between reads and reference sequences, the reads representing the X. 
couchianus alleles possessed natural disadvantages in mapping efficiency since they 
carried an extra mismatch (i.e., the SNP) compared with X. maculatus reads. In the F1 

hybrid, we found many transcripts showed more X. maculatus mapped reads than X. 
couchianus ones when the mapping was back to the X. maculatus reference transcriptome. 
To eliminate this read mapping bias and create an environment where reads from both X. 
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maculatus and X. couchianus alleles had equal chances of mapping to the transcriptome, we 
first duplicated the X. maculatus reference and then introduced all X. couchianus specific 
SNP’s into it to produce an in silico X. couchianus reference transcriptome (based on X. 
maculatus transcriptome with masked SNPs). The induction of X. couchianus reference 
transcriptome allowed reads with X. couchianus alleles to have comparable likelihood of 
being mapped in ASGE study.  
 

 
Fig. 7. A diagrammatic example of identification of SNPs and measurement of ASGE in F1 
interspecies hybrids. Red bars represent RNA-Seq reads mapped to the reference 
transcriptome. Most reads from X. maculatus Jp 163 B match perfectly to the Jp 163 A 
reference transcriptome. RNA-seq reads from X. couchianus were also mapped to X. 
maculatus Jp 163 A reference transcriptome and SNPs sites were identified by comparing 
consensus bases of RNA-seq reads (C in this case) to the corresponding base in the 
reference transcriptome (A in this case). In the hybrid, reads mapped to SNPs sites are 
classified by the bases they carry and counted separately as the measurement of ASGE. In 
this SNP, 4 X. maculatus allele reads and 3 X. couchianus allele reads were counted in the 
hybrid. 

As shown in Fig 8, using the corrected reference transcriptome allowed both X. maculatus 
and X. couchianus alleles to exhibit a more balanced expression pattern (Fig 8b) in the hybrid 
genetic background than without normalization (Fig 8a). Without proper normalization, we 
found over 84% of genes in the transcriptome were biased toward over-representation of the 
X. maculatus allele (fraction > 0.5, Fig 8a). After production of the in silico reference 
transcriptome and tolerating 5 mismatches, analyses of the distribution of ASGE in F1 
hybrids indicate that most genes (5,980 of 6,524 genes or 92%) exhibit relatively balanced 
allele expression in the hybrid genetic background (<70% of preference of one particular 
allele, those between 0.3 and 0.7 in Fig 8b). Overall, employment of high throughput 
sequencing technology and proper normalization approaches allow direct and accurate 
assessment of ASGE in the interspecies hybrids. 
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Fig. 8. Allele distribution in F1 hybrid background. A: A histogram shows the distribution of 
F1 transcripts carrying different parental alleles before normalization. X axis is the fraction 
of reads carrying X. maculatus allele. 0.5 means in that gene, half of F1 hybrid reads can be 
identified from X. couchianus and another half are from X. maculatus. 1.0 and 0.0 means reads 
exclusively carrying X. maculatus and X. couchianus alleles, respectively. B: Fraction of X. 
maculatus in hybrid background after normalization. We masked X. maculatus reference with 
consensus bases from X. couchianus and allowing five mapping mismatches. 

3. Conclusion 
The bottleneck of large-scale NGS projects has shifted from obtaining experimental data to 
downstream bioinformatic analyses. With the continuous development of software 
infrastructure to suit the needs of RNA-Seq analyses, there are several competent programs 
in each of the analysis step; such as transcriptome assembly, read mapping, and 
identification of differential gene expression. The real challenge facing many biologists is to 
find the right tool to use and carefully weighing the strength and weakness of each tool. The 
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constant advance in sequencing technology will continue to increase the amount of data 
produced, urging the use of the most efficient tool within the capacity of available computer 
resources. The combination of the carefully designed experiment and right methodology 
utilizing NGS data will open a new era for studying species with little historical background 
genetic information available. 
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exclusively carrying X. maculatus and X. couchianus alleles, respectively. B: Fraction of X. 
maculatus in hybrid background after normalization. We masked X. maculatus reference with 
consensus bases from X. couchianus and allowing five mapping mismatches. 
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1. Introduction  
Sequencing of bacterial genomes has become a common technique of the present day 
microbiology. Thereafter, data mining in complete genome sequence is an essential step to 
uncover the uniqueness and evolutionary success of microorganisms. Oligonucleotide usage 
(OU or k-mer) statistics provides invaluable tools to get insight into genome organization 
and functionality.  
The study of genome OU signatures has a long history dating back to early publications by 
Karlin et al. 1995, 1997, 1998, who focused mainly on dinucleotide compositional biases and 
their evolutionary implications. Statistical approaches of OU comparison were further 
advanced by Deschavanne et al., 1999, who applied chaos game algorithms; and by Pride et 
al., 2003, who extended the analysis to tetranucleotides using Markov Chain Model 
simulations. Later, a number of practical tools for phylogenetic comparison of bacterial 
genomes (Coenye & Vandamme, 2004; van Passel et al., 2006); identification of horizontally 
transferred genomic islands (Mrázek & Karlin, 1999; Pried & Blaser, 2002; Nakamura et al., 
2004; Azad & Lawrence, 2005; Dufraign et al., 2005; Becq et al., 2007) and assignment of 
unknown genomic sequences (Abe et al., 2003; Teeling et al., 2004) based on OU statistics 
became publicly available. These approaches exploited the notion that genomic OU 
composition was less variable within genomes rather than between them, regardless of 
which genomic regions had been taken into consideration (Jernigan & Baran, 2002). A 
general belief was that if a significant compositional difference was discovered in genomic 
fragments relative to the core genome, these loci most likely can be assigned to horizontally 
transferred genetic elements (transposons, prophages or integrated plasmids). This 
approach was criticized by several researchers (Koski et al., 2001; Wang 2001), who pointed 
out that codon bias and base composition are poor indicators of horizontal gene transfer. 
Therefore, there is a need for more informative parameters which also take into account 
higher order DNA variation. An overview of the current OU statistical methods based on  
di-, tetra- and hexanucleotides has been published recently (Bohlin et al., 2008). The 
conclusion of the review was that all methods were context dependent and, though being 
efficient and powerful, none of them were superior in all applications. Thus, the major 
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transferred genomic islands (Mrázek & Karlin, 1999; Pried & Blaser, 2002; Nakamura et al., 
2004; Azad & Lawrence, 2005; Dufraign et al., 2005; Becq et al., 2007) and assignment of 
unknown genomic sequences (Abe et al., 2003; Teeling et al., 2004) based on OU statistics 
became publicly available. These approaches exploited the notion that genomic OU 
composition was less variable within genomes rather than between them, regardless of 
which genomic regions had been taken into consideration (Jernigan & Baran, 2002). A 
general belief was that if a significant compositional difference was discovered in genomic 
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motivation of our work was to develop more flexible and informative algorithms seamlessly 
integrating di- to heptanucleotides OU analysis for reliable identification of divergent 
genomic regions. 

2. Linguistic approaches for genomics and metagenomics 
Genome linguistics is respectively known as the analysis of frequencies of k-mers in genome 
wide DNA sequences. The basic hypothesis is that biased distribution of oligonucleotides in 
bacterial genome is genome specific and may serve as a signature. Each OU pattern may be 
characterized by a number of OU statistical parameters, namely: local pattern deviation (D), 
pattern skew (PS), relative variance (RV) and several others that will be explained below. 
The requirements for the OU statistics are as follows: i) distances between patterns of 
different word length (from di- through to heptanucleotides) calculated for the same 
sequence must be comparable; i.e. one may use longer word patterns to perform a large 
scale analysis and then switch to shorter word patterns for a more detailed view; ii) OU 
patterns calculated for sequences of different lengths must be comparable provided that the 
length of the sequence is longer than the specified thresholds; iii) alterations of OU patterns 
may be analyzed by different non-redundant parameters (D, PS and RV with different 
schemes of normalization by frequencies of shorter constituent words). Superimposition of 
these OU characteristics allows better discrimination of divergent genomic regions. 

2.1 Oligonucleotide usage pattern concept 
OU pattern was denoted as a matrix of deviations [1…N] of observed from expected counts 
for all possible words of length N. Oligonucleotides or words are distributed in sequences 
logarithmically and deviations of their frequencies from expectations may be found as follows:  
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where n is any nucleotide A, T, G or C in the N-long word; C[1…N]|obs is the observed count 
of a word [1…N]; C[1…N]|e is its expected count and C[1…N]|0 is a standard count 
estimated from the assumption of an equal distribution of words in the sequence: 
(C[1…N]|0 = Lseq  4-N). 
Expected counts of words C[1…N]|e were calculated in accordance to the applied 
normalization scheme. For instance, C[1…N]|e = C[1…N]|0 if OU is not normalized, and 
C[1…N]|e = C[1…N]|n if OU is normalized by empirical frequencies of shorter constituent 
words of length n. The expected count of a word C[1…N]|e of the length N in a Lseq long 
sequence normalized by frequencies of n-mers (n < N) is calculated as follows: 
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Where the F[1…n] values are the observed frequencies of a particular word of length n in the 
sequence and  is any nucleotide A, T, G or C. For instance, the expected count of a word 
ATGC in a sequence of Lseq nucleotides normalized by frequencies of trinucleotides would 
be determined as follows: 
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 (3) 

Two approaches of normalization have been exploited where the F values are calculated for 
the complete genome (generalized normalization) or for a given sliding window (local 
normalization).  
The distance D between two patterns was calculated as the sum of absolute distances 
between ranks of identical words (w, in a total 4N different words) after ordering of words 
by [1…N] values (equation 1) in patterns i and j as follows: 
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Application of ranks instead of relative oligonucleotide frequency statistics made the 
comparison of OU patterns less biased to the sequence length provided that the sequences 
are longer than the limits of 0.3, 1.2, 5, 18.5, 74 and 295 kbp for di-, tri-, tetra-, penta-, hexa- 
and heptanucleotides, respectively (Reva and Tümmler, 2004). 
PS is a particular case of D where patterns i and j are calculated for the same DNA but for 
direct and reversed strands, respectively. Dmax = 4N  (4N – 1)/2 and Dmin = 0 when calculating 
a D, or, in a case of PS calculation, Dmin = 4N if N is an odd number, or Dmin = 4N – 2N if N is 
an even number due to the presence of palindromic words. Normalization of D-values by 
Dmax ensures that the distances between two sequences are comparable regardless of the 
word length. 
Relative variance of an OU pattern was calculated by the following equation: 
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where N is word length; Δ2w is the square of a word w count deviation (see equation 1); and 
σ0 is the expected standard deviation of the word distribution in a randomly generated 
sequence which depends on the sequence length (Lseq) and the word length (N): 
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2.2 Compositional polymorphism of bacterial genomes 
Biased distribution of k-mers may be explained by selective forces of DNA reparation 
enzymes of microorganisms, which may sense stereochemical properties of DNA 
fragments. A strong correlation was discovered between frequencies of oligonucleotides 
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and their physicochemical properties such as base stacking energy, propeller twist angle, 
bendability, protein deformability and position preference in the DNA helical repeats 
(Fig. 1) calculated by the additive scale approach proposed by Baldi & Baisnée, 2000. It 
looks plausible that proteins of the replication-reparation system may sense the 
stereochemical properties of the DNA molecule and allow higher mutation rates in 
atypical regions; however, it has not yet been proved experimentally. The latter may 
explain the pervasive properties of genomic signatures that are reported for bacterial 
genomes (Jernigan & Baran, 2002). Despite a significant conservation of the OU pattern in 
genomic core DNA sequences, every bacterial genome contains loci of DNA which differ 
significantly from the core sequence. These loci usually contain gene clusters for 
ribosomal RNA and ribosomal proteins, horizontally transferred genomic islands, DNA 
fragments with multiple repeats and some other features. Superimposition of different 
OU parameters allows discrimination of divergent genomic regions. Briefly: rRNA 
operons are characterized by extremely high PS and low RV; giant genes with multiple 
repeated elements have high or moderate PS and high RV; horizontally transferred 
genetic elements are characterized by increased divergence between RV and GRV 
accompanied by high D; and genes for ribosomal proteins show a moderate increase of D, 
PS and RV above genomic averages. In the examples given above D denotes the distance 
between a local pattern calculated for a sliding window and the global pattern determined 
for the complete genome; PS is local pattern skew; and RV and GRV are variances of local 
OU patterns normalized by GC-content of the sliding window and the complete genome, 
respectively. 
A Web-based applet SeqWord Genome Browser (SWGB) was developed and available on-
line at www.bi.up.ac.za/SeqWord/ to visualize DNA compositional variations in pre-
calculated bacterial and viral genomes. The SWGB is basically comprised of two views, 
denoted by the ‘Gene Map’ and ‘Diagram’ tabs. The ‘Gene Map’ tab offers a simple view of 
an entire genome at a glance and gives users access to a number of important pre-calculated 
OU statistics superimposed on the gene map (Fig. 2). The ‘Diagram’ tab allows flexible 
filtering of the underlying data based on the criteria chosen by users. Although the 
underlying data is pre-calculated, the user may, by simply changing selected parameters, 
generate many alternative plots, which give different insights into the natural genomic 
variation. On the dot-plot diagram, each genomic fragment selected by the sliding window 
is represented by a dot with X and Y coordinates, which correspond to values of OU 
parameters chosen from X and Y drop-down lists, respectively. The Z axis parameter may 
be set as well. In this case, the dots are coloured by values of OU parameters selected for the 
Z axis, and the colour range is displayed on the vertical colour bar on the left of the plot area 
(Fig. 3). 
Several routines have been developed to identify horizontally transferred genomic islands, 
genes for ribosomal RNA and proteins, non-functional pseudogenes and genes of other 
functional categories. All these routines are described in detail with illustrations in 
supplementary web-pages (use the ‘Help’ link in the applet window). Take for example the 
genome of Pseudomonas putida KT2440, a known mosaic genome with 105 genomic islands 
above 4000 bp in length (Weinel et al., 2002). Many of these features can be visualized at a 
glance using the SWGB without any in depth analysis (see Fig. 2). On the ‘Diagram’ view 
the parameters n1_4mer:RV, n1_4mer:GRV and n0_4mer:D were selected for the X, Y and Z 
axes, respectively, as we showed previously (see Fig. 3).  
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Plotting local relative OU variance (RV) against global relative variance (GRV) basically 
shows the effect of normalization by global mononucleotide content. The core genome is 
then represented on the dot plot as the positive linear correlation line where RV  GRV 
(Fig. 3). In other words, these fragments exhibit such compositional closeness to the core 
genome that normalizing by local mononucleotide content does not have any effect 
compared to normalizing by the global content. These genomic fragments also exhibit 
compositional similarity to the genomic average; and are therefore coloured blue. Scattered 
dots lying peripheral to the expected strong linear correlation do not belong to the core 
genome and also have a higher distance from the genomic average and are hence coloured 
green and red. 
 

 
 

 
 
 
 

Fig. 1. Tetranucleotide usage patterns calculated for genomes of four different organisms. 
The deviations Δw of observed from expected counts are shown for all 256 tetranucleotide 
permutations (16×16 cells) by a colour code (right bar) depicting overrepresented  
(red) and rare (blue) words. The words are grouped into 39 equivalence classes and 
ordered by decreasing base stacking energy row-by-row starting from the upper corner  
(class 39). 
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Fig. 2. Identification of divergent genomic regions on the ‘Gene Map’ view. Superimposition 
of different OU parameters such as GC (black line), GCS (pink), PS (green), D (blue), GRV 
(upper brown line) and RV (lower brown line) allows discrimination of divergent genomic 
regions. In this example a part of the chromosome of Pseudomonas putida KT2440  
(127-774 kbp) is displayed in the applet window. A genomic fragment was highlighted 
using the function ‘Select region’ and a giant gene, PP0168, was selected by ‘Select gene’.  
A pop-up window ‘Gene Details’ was opened by double-clicking the gene on the map. 
Genes are indicated by red and grey (for hypothetical) bars. The black horizontal line 
separates genes by their direction of translation. 

Changing of the set of parameters as shown on Fig. 4 allows separation of core 
housekeeping genes from clusters of genes encoding ribosomal proteins and ribosomal 
RNA, vestigial regions with pseudogenes and giant genes with multiple repeats. 
SWGB is linked to a database of pre-calculated OU patterns of bacterial genomes (2243 
complete sequences, including bacterial chromosomes, plasmids and some viruses were 
available at the time of writing of this chapter and new sequences are regularly being 
added). The SWGB allows tentative annotation of the various divergent regions and 
provides overviews for use in comparative genomics. Users may download the command 
line version of the OligoWords program to analyze locally their own sequences. A packaged 
version of the SWGB allows users to view and manipulate their OligoWords results locally 
using a compatible web-browser. 
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Fig. 3. The ‘Diagram’ view. In this example n1_4mer:RV, n1_4mer:GRV and n0_4mer:D 
were selected for the X, Y and Z axes, respectively. Every dot on the dot-plot corresponds 
to a genomic fragment selected by the sliding window. Dots are spread and coloured in 
accordance with their values of the selected statistical OU parameters. Information for 
each dot may be found by one of the following methods: i) information for a dot pointed 
by the mouse is shown in the ‘Message’ bar; ii) double clicking a dot returns us to the 
‘Gene map’ tab with the corresponding genomic fragment highlighted; iii) framing the 
dots and clicking the ‘Get’ button opens a new applet window with the information about 
all selected regions. In this example the genomic regions of Salmonella typhimurium LT2 
(NC_003197) which correspond to horizontally transferred genetic elements were 
selected. 
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Fig. 3. The ‘Diagram’ view. In this example n1_4mer:RV, n1_4mer:GRV and n0_4mer:D 
were selected for the X, Y and Z axes, respectively. Every dot on the dot-plot corresponds 
to a genomic fragment selected by the sliding window. Dots are spread and coloured in 
accordance with their values of the selected statistical OU parameters. Information for 
each dot may be found by one of the following methods: i) information for a dot pointed 
by the mouse is shown in the ‘Message’ bar; ii) double clicking a dot returns us to the 
‘Gene map’ tab with the corresponding genomic fragment highlighted; iii) framing the 
dots and clicking the ‘Get’ button opens a new applet window with the information about 
all selected regions. In this example the genomic regions of Salmonella typhimurium LT2 
(NC_003197) which correspond to horizontally transferred genetic elements were 
selected. 
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Fig. 4. The ‘Diagram’ view. In this example n0_4mer:D, n1_4mer:RV and n0_4mer:PS were 
selected for the X, Y and Z axes to identify genomic areas of interest. 

2.3 Signature words and identification of environmental sequences 
In genomic and metagenomic literature the occurrences of 2 to 7 bp oligonucleotides have 
been studied extensively. Patterns of short oligomers (words) have been used successfully 
for DNA read clustering (Chatterji et al., 2008; Kislyuk et al., 2009; Saeed & Halgamuge, 
2009). However, short oligonucleotide patterns usually do not provide enough information 
for binning DNA reads to bacterial species or higher taxonomic units. Longer words of 8 to 
14 nucleotides generally are more specific. Nevertheless, it was illustrated that the approach 
based on the analysis of frequencies of all the permutations of oligonucleotides of a given 
length such as discussed above is not effective for analysis of 8 to 14 letter words (Bohlin et 
al., 2008). Furthermore, an analysis of all possible permutations of 8 to 14 bp words would 
be computationally expensive because the total number of possible permutations of words is 
4L where L is the word length. For words of length 8 to 14 bp, this quantity becomes very 
large. Additionally, the random changes in the frequencies of such a large number of words 
obscure the genome specific information present in a few signature words. According to 
Kirzhner et al., 2005, less than 1% of 10-mers are informative in a large-scale comparison of 
bacterial genomes. 
A first investigation into exploiting the information present in 8 to 14 letter words in 13 
strains from the genus Pseudomonas was made by Davenport et al., 2009. It has been shown 
as well that certain profiles of signature words may help to distinguish DNA fragments that 
originated from different genomes (Saeed & Halgamuge, 2009).  
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In this work an attempt was made to standardize the linguistic approaches of binning 
metagenomic DNA reads by creating a database of signature words of Eubacteria and 
Archaebacteria represented in GenBank. The first step was to develop methods for 
summarizing the large amounts of data associated with these words. To avoid using the 
words that do not provide any taxonomic information, the most divergent words were 
selected and stored in the database. Currently, the frequencies of 172,636 signature words 
calculated in 768 bacterial chromosomes are stored in a binary database file available for 
download from the SeqWord project Web-site at www.bi.up.ac.za/SeqWord/oligodb/. 
Furthermore, scoring functions were designed, which measure the likelihood that a given 
DNA fragment originated from a given taxonomic group. 
This tool also may be used to identify the origin of DNA sequences or whole clusters of 
DNA sequences. There are a number of programs such as LikelyBin (Kislyuk et al., 2009), 
CompostBin (Chatterji et al., 2008) and some others that cluster DNA sequences, but there is 
no default methodology for inferring the taxonomic affinity of these clusters. Typically, 
BLAST is used to compare these clusters to the databases of DNA sequences. Frequently 
these clusters consist of several short sequences that cannot be easily assembled, which 
makes using BLAST complicated. TETRA identifies long unknown DNA sequences by 
comparison of the whole patterns of frequencies of tetranucleotides (Teeling et al., 2004). A 
tool based on occurrences of 8 to 14 letter words is expected to work equally well both on 
clusters of sequences and single long sequences. 

2.3.1 Statistical background of selection of signature words 
To identify prospective signature words, the distribution score coefficients were calculated 
for each 8 to 14-mer permutation as follows: 
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(7)
 

where µ indicates the average length of spans (in base pairs) between the repeated words in 
the sequence (i.e., µ = sequence_length/number_of_words); and σ is the standard deviation 
of the span lengths. The DS for a word increases in value when there is a high frequency of 
occurrence (µ is minimal) and the words are evenly distributed (σ tends to 0). The DS 
coefficient assigns low scores to infrequent words and to local repeats while giving higher 
scores to words occurring frequently and evenly distributed throughout the genome. The 
words that have DS above the threshold value of 0.3 in at least one genome were included in 
the template of signature words. Furthermore, their frequencies were recalculated for all 
genomes. The threshold value was empirically determined to ensure that the template 
contained similar numbers of words for each different word length and that an appropriate 
ratio between template size and word specificity is obtained. The final template contains 
172,636 signature words; that is approximately 0.1% of the total number of all possible 
permutations of 8 bp to 14 bp oligonucleotides. Note that in this work each oligonucleotide 
and its reverse complement were considered as the same word so that the two different 
strands of the DNA molecule will be assigned identical scores. 
To improve maintenance and operational flexibility of the database, the numeric frequencies 
of words may be replaced by percentile values without any significant loss of information. 
The empirical cumulative distribution of the frequency of occurrence of the words in the 
template was studied and the following non-linear regression model was fitted to the data: 



 
Systems and Computational Biology – Molecular and Cellular Experimental Systems 

 

34

Genes for ribosomal proteins

Complex modular genes: cytochrome
biogenesis and large repetitive proteins in 
Salmonella; hemagglutinin, adhesines,
many toxins and peptide synthetases in
other bacterial genomes  

Genes indispensable for growth
and surviving of the bacteria in
its ecotope.  

Core sequence

Foreign gene islands: pathogenesis
islands, transposones, integrated
phages, IS elements and so on.

Red dots correspond to genes
for ribosomal RNAs  

Fig. 4. The ‘Diagram’ view. In this example n0_4mer:D, n1_4mer:RV and n0_4mer:PS were 
selected for the X, Y and Z axes to identify genomic areas of interest. 

2.3 Signature words and identification of environmental sequences 
In genomic and metagenomic literature the occurrences of 2 to 7 bp oligonucleotides have 
been studied extensively. Patterns of short oligomers (words) have been used successfully 
for DNA read clustering (Chatterji et al., 2008; Kislyuk et al., 2009; Saeed & Halgamuge, 
2009). However, short oligonucleotide patterns usually do not provide enough information 
for binning DNA reads to bacterial species or higher taxonomic units. Longer words of 8 to 
14 nucleotides generally are more specific. Nevertheless, it was illustrated that the approach 
based on the analysis of frequencies of all the permutations of oligonucleotides of a given 
length such as discussed above is not effective for analysis of 8 to 14 letter words (Bohlin et 
al., 2008). Furthermore, an analysis of all possible permutations of 8 to 14 bp words would 
be computationally expensive because the total number of possible permutations of words is 
4L where L is the word length. For words of length 8 to 14 bp, this quantity becomes very 
large. Additionally, the random changes in the frequencies of such a large number of words 
obscure the genome specific information present in a few signature words. According to 
Kirzhner et al., 2005, less than 1% of 10-mers are informative in a large-scale comparison of 
bacterial genomes. 
A first investigation into exploiting the information present in 8 to 14 letter words in 13 
strains from the genus Pseudomonas was made by Davenport et al., 2009. It has been shown 
as well that certain profiles of signature words may help to distinguish DNA fragments that 
originated from different genomes (Saeed & Halgamuge, 2009).  

Linguistic Approaches for Annotation, Visualization and  
Comparison of Prokaryotic Genomes and Environmental Sequences 

 

35 

In this work an attempt was made to standardize the linguistic approaches of binning 
metagenomic DNA reads by creating a database of signature words of Eubacteria and 
Archaebacteria represented in GenBank. The first step was to develop methods for 
summarizing the large amounts of data associated with these words. To avoid using the 
words that do not provide any taxonomic information, the most divergent words were 
selected and stored in the database. Currently, the frequencies of 172,636 signature words 
calculated in 768 bacterial chromosomes are stored in a binary database file available for 
download from the SeqWord project Web-site at www.bi.up.ac.za/SeqWord/oligodb/. 
Furthermore, scoring functions were designed, which measure the likelihood that a given 
DNA fragment originated from a given taxonomic group. 
This tool also may be used to identify the origin of DNA sequences or whole clusters of 
DNA sequences. There are a number of programs such as LikelyBin (Kislyuk et al., 2009), 
CompostBin (Chatterji et al., 2008) and some others that cluster DNA sequences, but there is 
no default methodology for inferring the taxonomic affinity of these clusters. Typically, 
BLAST is used to compare these clusters to the databases of DNA sequences. Frequently 
these clusters consist of several short sequences that cannot be easily assembled, which 
makes using BLAST complicated. TETRA identifies long unknown DNA sequences by 
comparison of the whole patterns of frequencies of tetranucleotides (Teeling et al., 2004). A 
tool based on occurrences of 8 to 14 letter words is expected to work equally well both on 
clusters of sequences and single long sequences. 

2.3.1 Statistical background of selection of signature words 
To identify prospective signature words, the distribution score coefficients were calculated 
for each 8 to 14-mer permutation as follows: 

 
22

100000
 

DS
 

(7)
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occurrence (µ is minimal) and the words are evenly distributed (σ tends to 0). The DS 
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the template of signature words. Furthermore, their frequencies were recalculated for all 
genomes. The threshold value was empirically determined to ensure that the template 
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172,636 signature words; that is approximately 0.1% of the total number of all possible 
permutations of 8 bp to 14 bp oligonucleotides. Note that in this work each oligonucleotide 
and its reverse complement were considered as the same word so that the two different 
strands of the DNA molecule will be assigned identical scores. 
To improve maintenance and operational flexibility of the database, the numeric frequencies 
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where f is the frequency of a word per 100 Kbp, L is the word length and p is the probability 
that the word occurs at a frequency less than or equal to f. For example, according to 
equation 8 for 50% of words of the length 8 bp (p = 0.5; L = 8) the frequency f is in the range 
from 0 to 3.13 words per 100 Kbp of the given sequence; and 90% (p = 0.9) of 8-mers have 
frequencies from 0 to 10.41. Four categories were designated for rare (p < 0.1), common (0.1 
≤ p <0.5), frequent (0.5 ≤ p < 0.9) and abundant (0.9 ≤ p) words. The borders of the percentile 
categories calculated by equation 8 are shown in Table 1. 
The performance of a signature word to separate DNA reads of different origins or to bin a 
cluster of reads to a taxonomic unit depends on the set of taxonomic units to be 
differentiated and the task formulation. Several scoring algorithms were used in this study. 
All the scores were normalized to a range from 0 to 10. The scores were used to order the 
words in the database and to select the ones with the highest scores. 
Word divergence is scored by the variance of percentile values (see Table 1) in the selected 
genomes normalized by the maximum possible variance. The most diverse word would be 
rare in one half of the selected genomes and abundant in the other half of the genomes. 
To select the words, which are rare or abundant in all selected genomes, the following score 
was used: 

 Score = 10 × (Av – 0.05)/0.9 (9) 

where Av is the average of the percentile values calculated for a word in selected genomes. 
To select rare words (10 – Score) was used. 
The perfect word to distinguish between taxa is one that is similarly distributed in genomes 
belonging to the same taxon but is differently distributed in different taxa. The scores were 
assigned in the spirit of ANOVA by computing the ratio of the sums of square deviations 
over the average values between taxa and within every taxon. 
Another practical task may consist in distinguishing one taxon (outgroup) from a number of 
other taxa (counterparts) by diverse, abundant or rare words. In our study this approach 
was termed as confronted comparison. Three scoring algorithms were used: 

 nVarAvAvcoreDiversityS g 00 1  (10) 

   nVarAvAvcoreAbundanceS g 00 1210   (11) 

   nVarAvAveScarceScor g 00 1210   (12) 
where Av0 and Avg are average frequencies of the word in genomes of the outgroup and 
counterpart taxonomic units, correspondingly; Var0 is the variance of the word 
frequencies in the outgroup genomes and n is the number of genomes in the outgroup 
taxonomic unit. 
Computer simulation of metagenomic datasets was done by the MetaSim program (Richter 
et al., 2008). DNA reads were clustered by the LikelyBin algorithm (Kislyuk et al., 2009). The 
database of signature words and the OligoDBViewer program are available for download 
from www.bi.up.ac.za/SeqWord/oligodb/. 

Linguistic Approaches for Annotation, Visualization and  
Comparison of Prokaryotic Genomes and Environmental Sequences 

 

37 

Word length 

Percentiles 

Rare 
– (0.0)* 

Common 
+ (0.25) 

Frequent 
++ (0.75) 

Abundant 
+++ (1.0) 

8 bp < 0.94† ≥ 0.94 and < 3.13 ≥ 3.13 and < 10.4 ≥ 10.4 

9 bp < 0.56 ≥ 0.56 and < 1.85 ≥ 1.85 and < 6.13 ≥ 6.13 

10 bp < 0.35 ≥ 0.35 and < 1.15 ≥ 1.15 and < 3.81 ≥ 3.81 

11 bp < 0.23 ≥ 0.23 and < 0.75 ≥ 0.75 and < 2.48 ≥ 2.48 

12 bp < 0.15 ≥ 0.15 and < 0.51 ≥ 0.51 and < 1.68 ≥ 1.68 

13 bp < 0.11 ≥ 0.11 and < 0.35 ≥ 0.35 and < 1.17 ≥ 1.17 

14 bp < 0.08 ≥ 0.08 and < 0.25 ≥ 0.25 and < 0.84 ≥ 0.84 

*Rare, common, frequent and abundant words are marked as –, +, ++ and +++, respectively. The 
numeric values representing each percentile category are used for score calculations. 
† These are f-values calculated by equation 8 for the cumulated likelihoods (p) 0.1, 0.5 and 0.9, 
respectively. 

Table 1. The percentile border frequencies calculated for the words of different length. 

2.3.2 OligoDBViewer and the database of signature words 
The main window of OligoDBViewer is shown in Fig. 5. The functionality of the 
OligoDBViewer is described in detail on the project Web site. The program allows selecting 
genomes or taxonomic units from the list and searching for the best discriminative words by 
using the program functions accessible through the toolbar and the ‘Command’ menu. The 
resulting list of ordered words will be shown in the pop-up panel on the right hand side as 
in Fig. 6. In this example the diverse words were searched with the goal of separating the 
genomes of Mycobacterium avium k10 [NC_002944] and M. tuberculosis F11 [NC_009565]. The 
divergence scores are shown in column ‘C’. The number of times an oligomer falls into the 
categories of rare, common, frequent or abundant words is shown respectively from left to 
right in column ‘Stat’. 
The list of the words returned by OligoDBViewer may be highly redundant. For example, 
words that only differ by a single nucleotide may be expected to have similar distributions 
in genomes. To reduce the redundancy of the selected words, several filter options may be 
set. The filter settings in Fig. 6 removes all the words that differ from the words with the 
highest scores by less than 30 % similarity (another option is available to set the minimal 
number of mismatches) as well as the words that are left or right shifted sub-words or 
shorter constituents of longer words that have higher scores. Then the list is cut off so that 
only the top 10 words remain. Additionally, the list of selected words may be filtered by the 
word length and the score threshold. All word filtering settings is reversible. 
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where f is the frequency of a word per 100 Kbp, L is the word length and p is the probability 
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The perfect word to distinguish between taxa is one that is similarly distributed in genomes 
belonging to the same taxon but is differently distributed in different taxa. The scores were 
assigned in the spirit of ANOVA by computing the ratio of the sums of square deviations 
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frequencies in the outgroup genomes and n is the number of genomes in the outgroup 
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Computer simulation of metagenomic datasets was done by the MetaSim program (Richter 
et al., 2008). DNA reads were clustered by the LikelyBin algorithm (Kislyuk et al., 2009). The 
database of signature words and the OligoDBViewer program are available for download 
from www.bi.up.ac.za/SeqWord/oligodb/. 
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Fig. 5. The main window of OligoDBViewer. 

To facilitate large scale calculations and the database updates on remote servers, several 
command line utilities are available for download. They are fully described on the project 
Web site. 

2.3.3 Algorithms of binning of clusters of DNA reads to taxonomic units 
To estimate the similarity of a cluster of DNA reads to bacterial taxonomic units the 
percentile values were used (Table 1). All DNA reads of the cluster were concatenated in an 
artificial sequence and the frequency of the words normalized per 100 Kbp were counted (f-
value). Then the f-values were converted to percentiles: 
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Note that equation 13 is the inverse of the equation 8. The meanings of the coefficients were 
explained above. 

Linguistic Approaches for Annotation, Visualization and  
Comparison of Prokaryotic Genomes and Environmental Sequences 

 

39 

 

Fig. 6. The top 10 most diverse words which separate M. tuberculosis from M. avium. The 
filter was set to reduce the redundancy of the selected words. 

Next, the distance values D between an unknown sequence and the taxonomic units were 
calculated as follows: 
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where pi is the percentile value from the OligoDB database for the word i in a bacterial 
genome, or the average of the percentile values for the genomes of a taxonomic unit; pi' is 
the percentile value of this word in the query sequence as calculated by equation 13; and mi 
is an indicator variable equal to 0 if pi ≥ 0.5 and equal to 1 if pi < 0.5. Thus, the denominator 
is the maximum possible distance. D values fall in the range from 0 to 10. 
Consider the following example: let the 10-mer TTAAAGAAAA be distributed in the 
concatenated cluster sequence with the frequency 2.81 words per 100 Kbp and let the 8-mer 
TCTTTTAA occur 6.35 times per 100 Kbp. According to equation 13, the percentile value of 
the word TTAAAGAAAA is: 

 ln(2.81) 4.5ln(10) 9 .79
3

p  
   (15) 

and for the word TCTTTTAA the percentile value is: 

 ln(6.35) 4.5ln(8) 9 .74
3

p  
   (16) 

Next D is calculated by equation 14. The motivation for using D values rather than Euclidian 
distances is based on the fact that the observed frequency of occurrence of words in the 
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Next D is calculated by equation 14. The motivation for using D values rather than Euclidian 
distances is based on the fact that the observed frequency of occurrence of words in the 
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clustered reads is frequently lower than in the original genome due to asymmetric 
distribution of word frequencies. Another factor that contributes to this observation is that 
the clusters of metagenomic DNA reads often contain fragments from more than one 
organism. This leads to false similarity of metagenomic sequences to taxa where the 
signature words are uncommon. To remove this bias, the equation 14 was constructed so 
that the difference between pi’ and pi is given less weight if pi’ is smaller than pi than if pi’ is 
larger than pi. 
To evaluate the discriminative power of the algorithms, several simulated metagenomic 
datasets were prepared using MetaSim. Then DNA reads were clustered by LikelyBin. 
The first set was a simple random selection of 50 DNA fragments of the chromosome of 
Bacillus subtilis 168 [NC_000964]. The total length of all the fragments was 691 Kbp. The 
OligoDB program was used to compare the compositional similarity of these randomly 
selected sequences with the original chromosome and the closely related organisms of the 
genus Bacillus and class Firmicutes. The obtained distances are shown in Table 2. 
 

Genome D* 
B. subtilis [NC_000964] 1.74 

B. amyloliquefaciens [NC_009725] 2.22 
B. licheniformis [NC_006270] 2.23 

B. pumilus [NC_009848] 3.43 
B. clausii [NC_006582] 3.70 

Lactobacillus brevis [NC_008497] 3.83 
B. halodurans [NC_002570] 4.05 

B. pseudofirmus [NC_013791] 4.49 
B. anthracis [NC_003997] 5.60 

B. cereus [NC_004722] 5.68 
*In this and the following tables the filter settings for the program were as follows: only the top 100 
words of 8 to 12-mers with the sequence similarity ≤ 30 % were considered. Further, one nucleotide 
shifted words and one nucleotide shorter constituent words were filtered out as in the filter setting 
window in Fig. 6. 

Table 2. Identification of DNA fragments generated from the B. subtilis chromosome. 

For the next test, two quite distant organisms were selected: Burkholderia cenocepacia AU1054 
[NC_008062] and Psychrobacter arcticus 273-4 [NC_007204]. 552 genomic fragments with an 
average length of 500 bp were generated randomly by MetaSim from the B. cenocepacia 
chromosome and 448 fragments of the same average length were obtained from the 
P. arcticus chromosome. All these fragments were mixed together and used as the input for 
LikelyBin. These randomly generated genomic fragments were then grouped by DNA 
composition similarity into 13 clusters. The two biggest clusters contained DNA fragments 
that were generated exclusively from one origin: 347 of the fragments generated from 
B. cenocepacia were grouped into cluster A and 437 of the fragments from the P. arcticus 
chromosome were in cluster B. Now, the OligoDB algorithm was used to identify the 
organisms most similar to the cluster. For the comparative analysis several representatives 
of - and -Proteobacteria were selected (Table 3). 
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Cluster A (172 Kbp) D Cluster B (220 Kbp) D 
B. cenocepacia [NC_008062] 2.07 P. arcticus [NC_007204] 1.59 

B.ambifaria [NC_010557] 3.05 P. cryohalolentis [NC_007969] 1.66 
B. mallei [NC_006348] 3.51 P. haloplanktis [NC_007481] 1.92 

B. phymatum [NC_010622] 6.69 P. atlantica [NC_008228] 2.25 
B. xenovorans [NC_007952] 6.73 P. ingrahamii [NC_008709] 2.28 

R. solanacearum [NC_003295] 7.67 S. baltica [NC_009052] 2.72 
R. eutropha [NC_007347] 7.94 S. enterica [NC_003198] 7.06 

C. metallidurans [NC_007974] 8.59 E. pyrifoliae [NC_012214] 7.72 
P. arcticus [NC_007204] 8.59 B. cenocepacia [NC_008062] 8.67 
R. pickettii [NC_010682] 8.66 P. putida [NC_002947] 8.90 

Table 3. Identification of DNA fragments generated from B. cenocepacia (cluster A) and 
P. arcticus (cluster B). 
 

Cluster A (87 Kbp) D Cluster B (99 Kbp) D 
P. haloplanktis [NC_007481] 3.00 S. enterica [NC_003198] 2.66 

P. cryohalolentis [NC_007969] 3.06 E. pyrifoliae [NC_012214] 3.21 
P. ingrahamii [NC_008709] 3.06 P. putida [NC_002947] 3.50 
P. mirabilis [NC_010554] 3.10 S. baltica [NC_009052] 7.00 
P. arcticus [NC_007204] 3.29 P. atlantica [NC_008228] 7.57 
P. atlantica [NC_008228] 4.25 P. arcticus [NC_007204] 7.92 
S. baltica [NC_009052] 4.80 P. cryohalolentis [NC_007969] 7.99 

S. enterica [NC_003198] 7.49 P. ingrahamii [NC_008709] 8.03 
E. pyrifoliae [NC_012214] 7.57 P. mirabilis [NC_010554] 8.09 

P. putida [NC_002947] 8.04 P. haloplanktis [NC_007481] 8.17 

Table 4. Identification of a chimerical cluster A that contains DNA fragments from 
P. haloplanktis and S. enterica, and a monophyletic cluster B containing fragments of the 
S. enterica genome. 

The clusters were identified correctly; however, the separation of genomic fragments of 
P. arcticus (Cluster B) from other close relative organisms of genera Psychrobacter, 
Psychromonas and Pseudoalteromonas was not reliable. An additional round of identification is 
needed where the signature words are selected specifically to distinguish between these 
organisms. 
The next set of DNA fragments was generated from two genomes of -Proteobacteria: 
Pseudoalteromonas haloplanktis TAC125 [NC_007481] and Salmonella enterica CT18 [NC_003198]. 
LikelyBin clustered the fragments into 49 clusters. Half of the clusters contained sequences 
generated from both chromosomes. The two biggest clusters were selected for analysis by the 
OligoDB algorithm. Cluster A contains 166 fragments of the P. haloplanktis chromosome and 9 
sequences originating from S. enterica. Cluster B contains 195 DNA fragments generated from 
S. enterica only. Results of the identification are shown in Table 4. 
Both of these clusters were identified correctly. The mix of two organisms in Cluster A 
yields D values that are higher than all other examples in this paper. D values calculated for 
more complex chimerical clusters were around 5; indicating that it will be difficult to 
associate such a set of sequences with a specific taxonomic unit. 
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2.4 Stratigraphic analysis of bacterial genomes 
DNA molecules encoding functional enzymes, transcriptional regulators and virulence 
factors are fluxing through the bacterial taxonomic walls. They endow environmental and 
clinical strains of bacteria with new unexpected properties. Lateral genetic exchange, 
particularly of drug tolerance genes has been recognized for a long time; however the 
ontology of genomic islands and their donor-recipient relations remain generally obscure 
because of methodological problems. Horizontally transferred genes are highly mutable and 
the mobilome entities having been inserted into host chromosomes undergo multiple events 
of fragmentation, partial duplications and deletions. Even prediction of insertion sites in 
host chromosomes remained to be a challenge. 
Genome linguistics methods are applicable to study and visualize intrinsic relationships 
between mobile genetic elements in bacterial genomes. Mycobacterium tuberculosis, a 
bacterial pathogen which is a leading cause of human death worldwide, was selected as a 
subject for this study. Emergence and evolution of this deadly pathogen are still ambiguous 
and not fully understood even after having done the sequencing and comparative studies on 
multiple strains of this genus. 

 

Fig. 7. GIs identified in Mycobacterium genomes and other organisms share compositional 
similarity. GIs identified in Mycobacteria are represented by white nodes and species of 
other genera by grey nodes. Each node represents one GI tagged by NC number of the host 
organism as in NCBI followed by the reference number of GIs as in GEI-DB. The edges 
depicted by green halo link GIs sharing similar DNA sequences longer than 100 bp 
identified by blast2seq. The layout was created by an in-house Python program that 
incorporates executable files of Graphviz 2.26.3 for Windows. 
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2.4.1 Identification and grouping of mycobacterial genomic islands 
Linguistic methods were applied to study the distribution of genomic islands (GIs) in 
complete genome sequences of Mycobacterium. GIs were identified by SeqWord Gene Island 
Sniffer (SWGIS available at www.bi.up.ac.za/SeqWord/sniffer/). The identified GIs were 
grouped by compositional similarity of oligonucleotide usage (OU) patterns (Fig. 7). They 
were further pair-wise compared by blast2seq and the proteins encoded by GIs’ genes were 
searched by BLASTp through the local databases of bacterial, plasmid and phage proteins. 
The latter analysis was performed to check if the GIs that cluster together share syntenic 
genes and to also deduce the types of genes that are most frequently transferred 
horizontally across species and genus borders. 
In genomes of virulent and environmental Mycobacterium multiple genomic islands were 
identified which share both sequence and OU similarity (Fig. 7). An exception is M. leprae 
which genomic islands were unrelated to GIs of other Mycobacteria (data not shown but check 
http://anjie.bi.up.ac.za/geidb/geidb-home.php). In Fig. 7 GIs identified in M. tuberculosis, M. 
bovis, M. marinum, M. vanbaalenii, M. abscessus and M. smegmatis are represented by white 
nodes and those of species of other genera by grey nodes. Each node represents one GI tagged 
by NC accession number of the host organism as in NCBI followed by colons and reference 
numbers of GIs as in GEI-DB (http://anjie.bi.up.ac.za/geidb/geidb-home.php). Furthermore, 
six GIs identified in M. tuberculosis, M. bovis and M. marinum (framed in Fig. 2) share similarity 
in both DNA sequence and OU with GIs distributed among -Proteobacteria, particularly to 
those of Rhizobium and Agrobacterium. 

2.4.2 Stratigraphic analysis of genomic inserts 
To determine the relative time of GI insertions, the similarity in OU patterns of GIs and 
corresponding host chromosomes was calculated for all organisms. The results are 
depicted by grey gradient colors in Fig. 8. GIs that significantly deviate from their hosts 
(recent inserts) are shown dark grey; and those that already underwent genomic 
amelioration (Lawrence & Ochman, 1997) are shown light grey. Most mycobacterial GIs 
revealed to be ancient inserts that is in consistence with the fact that they are shared by 
different species. Few of the GIs that showed to be in possession of OU patterns similar to 
GIs of Rhizobium and Agrobacterium are relatively recent acquisitions. Comparison of the 
patterns of the GIs and host genomes was revised in order to determine donor-recipient 
relationships between these organisms (Fig. 9). The analysis revealed that these 
mycobacterial GIs are compositionally more similar to the chromosomes and mobilomes 
of Agrobacterium and that they are most likely originated from this source as indicated in  
Fig. 9. 
43 Mycobacterial GIs (unframed in Fig. 2) contain 910 annotated genes among which 386 
were hypothetical or unknown. Functional genes are listed in Table 5. Predominance of 
phage related genes suggests that these GIs are mostly prophages. Genes that are harboured 
by the GIs of the -Proteobacteria origin (framed in Fig. 2) encode several transferases, 
esterases, mmcH proteins and hypothetical proteins organized into operon structures 
(Fig. 10), which may be involved in the biosynthesis of some yet unknown compounds. 
Shaded areas in Fig. 10 link regions sharing DNA sequence similarity determined by 
blast2seq. The compared genomes are NC_000962 (M. tuberculosis H37Rv); NC_002755  
(M. tuberculosis CDC1551); NC_008769 (M. bovis BCG str. Pasteur 1173P2); and NC_010612 
(M. marinum M). Lengths of GIs are also indicated.  
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Fig. 8. Stratigraphic analysis of GIs. The edges depicted by green halo link GIs sharing 
similar DNA sequences longer than 100 bp identified by blast2seq. The layout of nodes is 
the same as in Fig. 7. 

 

 

Fig. 9. Donor-recipient relationships between GIs and host organisms of Agrobacterium 
and Mycobacterium. Dark green circles indicate OU patterns of the host organisms. Light 
green shaded areas represent half-distances between chromosomal OU patterns. OU 
patterns of genomic islands of M. tuberculosis NC_002755 and A. tumefaciens NC_003062 
(blue and red circles respectively) were plotted according to the calculated distances 
between them and OU patterns of the chromosomes. Plotting was done by an in-house 
Python program. 
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Gene categories Number of genes 
Phage related proteins, integrases and 

transposases 91 

Dehydrogenases 31
Transcriptional regulator 23

Peptide synthetase and polyketide 13
Membrane proteins 23

Monooxygenase 11
Glycosyl transferases 11

Oxidoreductase 10
Dioxygenase 9

PE-PGRS proteins 7
Esterases 5

Table 5. Proteins encoded by genes in ancient GIs of Mycobacterium. 

Protein BLAST analysis of Mycobacterial GIs retrieved similarities in proteins shared with a 
great variety of bacterial plasmids and phages, particularly in the plasmid pSOL1 from 
Clostridium acetobutylicum ATCC 824. Acquisition of genetic materials from intracellular 
parasitic and symbiotic species of -Proteobacteria by an ancestral strain of Mycobacterium 
may be an event that had triggered the evolution of former saprophytic organisms towards 
the parasitic lifestyle. 
 

 

Fig. 10. Homologous genes and operons in GIs shared by Mycobacterium. GIs are referred by 
NC number of the host organism in the NCBI database followed by the reference number of 
GIs in GEI-DB. 

2.4.3 Overview of the horizontal gene transfer in the bacterial world 
The exchange of genetic material was found to have occurred in different domains of life: 
Archaea, Bacteria, and Eukarya (Choi and Kim, 2007). Horizontal gene transfer, defined as a 
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mechanism that promotes the transfer of foreign genomic segments between lineages was 
found to be relatively common in prokaryotes and less common in higher-order organisms. 
The transfer of operational genes is a continual process and is far more important in 
prokaryotic diversity of different sources (Jain et al., 1999; Ochman, 2000). For horizontal 
gene transfer to become a success, the acquisition of foreign DNA segments must be 
counterbalanced by DNA loss. Acquired DNA providing functions that are beneficial to the 
host may be maintained, while DNA providing less beneficial functions may be lost 
(Lawrence, 1999). Mobile genetic elements possess genes that contribute to bacterial 
speciation and adaptation to different niches, but also carry with them factors that 
contribute to the bacteria’s fitness traits, secondary metabolism, antibiotic resistance and 
symbiotic interactions (Dobrindt et al., 2004; Mantri & Williams, 2004) that are of medical 
and agricultural importance.  
The transfer of GIs occurs through three mechanisms: transformation, conjugation and 
transduction. These mechanisms mediate the movement and transfer of DNA segments 
intercellularly. Conjugation and transduction are the common players in genetic transfer. 
They require mobile elements such as plasmids and bacteriophages to transfer genetic 
elements along with the sequence features of their donor to recipient cells (Hacker & 
Carniel, 2001). Upon transfer, these genetic elements get established into the recipient cell 
either as self replicating elements or by getting integrated into the chromosome either by 
homologous or illegitimate recombination techniques (Dutta and Pan, 2002; Beiko et al., 
2005). Transformation, unlike conjugation and transduction does not require any form of a 
vector to transport genomic elements between bacteria. It is mediated by the uptake of a 
naked DNA in the environment. The uptake usually takes place upon the release of DNA 
from decomposing and disrupted cell, or viral particles, or even excretions from living cells 
(Thomas & Nielsen, 2005).  
DNA composition comparisons between lineages have uncovered that genes acquired by 
the above mechanisms display features that are distinct from those of their recipient 
genomes (Hacker and Carniel, 2001; van Passel et al., 2006). Genes acquired by horizontal 
transfer can often display atypical sequence characteristics and a restricted phylogenetic 
distribution among related strains, thereby producing a scattered phylogenetic distribution 
(Ochman et al., 2000; Dutta and Pan, 2002). Bacterial species are variable in their overall GC 
content but the genes in genomes of particular species are fairly uniform with respect to 
their base composition patterns and frequencies of oligonucleotides (Ochman et al., 2000). 
The phylogenetic aspect of similarity in base composition among closely related species 
arises from their common origin. Similarity is also influenced by genome specific mutational 
pressures that act upon their genes to promote the maintenance of composition stability. 
Native or core genes in a given organism exhibit homogeneous OU content and codon 
usage, while foreign genes display atypical characteristic features shared with their 
mobilomes (phages and conjugative plasmids) or previous host organisms for the genetic 
segments which were mobilized and integrated by mobilomes (Davenport et al., 2009). 
Compositional specificity of GIs allows their precise identification by the SWGIS program 
(see above in this chapter). In this work SWGIS was used to search each prokaryotic genome 
for foreign inserts based on the comparisons of tetranucleotide usage patterns, whereby the 
frequencies of particular tetramers are compared with expected occurrences of the same 
tetramers throughout the whole genome. Identified GIs were stored to GEI-DB 
(http://anjie.bi.up.ac.za/geidb/geidb-home.php) that contains a set of 3518 precalculated 
GIs identified in 637 prokaryotic genomes. All these GIs were clustered by the 
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compositional OU pattern similarity that is believed to represent their common ancestry. 
Similarity between GIs was calculated as 100 – D(%), where D(%) was found by the equation 
4. GIs which share more than 75% of similarity were grouped together. Groups of GIs and 
their distribution among bacteria are shown in Fig. 11. 
GIs were identified in all bacterial classes. There are more GIs from E. coli and other 
Enterobacteria and -Proteobacteria that partially may be explained by a biased 
overrepresentation of these microorganisms among other sequenced genomes in the 
GenBank database. E. coli, Shigella and Salmonella share GIs of one common origin but GIs 
found in other species often showed to have originated from several different origins. For 
example, GIs from Pseudomonas form several separate clusters associated with either other -
Proteobacteria or -Proteobacteria. GIs of -Proteobacteria and Firmicutes show extreme 
diversity. Brucella, Agrobacterium and Rhizobium share several unrelated pools of their 
mobilomes. Relations which were found between GIs of Mycobacterium and those of 
Agrobacterium and Rhizobium have been discussed above in detail. GIs of Prochlorococcus and 
Nostoc cyanobacteria most likely originated from marine -Proteobacteria, but GIs of 
Synechococcus are very specific and share no similarity with any other microorganisms. 
 

 

Fig. 11. Groups of GIs joined by compositional OU pattern similarity. Each node 
represents one GI. Genera of -Proteobacteria are shown in light blue (enterobacteria 
Escherichia, Shigella and Salmonella), cyan (Pseudomonas) and dark blue (marine bacteria 
Shewanella, Hahella, Pseudoalteromonas and Alcanivorax); -Proteobacteria Agrobacterium, 
Brucella, Neisseria, Rhizobium and Synorhizobium are depicted by magenta nodes; 
Firmicutes (Bacillus, Clostridium, Geobacillus and Streptococcus) – orange; Actinobacteria 
(Corynebacterium and Mycobacterium) – yellow; Cyanobacteria (Prochlorococcus, Nostoc and 
Synechococcus) – green. Nodes representing other organisms are white. Black edges link 
nodes which share strong OU similarity above 75% and grey edges represent weaker 
similarity below 75%. 
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It may be concluded that GIs indeed may flux through the bacterial taxonomic walls but not 
in a random fashion. Several species and genera share pools of horizontally transferred 
genetic elements, which include pathogenicity, antibiotic resistance, O-antigen synthesis and 
catabolic GIs, whereas the genetic exchange between other groups of microorganisms is 
seemed very unlikely. Detailed analysis of gene exchange pathways among microorganisms 
will shed light on the roles played by the horizontal gene transfer in the evolution and 
pathogenicity of bacteria.  
26732 proteins encoded by GIs’ genes used in this study were pair-wise compared by 
BLASTp. The bit-score results were used to produce clusters of proteins by Markov 
clustering algorithm (MCL) (Vlasblom & Wodak, 2009). MCL with an inflation parameter of 
1.8 produced 10837 clusters, however, many of them were of a single hypothetical protein. 
Due to the large amount of hypothetical and unknown genes in the database not all of these 
clusters would present biologically significant data. Top 24 clusters containing more than 50 
proteins were chosen as significant to represent categories of proteins which are most often 
mobilized and transferred horizontally among bacteria. Besides phage related proteins 
which are in a majority, the most frequently bacteria acquire ABC-transporters, 
transcriptional regulators including GGDEF diguanylates, polysaccharide and O-antigen 
biosynthesis proteins, dehydrogenases and outer membrane proteins (Table 6). 
 

Functional group Nr of proteins 
identified in 3518 GIs 

Phage related proteins, IS-elements, transposases; 792 
Transcriptional regulators; 599 

Polysaccharide and O-antigen biosynthesis proteins; 352 
ABC-transporter; 252 

Outer membrane proteins; 241 
Dehydrogenases; 67 

RHS-family proteins; 64 
Table 6. Predominant categories of horizontally transferred proteins. 

3. Conclusion 
Comparative genomics exploits the methods of two major categories based on the analysis 
of composition and sequence similarity. Having been developed at the beginning of the 
genomics era, sequence similarity comparison by BLAST (Altschul, 1990) and FASTA 
(Pearson, 1995), and sequence composition simulation by Markov Chain Models (Schbath, 
2000) remain the algorithms of first choice. The algorithms for sequence similarity 
comparison are widely used because of speed, more straightforward statistics and a clearer 
biological relevance of sequence alignment based considerations. However, a number of 
practical tools based on OU statistics have become publicly available. Several novel OU 
analytical tools of the SeqWord project for genome visualization, genomic island detection 
and identification of unknown sequences have been presented in this chapter.  
Composition based methods are termed genome linguistics as they deal with frequencies of 
words written as chains of given alphabets of nucleotides or amino acids of variable lengths. 
Genome linguistic approaches may complement or even outperform the sequence similarity 
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comparison in clustering DNA reads (Kislyuk et al., 2009) and detecting inserts of genomic 
islands (Hsiao et al., 2003). These approaches have also been shown to be instrumental in 
viral metagenomics (Delwart, 2007). During composition based analysis, longer DNA 
sequences are rather preferred to shorter ones for the word distribution statistics to be 
reliable. 
DNA similarity vanishes much faster in phylogenetically distant organisms than the OU 
composition does, especially in highly variable virus, phage, plasmids and genomic islands. 
Protein similarity may mislead binning or identification of unknown sequences for it mostly 
reflects the functional conservation of protein domains rather than the taxonomic unity. 
Another common limitation of the similarity based methods is that the sequence 
identification is possible only if a homologous DNA or protein sequence is present in the 
searched database. On the contrary, the genome specific OU pattern is a pervasive property 
of the whole genome (Jernigan & Baran, 2002) that allows binning of DNA reads to their 
putative origin even if they do not share any significant sequence similarity.  
The advancement in genome sequencing technologies made large scale sequencing 
affordable for many laboratories. An attractive approach of alignment-independent 
phylogenetic studies based on the comparison of OU patterns was discussed in several 
publications and a number of web-based services were proposed (Chapus et al., 2005). We 
suggest rather a cautious use of these methods as a significant convergence of OU patterns 
was observed between unrelated organisms. For instance, Pseudomonas and Mycobacterium 
share similar OU patterns. Furthermore, a wider application of OU patterns is hindered by 
the absence of any noteworthy mathematical models simulating the evolutionary changes in 
OU patterns between organisms in contrast to sequence similarity methods which provide 
plenty of models of nucleotide and amino acid substitutions. Development and testing of 
such models is the task that urgently needs to be looked into to advance applicability of 
genome linguistic approaches. 
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1. Introduction  
Due to the advances in structural biology research, a large number of protein structures 
have been solved in the last decade. In the same time, we also witness a rapidly growing 
number of structures of unknown function being deposited in the PDB. As a result, the ability 
to predict protein function from its structure becomes increasingly important in 
computational biology.  
The conventional comparative methods(for example, Laskowski, Watson et al. 2005; 
Watson, Sanderson et al. 2007) for identifying functional sites rely on evolutional 
information like homologous structures of known function or the known catalytic templates. 
However, these approaches are not applicable to these novel structures. One needs to 
develop ingenious approaches that do not rely on evolutionary information.  
Recently, several groups(Amitai, Shemesh et al. 2004; Ben-Shimon & Eisenstein 2005; 
Sacquin-Mora, Laforet et al. 2007; Huang, Yu et al. 2011) developed novel approaches to 
predict the active sites of enzymes from a single structure without using any homologous 
structures or known catalytic templates. The basic idea of their approaches is simple: they 
first identify certain structural or dynamical features that are unique to the active sites; they 
then further refine this relationship such that it can be used to accurately predict the enzyme 
catalytic sites. For example, Pietrokovski and co-workers(Amitai, Shemesh et al. 2004) 
transformed the protein structure into residue interaction graphs, with each amino acid 
residue represented as a graph node and the interaction between them as a graph edge. 
They then computed the network closeness of each residue. They found that most catalytic 
residues are associated with the network centrality. Ben-Shimon and Eisenstein(Ben-Shimon 
& Eisenstein 2005), analyzing 175 enzymes, observed that  most catalytic residues are near 
the enzyme centroid. Based on these results, they developed novel methods to predict 
catalytic sites from a single structure. 
The aim of this review is to show that this peculiar relationship between catalytic sites and 
the structure centroid or its network centrality can be accounted for by the dynamical 
properties of the catalytic residues, which are in general more rigid than other residues. In 
addition, we will discuss the recent studies (Halle 2002; Shih, Huang et al. 2007; Huang, Shih 
et al. 2008; Lin, Huang et al. 2008; Lu, Huang et al. 2008) on the surprisingly close link 
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between protein structure and its thermal fluctuations. These studies showed that the 
atomic thermal fluctuations and motional correlations can be extracted directly from protein 
structures without using any mechanical models.  
The outline of this review is as follows: first, we will cover the recent works on extracting 
average dynamical properties directly from protein structures. This part occupies a 
significant portion of the text, since it provides not only theoretical foundations for but also 
physical insights on what we will introduce later – the prediction of the active sites from a 
single structure, which is a straightforward application of the results discussed in the first 
part. Finally, we will show that the rigidity of the active site residues can be inferred from 
the generally accepted theory of the mechanism of enzyme catalysis. 

2. Atomic thermal fluctuations and motional correlations in protein 
The motional correlation between atom i and j  is  given by 

  ~ij i jC r r  (1) 

where   i i ir r r  is the displacement of the instantaneous position ir of the atom i from its 

equilibrium position ir . Knowledge of the motional correlations in protein provides 
valuable information about the relationship between protein dynamics and its function. For 
example, dynamical correlation networks may account for the long-range effects of faraway 
mutation sites on the functional site (Saen-Oon, Ghanem et al. 2008; Ishida 2010) or protein 
allostery(Fidelak, Ferrer et al. 2010; Amaro, Sethi et al. 2007; Tsai, del Sol et al. 2008). The 
diagonal terms or the auto-correlation terms in Eq. 1 describe atomic fluctuations.  They can 
be obtained as B-factors from X-ray crystallography refinement or order parameters from 
NMR. The B-factor in its isotropic form is given formally as    2(8 / 3)B r r .  

2.1 Normal mode analysis 
To compute the correlation matrix, one needs to evaluate the second derivatives of the 
potential energy of the protein structure. In molecular mechanics, the protein structure is 
usually modelled by analytical potential functions(Warshel 2002).  In general, the bonding 
energy is approximated by a harmonic function, i.e.,  21

02 ( )bK b b , where Kb is the force 
constant, b and b0 are the bond length and the equilibrium bond length, respectively. The 
bending interaction is approximated by    21

02 ( )K , where K is the bending force 
constant,  and 0 are the bending angle and the equilibrium bending angle, respectively. 
The torsional interaction is modelled by a sinusoidal functions:      21 cos( )K n , where 
K is the torsional force constant,  and  are the torsional angle and the reference torsional 
angles, respectively, and n is the torsional periodicity. The non-bonded van der Waals 
(VDW) interaction is approximated by the Lennard-Jones function (also referred to as a 6-12 

function):     12 6
0 02r r r r , where r is the distance between atoms, and  and r0 are the 

VDW parameters related to the potential depth and its minimum distance. The electrostatic 
interaction is described by the Coulomb equation: 332 /i jq q r , where qi and qj are the 
charges of the atom pair and r their separation. The complete potential function is usually 
referred to as a force field: 
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The Hessain matrix H is the square matrix of the second derivatives of the potential 
energy   / i jU x x , where xi and xj are the Cartesian coordinates of the atoms of the 
protein structure. Diagonalization of the Hessian matrix, i.e.,  1U HU L , gives the 
normal mode frequencies L and normal mode vectors U, which describe harmonic 
vibrational motions of the structure. The overall molecular motion can be described as a 
linear combination of these normal modes. These frequencies and vectors define different 
modes of harmonic motions occurring in a protein structure. The above procedure is 
referred to as normal mode analysis (NMA) (Brooks & Karplus 1983; Levitt, Sander et al. 
1985; Go 1990; Ma 2004). The correlations between atomic fluctuations given by Eq. 1 can 
be calculated from the normal modes. Mathematically, the correlation matrix is the 
pseudo-inverse of the Hessian matrix. 
One limitation of NMA is its assumption that motions are harmonic. This may not be valid 
in the case of large-amplitude conformational dynamics in protein which are presumably 
highly anharmonic(Ma 2005). Furthermore, NMA needs to be carried out in an energy-
minimized structure. This is to avoid the occurrence of the unphysical complex-valued 
normal mode frequencies. However, minimization may cause significant conformational 
deformations due to the inherent deficiencies of the force field.  

2.2 Elastic network model 
Elastic network model (ENM) (Tirion 1996), a simplified version of NMA, can be directly 
applied to the protein structures without energy minimization.  In ENM, every atom is 
connected to any atoms (except itself, of course) as long as they are within a certain 
threshold distance (usually 12 Å) of the given atom. ENM does not distinguish between 
bonded interactions (such as bonding, bending or torsional interactions) and nonbonded 
interactions (such as VDW or electrostatic interactions). All interactions are represented by a 
harmonic function with a uniform force constant. Since all interactions in ENM are assumed 
to be of covalent nature, i.e., the atom pairs are connected by a harmonic force, this is 
equivalent to assuming a relatively rigid protein structure. We will comment more on that 
later.  
A number of ENM variants has been developed: the Gaussian Network Model (GNM) 
(Bahar, Atilgan et al. 1997),  Anisotropic Network Model (ANM) (Atilgan, Durell et al. 2001)  
and Quantized Elastic Deformational Model (Ming, Kong et al. 2002). Despite the simplicity 
of ENM, it predicts relatively accurate correlated motions in proteins. ENM has recently 
become a popular tool to analyze protein dynamics (Zheng, Brooks et al. 2007; Yang, Song et 
al. 2009; Zheng & Thirumalai 2009).  
Recently, Hwang and co-workers (Shih, Huang et al. 2007; Huang, Shih et al. 2008; Lin, 
Huang et al. 2008; Lu, Huang et al. 2008) developed even simpler models to calculate the 
correlations between the atomic fluctuations in proteins directly from their structures 
without using mechanical models, or performing energy minimization or matrix 
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of ENM, it predicts relatively accurate correlated motions in proteins. ENM has recently 
become a popular tool to analyze protein dynamics (Zheng, Brooks et al. 2007; Yang, Song et 
al. 2009; Zheng & Thirumalai 2009).  
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diagonalization. They are the Protein Fixed-Point Model and the Weighted Contact Number 
Model, which will be discussed in the next sections. 

2.3 The protein fixed-point model 
In the Protein Fixed-Point (PFP) model, the protein structure is characterized by the PFP 
profile R  

     1 0 2 0 0( , , , )NR r r r r r r  (3) 

where ir  is the coordinate of C atom of the thi  residue, 0r  is the fixed point and N  is the 
number of residues. The fixed point 0r  is identified with the centroid of the protein chain, 

0 /ii Nr r . Hwang and co-workers (Shih, Huang et al. 2007; Lu, Huang et al. 2008) 

showed that the correlation matrix C  is well approximated by TR R , where TR  is the 
transpose of R , i.e.,  

    ij i jC r r  (4) 

where    0i ir r r  and    0j jr r r . The motional correlation between atoms is the inner 

product of the vectors radiating from the centroid to the respective atoms. The B-factor, i.e., 
the diagonal element, is proportional to the square of the distance to the centroid(Kundu, 
Melton et al. 2002).  
In the PFP model, the tricky issue is to determine the fixed points. In the case of a single 
domain protein, the fixed point is simply the centroid (or the center of mass) of the whole 
structure. However, in the case of multidomain protein or a protein complex, the fixed point 
is defined as the centroid of the structure module. There may be more than one fixed point 
since the protein structure may be composed of a number of modules. The structure 
modules are identified with either the structure domains or the biological units. The 
coordinates of biological units can be retrieved from either PDB or PQS(Henrick & Thornton 
1998). Though the biological units are not uniquely defined, the PDB and PQS biological 
units agree on 82% of entries(Xu, Canutescu et al. 2006).  
The general procedures to determine the structural modules of a protein structures go as 
follow: each protein chain is checked for its domains through the use of the Protein Domain 
Parser (PDP)(Alexandrov & Shindyalov 2003); if the PDP domain is not defined, the SCOP 
database(Murzin, Brenner et al. 1995) will be searched; if not found, the CATH 
database(Orengo, Michie et al. 1997) will be searched. If the chain is not a multidomain 
chain, it will be checked whether it is a part of a protein complex or a biological from PDB or 
PQS.  
In Figure 1, we compare the computed PFP profiles with the experimental X-ray B-factors. 
Both the PFP and the B-factor profiles are expressed in terms of the Z-scores. In the case of 
the B-factor, the Z-score is defined as:   ( ) /B BZ B B , where B  and B  are the mean and 
standard deviation of the B-factor. The Z-score of the PFP profile is defined similarly. For a 
dataset comprising 972 high-resolution X-ray structures with pairwise sequence identity ≤ 
25%, the correlation coefficient between the computed and the X-ray B-factors is 0.59. There 
are 727 out of 972 of proteins (around 75%) having a correlation coefficient ≥ 0.5. In 
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comparison, GNM yields a correlation coefficient of 0.56 and the fraction of proteins with a 
correlation coefficient ≥ 0.5 is 69% for the same data set(Lu, Huang et al. 2008). 
Figure 2 compares the PFP correlations with the NMA maps computed by GROMAC(Van 
Der Spoel, Lindahl et al. 2005). The agreements are excellent. 
 

 
 

 
Fig. 1. Comparison of the computed PFP B-factor profile (solid line) and the X-ray B-factor 
profile (dotted line) of  1q16:A (top) and 2ffu (bottom). The vertical axis Zb is the normalized 
B-factor. 
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comparison, GNM yields a correlation coefficient of 0.56 and the fraction of proteins with a 
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Figure 2 compares the PFP correlations with the NMA maps computed by GROMAC(Van 
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Fig. 1. Comparison of the computed PFP B-factor profile (solid line) and the X-ray B-factor 
profile (dotted line) of  1q16:A (top) and 2ffu (bottom). The vertical axis Zb is the normalized 
B-factor. 
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Fig. 2. Comparison of the PFP correlation map (left) and NMA correlation map computed by 
Gromacs (right) of  1o6v:a (top row) (this figure is adapted from Lu, Huang et al. 2008) and 
1fup:a (bottom row). The colors are coded according to the rainbow spectrum. A more reddish 
color indicates a more negative correlation, while a more bluish color a more positive correlation. 

2.4 The weighted contact number methods 
The contact number (CN) of the residue i is defined as 


  0( )N

i ijj in H r r , where 0r  is the 

cutoff distance, ijr  is the distance between the C atoms of residue i  and j, and ( )H r  is the 

Heaviside step function defined as: ( ) 1H r  if  0r  and ( ) 0H r  otherwise. Despite its 
popular uses in computational structural biology (Miyazawa & Jernigan 1984; Halle 2002), 
the CN has one major shortcoming: it treats the contribution equally of every contact atom, 
regardless of its distance to the center atom.  
To take distance into consideration, Hwang and co-workers(Lin, Huang et al. 2008) define a 
weighted contact number (WCN)  as  

 


 2
1N

i
j i ijr

 (5) 

They showed that the reciprocal WCN profiles better reproduce the B-factor profiles and 
that the correlation between residue i  and residue j  is well approximated by 
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and ˆ ix  is given by   i ir r r r  , where r  is N
kk Nr , and ˆ jx  is defined similarly.  

The WCN model may be a little more computationally expensive than the PFP model, but it 
can be complemented as an automatic procedure. This is in contrast to the PFP model, 
which requires manual intervention to define the centroids.  
Figure 3 compares the computed WCN B-factor profiles with the experimental X-ray B-factors. 
The WCN model predicts better B-factors than the PFP model, the original CN model (Halle 
2002) and the GNM. For the same dataset stated before, the WCN model yields a correlation 
coefficient of 0.61 with 79% of proteins having a correlation coefficient ≥ 0.5. 
Figure 4 compares the WCN and the NMA correlation maps. The agreements are excellent. 
 

 

 
Fig. 3. Comparison of the computed WCN B-factor profile (solid line) and the X-ray B-factor 
profile (dotted line) of  1y0p:A (top) (this figure is adapted from Lin, Huang et al. 2008) and 
1nu0 (bottom). 
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Fig. 4. Comparison of the WCN correlation map (left) and NMA correlation map computed 
by Gromacs (right) of  1cvr:a (top row) and 1rwh:a (bottom row) (this figure is adapted from 
Lin, Huang et al. 2008). The colors are coded according to the rainbow spectrum.  

2.5 More on the structural and B-factor profiles 
It is hardly surprising that an atom's thermal fluctuation as quantified by its B-factor 
should be somehow related in a qualitative way to its structural features, such as its 
packing environment or its position relative to the structure centroid. However, it is 
unexpected that the B-factor profiles and the structural profiles (i.e., the PFP and the 
WCN profiles) are so similar that, in some cases, one profile can be put on the top of the 
other with little discernible differences. It is even more surprising that this was done 
without information of the amino acid sequence.  
Figure 5 compares the distributions of the correlation of B-factors with the original CN 
model, the WCN model and the PFP model for a dataset comprising 972 non-homologous 
structures. The B-factors distributions are computed using only C atoms. 
The good agreement between the computed and the X-ray B-factors indicates that the B-
factors can be derived solely from the protein backbone to a relatively high accuracy. A 
study(Lenin, Parthasarathy et al. 2000) showed that the variation in the atomic fluctuations, 
quantified by the B-factors, of a given protein segment only weakly depends on that of its 
amino acid. Note that the ENM (Tirion 1996; Bahar, Atilgan et al. 1997; Ming, Kong et al. 
2002) also  computes accurate B-factors without using the amino acid sequence. 

On the Structural Characteristics  
of the Protein Active Sites and Their Relation to Thermal Fluctuations 

 

61 

While the amino acid sequence completely determines the 3-dimeniosnal structure of a 
protein, the thermal fluctuations and the motional correlations in a protein can be 
determined from its structure without its side-chain groups. The physical meaning of this is 
not clear and further study is definitely needed to clarify this issue.  

3. The rigidity of enzyme catalytic sites 
Enzymes accelerate chemical reactions by reducing the activation barrier. To achieve this, 
the enzyme structures are optimized through evolution to partially pre-organize their 
catalytic residues such that their charge distributions will stabilize the transition site 
complex, thus reducing the reorganization energy required for reaching the transition 
state(Warshel 1978; Warshel, Naray-Szabo et al. 1989; Warshel, Sharma et al. 2006). The 
reorganization energy is related to the activation free energy through the Marcus 
equation(Marcus 1956; Marcus 1956; Marcus 1957; Sumi & Marcus 1986): 

    
 


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G  (7) 

where G  is the activation free energy,  0G the free energy difference between the 
reactant and the product states and   the reorganization energy. Eq. 7 states that the 
reduction of the reorganization energy   will result in smaller activation free energy G . 
 

 
Fig. 5. Comparison of the correlation coefficients between experimental and the computed 
B-factor profiles based on the original CN model (white), the PFP (grey) and the WCN 
model (black) for the nonhomologous data set comprising 972 protein structures of  
length > 60. All of them are high-resolution X-ray structures with resolution ≤ 2.0 Å and  
R-factors ≤ 0.2. All chains are of pair-wise sequence identity ≤ 25%. This figure is adapted 
from Lin, Huang et al. 2008. 



 
Systems and Computational Biology – Molecular and Cellular Experimental Systems 

 

60

 

 
Fig. 4. Comparison of the WCN correlation map (left) and NMA correlation map computed 
by Gromacs (right) of  1cvr:a (top row) and 1rwh:a (bottom row) (this figure is adapted from 
Lin, Huang et al. 2008). The colors are coded according to the rainbow spectrum.  

2.5 More on the structural and B-factor profiles 
It is hardly surprising that an atom's thermal fluctuation as quantified by its B-factor 
should be somehow related in a qualitative way to its structural features, such as its 
packing environment or its position relative to the structure centroid. However, it is 
unexpected that the B-factor profiles and the structural profiles (i.e., the PFP and the 
WCN profiles) are so similar that, in some cases, one profile can be put on the top of the 
other with little discernible differences. It is even more surprising that this was done 
without information of the amino acid sequence.  
Figure 5 compares the distributions of the correlation of B-factors with the original CN 
model, the WCN model and the PFP model for a dataset comprising 972 non-homologous 
structures. The B-factors distributions are computed using only C atoms. 
The good agreement between the computed and the X-ray B-factors indicates that the B-
factors can be derived solely from the protein backbone to a relatively high accuracy. A 
study(Lenin, Parthasarathy et al. 2000) showed that the variation in the atomic fluctuations, 
quantified by the B-factors, of a given protein segment only weakly depends on that of its 
amino acid. Note that the ENM (Tirion 1996; Bahar, Atilgan et al. 1997; Ming, Kong et al. 
2002) also  computes accurate B-factors without using the amino acid sequence. 

On the Structural Characteristics  
of the Protein Active Sites and Their Relation to Thermal Fluctuations 

 

61 

While the amino acid sequence completely determines the 3-dimeniosnal structure of a 
protein, the thermal fluctuations and the motional correlations in a protein can be 
determined from its structure without its side-chain groups. The physical meaning of this is 
not clear and further study is definitely needed to clarify this issue.  

3. The rigidity of enzyme catalytic sites 
Enzymes accelerate chemical reactions by reducing the activation barrier. To achieve this, 
the enzyme structures are optimized through evolution to partially pre-organize their 
catalytic residues such that their charge distributions will stabilize the transition site 
complex, thus reducing the reorganization energy required for reaching the transition 
state(Warshel 1978; Warshel, Naray-Szabo et al. 1989; Warshel, Sharma et al. 2006). The 
reorganization energy is related to the activation free energy through the Marcus 
equation(Marcus 1956; Marcus 1956; Marcus 1957; Sumi & Marcus 1986): 

    
 




2
0

4
G

G  (7) 

where G  is the activation free energy,  0G the free energy difference between the 
reactant and the product states and   the reorganization energy. Eq. 7 states that the 
reduction of the reorganization energy   will result in smaller activation free energy G . 
 

 
Fig. 5. Comparison of the correlation coefficients between experimental and the computed 
B-factor profiles based on the original CN model (white), the PFP (grey) and the WCN 
model (black) for the nonhomologous data set comprising 972 protein structures of  
length > 60. All of them are high-resolution X-ray structures with resolution ≤ 2.0 Å and  
R-factors ≤ 0.2. All chains are of pair-wise sequence identity ≤ 25%. This figure is adapted 
from Lin, Huang et al. 2008. 



 
Systems and Computational Biology – Molecular and Cellular Experimental Systems 

 

62

Hence, the active site residues are expected to be more rigid than the non-active site residues. 
And this has been verified by a number of studies: Yuan and co-workers (Yuan, Zhao et al. 
2003) compared the B-factors of the active site sites with those of other non-active site residues of 
69 apo-enzymes. They found that the active site residues indeed have lower B-factors. Analyzing 
a set of a set of 98 enzymes, Yang and Bahar (Yang & Bahar 2005) found that the catalytic sites 
usually occur in the global hinge centers and have low translational mobility. Recently, Lavery 
and co-workers(Sacquin-Mora, Laforet et al. 2007) showed that the force needed to displace a 
catalytic residue is usually larger than that to displace a non-catalytic residue. 

3.1 Prediction of active site residue from a single structure 
Since B-factors quantify structure flexibility, it may be tempting to use B-factors to 
distinguish between the active site residues and other residues. However, The B-factor 
values are affected by various experimental conditions such as temperature, crystallization 
and structural refinement.  
 

 

 
Fig. 6. (A) The Zb profiles and (B) the Zw profiles of 3 lysozymes: 6lyt (thick solid), 2bqo 
(dotted) and 2lzt (thin solid). Here Zw  is the normalized WCN. This figure is adapted from 
Huang, Yu et al. (2011).  
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Figure 6 compares the B-factor and the WCN profiles of several X-ray structures of 
lysozyme. Despite their almost identical structures -- their  root-mean-square-deviations are 
within 0.6-0.8 Å, their B-factor profiles are very different. 
On the other hand, their WCN profiles look almost identical. The B-factor is obviously not 
robust enough for predicting active site residues. The WCN profile, which correlates well 
with the B-factors but depends only on structure per se, is a much better discriminator for the 
catalytic residues.  
Hwang and co-workers showed a straightforward application of the WCN profile to 
predicting the catalytic residues(Huang, Yu et al. 2011). We will illustrate this with an 
example: S-adenosylmethionine decarboxylase (AdoMetDC) (Ekstrom, Mathews et al. 1999), 
a critical regulatory enzyme of the polyamine synthetic pathway, has 5 catalytic residues. 
They are located in two chains: C82, S229 and H243 in chain A, and E11 and E67 in chain B. 
The active site of AdoMetDC is shown in Figure 7.   
 

 
Fig. 7. The active site of AdoMetDC. Chain A is shown in cyan and chain B in magenta. The 
catalytic residues are labelled. 

The WCN profile of AdoMetDC is shown in Figure 8. It should be noted that the WCN 
profile is computed for an incomplete structure -- many residues are missing in the X-ray 
structure of AdoMetDC. Despite this, most catalytic residues but one are located near the 
local minima of the WCN profile, as shown in Figure 8. The basic idea of the approach is 
simple: to obtain a threshold value for the WCN profile such that the residues whose Z-
values are below the threshold are predicted to be catalytic residues. The threshold Z-value 
is determined by minimizing both the false positives and the false negatives of the predicted 
catalytic residues(Huang, Yu et al. 2011). The threshold for the WCN profile is -0.9. 
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Fig. 8. The WCN profile of  AdoMetDC (PDB ID: 1jen). The catalytic residues are marked in 
empty circles. The red dotted line indicates the threshold value. 

3.2 Comparison of structural profiles 
Figure 9 compares the receiver operating characteristics (ROC) curves of 4 structural profiles 
for their prediction of the active site residues for a data set comprising 760 X-ray 
nonhomologous enzyme structures(Huang, Yu et al. 2011). These profiles are the WCN 
profile, the PFP profile, the CN profile and the B-factor profile. The ROC curve is obtained 
by plotting the true positive rate (TPR) as a function of the false positive rate (FPR). TPR is 
defined as TPR = TP/P, where TP is true positives, i.e., number of correctly predicted 
catalytic residues, and P is the positive examples, i.e., the total number of catalytic residues. 
FPR is defined as FPR = FP/N, where FP is the false positives, i.e., the number of incorrectly 
predicted catalytic residues, and N is the negative examples, i.e., the number of non-
catalytic residues. TPR is the sensitivity, while 1 – TPR is the specificity.  
The WCN model performs the best among all the models. The PFP model comes in second.  
The relatively poor performance of the CN mode underlines the importance of attenuating 
the contributions of the neighboring atoms that depend on the distance between the 
interacting pair. The B-factor profile performs the worst. To have a feeling for the different 
performance between the WCN and the B-factor profiles, we can examine the case of highly 
specific predictions, i.e., at 95% specificity, the WCN model gives 52% sensitivity but the B-
factor model gives only 11% sensitivity. 

3.3 Other prediction methods 
Here we will compare the WCN profile method with other methods in their prediction of 
the catalytic residues from a single structure. 

On the Structural Characteristics  
of the Protein Active Sites and Their Relation to Thermal Fluctuations 

 

65 

 
Fig. 9. The ROC curves of the WCN (ZW), the PPF (ZPFP), the CN (ZCN) and the B-factor (ZB) 
profiles for the prediction of catalytic residues. 

Lavery and co-workers(Sacquin-Mora, Laforet et al. 2007),  using Brownian dynamics 
simulation, computed the force needed to move any given amino acid residue with respect 
to other residues. They found that catalytic residues are invariably associated with high 
force constants. Their method gave 78% sensitivity and 74% specificity for predicting 
catalytic residues for a dataset of 98 non-homologous enzymes. In comparison, the WCN 
profile method yields 84% sensitivity and 82% specificity (Huang, Yu et al. 2011) for the 
same data set. This is quite remarkable, considering the simplicity of the WCN profile 
method as compared with the complexity of the Brownian simulation.   
Analyzing the normal modes of a set of enzymes, Yang and Bahar (Yang & Bahar 2005) 
found that that the catalytic sites are usually of lower translational mobility than other 
residues, and that these catalytic sites generally coincide with the global hinge centers 
predicted by the GNM. Their method gave a sensitivity of 56% for a dataset of 24 enzymes. 
For the same data set, the WCN profile method gives 73% sensitivity and 82% 
specificity(Huang, Yu et al. 2011).  
Ben-Shimon and Eisenstein(Ben-Shimon & Eisenstein 2005) developed a prediction 
algorithm called EnSite, based on the finding that the catalytic residues are often found 
among the 5% of residues closest to the enzyme centroid. The algorithm of EnSite is 
straightforward: it computes only the molecular surface that is close to the centroid, 
identifies continuous surface patches and finally ranks them by their area size. EnSite gives 
the result in terms of the rank of the correct prediction. This makes it difficult to compare the 
EnSite with the WCN profile method. The Pietrokovski's network centrality 
approach(Amitai, Shemesh et al. 2004) is similar to EnSite: both are based on the idea that 
the catalytic sites are near the center of the protein – be it represented by a structure or a 
network. Pietrokovski's approach gives 46.5% sensitivity and 9.4% specificity for a dataset of 
178 structures. For a much larger dataset of 760 enzymes, the WCN profile gave 78% 
sensitivity and 80% specificity(Huang, Yu et al. 2011). 
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Fig. 8. The WCN profile of  AdoMetDC (PDB ID: 1jen). The catalytic residues are marked in 
empty circles. The red dotted line indicates the threshold value. 

3.2 Comparison of structural profiles 
Figure 9 compares the receiver operating characteristics (ROC) curves of 4 structural profiles 
for their prediction of the active site residues for a data set comprising 760 X-ray 
nonhomologous enzyme structures(Huang, Yu et al. 2011). These profiles are the WCN 
profile, the PFP profile, the CN profile and the B-factor profile. The ROC curve is obtained 
by plotting the true positive rate (TPR) as a function of the false positive rate (FPR). TPR is 
defined as TPR = TP/P, where TP is true positives, i.e., number of correctly predicted 
catalytic residues, and P is the positive examples, i.e., the total number of catalytic residues. 
FPR is defined as FPR = FP/N, where FP is the false positives, i.e., the number of incorrectly 
predicted catalytic residues, and N is the negative examples, i.e., the number of non-
catalytic residues. TPR is the sensitivity, while 1 – TPR is the specificity.  
The WCN model performs the best among all the models. The PFP model comes in second.  
The relatively poor performance of the CN mode underlines the importance of attenuating 
the contributions of the neighboring atoms that depend on the distance between the 
interacting pair. The B-factor profile performs the worst. To have a feeling for the different 
performance between the WCN and the B-factor profiles, we can examine the case of highly 
specific predictions, i.e., at 95% specificity, the WCN model gives 52% sensitivity but the B-
factor model gives only 11% sensitivity. 

3.3 Other prediction methods 
Here we will compare the WCN profile method with other methods in their prediction of 
the catalytic residues from a single structure. 

On the Structural Characteristics  
of the Protein Active Sites and Their Relation to Thermal Fluctuations 

 

65 

 
Fig. 9. The ROC curves of the WCN (ZW), the PPF (ZPFP), the CN (ZCN) and the B-factor (ZB) 
profiles for the prediction of catalytic residues. 

Lavery and co-workers(Sacquin-Mora, Laforet et al. 2007),  using Brownian dynamics 
simulation, computed the force needed to move any given amino acid residue with respect 
to other residues. They found that catalytic residues are invariably associated with high 
force constants. Their method gave 78% sensitivity and 74% specificity for predicting 
catalytic residues for a dataset of 98 non-homologous enzymes. In comparison, the WCN 
profile method yields 84% sensitivity and 82% specificity (Huang, Yu et al. 2011) for the 
same data set. This is quite remarkable, considering the simplicity of the WCN profile 
method as compared with the complexity of the Brownian simulation.   
Analyzing the normal modes of a set of enzymes, Yang and Bahar (Yang & Bahar 2005) 
found that that the catalytic sites are usually of lower translational mobility than other 
residues, and that these catalytic sites generally coincide with the global hinge centers 
predicted by the GNM. Their method gave a sensitivity of 56% for a dataset of 24 enzymes. 
For the same data set, the WCN profile method gives 73% sensitivity and 82% 
specificity(Huang, Yu et al. 2011).  
Ben-Shimon and Eisenstein(Ben-Shimon & Eisenstein 2005) developed a prediction 
algorithm called EnSite, based on the finding that the catalytic residues are often found 
among the 5% of residues closest to the enzyme centroid. The algorithm of EnSite is 
straightforward: it computes only the molecular surface that is close to the centroid, 
identifies continuous surface patches and finally ranks them by their area size. EnSite gives 
the result in terms of the rank of the correct prediction. This makes it difficult to compare the 
EnSite with the WCN profile method. The Pietrokovski's network centrality 
approach(Amitai, Shemesh et al. 2004) is similar to EnSite: both are based on the idea that 
the catalytic sites are near the center of the protein – be it represented by a structure or a 
network. Pietrokovski's approach gives 46.5% sensitivity and 9.4% specificity for a dataset of 
178 structures. For a much larger dataset of 760 enzymes, the WCN profile gave 78% 
sensitivity and 80% specificity(Huang, Yu et al. 2011). 



 
Systems and Computational Biology – Molecular and Cellular Experimental Systems 

 

66

4. Conclusion 
Catalytic residues are associated with a variety of structural or dynamic properties -- they 
are closer to the structure centroid, have higher packing density, or have smaller B-factors. 
Since the packing density and the centroid distances are closely related to the B-factors(Shih, 
Huang et al. 2007; Huang, Shih et al. 2008; Lin, Huang et al. 2008; Lu, Huang et al. 2008), all 
these seemingly diversified relationships can be reduced to one conclusion: the catalytic 
residues are more rigid. This is consistent with the present theory of enzyme 
catalysis(Warshel 1978; Warshel, Naray-Szabo et al. 1989; Warshel, Sharma et al. 2006; 
Sigala, Kraut et al. 2008): to accelerate the chemical reactions, the enzyme structures are 
optimized through evolution to partially pre-organize their catalytic residues to stabilize the 
transition state. As a result, catalytic residues tend to maintain similar conformations in both 
the reactant and the transition states. The catalytic residues will be more rigid than other 
non-catalytic residues.  
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1. Introduction 
An amino-acid in proteins shows two different, yet mutually dependent faces connected 
through the polymer character of a protein in the final product. They are the amino-acid side-
chain and its corresponding backbone part. On the level of the side-chains, we often refer to 
specific structural arrangements such as hydrophobic cluster motifs, salt-bridge motifs or 
hydrogen-bond motifs characterizing various parts of a protein and usually assigned to a 
certain function. The backbone on the other hand offers limited, yet general structural motifs – 
 and random coil patterns. All of these mentioned amino-acid features contribute to the 
synergy demonstrated observably by protein stability and protein function. 
Thermal stability is one of the most important features of the structure of a fully folded 
protein. It is defined as the difference in the Gibbs free energy between its native and 
denaturated states and as such is a function of temperature and implicitly a function of 
protein composition and the effect of the environment. Nevertheless, it is necessary to say 
that for this function we do not know yet the precise and general form which could be 
applicable for a large set of proteins. There have been many attempts to propose an 
intuitive, yet productive decomposition of Gibbs free stabilization energy (GFSE) into 
simple terms. One of the scenarios utilized for such purposes is that the total free energy is 
the sum of the free energies of various atomic groups and the hydrophobic effect. However, 
as the free energy is not additive and the fractionation of free energy to independent terms 
is difficult, this attempt has been quite unsuccessful. 
The utilization of molecular modeling methodology and tools has opened a more systematic 
and perhaps more promising approach – the evaluation of the enthalpy term in the equation 
for Gibbs free energy with reasonable accuracy (Lazaridis, Archontis, & Karplus, 1995). The 
remaining entropy term could be obtained by fitting the corresponding analytical form to 
the experimental data. There are basically three different enthalpy contributions that we can 
separate. The first comes from the intramolecular interactions between the atoms of 
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1. Introduction 
An amino-acid in proteins shows two different, yet mutually dependent faces connected 
through the polymer character of a protein in the final product. They are the amino-acid side-
chain and its corresponding backbone part. On the level of the side-chains, we often refer to 
specific structural arrangements such as hydrophobic cluster motifs, salt-bridge motifs or 
hydrogen-bond motifs characterizing various parts of a protein and usually assigned to a 
certain function. The backbone on the other hand offers limited, yet general structural motifs – 
 and random coil patterns. All of these mentioned amino-acid features contribute to the 
synergy demonstrated observably by protein stability and protein function. 
Thermal stability is one of the most important features of the structure of a fully folded 
protein. It is defined as the difference in the Gibbs free energy between its native and 
denaturated states and as such is a function of temperature and implicitly a function of 
protein composition and the effect of the environment. Nevertheless, it is necessary to say 
that for this function we do not know yet the precise and general form which could be 
applicable for a large set of proteins. There have been many attempts to propose an 
intuitive, yet productive decomposition of Gibbs free stabilization energy (GFSE) into 
simple terms. One of the scenarios utilized for such purposes is that the total free energy is 
the sum of the free energies of various atomic groups and the hydrophobic effect. However, 
as the free energy is not additive and the fractionation of free energy to independent terms 
is difficult, this attempt has been quite unsuccessful. 
The utilization of molecular modeling methodology and tools has opened a more systematic 
and perhaps more promising approach – the evaluation of the enthalpy term in the equation 
for Gibbs free energy with reasonable accuracy (Lazaridis, Archontis, & Karplus, 1995). The 
remaining entropy term could be obtained by fitting the corresponding analytical form to 
the experimental data. There are basically three different enthalpy contributions that we can 
separate. The first comes from the intramolecular interactions between the atoms of 
proteins, producing the largest stabilizing enthalpy contribution. The second comes from 
the interactions between the molecules of a solvent, and finally the third contribution is the 
result of the interactions between the atoms of the solute (protein) and the solvent.  
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It is commonly believed that the dominant force of protein folding and therefore the main 
stabilizing force of the native structure is the hydrophobic effect (Dill, 1990). However, it has 
been insightfully pointed out (Makhatadze et al. 1995) that a water environment destabilizes 
folded protein structures and the decomposition of enthalpy shows that the solvation models 
introduce significant errors. In these studies, it has been assumed that the denatured state of a 
protein can be identified with the fully unfolded state (Makhatadze et al. 1989), where residues 
do not interact with each other. Even in light of this hypothesis, the intramolecular interactions 
between amino-acids in a protein are expected to contribute significantly to its overall stability. 
However, the hypothesis has never been proved and the importance of the intramolecular 
interactions would be much higher if the unfolding were considered as “core melting” rather 
than “oil-droplet dissolution”. Regardless of the denatured form, the intramolecular 
organization of a protein is the result of a subtle balance between the rigidity/flexibility of the 
protein backbone and the noncovalent interactions between protein’s side-chains. This result 
in conformational unique and stable protein structures as well as the ratio between the 
importance of the backbone/side-chain contributions can vary for different proteins.  
The main problem of the enthalpy (or the potential energy) approach is that we are unable 
to evaluate the enthalpy-entropy compensation; therefore, the theoretically determined 
enthalpy contribution should be adjusted in some other way. A realistic method is to 
correlate the calculated values with the experimental data obtained by microcalorimetry, 
where both the enthalpy and the entropy terms can be determined. On the level of particular 
amino-acids, we face the problem of their “denatured-state” definition for the reasonable 
decomposition of the free energy on individual amino-acids.  
The dissection of the enthalpy contribution which the intra-molecular noncovalent interaction 
energy (part of the potential energy) is a component of seems to be a reasonable approach for 
the study of the role of the composing amino-acids in protein stabilization. We can decompose 
this energy into individual pairwise amino-acid contributions and determine their importance 
for protein stability. The evaluation of the interaction energy (of noncovalent origin) between 
biomolecules or between their parts is a traditional field of the symbiosis between experiment 
and theory, and the methodology is well described and highly developed (Müller-Dethlefs & P 
Hobza, 2000). The crucial condition for the success of the theoretical methodology is the 
accuracy of the methods utilized. Recently, it has been quite common to evaluate the potential 
energy of a protein at the suitable ab initio methodology level, but we are still severely limited 
by the size of the protein. Therefore, the Density Functional Theory methods (DFT) are the 
most utilized for such purposes ( Riley, 2010). Unfortunately, the DFT methods fail to describe 
the noncovalent interactions reasonably mostly because of the missing electron correlation 
term. Even the new functionals recently introduced (Kolář, 2010) have failed to describe 
properly the noncovalent potential curve mostly in the repulsion and asymptotic regions. Such 
inaccuracies can be tolerated at the energy minima, but only a limited number of the 
interactions between amino-acids in proteins meet such a requirement. Therefore, only high-
level ab initio methods can be utilized – at least for benchmark studies. As was shown on a set 
of representative interactions between amino-acid side-chains in proteins in 2009, empirical 
force fields (namely OPLS and AMBER) are suitable for the description of their interaction 
(Berka, 2009). Kolar (Kolář, 2010) tested the performance of the energy calculations using MM 
on a representative set, S22, and found quite satisfactory agreement between the empirical 
force fields and high-level ab initio methods. It was later shown that we can use the empirical 
force field with satisfactory accuracy also for the description of the intramolecular interaction-
energy distributions for pairs of amino-acid side-chains (Berka, 2010). Still, one has to be aware 
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of the limitations of the force-field methods, namely for subtle cases of the interactions present 
in proteins. On the other hand, the utilization of empirical methods decreases the 
computational cost and provides an opportunity to investigate the trends presented in 
biomolecules if the highest accuracy is not the major issue.  
The evaluation of the interaction energy between amino-acid residues resulted in the 
interaction energy matrix (IEM) concept being introduced in 2008 (Bendová-
Biedermannová, 2008). The IEM approach was used to identify the key residues for protein 
stability in a model system – rubredoxin. The matrix carries information about the energy 
and the role of a residue in the protein structure, namely its interaction energy strength, 
which is more than the simple distance matrix concept. It also shows how much a certain 
residue is a hub within the context of the other interacting amino-acids. The IEM approach 
might also open new horizons for the investigations of proteins. The concept could be 
incorporated into the methods of protein-structure superpositions (similar to the DALI 
approach)(Holm & Sander, 1997) and can shed light on other protein-related issues – for 
example protein stability, folding kinetics, foldability and design.  
The work presented in this study is based on the calculations of the amino-acid – amino-acid 
interaction energies (IEs) between all of the residues in approximately 1400 proteins to 
justify the roles of different amino-acids, their backbones and side-chains and their physical-
chemical character for structural or stabilization preferences. We especially focused on the 
problem of how the interaction energy distributions are related to the secondary-structure 
content defined by the CATH (Orengo et al., 1997) and SCOP(Murzin, 1995) criteria.  

2. Amino-acids in proteins and their distribution 
2.1.1 Representative structure-set selection 
All of the protein structures utilized in this study were obtained from the PDB database 
(download Jan 31, 2011). We selected only protein molecules with one chain, no ligands, 
resolved by the X-ray crystallography method at a minimum resolution of 2.0 A. We also 
omitted structures with a 70% sequence identity and higher. The database filter yielded 1531 
structures. This number was slightly reduced by inconveniences with file processing to 1358. 
The characteristics of the set are illustrated in Figure 1 (size histogram, resolution 
histogram). 
 
 

 
Fig. 1. a) Number of structures against protein length; binned by 20 AA; b) number of 
structures with a particular X-ray resolution; binned by 0.1 A; c) histogram of the sizes of the 
structures selected for secondary-structure studies. 

Incomplete amino-acid side-chains (missing heavy atoms, disordered) were replaced by 
glycine in the cases where backbone atoms were available. Amino-acids with missing 
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Fig. 1. a) Number of structures against protein length; binned by 20 AA; b) number of 
structures with a particular X-ray resolution; binned by 0.1 A; c) histogram of the sizes of the 
structures selected for secondary-structure studies. 

Incomplete amino-acid side-chains (missing heavy atoms, disordered) were replaced by 
glycine in the cases where backbone atoms were available. Amino-acids with missing 
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backbone atoms would have discredited the whole set and were therefore omitted. The 
missing hydrogen atoms were added by the Xleap program from the AMBER (Case et al. 2010) 
simulation package for pH 7 and the parameters were assigned according to the OPLS FF 
(Jorgensen & Rives 1988). The ambiguity of protonation, mainly in the case of histidine, is 
discussed later. The structures were optimized using the GROMACS (Hess et al. 2008) 
molecular simulation package with the steepest descent algorithm being employed. The 
hydrogen atoms were optimized first and then the full optimization of the whole protein in the 
gas phase was performed.  
To address the question of the residue selectivity for secondary structure motifs, the 
structures were classified according to the CATH and SCOP categories and four 
representative sets were selected. To prevent the interference of the size and secondary 
structure effect, we assured that the structure sets possess the same size distribution.  
Hence, the structures pertaining to particular secondary-structure sets were binned 
according to their chain length (bin size 50, see Figure 2) and were randomly removed from 
the bins until the number of structures in the corresponding bins was the same for all the 
sets. This procedure resulted in four sets, each containing 99 structures. 

2.1.2 The fragmentation of proteins 
To differentiate between the particular types of interactions which every amino-acid can 
maintain, we assigned every atom of a residue to one of four attributes according to their 
occurrence in the backbone or to their occurrence in certain types of amino-acid side-chains. 
The attributes were as follows – BB – backbone atoms, CH – side-chain atoms of charged 
residues (asp, glu, lys, arg, his), PO – side-chain atoms of polar residues (asn, gln, thr, ser) 
and NP – side-chain atoms of nonpolar and aromatic residues (gly, ala, leu, ile, val, pro, cys, 
met, phe, tyr, trp). Such classification provides the lowest number of groups necessary to 
discern between interactions characterized by different distance dependencies and orders of 
magnitude (different physical characters). On the other hand, breaking residues into more 
parts is restrained by the resulting charges of the fragments which would introduce 
significant but artificial electrostatic energies. The OPLS force field guarantees that the 
backbone (which includes C) and side-chain fragments are neutral. The physical character 
of the interaction energies of the aromatic residues is close to those of nonpolar residues. 
Hence, taking into account digestibility of presented data, we decided not to increase the 
number of attributes.  

2.1.3 The Interaction Energy Matrix (IEM) calculation  
After all of the structural optimizations, the pairwise interaction energies for all of the 
residues at the OPLS level were calculated excluding those between backbones of adjacent 
amino-acid in primary structure which were set to zero. The interactions were calculated 
separately for the backbones and side-chains as the sum of the interatomic Lennard-Jones 
and Coulombic contributions in the gas phase (r=1) using an in-house developed Python 
program utilizing the standard libraries. The classification of the amino-acid atoms in four 
groups resulted in ten types of mutual interactions – BB-BB, BB-CH, BB-PO, BB-NP,  
CH-CH, CH-PO, CH-NP, PO-PO, PO-NP, NP-NP – reflecting the attributes of the  
atoms involved. For example, CH-CH represents salt bridges and all of the interactions 
between the side-chains of charged residues regardless of their relative distance and 
charge sign. 
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Each type of interaction for one protein was represented by one interaction energy matrix, 
namely a NxN (where N denotes the number of residues) matrix containing the 
interaction energy between the atoms of residues i and j with particular attributes 
assigned. It is guaranteed that no interaction energy is counted twice, so the sum of all of 
the matrices provides the interaction energy between the corresponding residues. 
In order to compare the residual energy content, we have introduced a residue interaction 
energy (RIE) characteristic for each residue. The RIE of a certain type is defined as the sum 
of all of the interactions the residue can maintain – the sum of all the numbers in a particular 
row (or column) in the IEM of that type. At the end, we have ten (NxN dimension, where N 
is the number of amino-acids) IEMs of different types in one protein. Most of the IEs are of 
course almost zero; some are set as zero by definition. 

2.1.4 Representation of data – cumulative distribution functions and histograms  
There are two main data representation schemes in this work. Those are as follows: 
The distributions of RIEs of a certain type in one protein. For one specific type and one 
specific protein set (for example CH-CH in SCOP β), the following procedure was 
performed to acquire an average distribution representing the whole set. The non-zero RIEs 
calculated from appropriate IEM were sorted independently for each protein and the 
distributions were obtained as a plot of the RIE against the residue rank in the sorted list 
normalized to one. To enable the averaging of the distributions, we represented each one by 
1001 equally distant (on the rank coordinate) points between 0 and 1 (instead of for example 
N in the case of RIE BB). The RIE for each point was obtained by linear interpolation using 
the nearest two points of the calculated distribution. The averaged distribution was obtained 
by averaging the RIEs of the corresponding points of the curves of all of the proteins 
pertaining to the set. The inverse of the averaged distribution is a quite smooth cumulative 
distribution function representing the average for the set.  
The distributions of the RIEs of a certain type for a particular amino-acid were sampled 
from all of the 1358 proteins. The RIEs of a particular type and AA were sampled from all 
the proteins and binned to yield quite smooth histograms. 

2.2 Secondary-structure dependence 
The RIE distribution of a particular type in a protein describes the distribution of the energetic 
importance of the residues. An average distribution also characterizes the particular type of 
interaction in the ensemble – the fraction of the key residues, their importance, and the fraction 
of the residues with repulsive interactions. The magnitude interval of a distribution is a very 
important parameter. It contains information about the interaction strength in the native states 
of the proteins. Unfortunately, this information does not denote the contribution of particular 
interactions to stability as it lacks information on the denatured state. 
The shape of the distribution determines the pressure exerted on a residue and might help 
estimate the actual contribution of the corresponding interactions to protein stability. It is 
not surprising that the BB RIEs correlate with the secondary structures as the 
classifications indirectly use the BB RIEs. However, the differences are smaller than one 
might expect. It is also clear that none of the interactions other than BB is affected by the 
secondary-structure content. 
From Figure 2, it can be concluded that the difference between the CATH and SCOP 
classifications is more significant mainly in the case of α proteins. Figures 3 and 4 show all 
of the types of distributions for a nonpolar (ALA, Figure 3) and a polar (THR, Figure 4) 
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classifications is more significant mainly in the case of α proteins. Figures 3 and 4 show all 
of the types of distributions for a nonpolar (ALA, Figure 3) and a polar (THR, Figure 4) 
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amino-acid. It is obvious that the BB RIE cumulative distributions are the only 
distributions to have their shape affected by the secondary-structure content and the 
particular AA RIE distributions show more than one peak. The distinctive peaks might be 
assigned to special structural features and their identification remains a task for future 
studies. 
 
 
 

 
 
 

Fig. 2. The average RIE distributions of all ten types: a comparison of the secondary-
structure classes. The colors of the lines correspond to the following structure sets: red – 
CATH , blue – SCOP , green – CATH , magenta – SCOP . The detail of the BB 
distribution in the bottom left corner is a zoom of the BB RIE distributions. 

The fact that the CYS average NPNP RIE distribution is the only exception to the rule, 
because it has two peaks, can be explained by a different strength of the noncovalent 
interactions of the cystein SH group and cystine SS bridge. 
The BB RIEs of particular AAs sampled through all of the structure sets are shown in Figure 
5. There are remarkable differences between the shapes of the distributions corresponding to 
the  and  proteins as well as between the shapes of the distributions for particular AAs. 
Generally, the BB RIE distributions of the beta-structured proteins are shifted to a less 
attractive (less negative) noncovalent region. 
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Fig. 3. All of the types of the RIE distributions of ALA. The red line corresponds to the 
CATH  set, the green line to the CATH . 

 

 
Fig. 4. All of the types of the RIE distributions of THR. The red line corresponds to the 
CATH  set, the green line to the CATH . 
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Fig. 5. The average BB RIE distributions for each AA. Sampled through proteins from the 
CATH  and CATH  sets. The red line corresponds to the CATH  set, the green line to the 
CATH . 

2.3 Size dependence 
The proteins were selected based on their chain lengths up to fourteen groups regardless of 
their secondary-structure content. Their characteristics (chain-length range, average chain 
length, amino-acid type composition, number of proteins, number of residues of particular 
types, average surface area) are reviewed in Table 1.  
 
 

 
Table 1. The characteristics of the structure sets used for the RIE-size dependence studies. 
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RIEs of a particular type were sampled from all of the proteins of a particular size group. 
The RIE averages were calculated separately for each interaction type of each size. The plots 
of the average RIEs against size are presented in four figures (Figures 6 to 9) in order to 
maintain the lucidity of the plots with lower magnitudes of average RIEs. The results 
reported in Figure 6 suggest that the RIE-size dependence varies significantly with the 
interaction type. On the one hand, the interaction of the polar residues with the backbone is 
almost independent of size. On the other hand, the interactions of the side-chains follow 
common rules, which are investigated later. 
An interesting notion comes from a comparison of the magnitudes of the POPO and BBPO 
average RIEs. The lower RIE magnitudes in the case of POPO RIEs are probably caused by 
the lower probability of hydrogen-bond formation with polar side-chains in comparison 
with the backbone-polar side-chain because of the lower frequency of their occurrence.  
A noticeable trend is the coupling of BBCH and CHPO interactions (see Figure 8). This 
binding may be ascribed to the same physical quality of these two types of interactions; they 
both represent charge–dipole interactions. The accuracy of the data can be estimated from 
the curve smoothness and is apparently lower in the case of charged residues. One possible 
reason for this trend is that the RIEs of charged residues are the products of a large 
compensation for the low amount of data. 
 

 
Fig. 6. The size dependence for BBPO, BBNP and NPNP interactions in the studied protein 
set. The NPNP differs significantly from the rest. 
 

 
Fig. 7. The Size dependence for the POPO and PONP interactions in the studied protein set. 
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Fig. 8. The size dependence for the CHPO, CHNP, BB and BBCH interactions in the studied 
protein set. 

 
Fig. 9. The size dependence for the CHCH interactions in the studied protein set. 

2.3.1 The model of size dependence for the interaction of nonpolar amino-acid side-
chains 
Two simple models were tested to explain the observed trends. In the first model, protein is 
assumed to be a sphere with nonpolar residues in its hydrophobic core and polar and 
charged residues forming its exterior shell. The size dependence of a NPNP RIE average is 
ascribed to the size dependence of the ratio between the core and surface residues. At 
infinite length, the NPNP RIE should reach its limit. The second model is more realistic in 
such a way that the core never behaves like a limitlessly increasing sphere and the volume 
occupied by the side-chains must reach its limit. This limits the NPNP RIE value which will 
not rise further with the increasing size of a protein and define a certain size of the most 
compact amino-acid arrangement. 
2.3.1.1 The NPNP RIE Model 1 
An average NP residue can be described by its characteristic length r, surface factor fs 
(corresponding to its surface or interaction area Sr = fsr2), volume factor fv (corresponding to its 
volume Vr = fvr3) and the NPNP RIE limit for the infinite bulk E∞. As we are assuming that all 
of the nonpolar residues form the core which has a spherical shape, the core size is determined 
by the size of the protein and the ratio φ of nonpolar residues and all residues. A protein can 
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be described by its porosity  (determining the ratio of the gap volume to the volume of the 
whole protein) and at least its length N. Assuming that all of these quantities except for N are 
constants, the volume of each protein can be expressed as Vp = NVr/(1- ) = Nfvr3/(1-) and the 
core volume as Vc = Vpφ = Nφfvr3/(1-). The interaction surface of the core residues can be 
considered as Si = NφSr and the core surface is Sc = 4πrc2. E can be calculated as 

  1 31 
 E E kN , (1) 

where 
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The k and E1 parameters were fitted to the calculated data using Equation (1). As can be 
seen in Figure 10, the fitted curve does not represent the data very well. 
 

 
Fig. 10. The performance of Model 1 

2.3.1.2 The NPNP RIE Model 2 
The first model was extended by adding a new parameter, representing the domain size. 
The energy was represented by the following function: 
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where ND is the domain size and ED = E∞ (1-kND-1/3) is NPNP RIE average at ND. The 
parameters ND, k and E1 were fitted to the NPNP RIE averages. The agreement of the fitted 
curve with the data is satisfactory considering the simplicity of the model as one can see in 
Figure 11. 
The coefficient k obtained by fitting the data is comparable to that obtained by a calculation 
using the estimated values of fv, fs, and the experimental value of φ. Other types of 
interactions seem to be unrelated to the domain size of a protein as there is no mechanism 
connected with size that we could follow. 
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Fig. 11. The performance of Model 2 

2.3.2 The reliability of the evaluated distributions 
To adjust the reliability of our findings from computational point of view, we divided all of the 
proteins randomly into two groups. The distributions are indistinguishable, which proves that 
the distributions can be obtained by averaging even smaller sets of proteins. Additionally, we 
calculated the distributions using the OPLS force field in a C representation of the protein 
side-chains. Apparently (see Figure 12), the distributions for both FFs are the same. This not 
only proves that our results are robust against a FF parametrization error but also suggests 
that both FFs are within their limits equally good for RIE-distribution investigations. 
 

 
Fig. 12. A Comparison of the distributions obtained by averaging the distributions within 
the whole set using the OPLS Ca FF (dots) and Amber 03 Ca (full line) shows the robustness 
of the distributions against the FF used. The distributions obtained by averaging the 
distributions in two randomly chosen half-sets of structures calculated using the Amber Ca 
FF are indistinguishable, which proves that our set is sufficiently large. 

3. Conclusion  
RIE distributions in proteins, except for the BB RIE distributions, are not affected by 
secondary-structure content. The same applies for the distributions sampled for each amino-
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acid separately. Hence, we can claim that the strength and selectivity of the SC-SC and SC-
BB interaction do not correlate with the secondary-structure content. 
The size dependence of the RIEs can be satisfactorily described by the second model 
proposed. Its three parameters can be fitted to the results obtained by FF calculations of a 
high number of protein structures. One of the parameters obtained by fitting to the NPNP 
RIE averages represents the optimum definition of the domain size in globular proteins. 
Although the models proposed apply for all types of NP and PO SC-SC interactions, the 
models fail in the description of the BB and CH interactions. Many interesting facts about 
the size dependence of the RIE averages were revealed. First, the BBCH and CHPO 
interactions seem to be bound by some as-yet unknown rule. Second, the PO interactions 
exhibit “strange” behavior at a protein chain length of approximately seventy residues. 
These findings need to be investigated more deeply.  
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1. Introduction 
Protein-protein interactions (PPIs) are essential to cellular processes. Recent developments of 
high-throughput technologies have uncovered vast numbers of PPIs. However, the 
experimental evidences are mostly for intra-species interactions of model organisms, especially 
human. Studies of non-human organisms and inter-species PPIs are few. For organisms such 
as Arabidopsis thaliana, the experimentally detected 5990 PPIs are estimated to be less than 3% 
of the entire A. thaliana interactome (M. Lin et al., 2011). The accuracy of high-throughput PPI 
experiments is also doubtful (Mrowka et al., 2001; Sprinzak et al., 2003; von Mering et al., 2002).  
To resolve the above issues, several computational methods have been developed to 
evaluate and predict PPIs. This chapter focuses on direct PPIs which involve physical 
interactions of proteins, provides a brief overview of the reliabilities of high-throughput PPI 
detection technologies, and discusses the weakness and strength of important PPI 
computational prediction and evaluation methods. The major repositories which store, 
evaluate, and analyse both detected and predicted PPIs are also introduced.  

2. Experimental detection of protein interactions 
Not until the past decade, PPIs were identified by time consuming and labour intensive 
methods, such as low-throughput (small-scale) yeast 2-hybrid (Y2H). The development of 
high-throughput technologies brought studies of PPIs to an -omics level. Of all the 
technologies used for PPI detection, the high-throughput Y2H is most mature and 
commonly used. However, it is also one of the most inaccurate techniques, producing an 
estimated ~ 50% of false positives (Parrish et al., 2006; von Mering et al., 2002). The error 
rates of the other high- and medium-throughput technologies are summarized in Table 1 
(Mrowka et al., 2001; Parrish et al., 2006; Sprinzak et al., 2003; von Mering et al., 2002).  
In the past few years, BiFC has became one of the popular in vivo technologies as it has a 
medium throughput and reasonable cost, is technically straightforward, and provides 
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information on subcellular  localizations of proteins. The drawback for BiFC is its occasional 
false postivies caused by non-specific interactions and background flurorescence. Split-
luciferase system has an extremely low background, but does not disclose the subcellular 
localization of interactions. Protoplast Y2H is similar to Y2H, but technically more challenging 
as it has to be operated in a nuclei or protoplasts. SUS has high rates of false positives and 
background signals. The in vitro technologies are less favourable as the reactions do not occur 
in cellular environments and do not examine the cellular localization of proteins.  
 

Technology Throughput Accuracy References 

In vivo    

High-throughput Y2H High  (Causier, 2004; Causier & Davies, 
2002)

Split-luciferase 
system Medium-high  (Paulmurugan & Gambhir, 2005,2007) 

Protoplast Y2H Medium  (Fujikawa & Kato, 2007) 

Split-ubiquitin system 
(SUS) Medium  

(Michnick, 2003; Obrdlik et al., 2004; 
Reinders et al., 2002; Schulze et al., 
2003)

Bimolecular 
fluorescence 
complementation 
(BiFC) 

Medium  
(Citovsky et al., 2008; Hu et al., 2006; 
Ohad et al., 2007; Ohad & Yalovsky, 
2010; Zhou et al., 2011) 

In vitro    
Stable-isotope 
labeling of amino 
acids in cell culture 
(SILAC) 

High  (Gruhler & Kratchmarova, 2008; 
Mann, 2006) 

15N-labeling High  (Huttlin et al., 2007; Nelson et al., 
2007)

Chemical 
crosslinking-MS 
using protein 
interaction reporter 
(PIRs) 

High  (Anderson et al., 2007; Tang et al., 
2005) 

Protein microarrays High  (Angenendt et al., 2006; Popescu et al., 
2007; Ramachandran et al., 2004) 

Single affinity 
purification-tagging Medium-high  (Berggard et al., 2007) 

Tandem affinity 
purification (TAP) 
tagging 

Medium-high  (Rohila et al., 2006; Schoonheim et al., 
2007) 

Native 
chromatography or 
electrophoretic 
purification 

Medium  (Liu et al., 2008) 

Table 1. The technologies for high- and medium-throughput PPI detection (Morsy et al., 
2008) Accuracy of each technology is summarised in this table. The symbol “” indicates 
low accuracy, “” indicates high accuracy, and “” indicates sound accuracy. 
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3. Computational prediction and evaluation of protein interactions 
As listed in Table 2, the methods for PPI prediction and evaluation can be classified into five 
categories based on the types of information required for analysis – (1) protein sequences, 
(2) Gene Ontology (GO), (3) gene expression profiles, (4) topology of the interaction 
network, and (5) experimental data.  
 
 

Methods References 
Protein Sequences  

Interologs (Matthews et al., 2001; Rhodes et al., 2005; von Mering 
et al., 2007) 

Phylogenetic tree similarity (Jothi et al., 2005) 
Gene fusion (Enright et al., 1999; Marcotte et al., 1999) 

Gene neighbouring (Dandekar et al., 1998; Overbeek et al., 1999; Tamames 
et al., 1997) 

Domain-domain interactions (Frishman, 2009; Ng et al., 2003) 
Gene Expression Profile  
Co-expression correlation 
coefficience (Ideker et al., 2002) 

Shared Gene Ontology 
Annotation  

Protein functions (De Bodt et al., 2009; Jain & Bader, 2010; Wu et al., 
2006) 

Protein localization (De Bodt et al., 2009; Jain & Bader, 2010) 
Topology Analysis  
Distance between proteins in a 
PPI network (Dyer et al., 2007) 

Experimental Data  
Cited literatures (text mining) (Jaeger et al., 2008) 
Detected PPI datasets  (von Mering et al., 2002) 

Table 2. Computational methods for protein interaction prediction and evaluation 

Methods for PPI prediction and evaluation is each developed based on an assumption 
which states certain criteria are more likely to occur between interacting proteins. These 
methods are often combined, usually in a Bayesian network  (Huttenhower & Troyanskaya, 
2006; Jansen et al., 2003; Lee et al., 2006; N. Lin et al., 2004; McDowall et al., 2009; Patil & 
Nakamura, 2005; Wang et al., 2009; Xu et al., 2011). Some criteria are more relevant to 
protein interactions than the others. When different methods are combined, the statistical 
confidence estimated by each method could be weighted according to the confidence level 
of corresponding assumption.  

3.1 Interologs  
Homologous proteins often conserve similar functions and PPIs across different organisms, 
especially in phylogenetically close-related species (Hirsh & Sharan, 2007). These conserved 
PPIs are designated as interologs.  
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In the interolog method, it is assumed that if a pair of proteins, A and B, interact and there 
are two other proteins, A’ and B’, of which A’ is homologous to A and B’ is homologous to 
B, then A’ and B’ are potentially an interolog to A and B. Interologs can occur among 
different species or in the same species (Mika & Rost, 2006). The conventional interolog 
method identifies homologous proteins by comparing the global sequences. For proteins of 
which only partial sequences are similar, sequence signatures may be compared instead of 
full sequences (Sprinzak & Margalit, 2001). Structurally similar proteins may also have 
similar protein interactions, but predicting PPIs by identifying proteins with similar 
structures is impeded by the limited structural information available (Aytuna et al., 2005; 
Ogmen et al., 2005). The interologous relationship between the two pairs of proteins, one 
pair predicted and one pair detected, could be evaluated by functions such as the s score. 
(He et al., 2008). Homologous genes of model organisms can be identified using BLAST or in 
HomoloGene database that automatically identifies and collects homologs from fully 
sequenced genomes (Sayers et al., 2011). 
The interolog method has been used frequently. The first human PPI network, the 
Arabidopsis PPI network, and the rice blast fungus PPI network are a few examples 
constructed by predicted interologs (Geisler-Lee et al., 2007; He et al., 2008; Lehner & Fraser, 
2004). Unfortunately, prediction of plant PPIs through a comparative interactome approach 
is challenged by the unique biology of plants which involves PPIs not commonly found in 
the other model organisms. Less than 50% of A. thaliana proteins have been found to have 
orthologs in the more extensively studied organisms such as yeast, Caenorhabditis elegans, 
fruit fly, or human (Gollery et al., 2006). Furthermore, the interolog method does not 
differentiate the functionally significant amino acid residues from the others; neglects the 
residue-specific requirements for interaction specificity and affinity (Uhrig & Hulskamp, 
2006). For the highly homologous members of protein families, the interlog method could be 
prone to errors. 

3.2 Phylogenetic relationship 
Interacting proteins have been observed to have topologically similar phylogenetic trees for 
the corresponding protein families, presumably due to the co-evolution of cooperating 
proteins (Fryxell, 1996; Goh et al., 2000; Pages et al., 1997). Based on the above observation, 
the phylogenetic similarity method was proposed. To compare and construct the 
phylogenetic trees, firstly, the sequences of two potentially interacting protein families are 
aligned. Secondly, the evolutionary distance matrixes are calculated from the phylogenetic 
trees, one for each protein family. Finally, the Pearson’s correlation coefficient between the 
two distance matrixes is calculated as an indication of the likelihood of interactions. Partial 
protein sequences could be used to construct the phylogenetic trees - for example, poorly 
conserved sequences have been removed to improve the performance of prediction (Kann et 
al., 2007). 
A similar approach is the phylogenetic profile method. Phylogenetic profile is the profile 
which records the presence and absence of a protein across all species. Also due to the 
presumably co-evolution of proteins involved in the same biological process, proteins with 
similar phylogenetic profiles are more likely to have interactions. The profiles could be 
compared by Hamming distance (Pellegrini et al., 1999). Although this approach is 
powerful, it can be applied only to organisms which have been fully sequenced (Frishman, 
2009). Additionally, there might be complications with essential proteins which are present 
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in all organisms (Frishman, 2009). As the second generation sequencing (SGS) technologies 
exponentially accumulating full genome sequences of non-model organisms, this method is 
expected to become more favorable. 

3.3 Gene fusion and neighboring 
Genes which are previously separated in the genome of one organism can be fused into the 
same gene in another organism. Fused genes almost always encode functional related and 
physically interacting proteins (Enright et al., 1999; Marcotte et al., 1999). The fusion events 
might accelerate the formation of protein complexes by increasing the opportunity of correct 
physical contact between interacting sites.  
Similarly, in bacteria, genes which are consistently located in the same operon across many 
species are likely to express functionally related, and often physically interacting, proteins 
(Dandekar et al., 1998; Overbeek et al., 1999; Tamames et al., 1997).  

3.4 Domain-domain interactions 
Just like protein interactions, domain interactions can be predicted by sequence homology 
among two pairs of interacting domains, by investigating the evolutionary traits of domains, 
or by identifying conserved neighboring relationship between domains (Frishman, 2009). 
Interacting proteins are also more likely to contain domains which have been detected or 
predicted to interact (Ng et al., 2003).  

3.5 Co-expression 
Interacting proteins are assumed to have similar expression patterns (Dyer et al., 2007). 
The co-expression correlation coefficients of seven model animals, including human, 
mouse, chicken, zebra fish, fruit fly, and Coenorhabditis elegans, and nematode, are 
recorded in COXPRESdb (Obayashi et al., 2008; Obayashi & Kinoshita, 2011). The co-
expression correlation coefficients of A. thaliana and many other flowering plants are 
recorded in ATTED-II (Obayashi et al., 2011). High-throughput expression data are mostly 
available on Gene Expression Omnibus (GEO) or TAIR for A. thaliana experiments 
(Garcia-Hernandez et al., 2002; Sayers et al., 2011).  

3.6 Gene Ontology (GO) 
Interacting proteins are presumably to participate in related biological process and share 
similar cellular localization (Dyer et al., 2007; Shin et al., 2009). The GO project annotates 
the cellular components where a protein locates and the biological process in which a 
protein participates. The annotations are created by structured and controlled 
vocabularies. The semantic similarities between GO terms assigned to proteins are often 
used to evaluate the confidence levels of proposed PPIs (De Bodt et al., 2009; Jain & Bader, 
2010).  

3.7 Topology 
As more and more PPIs are revealed, PPI networks can be constructed and analyzed by 
topology theories. It has been proposed that two proteins which interact with the same 
protein should have a shorter path between them on the PPI network (Dyer et al., 2007). It 
has also been proposed that interacting proteins might share more neighboring proteins on 
a PPI network (J. Chen et al., 2006; Chua et al., 2006).  
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In the interolog method, it is assumed that if a pair of proteins, A and B, interact and there 
are two other proteins, A’ and B’, of which A’ is homologous to A and B’ is homologous to 
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in all organisms (Frishman, 2009). As the second generation sequencing (SGS) technologies 
exponentially accumulating full genome sequences of non-model organisms, this method is 
expected to become more favorable. 
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protein should have a shorter path between them on the PPI network (Dyer et al., 2007). It 
has also been proposed that interacting proteins might share more neighboring proteins on 
a PPI network (J. Chen et al., 2006; Chua et al., 2006).  
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3.8 Text mining 
The protein interactions which have been reported repeatedly in more peer-reviewed 
literatures might be more trustworthy than the ones which have never or rarely been 
detected (Jaeger et al., 2008). However, it must be noted that proteins with more valuable 
functions, such as disease mechanisms, would have been studied more intensively and been 
documented more frequently.  
PubMed and GeneRIF are common sources of text mining materials. The automated data 
gathering (e.g. text mining via natural language processing or biomedical language 
processing) is not as reliable as manually curated data. It must be noted that manual 
curation is neither 100% correct due to human errors and inconsistent standards for 
curation.  

3.9 Experimental detections 
PPIs detected by low-throughput technologies are generally considered as error free. For the 
medium- to high-throughput technologies, the reliability of the results varied as listed in 
Table 1. In vivo experiments are usually more accurate than the in vitro experiments, as in 
vivo experiments were conducted in cellular environments. Interactions supported by more 
than one method are generally believed to be more reliable (von Mering et al., 2002). PPI 
datasets which are more reliable are assumed to have more intersections with the other 
datasets and higher averaged numbers of documented protein interactions (Shin et al., 
2009). Reliable PPI datasets should also contain greater proportion of interactions which 
have interacting domain pairs (He et al., 2008).  
In silica protein docking is another approach which could be used for predicting protein 
interactions; however, it is impractical for high-throughput predictions due to the extremely 
large amount of required computation and the lack of detected or predicted structures for 
most proteins. 

4. Protein interaction databases 
More than 30 PPI databases have been published and are mostly available online (Fischer et al., 
2005). Table 3 listed the frequently referenced databases. The contents of these databases are 
often overlapped and integrated to create larger non-redundant databases. These collections of 
PPIs can be used as the foundation for predicting and evaluating the reliability of PPIs.  
 

Database Validation Organisms Reference 

MINT 
Detected 
Provides confidence scores for 
PPIs. 

Model 
organism (Ceol et al., 2010) 

DIP Detected Model 
organisms (Salwinski et al., 2004) 

BIND Detected ~ 1500 
organisms 

(Gilbert, 2005; Isserlin 
et al., 2011; Willis & 
Hogue, 2006) 

BioGRID Detected Model 
organisms 

(Breitkreutz et al., 
2008; Stark et al., 2011; 
Stark et al., 2006) 
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Database Validation Organisms Reference 

IntAct Detected Model 
organisms 

(Aranda et al., 2010; 
Brandao et al., 2009) 

HiPredict 

Data from IntAct, BioGRID, and 
HPRD 
Provide confidence scores for 
PPIs. 

Model 
organisms (Patil et al., 2011) 

MIPS Detected Model 
mammals (Pagel et al., 2005) 

HPRD Detected Human (Goel et al., 2010) 

STRING 

Detected and predicted data 
from BIND, BioCarta, BioCyc, 
BioGRID,DIP, HPRD, IntAct, 
MINT, REACTOME, textmining, 
etc 
Provides confidence scores for 
PPIs. 

~ 1000 
organisms 

(Szklarczyk et al., 
2011; von Mering et 
al., 2007; von Mering 
et al., 2005) 

HAPPI 

Detected and predicted data 
from HPRD, BIND, MINT, 
STRING, OPHID, etc 
Provide confidence scores for 
PPIs. 

Human (J.Y. Chen et al., 2009) 

AtPID 
Predicted
Provide confidence scores for 
PPIs. 

A. thaliana (Cui et al., 2008; Li et 
al., 2011) 

PAIR 

Detected (from IntAct, BioGRID 
and BIND) and predicted 
Provide confidence scores for 
PPIs. 

A. thaliana (M. Lin et al., 2011) 

AtPIN 

Experiemtnal (from BioGRID 
and IntAct) and predicted (from 
Geisler-Lee and AtPID) 
Provide confidence scores for 
PPIs. 

A. thaliana 
(Cui et al., 2008; 
Geisler-Lee et al., 
2007; Li et al., 2011) 

PIG Data from BIND, IntAct, 
REACTOME, and MINT 

Human-
pathogen 
interacitons 

(Driscoll et al., 2009) 

HPIDB 
Data from BIND, IntAct, 
REACTOME, MINT, GENERIF 
and PIG 

Host-pathogen 
interactions, 
hosts are 
model 
organisms 

(Kumar & Nanduri, 
2010) 

Table 3. Major PPI databases 

MINT is one of the few repositories which provide confidence scores for experimentally 
detected PPIs. It uses the number and types of experiments in which a PPI is detected to 
estimate the confidence of data. 
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Table 3. Major PPI databases 

MINT is one of the few repositories which provide confidence scores for experimentally 
detected PPIs. It uses the number and types of experiments in which a PPI is detected to 
estimate the confidence of data. 
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HiPredict is a repository which contains filtered high-confidence PPIs of nine model species 
from IntAct, BioGRID, and HPRD. While calculating the confidence of PPIs, HiPredict 
considers (1) the type of experiments which detect the PPIs, (2) the co-expression correlation 
coefficients of proteins, (3) shared GO terms of proteins, (4) presences of interologs in the 
same organisms, and (5) domain-domain interactions between proteins. These five criteria 
are combined in naïve Bayesian networks to give confidence scores. 
STRING is one of the largest and most comprehensive PPI repositories. It evaluates PPIs 
using multiple criteria, including (1) the probability of finding the interacting proteins on 
the same KEGG pathway, (2) co-mentioning of gene/protein names in PubMed abstracts, (3) 
co-expression / co-regulation of proteins, (4) presence of interologs, and (5) presence of gene 
neighboring. Similar to HiPredict, the various criteria are also combined in naïve Bayesian 
networks. 
HAPPI only collects human PPIs. For the PPIs which have been evaluated, such as data 
from STRING, the confidence scores are preserved. For the PPIs which have not evaluated, 
HAPPI calculates the confidence scores based on the type of experimental evidences and the 
source of data. 
PAIR collects 5990 detected protein interactions and 145494 predicted interaction of A. 
thaliana (M. Lin et al., 2011). These PPIs were expected to cover 24% of the entire A. thaliana 
interactome, of which the size was estimated to be 200 000 PPIs (for 20 000 genes) based the 
size for yeast (18 000 PPIs for 6000 genes). An estimated 44% of the collected PPIs in PAIR 
are reliable. PAIR predicts PPIs using a machine learning approach with supports the vector 
machine (SVM) model. In the SVM model, indirect evidences of interactions (i.e. interologs, 
phylogenetic profile similarity, domain interactions, gene co-expression correlation, shared 
GO terms, and protein localizations) are combined. The model has been trained using Gold 
Standard Positives (GSPs), which are reliable PPIs from major repositories. The SVM scores 
also serve as the confidence scores for the predicted PPIs. The detected PPIs are collected 
from IntAct, BioGRID, and BIND. 
AtPIN integrates (1) the predicted PPIs from Geisler-Lee and AtPID, (2) the curated PPIs from 
TAIR, and (3) the detected PPIs from BioGRID and IntAct (Brandao et al., 2009). Geisler-Lee 
(2007) predicts PPIs by identifying interologs. AtPIN calculates confidence scores of PPIs based 
on (1) the detected or predicted co-localization of interacting proteins and (2) the number of 
shared neighboring proteins of interacting proteins on the PPI network. It also provides the 
score calculated by AtPID. AtPID combines indirect evidences of interactions, including 
interologs, phylogenetic profiles, domain interactions, co-expression profile, shared protein 
functions, protein co-localisation, and gene fusion, in  naïve Bayesian networks to predict and 
evaluate the PPIs of A. thaliana (Cui et al., 2008; Li et al., 2011). TAIR is a multi-tasking project 
which participates in a broad range of A. thaliana researches.  
The data of protein interactions between hosts and pathogens are scarce. PIG integrates the 
manually curated human-pathogen PPIs from four databases, BIND, IntAct, REACTOME, 
and MINT, in one platform for searching, visualization, and analysis of PPI networks. The 
corresponding hyperlinks to UniProt database, Gene Ontology, InterProScan, and PubMed 
are filed under each protein entry in the user interface for convenient referencing. 
Similar to PIG, HPIDB integrates several host-pathogen PPI databases, including BIND, 
IntAct, REACTOME, MINT, GENERIF, and PIG. However, unlike PIG, the PPIs in HPIDB 
are not limited to human host. Although the majority of data is for human (22386 PPIs), 
HPIDB also contains host-pathogen PPIs for mouse (147 PPIs), A. thaliana (99 PPIs), rat (53 
PPIs), cattle (30 PPIs), and chicken (19 PPIs).  
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A few repositories collect genes which are involved in host-pathogen interactions, but do 
not contain data on physical protein interactions. PHIDIAS is a centralized respiratory for 
host-pathogen interactions. It collects information for 98 pathogens of two hosts, human, 
and mouse (Xiang et al., 2007). PHI-Base contains information for 405 fungal, oomycete, and 
bacterial genes which participate in pathogenicity, virulence, and induction of disease 
resistance (Baldwin et al., 2006; Winnenburg et al., 2006). 176 of these genes are from animal 
pathogens, 227 from plant pathogens, and 3 from pathogens of fungi. PathoPlant contains 
A. thaliana genes which are responsible in the defense against pathogens (Bulow et al., 2007).  

5. Identification of drug targets within human-pathogen interactions network 
The evolutionary history of human has never been parted with pathogens. Viruses, bacteria, 
fungi, and nematodes all play critical roles in shaping the human race. Recent advances in 
metagenomics and human microbiomes suggest that commensal microorganisms have 
significant influences to the metabolism, immune systems, general wellbeing, and even 
behaviour patterns of animal hosts.  
Despite enormous efforts in preventing, diagnosing, and treating infectious diseases, 
pathogens still cause insurmountable burden and social-economical impacts to human. The 
developments of vaccines and drugs have helped to diminish several devastating diseases; 
however, emerging diseases caused by novel or previously unknown pathogens 
continuously lead to unexpected outbreaks. To account for current and future threats 
imposed by pathogens, it is necessary to understand human-pathogen interactions at the 
molecular level. Viruses require host factors for recognition, entrance, replication, and 
release. Their gene products form dense interaction networks with host proteins. Most 
bacteria, fungi, and nematodes, on the other hand, proliferate outside of human cells and 
interact with host cells with extracellular signals and receptors. The following sections of 
this chapter review previous works on high-throughput characterization of human-
pathogen interactions interactions, mostly between human and viruses. Most works have 
focused on human-virus interactions. 

5.1 Human-virus interactions 
High-throughput characterization of intra-species interactions has been the focus of early 
day PPI studies. Inter-species interactions still constitute a minor part of most interactome 
databases. Beginning from 2007, several works on high-throughput human-virus 
interactions and host factor characterization have been published, including the ones for 
Epstein-Barr virus (EBV), hepatitis C virus (HCV), and influenza virus. Among these sparse 
inter-species interactions, those between human immunodeficiency virus 1 (HIV-1) and 
human are most abundant due to the research efforts devoted to this notorious virus. These 
datasets are summarized in Table 4. 
Among these datasets, the HIV-1 human protein interaction database is so far the most 
comprehensive in terms of recorded interaction number and annotations. The number of 
human-virus PPIs can be estimated based on the number of human-HIV PPIs, which 
presumably have not been fully exposed, and the number of human viruses. A severe 
under-estimated number of human viruses is 200 ~ 1 000 species, which can be deduced to 
at least 1 ~ 5 million human-virus PPIs yet to be discovered. Despite the small number of 
human-virus PPIs being detected or predicted,  this data is a start point to the research of the 
viral disease mechanisms and treatments. 
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Datasets No. of 
Interactions 

No. of 
Viral 
Strains 

No. of 
Viral 
Proteins 

No. of 
Human 
Proteins 

Sources 

Human 
Immunodeficien
cy Virus 1  
(HIV-1) 

5128 1 21 1433 (Pinney et al., 
2009) 

Epstein-Barr 
Virus 173 1 42 112 (Calderwood et 

al., 2007) 
Hepatitis C 
Virus 481 1 11 414 (de Chassey et 

al., 2008) 

Influenza Virus 400 1 10 246 (Konig et al., 
2010) 

NCBI 
Interactions 5370 39 86 1530 NCBI FTP Site1 

IntAct 689 50 124 308 (Aranda et al., 
2010) 

Table 4. Summary of human-virus interaction datasets 

5.2 HIV-1 interactions 
The HIV-1, Human Protein Interaction Database (Pinney et al., 2009) was compiled  
by National Institute of Allergy and Infectious Diseases (NIAID), and hosted by NCBI. 
Interaction data in this database was collected from published literatures. Unlike other 
interaction data, entries in this dataset were associated with detailed annotations, 
including PubMed ID list for references, short phrases describing the interactions,  
and texts excerpted from the source literature. Interactions in this database are not  
just revealed by conventional Y2H or immune-co-precipitation, but 70 interactions  
were annotated with details. For example, the statement “HIV retropepsin cleaves human 
actin” is supported by four publications and attached with descriptions of  
the HIV retropepsin and human actin. Occassionally, the texts from the source literatures 
would provide additional information. In the case of “HIV retropepsin cleaves human 
alpha-2-macroglobulin precursor”, the GeneRIF text states “the cleavage site of alpha  
2-Macroglobulin by HIV-1 protease is the Phe684-Tyr685 bond”, which depicts  
the interaction (cleavage) site. Interaction types include cleavage, binding, 
regulation/modulation, and post-translational modifications.  
Analysis of this database found that there were 21 HIV gene products interacting with 1433 
human proteins. The top 10 HIV and human proteins which participate in most HIV-human 
interactions are listed in Table 5.  
By simply counting the numbers of PPIs in Table 5, critical host factors in HIV infections 
could be identified. The C-C chemokine receptor type 5 (CCR5) variants have been 
implicated in HIV-resistance and immunity (Blanpain et al., 2002). Stem cell-based gene 
therapy has successfully “cured” HIV with this genetic variant in early phase clinical trials 
(Symonds et al., 2010). Some host factors were also involved in various types of processes 
and diseases, such as tumour necrosis factor (TNF), which regulates cell proliferation, 
apoptosis, and has been implicated in cancer. 

                                                 
1 ftp://ftp.ncbi.nlm.nih.gov/gene/GeneRIF/interactions.gz 
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Top 10 HIV 
Proteins 

No. of 
Interactions 

 

Top 10 Human Proteins No. of 
Interactions 

Tat 1685 T-cell surface glycoprotein CD4 isoform 1 
precursor 177 

gp120 1252 C-X-C chemokine receptor type 4 isoform 
b 54 

Nef 496 Tumor necrosis factor 47 

Vpr 342 Nuclear factor NF-kappa-B p105 subunit 
isoform 1 41 

gp41 253 Nuclear factor NF-kappa-B p105 subunit 
isoform 1 41 

gp160 232 C-C chemokine receptor type 5 40 
Rev 139 Interferon gamma precursor 35 
Matrix 132 Mitogen-activated protein kinase 1 30 

Integrase 122 Major histocompatibility complex, class I, 
B precursor 30 

Retropepsin 98 Cyclin-dependent protein kinase 9 30 
Table 5. HIV and human proteins participate in largest numbers of human-HIV interactions. 

Table 5 also suggests that Tat could be a potential drug target. The crystal structure of Tat 
which forms complex with cyclin-denpendent protein kinase 9 (CDK9) and cyclin T1 has 
been solved (Tahirov et al., 2010). The complex structure (PDB ID: 3MI9) reveals that the 
most part of Tat has physical contact with cyclin T1 and has only a small loop contacting 
CDK9. The structural information provides valuable insights to the design of Tat inhibitors. 

5.3 Epstein-Barr virus interactions 
Epstein-Barr virus (EBV) infects human epithelial cells, and is implicated in various types of 
cancer, such as Burkitt’s lymphoma and nasopharyngeal carcinoma. The interactions within 
EBV proteins, and between EBV and human proteins, have been characterized using Y2H 
method (Calderwood et al., 2007). Overall, 43 EBV-EBV and 173 human-EBV interactions 
have been validated with experimental evidences. 
Network analysis reveals that most EBV-EBV interactions take place among conserved 
“core” proteins, thus these interactions may be responsible for the general 
infection/replication of herpesviruses. On the other hand, most human proteins targeted by 
EBV are proposed as “hub” proteins, which participate in more human-human interactions 
and may have crucial roles in the underlying biological processes. The EBV protein targeting 
most human proteins is BFLF2, with 21 interaction partners. BFLF2 interacts with BFRF1 
and changes cellular localization (Gonnella et al., 2005). Deletion of BFLF2 also impairs viral 
DNA packaging (Granato et al., 2008). The most targeted human proteins are HOMER3 and 
GRN. HOMER3, which binds to numerous receptors, is involved in diverse biological 
functions such as neuronal signalling and T-cell activation. Granulin (GRN) is a secreted 
glycosylated peptide which regulates cell growth and implicates in wound healing and 
tumorigenesis. BFLF2 interacts with both HOMER3 and GRN; however, the functional 
implications of interactions were not clear. 

5.4 Hepatitis C virus interactions 
Hepatitis C virus (HCV) is the pathogen which causes the chronic hepatitis infection. 
Infection with HCV may lead to cirrhosis and hepatocarcinoma if not properly treated with 
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1 ftp://ftp.ncbi.nlm.nih.gov/gene/GeneRIF/interactions.gz 
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“core” proteins, thus these interactions may be responsible for the general 
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and may have crucial roles in the underlying biological processes. The EBV protein targeting 
most human proteins is BFLF2, with 21 interaction partners. BFLF2 interacts with BFRF1 
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antiviral drugs or interferon. Unfortunately, current HCV treatments are expensive and can 
have severe adverse effects. The human-HCV interaction map would allow us to 
understand the mechanisms of HCV infection and its chronic nature.  
The human-HCV interaction network is constituted by 481 HCV-human interactions (de 
Chassey et al., 2008). Among these interactions, 314 were determined with Y2H 
experiments, and others were identified from literature reviews. The most connected HCV 
proteins include NS3, NS5A, and CORE. Human proteins targeted by most HCV proteins 
include nuclear receptor subfamily 4, group A, member 1 (NR4A1), homeobox D8 (HOXD8), 
and SET domain containing 2 (SETD2). NR4A1 is a nuclear transcription factor, which is 
highly expressed in adrenal cortex, lung, and prostate; however its expression level in liver 
is low. HOXD8 is important to development; its deletion leads to limb deformation. 
Expression level of HOXD8 is highest in kidney. SETD2 is a histone methyltransferase and 
also contains transcription activation domain. Recently, SETD2 has been found as a tumour 
suppressor gene (Duns et al., 2010). However, the roles of HCV-SETD2 interactions in 
tumorigenesis remain elusive. 
The analyses of EBV-human and HCV-human interaction networks found that viral proteins 
tend to interact with “hubs” in human protein-protein interaction networks. In human 
proteins targeted by HCV, three KEGG pathways were significantly enriched, including 
insulin signalling pathway, TGF signalling pathway, and Jak-STAT signalling pathway (de 
Chassey et al., 2008). Also, “focal adhesion” pathway has been identified as a novel pathway 
targeted by HCV. In our own analysis using bootstrap to estimate the statistical significance 
of HCV targeted gene numbers, we have also identified that “focal adhesion” and “ECM-
receptor interaction” pathways may be perturbed by HCV infection (Table 6). 
 

Path ID Title 
No. of 
genes in 
pathway

# of HCV 
targets 

Random 
(mean) 

Random 
(SD) Z-stat p-value 

5160 Hepatitis C 134 23 1.82 1.35 15.70 < 2.2 × 10-16 

5200 Pathways in 
cancer 328 31 4.60 2.20 12.02 < 2.2 × 10-16 

5212 Pancreatic 
cancer 71 12 0.99 0.95 11.54 < 2.2 × 10-16 

4510 Focal 
adhesion 202 22 2.80 1.68 11.42 < 2.2 × 10-16 

5222 Small cell 
lung cancer 84 13 1.19 1.08 10.98 < 2.2 × 10-16 

4520 Adherents 
junction 75 12 1.07 1.03 10.59 < 2.2 × 10-16 

4722 
Neurotrophin 
signaling 
pathway 

127 15 1.78 1.32 10.04 < 2.2 × 10-16 

5215 Prostate 
cancer 89 12 1.32 1.12 9.56 < 2.2 × 10-16 

4512 
ECM-
receptor 
interaction

84 11 1.16 1.05 9.35 < 2.2 × 10-16 

Table 6. Top 10 KEGG pathways potentially perturbed by HCV infection. 
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5.5 Influenza virus host factors 
Influenza A virus causes epidemics every now and then. The high transmission rate of 
influenza virus makes it one of the greatest threats to public health, especially when long 
diminished strains or emerging strains turned to the surface. The rapidly evolving virus 
makes it difficult to predict and prepare seasonal vaccines. Drug-resistant strains also 
challenge our ability to treat and control the disease. 
The identification of host factors required by influenza virus may contribute to the 
prevention and treatment of the virus. Host factors involved in early stage influenza virus 
replication have been characterized with genome-wide RNA interference (RNAi) screening 
(Konig et al., 2010). Unlike Y2H experiments, host factors identified with RNAi do not 
necessary interact with viral proteins directly. Nevertheless, these findings imply that viral 
diseases may be treated by regulating some of these host factors. One example is the 
inhibitor for the host factors, CAMK2B, which impedes viral growth and may be developed 
to new antiviral drugs. 

5.6 Human-bacteria interactions 
Bacteria cells can reproduce without the cellular machinery of hosts. Studies on human-
bacteria interactions thus have been focused on cellular-level interactions. So far,  
only limited efforts have been devoted to the identification of human-bacteria interactions 
at the molecular-level. The interactions between three pathogenic bacteria, Bacillus 
anthracis, Francisella tularensis, and Yersinia pestis, have been characterized using high-
throughput Y2H experiments (Dyer et al., 2010). The reported dataset includes 3,073, 
1,383, and 4,059 interactions between human or B. anthracis, F. tularensis or Y. pestis, 
respectively. 
The topology of these human-bacteria and human protein-protein interaction networks 
revealed that many bacteria proteins target “hubs” in human PPI networks. Specifically, 
several host defence pathways have been identified, including innate immunity and 
inflammation. Comparative analysis of the three human-pathogen interaction networks also 
confirmed these findings. Several methods have been used to identify the conserved protein 
interaction modules (CPIM), and found that these bacteria may have interfered host innate 
immune responses, including antigen binding and processing, and several immune 
response pathways. 
Analysis of these interactions faces some obstacles. Large proportions of the bacteria 
proteins (285/943, 66/349, 630/1,218 protiens for B. anthracis, F. tularensis, and Y. pestis, 
respectively) which interact with human proteins are putative, hypothetical, or 
uncharacterized. Without sufficient functional annotations, interpretations of these 
interactions can be superficial. Furthermore, bacterial proteins and human proteins were 
confined within the membrane of respective cells, and only certain types of proteins can be 
exported or internalized by host cells. Thus, the annotations or predictions of protein 
subcellular localization are important tasks for the interpretation and refinements of human-
bacteria interaction networks. 

5.7 Systematic analysis of host-pathogen interactions 
Human-pathogen interactions have been collected and analyzed for their network 
properties (Dyer et al., 2008). Pooling together human-pathogen interactions should enable 
identification of common targets and biological processes perturbed by pathogens. A total of 
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10477 interactions between human and the 190 pathogen strains have been collected from 
several public databases. Networks for human-bacteria and human-virus interactions have 
been constructed separately. Most of the interactions were human-virus interactions, 
notably human-HIV interactions.  
Special attention has been paid to human proteins which interact with multiple pathogen 
groups. Such proteins are believed to be the common targets of these pathogens, and may be 
the highlights of critical events during pathogen invasion. 
The analysis of human proteins targeted by multiple viral pathogens have revealed that 
viruses perturb host cells mainly through controlling cell cycle, regulating apoptosis, and 
transporting viral particles across membrane (Dyer et al., 2008). Human-bacteria 
interactions, on the other hand, perturb Gene Ontology processes like “immune system 
process” and “immune response”. It is notable that much of these perturbed pathways were 
linked to inflammatory and cancer, suggesting multiple roles of pathogens in various 
diseases. 
Another analysis on human-viral interaction network also highlighted the mechanisms of  
non-infectious diseases (Navratil et al., 2011). Totally 2,099 manually curated interactions of 
416 viral proteins from 110 species have been collected. This human-virus interaction 
network has been integrated with human PPI network. Disease gene annotations from 
OMIM have been evaluated for their associations with viral proteins. Links between virus 
and auto-immune diseases have been found, including type 1 diabetes. A comparison 
between human-virus interaction network and human type I interferon network also 
revealed that viruses attack host at multiple levels, from receptors to transcription factors 
(Navratil et al., 2010). 
We have also performed similar analysis with human-virus interactions collected from 
NCBI interactions2, IntAct (Aranda et al., 2009), and other sources. The association of KEGG 
(Kanehisa et al., 2010) disease pathways and human-virus interactions have been analyzed. 
Several KEGG pathways have been identified with high significance, including “systemic 
lupus erythematosus”, “pathways in cancer”, “chemokine signalling pathway”, “focal 
adhesion”, and “T cell receptor signalling pathway”. These findings are in par with studies 
described in previous sections; all pointing to pathogens gain their foothold in host cells 
through modulating host defence mechanisms. In the meantime, inflammation, 
autoimmune diseases and cancers may arise as results of these modulations. 

6. Conclusion 
At the present, the number of confident PPI data is scarce, especially for non-human 
organisms and inter-species interactions. The prediction of PPIs, as well as the evaluation of 
accuracy of detected and predicted PPIs, are important topics which require further 
advances in methodology, tools and data generation. It is believed that, in recent years, as 
the second generation sequencing (SGS) rapidly discloses full genome sequences and 
exponentially accumulates high-throughput expression data, more and more inter- and 
intra-species networks PPI will be constructed for, not only model organisms, but also crops, 
biofuel producing algae and bacteria, between host-pathogens, and between symbiotic 
organisms.  
                                                 
2 ftp://ftp.ncbi.nlm.nih.gov/gene/GeneRIF/interactions.gz 

 
The Prediction and Analysis of Inter- and Intra-Species Protein-Protein Interaction 

 

97 

7. References 
Anderson, G. A.; Tolic, N.; Tang, X.; Zheng, C. & Bruce, J. E. (2007). Informatics strategies for 

large-scale novel cross-linking analysis. J Proteome Res, Vol. 6, No. 9, pp. 3412-21 
Angenendt, P.; Kreutzberger, J.; Glokler, J. & Hoheisel, J. D. (2006). Generation of high 

density protein microarrays by cell-free in situ expression of unpurified pcr 
products. Mol Cell Proteomics, Vol. 5, No. 9, pp. 1658-66 

Aranda, B.Achuthan, P.Alam-Faruque, Y.Armean, I.Bridge, A.Derow, C.Feuermann, 
M.Ghanbarian, A. T.Kerrien, S.Khadake, J., et al. (2009). The intact molecular 
interaction database in 2010. Nucleic Acids Res, Vol. 38, No. Database issue, pp. 
D525-31 

Aranda, B.Achuthan, P.Alam-Faruque, Y.Armean, I.Bridge, A.Derow, C.Feuermann, 
M.Ghanbarian, A. T.Kerrien, S.Khadake, J., et al. (2010). The intact molecular 
interaction database in 2010. Nucleic Acids Res, Vol. 38, No. Database issue, pp. 
D525-31 

Aytuna, A. S.; Gursoy, A. & Keskin, O. (2005). Prediction of protein-protein interactions by 
combining structure and sequence conservation in protein interfaces. Bioinformatics, 
Vol. 21, No. 12, pp. 2850-5 

Baldwin, T. K.; Winnenburg, R.; Urban, M.; Rawlings, C.; Koehler, J. & Hammond-Kosack, 
K. E. (2006). The pathogen-host interactions database (phi-base) provides insights 
into generic and novel themes of pathogenicity. Mol Plant Microbe Interact, Vol. 19, 
No. 12, pp. 1451-62 

Berggard, T.; Linse, S. & James, P. (2007). Methods for the detection and analysis of protein-
protein interactions. Proteomics, Vol. 7, No. 16, pp. 2833-42 

Blanpain, C.; Libert, F.; Vassart, G. & Parmentier, M. (2002). Ccr5 and hiv infection. Receptors 
Channels, Vol. 8, No. 1, pp. 19-31 

Brandao, M. M.; Dantas, L. L. & Silva-Filho, M. C. (2009). Atpin: Arabidopsis thaliana 
protein interaction network. BMC Bioinformatics, Vol. 10, p 454 

Breitkreutz, B. J.Stark, C.Reguly, T.Boucher, L.Breitkreutz, A.Livstone, M.Oughtred, 
R.Lackner, D. H.Bahler, J.Wood, V., et al. (2008). The biogrid interaction database: 
2008 update. Nucleic Acids Res, Vol. 36, No. Database issue, pp. D637-40 

Bulow, L.; Schindler, M. & Hehl, R. (2007). Pathoplant: A platform for microarray expression 
data to analyze co-regulated genes involved in plant defense responses. Nucleic 
Acids Res, Vol. 35, No. Database issue, pp. D841-5 

Calderwood, M. A.Venkatesan, K.Xing, L.Chase, M. R.Vazquez, A.Holthaus, A. M.Ewence, 
A. E.Li, N.Hirozane-Kishikawa, T.Hill, D. E., et al. (2007). Epstein-barr virus and 
virus human protein interaction maps. Proc Natl Acad Sci U S A, Vol. 104, No. 18, 
pp. 7606-11 

Causier, B. & Davies, B. (2002). Analysing protein-protein interactions with the yeast two-
hybrid system. Plant Mol Biol, Vol. 50, No. 6, pp. 855-70 
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spectrometry. Mass Spectrom Rev, Vol. 23, No. 5, pp. 350-67 
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& Cesareni, G. (2010). Mint, the molecular interaction database: 2009 update. 
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10477 interactions between human and the 190 pathogen strains have been collected from 
several public databases. Networks for human-bacteria and human-virus interactions have 
been constructed separately. Most of the interactions were human-virus interactions, 
notably human-HIV interactions.  
Special attention has been paid to human proteins which interact with multiple pathogen 
groups. Such proteins are believed to be the common targets of these pathogens, and may be 
the highlights of critical events during pathogen invasion. 
The analysis of human proteins targeted by multiple viral pathogens have revealed that 
viruses perturb host cells mainly through controlling cell cycle, regulating apoptosis, and 
transporting viral particles across membrane (Dyer et al., 2008). Human-bacteria 
interactions, on the other hand, perturb Gene Ontology processes like “immune system 
process” and “immune response”. It is notable that much of these perturbed pathways were 
linked to inflammatory and cancer, suggesting multiple roles of pathogens in various 
diseases. 
Another analysis on human-viral interaction network also highlighted the mechanisms of  
non-infectious diseases (Navratil et al., 2011). Totally 2,099 manually curated interactions of 
416 viral proteins from 110 species have been collected. This human-virus interaction 
network has been integrated with human PPI network. Disease gene annotations from 
OMIM have been evaluated for their associations with viral proteins. Links between virus 
and auto-immune diseases have been found, including type 1 diabetes. A comparison 
between human-virus interaction network and human type I interferon network also 
revealed that viruses attack host at multiple levels, from receptors to transcription factors 
(Navratil et al., 2010). 
We have also performed similar analysis with human-virus interactions collected from 
NCBI interactions2, IntAct (Aranda et al., 2009), and other sources. The association of KEGG 
(Kanehisa et al., 2010) disease pathways and human-virus interactions have been analyzed. 
Several KEGG pathways have been identified with high significance, including “systemic 
lupus erythematosus”, “pathways in cancer”, “chemokine signalling pathway”, “focal 
adhesion”, and “T cell receptor signalling pathway”. These findings are in par with studies 
described in previous sections; all pointing to pathogens gain their foothold in host cells 
through modulating host defence mechanisms. In the meantime, inflammation, 
autoimmune diseases and cancers may arise as results of these modulations. 

6. Conclusion 
At the present, the number of confident PPI data is scarce, especially for non-human 
organisms and inter-species interactions. The prediction of PPIs, as well as the evaluation of 
accuracy of detected and predicted PPIs, are important topics which require further 
advances in methodology, tools and data generation. It is believed that, in recent years, as 
the second generation sequencing (SGS) rapidly discloses full genome sequences and 
exponentially accumulates high-throughput expression data, more and more inter- and 
intra-species networks PPI will be constructed for, not only model organisms, but also crops, 
biofuel producing algae and bacteria, between host-pathogens, and between symbiotic 
organisms.  
                                                 
2 ftp://ftp.ncbi.nlm.nih.gov/gene/GeneRIF/interactions.gz 
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1. Introduction 
The last several decades have witnessed rapid progresses in identification and functional 
analysis of post-translational modifications (PTMs) in proteins. Through temporal and spatial 
modification of proteins by covalent attachment of additional chemical groups and other small 
proteins, proteolytic cleavage or intein splicing, PTMs greatly expand the proteome diversity 
and play important roles in regulating the stability and functions of the proteins (Mann and 
Jensen, 2003; Walsh, 2005; Walsh and Jefferis, 2006). To date, more than 350 types of distinct 
PTMs were experimentally discovered in vivo, while subsequently functional assays have 
detected a number of exciting observations. In 1992, the Nobel Prize in Physiology or Medicine 
was awarded to Edmond H. Fischer and Edwin G. Krebs for their seminal discovery that 
reversible protein phosphorylation is a biological regulatory mechanism (Kresge et al., 2011), 
while Leland H. Hartwell, Tim Hunt, and Paul M. Nurse shared the Nobel Prize in Physiology 
or Medicine 2001 for their profound contributions in identification of key regulators including 
cyclin-dependent kinases (CDKs) and cyclins that precisely orchestrate the cell cycle process 
through phosphorylation (Balter and Vogel, 2001). Moreover, Aaron Ciechanover, Avram 
Hershko and Irwin Rose became laureates of the Nobel Prize in Chemistry 2004 for their 
discovery of ubiquitin-mediated protein degradation (Vogel, 2004).  
Although virtually all PTMs play their major roles as regulating the biological processes, 
different ones have their aspects with emphasis. For example, phosphorylation is 
preferentially implicated in signal-transduction cascades, while ubiquitination regulates the 
lifetime of proteins by targeting specific substrates for degradation. Recently, protein lysine 
acetylation was observed to play a predominant role in regulation of cellular metabolism 
(Wang et al., 2010; Zhao et al., 2010). Other types of PTMs such as sumoylation, 
glycosylation and palmitoylation are also critical for exactly orchestrating distinct cellular 
processes (Fukata and Fukata, 2010; Linder and Deschenes, 2007). Furthermore, the crosstalk 
among different PTMs is ubiquitous, especially on histones, which is regarded as the 
“histone code” (Jenuwein and Allis, 2001). The aberrances of PTMs are highly associated in 
diseases and cancers, while a variety of regulatory enzymes involved in PTMs have been 
drug targets (Lahiry et al., 2010; Norvell and McMahon, 2010). In this regard, elucidation of 
PTMs regulatory roles is fundamental for understanding molecular mechanisms of diseases 
and cancers, and further biomedical design. 
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Recently, with the developments of “state-of-the-art” techniques especially the high-
throughput mass spectrometry (HTP-MS), large-scale identification of PTMs substrates with 
their sites has become a popular and near-routine assay (Choudhary and Mann, 2010). For 
example, combined with efficient isolation and enrichment methods such as antibodies which 
specifically recognize modified peptides and subsequently HTP-MS profiling, thousands of 
PTMs sites, eg., phosphorylation (Olsen et al., 2006; Villen et al., 2007), acetylation (Choudhary 
et al., 2009), or glycosylation (Zielinska et al., 2010) sites can be accurately determined in a 
single experiment. These high-throughout approaches can provide systematic insights into the 
biological roles of PTMs, especially a global view. However, due to the technical limitations 
such as low-sensitive detection of modifications in low expressed proteins (Ackermann and 
Berna, 2007; Boschetti and Righetti, 2009; Yates et al., 2009), and error-prone determination of 
multiple modified proteins (Hunter, 2007; Young et al., 2010), it is still a great challenge for 
fully charactering the whole PTM events in vivo. 
In contrast with conventional experimental methods, computational analysis of PTMs has 
also been an alternative and attractive approach for its accuracy, fast-speed and 
convenience. The computational predictors can narrow down the number of potentially 
candidates and rapidly generate useful information for further experimental investigations. 
In one of our recent reviews, we specifically summarized more than 50 computational 
resources including public databases and prediction tools for phosphorylation (Xue et al., 
2010a). Currently, although there have been ~170 databases and computational tools 
developed for PTM analysis (http://www.biocuckoo.org/link.php), accurate prediction of 
PTM sites in given proteins is still not a simple job. Again, although protein 3D structure 
information can be helpful for prediction of PTMs sites (Kumar and Mohanty, 2010), 
mainstream computational approaches were designed mainly based on protein primary 
sequence features (Xue et al., 2010a). A variety of algorithms have been introduced into this 
field, such as position-specific scoring matrix (PSSM) (Obenauer et al., 2003), support vector 
machines (SVMs) (Kim et al., 2004), artificial neural network (ANN) (Blom et al., 2004), 
Hidden Markov Model (HMM) (Huang et al., 2005), Bayesian decision theory (Xue et al., 
2006a), and Conditional Random Field (CRF) (Dang et al., 2008). These methods were 
largely introduced from the fields of informatics or statistics and originally designed for 
general propose. 
Previously, we developed a series of GPS algorithms (Initially defined as Group-based 
Phosphorylation Scoring and later renamed as Group-based Prediction System), which have 
been exclusively and successfully used for the prediction of kinds of PTM sites, such as 
phosphorylation (Xue et al., 2005; Xue et al., 2008; Xue et al., 2011; Zhou et al., 2004), 
sumoylation (Ren et al., 2009; Xue et al., 2006b), palmitoylation (Ren et al., 2008; Zhou et al., 
2006a), S-Nitrosylation (Xue et al., 2010b) and nitration (Liu et al., 2011). The prediction 
performance of GPS 1.x (1.0 and 1.1) could be comparative to other analogous approaches, 
while GPS 2.x versions (2.0 and 2.1) are much better than other strategies (Xue et al., 2010a). 
Recently, we greatly improved our previous method and released the GPS 3.0 algorithm, 
while has been successfully adopted for predicting S-nitrosylation (Xue et al., 2010b) and 
nitration sites (Liu et al., 2011), with further enhanced performances. During the past several 
years, a considerable number of bioinformatists or experimentalists have communicated 
with us on GPS algorithm details, which were never thoroughly described in our previously 
research articles due to page limitation. In this regard, the aim of this chapter is to provide a 
comprehensive description of GPS series algorithms. First, we gave a historical introduction 
of GPS 1.x, GPS 2.x and the latest GPS 3.0 algorithms. Also, we used palmitoylation as an 
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application to design a site-specific predictor of CSS-Palm 3.0 with GPS 3.0. The procedures 
of benchmark data preparation, scoring strategies, performance evaluation and comparison, 
and software package implementation were clearly described. The online service and local 
packages of CSS-Palm 3.0 are freely available at: http://csspalm.biocuckoo.org/. For 
convenience, the computational tools developed in GPS series algorithms were summarized 
in Table 1.  
 

Name PTM type Website Link Reference 

GPS 1.0 & 1.1 Phosphorylation http://gps.biocuckoo.org/1.1/ Xue et al., 2005;  
Zhou et al., 2004 

CSS-Palm 1.0 Palmitoylation http://csspalm.biocuckoo.org/1.0/ Zhou et al., 2006a 
SUMOsp 1.0 Sumoylation http://sumosp.biocuckoo.org/1.0/ Xue et al., 2006b 

GPS 2.0 & 2.1 Phosphorylation http://gps.biocuckoo.org/ Xue et al., 2008; 
Xue et al., 2011 

CSS-Palm 2.0 Palmitoylation http://csspalm.biocuckoo.org/ Ren et al., 2008 
SUMOsp 2.0 Sumoylation http://sumosp.biocuckoo.org/ Ren et al., 2009 
GPS-SNO 1.0 S-Nitrosylation http://sno.biocuckoo.org/ Xue et al., 2010b 

GPS-YNO2 1.0 nitration http://yno2.biocuckoo.org/ Liu et al., 2011 
Table 1. The computational tools constructed with GPS series algorithms. 

2. GPS series algorithms 
In this section, we described the theoretical basis and developmental history of GPS series 
algorithms. The chief hypothesis of the algorithm is established on consensus experimental 
observations that if two short peptides share high sequence homology, they may exhibit 
similar 3D structures and biochemical properties. This hypothesis is widely adopted by 
conventional experimentalists, who usually compare a given protein to homologous 
modified proteins by sequence alignment. If a conserved peptide is observed around 
aligned modified residue, they may obtain confidence that the peptide in the given protein 
can also be modified. We borrowed this hypothesis and implemented it into an automatic 
algorithm. First, we used the amino acid substitution matrix BLOSUM62 to evaluate the 
similarity between two phosphorylation site peptides PSP(m, n) with m residues upstream and 
n residues downstream flanking the phosphorylated site, while m and n were arbitrarily 
determined as 3 for phosphorylation site peptide (Xue et al., 2005; Zhou et al., 2004). In GPS 
(Group-based Phosphorylation Scoring) 1.0 and 1.1, we clustered the phosphorylated 
peptides with Markov cluster algorithm (MCL for short) with an additional hypothesis of 
that one protein kinase (PK) can recognize more than one motif in substrates (Xue et al., 
2005; Zhou et al., 2004). Later, based on the observation of different matrix generating 
different performance, we developed the matrix mutation (MaM) approach for the 
performance improvement in GPS 2.0, which was refined as Group-based Prediction System 
(Xue et al., 2008). In GPS 2.0, the MCL clustering was discarded for its low efficiency while 
the informative peptide was selected as PSP(7, 7) (Xue et al., 2008). For the prediction of 
sumoylation (Ren et al., 2009) and palmitoylation sites (Ren et al., 2008), we testingly 
classified modification sites based on known linear motifs together with GPS 2.0 algorithm, 
and achieved increased performances. Later, we improved the algorithm to version 2.1 for 
the prediction of phosphorylation sites with a additional motif length selection method 
(MLS) (Xue et al., 2011). Recently, with two additional approaches of k-means clustering and 
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weight training (WT), we further designed GPS 3.0 algorithm for the prediction of S-
nitrosylation (Xue et al., 2010b) and nitration sites (Liu et al., 2011). The details of GPS series 
algorithms were described below. 

2.1 GPS 1.x algorithms 
The GPS 1.x algorithms include two versions of GPS 1.0 and GPS 1.1. In 2004, we initially 
designed the GPS 1.0 algorithm for the prediction of kinase-specific phosphorylation sites, 
while the full name of GPS was “Group-based Phosphorylation Scoring” (Zhou et al., 2004). 
From public databases and literature curation, we collected 2,001 experimentally identified 
phosphorylation sites with their cognate PKs (Zhou et al., 2004). Since similar PKs can 
modify similar sequences in the substrates, we clustered the available PKs into 52 PK groups 
according to the BLAST results and Swiss-Prot/TrEMBL annotations. Then the known 
phosphorylation sites were classified into one of multiple of the 52 PK groups based on their 
regulatory PK information (Zhou et al., 2004). Based on the hypothesis of similar short 
peptides bearing similar biological properties, we designed a simple scoring strategy. Given 
a phosphorylation site peptide PSP(m, n) as a serine (S), threonine (T) or tyrosine (Y) amino acid 
flanked by m residues upstream and n residues downstream, we employed the amino acid 
substitution matrix BLOSUM62 to evaluate the similarity of peptides. In GPS 1.0 (Zhou et 
al., 2004), the m and n were arbitrarily chosen as 3. For two PSP(m, n), we scored the 
similarity of two PSP(m, n) as:  

 ( , ) ( [ ], [ ])
m i n

S A B Score A i B i
  

   (1) 

Score(A[i], B[i]) represents the substitution score of the two amino acid of A[i] and B[i] in 
BLOSUM62. If S(A, B)<0, we simply redefined it as S(A, B)=0. With an additional hypothesis 
that one PK can recognize multiple motifs, we automatically clustered the phosphorylation site 
peptides into more than one groups with Markov cluster algorithm (MCL for short). Thus, 
given any peptide for the prediction of kinase-specific phosphorylation sites, we calculated the 
average score between the peptide and the experimentally identified phosphorylated site 
peptides in each cluster, while the maximum score among the clusters was decided as the final 
score. The prediction performance can be comparative with other tools such as Scansite 
(Obenauer et al., 2003). Later, we slightly refined the algorithm and released GPS 1.1 version, 
which can predict phosphorylation sites for 216 unique kinases in 71 kinase groups (Xue et al., 
2005). Again, the m and n in GPS 1.1 were still selected as 3. The only improvement in GPS 1.1 
is that the classification of PKs is better than GPS 1.0 (Xue et al., 2005).  
Furthermore, we applied the GPS 1.x algorithm to predict a variety of PTMs such as 
sumoylation and palmitoylation, with additional refinement if necessary (Xue et al., 2006b; 
Zhou et al., 2006a). For the prediction of sumoylation sites in SUMOsp 1.0 (Xue et al., 2006b), 
both GPS 1.x and Motif-X algorithms (Schwartz and Gygi, 2005) were employed because a 
large proportion of sumoylation sites follow a consensus motif ψ-K-X-E (ψ is a hydrophobic 
amino acid) or ψ-K-X-E/D (Johnson, 2004). Thus, all known sumoylation sites were 
classified into two groups with consensus and non-consensus. A given peptide will be 
compared to known sumoylation sites of both two groups by calculating the average 
similarity scores, respectively. The maximum score was decided as the final score. And if the 
score is higher than a pre-determined threshold, the peptide will be predicted as potential 
sumoylation site (Xue et al., 2006b). In SUMOsp 1.0, the sumoylation site peptide for the 
prediction was arbitrarily selected as SSP(7, 7). For the prediction of palmitoylation sites in 
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CSS-Palm 1.0 (Zhou et al., 2006a), the palmitoylation site peptide was casually chosen as 
PSP(7, 7). Because no common canonical consensus sequence/motif for palmitoylation was 
reported, we developed a BLOSUM62-based Clustering method (BBC) based on the graph 
theory, and classified all known palmitoylation sites into three clusters (Zhou et al., 2006a).  

2.2 GPS 2.x algorithms 
The GPS 1.x algorithms were too preliminary, while a variety of issues were not addressed. 
By personal communications, several researchers asked us a number of questions. For 
example, why we arbitrarily chose BLOSUM62 rather than other amino acid substitution 
matrices? Why we classified the PKs based on BLAST searching rather than using pre-
established classification information? Why we selected PSP(3, 3) or PSP(7, 7)? The aim of 
GPS 2.x algorithms was to resolve these problems.   
To evaluate the prediction performance and robustness of a predictor, we usually 
preformed the self-consistency validation, the leave-one-out validation (LOO) and n-fold 
cross-validations. The self-consistency validation used the training positive data (+) and 
negative data (-) directly to evaluate the prediction performance, and represented the 
computational power of the prediction system. However, the prediction system might be 
overtrained and only perfect for the training data set, with low prediction ability for new 
data. In this regard, the LOO validation and n-fold cross-validations should be performed to 
evaluate the robustness and the stability on an independent data set. In the LOO validation, 
each site in the data set was picked out in turn as an independent test sample, and all the 
remaining sites were regarded as training data. This process was repeated until each site 
was used as test data one time. In n-fold cross-validations, all the (+) sites and (-) sites were 
combined and then divided equally into n parts, keeping the same distribution of (+) and (-) 
sites in each part. Then n-1 parts were merged into a training data set while the remnant 
part was taken as a testing data set. This process was repeated 20 times and the average 
performance of n-fold cross-validations was used to estimate the performance. In our 
previous study, when the training data set is large enough (number of positive sites ≥ 30), 
the results of n-fold cross-validations are similar with the LOO result. In this regard, we 
merely used the LOO validation to evaluate the robustness and stability.  
In GPS 1.x algorithms, the amino acid substitution matrix was arbitrarily chosen as 
BLOSUM62, while performances of other matrices were not evaluated. For the sake of better 
performance, we tested other matrices such as BLOSUM30, 45, 62, 90 and PAM10, 90, 250, 
500, and found different matrices could generate various performances (Xue et al., 2008). For 
example, PAM10-based scoring can easily generate a perfect self-consistency result with 
sensitivity (Sn) of 100% and specificity (Sp) of 100%, while the LOO result is very poor that 
denotes the prediction model is highly over-fitting and unstable. In this regard, a key 
challenge is that whether we can obtain an optimal or near-optimal matrix with the highest 
LOO values. To address this issue, we developed GPS 2.0 algorithm with an additional 
approach of matrix mutation (MaM) (Xue et al., 2008). First BLOSUM62 matrix was chosen 
as the initial matrix. The performance (Sn and Sp) of LOO validation was calculated. For the 
prediction of kinase-specific phosphorylation sites, we fixed Sp at 90% to improve Sn by 
randomly picking out an element of the matrix for +1 or -1. The procedure was terminated 
when the Sn value was not increased any further. Although matrix mutation in other types 
was also valid, the MaM strategy can improve the LOO result significantly, whereas the self-
consistency was only influenced moderately. Thus, such a procedure made the predictor 
more robust and stable. By comparison, the GPS 2.0 exhibited superior performance against 
other analogous tools (Xue et al., 2008). 
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weight training (WT), we further designed GPS 3.0 algorithm for the prediction of S-
nitrosylation (Xue et al., 2010b) and nitration sites (Liu et al., 2011). The details of GPS series 
algorithms were described below. 

2.1 GPS 1.x algorithms 
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according to the BLAST results and Swiss-Prot/TrEMBL annotations. Then the known 
phosphorylation sites were classified into one of multiple of the 52 PK groups based on their 
regulatory PK information (Zhou et al., 2004). Based on the hypothesis of similar short 
peptides bearing similar biological properties, we designed a simple scoring strategy. Given 
a phosphorylation site peptide PSP(m, n) as a serine (S), threonine (T) or tyrosine (Y) amino acid 
flanked by m residues upstream and n residues downstream, we employed the amino acid 
substitution matrix BLOSUM62 to evaluate the similarity of peptides. In GPS 1.0 (Zhou et 
al., 2004), the m and n were arbitrarily chosen as 3. For two PSP(m, n), we scored the 
similarity of two PSP(m, n) as:  

 ( , ) ( [ ], [ ])
m i n

S A B Score A i B i
  

   (1) 

Score(A[i], B[i]) represents the substitution score of the two amino acid of A[i] and B[i] in 
BLOSUM62. If S(A, B)<0, we simply redefined it as S(A, B)=0. With an additional hypothesis 
that one PK can recognize multiple motifs, we automatically clustered the phosphorylation site 
peptides into more than one groups with Markov cluster algorithm (MCL for short). Thus, 
given any peptide for the prediction of kinase-specific phosphorylation sites, we calculated the 
average score between the peptide and the experimentally identified phosphorylated site 
peptides in each cluster, while the maximum score among the clusters was decided as the final 
score. The prediction performance can be comparative with other tools such as Scansite 
(Obenauer et al., 2003). Later, we slightly refined the algorithm and released GPS 1.1 version, 
which can predict phosphorylation sites for 216 unique kinases in 71 kinase groups (Xue et al., 
2005). Again, the m and n in GPS 1.1 were still selected as 3. The only improvement in GPS 1.1 
is that the classification of PKs is better than GPS 1.0 (Xue et al., 2005).  
Furthermore, we applied the GPS 1.x algorithm to predict a variety of PTMs such as 
sumoylation and palmitoylation, with additional refinement if necessary (Xue et al., 2006b; 
Zhou et al., 2006a). For the prediction of sumoylation sites in SUMOsp 1.0 (Xue et al., 2006b), 
both GPS 1.x and Motif-X algorithms (Schwartz and Gygi, 2005) were employed because a 
large proportion of sumoylation sites follow a consensus motif ψ-K-X-E (ψ is a hydrophobic 
amino acid) or ψ-K-X-E/D (Johnson, 2004). Thus, all known sumoylation sites were 
classified into two groups with consensus and non-consensus. A given peptide will be 
compared to known sumoylation sites of both two groups by calculating the average 
similarity scores, respectively. The maximum score was decided as the final score. And if the 
score is higher than a pre-determined threshold, the peptide will be predicted as potential 
sumoylation site (Xue et al., 2006b). In SUMOsp 1.0, the sumoylation site peptide for the 
prediction was arbitrarily selected as SSP(7, 7). For the prediction of palmitoylation sites in 
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CSS-Palm 1.0 (Zhou et al., 2006a), the palmitoylation site peptide was casually chosen as 
PSP(7, 7). Because no common canonical consensus sequence/motif for palmitoylation was 
reported, we developed a BLOSUM62-based Clustering method (BBC) based on the graph 
theory, and classified all known palmitoylation sites into three clusters (Zhou et al., 2006a).  

2.2 GPS 2.x algorithms 
The GPS 1.x algorithms were too preliminary, while a variety of issues were not addressed. 
By personal communications, several researchers asked us a number of questions. For 
example, why we arbitrarily chose BLOSUM62 rather than other amino acid substitution 
matrices? Why we classified the PKs based on BLAST searching rather than using pre-
established classification information? Why we selected PSP(3, 3) or PSP(7, 7)? The aim of 
GPS 2.x algorithms was to resolve these problems.   
To evaluate the prediction performance and robustness of a predictor, we usually 
preformed the self-consistency validation, the leave-one-out validation (LOO) and n-fold 
cross-validations. The self-consistency validation used the training positive data (+) and 
negative data (-) directly to evaluate the prediction performance, and represented the 
computational power of the prediction system. However, the prediction system might be 
overtrained and only perfect for the training data set, with low prediction ability for new 
data. In this regard, the LOO validation and n-fold cross-validations should be performed to 
evaluate the robustness and the stability on an independent data set. In the LOO validation, 
each site in the data set was picked out in turn as an independent test sample, and all the 
remaining sites were regarded as training data. This process was repeated until each site 
was used as test data one time. In n-fold cross-validations, all the (+) sites and (-) sites were 
combined and then divided equally into n parts, keeping the same distribution of (+) and (-) 
sites in each part. Then n-1 parts were merged into a training data set while the remnant 
part was taken as a testing data set. This process was repeated 20 times and the average 
performance of n-fold cross-validations was used to estimate the performance. In our 
previous study, when the training data set is large enough (number of positive sites ≥ 30), 
the results of n-fold cross-validations are similar with the LOO result. In this regard, we 
merely used the LOO validation to evaluate the robustness and stability.  
In GPS 1.x algorithms, the amino acid substitution matrix was arbitrarily chosen as 
BLOSUM62, while performances of other matrices were not evaluated. For the sake of better 
performance, we tested other matrices such as BLOSUM30, 45, 62, 90 and PAM10, 90, 250, 
500, and found different matrices could generate various performances (Xue et al., 2008). For 
example, PAM10-based scoring can easily generate a perfect self-consistency result with 
sensitivity (Sn) of 100% and specificity (Sp) of 100%, while the LOO result is very poor that 
denotes the prediction model is highly over-fitting and unstable. In this regard, a key 
challenge is that whether we can obtain an optimal or near-optimal matrix with the highest 
LOO values. To address this issue, we developed GPS 2.0 algorithm with an additional 
approach of matrix mutation (MaM) (Xue et al., 2008). First BLOSUM62 matrix was chosen 
as the initial matrix. The performance (Sn and Sp) of LOO validation was calculated. For the 
prediction of kinase-specific phosphorylation sites, we fixed Sp at 90% to improve Sn by 
randomly picking out an element of the matrix for +1 or -1. The procedure was terminated 
when the Sn value was not increased any further. Although matrix mutation in other types 
was also valid, the MaM strategy can improve the LOO result significantly, whereas the self-
consistency was only influenced moderately. Thus, such a procedure made the predictor 
more robust and stable. By comparison, the GPS 2.0 exhibited superior performance against 
other analogous tools (Xue et al., 2008). 
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In GPS 1.x algorithms, numerous PKs were casually classified into several groups simply 
based on sequence comparison by BLAST, based on the hypothesis that PKs in a same 
group/subfamily will recognize similar sequence patterns of substrates for modification 
(Xue et al., 2005; Zhou et al., 2004). Because the kinomes of several eukaryotic organisms 
have been comprehensively identified, phylogenetically analyzed, and classified into a 
hierarchical structure, including group, family, subfamily, and single PK (Caenepeel et al., 
2004; Manning et al., 2002), and because most of the phosphorylation sites in the public 
database have been experimentally verified in mammals (~97.6%), we adopted the well 
established rule for human PK classification (Xue et al., 2008) in GPS 2.0 to cluster various 
PKs with their verified sites into a hierarchical structure with four levels, including group, 
family, subfamily, and single PK. The PK groups with less than three sites were singled out 
(Xue et al., 2008). The training data could be reused several times and included in different 
PK clusters based on their known PK information. GPS 2.0 can predict kinase-specific 
phosphorylation sites for 408 human PKs in hierarchy. 
In GPS 2.0, the PSP(7, 7) was arbitrarily determined (Xue et al., 2008). Later, we carefully 
studied how different combinations of PSP(m, n) influenced prediction performance and 
robustness (Xue et al., 2011). The self-consistency validation and LOO validation were 
thoroughly carried out for each PK group. We observed that the self-consistency results 
will be always increased with longer PSP(m, n). However, when the phosphorylated 
peptide was elongated, the LOO results will first reach a peak value then decrease. In this 
regard, we developed GPS 2.1 algorithm with an additional approach of motif length 
selection (MLS) (Xue et al., 2011), which could automatically detect the optimal length of 
PSP(m, n) with the highest LOO performance. We exhaustively tested all combinations  
of PSP(m, n) (m = 1,…, 15; n = 1, . . ., 15). The Sn values were calculated under the Sp of 85, 
90 and 95%. Then the average Sn was calculated as the final Sn value. By comparing  
to GPS 2.0 software (Xue et al., 2008), the average Sn of the LOO was significantly 
increased by 15.62%, whereas the average Sn value of the self-consistency was slightly 
reduced by 2.28%. The Sp score was fixed at 90% for comparison. In this regard, the MLS 
method could efficiently narrow down the difference between the LOO validation and 
self-consistency validation to improve the robustness of prediction system (Xue et al., 
2011). 
The GPS 2.1 algorithm was also adopted for the prediction of sumoylation and palmitoylation 
sites, with additional improvements (Ren et al., 2009; Ren et al., 2008). The experimentally 
identified sumoylation sites were classified into two types including Type I (consensus) and 
Type II (non-consensus) sites in SUMOsp 2.0 (Ren et al., 2009). Type I sites followed the ψKXE 
(ψ is A, I, L, M, P, F, or V and X is any amino acid residue) motif, while Type II sites contained 
other non-canonical sites. Also, we clustered known palmitoylation sites in CSS-Palm 2.0 into 
three groups, including Type I (sites follow a –CC– motif, C is a cysteine residue), Type II (sites 
follow a –CXXC– motif, C is a cysteine residue and X is a random residue) and Type III (other 
sites) group (Ren et al., 2008). In SUMOsp 1.0 and CSS-Palm 1.0, the threshold is the same for 
different clusters. However, for SUMOsp 2.0 and CSS-Palm 2.0, we set different threshold for 
each group, separately. The prediction performance of GPS 2.x is much better than GPS 1.x 
(Ren et al., 2009; Ren et al., 2008; Xue et al., 2008).  

2.3 GPS 3.0 algorithm 
Although GPS 1.x and 2.x algorithms were successfully applied in the prediction of 
phosphorylation, sumoylation and palmitoylation sites, they exhibited poor performance for 
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other PTMs, such as S-nitrosylation (Xue et al., 2010b) and nitration sites (Liu et al., 2011). 
Thus, the GPS algorithm still need further improvements.  
We hypothesized that one type of PTM can recognize multiple sequence patterns/motifs. If 
this hypothesis is correct, the prediction performance can be enhanced by clustering known 
PTM sites into multiple groups. In GPS 1.x, the MCL algorithm was adopted to 
automatically classify the known phosphorylation site peptides into multiple clusters if 
available. However, only eight PK groups obtained more than one cluster (Xue et al., 2005; 
Zhou et al., 2004). In CSS-Palm 1.0, we adopted a graph-based BBC method for clustering 
known palmitoylation sites, but it can not significantly improve performance for other types 
of PTMs (unpublished). In this regard, the clustering strategy was dropped for its low 
efficiency in GPS 2.0 for the prediction of phosphorylation sites (Xue et al., 2008). For the 
prediction of sumoylation (SUMOsp 2.0) and palmitoylation (CSS-Palm 2.0) sites, we 
clustered known sumoylation and palmitoylation into two and three groups based on 
reported motifs, although the palmitoylation motifs are much weak (Ren et al., 2009; Ren et 
al., 2008). However, for S-nitrosylation and nitration sites, even very weak motifs are not 
available (Liu et al., 2011; Xue et al., 2010b). In this regard, an interesting question is how to 
classify PTM sites without any obvious motifs? To address this problem, we developed GPS 
3.0 algorithm with an additional k-mean clustering method (Liu et al., 2011; Xue et al., 
2010b), which was extensively used in a variety of aspects (Herwig et al., 1999; Yoon et al., 
2007). With the algorithm, we successfully classified 504 experimentally identified S-
nitrosylation into 3 groups in GPS-SNO 1.0 (Xue et al., 2010b), while the 1,066 known 
nitration sites were clustered into 5 groups in GPS-YNO2 1.0 (Liu et al., 2011).  
Again, in GPS 1.x and GPS 2.x, the contribution of each residue for substrate recognition by 
enzymes was regarded as equal. However, there were various amino acid preferences in the 
residues around the phosphorylation sites for different PKs (Schwartz and Gygi, 2005). For 
example, the substrates of CDKs follow a pS-P-X-K motif (pS is the phosphorylated serine), 
which indicates that the adjacent proline is critical for the CDK-specific phosphorylation 
(Schwartz and Gygi, 2005). Furthermore, the glutamine residue adjacent to the 
serine/threonine (S/T-Q) was found to be important for ATM (ataxia telangiectasia 
mutated)/ATR (ATM and Rad3-related) recognition (Matsuoka et al., 2007). In this regard, 
the different contributions of distinct positions around the PTM sites should be considered 
and included in the computational model. In this regard, an additional approach of weight 
training (WT) was added in GPS 3.0 algorithm. We optimized the weight of each position in 
the PTM site peptide PSP(m, n) for every cluster according to the leave-one-out performance 
(Liu et al., 2011; Xue et al., 2010b).  
Together with MaM and MLS approaches, we determined the order of training processes to 
be: k-means clustering, MLS, WT and MaM. By exhaustively testing, it was found that this 
training order cannot be changed (Liu et al., 2011; Xue et al., 2010b). The prediction 
performance of GPS 3.0 is much better than GPS 1.x and GPS 2.x algorithms. The GPS 3.0 
was firstly introduced and described in the construction of GPS-SNO 1.0 and GPS-YNO2 1.0 
(Liu et al., 2011; Xue et al., 2010b). Below, we used palmitoylation as an example to depict 
the implementation process in detail.  

3. An application: Prediction of palmitoylation sites with GPS 3.0 algorithm 
In order to describe the GPS series algorithms thoroughly, here we employed the GPS 3.0 
algorithm to predict palmitoylation sites as an example. Palmitoylation is the only type of 
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In GPS 1.x algorithms, numerous PKs were casually classified into several groups simply 
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PK clusters based on their known PK information. GPS 2.0 can predict kinase-specific 
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thoroughly carried out for each PK group. We observed that the self-consistency results 
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selection (MLS) (Xue et al., 2011), which could automatically detect the optimal length of 
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of PSP(m, n) (m = 1,…, 15; n = 1, . . ., 15). The Sn values were calculated under the Sp of 85, 
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2011). 
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identified sumoylation sites were classified into two types including Type I (consensus) and 
Type II (non-consensus) sites in SUMOsp 2.0 (Ren et al., 2009). Type I sites followed the ψKXE 
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other non-canonical sites. Also, we clustered known palmitoylation sites in CSS-Palm 2.0 into 
three groups, including Type I (sites follow a –CC– motif, C is a cysteine residue), Type II (sites 
follow a –CXXC– motif, C is a cysteine residue and X is a random residue) and Type III (other 
sites) group (Ren et al., 2008). In SUMOsp 1.0 and CSS-Palm 1.0, the threshold is the same for 
different clusters. However, for SUMOsp 2.0 and CSS-Palm 2.0, we set different threshold for 
each group, separately. The prediction performance of GPS 2.x is much better than GPS 1.x 
(Ren et al., 2009; Ren et al., 2008; Xue et al., 2008).  

2.3 GPS 3.0 algorithm 
Although GPS 1.x and 2.x algorithms were successfully applied in the prediction of 
phosphorylation, sumoylation and palmitoylation sites, they exhibited poor performance for 
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other PTMs, such as S-nitrosylation (Xue et al., 2010b) and nitration sites (Liu et al., 2011). 
Thus, the GPS algorithm still need further improvements.  
We hypothesized that one type of PTM can recognize multiple sequence patterns/motifs. If 
this hypothesis is correct, the prediction performance can be enhanced by clustering known 
PTM sites into multiple groups. In GPS 1.x, the MCL algorithm was adopted to 
automatically classify the known phosphorylation site peptides into multiple clusters if 
available. However, only eight PK groups obtained more than one cluster (Xue et al., 2005; 
Zhou et al., 2004). In CSS-Palm 1.0, we adopted a graph-based BBC method for clustering 
known palmitoylation sites, but it can not significantly improve performance for other types 
of PTMs (unpublished). In this regard, the clustering strategy was dropped for its low 
efficiency in GPS 2.0 for the prediction of phosphorylation sites (Xue et al., 2008). For the 
prediction of sumoylation (SUMOsp 2.0) and palmitoylation (CSS-Palm 2.0) sites, we 
clustered known sumoylation and palmitoylation into two and three groups based on 
reported motifs, although the palmitoylation motifs are much weak (Ren et al., 2009; Ren et 
al., 2008). However, for S-nitrosylation and nitration sites, even very weak motifs are not 
available (Liu et al., 2011; Xue et al., 2010b). In this regard, an interesting question is how to 
classify PTM sites without any obvious motifs? To address this problem, we developed GPS 
3.0 algorithm with an additional k-mean clustering method (Liu et al., 2011; Xue et al., 
2010b), which was extensively used in a variety of aspects (Herwig et al., 1999; Yoon et al., 
2007). With the algorithm, we successfully classified 504 experimentally identified S-
nitrosylation into 3 groups in GPS-SNO 1.0 (Xue et al., 2010b), while the 1,066 known 
nitration sites were clustered into 5 groups in GPS-YNO2 1.0 (Liu et al., 2011).  
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enzymes was regarded as equal. However, there were various amino acid preferences in the 
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was firstly introduced and described in the construction of GPS-SNO 1.0 and GPS-YNO2 1.0 
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In order to describe the GPS series algorithms thoroughly, here we employed the GPS 3.0 
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reversible lipid modification, and dynamically regulates protein trafficking and functions 
through addition of saturated 16-carbon palmitic acids to specific cysteine residues by 
DHHC palmitoyltransferases (Fukata and Fukata, 2010; Linder and Deschenes, 2007). First, 
we manually collected the experimentally identified palmitoylation sites from scientific 
literatures in PubMed. Redundant homologous sites were cleared, while the positive and 
negative data sets were prepared. The procedures of performance improvement with an 
order of k-means clustering, MLS, WT and MaM were described in detail. Finally, the CSS-
Palm 3.0 software packages were implemented in JAVA. The full process of CSS-Palm 3.0 
construction is shown in Fig. 1.  

3.1 Data preparation 
Previously, we manually collected the experimental identified palmitoylation sites from 
scientific literature which was published before October 8th, 2007 (Ren et al., 2008). Since a 
large number of experimental studies were reported after CSS-Palm 2.0 was developed, here 
we further searched the literature in PubMed with the keywords of “palmitoylation” and 
“palmitoylated” to obtain additional verified palmitoylation sites (before February 14th, 
2010). The protein sequences were retrieved from the UniProt database (UniProt, 2010). 
In general, if the training data set is highly redundant with too many homologous sites, the 
prediction accuracy will be overestimated. To avoid such overestimation, we clustered the 
protein sequences with a threshold of 40% identity by CD-HIT (Li and Godzik, 2006). If two 
proteins were similar with ≥40% identity, we re-aligned the proteins with BL2SEQ, a 
program in the BLAST package (Johnson et al., 2008), and checked the results by hand. If 
two palmitoylation sites from two homologous proteins were at the same position after 
sequence alignment, only one item was preserved, the other was discarded. Finally, the non-
redundant benchmark data set for training contained 439 positive sites from 194 unique 
substrates. 
 

 
Fig. 1. The full procedures of constructing CSS-Palm 3.0 for the prediction of palmitoylation 
sites.  
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We defined a palmitoylation site peptide PSP(m, n) as a palmitoylated cysteine flanked by m 
residues upstream and n residues downstream. As previously described (Ren et al., 2008; 
Zhou et al., 2006a), we regarded all experimentally verified palmitoylation sites as positive 
data (+), while all other non-palmitoylated cysteine sites in the same substrates were taken 
as negative data (-). If a palmitoylated cysteine locates at the N- or C-terminus of the protein 
and the length of the peptide is smaller than m+n+1, we added one or multiple “*” 
characters as pseudo amino acids to complement the PSP(m, n). Finally, we got 439 positive 
sites and 2,171 negative sites. 

3.2 The GPS 3.0 algorithm 
The GPS 3.0 algorithm contains two major components of scoring strategy and performance 
improvement. 
Given the hypothesis of similar short peptides bearing similar biochemical properties, the 
similarity between two PSP(m, n) of A and B can be calculated with equation (1). Again, if S 
(A, B) <0, we simply redefined it as S (A, B)=0. A putative PSP(m, n) is compared with each 
of the experimentally verified palmitoylated peptides in a pairwise manner to calculate the 
similarity score. The average value of the substitution scores is regarded as the final score. 
The schematic description of the scoring strategy with examples was shown in Fig. 2. The 
performance improvement processes with of four sequential steps of k-means clustering, 
MLS, WT and MaM were presented below. 
 

 
Fig. 2. Schematic description of the scoring strategy in GPS algorithm. 

3.2.1 k-means clustering  
In CSS-Palm 2.0, we clustered experimental identified palmitoylation sites into three groups 
based on known motifs (Ren et al., 2008). Because the palmitoylation motifs are very weak, 
the prediction performance was only considerably improved (Ren et al., 2008). For grouping 
known palmitoylation sites, here we used the k-mean clustering approach, which was 
widely adopted and got successful performance in our previous studies (Liu et al., 2011; Xue 
et al., 2010b). The clustering process was described as below: 
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Given two PSP(m, n) peptides A and B, the similarity was defined and measured as:  
s(A, B) = Ns/N. The N is the number of all substitutions, whereas the Ns is the number of 
conserved substitutions with Score(a, b) > 0 in the BLOSUM62 matrix. The s(A, B) ranges 
from 0 to 1. Thus, the distance between them can be defined as: D(A, B) = 1/s(A, B). If  
s(A, B) = 0, D(A, B) = ∞. By exhaustive testing, the k was roughly set to 3, while PSP(7, 7) was 
adopted. First, three palmitoylation sites from the positive data (+) were randomly chosen 
as the centroids. Second, the other positive sites were compared in a pairwise manner with 
the three centroids and clustered into groups with the highest similarity values. Third, the 
centroid of each cluster was updated with the highest average similarity (HAS). The second 
and third steps were iteratively repeated until the clusters did not change any longer. After 
the three clusters for the positive sites had been determined, we put each negative site into 
the cluster with the HAS. 
Given a potential PSP(7, 7) for prediction, we firstly determined which cluster it belongs to, 
by calculating the average similarity score of the PSP(7, 7) against each cluster (Fig. 3). For 
example, the PSP(7, 7) P1 will be regarded as Cluster 1 type site, while the P2 and P3 will be 
determined to be Cluster 2 and 3 type sites, respectively (Fig. 3).  
 

 
Fig. 3. Prediction of potential palmitoylation sites with the classified clusters. 

3.2.2 Motif length selection (MLS)  
Previously, the m and n in PSP(m, n) was arbitrarily determined (Xue et al., 2008; Zhou et al., 
2004; Zhou et al., 2006a). In this step, we determined the optimized combination of PSP(m, n) 
for optimal performance. The combinations of PSP(m, n) (m = 1, …, 30; n = 1, …, 30) were 
extensively tested. The optimal PSP(m, n) for each cluster was separately selected, with the 
highest LOO performance. From our previous experience, a higher Sp value is more 
important than a higher Sn to avoid too many false positive hits (Ren et al., 2009; Ren et al., 
2008; Xue et al., 2005). Thus, to improve the prediction performance and robustness in the 
region of high Sp is more important than other regions. In this study, we fixed the Sp at 90% 
to compare Sn values.  
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3.2.3 Weight training (WT) 
We updated the substitution score between two PSP(m, n) peptides A and B as below: 

 '( , ) ( [ ], [ ])i
m i n

S A B w Score A i B i
  

   (2) 

The wi is the weight of position i. Again, if S’(A, B)<0, we redefined it as S’(A, B)=0. Initially, 
the w was chosen as 1 for each position. We randomly picked out the weight of any position 
for +1 or -1, and adopted the manipulation if the Sn score of the re-calculated LOO result with 
the Sp fixed at 90% was increased. The process was repeated until convergence was reached.  

3.2.4 Matrix mutation (MaM) 
Previously, we chose the BLOSUM62 matrix to evaluate the similarity between PSP(m, n). 
Later, we observed that different matrices generate various performances (Xue et al., 2008). 
For palmitoylation, we also tested a variety of matrices such as BLOSUM30, 45, 62, 90, and 
PAM 10, 90, 250 and 500. The self-consistency (red) and LOO (blue) validations were 
preformed (Fig. 4). To balance the prediction performance and robustness of the prediction 
system, the BLOSUM62 matrix was adopted as the initial matrix in CSS-Palm 3.0. 
 

 
Fig. 4. Different matrices generate various performances. The ROC curves of self-consistency 
and LOO validations were drawn in red and blue, respectively. 
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In the MaM process, the LOO result with BLOSUM62 was first calculated. In BLOSUM62, 
the substitution score between “*” and other residues is -4 but redefined as 0. Then we fixed 
the Sp at 90% to improve Sn by randomly picking out one value from the BLOSUM62 matrix 
for mutation (+1 or -1). If the Sn value increased, the mutation was adopted. This process 
was terminated when the Sn value was not increased any further. Interestingly, we 
observed that when the training time of MaM is long enough, the mutated matrix generated 
from other matrices, e.g., BLOSUM45, is exactly identical to the one from BLOSUM62 (Data 
not shown). In this regard, the final mutated matrix is not dependent on the initial matrix.  

3.3 Software construction 
Previously, we only developed the online services for the predictions with PHP/PERL. We 
also discussed the general user interface for the predictors of PTMs sites (Zhou et al., 2006b). 
When the number of users becomes large, the server will bear high burden with very low 
speed. In this regard, we recently constructed computational tools in JAVA, whereas the 
online service and local packages were both provided (Liu et al., 2011; Ren et al., 2008; Ren 
et al., 2009; Xue et al., 2008; Xue et al., 2010b; Xue et al., 2011). The online service and local 
packages of CSS-Palm 3.0 were implemented in JAVA. For the online service, we tested the 
CSS-Palm 3.0 on a variety of internet browsers, including Internet Explorer 6.0, Netscape 
Browser 8.1.3 and Firefox 2 under the Windows XP Operating System (OS), Mozilla Firefox 
1.5 of Fedora Core 6 OS (Linux), and Safari 3.0 of Apple Mac OS X 10.4 (Tiger) and 10.5 
(Leopard). For the Windows and Linux systems, the latest version of Java Runtime 
Environment (JRE) package (JAVA 1.4.2 or later versions) of Sun Microsystems should be 
pre-installed. However, for Mac OS, CSS-Palm 3.0 can be directly used without any 
additional packages. For convenience, we also developed local packages of CSS-Palm 3.0, 
which worked with the three major Operating Systems, Windows, Linux and Mac. The 
software and the online sever are freely available at: http://csspalm.biocuckoo.org/. 

3.4 Performance evaluation and comparison 
As previously described (Ren et al., 2008; Zhou et al., 2006a), We adopted four standard 
measurements, including accuracy (Ac), sensitivity (Sn), specificity (Sp) and Mathew 
correlation coefficient (MCC). Ac illustrates the correct ratio between both positive (+) and 
negative (-) data sets, while Sn and Sp represent the correct prediction ratios of positive (+) 
and negative data (-) sets respectively. However, when the number of positive data and 
negative data differ too much from each other, MCC should be included to evaluate the 
prediction performance. The value of MCC ranges from -1 to 1, and a larger MCC value 
stands for better prediction performance. 
Among the data with positive hits by CSS-Palm 3.0, the real positives are defined as true 
positives (TP), while the others are defined as false positives (FP). Among the data with 
negative predictions by CSS-Palm 3.0, the real positives are defined as false negatives (FN), 
while the others are defined as true negatives (TN). The performance measurements of Ac, 
Sn, Sp and MCC are defined as below:  

 TPSn
TP FN




 (3) 

 TNSp
TN FP


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To avoid overestimation, the LOO validation and 4-, 6-, 8-, 10-fold cross-validations were 
performed to evaluate the prediction robustness and performance of CSS-Palm 3.0. Receiver 
Operating Characteristic (ROC) curves are presented in Fig. 5A, while the AROCs (area 
under ROCs) were calculated as 0.889 (leave-one-out), 0.877 (4-fold), 0.879 (6-fold), 0.887 (8-
fold) and 0.906 (10-fold), respectively (Fig. 5A). Since the 4-, 6-, 8-, 10-fold cross-validations 
were close to the leave-one-out validation, it was demonstrated that CSS-Palm 3.0 is a robust 
predictor of palmitoylation sites with promising performance. 
 

 
        (A)                                                                           (B) 

Fig. 5. Performance evaluation and comparison. (A) The LOO validation and 4-, 6-, 8-, 10-
fold cross-validations were performed to evaluate the prediction robustness and 
performance of CSS-Palm 3.0. (B) Comparison of LOO results of GPS 1.0, GPS 1.0 and GPS 
3.0 algorithms.  

For comparison, we also calculated the performance of GPS 1.0 and 2.0 algorithms. To avoid 
any bias, the same training data set used in GPS 3.0 was also employed in the two methods. 
The LOO validations were carried out for GPS 1.0 and 2.0 algorithms, while the ROC curves 
were drawn (Fig. 5B). The AROC values were calculated as 0.811 (GPS 1.0), 0.827 (GPS 2.0) 
and 0.889 (GPS 3.0), respectively. In addition, we fixed the Sp values and compared Sn 
scores (Table 2). When the Sp value was ~85%, the Sn values of GPS 3.0, GPS 2.0 and GPS 1.0 
were 72.44%, 48.29% and 43.05%, respectively (Table 2). Also, when the Sp value was ~90%, 
the Sn values of GPS 3.0, GPS 2.0 and GPS 1.0 were 80.64%, 59.68% and 54.21%, separately 
(Table 2). In addition, when the Sp value was ~95%, the Sn of GPS 3.0 (82.23%) was still 
much better than GPS 2.0 (67.20%) and GPS 1.0 (62.41%) (Table 2). Taken together, our 
results exhibited that the performance of GPS 3.0 is better than GPS 1.0 and 2.0. Finally, the 
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any bias, the same training data set used in GPS 3.0 was also employed in the two methods. 
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the Sn values of GPS 3.0, GPS 2.0 and GPS 1.0 were 80.64%, 59.68% and 54.21%, separately 
(Table 2). In addition, when the Sp value was ~95%, the Sn of GPS 3.0 (82.23%) was still 
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results exhibited that the performance of GPS 3.0 is better than GPS 1.0 and 2.0. Finally, the 
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CSS-Palm 3.0 software was constructed with three thresholds of High, Medium and Low, 
with the Sp values of ~95%, ~90% and ~85%, respectively.  
 

Method Threshold Ac Sn Sp MCC 
GPS 3.0 High 91.30% 72.44% 95.12% 0.6850 

 Medium 88.74% 80.64% 90.37% 0.6458 
 Low 84.75% 82.23% 85.26% 0.5749 

GPS 2.0  87.24% 48.29% 95.12% 49.64% 
  84.94% 59.68% 90.05% 48.09% 
  82.03% 67.20% 85.03% 45.90% 

GPS 1.0  86.28% 43.05% 95.03% 0.4485 
  84.21% 54.21% 90.28% 0.4410 

 81.23% 62.41% 85.03% 0.4220 

Table 2. For comparison, we fixed the Sp values of GPS 3.0 algorithm so as to be similar or 
identical to GPS 1.0 and 2.0 algorithms, and compared the Sn values. 

4. Conclusion 
During the past several decades, accumulated experimental studies have made slow but 
steady contributions toward understanding molecular mechanisms and regulatory roles of 
various PTMs (Mann and Jensen, 2003; Walsh, 2005; Walsh and Jefferis, 2006). Recently, 
rapid progresses in the state-of-the-art HTP-MS techniques have boomed an explosion of 
modification data for systematically analyzing PTM regulation in a proteomic level 
(Choudhary and Mann, 2010). However, the biological functions of PTMs are still far from 
fully elucidated. In this regard, more efforts remain to be carried out.  
In contrast with expensive and error-prone experimental methods, in silico prediction of 
PTM-specific substrates with their sites has emerged as a popular alternative approach. In 
this field, two questions should be addressed: 1) How to predict modification sites in a given 
protein sequence? 2) How to predict regulatory enzyme information of modification sites in 
a given protein sequence? The importance of the two questions is different for distinct types 
of PTMs. For example, a phosphoproteomics analysis can detect thousands of 
phosphorylation sites in a single experiment (Olsen et al., 2006; Villen et al., 2007). In this 
regard, the prediction of general or non-specific phosphorylation sites is not much useful at 
the current stage. However, there are only ~3,500 phosphorylation sites with known 
upstream PK information in the public databases (Xue et al., 2008; Xue et al., 2011). In this 
regard, the prediction of kinase-specific phosphorylation sites is still a great challenge, while 
the results can be a help for further experimental consideration. For sumoylation and 
palmitoylation, accurately large-scale identification of their substrates and sites is not easy to 
be performed. In this regard, the prediction of general sumoylation and palmitoylation in 
proteins is useful for guiding further experimental verifications. Also, since the 
experimentally identified enzyme-specific information for both sumoylation and 
palmitoylation is quite limited, the prediction of enzyme-specific sumoylation or 
palmitoylation is still not available due to data limitation. 
Intuitively, the prediction of PTM sites seems to be a trivial job. Assume that one may easily 
obtain experimentally identified PTMs from one or two review articles as the training data 
set, casually select a machine learning algorithm such as PSSM, SVMs or ANN, carry out 
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several validations to evaluate the performance, and develop a web server for the 
prediction. Then the manuscript can be written with a cup of coffee in hand. Previously, a 
number of researchers asked us by personal communications that why we did not used a 
simple existed algorithm to develop an integrate tool for the prediction of all types of PTMs 
sites. Is the prediction of PTMs sites really simple? From our research experience, the 
answer is “not at all”. First, most of widely-used machine learning algorithms are derived 
from the fields of informatics or statistics and originally designed for general propose, but 
not specifically for PTMs sites prediction. Second, different types of PTMs can have distinct 
sequence features. One algorithm can generate promising performance for a specific PTM 
but exhibit poor accuracy for other types of PTMs. For example, the prediction of PKA-
specific phosphorylation sites with any algorithm can generate satisfying performance (Xue 
et al., 2008). However, for PTMs with strong motifs, the scenario is different. For example, 
the sumoylation has a strong consensus motif of ψKXE, which about 77% of all known 
sumoylation sites follow this pattern (Xue et al., 2006b). Since the simple strong motif can 
generate great accuracy, development of new algorithms will not be necessary if the 
performance can not be significantly improved. For palmitoylation, two weak motifs can be 
obtained (Ren et al., 2008). Prediction of palmitoylation with weak motifs will generate poor 
performance. But it’s also difficult for computational algorithm to retrieve informative 
features for prediction. In addition, for S-nitrosylation and nitration, even weak motifs are 
not available (Liu et al., 2011; Xue et al., 2010b). In this regard, development a novel and 
useful algorithm specifically for PTMs site prediction is an urgent demand. Also, great 
attention needs to be paid since different PTMs have different properties.  
 

 
Fig. 6. Comparison of CSS-Palm 3.0 and CKSAAP-Palm (Wang et al., 2009). 

During the past several years, our group take great efforts on designing and improve the 
GPS series algorithms, which were specifically designed for the prediction of PTM sites in 
proteins. Although the preliminary GPS 1.x algorithms could be only comparative to other 
approaches, the GPS 2.x exhibited superior performance against analogous predictors. The 
latest version of GPS 3.0 algorithm has been further improved and much better than our 
GPS 2.x algorithms. As an application, we used this algorithm to construct CSS-Palm 3.0 for 
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CSS-Palm 3.0 software was constructed with three thresholds of High, Medium and Low, 
with the Sp values of ~95%, ~90% and ~85%, respectively.  
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the prediction of palmitoylation sites. By comparison of a recently released predictor of 
CKSAAP-Palm (Wang et al., 2009), the performance of CSS-Palm 3.0 is significantly better 
(Fig. 6). 
Finally, we do not propose that the GPS 3.0 will be the final version, while more strategies 
will be developed and included in GPS series algorithms. We anticipated that the 
combination of computational predictions and experimental verifications will become the 
foundation of systematically understanding the mechanisms and the dynamics of PTMs.  

5. Acknowledgment 
This work was supported by grants from the National Basic Research Program (973 project) 
(2010CB945400, 2011CB910400), National Natural Science Foundation of China (90919001, 
31071154, 30900835, 30830036, 91019020, 21075045), and Fundamental Research Funds for 
the Central Universities (HUST: 2010JC049, 2010ZD018; SYSU: 11lgzd11, 11lgjc09).  

6. References 
Ackermann, B.L., & Berna, M.J. (2007). Coupling immunoaffinity techniques with MS for 

quantitative analysis of low-abundance protein biomarkers. Expert Review of 
Proteomics, Vol.4, No.2, (April 2007), pp. 175-186, ISSN 1744-8387 

Balter, M. & Vogel, G. (2001). Nobel prize in physiology or medicine. Cycling toward 
Stockholm. Science, Vol.294, No.5542, (October 2001), pp. 502-503, ISSN 0036-
8075 

Blom, N., Sicheritz-Ponten, T., Gupta, R., Gammeltoft, S. & Brunak, S. (2004). Prediction 
of post-translational glycosylation and phosphorylation of proteins from the 
amino acid sequence. Proteomics, Vol.4, No.6, (June 2004), pp. 1633-1649, ISSN 
1615-9853 

Boschetti, E. & Righetti, P.G. (2009). The art of observing rare protein species in proteomes 
with peptide ligand libraries. Proteomics, Vol.9, No.6, (March 2009), pp. 1492-1510, 
ISSN 1615-9853 

Caenepeel, S., Charydczak, G., Sudarsanam, S., Hunter, T. & Manning, G. (2004). The mouse 
kinome: discovery and comparative genomics of all mouse protein kinases. 
Proceedings of the National Academy of Sciences of the United States of America, Vol.101, 
No.32, (August 2004), pp. 11707-11712, ISSN 0027-8424 

Choudhary, C., Kumar, C., Gnad, F., Nielsen, M.L., Rehman, M., Walther, T.C., Olsen, J.V. & 
Mann, M. (2009). Lysine acetylation targets protein complexes and co-regulates 
major cellular functions. Science, Vol.325, No.5942, (August 2009), pp. 834-840, ISSN 
0036-8075 

Choudhary, C. & Mann, M. (2010). Decoding signalling networks by mass spectrometry-
based proteomics. Nature Reviews Molecular Cell Biology, Vol.11, No.6, (June 2010), 
pp. 427-439, ISSN 1471-0080 

Dang, T.H., Van Leemput, K., Verschoren, A. & Laukens, K. (2008). Prediction of kinase-
specific phosphorylation sites using conditional random fields. Bioinformatics, 
Vol.24, No.24, (December 2008), pp. 2857-2864, ISSN 1367-4811 

 
Computational Prediction of Post-Translational Modification Sites in Proteins 

 

121 

Fukata, Y. & Fukata, M. (2010). Protein palmitoylation in neuronal development and 
synaptic plasticity. Nature Reviews Neuroscience, Vol.11, No.3, (March 2010), pp. 161-
175, ISSN 1471-0048 

Herwig, R., Poustka, A.J., Muller, C., Bull, C., Lehrach, H. & O'Brien, J. (1999). Large-scale 
clustering of cDNA-fingerprinting data. Genome Research, Vol.9, No.11, (November 
1999), pp. 1093-1105, ISSN 1088-9051 

Huang, H.D., Lee, T.Y., Tzeng, S.W. & Horng, J.T. (2005). KinasePhos: a web tool for 
identifying protein kinase-specific phosphorylation sites. Nucleic Acid Research, 
Vol.33, Web Server issue, (July 2005), pp. W226- W229, ISSN 1362-4962 

Hunter, T. (2007). The age of crosstalk: phosphorylation, ubiquitination & beyond. Molecular 
Cell, Vol.28, No.5, (December 2007), pp. 730-738, ISSN 1097-2765 

Jenuwein, T. & Allis, C.D. (2001). Translating the histone code. Science, Vol.293, No.5532, 
(August 2001), pp. 1074-1080, ISSN 0036-8075 

Johnson, E.S. (2004). Protein modification by SUMO. Annual Review of Biochemistry, Vol.73, 
(June 2004), pp. 355-382, ISSN 0066-4154 

Johnson, M., Zaretskaya, I., Raytselis, Y., Merezhuk, Y., McGinnis, S. & Madden, T.L. (2008). 
NCBI BLAST: a better web interface. Nucleic Acid Research, Vol.36, Web Server 
issue, (July 2008), pp. W5-W9, ISSN 1362-4962 

Kim, J.H., Lee, J., Oh, B., Kimm, K. & Koh, I. (2004). Prediction of phosphorylation sites 
using SVMs. Bioinformatics, Vol.20, No.17, (November 2004), pp. 3179-3184, ISSN 
1367-4803 

Kresge, N., Simoni, R.D. & Hill, R.L. (2011). The process of reversible phosphorylation: the 
work of Edmond H. Fischer. The Journal of Biological Chemistry, Vol.286, No.3, 
(January 2011), pp. e1-e2, ISSN 0021-9258 

Kumar, N. & Mohanty, D. (2010). Identification of substrates for Ser/Thr kinases using 
residue-based statistical pair potentials. Bioinformatics, Vol.26, No.2, (January 2010), 
pp. 189-197, ISSN 1367-4811 

Lahiry, P., Torkamani, A., Schork, N.J. & Hegele, R.A. (2010). Kinase mutations in human 
disease: interpreting genotype-phenotype relationships. Nature Reviews Genetics, 
Vol.11, No.1, (January 2010), pp. 60-74, ISSN 1471-0064 

Li, W. & Godzik, A. (2006). Cd-hit: a fast program for clustering and comparing large sets of 
protein or nucleotide sequences. Bioinformatics, Vol.22, No.13, (July 2006), pp. 1658-
1659, ISSN 1367-4811 

Linder, M.E. & Deschenes, R.J. (2007). Palmitoylation: policing protein stability and traffic. 
Nature Reviews Molecular Cell Biology, Vol.8, No.1, (January 2007), pp. 74-84, ISSN 
1471-0080 

Liu, Z., Cao, J., Ma, Q., Gao, X., Ren, J. & Xue, Y. (2011). GPS-YNO2: computational 
prediction of tyrosine nitration sites in proteins. Molecular BioSystems, Vol.7, No.4, 
(January 2011), pp. 1197-1204, ISSN 1742-2051 

Mann, M. & Jensen, O.N. (2003). Proteomic analysis of post-translational modifications. 
Nature Biotechnology, Vol.21, No.3, (March 2003), pp. 255-261, ISSN 1087-0156 

Manning, G., Whyte, D.B., Martinez, R., Hunter, T. & Sudarsanam, S. (2002). The protein 
kinase complement of the human genome. Science, Vol.298, No.5600, (December 
2002), pp. 1912-1934, ISSN 1095-9203 



 
Systems and Computational Biology – Molecular and Cellular Experimental Systems 

 

120 

the prediction of palmitoylation sites. By comparison of a recently released predictor of 
CKSAAP-Palm (Wang et al., 2009), the performance of CSS-Palm 3.0 is significantly better 
(Fig. 6). 
Finally, we do not propose that the GPS 3.0 will be the final version, while more strategies 
will be developed and included in GPS series algorithms. We anticipated that the 
combination of computational predictions and experimental verifications will become the 
foundation of systematically understanding the mechanisms and the dynamics of PTMs.  

5. Acknowledgment 
This work was supported by grants from the National Basic Research Program (973 project) 
(2010CB945400, 2011CB910400), National Natural Science Foundation of China (90919001, 
31071154, 30900835, 30830036, 91019020, 21075045), and Fundamental Research Funds for 
the Central Universities (HUST: 2010JC049, 2010ZD018; SYSU: 11lgzd11, 11lgjc09).  

6. References 
Ackermann, B.L., & Berna, M.J. (2007). Coupling immunoaffinity techniques with MS for 

quantitative analysis of low-abundance protein biomarkers. Expert Review of 
Proteomics, Vol.4, No.2, (April 2007), pp. 175-186, ISSN 1744-8387 

Balter, M. & Vogel, G. (2001). Nobel prize in physiology or medicine. Cycling toward 
Stockholm. Science, Vol.294, No.5542, (October 2001), pp. 502-503, ISSN 0036-
8075 

Blom, N., Sicheritz-Ponten, T., Gupta, R., Gammeltoft, S. & Brunak, S. (2004). Prediction 
of post-translational glycosylation and phosphorylation of proteins from the 
amino acid sequence. Proteomics, Vol.4, No.6, (June 2004), pp. 1633-1649, ISSN 
1615-9853 

Boschetti, E. & Righetti, P.G. (2009). The art of observing rare protein species in proteomes 
with peptide ligand libraries. Proteomics, Vol.9, No.6, (March 2009), pp. 1492-1510, 
ISSN 1615-9853 

Caenepeel, S., Charydczak, G., Sudarsanam, S., Hunter, T. & Manning, G. (2004). The mouse 
kinome: discovery and comparative genomics of all mouse protein kinases. 
Proceedings of the National Academy of Sciences of the United States of America, Vol.101, 
No.32, (August 2004), pp. 11707-11712, ISSN 0027-8424 

Choudhary, C., Kumar, C., Gnad, F., Nielsen, M.L., Rehman, M., Walther, T.C., Olsen, J.V. & 
Mann, M. (2009). Lysine acetylation targets protein complexes and co-regulates 
major cellular functions. Science, Vol.325, No.5942, (August 2009), pp. 834-840, ISSN 
0036-8075 

Choudhary, C. & Mann, M. (2010). Decoding signalling networks by mass spectrometry-
based proteomics. Nature Reviews Molecular Cell Biology, Vol.11, No.6, (June 2010), 
pp. 427-439, ISSN 1471-0080 

Dang, T.H., Van Leemput, K., Verschoren, A. & Laukens, K. (2008). Prediction of kinase-
specific phosphorylation sites using conditional random fields. Bioinformatics, 
Vol.24, No.24, (December 2008), pp. 2857-2864, ISSN 1367-4811 

 
Computational Prediction of Post-Translational Modification Sites in Proteins 

 

121 

Fukata, Y. & Fukata, M. (2010). Protein palmitoylation in neuronal development and 
synaptic plasticity. Nature Reviews Neuroscience, Vol.11, No.3, (March 2010), pp. 161-
175, ISSN 1471-0048 

Herwig, R., Poustka, A.J., Muller, C., Bull, C., Lehrach, H. & O'Brien, J. (1999). Large-scale 
clustering of cDNA-fingerprinting data. Genome Research, Vol.9, No.11, (November 
1999), pp. 1093-1105, ISSN 1088-9051 

Huang, H.D., Lee, T.Y., Tzeng, S.W. & Horng, J.T. (2005). KinasePhos: a web tool for 
identifying protein kinase-specific phosphorylation sites. Nucleic Acid Research, 
Vol.33, Web Server issue, (July 2005), pp. W226- W229, ISSN 1362-4962 

Hunter, T. (2007). The age of crosstalk: phosphorylation, ubiquitination & beyond. Molecular 
Cell, Vol.28, No.5, (December 2007), pp. 730-738, ISSN 1097-2765 

Jenuwein, T. & Allis, C.D. (2001). Translating the histone code. Science, Vol.293, No.5532, 
(August 2001), pp. 1074-1080, ISSN 0036-8075 

Johnson, E.S. (2004). Protein modification by SUMO. Annual Review of Biochemistry, Vol.73, 
(June 2004), pp. 355-382, ISSN 0066-4154 

Johnson, M., Zaretskaya, I., Raytselis, Y., Merezhuk, Y., McGinnis, S. & Madden, T.L. (2008). 
NCBI BLAST: a better web interface. Nucleic Acid Research, Vol.36, Web Server 
issue, (July 2008), pp. W5-W9, ISSN 1362-4962 

Kim, J.H., Lee, J., Oh, B., Kimm, K. & Koh, I. (2004). Prediction of phosphorylation sites 
using SVMs. Bioinformatics, Vol.20, No.17, (November 2004), pp. 3179-3184, ISSN 
1367-4803 

Kresge, N., Simoni, R.D. & Hill, R.L. (2011). The process of reversible phosphorylation: the 
work of Edmond H. Fischer. The Journal of Biological Chemistry, Vol.286, No.3, 
(January 2011), pp. e1-e2, ISSN 0021-9258 

Kumar, N. & Mohanty, D. (2010). Identification of substrates for Ser/Thr kinases using 
residue-based statistical pair potentials. Bioinformatics, Vol.26, No.2, (January 2010), 
pp. 189-197, ISSN 1367-4811 

Lahiry, P., Torkamani, A., Schork, N.J. & Hegele, R.A. (2010). Kinase mutations in human 
disease: interpreting genotype-phenotype relationships. Nature Reviews Genetics, 
Vol.11, No.1, (January 2010), pp. 60-74, ISSN 1471-0064 

Li, W. & Godzik, A. (2006). Cd-hit: a fast program for clustering and comparing large sets of 
protein or nucleotide sequences. Bioinformatics, Vol.22, No.13, (July 2006), pp. 1658-
1659, ISSN 1367-4811 

Linder, M.E. & Deschenes, R.J. (2007). Palmitoylation: policing protein stability and traffic. 
Nature Reviews Molecular Cell Biology, Vol.8, No.1, (January 2007), pp. 74-84, ISSN 
1471-0080 

Liu, Z., Cao, J., Ma, Q., Gao, X., Ren, J. & Xue, Y. (2011). GPS-YNO2: computational 
prediction of tyrosine nitration sites in proteins. Molecular BioSystems, Vol.7, No.4, 
(January 2011), pp. 1197-1204, ISSN 1742-2051 

Mann, M. & Jensen, O.N. (2003). Proteomic analysis of post-translational modifications. 
Nature Biotechnology, Vol.21, No.3, (March 2003), pp. 255-261, ISSN 1087-0156 

Manning, G., Whyte, D.B., Martinez, R., Hunter, T. & Sudarsanam, S. (2002). The protein 
kinase complement of the human genome. Science, Vol.298, No.5600, (December 
2002), pp. 1912-1934, ISSN 1095-9203 



 
Systems and Computational Biology – Molecular and Cellular Experimental Systems 

 

122 

Matsuoka, S., Ballif, B.A., Smogorzewska, A., McDonald, E.R., 3rd, Hurov, K.E., Luo, J., 
Bakalarski, C.E., Zhao, Z., Solimini, N., Lerenthal, Y., Shiloh, Y., Gygi, S. P. & 
Elledge, S. J. (2007). ATM and ATR substrate analysis reveals extensive protein 
networks responsive to DNA damage. Science, Vol.316, No.5828, (May 2007), pp. 
1160-1166, ISSN 1095-9203 

Norvell, A. & McMahon, S.B. (2010). Cell biology. Rise of the rival. Science, Vol.327, No.5968, 
(February 2010), pp. 964-965, ISSN 1095-9203 

Obenauer, J.C., Cantley, L.C. & Yaffe, M.B. (2003). Scansite 2.0: Proteome-wide prediction of 
cell signaling interactions using short sequence motifs. Nucleic Acid Research, Vol.31, 
No.13, (July 2003), pp. 3635- 3641, ISSN 1362-4962 

Olsen, J.V., Blagoev, B., Gnad, F., Macek, B., Kumar, C., Mortensen, P. & Mann, M. (2006). 
Global, in vivo & site-specific phosphorylation dynamics in signaling networks. 
Cell, Vol.127, No.3, (November 2006), pp. 635-648, ISSN 0092-8674 

Ren, J., Gao, X., Jin, C., Zhu, M., Wang, X., Shaw, A., Wen, L., Yao, X. & Xue, Y. (2009). 
Systematic study of protein sumoylation: Development of a site-specific predictor 
of SUMOsp 2.0. Proteomics, Vol.9, No.12, (June 2009), pp. 3409-3412, ISSN 1615-
9853 

Ren, J., Wen, L., Gao, X., Jin, C., Xue, Y. & Yao, X. (2008). CSS-Palm 2.0: an updated software 
for palmitoylation sites prediction. Protein Engineering, Design and Selection, Vol.21, 
No.11, (November 2008), pp. 639-644, ISSN 1741-0134 

Schwartz, D. & Gygi, S.P. (2005). An iterative statistical approach to the identification of 
protein phosphorylation motifs from large-scale data sets. Nature Biotechnology, 
Vol.23, No.11, (November 2005), pp. 1391-1398, ISSN 1087-0156 

The UniProt Consortium (2010). The Universal Protein Resource (UniProt) in 2010. Nucleic 
Acid Research, Vol.38, Database issue, (January 2010), pp. D142-D148, ISSN 1362-
4962 

Villen, J., Beausoleil, S.A., Gerber, S.A. & Gygi, S.P. (2007). Large-scale phosphorylation 
analysis of mouse liver. Proceedings of the National Academy of Sciences of the United 
States of America, Vol.104, No.5, (January 2007), pp. 1488-1493, ISSN 0027-8424 

Vogel, G. (2004). Nobel Prizes. Gold medal from cellular trash. Science, Vol.306, No.5695, 
(October 2004), pp. 400-401, ISSN 1095-9203 

Walsh, C. (2005). Posttranslational Modification of Proteins: Expanding Nature's Inventory, 
Roberts and Co. Publishers, ISBN 978-097-4707-73-0, Colorado, USA 

Walsh, G. & Jefferis, R. (2006). Post-translational modifications in the context of therapeutic 
proteins. Nature Biotechnology, Vol.24, No.10, (October 2006), pp. 1241-1252, ISSN 
1087-0156 

Wang, Q., Zhang, Y., Yang, C., Xiong, H., Lin, Y., Yao, J., Li, H., Xie, L., Zhao, W., Yao, Y. 
Ning, Z. B. Zeng, R. Xiong, Y. Guan, K. L. Zhao, S. & Zhao, G. P. (2010). Acetylation 
of metabolic enzymes coordinates carbon source utilization and metabolic flux. 
Science, Vol.327, No.5968, (February 2010), pp. 1004-1007, ISSN 1095-9203 

Wang, X.B., Wu, L.Y., Wang, Y.C. & Deng, N.Y. (2009). Prediction of palmitoylation sites 
using the composition of k-spaced amino acid pairs. Protein Engineering, Design and 
Selection, Vol.22, No.11, (November 2009), pp. 707-712, ISSN 1741-0134 

 
Computational Prediction of Post-Translational Modification Sites in Proteins 

 

123 

Xue, Y., Gao, X., Cao, J., Liu, Z., Jin, C., Wen, L., Yao, X. & Ren, J. (2010a). A summary of 
computational resources for protein phosphorylation. Current Protein & Peptide 
Science, Vol.11, No.6, (September 2010), pp. 485-496, ISSN 1875-5550 

Xue, Y., Zhou, F., Zhu, M., Ahmed, K., Chen, G. & Yao, X. (2005). GPS: a comprehensive 
www server for phosphorylation sites prediction. Nucleic Acid Research, Vol.33, 
Web Server issue, (July 2005), pp. W184-W187, ISSN 1362-4962 

Xue, Y., Li, A., Wang, L., Feng, H. & Yao, X. (2006a). PPSP: prediction of PK-specific 
phosphorylation site with Bayesian decision theory. BMC Bioinformatics, Vol.7, 
(March 2006), pp. 163, ISSN 1471-2105 

Xue, Y., Zhou, F., Fu, C., Xu, Y. & Yao, X. (2006b). SUMOsp: a web server for sumoylation 
site prediction. Nucleic Acid Research, Vol.34, Web Server issue, (July 2006), pp. 
W254-W257, ISSN 1362-4962 

Xue, Y., Ren, J., Gao, X., Jin, C., Wen, L. & Yao, X. (2008). GPS 2.0, a tool to predict kinase-
specific phosphorylation sites in hierarchy. Molecular & Cellular Proteomics, Vol.7, 
No.9, (September 2008), pp. 1598-1608, ISSN 1535-9484 

Xue, Y., Liu, Z., Gao, X., Jin, C., Wen, L., Yao, X. & Ren, J. (2010b). GPS-SNO: Computational 
Prediction of Protein S-Nitrosylation Sites with a Modified GPS Algorithm. PLoS 
ONE, Vol.5, No.6, (June 2010), pp. e11290, ISSN 1932-6203 

Xue, Y., Liu, Z., Cao, J., Ma, Q., Gao, X., Wang, Q., Jin, C., Zhou, Y., Wen, L. & Ren, J. (2011). 
GPS 2.1: enhanced prediction of kinase-specific phosphorylation sites with an 
algorithm of motif length selection. Protein Engineering, Design and Selection, Vol.24, 
No.3, (March 2011), pp. 255-260, ISSN 1741-0134 

Yates, J.R., Ruse, C.I. & Nakorchevsky, A. (2009). Proteomics by mass spectrometry: 
approaches, advances & applications. Annual Review of Biomedical Engineering, 
Vol.11, (April 2009), pp. 49-79, ISSN 1545-4274 

Yoon, S., Ebert, J.C., Chung, E.Y., De Micheli, G. & Altman, R.B. (2007). Clustering protein 
environments for function prediction: finding PROSITE motifs in 3D. BMC 
Bioinformatics, Vol. 8, Suppl. 4, (June 2007), pp. S10, ISSN 1471-2105 

Young, N.L., Plazas-Mayorca, M.D. & Garcia, B.A. (2010). Systems-wide proteomic 
characterization of combinatorial post-translational modification patterns. Expert 
Review of Proteomics, Vol.7, No.1, (February 2010), pp. 79-92, ISSN 1744-8387 

Zhao, S., Xu, W., Jiang, W., Yu, W., Lin, Y., Zhang, T., Yao, J., Zhou, L., Zeng, Y., Li, H., Li, 
Y., Shi, J., An, W., Hancock, S. M., He, F., Qin, L., Chin, J., Yang, P., Chen, X., Lei, 
Q., Xiong, Y. & Guan, K. L. (2010). Regulation of cellular metabolism by protein 
lysine acetylation. Science, Vol.327, No.5968, (February 2010), pp. 1000-1004, ISSN 
1095-9203 

Zhou, F., Xue, Y., Chen, G.L. & Yao, X. (2004). GPS: a novel group-based phosphorylation 
predicting and scoring method. Biochemical and Biophysical Research Communications, 
Vol.325, No.4, (December 2004), pp. 1443-1448, ISSN 0006-291X 

Zhou, F., Xue, Y., Yao, X. & Xu, Y. (2006a). CSS-Palm: palmitoylation site prediction with a 
clustering and scoring strategy (CSS). Bioinformatics, Vol.22, No.7, (April 2006), pp. 
894-896, ISSN 1367-4811 



 
Systems and Computational Biology – Molecular and Cellular Experimental Systems 

 

122 

Matsuoka, S., Ballif, B.A., Smogorzewska, A., McDonald, E.R., 3rd, Hurov, K.E., Luo, J., 
Bakalarski, C.E., Zhao, Z., Solimini, N., Lerenthal, Y., Shiloh, Y., Gygi, S. P. & 
Elledge, S. J. (2007). ATM and ATR substrate analysis reveals extensive protein 
networks responsive to DNA damage. Science, Vol.316, No.5828, (May 2007), pp. 
1160-1166, ISSN 1095-9203 

Norvell, A. & McMahon, S.B. (2010). Cell biology. Rise of the rival. Science, Vol.327, No.5968, 
(February 2010), pp. 964-965, ISSN 1095-9203 

Obenauer, J.C., Cantley, L.C. & Yaffe, M.B. (2003). Scansite 2.0: Proteome-wide prediction of 
cell signaling interactions using short sequence motifs. Nucleic Acid Research, Vol.31, 
No.13, (July 2003), pp. 3635- 3641, ISSN 1362-4962 

Olsen, J.V., Blagoev, B., Gnad, F., Macek, B., Kumar, C., Mortensen, P. & Mann, M. (2006). 
Global, in vivo & site-specific phosphorylation dynamics in signaling networks. 
Cell, Vol.127, No.3, (November 2006), pp. 635-648, ISSN 0092-8674 

Ren, J., Gao, X., Jin, C., Zhu, M., Wang, X., Shaw, A., Wen, L., Yao, X. & Xue, Y. (2009). 
Systematic study of protein sumoylation: Development of a site-specific predictor 
of SUMOsp 2.0. Proteomics, Vol.9, No.12, (June 2009), pp. 3409-3412, ISSN 1615-
9853 

Ren, J., Wen, L., Gao, X., Jin, C., Xue, Y. & Yao, X. (2008). CSS-Palm 2.0: an updated software 
for palmitoylation sites prediction. Protein Engineering, Design and Selection, Vol.21, 
No.11, (November 2008), pp. 639-644, ISSN 1741-0134 

Schwartz, D. & Gygi, S.P. (2005). An iterative statistical approach to the identification of 
protein phosphorylation motifs from large-scale data sets. Nature Biotechnology, 
Vol.23, No.11, (November 2005), pp. 1391-1398, ISSN 1087-0156 

The UniProt Consortium (2010). The Universal Protein Resource (UniProt) in 2010. Nucleic 
Acid Research, Vol.38, Database issue, (January 2010), pp. D142-D148, ISSN 1362-
4962 

Villen, J., Beausoleil, S.A., Gerber, S.A. & Gygi, S.P. (2007). Large-scale phosphorylation 
analysis of mouse liver. Proceedings of the National Academy of Sciences of the United 
States of America, Vol.104, No.5, (January 2007), pp. 1488-1493, ISSN 0027-8424 

Vogel, G. (2004). Nobel Prizes. Gold medal from cellular trash. Science, Vol.306, No.5695, 
(October 2004), pp. 400-401, ISSN 1095-9203 

Walsh, C. (2005). Posttranslational Modification of Proteins: Expanding Nature's Inventory, 
Roberts and Co. Publishers, ISBN 978-097-4707-73-0, Colorado, USA 

Walsh, G. & Jefferis, R. (2006). Post-translational modifications in the context of therapeutic 
proteins. Nature Biotechnology, Vol.24, No.10, (October 2006), pp. 1241-1252, ISSN 
1087-0156 

Wang, Q., Zhang, Y., Yang, C., Xiong, H., Lin, Y., Yao, J., Li, H., Xie, L., Zhao, W., Yao, Y. 
Ning, Z. B. Zeng, R. Xiong, Y. Guan, K. L. Zhao, S. & Zhao, G. P. (2010). Acetylation 
of metabolic enzymes coordinates carbon source utilization and metabolic flux. 
Science, Vol.327, No.5968, (February 2010), pp. 1004-1007, ISSN 1095-9203 

Wang, X.B., Wu, L.Y., Wang, Y.C. & Deng, N.Y. (2009). Prediction of palmitoylation sites 
using the composition of k-spaced amino acid pairs. Protein Engineering, Design and 
Selection, Vol.22, No.11, (November 2009), pp. 707-712, ISSN 1741-0134 

 
Computational Prediction of Post-Translational Modification Sites in Proteins 

 

123 

Xue, Y., Gao, X., Cao, J., Liu, Z., Jin, C., Wen, L., Yao, X. & Ren, J. (2010a). A summary of 
computational resources for protein phosphorylation. Current Protein & Peptide 
Science, Vol.11, No.6, (September 2010), pp. 485-496, ISSN 1875-5550 

Xue, Y., Zhou, F., Zhu, M., Ahmed, K., Chen, G. & Yao, X. (2005). GPS: a comprehensive 
www server for phosphorylation sites prediction. Nucleic Acid Research, Vol.33, 
Web Server issue, (July 2005), pp. W184-W187, ISSN 1362-4962 

Xue, Y., Li, A., Wang, L., Feng, H. & Yao, X. (2006a). PPSP: prediction of PK-specific 
phosphorylation site with Bayesian decision theory. BMC Bioinformatics, Vol.7, 
(March 2006), pp. 163, ISSN 1471-2105 

Xue, Y., Zhou, F., Fu, C., Xu, Y. & Yao, X. (2006b). SUMOsp: a web server for sumoylation 
site prediction. Nucleic Acid Research, Vol.34, Web Server issue, (July 2006), pp. 
W254-W257, ISSN 1362-4962 

Xue, Y., Ren, J., Gao, X., Jin, C., Wen, L. & Yao, X. (2008). GPS 2.0, a tool to predict kinase-
specific phosphorylation sites in hierarchy. Molecular & Cellular Proteomics, Vol.7, 
No.9, (September 2008), pp. 1598-1608, ISSN 1535-9484 

Xue, Y., Liu, Z., Gao, X., Jin, C., Wen, L., Yao, X. & Ren, J. (2010b). GPS-SNO: Computational 
Prediction of Protein S-Nitrosylation Sites with a Modified GPS Algorithm. PLoS 
ONE, Vol.5, No.6, (June 2010), pp. e11290, ISSN 1932-6203 

Xue, Y., Liu, Z., Cao, J., Ma, Q., Gao, X., Wang, Q., Jin, C., Zhou, Y., Wen, L. & Ren, J. (2011). 
GPS 2.1: enhanced prediction of kinase-specific phosphorylation sites with an 
algorithm of motif length selection. Protein Engineering, Design and Selection, Vol.24, 
No.3, (March 2011), pp. 255-260, ISSN 1741-0134 

Yates, J.R., Ruse, C.I. & Nakorchevsky, A. (2009). Proteomics by mass spectrometry: 
approaches, advances & applications. Annual Review of Biomedical Engineering, 
Vol.11, (April 2009), pp. 49-79, ISSN 1545-4274 

Yoon, S., Ebert, J.C., Chung, E.Y., De Micheli, G. & Altman, R.B. (2007). Clustering protein 
environments for function prediction: finding PROSITE motifs in 3D. BMC 
Bioinformatics, Vol. 8, Suppl. 4, (June 2007), pp. S10, ISSN 1471-2105 

Young, N.L., Plazas-Mayorca, M.D. & Garcia, B.A. (2010). Systems-wide proteomic 
characterization of combinatorial post-translational modification patterns. Expert 
Review of Proteomics, Vol.7, No.1, (February 2010), pp. 79-92, ISSN 1744-8387 

Zhao, S., Xu, W., Jiang, W., Yu, W., Lin, Y., Zhang, T., Yao, J., Zhou, L., Zeng, Y., Li, H., Li, 
Y., Shi, J., An, W., Hancock, S. M., He, F., Qin, L., Chin, J., Yang, P., Chen, X., Lei, 
Q., Xiong, Y. & Guan, K. L. (2010). Regulation of cellular metabolism by protein 
lysine acetylation. Science, Vol.327, No.5968, (February 2010), pp. 1000-1004, ISSN 
1095-9203 

Zhou, F., Xue, Y., Chen, G.L. & Yao, X. (2004). GPS: a novel group-based phosphorylation 
predicting and scoring method. Biochemical and Biophysical Research Communications, 
Vol.325, No.4, (December 2004), pp. 1443-1448, ISSN 0006-291X 

Zhou, F., Xue, Y., Yao, X. & Xu, Y. (2006a). CSS-Palm: palmitoylation site prediction with a 
clustering and scoring strategy (CSS). Bioinformatics, Vol.22, No.7, (April 2006), pp. 
894-896, ISSN 1367-4811 



 
Systems and Computational Biology – Molecular and Cellular Experimental Systems 

 

124 

Zhou, F., Xue, Y., Yao, X. & Xu, Y. (2006b). A general user interface for prediction servers of 
proteins' post-translational modification sites. Nature Protocols, Vol.1, No.3, (April 
2007), pp. 1318-1321, ISSN 1750-2799 

Zielinska, D.F., Gnad, F., Wisniewski, J.R. & Mann, M. (2010). Precision mapping of an in 
vivo N-glycoproteome reveals rigid topological and sequence constraints. Cell, 
Vol.141, No.5, (May 2010), pp. 897-907, ISSN 1097-2765 

7 

Protein Networks: Generation,  
Structural Analysis and Exploitation 

Enrico M. Bucci1,2, Massimo Natale1 and Alice Poli1 
 1Biodigitalvalley Srl – Pont Saint Martin- AO-   

2CNR - IBB –  Naples  
Italy 

1. Introduction 
The scientific community is well aware of the fact that the very presence of internet 
profoundly affects the way research is done. Internet is the major infrastructure through 
which results and data are communicated and shared, computing is parallelized, 
collaborations are started and enlarged, papers are published, and a myriad of other 
transactions are performed, so to involve nearly all aspects of everyday researcher’s life. 
Perhaps surprisingly, scientists paid little attention to the theoretical study of internet 
structure (i.e. topology) and of its dynamical behavior, until quite recently.  
Even more surprisingly, however, when they did it, it quickly emerged some very rarely 
found scientific truth, of such a general kind, to directly reverberate from Internet studies 
into the field of molecular and cellular biology, with very small (if any) changes. 
Consequences manifested immediately, so that, at the turning of the millennium, in a now 
classical Nature paper (Vogelstein B. et al., 2000), Vogelstein, Lane and Levine, the 
discoverers of p53 and of its role as tumor-suppressor, wrote that “The cell, like the Internet, 
appears to be a ‘scale-free network’.” To let the reader fully appreciate this revolution, it is 
useful to recall that in 1999, just one year before the appearance of this particular paper, 
more than 15.000 independent articles have been already published on p53 and its role in 
cancer biology, making this protein one of the most studied topics ever. Yet, after 20 years of 
research, despite the enormous amount of available data, some aspects of p53 biology were 
still missing, and were so crucial to understand why this protein is found mutated in about 
50% of cancer patients, to let its discoverer write “One way to understand the p53 network is 
to compare it to the Internet” (Vogelstein B. et al., 2000). 
What had it happened? To understand this, we must look only two years before. In 1998, 
Zoltan Oltvai, a molecular pathologist, and Lazlo Barabási, a physicist studying Internet 
topology, were both working at the Northeastern University of Chicago. They both were 
Hungarians –actually Barabási was born Romanian, but lived and studied in Hungary - 
have small kids, and were home neighbors; thus it is hardly surprising that, as recalled by 
Barabási himself (Barabási AL, 2002), they usually met for dinner. By that time, Barabási had 
already found out that the Internet structure is a peculiar one: he had collected evidence that 
it is far from random. This was a non trivial result, given the fact that all large networks 
were modeled at the time as random. To understand this point, we have to think of 
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networks made of a huge number of nodes, like human social networks, communication 
networks and alike. To study how they work, i.e. how information spreads through the 
network, or whether the network is sensitive to external attacks, or how to find the best 
pathway from one node to another, it is not possible to perform a direct experiment, given 
the size of the object under study; instead, one has to model the network, then find out a 
proper set of equations, and simulate the behavior of the network varying the equation 
parameters. Since the 60s, the model of choice for large networks was that of Erdős and 
Rényi, which assumes that each node in a network is randomly connected to a fixed, 
average number of other nodes. As Barabási explains (Barabási AL, 2002), Erdős and Rényi 
“acknowledged for the first time that real graphs, from social networks to phone lines, are 
not nice and regular. They are hopelessly complicated. Humbled by their complexity, [they] 
assumed that these networks are random.” In a random network, each node is equivalent to 
every else. Were the real network random, this would have several practical implications. 
For example, removing one server from Internet, was it a random network, would have on 
average the same effect of removing every other node, so that to protect Internet from 
hackers one should only care that, on average, a sufficiently high number of servers is 
shielded, wherever they are. 
However, you could have already guessed that removing 100 servers from the Google 
facilities would have a larger impact on Internet than shutting down 100 servers in rural 
China (at least presently). This is due to the fact that Google machines are Internet hubs, i.e. 
they are continuously connected to an enormous number of other machines, and mediate a 
big amount of Internet data exchange. Barabási and its group were the first to notice the 
presence of hubs in the web (for example, the New York Times web site has an immense 
number of links, whereas an obscure blogger may have none), and recognized that the 
classical network theory of Erdős and Rényi was totally unable to deal with them.  
To see whether this was a peculiarity of Internet or a general finding, they began to map the 
topology of other networks as well. It turned that 1) most real networks are different from 
both regular lattices and random structures and 2) they all exhibit a common underlying 
organization, based on few hubs and many poorly connected nodes. This last point is 
evident if one plots the number of nodes having a defined amount of connections, which is 
called node degree or connectivity, versus the degree itself. One gets a curve (the degree 
distribution), which smoothly descends from a maximum (many nodes with very low 
connectivity) to a minimum (few nodes with very high connectivity); since this curve is 
exponential, the obtained degree distribution obeys a power-law and is said to be scale-free.  
Having already obtained the first evidence for the generality of its finding on network 
structure, Barabási met Oltvai, who, like the majority of the biologists, was very well aware 
of the intricacy of metabolic connections between the molecular constituents of a living cell. 
Indeed, the complicate diagrams on the walls of biochemistry labs represent complex 
networks,  were the nodes are biomolecules of any sort, and the links are biological 
interactions (let us keep this description vague for the moment). The two researchers 
wondered if these biological networks were also scale free as those made by man. By 2002, 
Barabási and Oltvai had published their results obtained from 43 different organisms 
(Ravasz E et al., 2002): the metabolic networks connecting the main metabolites have 
essentially the same large-scale structure of complex, non-biological networks. They are all 
scale-free, with hubs and poorly connected nodes, despite significant differences in the 
particular biochemical pathways included, so that each cell of every examined organism 
resembles a tiny Internet and can be studied in pretty much the same way. 
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With a perfect timing and a great deal of intuition, Vogelstein, Lane and Levine realized 
that, when looking to cancer, p53 is indeed a crucial hub, sitting in the center of a complex 
protein network, and, very much like internet hacking, cellular hijacking by cancer proceeds 
by attacking hubs. This is why, ex post, one finds p53 mutated so many times: touching a 
cellular hub causes a great deal of effects, while mutating less prominent “client” proteins 
passes nearly unnoticed. This is also what brought the three researchers to publish the paper 
which changed p53 science forever. 
Since these early observations, a lot of progresses have been made, to the point that protein 
networks are useful tools in the hands of molecular biologists. The rest of this chapter is 
devoted to a simple introduction to their structure and properties, in a way that purportedly 
simplify mathematical descriptions, keeping an eye on the biological meaning of protein 
networks. 

2. The structure of protein networks: Scale freeness 
Before entering in some details about protein networks, we want to point out some special 
characteristics of this type of networks.  
First of all, one should keep in mind that a protein network is an abstract representation of 
the real world, instead of a physical entity like the Internet infrastructure or a phone line 
web. In particular, while for the latter the links between the nodes are physical (cables in 
both cases), in the former case the links represent only a potential interaction between two 
proteins. With the notable exception of macromolecular complexes, which can be thought of 
as networks of interacting proteins, one would never be able to visualize a protein web 
under a microscope. 
Secondly, with the same exception mentioned before, molecular biologists do usually deal 
with a special type of protein network, one where the nodes represent all of the protein 
copies coded by a single gene, instead of all the individual proteins which are floating 
around in a cell. The protein network we will refer to in the following, thus, is a graph 
which resumes all the known interactions (the links) occurring between the product of every 
gene out of some list (the nodes); in this respect, such a network is more like a map of our 
current knowledge about some specific ensemble of proteins then a representation of a real 
molecular web. 
As a third point, a simplification is usually made, by considering only one type of 
interaction between the proteins composing a given network. The links connecting the 
nodes thus correspond to one out of a number of possible biological interactions, ranging 
from very specific types -such as a network where a link between two proteins represents a 
physical interaction in a molecular complex- to broader concepts -such as a network where a 
link between two proteins occurs if they are found co-expressed in a given condition. 
Correspondingly, different protein networks can be obtained, joining the nodes according to 
different types of interaction: protein-protein interaction networks, transcription networks, 
enzymatic networks, signaling networks, co-expression networks and so on. However, one 
should not consider this simplification as an absolute constraint: software does exist, for 
example, which is able to color the links of a network according to the type of interaction, 
filtering them as wanted.  
We can now start examining an example. Let us consider the human protein-protein 
interaction network, which can be downloaded from the Reactome organization 
institutional site (http://www.reactome.org/download/index.html). At the time when this 
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essentially the same large-scale structure of complex, non-biological networks. They are all 
scale-free, with hubs and poorly connected nodes, despite significant differences in the 
particular biochemical pathways included, so that each cell of every examined organism 
resembles a tiny Internet and can be studied in pretty much the same way. 
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With a perfect timing and a great deal of intuition, Vogelstein, Lane and Levine realized 
that, when looking to cancer, p53 is indeed a crucial hub, sitting in the center of a complex 
protein network, and, very much like internet hacking, cellular hijacking by cancer proceeds 
by attacking hubs. This is why, ex post, one finds p53 mutated so many times: touching a 
cellular hub causes a great deal of effects, while mutating less prominent “client” proteins 
passes nearly unnoticed. This is also what brought the three researchers to publish the paper 
which changed p53 science forever. 
Since these early observations, a lot of progresses have been made, to the point that protein 
networks are useful tools in the hands of molecular biologists. The rest of this chapter is 
devoted to a simple introduction to their structure and properties, in a way that purportedly 
simplify mathematical descriptions, keeping an eye on the biological meaning of protein 
networks. 

2. The structure of protein networks: Scale freeness 
Before entering in some details about protein networks, we want to point out some special 
characteristics of this type of networks.  
First of all, one should keep in mind that a protein network is an abstract representation of 
the real world, instead of a physical entity like the Internet infrastructure or a phone line 
web. In particular, while for the latter the links between the nodes are physical (cables in 
both cases), in the former case the links represent only a potential interaction between two 
proteins. With the notable exception of macromolecular complexes, which can be thought of 
as networks of interacting proteins, one would never be able to visualize a protein web 
under a microscope. 
Secondly, with the same exception mentioned before, molecular biologists do usually deal 
with a special type of protein network, one where the nodes represent all of the protein 
copies coded by a single gene, instead of all the individual proteins which are floating 
around in a cell. The protein network we will refer to in the following, thus, is a graph 
which resumes all the known interactions (the links) occurring between the product of every 
gene out of some list (the nodes); in this respect, such a network is more like a map of our 
current knowledge about some specific ensemble of proteins then a representation of a real 
molecular web. 
As a third point, a simplification is usually made, by considering only one type of 
interaction between the proteins composing a given network. The links connecting the 
nodes thus correspond to one out of a number of possible biological interactions, ranging 
from very specific types -such as a network where a link between two proteins represents a 
physical interaction in a molecular complex- to broader concepts -such as a network where a 
link between two proteins occurs if they are found co-expressed in a given condition. 
Correspondingly, different protein networks can be obtained, joining the nodes according to 
different types of interaction: protein-protein interaction networks, transcription networks, 
enzymatic networks, signaling networks, co-expression networks and so on. However, one 
should not consider this simplification as an absolute constraint: software does exist, for 
example, which is able to color the links of a network according to the type of interaction, 
filtering them as wanted.  
We can now start examining an example. Let us consider the human protein-protein 
interaction network, which can be downloaded from the Reactome organization 
institutional site (http://www.reactome.org/download/index.html). At the time when this 
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chapter was written, data were available for more than 5000 proteins, summing up to 120661 
unique physical interactions (including homomeric interactions, i.e. interactions between 
identical proteins). These links do not imply any directed action from a given protein to its 
connected neighbors; thus, as opposite to other types of protein networks, such as 
transcriptional networks, signaling networks and alike, the protein-protein interaction 
network is said to be undirected. The network, on the left of figure 1, is represented as a 
sphere of densely connected dots (the proteins). 
 

 
Fig. 1. Human protein-protein interaction network 

On the right of figure 1, the degree distribution for this network is plotted on a log-log scale; 
as evident by the linearity of the obtained graph (red line), this distribution follows a power 
law, of the form: 

 n ~ k- (1) 

and the network is scale-free. This fact in turn implies that there are few protein hubs, 
connected to most of all other proteins in the network, and a vast majority of proteins able to 
bind only few partners (poorly connected nodes). Hubs will be treated extensively in the 
next paragraph; instead, we will focus here on the properties imparted to a protein network 
by its scale-free nature. 
First of all, let us consider the effects of removing some nodes from a scale-free protein 
network. To this aim, consider the network in figure 2. 
On the left, upper corner, low-degree nodes were selected for removal (and are colored in 
yellow); the resulting network is on the left, lower corner. As evident, the effects are quite 
limited, and all remaining nodes are still fully connected. Consider now the removal of the 
same number of high-degree nodes, as shown in the upper, right corner of figure 2. The 
network falls apart (right, lower corner) and among the remaining nodes, there are 
examples of disconnected proteins, like the ones pointed by red arrows (which are not the 
only ones, if you look carefully). Since high-degree nodes are very rare in a scale free 
network, if compared to low-degree ones, you may have already guessed that protein 
networks are very resistant to random removal of nodes: if we really selected nodes by 
chance, than they will nearly always be peripheral, poorly connected proteins. As a 
consequence, to have even a slight probability of hitting a well-connected protein by 
random selection, we have to remove a disproportionately high number of nodes, or to 
repeat the selection process several times. This property of scale-free networks is called 
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robustness. In the case of protein networks, robustness has some interesting biological 
consequences. First of all, it implies that low-frequency, random events such as protein 
mutations will really affect the cell – which relies for its functioning on several different 
types of proteins and biochemical networks – with an exceedingly low probability. Thus, we 
can say that, even before our immune system takes action against malfunctioning cells, we 
are protected by potentially dangerous random insults – which could give rise to serious 
diseases such as cancer - by the very architecture of the cell protein networks. On the 
opposite side, scale-free determined robustness means that the cell has some true Achille’s 
heels – the few highly connected proteins – which can be exploited by selective attacks. 
Once again, we can refer to Internet for an useful comparison: selective, non random attacks 
to central routers are preferred by hackers, which purportedly aim to take control over the 
attacked networks. At cellular level, viruses can be considered hackers, which divert the 
protein network operations toward an illegitimate scope. Indeed, it has been found by 
several independent groups that viruses selectively target central proteins, causing large 
effects on the host protein network (de Chassey B. et al., 2008; Navratil V. et al., 2011; Zou X. 
et al., 2010). 
 

 
 

Fig. 2. The effects of removing nodes from a protein network: random removal (left) versus 
hub removal (right) 

Beside robustness, scale-free protein networks show another interesting feature. They 
exhibit a small-world behavior: hopping from one node to a neighbor, any node can be 
reached from any other in few steps. The distance L between any couple of nodes, in 
particular, grows roughly proportional to the logarithm of the number of nodes N which are 
included in the network: 
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 L ~ Log(N) (2) 

For protein-protein interaction networks, L grows even slower with N, and the average 
distance between two nodes is so small that they have been defined ultrasmall networks 
(Cohen R & Havlin S. 2003). The small-world property, shared by many complex networks, 
is particular relevant to biology when the considered network is made of proteins which can 
influence the neighbors through the links. This is typically the case of transcriptional 
networks, were two proteins are connected if one influences the expression of the other, 
signaling network, were proteins are coupled through phosphorylation and other post-
translational modifications, and in general holds true for any protein network where the 
activity of one protein affects its connected partners. In these cases,  the small-world 
structure implies that whatever stimulus changes the status or activity of a protein, its 
effects will rapidly propagate to the entire network, since on average only few proteins will 
separate the starting node from every other in the net. This in turn has the consequence that 
a cell, once its protein network has been stimulated at a single, peripheral node, may quickly 
change the status of a large number of proteins in response, so that the original signal 
propagates to a vast number of different proteins, synchronizing their status to the variation 
of the external stimulus. In other words, small-world protein networks, like any other small-
world, display enhanced signal-propagation speed, computational power, and 
synchronizability (Watts DJ & Strogatz SH. 1998). 
In the case of scale-free networks, the observed robustness and the small-world effect are 
mutually connected. In particular, since protein hubs are linked to the vast majority of all 
other nodes, most of the pathways connecting any couple of nodes pass through hubs, so 
that the average distance between any two nodes in the network does not change much if 
nodes are removed randomly: this is a formulation of network robustness equivalent to the 
one we mentioned before. At the same time, the more an hub is prominent, i.e. it is 
connected to an higher amount of protein nodes, the more the distance between any two 
uncoupled nodes will tend to a single hop through the hub. Hubs are thus key features of 
scale-free network, mediating both robustness and small-world properties of protein 
networks; we will dedicate the next paragraph to examine their properties. 

3. The structure of protein networks: Hubs 
Since the early times of protein network studies, the few, always present hubs attracted a lot 
of attention: quite naturally, it was thought that since highly connected proteins have a lot of 
different molecular partners, they should also be implied in the majority of the cellular 
processes. In case of a protein interaction network like the one depicted in figure 2, this 
reasoning goes as follows: proteins found in many different macromolecular complexes, 
represented as hubs in the interaction network, should be either core components of a single 
molecular complex, or elements conserved in many different molecular complexes, which 
works as switches and are used by the cell to coordinate the activation or repression of 
different molecular machineries. As a consequence, any alteration of the hubs of a protein-
protein interaction network is predicted to have large effects on the cell biology. This 
assumption, which has been dubbed as “centrality-lethality rule”, has been extensively 
explored by experimentally knocking-down protein interaction hubs and quantitatively 
assessing the effects in different models (Jeong H. et al., 2011). Going a step further in the 
reasoning, it has been hypothesized that mutations affecting these proteins should be 
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particularly related to the insurgence of diseases. Some experimental validation of this 
prediction has been indeed obtained: Rambaldi and his group (Rambaldi D. et al., 2008) 
provided evidence that virtually all proteins having a degree higher than 80 in the human 
protein-protein interaction network are target of known cancer-related mutations. Similarly, 
Ortutay and Vihinen (Ortutay C. & Vihinen M. et al., 2009), after building an interaction 
network comprising all human proteins involved in immune response, found that the 
network hubs include known disease-causing genes as well as 26 new genes related to 
primary immunodeficiency. In a further example, Chang and colleagues (Chang W. et al., 
2009), found new gastric cancer candidate markers by looking to hubs in a protein-protein 
interaction network build from genes differentially expressed in the patient tissues. 
So far, we looked to hubs in protein-protein interaction networks. However, hubs are a 
common characteristic of any complex web, albeit their biological meaning and relevance 
change according to the particular type of protein network considered. To understand this 
point, let us compare the three different human protein networks reported in figure 3.  
 

 
Fig. 3. A) Co-expression network; B) Biochemical/metabolic network; C) Process specific 
network 

The first network on the left (network A) is obtained by considering all proteins 
differentially expressed in breast cancer patients. Proteins are connected if they are found 
co-expressed in at least 2 different and independent experiments, and the resulting network 
is a co-expression network. The central network (network B) is build by considering all the 
proteins which are linked to the p53 human protein by some known biochemical pathway, 
and is then a biochemical/metabolic network. The last network on the right (network C) is a 
network reporting all those proteins controlled by p53 or controlling it during the unfolding 
of the apoptotic process, and can be seen as a process specific network. You may have already 
noticed that hubs (and scale-freeness) are present in all three webs, despite the fact that the 
network size decreases from left to right. However, the biological relevance of hubs is very 
different in the three network.  
In network A, hubs are cancer markers which are found co-expressed with nearly any other 
cancer protein. Hubs in this network are not granted to be very relevant for the pathogenesis 
of breast cancer: they can be proteins which are deregulated by the inflammation 
accompanying cancer, as well as cytoskeletal proteins altered due to the hyperproliferation 
of cancer cells or other type of very abundant proteins, with no specific role in cancer 
progression and insurgence. While these proteins are indeed dysregulated in breast cancer, 
and thus are useful for diagnosing it, their status of hubs do not privilege them with respect 
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 L ~ Log(N) (2) 
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to other, less connected nodes, since their co-occurrence with many partners does not imply 
that their expression level changes more than that of any other node in the network. Indeed, 
the list of hubs of network A includes useful diagnostic proteins, such as ERBB2, ESR1 and 
BCRA1, as well as proteins with little meaning for cancer diagnosis, such as complement 
proteins. Thus, for co-expression networks like the one depicted in figure 3A, being an hub 
is of no particular merit for a protein. 
In network B, since by construction each neighbor of a specific hub is connected to p53 by 
some biochemical chain, hubs are at the crossroad of several cellular pathway involving p53. 
In this respect, hubs of this network are in a prominent position to act as checkpoints for 
controlling the (very redundant) flow of biochemical information from and toward p53, and 
thus we can expect them to be important controllers and mediators of p53 activity. For 
example, we found in network B that the 15 hubs with the highest degree are all different 
subunits of all the three mammalian RNA polymerase, but two, which are important 
transcription factors (TF2A and TF2B); this is hardly surprising, since p53 in the very end 
exerts its prominent and multiple actions regulating the transcriptional process, so that all 
p53 pathways converge into the regulation of the RNA polymerase machinery. By 
considering hubs with a lower degree, we find the mitosis controlling kinase NEK-2, the 
nuclear cap-binding protein 1 and 2, and several other proteins which have prominent roles 
in regulating the cellular status. As a general rule, although there are exceptions, the lower is 
the degree, the more specific is the position of the protein in the p53 network (or the lesser is 
known about it). For example, among the proteins having k=1, we find the liprin alpha 4, a 
protein which binds to the intracellular membrane-distal phosphatase domain of tyrosine 
phosphatase LAR, and appears to localize LAR for regulating the disassembly of focal 
adhesion and orchestrating cell-matrix interactions; or E2F-3, a transcription factor which 
binds specifically to the protein RB1 , in a cell-cycle dependent manner; or MDB4, the 
Methyl-CpG-binding domain protein 4, which is a mismatch-specific DNA N-glycosylase 
involved in DNA repair, specific for G:T mismatches within CpG sites. Thus, for 
biochemical/metabolic networks like the one depicted in figure 3B, hubs are checkpoints for 
most of the pathways considered in building the network (in the presented case, p53-related 
pathways), acting as crucial mediators of biological activity and behaving like switches for 
several biochemical pathways. On the opposite site, if interested to specific, less studied 
biochemical players, one should concentrate on low-degree nodes of the network, a group 
which is enriched in proteins involved in few, specific metabolic modules. 
In network C, starting from p53, nodes are attached if they co-occur in at least one 
biochemical pathway and are involved in apoptosis. The fact that two proteins co-occur in 
more than one pathway is represented by multiple links. This network can be considered as 
extracted from network B, by filtering out those proteins not involved in apoptosis. As for 
network B, hubs of this network are to be considered prominent biochemical regulators; 
however, since we are restricted to a single, specific biological process, there is no special 
role for low-degree proteins, which are simply peripheral players in a specific apoptotic 
pathway, among the many redundant possibilities. Hubs are thus the only targets for the 
analysis of network C: they are important mediators of p53-related apoptosis, controlling 
most of the network, and their knocking out can be expected to perturb largely the apoptotic 
control of the cell. As a matter of fact, ordering by degree the nodes of this network, after 
p53, which is trivially an hub, we find MDM2, possibly the most important regulator of p53 
mediated apoptosis, and the apoptosis-stimulating protein of p53 ASPP2, which influences 
the apoptotic response of cells without affecting p53-induced cell cycle arrest. On the 
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opposite side, we find cdc42, an important cellular protein, which nonetheless mediates only 
one of the apoptotic pathways controlled by p53 (Thomas A. et al., 2000). Thus, for networks 
like that depicted in figure 3C, hubs may be considered the most relevant proteins to be 
found involved in the selected biological process, and they can be safely assumed as targets 
for further analysis. 
After the preceding discussion, it should be clear at this point that protein hubs are 
extremely variable in their relevance, and that before considering the degree of a node as a 
topological guide to prioritize protein lists, one must carefully select the type of network to 
be used, i.e. the rule to generate links between nodes. However, even having the best 
network may be not enough. To understand why, let us first make a general consideration 
and then go on with an example. 
 

 
Fig. 4. Sampling bias in biological networks 

As shown in figure 4, we must face a sampling problem. “Sampling”, in this context, means 
to accumulate knowledge on a specific node or part of the network, useful to define its 
connectivity. In facts, whatever biological network we are exploring, we are only getting an 
incomplete representation of the real thing, one which was produced by a finite number of 
experiments interrogating a biological entity. If sampling of the real network (sitting on the 
lower plane in figure 4) is non-random, i.e. it is concentrated around some “hot” protein 
(represented in red), then we get a skewed representation (sitting on the upper plane in 
figure 4) where nodes originally having the same degree are represented as very different in 
the reconstructed network. Besides being biased, the representation we have can also be 
error-prone. For example, in figure 4 many links are missing on the upper plane as 
compared to the lower one (negative error); the opposite situation, were extra links are 
erroneously added to the representation – for example due to non-specific binding in 
protein interaction experiments – is also common. Both errors and biases obviously affect 
the definition of hubs in a network. However, while simple tests exist to check whether an 
identified hub is a genuine one in an error-prone web (Vallabhajosyula RR. et al., 2009), bias 
may have subtler effects, much more difficult to deal with. To see this last point, let us 
consider a further example.  
On the left of figure 5, there is a co-expression network which includes all proteins studied 
in breast cancer. Two proteins are connected if, by any experimental method, they were 
found to be co-expressed in a breast cancer human sample, whatever the stage or the 
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to other, less connected nodes, since their co-occurrence with many partners does not imply 
that their expression level changes more than that of any other node in the network. Indeed, 
the list of hubs of network A includes useful diagnostic proteins, such as ERBB2, ESR1 and 
BCRA1, as well as proteins with little meaning for cancer diagnosis, such as complement 
proteins. Thus, for co-expression networks like the one depicted in figure 3A, being an hub 
is of no particular merit for a protein. 
In network B, since by construction each neighbor of a specific hub is connected to p53 by 
some biochemical chain, hubs are at the crossroad of several cellular pathway involving p53. 
In this respect, hubs of this network are in a prominent position to act as checkpoints for 
controlling the (very redundant) flow of biochemical information from and toward p53, and 
thus we can expect them to be important controllers and mediators of p53 activity. For 
example, we found in network B that the 15 hubs with the highest degree are all different 
subunits of all the three mammalian RNA polymerase, but two, which are important 
transcription factors (TF2A and TF2B); this is hardly surprising, since p53 in the very end 
exerts its prominent and multiple actions regulating the transcriptional process, so that all 
p53 pathways converge into the regulation of the RNA polymerase machinery. By 
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opposite side, we find cdc42, an important cellular protein, which nonetheless mediates only 
one of the apoptotic pathways controlled by p53 (Thomas A. et al., 2000). Thus, for networks 
like that depicted in figure 3C, hubs may be considered the most relevant proteins to be 
found involved in the selected biological process, and they can be safely assumed as targets 
for further analysis. 
After the preceding discussion, it should be clear at this point that protein hubs are 
extremely variable in their relevance, and that before considering the degree of a node as a 
topological guide to prioritize protein lists, one must carefully select the type of network to 
be used, i.e. the rule to generate links between nodes. However, even having the best 
network may be not enough. To understand why, let us first make a general consideration 
and then go on with an example. 
 

 
Fig. 4. Sampling bias in biological networks 

As shown in figure 4, we must face a sampling problem. “Sampling”, in this context, means 
to accumulate knowledge on a specific node or part of the network, useful to define its 
connectivity. In facts, whatever biological network we are exploring, we are only getting an 
incomplete representation of the real thing, one which was produced by a finite number of 
experiments interrogating a biological entity. If sampling of the real network (sitting on the 
lower plane in figure 4) is non-random, i.e. it is concentrated around some “hot” protein 
(represented in red), then we get a skewed representation (sitting on the upper plane in 
figure 4) where nodes originally having the same degree are represented as very different in 
the reconstructed network. Besides being biased, the representation we have can also be 
error-prone. For example, in figure 4 many links are missing on the upper plane as 
compared to the lower one (negative error); the opposite situation, were extra links are 
erroneously added to the representation – for example due to non-specific binding in 
protein interaction experiments – is also common. Both errors and biases obviously affect 
the definition of hubs in a network. However, while simple tests exist to check whether an 
identified hub is a genuine one in an error-prone web (Vallabhajosyula RR. et al., 2009), bias 
may have subtler effects, much more difficult to deal with. To see this last point, let us 
consider a further example.  
On the left of figure 5, there is a co-expression network which includes all proteins studied 
in breast cancer. Two proteins are connected if, by any experimental method, they were 
found to be co-expressed in a breast cancer human sample, whatever the stage or the 
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provenance of the sample. Proteins which are known targets for drug currently used to treat 
breast cancer or under development are highlighted in red. On the right of the same figure, 
there is a box-plot which shows the degree distribution for nodes which have been never 
entered the drug development process (first box on the left), are in preclinical development 
(second box), are in clinical development phases (phase I, II and III corresponding to the 
third, fourth and fifth box respectively) and are already on the market (last box on the right). 
A clear trend may be seen, with the degree regularly increasing as the clinical development 
of a target proceeds. Is this a genuine trend to be used for drug target identification, i.e. is it 
true that the more a protein is an hub, the better is to target it from a pharmacological 
perspective? Quite the opposite. If we consider the same network in a temporal perspective, 
we will see why. Have a look at figure 6. For the sake of simplicity, we will focus on three 
exemplary pharmaceutical targets in breast cancer (the vascular endothelial growth factor 
VEGF, the tymidilate synthase TYMS and the clusterin CLU). 
 

 
Fig. 5. Degree distribution for pharmacological targets in a breast cancer co-expression 
network 

We want to study their position as hub during time, to see whether it is constant or changes, as 
new experiments are performed and new network nodes are added. Since the network grows 
in time, instead of the degree we will consider the ratio between the degree and the total 
number of nodes; this is the fraction of network nodes connected to the considered protein, 
and we will refer to this quantity as to “net occupancy”. You may have already noticed that 
this quantity varies in an unpredictable manner. Something connected to about 6.5% of all 
network nodes in 1993 (TYMS), a true hub for the network, became connected to less than 1% 
in 2002, to go back to about 3% in 2009. VEGF, which was an important hub in 2009, was 
barely connected to the network before 1997, and was certainly not an hub by that time. From 
the graph, we can notice three temporal points associated to an abrupt trend change for all the 
selected proteins: 2002 for TYMS, 1997 for VEGF and 2005 for CLU. What happened at the 
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time? In 2002, pemetrexed, a drug targeting TYMS, was introduced for breast cancer therapy; 
in 1997, the antiangiogenic therapy was hypothesized as an option to treat breast cancer; in 
2002, the experimental drug OTX-111, targeting CLU, was shifted to prostate cancer, due to 
mixed results in breast cancer trials. We can thus directly observe that, in the selected cases, the 
industrial interest immediately precedes a topological change of a protein in the network, 
promoting to hubs those proteins which are under industrial development, and downsizing 
those proteins which were not up to the standard in clinical trials. Such kind of an effect may 
also be caused by interests different from the industrial ones. For example, it is probable that 
strong academic groups tend to produce a lot of data on their “pet” proteins; moreover, most 
studied proteins tend understandably to be of human origin, well soluble, stable and easily 
detected. Large scale “unbiased” experiments, such those using microarrays, two-yeast hybrid 
or proteomic techniques, produce data which are also biased toward detectable proteins 
(Ivanic J. et al., 2009), and are still very often affected by the interest of the experimenter (think 
to the study of knock-out models). Some possible solutions which have the potential to 
mitigate biases as well as errors in reconstructing protein networks have been recently 
proposed. These approaches make use of network alignment between different organisms 
(Tan CS. Et al., 2009). In particular, evidence has been recently produced demonstrating that 
even though the present protein network data are strongly biased by the experimental 
methods used to produce them, they still exhibit species–specific similarity and reproducibility 
(Fernandes LP. Et al., 2010). While intra-species conservation approaches tend to contribute 
“core” networks, i.e. networks made of conserved proteins and conserved topologies which do 
not account for inter-species variability, they have the indubitable advantage to average biases 
(because the networks used for the alignment come from different scientific communities, and 
are less vexed by pharmaceutical industry interests) and errors (because more large scale 
experiments are taken into accounts). Moreover, hubs conserved among different species are 
likely to be very relevant for the basic biology of the cell, as shown by the fact that they tend to 
be duplicated so to increase the mutational robustness of the corresponding biological network 
(Kafri R. et al., 2008) 
 

 
Fig. 6. VEGF, TYMS, and CLU network occupancy 
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We want to conclude this paragraph by the following message: when properly taking into 
account biases and errors, the topological prominence of hubs is indeed informative and 
useful for protein/gene prioritization; however, the real biological meaning of “hubbiness” 
is strictly dependent on the linking rule applied for building a specific network, as shown in 
this paragraph for co-expression networks, biochemical/metabolic networks and process 
specific networks. 

4. The structure of protein networks: Neighborhoods 
In a graph, the neighbors of a given node consist in all those other nodes that are connected 
to it up to a certain distance. Distance in this context is intended as the minimal number of 
steps connecting the source node to any other. In other words, for a particular protein x in a 
network (which we will call the seed), we define the neighborhood of x, N(x), to be the 
subgraph of the network whose vertex set consists of all of x’s interaction neighbors and the 
edges between them, up to a preselected distance D.  
According to the type of graph, neighborhoods can be used to derive useful biological 
information.  
We will try to illustrate this by showing how: 
1. in a network, the biological roles of the neighbors can be used to infer the unknown 

functions of a seed;  
2. in protein-protein interaction networks, a group of highly interconnected neighbors 

sharing a given biological function likely coincides with a macromolecolar complex or 
part of it. 

As for the first example, it is useful to remember that traditionally the function of a protein 
is inferred from its sequence and/or structure by homology modeling. Unsurprisingly, this 
approach performs poorly for those proteins which have unusual sequences and unknown 
structures. In this particular circumstances, an analysis of the biological functions of the 
network neighbors of the protein can be decisive. In particular, it has been proved that in 
protein networks the probability that a certain biological function is shared between two 
proteins is higher if the 2 considered proteins are proximal neighbors, and then decreases as 
the distance D increases (Shamir R. et al., 2007). This is true in many different network 
types, such as protein-protein interaction networks, metabolic/biochemical protein 
networks, genetic interaction networks etc. Moreover, if a given protein with an unknown 
function is at short distance (usually D=1) from several proteins sharing a given function, 
the probability that it too shares that particular function is obviously even higher. On this 
basis, a neighborhood-guided labeling strategy is possible to assign biological functions to 
virtually any protein in a network, providing that at least a fraction of the nodes in its 
neighborhood has a known biological role. The process is exemplified in figure 7, were 
functional annotation is symbolized by node coloring.  
As can be intuitively understood by looking at figure 7, the functional annotation of a given 
node is guided by several factors, including  distance and number of neighbors with a given 
biological function, their own connectivity and their heterogeneity (which led to the lack of 
propagation for the red and the blue colors in the example). Mathematical modeling of the 
labeling procedure basically consists in weighting all these factors in a single probability 
function, so to obtain a score for the assignment of a given biological role to all the network 
nodes. While the details of the proposed methods are out of the scope of this introductory 
text, we would like to stress here that the procedure depends always on the local topology, 
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which affects the label propagation by determining the number of neighbors a given node 
communicate with, and on the type of network considered, which limits the distance and 
the direction of propagation of a label along the edges. 
 

 
Fig. 7. Functional annotation of a given node 

As for the second example, we will refer to a recent work of Fox et al. (Fox AD et al.,  2011) 
on protein-protein interaction networks. Consider in particular the two alternative 
situations illustrated in figure 8. 
In A, the neighborhood for D=1 of the selected seed (shown in blue) is made of two groups 
of nodes, which are not directly connected; on the opposite, in B the neighborhood is highly 
interconnected in a single cluster. 
 

 
Fig. 8. A) Two disconnected neighborhood; B) Highly interconnected neighborhood 

As reported by the authors, the structure observed in A suggests the possibility that the two 
groups of neighbors might be active under different conditions, as opposite to B. Indeed, it 
was found that single-component neighborhoods like the one represented in B are enriched 
in protein sharing similar functions and participating to molecular complexes, and are thus 
more likely to represent a single, defined protein complex, while multiple-components 
neighborhoods like the one represented in A tend to represent different molecular 
complexes, sharing a single component. Interestingly, we found that this concept can be 
extended beside protein-protein interaction networks. Let us consider, for example, all those 
proteins, which are reported as changed in expression by at least two different papers on 
Parkinson’s Disease. We will consider two proteins connected, if they co-occur at least 2 
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times, i.e. if they are reported together by at least two papers. The obtained co-expression 
network is shown in figure 9A. 
 

 
Fig. 9. A) Parkinson’s Disease co-expression network; B) A clique from the same network 
(red nodes have many connections outside the clique).  

On the right, in figure 9B, a neighborhood of 14 proteins is extracted from the network, 
which are all fully interconnected (meaning that each protein is connected to any other). 
Among these 14 proteins, the red ones are those which have at least as many bonds outside 
the neighborhood as they have inside it (i.e. at least 13 bonds outside the network). These 14 
proteins are arranged in a way similar to that exemplified in figure 8B: a single cluster of 
highly connected nodes. Much in the same way predicted for protein-protein interaction 
networks, the cluster is enriched in proteins sharing some functional aspect: in particular, it 
turns out that 13 out of the 14 components are found in inclusion bodies, a hallmark of 
neurodegeneration in Parkinson’s Disease. Intriguingly, in a sense they represent once again 
a macromolecular complex – albeit a non-specific one, being a structurally random 
aggregate, which may vary in its particular composition from case to case. Thus, while the 
starting network is a co-expression network, where edges do not represent physical 
interactions among proteins, also in this case proteins in well connected neighborhoods tend 
to share biological functions and to be involved in the formation of complexes. 

5. The structure of protein networks: Graphlet degree signatures 
Until now, we have examined pretty simple topological features of the nodes in a protein 
network. Recently, however, more complex metrics have been introduced, which have 
several advantages over the older ones. In particular, many of these sophisticated 
parameters are useful because they recapitulate a larger amount of information with respect 
to simpler ones. One of such parameter is the “graphlet degree signature” of a node, first 
introduced by Milenković T. & Przulj N. (2008). To understand what is it, let us consider 
figure 10. 
Imagine that we want to study the local topology around the two colored nodes shown in 
figure 10A. A possible way would be to count all the graphlets of a certain type which pass 
through the nodes. Graphlets are small connected network subgraphs with a pre-
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determined number of nodes. In figure 10B, we reported all the possible graphlets with 2 
nodes and 3 nodes, with the designation G0, G1 and G2 originally introduced by Pržulj. As 
evident by figure 10C , node 1 is touched by 3, 3 and 1 G0, G1 and G2 graphlets respectively. 
Node 2 is touched by 5, 5 and 2 G0, G1 and G2 graphlets respectively. You can check the 
number of G0 and G1 graphlets on the left part of figure 10C, and the number of G2 graphlets 
(triangles) on the right; these numbers are called G0, G1 and G2 graphlet degree of a node. 
Thus, with respect to two- and three nodes graphlets, it is possible to define an ordered 
vector of the type <g0, g1, g2>, which will describe for each node how many graphlets of any 
possible type actually pass through the node. For node 1 and node 2, this vector assumes the 
values of <3,3,1> and <5,5,2> respectively. The vector obtained considering all the 29 
possible graphlets having from 2 to 5 nodes has been originally dubbed “graphlet degree 
signature” or simply “signature” of a node. 
 
 
 
 

 
 
 
 

Fig. 10. A) Two nodes with a distinct topology; B) All the possible connection arrangement 
(graphlets) for groups of 2 or 3 nodes; C) Left, prevalence of G0 and G1 graphlets passing by 
nodes 1 and 2; Right, prevalence of G2 graphlets passing by nodes 1 and 2. 
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Before going further, it is important to note the following: 
1. the G0 degree is equivalent to the node degree we saw in the preceding paragraphs; in 

this respect, the graphlet degree signature can be seen as a generalization of the node 
degree, which is not limited to the count of only a single type of graphlet; 

2. By considering the type and number of graphlet connected to a node, the graphlet 
degree signature captures in a single metric both the degree of the node, the 
neighborhood abundance and its topology, recapitulating in a single measure the 
complementary aspects we introduced in the previous paragraphs. 

Once defined in the way we have seen, the graphlet degree signature can be used to cluster 
all the nodes of a network according to their similarity. We will not enter into the details of 
the method, which is fully described elsewhere (Milenković T. & Przulj N. 2008); to our 
purposes, it is enough to understand that nodes with a graphlet degree signature similar 
above a certain threshold (which implies a similar centrality and a topologically equivalent 
neighborhood) can be grouped together. The resulting groups, however, may contain nodes 
which are quite far in the original network, so that nodes in the same cluster are in general 
scattered all over the network. Mostly relevant to the biologist, it has been shown how these 
clusters contain proteins of similar biological role and functioning (Milenković T. & Przulj 
N. 2008). This means that, at least in principle, if one selects a node with known biological 
features, it is possible to calculate its graphlet degree signature, search for nodes with a 
similar signature and transpose the biological features to what has been found, without 
considering the distance of the newly identified nodes from the starting point, as opposite to 
what we have seen in the previous paragraph. 

6. A brief review of successful applications 
We will see at this point how the topological analysis of biological networks has been 
already applied to achieve interesting results. Due to the limited space, we will restrict 
ourselves to few examples; however, the literature describing successful applications of 
network analysis in biology is growing at exponential rate, as evident by comparing the 
papers produced yearly and indexed by Pubmed for “network biology”in 2000 (372) to the 
corresponding figure for 2010 (2324). 
A first, obvious application of topological network analysis consists in illuminating new 
aspects of the cell biology, which are evident only when looking to the full puzzle 
represented by a molecular net, instead then to the single pieces of it. The instruments used 
for such an analysis are many; however, even the simplest topological descriptors we have 
introduced in this chapter, such as the cliques, may be very useful. 
To illustrate this point, let us refer initially to the classic work of Spirin and Mirny on the 
yeast protein-protein interaction network (Spirin V. & Mirny LA. 2003). These two authors 
were the first to describe the presence of densely connected modules in protein-protein 
interaction network, i.e. neighborhoods whose internal connectivity is very high compared 
to the average network connectivity. As we already know, in extreme cases – i.e. in case all 
the neighborood’s components are fully connected – these protein groups are cliques. As 
discovered by the aforementioned authors, cliques and very connected neighborhoods 
represent molecular complexes and/or functional modules. Thanks to this fact, the authors 
were able to identify a full wealth of new functional modules, including several previously 
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unknown molecular machineries, such as an eight-member module of cyclin-dependent 
kinases, cyclins and their inhibitors regulating the cell cycle, a six-member module of 
proteins involved in bud emergence and polarity establishment and a six-member module 
of CDCs, septins, and Ser/Thr protein kinases involved in mitotic control. From their 
starting seminal work, which for the first time shifted the network analysis from single node 
centrality to community of nodes, a deluge of research followed. This trend culminated in 
several complex applications of clique analysis, such as a recent work which nicely 
illustrated how the mitotic spindle functioning is regulated by a cascade of events which 
involves cliques (i.e. molecular complexes) instead of single proteins (Chen TC. Et al., 2009). 
With regard to more complex topological parameters, such as the graphlet degree signature 
introduced in the previous paragraph, there are obviously fewer examples, given the fact 
that they have been introduced much later. However, being refined instruments, the results 
obtained by their systematic application are somehow superior in generality, and uncover 
the real potency of the topological approach in molecular network analysis. To understand 
this, is sufficient to read a recent paper by Milenkovic T. et al., 2010. The authors describe 
how in a human protein-protein interaction network oncogenes do have a very similar 
graphlet degree signature, which is different from that of genes unrelated to cancer, at a 
point that they are able to use this signature to identify new oncogenes. If this finding will 
be confirmed by others, we will be forced to admit that the detailed topology around a node 
in a global protein-protein interaction map is important in determining the function of the 
corresponding protein at least at the same level as its sequence and three-dimensional 
structure – a somehow unexpected result, given the fact that protein-protein interaction 
networks are only a very abstract map of all the interactions which have been observed, 
without spatial and temporal resolution, and do not corresponds to any physical entity. 
However, we want to conclude this paragraph by stressing the fact that, albeit this and 
similar fundamental problems rest to be solved, and are matter of current and future 
research in the field, we are seeing already the first applications of network analysis in 
human therapy. In particular, although network science is still in its infancy, it is currently 
shifting from a better understanding of why a given drug works or not to the identification 
of new therapeutic interventions. As an example, consider the case of multi-drug therapy, 
which is a very active field of research and experimental work, due to its high potential in 
overcoming several obstacle to the effective pharmacological treatment of different 
conditions. As opposed to the classical “magic bullet” pharmacological paradigm, aiming to 
the ultra-specific targeting of a single protein, a new kind of approach to the design of a 
therapy is emerging, which relies on simultaneously targeting several molecular processes. 
The topological analysis of the molecular network underlying a specific disease is the only 
way to rational implement such an approach, allowing the quest for modulators acting on 
different network areas, so to attack different cellular pathways. This way to proceed was 
recently validated by some groups, which could identify the right combination of drugs to 
be used in a number of oncological conditions, such as incurable pancreatic adenocarcinoma 
(Azmi AS. Et al., 2010), as well as head and neck chemoresistant cancer (Ratushny V. et al., 
2009). 
From the point of view of the network topology, the approaches described in these papers 
can be seen as the targeting of control hubs within neighborhoods with quite distinct 
compositions and cellular functions (i.e. separated neighborhoods enriched in proteins with 
different functional annotation), a practical strategy which relies on the concepts discussed 
previously in this chapter and which wait to be extended to several other cases. 
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7. Conclusion: A concept-map for the analysis of network topology 
Having listed some few examples, we would like to recall to the attention of the reader those 
elements which allow a successful analysis: a proper selection of the data set to start with, a 
correct identification of the rules used to build the network (i.e. the type of network to be 
analyzed), few general assumptions on the relationships between the topology and the 
biological properties of the proteins to be found, and a correctly chosen null-hypothesis for 
the minimization of false positives (which, if possible, should also take into account bias and 
errors). 
Let us discuss briefly the first point, i.e. the selection of a proper data set to derive the nodes 
of the network. This step is crucially influenced by the scope of the network. For example, if 
the aim is to find potential drug targets for a given condition, a literature-derived dataset, 
including all the proteins known to be related to a certain disease – irrespectively of the type 
of relation they have with the studied condition - might be useful. A protein expression data 
set, containing data on differential protein expression, would be equally useful. On the 
contrary, taking into account a complete protein-protein interaction data set may be both 
misleading – given the fact that there is no guarantee that the proteins contained in it are 
expressed in the selected condition – and useless, because this type of database lacks 
information on those proteins which have strong activity and expression in the selected 
condition, but do not have any identified molecular partner. 
As for the second point, usually people select the type of network (and thus the node linking 
rule) they want to build at the very first step – i.e., they use protein interaction databases to 
build protein-protein interaction networks, expression databases for co-expression networks 
and so on. However, there are certain cases were this passage is not automatic. For example, 
if the data source for the node list is the scientific literature, instead of building a literature 
co-occurrence network one can derive the linking rule from a different source, like a 
microarray experiment database. By combining a literature-derived list of nodes with 
microarray information for linking them, one would obtain a network, whose nodes are 
selected on the basis of a specific scientific topic, and are bound by co-expression, without 
the need to perform  an actual experiment in the condition of interest. 
As for the third point, it is true that, in general, the topology of a node is correlated to the 
relevance of the role that the corresponding protein plays in the particular condition the 
network refers to. However, one has to recall that: 
1. The meaning of “topologically relevant proteins” varies with the type of network – for 

example, hubs in co-expression networks are usually housekeeping proteins, while in 
protein-protein interaction networks they may be core constituent of molecular 
complexes; 

2. the specific meaning varies also with the network dimension – so that in a network 
including the full yeast proteome, topologically prominent proteins are heterogeneous 
in function, while in a network made of proteins involved in apoptosis the hubs are key 
apoptosis regulators; 

3. obviously protein prioritization is affected by the particular topological quantity one is 
measuring –a protein may be an hub, yet may have no clique including it; 

4. the relevance of a protein for the cell may be in gross contrast with what is perceived as 
relevant by the investigator – housekeeping proteins are very relevant to the 
functioning of the cell, but not so to someone wanting to find new drug targets. 
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Finally, coming to the forth point, we want to stress here that control models to be used for 
underpinning significant topological properties should vary, depending on the topological 
quantity under study. Thus, to get a control network for testing the relevance of some 
topological characteristic of a certain group of node, one may compare the results obtained 
on the actual network with those obtained in: 
a. a random network, i.e. a network made of the same number of nodes and edges, with 

fully random connection between the nodes- this is enough to test for the global 
distribution of topological quantities, such as the degree distribution or the existence of 
statistically relevant neighborhoods; 

b. a degree-preserving random network, i.e. a network made of the same number of nodes 
and edges, with the degree of each node preserved, but a completely different wiring – 
this is the proper control, when one want to test the association between some 
topological parameter and a specific biological attribute, which depends on the 
particular nodes considered; 

c. a set of random network (degree preserving type or not) – this is the proper control, 
when one want to test the probability of the emergence of the observed topology in a 
network 

 
 

 
 

Fig. 11. Concept map for network topology analysis 
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After these considerations, we will conclude this chapter by outlining a general concept-
map, reported in figure 11,  which we feel can be useful in analyzing the topology of protein 
networks. This map should be regarded as a contribution to avoid common 
misinterpretations of the meaning of topological parameters in different contexts, not as an 
all-inclusive description of the possible applications and types of protein networks. 
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1. Introduction

The availability of over 1500 completely sequenced and annotated prokaryotic genomes offers
a variety of comparative and predictive approaches on genome-scale. The results of such
analyses strongly rely on the quality of the employed data and the computational strategy
of their interpretation. Today, comparative genomics allows for the quick and accurate
assignment of genes and often their corresponding functions. The resulting list of classified
genes provides information about the overall genomic arrangement, of metabolic capabilities,
general and unique cellular functions, however, almost nothing about the underlying complex
regulatory networks. Transcriptional regulation of gene expression is a central part of these
networks in all organisms. It determines the actual RNA, protein and as a consequence
metabolite composition of a cell. Moreover, it allows cells to adapt these parameters in
response to changing environmental conditions. An integral part of transcriptional regulation
is the specific interaction of transcription factors (TFs) with their corresponding DNA targets,
the transcription factor binding sites (TFBSs) or motifs. Recent advances in extensive data
mining using various high-throughput techniques provided first insights into the complex
regulatory networks and their interconnections. However, the computational prediction of
regulatory interactions in the promoter regions of identified genes remains to be difficult.
Consequently, there is a high demand for the in silico identification and analysis of involved
regulatory DNA sequences and the development of software tools for the accurate prediction
of TFBSs.
In this chapter we focus on methods for the prediction of TFBSs in whole prokaryotic
genomes (regulons). Although, many studies were sucessfully performed in eukaryotes they
are often not transferable to the special features of bacterial gene regulation. In particular
the prokaryotic genome organization concerning clusters of co-transcribed polycistronic
genes, the lack of introns and the shortness of promoter sequences necessitates adapted
computational approaches. Besides the genomic structure there are also differences in
the regulatory control logic. Prokaryotic promoters often possess one or few regulatory
interactions while the repertoire of regulators consists of only a couple of global TFs but
many local TFs (Price et al., 2008). On the other hand, eukaryotic promoters and enhancers
involve the concerted binding of multiple regulators, so called cis-regulatory modules (CRMs)
or composite elements (Loo & Marynen, 2009). Many excellent reviews in the field prokaryotic
gene regulation were recently published with focus on the broad spectrum of approaches
for the experimental and theoretical reconstruction of gene regulatory networks and their
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interspecies transfer (Baumbach, 2010; Rodionov, 2007; van Hijum et al., 2009; Zhou & Yang,
2006). Here, we focus on practical aspects how to detect new members of a regulon for genes
or genomes of interest. We will summarize useful bioinformatics databases, methods and
algorithms available for unraveling bacterial gene regulatory networks from whole genome
sequences. Finally, we want to indicate the limitations and technical problems of such
approaches and give a survey on recent improvements in this field.

2. Strategies for the prediction of transcripion factor binding sites

Basically, today exist at least two general approaches to recognize regulatory sequence
patterns. One challenging approach called pattern discovery relies on a statistical
overrepresentation of DNA sequence motifs present in promoters of structurally and
funktionally related or co-regulated genes. In that case it is a de-novo prediction where the
binding site and the corresponding regulator are unknown. The list of investigated genes
can be derived from clusters of co-expressed genes available in microarray experiments,
from ChIP-on-chip experiments or from orthologous genes of related organisms. In the
latter case this method is called phylogenetic footprinting (McCue et al., 2001). Pattern
discovery algorithms are top-down approaches that use various learning principles with
different degrees of performance (Sandve et al., 2007; Su et al., 2010; Tompa et al., 2005). The
advantage of this method is the detection of potential regulatory DNA sequences even if there
is little known about the corresponding regulation. A recent study in prokaryotes appling a
pattern discovery approach revealed that the predicted patterns matched up to 81% of known
individual TFBSs (Zhang et al., 2009). However, this approach has limitted value in getting a
clue about what specific regulator is involved in a predicted TFBS.
An alternative approach on which we focus in this chapter is called pattern matching. It
makes use of prior knowledge in form of a predetermined pattern that can be assigned to a
specific regulator. The pattern is usually build based on a profile of known TFBSs for which
experimental evidence is available (Fig. 1 A). Using this set of DNA sequences a probabilistic
model describing the pattern degeneracy is constructed. Application of the model on a
given sequence results in a score for the likelihood that the investigated sequence belongs
to the same sequence family. The application of pattern matching involves the availability
of a reliable training set of TFBSs. For that purpose, several specalized databases provide
collections and patterns of prokaryotic TBFSs supplemented with various related information
like promoter and operon structures. A limited list of important data sources is shown in
table 1.
In the following examples a data set of 40 experimentally proven TFBSs from the anaerobic
regulator Anr of Pseudomonas aeruginosa is used (Trunk et al., 2010). There are different
ways of pattern representation. Traditionally, the usage of IUPAC code for base ambiguities
is a straightforward way to describe a binding motif (NC-IUB, 1985). In this approach,
combinations of certain bases are assigned to an extended alphabet of specific letters (Fig. 1 B).
IUPAC code can be easily converted into a regular expression (Fig. 1 C). A regular expression
is a formal language for pattern matching, that can be used to scan for ambiguous IUPAC
strings in order to predict new TFBSs (Betel & Hogue, 2002). (Fig. 1 B). Allthough the IUPAC
letter code is very concise and still widely used among biologists it does not describe a proper
weighting of bases. Additionally, the majority rules how to generate a consensus sequences
are to some extent arbitrary (Day & McMorris, 1992). However, in the case that the training
set consists of only a few sequences the usage of IUPAC code can still make sense.
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Name Year Data content URL References
CoryneRegNet 2006 Coynebacerium TFBSs,

regulatory networks,
predictions

http://www.coryneregnet.de Baumbach et al. (2009)

DBTBS 2001 B. subtilis TFBSs,
operons, predictions

http://dbtbs.hgc.jp Sierro et al. (2008)

DPInteract 1998 E. coli TFBSs, PWMs http://arep.med.harvard.edu
/dpinteract

Robison et al. (1998)

PRODORIC 2003 prokaryotic TFBSs,
PWMs, promoters,
expression data

http://www.prodoric.de Grote et al. (2009)

PromEC 2001 E. coli promoters http://margalit.huji.ac.il
/promec

Hershberg et al. (2001)

RegPrecise 2010 predicted TFBSs http://regprecise.lbl.go Novichkov et al. (2010)

RegTransBase 2007 prokaryotic TFBSs,
PWMs

http://regtransbase.lbl.gov Kazakov et al. (2007)

RegulonDB 1998 E. coli TFBSs,
PWMs, operons,

http://regulondb.ccg.unam.mx Gama-Castro et al. (2011)

Tractor_DB 2004 predicted TFBSs of
γ-proteobacteria

http://www.tractor.lncc.br Pérez et al. (2007)

Table 1. List of important public databases about bacterial gene regulation. The table shows
the name, year of establishment, data content, the internet address and the latest reference of
the respective database.

A more accurate description of a binding pattern is achieved by probabilistic models like a
frequency matrix (or alignment matrix) (Staden, 1984). Instead of considering only the most
common bases at each position a matrix comprises the frequencies for each nucleotide at each
position (Fig. 1 D). Based on frequency matrices many models for the calculation of weights
were proposed. Such a model is broadly called position weight matrix (PWM) or position
specific scoring matrix (PSSM). PWMs can be considered as simplified profile hidden Markov
models (HMM) that do not allow insertion and deletion states (Durbin et al., 1998). Formally,
a PWM is an array M of weights w where each column corresponds to the position of the TFBS
motif of the length l and each row represents the letter of the sequence alphabet A. In case of
DNA A ∈ {A, C, G, T} (equation 1).

M =

∣∣∣∣∣∣∣∣

wA,1 wA,2 · · · wA,l
wC,1 wC,2 · · · wC,l
wG,1 wG,2 · · · wG,l
wT,1 wT,2 · · · wT,l

∣∣∣∣∣∣∣∣
(1)

Many very related examples for the calculation of individual weights were proposed in the
literaure (Berg & von Hippel, 1987; Fickett, 1996; Schneider et al., 1986; Staden, 1984; Stormo,
2000). The information theoretical approach and modifications of it ((Schneider et al., 1986))
are widely used and some of the most successful methods for both the modeling and the
prediction of potential TFBSs. Information is a measure of uncertainty which means that
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a highly conserved position with the exclusive occurence of one specific nucleotide gets
the highest information value of 2 bits. In other words there is a maximum certainty of
finding this nucleotide at this position. In contrast, an information value of 0 bits represents
a highly degenerated position and the highest uncertainty of finding a specific nucleotide.
The information vector R(l) represents the total information content of a profile of aligned
sequences at the position l with f (b, l) indicating the frequency of the base b at position l.

R(l) = 2 +
T

∑
b=A

f (b, l) log2 f (b, l) (2)

An information PWM m(b, l) is generated by multiplying the base frequencies f (b, l) with the
total information content R(l) (Fig. 1 E).

m(b, l) = f (b, l) · R(l) (3)

For pattern matching applications a PWM is used by summing up the corresponding
weights of a candidate sequence to a score. Afterwards, these scores are compared to a
predefined cut-off (or threshold) to filter out potential predictions. The derived score is
often correlated to the binding affinity of a TF thus the information score can be interpreted
as an rough estimate to the specific bindung energy. However, this is only possible under
the simplifying assumption that each position of a pattern contributes independently to the
TF-TFBS interaction. This additivity assumption is controversially discussed but is was shown
that it is in fact a reasonable approximation (Benos et al., 2002). The graphical representation
of an information PWM is called sequence logo (Schneider & Stephens, 1990). In a sequence
logo each PWM weight is equivalent to the individual letter size so the total height of the stack
of letters represents the information content R(l) at this position. Sequence logos allow an
illustrative visualization of the sequence conservation and binding preference of a regulator
(Fig. 1 F).

3. Statistical significance of pattern matching

Regulatory sequences are commonly short (usually 6-18 bp), the sample size of experimentally
proven sites is often limited and in many cases the observed level of sequence conservation
is low. Consequently, the genome-wide statistically occurance frequency of derived patterns
is often unrealistically high. In such cases, searches generally generate increasing numbers of
false-predictions the lower the threshold score is set. This is demonstrated in Fig. 2 showing
the score distributions of true and false predictions of a genome wide search in P. aeruginosa
using the PWM of the Anr regulator (Fig. 1 E). In the shown example matches in coding
regions were considered as false-predictions (false-positives) and matches that are part of the
training set were naturally ranked as true-predictions (true-positives). Score distributions are
also important indicators to evaluate the predictive capacity of a PWM (Medina-Rivera et al.,
2011).
In order to improve the predictive power of pattern matching, commonly a cut-off score is
set in a way, that improves the ratio of true- and false-predictions. However, thereby the
total number of hits will still contain to some extent false-positives while some true matches
become lost (false-negatives). From this it follows that matches of TFBS predictions can not be
classified in a binary manner like a dignostic test, since true-positives and false-positives are
always coexisting. Alternatively, they can be grouped into a classification schema consisting
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A) Excerpt of 40 Sample sequences (training set)

1 T T G A T T C C G G T C A A
2 T T G A C T T T C A T C A A
3 T T G A T T G C C A T C A A
4 T T G A C C G G A A T C A A
...

...
40 T T G A T G T C G A T C A A

B) IUPAC consensus

Y T G H Y N B N B V K C A R

C) Regular Expression

[CT]TG[ACT][CT][ACGT][CGT][ACGT][CGT][ACG][TG]CA[AG]

D) Frequency Matrix

1 2 3 4 5 6 7 8 9 10 11 12 13 14
A 2 0 0 29 0 6 0 10 6 20 0 0 40 35
C 5 0 0 7 17 17 15 10 15 3 1 40 0 0
G 0 0 40 0 3 10 9 18 16 17 2 0 0 5
T 33 40 0 4 20 7 16 2 3 0 37 0 0 0

E) Position Weight Matrix

1 2 3 4 5 6 7 8 9 10 11 12 13 14
A 0.06 0.00 0.00 0.65 0.00 0.02 0.00 0.07 0.04 0.35 0.00 0.00 2.00 1.27
C 0.15 0.00 0.00 0.16 0.30 0.05 0.17 0.07 0.09 0.05 0.04 2.00 0.00 0.00
G 0.00 0.00 2.00 0.00 0.05 0.03 0.10 0.12 0.10 0.30 0.08 0.00 0.00 0.18
T 0.97 2.00 0.00 0.09 0.35 0.02 0.18 0.01 0.02 0.00 1.43 0.00 0.00 0.00

F) Sequence Logo
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Fig. 1. Various pattern representations for a taining set 40 Anr binding sites from Pseudomonas
aeruginosa (Trunk et al., 2010). The deduced IUPAC consensus (B), regular expression (C),
frequency matrix (D), position weight matrix (E) and sequence logo (F) are shown.
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a highly conserved position with the exclusive occurence of one specific nucleotide gets
the highest information value of 2 bits. In other words there is a maximum certainty of
finding this nucleotide at this position. In contrast, an information value of 0 bits represents
a highly degenerated position and the highest uncertainty of finding a specific nucleotide.
The information vector R(l) represents the total information content of a profile of aligned
sequences at the position l with f (b, l) indicating the frequency of the base b at position l.

R(l) = 2 +
T

∑
b=A

f (b, l) log2 f (b, l) (2)

An information PWM m(b, l) is generated by multiplying the base frequencies f (b, l) with the
total information content R(l) (Fig. 1 E).

m(b, l) = f (b, l) · R(l) (3)

For pattern matching applications a PWM is used by summing up the corresponding
weights of a candidate sequence to a score. Afterwards, these scores are compared to a
predefined cut-off (or threshold) to filter out potential predictions. The derived score is
often correlated to the binding affinity of a TF thus the information score can be interpreted
as an rough estimate to the specific bindung energy. However, this is only possible under
the simplifying assumption that each position of a pattern contributes independently to the
TF-TFBS interaction. This additivity assumption is controversially discussed but is was shown
that it is in fact a reasonable approximation (Benos et al., 2002). The graphical representation
of an information PWM is called sequence logo (Schneider & Stephens, 1990). In a sequence
logo each PWM weight is equivalent to the individual letter size so the total height of the stack
of letters represents the information content R(l) at this position. Sequence logos allow an
illustrative visualization of the sequence conservation and binding preference of a regulator
(Fig. 1 F).

3. Statistical significance of pattern matching

Regulatory sequences are commonly short (usually 6-18 bp), the sample size of experimentally
proven sites is often limited and in many cases the observed level of sequence conservation
is low. Consequently, the genome-wide statistically occurance frequency of derived patterns
is often unrealistically high. In such cases, searches generally generate increasing numbers of
false-predictions the lower the threshold score is set. This is demonstrated in Fig. 2 showing
the score distributions of true and false predictions of a genome wide search in P. aeruginosa
using the PWM of the Anr regulator (Fig. 1 E). In the shown example matches in coding
regions were considered as false-predictions (false-positives) and matches that are part of the
training set were naturally ranked as true-predictions (true-positives). Score distributions are
also important indicators to evaluate the predictive capacity of a PWM (Medina-Rivera et al.,
2011).
In order to improve the predictive power of pattern matching, commonly a cut-off score is
set in a way, that improves the ratio of true- and false-predictions. However, thereby the
total number of hits will still contain to some extent false-positives while some true matches
become lost (false-negatives). From this it follows that matches of TFBS predictions can not be
classified in a binary manner like a dignostic test, since true-positives and false-positives are
always coexisting. Alternatively, they can be grouped into a classification schema consisting
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Fig. 2. Score distributions of false-positive matches (A) and true-positive matches (B) from a
genome wide search in P. aeruginosa using the Anr PWM.

of four different classes (Fig. 3) which is called a two-by-two confusion matrix or contingency
table (Fawcett, 2004).

Dataset
Positive Negative

Match True-Positive False-Positive

No Match False-Negative True-Negative

Fig. 3. A two-by-two confusion matrix illustrates all four possible outcomes of matches in the
positive and in the negative dataset.

Thus, setting a cut-off score can be considered as important decision-making process. Instead
of setting an arbitrary cut-off value it is possible to determine an optimized threshold. For
that purpose, a number of statistical performance measurements for binary classification are
available. Sensitivity Sn (or true-positive rate) measures the proportion of positive matches
which are correctly identified at a given cut-off score c. Hereby, the positive matches include
both the number of true-positives TP and false-negatives FN.

Sn(c) =
TP

TP + FN
(4)

Similarly, specificity Sp (or true-negative rate) measures the proportion of correctly identified
negative matches at a given cut-off score c where the amount of negative matches is the sum
of true-negatives TN and false-positive FP.

Sp(c) =
TN

TN + FP
(5)
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This definition involves that the sensitivity and specificity plots as a function of the cut-off
show opposite behaviour which results in an increase of specificity (get less false-positives)
at the cost of sensitivity (find less true-positives) and vice versa (Fig. 4 A). A receiver
operating characteristics (ROC) curve summarizes the classification performance in a plot of
sensitivity versus (1-specificity). ROC curves are fundamental tools for the evaluation of the
classification models. An optimal ROC curve would cross the upper left corner or coordinate
(0,1) representing 100% sensitivity and specificity whereas a random guess would produce a
point along the diagonal line (Fig. 4 A). Thus, the diagonal line divides the ROC space: points
above the digonal represent good classification results, points below the line indicate poor
results (Fawcett, 2004).
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Fig. 4. Performance measurements for the prediction of the Anr regulon in Pseudomonas
aeruginosa. (A) Sensitivity (green) and specificity (red) plot. (B) ROC graph.

An alternative way to optimize the performance of pattern matching and to produce
stastistically significant results is the calculation of a p-value. A p-value depicts the likelihood
to find a score that is as least as good by change. P-values can be either determined by
simulation or estimated via a compound importance sampling approach (Oberto, 2010).
Finally, appropriate thresholds for pattern searches are determined as a tradeoff between
sensitivity and specificity to maximize both values. Despite optimized cut-off values this
approach can results in a poor sensitivity and a loss of 40-60% of known functional sites
(Benítez-Bellón et al., 2002). In addition, the fact that false-predictions commonly exeeds
true-predictions by several orders of magnitude (Fig. 2 B) was called ’futility theorem’
(Wasserman & Sandelin, 2004). Fortunately, there are many sophisticated approaches to
overcome this problem in a reasonable way (see section 4).

4. Improvements to increase the accuracy of TFBS predictions

4.1 Modifications of the score
In several studies the information score was modified in different ways. One of the most
critical points of equation 2 is that it postulates an equal nucleotide distribtuion of the target
genome which is the case e.g. for Escherichia coli with a GC content of 51.8%. For this reason,

155Prediction and Analysis of Gene Regulatory Networks in Prokaryotic Genomes



6 Will-be-set-by-IN-TECH

Score

N
um

be
r o

f m
at

ch
es

11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0

0
50

10
0

15
0

20
0

25
0

30
0

35
0

A

Score

N
um

be
r o

f m
at

ch
es

11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0

0
2

4
6

8
10

12

B

Fig. 2. Score distributions of false-positive matches (A) and true-positive matches (B) from a
genome wide search in P. aeruginosa using the Anr PWM.

of four different classes (Fig. 3) which is called a two-by-two confusion matrix or contingency
table (Fawcett, 2004).

Dataset
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No Match False-Negative True-Negative

Fig. 3. A two-by-two confusion matrix illustrates all four possible outcomes of matches in the
positive and in the negative dataset.

Thus, setting a cut-off score can be considered as important decision-making process. Instead
of setting an arbitrary cut-off value it is possible to determine an optimized threshold. For
that purpose, a number of statistical performance measurements for binary classification are
available. Sensitivity Sn (or true-positive rate) measures the proportion of positive matches
which are correctly identified at a given cut-off score c. Hereby, the positive matches include
both the number of true-positives TP and false-negatives FN.

Sn(c) =
TP

TP + FN
(4)

Similarly, specificity Sp (or true-negative rate) measures the proportion of correctly identified
negative matches at a given cut-off score c where the amount of negative matches is the sum
of true-negatives TN and false-positive FP.

Sp(c) =
TN

TN + FP
(5)
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This definition involves that the sensitivity and specificity plots as a function of the cut-off
show opposite behaviour which results in an increase of specificity (get less false-positives)
at the cost of sensitivity (find less true-positives) and vice versa (Fig. 4 A). A receiver
operating characteristics (ROC) curve summarizes the classification performance in a plot of
sensitivity versus (1-specificity). ROC curves are fundamental tools for the evaluation of the
classification models. An optimal ROC curve would cross the upper left corner or coordinate
(0,1) representing 100% sensitivity and specificity whereas a random guess would produce a
point along the diagonal line (Fig. 4 A). Thus, the diagonal line divides the ROC space: points
above the digonal represent good classification results, points below the line indicate poor
results (Fawcett, 2004).
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An alternative way to optimize the performance of pattern matching and to produce
stastistically significant results is the calculation of a p-value. A p-value depicts the likelihood
to find a score that is as least as good by change. P-values can be either determined by
simulation or estimated via a compound importance sampling approach (Oberto, 2010).
Finally, appropriate thresholds for pattern searches are determined as a tradeoff between
sensitivity and specificity to maximize both values. Despite optimized cut-off values this
approach can results in a poor sensitivity and a loss of 40-60% of known functional sites
(Benítez-Bellón et al., 2002). In addition, the fact that false-predictions commonly exeeds
true-predictions by several orders of magnitude (Fig. 2 B) was called ’futility theorem’
(Wasserman & Sandelin, 2004). Fortunately, there are many sophisticated approaches to
overcome this problem in a reasonable way (see section 4).

4. Improvements to increase the accuracy of TFBS predictions

4.1 Modifications of the score
In several studies the information score was modified in different ways. One of the most
critical points of equation 2 is that it postulates an equal nucleotide distribtuion of the target
genome which is the case e.g. for Escherichia coli with a GC content of 51.8%. For this reason,
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the calculation of the information content of motifs in genomes with highly biased nucleotide
composition is likely to be over- or underestimated. A more generalized form that considers
the background frequencies Pb is given in equation 6.

R(l) = −
T

∑
b=A

f (b, l) log2
f (b, l)

Pb
(6)

This new term turned out to be the relative entropy or Kullback-Leibler distance (Stormo,
2000). An other promising approach deals with biased genome as a discrete channel of noise to
discriminate a motif from its background (Schreiber & Brown, 2002). However, it was recently
demonstrated, that the unmodified information score performs on average better than other
alternatives (Erill & O’Neill, 2009). One reason might be, that binding sites shift towards the
genome skew in a co-evolutionary process between TFs and its corresponding TFBSs.
Other modifications concern the way the score is computationally calculated. Since the
information vector usually peeks at certain well conserved positions it is possible to get
overestimated matches by forming the overall sum. For that purpose, it is useful to define
a core region consisting of the highly conserved positions. Using this approach it is possible
to realize the computation of the score in two steps. Potential matches have to pass first the
core cut-off before they are evaluated by the overall cut-off score (Münch et al., 2005; Quandt
et al., 1995).
Finally, it is possible to enhance the accuracy by combining multiple (independent) criterions.
Apart from the pure sequence information, DNA exhibits distinct structural properties caused
by interactions from neighboring nucleotides. This includes for example DNA curvature,
flexibility and stability, amongst others. Structural DNA features are available as di- and
trinucleotide scale values assigning a particular value to each possible nucleotide combination
(Baldi & BaisnÃ©e, 2000). These values are derived from empirical measurements or
theoretical approaches. The calculation of structural features within a DNA sequence stretch
is usually performed by summing up and averaging the corresponding di- or trinucleotide
scales. Prokaryotic promoters usually exhibit distinct structural features which imply that
these DNA sequences are more curved and less flexible in comparision to coding regions.
This feature is necessary in order to enable the melting of the DNA strands for the onset of
transcription. In most bacterial promoters structural peaks are present around the position
-40 upstream of the transcriptional start point (Pedersen et al., 2000). Structural features can
provide distinct scores independent from PWM based sequence similarity scores. Recently,
pattern matching was combined with a binding site model that was trained using 12 different
structural properties (Meysman et al., 2011). In this approach, based on conditional random
fields, it was shown, that the classification of matches was significantly improved. In a similar
way, structural and chemical features of DNA decreased the number of false-positives in a
supervised learning approach (Bauer et al., 2010).

4.2 Positional preference of TFBSs
Prokaryotic genomes usually consist of 6-14% non-coding DNA (Rogozin et al., 2002). In
contrast to eukaryotes, the evolvement of non-coding regions appears to be determined
primarily by the selective pressure to minimize the amount of non-functional DNA, while
maintaining the essential TFBSs. Additionally, it was demonstrated in Escherichia coli, that
many PWMs show a strong preference for matches in non-coding regions (Robison et al.,
1998). Figure 5 A shows the distance of 1741 genomic TFBSs relative to the translational
start site of the target gene. Only 3.6% of all TFBSs are located after the start codon within
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the coding region. However, the largest amount of TFBSs is accumulated directly upstream.
This is also demonstrated in the cumulative percentage of TFBSs against the distance to the
translational start (Fig. 5 B). According to this result, a total of 75.3% and 87.9% of all TFBSs
are located 200bp and 300bp upstream, respectively. Thus, prokaryotic promoters are usually
short and it is reasonable to constrain searches to non-coding regions with a limit of a few
hundred bp upstream to the translational start.
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Fig. 5. Histogram of TFBS distances to the translational start site. The used dataset consisted
of 1741 genomic TFBSs from various bacterial species taken from the PRODORIC database

4.3 Phylogenetic conservation of regulatory interactions
The large number of sequenced bacterial genomes offers comparative genomics approaches
to predict and to analyze regulatory interactions. Similar to phylogenetic footprinting, highly
conserved matches in promoter regions of paralogous genes are more likely to be functional
targets than non-conserved matches (McCue et al., 2001). This is particulary important for
the interspecies transfer of gene regulatory networks (Babu et al., 2006; Baumbach, 2010) but
also for the scanning of new regulon members (Pérez et al., 2007). The utilization of pattern
matching methods in combination with phylogenetic conservation is also called regulog
analysis (Alkema et al., 2004). During a regulog analysis the relativ conservation score RCS is
defined by the fraction of orthologs, that share the same potential TFBS.

RCS =
orthologsobserved
orthologsexpected

(7)

In the first step of this and related approaches, the orthologous regulators and the
corresponding target gene set are determined. This is often realized by bi-directional best
BLAST hits (BBH) (Mushegian & Koonin, 1996). In the second step, conserved TFBSs are
extracted via pattern matching or pattern discovery approaches. Predicted TFBSs with
phylogenetic conservation can also be used to extend or to build new PWMs. Huge
datasets based on phylogenetic reconstruction were generated in various groups of bacteria
(Baumbach et al., 2009; Novichkov et al., 2010; Pérez et al., 2007). Further investigetion of
regulon evolution revealed the availability of a core set of genes that is widely conserved
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provide distinct scores independent from PWM based sequence similarity scores. Recently,
pattern matching was combined with a binding site model that was trained using 12 different
structural properties (Meysman et al., 2011). In this approach, based on conditional random
fields, it was shown, that the classification of matches was significantly improved. In a similar
way, structural and chemical features of DNA decreased the number of false-positives in a
supervised learning approach (Bauer et al., 2010).
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Prokaryotic genomes usually consist of 6-14% non-coding DNA (Rogozin et al., 2002). In
contrast to eukaryotes, the evolvement of non-coding regions appears to be determined
primarily by the selective pressure to minimize the amount of non-functional DNA, while
maintaining the essential TFBSs. Additionally, it was demonstrated in Escherichia coli, that
many PWMs show a strong preference for matches in non-coding regions (Robison et al.,
1998). Figure 5 A shows the distance of 1741 genomic TFBSs relative to the translational
start site of the target gene. Only 3.6% of all TFBSs are located after the start codon within
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the coding region. However, the largest amount of TFBSs is accumulated directly upstream.
This is also demonstrated in the cumulative percentage of TFBSs against the distance to the
translational start (Fig. 5 B). According to this result, a total of 75.3% and 87.9% of all TFBSs
are located 200bp and 300bp upstream, respectively. Thus, prokaryotic promoters are usually
short and it is reasonable to constrain searches to non-coding regions with a limit of a few
hundred bp upstream to the translational start.

Distance

Fr
eq

ue
nc

y

−1000 −800 −600 −400 −200 0 200

0
10

0
20

0
30

0
40

0
50

0

A

−1000 −800 −600 −400 −200 0

0
20

40
60

80
10

0

Distance

C
um

ul
at

iv
e 

Pe
rc

en
ta

ge

B

Fig. 5. Histogram of TFBS distances to the translational start site. The used dataset consisted
of 1741 genomic TFBSs from various bacterial species taken from the PRODORIC database

4.3 Phylogenetic conservation of regulatory interactions
The large number of sequenced bacterial genomes offers comparative genomics approaches
to predict and to analyze regulatory interactions. Similar to phylogenetic footprinting, highly
conserved matches in promoter regions of paralogous genes are more likely to be functional
targets than non-conserved matches (McCue et al., 2001). This is particulary important for
the interspecies transfer of gene regulatory networks (Babu et al., 2006; Baumbach, 2010) but
also for the scanning of new regulon members (Pérez et al., 2007). The utilization of pattern
matching methods in combination with phylogenetic conservation is also called regulog
analysis (Alkema et al., 2004). During a regulog analysis the relativ conservation score RCS is
defined by the fraction of orthologs, that share the same potential TFBS.

RCS =
orthologsobserved
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(7)

In the first step of this and related approaches, the orthologous regulators and the
corresponding target gene set are determined. This is often realized by bi-directional best
BLAST hits (BBH) (Mushegian & Koonin, 1996). In the second step, conserved TFBSs are
extracted via pattern matching or pattern discovery approaches. Predicted TFBSs with
phylogenetic conservation can also be used to extend or to build new PWMs. Huge
datasets based on phylogenetic reconstruction were generated in various groups of bacteria
(Baumbach et al., 2009; Novichkov et al., 2010; Pérez et al., 2007). Further investigetion of
regulon evolution revealed the availability of a core set of genes that is widely conserved
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across related species and a variable set of target genes reflecting the degree of specialization
(Browne et al., 2010; Dufour et al., 2010). However, it was shown, that the outlined approach is
commonly only feasible between closely related clades which is due to the fact that TFs evolve
rapidly and independently of their target genes (Babu et al., 2006). Morover, orthologous
TFs in bacteria often have different functions and regulate different sets of genes (Price et al.,
2007). In summary, a high RCS value for a TFBS match represents an independent score
for the validation for a real functional targets while a low RCS does not necessarily rule
out false-positive matches. The phylogenetic conservation approach represents a powerful
approach to predict gene regulatory networks in highly related organisms and to get insights
into the evolution of regulons.

5. Conclusion and outlook

In summary the genome-wide recognition of DNA patterns by computational methods is still
a challanging task. However, major improvements in this field allow for reliable predictions in
many cases. Especially the rising number of sequenced bacterial genomes in combination with
data from high-throughput technologies offers many posibilities for the development of more
sophisticated methods in comparative genomics approaches. Nevertheless, computational
methods for TFBSs prediction can not replace wet-lab experiments but they can help to find
new hypotheses that can be verified in an iterative process.
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across related species and a variable set of target genes reflecting the degree of specialization
(Browne et al., 2010; Dufour et al., 2010). However, it was shown, that the outlined approach is
commonly only feasible between closely related clades which is due to the fact that TFs evolve
rapidly and independently of their target genes (Babu et al., 2006). Morover, orthologous
TFs in bacteria often have different functions and regulate different sets of genes (Price et al.,
2007). In summary, a high RCS value for a TFBS match represents an independent score
for the validation for a real functional targets while a low RCS does not necessarily rule
out false-positive matches. The phylogenetic conservation approach represents a powerful
approach to predict gene regulatory networks in highly related organisms and to get insights
into the evolution of regulons.

5. Conclusion and outlook

In summary the genome-wide recognition of DNA patterns by computational methods is still
a challanging task. However, major improvements in this field allow for reliable predictions in
many cases. Especially the rising number of sequenced bacterial genomes in combination with
data from high-throughput technologies offers many posibilities for the development of more
sophisticated methods in comparative genomics approaches. Nevertheless, computational
methods for TFBSs prediction can not replace wet-lab experiments but they can help to find
new hypotheses that can be verified in an iterative process.
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1. Introduction 
Infections are caused by a vast variety of pathogenic agents including viruses, bacteria, 
fungi, protozoa, multicellular parasites, and even proteins (Anderson and May 1979; 
Morse 1995; Bartlett 1997; Mandell and Townsend 1998) that target host organisms from 
virtually all kingdoms of life (Daszak, Cunningham et al. 2000; Williams, Yuill et al. 2002). 
Infectious diseases in humans account for 170 thousand deaths in the United States and 
14,7 million deaths world-wide (2004; Rossi and Walker 2005). “Neglected diseases”, a 
group of tropical diseases that are spread among the poorest segment of the world’s 
population, account for a large portion of human infections (Ayoola 1987; Trouiller, 
Olliaro et al. 2002). With the reluctance of the pharmaceutical industry to invest in the 
development of drugs for neglected diseases, there is an increasing pressure on the 
scientific community in academia and non-profit organizations to obtain a fast and 
inexpensive cure (Trouiller, Torreele et al. 2001; Maurer, Rai et al. 2004; Fehr, Thurmann et 
al. 2006). In addition to human infections, infections in plant and animals have a 
multibillion dollar economic impact each year (Bowers, Bailey et al. 2001; Whitby 2001). 
Expanding the studies to the whole animal kingdom allows scientists to study the host-
pathogen evolution of virulence mechanisms that are common among plant and animals, 
such as type III secretion system (T3SS), an elaborate protein-delivery system (Espinosa 
and Alfano 2004; Abramovitch, Anderson et al. 2006). Moreover, studying interactions 
between pathogens and simpler model organisms, such as drosophila, has led to 
important findings in mammalian systems and is critical for understanding human 
infections (Cherry and Silverman 2006). Recently another threat has come to scientists’ 
attention: the potential use of some pathogens as bioweapons (Whitby 2001; Moran, Talan 
et al. 2008). The attacks can target population directly, or they can target strategic 
resources such as the world’s most consumed crops. Studying HPIs may provide critical 
knowledge for the development of infection diagnosis and treatment for disaster planning 
in case of a bioterrorism event. 
A pathogen causing an infectious disease generally exhibits extensive interactions with the 
host (Munter, Way et al. 2006). These complex crosstalks between a host and a pathogen 
may assist the pathogen in successfully invading the host organism, breaching its immune 
defence, as well as replicating and persisting within the organism. Systematic determination 
and analysis of HPIs is a challenging task from both experimental and computational 
approaches, and is critically dependent on the previously obtained knowledge about these 
interactions. The molecular mechanisms of host-pathogen interactions (HPIs) include 
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interactions between proteins, nucleotide sequences, and small ligands (Lengeling, Pfeffer et 
al. 2001; Kahn, Fu et al. 2002; Stebbins 2005; Forst 2006). The interactions between the 
pathogen and host proteins are one of the most important and therefore widely studied 
group of HPIs (Stebbins 2005). During the last decade, an increasing amount of experimental 
data on virulence factors, their structures, and their functions has become available 
(Sansonetti 2002; Stebbins 2005). The first steps towards large-scale systematic determination 
and analysis of molecular HPIs have recently emerged for important pathogens (Shapira, 
Gat-Viks et al. 2009; Dyer, Neff et al. 2010). Recent progress in data mining and 
bioinformatics allows scientists to accurately predict novel protein-protein interactions, 
structurally characterize individual proteins and protein complexes, and predict protein 
functions on a scale of an entire proteome (Thornton 2001; Russell, Alber et al. 2004; 
Shoemaker and Panchenko 2007). Unfortunately, there have been only a handful of methods 
designed to address the protein interactions between pathogenic agents and their hosts 
(Cherkasov and Jones 2004; Davis, Barkan et al. 2007; Dyer, Murali et al. 2007; Lee, Chan et 
al. 2008; Evans, Dampier et al. 2009; Tyagi, Krishnadev et al. 2009; Doolittle and Gomez 
2011).  As it is the case for many bioinformatics areas, collecting HPI data into a centralized 
repository is instrumental in developing accurate predictive methods. Recently, several such 
HPI repositories have been introduced, some are manually curated, while others are reliant 
on the existing databases (Winnenburg, Urban et al. 2008; Driscoll, Dyer et al. 2009; Kumar 
and Nanduri 2010). While this is a promising first step towards a large-scale HPI data 
collection, one of the largest and most comprehensive sources of experimentally verified 
HPI data remains largely underexplored:  PubMed, a database of peer-reviewed biomedical 
literature, which includes abstracts of more than 20 million research papers and books 
(http://www.ncbi.nlm.nih.gov/pubmed/). Unfortunately, the comprehensive manual 
identification and data extraction of the abstracts containing HPI information from PubMed 
is not feasible due to the size of PubMed. Furthermore, no informatics approach currently 
available to do this automatically.  
In this chapter, we discuss several possible solutions to the problem of automated HPI data 
collection from the publicly available literature. The chapter is organized as follows. First, 
we describe some of the popular HPI databases that are currently available publicly. Second, 
we discuss the state-of-the-art approaches to a related problem of mining general protein-
protein interactions from the literature. Third, we propose three approaches to mine HPIs 
and discuss the advantages and disadvantages of these approaches. In conclusion, we 
discuss the future steps in the area of HPI text mining by highlighting factors that are critical 
for its successful development. 

2. Host-pathogen interaction databases 
During the last several years, a number of resources collecting HPI data have emerged 
(Snyder, Kampanya et al. 2007; Winnenburg, Urban et al. 2008; Driscoll, Dyer et al. 2009; 
Kumar and Nanduri 2010). Many resources rely on the automated post-processing of the 
large-scale databases for general protein-protein interactions, while some other obtain the 
HPI data by manually curating the biomedical literature. Often the resources focus on the 
human-pathogen interactions. Next, we will briefly describe some of the popular databases 
that include HPI data. 
HPIDB - Host-Pathogen Interaction DataBase. One of the most recent HPI database, 
HPIDB (Kumar and Nanduri 2010) integrates the information from other HPI database, PIG 
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(Driscoll, Dyer et al. 2009), and more general protein-protein interaction databases, BIND 
(Gilbert 2005), GeneRIF(Mitchell, Aronson et al. 2003; Pruitt, Tatusova et al. 2003), IntAct 
(Aranda, Achuthan et al. 2010), MINT (Zanzoni, Montecchi-Palazzi et al. 2002), and 
Reactome (Matthews, Gopinath et al. 2009). Currently, the database has 22,841 protein-
protein interactions between 49 host and 319 pathogen species (Kumar and Nanduri 2010). 
HPIDB is searchable via a keyword search, a BLAST search, or a homologous HPI search. 
For each query, the following output information is obtained: UniProt accession numbers of 
both host and pathogen proteins, host and pathogen names, detection method, author name, 
PubMed publication ID (PMID), interaction type, source database, and comments. The 
homologous HPI search option allows the user to do one or both of the following: search for 
a set of homologous host proteins, and search for a set of homologous pathogen proteins. 
PATRIC – PAThosystems Resource Integration Center. PATRIC is a resource that 
integrates genomics, proteomics, and interactomics data on a comprehensive set of bacterial 
species as well as a set of data mining and comparative genomics tools (Snyder, Kampanya 
et al. 2007; Sullivan, Gabbard et al. 2010). The human-pathogen interaction data for 30 
bacterial pathogens are also a part of the resource. Similar to HPIDB, the data are extracted 
and post-processed from a number of general protein-protein interaction databases 
including BIND (Gilbert 2005), DIP (Xenarios, Fernandez et al. 2001), IntAct (Aranda, 
Achuthan et al. 2010), and MINT (Zanzoni, Montecchi-Palazzi et al. 2002).  With PATRIC a 
user selects a pathogen from the home page.  The search can be refined by selecting specific 
interaction types (e.g., “direct interaction”, “colocalization”), detection methods (e.g., 
“coimmunoprecipitation”, “two hybrid”), or source databases. The results can be visualized 
as a network of interacting proteins with the colour nodes representing different species and 
weighted edges representing the number of independent experimental sources supporting 
the interaction. The Pathogen Interaction Gateway (PIG) is a part of PATRIC that is focused 
on collecting and analysing exclusively the protein-protein human-pathogen interactions 
and the corresponding interaction networks (Driscoll, Dyer et al. 2009). The PIG web 
interface allows mining the data using two query types: the BLAST search and text keyword 
search. PIG also has a utility that allows the user to visualize the network of protein-protein 
HPIs followed by the network comparison between the HPI networks extracted for two 
different pathogen genes. 
PHI-base – the Pathogen-Host Interaction dataBASE. PHI-base collects information on 
experimentally verified pathogenicity, virulence and effector genes from bacterial, fungal, 
and Oomycete pathogens and includes a variety of infected hosts from plants, mammals, 
fungus, and insects (Winnenburg, Urban et al. 2008). All database entries are manually 
curated and are supported by experimental evidence and literature citations. The current 
version has a total of 1,065 gene entries participating in 1,335 interactions between 97 
pathogens and 76 hosts, supported by 720 literature references. The interaction between a 
host and pathogen organism is considered in this database in a more general sense and often 
is not associated with any physical interaction between the host and pathogen proteins. 
Using the PHI-base web interface, a user can do either a simple quick search or an advanced 
search, where the user selects one or many of the following search terms: gene, disease 
(caused by pathogen), host, pathogen, anti-infective, phenotype, and experimental evidence. 
The search output is a list of interactions and their details including PHI-base accession 
number, gene name, EMBL accession number, phenotype of the mutant, pathogen species, 
disease name, and experimental host.  The user can also obtain additional information on 
nucleotide and amino acid sequences of the pathogen gene, experimental evidence of the 
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bioinformatics allows scientists to accurately predict novel protein-protein interactions, 
structurally characterize individual proteins and protein complexes, and predict protein 
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interaction, gene ontology (pathogenesis, molecular function, and biological process), and a 
publication reference. 

3. Current approaches for mining protein-protein interactions 
Rapid growth of published biomedical research has resulted in the development of a 
number of methods for biomedical literature mining over the last decade (Krallinger and 
Valencia 2005; Rodriguez-Esteban 2009). The methods dealing with the biomolecular 
information can be generally divided into three categories based on the domain of 
biomedical knowledge they target: (i) automated protein or gene name identification in a 
text (Mika and Rost 2004; Seki and Mostafa 2005; Tanabe, Xie et al. 2005), (ii) literature-based 
functional annotation of genes and proteins (Chiang and Yu 2003; Jaeger, Gaudan et al. 
2008), and (iii) extracting the information on the relationships between biological molecules, 
such as proteins and RNAs, or genes (Hu, Narayanaswamy et al. 2005; Shatkay, Hˆglund et 
al. 2007; Lee, Yi et al. 2008). The relationships detected by the third group of methods range 
from a co-occurrence of the genes and proteins in a text (Hoffmann and Valencia 2005) to 
detecting the protein-protein interactions (PPIs) (Blaschke and Valencia 2001; Marcotte, 
Xenarios et al. 2001; Donaldson, Martin et al. 2003) and identification of signal transduction 
networks and metabolic pathways (Friedman, Kra et al. 2001; Hoffmann, Krallinger et al. 
2005; Santos and Eggle 2005). Being a special case of protein-protein interactions, HPIs could 
directly benefit from the advancements of the currently existing text mining methods.  
Extraction of protein-protein interactions from the text has been one of the three main tasks 
for the recent BioCreAtIvE (Critical Assessment of Information Extraction systems in 
Biology) challenges, a community-wide effort for evaluating biological text mining and 
information retrieval systems (Hirschman, Yeh et al. 2005; Krallinger, Leitner et al. 2008). 
Three subtasks have been specified: (i) detection of protein-protein interactions relevant 
documents (interaction article subtask, IAS), (ii) identification of sentences with protein-
protein interactions (interaction sentences subtask, ISS), and (iii) identification of interacting 
protein pairs (interaction pair subtask, IPS). A relevant problem, the protein interaction 
method subtask (IMS), is concerned with identification of the type of experimental data 
used to determine an interaction. Approaches that address these subtasks vary from 
supervised machine learning classifiers, to address the first subtask, to statistical language 
processing and grammar-based methods to address the second and third subtasks. 
A simple approach to extract protein-protein interactions is to determine the co-existence of 
proteins in the same sentence (Stephens, Palakal et al. 2001; Hoffmann and Valencia 2005). 
However, this approach is insufficient to handle structured information of biomedical 
sentences. Therefore, pattern matching methods have been proposed that rely on either 
manually defined patterns (Leroy and Chen 2002; Corney, Buxton et al. 2004) or patterns 
that are automatically generated using dynamic programming (Huang, Zhu et al. 2004; Hao, 
Zhu et al. 2005). Another popular group of methods employs the natural language 
processing parsers. A basic approach, called shallow parsing, decomposes sentences into 
non-overlapping fragments and chunks, and defines the dependencies between the chunks 
without extracting their internal structure (Thomas, Milward et al. 2000; Leroy, Chen et al. 
2003). Many shallow parsing approaches employ finite-state automata to recognize the 
interaction relationships between proteins or genes (Thomas, Milward et al. 2000; Leroy, 
Chen et al. 2003). One of the most prominent approaches relies on the deep parsing 
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techniques, where the entire structure of a sentence is extracted (Park, Kim et al. 2001; Ding, 
Berleant et al. 2003; Daraselia, Yuryev et al. 2004; Pyysalo, Ginter et al. 2004; Kim, Shin et al. 
2008; Miyao, Sagae et al. 2009). Many deep parsing approaches have successfully employed 
link grammars (Sleator and Temperley 1995), context-free grammars that rely on a 
dictionary of rules (linking requirements) to connect, or “link”, pairs of related words 
(Ahmed, Chidambaram et al. 2005; Seoud, Youssef et al. 2008; Yang, Lin et al. 2009).  
Each of the above methods, while directly addressing the second and the third subtasks, can 
also solve the abstract classification problem from the first subtask, based on whether or not 
the method is able to extract any protein-protein interactions. The accuracy of such 
classification, however, depends on the accuracy of a more difficult subtask of protein-
protein  interaction extraction. Thus, several methods have been developed to directly 
address the problem of binary classification of protein-protein interaction relevant 
publications (Marcotte, Xenarios et al. 2001; Calli 2009; Kolchinsky, Abi-Haidar et al. 2010). 
The methods primarily rely on supervised and unsupervised feature-based classification 
techniques. Recently, the first method for classification of HPI-relevant documents has been 
introduced, which employs a Support Vector Machines (SVM) supervised classifier (Yin, Xu 
et al. 2010).  

4. New approaches to detection and mining host-pathogen interactions from 
biomedical abstracts 
HPI literature mining is related to a general problem of protein-protein interaction literature 
mining. However, the additional requirement that the interaction occurs exclusively 
between the host and pathogen proteins makes the task more challenging. The accuracy  
of an HPI mining method will depend on additional factors, such as its ability to correctly 
assign a host or pathogen organism to the interacting protein. Similar to the way  
the BioCreAtIvE initiative defines three types of protein-protein interaction mining 
problems (Hirschman, Yeh et al. 2005), the problem of HPI mining can be split into three 
specific tasks: 
HPI Mining Task 1: Given a biomedical publication (a paper or an abstract), determine 
whether or not it contains information on HPIs. 
HPI Mining Task 2: Given a biomedical publication containing HPI information, determine 
specific sentences that contain this information. 
HPI Mining Task 3: Given a biomedical publication that contain HPI information, determine 
specific pairs of host and pathogen proteins participating in the interactions and the 
corresponding organisms. 
The first task can be formulated as a standard classification problem, which is often 
addressed by machine learning methods and for which a number of the method assessment 
protocols have been developed. Here we rely on the following five basic measures. The first 
measure, accuracy, is calculated as fAC  NTP  NTN  / N , where NTP and NTN are the number 
of true positives and negatives, correspondingly, and N is the number of classified 
interfaces. The other two related measures, precision and recall, are calculated as 
fPR  NTP / NTP  NFP   and , correspondingly, where NFP and NFN are 

the number of false positives and negatives. F-score is calculated as . The last 

fRE  NTP / NTP  NFN 

F  2 fPR fRE
fPR  fRE
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techniques, where the entire structure of a sentence is extracted (Park, Kim et al. 2001; Ding, 
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the BioCreAtIvE initiative defines three types of protein-protein interaction mining 
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HPI Mining Task 1: Given a biomedical publication (a paper or an abstract), determine 
whether or not it contains information on HPIs. 
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specific sentences that contain this information. 
HPI Mining Task 3: Given a biomedical publication that contain HPI information, determine 
specific pairs of host and pathogen proteins participating in the interactions and the 
corresponding organisms. 
The first task can be formulated as a standard classification problem, which is often 
addressed by machine learning methods and for which a number of the method assessment 
protocols have been developed. Here we rely on the following five basic measures. The first 
measure, accuracy, is calculated as fAC  NTP  NTN  / N , where NTP and NTN are the number 
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fPR  NTP / NTP  NFP   and , correspondingly, where NFP and NFN are 

the number of false positives and negatives. F-score is calculated as . The last 

fRE  NTP / NTP  NFN 

F  2 fPR fRE
fPR  fRE
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measure, the Matthew correlation coefficient is calculated as 

. Similarly, performance on the last 

task can be easily assessed based on the available information about the host and pathogen 
proteins and their respective organisms. Specifically, we use four different measures. The 
first two measures, fORG and fPRT, address the accuracy of detecting the pairs of interacting 
host and pathogen organisms as well as their proteins. Each measure is calculated as a 
percentage of the number of correctly detected pairs of organisms/proteins to the total 
number of pairs. The other two measures, gORG and gPRT, account for the partial detection of 
HPI information, when at least one of the two organisms or proteins is detected. Both 
measures are defined as the percentage of the total number of detected organisms/proteins 
to the total number of organisms/proteins in all HPIs.   
Unfortunately, evaluating a method’s performance for the second task is more challenging, 
since the HPI data are often (i) scattered across multiple sentences and (ii) redundant (for 
instance, the same interaction between two proteins can be mentioned in several sentences). 
The method assessment for the second task becomes even more challenging when multiple 
HPIs are present in the same abstract. 
We next introduce several strategies that address the above tasks for the PubMed 
biomedical abstracts (here and below, we will always consider an abstract of the biomedical 
publication together with the publication’s title; the latter often provides important 
information on HPIs). One of the main reasons behind extracting HPI information from the 
abstracts rather than entire papers is the fact that for many papers, the abstract is the only 
information that is freely available in PubMed. The first strategy is to rely on the existing 
methods for mining protein-protein interactions followed by additional post-processing to 
filter out the intra-species interactions. Another approach employs the language-based 
methods traditionally used in protein-protein interaction literature mining. The last 
approach introduces a supervised-learning feature-based methodology, which has recently 
emerged in the area of biomedical literature mining. While each of the approaches is 
applicable to each of the three tasks, here we will focus on assessing their performance for 
the first and third tasks. 

4.1 Data collection 
Collecting accurate, unbiased, non-redundant data on HPIs is a critical step for efficient 
training of a supervised method as well as for an accurate assessment of any literature 
mining approach. Both the positive set (abstracts containing HPI information) and the 
negative set (abstracts that do not contain HPI information) were manually selected and 
annotated. To obtain the set of potential candidates for the positive and negative sets we 
have combined of both searching the existing HPI databases and the PubMed database. Our 
positive set consisted of 175 HPI containing abstracts that include human and non-human 
hosts. The abstracts containing human-pathogen interactions were collected by searching 
and manually curating abstracts from PIG, a database of host-pathogen interactions 
manually extracted from the literature (Driscoll, Dyer et al. 2009). For each abstract, we 
required the presence of organism and protein names for both the host and the pathogen, 
resulting in 89 abstracts. Unfortunately, in its current form, PIG only has the abstracts with 
annotated human-pathogen interactions. Therefore to obtain the list of interactions between 
non-human hosts and their pathogens, we searched using an extensive PubMed query. We 

MCC 
NTPNTN  NFPNFN
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required the presence in the same abstract of (i) at least one (non-human) host name, (ii) at 
least one pathogen name, (iii) and at least one interaction keyword. We then manually 
selected from the list another 86 abstracts that contained HPI information, adding them to 
the positive set.  
To obtain candidates for the negative set, we performed an almost identical search 
strategy using the same PubMed query but including ‘human’ to the list of the host 
names. We again manually selected the abstracts to ensure that that they did not have any 
HPI information, even though they contained the important keywords. Note that it is 
significantly harder for a computational approach to distinguish between the abstracts 
from the obtained negative training set and those from the positive set, compared to a 
negative training set consisting of abstracts that were randomly chosen from PubMed. As 
a result, we selected 175 abstracts where no HPI information was found, although some of 
the abstracts included information on intra-species protein-protein interactions. The list of 
manually curated positive and negative sets of PubMed abstracts can be found at: 
http://korkinlab.org/datasets/philm/philm_data.html 

4.2 A naïve approach based on literature mining of protein-protein interactions 
In a simple naïve approach, we first establish whether an abstract contains any information 
on a protein-protein interaction using the existing state-of-the-art literature mining methods 
followed by extraction of the pair of interacting proteins (Fig. 1A). We rely on the PIE 
system, which integrates the natural language processing and machine learning methods to 
determine the sentences that contain protein-protein interactions in a PubMed abstract and 
extract the corresponding protein names and the interaction keywords (Kim, Shin et al. 
2008). Next, for each interacting protein we identify its corresponding organism by applying 
NLProt protein/gene tagging software (Mika and Rost 2004). NLProt uses a number of 
techniques, such as the dictionary search, rule-based detection, and feature-based 
supervised learning, to extract the names of proteins and genes and tag them using SWISS-
PROT or TrEMBL identifiers (Boeckmann, Bairoch et al. 2003). The method also predicts the 
most likely organisms associated with these proteins/genes. It was reported to have a 
precision of 75% and a recall of 76% on detecting protein/gene names (Mika and Rost 2004). 
Finally, for each sentence identified as containing a protein-protein interaction by the PIE 
system, we determine if this interaction is a HPI. Specifically, if each of the two proteins 
forming a protein-protein interaction belongs to a different organism, and these organisms 
can be assigned the host-pathogen roles, then the interaction is classified as an HPI. To 
assign the host-pathogen roles, we use our manually curated dictionaries of host and 
pathogen organism names (Table 1). 
We assessed the naïve approach by applying it to our testing set of 88 abstracts, 44 positive 
and 44 negative examples. As a result in addressing Task 1, the obtained accuracy was 0.53, 
precision was 1.0, and recall was 0.07 for the classification of HPI-containing abstracts (Task 1); 
F-score and Matthews Correlation Coefficient were 0.13 and 0.19, correspondingly. We found 
that the method almost completely failed to detect the abstracts containing HPI information; 
the contribution to the accuracy came primarily from the true negative hits, containing 44 (out 
of 44) abstracts from the negative testing set. Interestingly, both high precision and low recall 
values could be attributed to the same property of the naïve approach: it failed to accurately 
detect the protein-protein interactions. Indeed, all 41 false negatives were not due to the 
approach’s failure to assign the host and pathogen roles to the identified organisms, but due to 
its failure to identify a protein-protein interation in the abstract.  
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most likely organisms associated with these proteins/genes. It was reported to have a 
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can be assigned the host-pathogen roles, then the interaction is classified as an HPI. To 
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It is also not surprising that the naïve approach performed poorly when addressing Task 3: 
the method was able to detect only two proteins out of 44 protein pairs and none of the 44 
pairs of organisms, resulting in the only non-zero score of gPRT = 0.02; the other three scores, 
fORG, fPRT, and gORG were equal to zero. 
 
 
 

 
 
 

Fig. 1. Three HPI literature mining approaches. (A) Naïve approach. (B) Language-based 
approach (C) Feature-based supervised machine learning approach.  
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Dictionary name N Examples 

Interaction keywords 54 Interact, associate, bind  
Experimental keywords 28 Yeast two-hybrid, chemical crosslinking 
Negation keywords 11 Not, neither, inability 
HPI specific keywords 17 Virulence, effectors, infection 
Host names 309 Host, plant, human 
Pathogen names 349 Listeria monocytogenes, Hepatitis virus 

Table 1. Dictionaries of keywords used by all three approaches.  N is the number of unique 
entries for each dictionary. 

4.3 A language-based approach 
Our second approach is inspired by the language-based methods in biomedical text mining, 
which are also widely used in mining protein-protein interactions. In HPI text mining, we 
are faced with additional challenges such as correctly associating the organism name for 
each protein, ensuring that the extracted interaction is inter- and not intra-species 
interaction, and combining the information about an HPI from multiple sentences. As a 
result, these additional challenges necessitate adding new modules to the computational 
pipeline of our approach compared with a pipeline for extracting general protein-protein 
interactions. The HPI mining pipeline consists of the following 7 steps (Fig. 1B): (1) text 
preprocessing, (2) entity tagging, where we identify protein/gene and organism names, (3) 
grammar parsing, where we parse the input text into dependency structures (4) anaphora 
resolution, where we identity references to pronouns, (5) syntactic extraction, where we split 
a complex sentence into simple ones, (6) role matching, where we identify semantic roles in 
each simple sentence, (7) interaction keyword tagging, and (8) extraction of the actual HPI 
information. We note that this approach directly addresses Tasks 2 and 3 by finding the 
sentences containing HPI information and extracting the corresponding pairs of host and 
pathogen organisms and the interacting proteins/genes. Task 1 is addressed by classifying 
each abstract based on whether there was at least one HPI with the complete information 
extracted from the abstract’s text. 
Entity tagging. The entity tagging module identifies named entities in a abstract, such as 
protein/gene names and the corresponding organism names. For a language-based text 
mining approach, it is critical that all named entities are accurately identified. Thus, our 
language–based approach for HPI literature mining has the most elaborate entity tagging 
module of all three approaches introduced here. Specifically, the module includes three 
stages: (i) protein/gene name tagging using NLProt, (ii) host/pathogen organism dictionary 
match, and (iii) post-processing. First, we apply the NLProt tagger to identify the names of 
all proteins/genes occurring in the text and the corresponding organism names (Mika and 
Rost 2004). We note that in a case when a protein with the same name exists for multiple 
species, NLProt assigns the most likely organism for each entry of this protein. Second, we 
find a UniProt accession number (Bairoch, Apweiler et al. 2005) for each identified protein 
followed by grouping the proteins/genes with the same accession number into a 
protein/gene entity. Third we search for the organisms missed by NLProt using expanded 
versions of our host and pathogen organism dictionaries that include synonyms for each 
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organism name and group the organisms under NCBI Taxonomy IDs (Wheeler, Barrett et al. 
2006). Since NLProt may not identify all organisms in the abstract, our module rescans the 
abstract text again to find the remaining host and pathogen organisms.  Finally, the system 
revisits the entity tagging module again after the next module, Link grammar parsing, 
provides the internal structure of the sentences in terms of its basic units, phrases. The idea 
is that we can use the internal sentence structure to (i) find additional host/pathogen 
information that is not present in the dictionary, and (ii) reassign protein/gene name to its 
correct organism, if needed. This stage plays an important role in the entity tagging module, 
since our host and pathogen dictionaries are potentially incomplete (not all organisms 
provided by NLProt may be covered); in addition, the dictionaries overlap with each other 
(the same organism can be both, a host and a pathogen).  If an organism name suggested by 
NLProt for a protein is not found in our dictionary, the entity tagging module nevertheless 
tries to assign the organism’s role as a host or pathogen. It does so by searching for generic 
keywords  (such as “host”, “pathogen”, “pathogenic”, “pathogenesis”, etc.), in each phrase 
containing the organism name. Similarly, the module checks the organism name suggested 
by NLProt for a protein/gene by identifying the organism’s name in the phrase that 
contains a protein/gene name. To do so the module relies on two search patterns: 
1. Organism name + protein name (e.g., “Arabidopsis RIN4 protein”); 
2. Protein name + preposition + organism name (e.g., “RXLX of human”). 
The newly obtained information about the organism assignment then replaces the current 
suggestions provided by NLProt. For instance, in the phrase “the Arabidopsis RIN4 protein”, 
NLProt associates RIN4 with a pathogenic organism, while the dictionary search matches 
Arabidopsis as a host organism and identifies this phrase as pattern P1. Therefore, Arabidopsis 
is assigned as the organism for RIN4 protein, followed by the correct assignment of RIN4 as 
a host protein. 
Link grammar parsing. In our next module, we use natural language processing methods to 
determine the intrinsic structure of each sentence in the abstract. In our approach, all 
grammatical constructions are based on the link grammar, a context-free grammar that 
relies on the dependency structure of natural language (Sleator and Temperley 1995). In link 
grammar, every word has a linking requirement, which specifies which types of other 
words or phrases can link to it. Two words can only be linked if their linking requirements 
match. A link is represented as an arc above the two words (Fig. 2). The linking 
requirements are organized into a dictionary that the grammar parser refers to when 
analyzing a sentence. The principal structure in link grammar is the linkage, a set of links 
that completely connect all words in a sequence. Such a sequence of words is called a link 
grammar sentence if it satisfies three conditions: (i) the links do not cross (planarity), (ii) 
each word is connected to at least another word by a link (connectivity), and (iii) the linking 
requirements for each word in the sentence are not violated (satisfaction). For example, the 
linkage for the sentence “Avirulence protein B targets the Arabidopsis RIN4 protein” is 
shown in Fig. 2. In total, the link grammar has 107 main links, each of which can derive 
many sub-links. We implemented the module using an open source link grammar parser 
from AbiWord project (http://www.abisource.com/projects/link-grammar/). This project 
implements the original link grammar (Sleator and Temperley 1995), combining it with 
additional features such as adaptation of the parser to the biomedical sublanguage, BioLG 
(Pyysalo, Salakoski et al. 2006) and an English-language semantic dependency relationship 
extractor, RelEx (Fundel, Kuffner et al. 2007).  
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Fig. 2. Internal sentence structure annotated by a link grammar parser for an HPI relevant 
sentence. Words are labelled with the part-of-speech tags: .n (noun) and .v (verb). A link 
between two words can be formed to specify a dependency relation. Each dependency type 
has its own unique label: AN, GN, Ss, Os, D*u, G.  
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multiple sentences, with the pronouns often replacing the names of organisms or 
proteins/genes. Therefore, to extract the complete information on a HPI, it is critical to have 
an accurate anaphora resolution module. The module relies on the RelEx anaphora 
resolution method, which employs Hobbs’ pronoun resolution algorithm (Hobbs 1978). For 
example, in the sentence “The Pseudomonas syringae type III effector protein avirulence 
protein B (AvrB) is delivered into plant cells, where it targets the Arabidopsis RIN4 protein”, 
the anaphora resolution module resolves ‘it’ as ‘The Pseudomonas syringae type III effector 
protein avirulence protein B (AvrB)’. 
Syntactic extraction. Our syntactic extraction module splits each sentence into one or more 
simple sentences, where a simple sentence consists of four components organized into the 
following structure: 

Subject (S) + Verb (V) + Object (O) + Modifying phrase of verb (M).  
The module is built based on the automated extractor InTex (Ahmed, Chidambaram et al. 
2005); it scans a sentence to find all links of the following four types. The first type, S-link, 
connects a subject to a verb, where the subject is located before the verb in the sentence. The 
second type, RS-link connects a verb to a subject, i.e., the subject is located after the verb in 
the sentence. The third type, O-link, connects a verb to an object. Finally, the fourth type, 
MV-link, connects a verb to a modifying phrase.  The module first determines the beginning 
of each simple sentence, which can be either an S-link or an RS-link. Following each verb 
from an S- or RS-link, the module determines the verb range by including all possible verb 
phrases, adverb phrases, or adjective phrase, before and after the verb.  Finally, for each 
simple sentence the module determines the objects and modifying phrases for the verb in 
the corresponding verb range by identifying possible O-links and MV-links.  For example, 
the modules split sentence “The Pseudomonas syringae type III effector protein avirulence 
protein B (AvrB) is delivered into plant cells, where it targets the Arabidopsis RIN4 protein” 
into two simple sentences: “The Pseudomonas syringae type III effector protein avirulence 
protein B (AvrB) is delivered into plant cells” and “The Pseudomonas syringae type III 
effector protein avirulence protein B (AvrB)  targets the Arabidopsis RIN4 protein”. 
Interaction keyword tagging. In this module, the interaction keywords are tagged by 
searching (i) our manually curated dictionary of interaction keyword stems, to reduce the 
search time, and (ii) lexical database WordNet, which contains nouns, verbs, adjectives, and 
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organism name and group the organisms under NCBI Taxonomy IDs (Wheeler, Barrett et al. 
2006). Since NLProt may not identify all organisms in the abstract, our module rescans the 
abstract text again to find the remaining host and pathogen organisms.  Finally, the system 
revisits the entity tagging module again after the next module, Link grammar parsing, 
provides the internal structure of the sentences in terms of its basic units, phrases. The idea 
is that we can use the internal sentence structure to (i) find additional host/pathogen 
information that is not present in the dictionary, and (ii) reassign protein/gene name to its 
correct organism, if needed. This stage plays an important role in the entity tagging module, 
since our host and pathogen dictionaries are potentially incomplete (not all organisms 
provided by NLProt may be covered); in addition, the dictionaries overlap with each other 
(the same organism can be both, a host and a pathogen).  If an organism name suggested by 
NLProt for a protein is not found in our dictionary, the entity tagging module nevertheless 
tries to assign the organism’s role as a host or pathogen. It does so by searching for generic 
keywords  (such as “host”, “pathogen”, “pathogenic”, “pathogenesis”, etc.), in each phrase 
containing the organism name. Similarly, the module checks the organism name suggested 
by NLProt for a protein/gene by identifying the organism’s name in the phrase that 
contains a protein/gene name. To do so the module relies on two search patterns: 
1. Organism name + protein name (e.g., “Arabidopsis RIN4 protein”); 
2. Protein name + preposition + organism name (e.g., “RXLX of human”). 
The newly obtained information about the organism assignment then replaces the current 
suggestions provided by NLProt. For instance, in the phrase “the Arabidopsis RIN4 protein”, 
NLProt associates RIN4 with a pathogenic organism, while the dictionary search matches 
Arabidopsis as a host organism and identifies this phrase as pattern P1. Therefore, Arabidopsis 
is assigned as the organism for RIN4 protein, followed by the correct assignment of RIN4 as 
a host protein. 
Link grammar parsing. In our next module, we use natural language processing methods to 
determine the intrinsic structure of each sentence in the abstract. In our approach, all 
grammatical constructions are based on the link grammar, a context-free grammar that 
relies on the dependency structure of natural language (Sleator and Temperley 1995). In link 
grammar, every word has a linking requirement, which specifies which types of other 
words or phrases can link to it. Two words can only be linked if their linking requirements 
match. A link is represented as an arc above the two words (Fig. 2). The linking 
requirements are organized into a dictionary that the grammar parser refers to when 
analyzing a sentence. The principal structure in link grammar is the linkage, a set of links 
that completely connect all words in a sequence. Such a sequence of words is called a link 
grammar sentence if it satisfies three conditions: (i) the links do not cross (planarity), (ii) 
each word is connected to at least another word by a link (connectivity), and (iii) the linking 
requirements for each word in the sentence are not violated (satisfaction). For example, the 
linkage for the sentence “Avirulence protein B targets the Arabidopsis RIN4 protein” is 
shown in Fig. 2. In total, the link grammar has 107 main links, each of which can derive 
many sub-links. We implemented the module using an open source link grammar parser 
from AbiWord project (http://www.abisource.com/projects/link-grammar/). This project 
implements the original link grammar (Sleator and Temperley 1995), combining it with 
additional features such as adaptation of the parser to the biomedical sublanguage, BioLG 
(Pyysalo, Salakoski et al. 2006) and an English-language semantic dependency relationship 
extractor, RelEx (Fundel, Kuffner et al. 2007).  
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Fig. 2. Internal sentence structure annotated by a link grammar parser for an HPI relevant 
sentence. Words are labelled with the part-of-speech tags: .n (noun) and .v (verb). A link 
between two words can be formed to specify a dependency relation. Each dependency type 
has its own unique label: AN, GN, Ss, Os, D*u, G.  

Anaphora resolution. In the anaphora resolution module, we determine semantic meaning 
for pronouns (it, they, he, she), and other language structures in the sentences. Unlike the 
case of intra-species protein-protein interactions, the information on HPIs often spans 
multiple sentences, with the pronouns often replacing the names of organisms or 
proteins/genes. Therefore, to extract the complete information on a HPI, it is critical to have 
an accurate anaphora resolution module. The module relies on the RelEx anaphora 
resolution method, which employs Hobbs’ pronoun resolution algorithm (Hobbs 1978). For 
example, in the sentence “The Pseudomonas syringae type III effector protein avirulence 
protein B (AvrB) is delivered into plant cells, where it targets the Arabidopsis RIN4 protein”, 
the anaphora resolution module resolves ‘it’ as ‘The Pseudomonas syringae type III effector 
protein avirulence protein B (AvrB)’. 
Syntactic extraction. Our syntactic extraction module splits each sentence into one or more 
simple sentences, where a simple sentence consists of four components organized into the 
following structure: 

Subject (S) + Verb (V) + Object (O) + Modifying phrase of verb (M).  
The module is built based on the automated extractor InTex (Ahmed, Chidambaram et al. 
2005); it scans a sentence to find all links of the following four types. The first type, S-link, 
connects a subject to a verb, where the subject is located before the verb in the sentence. The 
second type, RS-link connects a verb to a subject, i.e., the subject is located after the verb in 
the sentence. The third type, O-link, connects a verb to an object. Finally, the fourth type, 
MV-link, connects a verb to a modifying phrase.  The module first determines the beginning 
of each simple sentence, which can be either an S-link or an RS-link. Following each verb 
from an S- or RS-link, the module determines the verb range by including all possible verb 
phrases, adverb phrases, or adjective phrase, before and after the verb.  Finally, for each 
simple sentence the module determines the objects and modifying phrases for the verb in 
the corresponding verb range by identifying possible O-links and MV-links.  For example, 
the modules split sentence “The Pseudomonas syringae type III effector protein avirulence 
protein B (AvrB) is delivered into plant cells, where it targets the Arabidopsis RIN4 protein” 
into two simple sentences: “The Pseudomonas syringae type III effector protein avirulence 
protein B (AvrB) is delivered into plant cells” and “The Pseudomonas syringae type III 
effector protein avirulence protein B (AvrB)  targets the Arabidopsis RIN4 protein”. 
Interaction keyword tagging. In this module, the interaction keywords are tagged by 
searching (i) our manually curated dictionary of interaction keyword stems, to reduce the 
search time, and (ii) lexical database WordNet, which contains nouns, verbs, adjectives, and 
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adverbs grouped by semantic concepts, and which uses a morphological function to infer 
the stem of a word (Fellbaum 1998). In the previous example, the module identifies 
interaction keywords that are found in our dictionary: “delivered” (the stem is “deliver”) 
and “targets” (the stem is “target”). 
Role type matching. In this module, we specify the role of each syntactic component 
depending on whether the component contains complete information about an HPI. Here, 
we consider three types of roles: elementary, partial, and complete. A component of the 
elementary type is defined to be a host entity, a pathogen entity, or an interaction keyword. 
A component of the partial type includes any two distinct components of the elementary 
type. Finally, a syntactic component of complete type includes components of all three 
elementary types. 
Interaction extraction.  Once the role of each syntactic component is identified, the 
components are searched against a set of interaction patterns. We first select components of 
the complete type, since they contain complete information about an HPI occurring between 
two proteins/genes. Next, we combine the elementary and partial components such that 
they provide the complete HPI information.  
An interaction pattern is defined as LS=RS. The left side (LS) is used to match the complete 
type from syntactic component(s), and the right side (RS) is used to extract the interaction 
information from each component. For example, the pattern S<E>V<E>O<E> = 
P<S>I<V>H<O> indicates that if a simple sentence includes three components, each of 
elementary type: subject, verb, and object, then the sentence contains (i) a pathogen entity in 
the subject, (ii) an interaction keyword in the verb, and  (iii) a host entity in the object. Note 
that both sides include a matching part S-V-O. In this work, for our patterns we considered 
the following seven matching parts: S-V-O, S-O, S-V-M, S-M, S, O, and M (for abbreviations, 
see Syntactic extraction subsection). In addition to the above patterns, we use a set of three 
template-based filters that allows us to remove those simple sentences that although satisfy 
an interaction pattern, do not have a semantic connection between the host entity, pathogen 
entity, and interaction keyword. The introduced templates are similar to those employed by 
RelEx: 

Pattern 1: A + interaction verb + B 
Pattern 2: Interaction noun + ’between’ + A + ’and’ + B. 
Pattern 3: Interaction noun + ’of’ + A + ’by’ + B, 

where an interaction keyword can be either the interaction verb or interaction noun.  
Interaction Normalization. When mining HPI information from literature, there are several 
sources for ambiguous information. First, there may be multiple HPIs in the same abstract. 
Second, the information about a single HPI may be spread over multiple sentences. Finally, 
the sentences may contain duplicate information about the same HPI. Our last module 
ensures that all sentences containing duplicate HPIs are accounted for and each HPI is 
reported only once. To do so, we first extract all HPIs and then determine the duplicate 
pairs. We define two HPIs as duplicate if they have the same host entity and the same 
pathogen entity. We note that two duplicate HPIs may still have different interaction 
keywords. To detect the duplication in HPIs, the module refers to the normalized 
protein/gene names (in terms of UniProt accession numbers) and organism names (in terms 
of taxonomy ids) obtained at the entity tagging module.  
Performance of the language-based approach.  To compare with the feature-based 
approach, the language-based approach was evaluated using the same testing set of 44 
positive and 44 negative examples. We first assessed the method’s performance in 
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addressing Task 1. The method was able to classify the abstracts with 0.65 accuracy, 0.84 
precision, and 0.36 recall. The F-score and Matthew correlation coefficient measures were 
0.51 and 0.36, correspondingly.  The performance of the approach on a more difficult Task 3 
was significantly better than of the naïve approach, especially in partial predictions: fORG = 
0.18, fPRT = 0.14, gORG = 0.25, and gPRT = 0.25. With the pre-calculated NLProt annotation, the 
average running time of the system on a single abstract was 36.3 sec. on a 2.4 Ghz Intel 
workstation. The computationally most expensive, link grammar parsing, module used 
99.95% of the total running time. 

4.4 A feature-based machine learning approach 
The basic idea behind the feature-based approach introduced here is to extract a set of 
characteristic features that provide sufficient information for discriminating between an 
abstract containing HPI information and another abstract that does not. Using a training set 
of pre-annotated abstracts, the system can then learn how to efficiently discriminate 
between these two abstract types. Moreover, the same characteristic features can be 
calculated for the individual sentences in the abstract. Thus, we can use the same 
supervised-learning approach to solve Tasks 1 and 2. Finally, to solve Task 3 one can use a 
simple dictionary-based search for each sentence classified as containing HPI information. 
Our feature-based approach consists of four basic stages  (Fig. 1C). First, each abstract is pre-
processed to find each protein/gene in the abstract and identify its organism name. Second, 
for each abstract a feature vector is generated. Third, our supervised learning system is 
trained by providing the feature vectors generated from the positive and negative sets. 
Finally, the trained system is used on an independent testing set of HPI and non-HPI 
abstracts to assess the approach. 
Text preprocessing. We first add the publication title to the abstract as its first sentence. The 
abstract is then further split into individual sentences by detecting the sentence termination 
patterns. A basic pattern of a period (.), followed by a space and capitalized letter can be 
directly used to distinguish sentences in a standard text. However, there are known 
challenges when preprocessing a biomedical (or any scientific) publication. For instance, the 
above simple approach is not always applicable, since the periods are often used in the 
names of proteins, abbreviations such as “i.e.”, “e.g.”, “vs.”, and others. We first identify 
such cases using a predefined dictionary, replace periods in these words by spaces, and then 
apply the above basic pattern. The next steps of the preprocessing stage concerns with 
detecting the organism and protein/gene names using the entity tagging software NLProt 
(Mika and Rost 2004). 
Support vector machines in text categorization. The problem of detecting whether an 
abstract contains HPI information can be formulated as a problem of supervised text 
categorization, with the goal of classifying abstracts into one of the selected categories. In 
our case, two categories can be naturally defined: (i) abstracts containing HPI information 
and (ii) abstracts without HPI information.  Formally, given a training set of n objects, each 
represented as a vector of N numerical features, xi = (x1, x2, …, xN), and their classification 
into one of the two classes y{-1,1},  the goal is to train a feature-based classifier based on 
the training set. After the training stage is completed, the classifier can assign a class label 
from y for any new abstract x. In our approach, we use support vector machines (SVM) 
(Vapnik 1998), a supervised learning method, which is well established in bioinformatics 
and has been recently applied to identify abstracts containing host-bacteria interaction 
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adverbs grouped by semantic concepts, and which uses a morphological function to infer 
the stem of a word (Fellbaum 1998). In the previous example, the module identifies 
interaction keywords that are found in our dictionary: “delivered” (the stem is “deliver”) 
and “targets” (the stem is “target”). 
Role type matching. In this module, we specify the role of each syntactic component 
depending on whether the component contains complete information about an HPI. Here, 
we consider three types of roles: elementary, partial, and complete. A component of the 
elementary type is defined to be a host entity, a pathogen entity, or an interaction keyword. 
A component of the partial type includes any two distinct components of the elementary 
type. Finally, a syntactic component of complete type includes components of all three 
elementary types. 
Interaction extraction.  Once the role of each syntactic component is identified, the 
components are searched against a set of interaction patterns. We first select components of 
the complete type, since they contain complete information about an HPI occurring between 
two proteins/genes. Next, we combine the elementary and partial components such that 
they provide the complete HPI information.  
An interaction pattern is defined as LS=RS. The left side (LS) is used to match the complete 
type from syntactic component(s), and the right side (RS) is used to extract the interaction 
information from each component. For example, the pattern S<E>V<E>O<E> = 
P<S>I<V>H<O> indicates that if a simple sentence includes three components, each of 
elementary type: subject, verb, and object, then the sentence contains (i) a pathogen entity in 
the subject, (ii) an interaction keyword in the verb, and  (iii) a host entity in the object. Note 
that both sides include a matching part S-V-O. In this work, for our patterns we considered 
the following seven matching parts: S-V-O, S-O, S-V-M, S-M, S, O, and M (for abbreviations, 
see Syntactic extraction subsection). In addition to the above patterns, we use a set of three 
template-based filters that allows us to remove those simple sentences that although satisfy 
an interaction pattern, do not have a semantic connection between the host entity, pathogen 
entity, and interaction keyword. The introduced templates are similar to those employed by 
RelEx: 

Pattern 1: A + interaction verb + B 
Pattern 2: Interaction noun + ’between’ + A + ’and’ + B. 
Pattern 3: Interaction noun + ’of’ + A + ’by’ + B, 

where an interaction keyword can be either the interaction verb or interaction noun.  
Interaction Normalization. When mining HPI information from literature, there are several 
sources for ambiguous information. First, there may be multiple HPIs in the same abstract. 
Second, the information about a single HPI may be spread over multiple sentences. Finally, 
the sentences may contain duplicate information about the same HPI. Our last module 
ensures that all sentences containing duplicate HPIs are accounted for and each HPI is 
reported only once. To do so, we first extract all HPIs and then determine the duplicate 
pairs. We define two HPIs as duplicate if they have the same host entity and the same 
pathogen entity. We note that two duplicate HPIs may still have different interaction 
keywords. To detect the duplication in HPIs, the module refers to the normalized 
protein/gene names (in terms of UniProt accession numbers) and organism names (in terms 
of taxonomy ids) obtained at the entity tagging module.  
Performance of the language-based approach.  To compare with the feature-based 
approach, the language-based approach was evaluated using the same testing set of 44 
positive and 44 negative examples. We first assessed the method’s performance in 
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addressing Task 1. The method was able to classify the abstracts with 0.65 accuracy, 0.84 
precision, and 0.36 recall. The F-score and Matthew correlation coefficient measures were 
0.51 and 0.36, correspondingly.  The performance of the approach on a more difficult Task 3 
was significantly better than of the naïve approach, especially in partial predictions: fORG = 
0.18, fPRT = 0.14, gORG = 0.25, and gPRT = 0.25. With the pre-calculated NLProt annotation, the 
average running time of the system on a single abstract was 36.3 sec. on a 2.4 Ghz Intel 
workstation. The computationally most expensive, link grammar parsing, module used 
99.95% of the total running time. 

4.4 A feature-based machine learning approach 
The basic idea behind the feature-based approach introduced here is to extract a set of 
characteristic features that provide sufficient information for discriminating between an 
abstract containing HPI information and another abstract that does not. Using a training set 
of pre-annotated abstracts, the system can then learn how to efficiently discriminate 
between these two abstract types. Moreover, the same characteristic features can be 
calculated for the individual sentences in the abstract. Thus, we can use the same 
supervised-learning approach to solve Tasks 1 and 2. Finally, to solve Task 3 one can use a 
simple dictionary-based search for each sentence classified as containing HPI information. 
Our feature-based approach consists of four basic stages  (Fig. 1C). First, each abstract is pre-
processed to find each protein/gene in the abstract and identify its organism name. Second, 
for each abstract a feature vector is generated. Third, our supervised learning system is 
trained by providing the feature vectors generated from the positive and negative sets. 
Finally, the trained system is used on an independent testing set of HPI and non-HPI 
abstracts to assess the approach. 
Text preprocessing. We first add the publication title to the abstract as its first sentence. The 
abstract is then further split into individual sentences by detecting the sentence termination 
patterns. A basic pattern of a period (.), followed by a space and capitalized letter can be 
directly used to distinguish sentences in a standard text. However, there are known 
challenges when preprocessing a biomedical (or any scientific) publication. For instance, the 
above simple approach is not always applicable, since the periods are often used in the 
names of proteins, abbreviations such as “i.e.”, “e.g.”, “vs.”, and others. We first identify 
such cases using a predefined dictionary, replace periods in these words by spaces, and then 
apply the above basic pattern. The next steps of the preprocessing stage concerns with 
detecting the organism and protein/gene names using the entity tagging software NLProt 
(Mika and Rost 2004). 
Support vector machines in text categorization. The problem of detecting whether an 
abstract contains HPI information can be formulated as a problem of supervised text 
categorization, with the goal of classifying abstracts into one of the selected categories. In 
our case, two categories can be naturally defined: (i) abstracts containing HPI information 
and (ii) abstracts without HPI information.  Formally, given a training set of n objects, each 
represented as a vector of N numerical features, xi = (x1, x2, …, xN), and their classification 
into one of the two classes y{-1,1},  the goal is to train a feature-based classifier based on 
the training set. After the training stage is completed, the classifier can assign a class label 
from y for any new abstract x. In our approach, we use support vector machines (SVM) 
(Vapnik 1998), a supervised learning method, which is well established in bioinformatics 
and has been recently applied to identify abstracts containing host-bacteria interaction 
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information (Yin, Xu et al. 2010). The basic type of support vector machine (SVM) that 
addresses this problem is a linear classifier defined by its discriminant function:  

, 

where w is a weight vector (Vapnik 1998). Geometrically, the problem can be described as 
finding the decision boundary, a hyperplane that separates two sets of points, 
corresponding to the sets of positive and negative examples. To do that, we maximize the 
margin defined by the closest to the hyperplane positive and negative examples. An optimal 
solution can be found by solving a related quadric optimization problem. The problem is 
further generalized by introducing soft margins, allowing the classifier to misclassify some 
points. The general optimization problem is often formulated in its dual form: 

 
and the discriminant function is defined as: 

. 

Examples from the training set for which  are called support vectors. The formalism 
can be further extended by introducing non-linear classifiers defined using kernel functions, 

, similarity measures that replace the standard inner product x, x′. In our 
approach, we applied and compared two widely used non-linear kernel functions: the 
polynomial kernel, , where d is degree of the polynomial, and 

Gaussian radial basis function (RBF), . Both kernels are 
implemented using libsvm a freely available SVM software package (Chang and Lin 2001).  
Feature vectors. One approach to generating a descriptive set of features for an abstract is  
to calculate the frequencies of occurrences of individual words (unigrams) as well as the 
word pairs (bigrams) from a biomedical text corpus (Yin, Xu et al. 2010). While these 
features can provide important information on the word usage, the number of features 
depends strongly on the size of the corpus and can easily reach thousands of features. In our 
approach, we propose to use a simpler 12-dimensional feature vector representation, 

, focusing on quantifying the information directly related to host-pathogen 
interaction. Features x1 and x2 quantify the presence of host and pathogen protein or gene 
names in the abstract and are calculated based on the protein/gene entity tagging obtained 
by NLProt (Mika and Rost 2004). Each protein is classified as a host or pathogen protein 
based on the source organisms extracted either from the NLProt tagging results or directly 
from the abstract by searching against our dictionary of host and pathogen organisms (Table 
1). The dictionary was built using the set of organisms extracted from several databases 
(Winnenburg, Urban et al. 2008; Driscoll, Dyer et al. 2009; Kumar and Nanduri 2010) and by 
adding generic keywords, such as “pathogen”, “host”, “plant”, etc.  Similarly, features x3 
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and x4 specify the number of occurrences for the host and pathogen organism names. These 
features are defined using NLProt-based organism annotation and the dictionary of host 
and pathogen organisms. Binary feature x5 specifies the presence or absence of the general 
protein-protein interaction keywords in the abstract. It is obtained by scanning the extended 
abstract against our interaction keyword dictionary (Table 1). Features x6 and x7 describe 
additional statistics on protein-protein interaction keyword occurrences. The former feature 
is defined as the percentage of interaction keywords in the total number of words in the 
abstract. The latter feature is defined as the percentage of sentences containing the 
interaction keywords in the total number of abstract sentences. Feature x8 is calculated based 
on the cumulative keyword typicality for each abstract. We define the typicality of a 
keyword as the percentage of abstracts in the training set containing this keyword. Feature 
x8 is calculated as a sum of typicalities for all protein-protein interactions keywords in a 
given abstract. Our next feature x9 quantifies the amount of experimental evidence used to 
support the HPI and is defined as the total number of experimental keywords in the 
abstract, where each keyword is detected by scanning the abstract against our dictionary 
experimental keywords (Table 1). Some abstracts report the absence of an interaction 
between host and pathogen proteins. Determining the absence of interaction in an abstract 
by a feature-based approach is difficult, since such an abstract is likely to contain the 
information similar to an abstract describing a true HPI. One of the key differences between 
these abstracts is the presence of negation keywords present in the former abstract. Feature 
x10 accounts for such keywords and is defined as the percentage of negation keywords in the 
total number of words in the abstract.  Similar to other keywords, these keywords are 
identified using our dictionary of collected negation keywords (Table XX3). A related 
feature, x11, estimates whether a negation keyword is related specifically to the information 
on protein-protein interaction in the abstract. The feature is defined as the number of words 
between the negation keyword and the closest interaction keyword in a sentence. The last 
feature, x12, accounts for the HPI-specific keywords, such as virulence, effectors, factors, etc. 
determined using the corresponding dictionary (Table 1). It is calculated as a percentage of 
such keywords in the total number of words in the abstract. 
Supervised training and HPI detection using SVM. The trained SVM classifier is applied in 
our method twice. First, it is applied to the abstracts to identify those containing HPI 
information (Task 1). Second, it is applied to the individual sentences to determine those 
that contain this HPI information (Task 2). When applied to a sentence, we generate a 12-
dimensional feature vector solely based on the information in this sentence and use it as an 
input to the SVM classifier. Once the sentences containing HPI are identified, we use the 
dictionaries of host and pathogen organisms combined with the protein/gene names to find 
the pairs of host and pathogen organisms and the corresponding proteins/genes (Task 3). 
The accuracy of an SVM-based classifier generally can be improved by optimizing a number 
of parameters during the training stage. The error cost parameter, C, controls the tradeoff 
between allowing training errors and forcing rigid margins. In our approach we select the 
cost parameter and another parameter, Gamma, by evaluating the accuracies of trained 
models for Task 1 using leave-one-out cross-validation. The values of C range from 2 to 20 
and the values for Gamma range from 2−10 to 21.  The set of parameters on which the SVM 
classifier reaches its maximum accuracy is selected as a final model. In addition, we 
optimize the degree of the polynomial when considering the polynomial kernel. 
Assessment protocols. To assess the performance of the feature-based approach in abstract 
classification, we employ two benchmarking protocols. In the first protocol, the SVM model 
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information (Yin, Xu et al. 2010). The basic type of support vector machine (SVM) that 
addresses this problem is a linear classifier defined by its discriminant function:  
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where w is a weight vector (Vapnik 1998). Geometrically, the problem can be described as 
finding the decision boundary, a hyperplane that separates two sets of points, 
corresponding to the sets of positive and negative examples. To do that, we maximize the 
margin defined by the closest to the hyperplane positive and negative examples. An optimal 
solution can be found by solving a related quadric optimization problem. The problem is 
further generalized by introducing soft margins, allowing the classifier to misclassify some 
points. The general optimization problem is often formulated in its dual form: 
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polynomial kernel, , where d is degree of the polynomial, and 

Gaussian radial basis function (RBF), . Both kernels are 
implemented using libsvm a freely available SVM software package (Chang and Lin 2001).  
Feature vectors. One approach to generating a descriptive set of features for an abstract is  
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features can provide important information on the word usage, the number of features 
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approach, we propose to use a simpler 12-dimensional feature vector representation, 
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names in the abstract and are calculated based on the protein/gene entity tagging obtained 
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adding generic keywords, such as “pathogen”, “host”, “plant”, etc.  Similarly, features x3 

f (x)  w, x  b, w, x  wixii1
N

minimize


  i 
1
2i1

n

 yiyj
j1

n


i1

n

  i j x i , x j






subject to: yi i
i1

n

  0, 0  i C for i 1, 2,...,n

f (x)  yi i x i , xi1
n  b

 i  0

K x, x 

KP x, x   x, x 1 d

KG (x, x )  exp( x  x
2

/ c)

x  x1, x2,, x12 

 
Mining Host-Pathogen Interactions 177 

and x4 specify the number of occurrences for the host and pathogen organism names. These 
features are defined using NLProt-based organism annotation and the dictionary of host 
and pathogen organisms. Binary feature x5 specifies the presence or absence of the general 
protein-protein interaction keywords in the abstract. It is obtained by scanning the extended 
abstract against our interaction keyword dictionary (Table 1). Features x6 and x7 describe 
additional statistics on protein-protein interaction keyword occurrences. The former feature 
is defined as the percentage of interaction keywords in the total number of words in the 
abstract. The latter feature is defined as the percentage of sentences containing the 
interaction keywords in the total number of abstract sentences. Feature x8 is calculated based 
on the cumulative keyword typicality for each abstract. We define the typicality of a 
keyword as the percentage of abstracts in the training set containing this keyword. Feature 
x8 is calculated as a sum of typicalities for all protein-protein interactions keywords in a 
given abstract. Our next feature x9 quantifies the amount of experimental evidence used to 
support the HPI and is defined as the total number of experimental keywords in the 
abstract, where each keyword is detected by scanning the abstract against our dictionary 
experimental keywords (Table 1). Some abstracts report the absence of an interaction 
between host and pathogen proteins. Determining the absence of interaction in an abstract 
by a feature-based approach is difficult, since such an abstract is likely to contain the 
information similar to an abstract describing a true HPI. One of the key differences between 
these abstracts is the presence of negation keywords present in the former abstract. Feature 
x10 accounts for such keywords and is defined as the percentage of negation keywords in the 
total number of words in the abstract.  Similar to other keywords, these keywords are 
identified using our dictionary of collected negation keywords (Table XX3). A related 
feature, x11, estimates whether a negation keyword is related specifically to the information 
on protein-protein interaction in the abstract. The feature is defined as the number of words 
between the negation keyword and the closest interaction keyword in a sentence. The last 
feature, x12, accounts for the HPI-specific keywords, such as virulence, effectors, factors, etc. 
determined using the corresponding dictionary (Table 1). It is calculated as a percentage of 
such keywords in the total number of words in the abstract. 
Supervised training and HPI detection using SVM. The trained SVM classifier is applied in 
our method twice. First, it is applied to the abstracts to identify those containing HPI 
information (Task 1). Second, it is applied to the individual sentences to determine those 
that contain this HPI information (Task 2). When applied to a sentence, we generate a 12-
dimensional feature vector solely based on the information in this sentence and use it as an 
input to the SVM classifier. Once the sentences containing HPI are identified, we use the 
dictionaries of host and pathogen organisms combined with the protein/gene names to find 
the pairs of host and pathogen organisms and the corresponding proteins/genes (Task 3). 
The accuracy of an SVM-based classifier generally can be improved by optimizing a number 
of parameters during the training stage. The error cost parameter, C, controls the tradeoff 
between allowing training errors and forcing rigid margins. In our approach we select the 
cost parameter and another parameter, Gamma, by evaluating the accuracies of trained 
models for Task 1 using leave-one-out cross-validation. The values of C range from 2 to 20 
and the values for Gamma range from 2−10 to 21.  The set of parameters on which the SVM 
classifier reaches its maximum accuracy is selected as a final model. In addition, we 
optimize the degree of the polynomial when considering the polynomial kernel. 
Assessment protocols. To assess the performance of the feature-based approach in abstract 
classification, we employ two benchmarking protocols. In the first protocol, the SVM model 
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training is done on the training set and the assessment is performed exclusively on the 
testing set (Table 2). For the second protocol we use the leave-one-out and 10-fold cross 
validations on the training set. 
 

Type Training Testing 
Negative 131 44 
Positive- Human 67 22 
Positive-Non-Human 64 22 
Total 262 88 

Table 2. Testing and training sets of positive (HPI-relevant) and negative (HPI-irrelevant) 
abstracts. Testing data are used to evaluate all three approaches, and training data are used 
for SVM learning in the feature-based approach. The abstracts are extracted from then 
PubMed database and manually curated. 

Performance of the feature based approach. During the leave-one-out cross-validation, an 
SVM model with the polynomial kernel of degree 3 and parameter values C=2 and 
Gamma=0.0175 was found to be the most accurate in the abstract classification problem 
(Table 3). The polynomial kernel was also the most accurate SVM model across both 
assessment protocols. In addition, this SVM model had the highest recall value, with the 
precision approaching its highest value. Overall, the performance of all three SVM kernels, 
across all evaluation protocols, was similar. The performance of the feature-based approach 
on Task 3 was slightly better than that of the language-based approach in partial 
predictions: gORG = 0.39 and gPRT = 0.35. However the performance in complete pair 
predictions was worse: fORG = 0.07 and fPRT = 0.07. The SVM classifier was efficient, taking 
only 0.003 sec. to classify 92 abstracts by an SVM classifier on a 2.66 Ghz Intel Xeon (Quad) 
workstation. However, the high efficiency of this approach was offset by a significantly 
slower protein tagging component that was done using NLProt and took ~18 min. on the 
same workstation to tag proteins in 262 abstracts from the dataset. 
 
 
Protocol fAC PR RE AUC F-score 
10-fold 72% 73% 71% 0.78 0.72 
Test 66% 69% 60% 0.72 0.64 
LOO 71% 72% 72% 0.78 0.71 

Table 3. Evaluations of the feature-based classifier. LOO and 10-fold denote leave-one-out 
and 10-fold cross-validation protocols applied to the models that are trained on the set of 
262 abstracts. The last protocol corresponds to the evaluation performed only on the testing 
set of 88 abstracts. 

5. Conclusion 
In this chapter, we discussed a new problem for biomedical literature mining that was 
concerned with mining molecular interactions between the host and pathogen organisms. 
Collecting HPI data is one of the very first steps towards studying and fighting infectious 
diseases. Creating an automated framework for extracting the HPI information from the 
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biomedical literature, including millions of abstracts publicly available in PubMed database, 
is instrumental in completing this step. We formulated three key tasks of HPI literature 
mining and proposed three computational approaches that addressed these tasks: (i) a naïve 
approach, which was based on the existing protein-protein interaction mining methods, (ii) 
a language-based approach, which employed the link grammar, and (iii) a feature-based 
supervised learning approach, which relied on SVM methodology. Both, feature-based and 
language-based, approaches have been implemented in the PHILM (Pathogen-Host 
Interaction Literature Mining) web-server, accessible at http://korkinlab.org/philm.html. 
Several important conclusions can be drawn from the comparative assessment of all three 
approaches. First, it became clear that being a new problem in biomedical literature mining 
(and a more difficult one than mining general protein-protein interactions), HPI text mining 
required development of new methods tailored to address the specifics of this problem. 
Indeed, for the first task the naïve approach performed with the disappointingly low 
accuracy of 53% and f-score of just 13%, while accuracy and f-score of the language-based 
approach were significantly higher, 65% and 51%, correspondingly; the feature-based 
method had even higher (10-fold) accuracy and f-score, 72% and 72%, correspondingly. We 
note that the performance accuracy of both language-based and feature-based approaches 
even at this early stage were comparable to the state-of-the-art protein-protein interactions 
mining methods (Krallinger, Leitner et al. 2008). In addition to its poor performance in the 
abstract classification task, the naïve approach completely failed to detect protein interaction 
pairs and organism pairs in the third task. The feature-based approach performed 
significantly better when detecting one of the interacting proteins or organisms, while still 
failing to accurately detect the complete pairs. It was not surprising that the highest 
accuracy of detecting both, host-pathogen organism pairs and protein pairs, was achieved 
by the most sophisticated language-based approach. Second, the analysis of incorrectly 
classified abstracts and identified pairs of proteins and organisms supported our conclusion 
that increasing the accuracy of the name tagging system is pivotal to increasing the 
classification accuracy in both approaches. Finally, both language-based and feature-based 
approaches demonstrated good performance but in different tasks, which suggests that by 
integrating these two approaches, one can obtain a system with a more accurate overall 
performance than either of the individual approaches. 
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validations on the training set. 
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abstracts. Testing data are used to evaluate all three approaches, and training data are used 
for SVM learning in the feature-based approach. The abstracts are extracted from then 
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Performance of the feature based approach. During the leave-one-out cross-validation, an 
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biomedical literature, including millions of abstracts publicly available in PubMed database, 
is instrumental in completing this step. We formulated three key tasks of HPI literature 
mining and proposed three computational approaches that addressed these tasks: (i) a naïve 
approach, which was based on the existing protein-protein interaction mining methods, (ii) 
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by the most sophisticated language-based approach. Second, the analysis of incorrectly 
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that increasing the accuracy of the name tagging system is pivotal to increasing the 
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integrating these two approaches, one can obtain a system with a more accurate overall 
performance than either of the individual approaches. 
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1. Introduction 
Signalling and regulatory pathways that guide gene expression have only been partially 
defined for most organisms. Given the increasing number of microarray measurements, it 
may be possible to reconstruct such pathways and uncover missing connections directly 
from experimental data. One major question in the area of microarray-based pathway 
analysis is the prediction of new elements to a particular pathway. Such prediction is 
possible by independently testing the effects of added genes or variables on the overall 
scores of the corresponding expanded networks. A general network expansion framework 
to predict new components of a pathway was suggested in 2001 (Tanay and Shamir, 2001). 
Many machine learning approaches for identifying hidden or unknown factors have 
appeared in the literature recently (Gat-Viks and Shamir, 2007; Hashimoto, et al., 2004; 
Herrgard, et al., 2003; Ihmels, et al., 2002; Needham, et al., 2009; Parikh, et al., 2010; Pena, et 
al., 2005; Tanay and Shamir, 2001; Yu and Li, 2005).  
Compared to existing pathway expansion methods based on correlation, Boolean, or other 
strategies (Hashimoto, et al., 2004; Herrgard, et al., 2003; Ihmels, et al., 2002; Tanay and 
Shamir, 2001), Bayesian network-based expansion methods provide distinct advantages. A 
Bayesian network (BN) is a representation of a joint probability distribution over a set of 
random variables (Friedman, et al., 2000). Bayesian networks are able to identify causal or 
apparently causal relationships (Friedman, et al., 2000), and can be used to predict both 
linear and nonlinear functions. Furthermore, BN analysis is robust to error and noise and 
easily interpretable by humans. Bayesian network-based expansion has been used for gene 
expression data analysis (Gat-Viks and Shamir, 2007; Pena, et al.). We have recently 
developed an algorithm termed “BN+1” which implements Bayesian network expansion to 
predict new factors and interactions that participate in a specific pathway (Hodges, et al., 
2010; Hodges, et al., 2010). This algorithm has been tested using E. coli microarray data 
(Hodges, et al., 2010) and verified with a synthetic network (Hodges, et al., 2010).  
This Book Chapter aims to first provide a detailed review on different computational 
methods for pathway element prediction, introduce how a BN analysis is typically 
performed, and then describe how this BN+1 algorithm works. We will also introduce our 
MARIMBA software program (http://marimba.hegroup.org) which can implement the 
BN+1 algorithm along with many other useful features. So far, the success of BN+1 in new 
pathway element prediction has been demonstrated in prokaryotic E. coli system. This paper 
will introduce our new study of applying BN+1 to predict new pathway elements for 
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eukaryotic B-cell receptor (BCR) pathway using high throughput microarray data from 
perturbed B-cells obtained from the Alliance for Cellular Signalling (AfCS) (Zhu, et al., 
2004). Finally, we will present current challenges and possible future directions in this field. 

2. Overview of different computational methods for prediction of new 
pathway elements  
In this section, we describe several existing methods for pathway expansion. By pathway 
expansion, we mean the expansion of a known set of variables with some biological role or 
function to include novel interacting or downstream variables. This definition is highly 
flexible and can be used for a variety of biological and biomedical situations. 

2.1 Correlation methods and pathway expansion  
Some of the most prevalent approaches used towards analyzing high-throughput datasets 
are correlation-based methods. Correlation methods attempt to identify the degree of 
similarity or dissimilarity between two or more variables (e.g., the expression profiles of two 
genes) using simple computational distance metrics, such as Manhattan and Pearson metrics 
(Herrero, et al., 2001). An underlying assumption is that cellular processes often require the 
participation of multiple gene products which are expected to show correlated expression 
patterns as well as physical interactions (Meier and Gehring, 2008).   
To predict new pathway elements using correlation methods, one or more genes (or other 
biological entities) are usually selected initially as a target of interest for comparison. A 
correlation is then determined between each other gene’s (or entity’s) expression pattern 
and that of the gene of interest. Those correlations appearing above some established 
threshold or ranking are then represented as either edges in a network or as a 
dendrogram in an expression-based heatmap diagram. For example, Herrgard et al 
defined subset of variables with specific modular behaviors and network structure using 
correlations and linear multiple regression (Herrgard, et al., 2003). These modules are 
then expanded to identify other neighboring variables with likely interactions or 
influences with the module-based sub-networks. Tanay et al (2001) introduced a fitness 
function-based approach for expanding sets of variables in literature models (Tanay and 
Shamir, 2001).  
One advantage of these correlation-based methods is the ability to compute all pair-wise 
correlations for genes or features on a gene expression microarray or other high-throughput 
datasets. However, the correlation networks themselves do not imply any directionality for 
the interactions, such as which gene activates or represses a correlated gene, or whether 
those genes are instead co-regulated by another biological entity. The types and sometimes 
directionality of interactions must be determined using one or more analysis procedures, 
such as gene enrichment, promoter analysis, and context-dependent (or condition-
dependent) analysis (Meier and Gehring, 2008). The correlation-based methods are often 
sensitive to the underlying distance metrics and assumptions, and are easily misinterpreted 
when the wrong metrics are employed. In addition, nonlinear (e.g. biphasic) interactions 
cannot usually be detected using correlation-based methods.  

2.2 Clustering-based identification of new pathway elements  
Various clustering method can be used to group genes based on expression values and 
identify potential new genes to specific pathways. Unsupervised and supervised clustering 
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methods have been developed (Raychaudhuri, et al., 2001). Unsupervised clusting methods, 
such as hierarchical clustering (Eisen, et al., 1998), self-organizing maps (Tamayo, et al., 
1999), and model-based clustering (e.g., CRCView (Xiang, et al., 2007)), arrange genes and 
samples in groups/clusters based solely on the similarities in gene expression. Supervised 
methods, including EASE (Hosack, et al., 2003) and gene set enrichment analysis (GSEA) 
(Subramanian, et al., 2005), use sample classifiers and gene expression to identify 
hypothesis-driven correlations. The Gene Ontology program (GO) is frequently used for 
gene enrichment analysis by many software programs, for example, DAVID (Huang da, et 
al., 2009) and GOStat (Beissbarth and Speed, 2004). One major disadvantage of such 
clustering-based methods on identifying new pathway elements is that detailed gene-gene 
interactions and directionalities cannot be predicted.  

2.3 Boolean network-based pathway expansion  
In Boolean network modelling, originally introduced by Kauffman (Kauffman, 1969) 
(Kauffman, 1969) (Kauffman, 1969), gene expression is quantized to only to two levels: ON 
and OFF. The gene expression level (state) of each gene is functionally related to the 
expression states of some other genes using logical rules. Probabilistic Boolean Networks 
(PBN) share the appealing rule-based properties of Boolean networks, but are robust in the 
face of uncertainty (Shmulevich, et al., 2002). Hashimoto et al. proposed a method to grow 
genetic regulatory networks from seed genes based on PBN analysis (Hashimoto, et al., 
2004). In their study, Boolean functions were implemented towards globally expanding a set 
of seed genes from known literature-extracted interactions for vascular endothelial growth 
factor pathway genes using melanoma and glioma data (Hashimoto, et al., 2004). The output 
of this algorithm depends on the PBN-based objective function. The disadvantage of this 
approach is that the two-level representation in Boolean network often oversimplifies the 
complex biological systems.  

2.4 Mutual information-based method   
Mutual information-based methods have been used for modelling, refining, and 
expanding biological pathways. In probability theory and information theory, the mutual 
information of two random variables is a quantity that measures the mutual dependence 
of the two variables. Recent reports by Luo et al. (Luo, et al., 2008; Luo and Woolf, 2010; 
Watkinson, et al., 2009) and others have shown the utility and improved modelling of 
using three-way and higher mutual information influences for a given variable. However, 
the assembly of these multi-parent interactions into larger global networks is yet a 
challenging issue.  

2.5 Bayesian network pathway refinement and expansion   
Bayesian networks have recently been widely used for biological pathway reconstruction 
and expansion. Since this is the major topic of this book chapter, we will introduce it in more 
details in the next sections.  

3. Bayesian network (BN) analysis 
In this section, we introduce Bayesian networks and their uses in biomedical research. Most 
specifically, models generated for understanding biological pathways and relevant gene 
regulatory networks are discussed. 
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3.1 Introduction to Bayesian networks 
One exciting development in bioinformatics research was the advent and application of 
Bayesian networks (BN) in biological research. Basically, BNs are graphical 
representations of statistical interdependencies amongst sets of nodes. BNs model 
interactions amongst sets of variables (e.g. genes, proteins) as probabilistic dependencies 
or influences. Judea Pearl introduced the notion of Bayesian networks in 1985 (Pearl, 1985; 
Pearl, 1988) to emphasize three aspects: (i) Often subjective nature of the input data 
information; (ii) Reliance on Bayes’s conditioning as the basis for information updating; 
and (iii) Distinction between causal and evidential modes of reasoning. Bayesian 
networks were later implemented by Heckerman et al, Friedman et al, and various other 
research labs towards biological research (Cooper and Herskovits, 1992; Friedman, et al., 
2000; Heckerman, 1995).  
Specifically, a BN for a set of variables X = {X1, X2, ...,Xn} consists of (1) a network structure 
S that encodes a set of conditional independence assertions about variables in X, and (2) a 
set P of conditional probability distributions associated with each variable (Heckerman, 
2008). Together, these components denote the joint probability distribution for X. The BN 
structure S is a directed acyclic graph, meaning that the network is hierarchical and  
has both top-level and terminal nodes and no directed paths which eventually return to 
them. We use Pai to denote the parents of node Xi in S as well as the variables 
corresponding to those parents. Given structure S, the joint probability distribution for X 
is given by 

  
(1)

 
Different methods have been developed to learn BN structures and will be introduced in 
detail next.  

3.2 Learning Bayesian networks (BNs) 
The problem of learning a Bayesian network can be stated as follows: given a training 
dataset of independent instances, find a network that best matches the dataset. The common 
approach to this problem is to introduce a statistically sound scoring function that evaluates 
each network with respect to the training dataset and to search for the optimal network 
based on this score.  
To dissect the processes of learning BNs, we summarize five major steps as follows:  
1. Data selection and pre-processing  
2. Prior definition (including variables and edges) 
3. Selection of network searching strategy (e.g., simulated annealing, greedy)  
4. BN execution with a specific scoring method 
5. Results output and analysis 
These steps will be introduced in detail here for gene expression data analysis:  

3.2.1 Data selection and preprocessing  
BN is a powerful tool for analyzing high throughput data, e.g., DNA microarray data. Pre-
processing is usually required to normalize raw data and possibly filter out those genes that 
do not show significant changes over all conditions.  
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3.2.2 Prior definition (including variables and edges) 
After selecting appropriate data and variable sets for investigation, settings for the BN 
simulation must be chosen. Initially, assumptions must be made as to whether structural 
priors (e.g. the requirement of certain interactions to appear in a model) should be included 
or not in the BN analysis. It is not necessary to assume any structural priors for the initial set 
of variables. However, structural priors can be implemented, especially in cases where the 
biological interactions to be represented are well-established and also fully represented in 
the underlying biological data used for modelling.  

3.2.3 Set up network searching strategy 
Once the prior is specified, the BN learning becomes finding a structure that maximizes the 
BN score according to a BN scoring function. This problem is proven to be NP-complete 
(Chickering, 1996). Thus heuristic search is needed. The decomposition of the score is crucial 
for the optimization problem. For example, a local search procedure that changes one edge 
at a time can efficiently evaluate the gains of a specified score made by adding, removing, or 
reversing an edge. An example of such a procedure is a greedy random search algorithm 
with random restarts. Although this procedure does not necessarily achieve a global 
maximum, it reaches a local maximum and does perform well in practice (Friedman, et al., 
2000). Another commonly used method is simulated annealing search algorithm with a 
temperature schedule that allows for “reannealing" as the temperature is lowered 
(Heckerman, 1995). Other BN searching strategies include stochastic hill-climbing and 
genetic algorithm (Friedman, et al., 2000). 

3.2.4 Bayesian network scoring approaches 
The key part of BN learning is to determine a scoring metric that compares networks  
and identifies the most likely or ‘best supported’ networks. Bayesian network scoring is  
based upon conditional probabilities. One commonly used scoring method is the BDe score 
(Cooper and Herskovits, 1992; Heckerman, 1995), which is a posterior probability defined  
as: 
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where n is the number of variables, qi is the number of parent configurations for given 
variable i, ri is the arity of variable i, Nij is the number of observations with selected parent 
configuration qi, Nijk is the number of observations of child in state k with parent 
configuration qi (Cooper and Herskovits, 1992). The calculation of this score is implemented 
in many software programs such as BANJO (Smith, et al., 2006). 
Another BN scoring method is the Bayesian Information Criterion (BIC), which was 
specifically designed to compensate for overfitting (Schwarz, 1978).  

3.2.5 Bayesian network analysis software  
Many BN analysis software programs are available. Dr. Kevin Murphy provides an 
excellent summary of existing software packages for Bayesian network modelling 
(http://www.cs.ubc.ca/~murphyk/Bayes/bnsoft.html). Table 1 lists selected BN software 
programs from Dr. Murphy’s website and other resources.  
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where n is the number of variables, qi is the number of parent configurations for given 
variable i, ri is the arity of variable i, Nij is the number of observations with selected parent 
configuration qi, Nijk is the number of observations of child in state k with parent 
configuration qi (Cooper and Herskovits, 1992). The calculation of this score is implemented 
in many software programs such as BANJO (Smith, et al., 2006). 
Another BN scoring method is the Bayesian Information Criterion (BIC), which was 
specifically designed to compensate for overfitting (Schwarz, 1978).  

3.2.5 Bayesian network analysis software  
Many BN analysis software programs are available. Dr. Kevin Murphy provides an 
excellent summary of existing software packages for Bayesian network modelling 
(http://www.cs.ubc.ca/~murphyk/Bayes/bnsoft.html). Table 1 lists selected BN software 
programs from Dr. Murphy’s website and other resources.  
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Name Source API GUI Undir Exec Free Inference Exp Reference 

Banjo Java Y N D W,U,
M Y N N (Bose, et al., 2006) 

BayesiaLab N N Y C,G W,U,
M N Jtree, 

Gibbs N (Conrady and 
Jouffe, 2011) 

BNT Matlab, 
C Y N D,U W,U,

M Y Several
options N (Murphy, 2001) 

BNJ Java N Y D C Y Jtree, IS N http://bnj.sourcefo
rge.net  

Causal 
Explorer 

Matlab,
C/C++ Y N D W,U,

M Y N N (Aliferis, et al., 
2003) 

Deal R Y Y D I Y N N (Bøttcher and 
Dethlefsen, 2003) 

Genie C++ Y Y D C Y Jtree N (Druzdzel, 1999) 

Java Bayes Java Y Y D C Y Jtree, 
Varelim N 

http://www.cs.cm
u.edu/~javabayes/
Home/ 

LibB N Y N D W,L Y N N 
http://www.cs.huj
i.ac.il/labs/compbi
o/LibB/ 

MARIMBA N N Y D I Y N Y 
(Hodges, et al., 
2010; Hodges, et 
al., 2010) 

miniTUBA N N Y D I Y N N (Xiang, et al., 2007) 

openBUGS Y Y Y D W,U,
M Y Gibbs N (Lunn, et al., 2000; 

McCarthy, 2007) 

OpenPNL C++ Y Y D W,L Y Jtree, 
Gibbs N 

http://sourceforge
.net/projects/open
pnl/ 

PEBL Python Y Y D W,U,
M Y N N (Shah and Woolf, 

2009) 

WinMine N N Y D,U W Y N N (Chickering, 2002) 

Notes: The catergories listed include: Source, source code; API, application program interface for 
programmatic access; GUI, graphical user interface; Undir, ability to handle undirected graphes; Exec, 
the type of execution, including W:Windows, U:Unix, L:Linux, M:Mac, I:OS-independent, or C:any with 
compiler; Free, the availability of the software as either free (e.g. academic) or commercial; Inference, 
inferencing ability; Exp, ability for network expansion; and Ref, references.  

Table 1. Selected software programs for BN analysis.  

3.2.6 BN result output and analysis 
To visualize BN results, different methods can be performed. For example, BANJO uses DOT 
type of BN result output (Reference: http://www.graphviz.org/Documentation/dotguide.pdf). 
MARIBMA uses DOT and can also export networks as .sif format for use in Cytoscape 
(http://www.cytoscape.org). Since different BNs are available, it is crucial for a user to select 
‘best-scoring’ networks and/or generate consensus networks. Often methods are also needed to 
build weighted networks based on computational analysis or from literature and other database 
queries.  
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4. Bayesian network expansion methods  
Bayesian network (BN) expansion is an approach that is built upon the BN method and aims 
to identify new pathway elements that participate in a specified network. In this section, we 
will introduce basic BN expansion methods and then focus on describing our internally 
developed BN+1 algorithm and its implementation.  

4.1 General BN expansion  
Compared to the otehr network expansion methods described above, Bayesian network-
based expansion methods provide distinct advantages, such as prediction of both linear and 
nonlinear functions, robustness in noise data analysis, and identification of causal or 
appearly causal influences representing interactions among genes. In general, Bayesian 
network expansion can be defined as the addition of new variables to an existing network, 
followed by rescoring and ranking of those variables.  
BN-based expansion has been used for gene expression data analysis (Gat-Viks and Shamir, 
2007; Pena, et al.). For example, Pena et al. reported an algorithm AlgorithmGPC that also 
grows BN models from seed genes (Pena, et al.). This approach starts with one single gene 
and builds networks around this gene through expansion and pruning with a set number of 
genes. Gat-Viks et al also generated a Bayesian network-based refinement and expansion 
method (Gat-Viks and Shamir, 2007). A main limitation of this approach is that it requires 
high quality of prior knowledge on the signaling pathways. The topology of the biological 
pathways may not be consistent with networks learned from transcriptional gene expression 
data obtained via DNA microarray studies. Therefore, a fixed topology as initial seed 
network may not be appropriate for robust network expansion simulaions.  
Other BN expansion methods have also been published (Needham, et al., 2009; Parikh, et al., 
2010). These approaches differ from each other but all showed different levels of success in 
identifying new pathway elements. In the following two sections, we will introduce our 
BN+1 algorithm (Hodges, et al., 2010; Hodges, et al., 2010), and how it is implemented in the 
MARIMBA software.   

4.2 The BN+1 algorithm  
In our recent study, we developed an algorithm termed “BN+1” which implements 
Bayesian network expansion to predict new factors and interactions that participate in a 
specific pathway (Hodges, et al., 2010; Hodges, et al., 2010). Broadly, the BN+1 algorithm 
iteratively tests to see if any single variable added to a given pathway will significantly 
improve the likelihood of the overall network. This approach is based on the observation 
that those variables which are hidden and regulate or are regulated by a network are more 
likely ranked with high posterior probability scores. Using a compendium of microarray 
gene expression data obtained from Escherichia coli, the BN+1 algorithm predicted many 
novel factors that influence the E. coli reactive oxygen species (ROS) pathway. Some of the 
predicted new ROS and biofilm regulators (e.g., uspE and its interaction with gadX) were 
further experimentally verified (Hodges, et al., 2010). In another study, a synthetic network 
was also designed to further evaluate this algorithm. Based on the synthetic data analysis, 
the BN+1 method is able to identify both linear and nonlinear relationships and correctly 
identify variables near the starting network (Hodges, et al., 2010).  
The BN+1 algorithm is specified in Figure 1. A few notes are provided here in our BN+1 
implementation:  
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.net/projects/open
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PEBL Python Y Y D W,U,
M Y N N (Shah and Woolf, 

2009) 

WinMine N N Y D,U W Y N N (Chickering, 2002) 
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Table 1. Selected software programs for BN analysis.  

3.2.6 BN result output and analysis 
To visualize BN results, different methods can be performed. For example, BANJO uses DOT 
type of BN result output (Reference: http://www.graphviz.org/Documentation/dotguide.pdf). 
MARIBMA uses DOT and can also export networks as .sif format for use in Cytoscape 
(http://www.cytoscape.org). Since different BNs are available, it is crucial for a user to select 
‘best-scoring’ networks and/or generate consensus networks. Often methods are also needed to 
build weighted networks based on computational analysis or from literature and other database 
queries.  
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4. Bayesian network expansion methods  
Bayesian network (BN) expansion is an approach that is built upon the BN method and aims 
to identify new pathway elements that participate in a specified network. In this section, we 
will introduce basic BN expansion methods and then focus on describing our internally 
developed BN+1 algorithm and its implementation.  

4.1 General BN expansion  
Compared to the otehr network expansion methods described above, Bayesian network-
based expansion methods provide distinct advantages, such as prediction of both linear and 
nonlinear functions, robustness in noise data analysis, and identification of causal or 
appearly causal influences representing interactions among genes. In general, Bayesian 
network expansion can be defined as the addition of new variables to an existing network, 
followed by rescoring and ranking of those variables.  
BN-based expansion has been used for gene expression data analysis (Gat-Viks and Shamir, 
2007; Pena, et al.). For example, Pena et al. reported an algorithm AlgorithmGPC that also 
grows BN models from seed genes (Pena, et al.). This approach starts with one single gene 
and builds networks around this gene through expansion and pruning with a set number of 
genes. Gat-Viks et al also generated a Bayesian network-based refinement and expansion 
method (Gat-Viks and Shamir, 2007). A main limitation of this approach is that it requires 
high quality of prior knowledge on the signaling pathways. The topology of the biological 
pathways may not be consistent with networks learned from transcriptional gene expression 
data obtained via DNA microarray studies. Therefore, a fixed topology as initial seed 
network may not be appropriate for robust network expansion simulaions.  
Other BN expansion methods have also been published (Needham, et al., 2009; Parikh, et al., 
2010). These approaches differ from each other but all showed different levels of success in 
identifying new pathway elements. In the following two sections, we will introduce our 
BN+1 algorithm (Hodges, et al., 2010; Hodges, et al., 2010), and how it is implemented in the 
MARIMBA software.   

4.2 The BN+1 algorithm  
In our recent study, we developed an algorithm termed “BN+1” which implements 
Bayesian network expansion to predict new factors and interactions that participate in a 
specific pathway (Hodges, et al., 2010; Hodges, et al., 2010). Broadly, the BN+1 algorithm 
iteratively tests to see if any single variable added to a given pathway will significantly 
improve the likelihood of the overall network. This approach is based on the observation 
that those variables which are hidden and regulate or are regulated by a network are more 
likely ranked with high posterior probability scores. Using a compendium of microarray 
gene expression data obtained from Escherichia coli, the BN+1 algorithm predicted many 
novel factors that influence the E. coli reactive oxygen species (ROS) pathway. Some of the 
predicted new ROS and biofilm regulators (e.g., uspE and its interaction with gadX) were 
further experimentally verified (Hodges, et al., 2010). In another study, a synthetic network 
was also designed to further evaluate this algorithm. Based on the synthetic data analysis, 
the BN+1 method is able to identify both linear and nonlinear relationships and correctly 
identify variables near the starting network (Hodges, et al., 2010).  
The BN+1 algorithm is specified in Figure 1. A few notes are provided here in our BN+1 
implementation:  
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1. The selection of seed (or core) genes is an important step. The seed genes can be 
selected from an existing pathway database, from literature survey, or from internal 
experimental results. Since it is computationally expensive to calculate BNs using a 
large number of variables, it is often necessary to filter out some genes from an initial 
list using different criteria, for example, filtering out those genes that do not have 
significant changes among all microarray chips.  

2. While we use a top network structure generated from initial core gene simulation as a 
prior, we prefer not to fix the core network structure for subsequent network expansion. 
This preference makes our approach differ from a commonly used method of fixing the 
prior structure. Our argument is that the prior structure is often determined by many 
layers of studies, including DNA, RNA and protein data analyses. When only RNA 
transcriptomic data are used, such prior structure may not hold. The fixture of a prior 
structure would result in obtaining suboptimal networks that do not match the datasets 
used for BN simulation.  

 

 
Fig. 1. BN+1 algorithm. 

4.3 Implementation of BN+1 using MARIMBA  
MARIMBA is implemented using a three-tiered architecture built on two Dell Poweredge 
2580 servers which run the Redhat Linux operating system. Users submit analysis requests 
and database queries through the web. These queries are then processed using PHP, Perl, 
Python, JavaScript, and SQL (middle-tier, application server based on Apache) against a 
MySQL (version 5.0) relational database (back-end, database server). The result of each 
query is then presented to the user in the web browser.  

BN+1 Algorithm  
Input: N variables (e.g., genes) from a dataset (e.g., microarray dataset) with L observations each. 
 
Data Preprocessing (Optional) 
Filter out m variables (e.g., via coefficient of variation (c.v.) <= 1.0) 
Number of possible variables for analysis: N= N-m. 

 
BN Core Network Searching  
Select K variables from the set of N variables (e.g. from a pathway database). 
Construct matrix data file D with K*L observations using K variables and L observations. 
Select settings for BN simulation, including data discretization (e.g. q3 quantization), searcher  
  strategy (e.g. simulated annealing), and structural priors. 
Execute BN simulation (e.g. using BANJO). 
Save top BN network topology C 
 
Iterative Core Expansion 
Assign the core topology C as unfixed structural prior for BN searching 
For each variable a in the set {N-K}, do: 
 Generate new data file D* by concatenating L observations for a to data file D 
 Select settings for BN simulation. 
 Execute BN simulation.  
 Save top network and its posterior probability for a.  
Rank each variable according to posterior probability. 

 
Output: Rank-ordered BN+1 results. 
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Fig. 2. Workflow of MARIMBA implementation of BN+1 algorithm.  

The main MARIMBA system architecture and pipeline for analysis of project data is 
described in Figure 2 and contains the following steps:  
1. Data Upload: A user can upload gene expression data using specified format.  
2. Gene Selection: A gene list as core gene set for BN modeling will be specified by the user.  
3. Write up BN and BN+1 files: The basic MARIMBA-formatted files are then generated 

dynamically by MARIMBA for use in Bayesian modeling.  
4. Selection of BN parameters: BN simulation settings were selected after completing the 

data and gene selection processes, respectively. A static BN simulation was created to 
analyze the microarray data. Many settings can be selected by the user. For example, a 
user can select simulated annealing or greedy method as the network searcher method. 
We prefer simulated annealing due to its improved performance over greedy searches 
when no prior knowledge of underlying structure is available (Hartemink, et al., 2002). 
In our simulated annealing analysis, a relatively low cooling factor is often 
implemented to allow less restrictive searching of the sample space and potentially 
identify as many equivalence classes for the top-scoring network as possible. Currently, 
up to 1,000 networks can be stored in MARIMBA for each run.  

5. Execution of BN and BN+1modeling: BN files are submitted via the online interface in 
MARIMBA. Each dataset is transferred to the server prior to simulation by a parallel 
computer cluster. Each agent runs a unique BANJO simulation. The core BN network is 
employed as a fixed topology/prior knowledge network in the BN analysis. A BN+1 
simulation can also be implemented as defined by a user.   

6. BN Result display and interpretation: MARIMBA displays top-scoring networks of BN and 
BN+1 simulations to the user. The images of top-scoring networks are converted 
directly from their original dot files and are displayed as jpeg images on-the-fly.  
In addition, MARIBMA is able to calculate conserved edges over a selected number of 
stored networks. To calculate the conserved edges, MARIMBA determines core BN 
models by model averaging and equivalence class searching. Here, model averaging is 
defined as inclusion of an edge between two genes if that edge appeared in more than  
X percent of the top-scoring networks with identical score. Furthermore, The BN+1 
visualization environment in MARIMBA displays a plot for posterior probabilities of 
saved networks, thus enabling comparison of networks for relevance and likelihood.  
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identify as many equivalence classes for the top-scoring network as possible. Currently, 
up to 1,000 networks can be stored in MARIMBA for each run.  

5. Execution of BN and BN+1modeling: BN files are submitted via the online interface in 
MARIMBA. Each dataset is transferred to the server prior to simulation by a parallel 
computer cluster. Each agent runs a unique BANJO simulation. The core BN network is 
employed as a fixed topology/prior knowledge network in the BN analysis. A BN+1 
simulation can also be implemented as defined by a user.   

6. BN Result display and interpretation: MARIMBA displays top-scoring networks of BN and 
BN+1 simulations to the user. The images of top-scoring networks are converted 
directly from their original dot files and are displayed as jpeg images on-the-fly.  
In addition, MARIBMA is able to calculate conserved edges over a selected number of 
stored networks. To calculate the conserved edges, MARIMBA determines core BN 
models by model averaging and equivalence class searching. Here, model averaging is 
defined as inclusion of an edge between two genes if that edge appeared in more than  
X percent of the top-scoring networks with identical score. Furthermore, The BN+1 
visualization environment in MARIMBA displays a plot for posterior probabilities of 
saved networks, thus enabling comparison of networks for relevance and likelihood.  
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Compared to the standalone BANJO system (Bose, et al., 2006), MARIMBA is web-based 
and allows seamless integration of user project management, analysis construction, BN 
submission and execuation in a parallel computing environment, and analysis and 
visualization of results. The user-friendly GUI environment simplifies dataset selection, 
probeset/gene inclusion, observational file processing, and settings selection for BN 
execution. Such features are necessitated for efficient querying by biologists who wish to use 
such BN tools to analyze their data. In addition, the BN+1 algorithm execution and project 
management is a unique feature in MARIBMA and does not exist in BANJO or any other 
software program.  

5. Use case study: Application of BN+1 to BCR pathway modelling  
5.1 Introduction  
As an example of the challenge of merging a pathway model and gene expression data, this 
study focuses on the B-cell receptor pathway (BCR) as described by KEGG (Kanehisa and 
Goto, 2000; Kanehisa, et al., 2010). The BCR pathway is an integral component of the 
adaptive immune response mechanism by which B cells respond to foreign antigens (Lucas, 
et al., 2004). The BCR pathway involves in the activation of specific protein kinase C (PKC) 
isoforms that induces ultimate activation of the NF-B transcription factor. Multiple protein 
species accumulate at the cell membrane in a signalosome complex and are linked to the B 
cell receptor. Signal propagation from the BCR via kinase-mediated phosphorylation 
cascades to downstream effectors such as Nfkb, NFAT (nuclear factor of activated T cells), 
and AP1 is either enhanced or reduced via signalosome interactions with co-stimulatory or 
co-inhibitory complexes, respectively. BCR signaling guides many important functions such 
as anergy, B cell ontogeny, and immune response, and is linked to the several imporant 
pathways: MAPK, coagulation/complement cascades, and actin cytoskeleton (Kanehisa and 
Goto, 2000; Kanehisa, et al., 2010). NF-B plays a crucial role in the antigen-induced B 
lymphocyte proliferation, cytokine production, and B cell survival (Lucas, et al., 2004). 
While the KEGG pathway database includes a manually curated BCR pathway, this 
pathway is still considered incomplete (Lucas, et al., 2004).  

5.2 Microarray data processing and BN analysis methods  
We used gene expression data from perturbed B-cells obtained from the Alliance for 
Cellular Signaling (AfCS) (Lee, et al., 2006; Zhu, et al., 2004). This dataset is especially 
attractive because the same tissues were treated with combinations of ligands that perturb 
different B cell pathways. The AfCS study gathered 424 microarray chips measuring gene 
expression in B cells from M. musculus splenic extracts that are exposed to 33 different 
ligands (Lee, et al., 2006; Papin and Palsson, 2004; Zhu, et al., 2004). Briefly, B cells purified 
from splenic preparations from 6- to 8-wk-old male C57BL/6 mice were treated in triplicates 
or quadruplicates with medium alone, or one of 33 different ligands for 0.5, 1, 2, and 4 h 
(AfCS protocol PP00000016). RNA was extracted following standard AfCS protocol 
PP00000009. An Agilent cDNA microarray chip that contains 15,494 cDNA probes printed 
on 15,832 spots was used. It represents 10,615 unique MGI gene matches (Lee, et al., 2006). 
Each Agilent array was hybridized with Cy5-labeled cDNA prepared from splenic B cell 
RNA and Cy3-labeled cDNA prepared from RNA of total splenocytes used as an internal 
reference (AfCS protocol PP00000019). Hence, each Agilent microarray chip provides one 
unique observation of relative expression level per selected probe. The arrays were scanned 
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using Agilent Scanner G2505A, and images were processed using the Agilent G2566AA 
Feature Extraction software version A.6.1.1. The microarray raw data were downloaded 
from the AfCS repository at ftp://ftp.afcs.org/pub/datacenter/microarray/.  
Microarray data were discretized for each variable in the Bayesian networks using quantile 
normalization with three bins. Though triplicate or quadruplicate microarray experiments 
were available in most cases per unique treatment and time of drug administration, we 
assume that each experiment provides an independent source of information. In this 
analysis, we did not use all BCR pathway genes. We sought to answer here whether 
expansion of a sub-network from the BCR pathway would preferentially recover other BCR 
pathway genes. This assumption is advantageous in that the number of variables allows 
significantly faster simulation searches for the BN and BN+1 simulations. Particularly, those 
genes most specifically involved in Nfkb-mediated transcriptional regulation were chosen 
from the KEGG BCR pathway.  
A set of 10,000 top-scoring BNs was generated using the eight variables (the core) and 424 
observations. Among the eight variables, two variables are Nfkbie probe sets, and two are 
Ikbkb probe sets. In many cases, one gene has multiple probe sets. We chose to separate 
them as different variables in our BN analysis since often these probe sets have different 
values with low correlation (Fig. 3). This BN analysis was accomplished by running 100 
independent simulations and saving the top 100 simulations for each of those runs. 
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Fig. 3. Scatter plots for Nfkbie and Ikbkb probes from AfCS study. Agilent probe identifiers 
are listed next to each respective gene. This figure indicates that the probe sets Nfkbie_10164 
and Nfkbie_8911 correlate relatively well with a Pearson correlation coefficient of 0.69 (A). 
However, the correlation between Ikbkb_17300 and Ikbkb_10548 is low (Pearson correlation 
coefficient: 0.58) (B).  

5.3 Results  
5.3.1 Defining the core network 
Fig. 4 depicts the shared set of interactions appearing in all of the top networks sharing the 
same best score.  



 
Systems and Computational Biology – Molecular and Cellular Experimental Systems 

 

194 

Compared to the standalone BANJO system (Bose, et al., 2006), MARIMBA is web-based 
and allows seamless integration of user project management, analysis construction, BN 
submission and execuation in a parallel computing environment, and analysis and 
visualization of results. The user-friendly GUI environment simplifies dataset selection, 
probeset/gene inclusion, observational file processing, and settings selection for BN 
execution. Such features are necessitated for efficient querying by biologists who wish to use 
such BN tools to analyze their data. In addition, the BN+1 algorithm execution and project 
management is a unique feature in MARIBMA and does not exist in BANJO or any other 
software program.  

5. Use case study: Application of BN+1 to BCR pathway modelling  
5.1 Introduction  
As an example of the challenge of merging a pathway model and gene expression data, this 
study focuses on the B-cell receptor pathway (BCR) as described by KEGG (Kanehisa and 
Goto, 2000; Kanehisa, et al., 2010). The BCR pathway is an integral component of the 
adaptive immune response mechanism by which B cells respond to foreign antigens (Lucas, 
et al., 2004). The BCR pathway involves in the activation of specific protein kinase C (PKC) 
isoforms that induces ultimate activation of the NF-B transcription factor. Multiple protein 
species accumulate at the cell membrane in a signalosome complex and are linked to the B 
cell receptor. Signal propagation from the BCR via kinase-mediated phosphorylation 
cascades to downstream effectors such as Nfkb, NFAT (nuclear factor of activated T cells), 
and AP1 is either enhanced or reduced via signalosome interactions with co-stimulatory or 
co-inhibitory complexes, respectively. BCR signaling guides many important functions such 
as anergy, B cell ontogeny, and immune response, and is linked to the several imporant 
pathways: MAPK, coagulation/complement cascades, and actin cytoskeleton (Kanehisa and 
Goto, 2000; Kanehisa, et al., 2010). NF-B plays a crucial role in the antigen-induced B 
lymphocyte proliferation, cytokine production, and B cell survival (Lucas, et al., 2004). 
While the KEGG pathway database includes a manually curated BCR pathway, this 
pathway is still considered incomplete (Lucas, et al., 2004).  

5.2 Microarray data processing and BN analysis methods  
We used gene expression data from perturbed B-cells obtained from the Alliance for 
Cellular Signaling (AfCS) (Lee, et al., 2006; Zhu, et al., 2004). This dataset is especially 
attractive because the same tissues were treated with combinations of ligands that perturb 
different B cell pathways. The AfCS study gathered 424 microarray chips measuring gene 
expression in B cells from M. musculus splenic extracts that are exposed to 33 different 
ligands (Lee, et al., 2006; Papin and Palsson, 2004; Zhu, et al., 2004). Briefly, B cells purified 
from splenic preparations from 6- to 8-wk-old male C57BL/6 mice were treated in triplicates 
or quadruplicates with medium alone, or one of 33 different ligands for 0.5, 1, 2, and 4 h 
(AfCS protocol PP00000016). RNA was extracted following standard AfCS protocol 
PP00000009. An Agilent cDNA microarray chip that contains 15,494 cDNA probes printed 
on 15,832 spots was used. It represents 10,615 unique MGI gene matches (Lee, et al., 2006). 
Each Agilent array was hybridized with Cy5-labeled cDNA prepared from splenic B cell 
RNA and Cy3-labeled cDNA prepared from RNA of total splenocytes used as an internal 
reference (AfCS protocol PP00000019). Hence, each Agilent microarray chip provides one 
unique observation of relative expression level per selected probe. The arrays were scanned 

 
Prediction of Novel Pathway Elements and Interactions Using Bayesian Networks 

 

195 
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Fig. 3. Scatter plots for Nfkbie and Ikbkb probes from AfCS study. Agilent probe identifiers 
are listed next to each respective gene. This figure indicates that the probe sets Nfkbie_10164 
and Nfkbie_8911 correlate relatively well with a Pearson correlation coefficient of 0.69 (A). 
However, the correlation between Ikbkb_17300 and Ikbkb_10548 is low (Pearson correlation 
coefficient: 0.58) (B).  

5.3 Results  
5.3.1 Defining the core network 
Fig. 4 depicts the shared set of interactions appearing in all of the top networks sharing the 
same best score.  
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Fig. 4. Consensus of top scoring Bayesian networks for eight probes representing BCR 
receptor signaling pathway genes. Gene symbols and corresponding Agilent probe 
identifiers are represented in nodes in the network. Directed edges represent those 
influences appearing in the same direction in all top-scoring Bayesian networks, while 
undirected edges appear at least once in the opposite direction though appearing 
cumulatively with 100% frequency in all of the top networks. 

Compared with the KEGG BCR pathway, the consensus network found in our BN analysis 
(Fig. 2) has a 75% overlap with known interactions (3 out of 4 were correctly predicted), 
with only one interaction missing (Fig. 5).   
 

 
Fig. 5. Schematic representation of the BN+1 analysis results in the content of KEGG BCR 
pathway. The three blue boxes represent three major sub-networks within the BCR pathway 
with distinct regulatory and functional roles. The BN core network was defined using 
members from the third sub-network (dark grey boxes) which reflect major components of 
Nfkb signalling. Bolded gene names are those genes which were not included in the core 
network, yet were recovered during BN+1 analysis in the top 100 results. Note that not all 
members of the listed Nfkb signalling pathway were included in the core network (e.g. 
Ikbkg), and in some cases were not available on the microarray platform. 
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5.3.2 Defining BN+1 genes 
One of the top-scoring networks used to generate the consensus shown in Fig. 4 was used as 
a core network for subsequent BN+1 expansion. BN+1 searching was executed for 14,353 
individual probes with 50 million networks searched per probe. If only those genes in close 
neighbourhood in the KEGG BCR pathway are considered, out of 19 selected genes, nine 
genes were found to be connected to the core network in our analysis. Furthermore, four of 
these nine genes are in close proximity (within top 10% of top-scoring BN+1 genes with at 
least one connection to the core network) with these core genes in the KEGG protein 
signalling pathway: Card11, Prkcb1, Ikbkg, and Vav2. These results suggest that the 
neighbourhood of transcriptional regulation around the core network as well as distance 
between the elements in the protein signalling pathway are related to each other.  
Analysis of the top BN+1 variables recovered during simulation revealed several interesting 
results. First, the top set of BN+1 variables is listed in Table 1.  
 

Rank Agi_ID GeneID Symbol BN1_score Neighbors 

1 11062 77619 Prelid2 -3402.0 Nfkb2 

2 9502 20744 Strbp -3517.0 Nfkbie 

3 14138 20823 Ssb -3545.2 Nfkb2 

4 6276 12530 Cdc25a -3569.2 Nfkb2 

5 11361 108829 Jmjd1c -3586.8 Ikbkb(both), Pik3cg 

6 14614 75964 Trappc8 -3587.8 Ikbkb, Pik3cg 

7 15876 108786 Cxcl13* -3593.1 Nfkb2 

8 10759 73132 Slc25a16 -3594.8 Ikbkb, Pik3cg 

9 5275 67887 Tmem66 -3596.0 Nfkb1, Pik3cg 

10 9036 109339 2700018L05Rik -3599.1 Pik3cg 

Notes: Identifier information for each ranked gene is provided, including Agilent probe ID (Agi_ID), 
Entrez gene ID (GENEID), and gene symbol. Probe variables from the core network which directly 
connect to the BN+1 variables in the top-scoring networks are listed in the “Neighbors” column.  

Table 2. Top ten predicted BN+1 genes. 

Many interesting findings were observed from this analysis. Many genes, for example, the 
Sjorgen syndrome antigen B gene (Ssb) (Brenet, et al., 2009), have been shown to be 
associated with the Nf-kB and BCR pathways. Ssb plays an important role in polysome 
translation (Brenet 2009), and is an early DNA-damage responder in apoptotic cells and 
those treated with cytotoxic chemicals (Al-Ejeh, et al., 2007). Interestingly, we identified 
Jmjd1c, a member of the jumonji family proteins, as a top predicted gene in our BN+1 
simulation. Jmjd1c is conserved in several mammalian species and has documented roles in 
metal ion binding, oxidoreductase activity, and transcriptional regulation (Katoh, 2007). The 
murine Jmjd1c mRNA is expressed in multiple tissues, including hematopoietic and 
undifferentiated ES stem cells, fertilized egg, pancreatic islet, etc (Katoh, 2007). Jmjd1c has a 
promoter region orthologous to humans with binding sites for the AP-1 transcription factor, 
which is considered a member of the BCR signalling pathway and is included in the KEGG 
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Fig. 4. Consensus of top scoring Bayesian networks for eight probes representing BCR 
receptor signaling pathway genes. Gene symbols and corresponding Agilent probe 
identifiers are represented in nodes in the network. Directed edges represent those 
influences appearing in the same direction in all top-scoring Bayesian networks, while 
undirected edges appear at least once in the opposite direction though appearing 
cumulatively with 100% frequency in all of the top networks. 

Compared with the KEGG BCR pathway, the consensus network found in our BN analysis 
(Fig. 2) has a 75% overlap with known interactions (3 out of 4 were correctly predicted), 
with only one interaction missing (Fig. 5).   
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representation as AP1 (downstream of the Raf/MEK sub-network in Figure 5 though not in 
our core network). Fig. 6 illustrates the strongly-correlated relationships uncovered between 
the Jmjd1c genes and connected core network members. As another example, the Cxcl13 is a 
chemokine ligand in B cells with a C-X-C motif. It has already been established that Cxcl13 
induction requires activation of canonical and non-canonical Nf-kB pathways (Suto, et al., 
2009), which confirms the prediction of this gene in our network. These data strongly 
support the predictions generated by our analysis.  
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Fig. 6. Scatter plot of expression values for core genes Pik3cg and Ikbkb (both probes) 
versus BN+1 gene Jmjd1c. A non-linear association between Pik3cg and Jmjd1c is 
observed (A). A roughly linear relation is observed between Jmjd1c and Ikbkb(1) (Pearson 
correlation coefficient: 0.71) (B) and between Jmjd1c and Ikbkb(2) (Pearson correlation 
coefficient: 0.79) (C).  

One property of interest, as shown in the table, is that the core genes which recruit the top 
BN+1 genes are not always the same. From this analysis and previous studies, we have 
observed that BN+1 variables which show high correlations to at least one core network 
variable often appear as top BN+1 results. However, in some cases, the BN+1 variable may 
connect to multiple variables in the core network, and yet show moderate to low 
correlations with each of them. It is observed that many BN+1 variables have multiple core 
network variables as parent nodes in the predicted top network. Multi-parent relationships 
are less common, though statistically more meaningful due to the nature of the 
implemented conditional probability tables in BDe scoring. 
Different methods, such as clustering and GO gene enrichment, can be used to further 
analyze BN+1 genes. 

5.3.3 Clustering analysis of core genes and BN+1 genes 
A clustering method provides a way to group BN+1 genes based on gene expression values. 
A heapmap clustering analysis was performed using 8 probe sets in the core network and 10 
probe sets from the BN+1 analysis (Fig. 7). As shown in this heatmap, all NF-B genes (core 
genes in our BN simulation) are clustered together, indicating their close association. Our 
analysis also found that Jmjd1c is closely associated with these NF-B genes. This further 
strengthens our BN+1 prediction of the important role of this gene in the NF-B pathway in 
B cell signalling.   
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Fig. 7. Heatmap of expression data for top BN+1 and core variables. Parentheses indicate 
specific probe identities.  

5.3.4 GO enrichment of predicted BN+1 genes 
Our previous studies indicate that the top few hundred BN+1 genes (i.e. those genes 
predicted by the BN+1 algorithm) often interact with the seed gene network and biologically 
active relevant to the pathway of interest (Hodges, et al., 2010; Hodges, et al., 2010). A GO 
gene enrichment analysis was performed using 250 top BN+1 genes (Table 3). Given the 
nature of the Nfkb-selected core network and their roles in nuclear localization and 
transcriptional initiation, it was not surprising that many of the recovered genes show some 
nuclear compartmentalization. Interestingly, many apoptotic and death-related genes were 
enriched (Table 3).  
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variable often appear as top BN+1 results. However, in some cases, the BN+1 variable may 
connect to multiple variables in the core network, and yet show moderate to low 
correlations with each of them. It is observed that many BN+1 variables have multiple core 
network variables as parent nodes in the predicted top network. Multi-parent relationships 
are less common, though statistically more meaningful due to the nature of the 
implemented conditional probability tables in BDe scoring. 
Different methods, such as clustering and GO gene enrichment, can be used to further 
analyze BN+1 genes. 

5.3.3 Clustering analysis of core genes and BN+1 genes 
A clustering method provides a way to group BN+1 genes based on gene expression values. 
A heapmap clustering analysis was performed using 8 probe sets in the core network and 10 
probe sets from the BN+1 analysis (Fig. 7). As shown in this heatmap, all NF-B genes (core 
genes in our BN simulation) are clustered together, indicating their close association. Our 
analysis also found that Jmjd1c is closely associated with these NF-B genes. This further 
strengthens our BN+1 prediction of the important role of this gene in the NF-B pathway in 
B cell signalling.   

 
Prediction of Novel Pathway Elements and Interactions Using Bayesian Networks 

 

199 

Tmem
66

27
00

01
8L

05
Rik

Cxc
l13 Akt2 Strb

p

Cdc
25

a
Ssb

Prel
id2

Pik3
cg

Ikb
kb

(2)

Slc2
5a

16

Trap
pc

8
Nfkb

1

Jm
jd1

c

Ikb
kb

(1)

Nfkb
ie(

2)

Nfkb
2

Nfkb
ie(

1)

−1.0 −0.5 0.0 0.5  
Fig. 7. Heatmap of expression data for top BN+1 and core variables. Parentheses indicate 
specific probe identities.  

5.3.4 GO enrichment of predicted BN+1 genes 
Our previous studies indicate that the top few hundred BN+1 genes (i.e. those genes 
predicted by the BN+1 algorithm) often interact with the seed gene network and biologically 
active relevant to the pathway of interest (Hodges, et al., 2010; Hodges, et al., 2010). A GO 
gene enrichment analysis was performed using 250 top BN+1 genes (Table 3). Given the 
nature of the Nfkb-selected core network and their roles in nuclear localization and 
transcriptional initiation, it was not surprising that many of the recovered genes show some 
nuclear compartmentalization. Interestingly, many apoptotic and death-related genes were 
enriched (Table 3).  
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Term Count P-Value 
Benjamini  
P-value 

Biological Process 
GO:0009987~cellular process 106 8.29E-06 0.00981 
GO:0070227~lymphocyte apoptosis 4 1.44E-04 0.0823 
GO:0008219~cell death 15 1.73E-04 0.0663 
GO:0016265~death 15 2.20E-04 0.0634 
GO:0048569~post-embryonic organ development 4 2.36E-04 0.0546 
GO:0006915~apoptosis 14 2.65E-04 0.0512 
GO:0012501~programmed cell death 14 3.12E-04 0.0517 
Cellular Compartment 
GO:0005622~intracellular 125 2.93E-08 5.68E-06 
GO:0044424~intracellular part 119 4.32E-07 4.19E-05 
GO:0043229~intracellular organelle 105 2.76E-06 1.78E-04 
GO:0043226~organelle 105 2.84E-06 1.38E-04 
GO:0043231~intracellular membrane-bounded organelle 93 4.08E-05 0.00158 
GO:0043227~membrane-bounded organelle 93 4.24E-05 0.00137 
GO:0005634~nucleus 58 0.001749 0.0474 

Notes: Entrez gene identifiers were input for the top 250 BN+1 results into the DAVID tool for GO 
analysis. The 250 results mapped to 188 unique Mus musculus and seven unknown species genes, 
revealing that some of the top genes were represented by multiple Agilent probes in the top results. 
Benjamini-derived p-values of 0.01 were used as cutoffs here. 

Table 3. GO enrichment results for top 100 predicted variables in the BN+1 analysis.  

6. Conclusion  
In this paper, different bioinformatics methods for network expansion and detection of new 
pathway elements are surveyed. Bayesian network-based expansion methods are 
specifically introduced. Particularly, we outline our BN+1 Bayesian network method that 
can be used to iteratively compare BDe scores and rank those genes that are likely critical to 
a specific pathway or network. BN+1 has been successfully demonstrated in E. coli system 
and synthetic data simulation. In this paper, we first demonstrate its use in BCR pathway, a 
eukaryotic signalling pathway. Our study shows that BN+1 can also be used to predict 
pathway elements and gene interactions in important eukaryotic pathways. Therefore, the 
BN+1 algorithm appears to be a generic BN expansion system that can be used to study 
other prokaryotic and eukaryotic pathways.  
Many future directions are envisioned. For example, we can extend the BN+1 algorithm to 
BN+2, BN+3, or BN+n algorithm by iteratively adding more than one variable to the seed 
gene network. The principle used in the development of the BN+1 algorithm can also be 
used for dynamic BN analysis. We are currently in the process of developing a DBN+1 
algorithm and using it for temporal data analysis.  
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1. Introduction 
One of the most fascinating aspects of RNA interference (RNAi) is the non-cell-autonomous 
nature of silencing. Seminal studies on RNAi focused on the ability of transgene silencing to 
propagate systemically throughout an organism, such as from a single Agrobacterium 
infiltrated leaf to other parts of the plant, or from a grafted silenced stock into a non-silenced 
scion[1, 2]  
The discovery of RNAi was preceded first by observations of transcriptional inhibition by 
antisense RNA expressed in transgenic plants[3] and more directly by reports of unexpected 
outcomes in experiments performed by plant scientists in the U.S. and The Netherlands in 
the early 1990s[4] In an attempt to alter flower colors in petunias, researchers introduced 
additional copies of a gene encoding chalcone synthase, a key enzyme for flower 
pigmentation into petunia plants of normally pink or violet flower color. Soon after, a 
related event termed quelling was noted in the fungus Neurospora crassa [5], although it was 
not immediately recognized as related. Further investigation of the phenomenon in plants 
indicated that the downregulation was due to post-transcriptional inhibition of gene 
expression via an increased rate of mRNA degradation[6]. This phenomenon was called co-
suppression of gene expression, but the molecular mechanism remained unknown. 
Not long after, plant virologists working on improving plant resistance to viral diseases 
observed a similar unexpected phenomenon. While it was known that plants expressing 
virus-specific proteins showed enhanced tolerance or resistance to viral infection, it was not 
expected that plants carrying only short, non-coding regions of viral RNA sequences would 
show similar levels of protection. Researchers believed that viral RNA produced by 
transgenes could also inhibit viral replication[7]. The reverse experiment, in which short 
sequences of plant genes were introduced into viruses, showed that the targeted gene was 
suppressed in an infected plant. This phenomenon was labeled "virus-induced gene 
silencing" (VIGS), and the set of such phenomena were collectively called post 
transcriptional gene silencing [8][15].  
The spread of RNA silencing is not limited to plants or viruses: the first reported 
experiments of RNAi in Caenorhabditis elegans (C. elegans) demonstrated a systemic silencing 
response induced by locally injected or ingested double-stranded RNA (dsRNA) 
molecules[9, 10]. In plants, as in C. elegans, the systemic silencing signal acts in a sequence-
specific manner, invoking the involvement of an RNA component. Sequence-specific RNA 
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silencing that acts non-cellautonomously has tremendous implications, not only practically 
as an experimental tool but in biological processes as well. The long-distance movement of 
RNA silencing through the vasculature forms a crucial component of the antiviral defence 
system and has been implicated in microRNA (miRNA)-regulated stress responses[11] [12, 
13] RNA dependent gene silencing can also move from cell to cell to elicit short-range 
signaling responses, such as in the patterning of leaves and roots[14, 15]. 
After these initial observations in plants, many laboratories around the world searched for 
the occurrence of this phenomenon in other organisms[16] [16]. Craig C. Mello and Andrew 
Fire's 1998 Nature paper reported a potent gene silencing effect after injecting double 
stranded RNA into C. elegans [9]. In investigating the regulation of muscle protein 
production, they observed that neither mRNA nor antisense RNA injections had an effect on 
protein production, but double-stranded RNA successfully silenced the targeted gene. Fire 
and Mello's discovery was particularly notable because it represented the first identification 
of the causative agent of a previously inexplicable phenomenon. Fire and Mello were 
awarded the Nobel Prize in Physiology or Medicine in 2006 for their work. 
MicroRNAs are the most thoroughly characterized. These single-stranded RNAs are 
typically 19 to 25 nucleotides in length and are thought to regulate gene expression post-
transcriptionally by binding to the 3’ untranslated regions (UTRs) of target mRNAs, 
inhibiting their translation[17]. Recent experimental evidence suggests that the number of 
unique miRNAs in humans could exceed 800 [18], though several groups have hypothesized 
that there may be up to 20,000[19] [20] noncoding RNAs that contribute to eukaryotic 
complexity. 
RNA polymerase II transcribes miRNA genes, generating long primary transcripts (pri-
miRNAs) that are processed by the RNase III–type enzyme Drosha, yielding hairpin 
structures (pre-miRNAs). Pre-miRNA hairpins are exported to the cytoplasm where they are 
further processed into unstable miRNA duplexes by the RNase III protein Dicer. The less 
stable of the two strands in the duplex is incorporated into a multiple-protein nuclease 
complex, the RNA-induced silencing complex (RISC), which regulates protein expression. In 
mammalian cells, these RISCs, guided by the miRNA, interact with the 3’ UTR of target 
mRNAs at regions exhibiting imperfect sequence homology, inhibiting protein synthesis by 
a mechanism that has yet to be fully elucidated. 
Although hundreds of miRNAs have been discovered in a variety of organisms, little is known 
about their cellular function. Several unique physical attributes of miRNAs, including their 
small size, lack of polyadenylated tails, and tendency to bind their mRNA targets with 
imperfect sequence homology, have made them elusive and challenging to study. 
Endogenously expressed miRNAs, including both intronic and intergenic miRNAs, are most 
important in translational repression and in the regulation of development, especially the 
timing of morphogenesis and the maintenance of undifferentiated or incompletely 
differentiated cell types such as stem cells[21]. The role of endogenously expressed miRNA 
in downregulating gene expression was first described in C. elegans in 1993 [25]. In plants 
this function was discovered when the "JAW microRNA" of Arabidopsis was shown to be 
involved in the regulation of several genes that control plant shape[22]. In plants, the 
majority of genes regulated by miRNAs are transcription factors [23]; thus miRNA activity 
is particularly wide-ranging and regulated entire gene networks during development by 
modulating the expression of key regulatory genes, including transcription factors as well as 
F-box_proteins[24]. In many organisms, including humans, miRNAs disruption have also 
been linked to the formation of tumors and dysregulation of the cell cycle. Here, miRNAs 
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can function as both oncogenes and tumor suppressors[25]. Another example, miRNAs are 
aberrantly expressed in: liver, pancreatic, oesophageal, stomach, colon, haematopoietic, 
ovarian, breast, pituitary, prostate, thyroid, testicular and brain cancers[26] [27] [28] [29] 
[30]; central nervous system disorders (e.g. schizophrenia and Alzheimer’s disease) [31]; and 
cardiovascular disease[32] [33][36,37]. 
It is becoming clear that a comprehensive understanding of human biology must include 
both small and large non-coding RNAs, and that it is perhaps only through inclusion of 
these elements in the biomedical research agenda, including studies to determine the 
mechanistic basis of the causative variations identified by genome-wide association studies, 
that complex human diseases will be completely deciphered. 

2. Computational methods 
The discovery that microRNAs are synthesized as hairpin-containing precursors with 
many shared features has stimulated the development of several computational 
approaches to the discovery of new microRNA genes in various animal species. Many of 
these approaches rely heavily on conservation of sequence within and between species, 
while others emphasize machine learning methods to screen hairpin candidates for 
structural features shared by known microRNA precursors. The identification of animal 
microRNA targets is a particularly difficult problem because an exact match to the target 
sequence is not required. We discuss the most recently devised algorithms for microRNA 
and target discovery.  

2.1 Machine learning approaches to miRNA discovery 
Methods derived from the machine learning field have recently been applied to miRNA 
discovery with good success. Machine mearning depends on the development of algorithms 
and methods that allow a specific computer program to learn from data already collected on 
verified miRNAs. These algorithms require a training set for the learning process that 
consists of positive examples (that define the miRNA characteristics) and negative examples 
(the control set of non-miRNA sequences). The known microRNAs used as positive 
examples can be downloaded from the database miRBase [34, 35] and random sequences 
can be one choice of negative set. One of the most important tasks associated with the 
learning process is the identification of characteristics and the definition of the rules that 
define the positive class. This is especially important in this case as these characteristics are 
not always explicitly defined, Readers who wish to pursue machine learning in greater 
detail may consult a recent review [36].  
Examples of supervised machine learning algorithms include, naïve Bayes, support vector 
machines (SVM), hidden Markov models (HMM), neural networks and the k-nearest 
neighbor algorithm. Naïve Bayes is a classification model obtained by applying a relatively 
simple method to a training dataset [37]  A Naïve Bayes classifier calculates the probability 
that a given instance (example) belongs to a certain class. Support Vector Machines (SVMs) 
are  widely used  machine learning algorithms developed by Vapnik [38]. In this technique, 
the numbers describing each feature of a microRNA are combined into a single vector in an 
n-dimensional space. The algorithm compares the vectors from the positive class with those 
from the negative class, and finds a "hyperplane" which produces the best separation 
(margin) between the two classes. The "support vectors" are the samples from the two 
classes which are closest together but still separable--they "support" the separating 
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classes which are closest together but still separable--they "support" the separating 



 
Systems and Computational Biology – Molecular and Cellular Experimental Systems 

 

208 

hyperplane, (See Figure 1). The performance of this algorithm, as compared to other 
algorithms, has proven to be particularly useful for the analysis of various classification 
problems, particularly when the two classes are closely related or non-uniform, and has 
recently been widely used in the bioinformatics field [39, 40].  
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Fig. 1. The solid line is the Separating Hyperplane  and the dashed lines are the margins for 
a SVM trained with samples from two classes. Samples (point) on the margin are called the 
support vectors 

2.2 MicroRNA discovery tools 
Numerous computational approaches (in addition to machine learning) have been 
implemented for miRNA gene prediction using methods based on sequence conservation 
and/or structural similarity[41]; [42],[43] ; [44]; [45]. Some of these tools are listed in Table 1. 
Lim and others [41] developed a program for identification of miRNAs, called MiRscan, 
with 70% specificity at a sensitivity of 50%. MiRscan uses seven miRNA features with 
associated weights to build a computational tool, which assigns scores to hairpin candidates. 
The weights are estimated using statistics based on the previously known miRNAs from 
C.elegans. Grad, et al., (2003), developed a computational method using sequence 
conservation and structural similarity to predict miRNAs in the C.elegans genome. Lai, et al., 
(2003) used similar ideas to develop a different computational tool for the Drosophila 
genome, called miRseeker. These efforts were previously reviewed by Bartel [46]. Others 
have used homology searches for revealing paralog and ortholog miRNAs ([42]; [47]; [48]; 
[49]; [50]). Additionally, Wang and others[51] developed a method based on sequence and 
structure alignment for miRNA identification.  
ProMiR [52] is  based on  machine learning for miRNA discovery. ProMiR uses a highly 
specific probabilistic model (HMM) whose topology and states are handcrafted based 
on prior knowledge and assumptions, and whose exact probabilities are derived from the 
accumulated data. Pfeffer, et al., (2005) used support vector machines (SVMs) for 
predicting conserved miRNAs in herpesviruses. The features that defined the positive 
class were extracted from the sequence and structure features in the stem loop to form the 

 
MicroRNA Identification Based on Bioinformatics Approaches 

 

209 

positive class. The negative class was generated from mRNAs, rRNAs, or tRNAs from 
human and viral genomes which should not include any miRNA sequences. The same 
approach was also applied to analysis of clustered miRNAs [53] using a tool named mir-
abela, while Xue, et al.,(2005) developed  a SVM classifier as  a 2-class tool that does not 
rely on comparative genomic approaches. They defined a negative class called pseudo 
pre-miRNAs. The criteria for this negative class included a minimum of 18 paired bases, a 
maximum of -15 kcal/mol folding free energy and no multiple loops. The tool is called 
triplet-SVM. BayesMiRNAfind [54] is a machine learning approach based on the Naïve 
Bayes classifier for predicting miRNA genes. This method differs from previous efforts in 
two ways: 1) they generate the model automatically and identify rules based on the 
miRNA gene structure and sequence, allowing prediction of non-conserved miRNAs and 
2) they use a comparative analysis over multiple species to reduce the false positive rate. 
This allows for a trade-off between sensitivity and specificity. The resulting algorithm 
demonstrates higher specificity and similar sensitivity to algorithms that use conserved  
genomic  regions to reduce false positives [41, 43-45]. Grundhoff, et al.,(2006) have 
developed an approach to identify miRNAs that is based on bioinformatics and array-
based technologies. The bioinformatics tool, VMir [55], does not rely on evolutionary 
sequence conservation. RNAmicro [56] is another miRNA prediction tool developed by 
Hertel and Stadler  that relies mainly on comparative sequence analysis rather then 
structural features using two-class SVM. 
Sheng, et al.,(2007)  describe a computational method, mirCoS [57], that applies three 
support vector machine models, based on sequence, secondary structure, and 
conservation, sequentially to discover new conserved miRNA candidates in mammalian 
genomes. 
Defining the negative class is a major challenge in developing machine learning algorithms 
for miRNA discovery. Two machine learning approaches have recently appeared for 
identifying microRNAs without the necessity of defining a negative class. Yousef, et al., 
(2008) presented a study using one-class machine learning for microRNA using only 
positive data to build the classifier (One-ClassMirnaFind [58]). Several different classifiers, 
including two classes SVM were used to compare the one-class approach to the 
corresponding two-class methods. Although the two-class procedure was generally found to 
be superior, it was more complex to implement.  
Xu, et al., (2008) recently developed a tool called miRank. MiRank [59] is a novel ranking 
algorithm based on a random walk through a graph consisting of known miRNA examples 
and unknown candidate sequences. Each miRNA is a vertex connected to its neighbor by an 
edge which is weighted by its similarity of the miRNA features.  The score or relevance of a 
vertex increases with the number of its connections. The vertices are then ranked by 
relevance score, and an arbitrary cutoff of the ranked list includes both the positive 
examples and the most similar of the predicted unknowns. The strength of miRank is its 
ability to identify novel miRNAs in newly sequenced genomes where there are few 
annotated miRNAs (positive examples). The authors found miRank to be superior to SVM 
classifiers, and attribute its success to the fact that it structures the list and ranks the 
candidate examples as well as the query sequences during the training and classification 
steps.  
We should note in passing that  high-throughput methods for sequencing isolated small 
RNAs provide a new tool  for discovering  new microRNA species [60] and a  new  method 
for amplifying low-concentration  microRNAs allows easier testing  of predictions [61] . 
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including two classes SVM were used to compare the one-class approach to the 
corresponding two-class methods. Although the two-class procedure was generally found to 
be superior, it was more complex to implement.  
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annotated miRNAs (positive examples). The authors found miRank to be superior to SVM 
classifiers, and attribute its success to the fact that it structures the list and ranks the 
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RNAs provide a new tool  for discovering  new microRNA species [60] and a  new  method 
for amplifying low-concentration  microRNAs allows easier testing  of predictions [61] . 
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Algorithm Web link References 

MiRseeker   Lai et al., 2003 
MiRscan http://genes.mit.edu/mirscan/ Lim et al., 2003a,b 
miRank MiRank is programmed in Matlab     Xu, et al.,2008 
ProMiR II http://cbit.snu.ac.kr/~ProMiR2/ Nam et al., 2005 
PalGrade  Bentwich et al., 2005 
mir-abela http://www.mirz.unibas.ch/cgi/pred_miRNA_genes.cgi Sewer et al., 2005 
triplet-SVM http://bioinfo.au.tsinghua.edu.cn/mirnasvm/ Xue, et al., 2005 
Vmir http://www.hpi-hamburg.de/fileadmin/downloads/VMir.zip Grundhoff et al., 2006 
RNA micro http://www.bioinf.uni-leipzig.de/~jana/software/index.html Hertel and Stadler 2006 
mirCoS Based on LIBSVM library package [62] Sheng et al., 2007 
BayesMiRNAfind https://bioinfo.wistar.upenn.edu/miRNA/miRNA/login.php Yousef et al., 2006, 
One-ClassMirnaFind http://wotan.wistar.upenn.edu/OneClassmiRNA/ Yousef et al., 2008 

Table 1. Summary information about computational tools for miRNA predictions.  

3. Target identification  
Although recent findings [63] suggest MicroRNAs may affect  gene expression  by binding to 
either 5’ or 3’ untranslated regions of messenger RNA, most studies have found that 
microRNA mark their target mRNAs for degradation or suppress their translation by binding 
to the 3’-untranslated region (3’UTR) and most target programs search there . These studies 
have suggested that the microRNA seed segment which includes 6-8 nucleotides at the 5’ end 
of the mature miRNA sequence is very important in the selection of the target site (see  
Figure 2). Thus, most of the computational tools developed to identify mRNA target sequences 
depend heavily on complementarity between the miRNA seed sequence and the target 
sequence. Diana-microT [64] was one of the first computational tools for target prediction that 
identified specific interaction rules based on bioinformatics and experimental approaches.  
The tool successfully recovered all validated  C. elegans miRNA targets 
Several additional methods for the prediction of miRNA targets have been subsequently 
developed. These methods mainly use sequence complementarities, thermodynamic 
stability calculations, and evolutionary conservation among species to determine the 
likelihood of a productive miRNA:mRNA duplex formation [46, 65]. John et al., (2004) 
developed the miRanda [66] algorithm for miRNA target prediction. MiRanda uses 
dynamic programming to search for optimal sequence complementarities between a set of 
mature microRNAs and a given mRNA  MicroRNA.org (http://www.microrna.org) [67] 
is a comprehensive resource of microRNA target predictions and miRNA expression 
profiles. Target predictions are based on the miRanda algorithm while miRNA  
expression profiles are derived from a comprehensive sequencing project of a large set of 
mammalian tissues and cell lines of normal and disease origin. Another algorithm 
RNAhybrid [68] [69] is  similar to a RNA secondary structure prediction algorithm like 
the Mfold program [70] but it determines the most favorable hybridization site between 
two sequences. 
Bennecke and others [71] have recently suggested that the 3’ out-seed segment of the 
miRNA:mRNA duplex can compensate for imperfect base pairing of the target with the seed 
segment and a recent computational approach [72] has considered the contributions of both 
seed and the out-seed miRNA segments in target identification. Using sequence 
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conservation reduces false positive predictions but as a result some less-conserved target-
sites may be missed. This presents a dilemma, which is how to avoid rejection of these less 
highly conserved target sites while still reducing the very large numbers of predictions that 
are found when seed region conservation in the target is not required. In order to reduce the 
false positive predictions inherent in methods that heavily weight specific target sequence 
conservation, Lewis, et al.,(2005) developed TargetScanS [73]. TargetScanS scores target sites 
based on the conservation of the target sequences between five genomes (human, mouse, 
rat, dog and chicken) as evolutionarily conserved target sequences are more likely to be true 
targets. In testing, TargetScanS was able to recover targets for all 5300 human genes known 
at the time to be targeted by  miRNAs.  
PicTar [74] is a  computational method to detect common miRNA targets in vertebrates, C. 
elegans, and Drosophila. PicTar is based on a statistical method applied to eight vertebrate 
genome-wide alignments (multiple alignments of orthologous nucleotide sequences (3' 
UTRs) ). PicTar was able to recover validated miRNA targets at an estimated 30%  
false-positive rate. In a separate study PicTar was applied to target identification in 
Drosophila melanogaster  [75] . These studies suggest that one miRNA can target 54 genes 
on average and that known microRNAs are projected to regulate a large fraction of all D. 
melanogaster genes (15%). This is likely to be a conservative estimate due to the incomplete 
input data.  
TargetBoost [76] is a machine learning algorithm for miRNA target prediction using only 
sequence information to create weighted sequence motifs that capture the binding 
characteristics between microRNAs and their targets. The authors suggest that TargetBoost 
is stable and identifies more of the already verified true targets than do other existing 
algorithms.  
Sung-Kyu, et al., (2005), also reported the development of a machine learning algorithm 
using SVM. The best reported results [77] were 0.921 sensitivity and 0.833  specificity. More 
recent Yan and others, used a machine learning approach that employs features extracted 
from both the seed and out-seed segments [72]. The best result obtained was an accuracy of 
82.95% but it was generated using only 48 positive human and 16 negative examples, a 
relatively small training set to assess the algorithm. 
In 2006, Thadani and Tammi [78] launched MicroTar,  a novel statistical computational tool 
for prediction of miRNA targets from RNA duplexes which does not use sequence 
homology for prediction. MicroTar mainly relies on a quite novel approach to estimate the 
duplex energy. However, the reported sensitivity (60%) is significantly lower than that 
achieved using other published algorithms. At the same time, a microRNA pattern 
discovery method,  RNA22 [79] was proposed to scan UTR sequences for targets . RNA22 
does not rely upon cross-species conservation but was able to recover most of the known 
target sites with validation of some of its new predictions. 
More recently, Yousef, et al.,(2007) described a target prediction method, (NBmiRTar [80]) 
using instead machine learning by a Naïve Bayes classifier. NBmiRTar does not require 
sequence conservation but generates a model from sequence and miRNA:mRNA duplex 
information derived from validated target sequences and artificially generated negative 
examples. In this case, both the seed and “out-seed” segments of the miRNA:mRNA duplex 
are used for target identification. NBmiRTar technique produces fewer false positive 
predictions and fewer target candidates to be tested than miRanda [66]. It exhibits higher 
sensitivity and specificity than algorithms that rely only on conserved genomic regions to 
decrease false positive predictions.  
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relatively small training set to assess the algorithm. 
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for prediction of miRNA targets from RNA duplexes which does not use sequence 
homology for prediction. MicroTar mainly relies on a quite novel approach to estimate the 
duplex energy. However, the reported sensitivity (60%) is significantly lower than that 
achieved using other published algorithms. At the same time, a microRNA pattern 
discovery method,  RNA22 [79] was proposed to scan UTR sequences for targets . RNA22 
does not rely upon cross-species conservation but was able to recover most of the known 
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examples. In this case, both the seed and “out-seed” segments of the miRNA:mRNA duplex 
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Algorithm Web link References 

TargetScanS http://genes.mit.edu/targetscan  Lewis, et al., 2005 
miRanda http://www.microma.org John, et al., 2004 
PicTar http://pictar.bio.nyu.edu Krek, et al. 2005 
RNAhybrid http://bibiserv.techfak.uni-bielefeld.de/rnahybrid Rehmsmeier, et al., 2004 
Diana-microT http://www.diana.pcbi.upenn.edu/cgi-bin/micro_t.cgi Kiriakidou, et al. 2004 
Target Boost https://demo1.interagon.com/demo SaeTrom, et al. 2005 
Rna22 http://cbcsrv.watson.ibm.com/rna22_targets.html Miranda, et al. 2006 
MicroTar http://tiger.dbs.nus.edu.sg/microtar/ Thadani and Tammi 2006 
NBmiRTar http://wotan.wistar.upenn.edu/NBmiRTar  Yousef, et al. 2007 
miRecords http://mirecords.umn.edu/miRecords/ Xiao, et al., 2009 

Table 2. MicroRNA Target prediction tools 

In a 2004 review Lai [65] noted that  there is almost no overlap among the predicted targets 
identified by the various methods and suggested that each tool captures a subset of the 
entire target class as a function of the specific features they have incorporated into their 
prediction models. More recently, Sethupathy, et al., (2006) conducted a comparison of the 5 
most used tools for mammalian target prediction. This study indicated that 30% of the 
experimentally validated target sites are nonconserved, supporting the need for the 
development of different or complementary computational approaches to capture new 
target sites. Furthermore, the large number of predictions that each of these tools is 
producing suggests that the heavy reliance on homology or comparative sequence analysis 
is not sufficient to generate accurate predictions with a high sensitivity and there are yet to 
be identified recognition parameters that must be considered.  

4. Databases for microRNA and targets  
There is a variety of very useful databases that provide a significant amount of 
information on miRNA and Target predictions,(Table 3). The most extensive database for 
both miRNA and target sequences is miRBase[34]. MiRBase contains both miRNA mature 
sequences, hairpin sequences of precursors and associated annotation. Release 12.0 of the 
database contains 8619 entries representing hairpin precursor miRNAs, expressing 8273 
mature miRNA products, in primates, rodents, birds, fish, worms, flies, plants and 
viruses. MiRBase also contains predicted miRNA target genes in miRBase Targets, and 
provides a gene naming and nomenclature function in the miRBase Registry. The miRNA 
target genes are predicted by  the miRanda tool  [66] and not necessarily experimentally 
validated.  
TarBase [81] contains a  set of experimentally supported targets in different species that are 
collected manually from the literature. TarBase version 5 has more than 1300 experimentally 
supported miRNA target interactions. The database has information about the target site 
described by the duplex of miRNA and gene. It also includes information on the 
experiments that were conducted to test the target, the sufficiency of the site to induce 
translational repression and/or cleavage, and a reference to the paper used to extract  the 
information. 
Argonaute [82] is  a compilation of comprehensive information on mammalian miRNAs, 
their origin and regulated target genes in an exhaustively curated database. The source 
information of Argonaute is from both literature and other databases. 
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The most recently released database,  miRecords [83], is an integrated resource for animal 
miRNA–target interactions. miRecords stores predicted miRNA targets produced by 11 
established miRNA target prediction programs.  
 

DataBase Web Link 
MiRBase http://microrna.sanger.ac.uk/ 
TarBase http://diana.cslab.ece.ntua.gr/tarbase/ 
Argonaute http://www.ma.uni-heidelberg.de/apps/zmf/argonaute/ 
miRecords http://mirecords.umn.edu/miRecords/ 

Table 3. Databases for microRNA and Targets 
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Algorithm Web link References 

TargetScanS http://genes.mit.edu/targetscan  Lewis, et al., 2005 
miRanda http://www.microma.org John, et al., 2004 
PicTar http://pictar.bio.nyu.edu Krek, et al. 2005 
RNAhybrid http://bibiserv.techfak.uni-bielefeld.de/rnahybrid Rehmsmeier, et al., 2004 
Diana-microT http://www.diana.pcbi.upenn.edu/cgi-bin/micro_t.cgi Kiriakidou, et al. 2004 
Target Boost https://demo1.interagon.com/demo SaeTrom, et al. 2005 
Rna22 http://cbcsrv.watson.ibm.com/rna22_targets.html Miranda, et al. 2006 
MicroTar http://tiger.dbs.nus.edu.sg/microtar/ Thadani and Tammi 2006 
NBmiRTar http://wotan.wistar.upenn.edu/NBmiRTar  Yousef, et al. 2007 
miRecords http://mirecords.umn.edu/miRecords/ Xiao, et al., 2009 

Table 2. MicroRNA Target prediction tools 

In a 2004 review Lai [65] noted that  there is almost no overlap among the predicted targets 
identified by the various methods and suggested that each tool captures a subset of the 
entire target class as a function of the specific features they have incorporated into their 
prediction models. More recently, Sethupathy, et al., (2006) conducted a comparison of the 5 
most used tools for mammalian target prediction. This study indicated that 30% of the 
experimentally validated target sites are nonconserved, supporting the need for the 
development of different or complementary computational approaches to capture new 
target sites. Furthermore, the large number of predictions that each of these tools is 
producing suggests that the heavy reliance on homology or comparative sequence analysis 
is not sufficient to generate accurate predictions with a high sensitivity and there are yet to 
be identified recognition parameters that must be considered.  

4. Databases for microRNA and targets  
There is a variety of very useful databases that provide a significant amount of 
information on miRNA and Target predictions,(Table 3). The most extensive database for 
both miRNA and target sequences is miRBase[34]. MiRBase contains both miRNA mature 
sequences, hairpin sequences of precursors and associated annotation. Release 12.0 of the 
database contains 8619 entries representing hairpin precursor miRNAs, expressing 8273 
mature miRNA products, in primates, rodents, birds, fish, worms, flies, plants and 
viruses. MiRBase also contains predicted miRNA target genes in miRBase Targets, and 
provides a gene naming and nomenclature function in the miRBase Registry. The miRNA 
target genes are predicted by  the miRanda tool  [66] and not necessarily experimentally 
validated.  
TarBase [81] contains a  set of experimentally supported targets in different species that are 
collected manually from the literature. TarBase version 5 has more than 1300 experimentally 
supported miRNA target interactions. The database has information about the target site 
described by the duplex of miRNA and gene. It also includes information on the 
experiments that were conducted to test the target, the sufficiency of the site to induce 
translational repression and/or cleavage, and a reference to the paper used to extract  the 
information. 
Argonaute [82] is  a compilation of comprehensive information on mammalian miRNAs, 
their origin and regulated target genes in an exhaustively curated database. The source 
information of Argonaute is from both literature and other databases. 
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The most recently released database,  miRecords [83], is an integrated resource for animal 
miRNA–target interactions. miRecords stores predicted miRNA targets produced by 11 
established miRNA target prediction programs.  
 

DataBase Web Link 
MiRBase http://microrna.sanger.ac.uk/ 
TarBase http://diana.cslab.ece.ntua.gr/tarbase/ 
Argonaute http://www.ma.uni-heidelberg.de/apps/zmf/argonaute/ 
miRecords http://mirecords.umn.edu/miRecords/ 

Table 3. Databases for microRNA and Targets 
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1. Introduction

In the post-genomic era, the ability to predict the behavior, the function, or the structure of

biological entities (such as genes and proteins), as well as interactions among them, plays

a fundamental role in the discovery of information to help biologists to explain biological

mechanisms.

In this context, appropriate characterization of the structures under analysis, and the

exploitation of combinatorial properties of sequences, are crucial steps towards the

development of efficient algorithms and data structures to be able to perform the analysis

of biological sequences.

Several functional and structural properties, and also evolutionary mechanisms, can be

predicted either by the comparison of new elements with already classified elements, or by

the comparison elements with a similar structure of function to infer the common mechanism

that is at the basis of the observed similar behavior. Such elements are commonly called motifs.

Comparison-based methods for sequence analysis find their application in several biological

contexts, such as extraction of transcription factor binding sites, identification of structural

and functional similarities in proteins, and phylogeny reconstruction. Therefore, the

development of adequate methodologies for motif discovery is of undoubt interests for

several different fields in computational biology.

In motif discovery in biosequences, it is common to assume that statistically significant

candidates are those that are likely to hide some biologically significant property. For this

purpose all the possible candidates are ranked according to some statistics on words. Then

they are presented in output for further inspection that need to be carried out by a biologist,

who identifies the most promising patterns. These, in turn, are tested in laboratory to confirm

their biological significance. Therefore, when designing algorithms for motif discovery,

besides obviously aim at time and space efficiency, particular attention should be devoted

to the output representation. In fact, even considering fixed length strings, the size of the

candidate set becomes exponential if exhaustive enumeration is applied. This is already true

when only exact matches are considered as candidate occurrences, and worsen when the

intrinsic variability of biological sequences is taken into account.

Alternatively to methods based on exhaustive enumeration, heuristics could be used.

However, heuristics cannot guarantee to find the optimal solution. Therefore some degree
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biological entities (such as genes and proteins), as well as interactions among them, plays

a fundamental role in the discovery of information to help biologists to explain biological
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In this context, appropriate characterization of the structures under analysis, and the

exploitation of combinatorial properties of sequences, are crucial steps towards the

development of efficient algorithms and data structures to be able to perform the analysis

of biological sequences.

Several functional and structural properties, and also evolutionary mechanisms, can be
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the comparison elements with a similar structure of function to infer the common mechanism

that is at the basis of the observed similar behavior. Such elements are commonly called motifs.

Comparison-based methods for sequence analysis find their application in several biological

contexts, such as extraction of transcription factor binding sites, identification of structural

and functional similarities in proteins, and phylogeny reconstruction. Therefore, the

development of adequate methodologies for motif discovery is of undoubt interests for

several different fields in computational biology.

In motif discovery in biosequences, it is common to assume that statistically significant

candidates are those that are likely to hide some biologically significant property. For this

purpose all the possible candidates are ranked according to some statistics on words. Then

they are presented in output for further inspection that need to be carried out by a biologist,

who identifies the most promising patterns. These, in turn, are tested in laboratory to confirm

their biological significance. Therefore, when designing algorithms for motif discovery,

besides obviously aim at time and space efficiency, particular attention should be devoted

to the output representation. In fact, even considering fixed length strings, the size of the

candidate set becomes exponential if exhaustive enumeration is applied. This is already true

when only exact matches are considered as candidate occurrences, and worsen when the

intrinsic variability of biological sequences is taken into account.

Alternatively to methods based on exhaustive enumeration, heuristics could be used.

However, heuristics cannot guarantee to find the optimal solution. Therefore some degree
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of uncertainty remains whether motifs, that are statistically as significant as those reported in

output, have been left out.

Computational power of nowadays computers can partially reduce the effects of exhaustive

enumeration approaches, in particular for short length candidates. However, if the size of the

output is too big to be analyzed by human inspection the risk is to provide biologists with

very fast tools that produce mostly useless output.

A possible solution to these problems relies on compact approaches. Compact approaches are

based on the partition of the search space into classes.

The final user can then be presented with an output that has the size of the partition, rather

than the size of the candidate space, with obvious advantages for the human-based analysis

that follows the computer-based filtering of the pattern discovery algorithms.

Compact approaches find applications both in searching and discovery frameworks. They

can also be applied to several motif models: exact patterns, approximate patterns, position

matrices, etc. And under both independent and identically distribution (i.i.d.) and Markov

distributions.

The purpose of this chapter is to describe the basis of compact approaches, to provide the

readers with the conceptual tools for applying compact approaches to the design of their

algorithm for biosequence analysis. This will be achieved by overwieving examples of

compact approaches that have been successfully developed for several motif models that will

be illustrated with the sustain of examples and experiments to discuss their power.

2. Background

The methodologies to study the Science of Life dramatically changed during the past years.

The advent of the web made it possible for the scientific community to share the massive

quantity of data produced by high throughput techniques, thus accelerating the analysis of

the available data and the discovery of related properties and associations. The development

of high throughput technologies has as a consequence not only an increase in the amount

of data, but also a diversification of the type of data available, opening new perspectives of

investigations. Disciplines such as Bioinformatics and Computational Biology try to combine

the efforts and competency of the communities of biologists and computer scientists in a

single more powerful combination of human knowledge and efficiency, thanks to automatic

approaches to data analysis.

2.1 De nition of the problem
One of the key aspects in the analysis of biological sequences is the identification of interesting

patterns. “Interestingness” is a wide concept that may embrace very different definitions

depending on the contexts in which the analysis is carried out. At an higher level we can

define an interesting pattern as a pattern that shows an unusual behavior from what it is

expected in terms of presence within the sequence under analysis.

More in details, searching for shared or over-represented patterns is motivated by a simple

commonly accepted principle: if two or more sequences perform the same functions or have

the same structure, then the common elements among the sequences might be somehow

responsible for the observed similarity.

The problem of finding biologically significant patterns is then moved to the problem of

finding statistically significant patterns.
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solid word
wildcards-mismatches

insertion-deletion
generalized patterns

alignments
position weight matrices
hidden Markov models

Table 1. Various choices to model motifs in biological sequences. Starting from solid words
the level of sensibility increases (allowing for variations), but the level of specificity
consequently decreases, thus making more difficult the process of detection of the signal.

The problem of searching for similar regions among biological sequences faces several issues.

First of all, the genetic code must be fault-tolerant to deal with errors that may occur during

transcription or are due to random mutations, so that an intrinsic variability characterizes

biological motifs. This variability has as a consequence the possible explosion of the size of

the search space under study, due to the rich underlying combinatorics. Searching the whole

pattern space then is feasible only for very short patterns. Note that this is also true for exact

words, because their number increases exponentially with the length. On the other hand,

heuristics are not guaranteed to find a globally optimal solution.

A critical step of the process is the choice of an appropriate structure to model the motifs.

In some cases, deterministic patterns do not have enough expressive power to describe the

specificity of the contributions of each symbol in any position of the site. Statistical matrices

or graph-based models might offer a better framework in these cases. Several options have

been considered during the past decades to model signals in biosequences, and to take into

account for this intrinsic variability. Some of these models of choice are listed in Table 1, sorted

in increasing order of expressive power (and consequent increase of difficulty in the design of

related algorithm, and of their intrinsic complexity).

The choice of an appropriate model to describe motifs is a trade-off between the

expressiveness of the model to describe particular biological properties, and the efficiency

of the algorithms that can be applied when that model is chosen.

The scoring function chosen to evaluate the output also plays an important role in the

identification of the searched sites. However, simple statistics are often unable to discriminate

interesting motifs from motifs that are likely to occur by chance, so that different measures of

statistical significance need to be considered. In summary, for a given choice of a statistical

measure S of a motif m, one could ask three questions:

• What is the value of S(m)?

• How surprising is to measure S(m) with respect to the value that was expected according

to some background distribution?

• How likely is it for the recorded values to occur by chance?

These three questions can be answered by the means of different computations. The first one,

for example, can be answered by exact counts or estimates. To answer the second, we need

some score that measures over-representation, such as the z-score. Finally the third one is solved

by resort to so called p-value of a statistic.

Once the model and the scoring function have been fixed, the next step is the development

of efficient approaches to extract the searched information. There is a vast literature about
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algorithms for motif discovery. However, most of them either have been developed to solve

very specific instances of the problem, such as the Motif Challenge Problem (Pevzner & Sze,

2000), or are based on exhaustive search of the pattern space (among which (Queen et al.,

1982; Staden, 1989; Tompa, 1999; van Helden et al., 1998; Waterman et al., 1984)), or rely on

heuristics (for example (Hertz & Stormo, 1999; Stormo & III, 1989)). Comparison of several

techniques in fact showed how performances substantially depend on the underlying model

of the motif to discover (Tompa et al., 2005).

3. Compact scoring

Despite the intrinsic possible explosion of the size of the search space, it is possible to conceive

a compact representation of the patterns such that only representative patterns are scored, and

no critical information is lost in the process.

The classes must be designed in such a way that the score used to rank the candidates has

a monotone behavior within each class. This allows the identification of a representative of

each class, which is the element with the highest score. Consequently, it suffices to compute,

and to report in output, only the score for the representatives. In fact, we are guaranteed that

for each element that has not been ranked there is another one (the representative of the class

it belongs to) that is at least as significant.

In such a framework, the output size would depend upon the number of classes in which

patterns can be grouped, rather than on all the existing patterns that belong to the search

space. This approach can also be used as a filter to detect unusual classes of strings that need

to be scrutinized further.

The compact scoring needs two important steps to be carried out with critical attention:

1. definition of the search space

2. efficient partitioning

The definition of the search space clearly depends implicitly on the motif model, as discussed

above. Nevertheless there are also two working frameworks in which one can pose his search

(Brazma et al., 1998).

In the pattern-driven framework the search space consists of all possible patterns (of a given

size) that can be generated over a given alphabet Σ. The input sequence is then tested for

occurrences of each and every motif in a family of a priori generated, abstract models (for

example (Keich & Pevzner, 2002)). Although more correct in principle, this method may pose

severe computational issues.

In the sequence-driven framework the search space consists of strings that actually occur

at least once in the given input, or to some more or less controlled neighborhood of those

substrings (for example (Lawrence et al., 1993)). This may be less firm methodologically, but

leads to time and space savings.

The choice of techniques and data structures that can be used to perform the partition are

strictly related to the definition of the model and search space. In turn they affect the space

complexity reduction that can be achieved by the partitioning, as it will be clear in the

following discussion.
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4. Solid words

In this section we describe a methodology for compact representation and scoring of single

solid words, and pairs of solid words. We will outline the basic concepts used in the approach.

Details of formulas and proofs of theorems can be found in (Apostolico et al., 2003).

4.1 Compact indexes for single words
Let us consider the problem of extracting frequent substrings from a string x of length n. The

number of substrings in x is equal to the number of possible choices of starting and ending

indexes that univocally identify the substring. These are obviously O(n2). There are several

observations that can be done with respect to this output size:

• for very long strings (consider genome wide analysis) the computation of all the

occurrences of all these substrings might become prohibitive in terms of both time and

space needed;

• the list of candidates might be too long to allow deep inspection by the final user;

• some substrings, of increasing length, occur the same number of times and in the same

exact position: the output set might hide some notable redundancy.

In order to overcome these issues a compact approach might be applied. The compact

representation and scoring of solid words can be achieved by exploiting the characteristics of

appropriate data structures, such as the suffix tree, and by an in-depth analysis of the properties

of monotonicity for some measure of over- or under-representation.

4.1.1 Suf x trees
A suffix tree is a data structure used to efficiently store and retrieve information about all

the substrings of a given text. Given a text x of length n defined over an alphabet Σ, and a

symbol $ /∈ Σ, the suffix tree associated with x is the digital search trie of all the suffixes of

x. There are two versions of suffix tree: the expandend suffix tree (also called suffix trie), and

the compact suffix tree. In the expanded version each arc is labelled with a symbol, except

for the leaves that are labelled with the corresponding suffix. The space required to store an

expanded suffix tree is O(n2) in the worst case (Aho et al., 1974). On the other hand, in the

compact representation chains of nodes with one outgoing edge are collapsed together in a

single arc. The symbol $ guarantees that each node in the compact suffix tree (except the

leaf nodes) is branching. This property, together with the observation that there are n leaves,

corresponding to the n suffixes, implies that there are O(n) nodes in the suffix tree. Each arc

is labeled with two indexes, the start and the end positions of the corresponding substring

in the text (or, equivalently, the start position and the length of the path from the root node

to the node at which the arc ends). With such a representation, the overall space needed

to store a compact suffix tree is O(n). The brute force construction of a suffix tree requires

O(n2) time. However, more clever algorithms allow for linear time construction of the tree

(McCreight, 1976; Ukkonen, 1995; Weiner, 1973). The word spelled by a path from the root to

a node α is indicated with w(α), and α is called the proper locus of w(α). The locus of a word

w is the unique node β of the suffix tree such that w is a proper prefix of β, and f ather(β) is

a proper prefix of w. The frequency of a word w can be obtained in time proportional to the

length of w and to the number of its occurrences. For this purpose we reach the locus β of

221Motif Discovery with Compact Approaches - Design and Applications



4 Will-be-set-by-IN-TECH

algorithms for motif discovery. However, most of them either have been developed to solve

very specific instances of the problem, such as the Motif Challenge Problem (Pevzner & Sze,

2000), or are based on exhaustive search of the pattern space (among which (Queen et al.,

1982; Staden, 1989; Tompa, 1999; van Helden et al., 1998; Waterman et al., 1984)), or rely on

heuristics (for example (Hertz & Stormo, 1999; Stormo & III, 1989)). Comparison of several

techniques in fact showed how performances substantially depend on the underlying model

of the motif to discover (Tompa et al., 2005).

3. Compact scoring

Despite the intrinsic possible explosion of the size of the search space, it is possible to conceive

a compact representation of the patterns such that only representative patterns are scored, and

no critical information is lost in the process.

The classes must be designed in such a way that the score used to rank the candidates has

a monotone behavior within each class. This allows the identification of a representative of

each class, which is the element with the highest score. Consequently, it suffices to compute,

and to report in output, only the score for the representatives. In fact, we are guaranteed that

for each element that has not been ranked there is another one (the representative of the class

it belongs to) that is at least as significant.

In such a framework, the output size would depend upon the number of classes in which

patterns can be grouped, rather than on all the existing patterns that belong to the search

space. This approach can also be used as a filter to detect unusual classes of strings that need

to be scrutinized further.

The compact scoring needs two important steps to be carried out with critical attention:

1. definition of the search space

2. efficient partitioning

The definition of the search space clearly depends implicitly on the motif model, as discussed

above. Nevertheless there are also two working frameworks in which one can pose his search

(Brazma et al., 1998).

In the pattern-driven framework the search space consists of all possible patterns (of a given

size) that can be generated over a given alphabet Σ. The input sequence is then tested for

occurrences of each and every motif in a family of a priori generated, abstract models (for

example (Keich & Pevzner, 2002)). Although more correct in principle, this method may pose

severe computational issues.

In the sequence-driven framework the search space consists of strings that actually occur

at least once in the given input, or to some more or less controlled neighborhood of those

substrings (for example (Lawrence et al., 1993)). This may be less firm methodologically, but

leads to time and space savings.

The choice of techniques and data structures that can be used to perform the partition are

strictly related to the definition of the model and search space. In turn they affect the space

complexity reduction that can be achieved by the partitioning, as it will be clear in the

following discussion.

220 Systems and Computational Biology – Molecular and Cellular Experimental Systems Motif Discovery with Compact Approaches - Design and Applications 5

4. Solid words

In this section we describe a methodology for compact representation and scoring of single

solid words, and pairs of solid words. We will outline the basic concepts used in the approach.

Details of formulas and proofs of theorems can be found in (Apostolico et al., 2003).

4.1 Compact indexes for single words
Let us consider the problem of extracting frequent substrings from a string x of length n. The

number of substrings in x is equal to the number of possible choices of starting and ending

indexes that univocally identify the substring. These are obviously O(n2). There are several

observations that can be done with respect to this output size:

• for very long strings (consider genome wide analysis) the computation of all the

occurrences of all these substrings might become prohibitive in terms of both time and

space needed;

• the list of candidates might be too long to allow deep inspection by the final user;

• some substrings, of increasing length, occur the same number of times and in the same

exact position: the output set might hide some notable redundancy.

In order to overcome these issues a compact approach might be applied. The compact

representation and scoring of solid words can be achieved by exploiting the characteristics of

appropriate data structures, such as the suffix tree, and by an in-depth analysis of the properties

of monotonicity for some measure of over- or under-representation.

4.1.1 Suf x trees
A suffix tree is a data structure used to efficiently store and retrieve information about all

the substrings of a given text. Given a text x of length n defined over an alphabet Σ, and a

symbol $ /∈ Σ, the suffix tree associated with x is the digital search trie of all the suffixes of

x. There are two versions of suffix tree: the expandend suffix tree (also called suffix trie), and

the compact suffix tree. In the expanded version each arc is labelled with a symbol, except

for the leaves that are labelled with the corresponding suffix. The space required to store an

expanded suffix tree is O(n2) in the worst case (Aho et al., 1974). On the other hand, in the

compact representation chains of nodes with one outgoing edge are collapsed together in a

single arc. The symbol $ guarantees that each node in the compact suffix tree (except the

leaf nodes) is branching. This property, together with the observation that there are n leaves,

corresponding to the n suffixes, implies that there are O(n) nodes in the suffix tree. Each arc

is labeled with two indexes, the start and the end positions of the corresponding substring

in the text (or, equivalently, the start position and the length of the path from the root node

to the node at which the arc ends). With such a representation, the overall space needed

to store a compact suffix tree is O(n). The brute force construction of a suffix tree requires

O(n2) time. However, more clever algorithms allow for linear time construction of the tree

(McCreight, 1976; Ukkonen, 1995; Weiner, 1973). The word spelled by a path from the root to

a node α is indicated with w(α), and α is called the proper locus of w(α). The locus of a word

w is the unique node β of the suffix tree such that w is a proper prefix of β, and f ather(β) is

a proper prefix of w. The frequency of a word w can be obtained in time proportional to the

length of w and to the number of its occurrences. For this purpose we reach the locus β of
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w and then visit the subtree rooted at β to count the number of its leaves. Alternatively, one

could annotate the nodes of the tree in a bottom-up fashion with the count of their children.

Then, to know the frequency of any query word w, only the time to reach its locus is needed.

Alternatively to the suffix tree, one could use a suffix array (Manber & Myers, 1993). As it is

shown in (Abouelhoda et al., 2004) these two data structures are equivalent. The advantage

of the suffix array is that it usually takes less space. This comes at expenses of an increase of

the difficulty in the designing of related algorithms.

4.1.2 Example
For a string x = AGCTAGCTAAA of length 11, the number of substrings is

n(n+1)
2 = 66

(number of choices of starting and ending position for a substring). In the specific case of the

string in our example, if we remove duplications there will remain 52 different substrings. By

building the suffix tree (see Fig.1), and considering only the strings corresponding to nodes

the number of candidates reduces to 15.

A

G
C

T
A

G
C
T

A
A
A
$

$
A

C

T

A

G

C
T
A
A
A
$

A
A
$

T A
G
C
T
A

A
A
$

G
C
T

A
A
A
$

G
C
T
A
A
A
$

T
A
A
A
$

A
A
$

$

1

23

5
4

67

910
8

11

$ A

Fig. 1. The suffix tree for the string x = AGCTAGCTAAA. The numbering of the leaves
indicates the corresponding suffix in x, i.e. their starting position.

4.1.3 Compact representation for the frequency of single words
An interesting property of the suffix tree is that all the words that end within an arc have the

same frequency, equal to the frequency of the word corresponding to their locus. Thus a suffix

tree partitions the Θ(n2) subwords of a text in O(n) classes, such that the words that belong

to the same class have the same locus. Take, for example, the strings “C”, “CT”, and “CTA”

in the suffix tree of Fig.1. They all occur at positions 3 and 7 in x, as it can be easily verified

by eye inspection of the string. Therefore they start at the same positions in the text, and have

the same frequency.

The word w(β), corresponding to the locus β of the class Cβ can be considered as maximal in

length, since any extension of w(β) will have a different frequency, and thus would not belong

to the class Cβ. These words are called representatives.

In Table 2 we enumerate all the classes identified by the partition induced by the suffix tree of

Fig.1.

The compact output related to the frequency analysis of the substrings of x is represented by

the following Table 3. It is easy to note by eye inspection that this output gives a much clearer

and immediate representation of the frequency distribution of substrings of x with respect to

a full enumeration of all 66 possible substrings in it.
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{A} = [1, 5, 9, 10, 11]
{AG, AGC, AGCT, AGCTA} = [1, 5]
{AGTCAG, AGTCAGC, AGTCAGCT, AGTCAGCTA, AGTCAGCTAA, AGTCAGCTAAA} = [1]
{AGTCAA, AGTCAAA} = [5]
{AA} = [9, 10]
{AAA} = [9]
{C, CT, CTA} = [3, 7]
{CTAG, CTAGC, CTAGCT, CTAGCTA, CTAGCTAA, CTAGCTAAA} = [3]
{CTAA, CTAAA} = [7]
{G, GC, GCT, GCTA} = [2, 6]
{GCTAG, GCTAGC, GCTAGCT, GCTAGCTA, GCTAGCTAA, GCTAGCTAAA} = [2]
{GCTAA, GCTAAA} = [6]
{T, TA} = [4, 8]
{TAG, TAGC, TAGCT, TAGCTA, TAGCTAAA} = [4]
{TAT, TATA, TATAA, TATAAA} = [8]

Table 2. The maximal partition that is obtained with a suffix tree for the string
x = AGCTAGCTAAA. Each row enumerates the strings of each class, and their occurring
positions. The representative of each class is in bold. The set of starting positions for all the
strings in the class are listed within square brackets.

A 5
AGCTA 2
CTA 2
AA 2
GCTA 2
TA 2
AGTCAGCTAAA 1
AGTCAAA 1
AAA 1
CTAGCTAAA 1
CTAAA 1
GCTAGCTAAA 1
GCTAAA 1
TAGCTAAA 1
TATAAA 1

Table 3. The compact output for the frequency count of the substrings in x.

4.1.4 Compact representation for single words statistics
In some kind of analysis the frequency count might be insufficient to extract “interesting”

patterns, since some of them might occur often simply by chance. In these cases an evaluation

of over- or under- representation can give a better solution to the problem of the extraction

of interesting patterns. It has been shown in (Apostolico et al., 2003) that the compact

approach can be extended to over-representation scores, such as z-scores. Z-scores have

the characteristic to compare the counted frequency with the frequency expected assuming

a given background distribution. Some examples are
f
e , f − e,

f−e
e , where f and e are the

counted and expected frequency respectively.

The partition induced by the suffix tree is such that the words that belong to a class are

prefixes of increasing length of the representative substring. The expected frequency of words

decreases with word length. We show this with a simple example. Consider the case of i.i.d.

hypothesis, with an uniform distribution, i.e. all the symbols in the alphabet have the same
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w and then visit the subtree rooted at β to count the number of its leaves. Alternatively, one

could annotate the nodes of the tree in a bottom-up fashion with the count of their children.

Then, to know the frequency of any query word w, only the time to reach its locus is needed.

Alternatively to the suffix tree, one could use a suffix array (Manber & Myers, 1993). As it is

shown in (Abouelhoda et al., 2004) these two data structures are equivalent. The advantage

of the suffix array is that it usually takes less space. This comes at expenses of an increase of

the difficulty in the designing of related algorithms.

4.1.2 Example
For a string x = AGCTAGCTAAA of length 11, the number of substrings is

n(n+1)
2 = 66

(number of choices of starting and ending position for a substring). In the specific case of the

string in our example, if we remove duplications there will remain 52 different substrings. By

building the suffix tree (see Fig.1), and considering only the strings corresponding to nodes

the number of candidates reduces to 15.
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Fig. 1. The suffix tree for the string x = AGCTAGCTAAA. The numbering of the leaves
indicates the corresponding suffix in x, i.e. their starting position.

4.1.3 Compact representation for the frequency of single words
An interesting property of the suffix tree is that all the words that end within an arc have the

same frequency, equal to the frequency of the word corresponding to their locus. Thus a suffix

tree partitions the Θ(n2) subwords of a text in O(n) classes, such that the words that belong

to the same class have the same locus. Take, for example, the strings “C”, “CT”, and “CTA”

in the suffix tree of Fig.1. They all occur at positions 3 and 7 in x, as it can be easily verified

by eye inspection of the string. Therefore they start at the same positions in the text, and have

the same frequency.

The word w(β), corresponding to the locus β of the class Cβ can be considered as maximal in

length, since any extension of w(β) will have a different frequency, and thus would not belong

to the class Cβ. These words are called representatives.

In Table 2 we enumerate all the classes identified by the partition induced by the suffix tree of

Fig.1.

The compact output related to the frequency analysis of the substrings of x is represented by

the following Table 3. It is easy to note by eye inspection that this output gives a much clearer

and immediate representation of the frequency distribution of substrings of x with respect to

a full enumeration of all 66 possible substrings in it.
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{AG, AGC, AGCT, AGCTA} = [1, 5]
{AGTCAG, AGTCAGC, AGTCAGCT, AGTCAGCTA, AGTCAGCTAA, AGTCAGCTAAA} = [1]
{AGTCAA, AGTCAAA} = [5]
{AA} = [9, 10]
{AAA} = [9]
{C, CT, CTA} = [3, 7]
{CTAG, CTAGC, CTAGCT, CTAGCTA, CTAGCTAA, CTAGCTAAA} = [3]
{CTAA, CTAAA} = [7]
{G, GC, GCT, GCTA} = [2, 6]
{GCTAG, GCTAGC, GCTAGCT, GCTAGCTA, GCTAGCTAA, GCTAGCTAAA} = [2]
{GCTAA, GCTAAA} = [6]
{T, TA} = [4, 8]
{TAG, TAGC, TAGCT, TAGCTA, TAGCTAAA} = [4]
{TAT, TATA, TATAA, TATAAA} = [8]

Table 2. The maximal partition that is obtained with a suffix tree for the string
x = AGCTAGCTAAA. Each row enumerates the strings of each class, and their occurring
positions. The representative of each class is in bold. The set of starting positions for all the
strings in the class are listed within square brackets.

A 5
AGCTA 2
CTA 2
AA 2
GCTA 2
TA 2
AGTCAGCTAAA 1
AGTCAAA 1
AAA 1
CTAGCTAAA 1
CTAAA 1
GCTAGCTAAA 1
GCTAAA 1
TAGCTAAA 1
TATAAA 1

Table 3. The compact output for the frequency count of the substrings in x.

4.1.4 Compact representation for single words statistics
In some kind of analysis the frequency count might be insufficient to extract “interesting”

patterns, since some of them might occur often simply by chance. In these cases an evaluation

of over- or under- representation can give a better solution to the problem of the extraction

of interesting patterns. It has been shown in (Apostolico et al., 2003) that the compact

approach can be extended to over-representation scores, such as z-scores. Z-scores have

the characteristic to compare the counted frequency with the frequency expected assuming

a given background distribution. Some examples are
f
e , f − e,

f−e
e , where f and e are the

counted and expected frequency respectively.

The partition induced by the suffix tree is such that the words that belong to a class are

prefixes of increasing length of the representative substring. The expected frequency of words

decreases with word length. We show this with a simple example. Consider the case of i.i.d.

hypothesis, with an uniform distribution, i.e. all the symbols in the alphabet have the same
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probability p to occur. The probability of a word of length l is then pl . Since 0 < p < 1,

we have that the term pl decreases with l. The reasoning can be extended and proved for a

general distribution and under both i.i.d. and Markov chain hypothesis.

Within each class two conditions hold:

1. the counted frequency is constant;

2. the expected frequency is monotonically decreasing and reach its minimum at the

representative.

Hence z-scores with a constant frequency f and decreasing frequency e will have

a monotonically increasing behavior within each class, and reach their maximum in

correspondence of the representative of the class. Using over-representation to extract

interesting patterns allows to use a threshold to filtering the results further. The threshold can

be arbitrarily fixed (for example we are interested in patterns that occur at least the double of

what we expect), or by fixing a p-value (that it is a probability of seeing a pattern by chance)

and computing the corresponding absolute threshold for the score (Staden, 1989).

In Table 4 we can see an example of compact output of the z-score
f
e , for a uniform distribution

and for a general distribution. We still refer to the string x of the previous examples. It can be

seen that the two background distribution produce a slightly different order in the output, and

a quite different score associated to the strings. By setting a threshold Th = 1000 we obtain

a further reduction of the output size that in the case of the uniform distribution maintains 9

strings, while in the case of the considered general distribution it maintains 12 strings.

Substring Score (uniform) Substring Score (general)
AGTCAGCTAAA 4194304 AGTCAGCTAAA 694444444
GCTAGCTAAA 1048574 GCTAGCTAAA 69444444
CTAGCTAAA 262144 CTAGCTAAA 41666667
TAGCTAAA 65536 TAGCTAAA 4166667
AGTCAAA 16384 AGTCAAA 833333
GCTAAA 4096 TATAAA 250000
TATAAA 4096 GCTAAA 83333
AGCTA 2048 CTAAA 50000
CTAAA 2048 AGCTA 16667
GCTA 512 GCTA 1667
CTA 128 CTA 1000
AAA 64 AAA 1000
AA 32 AA 200
TA 32 TA 100
A 20 A 50

Table 4. The compact output for the over-representation score of the substrings in x. In the
first two columns the substrings are scored according to a uniform distribution. In the last
two columns the substrings are scored according to the following distribution:
pa = 0.1, pc = 0.1, pg = 0.6, pt = 0.2

4.2 Compact indexes for co-occurrences
The suffix tree property of partitioning the set of substrings of a string in O(n) classes can be

exploited also for the computation of co-occurrences between substrings of an input string.

In (Apostolico et al., 2004) the compact approach was extended to the efficient computation

of a table to hold the number of co-occurrences of substrings within a text. In this context
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the problem is: given two words y and z, and a distance d, compute the number of times

that z follows y at a distance at most d. In (Apostolico et al., 2004) further restrictions

were set so that z must follow an occurrence of y but it must occur before the next

occurrences of y. Moreover, if many occurrences of z are found at the right side of the

same occurrence of y, only the closest one is counted. In Fig.2 it can be seen how the

co-occurrence count can vary. A simple count, without restriction would give a value of 4:

{(pi, qk), (pi, qk+1), (pi, qk+2), (pi+1, qk+2)}. If no interleaving occurrences of y are allowed the

count would reduce to 3: {(pi, qk), (pi, qk+1), (pi+1, qk+2)}. If also no interleaving occurrences

of z are allowed the count would drop to 2: {(pi, qk), (pi+1, qk+2)}.

y

z
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z z

d

d

i qp qk k+1 p qi+1 k+2

y

Fig. 2. Illustration of co-occurrences between two substrings y and z.

A naive approach would count the number of co-occurrences between all O(n2) substrings of

x, thus requiring O(n4) time and space. In contexts other than bioinformatics some algorithms

have been developed, on related, even though more general problems (Arimura et al., 2000;

Wang et al., 1994). However, they can also solve the given problem in time O(d2n3 log n) and

O(n3) respectively. Here we focus on the description of the algorithm in (Apostolico et al.,

2004) that solves the problem of computing the simple frequency. Eliminating multiple

occurrences in fact comes at no extra cost but also does not change the space complexity,

that is the focus of compact approaches.

The algorithm exploits the suffix tree property described in Sec. 4.1.3 to partition the O(n2)
substrings in an O(n) classes corresponding to the nodes, and computes the co-occurrence

count only for words corresponding to node pairs. The key observation is that if a pair (y�, z�)
is left out, then the following conditions hold:

1. there exists already a corresponding pair (y, z) such that y� and z� are prefixes of y and z

respectively;

2. the score of (y, z) is at least equal to the score of (y�, z�).

These facts follow from the property of the suffix tree that all the substrings ending within

an arc have the same starting positions of the string corresponding to their locus. Since the

distance d is measured from the beginning of the first component, this implies that classes of

substrings that share the same set of starting positions will occur, within distance d, the same

number of times. Again, the strings corresponding to the proper loci of the suffix tree can be

selected as representative of the classes, and indexed. In Fig.3 the pair (ACG, T) co-occurs the

same number of times of the pair (ACGTA, TA).
There are O(n) nodes in the suffix tree, and each of them can be chosen as first component.

A second suffix tree is used to store the number of co-occurrences between the fixed first

component, and all other nodes in the suffix tree. The annotation is made as follows:

1. assign a null weight to all nodes of the suffix tree used for the counting of co-occurrences

2. let y be the first fixed component, and {p1 . . . pk} its set of occurrences;
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probability p to occur. The probability of a word of length l is then pl . Since 0 < p < 1,

we have that the term pl decreases with l. The reasoning can be extended and proved for a

general distribution and under both i.i.d. and Markov chain hypothesis.

Within each class two conditions hold:

1. the counted frequency is constant;

2. the expected frequency is monotonically decreasing and reach its minimum at the

representative.

Hence z-scores with a constant frequency f and decreasing frequency e will have

a monotonically increasing behavior within each class, and reach their maximum in

correspondence of the representative of the class. Using over-representation to extract

interesting patterns allows to use a threshold to filtering the results further. The threshold can

be arbitrarily fixed (for example we are interested in patterns that occur at least the double of

what we expect), or by fixing a p-value (that it is a probability of seeing a pattern by chance)

and computing the corresponding absolute threshold for the score (Staden, 1989).

In Table 4 we can see an example of compact output of the z-score
f
e , for a uniform distribution

and for a general distribution. We still refer to the string x of the previous examples. It can be

seen that the two background distribution produce a slightly different order in the output, and

a quite different score associated to the strings. By setting a threshold Th = 1000 we obtain

a further reduction of the output size that in the case of the uniform distribution maintains 9

strings, while in the case of the considered general distribution it maintains 12 strings.

Substring Score (uniform) Substring Score (general)
AGTCAGCTAAA 4194304 AGTCAGCTAAA 694444444
GCTAGCTAAA 1048574 GCTAGCTAAA 69444444
CTAGCTAAA 262144 CTAGCTAAA 41666667
TAGCTAAA 65536 TAGCTAAA 4166667
AGTCAAA 16384 AGTCAAA 833333
GCTAAA 4096 TATAAA 250000
TATAAA 4096 GCTAAA 83333
AGCTA 2048 CTAAA 50000
CTAAA 2048 AGCTA 16667
GCTA 512 GCTA 1667
CTA 128 CTA 1000
AAA 64 AAA 1000
AA 32 AA 200
TA 32 TA 100
A 20 A 50

Table 4. The compact output for the over-representation score of the substrings in x. In the
first two columns the substrings are scored according to a uniform distribution. In the last
two columns the substrings are scored according to the following distribution:
pa = 0.1, pc = 0.1, pg = 0.6, pt = 0.2

4.2 Compact indexes for co-occurrences
The suffix tree property of partitioning the set of substrings of a string in O(n) classes can be

exploited also for the computation of co-occurrences between substrings of an input string.

In (Apostolico et al., 2004) the compact approach was extended to the efficient computation

of a table to hold the number of co-occurrences of substrings within a text. In this context
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the problem is: given two words y and z, and a distance d, compute the number of times

that z follows y at a distance at most d. In (Apostolico et al., 2004) further restrictions

were set so that z must follow an occurrence of y but it must occur before the next

occurrences of y. Moreover, if many occurrences of z are found at the right side of the

same occurrence of y, only the closest one is counted. In Fig.2 it can be seen how the

co-occurrence count can vary. A simple count, without restriction would give a value of 4:

{(pi, qk), (pi, qk+1), (pi, qk+2), (pi+1, qk+2)}. If no interleaving occurrences of y are allowed the

count would reduce to 3: {(pi, qk), (pi, qk+1), (pi+1, qk+2)}. If also no interleaving occurrences

of z are allowed the count would drop to 2: {(pi, qk), (pi+1, qk+2)}.
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Fig. 2. Illustration of co-occurrences between two substrings y and z.

A naive approach would count the number of co-occurrences between all O(n2) substrings of

x, thus requiring O(n4) time and space. In contexts other than bioinformatics some algorithms

have been developed, on related, even though more general problems (Arimura et al., 2000;

Wang et al., 1994). However, they can also solve the given problem in time O(d2n3 log n) and

O(n3) respectively. Here we focus on the description of the algorithm in (Apostolico et al.,

2004) that solves the problem of computing the simple frequency. Eliminating multiple

occurrences in fact comes at no extra cost but also does not change the space complexity,

that is the focus of compact approaches.

The algorithm exploits the suffix tree property described in Sec. 4.1.3 to partition the O(n2)
substrings in an O(n) classes corresponding to the nodes, and computes the co-occurrence

count only for words corresponding to node pairs. The key observation is that if a pair (y�, z�)
is left out, then the following conditions hold:

1. there exists already a corresponding pair (y, z) such that y� and z� are prefixes of y and z

respectively;

2. the score of (y, z) is at least equal to the score of (y�, z�).

These facts follow from the property of the suffix tree that all the substrings ending within

an arc have the same starting positions of the string corresponding to their locus. Since the

distance d is measured from the beginning of the first component, this implies that classes of

substrings that share the same set of starting positions will occur, within distance d, the same

number of times. Again, the strings corresponding to the proper loci of the suffix tree can be

selected as representative of the classes, and indexed. In Fig.3 the pair (ACG, T) co-occurs the

same number of times of the pair (ACGTA, TA).
There are O(n) nodes in the suffix tree, and each of them can be chosen as first component.

A second suffix tree is used to store the number of co-occurrences between the fixed first

component, and all other nodes in the suffix tree. The annotation is made as follows:

1. assign a null weight to all nodes of the suffix tree used for the counting of co-occurrences

2. let y be the first fixed component, and {p1 . . . pk} its set of occurrences;
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Fig. 3. Illustration of co-occurrences classes.

3. add 1 to all the leaves that correspond to positions {p1, p1 + 1, . . . p1 + d}, {p2, p2 +
1, . . . p2 + d}, . . . {pk, pk + 1, . . . pk + d};

4. annotate the tree bottom-up, so that internal nodes have a weight corresponding to the

sum of the weights of their children.

After the annotation the suffix tree will hold the number of co-occurrences between the fixed

y and any string z with a proper locus in the tree. The annotation of the tree is performed in

linear time. Since this must be repeated for every possible choice of the first component y, the

resulting complexity is O(n2).

4.2.1 Example
Turning back at the example in the previous section, the co-occurrences will be counted only

for 15 × 15 = 225 pairs of substrings of x. If an exhaustive index would have been build

instead, the number of entries of the output would have been 4356, or 2704 if duplication was

removed. In the former case we achieved a 95% reduction of the table size, in the latter a 92%

reduction.

5. Compact approaches for words with mismatches

Co-occurrence counts are useful for the detection of motifs that are particularly conserved

at the sides and allow for high variability in the middle, i.e. so called dyads. However,

other distributions of variability are possible and compact approaches to deal with them have

also been developed. However, dealing directly with variability implies an higher order of

complexity in the solution of the problem. It is possible to identify in literature two main

frameworks in which compact approaches have been developed:

1. the candidate motifs occur at least once exactly in the input string; the errors (mismatches)

can occur in any position of the motifs;

2. the candidate motifs might never occur in the input string exactly; the position of the errors

(wildcards) are fixed in the motif template.

5.1 Compact approaches for motif with mismatches
In (Apostolico & Pizzi, 2007) a compact approach for the extraction of motifs with mismatches,

with an i.i.d. background, was proposed. The approach was next extended to deal with a
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markovian background distribution (Pizzi & Bianco, 2009). The assumptions are that: the

motif must occur at least once exactly in the sequences; its instances can appear with exactly,

or at most, k mismatches; the mismatches can occur in any position of the motif.

We first observe that, because of the introduction of mismatches, it is not possible to use

a suffix tree to partition the search space. In fact if we consider a string w with exactly

k mismatches, and its extension wa, with a ∈ Σ, with exactly k mismatches we are not

guaranteed that the frequency of wa is the same of w, even if both have the same locus. In

fact, in the count of wa with k mismatches we would add the number of occurrences of w with

k mismatches followed by an a, and the number of occurrences of w with k − 1 mismatches

followed by a symbol b �= a, and finally subtract the number of occurrences of w with k

mismatches followed by a symbol b �= a. Depending on how the symbols occur in the text the

number of occurrences of wa might be less, equal, or greater than those of w.

Hence, to compact the output, one has to isolate intervals of words of increasing length with

the same frequency (with mismatches. However, this is not sufficient. The next step is to

verify that within those intervals the expectation with mismatches has indeed a monotone

behavior.

In (Apostolico & Pizzi, 2007; 2008), besides the proposal of polynomial algorithms for the

computation of the expected frequency, a full study about the score behavior of motifs with

mismatches has been presented. We redirect the readers to the original papers for proofs and

report here only the main results.

1. the word length is increased, and the number of mismatches is fixed: the expected

frequency with mismatches decreases;

2. the number of mismatches is increased, keeping the word length fixed, counting an exact

number of mismatches: the expected frequency with mismatches increases (at least until a

number of mismatches equal to half of the length of the motif, then it might decrease);

3. the number of mismatches is increased, keeping the word length fixed, counting at most a

given number of mismatches: the expected frequency with mismatches increases.

The case 1) is that of interest for the intervals of increasing length and constant counted

frequency with mismatches. In fact, in these intervals we have that the z-scores are monotone,

and we can take as a representative of the interval the corresponding string.

Experiments to measure the effectiveness of the interval definition can be carried out in the

following way. Let us consider words of length m ± δ, for a given m and δ and compute the

score for runs of words with the same frequency (with mismatches) only once.

Tables 5 and 6 report the percentage of entry savings, with respect to a full enumeration, when

the frequency is counted for exactly or at most k mismatches respectively. The input string was

a sample 10k bases from the yeast genome.

5.2 Compact approaches for words with wildcards
In case of regular patterns the words are defined over an alphabet Σ� = Σ∪ {“.”} that includes

also the wildcard “." symbol. The classes of equivalence are identified by the subwords that are

generated by the corresponding grammars. Moreover, the property of maximality must hold

both in length and in composition. A pattern is maximal in composition if the substitution of

any of its wildcards with a given symbol of the alphabet Σ alters the number of occurrences

of the pattern. Maximal regular patterns have been used to devise combinatorial algorithms
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3. add 1 to all the leaves that correspond to positions {p1, p1 + 1, . . . p1 + d}, {p2, p2 +
1, . . . p2 + d}, . . . {pk, pk + 1, . . . pk + d};

4. annotate the tree bottom-up, so that internal nodes have a weight corresponding to the

sum of the weights of their children.

After the annotation the suffix tree will hold the number of co-occurrences between the fixed

y and any string z with a proper locus in the tree. The annotation of the tree is performed in

linear time. Since this must be repeated for every possible choice of the first component y, the

resulting complexity is O(n2).

4.2.1 Example
Turning back at the example in the previous section, the co-occurrences will be counted only

for 15 × 15 = 225 pairs of substrings of x. If an exhaustive index would have been build

instead, the number of entries of the output would have been 4356, or 2704 if duplication was

removed. In the former case we achieved a 95% reduction of the table size, in the latter a 92%

reduction.

5. Compact approaches for words with mismatches

Co-occurrence counts are useful for the detection of motifs that are particularly conserved

at the sides and allow for high variability in the middle, i.e. so called dyads. However,

other distributions of variability are possible and compact approaches to deal with them have

also been developed. However, dealing directly with variability implies an higher order of

complexity in the solution of the problem. It is possible to identify in literature two main

frameworks in which compact approaches have been developed:

1. the candidate motifs occur at least once exactly in the input string; the errors (mismatches)

can occur in any position of the motifs;

2. the candidate motifs might never occur in the input string exactly; the position of the errors

(wildcards) are fixed in the motif template.

5.1 Compact approaches for motif with mismatches
In (Apostolico & Pizzi, 2007) a compact approach for the extraction of motifs with mismatches,

with an i.i.d. background, was proposed. The approach was next extended to deal with a
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markovian background distribution (Pizzi & Bianco, 2009). The assumptions are that: the

motif must occur at least once exactly in the sequences; its instances can appear with exactly,

or at most, k mismatches; the mismatches can occur in any position of the motif.

We first observe that, because of the introduction of mismatches, it is not possible to use

a suffix tree to partition the search space. In fact if we consider a string w with exactly

k mismatches, and its extension wa, with a ∈ Σ, with exactly k mismatches we are not

guaranteed that the frequency of wa is the same of w, even if both have the same locus. In

fact, in the count of wa with k mismatches we would add the number of occurrences of w with

k mismatches followed by an a, and the number of occurrences of w with k − 1 mismatches

followed by a symbol b �= a, and finally subtract the number of occurrences of w with k

mismatches followed by a symbol b �= a. Depending on how the symbols occur in the text the

number of occurrences of wa might be less, equal, or greater than those of w.

Hence, to compact the output, one has to isolate intervals of words of increasing length with

the same frequency (with mismatches. However, this is not sufficient. The next step is to

verify that within those intervals the expectation with mismatches has indeed a monotone

behavior.

In (Apostolico & Pizzi, 2007; 2008), besides the proposal of polynomial algorithms for the

computation of the expected frequency, a full study about the score behavior of motifs with

mismatches has been presented. We redirect the readers to the original papers for proofs and

report here only the main results.

1. the word length is increased, and the number of mismatches is fixed: the expected

frequency with mismatches decreases;

2. the number of mismatches is increased, keeping the word length fixed, counting an exact

number of mismatches: the expected frequency with mismatches increases (at least until a

number of mismatches equal to half of the length of the motif, then it might decrease);

3. the number of mismatches is increased, keeping the word length fixed, counting at most a

given number of mismatches: the expected frequency with mismatches increases.

The case 1) is that of interest for the intervals of increasing length and constant counted

frequency with mismatches. In fact, in these intervals we have that the z-scores are monotone,

and we can take as a representative of the interval the corresponding string.

Experiments to measure the effectiveness of the interval definition can be carried out in the

following way. Let us consider words of length m ± δ, for a given m and δ and compute the

score for runs of words with the same frequency (with mismatches) only once.

Tables 5 and 6 report the percentage of entry savings, with respect to a full enumeration, when

the frequency is counted for exactly or at most k mismatches respectively. The input string was

a sample 10k bases from the yeast genome.

5.2 Compact approaches for words with wildcards
In case of regular patterns the words are defined over an alphabet Σ� = Σ∪ {“.”} that includes

also the wildcard “." symbol. The classes of equivalence are identified by the subwords that are

generated by the corresponding grammars. Moreover, the property of maximality must hold

both in length and in composition. A pattern is maximal in composition if the substitution of

any of its wildcards with a given symbol of the alphabet Σ alters the number of occurrences

of the pattern. Maximal regular patterns have been used to devise combinatorial algorithms
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k m =12 m =13 m =14 m =15 m =16 m =17 m = 18

0 avg length 6.74 6.91 6.96 6.98 6.98 6.98 6.99
% saving 84.21 85.17 85.49 85.58 85.63 85.65 85.67

1 avg length 2.33 2.35 2.38 2.54 2.74 2.92 2.97
% saving 17.71 23.04 26.51 29.41 36.41 45.07 50.37

2 avg length 2.30 2.32 2.35 2.37 2.40 2.48 2.61
% saving 9.46 13.14 18.36 23.43 26.29 28.26 31.67

3 avg length 2.14 2.21 2.28 2.31 2.36 2.40 2.44
% saving 4.85 7.29 9.98 13.75 18.79 23.53 27.34

4 avg length 2.02 2.07 2.15 2.23 2.28 2.31 2.34
% saving 1.01 2.91 5.39 7.84 10.69 14.70 19.50

Table 5. Average run length and table size reductions for frequency with exactly k
mismatches (δ = 3).

k m =12 m =13 m =14 m =15 m =16 m =17 m =18

0 avg length 6.74 6.91 6.96 6.98 6.98 6.99 6.99
% saving 84.20 85.17 85.49 85.59 85.63 85.65 85.67

1 avg length 5.02 5.86 6.50 6.82 6.93 6.97 6.98
% saving 68.24 77.92 82.75 84.65 85.33 85.53 85.60

2 avg length 3.29 3.96 4.72 5.55 6.27 6.70 6.88
% saving 37.84 51.70 65.09 75.47 81.32 83.98 85.04

3 avg length 2.32 2.68 3.21 3.84 4.57 5.39 6.19
% saving 12.43 23.74 36.76 50.53 63.84 74.31 80.65

4 avg length 2.03 2.14 2.34 2.69 3.20 3.83 4.55
% saving 1.05 4.80 12.61 23.75 36.73 50.44 63.46

Table 6. Average run length and table size reductions for frequency with at most k
mismatches (δ = 3).

for the detection of frequent patterns in biosequences (Califano, 2000; Rigoutsos & Floratos,

1998). In both works, the extracted patterns can be said to be a compact representation for

motifs in which variability is allowed, but only at specific positions.

Although the number of maximal motifs with wildcard can be exponential, in (Parida et al.,

2000) the authors present a way of extracting the inner structure that characterize such type

of motif so that the output size could be further reduced. This can be obtained by defining a

basis of motifs. A basis B is a subset of all the motifs from which it is possible to recover all the

other motifs. More in details a motif is characterized by its list of occurrences, and all motifs

not in the basis can be obtained by a combination of the location lists of some of the motifs in

B. The motifs that belong to the basis are called irredundant. Several works have been done

on such motif representation, among which (Apostolico & Parida, 2004; Pelfrêne et al., 2003;

Ukkonen, 2009). In (Apostolico, Parida & Rombo, 2008) the concept of irredundant basis was

further extended to 2D patterns.

In the context of patterns with wildcards, a pattern is taken into consideration if it occurs for

a number of time that is defined by a quorum q ≥ 2. In (Pisanti et al., 2005) an in dept study

about the complexity of the number of irredundant motif showed that there exists a family of

motifs for which the number of motifs in the basis is Ω(n2) for q = 2. In the same paper the

authors propose a new definition for a basis, that is stronger than that in (Parida et al., 2000).

Therefore their basis is smaller and included in the previous one. Motifs that belong to the
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new definition are called tiling. For basis on tiling motifs the number of elements is linear in

the size of the input string for q = 2. However, it has been proved that for all basis there is an

exponential dependency in the quorum when q > 2, so that no polynomial algorithm exists

to extract a basis in this case.

Basis are clearly a compact representation of the motifs space, hence a powerful tool for

the analysis of biological sequences when variability is taken into account in the form of

wildcards.

6. Position weight matrices

Positions weight matrices are one of the most widely used models for biological signals, being

used both in genomic and proteomic studies.

A position weight matrix is a scoring matrix M, where each row represents a position and each

column a symbol from the alphabet Σ (in literature it is common to find also the vice versa).

The score of the matrix against a segment xjxj+1 . . . xj+m−1 of a sequence x = x1x2 . . . xn , is

given by:

S(M, j) =
m−1

∑
i=0

M[i][xj+i]

Given a threshold T, the matrix M is said to have an hit at position j of x if S(M, j) ≥ T.

The threshold can be given as an absolute value or as a p-value or MSS score T�, and then

converted in terms of absolute score with respect to the matrix M (Staden, 1989).

The hits of a matrix M in the sequence x can be found naively by an O(mn) algorithm that

for each position j check if S(M, j) is above the threshold. The computation of the score takes

O(m) steps, and need to be computed for n − m + 1 possible starting positions, hence the

claimed complexity.

6.1 The look-ahead technique
The look-ahead technique (Wu et al., 2000) can be used to stop the computation of the

score whenever one is sure that the threshold will never be reached. Let Sk(M, j) =

∑m−1
i=k+1 M[i][xj+i] be the score of the segment xj . . . xj+k−1 with respect to the matrix M, the

condition to stop the comparison is:

Sk(M, j) +
m−1

∑
i=k+1

max
s∈Σ

M[i][s] < T

i.e. even if in the rest of the comparison we will add the maximum score of the matrix for

those positions, the final score will be below the threshold.

It is easy to compute an array tla of size m that holds the value of the partial thresholds that

need to be reached in order to have the chance to reach the threshold. The entries of the array

are given by:

tla[i] = T − Sk(M, i + 1)

These can be computed in linear time in m, by setting tla[m − 1] = T, and recursively

computing the other entries by the formula:
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k m =12 m =13 m =14 m =15 m =16 m =17 m = 18

0 avg length 6.74 6.91 6.96 6.98 6.98 6.98 6.99
% saving 84.21 85.17 85.49 85.58 85.63 85.65 85.67

1 avg length 2.33 2.35 2.38 2.54 2.74 2.92 2.97
% saving 17.71 23.04 26.51 29.41 36.41 45.07 50.37
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% saving 9.46 13.14 18.36 23.43 26.29 28.26 31.67
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Table 5. Average run length and table size reductions for frequency with exactly k
mismatches (δ = 3).
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% saving 84.20 85.17 85.49 85.59 85.63 85.65 85.67

1 avg length 5.02 5.86 6.50 6.82 6.93 6.97 6.98
% saving 68.24 77.92 82.75 84.65 85.33 85.53 85.60

2 avg length 3.29 3.96 4.72 5.55 6.27 6.70 6.88
% saving 37.84 51.70 65.09 75.47 81.32 83.98 85.04

3 avg length 2.32 2.68 3.21 3.84 4.57 5.39 6.19
% saving 12.43 23.74 36.76 50.53 63.84 74.31 80.65

4 avg length 2.03 2.14 2.34 2.69 3.20 3.83 4.55
% saving 1.05 4.80 12.61 23.75 36.73 50.44 63.46

Table 6. Average run length and table size reductions for frequency with at most k
mismatches (δ = 3).

for the detection of frequent patterns in biosequences (Califano, 2000; Rigoutsos & Floratos,

1998). In both works, the extracted patterns can be said to be a compact representation for

motifs in which variability is allowed, but only at specific positions.

Although the number of maximal motifs with wildcard can be exponential, in (Parida et al.,

2000) the authors present a way of extracting the inner structure that characterize such type

of motif so that the output size could be further reduced. This can be obtained by defining a

basis of motifs. A basis B is a subset of all the motifs from which it is possible to recover all the

other motifs. More in details a motif is characterized by its list of occurrences, and all motifs

not in the basis can be obtained by a combination of the location lists of some of the motifs in

B. The motifs that belong to the basis are called irredundant. Several works have been done

on such motif representation, among which (Apostolico & Parida, 2004; Pelfrêne et al., 2003;

Ukkonen, 2009). In (Apostolico, Parida & Rombo, 2008) the concept of irredundant basis was

further extended to 2D patterns.

In the context of patterns with wildcards, a pattern is taken into consideration if it occurs for

a number of time that is defined by a quorum q ≥ 2. In (Pisanti et al., 2005) an in dept study

about the complexity of the number of irredundant motif showed that there exists a family of

motifs for which the number of motifs in the basis is Ω(n2) for q = 2. In the same paper the

authors propose a new definition for a basis, that is stronger than that in (Parida et al., 2000).

Therefore their basis is smaller and included in the previous one. Motifs that belong to the
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new definition are called tiling. For basis on tiling motifs the number of elements is linear in

the size of the input string for q = 2. However, it has been proved that for all basis there is an

exponential dependency in the quorum when q > 2, so that no polynomial algorithm exists

to extract a basis in this case.

Basis are clearly a compact representation of the motifs space, hence a powerful tool for

the analysis of biological sequences when variability is taken into account in the form of

wildcards.

6. Position weight matrices

Positions weight matrices are one of the most widely used models for biological signals, being

used both in genomic and proteomic studies.

A position weight matrix is a scoring matrix M, where each row represents a position and each

column a symbol from the alphabet Σ (in literature it is common to find also the vice versa).

The score of the matrix against a segment xjxj+1 . . . xj+m−1 of a sequence x = x1x2 . . . xn , is

given by:

S(M, j) =
m−1

∑
i=0

M[i][xj+i]

Given a threshold T, the matrix M is said to have an hit at position j of x if S(M, j) ≥ T.

The threshold can be given as an absolute value or as a p-value or MSS score T�, and then

converted in terms of absolute score with respect to the matrix M (Staden, 1989).

The hits of a matrix M in the sequence x can be found naively by an O(mn) algorithm that

for each position j check if S(M, j) is above the threshold. The computation of the score takes

O(m) steps, and need to be computed for n − m + 1 possible starting positions, hence the

claimed complexity.

6.1 The look-ahead technique
The look-ahead technique (Wu et al., 2000) can be used to stop the computation of the

score whenever one is sure that the threshold will never be reached. Let Sk(M, j) =

∑m−1
i=k+1 M[i][xj+i] be the score of the segment xj . . . xj+k−1 with respect to the matrix M, the

condition to stop the comparison is:

Sk(M, j) +
m−1

∑
i=k+1

max
s∈Σ

M[i][s] < T

i.e. even if in the rest of the comparison we will add the maximum score of the matrix for

those positions, the final score will be below the threshold.

It is easy to compute an array tla of size m that holds the value of the partial thresholds that

need to be reached in order to have the chance to reach the threshold. The entries of the array

are given by:

tla[i] = T − Sk(M, i + 1)

These can be computed in linear time in m, by setting tla[m − 1] = T, and recursively

computing the other entries by the formula:
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tla[i] = tla[i + 1]− max
s∈Σ

M[i + 1][s], for i = m − 2 . . . 0

6.2 The Minimum Gain
A dual concept to that of look-ahead score is given by the Minimum Gain (Pizzi et al., 2011).

The minimum gain relative to a position j in the matrix is the minimum score that can be

obtained by summing the scores from positions j + 1 to m.

The minimum gain can be used similarly to look-ahead to stop the comparison of the matrix

against a segment earlier. In this case the condition to be verified is:

Sk(M, j) +
m−1

∑
i=k+1

min
s∈Σ

M[i][s] ≥ T

If this is the case, then no matter what the following m − k symbols are, there will be a hit to

report at position j.

Similarly to look-ahead, we can build a minimum gain array tmg corresponding to the partial

thresholds that need to be reached to ensure that the hit. Starting from tmg[m − 1] = 0, we

have:

tmg[i] = tmg[i + 1]− min
s∈Σ

M[i + 1][s], for i = m − 1 . . . 0

6.3 Compact approach to automaton construction
In (Pizzi et al., 2011) an algorithm with optimal O(n) searching time was proposed to solve

the problem of profile matching (i.e. given a string x, a threshold T and a matrix M, find all

the hits of M in x).

This algorithm is based on the classic multi-pattern matching algorithm based on the

Aho-Corasick automaton (Aho et al., 1974). In summary, an automaton is built that contains

all the words that are a match for the given threshold and matrix.

The look-ahead technique can be used in this context to generate all and only the words of

length m that are hits. The words are generated directly in a trie, that will later be annotated

with failure links to build the Aho-Corasick automaton. Starting from the empty trie, only

symbols which score is above tla[0] are expanded. Each node will take track of the partial

score of the path from the root to the node itself, and will recursively expand further levels in

a similar way with comparison with the look-ahead partial thresholds.

Depending on the given threshold, and on the distribution of the score within the matrix, the

size of the trie is very variable, but can become prohibitive. In fact by decreasing the threshold

(e.g. increasing the p-value), the number of words that are hits for the matrix increases, and

can possibly reach an exponential number (the worst case given by |Σ|m).

The minimum gain can then be used to substantially reduce the size of the automaton,

implementing the compact approach philosophy. The idea is to limit the length of the words

that are hits for the matrix whenever a prefix of the word is enough to establish that there will

be a hit. While building the trie this means that we do not need to build the subtree of this

prefix. The cost of the further comparison with tmg at construction time is irrelevant compared

to the time saved by avoiding to build the subtree. Moreover, there could be considerable

space savings. See, for example what happens when we consider matrix M00003 from the

230 Systems and Computational Biology – Molecular and Cellular Experimental Systems Motif Discovery with Compact Approaches - Design and Applications 15

Jaspar database (Sandelin et al., 2004), and the threshold score , corresponding to MSS=0,85

(see Table 7). The entries of the matrix have been already multiplied by the factors needed to

compute the score relative to MSS (Quandt et al., 1995).

The matrix entries have been sorted in ascending order, so each table entry on the first four

columns contains a pair (symbol,score), and the last two columns hold the look-ahead and the

minimum gain score, respectively.

0 1 2 3 LA MG
A,0 C,0 T,0 G,18500 8799 53914
A,0 T,0 G,0 C,18500 27279 53914
A,0 T,0 G,0 C,18500 45779 53914

A,110 T,230 G,230 C,355 46134 54024
A,95 T,240 C,285 G,305 46439 54119

T,114 C,264 A,330 G,402 46841 54233
T,176 C,480 A,848 G,1456 48297 54409
T,494 C,608 A,722 G,5266 53503 54903
A,180 T,380 C,1560 C,1580 55083 55083

Table 7. Computation of scores for the matrix M00003 of the Jaspar database.

When we build the trie using the look-ahead technique, we have that at the first level only

the symbol G has a score that is above the partial threshold tla[0]. Hence we will have only

one child node for the root, with partial score 18500. At the second level we have again that

only the score of one symbol, (C,18500) summed up with the current partial threshold 18500,

will give a score (37000) above the partial threshold 27279. Again we add a single child to the

previous node, and label the edge with C. At the third step only C have a score that summed

up with the path partial score (37000) will give a value (55500) that is above tla[2] = 45779.

The trie is then extended a further level using only symbol C. From now on we can notice that

the partial threshold of this path is already above any following look-ahead partial thresholds.

This means that all symbols will be considered at each level, thus obtaining a full subtree of

high 6. This implicity means that the prefix GCC is enough to establish whether there is an hit

or not. If when building the trie we compare the value of the path partial threshold with the

minimum gain partial threshold we can stop early the computation, and set as the final state

of the Aho-Corasick automaton the current node.

The minimum gain basically defines classes of equivalence within the space of hits of the

matrix. Hits that share the same prefix do not need to be totally inserted in the trie. It suffices

to insert their common representative prefix.

In case of matrix M00003, we will save the construction of ∑6
i=1 4i nodes, that is the number

of nodes of the full subtrees rooted at the common prefix. This means that instead of having

5464 nodes we just have 4 (including the root).

C

C

G

A
C G

T

CA TG

Fig. 4. Space saving with the compact approach for the matrix M00003 of the Jaspar database.
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A dual concept to that of look-ahead score is given by the Minimum Gain (Pizzi et al., 2011).

The minimum gain relative to a position j in the matrix is the minimum score that can be

obtained by summing the scores from positions j + 1 to m.

The minimum gain can be used similarly to look-ahead to stop the comparison of the matrix

against a segment earlier. In this case the condition to be verified is:

Sk(M, j) +
m−1

∑
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min
s∈Σ

M[i][s] ≥ T

If this is the case, then no matter what the following m − k symbols are, there will be a hit to

report at position j.

Similarly to look-ahead, we can build a minimum gain array tmg corresponding to the partial

thresholds that need to be reached to ensure that the hit. Starting from tmg[m − 1] = 0, we

have:

tmg[i] = tmg[i + 1]− min
s∈Σ

M[i + 1][s], for i = m − 1 . . . 0

6.3 Compact approach to automaton construction
In (Pizzi et al., 2011) an algorithm with optimal O(n) searching time was proposed to solve

the problem of profile matching (i.e. given a string x, a threshold T and a matrix M, find all

the hits of M in x).

This algorithm is based on the classic multi-pattern matching algorithm based on the

Aho-Corasick automaton (Aho et al., 1974). In summary, an automaton is built that contains

all the words that are a match for the given threshold and matrix.

The look-ahead technique can be used in this context to generate all and only the words of

length m that are hits. The words are generated directly in a trie, that will later be annotated

with failure links to build the Aho-Corasick automaton. Starting from the empty trie, only

symbols which score is above tla[0] are expanded. Each node will take track of the partial

score of the path from the root to the node itself, and will recursively expand further levels in

a similar way with comparison with the look-ahead partial thresholds.

Depending on the given threshold, and on the distribution of the score within the matrix, the

size of the trie is very variable, but can become prohibitive. In fact by decreasing the threshold

(e.g. increasing the p-value), the number of words that are hits for the matrix increases, and

can possibly reach an exponential number (the worst case given by |Σ|m).

The minimum gain can then be used to substantially reduce the size of the automaton,

implementing the compact approach philosophy. The idea is to limit the length of the words

that are hits for the matrix whenever a prefix of the word is enough to establish that there will

be a hit. While building the trie this means that we do not need to build the subtree of this

prefix. The cost of the further comparison with tmg at construction time is irrelevant compared

to the time saved by avoiding to build the subtree. Moreover, there could be considerable

space savings. See, for example what happens when we consider matrix M00003 from the
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Jaspar database (Sandelin et al., 2004), and the threshold score , corresponding to MSS=0,85

(see Table 7). The entries of the matrix have been already multiplied by the factors needed to

compute the score relative to MSS (Quandt et al., 1995).

The matrix entries have been sorted in ascending order, so each table entry on the first four

columns contains a pair (symbol,score), and the last two columns hold the look-ahead and the

minimum gain score, respectively.

0 1 2 3 LA MG
A,0 C,0 T,0 G,18500 8799 53914
A,0 T,0 G,0 C,18500 27279 53914
A,0 T,0 G,0 C,18500 45779 53914

A,110 T,230 G,230 C,355 46134 54024
A,95 T,240 C,285 G,305 46439 54119

T,114 C,264 A,330 G,402 46841 54233
T,176 C,480 A,848 G,1456 48297 54409
T,494 C,608 A,722 G,5266 53503 54903
A,180 T,380 C,1560 C,1580 55083 55083

Table 7. Computation of scores for the matrix M00003 of the Jaspar database.

When we build the trie using the look-ahead technique, we have that at the first level only

the symbol G has a score that is above the partial threshold tla[0]. Hence we will have only

one child node for the root, with partial score 18500. At the second level we have again that

only the score of one symbol, (C,18500) summed up with the current partial threshold 18500,

will give a score (37000) above the partial threshold 27279. Again we add a single child to the

previous node, and label the edge with C. At the third step only C have a score that summed

up with the path partial score (37000) will give a value (55500) that is above tla[2] = 45779.

The trie is then extended a further level using only symbol C. From now on we can notice that

the partial threshold of this path is already above any following look-ahead partial thresholds.

This means that all symbols will be considered at each level, thus obtaining a full subtree of

high 6. This implicity means that the prefix GCC is enough to establish whether there is an hit

or not. If when building the trie we compare the value of the path partial threshold with the

minimum gain partial threshold we can stop early the computation, and set as the final state

of the Aho-Corasick automaton the current node.

The minimum gain basically defines classes of equivalence within the space of hits of the

matrix. Hits that share the same prefix do not need to be totally inserted in the trie. It suffices

to insert their common representative prefix.

In case of matrix M00003, we will save the construction of ∑6
i=1 4i nodes, that is the number

of nodes of the full subtrees rooted at the common prefix. This means that instead of having

5464 nodes we just have 4 (including the root).

C

C

G

A
C G

T

CA TG

Fig. 4. Space saving with the compact approach for the matrix M00003 of the Jaspar database.
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In terms of a compact approach, the minimum gain partitions the set of words that are a hit

for a given matrix and threshold in classes in which the representative is the shortest prefix

with a score that, summed up with the minimum sum of score that can follow, is above the

threshold.

7. Conclusion

In this chapter we discussed the compact approach for the discovery of significant signals

(motifs) in biological sequences. Compact approaches are characterized by a significant

reduction of the size of the output, without loss of crucial information. Compact approaches

that have been developed in these years for several different motif models have been

illustrated and discussed, also with the help of practical examples.
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1. Introduction 

-catenin, originally identified in Drosophila as the segment polarity protein armadillo, is a 
multifunctional protein that is encoded in humans by the CTNNB1 gene. β-catenin is found 
in at least three cellular pools: (i) at the adherens junctions, where β-catenin binds to the 
cytoplasmic domain of type I cadherins and modulates cadherin-dependent cell-cell 
adhesion by linking the cadherin/catenin complex to the cortical actin cytoskeleton through 
the binding of a-catenin; (ii) the cytoplasm, where β-catenin plays a critical role in the 
canonical Wnt signaling cascade by interacting with APC and GSK3β linked destruction 
complex, leading to its ubiquitination and subsequent degradation by the proteasome; and 
(iii) the nucleus, in association with other transcription factors. The crucial event in the 
canonical Wnt signalling cascade is the cytoplasmic stabilization of β–catenin, leading to its 
subsequent nuclear localization and gene transcription activity (Liu & Millar 2010). To date, 
numerous β-catenin target genes have been identified in diverse biological systems 
(http://www.stanford.edu/%7ernusse/wntwindow.html), yet little is understood about β–
catenin outside of its roles in Wnt and cadherin signaling.  
Biomedical literature is growing at a double-exponential pace, with more than 19,000,000 
publications in MEDLINE of which more than three million were published in the last 5 
years alone (Abrams et al., 1998). Over the last 10 years, the total size of MEDLINE (the 
database searched by PubMed) has grown at a ~4.1% compounded annual growth rate, and 
the number of new entries in MEDLINE each year has grown at a compounded annual 
growth rate of ~3.1% (Albert, 1999, 2002, 2005). Thus, a massive wealth of information is 
embedded in the literature and waiting to be discovered and extracted. Literature mining is 
a promising strategy to utilize this untapped information for knowledge discovery. Most 
mining is performed on the abstracts of biomedical articles, which represent a readily 
available resource of highly concentrated information and result in high quality extracted 
relations (Apte & Weiss, 1997; Card et al., 1996; Chien et al., 2007) . Text mining of 
biomedical literature has been applied successfully to various biological problems including 
the discovery and characterization of molecular interactions (protein-protein , gene-protein, 
gene-drug, protein sorting and molecular binding, consolidating information into a more 
accessible form (Babu et al., 2004; Balaji et al., 2006; Giot et al., 2003; Lee et al., 2006). 
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Recently, considerable interest and effort has been focused on the construction and analysis 
of genome-wide gene networks (McCraith et al., 2000). The task is complicated for heavily 
investigated transcription factors such as -catenin due to the large volume of manuscripts 
published. As no searchable records are available to efficiently retrieve information relevant 
to the -catenin gene network, we extracted gene/protein interactions by text mining 
Pubmed abstracts and constructed the -catenin biologic association network. Our text-
mining by natural language processing established an association of the β-catenin network 
with survival signaling, clarifying the fragmentary data that was previously available 
describing this relationship and confirming the crucial role of β-catenin in growth and 
development. 

2. Methods 
2.1 Natural Language Processing (NLP)  
Medline/PubMed was used as the information source for bioinformatics text mining. 
Medline abstracts were retrieved using National Center for Biotechnology Information 
(NCBI) PubMed portal. We queried Pubmed with: (catenin OR CTNNB OR CTNNB1) AND 
("1980/01/01"[PDAT]: "2009/05/24"[PDAT]). All abstracts were downloaded as HTML text 
without images and converted into XML documents. Sentence tokenization was performed 
with Lingpipe tools. Subsequent analysis was based on the sentence as the basic unit. Gene 
mentions (including the -catenin gene) were tagged using ABNER (Egghe & Rousseau, 
1990). To solve the matter of the plethora of gene aliases, all gene mentions were normalized 
to Entrez gene (http://www.ncbi.nlm.nih.gov/Entrez/) official gene symbols. A genetic 
interaction of the verb dictionary was established from BioNLP item 
(http://bionlp.sourceforge.net/), containing verbs such as repress, regulate, inhibit, interact, 
phosphorylate, downregulate, upregulate and all other verbs and their variants. Verbs in 
abstracts were tagged using Lingpipe and the interaction verb dictionary (Ghannad-Rezaie 
et al., 2006). Only sentences with the -catenin gene, a proper interaction verb and another 
gene were selected. In order to test the null hypothesis 'the relationship between -catenin 
and another gene is random', the hypergeometric distribution test was employed (Kim et al., 
1997).  
N represents the total number of PubMed abstracts and m and n represent the number gene 
mentions in PubMed for -catenin and a related gene, respectively. 

  
Where: 

 
The -catenin-gene' relations with p-value<0.05 were then summarized and subjected to a 
relational database for further analysis. The flowchart of our NLP pipeline is shown as 
Figure 1. 

2.2 Gene ontology analysis 
Gene ontology analysis was performed using the GSEABase package of BioConductor 
(http://www.bioconductor.org/). A gene set enrichment analysis was performed on  
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the 543 β-catenin-related genes based on the gene ontology (GO) categories (Rual et al., 
2005).  

2.3 Pathway and gene network analysis 
Expression Analysis Systematic Explorer (EASE) was used to analyze KEGG pathways. 
Over representation of genes in a KEGG pathway was present if a larger fraction of genes 
within that pathway was differentially expressed compared to all other genes in the 
genome. The ‘-catenin-verb-gene’ relationships retrieved by our NLP system were filtered 
by pathway enrichment analysis. The links between -catenin and related genes were 
visualized using Cytoscape software (Lopez & Blobel, 2008) (http://www.cytoscape.org/). 
Genes were grouped according to pathway. Genes that are involved in multiple pathways 
were assigned to a single pathway with the smallest enrichment p-value. Integrating 
PubMed text mining, homology prediction, gene neighbor, protein-protein interaction, gene 
fusion and other data sources through the Search Tool for the Retrieval of Interacting 
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catenin gene along with a proper interaction verb and another gene were selected for further 
analysis. A total of 543 genes with published interaction with β-catenin were identified 
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Fig. 2. Visualization of β-catenin interacting proteins. Data mining revealed 543 β-catenin 
interacting proteins, visualized using the Cytoscape software as described in Methods 
(http://www.cytoscape.org/).  
 

Gene sym Pubmed count Putative interaction
HNF4A 121 target

APC 62 regulate
LEF1 39 activate
EGFR 30 associate

MAPK8 28 activate
LRP6 25 phosphorylate

MUC1 25 interact
IQGAP1 24 interact

CTNNBIP1 21 inhibit
DKK1 21 associate
CD44 20 associate

Table 1. Description of the 10 highest published interacting partners with β-catenin.  
The gene symbol, number of hits on Pubmed and putative interaction of the 10 highest 
frequency hits among the 543 interacting proteins identified by literature mining, as 
described in Methods. 
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Among the 543 gene products, 18 distinct putative protein-protein relationships were 
identified involving β-catenin, with the distribution of the seven most frequent 
relationships  
included in Fig. 3. The most common relationship, complexing with β-catenin, was 
identified for 213 (39.2%) of the gene products (Fig. 3), including TCF4/TCF7L2 and 
LEF/LEF1. 54 (9.5%) gene products were identified as β-catenin targets, including cell cycle 
regulating proteins cyclinD1 and CDC42, proteins that influence cellular migratory behavior 
including uPA, Timp3, and CD44 and proteins that play a role in differentiation such as 
BMP-7, FGF8 and PPAR-d.  
 

 
Fig. 3. Frequency distribution of protein ‘relationships’ with -catenin. Literature mining 
revealed 18 types of relationships exhibited by -catenin with the 543 identified gene 
products. Relationship type is expressed as the percent of total proteins analyzed. 
Analysis revealed that the most frequent relationship is “associate” (31.31%), while the 
least frequent relationship, occurring for only one associated protein, is 
“dephosphorylate”. 

3.2 β-catenin-related gene function 
To better understand the biological role of the 543 β-catenin-related genes identified, and 
demonstrate the complexity of the β-catenin-related genes interaction network, we 
performed a Gene Ontology (GO) enrichment analysis.  
GO provides structured, controlled ontologies for describing gene products in terms of their 
associated molecular function, biological process, or cellular compartment. Enrichment for 
molecular function revealed that most β-catenin-associated genes, including KIT, HSF1, 
XPO1, HSPA5, FGF8 and ALCAM, encode proteins that bind to β-catenin. Genes such as 
CAPN3, EPHA7, PTGER4, SRC, BMP4 composed the second largest category, encoding for 
proteins that act as signal transducers (Fig. 4, left panel). Enrichment for biological process 
revealed that the most common functions of gene products associated with β-catenin 
include developmental processes, cell communication and signaling transduction (Fig. 4, 
middle panel). Finally, enrichment for the cellular compartments where β-catenin associated 
gene products can be found primarily included the cytoplasm, nucleus and plasma 
membrane (Fig. 4, right panel). 
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Fig. 4. Gene Ontology (GO) analysis of the -catenin molecular network. GO enrichment 
sorted all data by Molecular Function, Biological Process and Cellular Compartment. GO 
analysis revealed that protein binding is the most prevalent molecular function of -catenin 
interacting proteins, development, cell communication and signal transduction are the most 
common biological processes involved and the gene products are active primarily in 
cytoplasm, nucleus and plasma membrane. 

3.3 Pathway and gene network analysis 
Pathway information is required for understanding of gene function.For each of the 543 
genes identified, we searched the Kyoto Encyclopedia of Genes and Genomes (KEGG)  
 

Term Count % P-Value 
Wnt signaling pathway 54 10.06% 6.85E-26 

Focal adhesion 36 6.70% 8.79E-08 
MAPK signaling pathway 40 7.45% 1.07E-06 

Adherens junction 21 3.91% 4.61E-08 
p53 signaling pathway 18 3.35% 1.63E-06 

ErbB signaling pathway 19 3.54% 1.03E-05 
Apoptosis 17 3.17% 1.25E-04 

Insulin signaling pathway 22 4.10% 2.18E-04 
VEGF signaling pathway 15 2.79% 2.27E-04 

Toll-like receptor signaling 
pathway 18 3.35% 4.18E-04 

GnRH signaling pathway 17 3.17% 4.83E-04 
Cell cycle 19 3.54% 5.61E-04 

mTOR signaling pathway 11 2.05% 0.001869395 
TGF-ß signaling pathway 14 2.61% 0.007074483 

Table 2. Pathway analysis of the 543 -catenin interacting proteins. -catenin interacting 
proteins are involved in 14 different cell signaling pathways, identified using the Cytoscape 
software following NLP analysis. 
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database to identify their pathway information. 14 signaling pathways where identified 
whose corrected P-value was less than 0.01 (Table 2), and 321 of the genes belonged to these 
14 pathways. Pathway analysis was visualized using the Cytoscape software (Fig. 5). The 
Using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING), we created 
a β-catenin related genes network (Fig. 6). STRING incorporates known and predicted 
protein interaction information from HPRD, BioGrid, MINT, BIND, DIP, and imports 
known reactions from Reactome and KEGG pathways to generate a generalized source of 
protein interaction information. STRING analysis of β-catenin related genes revealed several 
hub genes, or genes in which high connection exists giving these genes an influential role in 
network stability. Hub genes identified include AKT1, CCND1, CTNNB1, JUN, TP53 and 
VEGFA (Fig. 7).  
 

 
Fig. 5. Visualization of pathway distribution of the 543 -catenin interacting proteins. . 
Pathway analysis of the 543 -catenin interacting proteins was performed following NLP 
analysis and visualized using the Cytoscape software, as described in Methods. Interacting 
proteins fit into 14 different cell signaling pathways, including several pathways involved in 
cell survival signaling. 
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Fig. 6. Visualization of the β-catenin related genes network. Network analysis was 
performed using the Expression Analysis Systematic Explorer (EASE) to analyze KEGG 
pathways and Search Tool for the Retrieval of Interacting Genes/Proteins(STRING). 
Visualization was performed using Cytoscape. Pink lines indicate connections 
experimentally confirmed by other researches, Cyan lines indicate connections derived from 
databases (including the KEGG pathway and MIPS) and Green lines indicate connections 
compiled from co-citation data from literature mining PubMed abstracts. 
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Fig. 7. Connectivity analysis of the β-catenin related genes network. Connectivity analysis was 
performed using the Search Tool for the Retrieval of Interacting Genes/Proteins(STRING) to 
generate the β-catenin related genes knowledge-driven network, as described in Methods. 
Analysis revealed AKT1, CCND1, CTNNB1, JUN, TP53 and VEGFA are important hub genes 
in the -catenin network, with mean frequency counts >86 (p <0.001).  

4. Discussion 
Gene/protein interaction networks provide critical information for a thorough 
understanding of cellular processes. Thus, detailed characterization of interactions between 
individual genes or proteins has become a primary focuses of biological research (Barabasi 
& Oltvai, 2004) . The complete biomedical literature database, containing a massive amount 
of information attained over a long period of time, is a largely untapped repository of 
information for study of gene/protein interaction networks (Chalmers et al., 1998; Gónzalez 
& Ochoa ,2008). Here, we generated a molecular network of β-catenin associated proteins. 
Analysis revealed that these proteins interacted with β-catenin via 18 different relationships, 
perform 13 biologic functions, take part in 15 cellular processes, localize to 12 cellular 
compartments, and signal in 14 different pathways. Significantly, this analysis identified a 
vast and mostly uncharacterized role for β-catenin in signal transduction pathways distinct 
from the Wnt and cadherin pathways. In particular, β-catenin may have a significant role in 
cell survival signaling. 
Our analysis was performed using only abstracts instead of full text manuscripts. Our 
studies suggest that full-text articles contain too much detail for high-throughput analysis of 
biomedical research and development, while abstracts usually have higher information 
density and result in better quality relations extracted by text mining techniques. Further, 
abstracts are freely available through most public databases. Due to the large number of 
abstracts (10018) analyzed, we believe that the network data generated is both 
comprehensive and significant (Mackinnon et al., 2008; Ouzounis & Karp, 2000; Ptacek et al., 
2005; Thieffry et al., 1998) . 
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Wnt/β-catenin signaling is involved in almost every aspect of embryonic development and 
controls homeostatic self-renewal in lots of adult tissues. Gene Otology identified three 
biological process (developmental process, cell communication and signaling transduction) 
that are significantly overrepresented within the β-catenin associated network. Validating 
these observations, several severe phenotypes in multiple tissues and organs can be 
observed in flies, frogs, fish, and mice following loss of Wnt/β-catenin signaling 
components. In adults, Wnt/β-catenin signaling remains essential throughout life for 
driving tissue renewal in rapidly self-renewing organs, including the intestine and skin. In 
addition, deregulation of Wnt/β-catenin signaling upsets the homeostatic balance in self-
renewing tissues and leads to a variety of abnormalities and disease including bone defects 
and cancer. Pathway analysis of the β-catenin associated network revealed a close 
relationship between β-catenin and survival signaling (i.e. the Wnt, MAPK, insulin, and 
adhesion junction pathways), supporting an important role for β-catenin pathway in growth 
and development. Integration of PubMed text mining, homology prediction, gene neighbor, 
protein-protein interaction, gene fusion and other data sources identified AKT1, CCND1, 
CTNNB1, JUN, TP53 and VEGFA as hub genes in the β-catenin signaling network. Network 
analysis reveals an extremely high connectivity of these genes with other β-catenin 
associated genes. The involvement of these six genes in survival signaling, including anti-
apoptosis, cell cycle and cell migration, provides further surport for a vital role for β-catenin 
in growth and development. 

5. Conclusion 
We performed natural language processing, a literature mining tool that can cluster a list of 
genes with keywords that are auto-extracted from their up-to-date related literature and 
then manually curated by the user, to establish the β-catenin biologic association network. 
Our results establish a significant association of this network with survival signaling. These 
data demonstrate the power of data-mining strategies as tools for biological discovery, 
suggesting that the use of similar strategies to consolidate all existing data for specific 
disease states, specifically cancer, may yield yield important discoveries in disease 
pathogenesis and identification of novel therapeutic targets. Further analysis of the β-
catenin biologic association network may provide a deeper understanding of β-catenin 
signaling, particularly in relation to cell survival signaling.  
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1. Introduction 
The widely available digital information about plant genomes and its products has triggered 
the use of bioinformatics and other in silico approaches over gene expression data, from 
genome to phenotype-based analysis methods. In such data universe, special attention has 
been given to a peptidic group of plant bioactive molecules, the antimicrobial peptides 
(AMP), usually small cysteine or glycine-rich peptides antagonistic to several pathogens and 
component of plant innate defense. Main classes of AMPs comprise defensins, thionins,  
lipid-transfer proteins, cyclotides, snakins and hevein-like, according to amino acid 
sequence homology. 
Plant biodiversity for antimicrobial peptides search has led to increasing efforts on their 
identification and characterization, although such biodiversity still remains largely unexplored 
for drug development and other potential applications. As expected, crop species have been 
more frequently targeted for AMP research and application, mainly due to higher availability 
of molecular data (Pestana-Calsa et al., 2010). AMPs provide novel strategies not only in 
medicine but can potentially increase agricultural yields by phytopathogen or pest control. 
Those small peptides have wide-range inhibitory activity over phytopathogenic 
microorganisms (mostly fungi), as already comproved in enhanced crop resistance to 
pathogen attack through genetic breeding and transgenic manipulation (Terras et al., 1995).  
Last decade advances in gene expression studies technology brought huge amounts of 
genomic, transcriptomic and proteomic datasets, a fruitful field for AMP prospection. Based 
on ethnobotanical or even laboratory information, literature concerning in silico analyses of 
plant antimicrobial peptides is much smaller than that focusing plant secondary metabolites. 
Additionally, bioinformatics tools are usually constrained to model species, whose “-omics” 
datasets are available, justifying many heterology-based studies for non-model species. 
Thus, data integration is highly desired and helpful to apply bioinformatics approaches 
aiming the in silico screening of genomic, transcriptional, proteomic and metabolomic 
datasets from cultivated or wild plant species. Preliminary analyses have been commonly 
linked to subsequent molecular techniques to identify and characterize AMP-coding genes, 
their products and their regulation, besides to validate putative functional aspects in a 
systems biology approach. For instance, in silico analyses of AMPs and respective coding 
genes determine the way by which different sequences can affect specific pathogens 
(Pestana-Calsa etal., 2010). 
This chapter focuses on bioinformatics methods, usually associated to molecular biology 
tools, to prospect databases, identify and characterize putative or known AMPs, and 
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discusses procedures for testing them in vitro and in vivo. Regarding applications, molecular 
data must be generated in large scale for a comprehensive set of plant species which have 
not been addressed up to date in AMP research field. “-Omics” based experimental 
procedures will then be more efficient and reliable, making easier the application of 
scientific knowledge from molecular biology and bioinformatics on medicine, agriculture 
and industry needs. 

2. Bioinformatics on AMP identification 
The huge amount of available information over plant secondary metabolites effects on 
human health has demanded the usage of bioinformatics tools on transcriptomic, 
proteomic and metabolomic profiles from different plant species, concerning single as 
well as mixtures of phytochemicals (Ulrich-Merzenich et al., 2007). Indeed, most results 
experimentally obtained for bioactive antimicrobial secondary metabolites might be also 
derived from correlated AMPs sinergy (Verpoorte at al., 2005). Nowadays increasing 
number of described plant antimicrobial peptides, in parallel to exponential growth in 
nucleotide and protein data for public access, allows several possibilities of potential 
identification of novel AMP. Preliminary analyses have been commonly followed by 
molecular methods to characterize AMP-coding genes and its regulation. Here, in silico 
studies of AMP and respective coding genes contributed to unravel their functional 
aspects (Hammami et al., 2009).  

2.1 Search by genomics and transcriptomics 
Searches in genome and transcript sequences datasets have shown to be a comprehensive 
and higher yield initial step for seeking candidate AMP-coding genes, mostly due to the 
typical large-scale coverage of the organism genetic potential in such analyses. In silico  
starting approaches constitute a way to quickly achieve reliable AMP-coding potential of the 
studied plant species, even if it requires further biological validation. 
Genomic analyses through DNA sequencing and mapping have been useful to AMP 
prospection. Considering model organisms, most green plant species genomes harbor 15-50 
defensin-coding genes, even if this number is an under-estimation according to some 
authors and may grow by further studies on several other plant species genome-wide 
expressed sequence tag (EST) libraries (Silverstein et al., 2005; 2007; Manners, 2007). In 
Arabidopsis, 317 defensin-like sequences could be assigned in the genome by hidden 
Markov models of in silico search (Silverstein et al., 2005). 
Actually, a comprehensive search on standard publicly available gene expression databases 
for plant transcript sequences provides a relatively trustable picture of annotated and 
putative AMP- related sequences from plants (Table 1). Plant AMPs represent almost 16% of 
deposited AMP sequences and, considering all the organisms as well as just plants, lipid 
transfer proteins constitute the most abundant group, what may be an over-estimation 
(Pestana-Calsa et al., 2010) since they are not only involved in direct plant defense (Chen et 
al., 2008; Boutrot et al., 2008). Noteworthy, snakins and heveins appear as plant-
representative peptides, while defensins and lipid transfer proteins have relatively similar 
distribution that when considering all organisms. In opposite, thionins accesses are about 4 
times more abundant in plants than in all organisms dataset, and plant cycletides occur in 
about 3 times smaller frequency than for all organisms in GenBank, what may represent 
under-estimation. 
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AMP main group All organisms Green plants (%) 
Defensin 4,506 755 16.8 
Thionin 1,318 780 59.2 
Lipid transfer protein 54,485 13,139 24.1 
Cycletides 10,497 591 5.6 
Snakin-like 13 13 100.0 
Hevein-like 1,434 1,043 72.7 
Other 31,251 160 0.5 
Total 103,504 16,481 15.9 

Table 1. Number of AMP-related accesses in GenBank/NCBI/Entrez, identified as AMP 
main groups (from Pestana-Calsa et al., 2010). 

Concerning reference available plant EST collection, the TIGR Plants Gene Indices 
(http://compbio.dfci.harvard.edu/tgi/plant.html) is useful to achieve distribution of AMP-
related transcript sequences from crop and weed/pasture species (Figure 1). From the 14 
botanical families represented by 34 species, ten are important commodities as soybean, 
maize, sugarcane, orange and coffee. It suggests grasses and solanaceous are snakins richer, 
while legumes (Graham et al., 2004) have less thionin coding genes. 
 

 
Fig. 1. Distribution of plant EST unigenes (clusters + singletons) from TIGR Gene Indices 
putatively annotated as AMPs. Frequencies were considered including (A) or not including 
(B) the putative lipid-transfer proteins (LTP) coding transcripts. Data in each botanical 
family derive from: Poaceae (Hordeum vulgare, Zea mays, Oryza sativa, Secale cereale, Sorghum 
bicolor, Saccharum spp., Panicum virgatum, Festuca arundinacea, Triticum aestivum); Solanaceae 
(Capsicum annuum, Petunia hybrida, Solanum tuberosum, Nicotiana tabacum, Solanum 
lycopersicum); Fabaceae (Phaseolus vulgaris, Medicago truncatula, Phaseolus coccineus, Glycine 
max); Asteraceae (Lactuca sativa, Lactuca serriola, Helianthus annuus); Rosaceae 
(Malus_x_domestica, Prunus persica); Malvaceae (Theobroma cacao, Gossypium); Brassicaceae 
(Brassica napus); Alliaceae (Allium cepa); Amaranthaceae (Beta vulgaris); Convolvulaceae 
(Ipomoea nil); Pinaceae (Pinus); Rubiaceae (Coffea canephora); Rutaceae (Citrus sinensis); and 
Vitaceae (Vitis vinifera). Original data from Pestana et al. (2010).  

Such type of analysis usually constitutes an initial step in antimicrobial peptide research in 
plants. By allying in silico tools to predict potential AMP-coding genes with “wet”-bench 
procedures like PCR-based methods using specific designed oligonucleotides to amplify 
AMP-related regions from genomic DNA, novel grass and legume β-defensins have been 
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recently identified from sugarcane (Saccharum spp.; Padovan et al., 2009) and cowpea (Vigna 
unguiculata; Padovan et al., 2010a). These novel peptides expression was co-related to fungal 
infection and drought responses, suggesting biotic and abiotic responsiveness for defensin 
activation. 
Computational search matches have provided growing helpfulness for AMP genes 
identification in concluded and current DNA sequencing projects, as in large transcript 
profiling datasets, however the predicted defense-related genes must be functionally tested 
(Pestana-Calsa et a., 2010; Belarmino et al., 2010). In spite of rare use, in situ hybridization 
methods for AMP studies in plants keep very promising to analyze the spatial and temporal 
expression of such peptides in several organs and tissues, under a wide range of treatments 
(Tavares et al., 2008). 
Genomics and transcriptomics platforms allow the development of strategies to identify 
distinct classes of antimicrobial peptides. In pepper (Capsicum annuum), an AMP was 
identified and named CaAMP1, which was isolated in a cDNA library from leaves 
inoculated by Xanthomonas campestris pv. vesicatoria. CaAMP1 expression was induced in 
leaves during pathogen infection and after abiotic stressing (Lee & Hwang, 2009). A cDNA 
sequence, named VvAMP1, was isolated from grape (Vitis vinifera) berries and coded for a 
77 amino acid peptide homologous to defensins (de Beer & Vivier, 2008); also in grape, 
comprehensive in silico searches have successfully resulted in AMP candidates (Zamyatnin 
& Voronina, 2010).  
Transcripts tag sequences from different large-scale gene expression analyses, like cDNA 
microarray and SAGE, have been assigned to plant AMP. For instance, cDNA microarray 
was used to validate regulation of known AMP genes after hormone signalling in defense 
responses (Wan et al., 2002). On the other hand, SAGE-derived approaches have resulted in 
suitable databases for AMP detection, as like in sugarcane (Calsa Jr. & Figueira, 2007) and 
soybean; in both, tens of transcripts have been putatively annotated as AMP-like and are 
under experimental validation (data not shown). 

2.2 Search by proteomics 
Plant genomic and post-genomic researches have generated large amounts of information 
that contributes to understand gene and protein expression profiles, besides their 
connection to biological processes. Proteomics results in important data over biological 
systems, because it produces information about proteins and peptides, the major functional 
and structural determinants of cells (Baginsky, 2009). Conventional two-dimensional gel 
electrophoresis (2-DE) to separate and visualize proteins, and mass spectrometry (MS) to 
identify proteins and peptides of interest, have been applied. Some 2-DE limitations 
concerning AMP analysis refer to retention and visualization on gel of target proteins with 
molecular weight lower than 10 KDa (Baggerman et al., 2004) and frequent production in 
small quantities by plant cells (Antunes, 2008). 
Small protein and native peptide component of plant tissues is a still neglected proteomic 
area, and relatively few studies are available (Zhang et al., 2006). Peptidomics have 
improved the study of such small polypeptides, by coupling bi or multidimensional liquid 
chromatography to mass spectrometry, where high complexity or low concentrated samples 
can be efficiently separated via multidimensional liquid chromatography (MDLC), whose 
advantage over 2-DE is separation of complex mixtures by using multiple columns 
(Barbosa, 2008). Even so, conventional 2-DE followed by MS has also provided important 
antimicrobial subproteome/subpeptidome information associated to specific plant samples, 
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as soybean xylem sap (Djordjevic et al., 2007), and to plant-virus interaction, as from 
Capsicum annuum cv. Bungang (hot-pepper) infected by tobacco mosaic virus (TMV) (Lee e 
al., 2006). Differentially expressed pathogenesis-related proteins and peptides, as defensin, 
from sugar beet infected by beet necrotic yellow vein virus (BNYVV) were separated by 
MDLC, identified by MALDI-TOF/MS and annotated through homology-based search 
using amino acid sequence deduced from the MS/MS spectra (Larson et al., 2008). 
An interesting perspective on antimicrobial peptides was developed to study the 
conservation of structural motifs in AMPs from phylogenetically distant organisms using 
proteomic bioinformatics datasets and tools, like PROSITE (ExPASy Proteomics Server, 
2011), for multidimensional signature model for AMPs (Yount & Yeaman, 2004). Modeling 
is an attempt to unify structural domains in distinct classes of AMP. 
Additionally, proteomics approaches have been successful in the identification of signalling 
elements that regulates defensins in plants (Widjaja et al., 2010). 

2.3 AMP databases 
Hundreds of known AMP sequences are available at UniProtKB/Swiss-Prot, while other 
repository collections are in other accessible links (Table 2). The major ones are ANTIMIC 
(Brahmachary et al., 2004), Antimicrobial Sequence database AMSDb (eukaryotic), Peptaibol 
(fungal, Whitmore & Wallace, 2004), APD (Wang & Wang, 2004) and APD2 (Wang et al., 
2009). Among them, the PhytAMP (http://phytamp.pfba-lab.org), a database specific for 
plant AMPs, was developed providing access to informations regarding studies and 
applications for these peptides (Hammami et al., 2009), and organizing sequences and 
corresponding taxonomic, physicochemical, structural, taxonomical and publications over 
each deposited AMP. 
Bioinformatics tools have been developed in agreement to “–omics” databases 
requirements. An example was the alignment of known antibacterial peptides aiming to 
detect preferential residues by artificial neural network, since certain amino acids are more 
frequent in some positions, particularly at the N or C terminus (Lata et al., 2007). Other 
successful advances resulted from enlargement of AMP catalogs, basically through 
clustering and alignment to previously annotated sequences; this approach has been quite 
useful on putative AMPs identification in comprehensive datasets (Fjell et al., 2207). 
Statistical modeling is applied over genomic, transcriptional and proteomic data in the aim  
to identify peptides, also domains from already functionally annotated proteins, which 
present significant motifs and/or structure match to AMP (Nagarajan et al., 2006). 
 
Database Web site (http://) Organisms (Reference) 
AMSDb www.bbcm.units.it~tossi/pag1.htm Eukaryotes (Tossi & Sandri, 2002) 
ANTIMIC research.i2r.a-star.edu.sg/Templar/DB/ANTIMIC General (Brahmachary et al., 2004) 
APD aps.unmc.edu/AP/main.html General (Wang & Wang, 2004) 
APD2 aps.unmc.edu/AP/main.php General (Wang et al., 2009) 
APPDb ercbinfo1.ucd.ie/APPDb/ general
Defensins defensins.bii.a-star.edu.sg/ general
PenBase penbase.immunaqua.com/ general (Gueguen et al., 2006) 
Peptaibols www.cryst.bbk.ac.uk/peptaibol Fungi (Whitmore & Wallace, 2004) 
PhytAMP http://phytamp.pfba-lab.org Plants (Hammami et al., 2009) 
SAPD oma.terkko.helsinki.fi:8080/~SAPD General (Wade & Englund, 2002) 

Table 2. URLs for main available databases for characterized antimicrobial peptides 
(modified from ExPASy Proteomics Server and Pestana-Calsa et al., 2010). 
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As expected, economically relevant crop plant species have commonly been the main target 
for antimicrobial peptides research and biotechnological application, due to associated 
agricultural and social demand and impact, but also because the higher availability of 
molecular data. In spite of such trend, several research efforts have pointed a huge potential 
for wild plant species prospection to achieve discovery of novel AMPs, as well as the 
identification of novel biological functions to known AMPs. Hence, plant biodiversity in 
different biomes and ecosystems is an outstanding promising focus on antimicrobial 
peptides investigation (Pieters & Vlietinck, 2005). 
A very recent revised list of experimentally confirmed plant AMP, with physicochemical 
and antibacterial specificity is also available, comprising members of the main families: 23 
defensins, eight hevein-like, six vicilin-like, five knottins, four cyclotides, two Impatiens-
like, two sepherins, two snakins, one MBP-1 (from maize), one glutamate-rich, one glycine-
rich, and other eight peptides not classified in these structural families (Pelegrini et al., 
2011). 

3. Structural analyses and function 
An example of the lack in plant AMP cataloguing is the organized database for antibacterial 
phytochemical compounds hosted and managed by Kioto Encyclopedia of Genes and 
Genomes (KEGG Compound, Plant Secondary Metabolites), where the related biosynthetic 
enzymes and molecular targets in human organism are fully described. However, no plant-
derived AMP or coding gene sequence is set, since the database allows the access only to 
human microbicidal and cytotoxic peptides. 
Bioinformatics have been essential on plant AMP prospection and establishment of 
catalogues, which have increased in last decade (Hammami et al., 2009). Several sequence 
aligment tools, usually BLAST-based (www.ncbi.nlm.nih.gov/blast) are available, but other 
main technical approaches have included in silico structural peptide prediction and putative 
analyses of AMP-target molecule interactions. Last but not least, direct chemical isolation 
have also depended of in silico tools to achive more complete structural and functional 
characterization of isolated AMP.  

3.1 Isolation 
Complementarily to the several classes of chemical compounds synthesized by plants 
secondary metabolism, with proved antimicrobial effects, the characterization of plant 
AMPs function correlated to such effects is extremely useful to improve research in this 
area. Although very likely, supposing that AMPs are co-responsible or even responsible 
for antimicrobial activity of complex plant extracts relies on sub-fractioning and 
experimental evidence (Moreira et al., 2011). Direct isolation of plant AMPs has succeeded 
in several species (Kovaleva et al., 2009; Rogozhin et al., 2011), associated to further cDNA 
cloning and characterization as defensin and lipid transfer protein. Also, extraction and 
purification of candidate peptides, followed by sequencing and match to AMP databases, 
allowed the identification of novel promising antimicrobial molecules in wheat 
(Odintsova et al., 2009). 
Efforts to prospect AMPs in plant crop species and many examples of direct isolation 
followed by functional assays and characterization are available. As alternative to fungicide 
usage to pathogen control in agriculture, several studies have focused on searching for plant 
proteins and peptides with antifungal activities (AFPs). Recently, two novel 10 and 15 kDa 
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AFPs were isolated from rosemary pepper (Lippia sidoides Cham.) flowers through Octyl-
Sepharose hydrophobic column separation, and were able to  inhibit the development of 
Botrytis cinerea, an economically harmful phytopathogen for many crops (Moreira et al., 
2011). The N-termini sequences of these AFPs have homology with NBS-LRR R proteins, 
well known plant defense elements. 
A 11,500 heterodimeric antifungal protein, named Pa-AFP1, highly similar to 2S albumin 
family, was purified by anionic exchange Q-Sepharose chromatography associated with 
HPLC reversed-phase C4 chromatography  and structurally confirmed as dimer by 
MALDI-TOF spectra analyses (Ribeiro et al., 2011). It inhibits the growth of fungus 
Colletotrichum gloeosporioides, but no antibacterial nor anti-yeast activity was observed. an 
antiviral 2 KDa peptide was purified from sorghum seeds by gel filtration, ion exchange 
and high-performance liquid chromatography (HPLC), and showed strong inhibition of 
herpes simplex virus type 1 (HSV-1) and bovine herpes virus (BHV) replication 
(Camargo-Filho et al., 2007). On the other hand, two anti-yeast peptides were isolated 
from seeds of a phytobacterial-resistance pepper (Capsicum annuum) genotype and 
identified by amino acid sequencing (Ribeiro et al., 2007). Another research identified 
peptides with bactericidal activity from sesame (Sesamum indicum) kernel flour; one of 
them, with 5.8 KDa, showed activity only against Klebsiella sp., a Gram-negative 
bacterium causal of human urinary infection (Costa et al., 2007). More detailed structural 
and functional results were achieved for a cowpea seed γ-thionin/defensin, a wide-
spectrum bactericide whose primary structure, mechanism of action and tissue 
localization during germination provided the understanding of these bioactive peptides in 
plant defense responses (Franco et al., 2006). 
An example of how native or introduced plant biodiversity may be a fruitful option on AMP 
research is the recent growing number of such peptides identified in Brazilian species. 
Direct purification was achieved in originally African legume Crotalaria pallida, a widely 
dispersed weed in South America and abundant in drought and warm “caatinga” biome. A 
novel peptide structurally similar to defensin/2S-albumin was isolated from seeds and 
presented inhibitory effects over bacteria (Pelegrini et al., 2008). From seeds of guava 
(Psidium guajava) and passion fruit (Passiflora edulis), the antifungal and antibacterial 
peptides Pg-AMP1, passiflin and a 2S albumin-like were isolated. PgAMP1 comprises 
approximately 6 KDa of molecular mass and small amounts of a homodimer; amino acid 
sequencing indicated it belongs to glycine-rich plant protein family, being the first one 
having activity towards Gram-negative bacteria; instead passiflin and the 2S albumin-like 
peptide show high antifungal properties (Pelegrini et al., 2006; Lam & Ng, 2009). 
Several plant species from Atlantic rainforest and “cerrado” biomes have been studied to 
confirm and explain their antimicrobial activity as transmitted popular medicine (reviewed 
in Pestana-Calsa et al., 2010). For instance, out from 32 plant species selected after field 
survey, extracts from 13 species presented antimicrobial activity against Staphylococcus 
aureus, but further analyses to identify potential peptides involved in such activity keep 
lacking (Brasileiro et al., 2006; Silva Jr. et al., 2009). Molecular and bioinformatics approaches 
could start from applied phytochemical researches similar to these and is very likely that 
known and novel AMPs could be found. 

3.2 Structural and functional analysis 
As any peptide, AMP function is strictly dependent of strucuture. Specifically for relatively 
abundant α-helical AMPs, structural features and physicochemical properties have been 



 
Systems and Computational Biology – Molecular and Cellular Experimental Systems 

 

254 

As expected, economically relevant crop plant species have commonly been the main target 
for antimicrobial peptides research and biotechnological application, due to associated 
agricultural and social demand and impact, but also because the higher availability of 
molecular data. In spite of such trend, several research efforts have pointed a huge potential 
for wild plant species prospection to achieve discovery of novel AMPs, as well as the 
identification of novel biological functions to known AMPs. Hence, plant biodiversity in 
different biomes and ecosystems is an outstanding promising focus on antimicrobial 
peptides investigation (Pieters & Vlietinck, 2005). 
A very recent revised list of experimentally confirmed plant AMP, with physicochemical 
and antibacterial specificity is also available, comprising members of the main families: 23 
defensins, eight hevein-like, six vicilin-like, five knottins, four cyclotides, two Impatiens-
like, two sepherins, two snakins, one MBP-1 (from maize), one glutamate-rich, one glycine-
rich, and other eight peptides not classified in these structural families (Pelegrini et al., 
2011). 

3. Structural analyses and function 
An example of the lack in plant AMP cataloguing is the organized database for antibacterial 
phytochemical compounds hosted and managed by Kioto Encyclopedia of Genes and 
Genomes (KEGG Compound, Plant Secondary Metabolites), where the related biosynthetic 
enzymes and molecular targets in human organism are fully described. However, no plant-
derived AMP or coding gene sequence is set, since the database allows the access only to 
human microbicidal and cytotoxic peptides. 
Bioinformatics have been essential on plant AMP prospection and establishment of 
catalogues, which have increased in last decade (Hammami et al., 2009). Several sequence 
aligment tools, usually BLAST-based (www.ncbi.nlm.nih.gov/blast) are available, but other 
main technical approaches have included in silico structural peptide prediction and putative 
analyses of AMP-target molecule interactions. Last but not least, direct chemical isolation 
have also depended of in silico tools to achive more complete structural and functional 
characterization of isolated AMP.  

3.1 Isolation 
Complementarily to the several classes of chemical compounds synthesized by plants 
secondary metabolism, with proved antimicrobial effects, the characterization of plant 
AMPs function correlated to such effects is extremely useful to improve research in this 
area. Although very likely, supposing that AMPs are co-responsible or even responsible 
for antimicrobial activity of complex plant extracts relies on sub-fractioning and 
experimental evidence (Moreira et al., 2011). Direct isolation of plant AMPs has succeeded 
in several species (Kovaleva et al., 2009; Rogozhin et al., 2011), associated to further cDNA 
cloning and characterization as defensin and lipid transfer protein. Also, extraction and 
purification of candidate peptides, followed by sequencing and match to AMP databases, 
allowed the identification of novel promising antimicrobial molecules in wheat 
(Odintsova et al., 2009). 
Efforts to prospect AMPs in plant crop species and many examples of direct isolation 
followed by functional assays and characterization are available. As alternative to fungicide 
usage to pathogen control in agriculture, several studies have focused on searching for plant 
proteins and peptides with antifungal activities (AFPs). Recently, two novel 10 and 15 kDa 

 
In Silico Identification of Plant-Derived Antimicrobial Peptides 

 

255 

AFPs were isolated from rosemary pepper (Lippia sidoides Cham.) flowers through Octyl-
Sepharose hydrophobic column separation, and were able to  inhibit the development of 
Botrytis cinerea, an economically harmful phytopathogen for many crops (Moreira et al., 
2011). The N-termini sequences of these AFPs have homology with NBS-LRR R proteins, 
well known plant defense elements. 
A 11,500 heterodimeric antifungal protein, named Pa-AFP1, highly similar to 2S albumin 
family, was purified by anionic exchange Q-Sepharose chromatography associated with 
HPLC reversed-phase C4 chromatography  and structurally confirmed as dimer by 
MALDI-TOF spectra analyses (Ribeiro et al., 2011). It inhibits the growth of fungus 
Colletotrichum gloeosporioides, but no antibacterial nor anti-yeast activity was observed. an 
antiviral 2 KDa peptide was purified from sorghum seeds by gel filtration, ion exchange 
and high-performance liquid chromatography (HPLC), and showed strong inhibition of 
herpes simplex virus type 1 (HSV-1) and bovine herpes virus (BHV) replication 
(Camargo-Filho et al., 2007). On the other hand, two anti-yeast peptides were isolated 
from seeds of a phytobacterial-resistance pepper (Capsicum annuum) genotype and 
identified by amino acid sequencing (Ribeiro et al., 2007). Another research identified 
peptides with bactericidal activity from sesame (Sesamum indicum) kernel flour; one of 
them, with 5.8 KDa, showed activity only against Klebsiella sp., a Gram-negative 
bacterium causal of human urinary infection (Costa et al., 2007). More detailed structural 
and functional results were achieved for a cowpea seed γ-thionin/defensin, a wide-
spectrum bactericide whose primary structure, mechanism of action and tissue 
localization during germination provided the understanding of these bioactive peptides in 
plant defense responses (Franco et al., 2006). 
An example of how native or introduced plant biodiversity may be a fruitful option on AMP 
research is the recent growing number of such peptides identified in Brazilian species. 
Direct purification was achieved in originally African legume Crotalaria pallida, a widely 
dispersed weed in South America and abundant in drought and warm “caatinga” biome. A 
novel peptide structurally similar to defensin/2S-albumin was isolated from seeds and 
presented inhibitory effects over bacteria (Pelegrini et al., 2008). From seeds of guava 
(Psidium guajava) and passion fruit (Passiflora edulis), the antifungal and antibacterial 
peptides Pg-AMP1, passiflin and a 2S albumin-like were isolated. PgAMP1 comprises 
approximately 6 KDa of molecular mass and small amounts of a homodimer; amino acid 
sequencing indicated it belongs to glycine-rich plant protein family, being the first one 
having activity towards Gram-negative bacteria; instead passiflin and the 2S albumin-like 
peptide show high antifungal properties (Pelegrini et al., 2006; Lam & Ng, 2009). 
Several plant species from Atlantic rainforest and “cerrado” biomes have been studied to 
confirm and explain their antimicrobial activity as transmitted popular medicine (reviewed 
in Pestana-Calsa et al., 2010). For instance, out from 32 plant species selected after field 
survey, extracts from 13 species presented antimicrobial activity against Staphylococcus 
aureus, but further analyses to identify potential peptides involved in such activity keep 
lacking (Brasileiro et al., 2006; Silva Jr. et al., 2009). Molecular and bioinformatics approaches 
could start from applied phytochemical researches similar to these and is very likely that 
known and novel AMPs could be found. 

3.2 Structural and functional analysis 
As any peptide, AMP function is strictly dependent of strucuture. Specifically for relatively 
abundant α-helical AMPs, structural features and physicochemical properties have been 



 
Systems and Computational Biology – Molecular and Cellular Experimental Systems 

 

256 

targeted to increase antimicrobial activity, usually by changing molecular size and charge, 
residues arrangement, hydrophobicity, amphipathicity and helix folding probability (Tossi 
et al., 2000; Tian et al., 2009). Antimicrobial peptides structure/activity ratio results in their 
molecular diversity, but they do share some common features, as the low molecular weight  
and the variable number of disulphide bond-cysteines residues stabilizing conserved 
scaffolds (Padovan et al., 2010c), which is used to group them into different structural 
classes, as depicted in Figure 2.  
 

 
Fig. 2. Structural and phylogenetic representation of plant AMPs compiled in PhytAMP 
database. α-helices and β-sheets are respectively shown in red and purple (from original by 
Hammami et al., 2009)  

Aiming to achieve more effective peptides, natural/original sequences may be re-arranged 
(Boman et al., 1989). Several protein databases and analyses tools (e.g. Swiss-Prot and links) 
are available, as softwares designed specifically to deal with predicting and modifying 
peptide structure and physicochemical improvement as ArgusLab, Anthewin and Peptool 
(detailed usage described by Wang, 2007; Hao et al., 2008). Simulations within in silico 
environments have been applied to test AMPs topology concerning biological effects and to 
unravel their probable mode of action, usually by interactions that destabilize lipid bilayers 
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(e.g. maculatin, that  changes the lysis mechanism depending on lipid structure of target 
membrane; Bond et al., 2008). 
Sometimes, naturally occurring AMP structure is not the most effective. The influence of 2 
disulfide bonds in a small β-sheet AMP (Ib-AMP1) from Impatiens balsamina seeds was 
verified as not essential for antimicrobial activity, because the synthetic linear analogs 
displayed by 4.8-fold higher inhibitory specificity than the wild-type peptide (Wang et al., 
2009). Also the seed antimicrobial peptide Cy-AMP1 from Cycas revoluta was analyzed on its 
chitin-binding ability, a well-conserved feature in other AFP as knottin and hevein 
(Yokoyama et al., 2009): antifungal activity of the peptide was strongly reduced after 
variations in chitin-binding motifs.  
Both MsDef1 and MtDef4 defensins, potent growth inhibitors of several filamentous fungi 
including Fusarium graminearum, induced plasma membrane permeabilization; however, 
MtDef4 is more efficient based on its unique γ-core motif, indicating that it defines specific 
antifungal properties of each defensin, and so may help de novo design of more effective 
AMP (Sagaram et al., 2011). The barley derived α-Hordothionin (αHTH), another  
membrane-permeabilizing peptide with broad-range antimicrobial activity, is supposed to 
act as small water-selective channel, through the αHTH double α-helix core when the 
peptide interacts with anions (Oard, 2011); conserved cysteine and tyrosine residues lined 
pore walls, resembling aquaporins that delivers water molecules to the lipid bilayer center, 
what may lead to localized membrane disruption. 
The well known chitin-binding lectin hevein has served as template to synthetic mutant 
peptides that interact with chitin oligosaccharides (main components of fungi cell walls), but 
mutant AMP versions may present decrease in the association kinetics to target chito-
oligosaccharides (Chávez et al., 2010). Such results, provided by nuclear magnetic resonance 
followed by image modelling analysis tools, pointed that mutant and parent Hev32 peptides 
three-dimensional structures were quite similar, including orientations of the three key Trp 
aromatic residues; hence, it was supposed that the mutant lower affinity relied on distinct 
topology orientation of key side chains and protein-sugar intermolecular essential hydrogen 
bonds. 
Structural and functional design of AMPs from plants manipulated to be active in plants 
must attend to the agricultural demand for novel antimicrobial compounds, more 
specifically in plant disease control, with lower toxicity to consumers and environment 
(reviewed by Montesinos & Bardaji, 2008). In medicine and therapeutics for infectious 
diseases, AMPs effects on human cells can be widely verified in different gene expression 
levels, allowing to accurately confirming expected antimicrobial action without undesirable 
side effects (Ulrich-Merzenich et al., 2007). Also, synthetic peptides engineering have 
contributed with novel insights for antimicrobial drugs and treatments, by testing in vitro 
and in vivo several amino acid sequences putatively harbouring antagonistic effects to 
microorganisms (Choi & Moon, 2009). 
Although every class or family of AMP has specific features in structure, activity and 
potential technological applications, few are so remarkably intriguing as the generally 
named cyclotides, very stable plant cyclic peptides which harbour many potential 
technological usages in pharmaceutical and agricultural strategies, according to their 
various bioactivities and fitness as protein-engineering templates (Henriques & Craik, 2010). 
Cyclotides compise the largest known family of head-to-tail cyclic peptides, have 
approximately 30 amino acid residues with a complex structure containing a circular 
peptide backbone and a cystine knot. They are mainly found in plants of Violaceae and 
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et al., 2000; Tian et al., 2009). Antimicrobial peptides structure/activity ratio results in their 
molecular diversity, but they do share some common features, as the low molecular weight  
and the variable number of disulphide bond-cysteines residues stabilizing conserved 
scaffolds (Padovan et al., 2010c), which is used to group them into different structural 
classes, as depicted in Figure 2.  
 

 
Fig. 2. Structural and phylogenetic representation of plant AMPs compiled in PhytAMP 
database. α-helices and β-sheets are respectively shown in red and purple (from original by 
Hammami et al., 2009)  

Aiming to achieve more effective peptides, natural/original sequences may be re-arranged 
(Boman et al., 1989). Several protein databases and analyses tools (e.g. Swiss-Prot and links) 
are available, as softwares designed specifically to deal with predicting and modifying 
peptide structure and physicochemical improvement as ArgusLab, Anthewin and Peptool 
(detailed usage described by Wang, 2007; Hao et al., 2008). Simulations within in silico 
environments have been applied to test AMPs topology concerning biological effects and to 
unravel their probable mode of action, usually by interactions that destabilize lipid bilayers 
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(e.g. maculatin, that  changes the lysis mechanism depending on lipid structure of target 
membrane; Bond et al., 2008). 
Sometimes, naturally occurring AMP structure is not the most effective. The influence of 2 
disulfide bonds in a small β-sheet AMP (Ib-AMP1) from Impatiens balsamina seeds was 
verified as not essential for antimicrobial activity, because the synthetic linear analogs 
displayed by 4.8-fold higher inhibitory specificity than the wild-type peptide (Wang et al., 
2009). Also the seed antimicrobial peptide Cy-AMP1 from Cycas revoluta was analyzed on its 
chitin-binding ability, a well-conserved feature in other AFP as knottin and hevein 
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three-dimensional structures were quite similar, including orientations of the three key Trp 
aromatic residues; hence, it was supposed that the mutant lower affinity relied on distinct 
topology orientation of key side chains and protein-sugar intermolecular essential hydrogen 
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Cyclotides compise the largest known family of head-to-tail cyclic peptides, have 
approximately 30 amino acid residues with a complex structure containing a circular 
peptide backbone and a cystine knot. They are mainly found in plants of Violaceae and 



 
Systems and Computational Biology – Molecular and Cellular Experimental Systems 

 

258 

Rubiaceae families, and supposed to act mostly in plant protection. In addition to 
insecticidal properties, cyclotides may have cytotoxic, anti-HIV and antimicrobial effects, 
among other activities as to inhibit neurotensin binding ability (Gerlach et al., 2010). A 
cyclotide in alkaloid fraction from root bark of Discaria americana (Rhamnaceae) was isolated 
and structurally determined, but did not inhibit the growth of challenged bacteria 
significantly (Giacomelli et al., 2004). However, other cycletides extracted from Scutia 
buxifolia, also a Rhamnaceae family member, were much more efficient to inhibit bacterial 
cells than Discaria-derived cycletides, although no antifungal effect was observed (Morel et 
al., 2005). 
Regarding prospection of structure-function clues, cyclic peptides isolated from 
Euphorbiaceae species have been intensively studied due to their rigid three-dimensional 
conformation, considered to be essential for bioactivity over lipid membranes (Barbosa et 
al., 2011). As example, cyclotide labaditin and derived synthetic open chain analogs were 
chemically and virtually analysed in comparison over their interaction with lipid bilayers, 
and results suggested the native labaditin had greater membrane insertion. A possible 
mechanism for this is based on initial hydrophobic interaction with the lipid membrane 
followed by conformational change, peptide adsorption and internalization; indeed, native 
labaditin reduced viability in Gram-positive bacteria (Barbosa et al., 2011). 
Some plant AMPs have so many unique structural features which impair its insertion into 
any previous, well-characterized AMP family. This is the case of antimicrobial peptide Ib-
AMP1, formed by a 20-residue disulfide-linked beta-sheet and usually found in the seeds of 
Impatiens balsamina. Using it as template molecule, synthetic analogs were obtained in order 
to check the relevance of 2 disulfide bonds on the antimicrobial activity and specificity 
(Wang et al., 2009).  
Beyond conventionally detected cationic antimicrobial peptides, there are also anionic 
antimicrobial peptides/proteins (AAMPs), reported since 1980s and accepted as important 
components of innate immune systems of plants and animals (Harris et al., 2009). AAMPs 
present activity against bacteria, fungi, viruses and insects, but noteworthy their 
antimicrobial activity is believed to be secondary. Structures vary from alpha-helical 
peptides in amphibians to cyclic cystine knots in some plant peptides, and certain AAMPs 
are suggested to link metal ions forming cationic salt bridges with negatively charged lipids 
of microbial membranes. In bioinformatics context, softwares and analysis parameters must 
be adjusted and present enough flexibility to cope in a suitable manner with such huge 
structural and charge inversion, if compared to data obtained from “conventional” 
antimicrobial peptides dynamics and biological function. 

3.3 Heterologous expression 
Several AMPs, mostly defensins, have been studied through gene cloning and expression in 
heterologous systems (Kovaleva et al., 2011). In this context, perhaps one of the main 
contributions of bioinformatics is the codon-usage optimization for heterologous expression 
of AMPs, depending on host organism. 
Heterologous expression of AMPs also refers to increasing interest for production of 
antimicrobial compounds such as the defensins, whose applications include health, 
agriculture and industry as targets. Specifically to protect food or bio-fuel crops, several 
strategies have been proposed and tested in order to isolate and produce defensins. 
Experimental viability is still mostly constrained in academic research, where defensins 
have been heterogously expressed in bacteria, yeasts, fungi and plants (Padovan et al., 
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2010b); on the other hand, (bio)-chemical synthesis is not usual yet for commercial 
production purposes, and here the most striking challenge is to keep correct 
protein/peptide folding in vitro. 
A novel defensin-like peptide, isolated from Nicotiana megalosiphon, NmDef02 was 
heterologously expressed in the yeast Pichia pastoris, and the purified recombinant protein 
was found to display antimicrobial activity in vitro against important plant pathogens. 
Constitutive expression of NmDef02 gene in transgenic tobacco and potato plants enhanced 
resistance against various plant microbial pathogens, including the oomycete Phytophthora 
infestans, causal agent of the economically important potato late blight disease, under 
greenhouse and field conditions (Portieles et al., 2010). 
Other type of AMP, a defensin from cowpea seeds was heterologously assessed on its 
putative alpha-amylase inhibitory action probably involved in protection against pests (Dos 
Santos et al., 2010). Its cDNA was cloned into plasmidial expression vector and transformed 
into Escherichia coli cells; the recombinant peptide was then purified via affinity 
chromatography, identified by sequencing and submitted to alpha-amylase inhibition assay 
together with seeds-isolated defensin. Both peptides inhibited alpha-amylases from weevil 
(Callosobruchus maculatus) but were not able to inhibit mammalian alpha-amylases. 
Heterologous expression, supported by comprehensive in silico prediction and peptide 
design tools, will probably keep being one of the most helpful tools for biological research 
over plant AMP, based on success in literature. However, large scale production of AMP 
establishment will depend on results of future studies where the main tasks shall be the 
engineering/re-design of more stable and self-folding peptides, and definition of optimized 
biotechnological procedure to cost-effectively produce the peptide, as molecular farming 
transgenic plants. 

4. AMP-coding genes promoter analysis 
The search on regulatory genomic regions, mainly promoter elements, has presented 
increasing usefulness to start unravelling the control mechanisms of activation of AMP-coding 
genes. These are known to be expressed in defense signalling against microbial pathogens, 
involving several transduction components that depend on the action of hormones as jasmonic 
acid (JA), ethylene (ET) and abscisic acid (ABA). An in silico approach with potential 
applicability on tracking regulatory pathways of AMP coding genes is their promoter 
sequence analysis. 
It is known that JA and ET signaling pathways are synergistic for activation of AMPs, 
especially the defensin PDF1.2. The coding pdf1.2 is targeted and expressed after activation 
by ORA59 transcription factor, a APETALA2/Ethylene response Factor (AP2/ERF)-domain 
protein, which is dependent of JA and ET signaling pathways. The pdf1.2 promoter contains 
two GCC boxes that were confirmed to be the ligation site for ORA59 transcription factor, 
enabling PDF1.2 coding gene to respond simultaneously to both hormones (Zarei et al., 
2011). 
The characterization of tissue-specific and pathogen-inducible promoters is essential for 
localized expression of defense-related genes as AMP. Wheat and rice defensin genes 
expressed in early developing grain and during grain germination were compared regarding 
their promoters activity, through stable transformation with promoter-GUS reporter fusion 
constructs (Kovalchuk et al., 2010). Activity was detected mainly in ovary before and at 
anthesis in both transgenic cereal species, but differences concerning one or other species were 
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Rubiaceae families, and supposed to act mostly in plant protection. In addition to 
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al., 2011). As example, cyclotide labaditin and derived synthetic open chain analogs were 
chemically and virtually analysed in comparison over their interaction with lipid bilayers, 
and results suggested the native labaditin had greater membrane insertion. A possible 
mechanism for this is based on initial hydrophobic interaction with the lipid membrane 
followed by conformational change, peptide adsorption and internalization; indeed, native 
labaditin reduced viability in Gram-positive bacteria (Barbosa et al., 2011). 
Some plant AMPs have so many unique structural features which impair its insertion into 
any previous, well-characterized AMP family. This is the case of antimicrobial peptide Ib-
AMP1, formed by a 20-residue disulfide-linked beta-sheet and usually found in the seeds of 
Impatiens balsamina. Using it as template molecule, synthetic analogs were obtained in order 
to check the relevance of 2 disulfide bonds on the antimicrobial activity and specificity 
(Wang et al., 2009).  
Beyond conventionally detected cationic antimicrobial peptides, there are also anionic 
antimicrobial peptides/proteins (AAMPs), reported since 1980s and accepted as important 
components of innate immune systems of plants and animals (Harris et al., 2009). AAMPs 
present activity against bacteria, fungi, viruses and insects, but noteworthy their 
antimicrobial activity is believed to be secondary. Structures vary from alpha-helical 
peptides in amphibians to cyclic cystine knots in some plant peptides, and certain AAMPs 
are suggested to link metal ions forming cationic salt bridges with negatively charged lipids 
of microbial membranes. In bioinformatics context, softwares and analysis parameters must 
be adjusted and present enough flexibility to cope in a suitable manner with such huge 
structural and charge inversion, if compared to data obtained from “conventional” 
antimicrobial peptides dynamics and biological function. 

3.3 Heterologous expression 
Several AMPs, mostly defensins, have been studied through gene cloning and expression in 
heterologous systems (Kovaleva et al., 2011). In this context, perhaps one of the main 
contributions of bioinformatics is the codon-usage optimization for heterologous expression 
of AMPs, depending on host organism. 
Heterologous expression of AMPs also refers to increasing interest for production of 
antimicrobial compounds such as the defensins, whose applications include health, 
agriculture and industry as targets. Specifically to protect food or bio-fuel crops, several 
strategies have been proposed and tested in order to isolate and produce defensins. 
Experimental viability is still mostly constrained in academic research, where defensins 
have been heterogously expressed in bacteria, yeasts, fungi and plants (Padovan et al., 
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2010b); on the other hand, (bio)-chemical synthesis is not usual yet for commercial 
production purposes, and here the most striking challenge is to keep correct 
protein/peptide folding in vitro. 
A novel defensin-like peptide, isolated from Nicotiana megalosiphon, NmDef02 was 
heterologously expressed in the yeast Pichia pastoris, and the purified recombinant protein 
was found to display antimicrobial activity in vitro against important plant pathogens. 
Constitutive expression of NmDef02 gene in transgenic tobacco and potato plants enhanced 
resistance against various plant microbial pathogens, including the oomycete Phytophthora 
infestans, causal agent of the economically important potato late blight disease, under 
greenhouse and field conditions (Portieles et al., 2010). 
Other type of AMP, a defensin from cowpea seeds was heterologously assessed on its 
putative alpha-amylase inhibitory action probably involved in protection against pests (Dos 
Santos et al., 2010). Its cDNA was cloned into plasmidial expression vector and transformed 
into Escherichia coli cells; the recombinant peptide was then purified via affinity 
chromatography, identified by sequencing and submitted to alpha-amylase inhibition assay 
together with seeds-isolated defensin. Both peptides inhibited alpha-amylases from weevil 
(Callosobruchus maculatus) but were not able to inhibit mammalian alpha-amylases. 
Heterologous expression, supported by comprehensive in silico prediction and peptide 
design tools, will probably keep being one of the most helpful tools for biological research 
over plant AMP, based on success in literature. However, large scale production of AMP 
establishment will depend on results of future studies where the main tasks shall be the 
engineering/re-design of more stable and self-folding peptides, and definition of optimized 
biotechnological procedure to cost-effectively produce the peptide, as molecular farming 
transgenic plants. 

4. AMP-coding genes promoter analysis 
The search on regulatory genomic regions, mainly promoter elements, has presented 
increasing usefulness to start unravelling the control mechanisms of activation of AMP-coding 
genes. These are known to be expressed in defense signalling against microbial pathogens, 
involving several transduction components that depend on the action of hormones as jasmonic 
acid (JA), ethylene (ET) and abscisic acid (ABA). An in silico approach with potential 
applicability on tracking regulatory pathways of AMP coding genes is their promoter 
sequence analysis. 
It is known that JA and ET signaling pathways are synergistic for activation of AMPs, 
especially the defensin PDF1.2. The coding pdf1.2 is targeted and expressed after activation 
by ORA59 transcription factor, a APETALA2/Ethylene response Factor (AP2/ERF)-domain 
protein, which is dependent of JA and ET signaling pathways. The pdf1.2 promoter contains 
two GCC boxes that were confirmed to be the ligation site for ORA59 transcription factor, 
enabling PDF1.2 coding gene to respond simultaneously to both hormones (Zarei et al., 
2011). 
The characterization of tissue-specific and pathogen-inducible promoters is essential for 
localized expression of defense-related genes as AMP. Wheat and rice defensin genes 
expressed in early developing grain and during grain germination were compared regarding 
their promoters activity, through stable transformation with promoter-GUS reporter fusion 
constructs (Kovalchuk et al., 2010). Activity was detected mainly in ovary before and at 
anthesis in both transgenic cereal species, but differences concerning one or other species were 
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observed in the expression of transgenic constructs in reproductive tissues. Even so, wheat and 
rice promoters were strongly induced by wounding in leaf, stem and grain. 
Specifically for plant lipid transfer proteins (LTPs), which are very unkown on antimicrobial 
function although being well-known in other cellular activities, the study of gene promoter 
sequence may reveal defense-related aspects. From a Vitis vinifera genomic library 2,100-bp 
fragment, the coding region and the promoter of a lipid transfer protein 1 (VvLTP1) was 
screened, revealing several defense-related cis-regulatory elements, like MYB-boxes 
(Laquitaine et al., 2006). The expression of VvLTP1 promoter-GUS fusion construct in 
Arabidopsis thaliana indicated the antifungal response of VvLTP1 from grape. 

5. AMP from plant-related microorganisms 
The growing number of distinct species whose genomes, transcripts, proteins and other 
molecular data are being deposited in public databases makes more reasonable to consider 
antimicrobial peptides produced by other organisms, specially in the cases where these 
species, although not plants, have strict ecological relationship with host or neighboring 
plants. Several examples have been described in literature normally including well-known 
or potential endophytes, which produce AMPs in a predictable symbiotic context. 
Obviously, the applications derived from this type of research are supposed to be useful 
within sustainable biological control of pathogens and pests. 
The mycelium-forming actinomycetes of the genus Frankia (well known producers of 
bioactive compounds) are commonly found as symbionts in actinorhizal plants, 
performing facultative nitrogen-fixing. Bioinformatic analysis of the strains ACN14a, 
CcI3, and EAN1pec by genomes prediction and by intact cells MALDI-TOF allowed the 
identification of putative coding regions and molecules associated to cyclic peptides, 
siderophores, pigments, signaling molecules and specialized lipids, from which some 
cyclotides and lipid-transfer proteins are considered to be essential for host-endophyte 
recognizing and to inhibit other competitor microorganisms, as pathogens (Udwary et al., 
2011). 
Pyoverdines (PVDs), high affinity siderophores well studied in Pseudomonas aeruginosa, were 
searched in silico in P. fluorescens SBW25 (a plant growth-promoter endophyte) complete but 
not annotated genome, where 31 genes putatively involved in PVD biosynthesis, transport 
or regulation, could be identified (Moon et al., 2008). Since pyoverdine-mediated iron 
uptake is essential for this endophyte, structural analysis of its PVDs was achieved and 
defined it as a partly cyclic seven residue peptide backbone, which makes the bacteria able 
to utilize a wide variety of exogenous PVDs. 
Another interesting example can be traced for alamethicin, a membrane-active AMP 
produced by root symbiont fungus Trichoderma viride that permeabilises plasma membrane, 
mitochondria and plastids of in vitro cultured plant cells by creating voltage-dependent 
pores (Aidemark et al., 2010). Cultured plant cells pre-treated with pathogen elicitors did 
not get resistant to alamethicin, while those treated with cellulase did; this suggested that 
different membrane lipid composition induced by cellulase may render the cells resistant to 
alamethicin, in a mechanism where possible cellulase-secreting pathogens (as several 
phytopathogenic fungi) would suffer alamethicin action in their membranes. Other fungus-
derived AMPs have been described as candidates for production and biotechnological uses 
in plant protection, as the cystein-rich antifungal peptide AcAFP, secreted by Aspergillus 
clavatus (Skouri-Gargouri et al., 2010). 
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Development of applications derived from plant-related microorganisms AMP in biological 
control of pathogens and pests will depend on ecological modeling studies, even if it starts 
from a single AMP being produced by an endophyte but biologically active in the host plant. 

6. Novel AMP functions in plants 
Relatively recent studies have added new insights in plant-derived AMP functions, other 
than classical antimicrobial activity. In fact, the ubiquitous presence of AMPs in distantly 
related taxa allows the concept that novel functions for derived AMP genes and products 
may have arisen during each species evolutionary history. Literature is rich in well-
established as well as still unkown biological functions for AMP in plants. In this context, 
even no-peptidic biomolecules could be considered in a wider view. 
Perillic acid is a terpenoid plant extract with antiinfective and anticancer properties, and is a  
small cyclic molecule structurally similar to salicylic acid. It is known to cause large-scale 
membrane thinning, a clearly possible antimicrobial activity through a membrane-lytic 
mechanism very close to that of AMPs (Khandelia et al., 2010). Indeed, also subproteins or 
subpeptides may be relevant to antimicrobial activity in silico prospection. Plant-specific 
insert domain (PSI) is a region of about 100 amino acid residues, contained in several plant 
aspartic protease (AP) precursors. The PSI from potato aspartic protease 1 was purified after 
heterologous expression, and was able to kill pathogenic spores in a dose-dependent 
manner, without deleterious effect on host plant, and through lytic interaction with 
microbial cell wall/or membrane (Muñoz et al., 2010). 
In roots of host legume plants, a complex and evolutionary successful symbiosis takes place 
with nitrogen-fixing Rhizobium bacteria. Surprisingly, the bacteria irreversible differentiation 
to bacterioid form is also dependent of plant factors, nodule-specific cysteine-rich (NCR) 
peptides, that are driven to bacterial membrane and cytosol (van de Velde et al., 2010). Since 
NCRs are similar to AMPs, it is very likely that the host plant adopted effectors from innate 
immune system for symbiosis, resulting in a control mechanism to the endosymbiotic 
bacteria cell fate. 
Other proteins initially thought to be not related to AMPs have been well linked to 
regulation of defense mechanisms that include such peptides. Examples have been 
described where specific phosphatases are key responsive proteins to pathogen infection 
and induce plant defensins (Widjaja et al., 2010). In addition, some AMPs may be effectors 
as well as regulators of other molecules. Plant lipid transfer proteins (LTPs) are ubiquitous 
lipid-binding proteins involved in diverse stress responses; for example, 14 LTPs from 
Tamarix hispida Willd. were screened over possible functions in response to various abiotic 
stresses (Wang et al., 2009). Results showed that all 14 LTPs were expressed in roots, leaves 
and stems, in different levels according to the organ; also, some of them were induced by 
NaCl, PEG, NaHCO3, CdCl2 and ABA, suggesting novel roles beyond defense, and in abiotic 
stress tolerance. In flower buds of Brassica campestris L. ssp. chinensis, a putative LTP of 103 
amino acids was characterized as being a membrane protein with a signal peptide at the N-
terminus, and strongly related to pollen viability and male sterility (Tian et al., 2009). 
In the endosperm cells undergoing programmed cell death, LTPs have been described as 
participating in recycling of endosperm lipids, or acting as protease inhibitors to protect 
growing cotyledons from released proteases (Eklund & Edqvist, 2003). 
The mode of action of AMPs on external pathogen or pest cells seems to hide still unknow 
mechanisms: certain cyclotides are able to increase permeability across nematodes cuticle 
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observed in the expression of transgenic constructs in reproductive tissues. Even so, wheat and 
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not annotated genome, where 31 genes putatively involved in PVD biosynthesis, transport 
or regulation, could be identified (Moon et al., 2008). Since pyoverdine-mediated iron 
uptake is essential for this endophyte, structural analysis of its PVDs was achieved and 
defined it as a partly cyclic seven residue peptide backbone, which makes the bacteria able 
to utilize a wide variety of exogenous PVDs. 
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alamethicin, in a mechanism where possible cellulase-secreting pathogens (as several 
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Development of applications derived from plant-related microorganisms AMP in biological 
control of pathogens and pests will depend on ecological modeling studies, even if it starts 
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manner, without deleterious effect on host plant, and through lytic interaction with 
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and stems, in different levels according to the organ; also, some of them were induced by 
NaCl, PEG, NaHCO3, CdCl2 and ABA, suggesting novel roles beyond defense, and in abiotic 
stress tolerance. In flower buds of Brassica campestris L. ssp. chinensis, a putative LTP of 103 
amino acids was characterized as being a membrane protein with a signal peptide at the N-
terminus, and strongly related to pollen viability and male sterility (Tian et al., 2009). 
In the endosperm cells undergoing programmed cell death, LTPs have been described as 
participating in recycling of endosperm lipids, or acting as protease inhibitors to protect 
growing cotyledons from released proteases (Eklund & Edqvist, 2003). 
The mode of action of AMPs on external pathogen or pest cells seems to hide still unknow 
mechanisms: certain cyclotides are able to increase permeability across nematodes cuticle 
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layers, suggesting that one action of the such AMPs involves the interaction with the lipid-
rich epicuticle layer at the pathogen worm surface (Colgrave et al., 2010). 

7. Towards biotechnological applications 
Identification of plant defense genes against pathogens and environmental stresses provides 
novelties to plant breeding, also genetic transformation (Vidal et al., 2003), mainly due cross-
activity of distinct organisms AMPs that has significant potential in phytopatology and 
plant resistance improvement. As already confirmed, insect-derived AMP gene is able to be 
expressed in plant genome and its product can be correctly sorted in plant cell or tissue. The 
metchnikowin, a 26-amino acid residue proline-rich AMP from Drosophila melanogaster, was 
used for resistance in barley against pathogenic fungi (Rahnamaeian et al., 2009). In an 
interfamily transfer, transgenic tobacco (Solanaceae) and peanut (Fabaceae) plants expressed 
a defensin from mustard (Brassicaceae), effective against to phytopathogenic fungi 
(Anuradha et al., 2008). 
Many examples of structurally manipulated AMP followed by their transfer to crop plants 
resulted in increased resistance against phytopathogens: about 18 sequence-optimized 
AMPs have been transfected to plants with beneficial results for agricultural (Marcos  et 
al., 2008; Jan et al., 2010; Ma et al., 2010; Eggenberger et al., 2011). Plant-derived AMPs are 
not just possible templates for bioactive molecule design, but candidates to 
nanotechnologies applied to crop protection as inner content of nanocapsules to be used 
in greenhouses or in the field to enhance plant resistance and or to control 
phytopathogens, pests or parasitic weeds (Perez-de-Luque & Rubiales, 2009; Pestana-
Calsa et al., 2010; Imamura et al., 2010; Choi et al., 2009) or as integral domains fused to 
another host organ/tissue targeted protein to local delivery of AMPs in transgenics 
(Bryksa et al., 2010). Enginnered LTPs have the potential to be utilized as scaffolds to 
design hydrophobic ligand biosensors or to serve as drug carriers (Choi et al., 2007). 
Inclusion of plastid transformation technology to enhance yield of peptides accumulation 
in molecular farming approaches is also very expected in next few years (Oey et al., 2009), 
establishing another alternative to the production of next-generation antimicrobial 
peptides in plants, from plants or non-plant source organism. 
Novel bioactive molecules produced by plant growth-stimulator endophytes have been 
comproved on suppressing the growth of bacterial and fungal plant pathogens, as the case 
of TOMM, a thiazole/oxazole-modified microcin produced by the soil bacterium Bacillus 
amyloliquefaciens. TOMM requires extensive posttranslational modification to become 
bioactive against other bacteria, involving host plant factors to achieve such activity (Kajula 
et al., 2010). How to solve this extensive need for proper peptide folding in other expression 
systems remains another good question for next years. Probably, answers will come with 
intensive in silico modeling to trial all theoretical three-dimensional intramolecular 
interactions. 
By the way, AMP-target interaction has been a recurrent bioinformatic issue in human 
immunology and nutrition, concerning several allergenic AMPs. Immunodominance of 
certain T-cells epitopes have been screened by modeling, helping breeders to achieve the 
theoretical amino acid sequence of a given allergenic AMP that would have the lowest 
allergenic potential (Oseroff et al., 2010). AMPs have also been tested and used for 
medicine biotechnological applications, as cardiovascular functioning and diseases (Li, 
2009). 
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A biotechnological focus on plant AMPs with potentially high impact in biofuels industry 
is the investigation of such peptides effects over bioethanol production, from alcoholic 
fermentation by yeasts as well as from promising cellulolytic filamentous fungi species. In 
both cases, it is likely that AMPs present in plant feedstock may still have inhibitory 
activity on these industrial microorganisms, and so, over industrial yield (Nierop et al., 
2008). In the specific case of sugarcane and other potential crops for bioethanol 
production in Brazilian northeast, as sorghum, Opuntia and other ‘caatinga’-adapted 
plant species, research efforts have been directed to quantify this inhibition (if significant) 
and to achieve alternative agronomical and/or breeding solutions to reduce it (Bioethanol 
Research Network of Pernambuco). 

8. Conclusion 
As presented, antimicrobial compounds have been relatively well studied, since a long 
period and usually from native traditional usage of plants. However, biological and 
chemical bioinformatics have focused phytochemicals prospection and effects, while plant 
antimicrobial peptides are left apart. Expansion of AMP prospection through in silico 
methodologies is in perfect adjustment to the huge amount of biological data still not 
screened. Several antimicrobial effects observed in some plant extracts may also be 
explained due to AMPs supposed to be in sample, but such valuable information still has to 
be generated in lab benches as well as in databases extensive computational analyses.  
Plant biodiversity in natural and anthropical ecosystems provide almost infinite targets 
number to unravel novel AMP candidates. Achieving such results relies on the generation of 
molecular data from crop and wild plant species. “-Omics” based experiments will then be 
more profitable and reliable, making easier the application of scientific knowledge from 
molecular biology and bioinformatics to develop systems biology approaches in accordance 
to nowadays and future needs in medicine, agriculture and industry.  
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1. Introduction 
“Pathogen effector” has been increasingly used in the past decades in the plant-pathogen 
interactions (Hogenhout et al., 2009).Presently, the definition of pathogen effector 
commonly adopted the definition given by Sophien Kamoun, that is, effectors are 
‘molecules that manipulate host cell structure and function, thereby facilitating infection 
(virulence factors or toxins) and/or triggering defense responses (avirulence factors or 
elicitors)’ (Kamoun, 2006). Plant and their related pathogen have coevolved for many 
millions of years, which resulted in evolving some resistance genes in plants to prevent or 
limit pathogen infection, and simultaneously pathogen also evolved some effector proteins 
to overcome plant defense as well as cause disease. Many plant pathogens secreted effector 
proteins into host cells to repress plant defense and contribute to pathogen colonization and 
breach (Birch et al., 2006;Chisholm et al., 2006; Grant et al., 2006; Huang et al., 2006 a, 2006 b; 
Jones and Dangl, 2006; Kamoun, 2006; O’Connell and Panstruga, 2006). 
Oomycetes could cause many destructive plant diseases, like potato late blight that caused 
the Irish potato famine in the nineteenth century (Tyler, 2007). Oomycete effector proteins 
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into the infection site. The effector proteins were categorized into two classes based on 
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where they interact with extracellular molecules of hosts. The other was cytoplasmic 
effectors that acted within the boundary of plant cell wall. 
Plant fungal pathogen also secreted effector proteins into host cells where they incompatibly 
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transported into host cells. In the meanwhile, identification and functional assay of fungal 
effectors-encoding genes will contribute to discovering mechanism for interaction and 
coevolution of pathogens and plants. In this chapter, we will focus on our recent years’ 
studies on mining, sequence characterization and functional analysis of secreted effector 
proteins in fungi and model plant of Arabidopsis thaliana. 

2. Mining effector-encoding genes in Magnaporthe grisea genome database 
Magnaporthe grisea is an ascomycete fungus and the causal agent of rice blast disease, which 
is the most destructive disease of rice-growing areas in the worldwide. The annual rice yield 
loss caused by blast disease is enough to feed about 60 million people (Ou, 1985).Whole-
genome sequence indicated fungal and oomycete plant pathogen had large amounts of 
secreted proteins (Dean et al., 2005; Kämper et al., 2006; Tyler et al., 2006).Magnaporthe grisea 
genome sequence was available online, which facilitated to mining many novel effector-
encoding genes. And some online software could be used to predict some features such as 
secretion, domain and homology of effector protein. This provided some evidence for next 
functional verification.  

2.1 Predicting classically and non-classically secreted effector proteins in M. grisea 
Secreted effector proteins are secreted from pathogen cell into extracelluar space. Secreted 
proteins were categorized into two classes based on their secreted pathway, one was 
classically secreted proteins, there was a signal peptide in N-terminal of proteins, and the 
other was non-classically secreted proteins, their secreted pathway was known as leaderless 
secretion (Nickel, 2003).  
Classically secreted proteins in M. grisea were predicted through combined online 
software such as SignalP v3.0, TargetP v1.01, big-PI predictor and TMHMM v2.0 
(http://www.cbs.dtu.dk/ services/), the determinant standard of classically secreted 
proteins conformed to the following four standards, the first standard is L=-918.235-
123.455×(Mean S score) +1983.44×(HMM score) and L>0 for predicting proteins with N-
terminal signal peptide, the second one is proteins with signal peptides were transported 
via Sec pathway, the third one is no transmembrane, the fourth one is no GPI-anchor site 
(Samuel et al., 2003).  
Total of 12,595 putative proteins including 1,486 small proteins from M. grisea database were 
predicted. Of which, 1,134 putative proteins were predicted for classically secreted proteins 
with N-terminal signal peptide. Their signal peptide length lied in between 15-45 amino 
acids. Here, we will center on small secreted proteins (amino acid length <100), there were 
119 classically secreted proteins among 1,486 small proteins, we selected 45 putative 
secreted proteins-encoding genes among 119 genes as candidates in order to analysis their 
polymorphism in blast strains from Yunnan, China, the results showed that the most of 
genes distributed in 21 tested blast strains from Yunnan, which indicated high 
polymorphism and conservative in blast fungus strains. In addition to classically secreted 
proteins, non-classically secreted proteins were in further predicted using SecretomeP 2.0 
Server (http://www.cbs.dtu.dk/services/). 

2.2 Predicted features of secreted protein sequence 
To conveniently identify function of predicted secreted effector proteins, sequence features 
of secreted effector proteins needed to be predicted. The gene sequence prediction began 
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with the identification of regions of DNA that coded for expression of proteins. Whether 
there was intron or not in DNA sequence for eukaryotic genome. Molecular weight of 
immature protein was important for gene cloning and functional identification. For secreted 
proteins, subcellular location was needed to be predicted, which contribute to understand 
organelle in which secreted effector protein interacted with host receptors. In addition, 
prediction of protein domain was necessary to experimentally assay function of protein in 
future. For example, it was predicted that many effectors from plant pathogenic 
Phytophthora species had N-terminal motifs (RXLR-dEER) that were necessary to translocate 
these effectors into host cells (Jiang et al., 2008), along with the motif prediction, many 
experiments such as oomycete effectors were translocated into host cells and their function 
had been carried out, So, to some extent, domain or motif prediction experimentally 
facilitated function identification of effector proteins. 
We predicted subcellular location and domain of the parts of secreted proteins. For example, 
MultiLoc/TargetLoc (http://www-bs.informatik.uni-tuebingen.de/Services/MultiLoc/)was 
used to predict subcellular location of 8 secreted proteins. The result showed that subcellular 
location of MGS4 was predicted to be cytoplasmic, and MGS7, MGS11, MGS42, MGS53, 
MGS60 and MGS174 were predicted to be extracellularly secreted. Theoretical pI of 7 secreted 
proteins showed that they were predicted to lie in between 7.69-8.13 except MGS4 was 5.71, 
and their theoretical molecular weight lied in between 8.50-10.70. Their domain prediction 
revealed MGS7 possessed a transmembrane region, and MGS53 had a domain of ZnF-C2H2, 
while other 5 proteins had no any typical domain except a signal peptide sequence contained 
in N-terminal of proteins. The 8 secreted proteins sequences were searched using BLASTN or 
BLASTX of NCBI nr database. No high similarity to sequences from other organism was 
found, which revealed the effector-encoding genes were novel. Collectively, we analyzed 
molecular weight, subcellular location, domain and homology of putative secreted proteins, 
which provide a base for their functional prediction and identification. 

2.3 Analysis of a Host-Targeting Motif and its flanking sequence in the genome of 
Magnaporthe grisea 
It is well-known that bacterial pathogens delivered effectors inside plant cells through the 
type III secretion system (TTSS). The motif is primarily found in the pathogenic protein of 
Plasmodium falciparum, termed RxLxE/D/Q, and its role is to target the host during the 
export of virulence proteins; this motif is conserved in P. falciparum(Marti et al., 2004), and 
is defined as host-targeting signal (HTS) or host-targeting motif (HTM). In P. falciparum 
genome, this motif is detected within the 60 amino acids downstream of the secretion 
signal sequence cleavage sites in approximately more than 400 proteins (Hiller et al., 
2004). Subsequently, a series of findings suggested that effectors from oomycete such as 
Hyaloperonospora parasotica, Phytophthora infestans, Phytophthora sojae, and Phytophthora 
ramorum possessed the conserved motif, termed RxLR, located within the N-terminal 60 
amino acids downstream of signal peptide cleavage sites, which is similar in sequence and 
position to the Plasmodium sp HTM, also the RxLR motif and HTM domains are 
functionally interchangeable (Haldar et al., 2006; Bhattacharjee et al., 2006). In summary, 
these findings indicated that these oomycetes shared conserved machinery for the 
transport of effectors. Whether did the motif of RxLx exist in effectors from Magnaporthe 
grisea? So, we predicted that the secretory proteins of M. grisea possessed the motif RxLx.  
Here, we applied a tool of MEME (http://www.meme.sdsc.edu/) to analysis RxLx of 1,270 
putative secretory proteins from the fifth edition of the rice blast fungus genome 
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(http://www.broad.mit.edu/ annotation/fungi/magnaporthe). The results showed that 
297 putative secreted proteins possessed the motif of RxLx, the motif located within the 
region of 100 amino acids downstream of the N-terminal signal sequence cleavage sites. The 
number of secretory proteins with RxLx motif was similar with those of Plasmodium and 
Oomycetes Host-targeted secretome, which indicated that the RxLx motif possibly function 
as transporting of secreted proteins of M. grisea into host cells. However, biological 
experiments are required for further verification. 
Weblogo (http://weblogo.berkeley.edu/cache/fileDo8NeU.png) was used to analyze a 
sequence logo of the MEME motif and its surrounding region of 149 putative secretory 
protein sequences (Figure1). Arg(R) in position 1 and Leu (L) in position 3 were the most 
highly conserved residues in the motif RxLx. It also showed the lower but possible finite 
positional value, the other residues represented as ‘x’ in the linearized motif RxLx. By 
contrast, the E/D/Q residues in the 5 amino acids core of the Plasmodium HTM and the 
enrichment in E/D residues downstream and the highly conservation Arg(R) in position 4 
in the motif RxLR that were required for function of motif RxLR were no positionally 
conserved in secretory proteins containing motif RxLx of M.grisea. 
 

 
Fig. 1. Sequence logo derived from 149 predicted secreted proteins of M. grisea 

2.4 Functional prediction and analysis of RxLx motif-containing secretory proteins of 
M. grisea genome 
To analyze whether the RxLx motif-containing secretory proteins of M. grisea was involved 
in pathogenicity, we compared the predicted proteins with the PEDANT database. By 
manually comparing, there were putative ascribed functions of 62 RxLx motif-containing 
secretory proteins of M. grisea (Table 1).These proteins had putative functions such as 
proteins of MGG_11036, MGG_09159, MGG_09248, MGG_08401, MGG_09143, MGG_08424, 
MGG_08537, MGG_07809,MGG_05479, MGG_06008 and MGG_09460 were possibly related 
to cell wall degrading enzyme, proteins of MGG_00922, MGG_09817, MGG_08436,   
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Gene code Description
MGG_00276 6-hydroxy-D-nicotine oxidase
MGG_00505 sun family protein
MGG_00671 arginase family protein
MGG_00922 aspartic proteinase
MGG_01085 conserved hypothetical protein
MGG_01195 conserved hypothetical protein
MGG_02853 nuclease S1 precursor
MGG_03029 neutral proteinase II
MGG_03276 Major allergen Asp f 2 precursor (Asp f II).
MGG_03476 protein-L-isoaspartate(D-aspartate) O-methyltransferase
MGG_03670 vacuolar subtilisin-like serine proteinase SPM1
MGG_03772 Bile-salt-activated lipase precursor
MGG_03995 carboxypeptidase S1
MGG_04825 probable endopolyphosphatase precursor
MGG_05164 probable membrane protein YML128c
MGG_05479 xylosidase : arabinofuranosidase
MGG_05529 Feruloyl esterase B precursor
MGG_05533 endochitinase class V precursor
MGG_05663 serine-type carboxypeptidase homolog precursor
MGG_05753 protein disulfide-isomerase  precursor
MGG_05914 putative tyrosinase
MGG_06009 alpha-L-arabinofuranosidase
MGG_06303 epsilon-lactone hydrolase 
MGG_06442 CATB protein
MGG_06538 blastomyces yeast phase-specific protein 1
MGG_07179 pepsin C precursor
MGG_07234 FK506-binding protein precursor (Peptidyl-prolyl cis- trans isomerase) 
MGG_07331 probable GEL1 protein
MGG_07502 SCJ1 protein
MGG_07621 regulator of purine biosynthesis (adenine-mediated repression) 
MGG_07809 cellulose 1,4-beta-cellobiosidase
MGG_08164 probable protein disulfide-isomerase precursor
MGG_08401 endoxylanase 11C
MGG_08795 hypothetical protein T10B9.2
MGG_09159 chitin deacetylase
MGG_09162 L-lactate dehydrogenase precursor
MGG_09351 aspartyl protease
MGG_11613 hypothetical protein B3E4.290
MGG_12799 preproalkaline protease

Table 1. In Silico annotation RxLx-containing secretary proteins of M. Grisea 
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MGG_03670 and MGG_03029 were related to proteinase activity, MGG_06662, MGG_00276, 
MGG_08528, MGG_10805, MGG_11286 and MGG_10710 were related to oxidoreductase 
activity, proteins of MGG_00238, MGG_10219 and MGG_14395 were associated to reverse 
transcriptase, proteins of MGG_08164, MGG_05753, MGG_02097 and MGG_11485 were 
associated to post-translation modification and MGG_09848 was related to energy activity, 
which suggested that seretory proteins with RxLx motif in M.grisea had diverse functions. 
Interestingly, among them, some proteins involved in multiple cellular activity, such as 
MGG_08164 encoded disulfide isomerase-like protein that involved in cell rescue, defense, 
energy, development, cell fate and protein folding, modification, destination. In addition, 
endoxylanse, chitin binding protein, xylanase, pheromone precursor encoded by 
MGG_08401, MGG_09159, MGG_09248, MGG_08424, MGG_07733, respectively had been 
reported that they involved in the pathogenicity of the rice blast fungus. Cellobiose 
dehydrogenase, cutin hydrolase, endoglucanase, lipase, cellulose encoded by MGG_11036, 
MGG_01943, MGG_08537, MGG_09839 and MGG_07809, respectively had previously been 
shown to involve in pathogenicity of other plant fungi (Tudzynski and Sharon, 2003; 
Mendgen et al, 1996). 

3. Mining effector-encoding genes in other fungi genome database 
Similarly, other fungi genome sequencing had been completed, many fungal genome 
sequences such as Fusarium graminearum, Neurospora crassa, Saccharomyces cerevisiae and 
Ustilago maydis were available online. We analyzed 10,082 proteins from Neurospora crassa 
genome database (http://www.broad.mit.edu/ftp/pub/annotation/neurospora/ 
assembly3 /neurospora_3_protein.gz). There were 437 proteins with signal peptide 
among total of 10,082 proteins through combined software such as SignalP, TMHMM, 
TargetP and big-PI Predictior, their signal peptide length lied in between 15 and 59 amino 
acids. There were 205 predicted secreted proteins that had functional description among 
437 proteins, their function mainly involved in diverse enzyme, cell energy, transition, cell 
recovered and defense mechanism. There were 284 secretory proteins through using 
software to predict 6,522 protein sequences of U.maydis of 284 proteins, 90 proteins 
contained functional description, and the minimum and maximum of open reading frame 
were 324 bp and 13,347 bp, respectively. The length range of signal peptides ranged from 
16-42 amino acids and the average length was 23 amino acids. Among 284 secreted 
proteins, 56 proteins possessed the motif of RxLx that located within the region of 100 
amino acids downstream of the N-terminal signal sequence cleavage sites. 
 Similarly, secreted proteins of Saccharomyces cerevisia were predicted. N-terminal amino acid 
sequences of 6,700 proteins of S. cerevisiae were available on http://supfam.mrc-
lmb.cam.ac.uk/SUPERFAMILY/cgi-bin/gen_list.cgi?genome=sc. Candida albicans secretome 
data were from http://info.med.yale.edu/intmed/infdis/candida/Copyright (2003 John 
Wiley&Sons, Ltd.). Through the internet-based software such as SignalP v3.0, TargetP v1.01, 
Big-PI predictor and TMHMM v2.0 prediction for “typical” secretory proteins of S. cerevisiae, 
the 163 secretory ones among the 6 700 proteins were obtained. One hundred and sixty-
three predicted secretory proteins were regarded as “Sec-type” signal peptides based on 
characteristics of four types signal peptides. C-domain of signal peptides of 163 secretory 
proteins was recognized and cleaved by typeⅠSPases, and had common A-X-A motif, X 
stood for any amino acid residue. The length and types of amino acid residues of signal 
peptides were compared between 163 secretory proteins of S. cerevisiae and 283 ones of C. 
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albicans genome (Table 2 and Figure 2). The result showed that leucine, alanine, serine and 
valine were found, percentage of leucine was equally 18% in signal peptides of both the two 
eukaryotic secretomes, but percentage of alanine was 14% in signal peptides of S. cerevisiae 
secretory proteins and 11% in signal peptides of C. albicans secretory proteins. Signal 
peptides composed of a stretch of 19~21 residues in secretory proteins of both S. cerevisiae 
and C. albicans. 19 residues composed of signal peptide in C albicans secretory proteins had 
the highest frequency (16.8%), while 20 residues in S. cerevisiae secretory proteins had the 
highest frequency (19.0%).  
 

Amino acid 

Amount and frequency of single amino acid 
among signal peptide sequences 

in S. cerevisiae genome in C. albicans genome 

A 805 14% 1233 11% 

C 152 2% 167 1% 

D 28 <1% 79 <1% 

E 46 <1% 78 <1% 

F 491 7% 844 8% 

G 194 3% 385 3% 

H 77 <1% 111 <1% 

I 467 7% 1063 9% 

K 201 3% 375 3% 

L 1091 18% 2000 18% 

M 350 6% 603 5% 

N 126 2% 251 2% 

P 94 1% 289 3% 

Q 127 2% 235 2% 

R 152 2% 231 2% 

S 598 10% 1149 10% 

T 420 7% 847 8% 

V 978 8% 819 7% 

W 81 1% 188 2% 

Y 120 2% 253 2% 

Table 2. Single amino acid frequency among predicted signal peptide sequence in S. 
cerevisiae genome and C. albicans genome 
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Fig. 2. Length distribution of predicted signal peptides in S. cerevisiae and C. albicansr 

4. Mining effector-encoding genes in Arabidopsis thaliana genome database 
Arabidopsis thaliana is the first plant genome that has been sequenced completely. At present, 
secretome of Arabidopsis thaliana and their gene function categorization have not been 
systematically reported. Here elementally report the prediction of secretome of Arabidopsis 
thaliana and function categorization of gene encoding predicted secretory protein. Combined 
the computer-based software such as SignalP v3.0, TargetP v1.01, big-PI predictor and 
TMHMM v2.0 was used to predict the secretome of Arabidopsis thaliana. The result showed 
that 282 secretory ones among 28,953 proteins were obtained, the proportion of predicted 
secretory proteins to total proteins in entire genome was 2.86 % (Table3). And 
sublocalization of 282 secretory proteins was further predicted through SubLoc v1.0, their 
sublocalization was cytoplasmic, extracellular, mitochondrial and nuclear, most of them 
were secreted into extracellular space, while a few of them were secreted into the other three 
sublocalization (Table 4). 
Based on gene function category (http://webclu.bio.wzw.tum.de/genre/proj/uwe25/ 
Search/Catalogs/searchCatFun.html?id=01), we categorized function of the putative 
secreted proteins from Arabidopsis thaliana. The result showed the most of gene encoding 
secreted proteins participated in cell metabolism, cell rescue and defense, cell transport, cell 
fate and storage protein. Among the genes participated in cell rescue and defense, the ratio 
of genes with functions of peroxidase, kinase, disease resistance protein, pathogenesis-
related protein and leucine-rich repeat protein was 50.79%.Among the genes participated in 
cell metabolism, the ratio of genes with functions of hydrolase, lipase, carboxypeptidase, 
invertase, transferase, expansin and synthase was 70.33%. It was noteworthy that 724 
secretary proteins (18.8 %) were found among 3,848 plant-specific proteins in Arabidopsis 
thaliana genome. Among 2,800 Arabidopsis genes that were reproducibly regulated in 
response to bacterial pathogen inoculation, 132 genes were potential secretary proteins. 
These results implied that many plant specific biochemical processes, including pathogen 
responsive genes were carried out at extracellular space. Prediction of Arabidopsis thaliana 
secretome by the aid of the related computer-based software will accelerate to the 
experimentally functional study of secretome. 

Percentage (%
) 

Signal peptide length (aa) 

 
Mining Effector Proteins in Phytopathogenic Fungi 

 

281 

No. of 
chromosome 

Prediction of 
SignalP v3. 0

Prediction 
of TMHMM 

v2.0 

Prediction of TargetP 
v1.01 Prediction of big-PI 

predictor 
S M C - 

Ⅰ 553 274 202 23 35 14 196 

Ⅱ 513 248 185 27 23 13 174 

Ⅲ 633 274 55 29 42 148 55 

Ⅳ 497 234 191 11 23 9 188 

Ⅴ 711 307 228 17 41 21 215 

Total 2907 1337 861 107 164 205 828 

Note：“S” mean protein with secretory pathway；“M” indicated mitochondrial targeting protein;  
“C” indicated a chloroplast transit protein; “-” indicated any other location 

Table 3. Prediction result through the computer-based software, the SignalP v3.0, TargetP 
v1.01, big-PI predictor and TMHMM v2.0 

 

No. of 
chromosome 

Amount of ORF encoding 
secretory proteins 

Amount of total ORFs 
encoding proteins 

Percentage 
（%） 

Ⅰ 196 7494 2.62 
Ⅱ 174 4589 3.79 
Ⅲ 55 5742 0.96 
Ⅳ 188 4407 4.27 
Ⅴ 215 6721 3.20 

Summary 828 28953 2.86 

Table 4. Chromosomal distribution of secretory protein in A. thaliana 

5. Expression pattern of effector protein-encoding genes from M. grisea 
Many studies have used quantitative polymerase chain reaction (PCR) to evaluate fungal 
growth during the infection process (Hu et al., 1993; Mahuku et al., 1995; Groppe and Boller, 
1997; Judelson and Tooley, 2000).Therefore, we detected the expression pattern of candidate 
novel genes MGNIP10, MGNIP18, MGNIP24, MGNIP34, MGNIP38, MGNIP53, MGNIP74, 
MGNIP97 and MgNIP04 in different isolates from Yunnan, China, the same isolate grown 
under nitrogen-starvation medium and complete medium and different time points when 
Lijiangxintuanheigu challenged with blast fungus using real-time fluorescence quantitative 
PCR.  
All expression level of candidate genes were normalized by actin housekeeping gene and 
quantified by both the comparative threshold method and standard curve method. The 
results showed that expression level of all candidate genes were significantly different in 
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isolates of 94-64-1b Y99-63, 95-23-4a, Y98-16 and 94-64-1b. When two isolates of Y98-16 and 
Y99-63 grown under complete medium and nitrogen-starvation medium, relative expression 
quantity of genes was different. And expression of more genes was detected when two 
isolates grew under nitrogen starvation for 24 h, comparing with when the two isolates 
grew under complete medium (Figure 3).  
We detected expression level of all candidate genes at 24 hpi, 48 hpi, 72 hpi, 96 hpi and 168 
hpi, the result revealed that all genes expression level apparently up-regulated, and the 
expression level achieved the maximum at 48hpi, the expression level had been decreasing 
after 72hpi (Table 5 and Figure 4). 
 

 
 

 
Fig. 3. Expression pattern of some predicted effector protein-encoding genes from  
M. Grisea 
a: Relative expression quantity of target gene of Y99-63 and Y98-16 cultured in different 
mediums by 2－△△C t method 
b: Relative expression quantity of target gene of Y99-63 and Y98-16 cultured in different 
mediums   by standard curve method 
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Table 5. Relative expression quantity of target gene in infected rice leaves at different  
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(b) 

Fig. 4. Expression pattern of some predicted effector protein-encoding genes in infected rice 
leaves 
a: Relative expression amount of target gene in infected rice leaves at different stages post 
inoculation by  2－△△C t  method 
b: Relative expression amount of target gene in infected rice leaves at different stages post 
inoculation by stand curve method 

6. Pathogenicity analysis of secreted protein from the rice blast grown under 
nitrogen-starvation medium 
Fungi maintained their cell living and even growth through material reutilization when they 
were in nutrition-stress environment. Some research showed that expression quantity of 
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pathogenicity-related genes increased when rice blast strains grew under nitrogen-
starvation medium, which enhanced the pathogenicity of blast strains (Talbot et al., 1997). 
The two isolates of Y99-63 and Y98-16 were from Yunnnan, China. And virulence test of two 
isolates of Y98-16 and Y99-63 on rice isogenic lines of IRBL1-24 had been previously 
performed in our lab, and virulence of Y99-63 was more intensive than Y98-16. To analyze 
the virulence of extracellularly secreted proteins on rice varieties such as susceptible variety 
of Lijiangxintuanheigu, resistant variety of Tetep and rice isogenic lines of IRBL1-24, we 
separated the extracellularly secreted proteins when Y98-16 and Y99-63 grew under 
nitrogen starvation for 48h, and man-made wounded rice leaves were inoculated with 
extracellularly secreted proteins. The result showed that necrosis speck occurred around the 
wounded leaves and wounded stems of rice when secreted proteins were inoculated on 
leaves or stems for 48h, and speck diameter of leaves or stems treated with secreted proteins 
was 2 to 4 folds larger than leaves or stems treated with sterilized water. 
We compared difference of extracellularly secreted proteins from Y99-63 and Y98-16 
growing under nitrogen-starvation medium for 48h using two-dimensional electrophoresis 
technology. The result showed that more proteins spots were detected from Y99-63 growing 
under nitrogen-starvation medium than Y98-16. And pI and molecular weight of secreted 
proteins had an apparent difference between Y99-63 and Y98-16. 

7. Summary 
In this chapter, we have showed how mine the secreted proteins from fungi and plant, and 
how predicted the some features of secreted proteins such as domain, pI, molecular weight 
and sequence similarity. And simultaneously, we also introduced some experiments 
centered on expression pattern of secreted protein-encoding genes, and pathogenicity 
analysis of secreted proteins from the rice blast strains grown under nitrogen-starvation 
medium. 
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1. Introduction 
The advent of the omics area has created new research systems, including genomics, 
proteomics, metabolomics, as well as the associated bio-informatics science, and databases. 
At the same time, progress in traditional western medical research has reached a bottleneck, 
as single compound drugs are costly to create, synthesize, or engineer. If we are to see real 
and sustained progress in research, we must find approaches to utilize traditional remedies 
to develop advanced medicines.  
Instrumental systems for transcriptome, including the microarray of different messenger 
RNA, microRNA and other non-gene sequence-related RNA products, have already been 
developed; functional genomics studies using these systems have been remarkably 
successful. However, the candidate genes involved in specific functions often need further 
verifications for revealing their roles in the signal pathways. The difficulty may also arise 
from the high variety and seemingly unrelated responsive genes and complex signaling or 
regulatory systems involved.  
Proteomic analysis has its disadvantages, although two-dimensional (2-D) gels can display 
viable candidate proteins for study. Up to two thousand proteins of biological systems can 
often be analyzed in sensitive 2-D gel systems. There are other proteins, such as cytokines or 
chemokines of most leukocyte cells are expressed at relatively low levels, and often are not 
detectable by 2-D gels. More sensitive methods, such as LC/MS and other fractionation 
systems, need to be used for such cases.  
Metabolomics faces an even greater challenge: a 2-D or one run display of the components 
of a metabolome has not been defined and cannot be systematically evaluated. Therefore, 
sequential analyses, e.g. the LC/MS followed by NMR, were developed to address the 
“overall” or more comprehensive picture of metabolomes.  
Several phyto-medicinal studies, including some in traditional Chinese herbal medicine 
(TCM), have been considered as metabolome investigations. New strategies employing 
omics approaches may be especially useful for phytomedicinal research, as conventional 
phytomedicines often employ multiple components and they often are believed to interact 
with multiple molecular targets related to cellular and physiological (e.g., immune-
modulatory) effects. In order to successfully evaluate the effects of phytomedicines, various 
omics approaches are being systematically combined. New computational and cross-
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disciplinary analyses will be required for most experimental biology studies. Some 
examples of systematic and technical considerations, in terms of research into the immune-
modulatory and anti-inflammatory effects using the omics approaches, are addressed in this 
brief review.  

1.1 Importance of systems biology and bioinformatics 
Scientists investigate medicinal plants in search of regulatory genes and metabolites that can 
affect, modulate or upgrade the biological and metabolic processes, which in turn can confer 
specific physiological or pharmacological functions. Recently, various high-output 
technologies, including genomics, transcriptomics, proteomics and metabolomics, are 
employed in such research effort [1-3]. Bioinformatics and systems biology approaches are 
considered by many as needed to organize, manage, process, and understand the vast 
amounts of data obtained in various omics studies [4-8]. In addition, systems biology is 
aimed at understanding complex biology by integrating omics data from various sources for 
network analysis, for evaluating the holistic system as a whole, as experimental results from 
omics studies are most often not obtained or isolated as a single set of data points or evens 
[9]. By analyzing the omics data, bioinformatics tools can help upgrade new approaches for 
classifying and authenticating potential medicinal plants, identifying new bioactive 
phytochemicals or compounds, and even improving medicinal plant species or cultivars 
that can tolerate stressful environmental challenges.  
The human immune system, as we currently conceptualize it, is under the tight control of a 
complex network of regulatory genes, RNAs, modulatory proteins and stimulatory 
metabolites. Past studies have often focused on understanding the roles of specific genes in 
immune responses. To associate expression changes with immunological conditions such as 
suppression, cancer, or autoimmunity, we can investigate the interrelationship of the up- 
and down-regulation of genes or proteins patterns. Using microarray analysis and 
comparative genomics, Hutton et al. [10] have identified genes and their regulatory 
elements responsible for maintenance, differentiation, and the general functioning of 
specific immune systems. In addition, most of the expression pattern of genes is related to 
the biological role and effects of the products of genes, and a similar statement may be made 
for protein expression [11]. Taken together, evaluation of gene and protein expression 
profiles may lead us to identify links between specific genes or proteins and the associated 
specific immuno-modularory effects. Moreover, omics technologies may also be employed 
to address our views of the often-used concepts in immunology, such as: molecular 
dynamics in response to specific stimulations or alterations of the molecular state of targeted 
specific cells, in the hypothesis-driven research approach [12]. For instance, in the drug 
discovery process, pharmaceutical companies have used various microarray systems as 
screening tools to eliminate compounds that have molecular indications of toxicities before 
preclinical and clinical testing [13]. In basic research, omics technologies have continually 
improved our understanding on how drugs can regulate the immune system as well as of a 
variety of issues in mechanistic or hypothesis-driven research [14-17]. The data obtained 
from these studies not only may have significant impact on the future directions of those 
specific lines of research but also may improve our understanding of the specific immuno-
modulatory regulation of given drugs. 
Bioinformatics is the application of computational tools for biological sciences; its major aim 
is the management and interpretation of biological data [18]. It has been an essential tool for 
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fully integrating and multi-disciplinary understanding the processes in various biological 
areas [19]. Among them, understanding omics data requires both common statistical and 
machine-learning methods, because the data are usually in high-dimensional form and 
complexity. On the other hand, as compared with other biomedical and agricultural areas, 
the study of omics and its use for research into medicinal plants are still in its infant stage. 
Given the demand for studies on immuno-modulatory effects of herbal medicines, this 
chapter introduces and summarizes the applications of some omics approaches and specific 
bioinformatics tools for investigating phytomedicines. 

1.2 Omics technologies 
The technology platforms generally used in systems biology research, including 
transcriptomics, proteomics and metabolomics, have enabled us to study living systems 
from a holistic or integrative perspective through revealing profiles of multitudinous 
biochemical components (Figure 1); it also opens up a unique opportunity to reinvestigate 
phytomedicines [20]. The revolution of genomics research and technology development has 
yielded complete or draft DNA sequence maps for a spectrum of species including human, 
mouse and a serious of model organisms. Having the genomic data available, many new 
‘drug-able’ targets based on transcriptomics study have been identified, opening up new 
insights into explanations of biological systems at a global scale. Additionally, through 
proteomics, we are witnessing the development of wonderful and multi-application tools 
for studying various signaling or mechanism systems at the level of proteins and protein–
protein interactions [20, 21]. In the meantime, studies on glycol-biology and bioactive 
polysaccharides are making great leaps in glycomics research; similarly, studies on 
regulation and metabolic control of a spectrum of lipids are creating new approaches for 
“lipidomics”. The recent wave of data from genomics and proteomics has precipitated the 
measurement of increasingly a group or spectrum of elements to provide a systems 
approach, especially at the level of metabolites and for the field of metabolomics. 
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Fig. 1. The different levels of measurement in a systems biology approach. 
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fully integrating and multi-disciplinary understanding the processes in various biological 
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Fig. 1. The different levels of measurement in a systems biology approach. 
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Although omics are defined in several different ways today, in our opinion these systems 
provide “an integrated approach to study biological systems not only for the intracellular, 
but also at the cellular, organic and the whole body or organismic levels or networks, 
through measuring and integrating the genomic, proteomic and metabolic data” in a global 
consideration manner (Figure 1) [20, 22, 23]. 
In the search for new phyto-medicines, the necessary purification of single active 
components has been in general successful, whereas synergetic effects of mixtures of 
components (e.g., crude plant extracts) remain difficult to evaluate. Utilizing omics 
technology, scientists hope to develop methods and models to detect and observe the effects 
of complex mixtures such as various plant tissue extracts traditionally used in herbal 
medicines. This applies especially to approaches employing metabolomics which adress 
comprehensive phytochemical profiling, bioactivity phenotyping, sophisticated bio-organic 
chemistry instrumentation, and new cross-talk experimental designs. This scenario needs 
not only advancement in natural product research, but also revolutionary strategy in the 
development of molecular pharmacology-based herbal medicines [20]. 

1.3 Phytomics 
The term “Phytomics” has been previously created to the “omics-based approach” for 
studying chemical compositions in plant (Kung PC et al., 2003), specifically: using 
bioinformatics and/or statistics to address qualitative and quantitative aspects of chemical 
compositions or profiles of the plant metabolites of our interest; or to develop databases for 
addressing such aspects [24].  

2. Transcriptomics study on medicinal plant research 
2.1 Application of DNA microarrays in toxicogenomics, pharmacogenomics and 
functional genomics studies of bioactivities from medicinal plants 
Recent advances in genomics-based identification of responsive gene clusters, gene families or 
gene polymorphisms associated, with immune system dysfunction have helped to address 
some basic issues in immunology, and have begun to expand our understanding of immune-
related disease processes [13]. The application of omics technologies in toxicological research 
(toxicogenomics) provided new insights into mechanisms of action, as well as data likely to be 
useful for risk assessment [13, 25]. Gene chips or microarrays are already employed in 
immunotoxicology research to identify biochemical pathways that are altered by specific 
chemical exposures. For example, trichothecene mycotoxin deoxynivalenol has been shown in 
mice to modulate splenic early responsive genes, which are functionally related to immunity, 
inflammation and chemotaxis [15, 26], indicating the importance of innate immune systems, 
including macrophages, granulocytes, neutrophils and various soluble mediators released in 
the inflammatory response activated by the hexachlorobenzene treatment. For basic research, a 
number of mechanistic studies have been performed towards gaining a comprehensive 
understanding of the immunomodulatory properties of potential new drugs or drug leads. 
Thymic atrophy, for instance, appears to be mediated in part by 2,3,7,8-tetrachlorodibenzo-p-
dioxin (TCDD)-induced apoptosis [27]. Using an apoptosis-specific cDNA array combined 
with promoter analyses, specific and novel gene targets have been shown to enhance negative 
selection in the thymus and thus result in TCDD-induced thymic atrophy [16]. In a separate 
study, cDNA microarray analyses were utilized to evaluate the TCDD regulation of Fas ligand 
(FasL) promoter activity through modulation via NF-κB in thymic stromal cells and the 
subsequent initiation of the apoptotic pathway in thymic T cells [28].  
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During the past decade there has been a paradigm shift from utilizing single-target drugs to 
multi-target drugs [29, 30]. The concept of multi-targeted therapy was once believed to 
better represent the conventional herbal medicine treatments that often employ multi-
component plant tissue extracts as natural products mixtures. However, very few phyto-
medicinal products have clear or systematic documentations comparable to that of 
chemically synthesized drugs as single chemical compound. This situation has hampered 
our ability to predict precise or specific molecular targets, signaling or action mechanisms of 
activity, and possible side effects of “herbal drug” products [30]. With these requirements 
for botanical and clinical uses, a validated genomics and metabolomics approach in 
combination can be applied to quantify specific chemical markers and, subsequently, to 
obtain chemically standardized extracts [31]. In addition, researchers have witnessed a wide 
range of molecular mechanisms governing various cellular and tissue behaviors. The 
genomics approach with integrations of large and diverse sources of gene, protein and 
metabolite expression information will assist in making comprehensive and integrated 
predictions about the pharmacological effects of plant natural products [32].  
While numerous laboratories use genomics in their investigation of underlying mechanisms 
of immunotoxicity, few have employed genomic analyses as a screening tool. Many 
differentially expressed genes are known to play a role in apoptosis, host defense, cell 
growth and differentiation, and trafficking of specific cells in body fluid systems. In the 
spleen, these may include the up-regulation of IL-18, lymphotoxin B receptor, and colony-
stimulating factor receptor, and down-regulation of RANTES and histocompatibility 
antigens [15, 33-35]. In the thymus, gene changes included the down-regulation of nuclear 
factor of activated T cells, interferon gamma receptor, and T cell transcription factor 7, and 
the up-regulation of caspase 1 and ApoE. These findings are consistent with alterations 
previously observed in specific immune functions [34, 36] and could further expand our 
knowledge at gene regulation level. 
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Fig. 2. DNA microarray applications in natural product drug discovery and development 
[37].  
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Applications of DNA microarray technologies in herbal drug research may be classified into 
three major areas. Firstly, it can be used in pharmacodynamics to aid the discovery of new 
diagnostic indicators and biomarkers for therapeutic response, elucidation of molecular 
mechanisms of herbal action, its formulations or its phytochemical components, and in 
identification and validation of new molecular targets for herbal drug development (Figure 
2) [30], [37]. Secondly, it is applicable in toxicogenomics for predicting side effects of a 
medicinal herb or phytomedicine lead drug during preclinical activity and safety studies, 
conferring drug safety or resistance [38]. Thirdly, it is useful for botanical or plant 
identification and authentication of crude plant materials as part of an effort and regulatory 
system for standardization and quality control [39]. Given these considerations, DNA 
microarrays may thus offer powerful predictive functions at different stages of a typical 
drug/phytomedicine discovery pipeline. 

2.2 Immuno-modulatory effects of different phyto-compounds/candidate 
phytomedicines 
With the increased demand for validated herbal products for medicinal use comes the need 
to better understand the molecular mechanisms of their biological activities. Although many 
reputed herbal drugs are investigated at the molecular level, it remains difficult to realize 
the exact targets of individual phytochemical components and how these molecules together 
or independently can contribute to specific immuno-modulatory effects. Here, we discuss 
findings from some of the recent studies on microarray-based gene expression aimed at 
elucidating immune-regulatory mechanisms of pure phytochemicals as well as specific 
herbal extracts. 

2.2.1 Purified compounds or specific phytochemical groups 
The Chinese medicinal herb root Tripterygium hypoglaucum has been subjected to cDNA 
microarrays containing 3000 human genes (derived from a leukocyte cDNA library) in order 
to study its role in apoptosis-inducing activity of plant alkaloids. Apoptosis induced by 
these T. hypoglaucum alkaloids was shown to be mediated through c-myc and NF-kappa B 
signaling pathways [40]. In an animal model of aged rat, gene chip (Rat Genome U34A) 
analysis was applied to evaluate the gene regulatory pattern of Epimedium flavonoids in 
immune homeostasis. Epimedium flavonoids were found to reverse the “abnormal” or aging 
changes, allowing reconstruction of a beneficial equilibrium in gene expression and thus 
further remodeling of the immunohomeostasis in the aged rat [41]. Taken together, results 
from these studies indicate that the expression pattern characterized by up-regulation of 
specific apoptosis-promoting genes and down-regulation of certain apoptosis-inhibiting 
genes can be considered as important genomic background of an immunohomeostasis 
imbalance [30]. 
A traditional Chinese medicinal (TCM) herb prescription, Si-Jun-Zi decoction (SJZD), has 
been administered in a clinical setting to patients with disorders of the digestive system. 
Previous studies have indicated that the polysaccharides of SJZD are active components of 
the phyto-extract mixture in improving gastrointestinal function and immunity [42]. SJZD 
polysaccharides also had a protective effect and enhanced re-epithelialization on wounded 
IEC-6 cells. To further elucidate this effect at the molecular level, an oligonucleotide 
microarray was employed to study differential gene expression of SJZD-treated IEC-6 cells. 
There was, indeed, increased expression of genes encoding for ion channels and 
transporters, known as critical to cell migration and restoration of wounded cells, 
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suggesting a mechanism for re-epithelialization as well as improved immunity [43]. These 
studies demonstrate the useful approach of functional genomics for research into 
modernization of TCM. 
Shikonin and its derivatives, from the TCM-claimed medicinal herb Lithospermum 
erythrorhizon, have been shown to possess numerous beneficial pharmacological properties, 
including anti-inflammatory and antitumor properties [44, 45]. In our previous report, 
shikonin was shown to confer a potent bioactivity on suppression of TNF-α promoter 
activity [46]. Additionally, shikonin was found to mediate cytokine expression through 
inactivation of the RNA-activated protein kinase (PKR) pathway [46]. It was also suggested 
from the reports that regulation of TNF-α pre-mRNA splicing may constitute a promising 
target for future anti-inflammatory application [47]. Moreover, the functional genomic 
(DNA microarray) analysis on the cellular immunological effects of shikonin effectively 
distinguished the complex and specific bioactivities of this phyto-compound in human 
monocytes [48]. Further, ubiquitin pathway regulator, e.g., Rad23A, was also identified as 
possible key regulators for this shikonin effect [48]. A transcriptomics approach has 
therefore been instrumental in screening immune-modulatory effects of noteworthy 
phytocompounds. These studies have set useful examples for future systematization of key 
traditional herbal medicine-derived phytomedicines. 

2.2.2 Medicinal herbal extracts 
Screening of the human genome for TNF-α-inducible genes has been used to identify the anti-
inflammatory effects of 5-Loxin, a standardized Boswellia serrata extract, in microvascular 
endothelial cells [49, 50]. It was shown that 113 out of the 522 TNF-α-induced genes were 
responsive to 5-Loxin treatment. These genes are directly or apparently related to 
inflammation, cell adhesion, and proteolysis. These robust 5-Loxin-sensitive candidate genes 
were subjected to further evaluation for molecular signaling, and this processing led to the 
suggestion of the primary 5-Loxin-sensitive TNF-α-inducible pathways. Mechanistically, 5-
Loxin can completely inhibit VCAM-1 expression, and TNF-α can cause inflammation by 
strongly up-regulating the expression of this adhesion molecule VCAM-1. [49]. 
Recently, genomics analysis has also evolved for evaluation of the efficacy of bioactive 
chemicals in natural health products as therapeutics, for instance, with regard to the 
alleviation of specific inflammatory activities in human airway epithelial cells [33]. In 
addition, one application of gene expression profiling in this research field may be the 
growing appreciation for the multiple and pivotal roles played by various dendritic cells 
(DCs) in initiating and regulating a spectrum of immune responses. These cells are 
responsible for recognizing and processing various antigens and their ultimate presentation 
to specific immune cell (e.g., T cells) systems [51-53]. It has been well established that DCs 
present in the epidermis (Langerhans cells (LCs)) are required for the presentation of 
chemical allergens at the skin’s surface, as well as for skin sensitization [54, 55]. 
Investigations by Enk and Katz [56] have revealed that topical exposure of mice to chemical 
allergens, but not to a non-sensitizing skin irritant, caused numerous changes in expression 
of cytokines and chemokines by LC and local epidermal cells. Among these changes 
recorded following allergen treatment was a rapid increase in LC expression of mRNA for 
interleukin-1β (IL-1β), a cutaneous cytokine necessary for the regulation of LC function and 
for skin sensitization [56-59]. These results concluded that changes in the expressions of IL-
1β by LC in response to chemical allergens might hence provide a practical and efficient in 
vitro approach for identifying skin-sensitizing chemicals [60]. 
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Genome-wide analysis has been adopted as a less selective approach for measuring the 
holistic or global changes in gene expression [17, 61-64]. It can be anticipated that the 
activation and functional maturation of DCs, as drastic cellular activities, are likely to be 
associated with changes in the levels of a spectrum of gene expressions that are responsible 
for: (a) intracellular metabolic processes; (b) control of cell motility (including those 
regulating intercellular communication and interactions with the tissue matrix); (c) cytokine 
and chemokine production, and (d) cell growth regulation and survival [17, 61]. Results of 
our previous studies on the immune-modulatory effects of a phytocompound mixture, 
extracted from the butanol fraction (BF) of a stem and leaf (S+L) extract of Echinacea 
Purpurea ([BF/S+L/Ep]), suggest that [BF/S+L/Ep] can effectively modulate DC mobility in 
vivo and related cellular physiology in the mouse immune system. In addition, [BF/S+L/Ep] 
modulated cell adhesion-, cell mobility-, cytokine- and NF-κB signaling- related activities in 
primary cultures of mouse DCs [17]. Similar study of Wang et al [60], have further shown 
that genes expressed in [BF/S+L/Ep]-treated human DCs revealed a key-signaling network 
involving a number of immune-modulatory molecules and lead to the activation of a 
downstream molecule, adenylate cyclase 8. These examples show that genomics approaches 
can be usefully employed for predicting candidate target molecules in future translational 
studies of phytochemicals, phytocompound mixtures, and medicinal herbal extracts.  

2.3 Use of cDNA microarray/ expression sequence tags (ESTs) for evaluating 
bioactivities of medicinal plants 
A transcriptome is the set of all detectable RNA molecules, including mRNA, tRNA, rRNA, 
and non-coding RNAs (e.g., siRNA, microRNA) produced in a group of test cells or tissues. 
By using the advanced transcriptomics, an organism’s entire transcriptome can now be 
effectively analyzed for many experimental systems. Technically, transcriptomics is a 
technology to reveal genome-wide gene expression profiles, patterns, integrated or 
segregated features or networks describing a global view or analysis of gene expression 
activities of the genome at the mRNA or regulatory RNA levels. These technologies 
comprise cDNA-AFLP, SAGE, cDNA microarray (or gene chip), oligonucleotide-microarray, 
and microRNA microarray [2]. Microarrays also have been used to detect gene expression 
changes of medicinal plants in a variety of developmental stages, geographic locations, 
natural growth environments, and/or cultivation conditions [2]. In phytomics studies, 
studies have aimed to identify the responsive genes that are regulated by active medicinal 
compounds, anti-pathogen infection, or adaptation to harsh environment [65].  
To design appropriate probe sequences for a DNA microarrays efficiently, we need to 
consider the genome sequence information for a specific organism in its entirety or with a 
definable set or subset. However, since only very limitted genomes of medicinal plants have 
currently been sequenced, one alternative is to gather the necessary transcriptome 
information, by generating or making use of existing expression sequence tags (ESTs) [66, 
67]. Increasing numbers of EST libraries from medicinal plants such as Panax quinquefolius 
[68], Huperzia serrata [69], P. Notoginseng [70], Rehmannia glutinosa [71], and Catharanthus 
roseus [72] have been recently obtained. An automatic system for large scale EST sequence 
retrieval, assembly, and functional and pathway analyses has been established [73]. This 
system has been successfully applied to analyzing both plant [74] and animal EST sequences 
[73, 75]. These EST and annotation systems have provided a good foundation for design of 
suitable arrays for representative genomes or focused transcriptomics, hence providing 
valuable information for genomic research into phytomedicine. 
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3. Proteomics studies on the research into medicinal plants 
3.1 Use and advancement of analytical and instrumentation systems: Two-
dimensional gel electrophoresis (2-DE), electrospray ionization, matrix-assisted laser 
desorption/ionization and surface-enhanced laser desorp  
The Nobel Prize in Chemistry for 2002 was shared between scientists from two research 
expertise: mass spectrometry (MS) and nuclear magnetic resonance (NMR). These 
revolutionary breakthroughs have allowed chemical biology to become one of the most 
significant scientific disciplines in recent years. Scientists can now rapidly and reliably 
identify most proteins in a relatively small sample and readily produce three-dimensional 
display and/or images of expressed protein molecules with highly resolution. With these 
advancements, various experimental approaches and technologies were developed to obtain 
a better understanding of proteins and their regulatory effects on molecular and cellular 
functions of various biological systems [76, 77]. Among them, technologies including two-
dimensional gel electrophoresis (2-DE) analysis [78, 79], matrix-assisted laser 
desorption/ionization (MALDI)- time-of-flight (TOF) [80] and Surface-Enhanced Laser 
Desorption/Ionization (SELDI)-TOF MS [81] have been broadly used in proteomics studies 
on the research of medicinal plants. 

3.2 Application of proteomics for research into traditional herbal medicine  
Proteomics technologies were applied to simultaneously study the function, organization, 
diversity, and the dynamic variety of total or a subset of proteins at the cellular or tissue 
levels [21]. The current integrative approach used in proteomics is in line with the practice 
and holistic philosophy of traditional Chinese medicine (TCM). Recent advances in 
multidimensional liquid chromatography, coupled with free-flow electrophoresis and 
capillary electrophoresis-based separation techniques, make it possible in separation of 
hundreds or even thousands of protein components in some medical plants [82, 83]. We 
may able now to explore an increased understanding of such complex mixtures and the 
reputed medicinal effects at the cellular and molecular levels through proteomics studies; it 
holds a key to the big demand for modernization and internationalization of a number of 
traditional phyto-medicines [83]. In this article, some of the proteomics approaches in TCM 
research and development are addressed, highlighting the application in mechanistic 
investigation of specific phytomedicines.  
Panax ginseng and Panax quinquefolius are two of the valued herbs widely used in TCM. 
Conventional separation methods were unable to distinguish the different plant parts 
(main root, lateral roots, rhizome head and epidermal tissues) between these two species. 
On the other hand, when 2-DE maps were employed, plant tissue samples containing 
distinct or common protein species (spots) can be easily discriminated or distinguished. 
Clearly, these potential protein biomarkers may also facilitate the identification processes 
for various medicinal plants that may be difficult to identify morphologically or 
anatomically [84].  
Numerous herbal medicines have been reported to have immunomodulatory and anti-
tumor effects in cancer cells [85-87]. Recent biological and pharmaceutical researches have 
shown that diosgenyl saponins may exert a large variety of biological functions, with a 
potential for use in cancer chemoprevention [88]. By using 2-DE, tryptic in-gel digestion and 
MALDI-TOF MS analysis, Wang et al. [89] suggested that dioscin, a saponin extracted from 
Polygonatum zanlanscianense Pamp., exhibited cytotoxicity towards human myeloblast 
leukemia HL-60 cells. This proteomics analysis also revealed that the expression of 
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mitochondria-associated proteins was substantially altered in HL-60 cells upon dioscin 
treatment, suggesting that mitochondria were the major cellular and organelle target of 
dioscin cytotoxicity. Moreover, the results indicated that other pathways were likely also 
involved in detected dioscin cytotoxicity, including phosphorylation-based cellular 
signaling, RNA-related protein synthesis, and oxidative stress processes. The study 
demonstrated the benefits of using a proteomics approach in anticancer phytomedicine 
research [90]. 

4. Metabolomics study on the research of medicinal plants 
Metabolomics, including both targeted and global metabolite profiling strategies, is 
rapidly becoming a popular and powerful approach of choice across a broad range of 
medical and biological sciences including systems biology, drug discovery, and molecular 
and cell biology [24]. Specifically for human metabolites, it is believed that at least 3,000 
metabolites that are essential for normal growth and development (primary metabolites) 
and >2000 secondary metabolites that are not essential for growth and development but 
may help fight off infection and other forms of stress on the body [91]. In addition, 
metabolomics are now being generally considered a vital component of the systems 
biology approach, in which it can reflect and connect the genotypes with diverse yet 
specific phenotypes of specific types of cells, tissues, or organs [91]. Within the past 
decade, the number of publications of metabolomics-related research articles has 
increased from roughly 40 in 2002 to 100, 170, 200 and >250 articles in the years 2004, 
2005, 2006 and 2007, respectively. Now it is estimated that >300 articles, with a general 
aim or study on metabolomics were published annually in 2010. Owing to its remarkable 
versatility, metabolomics is rapidly becoming a universal tool and key component in 
medical research [24]. Combined with genomics and proteomics technologies, systems 
biology research using metabolomics investigates characteristic molecular signatures for 
disease diagnosis, prognosis, and therapeutics [92]. This section reviews the recent 
developments in technology platforms and experimental approaches for metabolomics 
studies in the research of immunomodulatory properties of potential medicinal plants.  

4.1 Use of GC-MS, LC- MS, FT-IR and NMR technologies 
Currently, the term ‘metabolomics’ often can be used interchangeably with “metabolite 
profiling” because the type of one-step, two dimensional exhibition analysis used in 
genomics and proteonomics experiments is not possible at the present time, as the 
complexity of chemicals in most biological systems, especially in plants, is highly diversified 
and can be enormous [93]. The two basic approaches in metabolomics can be classified the 
targeted- and the global metabolite analyses. Targeted metabolite analysis, (or metabolite 
profiling), as the name implies, targets mainly a subset of metabolites in test sample, instead 
of a complete, global metabolome analysis, often by using a particular set of analytic 
technique(s) such as gas chromatography-mass spectrometry (GC-MS) and liquid 
chromatography–mass spectrometry (LC-MS), and yields an estimate of quantity [94]. 
Metabolomics approaches using GC–MS, LC–MS, or 2D NMR are effective tools for quality 
control of medicinal plants or herbal medicine products [95, 96]. As shown in Figure 3 [24], 
key aspects of the technology were assembled in many research institutions as “core 
labs/facilities” in the metabolomics approach for herbal medicine or other integrated 
research interest. Various other technical systems, methodologies or techniques, including 
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thin layer chromatography (TLC), Fourier transform infrared spectroscopy (FT-IR), Raman 
spectroscopy and NMR [97-99] are also important research facilities in the metabolite 
analysis arsenal. 
 

 
Fig. 3. Key features of metabolomics technologies employed for research into 
phytomedicines [24].  

Mass spectrometry is currently the most broadly applied technology in metabolomic 
studies. Among the variety of MS techniques, GC-MS has long been popularly used in 
metabolite profiling of plant extracts [100, 101]. Rapid, high-resolution 2D GC x GC-TOF MS 
has been employed in the phenotyping of natural rice variants [102] as well as for efficient 
quality control or analysis of herbal medicines [95]. Recently, capillary electrophoresis-MS 
has also been developed as a metabolomics tool, capable of simultaneously analyzing over 
1,000 charged chemical species, a technique that is expected to create a number of obvious 
applications in processing and characterization of various biological samples [95]. A 
shotgun approach using MALDI-TOF/TOF MS has recently been established for rapid 
analysis of negatively charged metabolites in mammalian tissues to: (a) facilitate the 
detection of low-abundant metabolites such as cAMP, cGMP, and IP3; and (b) discriminate 
isomeric molecular species [103]. In addition, novel instrumentation/equipment set ups 
developed recently, such as Fourier Transform Ion Cyclotron Resonance Mass Spectrometry 
(FT-MS), represents a quantum jump in the new capabilities of mass spectrometers for 
metabolite analysis. Due to the exceptionally high resolution of these instruments, 
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metabolites with mass differences of less than 2 ppm can now be separated on a 
chromatographic time scale (Van der Greef et al., 2004). The accurate results obtained can 
help reveal elemental compositions, which often enable unequivocal metabolite 
identification. 
Remarkable recent developments in analytical biochemistry regarding the detection and 
characterization of compounds with small molecular mass, such as MS and high-field NMR 
coupled with user-friendly multivariate statistics, have led to highly efficient systems for 
comprehensive analysis of the metabolite data matrices generated by metabolomics 
experiments [104]. One-dimensional (1D) NMR spectrometry has shown its capability for 
high-output analysis and classification of chemically similar groups of test samples. At the 
same time, the large numbers of overlapping peaks generated by such method may also 
hinder in some case accurate identification of specific metabolites. Recently, a replacement 
for the 1D 1H NMR spectroscopic technology also has been developed: a two-dimensional 
(2D) 1H–13C NMR strategy (fast metabolite quantification, FMQ, by NMR), was developed 
for analyzing metabolites as multivariate statistical objects [105]. 
The new ‘hyphenated’ techniques that combine in assay sequence various forms of liquid 
chromatography with NMR, such as HPLC-SPENMR, have effectively improved the 
sensitivity of NMR analyses and can be employed to characterize both high- and low-
abundant metabolites in complex crude plant extracts [106, 107]. 

4.2 Metabolomics research in medicinal chemistry studies 
Diverse secondary plant metabolites are believed to have evolved through continuous 
interactions with challenging and predominantly hostile environments, including both 
abiotic and biotic stresses. When these features are coupled with characteristic species and 
agronomic differences, various phyto-chemicals as secondary metabolites generally can 
confer various specific bioactivities related to their biochemical structures [108]. These 
bioactivities apparently can help the host plants to defend specific plant pathogens and to 
reduce a spectrum of abiotic stresses, e.g., drought, heat and saline conditions. Interestingly, 
these secondary plant metabolites often were also found to confer potent and valuable 
bioactivities for defending human sickness, including viral, cancerous and inflammatory 
diseases. Some well-known cancer chemotherapeutic drugs have been initially derived from 
plant secondary metabolites, such as paclitaxel (taxol), camptothecin (irinotecan, topotecan), 
and podophyllotoxins (etoposide, teniposide) [24, 109]. Recent re-recognization of the vast 
potential of plant secondary metabolites or natural products to serve as lead compounds for 
drug discovery and development, or as various general health care products, has renewed a 
lot of interest in pharmaceutical and nutraceutical research. De novo combinational 
chemistry has so far produced only a very limited number of novel drugs, the natural 
products and their derivatives are still considered by many scientists to be the primary 
source of leads for drug development [110]. In this area, the use of whole plants or their 
extracts as medicines gave way to the isolation of active phyto-compounds, beginning in the 
early 19th century with the isolation of morphine from opium. In such a reductionist 
approach, however, single active phytocompounds may often be not identifiable because of 
their low abundance in test plant extracts, or alternatively, a spectrum of pharmacological 
efficacy traditionally observed arises only as a synergistic action of the multiple but specific 
ingredients present in a single plant or even from a multiple medicinal plant formulation, as 
in TCM [111, 112].  
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To efficiently link the flood of experimental data and specific metabolites or general 
metabolite profiles information to biology and metabolism study systems, traditional 
bioinformatics is being combined with cheminformatics to generate a basic computational 
infrastructure for analysis of metabolomics [113, 114]. A number of metabolomics 
databases, some based on both chemical and biological/biochemical data, have been 
made publicly available [114]. The Human Metabolome Database (HMDB) is currently the 
largest and most complete database in breadth and depth, offering spectral, physico-
chemical, clinical, biochemical, genomic, and metabolism information for a library of 
>2500 known human metabolites [115, 116]. Other databases include the BioMagResBank 
(BMRB) with an emphasis on NMR data (>270 pure compounds), the Madison 
Metabolomics Consortium Database (MMCD) which presents MS and/or NMR data on 
more than 10,000 metabolites [117], and the Golm Metabolome Database (GMD) which 
has been specifically designed for plant research and utilizes GC–MS data [118]. 
Additionally, Wishart [113] has reviewed the development of algorithms and innovations 
in informatics concerning data reduction, normalization, and alignment that offer 
sufficient biological insight into metabolic profiles.  

4.3 Metabolomics approach applied to research into immuno-modulatory effects of 
phytomedicine 
It is now generally accepted that chronic inflammation is a key factor in the development of 
many types of cancers. Natural products, especially from plants, were once popular choices 
in cancer therapeutics based on their immunosuppressive or anti-inflammatory effects [110, 
119-121]. Recently, metabolomics has been effectively used to characterize and monitor 
carcinogenesis activities in mouse models [122]. In addressing oncology metabolomics, 
NMR was used to target biomarkers for prostate cancer by analyzing metabolites with anti-
inflammatory effects in the development and progression of this cancer for better future 
management [123, 124]. This metabolomics approach has also been successfully 
implemented to monitor the metabolism in human brain, liver tumors, lymphomas, and 
colon cancers [125].  

5. Comparative and bioinformatics tools for omics studies 
5.1 Ingenuity (http://www.ingenuity.com/) 
Functional genomics experimental approaches were employed in our previous studies on the 
modulatory effect of Echinacea plant extracts (e.g., the butanol-fractionated Leaf and Stem 
tissue extract designated as BF/S+L/Ep) on both mouse and human DCs [17, 63, 64]. Using 
the same defined phytochemical extracts in the study, we analyzed the genome-wide 
transcriptional response in the context of known functional activities and interrelationships 
among specific protein molecules and/or different cell phenotypes. Ingenuity systems, a 
structured network knowledge-based approach, provided us good tools and insight into the 
regulation of bone marrow-derived dendritic cell activities relevant to the body’s immune 
system. Figure 5 shows candidate molecular networks revealed by clustering analysis of the 
representative genes involved in the BMDC response to [BF/S+L/Ep] treatment [17]. The 
prototypical cell was constructed from 37 representative genes that responded to treatment 
with [BF/S+L/Ep] in vitro from 4 hours to 12 hours. Genes whose expression was upregulated 
(more than doubled) are indicated in red, and those whose expression was downregulated (to 
less than half) are shown in green. Selected regions of the network highlight three groups of 
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genes. Group 1: Immune response-related genes. Group 2: Adhesion molecules and 
cytoskeleton; cell movement related genes. Group 3: Cell cycle, cell proliferation and apoptosis 
related genes. Gene networks were analyzed using the Ingenuity Pathways program. 
 

 
Fig. 5. Pathway analysis of representative genes that responded to [BF/S+L/Ep] treatment [17].  

5.2 Metacore™ (http://www.genego.com/metacore.php) 
MetaCore™ is another integrated knowledge database and software suite for pathway 
analysis of experimental data and gene lists. In the research of phytomedicines, it has  
also been used to evaluate the possible hierarchical control of microRNA expression from 
mouse tissues in order to identify trends of miRNA and mRNA expressions in response to 
targeted phytomedicinal treatment. Utilizing Metacore software, a prototypical network 
was constructed from 6 representative microRNAs that responded to treatment in vivo  
with specific phyto-chemicals (Figure 6). All selected microRNAs were found to be  
down-regulated to less than half of the untreated levels, and are shown with blue circles.  
 

 
Fig. 6. Pathway/network analysis of representative microRNAs which are responsive in vivo 
to a specific single phytocompound treatment in inflammed mouse tissues. 
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Specifically, connections (hits) within 6 microRNAs were employed as the parameter for this 
specific search. Arrows indicate the cross talks among five key molecules/pathways, (TCF8, 
VEGF-A, FOG2, MIG6, SIP1 and WASF3), and there are postulated to be regulated by 
treatment with a specific phyto-chemical from TCM formulation. 

5.3 TRANTHPATH (http://www.gene-regulation.com/index.html) 
TRANSPATH, a database system about gene regulatory networks, combines encyclopedic 
information on signal transduction with tools for visualization and analysis. By integrating 
with TRANSFAC, a database about transcription factors and their DNA binding sites, 
TRANSPATH can predict putative signaling pathways from ligand to target genes and their 
products, which may themselves be involved in a regulatory action. 
For studying specific imumodulatory effect of herbal medicine, the possible signaling 
pathways, networks or potential interactions among the responsive genes/target molecules in 
DCs treated with Echinacea extracts [BF/S+L/Ep] was assessed by using such Transpath 
software. This bioinformatics analysis has predicted a key-signaling network involving a 
number of immune-modulatory molecules leading to the activation of a very important 
downstream regulatory molecule, the adenylate cyclase 8, effectively in regulating cAMP 
levels in mammalian cells. This analysis indicated two postulated key molecules/pathways, 
Adenylate cyclase (AC8) and calmudulin (CaM), responsive to the Echinacea extracts (Figure 7). 
 
 

 
Fig. 7. Bioinformatics analysis of [BF/S+L/Ep] bioactivity and the underlying candidate 
molecular signaling networks in human DCs. The 20 genes that were up- or down-regulated 
at least 5-fold over controls were analyzed. Specifically, connections (hits) within 7 genes 
were employed as the parameter for the current search [63].  
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5.4 KEGG (http://www.kegg.jp/kegg/) 
KEGG (Kyoto Encyclopedia of Genes and Genomes) is a multi-functional bioinformatics resource 
for linking genomes to metabolic activities. It consists of 16 main databases and has been 
widely used as a reference knowledge base for biological interpretation of large-scale datasets 
generated by sequencing and other high-throughput experimental technologies. Among these 
databases, the KEGG DRUG database contains crude drugs (consisting of multiple chemical 
compounds) and formulas (consisting of multiple crude drugs) in the Traditional Chinese 
Medicine (TCM). In addition, KEGG PATHWAY and KEGG ENVIRON are also being 
organized to interpret and correlate relationships between genomic and chemical information 
of various natural products/metabolites from plants. For example, the biosynthetic pathway 
of stilbenoids, a group of phenolic compounds, was provided for revealing specific molecular 
interaction and different reaction networks (Figure 8). Although the knowledge on 
biosynthetic pathways of plant natural products is in general largely incomplete, the genomic 
information is expected to provide clues to missing enzymes and reactions for biosynthesis of 
specific plant secondary metabolites, the source for future modernized phytomedicines, either 
as pure compounds, fractionated phytochemical mixtures, or as crude plant extracts. 
Moreover, the genomic information may also uncover the architecture of biosynthetic 
pathways for generating chemical diversity of natural products. 
 

 
Fig. 8. Stilbenoid, diarylheptanoid and gingerol biosynthetic networks cited in KEGG. 
(Adopted from http://www.kegg.jp/kegg/pathway/map/map00945.html) 

6. Challenges and perspectives 
Traditionally, the pharmaceutical research and industries have focused on evaluating or 
monitoring individual gene, proteins as the target or basis for identifying new drugs. The 

 
Immuno-Modulatory Effects of Phytomedicines Evaluated Using Omics Approaches 

 

305 

quest for single molecules to modify single key factors in a disease process is now 
recognized as may not be able to provide a solution for a spectrum of diseases in which 
multiple cell types, target molecules and/or multiple pathways are known or believed to 
contribute to the diseases. Herbal extracts/mixtures as conventional phytomedicines may 
represent the combinational chemistry of the nature of traditional medicines, and 
encompass a vast repertoire of chemical entities that may have anecdotally and empirically 
found through long human culture history to confer a complex and yet integrated effect on 
numerous cellular components and functions, effecting a medicinal activity. Various 
traditional herbal drugs may thus have good potential for re-invention and newly found use 
in the multi-target approach in treating various diseases. However, such potential of herbal 
drugs is undermined by difficulties in standardization, and the pharmacodynamics and 
pharmacokinetics studies of these multicomponent plant extract mixtures. Microarray 
analysis of gene expression profiles may be useful for elucidating such complex molecular 
mechanisms and networks underlying the multi-target pharmacological functions of herbal 
extracts and phytomedicine mixtures. Research into the patterns of gene expression at a 
range of stages during the treatment process may reveal key targets and mechanisms and 
help to identify biomarkers of either adverse- or favorable response. A positive correlation 
between the transcriptional response induced by a putative or candidate herbal drug and 
the database profile of an existing pharmaceutical or therapeutic agent as a single chemical 
may provide us insight into the target specificity, mechanism of action, as well as in 
facilitating analysis of signaling pathways downstream of the specific target. This 
information could in turn be used to interpret possible bioactivity, function or effectiveness 
of test phytomedicines. In addition, various DNA, RNA or protein microarrays may also be 
used for bioactivity-guided fractionation of herbal extracts, thereby narrowing in the active 
principles delivering the desired or observed effect. Microarrays may also improve the 
power for selection of biological targets and lead compounds up or down the drug 
discovery pipeline. Once useful transcriptome or/and proteome data from herbal drug 
candidates can be correlated with in vivo bioactivity or preclinical or “existing clinical” (as in 
some TCM) response outcomes (biomarkers) in defined biological systems, the best 
candidates can then be selected for further drug development [30].  
Although some DNA microarrays have already offered impressive potential for 
pharmacodynamics and toxigenomics applications, they are still being considered as in an 
exploratory stage and the data obtained from them will need validation by other biological 
experiments. Bioinformatics and statistical tools have a major role to play in analysis of the 
microarray results, whereby data from multiple experiments can and may need to be 
integrated to address complex biological activities, functions or effects. Another factor 
currently limiting microarray application is the cost of this technology [30]. The challenge 
we face today is to develop or construct standardized, sensitive, reproducible microarray 
platforms, databases and visualization methods for expression profiles that are affordable to 
most research scientists. With the use or development of improved, uniform and 
sophisticated experimental designs, data management systems [126, 127], statistical tools 
and upgraded algorithms for data analysis [128, 129], DNA microarrays hopefully can be 
more optimally used in herbal drug research. In spite of the vast potential offered by 
microarray and the related functional genomics and proteomics technology, the importance 
of integrating various in vitro biological assays, cell culture-based and in vivo animal 
experimental systems cannot be ignored. Comprehensive strategy integrating information 
from diverse scientific experiments and technologies are expected to benefit and lead to 
molecule and cell evidence-based phytomedicines. 
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drugs is undermined by difficulties in standardization, and the pharmacodynamics and 
pharmacokinetics studies of these multicomponent plant extract mixtures. Microarray 
analysis of gene expression profiles may be useful for elucidating such complex molecular 
mechanisms and networks underlying the multi-target pharmacological functions of herbal 
extracts and phytomedicine mixtures. Research into the patterns of gene expression at a 
range of stages during the treatment process may reveal key targets and mechanisms and 
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molecule and cell evidence-based phytomedicines. 
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The integration of information from genomics, proteomics, and metabolomics is hoped to 
provide solid evidence-based rationales for systematic development of various modern 
phytomedicines, on top of the foundations of various traditional medicine cultures. The 
search for specific, active single phytocompound may also be expedited when various 
metabolomics approaches are combined with a comprehensive array of bioactivity assay 
systems using standardized and normalizable mammalian cell, tissue and animal models. 
Wherea a “complete metabolome-exhibition” system is currently not available, HPLC-, GC- 
and LC/MS-based metabolite-profiling systems, alone or in combination, may already offer 
a good description or authentication tool for comparative and qualitative analyses and 
definition of the unique, distinctive, or combinational profile features of the conventional 
herbal medicine formulations, as elegantly demonstrated recently by W. Lam et al (2010) 
[112]. These and the improved or newly developed metabolomics technologies in linkage 
may also be usefully applied to discovery and development of new phytomedicines, as 
single phyto-chemicals or their mixtures, or as fractions or the whole preparation of the 
crude extracts of various medicinal plant tissues. Our challenges together, as scientists and 
health care-takers are to coordinate and integrate our intellectual thrusts, talents and efforts 
to address and target specific medical and medicinal research areas, e.g., for anti-
inflammation and related chronic or cancerous diseases, for future research and 
development of advanced phytomedicines, may be to be pursued more effectively as an 
international program. 
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to address and target specific medical and medicinal research areas, e.g., for anti-
inflammation and related chronic or cancerous diseases, for future research and 
development of advanced phytomedicines, may be to be pursued more effectively as an 
international program. 
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1. Introduction

1.1 The marriage of ‘high throughput’ and ‘high content’.
While the pharmaceutical industry innovation crisis draws much debate (Kaitin & DiMasi,
2011; Macarron et al., 2011; Munos, 2009; Paul et al., 2010), there remains little consensus on
how to cohesively deliver value throughout the drug development pipeline (Fig. 1). This
chapter considers some of these issues in the context of a growing field for computational
biology: drug discovery high throughput screening (HTS). HTS is the approach of rapidly
studying physical, chemical, biological and genetic perturbations on the scale of of tens of
thousands per day. Today we are faced with ultra-HTS daily screen rates of hundreds of
thousands, in part thanks to the continued development of technologies such as micro-fluidics
(Agresti et al., 2010). As a discovery tool, it traces it roots back over twenty years (An &
Tolliday, 2010), however it is the more recent improvements in cell culture technique - with
the potential for multivariate output such as gene expression - that brings it into the domain of
high content computational biology. With this maturation of cell-based assays we also notice
an increased focus on statistical rigour, analytical integration, and the apparent user-driven
plateau in miniaturisation (Mayr & Bojanic, 2009). Rather than being faced with a continued
improvement in simple assay throughput, these suggest a growing role for more data-rich
high content HTS (hcHTS)1.
Despite the implicit gains, there exists a notable and growing antipathy towards many ‘big
data’ approaches as discovery tools. Much publication has refocused on data quality versus
quantity, with some doubting the impact of high throughput science altogether (Douglas
et al., 2010; Macarron et al., 2011; Mayr & Bojanic, 2009). There persists the very real hurdle
of experimentalists and team leaders struggling with the interpretation, integration, and
decision making based on such data. As a concern routinely witnessed in post-genome era
science, it is doubtful that the blame rests primarily with problem-specific methodology. In
this chapter, the need for screens to be more decision-centric and transparent across disciplines
is proposed. The aim here is not just to provide the reader with specific tools that are likely to
rapidy become dated, but introduce the scope and opportunities in drug screening science.

1 In this chapter ‘high content’ is used interchangeably with ‘high dimension’, as applied to multiplexed
technologies that produce many descriptors per sample, well or observation. A common example is
gene expression microarrays. ‘High content screening’ is commonly used in the literature to indicate
high content imaging. To avoid confusion here, the high content approach to HTS is referred to as
hcHTS, and high content imaging is referred to as HCI.
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2 Will-be-set-by-IN-TECH

Fig. 1. No single approach is prototypical of drug development. Particularly as a growing
number of therapeutic programmes focus on ‘biologics’ - such as proteins and RNA
inhibitors - versus ‘small molecule’ chemical therapies. However, in general it remains an
arduous, failure prone process of 10-15 years, costing hundreds of millions to billions of US$
(Adams & Brantner, 2006). The pipeline can be described as a task in managing attrition
rates; a process with a very low success rate sometimes beginning with many hundreds of
thousands of chemicals to launch a single successful therapy. The research and development
life of a potential drug might be considered in five phases. The first being the identification,
development and validation of a target for the drug; the most common targets being
G-protein coupled receptors and kinases. The second phase involves the discovery of ‘hit’
chemicals affecting the target, and development of the hits into leads. Hit through to lead
research often begins as high throughput assays, where large libraries of chemicals are
screened for effect and sometimes side-effect. What remains are the development phases of
animal (preclinical) and human (clinical) testing prior to market release and surveillance
(pharmacovigilance).

1.2 The vital role of computational biology.
hcHTS provides a unique challenge to the computational biologist more familiar with high
dimension analysis. It increases the analytical demand from the ‘few observations, many
descriptors’ paradigm of small sample multiplex genomics to that of ‘many observations,
many descriptors’. Drug discovery is also gradually devolving its chemo-centric dominance
into an increasingly bio-centric approach. This positions computational biology as a crucial
bridge between complex science and technology, and the challenging decisions that need
be made from the data produced. The melting pot of in vitro (cell-based and biochemical)
biology, cheminformatics, bioinformatics, systems biology, and ‘big data’ analysis requires
broad inter-disciplinary scientific and computational strengths. It affords the computational
biologist the opportunity to become part of a wide ranging science. A practice where
hypotheses and data iteratively refine screens and studies, converging on greater scientific
understanding and defined solutions.
This chapter is divided into two main parts. Section 2 contextualises some of the
challenges and considerations to guide the choice of modelling strategy, whilst section 3
provides a simple predictive toxicology example that builds on these suggestions. Two
traditionally medium throughput multiplex approaches - now increasingly being used in
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higher throughput settings - will be discussed: gene expression and high content imaging
(Bickle, 2010; Zanella et al., 2010). For other promising hcHTS technologies, such as flow
cytometry (Edwards et al., 2009) and label-free methods for real time living cell assessment
(Xie et al., 2009), the reader is referred to the provided citations. High content imaging (HCI)
utilises high resolution multiplex fluorescence microscopy - typically immunofluoresence - to
study cellular architecture and health (Karol Kozak, 2009; Zanella et al., 2010). Its strength as
a tool is the single cell resolution of physiologically relevant endpoints. HCI together with
transcriptomics might be thought of as high content cell and molecular phenotyping. While
gene expression analysis is not typically considered part of phenotypic assays, in the context
of hcHTS where perturbed pathways and their reporter genes are are studied as indicators of
biological process and cell state, it should very much be seen as a proxy of the cell’s molecular
phenotype. An example of where the two approaches have become inextricably linked is RNA
inhibition screens (Karol Kozak, 2009).

2. Modern high throughput drug discovery

2.1 ‘Big data’ analysis paralysis.
Not without its critics (Douglas et al., 2010), the ongoing drug discovery mantra has been
one of managing attrition rates by ‘failing early, failing often’. However, the biological and
drugability knowledge around validated targets has remained poor. An often cited FDA white
paper of the early post-genome years (FDA, 2004) drew widespread attention by calling for the
greater use of biomarkers and computational approaches to improve this knowledge. With the
strong political willpower to modernise drug discovery, HTS has continued to gain popularity
as a brute force innovation tool, entering the public domain with resources such as ChemBank
(http://chembank.broadinstitute.org), PubChem (http://pubchem.ncbi.nlm.nih.gov) and
ChEMBL (https://www.ebi.ac.uk/chembldb). Progress has however faced persistent
concerns, with common complaints being poor chemical library design (Gillet, 2008) and that
of decision-makers drowning in data. While chemical library design is beyond the scope of
this chapter, the data concern is one familiar to every high content computational biologist.
A contrasting argument to the suggested deluge of data as the core concern is that the
principal challenge lies with modelling strategy; not the data per se. A case in point might
be made of the much publicised Large Hadron Collider with its daily data quota exceeding 40
terabytes. This represents more data than that managed by a typical computational biology
team and - while still requiring considerable computing resources - remains a manageable
data flow. This is arguably due to well developed theoretical models around which physics
expects the data to behave. In contrast, theoretical and systems biology still suffer from a
paucity of rigorous quantitative models relevant to disease and chemical biology. The ship
may be sinking not because the ocean is large, but because the water is bailed with teaspoons.
What then are the most appropriate strategies? To answer this we first need to appreciate
that the challenge with screening science is less that of providing narrowly focused yes/no
answers. Rather it is more a task of iteratively triaging the optimal options, while managing
the decision-making risk across heterogeneous studies spanning months to years. Though
not a style of research unaccustomed to statisticians and decision analysts, this challenges
computational biology culture with its often data-centric rather than decision-centric and
translational mandates.
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4 Will-be-set-by-IN-TECH

Fig. 2. A useful paradigm for HTS is that of the layers in a ‘modelling onion’, which
emphasises the crucial role of the computational biologist, bridging technology and scientific
decision making. Initial research is often driven by technology modelling: choosing the
optimal biological models, experimental protocols and technologies to provide good data
signal. Data modelling is the remit of computational biology, which might be divided up as a
spectrum of low level data clean-up through to higher level theoretical and systems
modelling. The screening computational biologist needs to balance the merits of providing
detailed results versus fast results; the latter proving useful if they enable the research team
to make real-time decisions and rapidly test hypotheses. In HTS this is often the balance of
primary versus secondary screening strategies. The final, often neglected, layer is decision
modelling. No matter how well the HTS technologists and informaticians consider their
models to be performing, if these don’t explicitly and transparently assist large discovery
teams in making decisions, they are effectively of little use.

2.2 Improving your modelling IQ2

Modern biology retains its distinctive knowledge-driven culture as a science; differentiated
from more mature sciences as being heavily dependent on phenomenological ‘stamp
collecting’. Similar divides manifest in computational biology as low level data collection,
clean-up and mining of bioinformatics versus computational biology modelling. In research
with direct translational and economic goals - such as drug screening - it is helpful to
remember that:

• Science exists to create explanatory and/or predictive models. Cohesive and
comprehensive modelling practice along the entire drug development pipeline is the
mandate of all researchers from in vitro to in silico to the patient.

• All models are wrong, some are useful. Particularly in HTS drug discovery, the
development and use of models should be driven by their utility as transparent, triaging
decision tools, not narrowly focused technological arguments.

• HTS combines three levels of modelling. Technology, data and decision models should be
seen as essential layers in a ‘modelling onion’ (Fig. 2).

There is, of course, no silver bullet to address data rich problems in drug screening.
Notwithstanding, there are general considerations before deciding on methods to optimise the
screening model (Fig. 3). A few overlapping rules of thumb are suggested here as a measure
of a screen’s IQ2. The test for IQ2 summarises the need for better integration, assay quantitative
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Fig. 3. The above immuno-stained cells - after timed exposure to a toxic chemical - provide a
simple example of the screening model in three parts: technology, data and decision
modelling. Here technology modelling involves the choice of an informative fluorescent
biomarker in an appropriate cell model after an optimal perturbation duration. The data
model might be to infer the lowest concentration at which 10% of cells are statistically
significantly brighter than twice the average baseline fluorescence. This type of model is a
‘lowest dose with an effect’ model, where the combination of statistical and biological
significance define the concentration output. The utility as a decision tool might be to
provide a reproducible relative measure of cytotoxicity across collaborating laboratories
interested in a simple ranking of cytotoxic effect, viz. a robust measure best suited as an
ordinal triage of effect. The aim being hazard identification, with little explicit attention to
risk management and translational or economic impact.

performance, and the decision-making synergies (the squared exponent) which present with
the action-enabling results.
How well does your approach integrate? Integration entails more than just the use of all available
data, but includes the effective integration along the entire flow of data through to knowledge
and scientific wisdom (Fig. 4). This is the central tenet of translational bioinformatics, which
aims to promote free flow of data between the lab and patient (Buchan et al., 2011). Still in the
early stages, translational informatics projects such as Informatics for Integrating Biology and
the Bedside (http://www.i2b2.org) hold much promise for feeding back into HTS.
How quantitative is your approach? The quality of the inference is limited by the quantitative
performance of the screen. Too often it would seem that post hoc analysis attempts to stretch
the assertions made by screening models not fit for purpose. In HTS the primary measures
of interest are dose and time. If, for example, a screening programme is required to predict
a new drug’s safety concerns (‘how toxic?’), these might be framed as one or more of many
dose and time relevant questions. A few translational toxicity concerns are listed below:

• The concentration at which a percentage of the population begin to experience an effect.

• The concentration at which the risk of rare (unpredictable) adverse effects becomes too
great.

• The extent of pathology after a set dose and time exposure.

• The optimal dosing schedule to minimise toxicity without significant loss of efficacy.

• Chronic affects - such as bioaccumulation - less easily extrapolated from acute and
sub-acute testing.
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of a screen’s IQ2. The test for IQ2 summarises the need for better integration, assay quantitative
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Fig. 3. The above immuno-stained cells - after timed exposure to a toxic chemical - provide a
simple example of the screening model in three parts: technology, data and decision
modelling. Here technology modelling involves the choice of an informative fluorescent
biomarker in an appropriate cell model after an optimal perturbation duration. The data
model might be to infer the lowest concentration at which 10% of cells are statistically
significantly brighter than twice the average baseline fluorescence. This type of model is a
‘lowest dose with an effect’ model, where the combination of statistical and biological
significance define the concentration output. The utility as a decision tool might be to
provide a reproducible relative measure of cytotoxicity across collaborating laboratories
interested in a simple ranking of cytotoxic effect, viz. a robust measure best suited as an
ordinal triage of effect. The aim being hazard identification, with little explicit attention to
risk management and translational or economic impact.

performance, and the decision-making synergies (the squared exponent) which present with
the action-enabling results.
How well does your approach integrate? Integration entails more than just the use of all available
data, but includes the effective integration along the entire flow of data through to knowledge
and scientific wisdom (Fig. 4). This is the central tenet of translational bioinformatics, which
aims to promote free flow of data between the lab and patient (Buchan et al., 2011). Still in the
early stages, translational informatics projects such as Informatics for Integrating Biology and
the Bedside (http://www.i2b2.org) hold much promise for feeding back into HTS.
How quantitative is your approach? The quality of the inference is limited by the quantitative
performance of the screen. Too often it would seem that post hoc analysis attempts to stretch
the assertions made by screening models not fit for purpose. In HTS the primary measures
of interest are dose and time. If, for example, a screening programme is required to predict
a new drug’s safety concerns (‘how toxic?’), these might be framed as one or more of many
dose and time relevant questions. A few translational toxicity concerns are listed below:

• The concentration at which a percentage of the population begin to experience an effect.

• The concentration at which the risk of rare (unpredictable) adverse effects becomes too
great.

• The extent of pathology after a set dose and time exposure.

• The optimal dosing schedule to minimise toxicity without significant loss of efficacy.

• Chronic affects - such as bioaccumulation - less easily extrapolated from acute and
sub-acute testing.
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Fig. 4. The flow of data into results and decisions reflects the well described flow of
information into knowledge and wisdom. Bioinformatics began, in part, as a field to address
data integration concerns (Searls, 2010). Today the integration of technologies, laboratories
and heterogeneous databases is common practice, and remains vibrant with emerging
resources such as cloud computing (Mak, 2011; Schadt et al., 2010). Less well practised is the
routine and formal integration of results beyond simple score-based meta-analyses. Bayesian
computation promises more formal approaches to update results and incorporate prior
information, yet advanced statistical treatment remains underutilised in modern HCS (Malo
et al., 2006). Again, the importance of assisting with decision making deserves greater
attention. Modelling approaches need be transparent enough to allow a diverse community
of scientists to easily communicate and understand the analytical assumptions and
limitations.

A role of the screening computational biologist should be seen as providing reliable
quantitative measures of concentration and time to hypotheses/questions; not just the
provision of IC50 or EC50 values per variable. The concern, for example, is not the reliable
measure of gene expression and the confidence around these measures per se. Rather, it’s the
transformation of these values into measures of concentration and time, and the confidence
around these measures.
Three quantitative concerns often deserving better consideration are suggested:

• The first is the signal-to-noise ratio (Fig. 5A), commonly measured as Z = 1 − 3(σ̂p+σ̂n)
|μ̂p−μ̂n | , for

positive and negative controls p and n respectively. A Z-score greater than 0.5 is typically
accepted to suggest a good assay. The Z-score is a narrowly focused measurement aimed
at single-plex assays, which is not robust and assumes data normality. It also does not take
into account the performance impact on decision making.

• A second concern is dynamic range. Not all cell models or technologies provide an
adequate dynamic range in which drug effects over wide concentration ranges can reliably
be measured by a broad spectrum of markers exhibiting near-linear correlation with the
effects they proxy. A well known example of this is the poor dynamic performance
of gene expression microarrays demonstrated by the Microarray Quality Control project
(MAQC Consortium et al., 2006). The screening computational biologist needs to clearly
demonstrate the adequate dynamic performance of their data prior to establishing any
routine screening.

• The third and final consideration can be broadly defined as that of information
resolution. Screens and their follow-up secondary screens/studies need to define clear
goals of improving concentration and time sampling density to ensure accurate and
sufficiently precise quantitative assertions. The results also need to be presented to
the decision-making team at an optimal resolution to be informative without being
overwhelming (Fig. 5B - 5D).
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Fig. 5. (A) quantitative PCR measurement of gene expression remains the most common gold
standard for assessing gene expression without the dynamic limitations of nucleic acid
hybridisation technologies, such as gene expression microarrays. However, as can be seen in
this well controlled example of highly replicated measurements for a single gene across
several compounds, achieving repeated in vitro measurement within 1 CT unit remains a
challenge. Assuming near optimal reaction efficiency, the CT scale approaches log2,
indicating the cost and time challenge of adequate replication to confidently discern the
doubling of a gene’s expression under screening conditions. (B-D) The resolution at which it
is optimal to present results affects the design and/or execution of the data modelling.
Figure B provides a detailed trace of five genes perturbed by a compound in a secondary
screen. While being detailed, it is ineffective at answering ‘at what dose?’ and quickly
becomes intractable in terms of technical cost and analysis when comparing multiple
compounds. Figure C partly resolves this by presenting the results as bars beginning at the
lowest concentration at which the answer to the question becomes true. Figure D presents
this information for the same genes, comparing tested compounds, numerically providing
the concentrations and displaying the statistical confidence in the results as being
proportional to the bubble size. Here we see that drug B behaves most similarly to drug A,
but at a 5-fold higher concentration (lower potency). It would seem from the screen that we
can be fairly confident that drug C behaves differently from drugs A and B.
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Fig. 6. Careful consideration need always be given to the actionability of screening methods
used. If, for example, compound A clusters (or classifies) together with a prototypical
compound in cluster A, while compound B clusters together with another prototype in
cluster B, does this provide sufficient information to prioritise compound A with a defined
dose and time dependent confidence? Similarly with pathway-driven approaches. If
compound A does not up-regulate genes H and J at low concentrations, how does this
translate into dose and time dependent effects for the purposes of screen prioritisation?

How actionable is your approach? The most important consideration is how effective the
screening strategy is at enabling the team to make informed decisions that lead to clear actions
where the utility, cost and risk attached to those actions are understood. These can again be
considered at the technology, data and decision modelling levels.
Technologist bias will routinely be towards increasing technology complexity within time and
cost restraints. However, increased complexity needs to translate into improved actionability.
The debate on simple cell culture techniques replaced by the earlier use of lower throughput
three-dimensional approaches (Fernandes et al., 2009) highlights this concern. Complex in
vitro approaches run the risk of compromised data reproducibility. If reduced reproducibility
and cost of technology complexity outweigh potential gains in insight, the technological
improvements and necessary data modelling changes need be questioned.
The over-reliance on exploratory bioinformatics without clear quantitative questions,
hypotheses and follow up is arguably core to current innovation failures (Fig. 6). Three pillars
of result significance enable the rational implementation of screens:

• The first is statistical significance, which has traditionally played a minor role within
single-plex HCS (Karol Kozak, 2009; Malo et al., 2006).

• Not to be confused with statistical significance is biological significance. A differentially
expressed gene defined purely in terms of statistical confidence above baseline needn’t
represent its biological relevance as a useful marker to elucidate mechanism or enable clear
actions based on screening questions.

• The economic argument forms the final pillar, where cost is considered together with utility
(Swamidass et al., 2010).

Bayesian methods provide a useful framework to formally work with these different notions
of importance, whilst also enabling the use of external data - such as cheminformatics and
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Fig. 7. Common cheminformatics practice is to define descriptors of structure and
physiochemical properties in order to position a compound in chemical space. If the purpose
of bioinformatics is not only to define molecular and cellular phenotype patterns and
mechanisms, then the role of the screening computational biologist effectively becomes a
collaborative counterpart to the cheminformatician, defining biological descriptors that are
not merely useful as biologically predictive or mechanistic markers, but can be mapped to
chemical descriptors in order to define structure-activity relationships (SAR) for rational
drug design.

pharmacoeconomics - to establish meaningful priors. However Bayesian analysis appears
notably absent in routine published practice (Klon, 2009; Nidhi et al., 2006). Computational
limitations seem less likely than the poor understanding surrounding the use of these
methods. The need for model understanding and transparency by the entire decision making
team is paramount. So until formal frameworks can meet this need, we are left to rely on
simpler approaches, some of which are discussed later in this chapter.
Finally, it might be argued that screening methods should ultimately strive not to provide
a ‘post-mortem’ of results but actively assist the discovery team to design better therapies.
If, for example, a screen has been developed to predict a spectrum of toxicities from tested
chemicals, it should not only accurately identify the correct toxicities, but also their dose-time
properties while guiding the chemists on how to alter the compound structures to improve
their safety profiles. This re-emphasises the argument for generalist computational biologists
in HTS who are able to collaborate with the chemical design and cheminformatics teams,
identifying actionable structure-activity relationships (Fig. 7).

3. ‘Next generation’ drug screening

The title above has deliberately been borrowed from the same description applied to second
generation nucleic acid sequencing technologies. It is used in part to stress the increasingly
high content flavour of HCS, but also the need for a new screening paradigm focused on
a cohesive, transparent and actionable modelling practice. Drawing from real data, this
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section demonstrates how a screen for genotoxicity might be created using currently available
software. The aim is to present how simple rules, weights and thresholds can be used as one
approach to create screens not only with good performance characteristics but which can be
easily understood and acted on by all team members.

3.1 Rules, weights and thresholds
Cheminformatics has routinely utilised machine-driven pattern recognition to distil large data
sets into rule-based models as a form of ‘human readable’ modelling, or rules of thumb, to
predict drug properties. A well known example applicable to ADME is Lipinski’s Rule of
Five, which assesses how likely it is that a chemical will be orally active. To pass Lipinski’s
rule, a chemical is limited to violating no more than one criterion:

• Less than or equal to five hydrogen bond donors.

• Less than or equal to ten hydrogen bond acceptors.

• Less than or equal to 500 daltons in molecular weight.

• An octanol-water partition coefficient log P less than or equal to 5

In a similar vein, standard bioinformatics methods can be distilled into combinations of
rules, creating such models. These can be tested, refined and understood by non-specialists
across the drug discovery team (Fig. 8), with biological and decision-relevant significance
better ensured by applying transparent weights and thresholds (Fig. 9). As a consequence
of increased computing power and data set size, it seems likely that rule-based approaches
will grow in popularity as a tractable modelling strategy. Rule-based modelling has already
proven popular in systems biology, where unmanageable lists of differential equations have
yielded to agent-based rules of interaction used to drive simulations (Barnes, 2010; Krakauer
et al., 2011; Yoav Shoham, 2009). As a methodological approach, rule-based modelling
provides a natural bridge for team-driven hypothesis generation and the maturation of
generalities for mechanistic and screening biology treated as information science. A particular
benefit of rule-based models in screening is that it also allows for the seamless integration of
multiple data types. A model might be a collection of rules from multiple cell culture models,
multiple time scales, and multiple technologies such as quantitative PCR, HCI, and classical
cytometry. Collectively, all of these benefits ensure a high IQ2 for rule-based models.

3.2 Screening with HT-StreamTM

In vitro drug safety screening currently falls within the domain of what are typically
medium throughput models aimed at predicting drug absorption, distribution, metabolism
and excretion (Ekins et al., 2005). These models are collectively referred to as predictive
ADME. Combinatorial chemistry and the shift of ADME to early stage discovery have both
significantly improved our ability to design efficacious pharmaceuticals. This has left drug
toxicity as an important bottleneck contributing to the innovation crisis, and has prompted its
shift to earlier ‘off target’ cell screens. Whilst born out of lower throughput toxicogenomics
(Van Hummelen & Sasaki, 2010), this shift of high content application to high throughput
screening requires new methodology and software.
Fig. 10 provides an example of two established DNA damage and stress markers tested
on the hepaRG® human liver cell co-culture (Guguen-Guillouzo & Guillouzo, 2010) using
quantitative PCR. Microfluidic ‘lab-on-a-chip’ improvements have enabled cost-effective,
high throughput quantitative PCR (Stedtfeld et al., 2008); dramatically improving the
scalability of this gold-standard technology as a stand-alone tool or in conjunction with
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Fig. 8. The apoptosis pathway, as represented above, is commonly used to predict drug
safety concerns. A typical bioinformatics approach in a high dimension setting might be to
search for apoptosis gene enrichment. Gene set enrichment based on established pathways
or ontologies is a rough exploratory tool that translates poorly into a setting where a precise
dose-response relationship is required. Using unguided machine learning, literature mining
and expert knowledge, complex pathways can be stripped down to collections of rules able
to be refined over time and combined to form rule-based models. An example of a rule-based
model might be ‘clinically significant human apoptosis when at least one, but no greater than
four of the following gene ratios hold true. . . ’. In a dose-response setting, the lowest
concentration at which the rule holds true is called, as a ‘lowest dose with an effect’ model.

other high content methods such as HCI. While it remains traditional to begin testing gene
expression at cell cytotoxicity IC50 concentrations, these do not represent physiologically
appropriate dosings. As suggested in the data correlations of Fig. 11, HCI allows for
mechanistically relevant concentrations to refine classic viability assays in the absence of
reliable human data; and discover transcriptomic biomarkers for use in rule-based models.
Once the models have been developed, HT-StreamTM (www.ht-stream.com,
www.simugen-global.com) proves useful as online collaborative software that presents
the results in a decision-focused manner (Fig. 12). All submitted screening data undergoes
automated quality control (Fig. 10A), prior to the inference of the lowest concentration
at which each rule becomes true. HT-StreamTM uses the derived concentrations, together
with weights and thresholds to help prioritise compounds, visualise results, and compare
models (Fig. 13). Easy-to-use software such as this helps make it possible for teams to create
‘ecosystems’ of applications, rules and models; continuously refining them as collective
interdisciplinary knowledge grows with transparent, decision-centric screens.
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Fig. 9. The above plots represents the output for two ‘lowest dose with an effect’ models for
five tested compounds. The aim here is to rank compounds from highest to lowest toxicity,
viz. prioritise those presenting with toxicity at lower concentrations. The darker a
compound’s label, the higher it is prioritised. The x-axes represent increasing microMolar
concentrations of the compounds, with bars representing 95% confidence intervals. (A) Here
we observe the simplest prioritisation: drug A demonstrates high potency (from model A)
and so is ranked first. The benefit of presenting data as concentration values, and the
statistical confidence around those values, is evident. While drug A is prioritised over drug
B, their confidence intervals overlap, suggesting insufficient statistical evidence to support
the ranking. (B) The same results are plotted, but with a threshold added to drug B. In this
example, drug B has prior information regarding its therapeutic efficacy. The discovery team
have decided that any toxicity called above a certain threshold will be of little consequence,
as it is unlikely to be reached at therapeutic concentrations. By including this threshold, drug
B is de-prioritised. (C) The previous rankings assume an equal weighting of the two models.
In reality this is rarely the case. If model A represents the drug’s carcinogenic potential,
whilst model B represents a low-grade safety concern, then model A requires a greater
weighting in the global prioritisation. Here drugs D and E switch positions as model B is
assigned a low weighting. Thresholds and weights ensure transparent assumptions of
biological relevance. With the inclusion of prototypical compounds in the test rankings,
transparent weights, thresholds, and statistical significance enable the team to collectively
make informed, defensible decisions.
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Fig. 10. Genotoxicity biomarkers in hepaRG® viewed using the online tools provided by
SimuGen. (A) The doubling of CDKN1A’s expression with high dose cyclophosphamide.
The x-axis represents increasing compound concentration, while each tick in the y-axis
represents a CT unit; a drop in one unit thus representing a doubling in gene expression. The
analysis tools provide robust automated quality control, in this case identifying two
measurements believed to be outliers in bold. (B) SimuGen’s biomarker discovery tools
provide a reference database for over 22,000 genes tested across multiple chemical
perturbations in hepaRG®. The above result for GADD45A has identified its most strongly
correlated toxic biomarkers, and plotted their first two principal components. GADD45A is
highlighted with an arrow and can be seen to be closely clustered with, and enriching for,
known genotoxic biomarkers.
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concentrations of the compounds, with bars representing 95% confidence intervals. (A) Here
we observe the simplest prioritisation: drug A demonstrates high potency (from model A)
and so is ranked first. The benefit of presenting data as concentration values, and the
statistical confidence around those values, is evident. While drug A is prioritised over drug
B, their confidence intervals overlap, suggesting insufficient statistical evidence to support
the ranking. (B) The same results are plotted, but with a threshold added to drug B. In this
example, drug B has prior information regarding its therapeutic efficacy. The discovery team
have decided that any toxicity called above a certain threshold will be of little consequence,
as it is unlikely to be reached at therapeutic concentrations. By including this threshold, drug
B is de-prioritised. (C) The previous rankings assume an equal weighting of the two models.
In reality this is rarely the case. If model A represents the drug’s carcinogenic potential,
whilst model B represents a low-grade safety concern, then model A requires a greater
weighting in the global prioritisation. Here drugs D and E switch positions as model B is
assigned a low weighting. Thresholds and weights ensure transparent assumptions of
biological relevance. With the inclusion of prototypical compounds in the test rankings,
transparent weights, thresholds, and statistical significance enable the team to collectively
make informed, defensible decisions.
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Fig. 10. Genotoxicity biomarkers in hepaRG® viewed using the online tools provided by
SimuGen. (A) The doubling of CDKN1A’s expression with high dose cyclophosphamide.
The x-axis represents increasing compound concentration, while each tick in the y-axis
represents a CT unit; a drop in one unit thus representing a doubling in gene expression. The
analysis tools provide robust automated quality control, in this case identifying two
measurements believed to be outliers in bold. (B) SimuGen’s biomarker discovery tools
provide a reference database for over 22,000 genes tested across multiple chemical
perturbations in hepaRG®. The above result for GADD45A has identified its most strongly
correlated toxic biomarkers, and plotted their first two principal components. GADD45A is
highlighted with an arrow and can be seen to be closely clustered with, and enriching for,
known genotoxic biomarkers.
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Fig. 11. HCI allows the standardisation of compound concentrations using mechanistic
criteria. This correlation plot demonstrates strong correlation (dark squares: Pearson >0.8)
and anti-correlation (light squares: Pearson<-08) between known hepatotoxic biomarkers
and microscopic phenotypes. The gene expression profile for each compound is measured at
the lowest concentration at which any HCI phenotype emerges. Considering drop in
mitochondrial mass and potential as a joint phenotype (highlighted) shows strong
association with with stress, metabolic and cirrhosis markers. Strong correlations such as
these indicate the compatibility of the approaches and the ability to used joint HCI and gene
expression data in rule-based models.
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Fig. 12. The right-hand side plot traces the paths of GADD45A and CDKN1A over almost 50
chemicals as their concentrations increase. The black paths represent known genotoxic
drugs. It can be seen that there is a ‘golden ratio’ for the two genes between the dotted lines.
Most compounds fall below, whilst non-genotoxic compounds typically present above.
HT-StreamTM allows such rules to be entered.

Fig. 13. Using the weights and thresholds, all tested compounds are ranked in HT-StreamTM.
Any model with a positive result has its results plotted, and contrasted to similar behaving
compounds, as described in Fig. 9. A principal components plot, using all models, is also
provided to allow the computational biologist and chemist to identify overall patterns that
might be related back to chemical structure.
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