
Flash Memories
Edited by Igor Stievano

Edited by Igor Stievano

Photo by alfexe / iStock

Flash memories and memory systems are key resources for the development of
electronic products implementing converging technologies or exploiting solid-state

memory disks. This book illustrates state-of-the-art technologies and research studies
on Flash memories. Topics in modeling, design, programming, and materials for

memories are covered along with real application examples.

ISBN 978-953-307-272-2

Flash M
em

ories

FLASH MEMORIES

Edited by Igor S. Stievano

INTECHOPEN.COM

FLASH MEMORIES

Edited by Igor S. Stievano

INTECHOPEN.COM

Flash Memories
http://dx.doi.org/10.5772/775
Edited by Igor Stievano

Contributors

Sung-Jin Choi, Yang-Kyu Choi, Haruhiko Kaneko, Xueqiang Wang, Guiqiang Dong, Fei Wang, Maria Soledad Escolar,
Jesús Carretero, Javier Fernández, Ming Liu, Zhonghai Lu, Wolfgang Kuehn, Axel Jantsch, Yihuai Wang, Jin Wu, Amir
Rizaan Rahiman, Putra Sumari, Igor Simone Stievano, Flavio Canavero, Ivan Maio, Michele Fabiano, Paolo Prinetto,
Stefano Di Carlo, Maurizio Caramia, Emanuele Verrelli, Dimitris Tsoukalas

© The Editor(s) and the Author(s) 2011
The moral rights of the and the author(s) have been asserted.
All rights to the book as a whole are reserved by INTECH. The book as a whole (compilation) cannot be reproduced,
distributed or used for commercial or non-commercial purposes without INTECH’s written permission.
Enquiries concerning the use of the book should be directed to INTECH rights and permissions department
(permissions@intechopen.com).
Violations are liable to prosecution under the governing Copyright Law.

Individual chapters of this publication are distributed under the terms of the Creative Commons Attribution 3.0
Unported License which permits commercial use, distribution and reproduction of the individual chapters, provided
the original author(s) and source publication are appropriately acknowledged. If so indicated, certain images may not
be included under the Creative Commons license. In such cases users will need to obtain permission from the license
holder to reproduce the material. More details and guidelines concerning content reuse and adaptation can be
foundat http://www.intechopen.com/copyright-policy.html.

Notice

Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those
of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published
chapters. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the
use of any materials, instructions, methods or ideas contained in the book.

First published in Croatia, 2011 by INTECH d.o.o.
eBook (PDF) Published by IN TECH d.o.o.
Place and year of publication of eBook (PDF): Rijeka, 2019.
IntechOpen is the global imprint of IN TECH d.o.o.
Printed in Croatia

Legal deposit, Croatia: National and University Library in Zagreb

Additional hard and PDF copies can be obtained from orders@intechopen.com

Flash Memories
Edited by Igor Stievano

p. cm.

ISBN 978-953-307-272-2

eBook (PDF) ISBN 978-953-51-5545-4

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

3,350+
Open access books available

151
Countries delivered to

12.2%
Contributors from top 500 universities

Our authors are among the

Top 1%
most cited scientists

108,000+
International authors and editors

114M+
Downloads

We are IntechOpen,
the first native scientific

publisher of Open Access books

Meet the editor

Igor S. Stievano received the Laurea degree and the
Ph.D. degree in electronic engineering from the Po-
litecnico di Torino, Torino, Italy, in 1996 and in 2001,
respectively. Currently he is an Associate Professor of
Circuit Theory with the ElectroMagnetc Compatibility
(EMC) group at the Dipartimento di Elettronica, Po-
litecnico di Torino. His research interests are in the field

of Electromagnetic Compatibility, where he works on the macromodeling
of linear and nonlinear circuit elements, with specific application to the
behavioral modeling of digital integrated circuits, transmission lines and
linear junctions. He is Author of more than 90 papers published in inter-
national journals and conference proceedings. He is Senior Member of
the Institute of Electrical and Electronics Engineers (IEEE). He has been a
reviewer for several IEEE journals and since 2007 he has been member of
the Scientific Steering Committee of the IEEE International Workshop on
Electromagnetic Compatibility of Integrated Circuits, EMC Compo.

Contents

Preface IX

Part 1 Modeling, Algorithms and Programming Techniques 1

Chapter 1 Design Issues and Challenges
of File Systems for Flash Memories 3
Stefano Di Carlo, Michele Fabiano,
Paolo Prinetto and Maurizio Caramia

Chapter 2 Error Control Coding for Flash Memory 31
Haruhiko Kaneko

Chapter 3 Error Correction Codes
and Signal Processing in Flash Memory 57
Xueqiang Wang, Guiqiang Dong,
Liyang Pan and Runde Zhou

Chapter 4 Block Cleaning Process in Flash Memory 83
Amir Rizaan Rahiman and Putra Sumari

Chapter 5 Behavioral Modeling of Flash Memories 95
Igor S. Stievano, Ivan A. Maio and Flavio G. Canavero

Part 2 Applications 111

Chapter 6 Survey of the State-of-the-Art
in Flash-based Sensor Nodes 113
Soledad Escolar Díaz, Jesús Carretero Pérez
and Javier Fernández Muñoz

Chapter 7 Adaptively Reconfigurable
Controller for the Flash Memory 137
Ming Liu, Zhonghai Lu, Wolfgang Kuehn and Axel Jantsch

Chapter 8 Programming Flash Memory
in Freescale S08/S12/CordFire MCUs Family 155
Yihuai Wang and Jin Wu

Contents

Preface XI

Part 1 Modeling, Algorithms and Programming Techniques 1

Chapter 1 Design Issues and Challenges
of File Systems for Flash Memories 3
Stefano Di Carlo, Michele Fabiano,
Paolo Prinetto and Maurizio Caramia

Chapter 2 Error Control Coding for Flash Memory 31
Haruhiko Kaneko

Chapter 3 Error Correction Codes
and Signal Processing in Flash Memory 57
Xueqiang Wang, Guiqiang Dong,
Liyang Pan and Runde Zhou

Chapter 4 Block Cleaning Process in Flash Memory 83
Amir Rizaan Rahiman and Putra Sumari

Chapter 5 Behavioral Modeling of Flash Memories 95
Igor S. Stievano, Ivan A. Maio and Flavio G. Canavero

Part 2 Applications 111

Chapter 6 Survey of the State-of-the-Art
in Flash-based Sensor Nodes 113
Soledad Escolar Díaz, Jesús Carretero Pérez
and Javier Fernández Muñoz

Chapter 7 Adaptively Reconfigurable
Controller for the Flash Memory 137
Ming Liu, Zhonghai Lu, Wolfgang Kuehn and Axel Jantsch

Chapter 8 Programming Flash Memory
in Freescale S08/S12/CordFire MCUs Family 155
Yihuai Wang and Jin Wu

X Contents

Part 3 Technology, Materials and Design Issues 175

Chapter 9 Source and Drain Junction Engineering
for Enhanced Non-Volatile Memory Performance 177
Sung-Jin Choi and Yang-Kyu Choi

Chapter 10 Non-Volatile Memory Devices
Based on Chalcogenide Materials 197
Fei Wang

Chapter 11 Radiation Hardness of Flash
and Nanoparticle Memories 211
Emanuele Verrelli and Dimitris Tsoukalas

Chapter 12 Atomistic Simulations of Flash Memory
Materials Based on Chalcogenide Glasses 241
Bin Cai, Binay Prasai and D. A. Drabold

Preface

In recent years, the ICT market has quickly moved toward the integration of a large
variety of functions into a single portable electronic equipment. The boundaries
among different devices like music players, digital cameras or mobile phones are
going to vanish. In this trend, one of the key factors is played by data storage, since all
these devices require a large amount of memory to store either audio or visual data.
Also, the energy consumption needs to be reduced to further extend battery duration
and the functionality of the devices.

In this setting, Flash memories provide an effective solution, as they offer impressive
features, including low noise, reliability, low energy consumption, small size and
weight, and robustness to mechanical stresses. Flash memories are thus actively
contributing to a new generation of devices. The technology is mature and this class of
devices is massively used in a wide range of applications. The performances of Flash
memories also contribute to the growing interest in solid‐state disks, that are currently
replacing traditional hard drives in ubiquitous notebook PCs, netbooks and PC tablets.
The research on memories and their applications, therefore, will be of paramount
importance for the development of future electronic products.

This book is aimed at presenting the state‐of‐the‐art technologies and the research
studies related, but not limited, to flash memories. The book consists of fourteen
Chapters organized into three Parts, which guide the reader through the different
aspects of the subject.

Part 1 focuses on the contributions related to modeling, algorithms and programming
techniques. The first Chapter provides a comprehensive overview of file management
with specific interest on native flash file systems. The second and third chapters
address the important problem of error correction and coding. The fourth Chapter
discusses the features and performances of both the automatic and the semi‐automatic
block cleaning processes. Finally, the last Chapter provides an overview of the state‐of‐
the‐art methods to build behavioral models of Flash memories for signal and power
integrity simulations.

Part 2 is mainly dedicated to contributions with emphasis on applications. The first
Chapter addresses the problem of storage in battery‐powered devices operating in a

XII Preface

distributed wireless sensor network, thus highlighting the importance of flash
memory chips in a sensor node. The second Chapter presents the design of a
peripheral controller reconfigurable system based on the FPGA Dynamic Partial
Reconfiguration technology, which enables more efficient run‐time resource
management. The last Chapter focuses on practical examples of in‐circuit
programming of commercial flash memory devices.

Part 3 collects results on the technology, materials and design topics. The first three
Chapters deal with alternative improved technologies and innovative materials for
enhancing the performance of memories along with a detailed discussion of features,
strengths and limitations of the proposed solutions. The last Chapter concludes the
book by discussing a method for molecular dynamic simulations. This simulation is
aimed at assessing the strengths of these new materials and their possible application
to the future technology of Flash memories.

Enjoy the book!

Igor Simone Stievano
Politecnico di Torino

Dipartimento di Elettronica
Italy

Part 1

Modeling, Algorithms
and Programming Techniques

0

Design Issues and Challenges of
File Systems for Flash Memories

Stefano Di Carlo1, Michele Fabiano1, Paolo Prinetto1 and Maurizio Caramia2

1Department of Control and Computer Engineering, Politecnico di Torino
2Command Control and Data Handling, Thales Alenia Space

Italy

1. Introduction

The increasing demand for high-speed storage capability both in consumer electronics (e.g.,
USB flash drives, digital cameras, MP3 players, solid state hard-disks, etc.) and mission critical
applications, makes NAND flash memories a rugged, compact alternative to traditional
mass-storage devices such as magnetic hard-disks.
The NAND flash technology guarantees a non-volatile high-density storage support that
is fast, shock-resistant and very power-economic. At higher capacities, however, flash
storage can be much more costly than magnetic disks, and some flash products are still
in short supply. Furthermore, the continuous downscaling allowed by new technologies
introduces serious issues related to yield, reliability, and endurance of these devices (Cooke,
2007; IEEE Standards Department, 1998; Jae-Duk et al., 2002; Jen-Chieh et al., 2002; Ielmini,
2009; Mincheol et al., 2009; Mohammad et al., 2000). Several design dimensions, including
flash memory technology, architecture, file management, dependability enhancement, power
consumption, weight and physical size, must be considered to allow a widespread use of
flash-based devices in the realization of high-capacity mass-storage systems (Caramia et al.,
2009a).
Among the different issues to consider when designing a flash-based mass-storage system, the
file management represents a challenging problem to address. In fact, flash memories store
and access data in a completely different manner if compared to magnetic disks. This must
be considered at the Operating System (OS) level to grant existing applications an efficient
access to the stored information. Two main approaches are pursuit by OS and flash memory
designers: (i) block-device emulation, and (ii) development of native file systems optimized
to operate with flash-based devices (Chang & Kuo, 2004).
Block-device emulation refers to the development of a hardware/software layer able to emulate
the behavior of a traditional block device such as a hard-disk, allowing the OS to communicate
with the flash using the same primitives exploited to communicate with magnetic-disks. The
main advantage of this approach is the possibility of reusing available file systems (e.g., FAT,
NTFS, ext2) to access the information stored in the flash, allowing maximum compatibility
with minimum intervention on the OS. However, traditional file systems do not take into
account the specific peculiarities of the flash memories, and the emulation layer alone may be
not enough to guarantee maximum performance.

1

0

Design Issues and Challenges of
File Systems for Flash Memories

Stefano Di Carlo1, Michele Fabiano1, Paolo Prinetto1 and Maurizio Caramia2

1Department of Control and Computer Engineering, Politecnico di Torino
2Command Control and Data Handling, Thales Alenia Space

Italy

1. Introduction

The increasing demand for high-speed storage capability both in consumer electronics (e.g.,
USB flash drives, digital cameras, MP3 players, solid state hard-disks, etc.) and mission critical
applications, makes NAND flash memories a rugged, compact alternative to traditional
mass-storage devices such as magnetic hard-disks.
The NAND flash technology guarantees a non-volatile high-density storage support that
is fast, shock-resistant and very power-economic. At higher capacities, however, flash
storage can be much more costly than magnetic disks, and some flash products are still
in short supply. Furthermore, the continuous downscaling allowed by new technologies
introduces serious issues related to yield, reliability, and endurance of these devices (Cooke,
2007; IEEE Standards Department, 1998; Jae-Duk et al., 2002; Jen-Chieh et al., 2002; Ielmini,
2009; Mincheol et al., 2009; Mohammad et al., 2000). Several design dimensions, including
flash memory technology, architecture, file management, dependability enhancement, power
consumption, weight and physical size, must be considered to allow a widespread use of
flash-based devices in the realization of high-capacity mass-storage systems (Caramia et al.,
2009a).
Among the different issues to consider when designing a flash-based mass-storage system, the
file management represents a challenging problem to address. In fact, flash memories store
and access data in a completely different manner if compared to magnetic disks. This must
be considered at the Operating System (OS) level to grant existing applications an efficient
access to the stored information. Two main approaches are pursuit by OS and flash memory
designers: (i) block-device emulation, and (ii) development of native file systems optimized
to operate with flash-based devices (Chang & Kuo, 2004).
Block-device emulation refers to the development of a hardware/software layer able to emulate
the behavior of a traditional block device such as a hard-disk, allowing the OS to communicate
with the flash using the same primitives exploited to communicate with magnetic-disks. The
main advantage of this approach is the possibility of reusing available file systems (e.g., FAT,
NTFS, ext2) to access the information stored in the flash, allowing maximum compatibility
with minimum intervention on the OS. However, traditional file systems do not take into
account the specific peculiarities of the flash memories, and the emulation layer alone may be
not enough to guarantee maximum performance.

1

2 Flash Memory

The alternative to the block-device emulation is to exploit the hardware features of the flash
device in the development of a native flash file system. An end-to-end flash-friendly solution
can be more efficient than stacking a file system designed for the characteristics of magnetic
hard-disks on top of a device driver designed to emulate disks using flash memories (Gal
& Toledo, 2005). For efficiency reasons, this approach is becoming the preferred solution
whenever embedded NAND flash memories are massively exploited.
The literature is rich of strategies involving block-device emulation, while, to the best of
our knowledge, a comprehensive comparison of available native file systems is still missing.
This chapter discusses how to properly address the issues of using NAND flash memories as
mass-memory devices from the native file system standpoint. We hope that the ideas and the
solutions proposed in this chapter will be a valuable starting point for designers of NAND
flash-based mass-memory devices.

2. Flash memory issues and challenges

Although flash memories are a very attractive solution for the development of high-end mass
storage devices, the technology employed in their production process introduces several
reliability challenges (IEEE Standards Department, 1998; Jen-Chieh et al., 2002; Mohammad
et al., 2000). Native flash file systems have to address these problems with proper strategies
and methodologies in order to efficiently manage the flash memory device. Fig. 1 shows a
possible partial taxonomy of such strategies that will be discussed in the sequel of this section.

Fig. 1. A possible taxonomy of the management strategies for flash memories

2.1 Technology
The target memory technology is the first parameter to consider when designing a native flash
file system. The continuous technology downscaling strongly affects the reliability of the flash
memory cells, while the reduction of the distance among cells may lead to several types of cell
interferences (Jae-Duk et al., 2002; Mincheol et al., 2009).
From the technology standpoint, two main families of flash memories do exist: (i) NOR flash
memories and (ii) NAND flash memories. A deep analysis of the technological aspects of
NOR and NAND flash memories is out of the scope of this chapter (the reader may refer to

4 Flash Memories Design Issues and Challenges of
File Systems for Flash Memories 3

(Ielmini, 2009) for additional information). Both technologies use floating-gate transistors to
realize non-volatile storing cells. However, the NAND technology allows denser layout and
greater storage capacity per unit of area. It is therefore the preferred choice when designing
mass-storage systems, and it will be the only technology considered in this chapter.
NAND flash memories can be further classified based on the number of bit per cell the
memory is able to store. Single Level Cell (SLC) memories store a single bit per cell, while
Multiple Level Cell (MLC) memories allow to store multiple bits per memory cell. Fig.
2 shows a comparison between SLC and MLC NAND flash memories (Lee et al., 2009)
considering three main characteristics: capacity, performance and endurance.

������������ ����������

���������

������������ ����������

���������

������������������� �������������������

Fig. 2. Comparison of SLC and MLC flash memories

The MLC technology offers higher capacity compared to the SLC technology at the same
cost in terms of area. However, MLC memories are slightly slower than SLC memories.
MLC memories are more complex, cells are closer, there are multiple voltage references
and highly-dependable analog circuitry is requested (Brewer & Gill, 2008). The result is an
increased bit error rate (BER) that reduces the overall endurance and reliability (Mielke et al.,
2008), thus requiring proper error correction mechanisms at the chip and/or file system level.
Consumer electronic products, that continuously demand for increased storage capacity, are
nowadays mainly based on MLC NAND flash memories, while mission-critical applications
that require high reliability mainly adopt SLC memories (Yuan, 2008).

2.2 Architecture
A native flash file system must be deeply coupled with the hardware architecture of the
underlying flash memory. A NAND flash memory is usually a hierarchical structure
organized into pages, blocks and planes.
A page groups a fixed number of memory cells. It is the smallest storage unit when
performing read and programming operations. Each page includes a data area where actual
data are stored and a spare area. The spare area is typically used for system level management,
although there is no physical difference from the rest of the page. Pages already written with
data must be erased prior to write new values. A typical page size can be 2KB plus 64B
spare, but the actual trend is to increase the page size up to 4KB+128B and to exploit the MLC
technology.
A block is a set of pages. It is the smallest unit when performing erase operations. Therefore, a
page can be erased only if its corresponding block is totally erased. A block typically contains
64 pages, with a trend to increase this number to 128 pages per block, or even more. Since flash

5Design Issues and Challenges of File Systems for Flash Memories

2 Flash Memory

The alternative to the block-device emulation is to exploit the hardware features of the flash
device in the development of a native flash file system. An end-to-end flash-friendly solution
can be more efficient than stacking a file system designed for the characteristics of magnetic
hard-disks on top of a device driver designed to emulate disks using flash memories (Gal
& Toledo, 2005). For efficiency reasons, this approach is becoming the preferred solution
whenever embedded NAND flash memories are massively exploited.
The literature is rich of strategies involving block-device emulation, while, to the best of
our knowledge, a comprehensive comparison of available native file systems is still missing.
This chapter discusses how to properly address the issues of using NAND flash memories as
mass-memory devices from the native file system standpoint. We hope that the ideas and the
solutions proposed in this chapter will be a valuable starting point for designers of NAND
flash-based mass-memory devices.

2. Flash memory issues and challenges

Although flash memories are a very attractive solution for the development of high-end mass
storage devices, the technology employed in their production process introduces several
reliability challenges (IEEE Standards Department, 1998; Jen-Chieh et al., 2002; Mohammad
et al., 2000). Native flash file systems have to address these problems with proper strategies
and methodologies in order to efficiently manage the flash memory device. Fig. 1 shows a
possible partial taxonomy of such strategies that will be discussed in the sequel of this section.

Fig. 1. A possible taxonomy of the management strategies for flash memories

2.1 Technology
The target memory technology is the first parameter to consider when designing a native flash
file system. The continuous technology downscaling strongly affects the reliability of the flash
memory cells, while the reduction of the distance among cells may lead to several types of cell
interferences (Jae-Duk et al., 2002; Mincheol et al., 2009).
From the technology standpoint, two main families of flash memories do exist: (i) NOR flash
memories and (ii) NAND flash memories. A deep analysis of the technological aspects of
NOR and NAND flash memories is out of the scope of this chapter (the reader may refer to

4 Flash Memories Design Issues and Challenges of
File Systems for Flash Memories 3

(Ielmini, 2009) for additional information). Both technologies use floating-gate transistors to
realize non-volatile storing cells. However, the NAND technology allows denser layout and
greater storage capacity per unit of area. It is therefore the preferred choice when designing
mass-storage systems, and it will be the only technology considered in this chapter.
NAND flash memories can be further classified based on the number of bit per cell the
memory is able to store. Single Level Cell (SLC) memories store a single bit per cell, while
Multiple Level Cell (MLC) memories allow to store multiple bits per memory cell. Fig.
2 shows a comparison between SLC and MLC NAND flash memories (Lee et al., 2009)
considering three main characteristics: capacity, performance and endurance.

������������ ����������

���������

������������ ����������

���������

������������������� �������������������

Fig. 2. Comparison of SLC and MLC flash memories

The MLC technology offers higher capacity compared to the SLC technology at the same
cost in terms of area. However, MLC memories are slightly slower than SLC memories.
MLC memories are more complex, cells are closer, there are multiple voltage references
and highly-dependable analog circuitry is requested (Brewer & Gill, 2008). The result is an
increased bit error rate (BER) that reduces the overall endurance and reliability (Mielke et al.,
2008), thus requiring proper error correction mechanisms at the chip and/or file system level.
Consumer electronic products, that continuously demand for increased storage capacity, are
nowadays mainly based on MLC NAND flash memories, while mission-critical applications
that require high reliability mainly adopt SLC memories (Yuan, 2008).

2.2 Architecture
A native flash file system must be deeply coupled with the hardware architecture of the
underlying flash memory. A NAND flash memory is usually a hierarchical structure
organized into pages, blocks and planes.
A page groups a fixed number of memory cells. It is the smallest storage unit when
performing read and programming operations. Each page includes a data area where actual
data are stored and a spare area. The spare area is typically used for system level management,
although there is no physical difference from the rest of the page. Pages already written with
data must be erased prior to write new values. A typical page size can be 2KB plus 64B
spare, but the actual trend is to increase the page size up to 4KB+128B and to exploit the MLC
technology.
A block is a set of pages. It is the smallest unit when performing erase operations. Therefore, a
page can be erased only if its corresponding block is totally erased. A block typically contains
64 pages, with a trend to increase this number to 128 pages per block, or even more. Since flash

5Design Issues and Challenges of File Systems for Flash Memories

4 Flash Memory

memories wear out after a certain number of erasure cycles (endurance), if the erasure cycles
of a block exceed this number, the block cannot be considered anymore reliable for storing
data. A typical value for the endurance of an SLC flash memory is about 105 erasure cycles.
Finally, blocks are grouped into planes. A flash memory with N planes can read/write and
erase N pages/blocks at the same time (Cooke, 2007).

��������

�������������
����������

�
�������������
�����������

����������������

����������� �����������

��������������

�

���

�������� ��������

����������������������������� ����������������������������������

Fig. 3. A Dual Plane 2KB-Page SLC NAND Flash memory

Fig. 3 shows an example of a 512MB dual plane SLC NAND flash memory architecture
proposed in (Cooke, 2007). Each plane can store 256MB with pages of 2KB+64B. A data
register able to store a full page is provided for each plane, and an 8-bit data bus (i.e., I/O
0-7) is used to access stored information.
Several variations of this basic architecture can be produced, with main differences in
performance, timing and available set of commands (Cooke, 2007). To allow interoperability
among different producers, the Open NAND Flash Interface (ONFI) Workgroup is trying to
provide an open specification (ONFI specification) to be used as a reference for future designs
(ONFI, 2010).

2.3 Address translation and boot time
Each page of a flash is identified by both a logical and physical address. Logical addresses
are provided to the user to identify a given data with a single address, regardless if the
actual information is moved to different physical locations to optimize the use of the device.
The address translation mechanism that maps logical addresses to the corresponding physical
addresses must be efficient to generate a minor impact on the performance of the memory. The
address translation information must be stored in the non-volatile memory to guarantee the
integrity of the system. However, since frequent updates are performed, a translation lookup
table is usually stored in a (battery-backed) RAM, while the flash memory stores the metadata
to build this table. The size of the table is a trade-off between the high cost of the RAM and
the performance of the storage system.
Memories with a large page size require less RAM, but they inefficiently handle small writes.
In fact, since an entire page must be written into the flash with every flush, larger pages cause
more unmodified data to be written for every (small) change. Small page sizes efficiently
handles small writes, but the resulting RAM requirements can be unaffordable. At the file
system level, the translation table can be implemented both at the level of pages or blocks
thus allowing to trade-off between the table size and the granularity of the table.

6 Flash Memories Design Issues and Challenges of
File Systems for Flash Memories 5

2.4 Garbage collection
Data stored in a page of a flash memory cannot be overwritten unless an erasure of the full
block is performed. To overcome this problem, when the content of a page must be updated,
the new data are usually saved in a new free page. The new page is marked as valid while
the old page is marked as invalid. The address translation table is then updated to allow the
user to access the new data with the same logical address. This process introduces several
challenges at the file system level.
At a certain point, free space is going to run out. When the amount of free blocks is less than
a given threshold, invalidated pages must be erased in order to free some space. The only
way to erase a page is to erase the whole block it belongs to. However, a block selected for
erasure may contain both valid and invalid pages. As a consequence, the valid pages of the
block must be copied into other free pages. The old pages can be then marked as invalid and
the selected block can be erased and made available for storage.
This cleaning activity is referred to as garbage collection. Garbage collection decreases the flash
memory performance and therefore represents a critical aspect of the design of a native flash
file system. Moreover, as described in the next subsection, it may impact on the endurance of
the device. The key objective of an efficient garbage collection strategy is to reduce garbage
collection costs and evenly erase all blocks.

2.5 Memory wearing
As previously introduced, flash memories wear out after a certain number of erasure cycles
(usually between 104 and 105 cycles). If the number of erasures of a block exceeds this number,
the block is marked as a bad block since it cannot be considered anymore reliable for storing
data. The overall life time of a flash memory therefore depends on the number of performed
erasure cycles. Wear leveling techniques are used to distribute data evenly across each block of
the entire flash memory, trying to level and to minimize the number of erasure cycles of each
block.
There are two main wear leveling strategies: dynamic and static wear leveling. The dynamic
wear leveling only works on those data blocks that are going to be written, while the static
wear leveling works on all data blocks, including those that are not involved in a write
operation. Active data blocks are in general wear-leveled dynamically, while static blocks
(i.e., blocks where data are written and remain unchanged for long periods of time) are
wear-leveled statically. The dynamic and static blocks are usually referred as hot and cold
data, respectively. In MLC memories it is important to move cold data to optimize the wear
leveling. If cold data are not moved then the related pages are seldom written and the wear
is heavily skewed to other pages. Moreover, every read to a page has the potential to disturb
data on other pages in the same block. Thus continuous read-only access to an area can cause
corruption, and cold data should be periodically rewritten.
Wear leveling techniques must be strongly coupled with garbage collection algorithms at the
file system level. In fact, the two tasks have in general conflicting objectives and the good
trade-off must be found to guarantee both performance and endurance.

2.6 Bad block management
As discussed in the previous sections, when a block exceeds the maximum number of erasure
cycles, it is marked as a bad block. Bad blocks can be detected also in new devices as a result of
blocks identified as faulty during the end of production test.

7Design Issues and Challenges of File Systems for Flash Memories

4 Flash Memory

memories wear out after a certain number of erasure cycles (endurance), if the erasure cycles
of a block exceed this number, the block cannot be considered anymore reliable for storing
data. A typical value for the endurance of an SLC flash memory is about 105 erasure cycles.
Finally, blocks are grouped into planes. A flash memory with N planes can read/write and
erase N pages/blocks at the same time (Cooke, 2007).

��������

�������������
����������

�
�������������
�����������

����������������

����������� �����������

��������������

�

���

�������� ��������

����������������������������� ����������������������������������

Fig. 3. A Dual Plane 2KB-Page SLC NAND Flash memory

Fig. 3 shows an example of a 512MB dual plane SLC NAND flash memory architecture
proposed in (Cooke, 2007). Each plane can store 256MB with pages of 2KB+64B. A data
register able to store a full page is provided for each plane, and an 8-bit data bus (i.e., I/O
0-7) is used to access stored information.
Several variations of this basic architecture can be produced, with main differences in
performance, timing and available set of commands (Cooke, 2007). To allow interoperability
among different producers, the Open NAND Flash Interface (ONFI) Workgroup is trying to
provide an open specification (ONFI specification) to be used as a reference for future designs
(ONFI, 2010).

2.3 Address translation and boot time
Each page of a flash is identified by both a logical and physical address. Logical addresses
are provided to the user to identify a given data with a single address, regardless if the
actual information is moved to different physical locations to optimize the use of the device.
The address translation mechanism that maps logical addresses to the corresponding physical
addresses must be efficient to generate a minor impact on the performance of the memory. The
address translation information must be stored in the non-volatile memory to guarantee the
integrity of the system. However, since frequent updates are performed, a translation lookup
table is usually stored in a (battery-backed) RAM, while the flash memory stores the metadata
to build this table. The size of the table is a trade-off between the high cost of the RAM and
the performance of the storage system.
Memories with a large page size require less RAM, but they inefficiently handle small writes.
In fact, since an entire page must be written into the flash with every flush, larger pages cause
more unmodified data to be written for every (small) change. Small page sizes efficiently
handles small writes, but the resulting RAM requirements can be unaffordable. At the file
system level, the translation table can be implemented both at the level of pages or blocks
thus allowing to trade-off between the table size and the granularity of the table.

6 Flash Memories Design Issues and Challenges of
File Systems for Flash Memories 5

2.4 Garbage collection
Data stored in a page of a flash memory cannot be overwritten unless an erasure of the full
block is performed. To overcome this problem, when the content of a page must be updated,
the new data are usually saved in a new free page. The new page is marked as valid while
the old page is marked as invalid. The address translation table is then updated to allow the
user to access the new data with the same logical address. This process introduces several
challenges at the file system level.
At a certain point, free space is going to run out. When the amount of free blocks is less than
a given threshold, invalidated pages must be erased in order to free some space. The only
way to erase a page is to erase the whole block it belongs to. However, a block selected for
erasure may contain both valid and invalid pages. As a consequence, the valid pages of the
block must be copied into other free pages. The old pages can be then marked as invalid and
the selected block can be erased and made available for storage.
This cleaning activity is referred to as garbage collection. Garbage collection decreases the flash
memory performance and therefore represents a critical aspect of the design of a native flash
file system. Moreover, as described in the next subsection, it may impact on the endurance of
the device. The key objective of an efficient garbage collection strategy is to reduce garbage
collection costs and evenly erase all blocks.

2.5 Memory wearing
As previously introduced, flash memories wear out after a certain number of erasure cycles
(usually between 104 and 105 cycles). If the number of erasures of a block exceeds this number,
the block is marked as a bad block since it cannot be considered anymore reliable for storing
data. The overall life time of a flash memory therefore depends on the number of performed
erasure cycles. Wear leveling techniques are used to distribute data evenly across each block of
the entire flash memory, trying to level and to minimize the number of erasure cycles of each
block.
There are two main wear leveling strategies: dynamic and static wear leveling. The dynamic
wear leveling only works on those data blocks that are going to be written, while the static
wear leveling works on all data blocks, including those that are not involved in a write
operation. Active data blocks are in general wear-leveled dynamically, while static blocks
(i.e., blocks where data are written and remain unchanged for long periods of time) are
wear-leveled statically. The dynamic and static blocks are usually referred as hot and cold
data, respectively. In MLC memories it is important to move cold data to optimize the wear
leveling. If cold data are not moved then the related pages are seldom written and the wear
is heavily skewed to other pages. Moreover, every read to a page has the potential to disturb
data on other pages in the same block. Thus continuous read-only access to an area can cause
corruption, and cold data should be periodically rewritten.
Wear leveling techniques must be strongly coupled with garbage collection algorithms at the
file system level. In fact, the two tasks have in general conflicting objectives and the good
trade-off must be found to guarantee both performance and endurance.

2.6 Bad block management
As discussed in the previous sections, when a block exceeds the maximum number of erasure
cycles, it is marked as a bad block. Bad blocks can be detected also in new devices as a result of
blocks identified as faulty during the end of production test.

7Design Issues and Challenges of File Systems for Flash Memories

6 Flash Memory

Bad blocks must be detected and excluded from the active memory space. In general, simple
techniques to handle bad blocks are commonly implemented. An example is provided by
the Samsung’s XSR (Flash Driver) and its Bad Block Management scheme (Samsung, 2007).
The flash memory is initially split into a reserved and a user area. The reserved blocks in the
reserved area represent a Reserve Block Pool that can be used to replace bad blocks. Samsung’s
XSR basically remaps a bad block to one of the reserved blocks so that the data contained in a
bad block is not lost and the bad block is not longer used.

2.7 Error correcting codes
Fault tolerance mechanisms and in particular Error Correcting Codes (ECCs) are
systematically applied to NAND flash devices to improve their level of reliability. ECCs are
cost-efficient and allow detecting or even correcting a certain number of errors.
ECCs have to be fast and efficient at the same time. Several ECC schema have been proposed
based on linear codes like Hamming codes or Reed-Solomon codes (Chen et al., 2008; Micron,
2007). Among the possible solutions, Bose-Chaudhuri-Hocquenghem (BCH) codes are linear
codes widely adopted with flash memories (Choi et al., 2010; Junho & Wonyong, 2009;
Micheloni et al., 2008). They are less complex than other ECC, providing also a higher
code efficiency. Moreover, manufacturers’ and independent studies (Deal, 2009; Duann, 2009;
Yaakobi et al., 2009) have shown that flash memories tend to manifest non-correlated bit
errors. BCH are particularly efficient when errors are randomly distributed, thus representing
a suitable solution for flash memories.
The choice of the characteristics of the ECC is a trade-off between reliability requirements and
code complexity, and strongly depends on the target application (e.g. consumer electronics vs
mission-critical applications) (Caramia et al., 2009b).
ECC can be implemented both at the software-level, or resorting to hardware facilities.
Software implemented ECC allow to decouple the error correction mechanisms from the
specific hardware device. However, the price to pay for a software-based ECC solution is
a drastic performance reduction. For this reason, available file systems tend to delegate the
code computation tasks to a dedicate hardware limiting the amount of operations performed
in software, at the cost of additional resources (e.g., hardware, power consumption, etc.) and
reduced flexibility.

3. File systems for flash memories

As shortly described in the introduction of this chapter, at the OS level the common
alternatives to manage flash based mass-storage devices are block-device emulation and
native flash file systems (Chang & Kuo, 2004). Both approaches try to address the issues
discussed in Section 2. Fig. 4 shows how the two solutions can be mapped in a generic OS.
The block-device emulation approach hides the presence of a flash memory device, by
emulating the behavior of a traditional magnetic hard-disk. The flash device is seen as a
contiguous array of storage blocks. This emulation mechanism is achieved by inserting at the
OS level a new layer, referred to as Flash Translation Layer (FTL). Different implementations of
FTL have been proposed (Chang et al., 2007; Intel, 1998; Jen-Wei et al., 2008). The advantage
of using an FTL is that existing file systems, such as NTFS, Ext2 and FAT, usually supported
by the majority of modern OS, can be directly used to store information in the flash. However,
this approach has many performance restrictions. In fact, existing file systems do not take
into account the critical issues imposed by the flash technology (see Section 2) and in several
situations they may behave in contrast with these constraints. Very sophisticated FTL must

8 Flash Memories Design Issues and Challenges of
File Systems for Flash Memories 7

�����������������

��������������������

���� �� ����� ����� �� ������

�����������������������

���	�

���
���	�

������������������

�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
��

Fig. 4. Flash Translation Layer and Flash File Systems

be therefore designed with heavy consequences on the performance of the system. Moreover,
the typical block size managed by traditional file systems usually does not match the block
size of a flash memory. This imposes the implementation of complex mechanisms to properly
manage write operations (Gal & Toledo, 2005).
The alternative solution, to overcome the limitation of using an FTL, is to expose the hardware
characteristics of the flash memory to the file system layer, demanding to this module the full
management of the device. These new file systems, specifically designed to work with flash
memories, are usually referred to as Flash File Systems (FFS). This approach allows the file
system to fully exploit the potentiality of a flash memory guaranteeing increased performance,
reliability and endurance of the device. In other words, if efficiency is more important than
compatibility, FFS is the best option to choose.
The way FFS manage the information is somehow derived from the model of journaled file
systems. In a journaled file system, each metadata modification is written into a journal (i.e., a
log) before the actual block of data is modified. This in general helps recovering information
in case of crash. In particular log-structured file systems (Aleph One Ltd., 2011; Rosenblum
& Ousterhout, 1992; Woodhouse, 2001) take the journaling approach to the limit since the
journal is the file system. The disk is organized as a log consisting of fixed-sized segments of
contiguous areas of the disk, chained together to form a linked list. Data and metadata are
always written to the end of the log, never overwriting old data. Although this organization
has been in general avoided for traditional magnetic disks, it perfectly fits the way information
can be saved into a flash memory since data cannot be overwritten in these devices, and write
operations must be performed on new pages. Furthermore, log-structuring the file system on
a flash does not influence the read performance as in traditional disks, since the access time on
a flash is constant and does not depend on the position where the information is stored (Gal
& Toledo, 2005).
FFS are nowadays mainly used whenever so called Memory Technology Devices (MTD) are
available in the system, i.e., embedded flash memories that do not have a dedicated hardware
controller. Removable flash memory cards and USB flash drives are in general provided with a

9Design Issues and Challenges of File Systems for Flash Memories

6 Flash Memory

Bad blocks must be detected and excluded from the active memory space. In general, simple
techniques to handle bad blocks are commonly implemented. An example is provided by
the Samsung’s XSR (Flash Driver) and its Bad Block Management scheme (Samsung, 2007).
The flash memory is initially split into a reserved and a user area. The reserved blocks in the
reserved area represent a Reserve Block Pool that can be used to replace bad blocks. Samsung’s
XSR basically remaps a bad block to one of the reserved blocks so that the data contained in a
bad block is not lost and the bad block is not longer used.

2.7 Error correcting codes
Fault tolerance mechanisms and in particular Error Correcting Codes (ECCs) are
systematically applied to NAND flash devices to improve their level of reliability. ECCs are
cost-efficient and allow detecting or even correcting a certain number of errors.
ECCs have to be fast and efficient at the same time. Several ECC schema have been proposed
based on linear codes like Hamming codes or Reed-Solomon codes (Chen et al., 2008; Micron,
2007). Among the possible solutions, Bose-Chaudhuri-Hocquenghem (BCH) codes are linear
codes widely adopted with flash memories (Choi et al., 2010; Junho & Wonyong, 2009;
Micheloni et al., 2008). They are less complex than other ECC, providing also a higher
code efficiency. Moreover, manufacturers’ and independent studies (Deal, 2009; Duann, 2009;
Yaakobi et al., 2009) have shown that flash memories tend to manifest non-correlated bit
errors. BCH are particularly efficient when errors are randomly distributed, thus representing
a suitable solution for flash memories.
The choice of the characteristics of the ECC is a trade-off between reliability requirements and
code complexity, and strongly depends on the target application (e.g. consumer electronics vs
mission-critical applications) (Caramia et al., 2009b).
ECC can be implemented both at the software-level, or resorting to hardware facilities.
Software implemented ECC allow to decouple the error correction mechanisms from the
specific hardware device. However, the price to pay for a software-based ECC solution is
a drastic performance reduction. For this reason, available file systems tend to delegate the
code computation tasks to a dedicate hardware limiting the amount of operations performed
in software, at the cost of additional resources (e.g., hardware, power consumption, etc.) and
reduced flexibility.

3. File systems for flash memories

As shortly described in the introduction of this chapter, at the OS level the common
alternatives to manage flash based mass-storage devices are block-device emulation and
native flash file systems (Chang & Kuo, 2004). Both approaches try to address the issues
discussed in Section 2. Fig. 4 shows how the two solutions can be mapped in a generic OS.
The block-device emulation approach hides the presence of a flash memory device, by
emulating the behavior of a traditional magnetic hard-disk. The flash device is seen as a
contiguous array of storage blocks. This emulation mechanism is achieved by inserting at the
OS level a new layer, referred to as Flash Translation Layer (FTL). Different implementations of
FTL have been proposed (Chang et al., 2007; Intel, 1998; Jen-Wei et al., 2008). The advantage
of using an FTL is that existing file systems, such as NTFS, Ext2 and FAT, usually supported
by the majority of modern OS, can be directly used to store information in the flash. However,
this approach has many performance restrictions. In fact, existing file systems do not take
into account the critical issues imposed by the flash technology (see Section 2) and in several
situations they may behave in contrast with these constraints. Very sophisticated FTL must

8 Flash Memories Design Issues and Challenges of
File Systems for Flash Memories 7

�����������������

��������������������

���� �� ����� ����� �� ������

�����������������������

���	�

���
���	�

������������������

�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
��

Fig. 4. Flash Translation Layer and Flash File Systems

be therefore designed with heavy consequences on the performance of the system. Moreover,
the typical block size managed by traditional file systems usually does not match the block
size of a flash memory. This imposes the implementation of complex mechanisms to properly
manage write operations (Gal & Toledo, 2005).
The alternative solution, to overcome the limitation of using an FTL, is to expose the hardware
characteristics of the flash memory to the file system layer, demanding to this module the full
management of the device. These new file systems, specifically designed to work with flash
memories, are usually referred to as Flash File Systems (FFS). This approach allows the file
system to fully exploit the potentiality of a flash memory guaranteeing increased performance,
reliability and endurance of the device. In other words, if efficiency is more important than
compatibility, FFS is the best option to choose.
The way FFS manage the information is somehow derived from the model of journaled file
systems. In a journaled file system, each metadata modification is written into a journal (i.e., a
log) before the actual block of data is modified. This in general helps recovering information
in case of crash. In particular log-structured file systems (Aleph One Ltd., 2011; Rosenblum
& Ousterhout, 1992; Woodhouse, 2001) take the journaling approach to the limit since the
journal is the file system. The disk is organized as a log consisting of fixed-sized segments of
contiguous areas of the disk, chained together to form a linked list. Data and metadata are
always written to the end of the log, never overwriting old data. Although this organization
has been in general avoided for traditional magnetic disks, it perfectly fits the way information
can be saved into a flash memory since data cannot be overwritten in these devices, and write
operations must be performed on new pages. Furthermore, log-structuring the file system on
a flash does not influence the read performance as in traditional disks, since the access time on
a flash is constant and does not depend on the position where the information is stored (Gal
& Toledo, 2005).
FFS are nowadays mainly used whenever so called Memory Technology Devices (MTD) are
available in the system, i.e., embedded flash memories that do not have a dedicated hardware
controller. Removable flash memory cards and USB flash drives are in general provided with a

9Design Issues and Challenges of File Systems for Flash Memories

8 Flash Memory

built-in controller that in fact behaves as an FTL and allows high compatibility and portability
of the device. FFS have therefore limited benefits on these devices.
Several FFS are available. A possible approach to perform a taxonomy of the available FFS is
to split them into three categories: (i) experimental FFS documented in scientific and technical
publications, (ii) open source projects and (iii) proprietary products.

3.1 Flash file systems in the technical and scientific literature
Several publications proposed interesting solutions for implementing new FFS (Kawaguchi
et al., 1995; Lee et al., 2009; Seung-Ho & Kyu-Ho, 2006; Wu & Zwaenepoel, 1994). In general
each of these solutions aims at optimizing a subset of the issues proposed in Section 2.
Although these publications in general concentrate on algorithmic aspects, and provide
reduced information about the real implementation, they represent a good starting point to
understand how specific problems can be solved in the implementation of a new FFS.

3.1.1 eNVy
Fig. 5 describes the architecture of a system based on eNVy, a large non-volatile main memory
storage system built to work with flash memories (Wu & Zwaenepoel, 1994).

������������������

�����
���������������

�����
�����

�����������

����������������� ��������

��

������������
��������

�����������������������

Fig. 5. Architecture of eNVy

The main goal of eNVy is to present the flash memory to a host computer as a simple linear
array of non-volatile memory. The additional goal is to guarantee an access time to the
memory array as close as possible to those of an SRAM (about 100us) (Gal & Toledo, 2005).
The reader may refer to (Wu, 1994) for a complete description of the eNVy FFS.

Technology

eNVy adopts an SLC NAND flash memory with page size of 256B.

Architecture

The eNVy architecture combines an SLC NAND flash memory with a small and fast
battery-backed static RAM. This small SRAM is used as a very fast write buffer required to
implement an efficient copy-on-write strategy.

Address translation

The physical address space is partitioned into pages of 256B that are mapped to the pages
of the flash. A page table stored in the SRAM maintains the mapping between the linear
logical address space presented to the host and the physical address space of the flash. When
performing a write operation, the target flash page is copied into the SRAM (if not already
loaded), the page table is updated and the actual write request is performed into this fast

10 Flash Memories Design Issues and Challenges of
File Systems for Flash Memories 9

memory. As long as the page is mapped into the SRAM, further read and write requests are
performed directly using this buffer. The SRAM is managed as a FIFO, new pages are inserted
at the end, while pages are flushed from the tail when their number exceeds a certain threshold
(Gal & Toledo, 2005).

Garbage collection

When the SRAM write buffer is full, eNVy attempts to flush pages from the SRAM to the flash.
This in turn requires to allocate a set of free pages in the flash. If there is no free space, the
eNVy controller starts a garbage collection process called cleaning in the eNVy terminology
(see Fig. 6).

����������
���������������

�����������
������

��������������
������������

�����	���� ������������	���� �����������

Fig. 6. Steps of the eNVy cleaning process

When eNVy cleans a block (segment in the eNVy terminology), all of its live data (i.e., valid
pages) are copied into an empty block. The original block is then erased and reused. The new
block will contain a cluster of valid pages at its head, while the remaining space will be ready
to accept new pages. A clean (i.e., completely erased) block must be always available for the
next cleaning operation.
The policy for deciding which block to clean is an hybrid between a greedy and a locality
gathering method. Both methods are based on the concept of "flash cleaning cost", defined
as μ

1−μ where μ is the utilization of the block. Since after about 80% utilization the cleaning
cost reaches unreasonable levels, μ in can not exceed this threshold.
The greedy method cleans the block with the majority of invalidated pages in order to
maximize the recovered space. This method lowers cleaning costs for uniform distributions
(i.e., it tends to clean blocks in a FIFO order), but performance suffers as the locality of
references increases.
The locality gathering algorithm attempts to take advantage from high locality of references.
Since hot blocks are cleaned more often than cold blocks, their cleaning cost can be lowered by
redistributing data among blocks. However, for uniform access distributions, this technique
prevents cleaning performance from being improved. In fact, if all data are accessed with
the same frequency, the data distribution procedure allocates the same amount of data to each
segment. Since pages are flushed back to their original segments to preserve locality, all blocks
always stay at μ = 80% utilization, leading to a fixed cleaning cost of 4.

11Design Issues and Challenges of File Systems for Flash Memories

8 Flash Memory

built-in controller that in fact behaves as an FTL and allows high compatibility and portability
of the device. FFS have therefore limited benefits on these devices.
Several FFS are available. A possible approach to perform a taxonomy of the available FFS is
to split them into three categories: (i) experimental FFS documented in scientific and technical
publications, (ii) open source projects and (iii) proprietary products.

3.1 Flash file systems in the technical and scientific literature
Several publications proposed interesting solutions for implementing new FFS (Kawaguchi
et al., 1995; Lee et al., 2009; Seung-Ho & Kyu-Ho, 2006; Wu & Zwaenepoel, 1994). In general
each of these solutions aims at optimizing a subset of the issues proposed in Section 2.
Although these publications in general concentrate on algorithmic aspects, and provide
reduced information about the real implementation, they represent a good starting point to
understand how specific problems can be solved in the implementation of a new FFS.

3.1.1 eNVy
Fig. 5 describes the architecture of a system based on eNVy, a large non-volatile main memory
storage system built to work with flash memories (Wu & Zwaenepoel, 1994).

������������������

�����
���������������

�����
�����

�����������

����������������� ��������

��

������������
��������

�����������������������

Fig. 5. Architecture of eNVy

The main goal of eNVy is to present the flash memory to a host computer as a simple linear
array of non-volatile memory. The additional goal is to guarantee an access time to the
memory array as close as possible to those of an SRAM (about 100us) (Gal & Toledo, 2005).
The reader may refer to (Wu, 1994) for a complete description of the eNVy FFS.

Technology

eNVy adopts an SLC NAND flash memory with page size of 256B.

Architecture

The eNVy architecture combines an SLC NAND flash memory with a small and fast
battery-backed static RAM. This small SRAM is used as a very fast write buffer required to
implement an efficient copy-on-write strategy.

Address translation

The physical address space is partitioned into pages of 256B that are mapped to the pages
of the flash. A page table stored in the SRAM maintains the mapping between the linear
logical address space presented to the host and the physical address space of the flash. When
performing a write operation, the target flash page is copied into the SRAM (if not already
loaded), the page table is updated and the actual write request is performed into this fast

10 Flash Memories Design Issues and Challenges of
File Systems for Flash Memories 9

memory. As long as the page is mapped into the SRAM, further read and write requests are
performed directly using this buffer. The SRAM is managed as a FIFO, new pages are inserted
at the end, while pages are flushed from the tail when their number exceeds a certain threshold
(Gal & Toledo, 2005).

Garbage collection

When the SRAM write buffer is full, eNVy attempts to flush pages from the SRAM to the flash.
This in turn requires to allocate a set of free pages in the flash. If there is no free space, the
eNVy controller starts a garbage collection process called cleaning in the eNVy terminology
(see Fig. 6).

����������
���������������

�����������
������

��������������
������������

�����	���� ������������	���� �����������

Fig. 6. Steps of the eNVy cleaning process

When eNVy cleans a block (segment in the eNVy terminology), all of its live data (i.e., valid
pages) are copied into an empty block. The original block is then erased and reused. The new
block will contain a cluster of valid pages at its head, while the remaining space will be ready
to accept new pages. A clean (i.e., completely erased) block must be always available for the
next cleaning operation.
The policy for deciding which block to clean is an hybrid between a greedy and a locality
gathering method. Both methods are based on the concept of "flash cleaning cost", defined
as μ

1−μ where μ is the utilization of the block. Since after about 80% utilization the cleaning
cost reaches unreasonable levels, μ in can not exceed this threshold.
The greedy method cleans the block with the majority of invalidated pages in order to
maximize the recovered space. This method lowers cleaning costs for uniform distributions
(i.e., it tends to clean blocks in a FIFO order), but performance suffers as the locality of
references increases.
The locality gathering algorithm attempts to take advantage from high locality of references.
Since hot blocks are cleaned more often than cold blocks, their cleaning cost can be lowered by
redistributing data among blocks. However, for uniform access distributions, this technique
prevents cleaning performance from being improved. In fact, if all data are accessed with
the same frequency, the data distribution procedure allocates the same amount of data to each
segment. Since pages are flushed back to their original segments to preserve locality, all blocks
always stay at μ = 80% utilization, leading to a fixed cleaning cost of 4.

11Design Issues and Challenges of File Systems for Flash Memories

10 Flash Memory

eNVy adopts an hybrid approach, which combines the good performance of the FIFO
algorithm for uniform access distributions and the good results of the locality gathering
algorithm for higher locality of references.
The high performance of the system is guaranteed by adopting a wide bus between the flash
and the internal RAM, and by temporarily buffering accessed flash pages. The wide bus
allows pages stored in the flash to be transferred to the RAM in one cycle, while buffering
pages in RAM allows to perform several updates to a single page with a single RAM-to-flash
page transfer. Reducing the number of flash writes reduces the number of unit erasures,
thereby improving performance and extending the lifetime of the device (Gal & Toledo, 2005).
However, using a wide bus has a significant drawback. To build a wide bus, several flash chips
are used in parallel (Wu & Zwaenepoel, 1994). This increases the effective size of each erase
unit. Large erase units are harder to manage and, as a result, they are prone to accelerated
wear (Gal & Toledo, 2005). Finally, although (Wu & Zwaenepoel, 1994) states that a cleaning
algorithm is designed to evenly wear the memory and to extend its lifetime, the work does
not present any explicit wear leveling algorithm. The bad block management and the ECC
strategies are missing as well.

3.1.2 Core flash file system (CFFS)
(Seung-Ho & Kyu-Ho, 2006) proposes the Core Flash File System (CFFS) for NAND
flash-based devices. CFFS is specifically designed to improve the booting time and to reduce
the garbage collection overhead.
The reader may refer to (Seung-Ho & Kyu-Ho, 2006) for a complete description of CFFS. While
concentrating on boot time and garbage collection optimizations, the work neither presents
any explicit bad block management nor any error correction code strategy.

Address translation

CFFS is a log-structured file system. Information items about each file (e.g., file name, file size,
timestamps, file modes, index of pages where data are allocated, etc.) are saved into a spacial
data structure called inode. Two solutions can be in general adopted to store inodes in the
flash: (i) storing several inodes per page, thus optimizing the available space, or (ii) storing
a single inode per page. CFFS adopts the second solution. Storing a single inode per page
introduces a certain overhead in terms of flash occupation, but, at the same time, it guarantees
enough space to store the index of pages composing a file, thus reducing the flash scan time
at the boot.
CFFS classifies inodes in two classes as reported in Fig. 7. i-class1 maintains direct indexing
for all index entries except the final one, while i-class2 maintains indirect indexing for all index
entries except the final one. The final index entry is indirectly indexed for i-class1 and double
indirectly indexed for i-class2. This classification impacts the file size range allowed by the file
system. Let us assume to have 256B of metadata for each inode and a flash page size of 512B.
The inode will therefore contain 256B available to store index pointers. A four-byte pointer is
sufficient to point to an individual flash page. As a consequence, 256/4 = 64 pointers fit the
page. This leads to:

• i-class1: 63 pages are directly indexed and 1 page is indirectly indexed, which in turn
can directly index 512/4 = 128 pages; as a consequence the maximum allowed file size is
(63 + 128)× 512B = 96KB

• i-class2: 63 pages are indirectly indexed, each of which can directly index 512/4 = 128
pages, thus they can address an overall amount of 63 × 128 = 8064 pages. 1 page is

12 Flash Memories Design Issues and Challenges of
File Systems for Flash Memories 11

�

������������������
�
�
�
�
�
�
�

�
�
�
�
�

����������

����������

�������������

�������������
��������

��

��

�������������

�������������

����������

����������

�������������

���������������
��������

��

��

����������

����������

����������

�����������

�������� �����
�������

�

�

������ �����
�������

��

��

���������������������������������� ����������������������������������

Fig. 7. An example of direct (i-class1) and indirect (i-class2) indexing for a NAND flash

double indirectly indexed, which in turn can indirectly index up to (512/4)2 = 16384 pages.
Therefore, the maximum allowed file size is (8064 + 16384)× 512B = 12MB

If the flash page is 2KB, the maximum file size is 1916KB for i-class1 and 960MB for i-class2.
The reason CFFS classifies inodes into two types is the relationship between the file size and
the file usage patterns. In fact, most files are small and most write accesses are to small
files. However, most storage is also consumed by large files that are usually only accessed for
reading (Seung-Ho & Kyu-Ho, 2006). The i-class1 requires one additional page consumption
for the inode1, but can address only pretty small files. Each writing into an indirect indexing
entry of i-class2 causes the consumption of two additional pages, but it is able to address
bigger files.
When a file is created in CFFS, the file is first set to i-class1 and it is maintained in this state
until all index entries are allocated. As the file size grows, the inode class is altered from
i-class1 to i-class2. As a consequence, most files are included in i-class1 and most write accesses
are concentrated in i-class1. In addition, most read operations involve large files, thus inode
updates are rarely performed and the overhead for indirect indexing in i-class2 files is not
significant.

Boot time

An InodeMapBlock stores the list of pages containing the inodes in the first flash memory block.
In case of clean unmounting of the file system (i.e., unmount flag UF not set) the InodeMapBlock
contains valid data that are used to build an InodeBlockHash structure in RAM used to manage
the inodes until the file system is unmounted. When the file system is unmounted, the
InodeBlockHash is written back into the InodeMapBlock. In case of unclean unmounting (i.e.,
unmount flag UF set), the InodeMapBlock does not contain valid data. A full scan of the
memory is therefore required to find the list of pages storing the inodes.

Garbage collection

The garbage collection approach of CFFS is based on a sort of hot-cold policy. Hot data have
high probability of being updated in the near future, therefore, pages storing hot data have

1 in general, the number of additional flash pages consumed due to updating the inode index information
is proportional to the degree of the indexing level

13Design Issues and Challenges of File Systems for Flash Memories

10 Flash Memory

eNVy adopts an hybrid approach, which combines the good performance of the FIFO
algorithm for uniform access distributions and the good results of the locality gathering
algorithm for higher locality of references.
The high performance of the system is guaranteed by adopting a wide bus between the flash
and the internal RAM, and by temporarily buffering accessed flash pages. The wide bus
allows pages stored in the flash to be transferred to the RAM in one cycle, while buffering
pages in RAM allows to perform several updates to a single page with a single RAM-to-flash
page transfer. Reducing the number of flash writes reduces the number of unit erasures,
thereby improving performance and extending the lifetime of the device (Gal & Toledo, 2005).
However, using a wide bus has a significant drawback. To build a wide bus, several flash chips
are used in parallel (Wu & Zwaenepoel, 1994). This increases the effective size of each erase
unit. Large erase units are harder to manage and, as a result, they are prone to accelerated
wear (Gal & Toledo, 2005). Finally, although (Wu & Zwaenepoel, 1994) states that a cleaning
algorithm is designed to evenly wear the memory and to extend its lifetime, the work does
not present any explicit wear leveling algorithm. The bad block management and the ECC
strategies are missing as well.

3.1.2 Core flash file system (CFFS)
(Seung-Ho & Kyu-Ho, 2006) proposes the Core Flash File System (CFFS) for NAND
flash-based devices. CFFS is specifically designed to improve the booting time and to reduce
the garbage collection overhead.
The reader may refer to (Seung-Ho & Kyu-Ho, 2006) for a complete description of CFFS. While
concentrating on boot time and garbage collection optimizations, the work neither presents
any explicit bad block management nor any error correction code strategy.

Address translation

CFFS is a log-structured file system. Information items about each file (e.g., file name, file size,
timestamps, file modes, index of pages where data are allocated, etc.) are saved into a spacial
data structure called inode. Two solutions can be in general adopted to store inodes in the
flash: (i) storing several inodes per page, thus optimizing the available space, or (ii) storing
a single inode per page. CFFS adopts the second solution. Storing a single inode per page
introduces a certain overhead in terms of flash occupation, but, at the same time, it guarantees
enough space to store the index of pages composing a file, thus reducing the flash scan time
at the boot.
CFFS classifies inodes in two classes as reported in Fig. 7. i-class1 maintains direct indexing
for all index entries except the final one, while i-class2 maintains indirect indexing for all index
entries except the final one. The final index entry is indirectly indexed for i-class1 and double
indirectly indexed for i-class2. This classification impacts the file size range allowed by the file
system. Let us assume to have 256B of metadata for each inode and a flash page size of 512B.
The inode will therefore contain 256B available to store index pointers. A four-byte pointer is
sufficient to point to an individual flash page. As a consequence, 256/4 = 64 pointers fit the
page. This leads to:

• i-class1: 63 pages are directly indexed and 1 page is indirectly indexed, which in turn
can directly index 512/4 = 128 pages; as a consequence the maximum allowed file size is
(63 + 128)× 512B = 96KB

• i-class2: 63 pages are indirectly indexed, each of which can directly index 512/4 = 128
pages, thus they can address an overall amount of 63 × 128 = 8064 pages. 1 page is

12 Flash Memories Design Issues and Challenges of
File Systems for Flash Memories 11

�

������������������
�
�
�
�
�
�
�

�
�
�
�
�

����������

����������

�������������

�������������
��������

��

��

�������������

�������������

����������

����������

�������������

���������������
��������

��

��

����������

����������

����������

�����������

�������� �����
�������

�

�

������ �����
�������

��

��

���������������������������������� ����������������������������������

Fig. 7. An example of direct (i-class1) and indirect (i-class2) indexing for a NAND flash

double indirectly indexed, which in turn can indirectly index up to (512/4)2 = 16384 pages.
Therefore, the maximum allowed file size is (8064 + 16384)× 512B = 12MB

If the flash page is 2KB, the maximum file size is 1916KB for i-class1 and 960MB for i-class2.
The reason CFFS classifies inodes into two types is the relationship between the file size and
the file usage patterns. In fact, most files are small and most write accesses are to small
files. However, most storage is also consumed by large files that are usually only accessed for
reading (Seung-Ho & Kyu-Ho, 2006). The i-class1 requires one additional page consumption
for the inode1, but can address only pretty small files. Each writing into an indirect indexing
entry of i-class2 causes the consumption of two additional pages, but it is able to address
bigger files.
When a file is created in CFFS, the file is first set to i-class1 and it is maintained in this state
until all index entries are allocated. As the file size grows, the inode class is altered from
i-class1 to i-class2. As a consequence, most files are included in i-class1 and most write accesses
are concentrated in i-class1. In addition, most read operations involve large files, thus inode
updates are rarely performed and the overhead for indirect indexing in i-class2 files is not
significant.

Boot time

An InodeMapBlock stores the list of pages containing the inodes in the first flash memory block.
In case of clean unmounting of the file system (i.e., unmount flag UF not set) the InodeMapBlock
contains valid data that are used to build an InodeBlockHash structure in RAM used to manage
the inodes until the file system is unmounted. When the file system is unmounted, the
InodeBlockHash is written back into the InodeMapBlock. In case of unclean unmounting (i.e.,
unmount flag UF set), the InodeMapBlock does not contain valid data. A full scan of the
memory is therefore required to find the list of pages storing the inodes.

Garbage collection

The garbage collection approach of CFFS is based on a sort of hot-cold policy. Hot data have
high probability of being updated in the near future, therefore, pages storing hot data have

1 in general, the number of additional flash pages consumed due to updating the inode index information
is proportional to the degree of the indexing level

13Design Issues and Challenges of File Systems for Flash Memories

12 Flash Memory

higher chance to be invalidated than those storing cold data. Metadata (i.e., inodes) are hotter
than normal data. Each write operation on a file surely results in an update of its inode, but
other operations may result in changing the inode, as well (e.g., renaming, etc.). Since CFFS
allocates different flash blocks for metadata and data without mixing them in a single block,
a pseudo-hot-cold separation already exists. Hot inode pages are therefore stored in the same
block in order to minimize the amount of hot-live pages to copy, and the same happens for
data blocks.

Wear leveling

The separation between inode and data blocks leads to an implicit hot-cold separation which
is efficiently exploited by the garbage collection process. However, since the inode blocks are
hotter and are updated more frequently, they probably may suffer much more erasures than
the data blocks. This can unevenly wear out the memory, thus shortening the life-time of the
device. To avoid this problem, a possible wear-leveling strategy is to set a sort of "swapping
flag". When a data block must be erased, the flag informs the allocator that the next time the
block is allocated it must be used to store an inode, and vice versa.

3.1.3 FlexFS
FlexFS is a flexible FFS for MLC NAND flash memories. It takes advantage from specific
facilities offered by MLC flash memories. FlexFS is based on the JFFS2 file system
(Woodhouse, 2001; 2009), a file system originally designed to work with NOR flash memories.
The reader may refer to (Lee et al., 2009) for a detailed discussion on the FlexFS file system.
However, the work does not tackle neither bad block management, not error correction codes.

Technology

In most MLC flash memories, each cell can be programmed at runtime to work either as an
SLC or an MLC cell (flexible cell programming). Fig. 8 shows an example for an MLC flash
storing 2 bits per cell.

11 01 00 101 0

SLC MLC

Di
st
rib

ut
io
n

of
Ce

lls

Vt Vt

≈

Di
st
rib

ut
io
n

of
Ce

lls

Fig. 8. Flexible Cell Programming

When programmed in MLC mode, the cell uses all available configurations to store data (2 bits
per cell). This configuration provides high capacity but suffers from the reduced performance
intrinsic to the MLC technology (see Fig. 2). When programmed in SLC mode, only two
out of the four configurations are in fact used. The information is stored either in the LSB
or in the MSB of the cell. This specific configuration allows information to be stored in a
more robust way, as typical in SLC memories, and, therefore, it allows to push the memory at
higher performance. The flexible programming therefore allows to choose between the high
performance of SLC memories and the high capacity of MLC memories.

Data allocation

FlexFS splits the MLC flash memory into SLC and MLC regions and dynamically changes
the size of each region to meet the changing requirements of applications. It handles

14 Flash Memories Design Issues and Challenges of
File Systems for Flash Memories 13

heterogeneous cells in a way that is transparent to the application layer. Fig. 9 shows the
layout of a flash memory block in FlexFS.

�
�

��������

���������������

����������� ������������� ��������������������

���������
���������

����
�����

���������
��

����������
��
���������

����������
��
���������

���������
���������

���������
���������

����
�����

���������

Fig. 9. The layout of flash blocks in FlexFS

There are three types of flash memory blocks: SLC blocks, MLC blocks and free blocks. FlexFS
manages them as an SLC region, an MLC region and one free blocks pool. A free block does
not contain any data. Its type is decided at the allocation time.
FlexFS allocates data similarly to other log-structured file systems, with the exception of two
log blocks reserved for writing. When data are evicted from the write buffer, FlexFS writes
them sequentially from the first page to the last page of the corresponding region’s log block.
When the free pages in the log block run out, a new log block is allocated.
The baseline approach for allocating data can be to write as much data as possible into SLC
blocks to maximize I/O performances. In case there are no SLC blocks available, a data
migration from the SLC to the MLC region is triggered to create more free space. Fig. 10
shows an example of data migration.

����������� ������������� ������
�

�����	
��
�����	����

������	
��
��������

������	
��
��������

������	
��
���������

������	
��
��������

������	
��
��������

������	
��
���������

�����	
��
�����	����

�����	
��
�����	����

Fig. 10. An example of Data Migration

Assuming to have two SLC blocks with valid data, the data migration process converts the
free block into an MLC block and then copies the 128 pages of the two SLC blocks into this
MLC block. Finally, the two SLC blocks are erased, freeing this space.
This simple approach has two main drawbacks. First of all, if the amount of data stored in the
flash approaches to half of its maximum capacity, the migration penalty becomes very high
and reduces I/O performance. Second, since the flash has limited erasure cycles, the number
of erasures due to data migration have to be controlled to meet a given lifetime requirement.
Proper techniques are therefore required to address these two problems.

15Design Issues and Challenges of File Systems for Flash Memories

12 Flash Memory

higher chance to be invalidated than those storing cold data. Metadata (i.e., inodes) are hotter
than normal data. Each write operation on a file surely results in an update of its inode, but
other operations may result in changing the inode, as well (e.g., renaming, etc.). Since CFFS
allocates different flash blocks for metadata and data without mixing them in a single block,
a pseudo-hot-cold separation already exists. Hot inode pages are therefore stored in the same
block in order to minimize the amount of hot-live pages to copy, and the same happens for
data blocks.

Wear leveling

The separation between inode and data blocks leads to an implicit hot-cold separation which
is efficiently exploited by the garbage collection process. However, since the inode blocks are
hotter and are updated more frequently, they probably may suffer much more erasures than
the data blocks. This can unevenly wear out the memory, thus shortening the life-time of the
device. To avoid this problem, a possible wear-leveling strategy is to set a sort of "swapping
flag". When a data block must be erased, the flag informs the allocator that the next time the
block is allocated it must be used to store an inode, and vice versa.

3.1.3 FlexFS
FlexFS is a flexible FFS for MLC NAND flash memories. It takes advantage from specific
facilities offered by MLC flash memories. FlexFS is based on the JFFS2 file system
(Woodhouse, 2001; 2009), a file system originally designed to work with NOR flash memories.
The reader may refer to (Lee et al., 2009) for a detailed discussion on the FlexFS file system.
However, the work does not tackle neither bad block management, not error correction codes.

Technology

In most MLC flash memories, each cell can be programmed at runtime to work either as an
SLC or an MLC cell (flexible cell programming). Fig. 8 shows an example for an MLC flash
storing 2 bits per cell.

11 01 00 101 0

SLC MLC

Di
st
rib

ut
io
n

of
Ce

lls

Vt Vt

≈

Di
st
rib

ut
io
n

of
Ce

lls

Fig. 8. Flexible Cell Programming

When programmed in MLC mode, the cell uses all available configurations to store data (2 bits
per cell). This configuration provides high capacity but suffers from the reduced performance
intrinsic to the MLC technology (see Fig. 2). When programmed in SLC mode, only two
out of the four configurations are in fact used. The information is stored either in the LSB
or in the MSB of the cell. This specific configuration allows information to be stored in a
more robust way, as typical in SLC memories, and, therefore, it allows to push the memory at
higher performance. The flexible programming therefore allows to choose between the high
performance of SLC memories and the high capacity of MLC memories.

Data allocation

FlexFS splits the MLC flash memory into SLC and MLC regions and dynamically changes
the size of each region to meet the changing requirements of applications. It handles

14 Flash Memories Design Issues and Challenges of
File Systems for Flash Memories 13

heterogeneous cells in a way that is transparent to the application layer. Fig. 9 shows the
layout of a flash memory block in FlexFS.

�
�

��������

���������������

����������� ������������� ��������������������

���������
���������

����
�����

���������
��

����������
��
���������

����������
��
���������

���������
���������

���������
���������

����
�����

���������

Fig. 9. The layout of flash blocks in FlexFS

There are three types of flash memory blocks: SLC blocks, MLC blocks and free blocks. FlexFS
manages them as an SLC region, an MLC region and one free blocks pool. A free block does
not contain any data. Its type is decided at the allocation time.
FlexFS allocates data similarly to other log-structured file systems, with the exception of two
log blocks reserved for writing. When data are evicted from the write buffer, FlexFS writes
them sequentially from the first page to the last page of the corresponding region’s log block.
When the free pages in the log block run out, a new log block is allocated.
The baseline approach for allocating data can be to write as much data as possible into SLC
blocks to maximize I/O performances. In case there are no SLC blocks available, a data
migration from the SLC to the MLC region is triggered to create more free space. Fig. 10
shows an example of data migration.

����������� ������������� ������
�

�����	
��
�����	����

������	
��
��������

������	
��
��������

������	
��
���������

������	
��
��������

������	
��
��������

������	
��
���������

�����	
��
�����	����

�����	
��
�����	����

Fig. 10. An example of Data Migration

Assuming to have two SLC blocks with valid data, the data migration process converts the
free block into an MLC block and then copies the 128 pages of the two SLC blocks into this
MLC block. Finally, the two SLC blocks are erased, freeing this space.
This simple approach has two main drawbacks. First of all, if the amount of data stored in the
flash approaches to half of its maximum capacity, the migration penalty becomes very high
and reduces I/O performance. Second, since the flash has limited erasure cycles, the number
of erasures due to data migration have to be controlled to meet a given lifetime requirement.
Proper techniques are therefore required to address these two problems.

15Design Issues and Challenges of File Systems for Flash Memories

14 Flash Memory

Three key techniques are adopted to leverage the overhead associated with data migrations:
background migration, dynamic allocation and locality-aware data management.
The background migration technique exploits the idle time of the system (Tidle) to hide the data
migration overhead. During Tidle the background migrator moves data from the SLC region
to the MLC region, thus freeing many blocks that would be compulsory erased later. The first
drawback of this technique is that, if an I/O request arrives during a background migration,
it will be delayed of a certain time Tdelay that must be minimized by either monitoring the I/O
subsystem or suspending the background migration in case of an I/O request. This problem
can be partially mitigated by reducing the amount of idle time devoted to background
migration, and by triggering the migration at given intervals (Twait) in order to reduce the
probability of an I/O request during the migration.
The background migration is suitable for systems with enough idle time (e.g., mobile phones).
With systems with less idle time, the dynamic allocation is adopted. This method dynamically
redirects part of the incoming data directly to the MLC region depending on the idleness of the
system. Although this approach reduces the performance, it also reduces the amount of data
written in the SLC region, which in turn reduces the data migration overhead. The dynamic
allocator determines the amount of data to write in the SLC region. This parameter depends
on the idle time, which dynamically changes, and, therefore, must be carefully forecast. The
time is divided into several windows. Each window represents the period during which Np

pages are written into the flash. FlexFS evaluates the predicted Tpred
idle as a weighted average

of the idle times of the last 10 windows. Then, an allocation ratio α is calculated in function
of Tpred

idle as α = Tpred
idle /(Np ·Tcopy), where Tcopy is the time required to copy a single page from SLC

to MLC. If Tpred
idle � Np · Tcopy, there is enough idle time for data migration, thus α = 1. Fig.

11 shows an example of dynamic allocation. The dynamic allocator distributes the incoming
data across the MLC and SLC regions depending on α. In this case, according to the previous
Np = 10 windows and to Tpred

idle , α = 0.6. Therefore, for the next Np = 10 pages 40%, of the
incoming data will be written in the MLC, and 60% in the SLC region, respectivelly. After
writing all 10 pages, the dynamic allocator calculates a new value of α for the next Np pages.

���������

������������������

���������
��
��	��

���������
��
��	��

���������
�����	��

���������
�����	��

����������� �����������

�������� ����������������

����������
���������

Fig. 11. An example of Dynamic Allocation

16 Flash Memories Design Issues and Challenges of
File Systems for Flash Memories 15

The locality-aware data management exploits the locality of I/O accesses to improve the
efficiency of data migration. Since hot data have a higher update rate compared to cold data,
they will be invalidated frequently, potentially causing several unnecessary page migrations.
In the case of a locality-unaware approach, pages are migrated from SLC to MLC based on
the available idle time Tidle. If hot data are allowed to migrate before cold data during Tidle,
the new copy of the data in the MLC region will be invalidated in a short time. Therefore, a
new copy of this information will be written in the SLC region. This results in unnecessary
migrations, reduction of the SLC region and a consequent decrease of α to avoid a congestion
of the SLC region.
If locality of data is considered, the efficiency of data migration can be increases. When
performing data migration cold data have the priority. Hot data have a high temporal locality,
thus data migration for them is not required. Moreover, the value of α can be adjusted as
α = Tpred

idle /[(Np−Nhot
p)·Tcopy] where Nhot

p is the number of page writes for hot pages stored in the
SLC region.
In order to detect hot data, FlexFS adopts a two queues-based locality detection technique.
An hot and a cold queue maintain the inodes of frequently and infrequently modified files. In
order to understand which block to migrate from MLC to SLC, FlexFS calculates the average
hotness of each block and chooses the block whose hotness is lower than the average. Similar
to the approach of idle time prediction, Nhot

p counts how many hot pages were written into
the SLC region during the previous 10 windows. Their average hotness value will be the Nhot

p
for the next time window.

Garbage collection

There is no need for garbage collection into the SLC region. In fact, cold data in SLC will be
moved by the data migrator to the MLC region and hot data are not moved for high locality.
However, the data migrator cannot reclaim the space used by invalid pages in the MLC region.
This is the job of the garbage collector. It chooses a victim block V in the MLC region with as
many invalidated pages as possible. Then, it copies all the valid pages of V into a different
MLC block. Finally, it erases the block V, which becomes part of the free block pool. The
garbage collector also exploits idle times to hide the overhead of the cleaning from the users,
however only limited information on this mechanism is provided in (Lee et al., 2009).

Wear leveling

The use of FlexFS implies that each block undergoes more erasure cycles because of data
migration. To improve the endurance and to prolong the lifetime, it would be better to write
data to the MLC region directly, but this would reduce the overall performance. To address
this trade-off, FlexFS adopts a novel wear-leveling approach to control the amount of data
to write to the SLC region depending on a given storage lifetime. In particular, Lmin is the
minimum guaranteed lifetime that must be ensured by the file system. It can be expressed as
Lmin ≈ Ctotal ·Ecycles/WR, where Ctotal is the size of the flash memory, and Ecycles is the number of
erasure cycles allowed for each block. The writing rate WR is the amount of data written in
the unit of time (e.g., per day). FlexFS controls the wearing rate so that the total erase count is
close to the maximum number of erase cycles Nerase at a given Lmin.
The wearing rate is directly proportional to the value of α. In fact, if α = 1.0 then only SLC
blocks are written, thus if 2 SLC blocks are involved, data migration will involve 1 MLC block,
using 3 overall blocks (see Fig. 10). If α = 0, then only MLC blocks are written, no data
migration occurs and only 1 block is exploited. Fig. 12 shows an example of wearing rate
control.

17Design Issues and Challenges of File Systems for Flash Memories

14 Flash Memory

Three key techniques are adopted to leverage the overhead associated with data migrations:
background migration, dynamic allocation and locality-aware data management.
The background migration technique exploits the idle time of the system (Tidle) to hide the data
migration overhead. During Tidle the background migrator moves data from the SLC region
to the MLC region, thus freeing many blocks that would be compulsory erased later. The first
drawback of this technique is that, if an I/O request arrives during a background migration,
it will be delayed of a certain time Tdelay that must be minimized by either monitoring the I/O
subsystem or suspending the background migration in case of an I/O request. This problem
can be partially mitigated by reducing the amount of idle time devoted to background
migration, and by triggering the migration at given intervals (Twait) in order to reduce the
probability of an I/O request during the migration.
The background migration is suitable for systems with enough idle time (e.g., mobile phones).
With systems with less idle time, the dynamic allocation is adopted. This method dynamically
redirects part of the incoming data directly to the MLC region depending on the idleness of the
system. Although this approach reduces the performance, it also reduces the amount of data
written in the SLC region, which in turn reduces the data migration overhead. The dynamic
allocator determines the amount of data to write in the SLC region. This parameter depends
on the idle time, which dynamically changes, and, therefore, must be carefully forecast. The
time is divided into several windows. Each window represents the period during which Np

pages are written into the flash. FlexFS evaluates the predicted Tpred
idle as a weighted average

of the idle times of the last 10 windows. Then, an allocation ratio α is calculated in function
of Tpred

idle as α = Tpred
idle /(Np ·Tcopy), where Tcopy is the time required to copy a single page from SLC

to MLC. If Tpred
idle � Np · Tcopy, there is enough idle time for data migration, thus α = 1. Fig.

11 shows an example of dynamic allocation. The dynamic allocator distributes the incoming
data across the MLC and SLC regions depending on α. In this case, according to the previous
Np = 10 windows and to Tpred

idle , α = 0.6. Therefore, for the next Np = 10 pages 40%, of the
incoming data will be written in the MLC, and 60% in the SLC region, respectivelly. After
writing all 10 pages, the dynamic allocator calculates a new value of α for the next Np pages.

���������

������������������

���������
��
��	��

���������
��
��	��

���������
�����	��

���������
�����	��

����������� �����������

�������� ����������������

����������
���������

Fig. 11. An example of Dynamic Allocation

16 Flash Memories Design Issues and Challenges of
File Systems for Flash Memories 15

The locality-aware data management exploits the locality of I/O accesses to improve the
efficiency of data migration. Since hot data have a higher update rate compared to cold data,
they will be invalidated frequently, potentially causing several unnecessary page migrations.
In the case of a locality-unaware approach, pages are migrated from SLC to MLC based on
the available idle time Tidle. If hot data are allowed to migrate before cold data during Tidle,
the new copy of the data in the MLC region will be invalidated in a short time. Therefore, a
new copy of this information will be written in the SLC region. This results in unnecessary
migrations, reduction of the SLC region and a consequent decrease of α to avoid a congestion
of the SLC region.
If locality of data is considered, the efficiency of data migration can be increases. When
performing data migration cold data have the priority. Hot data have a high temporal locality,
thus data migration for them is not required. Moreover, the value of α can be adjusted as
α = Tpred

idle /[(Np−Nhot
p)·Tcopy] where Nhot

p is the number of page writes for hot pages stored in the
SLC region.
In order to detect hot data, FlexFS adopts a two queues-based locality detection technique.
An hot and a cold queue maintain the inodes of frequently and infrequently modified files. In
order to understand which block to migrate from MLC to SLC, FlexFS calculates the average
hotness of each block and chooses the block whose hotness is lower than the average. Similar
to the approach of idle time prediction, Nhot

p counts how many hot pages were written into
the SLC region during the previous 10 windows. Their average hotness value will be the Nhot

p
for the next time window.

Garbage collection

There is no need for garbage collection into the SLC region. In fact, cold data in SLC will be
moved by the data migrator to the MLC region and hot data are not moved for high locality.
However, the data migrator cannot reclaim the space used by invalid pages in the MLC region.
This is the job of the garbage collector. It chooses a victim block V in the MLC region with as
many invalidated pages as possible. Then, it copies all the valid pages of V into a different
MLC block. Finally, it erases the block V, which becomes part of the free block pool. The
garbage collector also exploits idle times to hide the overhead of the cleaning from the users,
however only limited information on this mechanism is provided in (Lee et al., 2009).

Wear leveling

The use of FlexFS implies that each block undergoes more erasure cycles because of data
migration. To improve the endurance and to prolong the lifetime, it would be better to write
data to the MLC region directly, but this would reduce the overall performance. To address
this trade-off, FlexFS adopts a novel wear-leveling approach to control the amount of data
to write to the SLC region depending on a given storage lifetime. In particular, Lmin is the
minimum guaranteed lifetime that must be ensured by the file system. It can be expressed as
Lmin ≈ Ctotal ·Ecycles/WR, where Ctotal is the size of the flash memory, and Ecycles is the number of
erasure cycles allowed for each block. The writing rate WR is the amount of data written in
the unit of time (e.g., per day). FlexFS controls the wearing rate so that the total erase count is
close to the maximum number of erase cycles Nerase at a given Lmin.
The wearing rate is directly proportional to the value of α. In fact, if α = 1.0 then only SLC
blocks are written, thus if 2 SLC blocks are involved, data migration will involve 1 MLC block,
using 3 overall blocks (see Fig. 10). If α = 0, then only MLC blocks are written, no data
migration occurs and only 1 block is exploited. Fig. 12 shows an example of wearing rate
control.

17Design Issues and Challenges of File Systems for Flash Memories

16 Flash Memory

�� ���� ���� ���� �������

�������

�
��

��
���

���
��
��
��
��
�
��
��

�� ���� ���� ���� �������

�������

�
��

��
���

��
��
��
��
��
�
��
��

�� ���� ���� ���� �������

�������

��

��������������������� �������������������

�
��

��
���

���
��
��
��
��
�
��
��

Fig. 12. An example of Wearing Rate Control

At first, the actual erase count of Fig. 12 is lower than the expected one, thus the value of α
must be increased. After some time, the actual erase count is higher than expected, thus α is
decreased. At the end, the actual erase count becomes again smaller than the expected erase
count, thus another increase of the value of α is required.

3.2 Open source flash file systems
Open source file systems are widely used in multiple applications using a variety of flash
memory devices and are in general provided with a full and detailed documentation. The
large open source community of developers ensures that any issue is quickly resolved and
the quality of the file system is therefore high. Furthermore, their code is fully available for
consulting, modifications, and practical implementations. Nowadays, YAFFS represents the
most promising open-source project for the the development of an open FFS. For this reason
we will concentrate on this specific file system.

3.2.1 Yet Another Flash File System (YAFFS)
YAFFS (Aleph One Ltd., 2011) is a robust log-structured file system specifically designed for
NAND flash memories, focusing on data integrity and performance. It is licensed both under
the General Public License (GPL) and under per-product licenses available from Aleph One.
There are two versions of YAFFS: YAFFS1 and YAFFS2. The two versions of the file system
are very similar, they share part of the code and provide support for backward compatibility
from YAFFS2 to YAFFS1. The main difference between the two file systems is that YAFFS2
is designed to deal with the characteristics of modern NAND flash devices. In the sequel,
without losing of generality, we will address the most recent YAFFS2, unless differently
specified. We will try to introduce YAFFS’s most important concepts. We strongly suggest
the interested readers to consult the related documentation documentation (Aleph One Ltd.,
2010; 2011; Manning, 2010) and above all the code implementation, which is the most valuable
way to thoroughly understand this native flash file system.

Portability

Since YAFFS has to work in multiple environments, portability is a key requirement. YAFFS
has been successfully ported under Linux, WinCE, pSOS, eCos, ThreadX, and various
special-purpose OS. Portability is achieved by the absence of OS or compiler-specific features
in the main code and by the proper use of abstract types and functions to allow Unicode or
ASCII operations.

18 Flash Memories Design Issues and Challenges of
File Systems for Flash Memories 17

Technology

Both YAFFS1 and YAFFS2 are designed to work with NAND flash memories. YAFFS1 was
designed for devices with page size of 512B plus 16B of spare information. YAFFS1 exploited
the possibility of performing multiple write cycles per page available in old generations
of NAND flash devices. YAFFS2 is the successor of YAFFS1 designed to work with the
contemporary generation of NAND flash chips designed with pages equal or greater than
2KB + 64B. For sake of reliability, new devices do not allow page overwriting and pages of a
block must be written sequentially.

Architecture and data allocation

YAFFS is designed with a modular architecture to provide flexibility for testing and
development. YAFFS modules include both kernel and user space code, as summarized in
Fig. 13.

�����������������

��������������������

���� � ���������������� ������

�������������������������
�����

�����������������������������������

�����������������������

����������������

�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�������������������������

�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

����������������

	��	
��

��
��	�

��	��

��
��	�

Fig. 13. The YAFFS Architecture

Since developing and debugging code in user space is easier than working in kernel mode,
the core of the file system, namely the guts algorithms, is implemented as user code. This
code is also shared with the kernel of the OS. If a full interface at the OS level is required (e.g.,
implementation of specific system calls), it must be implemented inside the Virtual File System
(VFS) layer. Otherwise, YAFFS can be used at the application level. In this configuration,
information can be accessed through the YAFFS Direct Interface. This is the typical case for
applications without OS, embedded OS or bootloaders (Aleph One Ltd., 2010).
YAFFS also includes an emulation layer that provides an excellent way to debug the file
system even when no flash devices are available (Manning, 2010).
File systems are usually designed to store information organized into files. YAFFS is instead
designed to store Objects. An object is anything a file system can store: regular data files,
directories, hard/symbolic links, and special objects. Each object is identified by a unique
objectId. Although the NAND flash is arranged in pages, the allocation unit for YAFFS is the
chunk. Typically, a chunk is mapped to a single page, but there is flexibility to use chunks that
span over multiple pages2. Each chunk is identified by its related objectId and by a ChunkId: a
progressive number identifying the position of the chunk in the object.

2 in the sequel, the terms page and chunk will be considered as synonymous unless stated otherwise

19Design Issues and Challenges of File Systems for Flash Memories

16 Flash Memory

�� ���� ���� ���� �������

�������

�
��

��
���

���
��
��
��
��
�
��
��

�� ���� ���� ���� �������

�������

�
��

��
���

��
��
��
��
��
�
��
��

�� ���� ���� ���� �������

�������

��

��������������������� �������������������

�
��

��
���

���
��
��
��
��
�
��
��

Fig. 12. An example of Wearing Rate Control

At first, the actual erase count of Fig. 12 is lower than the expected one, thus the value of α
must be increased. After some time, the actual erase count is higher than expected, thus α is
decreased. At the end, the actual erase count becomes again smaller than the expected erase
count, thus another increase of the value of α is required.

3.2 Open source flash file systems
Open source file systems are widely used in multiple applications using a variety of flash
memory devices and are in general provided with a full and detailed documentation. The
large open source community of developers ensures that any issue is quickly resolved and
the quality of the file system is therefore high. Furthermore, their code is fully available for
consulting, modifications, and practical implementations. Nowadays, YAFFS represents the
most promising open-source project for the the development of an open FFS. For this reason
we will concentrate on this specific file system.

3.2.1 Yet Another Flash File System (YAFFS)
YAFFS (Aleph One Ltd., 2011) is a robust log-structured file system specifically designed for
NAND flash memories, focusing on data integrity and performance. It is licensed both under
the General Public License (GPL) and under per-product licenses available from Aleph One.
There are two versions of YAFFS: YAFFS1 and YAFFS2. The two versions of the file system
are very similar, they share part of the code and provide support for backward compatibility
from YAFFS2 to YAFFS1. The main difference between the two file systems is that YAFFS2
is designed to deal with the characteristics of modern NAND flash devices. In the sequel,
without losing of generality, we will address the most recent YAFFS2, unless differently
specified. We will try to introduce YAFFS’s most important concepts. We strongly suggest
the interested readers to consult the related documentation documentation (Aleph One Ltd.,
2010; 2011; Manning, 2010) and above all the code implementation, which is the most valuable
way to thoroughly understand this native flash file system.

Portability

Since YAFFS has to work in multiple environments, portability is a key requirement. YAFFS
has been successfully ported under Linux, WinCE, pSOS, eCos, ThreadX, and various
special-purpose OS. Portability is achieved by the absence of OS or compiler-specific features
in the main code and by the proper use of abstract types and functions to allow Unicode or
ASCII operations.

18 Flash Memories Design Issues and Challenges of
File Systems for Flash Memories 17

Technology

Both YAFFS1 and YAFFS2 are designed to work with NAND flash memories. YAFFS1 was
designed for devices with page size of 512B plus 16B of spare information. YAFFS1 exploited
the possibility of performing multiple write cycles per page available in old generations
of NAND flash devices. YAFFS2 is the successor of YAFFS1 designed to work with the
contemporary generation of NAND flash chips designed with pages equal or greater than
2KB + 64B. For sake of reliability, new devices do not allow page overwriting and pages of a
block must be written sequentially.

Architecture and data allocation

YAFFS is designed with a modular architecture to provide flexibility for testing and
development. YAFFS modules include both kernel and user space code, as summarized in
Fig. 13.

�����������������

��������������������

���� � ���������������� ������

�������������������������
�����

�����������������������������������

�����������������������

����������������

�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�������������������������

�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

����������������

	��	
��

��
��	�

��	��

��
��	�

Fig. 13. The YAFFS Architecture

Since developing and debugging code in user space is easier than working in kernel mode,
the core of the file system, namely the guts algorithms, is implemented as user code. This
code is also shared with the kernel of the OS. If a full interface at the OS level is required (e.g.,
implementation of specific system calls), it must be implemented inside the Virtual File System
(VFS) layer. Otherwise, YAFFS can be used at the application level. In this configuration,
information can be accessed through the YAFFS Direct Interface. This is the typical case for
applications without OS, embedded OS or bootloaders (Aleph One Ltd., 2010).
YAFFS also includes an emulation layer that provides an excellent way to debug the file
system even when no flash devices are available (Manning, 2010).
File systems are usually designed to store information organized into files. YAFFS is instead
designed to store Objects. An object is anything a file system can store: regular data files,
directories, hard/symbolic links, and special objects. Each object is identified by a unique
objectId. Although the NAND flash is arranged in pages, the allocation unit for YAFFS is the
chunk. Typically, a chunk is mapped to a single page, but there is flexibility to use chunks that
span over multiple pages2. Each chunk is identified by its related objectId and by a ChunkId: a
progressive number identifying the position of the chunk in the object.

2 in the sequel, the terms page and chunk will be considered as synonymous unless stated otherwise

19Design Issues and Challenges of File Systems for Flash Memories

18 Flash Memory

YAFFS writes data in the form of a sequential log. Each entry of the log corresponds to a
single chunk. Chunks are of two types: Object Headers and Data Chunks. An Object Header is
a descriptor of an object storing metadata information including: the Object Type (i.e., whether
the object is a file, a directory, etc.) and the File Size in case of an object corresponding to a file.
Object headers are always identified by ChunkId = 0. Data chunks are instead used to old the
actual data composing a file.
Fig. 14 shows a simple example of how YAFFS behaves considering two blocks each
composed of four chunks.

�
��
��
���

��
��

��

������
����
��

��
��
���

��
��
��

��
��

��
��
��

��
��
��
��

��
��

�
�
��
���

��
��

��

��������

��
��
	���
��

����������� ������������� ������������

������

������

��������

��������

��
��
���

��
��
��

��
�� ��

��

���

��

��������

������

������

��������

��������

��

��

���

��

�
�
��
���

��
��

��

Fig. 14. An Example of YAFFS Operations

The situation depicted in Fig. 14 shows the data allocation for a file with ObjectId 42 that was
first created allocating two data chunks, and then modified deleting the second data chunk
and updating the first chunk. The chunks corresponding to the initial creation of the file are
those saved in Block 1. When a new file is created, YAFFS first allocates an Object Header
(Chunk 1 of Block 1). It then writes the required data chunks (Chunks 2 and 3 of Block
1), and, finally, when the file is closed, it invalidates the first header and allocates an new
updated header (Chunk 4 of Block 1). When the file is updated, according to the requested
modifications, Chunk 3 of Block 1 is invalidated and therefore deleted, while Chunk 2 of Block
1 is invalidated and the updated copy is written in Chunk 2 of Block 2 (the first available
Chunk). Finally, the object header is invalidated (Chunk 4 of Block 1) and the updated copy is
written in Chunk 2 of Block 2.
At the end of this process, all chunks of Block 1 are invalidated while Block 2 still has two free
chunks that will be used for the next allocations. As will be described later in this section, to
improve performance YAFFS stores control information including the validity of each chunk
in RAM. In case of power failure, it must therefore be able to recover the set of valid chunks
where data are allocated. This is achieved by the use of a global sequence number. As each
block is allocated, YAFFS increases the sequence number and uses this counter to mark each
chunk of the block. This allows to organize the log in a chronological order. Thanks to the
sequence number, YAFFS is able to determine the sequence of events and to restore the file
system state at boot time.

Address translation

The data allocation scheme proposed in Fig. 14 requires several data structures to properly
manage information. To increase performance, YAFFS does not store this information in the
flash, but it provides several data structures stored in RAM. The most important structures
are:

20 Flash Memories Design Issues and Challenges of
File Systems for Flash Memories 19

• Device partition: it holds information related to a YAFFS partition or mount point, providing
support for multiple partitions. It is fundamental for all the other data structures which
are usually part of, or accessed via this structure.

• Block info: each device has an array of block information holding the current state of the
NAND blocks.

• Object: each object (i.e., regular file, directory, etc.) stored in the flash has its related object
structure in RAM which holds the state of the object.

• File structure: an object related to a data file stores a tree of special nodes called Tnodes,
providing a mechanism to find the actual data chunks composing the file.

Among all the other information, each file object stores the depth and the pointer to the top
of Tnode tree. The Tnode tree is made up of Tnodes arranged in levels. At Level 0 a Tnode
holds 24=16 NAND ChunkId which identify the location of the chunks in the NAND flash.
At levels greater than 0, a Tnode holds 23=8 pointers to other Tnodes in the following level.
Powers-of-two make look-ups simpler by just applying bitmasks (Manning, 2010).

������������

����

������������

��

����

�����
�����

������
�

������	�

����

����

������
�����

��������
�����

������������
�����

�����
�� ���

���������
�� ���

Fig. 15. An example of Tnode tree for data file

Fig. 15 shows an example of Tnode for a file object. For the sake of simplicity, only 4 entries
are shown for each Tnode. Fig. 15(a) shows the creation of an object composed of 4 chunks,
thus only one Level-0 Tnode is requested. In Fig. 15(b) the object’s size starts to grow up,
thus a Level-1 Tnode is added. This Level-1 Tnode can point to other Level-0 Tnodes which in
turn will point to the physical NAND chunks. In particular, Fig. 15(b) shows how two of the
previous chunks can be rewritten and three new chunks can be added. When the object’s size
will become greater than the 16 chunks of Fig. 15(b), then a Level-2 Tnode will be allocated
and so on.
For sake of brevity, we will not address the structures used to manage directories,
hard/symbolic links and other objects. Interested readers can refer to (Manning, 2010) for
a detailed discussion.

Boot time

The mounting process of a YAFFS partition requires to scan the entire flash. Scanning is the
process in which the state of the file system is rebuilt from scratch. It reads the metadata (tags)
associated with all the active chunks and may take a considerable amount of time.

21Design Issues and Challenges of File Systems for Flash Memories

18 Flash Memory

YAFFS writes data in the form of a sequential log. Each entry of the log corresponds to a
single chunk. Chunks are of two types: Object Headers and Data Chunks. An Object Header is
a descriptor of an object storing metadata information including: the Object Type (i.e., whether
the object is a file, a directory, etc.) and the File Size in case of an object corresponding to a file.
Object headers are always identified by ChunkId = 0. Data chunks are instead used to old the
actual data composing a file.
Fig. 14 shows a simple example of how YAFFS behaves considering two blocks each
composed of four chunks.

�
��
��
���

��
��

��

������
����
��

��
��
���

��
��
��

��
��

��
��
��

��
��
��
��

��
��

�
�
��
���

��
��

��

��������

��
��
	���
��

����������� ������������� ������������

������

������

��������

��������

��
��
���

��
��
��

��
�� ��

��

���

��

��������

������

������

��������

��������

��

��

���

��

�
�
��
���

��
��

��

Fig. 14. An Example of YAFFS Operations

The situation depicted in Fig. 14 shows the data allocation for a file with ObjectId 42 that was
first created allocating two data chunks, and then modified deleting the second data chunk
and updating the first chunk. The chunks corresponding to the initial creation of the file are
those saved in Block 1. When a new file is created, YAFFS first allocates an Object Header
(Chunk 1 of Block 1). It then writes the required data chunks (Chunks 2 and 3 of Block
1), and, finally, when the file is closed, it invalidates the first header and allocates an new
updated header (Chunk 4 of Block 1). When the file is updated, according to the requested
modifications, Chunk 3 of Block 1 is invalidated and therefore deleted, while Chunk 2 of Block
1 is invalidated and the updated copy is written in Chunk 2 of Block 2 (the first available
Chunk). Finally, the object header is invalidated (Chunk 4 of Block 1) and the updated copy is
written in Chunk 2 of Block 2.
At the end of this process, all chunks of Block 1 are invalidated while Block 2 still has two free
chunks that will be used for the next allocations. As will be described later in this section, to
improve performance YAFFS stores control information including the validity of each chunk
in RAM. In case of power failure, it must therefore be able to recover the set of valid chunks
where data are allocated. This is achieved by the use of a global sequence number. As each
block is allocated, YAFFS increases the sequence number and uses this counter to mark each
chunk of the block. This allows to organize the log in a chronological order. Thanks to the
sequence number, YAFFS is able to determine the sequence of events and to restore the file
system state at boot time.

Address translation

The data allocation scheme proposed in Fig. 14 requires several data structures to properly
manage information. To increase performance, YAFFS does not store this information in the
flash, but it provides several data structures stored in RAM. The most important structures
are:

20 Flash Memories Design Issues and Challenges of
File Systems for Flash Memories 19

• Device partition: it holds information related to a YAFFS partition or mount point, providing
support for multiple partitions. It is fundamental for all the other data structures which
are usually part of, or accessed via this structure.

• Block info: each device has an array of block information holding the current state of the
NAND blocks.

• Object: each object (i.e., regular file, directory, etc.) stored in the flash has its related object
structure in RAM which holds the state of the object.

• File structure: an object related to a data file stores a tree of special nodes called Tnodes,
providing a mechanism to find the actual data chunks composing the file.

Among all the other information, each file object stores the depth and the pointer to the top
of Tnode tree. The Tnode tree is made up of Tnodes arranged in levels. At Level 0 a Tnode
holds 24=16 NAND ChunkId which identify the location of the chunks in the NAND flash.
At levels greater than 0, a Tnode holds 23=8 pointers to other Tnodes in the following level.
Powers-of-two make look-ups simpler by just applying bitmasks (Manning, 2010).

������������

����

������������

��

����

�����
�����

������
�

������	�

����

����

������
�����

��������
�����

������������
�����

�����
�� ���

���������
�� ���

Fig. 15. An example of Tnode tree for data file

Fig. 15 shows an example of Tnode for a file object. For the sake of simplicity, only 4 entries
are shown for each Tnode. Fig. 15(a) shows the creation of an object composed of 4 chunks,
thus only one Level-0 Tnode is requested. In Fig. 15(b) the object’s size starts to grow up,
thus a Level-1 Tnode is added. This Level-1 Tnode can point to other Level-0 Tnodes which in
turn will point to the physical NAND chunks. In particular, Fig. 15(b) shows how two of the
previous chunks can be rewritten and three new chunks can be added. When the object’s size
will become greater than the 16 chunks of Fig. 15(b), then a Level-2 Tnode will be allocated
and so on.
For sake of brevity, we will not address the structures used to manage directories,
hard/symbolic links and other objects. Interested readers can refer to (Manning, 2010) for
a detailed discussion.

Boot time

The mounting process of a YAFFS partition requires to scan the entire flash. Scanning is the
process in which the state of the file system is rebuilt from scratch. It reads the metadata (tags)
associated with all the active chunks and may take a considerable amount of time.

21Design Issues and Challenges of File Systems for Flash Memories

20 Flash Memory

During the mounting process, YAFFS2 adopts the so called backwards scanning to identify the
most current chunks. This process exploits the sequence numbers introduced in the previous
paragraphs. First, a pre-scan of the blocks is required to determine their sequence number.
Second, they are sorted to make a chronologically ordered list. Finally, a backwards scanning
(i.e., from the highest to the lowest sequence number) of the blocks is performed. The first
occurrence of any pair ObjectId:ChunkId is the most current one, while all following matchings
are obsolete and thus treated as deleted.
YAFFS provides several optimizations to improve boot performance. YAFFS2 supports the
checkpointing which bypasses normal mount scanning, allowing very fast mount times. Mount
times are variable, but 3 sec for 2 GB have been reported. Checkpoint is a mechanism to speed
up the mounting process by taking a snapshot of the YAFFS runtime state at unmount and
then rebuilding the runtime state on re-mounting. Using this approach, only the structure of
the file system (i.e., directory relationships, Tnode trees, etc.) must be created at boot, while
much of the details such as filename, permissions, etc. can be lazy-loaded on demand. This
will happen when the object is looked up (e.g., by a file open or searching for a file in the
directory). However, if the checkpoint is not valid, it is ignored and the state is scanned again.
Scanning needs extra information (i.e., parent directory, object type, etc.) to be stored in the
tags of the object headers in order to reduce the amount of read operations during the scan.
YAFFS2 extends the tags in the object headers with extra fields to improve the mount scanning
performance. A way to store them without enlarging the tags size is to exploit the "useless"
fields of the object headers (i.e., chunkId and nbytes) to cleverly pack the most important data.
These physical information items are called packed tags.

Garbage collection

YAFFS actually calls the garbage collector before writing each chunk of data to the flash
memory. It adopts a pretty simple garbage collection strategy. First of all, it checks how
many erased blocks are available. In case there are several erased blocks, there is no need
for a strong intervention. A passive garbage collection can be performed on blocks with very
few chunks in use. In case of very few erased blocks, a harder work is required to recover
space. The garbage collector identifies the set of blocks with more chunks in use, performing
an aggressive garbage collection.
The rationale behind this strategy is to delay garbage collection whenever possible, in order
to spread and reduce the "stall" time for cleaning. This has the benefit of increasing the
average system performance. However, spreading the garbage collection may lead to possible
fluctuations in the file system throughput (Manning, 2010).
The YAFFS garbage collection algorithm is under constant review to reduce "stall" time and
to increase performance. Charles Manning, the inventor of YAFFS, recently provided a new
background garbage collector. It should significantly reduce foreground garbage collection in
many usage scenarios, particularly those where writing is "bursty" such as a cell phones or
similar applications. This could make writing a lot faster, and applications more responsive.
Furthermore, YAFFS has included the idea of "block refreshing" in the garbage collector.
YAFFS will periodically select the oldest block by exploiting the sequence number and
perform garbage collection on it even if it has no garbage. This operation basically rewrites
the block to new areas, thus performing a sort of static wear leveling.

Wear leveling

YAFFS does not have an explicit set of functions to actively perform wear leveling. In fact,
being a log structured file system, it implicitly spreads out the wear by performing all writes

22 Flash Memories Design Issues and Challenges of
File Systems for Flash Memories 21

in sequence on different chunks. Each partition has a free allocation block. Chunks are allocated
sequentially from the allocation block. When the allocation block is full, another empty block
is selected to become the allocation block by searching upwards from the previous allocation
block. Moreover, blocks are allocated serially from the erased blocks in the partition, thus the
process of erasing tends to evenly use all blocks as well. In conclusion, in spite of the absence
of a specific code, wear leveling is performed as a side effect of other activities (Manning,
2010).

Bad block management

Although YAFFS1 was actively marking bad blocks, YAFFS2 delegates this problem to driver
functions. A block is in general marked as bad if a read or write operation fails or three
ECC errors are detected. Even if this is a suitable policy for the more reliable SLC memories,
alternative strategies for MLC memories are under investigation (Manning, 2010).

Error correction code

YAFFS1 can work with existing software or hardware ECC logic or provide built-in error
correction codes, while YAFFS2 does not provide ECC internally, but, requires that the driver
provides the ECC. The ECC code supplied with YAFFS is the fastest C code implementation
of a Smart Media compatible ECC algorithm with Single Error Correction (SEC) and Double
Error Detection (DED) on a 256-byte data block (Manning, 2010).

3.3 Proprietary FFS
Most of the native FFS are proprietary, i.e., they are under exclusive legal rights of the
copyright holder. Some of them can be licensed under certain conditions, but restricted from
other uses such as modification, further distribution, or reverse engineering. Although the
adopted strategies are usually hidden or expressed from a very high-level point of view, it
is important to know the main commercial FFS and the related field of application, even if
details on the implementation are not available.

3.3.1 exFAT (Microsoft)
The Extended File Allocation Table (exFAT), often incorrectly called FAT64, is the Microsoft
proprietary patent-pending file system intended for USB flash drives (Microsoft, 2009). exFAT
can be used where the NTFS or FAT file systems are not a feasible solution, due to data
structure overhead or to file size restrictions.
The main advantages of exFAT over previous FAT file systems include the support for larger
disk size (i.e., up to 512 TB recommended max), a larger cluster size up to 32 MB, a bigger
file size up to 16 TB, and several I/O improvements. However, there is limited or absent
support outside Microsoft OS environment. Moreover, exFAT looks less reliable than FAT,
since it uses a single mapping table, the subdirectory size is limited to 256MB, and Microsoft
has not released the official exFAT file specification, requiring a license to make and distribute
exFAT implementations (Microsoft, 2011a). A comparison among exFAT and other three MS
Windows based file systems can be found in (Microsoft, 2011b).

3.3.2 XCFiles (Datalight)
XCFiles is an exFAT-compatible file system implementation by Datalight for Wind River
VxWorks and other embedded OS. XCFiles was released in June 2010 to target consumer
devices. It allows embedded systems to support SDXC, the SD Card Association standard

23Design Issues and Challenges of File Systems for Flash Memories

20 Flash Memory

During the mounting process, YAFFS2 adopts the so called backwards scanning to identify the
most current chunks. This process exploits the sequence numbers introduced in the previous
paragraphs. First, a pre-scan of the blocks is required to determine their sequence number.
Second, they are sorted to make a chronologically ordered list. Finally, a backwards scanning
(i.e., from the highest to the lowest sequence number) of the blocks is performed. The first
occurrence of any pair ObjectId:ChunkId is the most current one, while all following matchings
are obsolete and thus treated as deleted.
YAFFS provides several optimizations to improve boot performance. YAFFS2 supports the
checkpointing which bypasses normal mount scanning, allowing very fast mount times. Mount
times are variable, but 3 sec for 2 GB have been reported. Checkpoint is a mechanism to speed
up the mounting process by taking a snapshot of the YAFFS runtime state at unmount and
then rebuilding the runtime state on re-mounting. Using this approach, only the structure of
the file system (i.e., directory relationships, Tnode trees, etc.) must be created at boot, while
much of the details such as filename, permissions, etc. can be lazy-loaded on demand. This
will happen when the object is looked up (e.g., by a file open or searching for a file in the
directory). However, if the checkpoint is not valid, it is ignored and the state is scanned again.
Scanning needs extra information (i.e., parent directory, object type, etc.) to be stored in the
tags of the object headers in order to reduce the amount of read operations during the scan.
YAFFS2 extends the tags in the object headers with extra fields to improve the mount scanning
performance. A way to store them without enlarging the tags size is to exploit the "useless"
fields of the object headers (i.e., chunkId and nbytes) to cleverly pack the most important data.
These physical information items are called packed tags.

Garbage collection

YAFFS actually calls the garbage collector before writing each chunk of data to the flash
memory. It adopts a pretty simple garbage collection strategy. First of all, it checks how
many erased blocks are available. In case there are several erased blocks, there is no need
for a strong intervention. A passive garbage collection can be performed on blocks with very
few chunks in use. In case of very few erased blocks, a harder work is required to recover
space. The garbage collector identifies the set of blocks with more chunks in use, performing
an aggressive garbage collection.
The rationale behind this strategy is to delay garbage collection whenever possible, in order
to spread and reduce the "stall" time for cleaning. This has the benefit of increasing the
average system performance. However, spreading the garbage collection may lead to possible
fluctuations in the file system throughput (Manning, 2010).
The YAFFS garbage collection algorithm is under constant review to reduce "stall" time and
to increase performance. Charles Manning, the inventor of YAFFS, recently provided a new
background garbage collector. It should significantly reduce foreground garbage collection in
many usage scenarios, particularly those where writing is "bursty" such as a cell phones or
similar applications. This could make writing a lot faster, and applications more responsive.
Furthermore, YAFFS has included the idea of "block refreshing" in the garbage collector.
YAFFS will periodically select the oldest block by exploiting the sequence number and
perform garbage collection on it even if it has no garbage. This operation basically rewrites
the block to new areas, thus performing a sort of static wear leveling.

Wear leveling

YAFFS does not have an explicit set of functions to actively perform wear leveling. In fact,
being a log structured file system, it implicitly spreads out the wear by performing all writes

22 Flash Memories Design Issues and Challenges of
File Systems for Flash Memories 21

in sequence on different chunks. Each partition has a free allocation block. Chunks are allocated
sequentially from the allocation block. When the allocation block is full, another empty block
is selected to become the allocation block by searching upwards from the previous allocation
block. Moreover, blocks are allocated serially from the erased blocks in the partition, thus the
process of erasing tends to evenly use all blocks as well. In conclusion, in spite of the absence
of a specific code, wear leveling is performed as a side effect of other activities (Manning,
2010).

Bad block management

Although YAFFS1 was actively marking bad blocks, YAFFS2 delegates this problem to driver
functions. A block is in general marked as bad if a read or write operation fails or three
ECC errors are detected. Even if this is a suitable policy for the more reliable SLC memories,
alternative strategies for MLC memories are under investigation (Manning, 2010).

Error correction code

YAFFS1 can work with existing software or hardware ECC logic or provide built-in error
correction codes, while YAFFS2 does not provide ECC internally, but, requires that the driver
provides the ECC. The ECC code supplied with YAFFS is the fastest C code implementation
of a Smart Media compatible ECC algorithm with Single Error Correction (SEC) and Double
Error Detection (DED) on a 256-byte data block (Manning, 2010).

3.3 Proprietary FFS
Most of the native FFS are proprietary, i.e., they are under exclusive legal rights of the
copyright holder. Some of them can be licensed under certain conditions, but restricted from
other uses such as modification, further distribution, or reverse engineering. Although the
adopted strategies are usually hidden or expressed from a very high-level point of view, it
is important to know the main commercial FFS and the related field of application, even if
details on the implementation are not available.

3.3.1 exFAT (Microsoft)
The Extended File Allocation Table (exFAT), often incorrectly called FAT64, is the Microsoft
proprietary patent-pending file system intended for USB flash drives (Microsoft, 2009). exFAT
can be used where the NTFS or FAT file systems are not a feasible solution, due to data
structure overhead or to file size restrictions.
The main advantages of exFAT over previous FAT file systems include the support for larger
disk size (i.e., up to 512 TB recommended max), a larger cluster size up to 32 MB, a bigger
file size up to 16 TB, and several I/O improvements. However, there is limited or absent
support outside Microsoft OS environment. Moreover, exFAT looks less reliable than FAT,
since it uses a single mapping table, the subdirectory size is limited to 256MB, and Microsoft
has not released the official exFAT file specification, requiring a license to make and distribute
exFAT implementations (Microsoft, 2011a). A comparison among exFAT and other three MS
Windows based file systems can be found in (Microsoft, 2011b).

3.3.2 XCFiles (Datalight)
XCFiles is an exFAT-compatible file system implementation by Datalight for Wind River
VxWorks and other embedded OS. XCFiles was released in June 2010 to target consumer
devices. It allows embedded systems to support SDXC, the SD Card Association standard

23Design Issues and Challenges of File Systems for Flash Memories

22 Flash Memory

for extended capacity storage cards (SD Association, 2011). XCFiles is intended to be portable
to any 32-bit platform which meets certain requirements (Datalight, 2010).

3.3.3 TrueFFS (M-Systems)
True flash file system (TrueFFS) is a low level file system designed to run on a raw solid-state
drive. TrueFFS implements error correction, bad block re-mapping and wear leveling.
Externally, TrueFFS presents a normal hard disk interface. TrueFFS was created by M-Systems
(Ban, 1995) on the "DiskOnChip 2000" product line, later acquired by Sandisk in 2006. TFFS
or TFFS-lite is a derivative of TrueFFS. It is available in the VxWorks OS, where it works as a
FTL, not as a fully functional file system (SanDisk, 2011b).

3.3.4 ExtremeFFS (SanDisk)
ExtremeFFS is an internal file system for SSD developed by SanDisk allowing for improved
random write performance in flash memories compared to traditional systems such as
TrueFFS. The company plans on using ExtremeFFS in an upcoming MLC implementation of
NAND flash memory (SanDisk, 2011a).

3.3.5 OneFS (Isilon)
The OneFS file system is a distributed networked file system designed by Isilon Systems for
use in its Isilon IQ storage appliances. The maximum size of a file is 4TB, while the maximum
volume size is 2304TB. However, only the OneFS OS is supported (Isilon, 2011).

3.3.6 emFile (Segger Microcontroller Systems)
emFile is a file system for deeply embedded devices supporting both NAND and NOR
flashes. It implements wear leveling, fast read and write operations, and very low RAM
usage. Moreover, it implements a JTAG emulator that allows to interface the Segger’s
patented flash breakpoint software to a Remote Debug Interface (RDI) compliant debugger.
This software allows program developers to set multiple breakpoints in the flash thus
increasing the capability of debugging applications developed over this file system. This
feature is however only available for systems based on an ARM microprocessor (Segger,
2005; 2010).

4. Comparisons of the presented FFS

Table 1 summarizes the analysis proposed in this chapter by providing an overall comparison
among the proposed FFS, taking into account the aspects proposed in Section 23. Proprietary
FFS are excluded from this comparison given the reduced available documentation.
Considering the technology, eNVy represents the worst choice since it was designed for old
flash NAND devices that are rather different from modern chips. Similarly, CFFS was only
adopted on the SLC 64MB SmartMediaTM Card that is a pretty small device compared to
the modern ones. Both FFS do not offer support for MLC memories. FlexFS is the only
FFS providing support for a reliable NAND MLC at the cost of under-usage of the memory
capacity. YAFFS supports modern SLC NAND devices with pages equal or greater than 2KB,
however the MLC support is still under development.

3 The symbol "–" denotes that no information is available

24 Flash Memories Design Issues and Challenges of
File Systems for Flash Memories 23

eN
V

y
C

FF
S

Fl
ex

FS
Y

A
FF

S
(W

u
&

Z
w

ae
ne

p
oe

l,
19

94
)

(S
eu

ng
-H

o
&

K
yu

-H
o,

20
06

)
(L

ee
et

al
.,

20
09

)
(A

le
p

h
O

ne
L

td
.,

20
11

)

P
ro

C
on

s
P

ro
C

on
s

P
ro

C
on

s
P

ro
C

on
s

Te
ch

n
ol

og
y

–
O

ld
d

ev
ic

es
SL

C
su

p
p

or
t

N
o

M
L

C
,

Sm
al

l
d

ev
ic

es

M
L

C
su

p
p

or
t

C
ap

ac
it

y
W

as
te

SL
C

�
2K

B
su

p
p

or
t

N
o

M
L

C
su

p
p

or
t

A
rc

h
it

ec
tu

re
Si

m
p

le
E

xt
ra

re
so

u
rc

es
–

–
4K

B
P

ag
es

P
ag

es
Fl

ex
ib

ili
ty

E
as

y
p

or
t

&
d

eb
u

g
–

A
d

d
re

ss
Tr

an
sl

at
io

n
Fa

st
E

xp
en

si
ve

(B
u

s&
R

A
M

)
H

ot
-C

ol
d

Se
p

ar
at

io
n

M
od

er
at

e
fi

le
si

ze
–

–
R

ob
u

st
,

fa
il-

sa
fe

E
xt

ra
re

so
u

rc
es

B
oo

tT
im

e
–

–
Fa

st
E

xt
ra

R
es

ou
rc

es
–

–
Fa

st
E

xt
ra

re
so

u
rc

es

G
ar

b
ag

e
C

ol
le

ct
io

n
Si

m
p

le
T

hr
ou

gh
p

u
t

Fl
u

ct
u

at
io

ns
E

ffi
ci

en
t

O
nl

y
fo

r
M

L
C

P
oo

r
d

et
ai

le
d

Si
m

p
le

,
B

lo
ck

re
fr

es
h

T
hr

ou
gh

p
u

t
Fl

u
ct

u
at

io
ns

W
ea

r
L

ev
el

in
g

–
A

cc
el

er
at

ed
w

ea
r

Si
m

p
le

N
o

St
at

ic
St

at
ic

an
d

D
yn

am
ic

R
es

p
on

se
-t

im
e

O
ve

rh
ea

d
Si

m
p

le
A

lt
er

na
ti

ve
p

ol
ic

ie
s

u
nf

ea
si

bl
e

B
ad

B
lo

ck
–

–
–

–
–

–
Si

m
p

le
&

C
he

ap
U

ns
u

it
ab

le
fo

r
M

L
C

(I
n

te
gr

at
ed

)
E

C
C

–
–

–
–

–
–

Si
m

p
le

&
C

he
ap

U
ns

u
it

ab
le

fo
r

M
L

C

Ta
bl

e
1.

C
om

p
ar

is
on

am
on

g
th

e
st

ra
te

gi
es

of
th

e
p

re
se

nt
ed

FF
S

25Design Issues and Challenges of File Systems for Flash Memories

22 Flash Memory

for extended capacity storage cards (SD Association, 2011). XCFiles is intended to be portable
to any 32-bit platform which meets certain requirements (Datalight, 2010).

3.3.3 TrueFFS (M-Systems)
True flash file system (TrueFFS) is a low level file system designed to run on a raw solid-state
drive. TrueFFS implements error correction, bad block re-mapping and wear leveling.
Externally, TrueFFS presents a normal hard disk interface. TrueFFS was created by M-Systems
(Ban, 1995) on the "DiskOnChip 2000" product line, later acquired by Sandisk in 2006. TFFS
or TFFS-lite is a derivative of TrueFFS. It is available in the VxWorks OS, where it works as a
FTL, not as a fully functional file system (SanDisk, 2011b).

3.3.4 ExtremeFFS (SanDisk)
ExtremeFFS is an internal file system for SSD developed by SanDisk allowing for improved
random write performance in flash memories compared to traditional systems such as
TrueFFS. The company plans on using ExtremeFFS in an upcoming MLC implementation of
NAND flash memory (SanDisk, 2011a).

3.3.5 OneFS (Isilon)
The OneFS file system is a distributed networked file system designed by Isilon Systems for
use in its Isilon IQ storage appliances. The maximum size of a file is 4TB, while the maximum
volume size is 2304TB. However, only the OneFS OS is supported (Isilon, 2011).

3.3.6 emFile (Segger Microcontroller Systems)
emFile is a file system for deeply embedded devices supporting both NAND and NOR
flashes. It implements wear leveling, fast read and write operations, and very low RAM
usage. Moreover, it implements a JTAG emulator that allows to interface the Segger’s
patented flash breakpoint software to a Remote Debug Interface (RDI) compliant debugger.
This software allows program developers to set multiple breakpoints in the flash thus
increasing the capability of debugging applications developed over this file system. This
feature is however only available for systems based on an ARM microprocessor (Segger,
2005; 2010).

4. Comparisons of the presented FFS

Table 1 summarizes the analysis proposed in this chapter by providing an overall comparison
among the proposed FFS, taking into account the aspects proposed in Section 23. Proprietary
FFS are excluded from this comparison given the reduced available documentation.
Considering the technology, eNVy represents the worst choice since it was designed for old
flash NAND devices that are rather different from modern chips. Similarly, CFFS was only
adopted on the SLC 64MB SmartMediaTM Card that is a pretty small device compared to
the modern ones. Both FFS do not offer support for MLC memories. FlexFS is the only
FFS providing support for a reliable NAND MLC at the cost of under-usage of the memory
capacity. YAFFS supports modern SLC NAND devices with pages equal or greater than 2KB,
however the MLC support is still under development.

3 The symbol "–" denotes that no information is available

24 Flash Memories Design Issues and Challenges of
File Systems for Flash Memories 23

eN
V

y
C

FF
S

Fl
ex

FS
Y

A
FF

S
(W

u
&

Z
w

ae
ne

p
oe

l,
19

94
)

(S
eu

ng
-H

o
&

K
yu

-H
o,

20
06

)
(L

ee
et

al
.,

20
09

)
(A

le
p

h
O

ne
L

td
.,

20
11

)

P
ro

C
on

s
P

ro
C

on
s

P
ro

C
on

s
P

ro
C

on
s

Te
ch

n
ol

og
y

–
O

ld
d

ev
ic

es
SL

C
su

p
p

or
t

N
o

M
L

C
,

Sm
al

l
d

ev
ic

es

M
L

C
su

p
p

or
t

C
ap

ac
it

y
W

as
te

SL
C

�
2K

B
su

p
p

or
t

N
o

M
L

C
su

p
p

or
t

A
rc

h
it

ec
tu

re
Si

m
p

le
E

xt
ra

re
so

u
rc

es
–

–
4K

B
P

ag
es

P
ag

es
Fl

ex
ib

ili
ty

E
as

y
p

or
t

&
d

eb
u

g
–

A
d

d
re

ss
Tr

an
sl

at
io

n
Fa

st
E

xp
en

si
ve

(B
u

s&
R

A
M

)
H

ot
-C

ol
d

Se
p

ar
at

io
n

M
od

er
at

e
fi

le
si

ze
–

–
R

ob
u

st
,

fa
il-

sa
fe

E
xt

ra
re

so
u

rc
es

B
oo

tT
im

e
–

–
Fa

st
E

xt
ra

R
es

ou
rc

es
–

–
Fa

st
E

xt
ra

re
so

u
rc

es

G
ar

b
ag

e
C

ol
le

ct
io

n
Si

m
p

le
T

hr
ou

gh
p

u
t

Fl
u

ct
u

at
io

ns
E

ffi
ci

en
t

O
nl

y
fo

r
M

L
C

P
oo

r
d

et
ai

le
d

Si
m

p
le

,
B

lo
ck

re
fr

es
h

T
hr

ou
gh

p
u

t
Fl

u
ct

u
at

io
ns

W
ea

r
L

ev
el

in
g

–
A

cc
el

er
at

ed
w

ea
r

Si
m

p
le

N
o

St
at

ic
St

at
ic

an
d

D
yn

am
ic

R
es

p
on

se
-t

im
e

O
ve

rh
ea

d
Si

m
p

le
A

lt
er

na
ti

ve
p

ol
ic

ie
s

u
nf

ea
si

bl
e

B
ad

B
lo

ck
–

–
–

–
–

–
Si

m
p

le
&

C
he

ap
U

ns
u

it
ab

le
fo

r
M

L
C

(I
n

te
gr

at
ed

)
E

C
C

–
–

–
–

–
–

Si
m

p
le

&
C

he
ap

U
ns

u
it

ab
le

fo
r

M
L

C

Ta
bl

e
1.

C
om

p
ar

is
on

am
on

g
th

e
st

ra
te

gi
es

of
th

e
p

re
se

nt
ed

FF
S

25Design Issues and Challenges of File Systems for Flash Memories

24 Flash Memory

Excluding YAFFS, details about the architecture of the examined FFS are rather scarce. The
architecture of eNVy is quite simple but it requires a considerable amount of extra resources to
perform well. FlexFS supports MLC devices with 4KB pages, but no details are given about the
portability to other page dimensions. YAFFS modular architecture provides easy portability,
development, and debug, but the log-structure form can limit some design aspects.
The address translation process of eNVy is very fast, but, at the sam time, it is very expensive
due to the use of the wide bus and the battery-backed SRAM. The implicit hot-cold data
separation of CFFS improves addressing, but leads to very moderate maximum file size. The
log-structure and the consistency of tags of YAFFS lead to a very robust strategy for addressing
at the cost of some overhead.
CFFS is designed to minimize the boot time, but extra resources are required. Moreover
experimental data are only available from its use on a very small device (i.e., 64MB). Since
FlexFS is JFFS2-based, the boot will be reasonably slower compared to the other file systems.
YAFFS has low boot time thanks to the mechanism of checkpointing, that in turn requires
extra space in the NAND flash.
The pretty simple garbage collection strategy of eNVy may suffer throughput fluctuations
with particular patterns of data. CFFS is designed for minimizing the garbage collection
overhead. The big advantage of FlexFS is that the garbage collection is limited to the MLC
area, but its performance depends on the background migration. The smooth loose/hard
garbage collection strategy of YAFFS is also able to refresh older blocks, but may suffer
throughput fluctuations.
Wear leveling is one of the most critical aspects when dealing with flash memories. eNVy
uses multiple flash chips in parallel, thus being prone to accelerated wear. CFFS has a simple
dynamic wear leveling strategy, but no block refreshing is explicitly provided. FlexFS has both
static and dynamic wear leveling, buy delays in response times may occur. Since in YAFFS
the wear leveling is a side effect of other activities, it is very simple but evaluating alternative
wear leveling strategies can be very tough.
YAFFS is the only FFS that explicitly address bad blocks management and ECC. Since they
are usually customized to the needs of the user, the integrated strategies are very simple and
cheap, but are not suitable for MLC flash.
An additional comparison among the performance of the different file systems is provided in
Table 2. In this table, power-fail safe refers to the file system capability of recovering from
unexpected crashes.

eNVy CFFS FlexFS YAFFS
Wu & Zwaenepoel

(1994)
(Seung-Ho &

Kyu-Ho, 2006)
(Lee et al.,

2009)
(Aleph One
Ltd., 2011)

Power-fail
Safe No No details No details Yes

Resource
Overhead High Medium High Low

Performance Medium-High Medium High High

Table 2. Performance comparison among the presented FFS

The comparisons performed in this section clearly show that a single solution able to
efficiently address all challenges of using NAND flash memories to implement high-hand

26 Flash Memories Design Issues and Challenges of
File Systems for Flash Memories 25

mass-storage systems is still missing. A significant effort both from the research and
developers community will be required in the next years to cover this gap. Current solutions
already propose several interesting solutions. Open-source projects such as YAFFS have, in
our opinion, the potential to quickly integrate specific solutions identified by the research
community into a product that can be easily distributed to the users in a short term. In
particular, YAFFS is one of the most interesting solutions in the world of the FFS. However,
there are many things that need to be improved. In fact, although the support for SLC
technology is well-established, the support for MLC devices is still under research. This is
especially linked with the lower reliability of MLC NAND flash devices. At the end, YAFFS
is efficiently linking theory and practice, thus resulting in being today the most complete
solution among the possible open source flash-based file system.
Since the FFS and the related management techniques are continuously evolving, we hope that
this chapter can be a valuable help both to an easier analysis of these strategies and to a more
efficient development of new algorithms and methodologies for flash-based mass memory
devices.

5. Acknowledgments

The authors would like to thank Charles Manning for the valuable comments and advices
at various stages of this manuscript and the FP7 HiPEAC network of excellence (Grant
Agreement no ICT-217068).

6. References

Aleph One Ltd. (2010). Yaffs Direct Interface (YDI), Retrieved April 6, 2011 from the World
Wide Web http://www.yaffs.net/files/yaffs.net/YaffsDirect.pdf.

Aleph One Ltd. (2011). Yet Another Flash File System 2 (YAFFS2), Retrieved April 6, 2011
from the World Wide Web http://www.yaffs.net/.

Ban, A. (1995). Flash file system, u.s. patent 5404485, apr. 4, Retrieved April 6, 2011 from the
World Wide Web http://www.freepatentsonline.com/5404485.pdf.

Brewer, J. & Gill, M. (2008). Nonvolatile Memory Technologies with Emphasis on Flash: A
Comprehensive Guide to Understanding and Using Flash Memory Devices, IEEE Press.

Caramia, M., Di Carlo, S., Fabiano, M. & Prinetto, P. (2009a). FLARE: A design environment
for flash-based space applications, Proceedings of IEEE International High Level Design
Validation and Test Workshop, HLDVT ’09, San Francisco, CA, USA, pp. 14–19.

Caramia, M., Di Carlo, S., Fabiano, M. & Prinetto, P. (2009b). Flash-memories in space
applications: Trends and challenges, Proceedings of the 7th IEEE East-West Design &
Test Symposium, EWDTS ’09, Moscow, Russian Federation, pp. 429–432.

Chang, L.-P. & Kuo, T.-W. (2004). An efficient management scheme for large-scale
flash-memory storage systems, Proceedings of the ACM Symposium on Applied
Computing, SAC ’04, ACM, Nicosia, Cyprus, pp. 862–868.

Chang, Y.-H., Hsieh, J.-W. & Kuo, T.-W. (2007). Endurance enhancement of flash-memory
storage systems: an efficient static wear leveling design, Proceedings of the 44th annual
Design Automation Conference, DAC ’07, ACM, San Diego, California, pp. 212–217.

Chen, B., Zhang, X. & Wang, Z. (2008). Error correction for multi-level NAND flash memory
using Reed-Solomon codes, Proceedings of the IEEE Workshop on Signal Processing
Systems, Washington, DC, USA, pp. 94–99.

27Design Issues and Challenges of File Systems for Flash Memories

24 Flash Memory

Excluding YAFFS, details about the architecture of the examined FFS are rather scarce. The
architecture of eNVy is quite simple but it requires a considerable amount of extra resources to
perform well. FlexFS supports MLC devices with 4KB pages, but no details are given about the
portability to other page dimensions. YAFFS modular architecture provides easy portability,
development, and debug, but the log-structure form can limit some design aspects.
The address translation process of eNVy is very fast, but, at the sam time, it is very expensive
due to the use of the wide bus and the battery-backed SRAM. The implicit hot-cold data
separation of CFFS improves addressing, but leads to very moderate maximum file size. The
log-structure and the consistency of tags of YAFFS lead to a very robust strategy for addressing
at the cost of some overhead.
CFFS is designed to minimize the boot time, but extra resources are required. Moreover
experimental data are only available from its use on a very small device (i.e., 64MB). Since
FlexFS is JFFS2-based, the boot will be reasonably slower compared to the other file systems.
YAFFS has low boot time thanks to the mechanism of checkpointing, that in turn requires
extra space in the NAND flash.
The pretty simple garbage collection strategy of eNVy may suffer throughput fluctuations
with particular patterns of data. CFFS is designed for minimizing the garbage collection
overhead. The big advantage of FlexFS is that the garbage collection is limited to the MLC
area, but its performance depends on the background migration. The smooth loose/hard
garbage collection strategy of YAFFS is also able to refresh older blocks, but may suffer
throughput fluctuations.
Wear leveling is one of the most critical aspects when dealing with flash memories. eNVy
uses multiple flash chips in parallel, thus being prone to accelerated wear. CFFS has a simple
dynamic wear leveling strategy, but no block refreshing is explicitly provided. FlexFS has both
static and dynamic wear leveling, buy delays in response times may occur. Since in YAFFS
the wear leveling is a side effect of other activities, it is very simple but evaluating alternative
wear leveling strategies can be very tough.
YAFFS is the only FFS that explicitly address bad blocks management and ECC. Since they
are usually customized to the needs of the user, the integrated strategies are very simple and
cheap, but are not suitable for MLC flash.
An additional comparison among the performance of the different file systems is provided in
Table 2. In this table, power-fail safe refers to the file system capability of recovering from
unexpected crashes.

eNVy CFFS FlexFS YAFFS
Wu & Zwaenepoel

(1994)
(Seung-Ho &

Kyu-Ho, 2006)
(Lee et al.,

2009)
(Aleph One
Ltd., 2011)

Power-fail
Safe No No details No details Yes

Resource
Overhead High Medium High Low

Performance Medium-High Medium High High

Table 2. Performance comparison among the presented FFS

The comparisons performed in this section clearly show that a single solution able to
efficiently address all challenges of using NAND flash memories to implement high-hand

26 Flash Memories Design Issues and Challenges of
File Systems for Flash Memories 25

mass-storage systems is still missing. A significant effort both from the research and
developers community will be required in the next years to cover this gap. Current solutions
already propose several interesting solutions. Open-source projects such as YAFFS have, in
our opinion, the potential to quickly integrate specific solutions identified by the research
community into a product that can be easily distributed to the users in a short term. In
particular, YAFFS is one of the most interesting solutions in the world of the FFS. However,
there are many things that need to be improved. In fact, although the support for SLC
technology is well-established, the support for MLC devices is still under research. This is
especially linked with the lower reliability of MLC NAND flash devices. At the end, YAFFS
is efficiently linking theory and practice, thus resulting in being today the most complete
solution among the possible open source flash-based file system.
Since the FFS and the related management techniques are continuously evolving, we hope that
this chapter can be a valuable help both to an easier analysis of these strategies and to a more
efficient development of new algorithms and methodologies for flash-based mass memory
devices.

5. Acknowledgments

The authors would like to thank Charles Manning for the valuable comments and advices
at various stages of this manuscript and the FP7 HiPEAC network of excellence (Grant
Agreement no ICT-217068).

6. References

Aleph One Ltd. (2010). Yaffs Direct Interface (YDI), Retrieved April 6, 2011 from the World
Wide Web http://www.yaffs.net/files/yaffs.net/YaffsDirect.pdf.

Aleph One Ltd. (2011). Yet Another Flash File System 2 (YAFFS2), Retrieved April 6, 2011
from the World Wide Web http://www.yaffs.net/.

Ban, A. (1995). Flash file system, u.s. patent 5404485, apr. 4, Retrieved April 6, 2011 from the
World Wide Web http://www.freepatentsonline.com/5404485.pdf.

Brewer, J. & Gill, M. (2008). Nonvolatile Memory Technologies with Emphasis on Flash: A
Comprehensive Guide to Understanding and Using Flash Memory Devices, IEEE Press.

Caramia, M., Di Carlo, S., Fabiano, M. & Prinetto, P. (2009a). FLARE: A design environment
for flash-based space applications, Proceedings of IEEE International High Level Design
Validation and Test Workshop, HLDVT ’09, San Francisco, CA, USA, pp. 14–19.

Caramia, M., Di Carlo, S., Fabiano, M. & Prinetto, P. (2009b). Flash-memories in space
applications: Trends and challenges, Proceedings of the 7th IEEE East-West Design &
Test Symposium, EWDTS ’09, Moscow, Russian Federation, pp. 429–432.

Chang, L.-P. & Kuo, T.-W. (2004). An efficient management scheme for large-scale
flash-memory storage systems, Proceedings of the ACM Symposium on Applied
Computing, SAC ’04, ACM, Nicosia, Cyprus, pp. 862–868.

Chang, Y.-H., Hsieh, J.-W. & Kuo, T.-W. (2007). Endurance enhancement of flash-memory
storage systems: an efficient static wear leveling design, Proceedings of the 44th annual
Design Automation Conference, DAC ’07, ACM, San Diego, California, pp. 212–217.

Chen, B., Zhang, X. & Wang, Z. (2008). Error correction for multi-level NAND flash memory
using Reed-Solomon codes, Proceedings of the IEEE Workshop on Signal Processing
Systems, Washington, DC, USA, pp. 94–99.

27Design Issues and Challenges of File Systems for Flash Memories

26 Flash Memory

Choi, H., Liu, W. & Sung, W. (2010). VLSI implementation of BCH error correction for
multilevel cell NAND flash memory, IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 18(6): 843–847.

Cooke, J. (2007). The inconvenient truths of NAND flash memory, Retrieved April 6, 2011 from
the World Wide Web http://download.micron.com/pdf/presentations/
events/flash_mem_summit_jcooke_inconvenient_truths_nand.pdf.

Datalight (2010). XCFiles File System for Next Generation Removable Storage, Retrieved April
6, 2011 from the World Wide Web http://www.datalight.com/products/
filesystems/xcfiles.

Deal, E. (2009). Trends in NAND flash memory error correction, Retrieved April 6, 2011
from the World Wide Web http://www.cyclicdesign.com/whitepapers/
Cyclic_Design_NAND_ECC.pdf.

Duann, N. (2009). Error correcting techniques for future NAND flash memory in SSD
applications, Retrieved April 6, 2011 from the World Wide Web http://www.bswd.
com/FMS09/FMS09-201-Duann.pdf.

Gal, E. & Toledo, S. (2005). Algorithms and data structures for flash memories, ACM Comput.
Surv. 37: 138–163.

IEEE Standards Department (1998). IEEE standard definitions and characterization of floating
gate semiconductor arrays, IEEE Std 1005-1998 .

Intel (1998). Understanding the Flash Translation Layer (FTL) specification, AP-684
(order 297816), Retrieved April 6, 2011 from the World Wide Web http:
//www.cse.ust.hk/~yjrobin/reading_list/%5BFlash%20Disks%
5DUnderstanding%20the%20flash%20translation%20layer%20(FTL)
%20specification.pdf.

Isilon (2011). OneFS, Retrieved April 6, 2011 from the World Wide Web http://www.
isilon.com/onefs-operating-system.

Jae-Duk, L., Sung-Hoi, H. & Jung-Dal, C. (2002). Effects of floating-gate interference on NAND
flash memory cell operation, IEEE Electron Device Letters 23(5): 264–266.

Jen-Chieh, Y., Chi-Feng, W., Kuo-Liang, C., Yung-Fa, C., Chih-Tsun, H. & Cheng-Wen, W.
(2002). Flash memory built-in self-test using march-like algorithms, Proceedings
of the First IEEE International Workshop on Electronic Design, Test and Applications,
Christchurch , New Zealand, pp. 137–141.

Jen-Wei, H., Yi-Lin, T., Tei-Wei, K. & Tzao-Lin, L. (2008). Configurable flash-memory
management: Performance versus overheads, IEEE Trans. on Computers
57(11): 1571–1583.

Junho, C. & Wonyong, S. (2009). Efficient software-based encoding and decoding of BCH
codes, IEEE Transactions on Computers 58(7): 878–889.

Kawaguchi, A., Nishioka, S. & Motoda, H. (1995). A flash-memory based file
system, Proceedings of the USENIX Annual Technical Conference, TCON’95, USENIX
Association, New Orleans, Louisiana, pp. 13–13.

Lee, S., Ha, K., Zhang, K., Kim, J. & Kim, J. (2009). FlexFS: a flexible flash file system for
MLC NAND flash memory, Proceedings of the USENIX Annual Technical Conference,
USENIX’09, USENIX Association, San Diego, California, pp. 9–9.

Ielmini, D. (2009). Reliability issues and modeling of flash and post-flash memory (invited
paper), Microelectronic Engineering 86(7–9): 1870–1875.

Manning, C. (2010). How YAFFS works, Retrieved April 6, 2011 from the World Wide Web
http://www.yaffs.net/files/yaffs.net/HowYaffsWorks.pdf.

28 Flash Memories Design Issues and Challenges of
File Systems for Flash Memories 27

Micheloni, R., Marelli, A. & Ravasio, R. (2008). Error Correction Codes for Non-Volatile Memories,
Springer Publishing Company, Incorporated.

Micron (2007). Hamming codes for NAND flash-memory devices overview, Retrieved
April 6, 2011 from the World Wide Web http://download.micron.com/pdf/
technotes/nand/tn2908.pdf.

Microsoft (2009). Description of the exFAT file system driver update package, Retrieved
April 6, 2011 from the World Wide Web http://support.microsoft.com/kb/
955704/en-us.

Microsoft (2011a). exFAT file system, Retrieved April 6, 2011 from the World Wide Web http:
//www.microsoft.com/about/legal/en/us/IntellectualProperty/
IPLicensing/Programs/exFATFileSystem.aspx.

Microsoft (2011b). File system functionality comparison, Retrieved April 6, 2011
from the World Wide Web http://msdn.microsoft.com/en-us/library/
ee681827(v=vs.85).aspx.

Mielke, N., Marquart, T., Wu, N., Kessenich, J., Belgal, H., Schares, E., Trivedi, F., Goodness,
E. & Nevill, L. (2008). Bit error rate in NAND flash memories, Proceedings of the IEEE
International Reliability Physics Symposium, Phoenix, AZ, USA, pp. 9–19.

Mincheol, P., Keonsoo, K., Jong-Ho, P. & Jeong-Hyuck, C. (2009). Direct field effect of
neighboring cell transistor on cell-to-cell interference of nand flash cell arrays, IEEE
Electron Device Letters 30(2): 174–177.

Mohammad, M., Saluja, K. & Yap, A. (2000). Testing flash memories, Proceeding of the
Thirteenth International Conference on VLSI Design, IEEE Computer Society, Calcutta,
India, pp. 406–411.

ONFI (2010). Open NAND Flash interface (ONFi) specification, Retrieved April 6, 2011
from the World Wide Web http://onfi.org/wp-content/uploads/2009/
02/ONFI%202_2%20Gold.pdf.

Rosenblum, M. & Ousterhout, J. K. (1992). The design and implementation of a log-structured
file system, ACM Trans. Comput. Syst. 10: 26–52.

Samsung (2007). XSR1.5 bad block management, Retrieved April 6, 2011 from
the World Wide Web http://www.samsung.com/global/business/
semiconductor/products/flash/downloads/applicationnote/xsr_
v15_badblockmgmt_application_note.pdf.

SanDisk (2011a). Sandisk’s know-how strengthens the SSD industry, Retrieved April 6, 2011
from the World Wide Web http://www.sandisk.com/business-solutions/
ssd/technical-expertise--metrics.

SanDisk (2011b). TrueFFS, Retrieved April 6, 2011 from the World Wide Web http://www.
sandisk.nl/Assets/File/OEM/Manuals/pu/mdoc/PU0301.pdf.

SD Association (2011). SDXC, Retrieved April 6, 2011 from the World Wide Web http://
www.sdcard.org/developers/tech/sdxc.

Segger (2005). J-link flash breakpoints, Retrieved April 6, 2011 from the World Wide Web
http://www.segger.com/cms/jlink-flash-breakpoints.html.

Segger (2010). emFile file system, Retrieved April 6, 2011 from the World Wide Web http:
//www.segger.com/cms/emfile.html.

Seung-Ho, L. & Kyu-Ho, P. (2006). An efficient NAND flash file system for flash memory
storage, IEEE Transactions on Computers 55(7): 906–912.

29Design Issues and Challenges of File Systems for Flash Memories

26 Flash Memory

Choi, H., Liu, W. & Sung, W. (2010). VLSI implementation of BCH error correction for
multilevel cell NAND flash memory, IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 18(6): 843–847.

Cooke, J. (2007). The inconvenient truths of NAND flash memory, Retrieved April 6, 2011 from
the World Wide Web http://download.micron.com/pdf/presentations/
events/flash_mem_summit_jcooke_inconvenient_truths_nand.pdf.

Datalight (2010). XCFiles File System for Next Generation Removable Storage, Retrieved April
6, 2011 from the World Wide Web http://www.datalight.com/products/
filesystems/xcfiles.

Deal, E. (2009). Trends in NAND flash memory error correction, Retrieved April 6, 2011
from the World Wide Web http://www.cyclicdesign.com/whitepapers/
Cyclic_Design_NAND_ECC.pdf.

Duann, N. (2009). Error correcting techniques for future NAND flash memory in SSD
applications, Retrieved April 6, 2011 from the World Wide Web http://www.bswd.
com/FMS09/FMS09-201-Duann.pdf.

Gal, E. & Toledo, S. (2005). Algorithms and data structures for flash memories, ACM Comput.
Surv. 37: 138–163.

IEEE Standards Department (1998). IEEE standard definitions and characterization of floating
gate semiconductor arrays, IEEE Std 1005-1998 .

Intel (1998). Understanding the Flash Translation Layer (FTL) specification, AP-684
(order 297816), Retrieved April 6, 2011 from the World Wide Web http:
//www.cse.ust.hk/~yjrobin/reading_list/%5BFlash%20Disks%
5DUnderstanding%20the%20flash%20translation%20layer%20(FTL)
%20specification.pdf.

Isilon (2011). OneFS, Retrieved April 6, 2011 from the World Wide Web http://www.
isilon.com/onefs-operating-system.

Jae-Duk, L., Sung-Hoi, H. & Jung-Dal, C. (2002). Effects of floating-gate interference on NAND
flash memory cell operation, IEEE Electron Device Letters 23(5): 264–266.

Jen-Chieh, Y., Chi-Feng, W., Kuo-Liang, C., Yung-Fa, C., Chih-Tsun, H. & Cheng-Wen, W.
(2002). Flash memory built-in self-test using march-like algorithms, Proceedings
of the First IEEE International Workshop on Electronic Design, Test and Applications,
Christchurch , New Zealand, pp. 137–141.

Jen-Wei, H., Yi-Lin, T., Tei-Wei, K. & Tzao-Lin, L. (2008). Configurable flash-memory
management: Performance versus overheads, IEEE Trans. on Computers
57(11): 1571–1583.

Junho, C. & Wonyong, S. (2009). Efficient software-based encoding and decoding of BCH
codes, IEEE Transactions on Computers 58(7): 878–889.

Kawaguchi, A., Nishioka, S. & Motoda, H. (1995). A flash-memory based file
system, Proceedings of the USENIX Annual Technical Conference, TCON’95, USENIX
Association, New Orleans, Louisiana, pp. 13–13.

Lee, S., Ha, K., Zhang, K., Kim, J. & Kim, J. (2009). FlexFS: a flexible flash file system for
MLC NAND flash memory, Proceedings of the USENIX Annual Technical Conference,
USENIX’09, USENIX Association, San Diego, California, pp. 9–9.

Ielmini, D. (2009). Reliability issues and modeling of flash and post-flash memory (invited
paper), Microelectronic Engineering 86(7–9): 1870–1875.

Manning, C. (2010). How YAFFS works, Retrieved April 6, 2011 from the World Wide Web
http://www.yaffs.net/files/yaffs.net/HowYaffsWorks.pdf.

28 Flash Memories Design Issues and Challenges of
File Systems for Flash Memories 27

Micheloni, R., Marelli, A. & Ravasio, R. (2008). Error Correction Codes for Non-Volatile Memories,
Springer Publishing Company, Incorporated.

Micron (2007). Hamming codes for NAND flash-memory devices overview, Retrieved
April 6, 2011 from the World Wide Web http://download.micron.com/pdf/
technotes/nand/tn2908.pdf.

Microsoft (2009). Description of the exFAT file system driver update package, Retrieved
April 6, 2011 from the World Wide Web http://support.microsoft.com/kb/
955704/en-us.

Microsoft (2011a). exFAT file system, Retrieved April 6, 2011 from the World Wide Web http:
//www.microsoft.com/about/legal/en/us/IntellectualProperty/
IPLicensing/Programs/exFATFileSystem.aspx.

Microsoft (2011b). File system functionality comparison, Retrieved April 6, 2011
from the World Wide Web http://msdn.microsoft.com/en-us/library/
ee681827(v=vs.85).aspx.

Mielke, N., Marquart, T., Wu, N., Kessenich, J., Belgal, H., Schares, E., Trivedi, F., Goodness,
E. & Nevill, L. (2008). Bit error rate in NAND flash memories, Proceedings of the IEEE
International Reliability Physics Symposium, Phoenix, AZ, USA, pp. 9–19.

Mincheol, P., Keonsoo, K., Jong-Ho, P. & Jeong-Hyuck, C. (2009). Direct field effect of
neighboring cell transistor on cell-to-cell interference of nand flash cell arrays, IEEE
Electron Device Letters 30(2): 174–177.

Mohammad, M., Saluja, K. & Yap, A. (2000). Testing flash memories, Proceeding of the
Thirteenth International Conference on VLSI Design, IEEE Computer Society, Calcutta,
India, pp. 406–411.

ONFI (2010). Open NAND Flash interface (ONFi) specification, Retrieved April 6, 2011
from the World Wide Web http://onfi.org/wp-content/uploads/2009/
02/ONFI%202_2%20Gold.pdf.

Rosenblum, M. & Ousterhout, J. K. (1992). The design and implementation of a log-structured
file system, ACM Trans. Comput. Syst. 10: 26–52.

Samsung (2007). XSR1.5 bad block management, Retrieved April 6, 2011 from
the World Wide Web http://www.samsung.com/global/business/
semiconductor/products/flash/downloads/applicationnote/xsr_
v15_badblockmgmt_application_note.pdf.

SanDisk (2011a). Sandisk’s know-how strengthens the SSD industry, Retrieved April 6, 2011
from the World Wide Web http://www.sandisk.com/business-solutions/
ssd/technical-expertise--metrics.

SanDisk (2011b). TrueFFS, Retrieved April 6, 2011 from the World Wide Web http://www.
sandisk.nl/Assets/File/OEM/Manuals/pu/mdoc/PU0301.pdf.

SD Association (2011). SDXC, Retrieved April 6, 2011 from the World Wide Web http://
www.sdcard.org/developers/tech/sdxc.

Segger (2005). J-link flash breakpoints, Retrieved April 6, 2011 from the World Wide Web
http://www.segger.com/cms/jlink-flash-breakpoints.html.

Segger (2010). emFile file system, Retrieved April 6, 2011 from the World Wide Web http:
//www.segger.com/cms/emfile.html.

Seung-Ho, L. & Kyu-Ho, P. (2006). An efficient NAND flash file system for flash memory
storage, IEEE Transactions on Computers 55(7): 906–912.

29Design Issues and Challenges of File Systems for Flash Memories

28 Flash Memory

Woodhouse, D. (2001). JFFS : The Journalling Flash File System, Proceedings of the Ottawa Linux
Symposium, Ottawa, Ontario Canada.
URL: http://sources.redhat.com/jffs2/jffs2.pdf

Woodhouse, D. (2009). JFFS2: The Journalling Flash File System, version 2, Retrieved April 6,
2011 from the World Wide Web http://sourceware.org/jffs2/.

Wu, M. (1994). The architecture of eNVy, a non-volatile, main memory storage system, Master’s
thesis, Rice University.

Wu, M. & Zwaenepoel, W. (1994). eNVy: a non-volatile, main memory storage system,
SIGOPS Oper. Syst. Rev. 28: 86–97.

Yaakobi, E., Ma, J., Caulfield, A., Grupp, L., Swanson, S., Siegel, P. & J.K., W. (2009).
Error correction coding for flash memories, Retrieved April 6, 2011 from the World
Wide Web http://www.flashmemorysummit.com/English/Collaterals/
Proceedings/2009/20090813_S201_Yaakobi.pdf.

Yuan, C. (2008). Flash memory reliability NEPP 2008 task final report, Retrieved April
6, 2011 from the World Wide Web http://trs-new.jpl.nasa.gov/dspace/
bitstream/2014/41262/1/09-9.pdf.

30 Flash Memories

0

Error Control Coding for Flash Memory

Haruhiko Kaneko
Tokyo Institute of Technology

Japan

1. Introduction

Error control code (ECC) is extensively used in high-speed wireless/wired communication
system, magnetic disk, and optical disc (Lin & Costello, 2004). Also the ECC can efficiently
improve data reliability of semiconductor memory system (Fujiwara, 2006). This chapter
presents error control coding techniques for flash memory and solid-state drive (SSD). This
chapter begins with brief introduction of error sources in the flash memory, and then provides
fundamental mathematics of the ECC, followed by constructions of practical ECCs.

2. Errors in flash memory

Efficient ECC should be designed based on the analysis of error characteristics/statistics in the
flash memory. This section outlines error sources of the flash memory, and presents a channel
model based on a Gaussian-distribution approximation of the threshold voltage.

2.1 Errors sources in flash memory
2.1.1 Physical defect
Similar to general LSI circuits, flash memory suffers from wafer process defect (Muroke,
2006), such as short circuit between drain contact and control gate, adjacent poly lines, metal
lines, poly and metal lines, or two metal levels. Other major defects in the flash memory are
observed in tunnel oxide and peripheral circuit.
Many of the above defects can be detected by memory chip test (Mohammad et al., 2001), and
thus a moderate number of defects can be masked by a redundant hardware design, while
faulty chips with an excessive number of defects are discarded. Hence, the above physical
defects do not affect ECC design significantly.

2.1.2 Trapping / detrapping in tunnel oxide
Stress on the tunnel oxide by program/erase (P/E) cycles causes generation of traps, such as
positive-charge, neutral, and electron traps. The positive-charge and neutral traps induce
leakage current, as explained in 2.1.3, and the electron traps lengthen the charge time in
programming phase. Also, detrapping of electrons trapped in the tunnel oxide causes lowered
threshold voltage.

2.1.3 Leakage current
Leakage of electrons stored in the floating gate causes alteration of the threshold voltage,
which results in errors in readout data. Stress induced leakage current (SILC) is caused by

2

28 Flash Memory

Woodhouse, D. (2001). JFFS : The Journalling Flash File System, Proceedings of the Ottawa Linux
Symposium, Ottawa, Ontario Canada.
URL: http://sources.redhat.com/jffs2/jffs2.pdf

Woodhouse, D. (2009). JFFS2: The Journalling Flash File System, version 2, Retrieved April 6,
2011 from the World Wide Web http://sourceware.org/jffs2/.

Wu, M. (1994). The architecture of eNVy, a non-volatile, main memory storage system, Master’s
thesis, Rice University.

Wu, M. & Zwaenepoel, W. (1994). eNVy: a non-volatile, main memory storage system,
SIGOPS Oper. Syst. Rev. 28: 86–97.

Yaakobi, E., Ma, J., Caulfield, A., Grupp, L., Swanson, S., Siegel, P. & J.K., W. (2009).
Error correction coding for flash memories, Retrieved April 6, 2011 from the World
Wide Web http://www.flashmemorysummit.com/English/Collaterals/
Proceedings/2009/20090813_S201_Yaakobi.pdf.

Yuan, C. (2008). Flash memory reliability NEPP 2008 task final report, Retrieved April
6, 2011 from the World Wide Web http://trs-new.jpl.nasa.gov/dspace/
bitstream/2014/41262/1/09-9.pdf.

30 Flash Memories

0

Error Control Coding for Flash Memory

Haruhiko Kaneko
Tokyo Institute of Technology

Japan

1. Introduction

Error control code (ECC) is extensively used in high-speed wireless/wired communication
system, magnetic disk, and optical disc (Lin & Costello, 2004). Also the ECC can efficiently
improve data reliability of semiconductor memory system (Fujiwara, 2006). This chapter
presents error control coding techniques for flash memory and solid-state drive (SSD). This
chapter begins with brief introduction of error sources in the flash memory, and then provides
fundamental mathematics of the ECC, followed by constructions of practical ECCs.

2. Errors in flash memory

Efficient ECC should be designed based on the analysis of error characteristics/statistics in the
flash memory. This section outlines error sources of the flash memory, and presents a channel
model based on a Gaussian-distribution approximation of the threshold voltage.

2.1 Errors sources in flash memory
2.1.1 Physical defect
Similar to general LSI circuits, flash memory suffers from wafer process defect (Muroke,
2006), such as short circuit between drain contact and control gate, adjacent poly lines, metal
lines, poly and metal lines, or two metal levels. Other major defects in the flash memory are
observed in tunnel oxide and peripheral circuit.
Many of the above defects can be detected by memory chip test (Mohammad et al., 2001), and
thus a moderate number of defects can be masked by a redundant hardware design, while
faulty chips with an excessive number of defects are discarded. Hence, the above physical
defects do not affect ECC design significantly.

2.1.2 Trapping / detrapping in tunnel oxide
Stress on the tunnel oxide by program/erase (P/E) cycles causes generation of traps, such as
positive-charge, neutral, and electron traps. The positive-charge and neutral traps induce
leakage current, as explained in 2.1.3, and the electron traps lengthen the charge time in
programming phase. Also, detrapping of electrons trapped in the tunnel oxide causes lowered
threshold voltage.

2.1.3 Leakage current
Leakage of electrons stored in the floating gate causes alteration of the threshold voltage,
which results in errors in readout data. Stress induced leakage current (SILC) is caused by

2

2 Will-be-set-by-IN-TECH

Fig. 1. Read/write disturb in NAND flash memory.

deterioration of the tunnel oxide after many P/E cycles, that is, positive-charge and neutral
traps generated in the tunnel oxide causes leakage of electrons from the FG (Mielke et al.,
2008). The leakage current significantly increases when multiple traps in the tunnel oxide
form a path through which the FG is discharged (Ielmini et al., 2005). In multilevel cell (MLC)
memory, the highest level cells are affected by the SILC more severely compared to lower level
cells because of the largest electric field in the tunnel oxide.

2.1.4 Read/write disturb
High voltages applied to the CG in the read/write process cause insertion of electrons into the
FG. Figure 1 illustrates the following read/write disturb in NAND flash memory.

• Read disturb: FG in the same string of a selected cell is charged.
• Write disturb in selected string: FG in the same string of a selected cell is charged.
• Write disturb in selected WL: Inhibited FG in the same WL of a selected cell is charged.

2.1.5 Overprogramming / overerase
The FG could be excessively charged in the programming phase because of, for example,
random telegraph noise in verify step and erratic tunneling caused by positive charges in the
tunnel oxide (Mielke et al., 2008). The overprogramming results in error due to an elevated
threshold voltage. Some errors caused by overprogramming might be accidentally recovered
by detrapping of electrons trapped in the tunnel oxide.
Overerase phenomena is also observed in the flash memory cell (Chimenton et al., 2003),
where the threshold voltage is excessively dropped by the erasing. Overerased bits are
classified into two classes, that is, tail bit and fast bit. The tail bit has a slightly lower threshold
compared to normal bits, while the fast bit has a much lower threshold. It is predicted that
the tail and fast bits are caused by statistical fluctuations of cell charges and physical nature
of the cell, respectively.

2.1.6 Ionizing radiation
In a radiation harsh environment, such as spacecraft, aircraft, and nuclear plant, errors in the
flash memory could be induced by radiation of ionizing particles (e.g., α-particle, β-particle,
neutron, and cosmic rays) and high-energy electromagnetic wave (e.g., ultraviolet, X-ray,
and γ-ray). The ionizing radiation causes lattice displacement in crystal, which changes
the property of the semiconductor junctions, and thus results in errors. Effects of the total
ionization dose (TID) on the flash memory have been extensively examined (Claeys et al.,
2002; Oldham et al., 2007), and some experiments show that memory cells fail at the TID of

32 Flash Memories Error Control Coding for Flash Memory 3

Probability
density

1.5

1.0

0.5

0.0 Threshold
voltage v0 2 4 6 8

Level 0
Level 1 Level 2 Level 3

P0(v) P1(v) P2(v) P3(v)

Fig. 2. Example of PDF Pi(v) of threshold voltage.

Fig. 3. Probabilities Pr(i|i + 1) and Pr(i + 1|i).
around 100 [Krad]. The TID affects the functions of the charge pump and row decoder, as well
as the cell array (Bagatin et al., 2009).

2.2 Channel model
Since error sources of the flash memory are various as described in 2.1, it is difficult to establish
a precise channel model of the flash memory. Therefore, an approximated channel model
is derived based on a Gaussian approximation of the threshold voltage distribution. In the
following, we assume a b-bit MLC having Q = 2b charge levels of the FG. Let Pi(v) be the
probability density function (PDF) representing the probability that the threshold voltage of
level-i cell is equal to v, where i ∈ {0, 1, . . . , Q − 1}. The PDF Pi(v) is approximated by the

Gaussian distribution as Pi(v) = 1√
2πσi

exp
�
− (x−μi)

2

2σ2
i

�
, where μi and σi are the mean and

standard deviation of the threshold voltage of level-i cell, respectively. Figure 2 illustrates an
example of Pi(v) for 2-bit/cell memory, where b = 2, Q = 2b = 4, μ0 = 2.0, μ1 = 3.5, μ2 =
4.5, μ3 = 6.0, σ0 = 0.3, and σ1 = σ2 = σ3 = 0.2. In general, the standard deviation of level-0
cell is larger than that of higher level cells.
Let Vi

R be the read (verify) voltage of control gate which discriminates level-i and level-(i + 1)
cells, where i ∈ {0, 1, . . . , Q − 2} and μi < Vi

R < μi+1. For a given PDF Pi(v) and a read
voltage Vi

R, the probability that level-i cell is identified as level-j is given by

Pr(j|i) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

� V0
R−∞ Pi(v)dv (j = 0)

� Vj
R

Vj−1
R

Pi(v)dv (1 ≤ j ≤ Q − 2)
� ∞

VQ−2
R

Pi(v)dv (j = Q − 1)

.

Figures 3 (a), (b), and (c) illustrate the probabilities Pr(i|i + 1) and Pr(i + 1|i) for three read
voltages. Here, the dark and light shaded areas represent the probabilities Pr(i + 1|i) and
Pr(i + 1|i), respectively. It is obvious from Fig. 3(b) that error probability between level-i
and level-(i + 1) cells is minimized when Vi

R is determined such that Pi(Vi
R) = Pi+1(Vi

R).
For example, for the 4-level cell shown in Fig. 2, the optimum read voltages satisfying this
equation are determined as V0

R = 2.288, V1
R = 4.000, and V2

R = 5.250.

33Error Control Coding for Flash Memory

2 Will-be-set-by-IN-TECH

Fig. 1. Read/write disturb in NAND flash memory.

deterioration of the tunnel oxide after many P/E cycles, that is, positive-charge and neutral
traps generated in the tunnel oxide causes leakage of electrons from the FG (Mielke et al.,
2008). The leakage current significantly increases when multiple traps in the tunnel oxide
form a path through which the FG is discharged (Ielmini et al., 2005). In multilevel cell (MLC)
memory, the highest level cells are affected by the SILC more severely compared to lower level
cells because of the largest electric field in the tunnel oxide.

2.1.4 Read/write disturb
High voltages applied to the CG in the read/write process cause insertion of electrons into the
FG. Figure 1 illustrates the following read/write disturb in NAND flash memory.

• Read disturb: FG in the same string of a selected cell is charged.
• Write disturb in selected string: FG in the same string of a selected cell is charged.
• Write disturb in selected WL: Inhibited FG in the same WL of a selected cell is charged.

2.1.5 Overprogramming / overerase
The FG could be excessively charged in the programming phase because of, for example,
random telegraph noise in verify step and erratic tunneling caused by positive charges in the
tunnel oxide (Mielke et al., 2008). The overprogramming results in error due to an elevated
threshold voltage. Some errors caused by overprogramming might be accidentally recovered
by detrapping of electrons trapped in the tunnel oxide.
Overerase phenomena is also observed in the flash memory cell (Chimenton et al., 2003),
where the threshold voltage is excessively dropped by the erasing. Overerased bits are
classified into two classes, that is, tail bit and fast bit. The tail bit has a slightly lower threshold
compared to normal bits, while the fast bit has a much lower threshold. It is predicted that
the tail and fast bits are caused by statistical fluctuations of cell charges and physical nature
of the cell, respectively.

2.1.6 Ionizing radiation
In a radiation harsh environment, such as spacecraft, aircraft, and nuclear plant, errors in the
flash memory could be induced by radiation of ionizing particles (e.g., α-particle, β-particle,
neutron, and cosmic rays) and high-energy electromagnetic wave (e.g., ultraviolet, X-ray,
and γ-ray). The ionizing radiation causes lattice displacement in crystal, which changes
the property of the semiconductor junctions, and thus results in errors. Effects of the total
ionization dose (TID) on the flash memory have been extensively examined (Claeys et al.,
2002; Oldham et al., 2007), and some experiments show that memory cells fail at the TID of

32 Flash Memories Error Control Coding for Flash Memory 3

Probability
density

1.5

1.0

0.5

0.0 Threshold
voltage v0 2 4 6 8

Level 0
Level 1 Level 2 Level 3

P0(v) P1(v) P2(v) P3(v)

Fig. 2. Example of PDF Pi(v) of threshold voltage.

Fig. 3. Probabilities Pr(i|i + 1) and Pr(i + 1|i).
around 100 [Krad]. The TID affects the functions of the charge pump and row decoder, as well
as the cell array (Bagatin et al., 2009).

2.2 Channel model
Since error sources of the flash memory are various as described in 2.1, it is difficult to establish
a precise channel model of the flash memory. Therefore, an approximated channel model
is derived based on a Gaussian approximation of the threshold voltage distribution. In the
following, we assume a b-bit MLC having Q = 2b charge levels of the FG. Let Pi(v) be the
probability density function (PDF) representing the probability that the threshold voltage of
level-i cell is equal to v, where i ∈ {0, 1, . . . , Q − 1}. The PDF Pi(v) is approximated by the

Gaussian distribution as Pi(v) = 1√
2πσi

exp
�
− (x−μi)

2

2σ2
i

�
, where μi and σi are the mean and

standard deviation of the threshold voltage of level-i cell, respectively. Figure 2 illustrates an
example of Pi(v) for 2-bit/cell memory, where b = 2, Q = 2b = 4, μ0 = 2.0, μ1 = 3.5, μ2 =
4.5, μ3 = 6.0, σ0 = 0.3, and σ1 = σ2 = σ3 = 0.2. In general, the standard deviation of level-0
cell is larger than that of higher level cells.
Let Vi

R be the read (verify) voltage of control gate which discriminates level-i and level-(i + 1)
cells, where i ∈ {0, 1, . . . , Q − 2} and μi < Vi

R < μi+1. For a given PDF Pi(v) and a read
voltage Vi

R, the probability that level-i cell is identified as level-j is given by

Pr(j|i) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

� V0
R−∞ Pi(v)dv (j = 0)

� Vj
R

Vj−1
R

Pi(v)dv (1 ≤ j ≤ Q − 2)
� ∞

VQ−2
R

Pi(v)dv (j = Q − 1)

.

Figures 3 (a), (b), and (c) illustrate the probabilities Pr(i|i + 1) and Pr(i + 1|i) for three read
voltages. Here, the dark and light shaded areas represent the probabilities Pr(i + 1|i) and
Pr(i + 1|i), respectively. It is obvious from Fig. 3(b) that error probability between level-i
and level-(i + 1) cells is minimized when Vi

R is determined such that Pi(Vi
R) = Pi+1(Vi

R).
For example, for the 4-level cell shown in Fig. 2, the optimum read voltages satisfying this
equation are determined as V0

R = 2.288, V1
R = 4.000, and V2

R = 5.250.

33Error Control Coding for Flash Memory

4 Will-be-set-by-IN-TECH

Fig. 4. Error control coding using a block code.

If the spatial and temporal correlations of errors are negligible in the flash memory, the errors
can be described by a Q-ary stationary memoryless channel, whose channel matrix is given as

P =

⎡
⎣

p0,0 . . . p0,Q−1
...

. . .
...

pQ−1,0 . . . pQ−1,Q−1

⎤
⎦ =

⎡
⎣

Pr(0|0) . . . Pr(Q − 1|0)
...

. . .
...

Pr(0|Q − 1) . . . Pr(Q − 1|Q − 1)

⎤
⎦ ,

where pi,j = Pr(j|i).

3. Introduction to linear block code

Figure 4 illustrates an error control coding scheme for the flash memory, where a block code
is employed to correct/detect errors. In the write process, an information word is encoded
to a codeword by the encoder, and then the codeword is written to the flash memory. In the
read process, a received word (i.e., a readout codeword possibly having errors) is decoded by
the decoder, wherein the errors are corrected or detected. Since many of practical ECCs are
classified into linear block code, this section provides fundamentals of the linear block codes.

3.1 Galois field
Practical linear block codes are usually defined over Galois field. This subsection covers
definition and construction of Galois field.

3.1.1 Definition
Galois Field GF(q) is defined as a finite set having q elements on which two binary operations,
namely, addition (+) and multiplication (·), are defined, where q is a prime number or a power
of a prime number. Galois field is defined such that the following axioms hold.

Axioms of Galois field
1. Closure under addition: ∀x, y ∈ GF(q), x + y ∈ GF(q).
2. Commutativity of addition: ∀x, y ∈ GF(q), x + y = y + x.
3. Associativity of addition: ∀x, y, z,∈ GF(q), (x + y) + z = x + (y + z).
4. Additive identity: ∀x ∈ GF(q), ∃0 ∈ GF(q), x + 0 = 0 + x = x.
5. Additive inverse: ∀x ∈ GF(q), ∃(−x) ∈ GF(q), x + (−x) = (−x) + x = 0.
6. Closure under multiplication: ∀x, y ∈ GF(q), x · y ∈ GF(q).
7. Commutativity of multiplication: ∀x, y ∈ GF(q), x · y = y · x.
8. Associativity of multiplication: ∀x, y, z ∈ GF(q), (x · y) · z = x · (y · z).
9. Multiplicative identity: ∀x ∈ GF(q), ∃1 ∈ GF(q), x · 1 = 1 · x = x.
10. Multiplicative inverse: ∀x ∈ GF(q)− {0}, ∃x−1, x · x−1 = x−1 · x = 1.
11. Distributivity: ∀x, y, z ∈ GF(q), x · (y + z) = x · y + x · z.
In the above notation, 0 and 1 are referred to as zero and unity, respectively. The set of axioms
says that the four arithmetic operations (addition, substitution, multiplication, and division)
can be applied to elements in GF(q). There exist two types of Galois field, that is, prime field
GF(q) and extension field GF(qm), where q is a prime number and m ≥ 2 is an integer.

34 Flash Memories Error Control Coding for Flash Memory 5

Table 1. Addition and multiplication tables of GF(5).

3.1.2 Prime field
Prime field is defined as GF(q) = {0, 1, . . . , q − 1}, where q is a prime, and addition and
multiplication of elements x, y ∈ GF(q) are defined as

(x + y) mod q and (x · y) mod q,

respectively. Here, “a mod q” indicates the remainder of a divided by q. Table 1 presents an
example of addition and multiplication tables of GF(5).

3.1.3 Extension field
Extension field GF(qm) is constructed using a polynomial defined over GF(q). Let

f (x) =
m

∑
i=0

fix
i = fmxm + fm−1xm−1 + · · ·+ f1x + f0

be a polynomial over GF(q) of degree m, where fi ∈ GF(q) for 0 ≤ i ≤ m and fm �= 0. Addition
and multiplication of polynomials over GF(q) is defined in the same manner as polynomials
over the real number except that addition and multiplication of coefficients are performed
according to the definitions of GF(q). Period of a polynomial f (x) is defined as the minimum
positive integer e satisfying f (x)|(xe − 1), where f (x)|g(x) indicates that g(x) is divisible by
f (x).
Irreducible polynomial is a polynomial which cannot be factorized to polynomials over GF(q).
For example, x2 + 1 over GF(2) is not irreducible because x2 + 1 = (x + 1)(x + 1), whereas
x2 + x + 1 over GF(2) is irreducible. Primitive polynomial p(x) is an irreducible polynomial
whose period is qm − 1. List of primitive polynomials is provided in various ECC text books,
such as in (Lin & Costello, 2004).
Let p(x) = ∑m

i=0 pixi be a primitive polynomial of degree m over GF(q), where pm = 1, and
let α be a root of p(x), that is p(α) = 0. Since α satisfies αm = − ∑m−1

i=0 piα
i, αs is expressed as

a polynomial of α of degree less than m for any non-negative integer s, that is,

αs =
m−1

∑
i=0

aiα
i, (1)

where ai ∈ GF(q). The left-hand side and the right-hand side of Eq.(1) are referred to as the
power and polynomial representations of αs, respectively, and its coefficient vector

vec(αs) = (am−1, am−2, . . . , a0)

is referred to as the vector representation of αs.

Example 1. Let α be a root of primitive polynomial p(x) = x3 + x + 1 over GF(2). Table 2 shows the
polynomial and vector representations of the powers of α. (Note that −x = x in GF(2).)

35Error Control Coding for Flash Memory

4 Will-be-set-by-IN-TECH

Fig. 4. Error control coding using a block code.

If the spatial and temporal correlations of errors are negligible in the flash memory, the errors
can be described by a Q-ary stationary memoryless channel, whose channel matrix is given as

P =

⎡
⎣

p0,0 . . . p0,Q−1
...

. . .
...

pQ−1,0 . . . pQ−1,Q−1

⎤
⎦ =

⎡
⎣

Pr(0|0) . . . Pr(Q − 1|0)
...

. . .
...

Pr(0|Q − 1) . . . Pr(Q − 1|Q − 1)

⎤
⎦ ,

where pi,j = Pr(j|i).

3. Introduction to linear block code

Figure 4 illustrates an error control coding scheme for the flash memory, where a block code
is employed to correct/detect errors. In the write process, an information word is encoded
to a codeword by the encoder, and then the codeword is written to the flash memory. In the
read process, a received word (i.e., a readout codeword possibly having errors) is decoded by
the decoder, wherein the errors are corrected or detected. Since many of practical ECCs are
classified into linear block code, this section provides fundamentals of the linear block codes.

3.1 Galois field
Practical linear block codes are usually defined over Galois field. This subsection covers
definition and construction of Galois field.

3.1.1 Definition
Galois Field GF(q) is defined as a finite set having q elements on which two binary operations,
namely, addition (+) and multiplication (·), are defined, where q is a prime number or a power
of a prime number. Galois field is defined such that the following axioms hold.

Axioms of Galois field
1. Closure under addition: ∀x, y ∈ GF(q), x + y ∈ GF(q).
2. Commutativity of addition: ∀x, y ∈ GF(q), x + y = y + x.
3. Associativity of addition: ∀x, y, z,∈ GF(q), (x + y) + z = x + (y + z).
4. Additive identity: ∀x ∈ GF(q), ∃0 ∈ GF(q), x + 0 = 0 + x = x.
5. Additive inverse: ∀x ∈ GF(q), ∃(−x) ∈ GF(q), x + (−x) = (−x) + x = 0.
6. Closure under multiplication: ∀x, y ∈ GF(q), x · y ∈ GF(q).
7. Commutativity of multiplication: ∀x, y ∈ GF(q), x · y = y · x.
8. Associativity of multiplication: ∀x, y, z ∈ GF(q), (x · y) · z = x · (y · z).
9. Multiplicative identity: ∀x ∈ GF(q), ∃1 ∈ GF(q), x · 1 = 1 · x = x.
10. Multiplicative inverse: ∀x ∈ GF(q)− {0}, ∃x−1, x · x−1 = x−1 · x = 1.
11. Distributivity: ∀x, y, z ∈ GF(q), x · (y + z) = x · y + x · z.
In the above notation, 0 and 1 are referred to as zero and unity, respectively. The set of axioms
says that the four arithmetic operations (addition, substitution, multiplication, and division)
can be applied to elements in GF(q). There exist two types of Galois field, that is, prime field
GF(q) and extension field GF(qm), where q is a prime number and m ≥ 2 is an integer.

34 Flash Memories Error Control Coding for Flash Memory 5

Table 1. Addition and multiplication tables of GF(5).

3.1.2 Prime field
Prime field is defined as GF(q) = {0, 1, . . . , q − 1}, where q is a prime, and addition and
multiplication of elements x, y ∈ GF(q) are defined as

(x + y) mod q and (x · y) mod q,

respectively. Here, “a mod q” indicates the remainder of a divided by q. Table 1 presents an
example of addition and multiplication tables of GF(5).

3.1.3 Extension field
Extension field GF(qm) is constructed using a polynomial defined over GF(q). Let

f (x) =
m

∑
i=0

fix
i = fmxm + fm−1xm−1 + · · ·+ f1x + f0

be a polynomial over GF(q) of degree m, where fi ∈ GF(q) for 0 ≤ i ≤ m and fm �= 0. Addition
and multiplication of polynomials over GF(q) is defined in the same manner as polynomials
over the real number except that addition and multiplication of coefficients are performed
according to the definitions of GF(q). Period of a polynomial f (x) is defined as the minimum
positive integer e satisfying f (x)|(xe − 1), where f (x)|g(x) indicates that g(x) is divisible by
f (x).
Irreducible polynomial is a polynomial which cannot be factorized to polynomials over GF(q).
For example, x2 + 1 over GF(2) is not irreducible because x2 + 1 = (x + 1)(x + 1), whereas
x2 + x + 1 over GF(2) is irreducible. Primitive polynomial p(x) is an irreducible polynomial
whose period is qm − 1. List of primitive polynomials is provided in various ECC text books,
such as in (Lin & Costello, 2004).
Let p(x) = ∑m

i=0 pixi be a primitive polynomial of degree m over GF(q), where pm = 1, and
let α be a root of p(x), that is p(α) = 0. Since α satisfies αm = − ∑m−1

i=0 piα
i, αs is expressed as

a polynomial of α of degree less than m for any non-negative integer s, that is,

αs =
m−1

∑
i=0

aiα
i, (1)

where ai ∈ GF(q). The left-hand side and the right-hand side of Eq.(1) are referred to as the
power and polynomial representations of αs, respectively, and its coefficient vector

vec(αs) = (am−1, am−2, . . . , a0)

is referred to as the vector representation of αs.

Example 1. Let α be a root of primitive polynomial p(x) = x3 + x + 1 over GF(2). Table 2 shows the
polynomial and vector representations of the powers of α. (Note that −x = x in GF(2).)

35Error Control Coding for Flash Memory

6 Will-be-set-by-IN-TECH

Power Polynomial Vector Power Polynomial Vector
α0 1 (0, 0, 1) α5 α3 + α2 = α2 + α + 1 (1, 1, 1)
α1 α (0, 1, 0) α6 α3 + α2 + α = α2 + 1 (1, 0, 1)
α2 α2 (1, 0, 0) α7 α3 + α = 1 (0, 0, 1)
α3 α + 1 (0, 1, 1) ...

...
...α4 α2 + α (1, 1, 0)

Table 2. Polynomial and vector representation of powers of a root α of primitive polynomial
p(x) = x3 + x + 1 over GF(2).

Table 3. Addition and multiplication tables of GF(23).

Theorem 1. Let α be a root of primitive polynomial p(x) of degree m over GF(q). The following
relation holds for non-negative integers i and j:

αi = αj ⇔ i ≡ j (mod qm − 1).

An extension field GF(qm) of degree m is generated from a ground field GF(q) as GF(qm) =
{0, α0, α1, . . . , αqm−2}, where α is a root of primitive polynomial of degree m over GF(q), and
the vector representation of 0 is (0, . . . , 0). Here, the additive and multiplicative identities are
0 and α0 = 1, respectively, and the addition and multiplication of αi and αj are defined as

αi + αj = αk

and
αi · αj = α(i+j) mod qm−1,

where vec(αi) + vec(αj) = vec(αk) over GF(q). In short, the addition is defined on the vector
representation, and the multiplication on the power representation.

Example 2. Let α be a root of primitive polynomial p(x) = x3 + x + 1 over GF(2). Extension field
GF(23) is defined as GF(23) = {0, α0, α1, . . . , α6}, where the non-zero elements are listed in Table 2.
The addition and multiplication tables of GF(23) are presented in Table 3.

3.2 Linear space
3.2.1 Definition
Let u = (u0, u1, . . . , un−1) and v = (v0, v1, . . . , vn−1) be vectors of length n over GF(q), where
ui, vi ∈ GF(q) for 0 ≤ i ≤ n − 1 and GF(q) is either prime field or extension field. For the
vectors over GF(q), addition, inner product, and scalar multiplication are defined as

u + v = (u0 + v0, u1 + v1, . . . , vn−1 + un−1),

u · v = u0 · v0 + u1 · v1 + · · ·+ un−1 · vn−1, and

a · v = (a · v0, a · v1, . . . , a · vn−1),

36 Flash Memories Error Control Coding for Flash Memory 7

respectively, where the addition and multiplication of vector components are defined on
GF(q). For simplicity, the multiplication operator ’·’ will be omitted hereafter. Let V be a
set of vectors of length n over GF(q). The set V is a linear space if the following conditions
hold.
1. Closure under addition: ∀u, v ∈ V, u + v ∈ V.
2. Commutativity of addition: ∀u, v ∈ V, u + v = v + u.
3. Associativity of addition: ∀u, v, w ∈ V, (u + v) + w = u + (v + w).
4. Zero vector: ∀u ∈ V, ∃o ∈ v, u + o = o + u = u.
5. Inverse vector: ∀u ∈ V, ∃ − u ∈ V, u + (−u) = o.
6. Closure under scalar multiplication: ∀u ∈ V, ∀a ∈ GF(q), au ∈ V.
7. Distributivity (scalar addition): ∀u ∈ V, ∀a, b ∈ GF(q), (a + b)u = au + bu.
8. Distributivity (vector addition): ∀u, v ∈ V, ∀a ∈ GF(q), a(u + v) = au + av.
9. Associativity of scalar multiplication: ∀u ∈ V, ∀a, b ∈ GF(q), (ab)u = a(bu).
10. Identity of scalar multiplication: ∀u ∈ V, 1u = u.

Example 3. The following set of all vectors over GF(2) of length 4 is a linear space:

V = {(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1), (0, 1, 0, 0), (0, 1, 0, 1), (0, 1, 1, 0), (0, 1, 1, 1),

(1, 0, 0, 0), (1, 0, 0, 1), (1, 0, 1, 0), (1, 0, 1, 1), (1, 1, 0, 0), (1, 1, 0, 1), (1, 1, 1, 0), (1, 1, 1, 1)}.

A subset S of a linear space V is a linear subspace if the following conditions hold:
1. Closure under addition: ∀u, v ∈ S, u + v ∈ S.
2. Closure under scalar multiplication: ∀u ∈ S,∀a ∈ GF(q), au ∈ S.

Example 4. One example of the linear subspace of V in Example 3 is S = {(0, 0, 0, 0), (0, 0, 1, 1),
(1, 1, 0, 0), (1, 1, 1, 1)}.

3.2.2 Basis vector and dimension
Linear space V can be specified by a set of basis vectors as follows:

V = {v = a0v0 + a1v1 + · · ·+ ak−1vk−1 | ai ∈ GF(q), vi: basis vector},

where v0, v1, . . . , vk−1 are linearly independent vectors of length n over GF(q). Here, the basis
vectors satisfy the following condition:

a0v0 + a1v1 + · · ·+ ak−1vk−1 = o ⇔ a0 = a1 = · · · = ak−1 = 0,

where o is the zero-vector.

Example 5. The followings are examples of basis vectors of V and S of Examples 3 and 4, respectively.
One example of basis vectors of V: {(0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0)}.
Another example of basis vectors of V: {(0, 0, 1, 1), (1, 1, 0, 0), (0, 0, 0, 1), (0, 1, 1, 0)}.
An example of basis vectors of S: {(0, 0, 1, 1), (1, 1, 0, 0)}.

For a given vector space V, there exists a number of combinations of basis vectors, while the
number of basis vectors in each combination is identical. The dimension k of vector space V is
defined as the number of basis vectors of V.

Example 6. The dimensions of V and S in Examples 3 and 4 are k = 4 and 2, respectively.

37Error Control Coding for Flash Memory

6 Will-be-set-by-IN-TECH

Power Polynomial Vector Power Polynomial Vector
α0 1 (0, 0, 1) α5 α3 + α2 = α2 + α + 1 (1, 1, 1)
α1 α (0, 1, 0) α6 α3 + α2 + α = α2 + 1 (1, 0, 1)
α2 α2 (1, 0, 0) α7 α3 + α = 1 (0, 0, 1)
α3 α + 1 (0, 1, 1) ...

...
...α4 α2 + α (1, 1, 0)

Table 2. Polynomial and vector representation of powers of a root α of primitive polynomial
p(x) = x3 + x + 1 over GF(2).

Table 3. Addition and multiplication tables of GF(23).

Theorem 1. Let α be a root of primitive polynomial p(x) of degree m over GF(q). The following
relation holds for non-negative integers i and j:

αi = αj ⇔ i ≡ j (mod qm − 1).

An extension field GF(qm) of degree m is generated from a ground field GF(q) as GF(qm) =
{0, α0, α1, . . . , αqm−2}, where α is a root of primitive polynomial of degree m over GF(q), and
the vector representation of 0 is (0, . . . , 0). Here, the additive and multiplicative identities are
0 and α0 = 1, respectively, and the addition and multiplication of αi and αj are defined as

αi + αj = αk

and
αi · αj = α(i+j) mod qm−1,

where vec(αi) + vec(αj) = vec(αk) over GF(q). In short, the addition is defined on the vector
representation, and the multiplication on the power representation.

Example 2. Let α be a root of primitive polynomial p(x) = x3 + x + 1 over GF(2). Extension field
GF(23) is defined as GF(23) = {0, α0, α1, . . . , α6}, where the non-zero elements are listed in Table 2.
The addition and multiplication tables of GF(23) are presented in Table 3.

3.2 Linear space
3.2.1 Definition
Let u = (u0, u1, . . . , un−1) and v = (v0, v1, . . . , vn−1) be vectors of length n over GF(q), where
ui, vi ∈ GF(q) for 0 ≤ i ≤ n − 1 and GF(q) is either prime field or extension field. For the
vectors over GF(q), addition, inner product, and scalar multiplication are defined as

u + v = (u0 + v0, u1 + v1, . . . , vn−1 + un−1),

u · v = u0 · v0 + u1 · v1 + · · ·+ un−1 · vn−1, and

a · v = (a · v0, a · v1, . . . , a · vn−1),

36 Flash Memories Error Control Coding for Flash Memory 7

respectively, where the addition and multiplication of vector components are defined on
GF(q). For simplicity, the multiplication operator ’·’ will be omitted hereafter. Let V be a
set of vectors of length n over GF(q). The set V is a linear space if the following conditions
hold.
1. Closure under addition: ∀u, v ∈ V, u + v ∈ V.
2. Commutativity of addition: ∀u, v ∈ V, u + v = v + u.
3. Associativity of addition: ∀u, v, w ∈ V, (u + v) + w = u + (v + w).
4. Zero vector: ∀u ∈ V, ∃o ∈ v, u + o = o + u = u.
5. Inverse vector: ∀u ∈ V, ∃ − u ∈ V, u + (−u) = o.
6. Closure under scalar multiplication: ∀u ∈ V, ∀a ∈ GF(q), au ∈ V.
7. Distributivity (scalar addition): ∀u ∈ V, ∀a, b ∈ GF(q), (a + b)u = au + bu.
8. Distributivity (vector addition): ∀u, v ∈ V, ∀a ∈ GF(q), a(u + v) = au + av.
9. Associativity of scalar multiplication: ∀u ∈ V, ∀a, b ∈ GF(q), (ab)u = a(bu).
10. Identity of scalar multiplication: ∀u ∈ V, 1u = u.

Example 3. The following set of all vectors over GF(2) of length 4 is a linear space:

V = {(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1), (0, 1, 0, 0), (0, 1, 0, 1), (0, 1, 1, 0), (0, 1, 1, 1),

(1, 0, 0, 0), (1, 0, 0, 1), (1, 0, 1, 0), (1, 0, 1, 1), (1, 1, 0, 0), (1, 1, 0, 1), (1, 1, 1, 0), (1, 1, 1, 1)}.

A subset S of a linear space V is a linear subspace if the following conditions hold:
1. Closure under addition: ∀u, v ∈ S, u + v ∈ S.
2. Closure under scalar multiplication: ∀u ∈ S,∀a ∈ GF(q), au ∈ S.

Example 4. One example of the linear subspace of V in Example 3 is S = {(0, 0, 0, 0), (0, 0, 1, 1),
(1, 1, 0, 0), (1, 1, 1, 1)}.

3.2.2 Basis vector and dimension
Linear space V can be specified by a set of basis vectors as follows:

V = {v = a0v0 + a1v1 + · · ·+ ak−1vk−1 | ai ∈ GF(q), vi: basis vector},

where v0, v1, . . . , vk−1 are linearly independent vectors of length n over GF(q). Here, the basis
vectors satisfy the following condition:

a0v0 + a1v1 + · · ·+ ak−1vk−1 = o ⇔ a0 = a1 = · · · = ak−1 = 0,

where o is the zero-vector.

Example 5. The followings are examples of basis vectors of V and S of Examples 3 and 4, respectively.
One example of basis vectors of V: {(0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0)}.
Another example of basis vectors of V: {(0, 0, 1, 1), (1, 1, 0, 0), (0, 0, 0, 1), (0, 1, 1, 0)}.
An example of basis vectors of S: {(0, 0, 1, 1), (1, 1, 0, 0)}.

For a given vector space V, there exists a number of combinations of basis vectors, while the
number of basis vectors in each combination is identical. The dimension k of vector space V is
defined as the number of basis vectors of V.

Example 6. The dimensions of V and S in Examples 3 and 4 are k = 4 and 2, respectively.

37Error Control Coding for Flash Memory

8 Will-be-set-by-IN-TECH

Fig. 5. Example of null space over GF(2).

3.2.3 Null space
Let V be a linear space of dimension k defined as

V = {v = a0v0 + a1v1 + · · ·+ ak−1vk−1 | ai ∈ GF(q), vi is basis vector},

where vi is a vector of length n over GF(q). The null space of V is defined as

Ṽ = {ṽ = (ṽ0, ṽ1, . . . , ṽn−1) | ∀v ∈ V, v · ṽ = 0, ṽi ∈ GF(q)}.

Equivalently, the null space Ṽ is defined using the basis vectors of V as

Ṽ = {ṽ = (ṽ0, ṽ1, . . . , ṽn−1) | ∀i ∈ {0, 1, . . . , k − 1}, vi · ṽ = 0, ṽi ∈ GF(q)}.

It can be proved that the null space is a linear space.

Example 7. Figure 5 presents an example of linear space V and its null space Ṽ over GF(2).

3.3 Linear block code
3.3.1 Definition
Let Fn be a linear space defined as a set of all vectors of length n over GF(q), that is,

Fn = {u = (u0, u1, . . . , un−1) | ui ∈ GF(q)}.

A block code of length n over GF(q) is defined as a subset of Fn, and a linear block code C of length
n over GF(q) is defined as a linear subspace of Fn. A code C of length n with dimension
k is denoted as (n, k) code. Encoding by a linear block code C is defined as a bijective
mapping from Fk to C. Vectors in C and Fk are referred to as codeword and information
word, respectively.

Example 8. From the linear subspace V shown in Fig. 5, (6,3) linear block code C over F = GF(2) is
generated as

C = {(0, 1, 1, 1, 0, 0), (1, 0, 1, 0, 1, 0), (1, 1, 0, 0, 0, 1), (0, 0, 0, 1, 1, 1),

(0, 0, 0, 0, 0, 0), (1, 1, 0, 1, 1, 0), (1, 0, 1, 1, 0, 1), (0, 1, 1, 0, 1, 1)}.

Encoding by C is defined as an arbitrarily bijective mapping from F3 to C. The following is one example
of the bijective mapping:

(0, 0, 0)→ (0, 0, 0, 0, 0, 0) (0, 0, 1)→ (1, 1, 0, 0, 0, 1) (0, 1, 0)→ (1, 0, 1, 0, 1, 0) (0, 1, 1)→ (0, 1, 1, 0, 1, 1)
(1, 0, 0)→ (0, 1, 1, 1, 0, 0) (1, 0, 1)→ (1, 0, 1, 1, 0, 1) (1, 1, 0)→ (1, 1, 0, 1, 1, 0) (1, 1, 1)→ (0, 0, 0, 1, 1, 1)

Systematic encoding is an encoding in which each bit in the information word appears in a fixed
position of the codeword. The above encoding example is a systematic encoding because an
information word d = (d0, d1, d2) ∈ F3 is mapped to a codeword u = (u0, u1, u2, u3, u4, u5) ∈
C, where d0 = u3, d1 = u4, and d2 = u5.

38 Flash Memories Error Control Coding for Flash Memory 9

3.3.2 Generator matrix
Since linear block code C of length n over GF(q) is a linear subspace, C can be specified by a set
of basis vectors {g0, g1, . . . , gk−1}, where gi is a row vector of length n over GF(q). Generator
matrix G of an (n, k) linear block code C is defined as a k × n matrix over GF(q) whose row
vectors are basis vectors of C, that is,

G =

⎡
⎣

g0,0 . . . g0,n−1
...

. . .
...

gk−1,0 . . . gk−1,n−1

⎤
⎦ =

⎡
⎣

g0
...

gk−1

⎤
⎦ ,

where gi,j ∈ GF(q) for 0 ≤ i ≤ k − 1 and 0 ≤ j ≤ n − 1. The code C is defined using the
generator matrix G as follows:

C = {u = (u0, u1, . . . , un−1) = dG | d = (d0, d1, . . . , dk−1), di ∈ GF(q)}.

From this definition, linear code C is equivalent to the row space of G.

Example 9. A generator matrix of the linear block code C shown in Example 8 is given as

G =

�
0 1 1 1 0 0
1 0 1 0 1 0
1 1 0 0 0 1

�
.

3.3.3 Parity-check matrix

Let �C be the null space of linear code C, and let {h0, h1, . . . , hr−1} be the set of basis vectors
of �C, where hi is a row vector of length n over GF(q), and r = n − k. Parity-check matrix H of
the linear code C is defined as the following r × n matrix over GF(q):

H =

⎡
⎣

h0,0 . . . h0,n−1
...

. . .
...

hr−1,0 . . . hr−1,n−1

⎤
⎦ =

⎡
⎣

h0
...

hr−1

⎤
⎦ ,

where hi,j ∈ GF(q) for 0 ≤ i ≤ r − 1 and 0 ≤ j ≤ n − 1. The code C is defined by the
parity-check matrix as follows:

C = {u = (u0, u1, . . . , un−1) | HuT = oT = (0, . . . , 0)T , ui ∈ GF(q)}.

In this definition, the code C is equivalent to the null space of the row space of H.

Example 10. An example parity-check matrix of the code C shown in Example 8 is given as

H =

�
1 0 0 0 1 1
0 1 0 1 0 1
0 0 1 1 1 0

�
.

3.3.4 Minimum distance
Let u = (u0, u1, . . . , un−1) and v = (v0, v1, . . . , vn−1) be vectors of length n over GF(q).
Hamming weight of u is defined as

w(u) = (the number of nonzero elements in u),

39Error Control Coding for Flash Memory

8 Will-be-set-by-IN-TECH

Fig. 5. Example of null space over GF(2).

3.2.3 Null space
Let V be a linear space of dimension k defined as

V = {v = a0v0 + a1v1 + · · ·+ ak−1vk−1 | ai ∈ GF(q), vi is basis vector},

where vi is a vector of length n over GF(q). The null space of V is defined as

Ṽ = {ṽ = (ṽ0, ṽ1, . . . , ṽn−1) | ∀v ∈ V, v · ṽ = 0, ṽi ∈ GF(q)}.

Equivalently, the null space Ṽ is defined using the basis vectors of V as

Ṽ = {ṽ = (ṽ0, ṽ1, . . . , ṽn−1) | ∀i ∈ {0, 1, . . . , k − 1}, vi · ṽ = 0, ṽi ∈ GF(q)}.

It can be proved that the null space is a linear space.

Example 7. Figure 5 presents an example of linear space V and its null space Ṽ over GF(2).

3.3 Linear block code
3.3.1 Definition
Let Fn be a linear space defined as a set of all vectors of length n over GF(q), that is,

Fn = {u = (u0, u1, . . . , un−1) | ui ∈ GF(q)}.

A block code of length n over GF(q) is defined as a subset of Fn, and a linear block code C of length
n over GF(q) is defined as a linear subspace of Fn. A code C of length n with dimension
k is denoted as (n, k) code. Encoding by a linear block code C is defined as a bijective
mapping from Fk to C. Vectors in C and Fk are referred to as codeword and information
word, respectively.

Example 8. From the linear subspace V shown in Fig. 5, (6,3) linear block code C over F = GF(2) is
generated as

C = {(0, 1, 1, 1, 0, 0), (1, 0, 1, 0, 1, 0), (1, 1, 0, 0, 0, 1), (0, 0, 0, 1, 1, 1),

(0, 0, 0, 0, 0, 0), (1, 1, 0, 1, 1, 0), (1, 0, 1, 1, 0, 1), (0, 1, 1, 0, 1, 1)}.

Encoding by C is defined as an arbitrarily bijective mapping from F3 to C. The following is one example
of the bijective mapping:

(0, 0, 0)→ (0, 0, 0, 0, 0, 0) (0, 0, 1)→ (1, 1, 0, 0, 0, 1) (0, 1, 0)→ (1, 0, 1, 0, 1, 0) (0, 1, 1)→ (0, 1, 1, 0, 1, 1)
(1, 0, 0)→ (0, 1, 1, 1, 0, 0) (1, 0, 1)→ (1, 0, 1, 1, 0, 1) (1, 1, 0)→ (1, 1, 0, 1, 1, 0) (1, 1, 1)→ (0, 0, 0, 1, 1, 1)

Systematic encoding is an encoding in which each bit in the information word appears in a fixed
position of the codeword. The above encoding example is a systematic encoding because an
information word d = (d0, d1, d2) ∈ F3 is mapped to a codeword u = (u0, u1, u2, u3, u4, u5) ∈
C, where d0 = u3, d1 = u4, and d2 = u5.

38 Flash Memories Error Control Coding for Flash Memory 9

3.3.2 Generator matrix
Since linear block code C of length n over GF(q) is a linear subspace, C can be specified by a set
of basis vectors {g0, g1, . . . , gk−1}, where gi is a row vector of length n over GF(q). Generator
matrix G of an (n, k) linear block code C is defined as a k × n matrix over GF(q) whose row
vectors are basis vectors of C, that is,

G =

⎡
⎣

g0,0 . . . g0,n−1
...

. . .
...

gk−1,0 . . . gk−1,n−1

⎤
⎦ =

⎡
⎣

g0
...

gk−1

⎤
⎦ ,

where gi,j ∈ GF(q) for 0 ≤ i ≤ k − 1 and 0 ≤ j ≤ n − 1. The code C is defined using the
generator matrix G as follows:

C = {u = (u0, u1, . . . , un−1) = dG | d = (d0, d1, . . . , dk−1), di ∈ GF(q)}.

From this definition, linear code C is equivalent to the row space of G.

Example 9. A generator matrix of the linear block code C shown in Example 8 is given as

G =

�
0 1 1 1 0 0
1 0 1 0 1 0
1 1 0 0 0 1

�
.

3.3.3 Parity-check matrix

Let �C be the null space of linear code C, and let {h0, h1, . . . , hr−1} be the set of basis vectors
of �C, where hi is a row vector of length n over GF(q), and r = n − k. Parity-check matrix H of
the linear code C is defined as the following r × n matrix over GF(q):

H =

⎡
⎣

h0,0 . . . h0,n−1
...

. . .
...

hr−1,0 . . . hr−1,n−1

⎤
⎦ =

⎡
⎣

h0
...

hr−1

⎤
⎦ ,

where hi,j ∈ GF(q) for 0 ≤ i ≤ r − 1 and 0 ≤ j ≤ n − 1. The code C is defined by the
parity-check matrix as follows:

C = {u = (u0, u1, . . . , un−1) | HuT = oT = (0, . . . , 0)T , ui ∈ GF(q)}.

In this definition, the code C is equivalent to the null space of the row space of H.

Example 10. An example parity-check matrix of the code C shown in Example 8 is given as

H =

�
1 0 0 0 1 1
0 1 0 1 0 1
0 0 1 1 1 0

�
.

3.3.4 Minimum distance
Let u = (u0, u1, . . . , un−1) and v = (v0, v1, . . . , vn−1) be vectors of length n over GF(q).
Hamming weight of u is defined as

w(u) = (the number of nonzero elements in u),

39Error Control Coding for Flash Memory

10 Will-be-set-by-IN-TECH

and Hamming distance between u and v is defined as d(u, v) = w(u − v). In other words,
Hamming distance d(u, v) is the number of component positions in which the two vectors
differ. Minimum distance of a block code C is defined as

dmin(C) = min
u,v∈C,u �=v

d(u, v).

In general, it is hard to determine the minimum distance from the above definition if the
cardinality of C is large. The following theorems are useful to determine the minimum
distance of a linear block code.

Theorem 2. For a linear block code C, it holds that dmin(C) = min
u∈C,u �=o

w(u).

Proof. Since C is a linear block code, the following relation holds:

dmin(C) = min
u,v∈C,u �=v

d(u, v) = min
u,v∈C,u �=v

w(u − v) = min
w∈C,w �=o

w(w).

The above theorem says that the minimum distance of a linear block code C is equal to the
minimum Hamming weight of non-zero codeword of C. The minimum Hamming weight of
non-zero codeword can be determined from the parity-check matrix as follows.

Theorem 3. Let H be a parity-check matrix of linear block code C. If there exist d column vectors in
H which are linearly dependent, and also d − 1 or fewer column vectors in H are linearly independent,
then the minimum Hamming weight of non-zero codeword of C is d.

Proof. Since H has d column vectors which are linearly dependent, there exists a codeword u
of Hamming weight d satisfying HuT = oT. Also, since d − 1 or fewer column vectors in H
are linearly independent, any vector x of Hamming weight 1 ≤ w(x) ≤ d − 1 does not satisfy
HxT = o, which means that C does not have non-zero codeword of Hamming weight less
than or equal to d − 1. Therefore, the minimum Hamming weight of non-zero codeword of C
is d.

Combining Theorems 2 and 3, the following theorem is obtained.

Theorem 4. Let H be a parity-check matrix of linear block code C. If there exist d column vectors in
H which are linearly dependent, and also d − 1 or fewer column vectors in H are linearly independent,
then the minimum distance of C is d.

3.3.5 Error control capability of bounded distance decoding
Let u = (u0, u1, . . . , un−1) be a codeword over GF(q), and let

r = (r0, r1, . . . , rn−1) = u + e = (u0, u1, . . . , un−1) + (e0, e1, . . . , en−1)

be a received word, that is, a readout word from flash memory, where e is an error vector over
GF(q). The number of errors in r is defined as d(u, r) = w(u − r) = w(e).

Theorem 5. A block code of minimum distance d is capable of correcting t errors and detecting s errors
by the bounded distance decoding, where d ≥ t + s + 1 and t ≤ s.

Figure 6 illustrates the relation between t, s and d under the bounded distance decoding.

40 Flash Memories Error Control Coding for Flash Memory 11

Fig. 6. Relation between the minimum distance and error correction/detection capabilities
under the bounded distance decoding.

3.4 Cyclic code
3.4.1 Construction
Cyclic code C is a subclass of linear block code satisfying the following condition:

u = (u0, u1, . . . , un−2, un−1) ∈ C ⇒ u� = (un−1, u0, . . . , un−3, un−2) ∈ C.

That is, if u is a codeword of C, then a cyclic shift of u is also a codeword. Cyclic code is usually
defined using polynomials over GF(q). Let u = (u0, u1, . . . , un−1) and v = (v0, v1, . . . , vn−1)
be codewords of C. Polynomial representations of u ∈ C and v ∈ C are given as follows:

u(x) = u0+u1x+u2x2+. . .+un−1xn−1, v(x) = v0+v1x+v2x2+. . .+vn−1xn−1,

where ui, vi ∈ GF(q). Addition of two codewords u(x) ∈ C and v(x) ∈ C is expressed as

u(x) + v(x) = (u0 + v0) + (u1 + v1)x + (u2 + v2)x
2 + · · ·+ (un−1 + vn−1)x

n−1,

and right cyclic shift of u(x) ∈ C as

xu(x) mod (xn − 1) = un−1 + u0x + u1x2 + · · ·+ un−2xn−1 ∈ C. (2)

By recursively applying the relation of Eq.(2), we obtain xiu(x) mod (xn − 1) ∈ C for any
non-negative integer i. Since C is a linear block code, (xi + xj)u(x) mod (xn − 1) ∈ C for
any pair of non-negative integers i and j. This implies that, if u(x) is a codeword of C, then
f(x)u(x) mod (xn − 1) is also a codeword of C, where f(x) is a polynomial over GF(q).

Definition 1. Let g(x) be a factor of (xn − 1), that is, (xn − 1) = g(x)h(x), where the degree of
g(x) is r. Cyclic code C over GF(q) of length n is defined using g(x) as the generator polynomial, that
is,

C = {f(x)g(x) mod (xn − 1) | f(x): polynomial over GF(q)}
= {d(x)g(x) | d(x): polynomial over GF(q) of degree less than n − r}.

The following theorem is obvious from the above definition.

Theorem 6. Let C be a cyclic code generated by g(x). Polynomial u(x) is a codeword of C if and only
if

u(x) mod g(x) = 0.

Example 11. Polynomial (x7 − 1) over GF(2) is factorized as

(x7 − 1) = (x3 + x + 1)(x3 + x2 + 1)(x + 1).

Let g(x) = x3 + x + 1 be the generator polynomial of cyclic code of length n = 7. Table 4 lists
codewords of the cyclic code generated by g(x). This code is referred to as (7, 4) cyclic Hamming code.

Example 12. Cyclic redundancy check (CRC) codes are used as error detecting code. Table 5 shows
generator polynomials of standardized CRC codes (Lin & Costello, 2004; Witzke & Leung, 1985).

41Error Control Coding for Flash Memory

10 Will-be-set-by-IN-TECH

and Hamming distance between u and v is defined as d(u, v) = w(u − v). In other words,
Hamming distance d(u, v) is the number of component positions in which the two vectors
differ. Minimum distance of a block code C is defined as

dmin(C) = min
u,v∈C,u �=v

d(u, v).

In general, it is hard to determine the minimum distance from the above definition if the
cardinality of C is large. The following theorems are useful to determine the minimum
distance of a linear block code.

Theorem 2. For a linear block code C, it holds that dmin(C) = min
u∈C,u �=o

w(u).

Proof. Since C is a linear block code, the following relation holds:

dmin(C) = min
u,v∈C,u �=v

d(u, v) = min
u,v∈C,u �=v

w(u − v) = min
w∈C,w �=o

w(w).

The above theorem says that the minimum distance of a linear block code C is equal to the
minimum Hamming weight of non-zero codeword of C. The minimum Hamming weight of
non-zero codeword can be determined from the parity-check matrix as follows.

Theorem 3. Let H be a parity-check matrix of linear block code C. If there exist d column vectors in
H which are linearly dependent, and also d − 1 or fewer column vectors in H are linearly independent,
then the minimum Hamming weight of non-zero codeword of C is d.

Proof. Since H has d column vectors which are linearly dependent, there exists a codeword u
of Hamming weight d satisfying HuT = oT. Also, since d − 1 or fewer column vectors in H
are linearly independent, any vector x of Hamming weight 1 ≤ w(x) ≤ d − 1 does not satisfy
HxT = o, which means that C does not have non-zero codeword of Hamming weight less
than or equal to d − 1. Therefore, the minimum Hamming weight of non-zero codeword of C
is d.

Combining Theorems 2 and 3, the following theorem is obtained.

Theorem 4. Let H be a parity-check matrix of linear block code C. If there exist d column vectors in
H which are linearly dependent, and also d − 1 or fewer column vectors in H are linearly independent,
then the minimum distance of C is d.

3.3.5 Error control capability of bounded distance decoding
Let u = (u0, u1, . . . , un−1) be a codeword over GF(q), and let

r = (r0, r1, . . . , rn−1) = u + e = (u0, u1, . . . , un−1) + (e0, e1, . . . , en−1)

be a received word, that is, a readout word from flash memory, where e is an error vector over
GF(q). The number of errors in r is defined as d(u, r) = w(u − r) = w(e).

Theorem 5. A block code of minimum distance d is capable of correcting t errors and detecting s errors
by the bounded distance decoding, where d ≥ t + s + 1 and t ≤ s.

Figure 6 illustrates the relation between t, s and d under the bounded distance decoding.

40 Flash Memories Error Control Coding for Flash Memory 11

Fig. 6. Relation between the minimum distance and error correction/detection capabilities
under the bounded distance decoding.

3.4 Cyclic code
3.4.1 Construction
Cyclic code C is a subclass of linear block code satisfying the following condition:

u = (u0, u1, . . . , un−2, un−1) ∈ C ⇒ u� = (un−1, u0, . . . , un−3, un−2) ∈ C.

That is, if u is a codeword of C, then a cyclic shift of u is also a codeword. Cyclic code is usually
defined using polynomials over GF(q). Let u = (u0, u1, . . . , un−1) and v = (v0, v1, . . . , vn−1)
be codewords of C. Polynomial representations of u ∈ C and v ∈ C are given as follows:

u(x) = u0+u1x+u2x2+. . .+un−1xn−1, v(x) = v0+v1x+v2x2+. . .+vn−1xn−1,

where ui, vi ∈ GF(q). Addition of two codewords u(x) ∈ C and v(x) ∈ C is expressed as

u(x) + v(x) = (u0 + v0) + (u1 + v1)x + (u2 + v2)x
2 + · · ·+ (un−1 + vn−1)x

n−1,

and right cyclic shift of u(x) ∈ C as

xu(x) mod (xn − 1) = un−1 + u0x + u1x2 + · · ·+ un−2xn−1 ∈ C. (2)

By recursively applying the relation of Eq.(2), we obtain xiu(x) mod (xn − 1) ∈ C for any
non-negative integer i. Since C is a linear block code, (xi + xj)u(x) mod (xn − 1) ∈ C for
any pair of non-negative integers i and j. This implies that, if u(x) is a codeword of C, then
f(x)u(x) mod (xn − 1) is also a codeword of C, where f(x) is a polynomial over GF(q).

Definition 1. Let g(x) be a factor of (xn − 1), that is, (xn − 1) = g(x)h(x), where the degree of
g(x) is r. Cyclic code C over GF(q) of length n is defined using g(x) as the generator polynomial, that
is,

C = {f(x)g(x) mod (xn − 1) | f(x): polynomial over GF(q)}
= {d(x)g(x) | d(x): polynomial over GF(q) of degree less than n − r}.

The following theorem is obvious from the above definition.

Theorem 6. Let C be a cyclic code generated by g(x). Polynomial u(x) is a codeword of C if and only
if

u(x) mod g(x) = 0.

Example 11. Polynomial (x7 − 1) over GF(2) is factorized as

(x7 − 1) = (x3 + x + 1)(x3 + x2 + 1)(x + 1).

Let g(x) = x3 + x + 1 be the generator polynomial of cyclic code of length n = 7. Table 4 lists
codewords of the cyclic code generated by g(x). This code is referred to as (7, 4) cyclic Hamming code.

Example 12. Cyclic redundancy check (CRC) codes are used as error detecting code. Table 5 shows
generator polynomials of standardized CRC codes (Lin & Costello, 2004; Witzke & Leung, 1985).

41Error Control Coding for Flash Memory

12 Will-be-set-by-IN-TECH

d(x) u(x) = d(x)g(x) (vector) d(x) u(x) = d(x)g(x) (vector)
0 0 (0000000) x3 x3 + x4 + x6 (0001101)
1 1 + x + x3 (1101000) 1 + x3 1 + x + x4 + x6 (1100101)
x x + x2 + x4 (0110100) x + x3 x + x2 + x3 + x6 (0111001)

1 + x 1 + x2 + x3 + x4 (1011100) 1 + x + x3 1 + x2 + x6 (1010001)
x2 x2 + x3 + x5 (0011010) x2 + x3 x2 + x4 + x5 + x6 (0010111)

1 + x2 1 + x + x2 + x5 (1110010) 1 + x2 + x3 1+x+x2+x3+x4+x5+x6 (1111111)
x + x2 x + x3 + x4 + x5 (0101110) x + x2 + x3 x + x5 + x6 (0100011)

1+x+x2 1 + x4 + x5 (1000110) 1+x+x2+x3 1 + x3 + x5 + x6 (1001011)

Table 4. (7, 4) Cyclic Hamming code generated by g(x) = x3 + x + 1.

Standard Generator polynomial Standard Generator polynomial
CRC-12 x12 + x11 + x3 + x2 + x + 1 CRC-16 x16 + x15 + x2 + 1
IBM-SDLC x16 + x15 + x13 + x7 + x4 + x2 + x + 1 CCITT X-25 x16 + x12 + x5 + 1
CD-ROM x32 + x31 + x16 + x15 + x4 + x3 + x + 1 DVD-ROM x32 + x31 + x4 + 1
IEC TC57 x16 + x14 + x11 + x8 + x6 + x5 + x4 + 1
IEEE 802.3 x32+x26+x23+x22+x16+x12+x11+x10+x8+x7+x5+x4+x2+x+1

Table 5. Example of standardized CRC code.

3.4.2 Systematic encoding
Let C be a cyclic code of length n, and let g(x) be a degree-r generator polynomial of C.
Systematic encoding of an information word d(x) of degree k = n − r by C is defined as

u(x) = xrd(x)− ρ(x),

where ρ(x) = xrd(x) mod g(x). It can be easily verified that u(x) is a codeword of C because
the following relation holds.

u(x) mod g(x) = (xrd(x)− ρ(x)) mod g(x)

= (xrd(x)− xrd(x) mod g(x)) mod g(x)

= (xrd(x)− xrd(x)) mod g(x) = 0.

This systematic encoding generates a codeword

u(x) = u0 + u1x + · · ·+ ur−1xr−1 + urxr + ur+1xr+1 + . . . un−1xn−1,

where the first r terms correspond to the check part ρ(x), and the remaining k = n − r terms
to the information word d(x).

Example 13. Table 6 presents the systematic encoding of the (7,4) cyclic Hamming code generated by
g(x) = x3 + x + 1. Although this code is identical to the code shown in Table 4, the mapping from
d(x) to u(x) is systematic, that is, d(x) = d0 + d1x + d2x2 + d3x3 corresponds to u3x3 + u4x4 +
u5x5 + u6x6.

4. Basic error control codes

This section introduces basic error control codes which have been applied to various digital
systems. All codes presented in this section are linear codes of length n defined over GF(2m),
where m is a positive integer. That is, a codeword is expressed as u = (u0, u1, . . . , un−1),
where ui ∈ GF(2m) for 0 ≤ i ≤ n − 1. Here, ui is referred to as bit (for m = 1) or symbol (for
m ≥ 2). Example of codeword structure of a systematic code is shown in Fig. 7(a), where the

42 Flash Memories Error Control Coding for Flash Memory 13

d(x) u(x) (vector) d(x) u(x) (vector)
0 0 (0000000) x3 1 + x2 + x6 (1010001)
1 1 + x + x3 (1101000) 1 + x3 x + x2 + x3 + x6 (0111001)
x x + x2 + x4 (0110100) x + x3 1 + x + x4 + x6 (1100101)

1 + x 1 + x2 + x3 + x4 (1011100) 1 + x + x3 x3 + x4 + x6 (0001101)
x2 1 + x + x2 + x5 (1110010) x2 + x3 x + x5 + x6 (0100011)

1 + x2 x2 + x3 + x5 (0011010) 1 + x2 + x3 1 + x3 + x5 + x6 (1001011)
x + x2 1 + x4 + x5 (1000110) x + x2 + x3 x2 + x4 + x5 + x6 (0010111)

1+x+x2 x + x3 + x4 + x5 (0101110) 1+x+x2+x3 1+x+x2+x3+x4+x5+x6 (1111111)

Table 6. Systematic encoding of (7, 4) cyclic Hamming code generated by g(x) = x3 + x + 1.

Fig. 7. Example of systematic codeword structure.

codeword consists of information and check parts of length k and r, respectively. Note that
the check part can be divided and distributed over the codeword, as illustrated in Fig, 7(b).

4.1 Parity-check code
4.1.1 Definition
Parity-check code is a single-bit error detecting code over GF(2) whose codeword is expressed
as u = (u0, u1, . . . , un−1), where ui ∈ GF(2) for 0 ≤ i ≤ n − 1 and ∑n−1

i=0 ui = 0. Here,
the information length is k = n − r = n − 1 and the minimum distance is dmin = 2. The
parity-check and generator matrices are given as

H =
�

1 1 . . . 1
�

1×n and G =

⎡
⎣

1
Ik

...
1

⎤
⎦ =

⎡
⎣

1 0 1
. . .

...
0 1 1

⎤
⎦

k×n

,

respectively, where Ik is the k × k identity matrix.

4.1.2 Encoding/decoding
Encoding: Let d = (d0, d1, . . . , dk−1) be an information word of length k. Codeword u for
the information word d is determined as u = (u0, u1, . . . , un−2, un−1) = (d0, d1, . . . , dk−1, p),
where n = k + 1 and p = ∑k−1

i=0 di.
Decoding: Let r = (r0, r1, . . . , rn−1) be a received word, where ri ∈ GF(2) for 0 ≤ i ≤ n − 1.
Syndrome s is calculated as s = ∑n−1

i=0 ri. If s = 0 holds, r is assumed to have no error; otherwise
r has an odd number of errors.

4.2 Hamming SEC code
4.2.1 Definition
Hamming code is a single-bit error correcting (SEC) code over GF(2) defined by a parity-check
matrix H whose column vectors are nonzero and distinct. The code length n of the Hamming
code is upper bounded by n ≤ 2r − 1, where r is the number of check bits. Table 7 presents
the maximum code length and information length of the Hamming code for 2 ≤ r ≤ 10.
Systematic parity-check matrix H of (n, n − r) Hamming SEC code is expressed as H =�

Q Ir
�

, where Q is an r × (n − r) matrix whose column vectors have Hamming weight ≥ 2,

43Error Control Coding for Flash Memory

12 Will-be-set-by-IN-TECH

d(x) u(x) = d(x)g(x) (vector) d(x) u(x) = d(x)g(x) (vector)
0 0 (0000000) x3 x3 + x4 + x6 (0001101)
1 1 + x + x3 (1101000) 1 + x3 1 + x + x4 + x6 (1100101)
x x + x2 + x4 (0110100) x + x3 x + x2 + x3 + x6 (0111001)

1 + x 1 + x2 + x3 + x4 (1011100) 1 + x + x3 1 + x2 + x6 (1010001)
x2 x2 + x3 + x5 (0011010) x2 + x3 x2 + x4 + x5 + x6 (0010111)

1 + x2 1 + x + x2 + x5 (1110010) 1 + x2 + x3 1+x+x2+x3+x4+x5+x6 (1111111)
x + x2 x + x3 + x4 + x5 (0101110) x + x2 + x3 x + x5 + x6 (0100011)

1+x+x2 1 + x4 + x5 (1000110) 1+x+x2+x3 1 + x3 + x5 + x6 (1001011)

Table 4. (7, 4) Cyclic Hamming code generated by g(x) = x3 + x + 1.

Standard Generator polynomial Standard Generator polynomial
CRC-12 x12 + x11 + x3 + x2 + x + 1 CRC-16 x16 + x15 + x2 + 1
IBM-SDLC x16 + x15 + x13 + x7 + x4 + x2 + x + 1 CCITT X-25 x16 + x12 + x5 + 1
CD-ROM x32 + x31 + x16 + x15 + x4 + x3 + x + 1 DVD-ROM x32 + x31 + x4 + 1
IEC TC57 x16 + x14 + x11 + x8 + x6 + x5 + x4 + 1
IEEE 802.3 x32+x26+x23+x22+x16+x12+x11+x10+x8+x7+x5+x4+x2+x+1

Table 5. Example of standardized CRC code.

3.4.2 Systematic encoding
Let C be a cyclic code of length n, and let g(x) be a degree-r generator polynomial of C.
Systematic encoding of an information word d(x) of degree k = n − r by C is defined as

u(x) = xrd(x)− ρ(x),

where ρ(x) = xrd(x) mod g(x). It can be easily verified that u(x) is a codeword of C because
the following relation holds.

u(x) mod g(x) = (xrd(x)− ρ(x)) mod g(x)

= (xrd(x)− xrd(x) mod g(x)) mod g(x)

= (xrd(x)− xrd(x)) mod g(x) = 0.

This systematic encoding generates a codeword

u(x) = u0 + u1x + · · ·+ ur−1xr−1 + urxr + ur+1xr+1 + . . . un−1xn−1,

where the first r terms correspond to the check part ρ(x), and the remaining k = n − r terms
to the information word d(x).

Example 13. Table 6 presents the systematic encoding of the (7,4) cyclic Hamming code generated by
g(x) = x3 + x + 1. Although this code is identical to the code shown in Table 4, the mapping from
d(x) to u(x) is systematic, that is, d(x) = d0 + d1x + d2x2 + d3x3 corresponds to u3x3 + u4x4 +
u5x5 + u6x6.

4. Basic error control codes

This section introduces basic error control codes which have been applied to various digital
systems. All codes presented in this section are linear codes of length n defined over GF(2m),
where m is a positive integer. That is, a codeword is expressed as u = (u0, u1, . . . , un−1),
where ui ∈ GF(2m) for 0 ≤ i ≤ n − 1. Here, ui is referred to as bit (for m = 1) or symbol (for
m ≥ 2). Example of codeword structure of a systematic code is shown in Fig. 7(a), where the

42 Flash Memories Error Control Coding for Flash Memory 13

d(x) u(x) (vector) d(x) u(x) (vector)
0 0 (0000000) x3 1 + x2 + x6 (1010001)
1 1 + x + x3 (1101000) 1 + x3 x + x2 + x3 + x6 (0111001)
x x + x2 + x4 (0110100) x + x3 1 + x + x4 + x6 (1100101)

1 + x 1 + x2 + x3 + x4 (1011100) 1 + x + x3 x3 + x4 + x6 (0001101)
x2 1 + x + x2 + x5 (1110010) x2 + x3 x + x5 + x6 (0100011)

1 + x2 x2 + x3 + x5 (0011010) 1 + x2 + x3 1 + x3 + x5 + x6 (1001011)
x + x2 1 + x4 + x5 (1000110) x + x2 + x3 x2 + x4 + x5 + x6 (0010111)

1+x+x2 x + x3 + x4 + x5 (0101110) 1+x+x2+x3 1+x+x2+x3+x4+x5+x6 (1111111)

Table 6. Systematic encoding of (7, 4) cyclic Hamming code generated by g(x) = x3 + x + 1.

Fig. 7. Example of systematic codeword structure.

codeword consists of information and check parts of length k and r, respectively. Note that
the check part can be divided and distributed over the codeword, as illustrated in Fig, 7(b).

4.1 Parity-check code
4.1.1 Definition
Parity-check code is a single-bit error detecting code over GF(2) whose codeword is expressed
as u = (u0, u1, . . . , un−1), where ui ∈ GF(2) for 0 ≤ i ≤ n − 1 and ∑n−1

i=0 ui = 0. Here,
the information length is k = n − r = n − 1 and the minimum distance is dmin = 2. The
parity-check and generator matrices are given as

H =
�

1 1 . . . 1
�

1×n and G =

⎡
⎣

1
Ik

...
1

⎤
⎦ =

⎡
⎣

1 0 1
. . .

...
0 1 1

⎤
⎦

k×n

,

respectively, where Ik is the k × k identity matrix.

4.1.2 Encoding/decoding
Encoding: Let d = (d0, d1, . . . , dk−1) be an information word of length k. Codeword u for
the information word d is determined as u = (u0, u1, . . . , un−2, un−1) = (d0, d1, . . . , dk−1, p),
where n = k + 1 and p = ∑k−1

i=0 di.
Decoding: Let r = (r0, r1, . . . , rn−1) be a received word, where ri ∈ GF(2) for 0 ≤ i ≤ n − 1.
Syndrome s is calculated as s = ∑n−1

i=0 ri. If s = 0 holds, r is assumed to have no error; otherwise
r has an odd number of errors.

4.2 Hamming SEC code
4.2.1 Definition
Hamming code is a single-bit error correcting (SEC) code over GF(2) defined by a parity-check
matrix H whose column vectors are nonzero and distinct. The code length n of the Hamming
code is upper bounded by n ≤ 2r − 1, where r is the number of check bits. Table 7 presents
the maximum code length and information length of the Hamming code for 2 ≤ r ≤ 10.
Systematic parity-check matrix H of (n, n − r) Hamming SEC code is expressed as H =�

Q Ir
�

, where Q is an r × (n − r) matrix whose column vectors have Hamming weight ≥ 2,

43Error Control Coding for Flash Memory

14 Will-be-set-by-IN-TECH

Check length: r 2 3 4 5 6 7 8 9 10
Maximum code length: n = 2r − 1 3 7 15 31 63 127 255 511 1023
Information length: k = n − r 1 4 11 26 57 120 247 502 1013

Table 7. Maximum code length n and information length k of Hamming code.

and Ir is the r × r identity matrix. Generator matrix of the code is G =
�

Ik QT
�

, where QT

indicates the transpose of Q.

Example 14. The following shows the parity-check and generator matrices of (7, 4) Hamming code:

H=
�

Q I3
�
=

�
0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1

�
and G=

�
I4 QT �

=

⎡
⎣

1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

⎤
⎦ .

4.2.2 Encoding
Encoding using generator matrix

Let G be a k × n generator matrix of (n, k) Hamming code. Information word d = (d0, d1, . . . ,
dk−1) of length k is encoded as u = (u0, u1, . . . , un−1) = dG.

Example 15. Let G be the generator matrix of Example 14. Information word d = (0, 1, 1, 0) is
encoded as

u = dG = (0, 1, 1, 0)

⎡
⎣

1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

⎤
⎦ = (0, 1, 1, 0, 0, 1, 1).

Encoding using systematic parity-check matrix

Let H = [Q Ir] be an r × n systematic parity-check matrix of (n, n − r) Hamming code, and
let d = (d0, d1, . . . , dk−1) be an information word of length k = n − r. This information word
d is encoded as u = (d, p) = (d0, d1, . . . , dk−1, p0, p1, . . . , pr−1), where the check part p is
determined as p = (p0, p1, . . . , pr−1) = dQT .

Example 16. Let H =
�

Q I3
�

be the systematic parity-check matrix of Example 14. The check part
p for information word d = (0, 1, 1, 0) is calculated as

p = dQT = (0, 1, 1, 0)

⎡
⎣

0 1 1
1 0 1
1 1 0
1 1 1

⎤
⎦ = (0, 1, 1).

Thus, codeword is generated as u = (d, p) = (0, 1, 1, 0, 0, 1, 1).

4.2.3 Decoding
Let u� = (u�

0, u�
1, . . . , u�

n−1) be a received word expressed as

u� = u + e = (u0, u1, . . . , un−1) + (e0, e1, . . . , en−1),

where u is an original codeword and e is an error vector. If e is the zero-vector, u� has no
error. Hamming SEC code can recover u from u� when w(e) ≤ 1. Decoding is based on the
following relation:

s = Hu�T = H(u + e)T = HuT + HeT = HeT .

44 Flash Memories Error Control Coding for Flash Memory 15

Check length: r 3 4 5 6 7 8 9 10 11
Maximum code length: n = 2r−1 4 8 16 32 64 128 256 512 1024
Information length: k = n − r 1 4 11 26 57 120 247 502 1013

Table 8. Maximum code length n and information length k of OWC SEC-DED code.

This relation says that, if u� has a single bit error in the i-th bit, the syndrome s is equal to the
i-th column vector of H, where 0 ≤ i ≤ n − 1. The received word u� is decoded as follows:

1. The syndrome s is calculated as s = Hu�T .

2. If s is the zero-vector, then u� is assumed to have no error, and thus decoded word is
determined as �u = u�.

3. If s is equal to the i-th column vector of H, the received word u� is assumed to have an
error in the i-th bit. Decoded word is determined as �u = u� + ii, where ii is a binary vector
whose i-th element is 1 and the other elements are 0.

4. If s is nonzero and is not equal to any column vector of H, the received word u� has
multiple-bit error. Decoding result of this case is uncorrectable error detection.

Example 17. Let u = (0, 1, 1, 0, 0, 1, 1) be the codeword generated in Example 16, and let e =
(0, 0, 1, 0, 0, 0, 0) be the error vector. Received word is given as

u� = (0, 1, 1, 0, 0, 1, 1) + (0, 0, 1, 0, 0, 0, 0) = (0, 1, 0, 0, 0, 1, 1).

The syndrome of u� is calculated as

s = Hu�T =

�
0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1

�
(0, 1, 0, 0, 0, 1, 1)T = (1, 1, 0)T.

Since the calculated syndrome is equal to the 2nd column of H, decoded word is determined as

�u = u� + i2 = (0, 1, 0, 0, 0, 1, 1) + (0, 0, 1, 0, 0, 0, 0) = (0, 1, 1, 0, 0, 1, 1) = u.

4.3 Odd-weight column (OWC) SEC-DED code
4.3.1 Definition
OWC code is a liner code over GF(2) having minimum distance dmin = 4, and thus this code
can be used as either single-bit error correcting - double-bit error detecting (SEC-DED) code
or triple-bit error detecting (TED) code. The code length n of the OWC code is upper bounded
by n ≤ 2r−1, where r is the number of check bits. Table 8 presents the maximum code length
and information length of the OWC SEC-DED code for 3 ≤ r ≤ 11.
Parity-check matrix of this code is generated from odd-weight column vectors. Systematic
parity-check matrix of (n, n − r) OWC code is expressed as H = [QO Ir], where QO is an
r × (n − r) matrix whose column vectors have odd Hamming weight w ≥ 3, and Ir is the r × r
identity matrix. Generator matrix of the code is given as G = [Ik QT

O].

Example 18. The following shows the parity-check and generator matrices of (8, 4) OWC code:

H=
�

QO I4
�
=

⎡
⎣

0 1 1 1 1 0 0 0
1 0 1 1 0 1 0 0
1 1 0 1 0 0 1 0
1 1 1 0 0 0 0 1

⎤
⎦ and G=

�
I4 QT

O

�
=

⎡
⎣

1 0 0 0 0 1 1 1
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 1 1 1 0

⎤
⎦ .

45Error Control Coding for Flash Memory

14 Will-be-set-by-IN-TECH

Check length: r 2 3 4 5 6 7 8 9 10
Maximum code length: n = 2r − 1 3 7 15 31 63 127 255 511 1023
Information length: k = n − r 1 4 11 26 57 120 247 502 1013

Table 7. Maximum code length n and information length k of Hamming code.

and Ir is the r × r identity matrix. Generator matrix of the code is G =
�

Ik QT
�

, where QT

indicates the transpose of Q.

Example 14. The following shows the parity-check and generator matrices of (7, 4) Hamming code:

H=
�

Q I3
�
=

�
0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1

�
and G=

�
I4 QT �

=

⎡
⎣

1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

⎤
⎦ .

4.2.2 Encoding
Encoding using generator matrix

Let G be a k × n generator matrix of (n, k) Hamming code. Information word d = (d0, d1, . . . ,
dk−1) of length k is encoded as u = (u0, u1, . . . , un−1) = dG.

Example 15. Let G be the generator matrix of Example 14. Information word d = (0, 1, 1, 0) is
encoded as

u = dG = (0, 1, 1, 0)

⎡
⎣

1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

⎤
⎦ = (0, 1, 1, 0, 0, 1, 1).

Encoding using systematic parity-check matrix

Let H = [Q Ir] be an r × n systematic parity-check matrix of (n, n − r) Hamming code, and
let d = (d0, d1, . . . , dk−1) be an information word of length k = n − r. This information word
d is encoded as u = (d, p) = (d0, d1, . . . , dk−1, p0, p1, . . . , pr−1), where the check part p is
determined as p = (p0, p1, . . . , pr−1) = dQT .

Example 16. Let H =
�

Q I3
�

be the systematic parity-check matrix of Example 14. The check part
p for information word d = (0, 1, 1, 0) is calculated as

p = dQT = (0, 1, 1, 0)

⎡
⎣

0 1 1
1 0 1
1 1 0
1 1 1

⎤
⎦ = (0, 1, 1).

Thus, codeword is generated as u = (d, p) = (0, 1, 1, 0, 0, 1, 1).

4.2.3 Decoding
Let u� = (u�

0, u�
1, . . . , u�

n−1) be a received word expressed as

u� = u + e = (u0, u1, . . . , un−1) + (e0, e1, . . . , en−1),

where u is an original codeword and e is an error vector. If e is the zero-vector, u� has no
error. Hamming SEC code can recover u from u� when w(e) ≤ 1. Decoding is based on the
following relation:

s = Hu�T = H(u + e)T = HuT + HeT = HeT .

44 Flash Memories Error Control Coding for Flash Memory 15

Check length: r 3 4 5 6 7 8 9 10 11
Maximum code length: n = 2r−1 4 8 16 32 64 128 256 512 1024
Information length: k = n − r 1 4 11 26 57 120 247 502 1013

Table 8. Maximum code length n and information length k of OWC SEC-DED code.

This relation says that, if u� has a single bit error in the i-th bit, the syndrome s is equal to the
i-th column vector of H, where 0 ≤ i ≤ n − 1. The received word u� is decoded as follows:

1. The syndrome s is calculated as s = Hu�T .

2. If s is the zero-vector, then u� is assumed to have no error, and thus decoded word is
determined as �u = u�.

3. If s is equal to the i-th column vector of H, the received word u� is assumed to have an
error in the i-th bit. Decoded word is determined as �u = u� + ii, where ii is a binary vector
whose i-th element is 1 and the other elements are 0.

4. If s is nonzero and is not equal to any column vector of H, the received word u� has
multiple-bit error. Decoding result of this case is uncorrectable error detection.

Example 17. Let u = (0, 1, 1, 0, 0, 1, 1) be the codeword generated in Example 16, and let e =
(0, 0, 1, 0, 0, 0, 0) be the error vector. Received word is given as

u� = (0, 1, 1, 0, 0, 1, 1) + (0, 0, 1, 0, 0, 0, 0) = (0, 1, 0, 0, 0, 1, 1).

The syndrome of u� is calculated as

s = Hu�T =

�
0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1

�
(0, 1, 0, 0, 0, 1, 1)T = (1, 1, 0)T.

Since the calculated syndrome is equal to the 2nd column of H, decoded word is determined as

�u = u� + i2 = (0, 1, 0, 0, 0, 1, 1) + (0, 0, 1, 0, 0, 0, 0) = (0, 1, 1, 0, 0, 1, 1) = u.

4.3 Odd-weight column (OWC) SEC-DED code
4.3.1 Definition
OWC code is a liner code over GF(2) having minimum distance dmin = 4, and thus this code
can be used as either single-bit error correcting - double-bit error detecting (SEC-DED) code
or triple-bit error detecting (TED) code. The code length n of the OWC code is upper bounded
by n ≤ 2r−1, where r is the number of check bits. Table 8 presents the maximum code length
and information length of the OWC SEC-DED code for 3 ≤ r ≤ 11.
Parity-check matrix of this code is generated from odd-weight column vectors. Systematic
parity-check matrix of (n, n − r) OWC code is expressed as H = [QO Ir], where QO is an
r × (n − r) matrix whose column vectors have odd Hamming weight w ≥ 3, and Ir is the r × r
identity matrix. Generator matrix of the code is given as G = [Ik QT

O].

Example 18. The following shows the parity-check and generator matrices of (8, 4) OWC code:

H=
�

QO I4
�
=

⎡
⎣

0 1 1 1 1 0 0 0
1 0 1 1 0 1 0 0
1 1 0 1 0 0 1 0
1 1 1 0 0 0 0 1

⎤
⎦ and G=

�
I4 QT

O

�
=

⎡
⎣

1 0 0 0 0 1 1 1
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 1 1 1 0

⎤
⎦ .

45Error Control Coding for Flash Memory

16 Will-be-set-by-IN-TECH

m 3 4 5 6 7 8 9 10
n 7 15 31 63 127 255 511 1023

(t = 1) 4 11 26 57 120 247 502 1013
(t = 2) - 7 21 51 113 239 493 1003

k (t = 3) - 5 16 45 106 231 484 993
(t = 4) - - 11 39 99 223 475 983
(t = 5) - - 6 36 92 215 466 973

Table 9. Maximum code length n and information length k of t-bit error correcting BCH code.

4.3.2 Encoding
Information word d = (d0, d1, . . . , dk−1) is encoded by either generator matrix G or systematic
parity-check matrix H =

�
QO Ir

�
in the same way as the Hamming SEC code.

Example 19. Information word d=(0, 1, 0, 1) is encoded by the generator matrix G of Example 18 as

u = dG = (0, 1, 0, 1)

⎡
⎢⎢⎣

1 0 0 0 0 1 1 1
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 1 1 1 0

⎤
⎥⎥⎦ = (0, 1, 0, 1, 0, 1, 0, 1).

4.3.3 Decoding

Decoding is based on the Hamming weight of syndrome s = Hu�T = He�T . That is, since
every column vector of H has an odd Hamming weight, syndrome s of a single-bit error has
an odd weight, while that of a double-bit error has an even weight w ≥ 2. This means that the
syndromes of double-bit errors are distinct from those of single-bit errors. Hence, the OWC
SEC-DED code can be decoded in the same way as Hamming code shown in 4.2.3.

Example 20. Let u = (0, 1, 0, 1, 0, 1, 0, 1) be the codeword generated in Example 19, and let e =
(0, 1, 0, 0, 0, 0, 1, 0) be the error vector. Received word is given as

u� = u + e = (0, 1, 0, 1, 0, 1, 0, 1) + (0, 1, 0, 0, 0, 0, 1, 0) = (0, 0, 0, 1, 0, 1, 1, 1).

The syndrome of u� is calculated as

s = Hu�T =

⎡
⎢⎢⎢⎣

0 1 1 1 1 0 0 0

1 0 1 1 0 1 0 0

1 1 0 1 0 0 1 0

1 1 1 0 0 0 0 1

⎤
⎥⎥⎥⎦ (0, 0, 0, 1, 0, 1, 1, 1)T = (1, 0, 0, 1)T.

Since the calculated syndrome has even Hamming weight w(s) = 2, the syndrome is not equal to any
column vector of H. Hence, the decoding algorithm indicates that u� has uncorrectable errors.

4.4 BCH code
4.4.1 Definition
Binary primitive BCH code is a t-bit error correcting cyclic code of length n = 2m − 1 with
r ≤ mt check bits, where t ≥ 1 and m ≥ 2. In most cases, r = mt holds, and thus information
length is k = 2m − 1 − mt. Table 9 presents the maximum code length n and information
length k of the BCH code for 3 ≤ m ≤ 10 and 1 ≤ t ≤ 5 (Lin & Costello, 2004).

46 Flash Memories Error Control Coding for Flash Memory 17

Let α be a primitive element of GF(2m). The parity-check matrix of t-bit error correcting BCH
code is defined as

H =

⎡
⎢⎢⎢⎣

1 α1 α2 α3 . . . αi . . . αn−1

1 α3 (α3)2 (α3)3 . . . (α3)i . . . (α3)n−1

1 α5 (α5)2 (α5)3 . . . (α5)i . . . (α5)n−1

...
...

...
...

...
...

1 α2t−1 (α2t−1)2 (α2t−1)3 . . . (α2t−1)i . . . (α2t−1)n−1

⎤
⎥⎥⎥⎦ ,

where αi is expressed as a column vector of length m.
Generator matrix of the binary primitive BCH code is derived from the generator polynomial
as follows. Let cnjm(i) be a set of exponents of conjugates of αi ∈ GF(2m), defined as follows:

cnjm(i) = { i · 2j mod (2m − 1) | j ∈ {0, 1, 2, . . . } }.

Minimal polynomial of αi ∈ GF(2m) is defined as

φi(x) = ∏
j∈cnjm(i)

(x − αj).

The generator polynomial of t-bit error correcting BCH code is given as

g(x) = g0 + g1x + g2x2 + · · ·+ grxr = LCM{φ1(x), φ3(x), . . . , φ2t−1(x)},

where LCM is the least common multiple of polynomials, and gi ∈ GF(2). Then, generator
matrix is determined as

G =

⎡
⎢⎢⎢⎣

g0 g1 g2 · · · · · · · · · gr 0 · · · · · · · · · 0
0 g0 g1 g2 · · · · · · · · · gr 0 · · · · · · 0
0 0 g0 g1 g2 · · · · · · · · · gr 0 · · · 0

...
0 · · · · · · · · · 0 g0 g1 g2 · · · · · · · · · gr

⎤
⎥⎥⎥⎦ .

4.4.2 Encoding/decoding
Information word is encoded using either generator matrix G or generator polynomial g(x) as
described in 3.4.2. From the definition of generator polynomial g(x), a codeword polynomial
u(x) = u0 + u1x + u2x2 + · · · + un−1xn−1 has 2t consecutive roots, α1, α2, . . . , α2t , that is
u(αi) = 0 for i ∈ {1, 2, . . . , 2t}. Using this relation, a received word u�(x) = u�

0 + u�
1x +

u�
2x2 + · · ·+ u�

n−1xn−1 is decoded as follows.

1. Syndrome calculation: Syndrome s is determined as s = (s1, s2, . . . , s2t), where si = u�(αi).
If s = (0, 0, . . . , 0), then u�(x) is assumed to have no error.

2. Generation of error-location polynomial σ(x): Error-location polynomial

σ(x) = σ0 + σ1x + · · ·+ σt� x
t�

is calculated from the syndrome s. This polynomial has t� roots, α−j1 , α−j2 , . . . , α−jt� , where
t� ≤ t is the number of errors in u�(x), and ji ∈ {0, 1, . . . , n − 1} is the location of i-th error.
The following shows Berlekamp’s algorithm to derive σ(x) from s.
(Berlekamp’s algorithm) Error-location polynomial σ(x) is derived using Table 10, where the
rows of μ = −1 and μ = 0 are given initial values. In the following, μ is referred to as the

47Error Control Coding for Flash Memory

16 Will-be-set-by-IN-TECH

m 3 4 5 6 7 8 9 10
n 7 15 31 63 127 255 511 1023

(t = 1) 4 11 26 57 120 247 502 1013
(t = 2) - 7 21 51 113 239 493 1003

k (t = 3) - 5 16 45 106 231 484 993
(t = 4) - - 11 39 99 223 475 983
(t = 5) - - 6 36 92 215 466 973

Table 9. Maximum code length n and information length k of t-bit error correcting BCH code.

4.3.2 Encoding
Information word d = (d0, d1, . . . , dk−1) is encoded by either generator matrix G or systematic
parity-check matrix H =

�
QO Ir

�
in the same way as the Hamming SEC code.

Example 19. Information word d=(0, 1, 0, 1) is encoded by the generator matrix G of Example 18 as

u = dG = (0, 1, 0, 1)

⎡
⎢⎢⎣

1 0 0 0 0 1 1 1
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 1 1 1 0

⎤
⎥⎥⎦ = (0, 1, 0, 1, 0, 1, 0, 1).

4.3.3 Decoding

Decoding is based on the Hamming weight of syndrome s = Hu�T = He�T . That is, since
every column vector of H has an odd Hamming weight, syndrome s of a single-bit error has
an odd weight, while that of a double-bit error has an even weight w ≥ 2. This means that the
syndromes of double-bit errors are distinct from those of single-bit errors. Hence, the OWC
SEC-DED code can be decoded in the same way as Hamming code shown in 4.2.3.

Example 20. Let u = (0, 1, 0, 1, 0, 1, 0, 1) be the codeword generated in Example 19, and let e =
(0, 1, 0, 0, 0, 0, 1, 0) be the error vector. Received word is given as

u� = u + e = (0, 1, 0, 1, 0, 1, 0, 1) + (0, 1, 0, 0, 0, 0, 1, 0) = (0, 0, 0, 1, 0, 1, 1, 1).

The syndrome of u� is calculated as

s = Hu�T =

⎡
⎢⎢⎢⎣

0 1 1 1 1 0 0 0

1 0 1 1 0 1 0 0

1 1 0 1 0 0 1 0

1 1 1 0 0 0 0 1

⎤
⎥⎥⎥⎦ (0, 0, 0, 1, 0, 1, 1, 1)T = (1, 0, 0, 1)T.

Since the calculated syndrome has even Hamming weight w(s) = 2, the syndrome is not equal to any
column vector of H. Hence, the decoding algorithm indicates that u� has uncorrectable errors.

4.4 BCH code
4.4.1 Definition
Binary primitive BCH code is a t-bit error correcting cyclic code of length n = 2m − 1 with
r ≤ mt check bits, where t ≥ 1 and m ≥ 2. In most cases, r = mt holds, and thus information
length is k = 2m − 1 − mt. Table 9 presents the maximum code length n and information
length k of the BCH code for 3 ≤ m ≤ 10 and 1 ≤ t ≤ 5 (Lin & Costello, 2004).

46 Flash Memories Error Control Coding for Flash Memory 17

Let α be a primitive element of GF(2m). The parity-check matrix of t-bit error correcting BCH
code is defined as

H =

⎡
⎢⎢⎢⎣

1 α1 α2 α3 . . . αi . . . αn−1

1 α3 (α3)2 (α3)3 . . . (α3)i . . . (α3)n−1

1 α5 (α5)2 (α5)3 . . . (α5)i . . . (α5)n−1

...
...

...
...

...
...

1 α2t−1 (α2t−1)2 (α2t−1)3 . . . (α2t−1)i . . . (α2t−1)n−1

⎤
⎥⎥⎥⎦ ,

where αi is expressed as a column vector of length m.
Generator matrix of the binary primitive BCH code is derived from the generator polynomial
as follows. Let cnjm(i) be a set of exponents of conjugates of αi ∈ GF(2m), defined as follows:

cnjm(i) = { i · 2j mod (2m − 1) | j ∈ {0, 1, 2, . . . } }.

Minimal polynomial of αi ∈ GF(2m) is defined as

φi(x) = ∏
j∈cnjm(i)

(x − αj).

The generator polynomial of t-bit error correcting BCH code is given as

g(x) = g0 + g1x + g2x2 + · · ·+ grxr = LCM{φ1(x), φ3(x), . . . , φ2t−1(x)},

where LCM is the least common multiple of polynomials, and gi ∈ GF(2). Then, generator
matrix is determined as

G =

⎡
⎢⎢⎢⎣

g0 g1 g2 · · · · · · · · · gr 0 · · · · · · · · · 0
0 g0 g1 g2 · · · · · · · · · gr 0 · · · · · · 0
0 0 g0 g1 g2 · · · · · · · · · gr 0 · · · 0

...
0 · · · · · · · · · 0 g0 g1 g2 · · · · · · · · · gr

⎤
⎥⎥⎥⎦ .

4.4.2 Encoding/decoding
Information word is encoded using either generator matrix G or generator polynomial g(x) as
described in 3.4.2. From the definition of generator polynomial g(x), a codeword polynomial
u(x) = u0 + u1x + u2x2 + · · · + un−1xn−1 has 2t consecutive roots, α1, α2, . . . , α2t , that is
u(αi) = 0 for i ∈ {1, 2, . . . , 2t}. Using this relation, a received word u�(x) = u�

0 + u�
1x +

u�
2x2 + · · ·+ u�

n−1xn−1 is decoded as follows.

1. Syndrome calculation: Syndrome s is determined as s = (s1, s2, . . . , s2t), where si = u�(αi).
If s = (0, 0, . . . , 0), then u�(x) is assumed to have no error.

2. Generation of error-location polynomial σ(x): Error-location polynomial

σ(x) = σ0 + σ1x + · · ·+ σt� x
t�

is calculated from the syndrome s. This polynomial has t� roots, α−j1 , α−j2 , . . . , α−jt� , where
t� ≤ t is the number of errors in u�(x), and ji ∈ {0, 1, . . . , n − 1} is the location of i-th error.
The following shows Berlekamp’s algorithm to derive σ(x) from s.
(Berlekamp’s algorithm) Error-location polynomial σ(x) is derived using Table 10, where the
rows of μ = −1 and μ = 0 are given initial values. In the following, μ is referred to as the

47Error Control Coding for Flash Memory

18 Will-be-set-by-IN-TECH

μ ρμ σμ(x) lμ μ − lμ dμ

−1 - 1 0 −1 1
0 - 1 0 0 S1
...

2t

Table 10. Berlekamp’s algorithm.

row number. Values in the rows from μ = 1 to μ = 2t are determined as follows:
Step 1 Current row number is set as μ = 0.
Step 2 If dμ �= 0, ρμ+1 is determined as

ρμ+1 = arg max
−1≤μ�<μ
dμ� �=0

(μ� − lμ�).

That is, ρμ+1 is a row number μ� which is prior to the current row μ, where dμ� �= 0, and
μ� − lμ� has the largest value among the prior rows.
Step 3 Polynomial σμ+1(x) is determined as follows:

σμ+1(x) =
�

σμ(x) (dμ = 0)
σμ(x) + dμd−1

ρ xμ−ρσρ(x) (dμ �= 0) ,

where ρ is ρμ+1 determined in Step 2.
Step 4 If μ = 2t − 1, then σμ+1(x) = σ2t(x) gives the error-location polynomial.
Step 5 lμ+1 is determined as the degree of σμ+1(x).
Step 6 dμ+1 is determined as follows:

dμ+1 = Sμ+2 + σ
μ+1
1 Sμ+1 + σ

μ+1
2 Sμ + · · ·+ σ

μ+1
lμ+1

Sμ+2−lμ+1
,

where σ
μ+1
i is the coefficient of degree-i term of σμ+1(x).

Step 7 The current row number is incremented as μ = μ + 1, and go to Step 2.
3. Search of the roots of σ(x): The roots of the error-location polynomial σ(x) are determined

by Chien search, which finds a set of integers, {l �1, l �2, . . . , l �τ}, satisfying σ(αl �i) = 0, where
0 ≤ l �i ≤ n − 1.

4. Error correction: Error pattern is determined as e(x) = xl1 + xl2 + · · · + xlτ , where li =
(n − l �i) mod n for 1 ≤ i ≤ τ. Finally, errors in u�(x) are corrected as �u(x)=u�(x)+e(x).

4.5 Reed-Solomon code
RS code is a linear cyclic code over GF(q) of length n = q − 1 with r check symbols, where the
minimum distance is dmin = r + 1. Practically, q is a power of 2, such as q = 28, and thus the
following considers the RS codes over GF(2m). Let α be a primitive element of GF(2m). The
parity-check matrix of RS code over GF(2m) is given as

H =

⎡
⎢⎢⎢⎢⎣

1 α1 α2 . . . αn−2 αn−1

1 α2 α4 . . . α2(n−2) α2(n−1)
...

...
...

...
...

1 αr−1 α(r−1)2 . . . α(r−1)(n−2) α(r−1)(n−1)

1 αr αr·2 . . . αr(n−2) αr(n−1)

⎤
⎥⎥⎥⎥⎦

,

and the generator polynomial of RS code is defined as g(x) = (x − α)(x − α2) . . . (x − αr).

48 Flash Memories Error Control Coding for Flash Memory 19

Fig. 8. Example of Tanner graph.

5. Low-Density Parity-Check (LDPC) code

LDPC code is a linear block code defined by a sparse parity-check matrix (Gallager, 1962), that
is, the number of non-zero element in an m × n parity-check matrix is O(n). The LDPC codes
are employed in recent high-speed communication systems because appropriately designed
LDPC codes have high error correction capability. The LDPC codes will be applicable to
high-density MLC flash memory suffering from high BER.

5.1 Tanner graph
An LDPC matrix H = [hi,j]m×n is expressed by a Tanner graph, which is a bipartite graph
G = (V , E), where V = V ∪ C is a set of nodes, and E is a set of edges. Here, V = {v0, v1, . . . ,
vn−1} is a set of variable-nodes (v-nodes) corresponding to column vectors of H, and C =
{c0, c1, . . . , cm−1} is a set of check-nodes (c-nodes) corresponding to row vectors of H. The
edge set is defined as E = {(ci, vj)|hi,j �= 0}. That is, c-node ci and v-node vj are connected by
an edge (ci, vj) if and only if hi,j �= 0. Girth of G is defined as the length of shortest cycle in G .
The girth affects the error correction capability of LDPC code, that is, a code with a small girth
l, e.g., l = 4, will have poor error correction capability compared to codes with a large girth.

Example 21. Figure 8 presents a parity-check matrix H and corresponding Tanner graph G .

5.2 Regular/irregular LDPC code
5.2.1 Regular LDPC code
Regular LDPC code is defined by a parity-check matrix whose columns have a constant
weight λ � m and rows have almost constant weight. More precisely, Hamming weight
wc(H∗,j) of the j-th column in H satisfies wc(H∗,j) = λ for 0 ≤ j ≤ n − 1, and Hamming
weight wr(Hi,∗) of the i-th row in H satisfies �nλ/m� ≤ wc(Hi,∗) ≤ �nλ/m� for 0 ≤ i ≤ m− 1.
Note that the total number of nonzero elements in H is nλ. The regular LDPC matrix is
constructed as follows (Lin & Costello, 2004; Moreira & Farrell, 2006).

• Random construction: LDPC matrix H is randomly generated by computer search under the
following constraints:
– Every column of H has a constant weight λ.
– Every row of H has weight either �nλ/m� or �nλ/m�.
– Overlapping of nonzero element in every pair of columns in H is at most one.
The last constraint guarantees that the girth of generated H is at least six.

• Geometric construction: LDPC matrix can be constructed using geometric structure, such as,
Euclidean geometry and projective geometry.

5.2.2 Irregular LDPC code
Irregular LDPC code is defined by an LDPC matrix having unequal column weight. The
codes with appropriate column weight distribution have higher error correction capability
compared to the regular LDPC codes (Richardson et al., 2001).

49Error Control Coding for Flash Memory

18 Will-be-set-by-IN-TECH

μ ρμ σμ(x) lμ μ − lμ dμ

−1 - 1 0 −1 1
0 - 1 0 0 S1
...

2t

Table 10. Berlekamp’s algorithm.

row number. Values in the rows from μ = 1 to μ = 2t are determined as follows:
Step 1 Current row number is set as μ = 0.
Step 2 If dμ �= 0, ρμ+1 is determined as

ρμ+1 = arg max
−1≤μ�<μ
dμ� �=0

(μ� − lμ�).

That is, ρμ+1 is a row number μ� which is prior to the current row μ, where dμ� �= 0, and
μ� − lμ� has the largest value among the prior rows.
Step 3 Polynomial σμ+1(x) is determined as follows:

σμ+1(x) =
�

σμ(x) (dμ = 0)
σμ(x) + dμd−1

ρ xμ−ρσρ(x) (dμ �= 0) ,

where ρ is ρμ+1 determined in Step 2.
Step 4 If μ = 2t − 1, then σμ+1(x) = σ2t(x) gives the error-location polynomial.
Step 5 lμ+1 is determined as the degree of σμ+1(x).
Step 6 dμ+1 is determined as follows:

dμ+1 = Sμ+2 + σ
μ+1
1 Sμ+1 + σ

μ+1
2 Sμ + · · ·+ σ

μ+1
lμ+1

Sμ+2−lμ+1
,

where σ
μ+1
i is the coefficient of degree-i term of σμ+1(x).

Step 7 The current row number is incremented as μ = μ + 1, and go to Step 2.
3. Search of the roots of σ(x): The roots of the error-location polynomial σ(x) are determined

by Chien search, which finds a set of integers, {l �1, l �2, . . . , l �τ}, satisfying σ(αl �i) = 0, where
0 ≤ l �i ≤ n − 1.

4. Error correction: Error pattern is determined as e(x) = xl1 + xl2 + · · · + xlτ , where li =
(n − l �i) mod n for 1 ≤ i ≤ τ. Finally, errors in u�(x) are corrected as �u(x)=u�(x)+e(x).

4.5 Reed-Solomon code
RS code is a linear cyclic code over GF(q) of length n = q − 1 with r check symbols, where the
minimum distance is dmin = r + 1. Practically, q is a power of 2, such as q = 28, and thus the
following considers the RS codes over GF(2m). Let α be a primitive element of GF(2m). The
parity-check matrix of RS code over GF(2m) is given as

H =

⎡
⎢⎢⎢⎢⎣

1 α1 α2 . . . αn−2 αn−1

1 α2 α4 . . . α2(n−2) α2(n−1)
...

...
...

...
...

1 αr−1 α(r−1)2 . . . α(r−1)(n−2) α(r−1)(n−1)

1 αr αr·2 . . . αr(n−2) αr(n−1)

⎤
⎥⎥⎥⎥⎦

,

and the generator polynomial of RS code is defined as g(x) = (x − α)(x − α2) . . . (x − αr).

48 Flash Memories Error Control Coding for Flash Memory 19

Fig. 8. Example of Tanner graph.

5. Low-Density Parity-Check (LDPC) code

LDPC code is a linear block code defined by a sparse parity-check matrix (Gallager, 1962), that
is, the number of non-zero element in an m × n parity-check matrix is O(n). The LDPC codes
are employed in recent high-speed communication systems because appropriately designed
LDPC codes have high error correction capability. The LDPC codes will be applicable to
high-density MLC flash memory suffering from high BER.

5.1 Tanner graph
An LDPC matrix H = [hi,j]m×n is expressed by a Tanner graph, which is a bipartite graph
G = (V , E), where V = V ∪ C is a set of nodes, and E is a set of edges. Here, V = {v0, v1, . . . ,
vn−1} is a set of variable-nodes (v-nodes) corresponding to column vectors of H, and C =
{c0, c1, . . . , cm−1} is a set of check-nodes (c-nodes) corresponding to row vectors of H. The
edge set is defined as E = {(ci, vj)|hi,j �= 0}. That is, c-node ci and v-node vj are connected by
an edge (ci, vj) if and only if hi,j �= 0. Girth of G is defined as the length of shortest cycle in G .
The girth affects the error correction capability of LDPC code, that is, a code with a small girth
l, e.g., l = 4, will have poor error correction capability compared to codes with a large girth.

Example 21. Figure 8 presents a parity-check matrix H and corresponding Tanner graph G .

5.2 Regular/irregular LDPC code
5.2.1 Regular LDPC code
Regular LDPC code is defined by a parity-check matrix whose columns have a constant
weight λ � m and rows have almost constant weight. More precisely, Hamming weight
wc(H∗,j) of the j-th column in H satisfies wc(H∗,j) = λ for 0 ≤ j ≤ n − 1, and Hamming
weight wr(Hi,∗) of the i-th row in H satisfies �nλ/m� ≤ wc(Hi,∗) ≤ �nλ/m� for 0 ≤ i ≤ m− 1.
Note that the total number of nonzero elements in H is nλ. The regular LDPC matrix is
constructed as follows (Lin & Costello, 2004; Moreira & Farrell, 2006).

• Random construction: LDPC matrix H is randomly generated by computer search under the
following constraints:
– Every column of H has a constant weight λ.
– Every row of H has weight either �nλ/m� or �nλ/m�.
– Overlapping of nonzero element in every pair of columns in H is at most one.
The last constraint guarantees that the girth of generated H is at least six.

• Geometric construction: LDPC matrix can be constructed using geometric structure, such as,
Euclidean geometry and projective geometry.

5.2.2 Irregular LDPC code
Irregular LDPC code is defined by an LDPC matrix having unequal column weight. The
codes with appropriate column weight distribution have higher error correction capability
compared to the regular LDPC codes (Richardson et al., 2001).

49Error Control Coding for Flash Memory

20 Will-be-set-by-IN-TECH

Column no. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Locations 0 32 64 8 31 63 14 30 17 28 22 27 7 19 6

of 1s. 1 34 70 18 42 76 45 47 62 48 60 49 53 44 46
(Row no.) 4 39 78 95 54 91 94 83 80 82 81 84 77 85 75

Table 11. Position of 1s in the base matrix H0 of IEEE 802.15.3c.

5.3 Example
5.3.1 WLAN (IEEE 802.11n, 2009)
(1296,1080) LDPC code is defined by the following parity-check matrix:

H =

⎡
⎣

48 29 37 52 2 16 6 14 53 31 34 5 18 42 53 31 45 − 46 52 1 0 − −
17 4 30 7 43 11 24 6 14 21 6 39 17 40 47 7 15 41 19 − − 0 0 −
7 2 51 31 46 23 16 11 53 40 10 7 46 53 33 35 − 25 35 38 0 − 0 0

19 48 41 1 10 7 36 47 5 29 52 52 31 10 26 6 3 2 − 51 1 − − 0

⎤
⎦ ,

where “−” indicates the 54× 54 zero matrix, and integer i indicates a 54× 54 matrix generated
from the 54 × 54 identity matrix by cyclically shifting the columns to the right by i elements.

5.3.2 WiMAX (IEEE 802.16e, 2009)
(1248,1040) LDPC code is defined by the following parity-check matrix:

H =

⎡
⎣

0 13 29 − 25 2 − 49 45 4 46 28 44 17 2 0 19 10 2 41 43 0 − −
− 3 − 19 21 25 6 42 25 − 22 11 6 38 7 39 0 23 26 0 0 0 0 −
27 43 44 2 36 − 11 − 16 13 49 33 43 4 46 42 32 47 36 8 − − 0 0
36 − 27 8 − 19 7 5 5 10 28 48 15 49 30 16 45 49 5 35 43 − − 0

⎤
⎦ ,

where “−” indicates the 52× 52 zero matrix, and integer i indicates a 52× 52 matrix generated
from the 52 × 52 identity matrix by cyclically shifting the columns to the right by i elements.

5.3.3 WPAN (IEEE 802.15.3c, 2009)
Let H0 be a 96 × 15 matrix whose elements are all-zero expect the elements listed in Table 11.
(1440,1344) Quasi-cyclic LDPC code is defined by the following parity-check matrix:

H =
�

H0 H1 H2 . . . H94 H95
�

,

where Hi is obtained by cyclically i-row upward shifting of the base matrix H0.

5.4 Soft input decoding algorithm of binary LDPC code
Let u = (u0, u1, . . . , un−1) be a codeword of binary LDPC code defined by an m × n LDPC
matrix H. To retrieve a codeword u stored in the flash memory, the posteriori probability fi(x)
is determined from readout values (v0, v1, . . . , vn−1), where fi(x) denotes the probability that
the value of i-th bit of the codeword is x ∈ {0, 1}. For example, if a binary input asymmetric
channel with channel matrix P = [pi,j]2×2 is assumed, then the posteriori probability is given
as fi(x) = px,vi /(p0,vi + p1,vi

), where it is assumed that Pr(ui = 0) = Pr(ui = 1) = 1/2. The
sum-product algorithm (SPA) determines a decoded word �u = (�u0, �u1, . . . , �un−1) from the
posteriori probabilities (f0(x), f1(x), . . . , fn−1(x)). The SPA is an iterative belief propagation
algorithm performed on the Tanner graph G = (V , E), where each edge ei,j = (ci, vj) ∈ E is
assigned two probabilities Qi,j(x) and Ri,j(x), where x ∈ {0, 1}. The following notations are
used in the SPA.

• dc
i = |{j | ei,j ∈ E}|: degree of c-node ci.

50 Flash Memories Error Control Coding for Flash Memory 21

• {Ji,j
0 , Ji,j

1 , . . . , Ji,j
dc

i −2} = { J | ei,J ∈ E , J �= j}: set of indices of v-nodes adjacent to c-node ci

excluding vj.

Sum-product algorithm

1. Initialize Ri,j(x) as Ri,j(0) = Ri,j(1) = 1/2 for each ei,j ∈ E .

2. Calculate Qi,j(x) for each ei,j ∈ E :

Qi,j(x) = η × f j(x)× ∏
I∈{I|eI ,j∈E}\{i}

RI,j(x) ,

where x ∈ {0, 1} and η is determined such that Qi,j(0) + Qi,j(1) = 1.

3. Calculate Ri,j(x) for each ei,j ∈ E :

Ri,j(0) = ∑
(x0,...,xdc

i −2)∈Xdc
i −1

(
dc

i−2

∏
k=0

Q
i,Ji,j

k
(xk)

)
, Ri,j(1) = 1 − Ri,j(0),

where Xl =
{
(x0, . . . , xl−1)

∣∣∣∑l−1
i=0 xi = 0

}
.

4. Generate a temporary decoded word ũ = (ũ0, ũ1, . . . , ũn−1) from

Qj(x) = f j(x)× ∏
I∈{I|eI ,j∈E}

RI,j(x) ,

where x ∈ {0, 1} and

ũj =

{
0 (Qj(0) > Qj(1))
1 (otherwise)

.

5. Calculate syndrome s=HũT. If s=o, then output ũ as a decoded word, and terminate.

6. If the number of iterations is greater than a predetermined threshold, then terminate with
uncorrectable error detection; otherwise go to step 2.

There exist variations of the SPA, such as Log domain SPA and log-likelihood ratio (LLR) SPA.
Also, there are some reduced-complexity decoding algorithms, such as bit-flipping decoding
algorithm and min-sum algorithm (Lin & Costello, 2004).

5.5 Nonbinary LDPC code
5.5.1 Construction
Nonbinary LDPC code is a linear block code over GF(q) defined by an LDPC matrix
H = [hi,j]m×n, where hi,j ∈ GF(q). The nonbinary LDPC codes generally have higher
error correction capability compared to the binary codes (Davey & MacKay, 1998). Several
construction methods of the nonbinary LDPC matrix have been proposed. For example, high
performance quasi-cyclic LDPC codes are constructed using Euclidean geometry (Zhou et al.,
2009). It is shown in (Li et al., 2009) that, under a Gaussian approximation of the probability
density, optimum column weight of H over GF(q) decreases and converges to two with
increasing q. For example, the optimum column weight of rate-1/2 LDPC code on the AWGN
channel is 2.6 for q = 2, while that is 2.1 for q = 64.

51Error Control Coding for Flash Memory

20 Will-be-set-by-IN-TECH

Column no. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Locations 0 32 64 8 31 63 14 30 17 28 22 27 7 19 6

of 1s. 1 34 70 18 42 76 45 47 62 48 60 49 53 44 46
(Row no.) 4 39 78 95 54 91 94 83 80 82 81 84 77 85 75

Table 11. Position of 1s in the base matrix H0 of IEEE 802.15.3c.

5.3 Example
5.3.1 WLAN (IEEE 802.11n, 2009)
(1296,1080) LDPC code is defined by the following parity-check matrix:

H =

⎡
⎣

48 29 37 52 2 16 6 14 53 31 34 5 18 42 53 31 45 − 46 52 1 0 − −
17 4 30 7 43 11 24 6 14 21 6 39 17 40 47 7 15 41 19 − − 0 0 −
7 2 51 31 46 23 16 11 53 40 10 7 46 53 33 35 − 25 35 38 0 − 0 0

19 48 41 1 10 7 36 47 5 29 52 52 31 10 26 6 3 2 − 51 1 − − 0

⎤
⎦ ,

where “−” indicates the 54× 54 zero matrix, and integer i indicates a 54× 54 matrix generated
from the 54 × 54 identity matrix by cyclically shifting the columns to the right by i elements.

5.3.2 WiMAX (IEEE 802.16e, 2009)
(1248,1040) LDPC code is defined by the following parity-check matrix:

H =

⎡
⎣

0 13 29 − 25 2 − 49 45 4 46 28 44 17 2 0 19 10 2 41 43 0 − −
− 3 − 19 21 25 6 42 25 − 22 11 6 38 7 39 0 23 26 0 0 0 0 −
27 43 44 2 36 − 11 − 16 13 49 33 43 4 46 42 32 47 36 8 − − 0 0
36 − 27 8 − 19 7 5 5 10 28 48 15 49 30 16 45 49 5 35 43 − − 0

⎤
⎦ ,

where “−” indicates the 52× 52 zero matrix, and integer i indicates a 52× 52 matrix generated
from the 52 × 52 identity matrix by cyclically shifting the columns to the right by i elements.

5.3.3 WPAN (IEEE 802.15.3c, 2009)
Let H0 be a 96 × 15 matrix whose elements are all-zero expect the elements listed in Table 11.
(1440,1344) Quasi-cyclic LDPC code is defined by the following parity-check matrix:

H =
�

H0 H1 H2 . . . H94 H95
�

,

where Hi is obtained by cyclically i-row upward shifting of the base matrix H0.

5.4 Soft input decoding algorithm of binary LDPC code
Let u = (u0, u1, . . . , un−1) be a codeword of binary LDPC code defined by an m × n LDPC
matrix H. To retrieve a codeword u stored in the flash memory, the posteriori probability fi(x)
is determined from readout values (v0, v1, . . . , vn−1), where fi(x) denotes the probability that
the value of i-th bit of the codeword is x ∈ {0, 1}. For example, if a binary input asymmetric
channel with channel matrix P = [pi,j]2×2 is assumed, then the posteriori probability is given
as fi(x) = px,vi /(p0,vi + p1,vi

), where it is assumed that Pr(ui = 0) = Pr(ui = 1) = 1/2. The
sum-product algorithm (SPA) determines a decoded word �u = (�u0, �u1, . . . , �un−1) from the
posteriori probabilities (f0(x), f1(x), . . . , fn−1(x)). The SPA is an iterative belief propagation
algorithm performed on the Tanner graph G = (V , E), where each edge ei,j = (ci, vj) ∈ E is
assigned two probabilities Qi,j(x) and Ri,j(x), where x ∈ {0, 1}. The following notations are
used in the SPA.

• dc
i = |{j | ei,j ∈ E}|: degree of c-node ci.

50 Flash Memories Error Control Coding for Flash Memory 21

• {Ji,j
0 , Ji,j

1 , . . . , Ji,j
dc

i −2} = { J | ei,J ∈ E , J �= j}: set of indices of v-nodes adjacent to c-node ci

excluding vj.

Sum-product algorithm

1. Initialize Ri,j(x) as Ri,j(0) = Ri,j(1) = 1/2 for each ei,j ∈ E .

2. Calculate Qi,j(x) for each ei,j ∈ E :

Qi,j(x) = η × f j(x)× ∏
I∈{I|eI ,j∈E}\{i}

RI,j(x) ,

where x ∈ {0, 1} and η is determined such that Qi,j(0) + Qi,j(1) = 1.

3. Calculate Ri,j(x) for each ei,j ∈ E :

Ri,j(0) = ∑
(x0,...,xdc

i −2)∈Xdc
i −1

(
dc

i−2

∏
k=0

Q
i,Ji,j

k
(xk)

)
, Ri,j(1) = 1 − Ri,j(0),

where Xl =
{
(x0, . . . , xl−1)

∣∣∣∑l−1
i=0 xi = 0

}
.

4. Generate a temporary decoded word ũ = (ũ0, ũ1, . . . , ũn−1) from

Qj(x) = f j(x)× ∏
I∈{I|eI ,j∈E}

RI,j(x) ,

where x ∈ {0, 1} and

ũj =

{
0 (Qj(0) > Qj(1))
1 (otherwise)

.

5. Calculate syndrome s=HũT. If s=o, then output ũ as a decoded word, and terminate.

6. If the number of iterations is greater than a predetermined threshold, then terminate with
uncorrectable error detection; otherwise go to step 2.

There exist variations of the SPA, such as Log domain SPA and log-likelihood ratio (LLR) SPA.
Also, there are some reduced-complexity decoding algorithms, such as bit-flipping decoding
algorithm and min-sum algorithm (Lin & Costello, 2004).

5.5 Nonbinary LDPC code
5.5.1 Construction
Nonbinary LDPC code is a linear block code over GF(q) defined by an LDPC matrix
H = [hi,j]m×n, where hi,j ∈ GF(q). The nonbinary LDPC codes generally have higher
error correction capability compared to the binary codes (Davey & MacKay, 1998). Several
construction methods of the nonbinary LDPC matrix have been proposed. For example, high
performance quasi-cyclic LDPC codes are constructed using Euclidean geometry (Zhou et al.,
2009). It is shown in (Li et al., 2009) that, under a Gaussian approximation of the probability
density, optimum column weight of H over GF(q) decreases and converges to two with
increasing q. For example, the optimum column weight of rate-1/2 LDPC code on the AWGN
channel is 2.6 for q = 2, while that is 2.1 for q = 64.

51Error Control Coding for Flash Memory

22 Will-be-set-by-IN-TECH

5.5.2 Decoding
The SPA for the binary LDPC code can be extended to the one for nonbinary codes
straightforwardly, in which probabilities Qi,j(x) and Ri,j(x) are iteratively calculated for
x ∈ GF(q). However, the computational complexity of Ri,j(x) is O(q2), and thus the SPA is
impractical for a large q. For practical cases of q = 2b, a reduced complexity SPA for nonbinary
LDPC code has been proposed using the fast Fourier transform (FFT) (Song & Cruz, 2003).

Definition 2. Let (X(0), X(α0), X(α1), . . . , X(αq−2)) be a vector of real numbers of length q = 2p,
where α is a primitive element of GF(q). Function fk is defined as follows:

fk(X(0), X(α0), X(α1), . . . , X(αq−2)) = (Y(0), Y(α0), Y(α1), . . . , Y(αq−2)),

where

Y(β0) =
1√
2
(X(β0) + X(β1)) and Y(β1) =

1√
2
(X(β0)− X(β1)).

Here, β0 ∈ GF(2p) and β1 ∈ GF(2p) are expressed as

vec(β0) = (ip−1, ip−2, . . . , ik+1, 0, ik−1, . . . , i0) and

vec(β1) = (ip−1, ip−2, . . . , ik+1, 1, ik−1, . . . , i0).

The FFT of (X(0), X(α0), . . . , X(αq−2)) is defined as

F (X(0), X(α0), . . . , X(αq−2)) = fp−1(fp−2(. . . f1(f0(X(0), X(α0), . . . , X(αq−2))) . . .)).

Let G = (V , E) be the Tanner graph of LDPC matrix H = [hi,j]m×n over GF(q), where each
edge ei,j ∈ E is assigned a nonzero value hi,j ∈ GF(q). The following shows the outline of the
FFT-based SPA for given posteriori probability f j(x), that is, the probability of the i-th symbol
being x, where x ∈ GF(q) and 0 ≤ i ≤ n − 1.
FFT-based Sum-product algorithm for nonbinary LDPC code

1. Initialize Ri,j(x) as Ri,j(x) = 1/q for each ei,j ∈ E and x ∈ GF(q).

2. Calculate Qi,j(x) for each ei,j ∈ E and x ∈ GF(q):

Qi,j(x) = η × f j(x)× ∏
I∈{I|eI ,j∈E}\{i}

RI,j(x) ,

where η is determined such that ∑x∈GF(q) Qi,j(x) = 1.

3. Calculate Ri,j(x) for each ei,j ∈ E and x ∈ GF(q) as follows:

(a) Generate the probability distribution permuted by hi,j, that is, Q�
i,j(x · hi,j) = Qi,j(x).

(b) Apply the FFT to Q�
i,j(x) as

(Q̃i,j(0), Q̃i,j(α
0), . . . , Q̃i,j(α

q−2)) = F (Q�
i,j(0), Q�

i,j(α
0), . . . , Q�

i,j(α
q−2)).

(c) Calculate the product of Q̃i,j(x) for each ei,j ∈ E as R̃i,j(x) = ∏
dc

i−2
k=0 Q̃

i,Ji,j
k
(x).

(d) Apply the FFT to R̃i,j(x) as

(R�
i,j(0), R�

i,j(α
0), . . . , R�

i,j(α
q−2)) = F (R̃i,j(0), R̃i,j(α

0), . . . , R̃i,j(α
q−2)).

(e) Generate the probability distribution permuted by h−1
i,j , that is, Ri,j(x) = R�

i,j(x · hi,j).

52 Flash Memories Error Control Coding for Flash Memory 23

 -9

 -7

 -5

 -3

 -1

 0 0.2 0.3 0.4 0.5 0.6

10

10

10

10

10

 Binary code
w=3.0

w=2.5w=2.0

 Code rate = 1/2

 B
it

er
ro

r
ra

te

 σ
 0

 -8

 -6

 -4

 -2

 0.2 0.3 0.4

10

10

10

10

 Binary code

w=3.0

w=2.0

w=2.5

 Code rate = 5/8

 σ

 B
it

er
ro

r
ra

te

Fig. 9. Decoded BER of LDPC code over GF(8).

Fig. 10. w-Way interleave of (k + r, k) systematic code.

4. Generate a temporary decoded word ũ = (ũ0, ũ1, . . . , ũn−1) using

Qj(x) = f x
j × ∏

I∈{I|eI ,j∈E}
RI,j(x) ,

where x ∈ GF(q) and ũj = arg maxx∈GF(q) Qj(x).

5. Calculate syndrome s=HũT. If s=o, then output ũ as a decoded word, and terminate.

6. If the number of iterations is greater than a predetermined threshold, then terminate with
uncorrectable error detection; otherwise go to step 2.

5.6 Nonbinary LDPC code for flash memory
The following evaluates the decoded BER of the nonbinary LDPC codes for a channel model
of 8-level cell flash memory (Maeda & Kaneko, 2009), where the threshold voltages are
hypothesized as μ0 = −3.0000, μ1 = −2.0945, μ2 = −1.2795, μ3 = −0.4645, μ4 = 0.3505, μ5 =
1.1655, μ6 = 1.9805, and μ7 = 3.0000. These threshold voltages are determined to minimize the
raw BER under the condition that μ0 = −3.0000, μQ−1 = 3.0000, and the standard deviation
σi of Pi(v) is given as σi = σ for i ∈ {1, 2, . . . , Q − 2}, σ0 = 1.2σ, and σQ−1 = 1.5σ.
The decoded BER is calculated by decoding 100, 000 words, where the maximum number of
iterations in the SPA is 200. Figure 9 illustrates the relation between the standard deviation
σ and the decoded BER of nonbinary LDPC codes over GF(8) having code rates 1/2 and
5/8. The decoded BER is evaluated for the code length 8000, where the column weights of
the parity-check matrix are 2, 3, and 2.5. This figure also shows the decoded BER of binary
irregular LDPC code. This figure says that the nonbinary LDPC codes have lower BER than
binary irregular LDPC codes, and the nonbinary codes with column weight w = 2.5 give the
lowest BER in many cases.

6. Combination of error control codes

6.1 Fundamental techniques
Interleaving: Interleaving is an effective technique to correct burst errors. Figure 10
illustrates the w-way interleave of a (k + r, k) systematic code. Here, information word
of length wk is interleaved to generate w information subwords of length k, which are

53Error Control Coding for Flash Memory

22 Will-be-set-by-IN-TECH

5.5.2 Decoding
The SPA for the binary LDPC code can be extended to the one for nonbinary codes
straightforwardly, in which probabilities Qi,j(x) and Ri,j(x) are iteratively calculated for
x ∈ GF(q). However, the computational complexity of Ri,j(x) is O(q2), and thus the SPA is
impractical for a large q. For practical cases of q = 2b, a reduced complexity SPA for nonbinary
LDPC code has been proposed using the fast Fourier transform (FFT) (Song & Cruz, 2003).

Definition 2. Let (X(0), X(α0), X(α1), . . . , X(αq−2)) be a vector of real numbers of length q = 2p,
where α is a primitive element of GF(q). Function fk is defined as follows:

fk(X(0), X(α0), X(α1), . . . , X(αq−2)) = (Y(0), Y(α0), Y(α1), . . . , Y(αq−2)),

where

Y(β0) =
1√
2
(X(β0) + X(β1)) and Y(β1) =

1√
2
(X(β0)− X(β1)).

Here, β0 ∈ GF(2p) and β1 ∈ GF(2p) are expressed as

vec(β0) = (ip−1, ip−2, . . . , ik+1, 0, ik−1, . . . , i0) and

vec(β1) = (ip−1, ip−2, . . . , ik+1, 1, ik−1, . . . , i0).

The FFT of (X(0), X(α0), . . . , X(αq−2)) is defined as

F (X(0), X(α0), . . . , X(αq−2)) = fp−1(fp−2(. . . f1(f0(X(0), X(α0), . . . , X(αq−2))) . . .)).

Let G = (V , E) be the Tanner graph of LDPC matrix H = [hi,j]m×n over GF(q), where each
edge ei,j ∈ E is assigned a nonzero value hi,j ∈ GF(q). The following shows the outline of the
FFT-based SPA for given posteriori probability f j(x), that is, the probability of the i-th symbol
being x, where x ∈ GF(q) and 0 ≤ i ≤ n − 1.
FFT-based Sum-product algorithm for nonbinary LDPC code

1. Initialize Ri,j(x) as Ri,j(x) = 1/q for each ei,j ∈ E and x ∈ GF(q).

2. Calculate Qi,j(x) for each ei,j ∈ E and x ∈ GF(q):

Qi,j(x) = η × f j(x)× ∏
I∈{I|eI ,j∈E}\{i}

RI,j(x) ,

where η is determined such that ∑x∈GF(q) Qi,j(x) = 1.

3. Calculate Ri,j(x) for each ei,j ∈ E and x ∈ GF(q) as follows:

(a) Generate the probability distribution permuted by hi,j, that is, Q�
i,j(x · hi,j) = Qi,j(x).

(b) Apply the FFT to Q�
i,j(x) as

(Q̃i,j(0), Q̃i,j(α
0), . . . , Q̃i,j(α

q−2)) = F (Q�
i,j(0), Q�

i,j(α
0), . . . , Q�

i,j(α
q−2)).

(c) Calculate the product of Q̃i,j(x) for each ei,j ∈ E as R̃i,j(x) = ∏
dc

i−2
k=0 Q̃

i,Ji,j
k
(x).

(d) Apply the FFT to R̃i,j(x) as

(R�
i,j(0), R�

i,j(α
0), . . . , R�

i,j(α
q−2)) = F (R̃i,j(0), R̃i,j(α

0), . . . , R̃i,j(α
q−2)).

(e) Generate the probability distribution permuted by h−1
i,j , that is, Ri,j(x) = R�

i,j(x · hi,j).

52 Flash Memories Error Control Coding for Flash Memory 23

 -9

 -7

 -5

 -3

 -1

 0 0.2 0.3 0.4 0.5 0.6

10

10

10

10

10

 Binary code
w=3.0

w=2.5w=2.0

 Code rate = 1/2

 B
it

er
ro

r
ra

te

 σ
 0

 -8

 -6

 -4

 -2

 0.2 0.3 0.4

10

10

10

10

 Binary code

w=3.0

w=2.0

w=2.5

 Code rate = 5/8

 σ

 B
it

er
ro

r
ra

te

Fig. 9. Decoded BER of LDPC code over GF(8).

Fig. 10. w-Way interleave of (k + r, k) systematic code.

4. Generate a temporary decoded word ũ = (ũ0, ũ1, . . . , ũn−1) using

Qj(x) = f x
j × ∏

I∈{I|eI ,j∈E}
RI,j(x) ,

where x ∈ GF(q) and ũj = arg maxx∈GF(q) Qj(x).

5. Calculate syndrome s=HũT. If s=o, then output ũ as a decoded word, and terminate.

6. If the number of iterations is greater than a predetermined threshold, then terminate with
uncorrectable error detection; otherwise go to step 2.

5.6 Nonbinary LDPC code for flash memory
The following evaluates the decoded BER of the nonbinary LDPC codes for a channel model
of 8-level cell flash memory (Maeda & Kaneko, 2009), where the threshold voltages are
hypothesized as μ0 = −3.0000, μ1 = −2.0945, μ2 = −1.2795, μ3 = −0.4645, μ4 = 0.3505, μ5 =
1.1655, μ6 = 1.9805, and μ7 = 3.0000. These threshold voltages are determined to minimize the
raw BER under the condition that μ0 = −3.0000, μQ−1 = 3.0000, and the standard deviation
σi of Pi(v) is given as σi = σ for i ∈ {1, 2, . . . , Q − 2}, σ0 = 1.2σ, and σQ−1 = 1.5σ.
The decoded BER is calculated by decoding 100, 000 words, where the maximum number of
iterations in the SPA is 200. Figure 9 illustrates the relation between the standard deviation
σ and the decoded BER of nonbinary LDPC codes over GF(8) having code rates 1/2 and
5/8. The decoded BER is evaluated for the code length 8000, where the column weights of
the parity-check matrix are 2, 3, and 2.5. This figure also shows the decoded BER of binary
irregular LDPC code. This figure says that the nonbinary LDPC codes have lower BER than
binary irregular LDPC codes, and the nonbinary codes with column weight w = 2.5 give the
lowest BER in many cases.

6. Combination of error control codes

6.1 Fundamental techniques
Interleaving: Interleaving is an effective technique to correct burst errors. Figure 10
illustrates the w-way interleave of a (k + r, k) systematic code. Here, information word
of length wk is interleaved to generate w information subwords of length k, which are

53Error Control Coding for Flash Memory

24 Will-be-set-by-IN-TECH

Fig. 11. Product/concatenated code using systematic block codes.

independently encoded by the (k + r, k) systematic code. Then, the generated check bits are
interleaved and appended to the information word. If the (k + r, k) code can correct burst l-bit
errors, then the interleaved code can correct burst wl-bit errors.
Product code: Product code is defined using two block codes over GF(q), that is, (k1 +
r1, k1) code C1 and (k2 + r2, k2) code C2, as illustrated in Fig. 11(a). Information part is
expressed as a k1 × k2 matrix over GF(q). Each column of the information part is encoded by
C1, and then each row of the obtained (k1 + r1)× k2 matrix is encoded by C2. The minimum
distance of the product code is d = d1 × d2, where d1 and d2 are the minimum distances of C1
and C2, respectively.
Concatenated code: Concatenated code is defined using two block codes C1 and C2, where
C1 is a (k1 + r1, k1) code over GF(qm), and C2 is a (k2 + r2, k2) code over GF(q), as shown in
Fig. 11(b). Information part is expressed as a K1 × k2 matrix, where K1 = k1 × m. Each column
of the information part, which is regarded as a vector of length k1 over GF(qm), is encoded
by C1, and then each row of the obtained (K1 + R1)× k2 matrix over GF(q) is encoded by C2,
where R1 = r1 × m. For example, we can construct the concatenated code using a RS code
over GF(28) as C1 and a binary LDPC code as C2, by which bursty decoding failure of the
LDPC code C2 can be corrected using the RS code C1.

6.2 Three-level coding for solid-state drive
The following outlines a three-level error control coding suitable for the SSD (Kaneko et al.,
2008), where the SSD is assumed to have N memory chips accessed in parallel. A cluster
is defined as a group of N pages stored in the N memory chips, where the pages have
same memory address, and is read or stored simultaneously. Let (D0, D1, . . . , DN−2) be the
information word, where Di is a binary k × b matrix. This information word is encoded as
follows.

1. First level coding: Generate a parity-check segment as P = D0 ⊕ D1 ⊕ · · · ⊕ DN−2, where
P is a binary k × b matrix and ⊕ denotes matrix addition over GF(2).

2. Second level coding: Let d = (d0, d1, . . . , dN−2, p) be a binary row vector with length kN,
where di = (di,0 ⊕ di,1 ⊕ · · · ⊕ di,b−1)

T and p = (p0 ⊕ p1 ⊕ · · · ⊕ pb−1)
T. Encode d by

the code CCL to generate the shared-check segment Q = (Q0, Q1, . . . , QN−1) having r0bN
bits, where Qi = [qi,0qi,1 . . . qi,b−1] is a binary r0 × b matrix for i ∈ {0, 1, . . . , N − 1}.
Here, the check bits of CCL are expressed as a row vector with length r0bN bits, that is,
(qT

0,0, qT
0,1, . . . , qT

0,b−1, qT
1,0, . . . , qT

N−1,b−1). Then, for i ∈ {0, 1, . . . , N − 2}, append Qi to the
bottom of Di, and also append QN−1 to the bottom of P.

54 Flash Memories Error Control Coding for Flash Memory 25

Fig. 12. Encoding process of three level ECC for SSD.

3. Third level coding: For i ∈ {0, 1, . . . , N − 2} and j ∈ {0, 1, . . . , b − 1}, encode
(

di,j
qi,j

)
by

code CPG to generate check bits ri,j, where di,j, qi,j, and ri,j are binary column vectors with

lengths k, r0, and r1, respectively. Similarly, for j ∈ {0, 1, . . . , b − 1}, encode
(

pj
qN−1,j

)
by

the code CPG to generate check bits rN−1,j, where pj, qN−1,j, and rN−1,j are binary column
vectors with lengths k, r0, and r1, respectively.

The above encoding process generates encoded page Ui as shown in Fig. 12.

7. References

Lin, S. & Costello, D. J. Jr. (2004). Error Control Coding, Pearson Prentice Hall, 0-13-042672-5,
New Jersey.

Fujiwara, E. (2006). Code Design for Dependable Systems –Theory and Practical Applications–,
Wiley-Interscience, 0-471-75618-0, New Jersey.

Muroke, P. (2006). Flash Memory Field Failure Mechanisms, Proc. 44th Annual International
Reliability Physics Symposium, pp. 313–316, San Jose, March 2006, IEEE, New Jersey.

Mohammad, M. G.; Saluja, K. K. & Yap, A. S. (2001). Fault Models and Test Procedures for
Flash Memory Disturbances, Journal of Electronic Testing: Theory and Applications, Vol.
17, pp. 495–508, 2001.

Mielke, N.; Marquart, T.; Wu, N.; Kessenich, J.; Belgal, H.; Schares, E.; Trivedi, F.; Goodness,
E. & Nevill, L. R. (2008). Bit Error Rate in NAND Flash Memories, Proc. 46th Annual
International Reliability Physics Symposium, pp. 9–19, Phenix, 2008, IEEE, New Jersey.

Ielmini, D.; Spinelli, A. S. & Lacaita, A. L. (2005). Recent Developments on Flash Memory
Reliability, Microelectronic Engineering, Vol. 80, pp. 321–328, 2005.

Chimenton, A.; Pellati, P. & Olivo, P. (2003). Overerase Phenomena: An Insight Into Flash
Memory Reliability, Proceedings of the IEEE, Vol. 91, no. 4, pp. 617–626, April 2003.

Claeys, C.; Ohyama, H.; Simoen, E.; Nakabayashi, M. and Kobayashi, K, (2002). Radiation
Damage in Flash Memory Cells, Nuclear Instruments and Methods in Physics Research
B, Vol. 186, pp. 392–400, Jan. 2002.

Oldham, T. R.; Friendlich, M.; Howard, Jr., J. W.; Berg, M. D.; Kim, H. S.; Irwin, T. L. & LaBel,
K. A. (2007). TID and SER Response of an Advanced Samsung 4Gb NAND Flash
Memory, Proc. IEEE Radiation Effects Data Workshop on Nuclear and Space Radiation
Effect Conf, pp. 221–225, July 2007.

55Error Control Coding for Flash Memory

24 Will-be-set-by-IN-TECH

Fig. 11. Product/concatenated code using systematic block codes.

independently encoded by the (k + r, k) systematic code. Then, the generated check bits are
interleaved and appended to the information word. If the (k + r, k) code can correct burst l-bit
errors, then the interleaved code can correct burst wl-bit errors.
Product code: Product code is defined using two block codes over GF(q), that is, (k1 +
r1, k1) code C1 and (k2 + r2, k2) code C2, as illustrated in Fig. 11(a). Information part is
expressed as a k1 × k2 matrix over GF(q). Each column of the information part is encoded by
C1, and then each row of the obtained (k1 + r1)× k2 matrix is encoded by C2. The minimum
distance of the product code is d = d1 × d2, where d1 and d2 are the minimum distances of C1
and C2, respectively.
Concatenated code: Concatenated code is defined using two block codes C1 and C2, where
C1 is a (k1 + r1, k1) code over GF(qm), and C2 is a (k2 + r2, k2) code over GF(q), as shown in
Fig. 11(b). Information part is expressed as a K1 × k2 matrix, where K1 = k1 × m. Each column
of the information part, which is regarded as a vector of length k1 over GF(qm), is encoded
by C1, and then each row of the obtained (K1 + R1)× k2 matrix over GF(q) is encoded by C2,
where R1 = r1 × m. For example, we can construct the concatenated code using a RS code
over GF(28) as C1 and a binary LDPC code as C2, by which bursty decoding failure of the
LDPC code C2 can be corrected using the RS code C1.

6.2 Three-level coding for solid-state drive
The following outlines a three-level error control coding suitable for the SSD (Kaneko et al.,
2008), where the SSD is assumed to have N memory chips accessed in parallel. A cluster
is defined as a group of N pages stored in the N memory chips, where the pages have
same memory address, and is read or stored simultaneously. Let (D0, D1, . . . , DN−2) be the
information word, where Di is a binary k × b matrix. This information word is encoded as
follows.

1. First level coding: Generate a parity-check segment as P = D0 ⊕ D1 ⊕ · · · ⊕ DN−2, where
P is a binary k × b matrix and ⊕ denotes matrix addition over GF(2).

2. Second level coding: Let d = (d0, d1, . . . , dN−2, p) be a binary row vector with length kN,
where di = (di,0 ⊕ di,1 ⊕ · · · ⊕ di,b−1)

T and p = (p0 ⊕ p1 ⊕ · · · ⊕ pb−1)
T. Encode d by

the code CCL to generate the shared-check segment Q = (Q0, Q1, . . . , QN−1) having r0bN
bits, where Qi = [qi,0qi,1 . . . qi,b−1] is a binary r0 × b matrix for i ∈ {0, 1, . . . , N − 1}.
Here, the check bits of CCL are expressed as a row vector with length r0bN bits, that is,
(qT

0,0, qT
0,1, . . . , qT

0,b−1, qT
1,0, . . . , qT

N−1,b−1). Then, for i ∈ {0, 1, . . . , N − 2}, append Qi to the
bottom of Di, and also append QN−1 to the bottom of P.

54 Flash Memories Error Control Coding for Flash Memory 25

Fig. 12. Encoding process of three level ECC for SSD.

3. Third level coding: For i ∈ {0, 1, . . . , N − 2} and j ∈ {0, 1, . . . , b − 1}, encode
(

di,j
qi,j

)
by

code CPG to generate check bits ri,j, where di,j, qi,j, and ri,j are binary column vectors with

lengths k, r0, and r1, respectively. Similarly, for j ∈ {0, 1, . . . , b − 1}, encode
(

pj
qN−1,j

)
by

the code CPG to generate check bits rN−1,j, where pj, qN−1,j, and rN−1,j are binary column
vectors with lengths k, r0, and r1, respectively.

The above encoding process generates encoded page Ui as shown in Fig. 12.

7. References

Lin, S. & Costello, D. J. Jr. (2004). Error Control Coding, Pearson Prentice Hall, 0-13-042672-5,
New Jersey.

Fujiwara, E. (2006). Code Design for Dependable Systems –Theory and Practical Applications–,
Wiley-Interscience, 0-471-75618-0, New Jersey.

Muroke, P. (2006). Flash Memory Field Failure Mechanisms, Proc. 44th Annual International
Reliability Physics Symposium, pp. 313–316, San Jose, March 2006, IEEE, New Jersey.

Mohammad, M. G.; Saluja, K. K. & Yap, A. S. (2001). Fault Models and Test Procedures for
Flash Memory Disturbances, Journal of Electronic Testing: Theory and Applications, Vol.
17, pp. 495–508, 2001.

Mielke, N.; Marquart, T.; Wu, N.; Kessenich, J.; Belgal, H.; Schares, E.; Trivedi, F.; Goodness,
E. & Nevill, L. R. (2008). Bit Error Rate in NAND Flash Memories, Proc. 46th Annual
International Reliability Physics Symposium, pp. 9–19, Phenix, 2008, IEEE, New Jersey.

Ielmini, D.; Spinelli, A. S. & Lacaita, A. L. (2005). Recent Developments on Flash Memory
Reliability, Microelectronic Engineering, Vol. 80, pp. 321–328, 2005.

Chimenton, A.; Pellati, P. & Olivo, P. (2003). Overerase Phenomena: An Insight Into Flash
Memory Reliability, Proceedings of the IEEE, Vol. 91, no. 4, pp. 617–626, April 2003.

Claeys, C.; Ohyama, H.; Simoen, E.; Nakabayashi, M. and Kobayashi, K, (2002). Radiation
Damage in Flash Memory Cells, Nuclear Instruments and Methods in Physics Research
B, Vol. 186, pp. 392–400, Jan. 2002.

Oldham, T. R.; Friendlich, M.; Howard, Jr., J. W.; Berg, M. D.; Kim, H. S.; Irwin, T. L. & LaBel,
K. A. (2007). TID and SER Response of an Advanced Samsung 4Gb NAND Flash
Memory, Proc. IEEE Radiation Effects Data Workshop on Nuclear and Space Radiation
Effect Conf, pp. 221–225, July 2007.

55Error Control Coding for Flash Memory

26 Will-be-set-by-IN-TECH

Bagatin, M.; Cellere, G.; Gerardin, S.; Paccagnella, A.; Visconti, A. & Beltrami, S. (2009). TID
Sensitivity of NAND Flash Memory Building Blocks, IEEE Trans. Nuclear Science, Vol.
56, No. 4, pp. 1909–1913, Aug. 2009.

Witzke, K. A. & Leung, C. (1985). A Comparison of Some Error Detecting CRC Code
Standards, IEEE Trans. Communications, Vol. 33, No. 9, pp. 996–998, Sept. 1985.

Gallager, R. G (1962). Low Density Parity Check Codes, IRE Trans. Information Theory, Vol. 8,
pp. 21–28, Jan. 1962.

Moreira, J. C. & Farrell, P. G. (2006). Essentials of Error-Control Coding, Wiley, 0-470-02920-X,
West Sussex.

Richardson, T. J.; Shokrollahi, M. A. & Urbanke, R. L. (2001). Design of Capacity-Approaching
Irregular Low-Density Parity-Check Codes, IEEE Trans. Information Theory, Vol. 47,
No. 2, pp.619–637, Feb. 2001.

IEEE Std 802.11n-2009, Oct. 2009.
IEEE Std 802.16-2009, May 2009.
IEEE Std 802.15.3c-2009, Oct. 2009.
Davey, M. C. & MacKay, D. (1998). Low-Density Parity-Check Codes over GF(q), IEEE

Communications Letters, Vol. 2, No. 6, pp. 165–167, June 1998.
Zhou, B.; Kang, J.; Tai, Y. Y.; Lin, S. & Ding, Z. (2009) High Performance Non-Binary

Quasi-Cyclic LDPC Codes on Euclidean Geometry, IEEE Trans. Communications, Vol.
57, No. 5, pp. 1298–1311, May 2009.

Li, G.; Fair, I, J. & Krzymien, W. A. (2009). Density Evolution for Nonbinary LDPC Codes
Under Gaussian Approximation, IEEE Trans. Information Theory, Vol. 55, No. 3, pp.
997–1015, March 2009.

Song, H. & Cruz, J. R. (2003). Reduced-Complexity Decoding of Q-Ary LDPC codes for
Magnetic Decoding, IEEE Trans. Magnetics, Vol. 39, No. 3, pp. 1081–1087, March 2003.

Maeda, Y. & Kaneko, H. (2009). Error Control Coding for Multilevel Cell Flash Memories
Using Nonbinary Low-Density Parity-Check Codes, Proc. IEEE Int. Symp. Defect and
Fault Tolerance in VLSI Systems, pp. 367–375, Oct. 2009.

Kaneko, H.; Matsuzaka, T. & Fujiwara, E. (2008). Three-Level Error Control Coding for
Dependable Solid-State Drives. Proc. IEEE Pacific Rim International Symposium on
Dependable Computing, pp. 281–288, Dec. 2008.

56 Flash Memories

3

Error Correction Codes and Signal
Processing in Flash Memory

Xueqiang Wang1, Guiqiang Dong2, Liyang Pan1 and Runde Zhou1
1Tsinghua University,

2Rensselaer Polytechnic Institute,
1China

2USA

1. Introduction

This chapter is to introduce NAND flash channel model, error correction codes (ECC) and
signal processing techniques in flash memory.
There are several kinds of noise sources in flash memory, such as random-telegraph noise,
retention process, inter-cell interference, background pattern noise, and read/program
disturb, etc. Such noise sources reduce the storage reliability of flash memory significantly.
The continuous bit cost reduction of flash memory devices mainly relies on aggressive
technology scaling and multi-level per cell technique. These techniques, however, further
deteriorate the storage reliability of flash memory. The typical storage reliability
requirement is that non-recoverable bit error rate (BER) must be below 10-15. Such stringent
BER requirement makes ECC techniques mandatory to guarantee storage reliability. There
are specific requirements on ECC scheme in NOR and NAND flash memory. Since NOR
flash is usually used as execute in place (XIP) memory where CPU fetches instructions
directly from, the primary concern of ECC application in NOR flash is the decoding latency
of ECC decoder, while code rate and error-correcting capability is more concerned in NAND
flash. As a result, different ECC techniques are required in different types of flash memory.
In this chapter, NAND flash channel is introduced first, and then application of ECC is
discussed. Signal processing techniques for cancelling cell-to-cell interference in NAND
flash are finally presented.

2. NAND flash channel model
There are many noise sources existing in NAND flash, such as cell-to-cell interference,
random-telegraph noise, background-pattern noise, read/program disturb, charge leakage
and trapping generation, etc. It would be of great help to have a NAND flash channel model
that emulates the process of operations on flash as well as influence of various
program/erase (PE) cycling and retention period.

2.1 NAND flash memory structure
NAND flash memory cells are organized in an array->block->page hierarchy, as illustrated
in Fig. 1., where one NAND flash memory array is partitioned into many blocks, and each

26 Will-be-set-by-IN-TECH

Bagatin, M.; Cellere, G.; Gerardin, S.; Paccagnella, A.; Visconti, A. & Beltrami, S. (2009). TID
Sensitivity of NAND Flash Memory Building Blocks, IEEE Trans. Nuclear Science, Vol.
56, No. 4, pp. 1909–1913, Aug. 2009.

Witzke, K. A. & Leung, C. (1985). A Comparison of Some Error Detecting CRC Code
Standards, IEEE Trans. Communications, Vol. 33, No. 9, pp. 996–998, Sept. 1985.

Gallager, R. G (1962). Low Density Parity Check Codes, IRE Trans. Information Theory, Vol. 8,
pp. 21–28, Jan. 1962.

Moreira, J. C. & Farrell, P. G. (2006). Essentials of Error-Control Coding, Wiley, 0-470-02920-X,
West Sussex.

Richardson, T. J.; Shokrollahi, M. A. & Urbanke, R. L. (2001). Design of Capacity-Approaching
Irregular Low-Density Parity-Check Codes, IEEE Trans. Information Theory, Vol. 47,
No. 2, pp.619–637, Feb. 2001.

IEEE Std 802.11n-2009, Oct. 2009.
IEEE Std 802.16-2009, May 2009.
IEEE Std 802.15.3c-2009, Oct. 2009.
Davey, M. C. & MacKay, D. (1998). Low-Density Parity-Check Codes over GF(q), IEEE

Communications Letters, Vol. 2, No. 6, pp. 165–167, June 1998.
Zhou, B.; Kang, J.; Tai, Y. Y.; Lin, S. & Ding, Z. (2009) High Performance Non-Binary

Quasi-Cyclic LDPC Codes on Euclidean Geometry, IEEE Trans. Communications, Vol.
57, No. 5, pp. 1298–1311, May 2009.

Li, G.; Fair, I, J. & Krzymien, W. A. (2009). Density Evolution for Nonbinary LDPC Codes
Under Gaussian Approximation, IEEE Trans. Information Theory, Vol. 55, No. 3, pp.
997–1015, March 2009.

Song, H. & Cruz, J. R. (2003). Reduced-Complexity Decoding of Q-Ary LDPC codes for
Magnetic Decoding, IEEE Trans. Magnetics, Vol. 39, No. 3, pp. 1081–1087, March 2003.

Maeda, Y. & Kaneko, H. (2009). Error Control Coding for Multilevel Cell Flash Memories
Using Nonbinary Low-Density Parity-Check Codes, Proc. IEEE Int. Symp. Defect and
Fault Tolerance in VLSI Systems, pp. 367–375, Oct. 2009.

Kaneko, H.; Matsuzaka, T. & Fujiwara, E. (2008). Three-Level Error Control Coding for
Dependable Solid-State Drives. Proc. IEEE Pacific Rim International Symposium on
Dependable Computing, pp. 281–288, Dec. 2008.

56 Flash Memories

3

Error Correction Codes and Signal
Processing in Flash Memory

Xueqiang Wang1, Guiqiang Dong2, Liyang Pan1 and Runde Zhou1
1Tsinghua University,

2Rensselaer Polytechnic Institute,
1China

2USA

1. Introduction

This chapter is to introduce NAND flash channel model, error correction codes (ECC) and
signal processing techniques in flash memory.
There are several kinds of noise sources in flash memory, such as random-telegraph noise,
retention process, inter-cell interference, background pattern noise, and read/program
disturb, etc. Such noise sources reduce the storage reliability of flash memory significantly.
The continuous bit cost reduction of flash memory devices mainly relies on aggressive
technology scaling and multi-level per cell technique. These techniques, however, further
deteriorate the storage reliability of flash memory. The typical storage reliability
requirement is that non-recoverable bit error rate (BER) must be below 10-15. Such stringent
BER requirement makes ECC techniques mandatory to guarantee storage reliability. There
are specific requirements on ECC scheme in NOR and NAND flash memory. Since NOR
flash is usually used as execute in place (XIP) memory where CPU fetches instructions
directly from, the primary concern of ECC application in NOR flash is the decoding latency
of ECC decoder, while code rate and error-correcting capability is more concerned in NAND
flash. As a result, different ECC techniques are required in different types of flash memory.
In this chapter, NAND flash channel is introduced first, and then application of ECC is
discussed. Signal processing techniques for cancelling cell-to-cell interference in NAND
flash are finally presented.

2. NAND flash channel model
There are many noise sources existing in NAND flash, such as cell-to-cell interference,
random-telegraph noise, background-pattern noise, read/program disturb, charge leakage
and trapping generation, etc. It would be of great help to have a NAND flash channel model
that emulates the process of operations on flash as well as influence of various
program/erase (PE) cycling and retention period.

2.1 NAND flash memory structure
NAND flash memory cells are organized in an array->block->page hierarchy, as illustrated
in Fig. 1., where one NAND flash memory array is partitioned into many blocks, and each

Flash Memories

58

block contains a certain number of pages. Within one block, each memory cell string
typically contains 16 to 64 memory cells.

Fig. 1. Illustration of NAND flash memory structure.

All the memory cells within the same block must be erased at the same time and data are
programmed and fetched in the unit of page, where the page size ranges from 512-byte to
8K-byte user data in current design practice. All the memory cell blocks share the bit-lines
and an on-chip page buffer that holds the data being programmed or fetched. Modern
NAND flash memories use either even/odd bit-line structure, or all-bit-line structure. In
even/odd bit-line structure, even and odd bit-lines are interleaved along each word-line and
are alternatively accessed. Hence, each pair of even and odd bit-lines can share peripheral
circuits such as sense amplifier and buffer, leading to less silicon cost of peripheral circuits.
In all-bit-line structure, all the bit-lines are accessed at the same time, which aims to trade
peripheral circuits silicon cost for better immunity to cell-to-cell interference. Moreover,
relatively simple voltage sensing scheme can be used in even/odd bit-line structure, while
current sensing scheme must be used in all-bit-line structure. For MLC NAND flash
memory, all the bits stored in one cell belong to different pages, which can be either
simultaneously programmed at the same time, referred to as full-sequence programming, or
sequentially programmed at different time, referred to as multi-page programming.

2.2 NAND flash memory erase and program operation model
Before a flash memory cell is programmed, it must be erased, i.e., remove all the charges
from the floating gate to set its threshold voltage to the lowest voltage window. It is well
known that the threshold voltage of erased memory cells tends to have a wide Gaussian-like
distribution. Hence, we can approximately model the threshold voltage distribution of
erased state as

 (1)

Error Correction Codes and Signal Processing in Flash Memory

59

where and are the mean and standard deviation of the erased state.
Regarding memory programming, a tight threshold voltage control is typically realized by
using incremental step pulse program (ISPP), i.e., memory cells on the same word-line are
recursively programmed using a program-and-verify approach with a stair case program
word-line voltage Vpp, as shown in Fig.2.

Fig. 2. Control-gate voltage pulses in program-and-verify operations.

Under such a program-and-verify strategy, each programmed state (except the erased state)
associates with a verify voltage that is used in the verify operations and sets the target
position of each programmed state threshold voltage window. Denote the verify voltage of
the target programmed state as , and program step voltage as . The threshold voltage
of the programmed state tends to have a uniform distribution over . Denote

 and for the k-th programmed state as and . We can model the ideal
threshold voltage distribution of the k-th programmed state as:

 (2)

The above ideal memory cell threshold voltage distribution can be (significantly) distorted in
practice, mainly due to PE cycling effect and cell-to-cell interference, which will be
discussed in the following.

2.3 Effects of program/erase cycling
Flash memory PE cycling causes damage to the tunnel oxide of floating gate transistors in
the form of charge trapping in the oxide and interface states, which directly results in
threshold voltage shift and fluctuation and hence gradually degrades memory device noise
margin. Major distortion sources include
1. Electrons capture and emission events at charge trap sites near the interface developed

over PE cycling directly result in memory cell threshold voltage fluctuation, which is
referred to as random telegraph noise (RTN);

2. Interface trap recovery and electron detrapping gradually reduce memory cell
threshold voltage, leading to the data retention limitation.

RTN causes random fluctuation of memory cell threshold voltage, where the fluctuation
magnitude is subject to exponential decay. Hence, we can model the probability density
function of RTN-induced threshold voltage fluctuation as a symmetric exponential
function:

Flash Memories

58

block contains a certain number of pages. Within one block, each memory cell string
typically contains 16 to 64 memory cells.

Fig. 1. Illustration of NAND flash memory structure.

All the memory cells within the same block must be erased at the same time and data are
programmed and fetched in the unit of page, where the page size ranges from 512-byte to
8K-byte user data in current design practice. All the memory cell blocks share the bit-lines
and an on-chip page buffer that holds the data being programmed or fetched. Modern
NAND flash memories use either even/odd bit-line structure, or all-bit-line structure. In
even/odd bit-line structure, even and odd bit-lines are interleaved along each word-line and
are alternatively accessed. Hence, each pair of even and odd bit-lines can share peripheral
circuits such as sense amplifier and buffer, leading to less silicon cost of peripheral circuits.
In all-bit-line structure, all the bit-lines are accessed at the same time, which aims to trade
peripheral circuits silicon cost for better immunity to cell-to-cell interference. Moreover,
relatively simple voltage sensing scheme can be used in even/odd bit-line structure, while
current sensing scheme must be used in all-bit-line structure. For MLC NAND flash
memory, all the bits stored in one cell belong to different pages, which can be either
simultaneously programmed at the same time, referred to as full-sequence programming, or
sequentially programmed at different time, referred to as multi-page programming.

2.2 NAND flash memory erase and program operation model
Before a flash memory cell is programmed, it must be erased, i.e., remove all the charges
from the floating gate to set its threshold voltage to the lowest voltage window. It is well
known that the threshold voltage of erased memory cells tends to have a wide Gaussian-like
distribution. Hence, we can approximately model the threshold voltage distribution of
erased state as

 (1)

Error Correction Codes and Signal Processing in Flash Memory

59

where and are the mean and standard deviation of the erased state.
Regarding memory programming, a tight threshold voltage control is typically realized by
using incremental step pulse program (ISPP), i.e., memory cells on the same word-line are
recursively programmed using a program-and-verify approach with a stair case program
word-line voltage Vpp, as shown in Fig.2.

Fig. 2. Control-gate voltage pulses in program-and-verify operations.

Under such a program-and-verify strategy, each programmed state (except the erased state)
associates with a verify voltage that is used in the verify operations and sets the target
position of each programmed state threshold voltage window. Denote the verify voltage of
the target programmed state as , and program step voltage as . The threshold voltage
of the programmed state tends to have a uniform distribution over . Denote

 and for the k-th programmed state as and . We can model the ideal
threshold voltage distribution of the k-th programmed state as:

 (2)

The above ideal memory cell threshold voltage distribution can be (significantly) distorted in
practice, mainly due to PE cycling effect and cell-to-cell interference, which will be
discussed in the following.

2.3 Effects of program/erase cycling
Flash memory PE cycling causes damage to the tunnel oxide of floating gate transistors in
the form of charge trapping in the oxide and interface states, which directly results in
threshold voltage shift and fluctuation and hence gradually degrades memory device noise
margin. Major distortion sources include
1. Electrons capture and emission events at charge trap sites near the interface developed

over PE cycling directly result in memory cell threshold voltage fluctuation, which is
referred to as random telegraph noise (RTN);

2. Interface trap recovery and electron detrapping gradually reduce memory cell
threshold voltage, leading to the data retention limitation.

RTN causes random fluctuation of memory cell threshold voltage, where the fluctuation
magnitude is subject to exponential decay. Hence, we can model the probability density
function of RTN-induced threshold voltage fluctuation as a symmetric exponential
function:

Flash Memories

60

 (3)

Let N denote the PE cycling number, scales with in an approximate power-law
fashion, i.e., is approximately proportional to .
Threshold voltage reduction due to interface trap recovery and electron detrapping can be
approximately modeled as a Gaussian distribution . Both and scale with N in
an approximate power-law fashion, and scale with the retention time in a logarithmic
fashion. Moreover, the significance of threshold voltage reduction induced by interface trap
recovery and electron detrapping is also proportional to the initial threshold voltage
magnitude, i.e., the higher the initial threshold voltage is, the faster the interface trap
recovery and electron detrapping occur and hence the larger threshold voltage reduction
will be.

2.4 Cell-to-cell interference
In NAND flash memory, the threshold voltage shift of one floating gate transistor can
influence the threshold voltage of its adjacent floating gate transistors through parasitic
capacitance-coupling effect, i.e. one float-gate voltage is coupled by the floating gate
changes of the adjacent cells via parasitic capacitors. This is referred to as cell-to-cell
interference. As technology scales down, this has been well recognized as one of major noise
sources in NAND flash memory. Threshold voltage shift of a victim cell caused by cell-to-
cell interference can be estimated as

(4)

where represents the threshold voltage shift of one interfering cell which is
programmed after the victim cell, and the coupling ratio is defined as

 (5)

where is the parasitic capacitance between the interfering cell and the victim cell, and
 is the total capacitance of the victim cell. Cell-to-cell interference significance is

affected by NAND flash memory bit-line structure. In current design practice, there are two
different bit-line structures, including conventional even/odd bit-line structure and
emerging all-bit-line structure. In even/odd bit-line structure, memory cells on one word-
line are alternatively connected to even and odd bit-lines and even cells are programmed
ahead of odd cells in the same wordline. Therefore, an even cell is mainly interfered by five
neighboring cells and an odd cell is interfered by only three neighboring cells, as shown in
Fig. 3. Therefore, even cells and odd cells experience largely different amount of cell-to-cell
interference. Cells in all-bit-line structure suffers less cell-to-cell inference than even cells in
odd/even structure, and the all-bit-line structure can effectively support high-speed current
sensing to improve the memory read and verify speed. Therefore, throughout the remainder
of this paper, we mainly consider NAND flash memory with the all-bit-line structure.
Finally, we note that the design methods presented in this work are also applicable when
odd/even structure is being used.

Error Correction Codes and Signal Processing in Flash Memory

61

Fig. 3. Illustration of cell-to-cell interference in even/odd structure: even cells are interfered
by two direct neighboring cells on the same wordline and three neighboring cells on the
next wordline, while odd cells are interfered by three neighboring cells on the next
wordline.

2.5 NAND flash memory channel model
Based on the above discussions, we can approximately model NAND flash memory device
characteristics as shown in Fig. 4, using which we can simulate memory cell threshold
voltage distribution and hence obtain memory cell raw storage reliability.

),(ee r),(dd tppV
Fig. 4. Illustration of the approximate NAND flash memory device model to incorporate
major threshold voltage distortion sources.

Based upon the model of erase state and ideal programming, we can obtain the threshold
voltage distribution function pp(x) right after ideal programming operation. Recall that ppr(x)
denotes the RTN distribution function, and let par(x) denote the threshold voltage
distribution after incorporating RTN, which is obtained by convoluting pp(x) and pr(x), i.e.,

 (6)

The cell-to-cell interference is further incorporated based on the model of cell-to-cell
interference. To capture inevitable process variability, we set both the vertical coupling ratio
and diagonal coupling ratio as random variables with tailed truncated Gaussian distribution:

 (7)

where and are the mean and standard deviation, and CC is chosen to ensure the
integration of this tail truncated Gaussian distribution equals to 1. In all the simulations in
this section, we set and .

Flash Memories

60

 (3)

Let N denote the PE cycling number, scales with in an approximate power-law
fashion, i.e., is approximately proportional to .
Threshold voltage reduction due to interface trap recovery and electron detrapping can be
approximately modeled as a Gaussian distribution . Both and scale with N in
an approximate power-law fashion, and scale with the retention time in a logarithmic
fashion. Moreover, the significance of threshold voltage reduction induced by interface trap
recovery and electron detrapping is also proportional to the initial threshold voltage
magnitude, i.e., the higher the initial threshold voltage is, the faster the interface trap
recovery and electron detrapping occur and hence the larger threshold voltage reduction
will be.

2.4 Cell-to-cell interference
In NAND flash memory, the threshold voltage shift of one floating gate transistor can
influence the threshold voltage of its adjacent floating gate transistors through parasitic
capacitance-coupling effect, i.e. one float-gate voltage is coupled by the floating gate
changes of the adjacent cells via parasitic capacitors. This is referred to as cell-to-cell
interference. As technology scales down, this has been well recognized as one of major noise
sources in NAND flash memory. Threshold voltage shift of a victim cell caused by cell-to-
cell interference can be estimated as

(4)

where represents the threshold voltage shift of one interfering cell which is
programmed after the victim cell, and the coupling ratio is defined as

 (5)

where is the parasitic capacitance between the interfering cell and the victim cell, and
 is the total capacitance of the victim cell. Cell-to-cell interference significance is

affected by NAND flash memory bit-line structure. In current design practice, there are two
different bit-line structures, including conventional even/odd bit-line structure and
emerging all-bit-line structure. In even/odd bit-line structure, memory cells on one word-
line are alternatively connected to even and odd bit-lines and even cells are programmed
ahead of odd cells in the same wordline. Therefore, an even cell is mainly interfered by five
neighboring cells and an odd cell is interfered by only three neighboring cells, as shown in
Fig. 3. Therefore, even cells and odd cells experience largely different amount of cell-to-cell
interference. Cells in all-bit-line structure suffers less cell-to-cell inference than even cells in
odd/even structure, and the all-bit-line structure can effectively support high-speed current
sensing to improve the memory read and verify speed. Therefore, throughout the remainder
of this paper, we mainly consider NAND flash memory with the all-bit-line structure.
Finally, we note that the design methods presented in this work are also applicable when
odd/even structure is being used.

Error Correction Codes and Signal Processing in Flash Memory

61

Fig. 3. Illustration of cell-to-cell interference in even/odd structure: even cells are interfered
by two direct neighboring cells on the same wordline and three neighboring cells on the
next wordline, while odd cells are interfered by three neighboring cells on the next
wordline.

2.5 NAND flash memory channel model
Based on the above discussions, we can approximately model NAND flash memory device
characteristics as shown in Fig. 4, using which we can simulate memory cell threshold
voltage distribution and hence obtain memory cell raw storage reliability.

),(ee r),(dd tppV
Fig. 4. Illustration of the approximate NAND flash memory device model to incorporate
major threshold voltage distortion sources.

Based upon the model of erase state and ideal programming, we can obtain the threshold
voltage distribution function pp(x) right after ideal programming operation. Recall that ppr(x)
denotes the RTN distribution function, and let par(x) denote the threshold voltage
distribution after incorporating RTN, which is obtained by convoluting pp(x) and pr(x), i.e.,

 (6)

The cell-to-cell interference is further incorporated based on the model of cell-to-cell
interference. To capture inevitable process variability, we set both the vertical coupling ratio
and diagonal coupling ratio as random variables with tailed truncated Gaussian distribution:

 (7)

where and are the mean and standard deviation, and CC is chosen to ensure the
integration of this tail truncated Gaussian distribution equals to 1. In all the simulations in
this section, we set and .

Flash Memories

62

Let pac(x) denote the threshold voltage distribution after incorporating cell-to-cell
interference. Denote the retention noise distribution as pt(x). The final threshold voltage
distribution pf(x) is obtained as

 (8)

The above presented approximate mathematical channel model for simulating NAND flash
memory cell threshold voltage is further demonstrated using the following example.
Example 1: Let us consider 2bits/cell NAND flash memory. Normalized and of the
erased state are set as 1.4 and 0.35, respectively. For the three programmed states, the
normalized program step voltage is 0.2, and the normalized verify voltages Vp are 2.6,
3.2 and 3.93, respectively. For the RTN distribution function, we set the parameter

, where equals to 0.00025. Regarding to cell-to-cell interference, we set the
ratio between the means of and as 0.08 and 0.0048, respectively. For the function

 to capture trap recovery and electron detrapping during retention, we set that
scales with and scales with , and both scale with , where denotes
the memory retention time and is an initial time and can be set as 1 hour. In addition, as
pointed out earlier, both and also depend on the initial threshold voltage. Hence we
set that both approximately scale , where is the initial threshold voltage, and
and are constants. Therefore, we have

 (9)

where we set , , , and . Accordingly, we
carry out Monte Carlo simulations to obtain

Fig. 5. Simulated results to show the effects of RTN, cell-to-cell interference, and retention on
memory cell threshold voltage distribution after 10K PE cycling and 10-year retention.

Error Correction Codes and Signal Processing in Flash Memory

63

Fig. 6. Simulated threshold voltage distribution after 100 PE cycling and 1-month retention
and after 10K PE cycling and 10-year retention, which clearly shows the dynamics inherent
in NAND flash memory characteristics.

Fig. 5 shows the cell threshold voltage distribution at different stages under 10K PE cycling
and with 10-year storage period. The final threshold voltage distributions after 100 PE
cycling and 1 month storage and after 10K PE cycling and 10 years storage are shown in Fig.
6. Fig. 7 presents the evolution of simulated raw BER with program/erase cycling.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 104

10-4

10-3

10-2

10-1

P/E cycling

R
aw

 B
E

R

Fig. 7. The evolution of raw BER with program/erase cycling under 10-year storage period.

3. Basics of error correction codes
In the past decades, error correction codes (ECC) have been widely adapted in various
communication systems, magnetic recording, compact discs and so on. The basic scheme of
ECC theory is to add some redundancy for protection. Error correction codes are usually

Flash Memories

62

Let pac(x) denote the threshold voltage distribution after incorporating cell-to-cell
interference. Denote the retention noise distribution as pt(x). The final threshold voltage
distribution pf(x) is obtained as

 (8)

The above presented approximate mathematical channel model for simulating NAND flash
memory cell threshold voltage is further demonstrated using the following example.
Example 1: Let us consider 2bits/cell NAND flash memory. Normalized and of the
erased state are set as 1.4 and 0.35, respectively. For the three programmed states, the
normalized program step voltage is 0.2, and the normalized verify voltages Vp are 2.6,
3.2 and 3.93, respectively. For the RTN distribution function, we set the parameter

, where equals to 0.00025. Regarding to cell-to-cell interference, we set the
ratio between the means of and as 0.08 and 0.0048, respectively. For the function

 to capture trap recovery and electron detrapping during retention, we set that
scales with and scales with , and both scale with , where denotes
the memory retention time and is an initial time and can be set as 1 hour. In addition, as
pointed out earlier, both and also depend on the initial threshold voltage. Hence we
set that both approximately scale , where is the initial threshold voltage, and
and are constants. Therefore, we have

 (9)

where we set , , , and . Accordingly, we
carry out Monte Carlo simulations to obtain

Fig. 5. Simulated results to show the effects of RTN, cell-to-cell interference, and retention on
memory cell threshold voltage distribution after 10K PE cycling and 10-year retention.

Error Correction Codes and Signal Processing in Flash Memory

63

Fig. 6. Simulated threshold voltage distribution after 100 PE cycling and 1-month retention
and after 10K PE cycling and 10-year retention, which clearly shows the dynamics inherent
in NAND flash memory characteristics.

Fig. 5 shows the cell threshold voltage distribution at different stages under 10K PE cycling
and with 10-year storage period. The final threshold voltage distributions after 100 PE
cycling and 1 month storage and after 10K PE cycling and 10 years storage are shown in Fig.
6. Fig. 7 presents the evolution of simulated raw BER with program/erase cycling.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 104

10-4

10-3

10-2

10-1

P/E cycling

R
aw

 B
E

R

Fig. 7. The evolution of raw BER with program/erase cycling under 10-year storage period.

3. Basics of error correction codes
In the past decades, error correction codes (ECC) have been widely adapted in various
communication systems, magnetic recording, compact discs and so on. The basic scheme of
ECC theory is to add some redundancy for protection. Error correction codes are usually

Flash Memories

64

divided into two categories: block codes and convolution codes. Hamming codes, Bose-
Chaudur-Hocquenghem(BCH) codes, Reed-Solomon(RS) codes, and Low-density parity-
check (LDPC) codes are most notable block codes and have been widely used in
communication, optical, and other systems.
The encoding/decoding scheme of a block code in a memory is shown in Fig. 8. When any
k-bit information data is written to flash memory, an encoder circuit generates the parity
bits, adds these parity bits to the k-bit information data and creates a n-bit codeword. Then
the whole codeword is written in and stored on a page of the memory array. During the
reading operation, a decoder circuit searches errors in a codeword, and corrects the
erroneous bits within its error capability, thereby recovering the codeword.

Fig. 8. ECC encoding and decoding system in a flash memory

Current NOR flash memory products use Hamming code with only 1-bit error correction.
However, as raw BER increases, 2-bit error corretion BCH code becomes a desired ECC.
Besides, in current 2b/cell NAND flash memory. BCH codes are widely employed to
achieve required storage reliability. As raw BER soars in future 3b/cell NAND flash
memory, BCH codes are not sufficient anymore, and LDPC codes become more and more
necessary for future NAND flash memory products.

3.1 Basics of BCH codes
BCH codes were invented through independent researches by Hocquenghen in 1959 and by
Bose and Ray-Chauduri in 1960. Flash memory uses binary primitive BCH code which is
constructed over the Galois fields GF(2m). Galois field is a finite field in the coding theory
and was first discovered by Evariste Galois. In the following, we will recall some algebraic
notions of GF(2m).
Definition 3.1 Let α be an element of GF(2m), α is called primitive element if the smallest
natural number n that satisfies αn=1 equals 2m -1, that is, n=2m -1.
Theorem 3.1 Every none null element of GF(2m) can be expressed as power of primitive
element α, that is, the multiplicative group GF(2m) is cyclic.
Definition 3.2 GF(2m)[x] is indicated as the set of polynomials of any degree with
coefficients in GF(2m). An irreducible polynomial p(x) in GF(2m)[x] of degree m is called
primitive if the smallest natural number n, such that xn–1 is a multiple of p(x), is n=2m–1.
In fact, if p(x)=xm+am-1xm–1+…+a1x+a0 is a primitive polynomial in GF(p)[x] and α is one of its
roots, then we have

 2 1
0 1 2 1

m m
ma a a a a
 (10)

Error Correction Codes and Signal Processing in Flash Memory

65

Equation (10) indicates that each power of α with degree larger than m can be converted
to a polynomial with degree m-1 at most. As an example, some elements in the field
GF(24), their binary representation, and according poly representation forms are shown in
Table 1.

Element Binary
representation

Polynomial
representation

0 0000 0
α0 1000 1
α1 0100 α
α3 0001 α3
α4 1100 1+α
α5 0110 α+α2
α6 0011 α2+α3

Table 1. Different representations of elements over GF(24)

Based on the Galois fields GF(2m), the BCH(n, k) code is defined as
Codeword length: n = 2m-1
Information data length: k 2m-mt
In a BCH code, every codeword polynomial c(x) can be expressed as c(x)=m(x)g(x), where
g(x) is the generator polynomial and m(x) is the information polynomial.
Definition 3.3 Let α be the primitive element of GF(2m). Let t be the error correction
capability of BCH code. The generator polynomial g(x) of a primitive BCH code is the
minimal degree polynomial with root: α, α2,…αt. g(x) is given by

 0 1 2() { (), (), ()}dg x LCM x x x (11)

Where Ψi is the minimal polynomial of αi.
Generally, the BCH decoding is much more complicated than the encoding. A typical
architecture of BCH code application in a flash memory is presented in Fig. 9.

i

Fig. 9. Architecture of BCH code application in a flash memory

3.1.1 BCH encoding
For a BCH(n,k) code, assuming its generator polynomial is g(x), and the polynomial of the
information to be encoded is m(x) with degree of k-1. The encoding process is as follows:
First, the message m(x) is multiplied by xn-k, and then divided by g(x), thereby obtaing a
quotient q(x) and a remainder r(x) according to equation (12). The remainder r(x) is the
polynomial of the parity information; hence the desired parity bits can be obtained.

Flash Memories

64

divided into two categories: block codes and convolution codes. Hamming codes, Bose-
Chaudur-Hocquenghem(BCH) codes, Reed-Solomon(RS) codes, and Low-density parity-
check (LDPC) codes are most notable block codes and have been widely used in
communication, optical, and other systems.
The encoding/decoding scheme of a block code in a memory is shown in Fig. 8. When any
k-bit information data is written to flash memory, an encoder circuit generates the parity
bits, adds these parity bits to the k-bit information data and creates a n-bit codeword. Then
the whole codeword is written in and stored on a page of the memory array. During the
reading operation, a decoder circuit searches errors in a codeword, and corrects the
erroneous bits within its error capability, thereby recovering the codeword.

Fig. 8. ECC encoding and decoding system in a flash memory

Current NOR flash memory products use Hamming code with only 1-bit error correction.
However, as raw BER increases, 2-bit error corretion BCH code becomes a desired ECC.
Besides, in current 2b/cell NAND flash memory. BCH codes are widely employed to
achieve required storage reliability. As raw BER soars in future 3b/cell NAND flash
memory, BCH codes are not sufficient anymore, and LDPC codes become more and more
necessary for future NAND flash memory products.

3.1 Basics of BCH codes
BCH codes were invented through independent researches by Hocquenghen in 1959 and by
Bose and Ray-Chauduri in 1960. Flash memory uses binary primitive BCH code which is
constructed over the Galois fields GF(2m). Galois field is a finite field in the coding theory
and was first discovered by Evariste Galois. In the following, we will recall some algebraic
notions of GF(2m).
Definition 3.1 Let α be an element of GF(2m), α is called primitive element if the smallest
natural number n that satisfies αn=1 equals 2m -1, that is, n=2m -1.
Theorem 3.1 Every none null element of GF(2m) can be expressed as power of primitive
element α, that is, the multiplicative group GF(2m) is cyclic.
Definition 3.2 GF(2m)[x] is indicated as the set of polynomials of any degree with
coefficients in GF(2m). An irreducible polynomial p(x) in GF(2m)[x] of degree m is called
primitive if the smallest natural number n, such that xn–1 is a multiple of p(x), is n=2m–1.
In fact, if p(x)=xm+am-1xm–1+…+a1x+a0 is a primitive polynomial in GF(p)[x] and α is one of its
roots, then we have

 2 1
0 1 2 1

m m
ma a a a a
 (10)

Error Correction Codes and Signal Processing in Flash Memory

65

Equation (10) indicates that each power of α with degree larger than m can be converted
to a polynomial with degree m-1 at most. As an example, some elements in the field
GF(24), their binary representation, and according poly representation forms are shown in
Table 1.

Element Binary
representation

Polynomial
representation

0 0000 0
α0 1000 1
α1 0100 α
α3 0001 α3
α4 1100 1+α
α5 0110 α+α2
α6 0011 α2+α3

Table 1. Different representations of elements over GF(24)

Based on the Galois fields GF(2m), the BCH(n, k) code is defined as
Codeword length: n = 2m-1
Information data length: k 2m-mt
In a BCH code, every codeword polynomial c(x) can be expressed as c(x)=m(x)g(x), where
g(x) is the generator polynomial and m(x) is the information polynomial.
Definition 3.3 Let α be the primitive element of GF(2m). Let t be the error correction
capability of BCH code. The generator polynomial g(x) of a primitive BCH code is the
minimal degree polynomial with root: α, α2,…αt. g(x) is given by

 0 1 2() { (), (), ()}dg x LCM x x x (11)

Where Ψi is the minimal polynomial of αi.
Generally, the BCH decoding is much more complicated than the encoding. A typical
architecture of BCH code application in a flash memory is presented in Fig. 9.

i

Fig. 9. Architecture of BCH code application in a flash memory

3.1.1 BCH encoding
For a BCH(n,k) code, assuming its generator polynomial is g(x), and the polynomial of the
information to be encoded is m(x) with degree of k-1. The encoding process is as follows:
First, the message m(x) is multiplied by xn-k, and then divided by g(x), thereby obtaing a
quotient q(x) and a remainder r(x) according to equation (12). The remainder r(x) is the
polynomial of the parity information; hence the desired parity bits can be obtained.

Flash Memories

66

 () ()()
() ()

n km x x r xq x
g x g x

 (12)

As mentioned above, any codeword of BCH code is a multiple of the generator polynomial.
Therefore, an encoded codeword c(x) can be expressed as:

 () () ()n kc x m x x r x (13)

3.1.2 BCH decoding
Generally the decoding procedure for binary BCH codes includes three major steps, which is
shown in Fig. 9.
 Step 1: Calculating the syndrome S.
 Step 2: Determining the coefficients of the error-location polynomial.
 Step 3: Finding the error location using Chien Search and correcting the errors.
During the period of data storage in flash memory, the repeated program/erase (P/E) cycles
may damage the stored information; thereby some errors occur in the read operation. The
received codeword can be expressed as r(x) = c(x) + e(x) with the error polynomial
representation e(x) = e0 + e1x + … en-1xn-1
The first step in the BCH decoding is to calculate 2t syndromes with the received r(x). The
computation is given by

 2()() () 1
() ()

i
i

i i

S xr x Q x for i t
x x

 (14)

Where Ψi is the minimal polynomial of element αi, t is the error numbers in codeword. Si(x)
is called syndrome. Since Ψi(αi)=0, the syndrome can also be obtained as Si(αi) = r(αi).

 Si(αi) = r(αi) (15)

From equation (14), it can be seen that the syndrome calculation in the BCH decoding is
similar to the encoding process in equation (12). Hence, they both employ the linear
feedback shift register (LFSR) circuit structure.
The next step is to compute the coefficients of the error-location polynomial using the
obtained syndrome values. The error-location polynomial is defined as

 2
1 21() t

tx x x x (16)

Where and i (1 i t) is the required coefficient.
There are two main methods to compute the coefficients, one is Peterson method and the
other is Berlekamp-Massey algorithm. In the following sections, we will discuss and employ
both methods for error correction in different types of flash memory.
The last step of BCH decoding is Chien search. Chien search is employed to search for the
roots of the error locator polynomial. If the roots are found (i) =0 for 0 i n-1, then the
error location is n-1-i in the codeword. It should be noted that the three modules of a BCH
decoder is commonly designed with three pipeline stages, leading to high throughput of the
BCH decoding.

Error Correction Codes and Signal Processing in Flash Memory

67

3.2 LDPC code
Low-density parity-check (LDPC) codes can provide near-capacity performance. It was
invented by Gallager in 1960, but due to the high complexity in its implementation, LDPC
codes had been forgotten for decades, until Mackey rediscovered LDPC codes in the 1990s.
Since then LDPC codes have attracted much attention.
A LDPC code is given by the null space of a sparse mxn ‘low-density’ parity-check matrix H.
Regular LDPC codes have identical column weight and identical row weight. Each row of H
represents one parity check. Define each row of H as check node (CN), and each column of
H as variable node (VN). A LDPC code can be represented by Tanner graph, which is a
bipartite graph and includes two types of nodes: n variable nodes and m check nodes. In
Tanner graph, the i-th CN is connected to j-th VN, if hi,j=1.
Consider a (6, 3) linear block code with H matrix as

H =
 1 1 1 0 1 0

 1 1 0 1 0 1

 1 0 1 1 1 1

The corresponding Tanner graph is shown in Fig. 10.
The performance of LDPC code depends heavily on parity-check matrix H. Generally
speaking, LDPC code with larger block length, larger column weight and larger girth trends
to have better performance. In Tanner graph, a cycle is defined as a sequential of edges that
form a closed path. Short cycles degrade the performance of LDPC codes, and length of the
shortest cycle in Tanner graph is named as girth.

Fig. 10. The Tanner graph for the given (6, 3) linear block code.

There have been lots of methods to construct parity-check matrix. To reduce the hardware
complexity of LDPC encoder and decoder, quasi-cyclic (QC) LDPC code was proposed and
has widely found its application in wireless communication, satellite communicate and
hard-disk drive.
As for LDPC decoding, there are several iterative decoding algorithms for LDPC codes,
including bit-flipping (BF) like decoding algorithms and soft-decision message-passing
decoding algorithms. Among all BF-like decoding, BF and candidate bit based bit-flipping
(CBBF) can work with only hard-decision information. Other BF-like decoding require soft-
decision information, which incurs large sensing latency penalty in flash memory devices as
discussed later, though they may increase the performance a little bit.
Soft-decision message passing algorithm, such as Sum-product algorithm (SPA), could
provide much better performance than BF-like decoding, upon soft-decision information.
However, the complexity of SPA decoding is very high. To reduce the decoding complexity,
min-sum decoding was proposed, with tolerable performance loss. Readers can refer to
“Channel Codes: Classical and Modern” by Willian E. Ryan and Shu Lin.

Flash Memories

66

 () ()()
() ()

n km x x r xq x
g x g x

 (12)

As mentioned above, any codeword of BCH code is a multiple of the generator polynomial.
Therefore, an encoded codeword c(x) can be expressed as:

 () () ()n kc x m x x r x (13)

3.1.2 BCH decoding
Generally the decoding procedure for binary BCH codes includes three major steps, which is
shown in Fig. 9.
 Step 1: Calculating the syndrome S.
 Step 2: Determining the coefficients of the error-location polynomial.
 Step 3: Finding the error location using Chien Search and correcting the errors.
During the period of data storage in flash memory, the repeated program/erase (P/E) cycles
may damage the stored information; thereby some errors occur in the read operation. The
received codeword can be expressed as r(x) = c(x) + e(x) with the error polynomial
representation e(x) = e0 + e1x + … en-1xn-1
The first step in the BCH decoding is to calculate 2t syndromes with the received r(x). The
computation is given by

 2()() () 1
() ()

i
i

i i

S xr x Q x for i t
x x

 (14)

Where Ψi is the minimal polynomial of element αi, t is the error numbers in codeword. Si(x)
is called syndrome. Since Ψi(αi)=0, the syndrome can also be obtained as Si(αi) = r(αi).

 Si(αi) = r(αi) (15)

From equation (14), it can be seen that the syndrome calculation in the BCH decoding is
similar to the encoding process in equation (12). Hence, they both employ the linear
feedback shift register (LFSR) circuit structure.
The next step is to compute the coefficients of the error-location polynomial using the
obtained syndrome values. The error-location polynomial is defined as

 2
1 21() t

tx x x x (16)

Where and i (1 i t) is the required coefficient.
There are two main methods to compute the coefficients, one is Peterson method and the
other is Berlekamp-Massey algorithm. In the following sections, we will discuss and employ
both methods for error correction in different types of flash memory.
The last step of BCH decoding is Chien search. Chien search is employed to search for the
roots of the error locator polynomial. If the roots are found (i) =0 for 0 i n-1, then the
error location is n-1-i in the codeword. It should be noted that the three modules of a BCH
decoder is commonly designed with three pipeline stages, leading to high throughput of the
BCH decoding.

Error Correction Codes and Signal Processing in Flash Memory

67

3.2 LDPC code
Low-density parity-check (LDPC) codes can provide near-capacity performance. It was
invented by Gallager in 1960, but due to the high complexity in its implementation, LDPC
codes had been forgotten for decades, until Mackey rediscovered LDPC codes in the 1990s.
Since then LDPC codes have attracted much attention.
A LDPC code is given by the null space of a sparse mxn ‘low-density’ parity-check matrix H.
Regular LDPC codes have identical column weight and identical row weight. Each row of H
represents one parity check. Define each row of H as check node (CN), and each column of
H as variable node (VN). A LDPC code can be represented by Tanner graph, which is a
bipartite graph and includes two types of nodes: n variable nodes and m check nodes. In
Tanner graph, the i-th CN is connected to j-th VN, if hi,j=1.
Consider a (6, 3) linear block code with H matrix as

H =
 1 1 1 0 1 0

 1 1 0 1 0 1

 1 0 1 1 1 1

The corresponding Tanner graph is shown in Fig. 10.
The performance of LDPC code depends heavily on parity-check matrix H. Generally
speaking, LDPC code with larger block length, larger column weight and larger girth trends
to have better performance. In Tanner graph, a cycle is defined as a sequential of edges that
form a closed path. Short cycles degrade the performance of LDPC codes, and length of the
shortest cycle in Tanner graph is named as girth.

Fig. 10. The Tanner graph for the given (6, 3) linear block code.

There have been lots of methods to construct parity-check matrix. To reduce the hardware
complexity of LDPC encoder and decoder, quasi-cyclic (QC) LDPC code was proposed and
has widely found its application in wireless communication, satellite communicate and
hard-disk drive.
As for LDPC decoding, there are several iterative decoding algorithms for LDPC codes,
including bit-flipping (BF) like decoding algorithms and soft-decision message-passing
decoding algorithms. Among all BF-like decoding, BF and candidate bit based bit-flipping
(CBBF) can work with only hard-decision information. Other BF-like decoding require soft-
decision information, which incurs large sensing latency penalty in flash memory devices as
discussed later, though they may increase the performance a little bit.
Soft-decision message passing algorithm, such as Sum-product algorithm (SPA), could
provide much better performance than BF-like decoding, upon soft-decision information.
However, the complexity of SPA decoding is very high. To reduce the decoding complexity,
min-sum decoding was proposed, with tolerable performance loss. Readers can refer to
“Channel Codes: Classical and Modern” by Willian E. Ryan and Shu Lin.

Flash Memories

68

4. BCH in NOR flash memory
Usually NOR flash is used for code storage and acts as execute in place (XIP) memory where
CPU fetches instructions directly from memory. The code storage requires a high-reliable
NOR flash memory since any code error will cause a system fault. In addition, NOR flash
memory has fast read access with access time up to 70ns. During read operation, an entire
page, typical of 256 bits, is read out from memory array, and the ECC decoder is inserted in
the critical data path between sense amplifiers and the page latch. The fast read access
imposes a stringent requirement on the latency of the ECC decoder (required <10%
overhead), and the ECC decoder has to be designed in combinational logic. As a result,
decoding latency becomes the primary concern for ECC in NOR Flash memory.
Traditionally, hamming code with single-error-correction (SEC) is applied to NOR flash
memory since it has simple decoding algorithm, small circuit area, and short-latency
decoding. However, in new-generation 3xnm MLC NOR flash memory, the raw BER will
increase up to 10-6 while application requires the post-ECC BER be reduced to 10-12 below.
From Fig. 11, it is clear that hamming code with t=1 is not sufficient anymore, and double-
error-correction (DEC) BCH code gains more attraction in future MLC NOR flash memory.
However, the primary issue with DEC BCH code applied in NOR flash is the decoding
latency. In the following, a fast and adaptive DEC BCH decoding algorithm is proposed and
a high-speed BCH(274,256,2) decoder is designed for NOR flash memory.

10-8 10-7 10-6 10-5 10-4 10-3 10-210-22

10-20

10-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

B
ER

 A
fte

r E
C

C

Raw BER

 no ECC
 Hamming code
 DEC BCH code

Fig. 11. BER curves of different ECC in NOR flash memory with 256-bit page size

4.1 High-speed DEC BCH decoding algorithm
First we employ equation equation (15) for high-speed syndrome computation. The entire
expression of syndromes is

2 2

1 2 2 0 1

1 2 1 2 1

,

 1 1 . 1

() () . ()
(, ,) (. . .)

() () . ()

t
T

t n

n n t n

S S S r H r r r

 (17)

Error Correction Codes and Signal Processing in Flash Memory

69

Here r is the received codeword and H is defined as the parity matrix
 Each element of GF(2m) i can be represented by a m-tuples binary vector, hence each
element in the vector can be obtained using mod-2 addition operation, and all the
syndromes can be obtained with the XOR-tree circuit structure. Furthermore, for binary
BCH codes in flash memory, even-indexed syndromes equal the squares of the other one,
i.e., S2i=Si2, therefore, only odd-indexed syndromes (S1, S3 …S2t-1) are needed to compute.
Then we propose a fast and adaptive decoding algorithm for error location. A direct solving
method based on the Peterson equation is designed to calculate the coefficients of the error-
location polynomial. Peterson equation is show as follows

1 1

2 2 3 1 1

2 1 2 1 1

2 . . .
 . . .

 . .

t t t

t t t

t t t t

S S S S
S S S S

S S S S

 (18)

For DEC BCH code t=2, with the even-indexed syndrome S1, S3, the coefficient 1, 2 can be
obtained by direct solving the above matrix as

2

1 1 2 1 3 1, /S S S S
 (19)

Hence, the error-locator polynomial is given by

 2 2 23
1 2 1 1

1
1 1() ()Sx x x S x S x

S
 (20)

To eliminate the complicate division operation in above equation, a division-free
transform is performed by multiplying both sides by S1 and the new polynomial is
rewritten as (21). Since it always has S1 0 when any error exists in the codeword, this
transform has no influence of error location in Chien search where roots are found in (x)
=0, that is also ’(x) =0.

2 2 3 2

0 1 2 1 1 1 3
' ' ' '() ()x x x S S x S S x

 (21)

The final effort to reduce complexity is to transform the multiplications in the coefficients of
equation (21) to simple modulo-2 operations. As mentioned above, over the field GF(2m),
each syndrome vector (S[0], S[1], . . . S[m-1]) has a corresponding polynomial S(x) = S[0] +
S[1]x+ . . . + S[m-1]xm-1. According to the closure axiom over GF(2m), each component of the
coefficient 1 and 2 is obtained as

 1 1

2 3 1 1

0 1

0 1

'

'

[] [] for ,

[] [] [] [] for , ,

i S j i j m

i S i S j S k i j k m

 (22)

It can be seen that only modulo-2 additions and modulo-2 multiplications are needed to
calculate above equation, which can be realized by XOR and AND logic operations,
respectively. Hardware implementation of the two coefficients in BCH(274, 256, 2) code is

Flash Memories

68

4. BCH in NOR flash memory
Usually NOR flash is used for code storage and acts as execute in place (XIP) memory where
CPU fetches instructions directly from memory. The code storage requires a high-reliable
NOR flash memory since any code error will cause a system fault. In addition, NOR flash
memory has fast read access with access time up to 70ns. During read operation, an entire
page, typical of 256 bits, is read out from memory array, and the ECC decoder is inserted in
the critical data path between sense amplifiers and the page latch. The fast read access
imposes a stringent requirement on the latency of the ECC decoder (required <10%
overhead), and the ECC decoder has to be designed in combinational logic. As a result,
decoding latency becomes the primary concern for ECC in NOR Flash memory.
Traditionally, hamming code with single-error-correction (SEC) is applied to NOR flash
memory since it has simple decoding algorithm, small circuit area, and short-latency
decoding. However, in new-generation 3xnm MLC NOR flash memory, the raw BER will
increase up to 10-6 while application requires the post-ECC BER be reduced to 10-12 below.
From Fig. 11, it is clear that hamming code with t=1 is not sufficient anymore, and double-
error-correction (DEC) BCH code gains more attraction in future MLC NOR flash memory.
However, the primary issue with DEC BCH code applied in NOR flash is the decoding
latency. In the following, a fast and adaptive DEC BCH decoding algorithm is proposed and
a high-speed BCH(274,256,2) decoder is designed for NOR flash memory.

10-8 10-7 10-6 10-5 10-4 10-3 10-210-22

10-20

10-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

B
ER

 A
fte

r E
C

C

Raw BER

 no ECC
 Hamming code
 DEC BCH code

Fig. 11. BER curves of different ECC in NOR flash memory with 256-bit page size

4.1 High-speed DEC BCH decoding algorithm
First we employ equation equation (15) for high-speed syndrome computation. The entire
expression of syndromes is

2 2

1 2 2 0 1

1 2 1 2 1

,

 1 1 . 1

() () . ()
(, ,) (. . .)

() () . ()

t
T

t n

n n t n

S S S r H r r r

 (17)

Error Correction Codes and Signal Processing in Flash Memory

69

Here r is the received codeword and H is defined as the parity matrix
 Each element of GF(2m) i can be represented by a m-tuples binary vector, hence each
element in the vector can be obtained using mod-2 addition operation, and all the
syndromes can be obtained with the XOR-tree circuit structure. Furthermore, for binary
BCH codes in flash memory, even-indexed syndromes equal the squares of the other one,
i.e., S2i=Si2, therefore, only odd-indexed syndromes (S1, S3 …S2t-1) are needed to compute.
Then we propose a fast and adaptive decoding algorithm for error location. A direct solving
method based on the Peterson equation is designed to calculate the coefficients of the error-
location polynomial. Peterson equation is show as follows

1 1

2 2 3 1 1

2 1 2 1 1

2 . . .
 . . .

 . .

t t t

t t t

t t t t

S S S S
S S S S

S S S S

 (18)

For DEC BCH code t=2, with the even-indexed syndrome S1, S3, the coefficient 1, 2 can be
obtained by direct solving the above matrix as

2

1 1 2 1 3 1, /S S S S
 (19)

Hence, the error-locator polynomial is given by

 2 2 23
1 2 1 1

1
1 1() ()Sx x x S x S x

S
 (20)

To eliminate the complicate division operation in above equation, a division-free
transform is performed by multiplying both sides by S1 and the new polynomial is
rewritten as (21). Since it always has S1 0 when any error exists in the codeword, this
transform has no influence of error location in Chien search where roots are found in (x)
=0, that is also ’(x) =0.

2 2 3 2

0 1 2 1 1 1 3
' ' ' '() ()x x x S S x S S x

 (21)

The final effort to reduce complexity is to transform the multiplications in the coefficients of
equation (21) to simple modulo-2 operations. As mentioned above, over the field GF(2m),
each syndrome vector (S[0], S[1], . . . S[m-1]) has a corresponding polynomial S(x) = S[0] +
S[1]x+ . . . + S[m-1]xm-1. According to the closure axiom over GF(2m), each component of the
coefficient 1 and 2 is obtained as

 1 1

2 3 1 1

0 1

0 1

'

'

[] [] for ,

[] [] [] [] for , ,

i S j i j m

i S i S j S k i j k m

 (22)

It can be seen that only modulo-2 additions and modulo-2 multiplications are needed to
calculate above equation, which can be realized by XOR and AND logic operations,
respectively. Hardware implementation of the two coefficients in BCH(274, 256, 2) code is

Flash Memories

70

shown in Fig. 12. It can be seen that coefficient 1 is implemented with only six 2-input XOR
gates and coefficient 2 can be realized by regular XOR-tree circuit structure. As a result, the
direct solving method is very effective to simplify the decoding algorithm, thereby reduce
the decoding latency significantly.

Fig. 12. Implementation of the two coefficient in BCH(274,256,2)

Further, an adaptive decoding architecture is proposed with the reliability feature of flash
memory. As mentioned above, flash memory reliability is decreased as memory is used. For
the worst case of multi-bit errors in flash memory, 1-bit error is more likely happened in the
whole life of flash memory (R. Micheloni, R. Ravasio & A. Marelli, 2006). Therefore, the best-
effort is to design a self-adaptive DEC BCH decoding which is able to dynamically perform
error correction according to the number of errors. Average decoding latency and power
consumption can be reduced.
The first step to perform self-adaptive decoding is to detect the weight-of-error pattern in
the codeword, which can be obtained with Massey syndrome matrix.

1

3 2 1

2 1 2 2 2 1

 1 0 0
 0

j

j j j j

S
L S S S

S S S S

 (23)

where Sj denotes each syndrome value (1≤j≤2t-1).
With this syndrome matrix, the weight-of-error pattern can be bounded by the expression of
det(L1), det(L2), …, det(Lt). For a DEC BCH code in NOR flash memory, the weight-of-error
pattern is illustrated as follows
 If there is no error, then det(L1) = 0, det(L2) = 0, that is,

1

3
1 30 0, S S S (24)

 If there are 1-bit errors, then det(L1)≠0, det(L2) = 0, that is

1

3
1 30 0, S S S (25)

 If there are 2-bit errors, then det(L1)≠0, det(L2)≠0, that is

1

3
1 30 0, S S S (26)

Error Correction Codes and Signal Processing in Flash Memory

71

Let define R= S13 + S3. It is obvious that variable R determines the number of errors in the
codeword. On the basis of this observation, the Chien search expression partition is
presented in the following:
 Chien search expression for SEC

 1

2
1() ()i i

SEC S S for 2m - n ≤ i ≤2m –1 (27)

 Chien search expression for DEC

2() () ()i i i

DEC SEC R for 2m - n ≤ i ≤2m –1 (28)

Though above equations are mathematically equivalent to original expression in equation
(21), this reformulation make the Chien search for SEC able to be launched once the
syndrome S1 is calculated. Therefore, a short-path implementation is achieved for SEC
decoding in a DEC BCH code. In addition, expression (27) is included in expression (28),
hence, no extra arithmetic operation is required for the faster SEC decoding within the DEC
BCH decoding. Since variable R indicates the number of errors, it is served as the internal
selection signal of SEC decoding or DEC decoding. As a result, self-adaptive decoding is
achieved with above proposed BCH decoding algorithm reformulation.
To meet the decoding latency requirement, bit-parallel Chien search has to be adopted. Bit-
parallel Chien search performs all the substitutions of (28) of n elements in a parallel way,
and each substitution has m sub-elements over GF(2m). Obviously, this will increase the
complexity drasmatically. For BCH(274, 256, 2) code, the Chien search module has 2466
expression, each can be implemented with a XOR-tree. In (X. Wang, D. Wu & C. Hu, 2009),
an optimization method based on common subexpression elimination (CSE) is employed to
optimize and reduce the logic complexity.

4.2 High-speed BCH decoder implementation
Based on the proposed algorithm, a high-speed self-adaptive DEC BCH decoder is design
and its architecture is depicted in Fig. 13. Once the input codeword is received from NOR
flash memory array, the two syndromes S1, S3 are firstly obtained by 18 parallel XOR-trees.
Then, the proposed fast-decoding algorithm is employed to calculate the coefficients of error
location polynomial in the R calculator module. Meanwhile, a short-path is implemented for
SEC decoding once the syndrome value S1 is obtained. Finally, variable R determines
whether SEC decoding or DEC decoding should be performed and selects the according
data path at the output.

Fig. 13. Block diagram of the proposed DEC BCH decoder.

The performance of an embedded BCH (274,256,2) decoder in NOR flash memory is
summarized in Table 2. The decoder is synthesized with Design Compiler and implemented
in 180nm CMOS process. It has 2-bit error correction capability and achieves decoding

Flash Memories

70

shown in Fig. 12. It can be seen that coefficient 1 is implemented with only six 2-input XOR
gates and coefficient 2 can be realized by regular XOR-tree circuit structure. As a result, the
direct solving method is very effective to simplify the decoding algorithm, thereby reduce
the decoding latency significantly.

Fig. 12. Implementation of the two coefficient in BCH(274,256,2)

Further, an adaptive decoding architecture is proposed with the reliability feature of flash
memory. As mentioned above, flash memory reliability is decreased as memory is used. For
the worst case of multi-bit errors in flash memory, 1-bit error is more likely happened in the
whole life of flash memory (R. Micheloni, R. Ravasio & A. Marelli, 2006). Therefore, the best-
effort is to design a self-adaptive DEC BCH decoding which is able to dynamically perform
error correction according to the number of errors. Average decoding latency and power
consumption can be reduced.
The first step to perform self-adaptive decoding is to detect the weight-of-error pattern in
the codeword, which can be obtained with Massey syndrome matrix.

1

3 2 1

2 1 2 2 2 1

 1 0 0
 0

j

j j j j

S
L S S S

S S S S

 (23)

where Sj denotes each syndrome value (1≤j≤2t-1).
With this syndrome matrix, the weight-of-error pattern can be bounded by the expression of
det(L1), det(L2), …, det(Lt). For a DEC BCH code in NOR flash memory, the weight-of-error
pattern is illustrated as follows
 If there is no error, then det(L1) = 0, det(L2) = 0, that is,

1

3
1 30 0, S S S (24)

 If there are 1-bit errors, then det(L1)≠0, det(L2) = 0, that is

1

3
1 30 0, S S S (25)

 If there are 2-bit errors, then det(L1)≠0, det(L2)≠0, that is

1

3
1 30 0, S S S (26)

Error Correction Codes and Signal Processing in Flash Memory

71

Let define R= S13 + S3. It is obvious that variable R determines the number of errors in the
codeword. On the basis of this observation, the Chien search expression partition is
presented in the following:
 Chien search expression for SEC

 1

2
1() ()i i

SEC S S for 2m - n ≤ i ≤2m –1 (27)

 Chien search expression for DEC

2() () ()i i i

DEC SEC R for 2m - n ≤ i ≤2m –1 (28)

Though above equations are mathematically equivalent to original expression in equation
(21), this reformulation make the Chien search for SEC able to be launched once the
syndrome S1 is calculated. Therefore, a short-path implementation is achieved for SEC
decoding in a DEC BCH code. In addition, expression (27) is included in expression (28),
hence, no extra arithmetic operation is required for the faster SEC decoding within the DEC
BCH decoding. Since variable R indicates the number of errors, it is served as the internal
selection signal of SEC decoding or DEC decoding. As a result, self-adaptive decoding is
achieved with above proposed BCH decoding algorithm reformulation.
To meet the decoding latency requirement, bit-parallel Chien search has to be adopted. Bit-
parallel Chien search performs all the substitutions of (28) of n elements in a parallel way,
and each substitution has m sub-elements over GF(2m). Obviously, this will increase the
complexity drasmatically. For BCH(274, 256, 2) code, the Chien search module has 2466
expression, each can be implemented with a XOR-tree. In (X. Wang, D. Wu & C. Hu, 2009),
an optimization method based on common subexpression elimination (CSE) is employed to
optimize and reduce the logic complexity.

4.2 High-speed BCH decoder implementation
Based on the proposed algorithm, a high-speed self-adaptive DEC BCH decoder is design
and its architecture is depicted in Fig. 13. Once the input codeword is received from NOR
flash memory array, the two syndromes S1, S3 are firstly obtained by 18 parallel XOR-trees.
Then, the proposed fast-decoding algorithm is employed to calculate the coefficients of error
location polynomial in the R calculator module. Meanwhile, a short-path is implemented for
SEC decoding once the syndrome value S1 is obtained. Finally, variable R determines
whether SEC decoding or DEC decoding should be performed and selects the according
data path at the output.

Fig. 13. Block diagram of the proposed DEC BCH decoder.

The performance of an embedded BCH (274,256,2) decoder in NOR flash memory is
summarized in Table 2. The decoder is synthesized with Design Compiler and implemented
in 180nm CMOS process. It has 2-bit error correction capability and achieves decoding

Flash Memories

72

latency of 4.60ns. In addition, it can be seen that the self-adaptive decoding is very effective
to speed up the decoding and reduce the power consumption for 1-bit error correction. The
DEC BCH decoder satisfies the short latency and high reliability requirement of NOR flash
memory.

Code Parameter BCH(274, 256) codes
Information data 256 bits
Parity bits 18 bits
Syndrome time 1.66ns

Data output time 1-bit error 3.53ns
2-bit errors 4.60ns

Power consumption
(Vdd=1.8V, T=70ns)

1-bit error 0.51mW
2-bit error 1.25mW

Cell area 0.251 mm2

Table 2. Performance of a high-speed and self-adaptive DEC BCH decoder

5. LDPC ECC in NAND flash memory
As raw BER in NAND flash increases to close to 10-2 at its life end, hard-decision ECC, such
as BCH code, is not sufficient any more, and such more powerful soft-decision ECC as
LDPC code becomes necessary. The outstanding performance of LDPC code is based on
soft-decision information.

5.1 Soft-decision log-likelihood information from NAND flash
Denote the sensed threshold voltage of a cell as Vth, the distribution of erase state as ,
the distribution of programmed states as , where is the index of
programmed state. Denote as the set of the states whose -th bit is 0. Thus, given the ,
the LLR of i-th code bit in one cell is:

 (29)

Clearly, LLR calculation demands the knowledge of the probability density functions of all
the states, and threshold voltage of concerned cells.
There exist many kinds of noises, such as cell-to-cell interference, random-telegraph noise,
retention process and so on, therefore it would be unfeasible to derive the closed-form
distribution of each state, given the NAND flash channel model that captures all those noise
sources. We can rely on Monte Carlo simulation with random input to get the distribution of
all states after being interrupted by several noise sources in NAND flash channel. With
random data to be programmed into NAND flash cells, we run a large amount of simulation
on the NAND flash channel model to get the distribution of all states, and the obtained
threshold voltage distribution would be very close to real distribution under a large amount
of simulation. In practice, the distribution of can be obtained through fine-grained
sensing on large amount of blocks.

Error Correction Codes and Signal Processing in Flash Memory

73

In sensing flash cell, a number of reference voltages are serially applied to the
corresponding control gate to see if the sensed cell conduct, thus the sensing result is not the
exact target threshold voltage but a range which covers the concerned threshold voltage.
Denote the sensed range as (and are two adjacent reference voltages). There
is be .
Example 2: Let’s consider a 2-bit-per-cell flash cell with threshold voltage of 1.3V. Suppose
the reference voltage starts from 0V, with incremental step of 0.3V. The reference voltages
applied to the flash cell is: 0, 0.3V, 0.6V, 0.9V, 1.2V, 1.5V ... This cell will not be open until the
reference voltage of 1.5V is applied, so the sensing result is that the threshold voltage of this
cell stays among (1.2, 1.5].
The corresponding LLR of i-th bit in one cell is then calculated as

 (30)

5.2 Performance of LDPC code in NAND flash
With the NAND flash model presented in section 2 and the same parameters as those in
Example 1, the performances of (34520, 32794, 107) BCH code and (34520, 32794) QC-LDPC
codes with column weight 4 are presented in Fig. 14, where floating point sensing is
assumed on NAND flash cells. The performance advantage of LDPC code is obvious.

0 2000 4000 6000 8000 10000

10-3

10-2

10-1

100

Cycling

P
E

R

LDPC
BCH

Fig. 14. Page error rate performances of LDPC and BCH codes with the same coding rate
under various program/erase cycling.

5.3 Non-uniform sensing in NAND flash for soft-decision information
As mentioned above, sensing flash cell is performed through applying different reference
voltages to check if the cell can open, so the sensing latency directly depends on the number of
applied sensing levels. To provide soft-decision information, considerable amount of sensing
levels are necessary, thus the sensing latency is very high compared to hard-decision sensing.

Flash Memories

72

latency of 4.60ns. In addition, it can be seen that the self-adaptive decoding is very effective
to speed up the decoding and reduce the power consumption for 1-bit error correction. The
DEC BCH decoder satisfies the short latency and high reliability requirement of NOR flash
memory.

Code Parameter BCH(274, 256) codes
Information data 256 bits
Parity bits 18 bits
Syndrome time 1.66ns

Data output time 1-bit error 3.53ns
2-bit errors 4.60ns

Power consumption
(Vdd=1.8V, T=70ns)

1-bit error 0.51mW
2-bit error 1.25mW

Cell area 0.251 mm2

Table 2. Performance of a high-speed and self-adaptive DEC BCH decoder

5. LDPC ECC in NAND flash memory
As raw BER in NAND flash increases to close to 10-2 at its life end, hard-decision ECC, such
as BCH code, is not sufficient any more, and such more powerful soft-decision ECC as
LDPC code becomes necessary. The outstanding performance of LDPC code is based on
soft-decision information.

5.1 Soft-decision log-likelihood information from NAND flash
Denote the sensed threshold voltage of a cell as Vth, the distribution of erase state as ,
the distribution of programmed states as , where is the index of
programmed state. Denote as the set of the states whose -th bit is 0. Thus, given the ,
the LLR of i-th code bit in one cell is:

 (29)

Clearly, LLR calculation demands the knowledge of the probability density functions of all
the states, and threshold voltage of concerned cells.
There exist many kinds of noises, such as cell-to-cell interference, random-telegraph noise,
retention process and so on, therefore it would be unfeasible to derive the closed-form
distribution of each state, given the NAND flash channel model that captures all those noise
sources. We can rely on Monte Carlo simulation with random input to get the distribution of
all states after being interrupted by several noise sources in NAND flash channel. With
random data to be programmed into NAND flash cells, we run a large amount of simulation
on the NAND flash channel model to get the distribution of all states, and the obtained
threshold voltage distribution would be very close to real distribution under a large amount
of simulation. In practice, the distribution of can be obtained through fine-grained
sensing on large amount of blocks.

Error Correction Codes and Signal Processing in Flash Memory

73

In sensing flash cell, a number of reference voltages are serially applied to the
corresponding control gate to see if the sensed cell conduct, thus the sensing result is not the
exact target threshold voltage but a range which covers the concerned threshold voltage.
Denote the sensed range as (and are two adjacent reference voltages). There
is be .
Example 2: Let’s consider a 2-bit-per-cell flash cell with threshold voltage of 1.3V. Suppose
the reference voltage starts from 0V, with incremental step of 0.3V. The reference voltages
applied to the flash cell is: 0, 0.3V, 0.6V, 0.9V, 1.2V, 1.5V ... This cell will not be open until the
reference voltage of 1.5V is applied, so the sensing result is that the threshold voltage of this
cell stays among (1.2, 1.5].
The corresponding LLR of i-th bit in one cell is then calculated as

 (30)

5.2 Performance of LDPC code in NAND flash
With the NAND flash model presented in section 2 and the same parameters as those in
Example 1, the performances of (34520, 32794, 107) BCH code and (34520, 32794) QC-LDPC
codes with column weight 4 are presented in Fig. 14, where floating point sensing is
assumed on NAND flash cells. The performance advantage of LDPC code is obvious.

0 2000 4000 6000 8000 10000

10-3

10-2

10-1

100

Cycling

P
E

R

LDPC
BCH

Fig. 14. Page error rate performances of LDPC and BCH codes with the same coding rate
under various program/erase cycling.

5.3 Non-uniform sensing in NAND flash for soft-decision information
As mentioned above, sensing flash cell is performed through applying different reference
voltages to check if the cell can open, so the sensing latency directly depends on the number of
applied sensing levels. To provide soft-decision information, considerable amount of sensing
levels are necessary, thus the sensing latency is very high compared to hard-decision sensing.

Flash Memories

74

Soft-decision sensing increases not only the sensing latency, but also the data transfer latency
from page buffer to flash controller, since these data is transferred in serial.
Example 3: Let’s consider a 2-bit-per-cell flash cell with threshold voltage of 1.3V. Suppose
the hard reference voltages as 0, 0.6V and 1.2V respectively. Suppose sensing one reference
voltage takes 8us. The page size is 2K bytes and I/O bus works as 100M Hz with 8-bit
width. For hard-decision sensing, we need to apply all three hard reference voltages to sense
it out, resulting in sensing latency of 24us. To sense a page for soft-decision information
with 5-bit precision, we need us, more than ten times the hard-decision sensing
latency. With 5-bit soft-decision information per cell, the total amount of data is increased by
2.5 times, thus the data transfer latency is increased by 2.5 times, from 20.48 us to
51.2us. The overall sensing and transfer latency jumps to 51.2+256=307.2 us from
20.48+24=44.48 us.
Based on above discussion, it is highly desirable to reduce the amount of soft-decision
sensing levels for the implementation of soft-decision ECC. Conventional design practice
tends to simply use a uniform fine-grained soft-decision memory sensing strategy as
illustrated in Fig. 15, where soft-decision reference voltages are uniformly distributed
between two adjacent hard-decision reference voltages.

Fig. 15. Illustration of the straightforward uniform soft-decision memory sensing. Note that
soft-decision reference voltages are uniformly distributed between any two adjacent hard-
decision reference voltages.

Intuitively, since most overlap between two adjacent states occurs around the corresponding
hard-decision reference voltage (i.e., the boundary of two adjacent states) as illustrated in
Fig. 15, it should be desirable to sense such region with a higher precision and leave the
remainder region with less sensing precision or even no sensing. This is a non-uniform or
non-linear memory sensing strategy, through which the same amount of sensing voltages is
expected to provide more information.
Given a sensed threshold voltage Vth, its entropy can be obtained as

 (31)

Where

Error Correction Codes and Signal Processing in Flash Memory

75

 (32)

For one given programmed flash memory cell, there are always just one or two items being
dominating among all the items for the calculation of . Outside of the
dominating overlap region, there is only one dominating item very close to 1 while all the
other items being almost 0, so the entropy will be very small. On the other hand, within the
dominating overlap region, there are two relatively dominating items among all the

 items, and both of them are close to 0.5 if locates close to the hard-
decision reference voltage, i.e., the boundary of two adjacent states, which will result in a
relatively large entropy value . Clearly the region with large entropy tends to demand a
higher sensing precision. So, it is intuitive to apply a non-uniform memory sensing strategy as
illustrated in Fig. 16. Associated with each hard-decision reference voltage at the boundary of
two adjacent states, a so-called dominating overlap region is defined and uniform memory
sensing is executed only within each dominating overlap region.
Given the sensed of a memory cell, the value of entropy is mainly determined by
two largest probability items, and this translates into the ratio between the two largest
probability items. Therefore, such a design trade-off can be adjusted by a probability ratio

, i.e., let denote the dominating overlap region between two adjacent states, we
can determine the border and by solving

 (33)

Fig. 16 Illustration of the proposed non-uniform sensing strategy. Dominating overlap
region is around hard-decision reference voltage, and all the sensing reference voltages only
distribute within those dominating overlap regions.

Since each dominating overlap region contains one hard-decision reference voltage and two
borders, at least sensing levels should be used in non-uniform sensing. Simulation
results on BER performance of rate-19/20 (34520, 32794) LDPC codes in uniform and non-
uniform sensing under various cell-to-cell interference strengths for 2 bits/cell NAND flash
are presented in Fig. 17. Note that at least 9 non-uniform sensing levels is required for non-
uniform sensing for 2 bits/cell flash. The probability ratio is set as 512. Observe that

Flash Memories

74

Soft-decision sensing increases not only the sensing latency, but also the data transfer latency
from page buffer to flash controller, since these data is transferred in serial.
Example 3: Let’s consider a 2-bit-per-cell flash cell with threshold voltage of 1.3V. Suppose
the hard reference voltages as 0, 0.6V and 1.2V respectively. Suppose sensing one reference
voltage takes 8us. The page size is 2K bytes and I/O bus works as 100M Hz with 8-bit
width. For hard-decision sensing, we need to apply all three hard reference voltages to sense
it out, resulting in sensing latency of 24us. To sense a page for soft-decision information
with 5-bit precision, we need us, more than ten times the hard-decision sensing
latency. With 5-bit soft-decision information per cell, the total amount of data is increased by
2.5 times, thus the data transfer latency is increased by 2.5 times, from 20.48 us to
51.2us. The overall sensing and transfer latency jumps to 51.2+256=307.2 us from
20.48+24=44.48 us.
Based on above discussion, it is highly desirable to reduce the amount of soft-decision
sensing levels for the implementation of soft-decision ECC. Conventional design practice
tends to simply use a uniform fine-grained soft-decision memory sensing strategy as
illustrated in Fig. 15, where soft-decision reference voltages are uniformly distributed
between two adjacent hard-decision reference voltages.

Fig. 15. Illustration of the straightforward uniform soft-decision memory sensing. Note that
soft-decision reference voltages are uniformly distributed between any two adjacent hard-
decision reference voltages.

Intuitively, since most overlap between two adjacent states occurs around the corresponding
hard-decision reference voltage (i.e., the boundary of two adjacent states) as illustrated in
Fig. 15, it should be desirable to sense such region with a higher precision and leave the
remainder region with less sensing precision or even no sensing. This is a non-uniform or
non-linear memory sensing strategy, through which the same amount of sensing voltages is
expected to provide more information.
Given a sensed threshold voltage Vth, its entropy can be obtained as

 (31)

Where

Error Correction Codes and Signal Processing in Flash Memory

75

 (32)

For one given programmed flash memory cell, there are always just one or two items being
dominating among all the items for the calculation of . Outside of the
dominating overlap region, there is only one dominating item very close to 1 while all the
other items being almost 0, so the entropy will be very small. On the other hand, within the
dominating overlap region, there are two relatively dominating items among all the

 items, and both of them are close to 0.5 if locates close to the hard-
decision reference voltage, i.e., the boundary of two adjacent states, which will result in a
relatively large entropy value . Clearly the region with large entropy tends to demand a
higher sensing precision. So, it is intuitive to apply a non-uniform memory sensing strategy as
illustrated in Fig. 16. Associated with each hard-decision reference voltage at the boundary of
two adjacent states, a so-called dominating overlap region is defined and uniform memory
sensing is executed only within each dominating overlap region.
Given the sensed of a memory cell, the value of entropy is mainly determined by
two largest probability items, and this translates into the ratio between the two largest
probability items. Therefore, such a design trade-off can be adjusted by a probability ratio

, i.e., let denote the dominating overlap region between two adjacent states, we
can determine the border and by solving

 (33)

Fig. 16 Illustration of the proposed non-uniform sensing strategy. Dominating overlap
region is around hard-decision reference voltage, and all the sensing reference voltages only
distribute within those dominating overlap regions.

Since each dominating overlap region contains one hard-decision reference voltage and two
borders, at least sensing levels should be used in non-uniform sensing. Simulation
results on BER performance of rate-19/20 (34520, 32794) LDPC codes in uniform and non-
uniform sensing under various cell-to-cell interference strengths for 2 bits/cell NAND flash
are presented in Fig. 17. Note that at least 9 non-uniform sensing levels is required for non-
uniform sensing for 2 bits/cell flash. The probability ratio is set as 512. Observe that

Flash Memories

76

Fig. 17. Performance of LDPC code when using the non-uniform and uniform sensing
schemes with various sensing level configurations.

15-level non-uniform sensing provides almost the same performance as 31-level uniform
sensing, corresponding to about 50% sensing latency reduction. 9-level non-uniform sensing
performs very closely to 15-level uniform sensing, corresponding to about 40% sensing
latency reduction.

6. Signal processing for NAND flash memory
As discussed above, as technology continues to scale down and hence adjacent cells become
closer, parasitic coupling capacitance between adjacent cells continues to increase and results
in increasingly severe cell-to-cell interference. Some study has clearly identified cell-to-cell
interference as the major challenge for future NAND flash memory scaling. So it is of
paramount importance to develop techniques that can either minimize or tolerate cell-to-cell
interference. Lots of prior work has been focusing on how to minimize cell-to-cell interference
through device/circuit techniques such as word-line and/or bit-line shielding. This section
presents to employ signal processing techniques to tolerate cell-to-cell interference.
According to the formation of cell-to-cell interference, it is essentially the same as inter-
symbol interference encountered in many communication channels. This directly enables
the feasibility of applying the basic concepts of post-compensation, a well known signal
processing techniques being widely used to handle inter-symbol interference in
communication channel, to tolerate cell-to-cell interference.

6.1 Technique I: Post-compensation
It is clear that, if we know the threshold voltage shift of interfering cells, we can estimate the
corresponding cell-to-cell interference strength and subsequently subtract it from the sensed
threshold voltage of victim cells. Let denote the sensed threshold voltage of the -th
interfering cell and denote the mean of erased state, we can estimate the threshold
voltage shift of each interfering cell as . Let denote the mean of the
corresponding coupling ratio, we can estimate the strength of cell-to-cell interference as

Error Correction Codes and Signal Processing in Flash Memory

77

 (34)

Therefore, we can post-compensate cell-to-cell interference by subtracting estimated from
the sensed threshold voltage of victim cells. In [Dong, Li & Zhang, 2010], the authors presents
simulation result of post-compensation on one initial NAND flash channel with the odd/even
structure. Fig. 18 shows the threshold voltage distribution before and after post-compensation.
It’s obvious that post-compensation technique can effectively cancel interference.
Note that the sensing quantization precision directly determines the trade-off between the cell-
to-cell interference compensation effectiveness and induced overhead. Fig. 19 and Fig. 20 show
the simulated BER vs. cell-to-cell coupling strength factor for even and odd pages, where 32-
level and 16-level uniform sensing quantization schemes are considered. Simulation results
clearly show the impact of sensing precision on the BER performance. Under 32-level sensing,
post-compensation could provide large BER performance improvement, while 16-level sensing
degrades the odd cells’ performance when cell-to-cell interference strength is low.

Fig. 18. Simulated victim cell threshold voltage distribution before and after post-
compensation.

Reverse Programming for Reading Consecutive Pages
To execute post-compensation for concerned page, we need the threshold voltage
information of its interfering page. When consecutive pages are to be read, information on
the interfering pages become inherently available, hence we can capture the approximate
threshold voltage shift and estimate the corresponding cell-to-cell interference on the fly
during the read operations for compensation.
Since sensing operation takes considerable latency, it would be feasible to run ECC
decoding on the concerned page first, and sensing the interfering page will not be started
until that ECC decoding fails, or will be started while ECC decoding is running.

Flash Memories

76

Fig. 17. Performance of LDPC code when using the non-uniform and uniform sensing
schemes with various sensing level configurations.

15-level non-uniform sensing provides almost the same performance as 31-level uniform
sensing, corresponding to about 50% sensing latency reduction. 9-level non-uniform sensing
performs very closely to 15-level uniform sensing, corresponding to about 40% sensing
latency reduction.

6. Signal processing for NAND flash memory
As discussed above, as technology continues to scale down and hence adjacent cells become
closer, parasitic coupling capacitance between adjacent cells continues to increase and results
in increasingly severe cell-to-cell interference. Some study has clearly identified cell-to-cell
interference as the major challenge for future NAND flash memory scaling. So it is of
paramount importance to develop techniques that can either minimize or tolerate cell-to-cell
interference. Lots of prior work has been focusing on how to minimize cell-to-cell interference
through device/circuit techniques such as word-line and/or bit-line shielding. This section
presents to employ signal processing techniques to tolerate cell-to-cell interference.
According to the formation of cell-to-cell interference, it is essentially the same as inter-
symbol interference encountered in many communication channels. This directly enables
the feasibility of applying the basic concepts of post-compensation, a well known signal
processing techniques being widely used to handle inter-symbol interference in
communication channel, to tolerate cell-to-cell interference.

6.1 Technique I: Post-compensation
It is clear that, if we know the threshold voltage shift of interfering cells, we can estimate the
corresponding cell-to-cell interference strength and subsequently subtract it from the sensed
threshold voltage of victim cells. Let denote the sensed threshold voltage of the -th
interfering cell and denote the mean of erased state, we can estimate the threshold
voltage shift of each interfering cell as . Let denote the mean of the
corresponding coupling ratio, we can estimate the strength of cell-to-cell interference as

Error Correction Codes and Signal Processing in Flash Memory

77

 (34)

Therefore, we can post-compensate cell-to-cell interference by subtracting estimated from
the sensed threshold voltage of victim cells. In [Dong, Li & Zhang, 2010], the authors presents
simulation result of post-compensation on one initial NAND flash channel with the odd/even
structure. Fig. 18 shows the threshold voltage distribution before and after post-compensation.
It’s obvious that post-compensation technique can effectively cancel interference.
Note that the sensing quantization precision directly determines the trade-off between the cell-
to-cell interference compensation effectiveness and induced overhead. Fig. 19 and Fig. 20 show
the simulated BER vs. cell-to-cell coupling strength factor for even and odd pages, where 32-
level and 16-level uniform sensing quantization schemes are considered. Simulation results
clearly show the impact of sensing precision on the BER performance. Under 32-level sensing,
post-compensation could provide large BER performance improvement, while 16-level sensing
degrades the odd cells’ performance when cell-to-cell interference strength is low.

Fig. 18. Simulated victim cell threshold voltage distribution before and after post-
compensation.

Reverse Programming for Reading Consecutive Pages
To execute post-compensation for concerned page, we need the threshold voltage
information of its interfering page. When consecutive pages are to be read, information on
the interfering pages become inherently available, hence we can capture the approximate
threshold voltage shift and estimate the corresponding cell-to-cell interference on the fly
during the read operations for compensation.
Since sensing operation takes considerable latency, it would be feasible to run ECC
decoding on the concerned page first, and sensing the interfering page will not be started
until that ECC decoding fails, or will be started while ECC decoding is running.

Flash Memories

78

Fig. 19. Simulated BER performance of even cells when post-compensation is used.

Fig. 20. Simulated BER performance of odd cells when post-compensation is used.

Note that pages are generally programmed and read both in the same order, i.e. page with
lower index is programmed and read prior to page with higher index in consecutive case.
Since later programmed page imposes interference on previously programmed neighbor
page, as a result, one victim page is read before its interfering page is read in reading
consecutive pages, hence extra read latency is needed to wait for reading interfering page of
each concerned page. In the case of consecutive pages reading, all consecutive pages are
concerned pages, and each page acts as the interfering page to the previous page and
meanwhile is the victim page of the next page. Intuitively, reversing the order of
programming pages to be descending order, i.e., pages with lower index are programmed
latter, meanwhile reading pages in the ascending order can eliminate this extra read latency
in reading consecutive pages. This is named as reverse programming scheme.
In this case, when we read those consecutive pages, after one page is read, it can naturally
serve to compensate cell-to-cell interference for the page being read later. Therefore the extra
sensing latency on waiting for sensing interfering page is naturally eliminated. Note that this
reverse programming does not influence the sensing latency of reading individual pages.

Error Correction Codes and Signal Processing in Flash Memory

79

6.2 Technique II: Pre-distortion
Pre-distortion or pre-coding technique widely used in communication system can also be
used in NAND flash: Before a page is programmed, if its interfering pages are also known,
we can predict the threshold voltage shift induced by cell-to-cell interference for each victim
cell, and then correspondingly pre-distort the victim cell target programming voltage.
Hence, after its interfering pages are programmed, the pre-distorted victim cell threshold
voltages is expected to shift to its desired location by cell-to-cell interference.
Let denote the expected threshold voltage of the -th interfering cell after programming
and denote the mean of erased state, we can predict the cell-to-cell interference
experienced by the victim cell as

 (35)

Let denote the target verify voltage of the victim cell in programming operation, we can
pre-distort the victim cell by shifting the verify voltage from to . The threshold
voltage of the victim cell will be shifted towards its desired location after the occurrence of cell-
to-cell interference. It should be emphasized that, since we cannot change the threshold
voltage if the victim cell should stay at the erased state, this pre-distortion scheme can only
handle cell-to-cell interference for those programmed states but is not effective for erased state.
Fig. 21 illustrates the process of pre-distortion, where the verify voltage is assumed to be
able to be adjusted with a floating-point precision. Clearly, this technique can be considered
as a counterpart of the post-compensation technique.

Fig. 21. Illustration of threshold voltage distribution of victim even cells in even/odd
structure when data pre-distortion is being used.

Fig.22 shows the cell threshold distribution with the cell-to-cell interference strength factor
 under the same initial NAND flash channel model as in above subsection, where

the pre-distortion is assumed to be able to be adjusted with a floating-point precision.
Fig. 23 shows the simulated BER of even cells over a range of cell-to-cell interference
strength factor s. Besides the ideal floating point precision, pre-distortion with finite
precision is also shown, where the range of pre-distorted is quantized into either 16 or 32

Flash Memories

78

Fig. 19. Simulated BER performance of even cells when post-compensation is used.

Fig. 20. Simulated BER performance of odd cells when post-compensation is used.

Note that pages are generally programmed and read both in the same order, i.e. page with
lower index is programmed and read prior to page with higher index in consecutive case.
Since later programmed page imposes interference on previously programmed neighbor
page, as a result, one victim page is read before its interfering page is read in reading
consecutive pages, hence extra read latency is needed to wait for reading interfering page of
each concerned page. In the case of consecutive pages reading, all consecutive pages are
concerned pages, and each page acts as the interfering page to the previous page and
meanwhile is the victim page of the next page. Intuitively, reversing the order of
programming pages to be descending order, i.e., pages with lower index are programmed
latter, meanwhile reading pages in the ascending order can eliminate this extra read latency
in reading consecutive pages. This is named as reverse programming scheme.
In this case, when we read those consecutive pages, after one page is read, it can naturally
serve to compensate cell-to-cell interference for the page being read later. Therefore the extra
sensing latency on waiting for sensing interfering page is naturally eliminated. Note that this
reverse programming does not influence the sensing latency of reading individual pages.

Error Correction Codes and Signal Processing in Flash Memory

79

6.2 Technique II: Pre-distortion
Pre-distortion or pre-coding technique widely used in communication system can also be
used in NAND flash: Before a page is programmed, if its interfering pages are also known,
we can predict the threshold voltage shift induced by cell-to-cell interference for each victim
cell, and then correspondingly pre-distort the victim cell target programming voltage.
Hence, after its interfering pages are programmed, the pre-distorted victim cell threshold
voltages is expected to shift to its desired location by cell-to-cell interference.
Let denote the expected threshold voltage of the -th interfering cell after programming
and denote the mean of erased state, we can predict the cell-to-cell interference
experienced by the victim cell as

 (35)

Let denote the target verify voltage of the victim cell in programming operation, we can
pre-distort the victim cell by shifting the verify voltage from to . The threshold
voltage of the victim cell will be shifted towards its desired location after the occurrence of cell-
to-cell interference. It should be emphasized that, since we cannot change the threshold
voltage if the victim cell should stay at the erased state, this pre-distortion scheme can only
handle cell-to-cell interference for those programmed states but is not effective for erased state.
Fig. 21 illustrates the process of pre-distortion, where the verify voltage is assumed to be
able to be adjusted with a floating-point precision. Clearly, this technique can be considered
as a counterpart of the post-compensation technique.

Fig. 21. Illustration of threshold voltage distribution of victim even cells in even/odd
structure when data pre-distortion is being used.

Fig.22 shows the cell threshold distribution with the cell-to-cell interference strength factor
 under the same initial NAND flash channel model as in above subsection, where

the pre-distortion is assumed to be able to be adjusted with a floating-point precision.
Fig. 23 shows the simulated BER of even cells over a range of cell-to-cell interference
strength factor s. Besides the ideal floating point precision, pre-distortion with finite
precision is also shown, where the range of pre-distorted is quantized into either 16 or 32

Flash Memories

80

levels. Clearly, as the finite quantization precision of pre-distorted increases, it can
achieve a better tolerance to cell-to-cell interference, at the cost of increased programming
latency, a larger page buffer to hold the data and higher chip-to-chip communication load.

Fig. 22. Simulated threshold voltage distribution when using pre-distortion.

Fig. 23. The simulated BER of even cells with pre-distortion under various cell-to-cell
strength factor.

7. Reference

K. Kim et.al, “Future memory technology: Challenges and opportunities,” in Proc. of International
Symposium on VLSI Technology, Systems and Applications, Apr. 2008, pp. 5–9.

Error Correction Codes and Signal Processing in Flash Memory

81

G. Dong, S. Li, and T. Zhang, “Using Data Post-compensation and Pre-distortion to Tolerat
Cell-to-Cell Interference in MLC NAND Flash Memory”, IEEE Transactions on
Circuits and Systems I, vol. 57, issue 10, pp. 2718-2728, 2010

Y. Li and Y. Fong, “Compensating for coupling based on sensing a neighbor using
coupling,” United States Patent 7,522,454, Apr. 2009.

G. Dong, N. Xie, and T. Zhang, “On the Use of Soft-Decision Error Correction Codes in
NAND Flash Memory”, IEEE Transactions on Circuits and Systems I, vol. 58, issue 2,
pp. 429-439, 2011

E. Gal and S. Toledo, “Algorithms and data structures for flash memories,” ACM Computing
Surveys, vol. 37, pp. 138–163, June 2005.

Y. Pan, G. Dong, and T. Zhang, “Exploiting Memory Device Wear-Out Dynamics to
Improve NAND Flash Memory System Performance”, USENIX Conference on File
and Storage Technologies (FAST), Feb. 2011

G. Dong, N. Xie, and T. Zhang, “Techniques for Embracing Intra-Cell Unbalanced Bit Error
Characteristics in MLC NAND Flash Memory”, Workshop on Application of
Communication Theory to Emerging Memory Technologies (in conjection with IEEE
Globecom), Dec. 2010

N. Mielke et al., “Bit error rate in NAND flash memories,” in Proc. of IEEE International
Reliability Physics Symposium, 2008, pp. 9–19.

K. Kanda et al., “A 120mm2 16Gb 4-MLC NAND flash memory with 43nm CMOS technology,”
in Proc. of IEEE International Solid-State Circuits Conference (ISSCC), 2008, pp. 430–431,625.

Y. Li et al., “A 16 Gb 3-bit per cell (X3) NAND flash memory on 56 nm technology with 8
MB/s write rate,” IEEE Journal of Solid-State Circuits, vol. 44, pp. 195–207, Jan. 2009.

S.-H. Chang et al., “A 48nm 32Gb 8-level NAND flash memory with 5.5MB/s program
throughput,” in Proc. of IEEE International Solid-State Circuits Conference, Feb. 2009,
pp. 240–241.

N. Shibata et al., “A 70nm 16Gb 16-level-cell NAND flash memory,” IEEE J. Solid-State
Circuits, vol. 43, pp. 929–937, Apr. 2008.

C. Trinh et al., “A 5.6MB/s 64Gb 4b/cell NAND flash memory in 43nm CMOS,” in Proc. of
IEEE International Solid-State Circuits Conference, Feb. 2009, pp. 246–247.

K. Takeuchi et al., “A 56-nm CMOS 99-mm2 8-Gb multi-level NAND flash memory with 10-
mb/s program throughput,” IEEE Journal of Solid-State Circuits, vol. 42, pp. 219–232,
Jan. 2007.

G. Matamis et al., “Bitline direction shielding to avoid cross coupling between adjacent cells
for NAND flash memory,” United States Patent 7,221,008, May. 2007.

J. W. Lutze and N. Mokhlesi, “Shield plate for limiting cross coupling between floating
gates,” United States Patent 7,335,237, Apr. 2008.

H. Chien and Y. Fong, “Deep wordline trench to shield cross coupling between adjacent
cells for scaled NAND,” United States Patent 7,170,786, Jan. 2007.

S. Li and T. Zhang, “Improving multi-level NAND flash memory storage reliability using
concatenated BCH-TCM coding,” IEEE Transactions on Circuits and Systems-I:
Regular Papers, vol. PP, pp. 1–1, 2009.

K. Prall, “Scaling non-volatile memory below 30 nm,” in IEEE 2nd Non-Volatile Semiconductor
Memory Workshop, Aug. 2007, pp. 5–10.

H. Liu, S. Groothuis, C. Mouli, J. Li, K. Parat, and T. Krishnamohan, “3D simulation study of
cell-cell interference in advanced NAND flash memory,” in Proc. of IEEEWorkshop
on Microelectronics and Electron Devices, Apr. 2009.

Flash Memories

80

levels. Clearly, as the finite quantization precision of pre-distorted increases, it can
achieve a better tolerance to cell-to-cell interference, at the cost of increased programming
latency, a larger page buffer to hold the data and higher chip-to-chip communication load.

Fig. 22. Simulated threshold voltage distribution when using pre-distortion.

Fig. 23. The simulated BER of even cells with pre-distortion under various cell-to-cell
strength factor.

7. Reference

K. Kim et.al, “Future memory technology: Challenges and opportunities,” in Proc. of International
Symposium on VLSI Technology, Systems and Applications, Apr. 2008, pp. 5–9.

Error Correction Codes and Signal Processing in Flash Memory

81

G. Dong, S. Li, and T. Zhang, “Using Data Post-compensation and Pre-distortion to Tolerat
Cell-to-Cell Interference in MLC NAND Flash Memory”, IEEE Transactions on
Circuits and Systems I, vol. 57, issue 10, pp. 2718-2728, 2010

Y. Li and Y. Fong, “Compensating for coupling based on sensing a neighbor using
coupling,” United States Patent 7,522,454, Apr. 2009.

G. Dong, N. Xie, and T. Zhang, “On the Use of Soft-Decision Error Correction Codes in
NAND Flash Memory”, IEEE Transactions on Circuits and Systems I, vol. 58, issue 2,
pp. 429-439, 2011

E. Gal and S. Toledo, “Algorithms and data structures for flash memories,” ACM Computing
Surveys, vol. 37, pp. 138–163, June 2005.

Y. Pan, G. Dong, and T. Zhang, “Exploiting Memory Device Wear-Out Dynamics to
Improve NAND Flash Memory System Performance”, USENIX Conference on File
and Storage Technologies (FAST), Feb. 2011

G. Dong, N. Xie, and T. Zhang, “Techniques for Embracing Intra-Cell Unbalanced Bit Error
Characteristics in MLC NAND Flash Memory”, Workshop on Application of
Communication Theory to Emerging Memory Technologies (in conjection with IEEE
Globecom), Dec. 2010

N. Mielke et al., “Bit error rate in NAND flash memories,” in Proc. of IEEE International
Reliability Physics Symposium, 2008, pp. 9–19.

K. Kanda et al., “A 120mm2 16Gb 4-MLC NAND flash memory with 43nm CMOS technology,”
in Proc. of IEEE International Solid-State Circuits Conference (ISSCC), 2008, pp. 430–431,625.

Y. Li et al., “A 16 Gb 3-bit per cell (X3) NAND flash memory on 56 nm technology with 8
MB/s write rate,” IEEE Journal of Solid-State Circuits, vol. 44, pp. 195–207, Jan. 2009.

S.-H. Chang et al., “A 48nm 32Gb 8-level NAND flash memory with 5.5MB/s program
throughput,” in Proc. of IEEE International Solid-State Circuits Conference, Feb. 2009,
pp. 240–241.

N. Shibata et al., “A 70nm 16Gb 16-level-cell NAND flash memory,” IEEE J. Solid-State
Circuits, vol. 43, pp. 929–937, Apr. 2008.

C. Trinh et al., “A 5.6MB/s 64Gb 4b/cell NAND flash memory in 43nm CMOS,” in Proc. of
IEEE International Solid-State Circuits Conference, Feb. 2009, pp. 246–247.

K. Takeuchi et al., “A 56-nm CMOS 99-mm2 8-Gb multi-level NAND flash memory with 10-
mb/s program throughput,” IEEE Journal of Solid-State Circuits, vol. 42, pp. 219–232,
Jan. 2007.

G. Matamis et al., “Bitline direction shielding to avoid cross coupling between adjacent cells
for NAND flash memory,” United States Patent 7,221,008, May. 2007.

J. W. Lutze and N. Mokhlesi, “Shield plate for limiting cross coupling between floating
gates,” United States Patent 7,335,237, Apr. 2008.

H. Chien and Y. Fong, “Deep wordline trench to shield cross coupling between adjacent
cells for scaled NAND,” United States Patent 7,170,786, Jan. 2007.

S. Li and T. Zhang, “Improving multi-level NAND flash memory storage reliability using
concatenated BCH-TCM coding,” IEEE Transactions on Circuits and Systems-I:
Regular Papers, vol. PP, pp. 1–1, 2009.

K. Prall, “Scaling non-volatile memory below 30 nm,” in IEEE 2nd Non-Volatile Semiconductor
Memory Workshop, Aug. 2007, pp. 5–10.

H. Liu, S. Groothuis, C. Mouli, J. Li, K. Parat, and T. Krishnamohan, “3D simulation study of
cell-cell interference in advanced NAND flash memory,” in Proc. of IEEEWorkshop
on Microelectronics and Electron Devices, Apr. 2009.

Flash Memories

82

K.-T. Park et al., “A zeroing cell-to-cell interference page architecture with temporary LSB
storing and parallel MSB program scheme for MLC NAND flash memories,” IEEE
J. Solid-State Circuits, vol. 40, pp. 919–928, Apr. 2008.

K. Takeuchi, T. Tanaka, and H. Nakamura, “A double-level-Vth select gate array
architecture for multilevel NAND flash memories,” IEEE J. Solid-State Circuits, vol.
31, pp. 602–609, Apr. 1996.

K.-D. Suh et al., “A 3.3 V 32 Mb NAND flash memory with incremental step pulse
programming scheme,” IEEE J. Solid-State Circuits, vol. 30, pp. 1149–1156, Nov. 1995.

C. M. Compagnoni et al., “Random telegraph noise effect on the programmed threshold-
voltage distribution of flash memories,” IEEE Electron Device Letters, vol. 30, 2009.

A. Ghetti, et al., “Scaling trends for random telegraph noise in deca-nanometer flash
memories,” in IEEE International Electron Devices Meeting, 2008, 2008, pp. 1–4.

J.-D. Lee, S.-H. Hur, and J.-D. Choi, “Effects of floating-gate interference on NAND flash
memory cell operation,” IEEE Electron. Device Letters, vol. 23, pp. 264–266, May 2002.

K. Takeuchi et al., “A 56-nm CMOS 8-Gb multi-level NAND flash memory with 10-MB/s
program throughput,” IEEE Journal of Solid-State Circuits, vol. 42, pp. 219–232, Jan. 2007.

Y. Li et al., “A 16 Gb 3 b/cell NAND flash memory in 56 nm with 8 MB/s write rate,” in Proc.
of IEEE International Solid-State Circuits Conference (ISSCC), Feb. 2008, pp. 506–632.

R.-A. Cernea et al., “A 34 MB/s MLC write throughput 16 Gb NAND with all bit line
architecture on 56 nm technology,” IEEE Journal of Solid-State Circuits, vol. 44, pp.
186–194, Jan. 2009.

N. Shibata et al., “A 70 nm 16 Gb 16-level-cell NAND flash memory,” IEEE J. Solid-State
Circuits, vol. 43, pp. 929–937, Apr. 2008.

H. Zhong and T. Zhang, “Block-LDPC: A practical LDPC coding system design approach,” IEEE
Transactions on Circuits and Systems-I: Regular Papers, vol. 52, no. 4, pp. 766–775, 2005.

I. Alrod and M. Lasser, “Fast, low-power reading of data in a flash memory,” in United
States Patent 20090319872A1, 2009.

Y. Kou, S. Lin, and M. Fossorier, “Low-density parity-check codes based on finite geometries: a
rediscovery and new results”, IEEE Trans. Inf. Theory, vol. 47, pp. 2711-2736, Nov. 2001.

R. G. Gallager, “Low density parity check codes”, IRE Trans. Inf. Theory, vol. 8, pp. 21-28,
Jan. 1962.

G. Dong, Y. Li, N. Xie, T. Zhang and H. Liu, “Candidate bit based bit-flipping decoding
algorithm for LDPC codes”, IEEE ISIT 2009, pp. 2166-2168, 2009

J. Zhang and M. P. C. Fossorier, “A modified weighted bit-flipping decoding of low-density
parity-check codes”, IEEE Commun. Lett., vol. 8, pp. 165-167, Mar. 2004.

F. Guo and L. Hanzo, “Reliability ratio based weighted bit-flipping decoding for low-
density parity-check codes”, Electron. Lett., vol. 40, pp. 1356-1358, Oct. 2004.

C.-H. Lee and W. Wolf, “Implementation-efficient reliability ratio based weighted bit-
flipping decoding for LDPC codes”, Electron. Lett., vol. 41, pp. 755-757, Jun. 2005.

D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of low density parity
check codes”, Electron. Lett., vol. 32, pp. 1645–1646, Aug. 1997.

X. Wang, L. Pan, D. Wu et al., ”A High-Speed Two-Cell BCH Decoder for Error Correcting
in MLC NOR Flash Memories”, IEEE Trans. on Circuits and Systems II, vol.56, no.11,
pp.865-869, Nov. 2009.

X. Wang, D. Wu, C. Hu, et al., “Embedded High-Speed BCH Decoder for New Generation
NOR Flash Memories” Proc. IEEE CICC 2009, pp. 195-198, 2009.

R. Micheloni, R. Ravasio, A. Marelli, et al., “A 4Gb 2b/cell NAND flash memory with
embedded 5b BCH ECC for 36MB/s system read throughput”, Proc. IEEE ISSCC,
pp. 497-506, Feb. 2006.

4

Block Cleaning Process in Flash Memory
Amir Rizaan Rahiman and Putra Sumari

Multimedia Research Group, School of Computer Sciences, University Sains Malaysia,
Malaysia

1. Introduction
Flash memory is a non-volatile storage device that can retain its contents when the power is
switched off. Generally, it is a form of an electrically erasable programmable read-only
memory (EEPROM) that offers several excellent features such as less noise, solid-state
reliability, lower power consumption, smaller size, light weight, and higher shock resistant [1 –
5]. Flash memory acts as a slim and compact storage device. It’s main applications are such as
compact flash (CF), secured digital (SD), and personal computer memory card international
association (PCMCIA) cards, for storage and data transfer in most portable electronic gadgets
such as mobile phones, digital cameras, personal digital assistants (PDAs), portable media
players (PMPs), gobal positioning system receivers (GPS), just to name a few.

Fig. 1. Diverse applications of flash memory as embedded systems.

Flash Memories

82

K.-T. Park et al., “A zeroing cell-to-cell interference page architecture with temporary LSB
storing and parallel MSB program scheme for MLC NAND flash memories,” IEEE
J. Solid-State Circuits, vol. 40, pp. 919–928, Apr. 2008.

K. Takeuchi, T. Tanaka, and H. Nakamura, “A double-level-Vth select gate array
architecture for multilevel NAND flash memories,” IEEE J. Solid-State Circuits, vol.
31, pp. 602–609, Apr. 1996.

K.-D. Suh et al., “A 3.3 V 32 Mb NAND flash memory with incremental step pulse
programming scheme,” IEEE J. Solid-State Circuits, vol. 30, pp. 1149–1156, Nov. 1995.

C. M. Compagnoni et al., “Random telegraph noise effect on the programmed threshold-
voltage distribution of flash memories,” IEEE Electron Device Letters, vol. 30, 2009.

A. Ghetti, et al., “Scaling trends for random telegraph noise in deca-nanometer flash
memories,” in IEEE International Electron Devices Meeting, 2008, 2008, pp. 1–4.

J.-D. Lee, S.-H. Hur, and J.-D. Choi, “Effects of floating-gate interference on NAND flash
memory cell operation,” IEEE Electron. Device Letters, vol. 23, pp. 264–266, May 2002.

K. Takeuchi et al., “A 56-nm CMOS 8-Gb multi-level NAND flash memory with 10-MB/s
program throughput,” IEEE Journal of Solid-State Circuits, vol. 42, pp. 219–232, Jan. 2007.

Y. Li et al., “A 16 Gb 3 b/cell NAND flash memory in 56 nm with 8 MB/s write rate,” in Proc.
of IEEE International Solid-State Circuits Conference (ISSCC), Feb. 2008, pp. 506–632.

R.-A. Cernea et al., “A 34 MB/s MLC write throughput 16 Gb NAND with all bit line
architecture on 56 nm technology,” IEEE Journal of Solid-State Circuits, vol. 44, pp.
186–194, Jan. 2009.

N. Shibata et al., “A 70 nm 16 Gb 16-level-cell NAND flash memory,” IEEE J. Solid-State
Circuits, vol. 43, pp. 929–937, Apr. 2008.

H. Zhong and T. Zhang, “Block-LDPC: A practical LDPC coding system design approach,” IEEE
Transactions on Circuits and Systems-I: Regular Papers, vol. 52, no. 4, pp. 766–775, 2005.

I. Alrod and M. Lasser, “Fast, low-power reading of data in a flash memory,” in United
States Patent 20090319872A1, 2009.

Y. Kou, S. Lin, and M. Fossorier, “Low-density parity-check codes based on finite geometries: a
rediscovery and new results”, IEEE Trans. Inf. Theory, vol. 47, pp. 2711-2736, Nov. 2001.

R. G. Gallager, “Low density parity check codes”, IRE Trans. Inf. Theory, vol. 8, pp. 21-28,
Jan. 1962.

G. Dong, Y. Li, N. Xie, T. Zhang and H. Liu, “Candidate bit based bit-flipping decoding
algorithm for LDPC codes”, IEEE ISIT 2009, pp. 2166-2168, 2009

J. Zhang and M. P. C. Fossorier, “A modified weighted bit-flipping decoding of low-density
parity-check codes”, IEEE Commun. Lett., vol. 8, pp. 165-167, Mar. 2004.

F. Guo and L. Hanzo, “Reliability ratio based weighted bit-flipping decoding for low-
density parity-check codes”, Electron. Lett., vol. 40, pp. 1356-1358, Oct. 2004.

C.-H. Lee and W. Wolf, “Implementation-efficient reliability ratio based weighted bit-
flipping decoding for LDPC codes”, Electron. Lett., vol. 41, pp. 755-757, Jun. 2005.

D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of low density parity
check codes”, Electron. Lett., vol. 32, pp. 1645–1646, Aug. 1997.

X. Wang, L. Pan, D. Wu et al., ”A High-Speed Two-Cell BCH Decoder for Error Correcting
in MLC NOR Flash Memories”, IEEE Trans. on Circuits and Systems II, vol.56, no.11,
pp.865-869, Nov. 2009.

X. Wang, D. Wu, C. Hu, et al., “Embedded High-Speed BCH Decoder for New Generation
NOR Flash Memories” Proc. IEEE CICC 2009, pp. 195-198, 2009.

R. Micheloni, R. Ravasio, A. Marelli, et al., “A 4Gb 2b/cell NAND flash memory with
embedded 5b BCH ECC for 36MB/s system read throughput”, Proc. IEEE ISSCC,
pp. 497-506, Feb. 2006.

4

Block Cleaning Process in Flash Memory
Amir Rizaan Rahiman and Putra Sumari

Multimedia Research Group, School of Computer Sciences, University Sains Malaysia,
Malaysia

1. Introduction
Flash memory is a non-volatile storage device that can retain its contents when the power is
switched off. Generally, it is a form of an electrically erasable programmable read-only
memory (EEPROM) that offers several excellent features such as less noise, solid-state
reliability, lower power consumption, smaller size, light weight, and higher shock resistant [1 –
5]. Flash memory acts as a slim and compact storage device. It’s main applications are such as
compact flash (CF), secured digital (SD), and personal computer memory card international
association (PCMCIA) cards, for storage and data transfer in most portable electronic gadgets
such as mobile phones, digital cameras, personal digital assistants (PDAs), portable media
players (PMPs), gobal positioning system receivers (GPS), just to name a few.

Fig. 1. Diverse applications of flash memory as embedded systems.

Flash Memories

84

The demand for flash memory has reformed its usage to wide areas. For instance, as
illustrated in Figure 1, flash memory is extensively used as embedded systems in several
intelligent and novelty applications such as household appliances, telecommunication
devices, computer applications, automotives and high technology machinery.

2. Flash memory architecture
As shown in Figure 2, flash memory is a block and page based storage device. The page unit
is used to store data where a group of pages is referred to as a block. The page unit is
partitioned into two areas, namely, 1) Data and 2) Spare. The data area is used to store the
actual data while the spare area is used to store the supporting information for the data area
(such as bad block identification, page and block data structures, error correction code
(ECC), etc.). According to present production practices, the page size is fixed from 512 B to 4
KB, while the block size is between 4 KB and 128 KB [18]. Figure 3 shows the attributes of a 4
GB flash memory.

Fig. 2. Block and page layout in flash memory.

There are two different types of flash memory in the current market, namely, 1) NOR-flash,
and 2) NAND-flash [2, 6]. The main distinction between both types is the I/O interface
connection mechanism to the host system. The NOR-flash employs a memory mapped
random access interface with a dedicated address and data lines that are similar to random
access memory (RAM). Besides that, it is a byte-addressable data accessing device that
permits random I/O access with higher performance in reading functionality. On the
contrary, data access in NAND-flash is controlled and managed through two indirect I/O
interface logic methods. They are the emulating block accessing method referred to as the
flash translation layer (FTL) and native file system. The FTL allows physical accessing units

Block Cleaning Process in Flash Memory

85

Fig. 3. Flash memory attributes and specifications.

(block and page) to be addressed as a set of different accessing units (such as 512 B, 2 KB, 4
KB, depending on the manufacturers). In the native file system, the device accessing unit
can directly be accessed without the translation layer. An example of the native file system
employed in NAND-flash is the journaling flash file system (JFFS) [7] and yet another flash
filing system (YAFFS) [23]. For application purposes, the NOR-flash is used for small
amounts of code storage while the NAND-flash is mostly used in data storage applications
since its characteristic are more similar to disk storage.

3. Flash memory characteristics
The characteristics of the flash memory can be summarized as follows [8, 9]:
i. Free accessing time penalties: The flash memory is a semiconductor device which

eliminates the use of mechanical components. This allows the time required to access
data to be uniform, regardless of the data’s location. For instance, let’s say both data a
and data b, which are 4 KB in size each, are randomly located in block i and k (see
Figure 4). The total time required to retrieve data a is 0.088 ms and data b is retrieved
directly after retrieving data a.
Data accessing (retrieving and storing) in flash memory is carried out in three phases, 1)
Setup, 2) Busy, and 3) Data transfer [24]. The accessing command is initialized in the
setup phase. In the busy phase, the required data is temporarily loaded into the flash
memory I/O buffer within a fixed accessing time. Then, the stored data in the I/O
buffer is transferred sequentially to the host system at every fixed serial access time
during the data transfer phase. Similarly, the storing/writing process also requires
constant access time, wherever the location might be.

Flash Memories

84

The demand for flash memory has reformed its usage to wide areas. For instance, as
illustrated in Figure 1, flash memory is extensively used as embedded systems in several
intelligent and novelty applications such as household appliances, telecommunication
devices, computer applications, automotives and high technology machinery.

2. Flash memory architecture
As shown in Figure 2, flash memory is a block and page based storage device. The page unit
is used to store data where a group of pages is referred to as a block. The page unit is
partitioned into two areas, namely, 1) Data and 2) Spare. The data area is used to store the
actual data while the spare area is used to store the supporting information for the data area
(such as bad block identification, page and block data structures, error correction code
(ECC), etc.). According to present production practices, the page size is fixed from 512 B to 4
KB, while the block size is between 4 KB and 128 KB [18]. Figure 3 shows the attributes of a 4
GB flash memory.

Fig. 2. Block and page layout in flash memory.

There are two different types of flash memory in the current market, namely, 1) NOR-flash,
and 2) NAND-flash [2, 6]. The main distinction between both types is the I/O interface
connection mechanism to the host system. The NOR-flash employs a memory mapped
random access interface with a dedicated address and data lines that are similar to random
access memory (RAM). Besides that, it is a byte-addressable data accessing device that
permits random I/O access with higher performance in reading functionality. On the
contrary, data access in NAND-flash is controlled and managed through two indirect I/O
interface logic methods. They are the emulating block accessing method referred to as the
flash translation layer (FTL) and native file system. The FTL allows physical accessing units

Block Cleaning Process in Flash Memory

85

Fig. 3. Flash memory attributes and specifications.

(block and page) to be addressed as a set of different accessing units (such as 512 B, 2 KB, 4
KB, depending on the manufacturers). In the native file system, the device accessing unit
can directly be accessed without the translation layer. An example of the native file system
employed in NAND-flash is the journaling flash file system (JFFS) [7] and yet another flash
filing system (YAFFS) [23]. For application purposes, the NOR-flash is used for small
amounts of code storage while the NAND-flash is mostly used in data storage applications
since its characteristic are more similar to disk storage.

3. Flash memory characteristics
The characteristics of the flash memory can be summarized as follows [8, 9]:
i. Free accessing time penalties: The flash memory is a semiconductor device which

eliminates the use of mechanical components. This allows the time required to access
data to be uniform, regardless of the data’s location. For instance, let’s say both data a
and data b, which are 4 KB in size each, are randomly located in block i and k (see
Figure 4). The total time required to retrieve data a is 0.088 ms and data b is retrieved
directly after retrieving data a.
Data accessing (retrieving and storing) in flash memory is carried out in three phases, 1)
Setup, 2) Busy, and 3) Data transfer [24]. The accessing command is initialized in the
setup phase. In the busy phase, the required data is temporarily loaded into the flash
memory I/O buffer within a fixed accessing time. Then, the stored data in the I/O
buffer is transferred sequentially to the host system at every fixed serial access time
during the data transfer phase. Similarly, the storing/writing process also requires
constant access time, wherever the location might be.

Flash Memories

86

Fig. 4. Data accessing in flash memory array.

ii. Out-place updating scheme: Data updating in the flash memory is performed via an
out-place scheme rather than an in-place scheme. Due to its EEPROM characteristic, if
the in-place scheme is employed, the block where the updated data is located needs to
be erased first before the data can be restored into the similar location. Furthermore,
block erasure in flash memory is time consuming that can degrade I/O performance.
Thus, the out-place scheme is employed where the updated data is stored into a new
location while its original copy is set as garbage and will not be used any further [10 –
11] (see Figure 5). The main purpose of the out-place scheme is to avoid block erasure
during every update process.

Fig. 5. The out-place updating scheme in the flash memory.

Block Cleaning Process in Flash Memory

87

Due to the out-place scheme, the page in flash memory falls into three states, namely, 1)
Free, 2) Valid, and 3) Invalid. The free state is when a page contains no data and is ready
for storing/writing a new or updated data. The valid state is a page that contains the
current version of the data while the invalid state refers to a page that contains garbage.
In addition, the block status can either be active or inactive [12 – 13] due to the page
states.

iii. Asymmetric accessing time and unit: There are three types of access functions in
flash memory. They are 1) Read, 2) Write/program, and 3) Erase. Each function is
realized in an asymmetric accessing unit and time (see Figure 3). The write function
takes an order of magnitude longer than the read function and both are carried out in
page unit, while the erase function requires the longest access time which is
performed in block unit. The read function fetches a valid data from a valid target
page, while the write function stores data (either new or updated) into a free target
page. On the contrary, the erase function is used to erase an active or an inactive
block with free or invalid pages.

iv. Bulk cleaning with limited block life cycle: The cleaning process is essential in flash
memory due to the employed out-place updating scheme. The cleaning process is
carried out on block unit rather than page unit. The block may contain valid data, thus,
before initiating the process, all valid data residing in the block must be copied out into
available free spaces in other free blocks. However, each block could be tolerant with a
limited number of erasure cycles, for example one million (106) cycles. Exceeding the
erasure cycles will cause the block to become unreliable and spoiled, permanently. For
example, a multi-level cell (MLC) block type typically supports 10,000 erasure cycles. If
the same block is erased and then re-programmed every second, the block would
exceed the 10,000 cycle limit in just three hours. Thus, wear-leveling policy that wears
down all memory blocks as evenly as possible is necessary [14, 15].

4. Cleaning process in flash memory
The cleaning process in flash memory refers to the process of collecting the garbage
scattered throughout the memory array and then reclaiming them back into free space due
to the out-place updating scheme. It is an essential process to guarantee free space
availability on the memory array to ensure new data can be continually stored. However,
the cleaning process is carried out by the erase function and involves bulk size of data rather
than specific locations. The valid data in the block must be copied into the other blocks (free
cells) first, before the cleaning can be initiated. Besides, each flash memory block could
tolerate with an individual erasure lifetime. Frequently erasing blocks causes the blocks to
become unreliable and thus, reduces physical device capacity.
The effectiveness of the cleaning process is heavily dependent on the efficient cleaning
algorithm as well as the data allocation scheme employed by the flash memory system.
Moreover, the cleaning process and the block utilization level are key to the cleaning process
performance and have substantial impact on the access performance, energy consumption
and block endurance [1, 10, 14]. Block utilization is the ratio between valid cells and total
cells and it is represented in percentage. Two categories of cleaning processes in flash
memory are 1) Automatic, and 2) Semi-automatic [16]. Both processes are initiated routinely
by the flash memory controller.

Flash Memories

86

Fig. 4. Data accessing in flash memory array.

ii. Out-place updating scheme: Data updating in the flash memory is performed via an
out-place scheme rather than an in-place scheme. Due to its EEPROM characteristic, if
the in-place scheme is employed, the block where the updated data is located needs to
be erased first before the data can be restored into the similar location. Furthermore,
block erasure in flash memory is time consuming that can degrade I/O performance.
Thus, the out-place scheme is employed where the updated data is stored into a new
location while its original copy is set as garbage and will not be used any further [10 –
11] (see Figure 5). The main purpose of the out-place scheme is to avoid block erasure
during every update process.

Fig. 5. The out-place updating scheme in the flash memory.

Block Cleaning Process in Flash Memory

87

Due to the out-place scheme, the page in flash memory falls into three states, namely, 1)
Free, 2) Valid, and 3) Invalid. The free state is when a page contains no data and is ready
for storing/writing a new or updated data. The valid state is a page that contains the
current version of the data while the invalid state refers to a page that contains garbage.
In addition, the block status can either be active or inactive [12 – 13] due to the page
states.

iii. Asymmetric accessing time and unit: There are three types of access functions in
flash memory. They are 1) Read, 2) Write/program, and 3) Erase. Each function is
realized in an asymmetric accessing unit and time (see Figure 3). The write function
takes an order of magnitude longer than the read function and both are carried out in
page unit, while the erase function requires the longest access time which is
performed in block unit. The read function fetches a valid data from a valid target
page, while the write function stores data (either new or updated) into a free target
page. On the contrary, the erase function is used to erase an active or an inactive
block with free or invalid pages.

iv. Bulk cleaning with limited block life cycle: The cleaning process is essential in flash
memory due to the employed out-place updating scheme. The cleaning process is
carried out on block unit rather than page unit. The block may contain valid data, thus,
before initiating the process, all valid data residing in the block must be copied out into
available free spaces in other free blocks. However, each block could be tolerant with a
limited number of erasure cycles, for example one million (106) cycles. Exceeding the
erasure cycles will cause the block to become unreliable and spoiled, permanently. For
example, a multi-level cell (MLC) block type typically supports 10,000 erasure cycles. If
the same block is erased and then re-programmed every second, the block would
exceed the 10,000 cycle limit in just three hours. Thus, wear-leveling policy that wears
down all memory blocks as evenly as possible is necessary [14, 15].

4. Cleaning process in flash memory
The cleaning process in flash memory refers to the process of collecting the garbage
scattered throughout the memory array and then reclaiming them back into free space due
to the out-place updating scheme. It is an essential process to guarantee free space
availability on the memory array to ensure new data can be continually stored. However,
the cleaning process is carried out by the erase function and involves bulk size of data rather
than specific locations. The valid data in the block must be copied into the other blocks (free
cells) first, before the cleaning can be initiated. Besides, each flash memory block could
tolerate with an individual erasure lifetime. Frequently erasing blocks causes the blocks to
become unreliable and thus, reduces physical device capacity.
The effectiveness of the cleaning process is heavily dependent on the efficient cleaning
algorithm as well as the data allocation scheme employed by the flash memory system.
Moreover, the cleaning process and the block utilization level are key to the cleaning process
performance and have substantial impact on the access performance, energy consumption
and block endurance [1, 10, 14]. Block utilization is the ratio between valid cells and total
cells and it is represented in percentage. Two categories of cleaning processes in flash
memory are 1) Automatic, and 2) Semi-automatic [16]. Both processes are initiated routinely
by the flash memory controller.

Flash Memories

88

4.1 Automatic cleaning
The automatic cleaning process is automatically commenced when a particular block’s state
in the memory array turns from an active to an inactive (all pages in the block have turned
into invalid state or mixing with several number of free pages). Since there is no valid data
copying process required, the block can be erased in the background during execution of the
current I/O operations (such as read or write) from/into the memory array. Accordingly,
this process requires a constant erase accessing time (Et) where the target block ID is given
to the memory controller to erase. Moreover, only a single inactive block (also known as
victim block) can be erased each time the automatic cleaning process is commenced. In
addition, the automatic cleaning process is influence by an efficient data allocation scheme
engaged by the flash memory. There are several data allocation schemes in flash memory
that share identical queuing techniques with a CPU scheduling policy such as first come
first serve (FCFS), first re-arrival first serve (FRFS), online first re-arrival first serve (OFRFS),
and Best Matching (BestM) [12 – 13]. Unlike CPU scheduling policies, the main objective of
the data allocation scheme in the flash memory is to minimize the amount of active blocks
required. The scheme requires the lowest amount of active blocks to minimize the amount
of blocks to be erased when the actual cleaning process is initiated due to the limitation of
the out-place updating scheme.
For example, let’s say file A has been partitioned evenly into five parts (denoted by a, b, c, d,
and e). Assume the accessing pattern of the file is a, b, c, d, a, b, b, a, c, d, a, b, c, d, a, b, d, a, c, c,
d, a, b, c. The snapshot of storing each of the accessed data into the flash memory consisting
of 10 blocks with 4 pages (each, sequentially) is shown in Figure 6. Firstly, the first four
accessed data are stored sequentially in block b1. When storing the second accessed data d
(the 10th appearance data in the access pattern) into the second free page in block b3, block b1

Fig. 6. Automatic cleaning process in sequential data allocation scheme.

Block Cleaning Process in Flash Memory

89

turns into an inactive state and can be erased automatically. Then, block b2 is erased when
storing the last free page in block b3 with data b. Block b3 is erased when finish storing the 5th
appearance of data b into the last free page of b4. At the end of the access pattern, only block
b6 is in the active state. When the inactive block is erased, all of its pages are changed into
the free state and the block is ready for storing new or updated data.

4.2 Semi-automatic cleaning
Semi-automatic cleaning is commenced when the memory array free spaces reach a certain
threshold, for instance, when the available free space is fewer than 20% – 35% of the total
memory space. Two primary goals of the semi-automatic cleaning process are: 1) Minimizing
cleaning cost, and 2) Wearing blocks evenly. Unlike the automatic cleaning process, single or
multiple active block(s) can be cleaned simultaneously when the semi-automatic process has
been initiated. Therefore, since the blocks to be cleaned contain valid data, the data needs to
be migrated first before the cleaning process can be initiated and the current memory
operations are temporarily halted. It is resumed when the process has ended. Besides, the
cleaning cost required is inconsistent and it solely depends on the block utilization (ui) level
and the number of active blocks involved in the cleaning process. The cleaning cost is the
total access time required to erase the victim blocks which includes several reads and writes
accessing time (depending on the block utilization levels) plus the erasure time. In short, it
can be simplified as in Equation 1 [17]. Block utilization is the ratio between valid pages and
total pages.

 10 75i t t tT b R W E (1)

In Equation 1, the write function is assumed to be 10 times slower than the read function
while the erase function is 75 times slower than the read function. Figure 7 presents the
cleaning cost required for cleaning a single victim block in the memory array. To illustrate
this, assume a block containing 64 pages, and the block utilization level is between 0 and 100
%. The actual time for read, write and erase access functions were taken from Figure 3.

Fig. 7. The cleaning cost for single block.

Flash Memories

88

4.1 Automatic cleaning
The automatic cleaning process is automatically commenced when a particular block’s state
in the memory array turns from an active to an inactive (all pages in the block have turned
into invalid state or mixing with several number of free pages). Since there is no valid data
copying process required, the block can be erased in the background during execution of the
current I/O operations (such as read or write) from/into the memory array. Accordingly,
this process requires a constant erase accessing time (Et) where the target block ID is given
to the memory controller to erase. Moreover, only a single inactive block (also known as
victim block) can be erased each time the automatic cleaning process is commenced. In
addition, the automatic cleaning process is influence by an efficient data allocation scheme
engaged by the flash memory. There are several data allocation schemes in flash memory
that share identical queuing techniques with a CPU scheduling policy such as first come
first serve (FCFS), first re-arrival first serve (FRFS), online first re-arrival first serve (OFRFS),
and Best Matching (BestM) [12 – 13]. Unlike CPU scheduling policies, the main objective of
the data allocation scheme in the flash memory is to minimize the amount of active blocks
required. The scheme requires the lowest amount of active blocks to minimize the amount
of blocks to be erased when the actual cleaning process is initiated due to the limitation of
the out-place updating scheme.
For example, let’s say file A has been partitioned evenly into five parts (denoted by a, b, c, d,
and e). Assume the accessing pattern of the file is a, b, c, d, a, b, b, a, c, d, a, b, c, d, a, b, d, a, c, c,
d, a, b, c. The snapshot of storing each of the accessed data into the flash memory consisting
of 10 blocks with 4 pages (each, sequentially) is shown in Figure 6. Firstly, the first four
accessed data are stored sequentially in block b1. When storing the second accessed data d
(the 10th appearance data in the access pattern) into the second free page in block b3, block b1

Fig. 6. Automatic cleaning process in sequential data allocation scheme.

Block Cleaning Process in Flash Memory

89

turns into an inactive state and can be erased automatically. Then, block b2 is erased when
storing the last free page in block b3 with data b. Block b3 is erased when finish storing the 5th
appearance of data b into the last free page of b4. At the end of the access pattern, only block
b6 is in the active state. When the inactive block is erased, all of its pages are changed into
the free state and the block is ready for storing new or updated data.

4.2 Semi-automatic cleaning
Semi-automatic cleaning is commenced when the memory array free spaces reach a certain
threshold, for instance, when the available free space is fewer than 20% – 35% of the total
memory space. Two primary goals of the semi-automatic cleaning process are: 1) Minimizing
cleaning cost, and 2) Wearing blocks evenly. Unlike the automatic cleaning process, single or
multiple active block(s) can be cleaned simultaneously when the semi-automatic process has
been initiated. Therefore, since the blocks to be cleaned contain valid data, the data needs to
be migrated first before the cleaning process can be initiated and the current memory
operations are temporarily halted. It is resumed when the process has ended. Besides, the
cleaning cost required is inconsistent and it solely depends on the block utilization (ui) level
and the number of active blocks involved in the cleaning process. The cleaning cost is the
total access time required to erase the victim blocks which includes several reads and writes
accessing time (depending on the block utilization levels) plus the erasure time. In short, it
can be simplified as in Equation 1 [17]. Block utilization is the ratio between valid pages and
total pages.

 10 75i t t tT b R W E (1)

In Equation 1, the write function is assumed to be 10 times slower than the read function
while the erase function is 75 times slower than the read function. Figure 7 presents the
cleaning cost required for cleaning a single victim block in the memory array. To illustrate
this, assume a block containing 64 pages, and the block utilization level is between 0 and 100
%. The actual time for read, write and erase access functions were taken from Figure 3.

Fig. 7. The cleaning cost for single block.

Flash Memories

90

As illustrated in Figure 8, the semi-automatic cleaning is undertaken in three stages. First, a
victim block (b1) to be cleaned is selected. Second, all valid pages residing in block b1 are
identified (e.g., a, b, c, and d) and copied/migrated into free pages in block b3 (initially, b3 is
in an inactive state). In the last stage, block b1 is erased when all the valid pages have been
copied. Since multiple victim blocks can be erased simultaneously, the process could affect
the current I/O operational functions. Therefore, the numbers of victim blocks becomes a
crucial factor in the semi-automatic cleaning process. Unlike the automatic cleaning process,
there are several important issues that need to be considered in semi-automatic cleaning.
The four main issues in the semi-automatic cleaning process are 1) Execution time, 2) Victim
block selection procedure, 3) Victim block amount, and 4) Valid data re-organization [18].

Fig. 8. Three stages in the semi-automatic cleaning process.

The execution time issue refers to the time to initiate the cleaning process, either periodically
or according to memory free space availability. The victim block selection procedure refers
to the method used to select the block to be erased and the straight forward approach is
selecting a victim block that contains the largest amount of garbage. Other parameters
include cost to erase, block lifespan, erasure count, and age of data [1, 10, 21, 22]. Again, the
victim block amount issue in the semi-automatic cleaning enables single or multiple victim
blocks to be erased simultaneously. On the other hand, both approaches have their own
pros and cons. Cleaning a single block requires smaller access time but it also requires many
erase operations. In contrast, erasing multiple blocks can distract the execution of normal

Block Cleaning Process in Flash Memory

91

I/O operational system execution [18], but multiple victim blocks cleaning helps in
reorganizing many valid data and can also help in reducing the number of blocks to be
further erased. Then, the valid data re-organization issue refers to the process of copying the
valid data in the victim block into a new free location in the available active blocks. The
common approach is the valid data clustering technique, where valid data will be grouped
into the similar block according to the data feature (such as regularly modified, irregularly
modified, data time-stamp, and related data file). Thus, in order to improve the semi-
automatic cleaning process performance, a number of studies that focuses on determining
victim blocks have been proposed. The accompanying table shows the summary of the
studies. In addition, the cleaning cost in the semi-automatic process depends on two
important parameters, namely, 1) Number of victim blocks and 2) Amount of valid data. The
cleaning cost will be extremely boosted when both parameters increase. However, the
number of active blocks is not fixed and it is a controllable parameter. Due to this, by
employing a proper allocation scheme, the amount could be minimized since the inactive
block can be erased at the background.

Cleaning scheme Victim block selection procedure/equation Wear-leveling

Greedy (GR) [19] 1
cos () i

i
i

ut B
u

 No

Cost-benefit (CB)
[20]

Block with maximum value from equation
 1

2
i

i

u
a

u

 No

Cost age time (CAT)
& Dynamic dAta
clustering (DAC)
[21]

Block with minimum value from equation
1

1
i

i

u e
u a

 Yes

Cost Age Time with
Age Sort (CATA)
[18]

Blocks those maximize equation
1 1
1

i

i

u a
u e

 Yes

S-Greedy (S-GR)
[22]

Based on GR algorithm and focus on valid data
distribution Yes

ui: block i utilization level. a: the last invalidation time in the block. e: block erasure count.

Table 1. A summary of previously proposed victim block selection algorithm.

5. Summary
Flash memory offers several superior features as a secondary storage and has recently been
employed in many consumer electronic gadgets. However, due to the hardware operational
characteristics, especially the out-place updating scheme, several challenges have emerged
in terms of data management in designing and implementing an efficient data storage
system. There are existing issues that influence flash memory performance, which are
related to the cleaning process in order to allow data storage continuity. Both the automatic
and the semi-automatic cleaning processes are two important issues in guaranteeing
cleaning process performance in the flash memory. The automatic cleaning is directly

Flash Memories

90

As illustrated in Figure 8, the semi-automatic cleaning is undertaken in three stages. First, a
victim block (b1) to be cleaned is selected. Second, all valid pages residing in block b1 are
identified (e.g., a, b, c, and d) and copied/migrated into free pages in block b3 (initially, b3 is
in an inactive state). In the last stage, block b1 is erased when all the valid pages have been
copied. Since multiple victim blocks can be erased simultaneously, the process could affect
the current I/O operational functions. Therefore, the numbers of victim blocks becomes a
crucial factor in the semi-automatic cleaning process. Unlike the automatic cleaning process,
there are several important issues that need to be considered in semi-automatic cleaning.
The four main issues in the semi-automatic cleaning process are 1) Execution time, 2) Victim
block selection procedure, 3) Victim block amount, and 4) Valid data re-organization [18].

Fig. 8. Three stages in the semi-automatic cleaning process.

The execution time issue refers to the time to initiate the cleaning process, either periodically
or according to memory free space availability. The victim block selection procedure refers
to the method used to select the block to be erased and the straight forward approach is
selecting a victim block that contains the largest amount of garbage. Other parameters
include cost to erase, block lifespan, erasure count, and age of data [1, 10, 21, 22]. Again, the
victim block amount issue in the semi-automatic cleaning enables single or multiple victim
blocks to be erased simultaneously. On the other hand, both approaches have their own
pros and cons. Cleaning a single block requires smaller access time but it also requires many
erase operations. In contrast, erasing multiple blocks can distract the execution of normal

Block Cleaning Process in Flash Memory

91

I/O operational system execution [18], but multiple victim blocks cleaning helps in
reorganizing many valid data and can also help in reducing the number of blocks to be
further erased. Then, the valid data re-organization issue refers to the process of copying the
valid data in the victim block into a new free location in the available active blocks. The
common approach is the valid data clustering technique, where valid data will be grouped
into the similar block according to the data feature (such as regularly modified, irregularly
modified, data time-stamp, and related data file). Thus, in order to improve the semi-
automatic cleaning process performance, a number of studies that focuses on determining
victim blocks have been proposed. The accompanying table shows the summary of the
studies. In addition, the cleaning cost in the semi-automatic process depends on two
important parameters, namely, 1) Number of victim blocks and 2) Amount of valid data. The
cleaning cost will be extremely boosted when both parameters increase. However, the
number of active blocks is not fixed and it is a controllable parameter. Due to this, by
employing a proper allocation scheme, the amount could be minimized since the inactive
block can be erased at the background.

Cleaning scheme Victim block selection procedure/equation Wear-leveling

Greedy (GR) [19] 1
cos () i

i
i

ut B
u

 No

Cost-benefit (CB)
[20]

Block with maximum value from equation
 1

2
i

i

u
a

u

 No

Cost age time (CAT)
& Dynamic dAta
clustering (DAC)
[21]

Block with minimum value from equation
1

1
i

i

u e
u a

 Yes

Cost Age Time with
Age Sort (CATA)
[18]

Blocks those maximize equation
1 1
1

i

i

u a
u e

 Yes

S-Greedy (S-GR)
[22]

Based on GR algorithm and focus on valid data
distribution Yes

ui: block i utilization level. a: the last invalidation time in the block. e: block erasure count.

Table 1. A summary of previously proposed victim block selection algorithm.

5. Summary
Flash memory offers several superior features as a secondary storage and has recently been
employed in many consumer electronic gadgets. However, due to the hardware operational
characteristics, especially the out-place updating scheme, several challenges have emerged
in terms of data management in designing and implementing an efficient data storage
system. There are existing issues that influence flash memory performance, which are
related to the cleaning process in order to allow data storage continuity. Both the automatic
and the semi-automatic cleaning processes are two important issues in guaranteeing
cleaning process performance in the flash memory. The automatic cleaning is directly

Flash Memories

92

related with the efficient data allocation schemes where the cleaning can be initiated without
having to disturb the current operations in the flash memory. Although only single inactive
blocks can be cleaned every time the process is initiated, when the amount of active-to-
inactive state conversion increases, the cleaning performance of the flash memory is
guaranteed since the inactive block can be erased automatically without having to disturb
current I/O operations. Conversely, the semi-automatic cleaning process is initiated
according to a memory array free space threshold or it can be initiated periodically. There
are several parameters employed in establishing the victim block to be erased such as
cleaning cost, erasure count, age of data, block utilization, etc. Although the cleaning can be
initiated on multiple victim blocks, the process can impose a blocking time that would
distract the normal I/O operation execution on the memory. On the other hand, the
efficiency of re-organizing the valid data in the victim blocks could influence the cleaning
process performance further. The well-organized valid data in the new active block will
group the regular and irregular accessed data into different blocks and could further
increase the amount of inactive blocks. The increase of inactive blocks in the memory array
would increase the automatic cleaning process and guarantee flash memory performance.
Thus, both cleaning processes are important in order to improve the cleaning process
performance in flash memory as well as its endurance.

6. References
[1] Douglis, F., Kaashoek, F., Marsh, B., Caceres, R., Li, K. and Tauber, J. (1994) Storage

alternatives for mobile computers. In: Proceedings of the 1st USENIX Conference on
Operating Systems Design and Implementation (OSDI’94), Nov. 14-17, Monterey,
California: ACM/IEEE. pp. 25 – 37.

[2] Chang, L.P. and Kuo, T.W. (2004) An efficient management scheme for large-scale
flash memory storage systems. In: Proceedings of the 2004 ACM Symposium of
Applied Computing (SAC’04), March 14-17, Nicosia, Cyprus: ACM. pp. 862 –
868.

[3] Lawton, G. (2006) Improved flash memory grows in popularity. IEEE Computer, 39(1), p.
16 – 18.

[4] Lim, S.H. and Park, K.H. (2006) An efficient NAND flash file system for flash memory
storage. IEEE Transactions on Computers, 55(7), p. 906 – 912.

[5] Breeuwsma, M., Jongh, M.d., Klaver, C., Knijff, R.v.d. and Roeloffs, M. (2007) Forensic
data recovery from flash memory. Small Scale Digital Device Forensic Journal, 1(1),
p. 1 – 17.

[6] Hsieh, J.W., Tsai, Y.L., Kuo, T.W. and Lee, T.L. (2008) Configurable flash-memory
management: Performance versus overheads. IEEE Transactions on Computer,
57(11), p. 1571 – 1583.

[7] Woodhouse, D. (2001) JFFS: The journaling flash file system. In: Proceedings of the 2001
Ottawa Linux Symposium, July 13-16, Ottawa, Canada.

[8] Barre, A.G. (1993) Flash memory magnetic disk replacement? IEEE Transactions on
Magnetics, 29(6), p. 4104 – 4107.

[9] Sharma, A.K. (2003) Advanced semiconductor memories: Architecture, designs, and
applications. Canada: WILEY-IEEE Press. P.4

Block Cleaning Process in Flash Memory

93

[10] Kawaguchi, A., Nishioka, S. and Motada, H. (1995) Flash memory based file system. In:
Proceedings of USENIX 95 Technical Conference, Jan. 16-20, New Orleans,
Louisiana: USENIX. pp. 155 – 164.

[11] Wu, M. and Zwanepoel, W. (1994) eNVy: a non-volatile, main memory storage system.
In: Proceedings of the 6th International Conference on Architectural Support for
Programming language and Operating Systems (ASPLOS), Oct. 5-7, San Jose,
California: ACM. pp. 86 – 97.

[12] Chou, L.F. and Liu, P. (2005) Efficient allocation algorithms for flash file systems. In:
Proceedings of 11th International Conference on Parallel and Distribution Systems
(ICPADS’05), July 20-22, Fukuoka, Japan: IEEE. pp. 634 – 641.

[13] Liu, P., Chuang, C.H. and Wu, J.J. (2007) Block-based allocation algorithms for flash
memory in embedded systems. In: Proceedings of 9th International Conference on
Parallel Computing Technologies (PaCT 2007), Sept. 3-7, Pereslavl-Zalessky,
Russia: Springer. pp. 569 – 578.

[14] Kim, H. and Lee, S.G. (2002) An effective flash memory manager for reliable flash
memory space management. IEICE Trans. Information and System, E85-D(6), p. 950
– 964.

[15] Chang, Y.H., Hsieh, J.W. and Kuo, T.W. (2007) Endurance enhancement of flash-
memory storage systems: An efficient static wear leveling design. In: Proceedings
of 44th ACM/IEEE Design Automation Conference (DAC 2007), June 4-8, San
Diego, California: ACM. pp. 212 – 217.

[16] Rahiman, A.R. and Sumari, P. (2009). Probability based page data allocation scheme in
flash memory. In: Proceedings of IEEE Pacific-Rim Conference on Multimedia
(PCM 2009), Dec. 15-18, Bangkok, Thailand: IEEE. pp. 300 – 310.

[17] Ko, S., Jun, S., Kim, K., and Ryu, Y. (2008) Study on garbage collection schemes for flash
based Linux swap system. In: International Conference on Advanced Software
Engineering & Its Applications (ASEA 2008), Dec. 13-15, Hainan Island, China:
IEEE. pp. 13 – 16.

[18] Han, L.Z., Rhu, Y., Chung, T.S., Lee, M. and Hong, S. (2006) An intelligent garbage
collection algorithm for flash memory storages. In: Proceedings of International
Conference on Computational Science and Its Applications (ICCSA 2006), May 8-
11, Glasgow, UK: Springer. pp. 1019 – 1027.

[19] Rosenblum, M. and Ousterhout, J.K. (1992) The design and implementation of a log-
structured file system. ACM Transactions on Computer Systems, 10(1), p. 26 – 52.

[20] Kawaguchi, A., Nishioka, S. and Motada, H. (1995) Flash memory based file system. In:
Proceedings of USENIX 95 Technical Conference, Jan. 16-20, New Orleans,
Louisiana: USENIX. pp. 155 – 164.

[21] Chiang, M.L., Lee, P.C.H, and Chang, R.C. (1999) Cleaning policies in mobile
computers using flash memory. Journal of Systems and Software, 48(3), p. 213 –
231.

[22] Kwon, O., Ryu, Y. and Koh, K. (2007) An efficient garbage collection policy for flash
memory based swap systems. In: Proceedings of International Conference on
Computer Science and Applications (ICCSA 2007), Oct. 24-26, San Francisco, USA:
IAENG. pp. 213 – 223.

[23] Yaffs (2006) How does YAFFS work? [Online], [Accessed 30th July, 2010], Available from
World Wide Web: http://www.yaffs.net/yaffs-internals.

Flash Memories

92

related with the efficient data allocation schemes where the cleaning can be initiated without
having to disturb the current operations in the flash memory. Although only single inactive
blocks can be cleaned every time the process is initiated, when the amount of active-to-
inactive state conversion increases, the cleaning performance of the flash memory is
guaranteed since the inactive block can be erased automatically without having to disturb
current I/O operations. Conversely, the semi-automatic cleaning process is initiated
according to a memory array free space threshold or it can be initiated periodically. There
are several parameters employed in establishing the victim block to be erased such as
cleaning cost, erasure count, age of data, block utilization, etc. Although the cleaning can be
initiated on multiple victim blocks, the process can impose a blocking time that would
distract the normal I/O operation execution on the memory. On the other hand, the
efficiency of re-organizing the valid data in the victim blocks could influence the cleaning
process performance further. The well-organized valid data in the new active block will
group the regular and irregular accessed data into different blocks and could further
increase the amount of inactive blocks. The increase of inactive blocks in the memory array
would increase the automatic cleaning process and guarantee flash memory performance.
Thus, both cleaning processes are important in order to improve the cleaning process
performance in flash memory as well as its endurance.

6. References
[1] Douglis, F., Kaashoek, F., Marsh, B., Caceres, R., Li, K. and Tauber, J. (1994) Storage

alternatives for mobile computers. In: Proceedings of the 1st USENIX Conference on
Operating Systems Design and Implementation (OSDI’94), Nov. 14-17, Monterey,
California: ACM/IEEE. pp. 25 – 37.

[2] Chang, L.P. and Kuo, T.W. (2004) An efficient management scheme for large-scale
flash memory storage systems. In: Proceedings of the 2004 ACM Symposium of
Applied Computing (SAC’04), March 14-17, Nicosia, Cyprus: ACM. pp. 862 –
868.

[3] Lawton, G. (2006) Improved flash memory grows in popularity. IEEE Computer, 39(1), p.
16 – 18.

[4] Lim, S.H. and Park, K.H. (2006) An efficient NAND flash file system for flash memory
storage. IEEE Transactions on Computers, 55(7), p. 906 – 912.

[5] Breeuwsma, M., Jongh, M.d., Klaver, C., Knijff, R.v.d. and Roeloffs, M. (2007) Forensic
data recovery from flash memory. Small Scale Digital Device Forensic Journal, 1(1),
p. 1 – 17.

[6] Hsieh, J.W., Tsai, Y.L., Kuo, T.W. and Lee, T.L. (2008) Configurable flash-memory
management: Performance versus overheads. IEEE Transactions on Computer,
57(11), p. 1571 – 1583.

[7] Woodhouse, D. (2001) JFFS: The journaling flash file system. In: Proceedings of the 2001
Ottawa Linux Symposium, July 13-16, Ottawa, Canada.

[8] Barre, A.G. (1993) Flash memory magnetic disk replacement? IEEE Transactions on
Magnetics, 29(6), p. 4104 – 4107.

[9] Sharma, A.K. (2003) Advanced semiconductor memories: Architecture, designs, and
applications. Canada: WILEY-IEEE Press. P.4

Block Cleaning Process in Flash Memory

93

[10] Kawaguchi, A., Nishioka, S. and Motada, H. (1995) Flash memory based file system. In:
Proceedings of USENIX 95 Technical Conference, Jan. 16-20, New Orleans,
Louisiana: USENIX. pp. 155 – 164.

[11] Wu, M. and Zwanepoel, W. (1994) eNVy: a non-volatile, main memory storage system.
In: Proceedings of the 6th International Conference on Architectural Support for
Programming language and Operating Systems (ASPLOS), Oct. 5-7, San Jose,
California: ACM. pp. 86 – 97.

[12] Chou, L.F. and Liu, P. (2005) Efficient allocation algorithms for flash file systems. In:
Proceedings of 11th International Conference on Parallel and Distribution Systems
(ICPADS’05), July 20-22, Fukuoka, Japan: IEEE. pp. 634 – 641.

[13] Liu, P., Chuang, C.H. and Wu, J.J. (2007) Block-based allocation algorithms for flash
memory in embedded systems. In: Proceedings of 9th International Conference on
Parallel Computing Technologies (PaCT 2007), Sept. 3-7, Pereslavl-Zalessky,
Russia: Springer. pp. 569 – 578.

[14] Kim, H. and Lee, S.G. (2002) An effective flash memory manager for reliable flash
memory space management. IEICE Trans. Information and System, E85-D(6), p. 950
– 964.

[15] Chang, Y.H., Hsieh, J.W. and Kuo, T.W. (2007) Endurance enhancement of flash-
memory storage systems: An efficient static wear leveling design. In: Proceedings
of 44th ACM/IEEE Design Automation Conference (DAC 2007), June 4-8, San
Diego, California: ACM. pp. 212 – 217.

[16] Rahiman, A.R. and Sumari, P. (2009). Probability based page data allocation scheme in
flash memory. In: Proceedings of IEEE Pacific-Rim Conference on Multimedia
(PCM 2009), Dec. 15-18, Bangkok, Thailand: IEEE. pp. 300 – 310.

[17] Ko, S., Jun, S., Kim, K., and Ryu, Y. (2008) Study on garbage collection schemes for flash
based Linux swap system. In: International Conference on Advanced Software
Engineering & Its Applications (ASEA 2008), Dec. 13-15, Hainan Island, China:
IEEE. pp. 13 – 16.

[18] Han, L.Z., Rhu, Y., Chung, T.S., Lee, M. and Hong, S. (2006) An intelligent garbage
collection algorithm for flash memory storages. In: Proceedings of International
Conference on Computational Science and Its Applications (ICCSA 2006), May 8-
11, Glasgow, UK: Springer. pp. 1019 – 1027.

[19] Rosenblum, M. and Ousterhout, J.K. (1992) The design and implementation of a log-
structured file system. ACM Transactions on Computer Systems, 10(1), p. 26 – 52.

[20] Kawaguchi, A., Nishioka, S. and Motada, H. (1995) Flash memory based file system. In:
Proceedings of USENIX 95 Technical Conference, Jan. 16-20, New Orleans,
Louisiana: USENIX. pp. 155 – 164.

[21] Chiang, M.L., Lee, P.C.H, and Chang, R.C. (1999) Cleaning policies in mobile
computers using flash memory. Journal of Systems and Software, 48(3), p. 213 –
231.

[22] Kwon, O., Ryu, Y. and Koh, K. (2007) An efficient garbage collection policy for flash
memory based swap systems. In: Proceedings of International Conference on
Computer Science and Applications (ICCSA 2007), Oct. 24-26, San Francisco, USA:
IAENG. pp. 213 – 223.

[23] Yaffs (2006) How does YAFFS work? [Online], [Accessed 30th July, 2010], Available from
World Wide Web: http://www.yaffs.net/yaffs-internals.

Flash Memories

94

[24] Kang, J.U., Kim, J.S., Park, C., Park, H. and Lee, J. (2007) A multi-channel architecture
for high-performance NAND flash-based storage system. Journal of Systems
Architecture, 53(9), p. 644 – 658.

0

Behavioral Modeling of Flash Memories

Igor S. Stievano, Ivan A. Maio and Flavio G. Canavero
Diartimento di Elettronica, Politecnico di Torino,

Corso Duca degli Abruzzi, 24, 10129, Torino
Italy

1. Introduction

Over the past ten years, the interest in the development of accurate and efficient models
of high-speed digital integrated circuits (ICs) has grown. The generation of IC models is
of paramount importance for the simulation of many advanced electronic applications. IC
models are used in system level simulation to predict the integrity of the signals flowing
through the system interconnects and the switching noise generated by the current absorption
of the circuits, that can interfere on the stable functioning of the entire system.
In this scenario, the common modeling resource is based on the detailed description of the IC
functional behavior obtained from the information on the internal structure of devices and
on the their physical governing equations. These models, however, are seldom available
since they disclose proprietary information of silicon vendors. In addition they turn out
to be extremely inefficient to handle the complexity of recent devices and demand for the
availability of simplified models. Owing to this, the most promising strategy is the generation
of the so-called behavioral models or macromodels, that mimic the external behavior of a
device and that can be obtained from external simulations or measurements.
A typical example of devices that strongly demand for the availability of reliable behavioral
models is represented by the class of digital memories, that are widely used in modern
electronic equipments and that are often provided by external suppliers along with low-order
or partial models only. The modeling of the power delivery network of ICs is addressed
in (ICEM, 2001; Labussiere-Dorgan et al., 2008; Stievano et al., 2011b) and the modeling of
I/O ports in (Stievano et al., 2004; Mutnury et. al., 2006; IBIS, 2008; Pulici et al., 2008; Cao
and Zhang, 2009; Stievano et al., 2011a). In these contributions most of the efforts are made to
define and improve the model structures and to provide general modeling guidelines for the
computation of model parameters from both numerical simulations and real measurements.
The aim of this chapter is to provide a unified modeling framework for the combined
application of state-of-the-art techniques to the generation of behavioral models of digital ICs
from numerical simulation and real measured data. All the results presented in this study are
based on a 512Mb NOR Flash memory in 90 nm technology produced by Numonyx, which is
representative of a wide class of memory chips.

2. Macromodel description

This section focuses on the classification of the external ports of a Flash memory and on the
available resources for the modeling of its external behavior.

5

Flash Memories

94

[24] Kang, J.U., Kim, J.S., Park, C., Park, H. and Lee, J. (2007) A multi-channel architecture
for high-performance NAND flash-based storage system. Journal of Systems
Architecture, 53(9), p. 644 – 658.

0

Behavioral Modeling of Flash Memories

Igor S. Stievano, Ivan A. Maio and Flavio G. Canavero
Diartimento di Elettronica, Politecnico di Torino,

Corso Duca degli Abruzzi, 24, 10129, Torino
Italy

1. Introduction

Over the past ten years, the interest in the development of accurate and efficient models
of high-speed digital integrated circuits (ICs) has grown. The generation of IC models is
of paramount importance for the simulation of many advanced electronic applications. IC
models are used in system level simulation to predict the integrity of the signals flowing
through the system interconnects and the switching noise generated by the current absorption
of the circuits, that can interfere on the stable functioning of the entire system.
In this scenario, the common modeling resource is based on the detailed description of the IC
functional behavior obtained from the information on the internal structure of devices and
on the their physical governing equations. These models, however, are seldom available
since they disclose proprietary information of silicon vendors. In addition they turn out
to be extremely inefficient to handle the complexity of recent devices and demand for the
availability of simplified models. Owing to this, the most promising strategy is the generation
of the so-called behavioral models or macromodels, that mimic the external behavior of a
device and that can be obtained from external simulations or measurements.
A typical example of devices that strongly demand for the availability of reliable behavioral
models is represented by the class of digital memories, that are widely used in modern
electronic equipments and that are often provided by external suppliers along with low-order
or partial models only. The modeling of the power delivery network of ICs is addressed
in (ICEM, 2001; Labussiere-Dorgan et al., 2008; Stievano et al., 2011b) and the modeling of
I/O ports in (Stievano et al., 2004; Mutnury et. al., 2006; IBIS, 2008; Pulici et al., 2008; Cao
and Zhang, 2009; Stievano et al., 2011a). In these contributions most of the efforts are made to
define and improve the model structures and to provide general modeling guidelines for the
computation of model parameters from both numerical simulations and real measurements.
The aim of this chapter is to provide a unified modeling framework for the combined
application of state-of-the-art techniques to the generation of behavioral models of digital ICs
from numerical simulation and real measured data. All the results presented in this study are
based on a 512Mb NOR Flash memory in 90 nm technology produced by Numonyx, which is
representative of a wide class of memory chips.

2. Macromodel description

This section focuses on the classification of the external ports of a Flash memory and on the
available resources for the modeling of its external behavior.

5

2 Will-be-set-by-IN-TECH

2.1 Classification
The schematic of Fig. 1, represents the typical structure of packaged memory chips in stacked
configuration. These devices are composed of a number of silicon dies encapsulated within
the same package and connected through bonding wires to the package pads as shown in the
example structure. For a single memory chip like the die #1 in the figure, the external pads
allowing the chip to communicate to the external circuitry can be classified into three classes:

(a) the VDDn and VSSn pads, corresponding to the core power delivery network of the
memory that carries the energy to the memory matrix, the digital circuitry and possible
additional analog blocks within the die;

(b) the DQn pads, corresponding to the high-speed I/O buffers;

(c) the VDDQn and VSSQn pads, corresponding to a dedicated power structure, i.e., the
so-called power rail, that consists of two on-chip traces connecting the supply pads and
supplying the I/O buffers. A limited number of buffers (in general from one to four) is
supplied by two adjacent VDDQn and VSSQn pads;

die #1

die #2

VSS VDD. . . D0 D1

PKG

bonding
wires

die #1

VDD1

VSS1

...

...

...

VDD2

VSS2

VDDQ1

DQ0

VSSQ1

DQ1

VDDQ2

...

...

PKG

Fig. 1. Typical structure of a memory chip (i.e., the die #1) encapsulated in package. Left
panel: side view; right panel; top view.

It is important to remark that the structure of Fig. 1 provides an exemplification aimed at
classifying the ports and the behavior of a memory. Some minor differences might exist and
depend on the specific device at hand. However, possible differences do not change the above
classification and the proposed modeling methodology.
Based on the previous classification, a memory macromodel is a multiport equivalent
describing the port behavior of the electrical voltage and current signals at die pads. Also, due
to the inherent internal structure of this class of devices, the macromodel can be decomposed
into the following submodels.

(a) a dynamical model for the core power delivery network that reproduces the port
constitutive relation of the multi-terminal circuit element defined by the VDDn and VSSn
pads.

(b) a set of dynamical models for the I/O buffers that include the effect of their dedicated
power supply structure and that describe the port constitutive relations of the three
terminal circuit elements defined by the DQn, VDDQn and VSSQn pads.

96 Flash Memories Behavioral Modeling of Flash Memories 3

(c) a dynamical model for the VDDQn and VSSQn power rail network.

It is worth noticing that in many practical cases, the above submodels can be assumed
independent one to each other since the possible coupling among the three physical structures
turns out to be extremely low and can be neglected. As an example, this has been verified by
a set of on-chip measurements carried out on the same memory IC considered in this study
(see Fig. 2).

102 103 104

−120

−100

−80

−60

−40

−20

0

f MHz (log scale)

|S21| dB

Fig. 2. On-chip measurement of the S21 scattering parameter carried out between two
heterogeneous pairs of VDDn-VSSn and VDDQn-VSSQn supply pads. The measurement
highlights the low coupling between the core and the buffer power delivery networks for the
example test chip considered in the study.

2.2 Core power delivery network
According to (Stievano et al., 2011a;b), the model for the core power supply of ICs is defined
by a simplified - physically inspired - circuit equivalent that attempts to describe the different
blocks involved in the power delivery network of a digital IC. A common assumption in
these approaches is the description of the core power delivery network of the IC by means
of a Norton equivalent like the one of Fig. 3a, where the short-circuit current generator A(s)
accounts for the internal switching activity of the device and the equivalent impedance Ze(s)
accounts for the passive interconnect structure and body diodes. This assumption holds
when the physical dimension of the silicon die and the frequency bandwidth of interest
are compatible with lumped modeling. When these conditions are met, this simplification
is the best solution to estimate the model parameters from external measurements. In
the state-of-the art modeling resources, the simple Norton equivalent of Fig. 3a can be
complemented by possible additional passive circuit elements guessed from some information
on the internal structure of the IC.
The estimation of the model parameters of the Norton equivalent amounts to computing the
short-circuit current source via the transient measurement or simulation of the current drawn
by the IC core during normal operation and the short-circuit admittance via frequency-domain
measurements (e.g., via the scattering parameter responses of the VDD-VSS structure). It
goes without saying that the frequency-domain measurements do not directly provide a
computational model that can be directly used in a simulation environment like SPICE.
Experience, supported also by the evidence that the die is electrically small, teaches us that the
interpretation of Ze(s) and its conversion into an equivalent circuit is rather straightforward.

97Behavioral Modeling of Flash Memories

2 Will-be-set-by-IN-TECH

2.1 Classification
The schematic of Fig. 1, represents the typical structure of packaged memory chips in stacked
configuration. These devices are composed of a number of silicon dies encapsulated within
the same package and connected through bonding wires to the package pads as shown in the
example structure. For a single memory chip like the die #1 in the figure, the external pads
allowing the chip to communicate to the external circuitry can be classified into three classes:

(a) the VDDn and VSSn pads, corresponding to the core power delivery network of the
memory that carries the energy to the memory matrix, the digital circuitry and possible
additional analog blocks within the die;

(b) the DQn pads, corresponding to the high-speed I/O buffers;

(c) the VDDQn and VSSQn pads, corresponding to a dedicated power structure, i.e., the
so-called power rail, that consists of two on-chip traces connecting the supply pads and
supplying the I/O buffers. A limited number of buffers (in general from one to four) is
supplied by two adjacent VDDQn and VSSQn pads;

die #1

die #2

VSS VDD. . . D0 D1

PKG

bonding
wires

die #1

VDD1

VSS1

...

...

...

VDD2

VSS2

VDDQ1

DQ0

VSSQ1

DQ1

VDDQ2

...

...

PKG

Fig. 1. Typical structure of a memory chip (i.e., the die #1) encapsulated in package. Left
panel: side view; right panel; top view.

It is important to remark that the structure of Fig. 1 provides an exemplification aimed at
classifying the ports and the behavior of a memory. Some minor differences might exist and
depend on the specific device at hand. However, possible differences do not change the above
classification and the proposed modeling methodology.
Based on the previous classification, a memory macromodel is a multiport equivalent
describing the port behavior of the electrical voltage and current signals at die pads. Also, due
to the inherent internal structure of this class of devices, the macromodel can be decomposed
into the following submodels.

(a) a dynamical model for the core power delivery network that reproduces the port
constitutive relation of the multi-terminal circuit element defined by the VDDn and VSSn
pads.

(b) a set of dynamical models for the I/O buffers that include the effect of their dedicated
power supply structure and that describe the port constitutive relations of the three
terminal circuit elements defined by the DQn, VDDQn and VSSQn pads.

96 Flash Memories Behavioral Modeling of Flash Memories 3

(c) a dynamical model for the VDDQn and VSSQn power rail network.

It is worth noticing that in many practical cases, the above submodels can be assumed
independent one to each other since the possible coupling among the three physical structures
turns out to be extremely low and can be neglected. As an example, this has been verified by
a set of on-chip measurements carried out on the same memory IC considered in this study
(see Fig. 2).

102 103 104

−120

−100

−80

−60

−40

−20

0

f MHz (log scale)

|S21| dB

Fig. 2. On-chip measurement of the S21 scattering parameter carried out between two
heterogeneous pairs of VDDn-VSSn and VDDQn-VSSQn supply pads. The measurement
highlights the low coupling between the core and the buffer power delivery networks for the
example test chip considered in the study.

2.2 Core power delivery network
According to (Stievano et al., 2011a;b), the model for the core power supply of ICs is defined
by a simplified - physically inspired - circuit equivalent that attempts to describe the different
blocks involved in the power delivery network of a digital IC. A common assumption in
these approaches is the description of the core power delivery network of the IC by means
of a Norton equivalent like the one of Fig. 3a, where the short-circuit current generator A(s)
accounts for the internal switching activity of the device and the equivalent impedance Ze(s)
accounts for the passive interconnect structure and body diodes. This assumption holds
when the physical dimension of the silicon die and the frequency bandwidth of interest
are compatible with lumped modeling. When these conditions are met, this simplification
is the best solution to estimate the model parameters from external measurements. In
the state-of-the art modeling resources, the simple Norton equivalent of Fig. 3a can be
complemented by possible additional passive circuit elements guessed from some information
on the internal structure of the IC.
The estimation of the model parameters of the Norton equivalent amounts to computing the
short-circuit current source via the transient measurement or simulation of the current drawn
by the IC core during normal operation and the short-circuit admittance via frequency-domain
measurements (e.g., via the scattering parameter responses of the VDD-VSS structure). It
goes without saying that the frequency-domain measurements do not directly provide a
computational model that can be directly used in a simulation environment like SPICE.
Experience, supported also by the evidence that the die is electrically small, teaches us that the
interpretation of Ze(s) and its conversion into an equivalent circuit is rather straightforward.

97Behavioral Modeling of Flash Memories

4 Will-be-set-by-IN-TECH

A(s) Ze(s) V (s)

I(s)
VDD1=VDD2

VSS1=VSS2

v(t)
vdd(t)

i(t)

idd(t) VDDQ1

D0

VSSQ1

VDDQ1

VSSQ1

VDDQ2

VSSQ2

VDDQ3

VSSQ3

RLC RLC RLC

(a) (b)

(c)

Fig. 3. Model structures: (a) Norton equivalent for the VDD-VSS core power delivery
network; (b) nonlinear dynamical model for the I/O buffers (e.g., the DQ0 pad of Fig. 1); (b)
cascade lumped equivalent of the power rail.

2.3 I/O buffers
Different approaches are used to obtain behavioral models of the I/O ports of a digital
IC. The most common approach is based on simplified equivalent circuits derived from
the internal structure of the modeled devices. This approach leads to the I/O Buffer
Information Specification (IBIS, 2008; Pulici et al., 2008), which is widely supported by
electronic design automation tools and dominates modeling applications. However, the
growing complexity of recent devices and their enhanced features like pre-emphasis and
specific control circuit, demand for refinements of the basic equivalent circuits. In order to
facilitate the modeling of these features, alternate methodologies based on the estimation
of suitable parametric relations have been proposed (Stievano et al., 2004; Mutnury et. al.,
2006). These methodologies are aimed at reproducing the electrical behavior of device ports
(see Fig. 3b), without any use of physical insights and of equivalent circuit representations.
The advantage of these approaches relies in the flexibility of the mathematical description of
models with respect to the circuit representation and on the computation of model parameters
from the responses recorded at the device ports only. Furthermore, the parametric approaches
offer simple and well-established procedures for the estimation of model parameters from real
measured data.
For the case of output buffers, the common assumption in the current state-of-the-art solutions
is the description of the port electrical behavior of the circuit via the following two-piece
relation:

i(t) = wH(t)iH(v(t), vdd(t), d
dt v(t), d

dt vdd(t), d2

dt2 . . .) +

wL(t)iL(v(t), vdd(t), d
dt v(t), d

dt vdd(t), d2

dt2 . . .)
(1)

98 Flash Memories Behavioral Modeling of Flash Memories 5

where v, vdd and i are the buffer output and power supply port voltage and current variables,
with associated reference directions, wH and wL are switching signals accounting for the
device state transitions and iH and iL are nonlinear dynamical relations accounting for the
device behavior in the fixed high and low logic states, respectively. A similar relation holds
for the power supply current and a simplified model structure, that can be considered as a
subclass of eq. (1), can be adopted for the alternate case of input ports. The readers should
refer to (Stievano et al., 2004) for additional details.
The estimation of model (1) amounts to computing the parameters of submodels iH and iL
and the weighting signals wH and wL from suitable port transient responses.

2.4 Power rail
As outlined in the introduction, the power rail supplying the I/O buffers consists of two
on-chip coplanar metallic traces connecting the VDDQn the and VSSQn pads, that have a
non negligible size and that are regularly distributed along the rail (see Fig. 1). Owing to this,
a simple transmission line model for coplanar structures can be hardly used. Instead, a model
structure like the one of Fig. 3c, that consists of the cascade connection of lumped blocks, is
more suitable for the description of the rail and allows the computation of model parameters
from external measurements and simulations.

3. Model estimation by simulation

This section briefly outlines the resources for the generation of a memory macromodel from
the simulation of detailed numerical models of devices.
When simulation models based on the governing equations describing the behavior of a
memory are available, the estimation of the parameters of the submodels of Fig. 3 is a standard
procedure. State-of-the-art techniques are ready to be used for the computation of model
parameters.
For the core power delivery network, transient and frequency-domain simulations can be
processed for the computation of the short-circuit current and of the equivalent impedance of
the Norton equivalent of Fig. 3. Readers are referred to (ICEM, 2001) for additional details.
It is also important to remark that when the structure of a device is known, even possible
different model structures can be effectively used.
Similar comments apply to the power rail structure. Also for this case, frequency-domain 3D
EM simulations of the power structure can be used for the fitting of the parameter of a circuit
equivalent, like the one of Fig. 3c.
On the other hand, I/O buffer models, either defined by simplified equivalent circuits or by
black-box mathematical relations, can be obtained via the procedure suggested by IBIS (IBIS,
2008) and collected in (Stievano et al., 2004; Mutnury et. al., 2006), respectively .

4. Model estimation by measurements

This section summarizes the procedure for the estimation of the models shown in Fig. 3
from measurements. In this work a special emphasis is given on the model generation
from measured data since this procedure is less established and possible difficulties in the
computation of model parameters from experimental data worth to be highlighted and
discussed.

99Behavioral Modeling of Flash Memories

4 Will-be-set-by-IN-TECH

A(s) Ze(s) V (s)

I(s)
VDD1=VDD2

VSS1=VSS2

v(t)
vdd(t)

i(t)

idd(t) VDDQ1

D0

VSSQ1

VDDQ1

VSSQ1

VDDQ2

VSSQ2

VDDQ3

VSSQ3

RLC RLC RLC

(a) (b)

(c)

Fig. 3. Model structures: (a) Norton equivalent for the VDD-VSS core power delivery
network; (b) nonlinear dynamical model for the I/O buffers (e.g., the DQ0 pad of Fig. 1); (b)
cascade lumped equivalent of the power rail.

2.3 I/O buffers
Different approaches are used to obtain behavioral models of the I/O ports of a digital
IC. The most common approach is based on simplified equivalent circuits derived from
the internal structure of the modeled devices. This approach leads to the I/O Buffer
Information Specification (IBIS, 2008; Pulici et al., 2008), which is widely supported by
electronic design automation tools and dominates modeling applications. However, the
growing complexity of recent devices and their enhanced features like pre-emphasis and
specific control circuit, demand for refinements of the basic equivalent circuits. In order to
facilitate the modeling of these features, alternate methodologies based on the estimation
of suitable parametric relations have been proposed (Stievano et al., 2004; Mutnury et. al.,
2006). These methodologies are aimed at reproducing the electrical behavior of device ports
(see Fig. 3b), without any use of physical insights and of equivalent circuit representations.
The advantage of these approaches relies in the flexibility of the mathematical description of
models with respect to the circuit representation and on the computation of model parameters
from the responses recorded at the device ports only. Furthermore, the parametric approaches
offer simple and well-established procedures for the estimation of model parameters from real
measured data.
For the case of output buffers, the common assumption in the current state-of-the-art solutions
is the description of the port electrical behavior of the circuit via the following two-piece
relation:

i(t) = wH(t)iH(v(t), vdd(t), d
dt v(t), d

dt vdd(t), d2

dt2 . . .) +

wL(t)iL(v(t), vdd(t), d
dt v(t), d

dt vdd(t), d2

dt2 . . .)
(1)

98 Flash Memories Behavioral Modeling of Flash Memories 5

where v, vdd and i are the buffer output and power supply port voltage and current variables,
with associated reference directions, wH and wL are switching signals accounting for the
device state transitions and iH and iL are nonlinear dynamical relations accounting for the
device behavior in the fixed high and low logic states, respectively. A similar relation holds
for the power supply current and a simplified model structure, that can be considered as a
subclass of eq. (1), can be adopted for the alternate case of input ports. The readers should
refer to (Stievano et al., 2004) for additional details.
The estimation of model (1) amounts to computing the parameters of submodels iH and iL
and the weighting signals wH and wL from suitable port transient responses.

2.4 Power rail
As outlined in the introduction, the power rail supplying the I/O buffers consists of two
on-chip coplanar metallic traces connecting the VDDQn the and VSSQn pads, that have a
non negligible size and that are regularly distributed along the rail (see Fig. 1). Owing to this,
a simple transmission line model for coplanar structures can be hardly used. Instead, a model
structure like the one of Fig. 3c, that consists of the cascade connection of lumped blocks, is
more suitable for the description of the rail and allows the computation of model parameters
from external measurements and simulations.

3. Model estimation by simulation

This section briefly outlines the resources for the generation of a memory macromodel from
the simulation of detailed numerical models of devices.
When simulation models based on the governing equations describing the behavior of a
memory are available, the estimation of the parameters of the submodels of Fig. 3 is a standard
procedure. State-of-the-art techniques are ready to be used for the computation of model
parameters.
For the core power delivery network, transient and frequency-domain simulations can be
processed for the computation of the short-circuit current and of the equivalent impedance of
the Norton equivalent of Fig. 3. Readers are referred to (ICEM, 2001) for additional details.
It is also important to remark that when the structure of a device is known, even possible
different model structures can be effectively used.
Similar comments apply to the power rail structure. Also for this case, frequency-domain 3D
EM simulations of the power structure can be used for the fitting of the parameter of a circuit
equivalent, like the one of Fig. 3c.
On the other hand, I/O buffer models, either defined by simplified equivalent circuits or by
black-box mathematical relations, can be obtained via the procedure suggested by IBIS (IBIS,
2008) and collected in (Stievano et al., 2004; Mutnury et. al., 2006), respectively .

4. Model estimation by measurements

This section summarizes the procedure for the estimation of the models shown in Fig. 3
from measurements. In this work a special emphasis is given on the model generation
from measured data since this procedure is less established and possible difficulties in the
computation of model parameters from experimental data worth to be highlighted and
discussed.

99Behavioral Modeling of Flash Memories

6 Will-be-set-by-IN-TECH

4.1 Core power delivery network
The generation of the Norton equivalent of the core power delivery network requires the
estimation of the equivalent impedance and of the short-circuit current source of Fig. 3a.

Short-circuit current source. The computation of the current source is the most critical step of
the modeling process and special care must be taken in collecting, interpreting and processing
the measured data. From a theoretical point of view, the determination of the A term would
require the measurement of the current flowing through ideal short-circuits terminating the
core power supply pads on the right panel of Fig. 1 (i.e., the VDDn and VSSn pads). However,
in practice, the pads cannot be shortened and the circuit operation of the die must be assessed
with the device encapsulated in a package and mounted on a board. Figure 4 shows the
equivalent circuit, in the Laplace domain, of the setup for the external measurement of the
switching current ISS.

VDD1=VDD2

VSS=VSS2

IC (die)

Ze(s)
A(s)

r/2 sL/2

r/2 sL/2

ISS(s)

SMA1

bonding wires
external supply
+ current probe

Rb sLb

1/sCb

PCB trace

VDD

VSS

Fig. 4. Simplified equivalent of the setup used for the measurement of the equivalent
impedance of the core power delivery network and the short-circuit switching current of a
digital IC.

In the scheme of Fig. 4 the external power supply provided by a voltage regulator and a
possible shunt capacitance is simply represented by an ideal battery connected to the VDD
ball. The VSS ball is connected to a SMA connector via an on-board trace, that is represented
by a lumped equivalent in Fig. 4. The transient current iss(t) is obtained via an indirect
measurement of the voltage drop across a R=1 Ω resistor mounted on the connector SMA1.
This method, following the standard for the measurement of the conducted emission of ICs
in the range from dc to 1GHz (IEC61967, 2006), has been selected among a limited number of
possible alternative techniques, since it is simple to implement and has proved to demonstrate
accurate results in practical applications (Fiori & Musolino, 2003).
Once the switching activity current iSS(t) is recorded, the measured waveform needs to be
suitably processed for de-embedding the effects of the measurement setup. The readers
should refer to (Stievano et al., 2011a) for additional details and a more comprehensive
discussion of the post-processing for the same example test chip of this work.

Equivalent impedance. The estimation of the equivalent impedance Ze(s) is obtained from
the scattering frequency-domain measurements of the core-power delivery structure of Fig. 1.
This can be done by using the same setup of Fig. 4 from the S11 measurements of the scattering
parameter response of the structure seen from the connector SMA1 with and without the IC
mounted on it. The measured data is converted into the impedance representation

Z11 = R0
(1 + S11)

(1 − S11)
(2)

100 Flash Memories Behavioral Modeling of Flash Memories 7

where R0 = 50 Ω is the reference impedance of the VNA. The values of the circuit equivalent
of Fig. 4 are then estimated via simple fitting from Z11. Briefly speaking, the above fitting is
achieved by means of the following two step procedure:

• Measurement of S11 without the IC mounted on the board and computation of the values
of the Rb, Lb and Cb elements;

• Measurement of S11 with the IC mounted on the board and computation of the remaining
parameters values r, L and network response Ze(s).

Test board. Figure 5 shows the board designed for the measurement required by the proposed
modeling methodology. The board implements the basic features required by the ideal setup
of Fig. 4. It is composed of a general purpose control circuitry for the operation of the device
under test, and of a measurement board holding the IC under test and the measurement
fixture. The measurement board is connected to the control board via a pair of 40-pin QTE
connectors, and can be replaced to test different ICs. The memory controller, implemented in
a FPGA, has been designed to allow the memory to operate at 66MHz and perform repeatedly
the basic cycles (program, erase, read).

Fig. 5. Measurement board for recording the core switching activity current for the example
IC.

The indirect measurement of the transient current via the voltage drop on series resistors
mounted on the connector SMA1was carried out with a LeCroy WavePro 7300A scope (3 GHz
bandwidth, 10 GS/s). To reduce the effects of the measurement noise, the memory buffers
have been forced to produce a periodic bit pattern and the averaging feature of the scope has
been set (16 waveforms were considered for the average). As an example, Figure 6 shows a
slice of the measured transient current iss(t) observed during a complete operation phase.
The frequency domain scattering measurements for the computation of the Norton equivalent
impedance has been carried out via a Agilent Vector Network Analyzer (VNA) E5071B
(300 kHz to 8.5 GHz). As an example, Fig. 7 shows the impedance seen by the connector
that has been recorded with and without the IC mounted on the board. This Figure also
compares the measurements with the responses of the lumped simplified equivalent circuits
of Fig. 4 that has been estimated via simple fitting. The measured transfer functions in Fig. 7
shows some spurious resonances in a frequency region above 200 MHz that does not need to

101Behavioral Modeling of Flash Memories

6 Will-be-set-by-IN-TECH

4.1 Core power delivery network
The generation of the Norton equivalent of the core power delivery network requires the
estimation of the equivalent impedance and of the short-circuit current source of Fig. 3a.

Short-circuit current source. The computation of the current source is the most critical step of
the modeling process and special care must be taken in collecting, interpreting and processing
the measured data. From a theoretical point of view, the determination of the A term would
require the measurement of the current flowing through ideal short-circuits terminating the
core power supply pads on the right panel of Fig. 1 (i.e., the VDDn and VSSn pads). However,
in practice, the pads cannot be shortened and the circuit operation of the die must be assessed
with the device encapsulated in a package and mounted on a board. Figure 4 shows the
equivalent circuit, in the Laplace domain, of the setup for the external measurement of the
switching current ISS.

VDD1=VDD2

VSS=VSS2

IC (die)

Ze(s)
A(s)

r/2 sL/2

r/2 sL/2

ISS(s)

SMA1

bonding wires
external supply
+ current probe

Rb sLb

1/sCb

PCB trace

VDD

VSS

Fig. 4. Simplified equivalent of the setup used for the measurement of the equivalent
impedance of the core power delivery network and the short-circuit switching current of a
digital IC.

In the scheme of Fig. 4 the external power supply provided by a voltage regulator and a
possible shunt capacitance is simply represented by an ideal battery connected to the VDD
ball. The VSS ball is connected to a SMA connector via an on-board trace, that is represented
by a lumped equivalent in Fig. 4. The transient current iss(t) is obtained via an indirect
measurement of the voltage drop across a R=1 Ω resistor mounted on the connector SMA1.
This method, following the standard for the measurement of the conducted emission of ICs
in the range from dc to 1GHz (IEC61967, 2006), has been selected among a limited number of
possible alternative techniques, since it is simple to implement and has proved to demonstrate
accurate results in practical applications (Fiori & Musolino, 2003).
Once the switching activity current iSS(t) is recorded, the measured waveform needs to be
suitably processed for de-embedding the effects of the measurement setup. The readers
should refer to (Stievano et al., 2011a) for additional details and a more comprehensive
discussion of the post-processing for the same example test chip of this work.

Equivalent impedance. The estimation of the equivalent impedance Ze(s) is obtained from
the scattering frequency-domain measurements of the core-power delivery structure of Fig. 1.
This can be done by using the same setup of Fig. 4 from the S11 measurements of the scattering
parameter response of the structure seen from the connector SMA1 with and without the IC
mounted on it. The measured data is converted into the impedance representation

Z11 = R0
(1 + S11)

(1 − S11)
(2)

100 Flash Memories Behavioral Modeling of Flash Memories 7

where R0 = 50 Ω is the reference impedance of the VNA. The values of the circuit equivalent
of Fig. 4 are then estimated via simple fitting from Z11. Briefly speaking, the above fitting is
achieved by means of the following two step procedure:

• Measurement of S11 without the IC mounted on the board and computation of the values
of the Rb, Lb and Cb elements;

• Measurement of S11 with the IC mounted on the board and computation of the remaining
parameters values r, L and network response Ze(s).

Test board. Figure 5 shows the board designed for the measurement required by the proposed
modeling methodology. The board implements the basic features required by the ideal setup
of Fig. 4. It is composed of a general purpose control circuitry for the operation of the device
under test, and of a measurement board holding the IC under test and the measurement
fixture. The measurement board is connected to the control board via a pair of 40-pin QTE
connectors, and can be replaced to test different ICs. The memory controller, implemented in
a FPGA, has been designed to allow the memory to operate at 66MHz and perform repeatedly
the basic cycles (program, erase, read).

Fig. 5. Measurement board for recording the core switching activity current for the example
IC.

The indirect measurement of the transient current via the voltage drop on series resistors
mounted on the connector SMA1was carried out with a LeCroy WavePro 7300A scope (3 GHz
bandwidth, 10 GS/s). To reduce the effects of the measurement noise, the memory buffers
have been forced to produce a periodic bit pattern and the averaging feature of the scope has
been set (16 waveforms were considered for the average). As an example, Figure 6 shows a
slice of the measured transient current iss(t) observed during a complete operation phase.
The frequency domain scattering measurements for the computation of the Norton equivalent
impedance has been carried out via a Agilent Vector Network Analyzer (VNA) E5071B
(300 kHz to 8.5 GHz). As an example, Fig. 7 shows the impedance seen by the connector
that has been recorded with and without the IC mounted on the board. This Figure also
compares the measurements with the responses of the lumped simplified equivalent circuits
of Fig. 4 that has been estimated via simple fitting. The measured transfer functions in Fig. 7
shows some spurious resonances in a frequency region above 200 MHz that does not need to

101Behavioral Modeling of Flash Memories

8 Will-be-set-by-IN-TECH

0 10 20 30 40 50 60
−20

0

20

40

60

80

100

120

t μs

iSS(t) mA

38 38.2 38.4 38.6 38.8 39
−20

0

20

40

60

80

100

120

t μs

iSS(t) mA (zoom)

Fig. 6. Measured transient current iSS(t) carried out on the example commercial memory
chip.

be modeled by a lumped equivalent accounting for the behavior of the IC. These effects are
determined by the test fixture and by the package, and do not belong to the supply structure
of the silicon device, that is generally dominated by a smooth capacitive behavior.
It is worth noticing that the on-chip probing, when available, is a good alternative option to
collect measured data that can be readily converted into the admittance representation (an
example of such test strategy is available in (Stievano et. al., 2009), where partial results are
available for the same test vehicle considered in this study). In this work, the measurements
have been carried out by means of a CascadeMicrotech probing station and a Agilent vector
network analyzer. The two-port responses are obtained via Signal-Ground (SG) probes, with
the G contact connected to the reference pad of the port. The power supply is provided to
some die pads via DC and RF probes to mimic the actual biasing conditions. An example of
the measurement setup is shown in Fig. 8.
Figure 9 shows a selection of two-port measured scattering responses of the VDD-VSS
network of Figure 1 compared to the responses of a simple lumped equivalent Ze = 1/sC.

102 Flash Memories Behavioral Modeling of Flash Memories 9

101 102 103

100

105

m
a
g
.
Ω

(l
o
g
sc
a
le
)

w/o IC

measurement
fitting

101 102 103−100

−50

0

50

100

p
h
a
se

d
eg

f MHz (log scale)

101 102 103

100

105

m
a
g
.
Ω

(l
o
g
sc
a
le
)

w IC

measurement
fitting

101 102 103−100

−50

0

50

100

p
h
a
se

d
eg

f MHz (log scale)

Fig. 7. Impedance seen from the terminals of the resistor of Fig. 4 without and with the IC
mounted on it. Solid lines: real measurement carried out on the test board of Fig. 5; dashed
lines: prediction obtained via the equivalent of Fig. 4 (L = 5 nH, Lb = 5.8 nH Cb = 19.15 pF
r = 01. Ω, Rb = 0.6 Ω and Ze(s) ≈ 1/sC, with C = 3.45 nF.

Figure 9 confirms the dominant capacitive behavior of the core power network already
observe in the curves of Fig. 7.
If needed, the accuracy of the fitting can be improved by considering the inherent multiport
nature of the die and a two-pole equivalent (e.g., see (Stievano et al., 2011b) for additional
details). Briefly speaking, this extension is achieved by considering a multiport Norton
equivalent that replaces the model of Fig. 3a and a modified version of the test setup of Fig. 4.

103Behavioral Modeling of Flash Memories

8 Will-be-set-by-IN-TECH

0 10 20 30 40 50 60
−20

0

20

40

60

80

100

120

t μs

iSS(t) mA

38 38.2 38.4 38.6 38.8 39
−20

0

20

40

60

80

100

120

t μs

iSS(t) mA (zoom)

Fig. 6. Measured transient current iSS(t) carried out on the example commercial memory
chip.

be modeled by a lumped equivalent accounting for the behavior of the IC. These effects are
determined by the test fixture and by the package, and do not belong to the supply structure
of the silicon device, that is generally dominated by a smooth capacitive behavior.
It is worth noticing that the on-chip probing, when available, is a good alternative option to
collect measured data that can be readily converted into the admittance representation (an
example of such test strategy is available in (Stievano et. al., 2009), where partial results are
available for the same test vehicle considered in this study). In this work, the measurements
have been carried out by means of a CascadeMicrotech probing station and a Agilent vector
network analyzer. The two-port responses are obtained via Signal-Ground (SG) probes, with
the G contact connected to the reference pad of the port. The power supply is provided to
some die pads via DC and RF probes to mimic the actual biasing conditions. An example of
the measurement setup is shown in Fig. 8.
Figure 9 shows a selection of two-port measured scattering responses of the VDD-VSS
network of Figure 1 compared to the responses of a simple lumped equivalent Ze = 1/sC.

102 Flash Memories Behavioral Modeling of Flash Memories 9

101 102 103

100

105

m
a
g
.
Ω

(l
o
g
sc
a
le
)

w/o IC

measurement
fitting

101 102 103−100

−50

0

50

100

p
h
a
se

d
eg

f MHz (log scale)

101 102 103

100

105

m
a
g
.
Ω

(l
o
g
sc
a
le
)

w IC

measurement
fitting

101 102 103−100

−50

0

50

100

p
h
a
se

d
eg

f MHz (log scale)

Fig. 7. Impedance seen from the terminals of the resistor of Fig. 4 without and with the IC
mounted on it. Solid lines: real measurement carried out on the test board of Fig. 5; dashed
lines: prediction obtained via the equivalent of Fig. 4 (L = 5 nH, Lb = 5.8 nH Cb = 19.15 pF
r = 01. Ω, Rb = 0.6 Ω and Ze(s) ≈ 1/sC, with C = 3.45 nF.

Figure 9 confirms the dominant capacitive behavior of the core power network already
observe in the curves of Fig. 7.
If needed, the accuracy of the fitting can be improved by considering the inherent multiport
nature of the die and a two-pole equivalent (e.g., see (Stievano et al., 2011b) for additional
details). Briefly speaking, this extension is achieved by considering a multiport Norton
equivalent that replaces the model of Fig. 3a and a modified version of the test setup of Fig. 4.

103Behavioral Modeling of Flash Memories

10 Will-be-set-by-IN-TECH

(a) Memory die (b) RF and DC probes

Fig. 8. On-wafer measurement setup used for the estimation of the equivalent impedance of
the core power delivery network.

101 102 103 104

−80

−60

−40

−20

0 |S11| dB

|S21| dB

101 102 103 104

−300

−200

−100

0

arg(S11)

arg(S21)

f MHz (log scale)

Fig. 9. Selection of the scattering responses of the VDD-VSS structure. Solid lines: reference
measured responses; dashed lines: responses of lumped capacitor Ze(s) = 1/sC .

4.2 I/O buffers
This section outlines the step-by-step modeling procedure for the generation of IC output
port behavioral models. As discussed in Sec. 2.3, a behavioral model of an input port can be
considered as a special case only (see (Stievano et al., 2004; 2011a) for additional details).
In order to devise a robust modeling procedure from real measurements carried out on a test
board, the general two-piece model structure defined by (1) is particularized as follows.

104 Flash Memories Behavioral Modeling of Flash Memories 11

⎧⎪⎪⎨
⎪⎪⎩

i(t) = wH(t)[isH(vdd − v) + idH(vdd − v, d
dt . . .)] +

wL(t)[isL(v) + idL(v, d/dt)]

idd(t) = wH(t)isH(vdd − v) + idH(vdd − v, d
dt . . .)

(3)

In the above equation, the output port current is a weighted combination of two submodels
accounting for the buffer behavior in the fixed high and low logic states (i.e., iH,L of (1)) that
are split into the sum of a static isH,L and of a dynamic idH,L contributions to facilitate model
estimation and to make the modeling procedure more robust. Also, the specific choice of the
variables in (3) as well as the model structure for the description of the power supply current
have been adopted to facilitate the parameter estimation from measurements by incorporating
in the model equations the typical operation of CMOS output buffers. Specifically, the main
contribution of the power supply current idd of a CMOS buffer is the one drawn during
the driver operation in the high output state and therefore provided by the corresponding
contibution of the output port current model in the high state.

SMA2i(t)Rs

IC (die+package) board (probe+supply)

v(t)

D0

VDDQ

VSSQ

Fig. 10. Simplified equivalent of the setup used for the measurement of the port transient
voltage and current of the I/O buffer of a digital IC. Current is indirectly measured through
the voltage drop on the series resistor RS (e.g., Rs=47 Ω).

Once the model structure (3) is assumed, the model parameters can be obtained via the
following procedure that is based on the ideal setup shown in Fig. 10.

1. Estimation of the buffer static characteristics. In principle, the estimation of the device static
characteristics isH,L can be done by collecting a number of voltage-current pairs {v, i} that
are observed while an ideal voltage source is applied to the output port of the buffer and
the source produces a DC sweep (this is also suggested by the IBIS specification (IBIS,
2008)). However, to simplify the modeling setup and to avoid dedicated test fixtures for
the extraction of the static curves only, a different solution has been proposed: the buffer
under modeling is driven to produce a periodic “01” bit pattern on a transmission line load
that is plugged into the SMA2 connector of Fig. 10. A transmission line load forces the port
voltage and current waveforms to produce a stepped response. Hence, the static values
of the buffer characteristics are extracted from the flat parts of the responses as described
in (Stievano et. al., 2008; Stievano et al., 2011a).
It is worth noticing that the number of static points used to approximate the static
characteristics of the buffer is defined by the number of steps that are in general 3 ÷ 5 for
typical buffer circuits loading 50 Ω distributed interconnects. Also, no specific care must be
paid in designing the distributed load. A simple 50 Ω coaxial cable or the shunt connection

105Behavioral Modeling of Flash Memories

10 Will-be-set-by-IN-TECH

(a) Memory die (b) RF and DC probes

Fig. 8. On-wafer measurement setup used for the estimation of the equivalent impedance of
the core power delivery network.

101 102 103 104

−80

−60

−40

−20

0 |S11| dB

|S21| dB

101 102 103 104

−300

−200

−100

0

arg(S11)

arg(S21)

f MHz (log scale)

Fig. 9. Selection of the scattering responses of the VDD-VSS structure. Solid lines: reference
measured responses; dashed lines: responses of lumped capacitor Ze(s) = 1/sC .

4.2 I/O buffers
This section outlines the step-by-step modeling procedure for the generation of IC output
port behavioral models. As discussed in Sec. 2.3, a behavioral model of an input port can be
considered as a special case only (see (Stievano et al., 2004; 2011a) for additional details).
In order to devise a robust modeling procedure from real measurements carried out on a test
board, the general two-piece model structure defined by (1) is particularized as follows.

104 Flash Memories Behavioral Modeling of Flash Memories 11

⎧⎪⎪⎨
⎪⎪⎩

i(t) = wH(t)[isH(vdd − v) + idH(vdd − v, d
dt . . .)] +

wL(t)[isL(v) + idL(v, d/dt)]

idd(t) = wH(t)isH(vdd − v) + idH(vdd − v, d
dt . . .)

(3)

In the above equation, the output port current is a weighted combination of two submodels
accounting for the buffer behavior in the fixed high and low logic states (i.e., iH,L of (1)) that
are split into the sum of a static isH,L and of a dynamic idH,L contributions to facilitate model
estimation and to make the modeling procedure more robust. Also, the specific choice of the
variables in (3) as well as the model structure for the description of the power supply current
have been adopted to facilitate the parameter estimation from measurements by incorporating
in the model equations the typical operation of CMOS output buffers. Specifically, the main
contribution of the power supply current idd of a CMOS buffer is the one drawn during
the driver operation in the high output state and therefore provided by the corresponding
contibution of the output port current model in the high state.

SMA2i(t)Rs

IC (die+package) board (probe+supply)

v(t)

D0

VDDQ

VSSQ

Fig. 10. Simplified equivalent of the setup used for the measurement of the port transient
voltage and current of the I/O buffer of a digital IC. Current is indirectly measured through
the voltage drop on the series resistor RS (e.g., Rs=47 Ω).

Once the model structure (3) is assumed, the model parameters can be obtained via the
following procedure that is based on the ideal setup shown in Fig. 10.

1. Estimation of the buffer static characteristics. In principle, the estimation of the device static
characteristics isH,L can be done by collecting a number of voltage-current pairs {v, i} that
are observed while an ideal voltage source is applied to the output port of the buffer and
the source produces a DC sweep (this is also suggested by the IBIS specification (IBIS,
2008)). However, to simplify the modeling setup and to avoid dedicated test fixtures for
the extraction of the static curves only, a different solution has been proposed: the buffer
under modeling is driven to produce a periodic “01” bit pattern on a transmission line load
that is plugged into the SMA2 connector of Fig. 10. A transmission line load forces the port
voltage and current waveforms to produce a stepped response. Hence, the static values
of the buffer characteristics are extracted from the flat parts of the responses as described
in (Stievano et. al., 2008; Stievano et al., 2011a).
It is worth noticing that the number of static points used to approximate the static
characteristics of the buffer is defined by the number of steps that are in general 3 ÷ 5 for
typical buffer circuits loading 50 Ω distributed interconnects. Also, no specific care must be
paid in designing the distributed load. A simple 50 Ω coaxial cable or the shunt connection

105Behavioral Modeling of Flash Memories

12 Will-be-set-by-IN-TECH

of two cables are sufficient to generate a set of responses with some steps. The only design
parameter is the line length, that decides the timing of reflections and the duration of the
flat responses, and that must be chosen on the basis of the device transition times. Roughly
speaking, a device with 300 ps rise time would require a 1.5 ÷ 3 m long transmission line.

2. Estimation of the dynamical submodels. The dynamical models used for idH and idL in (3)
can be either defined by lumped circuit element (IBIS assumes a capacitor (IBIS, 2008)) or
discrete-time parametric representations, whose parameters can be estimated by standard
algorithms as in (Stievano et. al., 2008). For the latter case, the device responses used to
feed the estimation algorithm are the slices of the voltage and current responses of the
buffer on a distributed load recorded while the device is in the high (low) logic state.

3. Computation of weighting coefficients. The weighting signals wH and wL are computed after
the estimation of the submodels isH,L and idH,L from the portion of the port responses
occurring during state switching, as discussed in (Stievano et. al., 2008; Stievano et al.,
2011a). In our problem, this amounts to solving the single linear equation (3) of the output
current where v and i are the advocated voltage and current responses recorded during
a single transition event and wL is assumed to be wL = (1 − wH). In principle, such an
assumption can be removed and two sets of port responses can be used to compute two
independent wH and wL signals. However, the latter simplification benefits the quality
of the complete model since it reduces possible ill-conditioning or inaccuracies of the
solution of the linear problem arising from noisy measured data or from the approximated
responses of the static and the dynamic submodels in (3).

4. Model implementation. Finally, the last step of the modeling process amounts to
translating the model equations in a simulation environment. This can be done by
representing the equation (3) in terms of an equivalent circuit and then implementing
such circuit as a SPICE-like subcircuit. The circuit interpretation of model equations
is a standard procedure that is based on the use of controlled-current sources for the
static contributions, and on resistors, capacitors, and controlled source elements for
the dynamic parts (Stievano et al., 2004). As an alternative, model (3) can be directly
plugged into a mixed-signal simulation environment by describing model equations via
metalanguages like Verilog-AMS or VHDL-AMS. In this work, the obtained models have
been implemented in SPICE.

It is worth noting that the ideal setup of Fig. 10 assumes that the series resistor RS will be
mounted as close as possible to the IC in order to neglect the possible effects of the board trace
connecting the D0 ball to the SMD component.
The waveforms corresponding to the validation of the model for the D0 buffer of the example
memory chip built in this way are shown in Fig. 11. The validation test consists of the the
D0 buffer producing a periodic “01” switching on a 4m long RG58 coaxial cable plugged
into the SMA2 connector of Fig. 5 terminated by a 82 pF capacitor. Figure 11 collects the
measured response, the reference response of the high-order transistor-level model of the
buffer provided by the foundry and the responses of two models estimated from simulation
(see the top panel (a)) and from measurements (see the bottom panel (b)). The very good
agreement among the curves of Fig. 11 confirms the strengths of the proposed methodology
in generating accurate models from measured and simulated responses. Such models can be
easily obtained by the proposed procedure and can effectively replace the hardly available
and less efficient transistor-level models of ICs.

106 Flash Memories Behavioral Modeling of Flash Memories 13

400 450 500 550 600 650 700

0

0.5

1

1.5

2

t μs

v
(t
)
V

measurement
reference
model by sim.

440 450 460 470 480 490 500 510 520

1.2

1.4

1.6

1.8

t μs

zo
om

(a) Model by simulation via the procedure in Stievano et al. (2004).

400 450 500 550 600 650 700

0

0.5

1

1.5

2

t μs

v
(t
)
V

measurement
reference
model by meas.

440 450 460 470 480 490 500 510 520

1.2

1.4

1.6

1.8

t μs

zo
om

(b) Model by measurement.

Fig. 11. Port voltage responses of the D0 buffer for the validation tests considered in this
study (see text for details). Top panel (a) compares measured responses with the reference
responses of a transistor-level model and of a model generated from simulation; bottom
panel (b) compares measured responses with the reference responses of a transistor-level
model and of a model generated from measured data.

4.3 Power rail
The most suitable solution for the estimation of the lumped elements defining the model
of the IC power rail structures (see Fig. 3c) is based on on-chip probing since the possible
alternative on-board measurements are troublesome and would limit the possibility of

107Behavioral Modeling of Flash Memories

12 Will-be-set-by-IN-TECH

of two cables are sufficient to generate a set of responses with some steps. The only design
parameter is the line length, that decides the timing of reflections and the duration of the
flat responses, and that must be chosen on the basis of the device transition times. Roughly
speaking, a device with 300 ps rise time would require a 1.5 ÷ 3 m long transmission line.

2. Estimation of the dynamical submodels. The dynamical models used for idH and idL in (3)
can be either defined by lumped circuit element (IBIS assumes a capacitor (IBIS, 2008)) or
discrete-time parametric representations, whose parameters can be estimated by standard
algorithms as in (Stievano et. al., 2008). For the latter case, the device responses used to
feed the estimation algorithm are the slices of the voltage and current responses of the
buffer on a distributed load recorded while the device is in the high (low) logic state.

3. Computation of weighting coefficients. The weighting signals wH and wL are computed after
the estimation of the submodels isH,L and idH,L from the portion of the port responses
occurring during state switching, as discussed in (Stievano et. al., 2008; Stievano et al.,
2011a). In our problem, this amounts to solving the single linear equation (3) of the output
current where v and i are the advocated voltage and current responses recorded during
a single transition event and wL is assumed to be wL = (1 − wH). In principle, such an
assumption can be removed and two sets of port responses can be used to compute two
independent wH and wL signals. However, the latter simplification benefits the quality
of the complete model since it reduces possible ill-conditioning or inaccuracies of the
solution of the linear problem arising from noisy measured data or from the approximated
responses of the static and the dynamic submodels in (3).

4. Model implementation. Finally, the last step of the modeling process amounts to
translating the model equations in a simulation environment. This can be done by
representing the equation (3) in terms of an equivalent circuit and then implementing
such circuit as a SPICE-like subcircuit. The circuit interpretation of model equations
is a standard procedure that is based on the use of controlled-current sources for the
static contributions, and on resistors, capacitors, and controlled source elements for
the dynamic parts (Stievano et al., 2004). As an alternative, model (3) can be directly
plugged into a mixed-signal simulation environment by describing model equations via
metalanguages like Verilog-AMS or VHDL-AMS. In this work, the obtained models have
been implemented in SPICE.

It is worth noting that the ideal setup of Fig. 10 assumes that the series resistor RS will be
mounted as close as possible to the IC in order to neglect the possible effects of the board trace
connecting the D0 ball to the SMD component.
The waveforms corresponding to the validation of the model for the D0 buffer of the example
memory chip built in this way are shown in Fig. 11. The validation test consists of the the
D0 buffer producing a periodic “01” switching on a 4m long RG58 coaxial cable plugged
into the SMA2 connector of Fig. 5 terminated by a 82 pF capacitor. Figure 11 collects the
measured response, the reference response of the high-order transistor-level model of the
buffer provided by the foundry and the responses of two models estimated from simulation
(see the top panel (a)) and from measurements (see the bottom panel (b)). The very good
agreement among the curves of Fig. 11 confirms the strengths of the proposed methodology
in generating accurate models from measured and simulated responses. Such models can be
easily obtained by the proposed procedure and can effectively replace the hardly available
and less efficient transistor-level models of ICs.

106 Flash Memories Behavioral Modeling of Flash Memories 13

400 450 500 550 600 650 700

0

0.5

1

1.5

2

t μs

v
(t
)
V

measurement
reference
model by sim.

440 450 460 470 480 490 500 510 520

1.2

1.4

1.6

1.8

t μs

zo
om

(a) Model by simulation via the procedure in Stievano et al. (2004).

400 450 500 550 600 650 700

0

0.5

1

1.5

2

t μs

v
(t
)
V

measurement
reference
model by meas.

440 450 460 470 480 490 500 510 520

1.2

1.4

1.6

1.8

t μs

zo
om

(b) Model by measurement.

Fig. 11. Port voltage responses of the D0 buffer for the validation tests considered in this
study (see text for details). Top panel (a) compares measured responses with the reference
responses of a transistor-level model and of a model generated from simulation; bottom
panel (b) compares measured responses with the reference responses of a transistor-level
model and of a model generated from measured data.

4.3 Power rail
The most suitable solution for the estimation of the lumped elements defining the model
of the IC power rail structures (see Fig. 3c) is based on on-chip probing since the possible
alternative on-board measurements are troublesome and would limit the possibility of

107Behavioral Modeling of Flash Memories

14 Will-be-set-by-IN-TECH

parameters estimation. The main reason is twofold: (i) the values of the RLC elements of
the blocks of Fig. 3c are much lower than those of the corresponding parasitic elements of the
package and test fixture and (ii) a custom package needs to be used since the VDDQn and
VSSQn pads must be kept floating to avoid the undesired grounding effects of the bonding
wires distributed along the rail. If the latter option is the only possible solution, a clever
de-embedding strategy and parameters estimation procedure must be devised and adopted.
In this study, as already done for the core power delivery network, a VNA and two RF probes
can be used to carry out the on-chip scattering responses of the power rail network. The
probes are connected to the first and last pairs of VDDQ/VSSQ pads. Once the measurements
are recorded, the parameters of the lumped models of Fig. 3c are obtained by least squares
fitting. Figure 12 shows an example of the fitting, thus demonstrating the accuracy of the
assumption of a model defined by the cascade connection of lumped blocks.
It is relevant to remark that the measurements carried out on the example memory chip
include the mainly capacitive effects of the active devices, i.e., of the I/O buffers. Due to
the typical large value of the buffers capacitance, the C value of the lumped RLC blocks of
Fig. 3c can be hardly obtained from measurements and can be neglected.

101 102 103 104−80

−60

−40

−20

0
|S11| dB

|S21| dB
measurement
fitting

101 102 103 104

−600

−400

−200

0

f MHz (log scale)

arg(S11)

arg(S21)

Fig. 12. Selection of the scattering responses of the power rail structure carried out between
the first and the last pair of VDDQ-VSSQ pads, for the example test-case. Solid line: on-chip
measurements; dashed line: responses by means of the simplified equivalent of Fig. 3c.

5. Conclusions

In this Chapter, the generation of a behavioral model of a memory IC is thoroughly discussed.
Based on the physical structure of this class of devices, the proposed strategy amounts to
defining three different classes of submodels for the description of the core and buffer power
delivery network and of the I/O buffers of a memory device. State-of-the-art methodologies
are used to generate models from both simulations and real measurements carried out on
a board. Specific emphasis was given on model generation from real measured data with
the aim of highlighting possible difficulties and inherent limitation in the generation of

108 Flash Memories Behavioral Modeling of Flash Memories 15

the responses required by the modeling process. The feasibility of the modeling approach
was demonstrated on a commercial IC Flash memory from measurements carried out on a
specifically designed test board.

6. Acknowledgments

This chapter provides a systematic and unified interpretation of several activities carried out under the
MOCHA (MOdeling and CHAracterization for SiP - Signal and Power Integrity Analysis) grant no.
216732 of the European Community’s Seventh Framework Programme. A. Girardi, R. Izzi, A. Vigilante
and F. Vitale (Numonyx, Italy) are gratefully acknowledged for providing the example test chip and the
general-purpose control board of Fig. 5 used in this study. Luca Rigazio, Politecnico di Torino, Italy, is
also acknowledged for the design of the measurement board of Fig. 5 and for his support during the
measurement activities.

7. References

ICEM (2001). “Integrated Circuits Electrical Model (ICEM)”, International Electro-technical
Commission (IEC) 61967.

IEC61967 (2006). “International Electro-technical Commission, IEC 61967 Part 4:
Measurement of conducted emission - 1 Ω/150 Ω direct coupling method”.

F. Fiori, F. Musolino. (2004). “Comparison of IC Conducted Emission Measurement Methods,”
IEEE Trans. on Instrumentation and Measurement, Vol. 52 (No. 3), pp. 839–845.

I. S. Stievano, I. A. Maio, F. G. Canavero. (2004). “Mπlog, Macromodeling via Parametric
Identification of Logic Gates,” IEEE Transactions on Advanced Packaging, Vol. 27
(No. 1), pp. 15–23.

B. Mutnury, M. Swaminathan, J. P. Libous. (2006). “Macromodeling of nonlinear digital I/O
drivers,” IEEE Transactions on Advanced Packaging, Vol. 29, (No. 1), pp. 102–113.

C. Labussiere-Dorgan, S. Bendhia, E. Sicard, J.Tao, H. J. Quaresma, C. Lochot, B. Vrignon.
(2008). “Modeling the electromagnetic emission of a microcontroller using a single
model,” IEEE Transactions on EMC, Vol. 50 (No. 1).

IBIS (2008). “I/O Buffer Information Specification (IBIS) Ver. 5.0,” URL:
http://www.eigroup.org/ibis/ibis.htm.

I. S. Stievano, I. A. Maio, F. G. Canavero. (2008). “Behavioral models of IC output buffers from
on-the-fly measurements,” IEEE Transactions on Instrumentation and Measurement,
Vol. 57 (No. 4), pp. 850–855.

P. Pulici, A. Girardi, G. P. Vanalli, R. Izzi, G. Bernardi, G. Ripamonti, A. G. M. Strollo,
G. Campardo. (2008). “A Modified IBIS Model Aimed at Signal Integrity Analysis
of Systems in Package,” IEEE Trans. On Circuits and Systems, Vol. 55 (No. 7).

I.S. Stievano et Al. (2009). “Characterization and modeling of the power delivery networks of
memory chips,” Proc. of 13-th IEEE Workshop on SPI, Strasbourg, F, May. 12–15.

Yi Cao, Qi-Jun Zhang. (2009) “A New Training Approach for Robust Recurrent
Neural-Network Modeling of Nonlinear Circuits,” IEEE Transactions on Microwave
Theory and Techniques, Vol. 57 (No. 6), pp. 1539–1553.

I. S. Stievano, L. Rigazio, F. G. Canavero, T. R. Cunha, J. C. Pedro, H. M. Teixeira, A. Girardi,
R. Izzi, F. Vitale. (2011a). “Behavioral modeling of IC memories from measured data,”
IEEE Transactions on Instrumentation and Measurement [in print].

109Behavioral Modeling of Flash Memories

14 Will-be-set-by-IN-TECH

parameters estimation. The main reason is twofold: (i) the values of the RLC elements of
the blocks of Fig. 3c are much lower than those of the corresponding parasitic elements of the
package and test fixture and (ii) a custom package needs to be used since the VDDQn and
VSSQn pads must be kept floating to avoid the undesired grounding effects of the bonding
wires distributed along the rail. If the latter option is the only possible solution, a clever
de-embedding strategy and parameters estimation procedure must be devised and adopted.
In this study, as already done for the core power delivery network, a VNA and two RF probes
can be used to carry out the on-chip scattering responses of the power rail network. The
probes are connected to the first and last pairs of VDDQ/VSSQ pads. Once the measurements
are recorded, the parameters of the lumped models of Fig. 3c are obtained by least squares
fitting. Figure 12 shows an example of the fitting, thus demonstrating the accuracy of the
assumption of a model defined by the cascade connection of lumped blocks.
It is relevant to remark that the measurements carried out on the example memory chip
include the mainly capacitive effects of the active devices, i.e., of the I/O buffers. Due to
the typical large value of the buffers capacitance, the C value of the lumped RLC blocks of
Fig. 3c can be hardly obtained from measurements and can be neglected.

101 102 103 104−80

−60

−40

−20

0
|S11| dB

|S21| dB
measurement
fitting

101 102 103 104

−600

−400

−200

0

f MHz (log scale)

arg(S11)

arg(S21)

Fig. 12. Selection of the scattering responses of the power rail structure carried out between
the first and the last pair of VDDQ-VSSQ pads, for the example test-case. Solid line: on-chip
measurements; dashed line: responses by means of the simplified equivalent of Fig. 3c.

5. Conclusions

In this Chapter, the generation of a behavioral model of a memory IC is thoroughly discussed.
Based on the physical structure of this class of devices, the proposed strategy amounts to
defining three different classes of submodels for the description of the core and buffer power
delivery network and of the I/O buffers of a memory device. State-of-the-art methodologies
are used to generate models from both simulations and real measurements carried out on
a board. Specific emphasis was given on model generation from real measured data with
the aim of highlighting possible difficulties and inherent limitation in the generation of

108 Flash Memories Behavioral Modeling of Flash Memories 15

the responses required by the modeling process. The feasibility of the modeling approach
was demonstrated on a commercial IC Flash memory from measurements carried out on a
specifically designed test board.

6. Acknowledgments

This chapter provides a systematic and unified interpretation of several activities carried out under the
MOCHA (MOdeling and CHAracterization for SiP - Signal and Power Integrity Analysis) grant no.
216732 of the European Community’s Seventh Framework Programme. A. Girardi, R. Izzi, A. Vigilante
and F. Vitale (Numonyx, Italy) are gratefully acknowledged for providing the example test chip and the
general-purpose control board of Fig. 5 used in this study. Luca Rigazio, Politecnico di Torino, Italy, is
also acknowledged for the design of the measurement board of Fig. 5 and for his support during the
measurement activities.

7. References

ICEM (2001). “Integrated Circuits Electrical Model (ICEM)”, International Electro-technical
Commission (IEC) 61967.

IEC61967 (2006). “International Electro-technical Commission, IEC 61967 Part 4:
Measurement of conducted emission - 1 Ω/150 Ω direct coupling method”.

F. Fiori, F. Musolino. (2004). “Comparison of IC Conducted Emission Measurement Methods,”
IEEE Trans. on Instrumentation and Measurement, Vol. 52 (No. 3), pp. 839–845.

I. S. Stievano, I. A. Maio, F. G. Canavero. (2004). “Mπlog, Macromodeling via Parametric
Identification of Logic Gates,” IEEE Transactions on Advanced Packaging, Vol. 27
(No. 1), pp. 15–23.

B. Mutnury, M. Swaminathan, J. P. Libous. (2006). “Macromodeling of nonlinear digital I/O
drivers,” IEEE Transactions on Advanced Packaging, Vol. 29, (No. 1), pp. 102–113.

C. Labussiere-Dorgan, S. Bendhia, E. Sicard, J.Tao, H. J. Quaresma, C. Lochot, B. Vrignon.
(2008). “Modeling the electromagnetic emission of a microcontroller using a single
model,” IEEE Transactions on EMC, Vol. 50 (No. 1).

IBIS (2008). “I/O Buffer Information Specification (IBIS) Ver. 5.0,” URL:
http://www.eigroup.org/ibis/ibis.htm.

I. S. Stievano, I. A. Maio, F. G. Canavero. (2008). “Behavioral models of IC output buffers from
on-the-fly measurements,” IEEE Transactions on Instrumentation and Measurement,
Vol. 57 (No. 4), pp. 850–855.

P. Pulici, A. Girardi, G. P. Vanalli, R. Izzi, G. Bernardi, G. Ripamonti, A. G. M. Strollo,
G. Campardo. (2008). “A Modified IBIS Model Aimed at Signal Integrity Analysis
of Systems in Package,” IEEE Trans. On Circuits and Systems, Vol. 55 (No. 7).

I.S. Stievano et Al. (2009). “Characterization and modeling of the power delivery networks of
memory chips,” Proc. of 13-th IEEE Workshop on SPI, Strasbourg, F, May. 12–15.

Yi Cao, Qi-Jun Zhang. (2009) “A New Training Approach for Robust Recurrent
Neural-Network Modeling of Nonlinear Circuits,” IEEE Transactions on Microwave
Theory and Techniques, Vol. 57 (No. 6), pp. 1539–1553.

I. S. Stievano, L. Rigazio, F. G. Canavero, T. R. Cunha, J. C. Pedro, H. M. Teixeira, A. Girardi,
R. Izzi, F. Vitale. (2011a). “Behavioral modeling of IC memories from measured data,”
IEEE Transactions on Instrumentation and Measurement [in print].

109Behavioral Modeling of Flash Memories

16 Will-be-set-by-IN-TECH

I.S. Stievano, L. Rigazio, I.A. Maio, F.G. Canavero. (2011b). "Behavioral modeling of IC core
power-delivery networks from measured data," IEEE Transactions on Components,
Packaging, and Manufacturing Technology, Vol. 1 (No. 3), pp. 367–373.

110 Flash Memories

Part 2

Applications

16 Will-be-set-by-IN-TECH

I.S. Stievano, L. Rigazio, I.A. Maio, F.G. Canavero. (2011b). "Behavioral modeling of IC core
power-delivery networks from measured data," IEEE Transactions on Components,
Packaging, and Manufacturing Technology, Vol. 1 (No. 3), pp. 367–373.

110 Flash Memories

Part 2

Applications

Soledad Escolar Díaz, Jesús Carretero Pérez
and Javier Fernández Muñoz

Computer Science and Engineering Department.
University Carlos III de Madrid, Madrid

Spain

1. Introduction

A wireless sensor network (WSN) is a distributed system composed of many battery-powered
devices, which operate with no human intervention for long periods of time. These devices
are called sensor nodes or motes.
Motes present features of both embedded and general-purpose systems (Han et al., 2005).
Their tiny size, scarce resources, and their autonomous nature lead to strong restrictions of
computation, communication, power, and storage. Typically, they are deployed in an ad-hoc
fashion over a geographical area (e.g. a volcano, a glacier, an office), which is to be monitored.
This means that —depending on the environment where they are installed— it could result
very difficult to perform activities of maintenance such as the replacement of the node’s
batteries. Software built for the sensor nodes must be reliable and robust due to the difficulty
for accessing sensor nodes, and sensor nodes must operate in an autonomous way even in
presence of failures.
Motes are interconnected through wireless links and they execute a simple, small application,
which is developed using a sensor node-specific operating system. Typically, sensor network
applications consist of sensing the environment through different type of sensors (e.g.
temperature, humidity, GPS, imagers), transforming analogical data into digital data in the
node itself, and forwarding the data to the network. Data is forwarded through a multi-hop
protocol to a special node denominated gateway, which is intended to redirect all data from
the wireless network to a base station (e.g. PC, laptop), where the data will be permanently
stored in order to allow data post-processing and analysis. Figure 1 shows the three elements
previously described: sensor nodes, gateway, base station.

1.1 Data classification in a WSN
WSNs generate larger data sets as sampling frequency increase. Sensor nodes must manage
data proceeding from different sources: internal data produced by the sensor node itself
(e.g. sensor measurements, application data, logs), and external data transmitted by other
nodes in the network (e.g. protocol messages, data packets, commands). Since the data

Survey of the State-of-the-Art
in Flash-Based Sensor Nodes

6

Soledad Escolar Díaz, Jesús Carretero Pérez
and Javier Fernández Muñoz

Computer Science and Engineering Department.
University Carlos III de Madrid, Madrid

Spain

1. Introduction

A wireless sensor network (WSN) is a distributed system composed of many battery-powered
devices, which operate with no human intervention for long periods of time. These devices
are called sensor nodes or motes.
Motes present features of both embedded and general-purpose systems (Han et al., 2005).
Their tiny size, scarce resources, and their autonomous nature lead to strong restrictions of
computation, communication, power, and storage. Typically, they are deployed in an ad-hoc
fashion over a geographical area (e.g. a volcano, a glacier, an office), which is to be monitored.
This means that —depending on the environment where they are installed— it could result
very difficult to perform activities of maintenance such as the replacement of the node’s
batteries. Software built for the sensor nodes must be reliable and robust due to the difficulty
for accessing sensor nodes, and sensor nodes must operate in an autonomous way even in
presence of failures.
Motes are interconnected through wireless links and they execute a simple, small application,
which is developed using a sensor node-specific operating system. Typically, sensor network
applications consist of sensing the environment through different type of sensors (e.g.
temperature, humidity, GPS, imagers), transforming analogical data into digital data in the
node itself, and forwarding the data to the network. Data is forwarded through a multi-hop
protocol to a special node denominated gateway, which is intended to redirect all data from
the wireless network to a base station (e.g. PC, laptop), where the data will be permanently
stored in order to allow data post-processing and analysis. Figure 1 shows the three elements
previously described: sensor nodes, gateway, base station.

1.1 Data classification in a WSN
WSNs generate larger data sets as sampling frequency increase. Sensor nodes must manage
data proceeding from different sources: internal data produced by the sensor node itself
(e.g. sensor measurements, application data, logs), and external data transmitted by other
nodes in the network (e.g. protocol messages, data packets, commands). Since the data

Survey of the State-of-the-Art
in Flash-Based Sensor Nodes

6

2 Will-be-set-by-IN-TECH

Fig. 1. A wireless sensor network: it is composed of a set of sensor nodes or motes, a
communication gateway, and a base station.

memory1 of a sensor node is a very scarce resource (typically 4 KB of RAM), nodes are forced
to use other available devices to save data (such as the flash memory chip located outside
the microcontroller) or to send data out of the node to prevent local storage. However, as
explained below, the radio is the main consumer of energy in the sensor node and for this
reason in many cases data are stored rather sent out. Subsequently, a tradeoff between the
flash and radio power consumption is currently an important line of research (Diao et al.,
2007) (Balani et al., 2005) (Shenker et al., 2003).
Other classification of data depends on the time when they were captured. In this sense,
data may be live or historical. The first one corresponds to data acquired within a window of
time and they are useful to detect meaningful events in quasi-real time (e.g. fire, earthquake).
Moreover, in general, users do not want to renounce to the knowledge provided by the whole
set of data, for example to identify trends or patterns and, therefore, historical data cannot be
discarded. In this sense, flash memories can provide support for such an amount of data.

1.2 Importance of the flash memory chip in a sensor node
Flash memories have been embedded into sensor nodes from their earlier designs to
nowadays. Along this time, these physical memories have suffered continuous updating,
in order to be adapted to the specific features of sensor nodes. Specifically, they must be
energy-efficient, since the energy is doubtless the most valuable and restricted resource. Many
WSN applications found in the flash memory chip the only device that allow them satisfying
their requirements, since it represents the device with the bigger capacity for permanent
storage of application data in the sensor node.
There exist an increasing number of applications requiring the usage of non-volatile storage.
Storing local and distributed data into sensor nodes has also promoted a set of high-level
applications, which manage the network as a large database. Flash memories not just
allow to store data when the RAM memory capabilities are near to be exceeded, but also
they have made possible several relevant applications for sensor networks such as remote
reprogramming of sensor nodes. Frequently, a WSN application could need both code

1 The microcontroller of motes employ the Harvard Architecture which separates data and program into
dedicated memories.

114 Flash Memories Survey of the State-of-the-Art
in Flash-based Sensor Nodes 3

updates —for modifying the value of some variable— and important changes —as replacing
the complete application’s image. However, the unattended nature of sensor nodes, their
ubiquity, and the inhospitable environments where they are deployed could difficult or even
make impossible a manual installation of nodes. As an example, consider the extreme scenario
where a sensor network has been affected by a virus disseminated from the base station.
Another example more realistic is the necessity of degrading the application behaviour
when the node’s batteries are near to deplete, in order to increase the network lifetime.
In both examples there is a necessity of reprogramming the network. Therefore, remote
programming of sensor nodes is a fundamental task for ensuring the consistency of sensor
network applications.
Consequently, flash memory chips, such as Atmel AT45DB, have become key devices that
make possible a set of applications that currently are considered critical for wireless sensor
networks.
This chapter presents a survey of the state-of-the-art in flash memories which are embedded
into sensor nodes as external devices of general purpose. Along the chapter, we refer ”flash
memories” specifically to the flash memories which are external to microcontroller. At the
beginning of the chapter we have presented a description of the technology of these flash
memories, highlighting the more relevant features in the context of WSN, and their integration
with other physical components hold into the sensor node. In the next section we describe the
abstractions provided by several WSN-specific operating systems in order to manage the flash
device. Then, we discuss the related work on flash-based sensor network applications, such
as sensor nodes reprogramming and file systems. To conclude this chapter we provide our
conclusions about this work.

2. Hardware technology

The hardware technology employed in sensor nodes manufacturing is an active research line
that is carried out by both universities and by private companies around the world. The
possibilities in this field are enormous because of the increasing need to look for new sensors
for potential applications, advances in miniaturization, and the appearance of components to
be integrated (e.g. GPS, scavengers). Since the sensor nodes are battery-powered devices,
it is the most importance the looking for strategies at the hardware level that make an
energy-efficient management of the devices.
The typical architecture of a mote presents the block diagram shown in Figure 2. It is composed
of a set of hardware components which are described as follows:

• A microcontroller of low capacity which usually operates at very low frequencies (e.g.
7 MHz) and has an architecture ranging from 4-bit to 32-bit. It also integrates RAM and
ROM memories, an Analogical-Digital Converter (ADC) and several clocks that enable local
synchronizing. Some examples of microcontrollers are Atmega128L (Atmel, 2011) from
ATMEL and MSP430 (Instrument, 2008) from Texas Instruments.

• The radio device provides wireless communication to the sensor node,
and supports the WSN specific communication properties such as low
energy, low data rate, and short distances. Some radio devices for motes
are CC1000 (CC1000 Single Chip Very Low Power RF Transceiver, 2002) and
CC2400 (CC2400 2.4GHz Low-Power RF Transceiver, 2003) from Chipcon, and

115Survey of the State-of-the-Art in Flash-Based Sensor Nodes

2 Will-be-set-by-IN-TECH

Fig. 1. A wireless sensor network: it is composed of a set of sensor nodes or motes, a
communication gateway, and a base station.

memory1 of a sensor node is a very scarce resource (typically 4 KB of RAM), nodes are forced
to use other available devices to save data (such as the flash memory chip located outside
the microcontroller) or to send data out of the node to prevent local storage. However, as
explained below, the radio is the main consumer of energy in the sensor node and for this
reason in many cases data are stored rather sent out. Subsequently, a tradeoff between the
flash and radio power consumption is currently an important line of research (Diao et al.,
2007) (Balani et al., 2005) (Shenker et al., 2003).
Other classification of data depends on the time when they were captured. In this sense,
data may be live or historical. The first one corresponds to data acquired within a window of
time and they are useful to detect meaningful events in quasi-real time (e.g. fire, earthquake).
Moreover, in general, users do not want to renounce to the knowledge provided by the whole
set of data, for example to identify trends or patterns and, therefore, historical data cannot be
discarded. In this sense, flash memories can provide support for such an amount of data.

1.2 Importance of the flash memory chip in a sensor node
Flash memories have been embedded into sensor nodes from their earlier designs to
nowadays. Along this time, these physical memories have suffered continuous updating,
in order to be adapted to the specific features of sensor nodes. Specifically, they must be
energy-efficient, since the energy is doubtless the most valuable and restricted resource. Many
WSN applications found in the flash memory chip the only device that allow them satisfying
their requirements, since it represents the device with the bigger capacity for permanent
storage of application data in the sensor node.
There exist an increasing number of applications requiring the usage of non-volatile storage.
Storing local and distributed data into sensor nodes has also promoted a set of high-level
applications, which manage the network as a large database. Flash memories not just
allow to store data when the RAM memory capabilities are near to be exceeded, but also
they have made possible several relevant applications for sensor networks such as remote
reprogramming of sensor nodes. Frequently, a WSN application could need both code

1 The microcontroller of motes employ the Harvard Architecture which separates data and program into
dedicated memories.

114 Flash Memories Survey of the State-of-the-Art
in Flash-based Sensor Nodes 3

updates —for modifying the value of some variable— and important changes —as replacing
the complete application’s image. However, the unattended nature of sensor nodes, their
ubiquity, and the inhospitable environments where they are deployed could difficult or even
make impossible a manual installation of nodes. As an example, consider the extreme scenario
where a sensor network has been affected by a virus disseminated from the base station.
Another example more realistic is the necessity of degrading the application behaviour
when the node’s batteries are near to deplete, in order to increase the network lifetime.
In both examples there is a necessity of reprogramming the network. Therefore, remote
programming of sensor nodes is a fundamental task for ensuring the consistency of sensor
network applications.
Consequently, flash memory chips, such as Atmel AT45DB, have become key devices that
make possible a set of applications that currently are considered critical for wireless sensor
networks.
This chapter presents a survey of the state-of-the-art in flash memories which are embedded
into sensor nodes as external devices of general purpose. Along the chapter, we refer ”flash
memories” specifically to the flash memories which are external to microcontroller. At the
beginning of the chapter we have presented a description of the technology of these flash
memories, highlighting the more relevant features in the context of WSN, and their integration
with other physical components hold into the sensor node. In the next section we describe the
abstractions provided by several WSN-specific operating systems in order to manage the flash
device. Then, we discuss the related work on flash-based sensor network applications, such
as sensor nodes reprogramming and file systems. To conclude this chapter we provide our
conclusions about this work.

2. Hardware technology

The hardware technology employed in sensor nodes manufacturing is an active research line
that is carried out by both universities and by private companies around the world. The
possibilities in this field are enormous because of the increasing need to look for new sensors
for potential applications, advances in miniaturization, and the appearance of components to
be integrated (e.g. GPS, scavengers). Since the sensor nodes are battery-powered devices,
it is the most importance the looking for strategies at the hardware level that make an
energy-efficient management of the devices.
The typical architecture of a mote presents the block diagram shown in Figure 2. It is composed
of a set of hardware components which are described as follows:

• A microcontroller of low capacity which usually operates at very low frequencies (e.g.
7 MHz) and has an architecture ranging from 4-bit to 32-bit. It also integrates RAM and
ROM memories, an Analogical-Digital Converter (ADC) and several clocks that enable local
synchronizing. Some examples of microcontrollers are Atmega128L (Atmel, 2011) from
ATMEL and MSP430 (Instrument, 2008) from Texas Instruments.

• The radio device provides wireless communication to the sensor node,
and supports the WSN specific communication properties such as low
energy, low data rate, and short distances. Some radio devices for motes
are CC1000 (CC1000 Single Chip Very Low Power RF Transceiver, 2002) and
CC2400 (CC2400 2.4GHz Low-Power RF Transceiver, 2003) from Chipcon, and

115Survey of the State-of-the-Art in Flash-Based Sensor Nodes

4 Will-be-set-by-IN-TECH

Fig. 2. Block diagram of a sensor node. It includes several interconnected physical devices
such as the radio, the microcontroller and the flash memory chip.

nRF2401 (nRF2401 Radio Transceiver Data Sheet, 2003) radio transceiver from Nordic
Semiconductors.

• The battery provides energy to the sensor node (e.g. alkaline batteries). Motes usually
hold two conventional batteries as power supplier. Numerous research projects focus on
alternatives for energy harvesting, which are typically based on solar cells.

• Several LEDs (Light-Emitting Diode) are attached to the mote board with the main purpose
of helping to debug. Typically, there are three LEDs integrated into a sensor node (red,
green and yellow) although in some motes, an additional blue LED has been added.

• A sensor board usually contains several sensors and actuators, which are able to sense the
environment. When the sensor board is present, the expansion connector acts as a bridge
between the sensor board and the mote microcontroller.

• Several I/O buses transfer internal data between physical components (microcontroller,
radio, and memory) in accordance with a specific I/O protocol. Different interfaces coexist
in a sensor node (e.g. Serial Peripheral Interface (SPI), Inter Integrated Circuit (I2C) and
Universal Asynchronous Receiver/Transmitter (UART)).

• Finally, an external flash memory with longer capacities than the internal memories
(RAM and ROM), in order to temporally store data provided by different sources
(sensors, network, or logs). Some of the most popular flash memory chips integrated
into sensor nodes are Atmel AT45DB (Atmel AT45DB011 Serial DataFlash, 2001) and ST
M25P40 (M25P40 Serial Flash Memory, 2002).

In the next subsection we will focus on describing the hardware technology for these flash
memories embedded in sensor nodes.

2.1 Flash memory technology
Flash memory chips embedded within sensor nodes provide an additional and auxiliary
storage space for general purpose usages. Flash memory is a specific type of EEPROM
(Electrically Erasable Programmable Read-Only Memory) that enables the access to n-bytes

116 Flash Memories Survey of the State-of-the-Art
in Flash-based Sensor Nodes 5

blocks in a single operation —instead of one operation per byte like EEPROM memories—
thus increasing the speed of the operations. This memory is non-volatile, which means that
energy is not needed to maintain the information stored in the chip. For these reasons the
usage of such a type of memory has been extended to many others digital devices like cameras,
mobile phones, and MP3 players.
Physically, a flash memory chip consists of an array of memory cells which are manufactured
using transistors. Every one of these cells is able to store one single bit (0 or 1) —in traditional
chips— or a set of bits —in modern chips. Depending on the type of logical gate employed
two underlying technologies can be distinguished:

• NOR flash is manufactured using NOR gates. Every cell in its default state is logically
equivalent to the binary ”1” value. This is interpreted as presence of voltage in the cell.
NOR flash was first introduced by Intel in 1988.

• NAND flash uses NAND gates. In this case, every cell is in its default state set to the
equivalent binary ”0” value, which means that there is no voltage measured in that cell.
NAND flash was introduced by Toshiba in 1989.

There is also a third type of technology used in the manufacturing of flash memory chips:
the CMOS technology. CMOS enables to build logical gates in different way than NOR and
NAND flash through a specific type of transistors: p-type and n-type metaloxidesemiconductor
field-effect transistors.
Regardless of the underlying technology used, there exist two basic low-level operations that
operate on a cell-basis: 1) the programming operation, which consists of inverting the default
state of a cell; and 2) the erasing operation, which consists of resetting its default state. From
these two operations most of high-level operations over the flash memory can be constructed.

2.2 Flash memory architecture
NOR flash memory architecture is organized in segments also called blocks or sectors. The
operation of erasing is block-oriented since the minimum unit to be erased is a block. It
means that all cells in this block must be erased together. The operation of programming
can be generally performed on a per-byte basis, but it requires that the block to be modified
be previously erased before of writing on it. Another feature is that it enables the random
access for readings. Typical block sizes are 64, 128, or 256 KB. One example of NOR flash
memory chip is the ST M25P40 (M25P40 Serial Flash Memory, 2002) which is hold into TelosB
and Eyes sensor node platforms. This device has a capacity of 4 Mbit and it is organized into
8 sectors. Another example is Intel Strataflash (Intel Strataflash, 2002) which is integrated into
Intel Mote2 sensor node. It is the lowest cost-per-bit NOR memory chip, with a capacity of 32
megabytes, which are divided into 128 KB sectors.
On the other hand, NAND flash memory is organized in blocks and pages. Each block
is divided into a fixed number of pages and each page has n-bytes of extension where m
bytes (m < n) are usually reserved for storing the metadata related to the data in that page
(e.g. an error correcting code (ECC)). Typical page sizes are 512, 2048, or 4096 bytes, but in
devices such as motes this length is even smaller. The high-level operations in a NAND flash
—readings and writings— are typically performed on a per-page basis while the operation
of erasing is performed on the whole block. The access in NAND memories differs from the
random access in NOR memories. NAND memories enable direct access to the block level

117Survey of the State-of-the-Art in Flash-Based Sensor Nodes

4 Will-be-set-by-IN-TECH

Fig. 2. Block diagram of a sensor node. It includes several interconnected physical devices
such as the radio, the microcontroller and the flash memory chip.

nRF2401 (nRF2401 Radio Transceiver Data Sheet, 2003) radio transceiver from Nordic
Semiconductors.

• The battery provides energy to the sensor node (e.g. alkaline batteries). Motes usually
hold two conventional batteries as power supplier. Numerous research projects focus on
alternatives for energy harvesting, which are typically based on solar cells.

• Several LEDs (Light-Emitting Diode) are attached to the mote board with the main purpose
of helping to debug. Typically, there are three LEDs integrated into a sensor node (red,
green and yellow) although in some motes, an additional blue LED has been added.

• A sensor board usually contains several sensors and actuators, which are able to sense the
environment. When the sensor board is present, the expansion connector acts as a bridge
between the sensor board and the mote microcontroller.

• Several I/O buses transfer internal data between physical components (microcontroller,
radio, and memory) in accordance with a specific I/O protocol. Different interfaces coexist
in a sensor node (e.g. Serial Peripheral Interface (SPI), Inter Integrated Circuit (I2C) and
Universal Asynchronous Receiver/Transmitter (UART)).

• Finally, an external flash memory with longer capacities than the internal memories
(RAM and ROM), in order to temporally store data provided by different sources
(sensors, network, or logs). Some of the most popular flash memory chips integrated
into sensor nodes are Atmel AT45DB (Atmel AT45DB011 Serial DataFlash, 2001) and ST
M25P40 (M25P40 Serial Flash Memory, 2002).

In the next subsection we will focus on describing the hardware technology for these flash
memories embedded in sensor nodes.

2.1 Flash memory technology
Flash memory chips embedded within sensor nodes provide an additional and auxiliary
storage space for general purpose usages. Flash memory is a specific type of EEPROM
(Electrically Erasable Programmable Read-Only Memory) that enables the access to n-bytes

116 Flash Memories Survey of the State-of-the-Art
in Flash-based Sensor Nodes 5

blocks in a single operation —instead of one operation per byte like EEPROM memories—
thus increasing the speed of the operations. This memory is non-volatile, which means that
energy is not needed to maintain the information stored in the chip. For these reasons the
usage of such a type of memory has been extended to many others digital devices like cameras,
mobile phones, and MP3 players.
Physically, a flash memory chip consists of an array of memory cells which are manufactured
using transistors. Every one of these cells is able to store one single bit (0 or 1) —in traditional
chips— or a set of bits —in modern chips. Depending on the type of logical gate employed
two underlying technologies can be distinguished:

• NOR flash is manufactured using NOR gates. Every cell in its default state is logically
equivalent to the binary ”1” value. This is interpreted as presence of voltage in the cell.
NOR flash was first introduced by Intel in 1988.

• NAND flash uses NAND gates. In this case, every cell is in its default state set to the
equivalent binary ”0” value, which means that there is no voltage measured in that cell.
NAND flash was introduced by Toshiba in 1989.

There is also a third type of technology used in the manufacturing of flash memory chips:
the CMOS technology. CMOS enables to build logical gates in different way than NOR and
NAND flash through a specific type of transistors: p-type and n-type metaloxidesemiconductor
field-effect transistors.
Regardless of the underlying technology used, there exist two basic low-level operations that
operate on a cell-basis: 1) the programming operation, which consists of inverting the default
state of a cell; and 2) the erasing operation, which consists of resetting its default state. From
these two operations most of high-level operations over the flash memory can be constructed.

2.2 Flash memory architecture
NOR flash memory architecture is organized in segments also called blocks or sectors. The
operation of erasing is block-oriented since the minimum unit to be erased is a block. It
means that all cells in this block must be erased together. The operation of programming
can be generally performed on a per-byte basis, but it requires that the block to be modified
be previously erased before of writing on it. Another feature is that it enables the random
access for readings. Typical block sizes are 64, 128, or 256 KB. One example of NOR flash
memory chip is the ST M25P40 (M25P40 Serial Flash Memory, 2002) which is hold into TelosB
and Eyes sensor node platforms. This device has a capacity of 4 Mbit and it is organized into
8 sectors. Another example is Intel Strataflash (Intel Strataflash, 2002) which is integrated into
Intel Mote2 sensor node. It is the lowest cost-per-bit NOR memory chip, with a capacity of 32
megabytes, which are divided into 128 KB sectors.
On the other hand, NAND flash memory is organized in blocks and pages. Each block
is divided into a fixed number of pages and each page has n-bytes of extension where m
bytes (m < n) are usually reserved for storing the metadata related to the data in that page
(e.g. an error correcting code (ECC)). Typical page sizes are 512, 2048, or 4096 bytes, but in
devices such as motes this length is even smaller. The high-level operations in a NAND flash
—readings and writings— are typically performed on a per-page basis while the operation
of erasing is performed on the whole block. The access in NAND memories differs from the
random access in NOR memories. NAND memories enable direct access to the block level

117Survey of the State-of-the-Art in Flash-Based Sensor Nodes

6 Will-be-set-by-IN-TECH

but only sequential access is allowed inside a block. A representative example is Samsung
K9K1G08R0B (SAMSUNG, 2003) with a capacity of 128 MB, a length of page of 528 bytes (for
programming) and a block size of 16 KB (for erasing).
The most notable example of flash chip using CMOS technology is the Atmel
AT45DB041 (Atmel AT45DB011 Serial DataFlash, 2001) chip, which is integrated into Mica
family and TelosA motes. The total capacity for this chip is 512 KB and it is divided into
four sectors of 128 KB. Every sector is also divided into pages, each page is 264 bytes long (256
bytes for data and 8 bytes for metadata). The pages can only be written or erased as a whole
and in order to maintain the consistency, pages should be erased before being written.
Unlike conventional flash memories, that enable random access to the data, this memory chip
uses a serial interface to enable sequential access. The memory uses two intermediate page
long RAM buffers to transfer data between the serial interface and main memory. Every buffer
is identified by a code which specifies what buffer is being used. These buffers perform a
read-modify-write operation to effectively change the contents of flash. Figure 3 shows the
block diagram for AT45DB041.

Fig. 3. Block diagram for AT45DB041 memory chip. It uses two page long RAM buffers to
perform the operations on the memory.

Table 1 summarizes the features of the three technologies described above.

Feature NOR flash AT45DB NAND flash
Erase Slow (seconds) Fast (ms) Fast (ms)
Erase unit Large (64KB-128KB) Small (256B) Medium (8KB-32KB)
Writes Slow (100s KB/s) Slow (60KB/s) Fast (MBs/s)
Write unit 1 bit 256B 100’s of bytes
Bit-errors Low Low High

(requires ECC, bad-block mapping)
Read Bus limited Slow+Bus limited Bus limited
Erase cycles 104 - 105 104 105 − 107

Intended use Code storage Data storage Data storage
Energy/byte 1uJ 1uJ .01uJ

Table 1. Features for different flash memory technologies: in the first column NOR
technology (e.g ST M25P40 and Intel PXA27x), in the second column the AT45DB041
memory chip (CMOS technology), and finally in third column NAND technology (e.g.
Samsung K9K1G08R0B).

118 Flash Memories Survey of the State-of-the-Art
in Flash-based Sensor Nodes 7

2.3 Limitations of flash memory
One of the main limitations of the flash memory is that there exists a limit on the number
of times a page can be written, typically around 10000 times. This feature makes necessary
a mechanism which ensures a uniform distribution of writes over all the pages of a flash.
This technique is called wear levelling. Wear levelling techniques should be implemented for
preventing the usage of a page for the maximum number of times. Subsequently, an efficient
management of the flash should have into account this feature.
Another aspect to be considered is the access time, which is comparable with the disk access
time (in the order of milliseconds). However, flash write operations consume more time and
energy than read operations, since they require to erase the page before being written. This
feature has forced to develop different high-level techniques intended to minimize the number
of times that one page goes to be written —which impacts also in those previously described
related to wear levelling—. For example, a simple technique consists of managing a page long
buffer with the data to be written and transfer it to the flash only when the buffer is complete.
SENFIS file system which is described later employes this approach. When the buffer contents
are downloaded to the flash memory, the buffer must be cleared in order to be used again.

2.4 Specific issues to sensor nodes
Since motes are battery-powered devices, an efficient power consumption policy is of critical
importance in order to increase their lifetime. The motes typically operate in cycles of
snoozing (low power mode), processing, and transmitting. Radio transmitting is the operation
that consumes most energy. In fact, transmitting one bit consumes about as much power
as executing 800-1000 instructions (Hill et al., 2000). The total energy consumption of a
node is computed as the addition of the energy spent by each physical component: radio,
sensors, leds, CPU, and flash memory. It is important to point out that, in order to perform
efficiently their tasks, every physical component in the sensor node might stay in different
states for a time, and each state has a specific current draw, which is generally supplied by
the manufacturer. Therefore, the consumption due to a physical component, for instance the
radio, is the sum of the current draws corresponding to each one of the states.
Flash memory chips distinguish several states for representing the activity to perform. For
example AT45DB041 presents the following four states: standby, read, write, and load. The
first one and the last one are the lowest consumption states —here the devices act as if
disconnected and no operation can be performed in these states— while the other two indicate
reading and writing respectively. The current draws for every state expressed in milliamperes
(mA) are 2 × 10−3, 4, 15, and 2 × 10−3 respectively. Subsequently, if the application access
pattern to flash memory is known, in particular the time spent in every flash state, it is possible
to compute easily the energy model for the node’s flash as:

E f lash = Estandby ∗ Tstandby + Eread ∗ Tread + Ewrite ∗ Twrite + Eload ∗ Tload

where Ti corresponds to the time spent in i state and Ei corresponds to the current draw in i
state.

119Survey of the State-of-the-Art in Flash-Based Sensor Nodes

6 Will-be-set-by-IN-TECH

but only sequential access is allowed inside a block. A representative example is Samsung
K9K1G08R0B (SAMSUNG, 2003) with a capacity of 128 MB, a length of page of 528 bytes (for
programming) and a block size of 16 KB (for erasing).
The most notable example of flash chip using CMOS technology is the Atmel
AT45DB041 (Atmel AT45DB011 Serial DataFlash, 2001) chip, which is integrated into Mica
family and TelosA motes. The total capacity for this chip is 512 KB and it is divided into
four sectors of 128 KB. Every sector is also divided into pages, each page is 264 bytes long (256
bytes for data and 8 bytes for metadata). The pages can only be written or erased as a whole
and in order to maintain the consistency, pages should be erased before being written.
Unlike conventional flash memories, that enable random access to the data, this memory chip
uses a serial interface to enable sequential access. The memory uses two intermediate page
long RAM buffers to transfer data between the serial interface and main memory. Every buffer
is identified by a code which specifies what buffer is being used. These buffers perform a
read-modify-write operation to effectively change the contents of flash. Figure 3 shows the
block diagram for AT45DB041.

Fig. 3. Block diagram for AT45DB041 memory chip. It uses two page long RAM buffers to
perform the operations on the memory.

Table 1 summarizes the features of the three technologies described above.

Feature NOR flash AT45DB NAND flash
Erase Slow (seconds) Fast (ms) Fast (ms)
Erase unit Large (64KB-128KB) Small (256B) Medium (8KB-32KB)
Writes Slow (100s KB/s) Slow (60KB/s) Fast (MBs/s)
Write unit 1 bit 256B 100’s of bytes
Bit-errors Low Low High

(requires ECC, bad-block mapping)
Read Bus limited Slow+Bus limited Bus limited
Erase cycles 104 - 105 104 105 − 107

Intended use Code storage Data storage Data storage
Energy/byte 1uJ 1uJ .01uJ

Table 1. Features for different flash memory technologies: in the first column NOR
technology (e.g ST M25P40 and Intel PXA27x), in the second column the AT45DB041
memory chip (CMOS technology), and finally in third column NAND technology (e.g.
Samsung K9K1G08R0B).

118 Flash Memories Survey of the State-of-the-Art
in Flash-based Sensor Nodes 7

2.3 Limitations of flash memory
One of the main limitations of the flash memory is that there exists a limit on the number
of times a page can be written, typically around 10000 times. This feature makes necessary
a mechanism which ensures a uniform distribution of writes over all the pages of a flash.
This technique is called wear levelling. Wear levelling techniques should be implemented for
preventing the usage of a page for the maximum number of times. Subsequently, an efficient
management of the flash should have into account this feature.
Another aspect to be considered is the access time, which is comparable with the disk access
time (in the order of milliseconds). However, flash write operations consume more time and
energy than read operations, since they require to erase the page before being written. This
feature has forced to develop different high-level techniques intended to minimize the number
of times that one page goes to be written —which impacts also in those previously described
related to wear levelling—. For example, a simple technique consists of managing a page long
buffer with the data to be written and transfer it to the flash only when the buffer is complete.
SENFIS file system which is described later employes this approach. When the buffer contents
are downloaded to the flash memory, the buffer must be cleared in order to be used again.

2.4 Specific issues to sensor nodes
Since motes are battery-powered devices, an efficient power consumption policy is of critical
importance in order to increase their lifetime. The motes typically operate in cycles of
snoozing (low power mode), processing, and transmitting. Radio transmitting is the operation
that consumes most energy. In fact, transmitting one bit consumes about as much power
as executing 800-1000 instructions (Hill et al., 2000). The total energy consumption of a
node is computed as the addition of the energy spent by each physical component: radio,
sensors, leds, CPU, and flash memory. It is important to point out that, in order to perform
efficiently their tasks, every physical component in the sensor node might stay in different
states for a time, and each state has a specific current draw, which is generally supplied by
the manufacturer. Therefore, the consumption due to a physical component, for instance the
radio, is the sum of the current draws corresponding to each one of the states.
Flash memory chips distinguish several states for representing the activity to perform. For
example AT45DB041 presents the following four states: standby, read, write, and load. The
first one and the last one are the lowest consumption states —here the devices act as if
disconnected and no operation can be performed in these states— while the other two indicate
reading and writing respectively. The current draws for every state expressed in milliamperes
(mA) are 2 × 10−3, 4, 15, and 2 × 10−3 respectively. Subsequently, if the application access
pattern to flash memory is known, in particular the time spent in every flash state, it is possible
to compute easily the energy model for the node’s flash as:

E f lash = Estandby ∗ Tstandby + Eread ∗ Tread + Ewrite ∗ Twrite + Eload ∗ Tload

where Ti corresponds to the time spent in i state and Ei corresponds to the current draw in i
state.

119Survey of the State-of-the-Art in Flash-Based Sensor Nodes

8 Will-be-set-by-IN-TECH

3. Operating system support

Operating systems (OSes) specifically designed to meet the WSN applications requirements
and the sensor nodes restrictions constitute the backbone of the software architecture. The
main challenge of the WSN operating systems is to manage the scarce hardware resources
of the sensor nodes in an efficient and energy-aware way. OSes use the low-level interface
(from HAL or hardware layer) to compose bigger grained operations, which are exported
to the upper levels through a well-defined interface. Thus, OS abstractions are intended
to mask the complexity of the hardware levels and facilitate the programming. High-level
applications will use these abstractions that the OS provides to access the hardware resources
in a transparent, simple way. Figure 4 depicts the software architecture of a sensor node.

Fig. 4. A multi-layer software architecture for sensor nodes.

WSN OSes are very heterogeneous. They present one of the two following execution models:
event- and thread-based. This is a relevant feature because it determines the programming
model used and, subsequently, the interface provided by every OS is strongly coupled to its
execution model. In this section we review the abstractions provided by a set of representative,
popular operating systems in order to enable the flash memory access.

3.1 TinyOS 1.x
TinyOS (Hill et al., 2000) is the de facto standard for WSN operating systems, multi-platform,
and open-source. Its execution model is event-based, but it presents some differences with
regard to the pure model; in particular it distinguishes two scheduling levels: events and
tasks. Events are preemptive and, therefore, they can be viewed as highest priority functions.
On the other hand, there exists a second scheduling level, the tasks that can be viewed
as non-preemptive functions (of lower priority) that run to completion. Tasks can only be
interrupted by events, but not by other tasks.
TinyOS is written in nesC (Gay et al., 2003), a component-based programming language
based on C that allows programming interfaces and components. The components in nesC
communicate between each other through bi-directional interfaces. A nesC application is built
through a configuration component, which declares the components and their connecting
interfaces. A TinyOS application can be viewed as a combination of configuration and

120 Flash Memories Survey of the State-of-the-Art
in Flash-based Sensor Nodes 9

implementation components, whose behaviour and state is distributed through several
interconnected components. Using this paradigm, TinyOS provides the implementation
of hardware- and OS-level components as well as flexible abstractions to be used by the
application level. Figure 5 shows an example of TinyOS application.

Fig. 5. A simple TinyOS application. It is composed of a set of components interconnected
through interfaces, where one component provides the interface’s implementation and the
other one uses it. Configuration components allow encapsulate several components within it
to build high-level components.

There exist two versions of TinyOS with substantial differences. We focus on describing the
specific differences related to the flash memory management that they do. The first version
of TinyOS provided three different interfaces to access data stored in the flash memory chip,
every one of them located at different abstraction levels, from the lowest to the highest level:

1. A low-level implementation, based on pages (PageEEPROM).

2. A high-level memory-like interface, based on bytes (ByteeEEPROM).

3. A simple, basic file system (Matchbox).

3.1.1 The low-level implementation
The lowest level abstraction provides flash memory access on a per-page basis and it gives
direct access to per-page read, write, and erase operations. The implementation is composed
of several files:

• An interface file that includes the prototype of a set of commands (or functions) and events.
Commands in TinyOS are functions that are implemented by the same or other component.
For example, read and write operations over the flash memory take in TinyOS the shape
of commands. On the other hand, in an event-based system events are signalled when an
occurrence of some action takes place. Specifically, for the operations with high hardware
latencies —which means that the operation response will be available only a time later—
TinyOS requires declaring the corresponding event in the interface. When the response is
obtained, the event is signalled from the hardware level to upper levels including also the

121Survey of the State-of-the-Art in Flash-Based Sensor Nodes

8 Will-be-set-by-IN-TECH

3. Operating system support

Operating systems (OSes) specifically designed to meet the WSN applications requirements
and the sensor nodes restrictions constitute the backbone of the software architecture. The
main challenge of the WSN operating systems is to manage the scarce hardware resources
of the sensor nodes in an efficient and energy-aware way. OSes use the low-level interface
(from HAL or hardware layer) to compose bigger grained operations, which are exported
to the upper levels through a well-defined interface. Thus, OS abstractions are intended
to mask the complexity of the hardware levels and facilitate the programming. High-level
applications will use these abstractions that the OS provides to access the hardware resources
in a transparent, simple way. Figure 4 depicts the software architecture of a sensor node.

Fig. 4. A multi-layer software architecture for sensor nodes.

WSN OSes are very heterogeneous. They present one of the two following execution models:
event- and thread-based. This is a relevant feature because it determines the programming
model used and, subsequently, the interface provided by every OS is strongly coupled to its
execution model. In this section we review the abstractions provided by a set of representative,
popular operating systems in order to enable the flash memory access.

3.1 TinyOS 1.x
TinyOS (Hill et al., 2000) is the de facto standard for WSN operating systems, multi-platform,
and open-source. Its execution model is event-based, but it presents some differences with
regard to the pure model; in particular it distinguishes two scheduling levels: events and
tasks. Events are preemptive and, therefore, they can be viewed as highest priority functions.
On the other hand, there exists a second scheduling level, the tasks that can be viewed
as non-preemptive functions (of lower priority) that run to completion. Tasks can only be
interrupted by events, but not by other tasks.
TinyOS is written in nesC (Gay et al., 2003), a component-based programming language
based on C that allows programming interfaces and components. The components in nesC
communicate between each other through bi-directional interfaces. A nesC application is built
through a configuration component, which declares the components and their connecting
interfaces. A TinyOS application can be viewed as a combination of configuration and

120 Flash Memories Survey of the State-of-the-Art
in Flash-based Sensor Nodes 9

implementation components, whose behaviour and state is distributed through several
interconnected components. Using this paradigm, TinyOS provides the implementation
of hardware- and OS-level components as well as flexible abstractions to be used by the
application level. Figure 5 shows an example of TinyOS application.

Fig. 5. A simple TinyOS application. It is composed of a set of components interconnected
through interfaces, where one component provides the interface’s implementation and the
other one uses it. Configuration components allow encapsulate several components within it
to build high-level components.

There exist two versions of TinyOS with substantial differences. We focus on describing the
specific differences related to the flash memory management that they do. The first version
of TinyOS provided three different interfaces to access data stored in the flash memory chip,
every one of them located at different abstraction levels, from the lowest to the highest level:

1. A low-level implementation, based on pages (PageEEPROM).

2. A high-level memory-like interface, based on bytes (ByteeEEPROM).

3. A simple, basic file system (Matchbox).

3.1.1 The low-level implementation
The lowest level abstraction provides flash memory access on a per-page basis and it gives
direct access to per-page read, write, and erase operations. The implementation is composed
of several files:

• An interface file that includes the prototype of a set of commands (or functions) and events.
Commands in TinyOS are functions that are implemented by the same or other component.
For example, read and write operations over the flash memory take in TinyOS the shape
of commands. On the other hand, in an event-based system events are signalled when an
occurrence of some action takes place. Specifically, for the operations with high hardware
latencies —which means that the operation response will be available only a time later—
TinyOS requires declaring the corresponding event in the interface. When the response is
obtained, the event is signalled from the hardware level to upper levels including also the

121Survey of the State-of-the-Art in Flash-Based Sensor Nodes

10 Will-be-set-by-IN-TECH

Commands
result_t write(eeprompage_t page, eeprompageoffset_t offset, void *data, eeprompageoffset_t n)
result_t erase(eeprompage_t page, uint8_t eraseKind)
result_t sync(eeprompage_t page)
result_t syncAll(void)
result_t flush(eeprompage_t page)
result_t flushAll(void)
result_t read(eeprompage_t page, eeprompageoffset_t offset, void *data, eeprompageoffset_t n)
result_t computeCrc(eeprompage_t page, eeprompageoffset_t offset, eeprompageoffset_t n)
Events
result_t writeDone(result_t result)
result_t eraseDone(result_t result)
result_t syncDone(result_t result)
result_t flushDone(result_t result)
result_t readDone(result_t result)
result_t computeCrcDone(result_t result, uint16_t crc)

Table 2. Low-level interface for flash memory access provided by TinyOS 1.x.

operation result. Note that in this latter case, another high-level component should provide
one implementation for each event. Table 2 shows the API provided at this abstraction
level. It includes a very reduced set of basic operations for reading, writing, and erasing;
additionally it allows to compute the CRC for a memory page.

• A set of TinyOS components that provides the implementation for the API shown in
Table 2. This implementation must invoke the hardware-level drivers which carry out
the operations at the physical level. Several issues are left to the application level: firstly,
flash memory must be accessed with mutual exclusion and therefore two operations over
flash cannot be issued at the same time; secondly, the application must implement the
event handlers corresponding to the commands that it invokes; thirdly, the high-level
application must specify as arguments low-level details, such as the number of page to
be read or written as well as the offset within the page. For instance, if the memory has a
capacity of 512 KB —like AT45DB041 memory flash— there exists 2048 pages every one of
them with 264 bytes to be read or written; both data must be specified for each operation
on the flash.

3.1.2 High-level implementation
This interface provides read, write, and logging operations. The implementation operates on
a per-byte basis and thus the operations must specify what is the position or offset in bytes
from which data go to be read or written. This offset is expressed as an absolute value with
regard to the total capacity of the flash memory. For instance, if the memory has a capacity of
512 KB the offset should ranges between 0x000000 and 0x07FFFF. In this sense, the abstraction
level is still very low because it forces to the programmer to manage hardware details in order
to invoke the operations. Table 3 shows the interface provided for this approach.

3.1.3 Matchbox
The idea of providing the file abstraction to access the data stored is a very useful approach
typically performed at the operating system level. This approach is very attractive for users
because it prevents them of managing hardware-level information such as offsets or number
of pages. Matchbox (Gay, 2003) is the first file system developed for sensor nodes and it was

122 Flash Memories Survey of the State-of-the-Art
in Flash-based Sensor Nodes 11

Commands
command result_t read(uint32_t offset, uint8_t* buffer, uint32_t numBytesRead);
command result_t write(uint32_t offset, uint8_t *data, uint32_t numBytesWrite);
command result_t erase();
command result_t append(uint8_t* data, uint32_t numBytes);
command uint32_t currentOffset();
command result_t request(uint32_t numBytesReq);
command result_t sync();
command result_t requestAddr(uint32_t byteAddr, uint32_t numBytesReq);
Events
event result_t readDone(uint8_t* buffer, uint32_t numBytesRead, result_t success);
event result_t writeDone(uint8_t *data, uint32_t numBytesWrite, result_t success);
event result_t eraseDone(result_t success);
event result_t appendDone(uint8_t* data, uint32_t numBytes, result_t success);
event result_t syncDone(result_t success);
event result_t requestProcessed(result_t success);

Table 3. High-level interface for flash memory provided by TinyOS 1.x.

included into the first version of TinyOS. The major goals of Matchbox are reliability (detection
of data corruption) and low resource consumption. Matchbox offers operations for directories
and files. Files are unstructured and are represented simply as a sequence of bytes. Matchbox
allows the applications to open two files simultaneously, but it supports only sequential reads
and appending writes and it does not allow random access to files. It also provides a simple
wear levelling policy. The Matchbox code size is small, around 10 KB. The minimum footprint
is 362 bytes and it increases when the number of files grows. For each flash memory page an
8-byte CRC is used to verify the integrity of the file during recovery from a system crash.
Table 4 shows the complete interface provided by the Matchbox file system. As shown, it is
composed of a reduced number of primitives to manage the data stored in the flash using the
file abstraction. In this sense, a file is a stream flow that can be read and updated. Additional
operations on a file are renaming and deleting a file. Note that the writing operation only
enables adding data at the end of the file. The advantages of this approach is that the user
manages entities that are identified through file names in order to access data; subsequently,
users do not need to be conscious about low-level details such as the number of the page to
be read or written.

3.2 TinyOS 2.x
The second version of TinyOS focuses on designing high-level portable interfaces while
the implementation is leaved up to the manufacturers. This approach satisfies the design
principles of TinyOS 2.x (Handziski et al., 2005), where a layered design of the software
architecture is proposed with the final goal of achieving portability. Subsequently, the
abstractions provided by TinyOS 2.x are high-level and platform-independent interfaces,
while their low level implementation is platform-specific. This represents an important
difference with regard to the previous version of TinyOS, where both the interface and the
implementation are specific-device. TinyOS 2.x proposes four non-volatile storage entities,
every one of them is intended for store data with different nature and requirements:

• Volumes are fixed-size units in which the flash memory is organized for general purposes.

123Survey of the State-of-the-Art in Flash-Based Sensor Nodes

10 Will-be-set-by-IN-TECH

Commands
result_t write(eeprompage_t page, eeprompageoffset_t offset, void *data, eeprompageoffset_t n)
result_t erase(eeprompage_t page, uint8_t eraseKind)
result_t sync(eeprompage_t page)
result_t syncAll(void)
result_t flush(eeprompage_t page)
result_t flushAll(void)
result_t read(eeprompage_t page, eeprompageoffset_t offset, void *data, eeprompageoffset_t n)
result_t computeCrc(eeprompage_t page, eeprompageoffset_t offset, eeprompageoffset_t n)
Events
result_t writeDone(result_t result)
result_t eraseDone(result_t result)
result_t syncDone(result_t result)
result_t flushDone(result_t result)
result_t readDone(result_t result)
result_t computeCrcDone(result_t result, uint16_t crc)

Table 2. Low-level interface for flash memory access provided by TinyOS 1.x.

operation result. Note that in this latter case, another high-level component should provide
one implementation for each event. Table 2 shows the API provided at this abstraction
level. It includes a very reduced set of basic operations for reading, writing, and erasing;
additionally it allows to compute the CRC for a memory page.

• A set of TinyOS components that provides the implementation for the API shown in
Table 2. This implementation must invoke the hardware-level drivers which carry out
the operations at the physical level. Several issues are left to the application level: firstly,
flash memory must be accessed with mutual exclusion and therefore two operations over
flash cannot be issued at the same time; secondly, the application must implement the
event handlers corresponding to the commands that it invokes; thirdly, the high-level
application must specify as arguments low-level details, such as the number of page to
be read or written as well as the offset within the page. For instance, if the memory has a
capacity of 512 KB —like AT45DB041 memory flash— there exists 2048 pages every one of
them with 264 bytes to be read or written; both data must be specified for each operation
on the flash.

3.1.2 High-level implementation
This interface provides read, write, and logging operations. The implementation operates on
a per-byte basis and thus the operations must specify what is the position or offset in bytes
from which data go to be read or written. This offset is expressed as an absolute value with
regard to the total capacity of the flash memory. For instance, if the memory has a capacity of
512 KB the offset should ranges between 0x000000 and 0x07FFFF. In this sense, the abstraction
level is still very low because it forces to the programmer to manage hardware details in order
to invoke the operations. Table 3 shows the interface provided for this approach.

3.1.3 Matchbox
The idea of providing the file abstraction to access the data stored is a very useful approach
typically performed at the operating system level. This approach is very attractive for users
because it prevents them of managing hardware-level information such as offsets or number
of pages. Matchbox (Gay, 2003) is the first file system developed for sensor nodes and it was

122 Flash Memories Survey of the State-of-the-Art
in Flash-based Sensor Nodes 11

Commands
command result_t read(uint32_t offset, uint8_t* buffer, uint32_t numBytesRead);
command result_t write(uint32_t offset, uint8_t *data, uint32_t numBytesWrite);
command result_t erase();
command result_t append(uint8_t* data, uint32_t numBytes);
command uint32_t currentOffset();
command result_t request(uint32_t numBytesReq);
command result_t sync();
command result_t requestAddr(uint32_t byteAddr, uint32_t numBytesReq);
Events
event result_t readDone(uint8_t* buffer, uint32_t numBytesRead, result_t success);
event result_t writeDone(uint8_t *data, uint32_t numBytesWrite, result_t success);
event result_t eraseDone(result_t success);
event result_t appendDone(uint8_t* data, uint32_t numBytes, result_t success);
event result_t syncDone(result_t success);
event result_t requestProcessed(result_t success);

Table 3. High-level interface for flash memory provided by TinyOS 1.x.

included into the first version of TinyOS. The major goals of Matchbox are reliability (detection
of data corruption) and low resource consumption. Matchbox offers operations for directories
and files. Files are unstructured and are represented simply as a sequence of bytes. Matchbox
allows the applications to open two files simultaneously, but it supports only sequential reads
and appending writes and it does not allow random access to files. It also provides a simple
wear levelling policy. The Matchbox code size is small, around 10 KB. The minimum footprint
is 362 bytes and it increases when the number of files grows. For each flash memory page an
8-byte CRC is used to verify the integrity of the file during recovery from a system crash.
Table 4 shows the complete interface provided by the Matchbox file system. As shown, it is
composed of a reduced number of primitives to manage the data stored in the flash using the
file abstraction. In this sense, a file is a stream flow that can be read and updated. Additional
operations on a file are renaming and deleting a file. Note that the writing operation only
enables adding data at the end of the file. The advantages of this approach is that the user
manages entities that are identified through file names in order to access data; subsequently,
users do not need to be conscious about low-level details such as the number of the page to
be read or written.

3.2 TinyOS 2.x
The second version of TinyOS focuses on designing high-level portable interfaces while
the implementation is leaved up to the manufacturers. This approach satisfies the design
principles of TinyOS 2.x (Handziski et al., 2005), where a layered design of the software
architecture is proposed with the final goal of achieving portability. Subsequently, the
abstractions provided by TinyOS 2.x are high-level and platform-independent interfaces,
while their low level implementation is platform-specific. This represents an important
difference with regard to the previous version of TinyOS, where both the interface and the
implementation are specific-device. TinyOS 2.x proposes four non-volatile storage entities,
every one of them is intended for store data with different nature and requirements:

• Volumes are fixed-size units in which the flash memory is organized for general purposes.

123Survey of the State-of-the-Art in Flash-Based Sensor Nodes

12 Will-be-set-by-IN-TECH

Commands
command result_t delete(const char *filename);
command result_t start();
command result_t readNext();
command uint32_t freeBytes();
command result_t open(const char *filename);
command result_t close();
command result_t read(void *buffer, filesize_t n);
command result_t getRemaining();
command result_t rename(const char *oldName, const char *newName);
command result_t append(void *buffer, filesize_t n);
command result_t reserve(filesize_t newSize);
command result_t sync();
Events
event result_t deleted(fileresult_t result);
event result_t ready();
event result_t nextFile(const char *filename, fileresult_t result);
event result_t opened(fileresult_t result);
event result_t closed(fileresult_t result);
event result_t readDone(void *buffer, filesize_t nRead, fileresult_t result);
event result_t remaining(filesize_t n, fileresult_t result);
event result_t renamed(fileresult_t result);
event result_t appended(void *buffer, filesize_t nWritten, fileresult_t result);
event result_t reserved(filesize_t reservedSize, fileresult_t result);
event result_t synced(fileresult_t result);

Table 4. Matchbox interface provided by TinyOS 1.x.

• Large objects that may occupy an undetermined space and they are intended to store a
great amount of data, for instance a binary image that is received from the radio device.

• Loggers are intended to store records of fixed size, such as results and events.

• Small objects (of a few hundred bytes) with a transactional behaviour.

3.2.1 Volumes
Flash chip is divided in several volumes whose size must be specified at compilation
time. The properties of the volumes are specified using an XML file where three data are
specified per each volume: name, size, and base (optional). Note that such description is
platform-independent. As an example consider the next XML file where four volumes of
65536 bytes are defined:

<volume_table>
<volume name="DELUGE" size="65536" />
<volume name="CONFIGLOG" size="65536" />
<volume name="DATALOG" size="65536" />
<volume name="GOLDENIMAGE" size="65536" base="983040" />

</volume_table>

When the application that defines the volumes configuration is compiled, the chip-specific
implementation translates such configuration to the equivalent nesC code that must allocate
the space for every volume. There is no restriction about how this translation should be done.
Applications can simply use every one of the volumes previously defined instantiating the

124 Flash Memories Survey of the State-of-the-Art
in Flash-based Sensor Nodes 13

Commands
command error_t read(storage_addr_t addr, void* buf, storage_len_t len);
command error_t computeCrc(storage_addr_t addr, storage_len_t len, uint16_t crc);
command storage_len_t getSize();
command error_t write(storage_addr_t addr, void* buf, storage_len_t len);
command error_t erase();
command error_t sync();
Events
event void readDone(storage_addr_t addr, void* buf, storage_len_t len, error_t error);
event void computeCrcDone(storage_addr_t addr, storage_len_t len, uint16_t crc, error_t error);
event void writeDone(storage_addr_t addr, void* buf, storage_len_t len, error_t error);
event void eraseDone(error_t error);
event void syncDone(error_t error);

Table 5. Interface for volumes and large objects provided by TinyOS 2.x.

generic component BlockStorageC which receives as argument the name of the volume
to be used. Data stored in the volume can be read, written, and erased. Table 5 shows the
interface to be used in order to access volumes. Note that the application specifies the relative
address to the volume on which the operation is done.

3.2.2 Large objects
Large objects are a specific type of data with an interesting semantic: each byte in the object is
written at most once. These data are written once and rarely it goes to be overwritten. In the
WSN field, there are several examples of this type of data: considers for example binary files
for network reprogramming or reliable packet whose contents must keep invariable. TinyOS
2.x provides the same interface for large objects than for volumes (see Table 5). In the same
way, an instance of the generic component BlockStorageCmust be created in order to access
the large object.

3.2.3 Loggers
Storing the internal data generated in the sensor node itself is a common requirement for
many WSN applications. Consider for example the need of scientists to know with a certain
accuracy the value of the sensor readings in order to extract patterns that can help to predict
some event. Such a logging should be reliable since data should not be lost and they should
survive to a crash or reboot. Logs can be defined as linear —data are written sequentially
from the beginning at the end of the log— or circular —if the log is full the data overwritten
the beginning of the log—. Loggers access —both linear and circular— is always sequential.
Loggers work on a per-record basis, where one record is the logic data structure to be read
or written in every operation. The commit operation ensures that the data committed are
successfully stored in flash and that they can be therefore recovered. Data not committed do
not ensure this feature. Table 6 depicts the interface for loggers provided by TinyOS 2.x. In
order to access logs the application instantiates the LogStorageC component, which takes
two input arguments: a volume identifier and a boolean argument specifying whether the log
is circular or not.

125Survey of the State-of-the-Art in Flash-Based Sensor Nodes

12 Will-be-set-by-IN-TECH

Commands
command result_t delete(const char *filename);
command result_t start();
command result_t readNext();
command uint32_t freeBytes();
command result_t open(const char *filename);
command result_t close();
command result_t read(void *buffer, filesize_t n);
command result_t getRemaining();
command result_t rename(const char *oldName, const char *newName);
command result_t append(void *buffer, filesize_t n);
command result_t reserve(filesize_t newSize);
command result_t sync();
Events
event result_t deleted(fileresult_t result);
event result_t ready();
event result_t nextFile(const char *filename, fileresult_t result);
event result_t opened(fileresult_t result);
event result_t closed(fileresult_t result);
event result_t readDone(void *buffer, filesize_t nRead, fileresult_t result);
event result_t remaining(filesize_t n, fileresult_t result);
event result_t renamed(fileresult_t result);
event result_t appended(void *buffer, filesize_t nWritten, fileresult_t result);
event result_t reserved(filesize_t reservedSize, fileresult_t result);
event result_t synced(fileresult_t result);

Table 4. Matchbox interface provided by TinyOS 1.x.

• Large objects that may occupy an undetermined space and they are intended to store a
great amount of data, for instance a binary image that is received from the radio device.

• Loggers are intended to store records of fixed size, such as results and events.

• Small objects (of a few hundred bytes) with a transactional behaviour.

3.2.1 Volumes
Flash chip is divided in several volumes whose size must be specified at compilation
time. The properties of the volumes are specified using an XML file where three data are
specified per each volume: name, size, and base (optional). Note that such description is
platform-independent. As an example consider the next XML file where four volumes of
65536 bytes are defined:

<volume_table>
<volume name="DELUGE" size="65536" />
<volume name="CONFIGLOG" size="65536" />
<volume name="DATALOG" size="65536" />
<volume name="GOLDENIMAGE" size="65536" base="983040" />

</volume_table>

When the application that defines the volumes configuration is compiled, the chip-specific
implementation translates such configuration to the equivalent nesC code that must allocate
the space for every volume. There is no restriction about how this translation should be done.
Applications can simply use every one of the volumes previously defined instantiating the

124 Flash Memories Survey of the State-of-the-Art
in Flash-based Sensor Nodes 13

Commands
command error_t read(storage_addr_t addr, void* buf, storage_len_t len);
command error_t computeCrc(storage_addr_t addr, storage_len_t len, uint16_t crc);
command storage_len_t getSize();
command error_t write(storage_addr_t addr, void* buf, storage_len_t len);
command error_t erase();
command error_t sync();
Events
event void readDone(storage_addr_t addr, void* buf, storage_len_t len, error_t error);
event void computeCrcDone(storage_addr_t addr, storage_len_t len, uint16_t crc, error_t error);
event void writeDone(storage_addr_t addr, void* buf, storage_len_t len, error_t error);
event void eraseDone(error_t error);
event void syncDone(error_t error);

Table 5. Interface for volumes and large objects provided by TinyOS 2.x.

generic component BlockStorageC which receives as argument the name of the volume
to be used. Data stored in the volume can be read, written, and erased. Table 5 shows the
interface to be used in order to access volumes. Note that the application specifies the relative
address to the volume on which the operation is done.

3.2.2 Large objects
Large objects are a specific type of data with an interesting semantic: each byte in the object is
written at most once. These data are written once and rarely it goes to be overwritten. In the
WSN field, there are several examples of this type of data: considers for example binary files
for network reprogramming or reliable packet whose contents must keep invariable. TinyOS
2.x provides the same interface for large objects than for volumes (see Table 5). In the same
way, an instance of the generic component BlockStorageCmust be created in order to access
the large object.

3.2.3 Loggers
Storing the internal data generated in the sensor node itself is a common requirement for
many WSN applications. Consider for example the need of scientists to know with a certain
accuracy the value of the sensor readings in order to extract patterns that can help to predict
some event. Such a logging should be reliable since data should not be lost and they should
survive to a crash or reboot. Logs can be defined as linear —data are written sequentially
from the beginning at the end of the log— or circular —if the log is full the data overwritten
the beginning of the log—. Loggers access —both linear and circular— is always sequential.
Loggers work on a per-record basis, where one record is the logic data structure to be read
or written in every operation. The commit operation ensures that the data committed are
successfully stored in flash and that they can be therefore recovered. Data not committed do
not ensure this feature. Table 6 depicts the interface for loggers provided by TinyOS 2.x. In
order to access logs the application instantiates the LogStorageC component, which takes
two input arguments: a volume identifier and a boolean argument specifying whether the log
is circular or not.

125Survey of the State-of-the-Art in Flash-Based Sensor Nodes

14 Will-be-set-by-IN-TECH

Commands
command error_t read(void* buf, storage_len_t len);
command storage_cookie_t currentOffset();
command error_t seek(storage_cookie_t offset);
command storage_len_t getSize();
command error_t append(void* buf, storage_len_t len);
command error_t erase();
command error_t sync();
Events
event void readDone(,void* buf, storage_len_t len, error_t error);
event void seekDone(error_t error);
event void appendDone(void* buf, storage_len_t len, bool recordsLost, error_t error);
event void eraseDone(error_t error);
event void syncDone(error_t error);

Table 6. Interface for loggers provided by TinyOS 2.x.

Commands
command error_t read(storage_addr_t addr, void* buf, storage_len_t len);
command error_t write(storage_addr_t addr, void* buf, storage_len_t len);
command error_t commit();
command storage_len_t getSize();
command bool valid();
command error_t mount();
Events
event void readDone(storage_addr_t addr, void* buf, storage_len_t len, error_t error);
event void writeDone(storage_addr_t addr, void* buf, storage_len_t len, error_t error);
event void commitDone(error_t error);
event void mountDone(error_t error);

Table 7. Interface for small objects provided by TinyOS 2.x.

3.2.4 Small objects
Some sensor network applications need to store their configuration. This configuration
includes the initial data to be assigned to the application variables such as the mote identity,
sampling rates, or thresholds. These critical data must be stored in a non-volatile support in
order to be sure that on sensor failures —reboot or crash— the configuration can be recovered.
A characteristic of this type of data is its small size, frequently of a few hundred bytes. Another
interesting feature is the transactional behaviour of the operations performed on this type of
data: each read is a separate transaction, all writes up to a commit defines a single transaction.
Table 7 presents the interface provided by TinyOS 2.x for small objects. The application
must instantiate the generic component ConfigStorageC previously to the data access. As
shown, the operation must specify the address to be read or written.

3.3 Contiki
Contiki (Dunkels et al., 2004) is an operating system designed for networked and memory
constrained systems, developed in the Swedish Institute of Computer Science (SICS) by Adam
Dunkels as the leader of the project in 2003. Contiki is open source and it was written in the
C programming language. The typical size of Contiki applications is around kilobytes, which
means a bigger footprint than the applications developed in TinyOS. In spite of this, it could be
considered the second most extended operating system for programming sensor nodes. At the

126 Flash Memories Survey of the State-of-the-Art
in Flash-based Sensor Nodes 15

Functions Description
int cfs_open (const char *name, int flags); Open a file
void cfs_close (int fd); Close an open file
int cfs_read (int fd, void *buf, unsigned int len); Read data from an open file
int cfs_write (int fd, const void *buf, unsigned int len); Write data to an open file
cfs_offset_t cfs_seek (int fd, cfs_offset_t offset, int whence); Seek to a specified position in an open file
int cfs_remove (const char *name); Remove a file
int cfs_opendir (struct cfs_dir *dirp, const char *name); Open a directory for reading directory entries
int cfs_readdir (struct cfs_dir *dirp, struct cfs_dirent *dirent); Read a directory entry
void cfs_closedir (struct cfs_dir *dirp); Close a directory opened with cfs_opendir()

Table 8. Coffee file system interface.

operating system level Contiki provides an only way for accessing data: a file system. This file
system is called Coffee (Contiki’s Flash File System (Coffee)) (Tsiftes et al., 2009). Coffee is a
flash-based file system, designed as a combination of extents and micro log files. The concept of
micro log files is introduced to record file modifications without requiring a high consumption
of memory space. In fact, every open file uses a small and constant memory footprint. Coffee
provides POSIX-style primitives to manage both files and directories (see Table 8). Other
outstanding features of Coffee are garbage collection, wear levelling techniques in order to
avoid memory corruption, and fault recovery.

3.4 LiteOS
LiteOS (Cao et al., 2008) is a UNIX-like multi-threaded operating system with object-oriented
programming support for wireless sensor networks. It includes several features of the Unix
systems (e.g. a shell or the programming environment), which increase its footprint leaving
it too far from operating systems such as TinyOS. LiteOS includes a built-in hierarchical
file system called LiteFS (Cao & Abdelzaher, 2006). LiteFS supports both file and directory
operations, and opened files are kept in RAM. Directory information is stored in the EEPROM
while the serial flash stores file metadata. LiteFS implements two wear levelling techniques,
one for the EEPROM chip and the other one for the serial flash. LiteOS provides also
a UNIX-like shell that facilitates the interaction of the user with the file system by using
UNIX-based commands (e.g. ls, cd, cp, mv, rm). The complete set of LiteFS primitives is
presented in Table 9. As shown, there are basic primitives for managing files and directories
(e.g. open, close, read, and write) as well as for administrating the sensor node (e.g. checking
and formatting the EEPROM and flash memories).

3.5 Comparison
The three implementations provided by TinyOS 1.x are AT45DB-specific and subsequently
in this first approach the portability was sacrificed. In general, the abstraction level offered
by the OS is very low even when bigger grained entities such as files are managed.
The applications are forced to be worried about hardware details (number of the page,
offset), which makes programming complex and error-prone. Clearly the advantage of this
approach is that it prevents the overload imposed by the management at the OS level. In
TinyOS 2.x the major goal was increasing the portability though richer interfaces that are
platform-independent. TinyOS 2.x renounces to offer a general implementation at the OS
level due to the heterogeneity of the different flash devices. The interfaces provided are
recommended for a particular type of data: small objects, volumes, loggers and large object.

127Survey of the State-of-the-Art in Flash-Based Sensor Nodes

14 Will-be-set-by-IN-TECH

Commands
command error_t read(void* buf, storage_len_t len);
command storage_cookie_t currentOffset();
command error_t seek(storage_cookie_t offset);
command storage_len_t getSize();
command error_t append(void* buf, storage_len_t len);
command error_t erase();
command error_t sync();
Events
event void readDone(,void* buf, storage_len_t len, error_t error);
event void seekDone(error_t error);
event void appendDone(void* buf, storage_len_t len, bool recordsLost, error_t error);
event void eraseDone(error_t error);
event void syncDone(error_t error);

Table 6. Interface for loggers provided by TinyOS 2.x.

Commands
command error_t read(storage_addr_t addr, void* buf, storage_len_t len);
command error_t write(storage_addr_t addr, void* buf, storage_len_t len);
command error_t commit();
command storage_len_t getSize();
command bool valid();
command error_t mount();
Events
event void readDone(storage_addr_t addr, void* buf, storage_len_t len, error_t error);
event void writeDone(storage_addr_t addr, void* buf, storage_len_t len, error_t error);
event void commitDone(error_t error);
event void mountDone(error_t error);

Table 7. Interface for small objects provided by TinyOS 2.x.

3.2.4 Small objects
Some sensor network applications need to store their configuration. This configuration
includes the initial data to be assigned to the application variables such as the mote identity,
sampling rates, or thresholds. These critical data must be stored in a non-volatile support in
order to be sure that on sensor failures —reboot or crash— the configuration can be recovered.
A characteristic of this type of data is its small size, frequently of a few hundred bytes. Another
interesting feature is the transactional behaviour of the operations performed on this type of
data: each read is a separate transaction, all writes up to a commit defines a single transaction.
Table 7 presents the interface provided by TinyOS 2.x for small objects. The application
must instantiate the generic component ConfigStorageC previously to the data access. As
shown, the operation must specify the address to be read or written.

3.3 Contiki
Contiki (Dunkels et al., 2004) is an operating system designed for networked and memory
constrained systems, developed in the Swedish Institute of Computer Science (SICS) by Adam
Dunkels as the leader of the project in 2003. Contiki is open source and it was written in the
C programming language. The typical size of Contiki applications is around kilobytes, which
means a bigger footprint than the applications developed in TinyOS. In spite of this, it could be
considered the second most extended operating system for programming sensor nodes. At the

126 Flash Memories Survey of the State-of-the-Art
in Flash-based Sensor Nodes 15

Functions Description
int cfs_open (const char *name, int flags); Open a file
void cfs_close (int fd); Close an open file
int cfs_read (int fd, void *buf, unsigned int len); Read data from an open file
int cfs_write (int fd, const void *buf, unsigned int len); Write data to an open file
cfs_offset_t cfs_seek (int fd, cfs_offset_t offset, int whence); Seek to a specified position in an open file
int cfs_remove (const char *name); Remove a file
int cfs_opendir (struct cfs_dir *dirp, const char *name); Open a directory for reading directory entries
int cfs_readdir (struct cfs_dir *dirp, struct cfs_dirent *dirent); Read a directory entry
void cfs_closedir (struct cfs_dir *dirp); Close a directory opened with cfs_opendir()

Table 8. Coffee file system interface.

operating system level Contiki provides an only way for accessing data: a file system. This file
system is called Coffee (Contiki’s Flash File System (Coffee)) (Tsiftes et al., 2009). Coffee is a
flash-based file system, designed as a combination of extents and micro log files. The concept of
micro log files is introduced to record file modifications without requiring a high consumption
of memory space. In fact, every open file uses a small and constant memory footprint. Coffee
provides POSIX-style primitives to manage both files and directories (see Table 8). Other
outstanding features of Coffee are garbage collection, wear levelling techniques in order to
avoid memory corruption, and fault recovery.

3.4 LiteOS
LiteOS (Cao et al., 2008) is a UNIX-like multi-threaded operating system with object-oriented
programming support for wireless sensor networks. It includes several features of the Unix
systems (e.g. a shell or the programming environment), which increase its footprint leaving
it too far from operating systems such as TinyOS. LiteOS includes a built-in hierarchical
file system called LiteFS (Cao & Abdelzaher, 2006). LiteFS supports both file and directory
operations, and opened files are kept in RAM. Directory information is stored in the EEPROM
while the serial flash stores file metadata. LiteFS implements two wear levelling techniques,
one for the EEPROM chip and the other one for the serial flash. LiteOS provides also
a UNIX-like shell that facilitates the interaction of the user with the file system by using
UNIX-based commands (e.g. ls, cd, cp, mv, rm). The complete set of LiteFS primitives is
presented in Table 9. As shown, there are basic primitives for managing files and directories
(e.g. open, close, read, and write) as well as for administrating the sensor node (e.g. checking
and formatting the EEPROM and flash memories).

3.5 Comparison
The three implementations provided by TinyOS 1.x are AT45DB-specific and subsequently
in this first approach the portability was sacrificed. In general, the abstraction level offered
by the OS is very low even when bigger grained entities such as files are managed.
The applications are forced to be worried about hardware details (number of the page,
offset), which makes programming complex and error-prone. Clearly the advantage of this
approach is that it prevents the overload imposed by the management at the OS level. In
TinyOS 2.x the major goal was increasing the portability though richer interfaces that are
platform-independent. TinyOS 2.x renounces to offer a general implementation at the OS
level due to the heterogeneity of the different flash devices. The interfaces provided are
recommended for a particular type of data: small objects, volumes, loggers and large object.

127Survey of the State-of-the-Art in Flash-Based Sensor Nodes

16 Will-be-set-by-IN-TECH

Functions Description
FILE* fopen(const char *pathname, const char *mode); Open file
int fclose(FILE *fp); Close file
int fseek (FILE *fp, int offset, int position); Seek file
int fexist(char *pathname); Test file/directory
int fcreatedir(char *pathname); Create directory file
int fdelete(char *pathname); Delete file/directory
int fread(FILE *fp, void *buffer, int nBytes); Read from file
int fwrite(FILE *fp, void *buffer, int nBytes); Write to file
int fmove(char *source, char *target); Move file/directory
int fcopy(char *source, char *target); Copy file/directory
void formatSystem(); Format file system
void fchangedir(char *path); Change current directory
void fcurrentdir(char *buffer, int size); Get current directory
int fcheckEEPROM(); Check EEPROM Usage
int fcheckFlash(); Check Flash Usage
void fsearch(char *addrlist, int *size, char *string); Search by name
void finfonode(char *buffer, int addr); Get file/directory info

Table 9. LiteFS file system interface.

However, as deduced from their interfaces the abstraction level of the application is low since
they must specify again hardware details for accessing data.
TinyOS 1.x and other operating systems as Contiki and LiteOS provide abstractions in the
shape of file systems to data access. The advantages of this approach is that the user manages
entities that are identified through file names in order to access data; subsequently, users do
not need to be conscious about low-level details such as the number of the page to be read or
written. It definitively facilitates the programming and prevents errors. Table 10 shows a brief
comparison among the file systems studied in this section and in the following section.

ELF Matchbox LiteFS SENFIS
1 TinyOS TinyOS LiteOS TinyOS
2 Mica2 Mica Family Motes MicaZ Mica Family Motes
3 Dynamic Static Dynamic Dynamic
4 RAM, EEPROM, Flash Flash RAM, EEPROM, Flash RAM, EEPROM, Flash
5 14 bytes (per flash page) 8 bytes (per flash ge) 8 bytes (per flash page) 8 bytes (per flash page)

14 bytes 168 bytes RAM 1062 bytes flash
14 bytes per i-node (RAM) 2080 bytes ROM 208 bytes RAM/EEPROM

6 Unlimited 2 (Read/Write) 8 64
7 Sensor Data Data files Data Data stream

Configuration Data Binary applications Binary applications
Binary program Image Device Drivers

Table 10. Comparison among different file systems for sensor nodes. Features: 1:Operating
system; 2:Sensor platforms; 3:Memory allocation; 4:Memory chips used; 5:Metadata size;
6:Number of files opened; 7:Types of files.

4. Taxonomy of applications

Wireless sensor network applications are often multi-disciplinary and obey many types of
requirements. Several authors have classified WSN applications according to their application
domain (Akyildiz et al., 2002; Xu, 2002). In this section we will focus on those WSN
applications that use the flash memory chip to carry out their operations. Thus, we distinguish

128 Flash Memories Survey of the State-of-the-Art
in Flash-based Sensor Nodes 17

three main type of applications: 1) file systems to store both internal and external data;
2) data-centric middlewares that provide an abstraction of the sensors network as a long
database; and 3) applications for network reprogramming. These three types of applications
use the flash memory chip as data storing support. Note that in a four category should appear
the applications that use the flash for specific purposes. Figure 6 shows this classification. In
following subsections we review some relevant examples in each category.

Fig. 6. A classification of applications that use the flash memory chip.

4.1 File systems
In addition to the OS-specific file systems presented in the previous section, we review here
two file systems that were designed with no regard to be OS-independent: ELF and SENFIS.
The usage of file systems is justified: the continuous data production through a wide set of
versatile applications drives researchers to think about different methods of data storing and
recovering, which can provide an efficient abstraction to give persistent support to the data
generated into the sensor node.

4.1.1 ELF
ELF (Dai et al., 2004) is a file system for WSNs based on the log file system
paradigm (Kawaguchi et al., 1995). The major goals of ELF are memory efficiency, low power
operation, and support for common file operations (such as reading and appending data to
a file). The data to be stored in files are classified into three categories: data collected from
sensors, configuration data, and binary program images. The access patterns and reliability
requirements of these categories of data are different. Typically, the reliability of sensor data is
verified through the CRC checksum mechanism. For binary images a greater reliability may
be desirable, such as recovery after a crash. Typically, traditional log-structured file systems
group log entries for each write operation into a sequential log. ELF keeps each log entry in a
separate log page due to the fact that, if multiple log entries are stored on the same page, an
error on this page will destroy all the history saved until that moment. ELF also provides a
simple garbage collection mechanism and crash recovery support.

4.1.2 SENFIS
SENFIS (Escolar et al., 2008; 2010) is a file system designed for Mica family motes and
intended to be used in two scenarios: firstly, it can transparently be employed as a
permanent storage for distributed TinyDB queries (see next subsection), in order to increase
their reliability and scalability; secondly, it can be directly used by a WSN application for

129Survey of the State-of-the-Art in Flash-Based Sensor Nodes

16 Will-be-set-by-IN-TECH

Functions Description
FILE* fopen(const char *pathname, const char *mode); Open file
int fclose(FILE *fp); Close file
int fseek (FILE *fp, int offset, int position); Seek file
int fexist(char *pathname); Test file/directory
int fcreatedir(char *pathname); Create directory file
int fdelete(char *pathname); Delete file/directory
int fread(FILE *fp, void *buffer, int nBytes); Read from file
int fwrite(FILE *fp, void *buffer, int nBytes); Write to file
int fmove(char *source, char *target); Move file/directory
int fcopy(char *source, char *target); Copy file/directory
void formatSystem(); Format file system
void fchangedir(char *path); Change current directory
void fcurrentdir(char *buffer, int size); Get current directory
int fcheckEEPROM(); Check EEPROM Usage
int fcheckFlash(); Check Flash Usage
void fsearch(char *addrlist, int *size, char *string); Search by name
void finfonode(char *buffer, int addr); Get file/directory info

Table 9. LiteFS file system interface.

However, as deduced from their interfaces the abstraction level of the application is low since
they must specify again hardware details for accessing data.
TinyOS 1.x and other operating systems as Contiki and LiteOS provide abstractions in the
shape of file systems to data access. The advantages of this approach is that the user manages
entities that are identified through file names in order to access data; subsequently, users do
not need to be conscious about low-level details such as the number of the page to be read or
written. It definitively facilitates the programming and prevents errors. Table 10 shows a brief
comparison among the file systems studied in this section and in the following section.

ELF Matchbox LiteFS SENFIS
1 TinyOS TinyOS LiteOS TinyOS
2 Mica2 Mica Family Motes MicaZ Mica Family Motes
3 Dynamic Static Dynamic Dynamic
4 RAM, EEPROM, Flash Flash RAM, EEPROM, Flash RAM, EEPROM, Flash
5 14 bytes (per flash page) 8 bytes (per flash ge) 8 bytes (per flash page) 8 bytes (per flash page)

14 bytes 168 bytes RAM 1062 bytes flash
14 bytes per i-node (RAM) 2080 bytes ROM 208 bytes RAM/EEPROM

6 Unlimited 2 (Read/Write) 8 64
7 Sensor Data Data files Data Data stream

Configuration Data Binary applications Binary applications
Binary program Image Device Drivers

Table 10. Comparison among different file systems for sensor nodes. Features: 1:Operating
system; 2:Sensor platforms; 3:Memory allocation; 4:Memory chips used; 5:Metadata size;
6:Number of files opened; 7:Types of files.

4. Taxonomy of applications

Wireless sensor network applications are often multi-disciplinary and obey many types of
requirements. Several authors have classified WSN applications according to their application
domain (Akyildiz et al., 2002; Xu, 2002). In this section we will focus on those WSN
applications that use the flash memory chip to carry out their operations. Thus, we distinguish

128 Flash Memories Survey of the State-of-the-Art
in Flash-based Sensor Nodes 17

three main type of applications: 1) file systems to store both internal and external data;
2) data-centric middlewares that provide an abstraction of the sensors network as a long
database; and 3) applications for network reprogramming. These three types of applications
use the flash memory chip as data storing support. Note that in a four category should appear
the applications that use the flash for specific purposes. Figure 6 shows this classification. In
following subsections we review some relevant examples in each category.

Fig. 6. A classification of applications that use the flash memory chip.

4.1 File systems
In addition to the OS-specific file systems presented in the previous section, we review here
two file systems that were designed with no regard to be OS-independent: ELF and SENFIS.
The usage of file systems is justified: the continuous data production through a wide set of
versatile applications drives researchers to think about different methods of data storing and
recovering, which can provide an efficient abstraction to give persistent support to the data
generated into the sensor node.

4.1.1 ELF
ELF (Dai et al., 2004) is a file system for WSNs based on the log file system
paradigm (Kawaguchi et al., 1995). The major goals of ELF are memory efficiency, low power
operation, and support for common file operations (such as reading and appending data to
a file). The data to be stored in files are classified into three categories: data collected from
sensors, configuration data, and binary program images. The access patterns and reliability
requirements of these categories of data are different. Typically, the reliability of sensor data is
verified through the CRC checksum mechanism. For binary images a greater reliability may
be desirable, such as recovery after a crash. Typically, traditional log-structured file systems
group log entries for each write operation into a sequential log. ELF keeps each log entry in a
separate log page due to the fact that, if multiple log entries are stored on the same page, an
error on this page will destroy all the history saved until that moment. ELF also provides a
simple garbage collection mechanism and crash recovery support.

4.1.2 SENFIS
SENFIS (Escolar et al., 2008; 2010) is a file system designed for Mica family motes and
intended to be used in two scenarios: firstly, it can transparently be employed as a
permanent storage for distributed TinyDB queries (see next subsection), in order to increase
their reliability and scalability; secondly, it can be directly used by a WSN application for

129Survey of the State-of-the-Art in Flash-Based Sensor Nodes

18 Will-be-set-by-IN-TECH

Primitive Prototype Description
int8_t open (char *filename, uint8_t mode) Open a file
result_t close (uint8_t fd) Close a file
int8_t write (uint8_t fd, char *buffer, int8_t length) Append data to a file
int8_t read (uint8_t fd, char *buffer, int8_t length) Read from a file
result_t rename(char *oldname, char *newname) Rename a file
result_t lseek (uint8_t fd, uint32_t ptr) Update the offset of a file
result_t stat(uint8_t fd, struct inode *inode) Obtain metadata of a file
result_t delete (uint8_t fd) Delete a file

Table 11. Basic high-level interface for SENFIS.

permanent storage of data on the motes. SENFIS uses the flash for persistent storage and
RAM as a volatile memory. The flash chip is divided into blocks called segments, whose
pages are accessed in a circular way, guaranteeing an optimal intra-segment wear levelling.
The global wear-levelling is a best-effort algorithm: a newly created file is always assigned
the lowest used segment.
In SENFIS, the flash is organized in segments. For instance, for AT45DB041 the flash may
consist of 64 segments of 32 pages each. Each segment may be assigned to at most one file
but a file can use an arbitrary number of segments. A segment is written always sequentially
in a circular way. For implementing this behaviour a pointer to the last written page is kept
in the segment metadata structure which is stored in a segment table. Every segment in this
table records a pointer to the first page of the segment, a pointer to the next segment as well
as a counter indicating the number of times the pages of this segment have been written. To
minimize the number of times that a page flash is accessed the reading and writing operations
use an intermediate cache such as shown in Figure 7. SENFIS provides a POSIX-style interface
which is shown in Table 11.
SENFIS uses a writing buffer to reduce the number of times that a page is accessed. Figure 7
shows graphically this behaviour.

4.2 Data-centric middlewares
The most common approach to bridge the gap between the applications and low-level
software, has been to develop a middleware layer mapping one level into the other. A
survey of middleware is given in (Marrón, 2005) where a taxonomy of middlewares is
discussed. In particular, authors identify data-centric middlewares as those ones that operate
the sensor network as a database abstraction. Most of them rely on some form of SQL-like
language in order to recover the data stored in different memories within the sensor node
(RAM, EEPROM, and external flash). There exist different data-centric middlewares such
as Cougar (Fung et al., 2002), TinyBD (Madden et al., 2005), DSWare (Li et al., 2003) and
SINA (Jaikaeo et al., 2000)); some of them are summarized in the following paragraphs.

4.2.1 TinyDB
TinyDB (Madden et al., 2005) focuses on acquisitional query processing techniques which
differ from other database query techniques for WSN in that it does not simply postulate
the a priori existence of data, but it focuses also on location and cost of acquiring data. The
acquisitional techniques have been shown to reduce the power consumption in several orders
of magnitude and to increase the accuracy of query results. A typical query of TinyDB is active

130 Flash Memories Survey of the State-of-the-Art
in Flash-based Sensor Nodes 19

Fig. 7. Writing and reading operations in SENFIS: 1) Above, the writing operation which
appends data to the end of a file. The modification is done in a small buffer cache in RAM
and it is committed to the flash either when a page is completely written or when the RAM is
full. The first case tries to avoid that a page is committed to flash several times for small
writes; 2) below, the reading operation which get the data from the flash to an application
buffer. If the data is already in the small buffer cache, it is copied to the application buffer
from there.

in a mote for a specified time frame and is data intensive. The results of a query may produce
communication or be temporarily stored in the RAM memory. In TinyDB the sampled values
of the various sensor attributes (e.g. temperature, light) are stored in a table called sensors.
The columns of the table represent the sensor attributes and the rows the instant of time
when the measure was taken. Projections and transformations of sensor table are stored in
materialization points. A materialization point is a type of temporal table that can be used in
subsequent select operations. Materialization points are declared by the users and correspond
to files in our system. TinyDB query syntax is similar to SQL SELECT-FROM-WHERE-GROUPBY
clause, supporting selection, join, projection and aggregation. In addition TinyDB provides
SAMPLE PERIOD clause defining the overall time of the sampling called epoch and the period
between consecutive samples. The materialization points are created by CREATE STORAGE
POINT clause, associated with a SELECT clause, which selects data either from the sensor
table or from a different materialization point.

4.2.2 Cougar
Cougar (Fung et al., 2002) is another data-centric middleware approach intended to address
the goals of scalability and flexibility in monitoring the physical world. In Cougar system
sensor nodes are organized in clusters and they can assume two roles: cluster leader or signal
processing nodes. The leaders receive the queries and plan how they must be executed within
of a cluster; in particular, they must decide what nodes the query should be sent to, and keep
waiting for the response. On the other hand, signal processing nodes generate data from

131Survey of the State-of-the-Art in Flash-Based Sensor Nodes

18 Will-be-set-by-IN-TECH

Primitive Prototype Description
int8_t open (char *filename, uint8_t mode) Open a file
result_t close (uint8_t fd) Close a file
int8_t write (uint8_t fd, char *buffer, int8_t length) Append data to a file
int8_t read (uint8_t fd, char *buffer, int8_t length) Read from a file
result_t rename(char *oldname, char *newname) Rename a file
result_t lseek (uint8_t fd, uint32_t ptr) Update the offset of a file
result_t stat(uint8_t fd, struct inode *inode) Obtain metadata of a file
result_t delete (uint8_t fd) Delete a file

Table 11. Basic high-level interface for SENFIS.

permanent storage of data on the motes. SENFIS uses the flash for persistent storage and
RAM as a volatile memory. The flash chip is divided into blocks called segments, whose
pages are accessed in a circular way, guaranteeing an optimal intra-segment wear levelling.
The global wear-levelling is a best-effort algorithm: a newly created file is always assigned
the lowest used segment.
In SENFIS, the flash is organized in segments. For instance, for AT45DB041 the flash may
consist of 64 segments of 32 pages each. Each segment may be assigned to at most one file
but a file can use an arbitrary number of segments. A segment is written always sequentially
in a circular way. For implementing this behaviour a pointer to the last written page is kept
in the segment metadata structure which is stored in a segment table. Every segment in this
table records a pointer to the first page of the segment, a pointer to the next segment as well
as a counter indicating the number of times the pages of this segment have been written. To
minimize the number of times that a page flash is accessed the reading and writing operations
use an intermediate cache such as shown in Figure 7. SENFIS provides a POSIX-style interface
which is shown in Table 11.
SENFIS uses a writing buffer to reduce the number of times that a page is accessed. Figure 7
shows graphically this behaviour.

4.2 Data-centric middlewares
The most common approach to bridge the gap between the applications and low-level
software, has been to develop a middleware layer mapping one level into the other. A
survey of middleware is given in (Marrón, 2005) where a taxonomy of middlewares is
discussed. In particular, authors identify data-centric middlewares as those ones that operate
the sensor network as a database abstraction. Most of them rely on some form of SQL-like
language in order to recover the data stored in different memories within the sensor node
(RAM, EEPROM, and external flash). There exist different data-centric middlewares such
as Cougar (Fung et al., 2002), TinyBD (Madden et al., 2005), DSWare (Li et al., 2003) and
SINA (Jaikaeo et al., 2000)); some of them are summarized in the following paragraphs.

4.2.1 TinyDB
TinyDB (Madden et al., 2005) focuses on acquisitional query processing techniques which
differ from other database query techniques for WSN in that it does not simply postulate
the a priori existence of data, but it focuses also on location and cost of acquiring data. The
acquisitional techniques have been shown to reduce the power consumption in several orders
of magnitude and to increase the accuracy of query results. A typical query of TinyDB is active

130 Flash Memories Survey of the State-of-the-Art
in Flash-based Sensor Nodes 19

Fig. 7. Writing and reading operations in SENFIS: 1) Above, the writing operation which
appends data to the end of a file. The modification is done in a small buffer cache in RAM
and it is committed to the flash either when a page is completely written or when the RAM is
full. The first case tries to avoid that a page is committed to flash several times for small
writes; 2) below, the reading operation which get the data from the flash to an application
buffer. If the data is already in the small buffer cache, it is copied to the application buffer
from there.

in a mote for a specified time frame and is data intensive. The results of a query may produce
communication or be temporarily stored in the RAM memory. In TinyDB the sampled values
of the various sensor attributes (e.g. temperature, light) are stored in a table called sensors.
The columns of the table represent the sensor attributes and the rows the instant of time
when the measure was taken. Projections and transformations of sensor table are stored in
materialization points. A materialization point is a type of temporal table that can be used in
subsequent select operations. Materialization points are declared by the users and correspond
to files in our system. TinyDB query syntax is similar to SQL SELECT-FROM-WHERE-GROUPBY
clause, supporting selection, join, projection and aggregation. In addition TinyDB provides
SAMPLE PERIOD clause defining the overall time of the sampling called epoch and the period
between consecutive samples. The materialization points are created by CREATE STORAGE
POINT clause, associated with a SELECT clause, which selects data either from the sensor
table or from a different materialization point.

4.2.2 Cougar
Cougar (Fung et al., 2002) is another data-centric middleware approach intended to address
the goals of scalability and flexibility in monitoring the physical world. In Cougar system
sensor nodes are organized in clusters and they can assume two roles: cluster leader or signal
processing nodes. The leaders receive the queries and plan how they must be executed within
of a cluster; in particular, they must decide what nodes the query should be sent to, and keep
waiting for the response. On the other hand, signal processing nodes generate data from

131Survey of the State-of-the-Art in Flash-Based Sensor Nodes

20 Will-be-set-by-IN-TECH

their sensor readings. Signal processing functions are modelled by using Abstract Data Type
(ADT). Like TinyDB, Cougar uses a SQL-like language to implement queries.

4.3 Network reprogramming applications
Code dissemination for network reprogramming is nowadays one of the important issues
in the WSN field. WSN applications are conceived to execute for the maximum period of
time. However, during their lifetime is very probable that the application needs to be total or
partially updated. There are several reasons for it as to meet new requirements or to correct
errors detected at execution time. There exist in the literature a large set of applications that
enables this feature. Despite every particular implementation, a common characteristic of all
of them is the employment of the flash memory to store the updates that are received from
the network. In fact, there is no other choice due to the limited capacity of the node RAM
memory. According to (Munawar et al., 2010) applications for remote reprogramming can be
classified in four main categories:

• Full-image replacement: the first approach for network reprogramming operated
disseminating in the network a new image to replace the current application running in
the nodes. Examples of this type of reprogrammers are Deluge and XNP, which are both
TinyOS 1.x specific. In a first step, the image was received from the network and locally
stored in the node flash. Once the packet reception was completed, the sensor node reboots
which makes a copy of the binary stored in the flash into the microcontroller. The main
disadvantage of this approach is that even for small updates the transmission of the full
image should be done, which impacts negatively on the waste of energy in the sensor node.

• Virtual machines: with the goal of reducing the energy consumption in which the previous
approach incurs, there exist different works that propose disseminating virtual machine
code (byte-code) instead of native code, since the first is in general more compact than the
second one. The most relevant example is Mate (Levis & Culler, 2002). Maté disseminates
to the network packets denominated capsules which contain the binary to be installed.
In the sensor nodes the byte-code is interpreted and installed in the sensor node. The
advantage of this approach is that reduces significantly the program size that travels
through the network, which decreases the energy consumption due to the communication
as well as the storing cost.

• Dynamic operating systems: there exists WSN operating systems that include support for
the dynamic reprogramming of sensor nodes. For example, in Contiki applications can
be more easily updated, due to the fact that Contiki supports load dynamic of programs
on the top of the operating system kernel. In this way, code updates can be remotely
downloaded into the network. There are, however, certain restrictions to perform this since
only application components can be modified. LiteOS (Cao et al., 2008) is another example
of this type of OSes. LiteOS provides dynamic reprogramming at the application level
which means that the operating system image can not be updated. To do this it manages
the modified HEX files instead using ELF files —as Contiki— in order to store relocation
information.

• Partial-image replacement approach is based on disseminate only the changes between
the current executable installed in the network and the new version of the same
application. This is the most efficient solution since only is sent the piece of code that

132 Flash Memories Survey of the State-of-the-Art
in Flash-based Sensor Nodes 21

needs to be updated. There are in the literature several works using this approach.
Zephyr (Panta et al., 2009) compares the two binary images at the byte-level and send
only a small delta, reducing the size of data to be sent. FlexCup (Marrón et al., 2006)
is an efficient code update mechanism that allows the replacement of TinyOS binary
components. FlexCup is specific for TinyOS 1.x and does not include the new extensions of
nesC. Dynamic TinyOS (Munawar et al., 2010) preserves the modularity of TinyOS which
is lost during the compilation process and enables the composition of the application at
execution time.

5. Conclusions

Through this chapter we have analyzed the main features of the flash memory chip as well
as their main applications within the wireless sensor networks field. We have described
the different technologies employed in the manufacturing of flash memory given specific
examples used by the sensor nodes. The sensor node architecture has been presented while
the flash memory has been introduced as an important component that possibilities a great
amount of usages which would not be possible without its presence.
We have described some relevant WSN operating systems highlighting the different
abstractions that they provide at the application level in order to access the data stored in
the flash. As discussed, in general the portability has been sacrificed and the implementation
is typically device-specific. The abstraction level provided by the OSes is very low since the
application must manage hardware level details such as the number of the page to be read or
written and the offset within the page, which make complex the applications programming.
To alleviate this problem, the operating systems can supply a basic implementation of a file
system to facilitate the data access. Here, the users manipulate abstract entities called file
descriptors which allow to uncouple the data from its physical location. Subsequently, file
systems simplify the data access but in general they do not completely address the issues
regarding to the flash memory such as the implementation of wear levelling techniques to
prevent reaching the maximum number of times that a page can be written. For this reason,
the literature presents some other file systems that has been proposed in order to improve the
features or the performance of the existing files systems included into the operating systems.
Recently, the attention paid to the flash memory chip trends to grow due to the appearance
of new applications that will use the flash memory to perform their tasks. Since the flash
chip represents the device with the bigger capacity for permanent storage of application data
in the sensor node, there exist an increasing number of applications that require its usage to
be able to satisfy their requirements, for example, applications for dynamic reprogramming.
Finally in this chapter, we have identified a taxonomy of WSN applications that uses the flash
memory providing specific examples of applications in each category of the taxonomy. We
will envision that the number of emerging applications that will use the flash memory as
basis for their operations will continue increasing.

6. Acknowledgements

This work has been partially funded by the Spanish Ministry of Science and Innovation under
the grand TIN2010-16497.

133Survey of the State-of-the-Art in Flash-Based Sensor Nodes

20 Will-be-set-by-IN-TECH

their sensor readings. Signal processing functions are modelled by using Abstract Data Type
(ADT). Like TinyDB, Cougar uses a SQL-like language to implement queries.

4.3 Network reprogramming applications
Code dissemination for network reprogramming is nowadays one of the important issues
in the WSN field. WSN applications are conceived to execute for the maximum period of
time. However, during their lifetime is very probable that the application needs to be total or
partially updated. There are several reasons for it as to meet new requirements or to correct
errors detected at execution time. There exist in the literature a large set of applications that
enables this feature. Despite every particular implementation, a common characteristic of all
of them is the employment of the flash memory to store the updates that are received from
the network. In fact, there is no other choice due to the limited capacity of the node RAM
memory. According to (Munawar et al., 2010) applications for remote reprogramming can be
classified in four main categories:

• Full-image replacement: the first approach for network reprogramming operated
disseminating in the network a new image to replace the current application running in
the nodes. Examples of this type of reprogrammers are Deluge and XNP, which are both
TinyOS 1.x specific. In a first step, the image was received from the network and locally
stored in the node flash. Once the packet reception was completed, the sensor node reboots
which makes a copy of the binary stored in the flash into the microcontroller. The main
disadvantage of this approach is that even for small updates the transmission of the full
image should be done, which impacts negatively on the waste of energy in the sensor node.

• Virtual machines: with the goal of reducing the energy consumption in which the previous
approach incurs, there exist different works that propose disseminating virtual machine
code (byte-code) instead of native code, since the first is in general more compact than the
second one. The most relevant example is Mate (Levis & Culler, 2002). Maté disseminates
to the network packets denominated capsules which contain the binary to be installed.
In the sensor nodes the byte-code is interpreted and installed in the sensor node. The
advantage of this approach is that reduces significantly the program size that travels
through the network, which decreases the energy consumption due to the communication
as well as the storing cost.

• Dynamic operating systems: there exists WSN operating systems that include support for
the dynamic reprogramming of sensor nodes. For example, in Contiki applications can
be more easily updated, due to the fact that Contiki supports load dynamic of programs
on the top of the operating system kernel. In this way, code updates can be remotely
downloaded into the network. There are, however, certain restrictions to perform this since
only application components can be modified. LiteOS (Cao et al., 2008) is another example
of this type of OSes. LiteOS provides dynamic reprogramming at the application level
which means that the operating system image can not be updated. To do this it manages
the modified HEX files instead using ELF files —as Contiki— in order to store relocation
information.

• Partial-image replacement approach is based on disseminate only the changes between
the current executable installed in the network and the new version of the same
application. This is the most efficient solution since only is sent the piece of code that

132 Flash Memories Survey of the State-of-the-Art
in Flash-based Sensor Nodes 21

needs to be updated. There are in the literature several works using this approach.
Zephyr (Panta et al., 2009) compares the two binary images at the byte-level and send
only a small delta, reducing the size of data to be sent. FlexCup (Marrón et al., 2006)
is an efficient code update mechanism that allows the replacement of TinyOS binary
components. FlexCup is specific for TinyOS 1.x and does not include the new extensions of
nesC. Dynamic TinyOS (Munawar et al., 2010) preserves the modularity of TinyOS which
is lost during the compilation process and enables the composition of the application at
execution time.

5. Conclusions

Through this chapter we have analyzed the main features of the flash memory chip as well
as their main applications within the wireless sensor networks field. We have described
the different technologies employed in the manufacturing of flash memory given specific
examples used by the sensor nodes. The sensor node architecture has been presented while
the flash memory has been introduced as an important component that possibilities a great
amount of usages which would not be possible without its presence.
We have described some relevant WSN operating systems highlighting the different
abstractions that they provide at the application level in order to access the data stored in
the flash. As discussed, in general the portability has been sacrificed and the implementation
is typically device-specific. The abstraction level provided by the OSes is very low since the
application must manage hardware level details such as the number of the page to be read or
written and the offset within the page, which make complex the applications programming.
To alleviate this problem, the operating systems can supply a basic implementation of a file
system to facilitate the data access. Here, the users manipulate abstract entities called file
descriptors which allow to uncouple the data from its physical location. Subsequently, file
systems simplify the data access but in general they do not completely address the issues
regarding to the flash memory such as the implementation of wear levelling techniques to
prevent reaching the maximum number of times that a page can be written. For this reason,
the literature presents some other file systems that has been proposed in order to improve the
features or the performance of the existing files systems included into the operating systems.
Recently, the attention paid to the flash memory chip trends to grow due to the appearance
of new applications that will use the flash memory to perform their tasks. Since the flash
chip represents the device with the bigger capacity for permanent storage of application data
in the sensor node, there exist an increasing number of applications that require its usage to
be able to satisfy their requirements, for example, applications for dynamic reprogramming.
Finally in this chapter, we have identified a taxonomy of WSN applications that uses the flash
memory providing specific examples of applications in each category of the taxonomy. We
will envision that the number of emerging applications that will use the flash memory as
basis for their operations will continue increasing.

6. Acknowledgements

This work has been partially funded by the Spanish Ministry of Science and Innovation under
the grand TIN2010-16497.

133Survey of the State-of-the-Art in Flash-Based Sensor Nodes

22 Will-be-set-by-IN-TECH

7. References

Akyildiz, I. F., Su, W., Sankarasubramaniam, Y. & Cayirci, E. (2002). Wireless sensor networks:
a survey., Computer Networks 38(4): 393–422.

Atmel (2011). Atmel 8-bit AVR microcontroller Datasheet, Available in:
URL: http://www.atmel.com/dyn/resources/prod_documents/doc2467.pdf .

Atmel AT45DB011 Serial DataFlash (2001). URL: http://www.datasheetcatalog.com/datasheets_pdf/A/
T/4/5/AT45DB.shtml.

Balani, R., chieh Han, C., Raghunathan, V. & Srivastava, M. (2005). Remote storage for sensor
networks.

Cao, Q. & Abdelzaher, T. (2006). LiteOS: a lightweight operating system for C++ software
development in sensor networks, SenSys ’06: Proceedings of the 4th international
conference on Embedded networked sensor systems, ACM, New York, NY, USA,
pp. 361–362.

Cao, Q., Stankovic, J. A., Abdelzaher, T. F. & He, T. (2008). LiteOS, A Unix-like operating
system and programming platform for wireless sensor networks, Information
Processing in Sensor Networks(IPSN/SPOTS), St. Loius, MO, USA.

CC1000 Single Chip Very Low Power RF Transceiver (2002).
URL: http://focus.ti.com/lit/ds/symlink/cc1000.pdf.

CC2400 2.4GHz Low-Power RF Transceiver (2003).
URL: http://focus.ti.com/lit/ds/symlink/cc2400.pdf.

Dai, H., Neufeld, M. & Han, R. (2004). Elf: an efficient log-structured flash file system for micro
sensor nodes, SenSys ’04: Proceedings of the 2nd international conference on Embedded
networked sensor systems, ACM, New York, NY, USA, pp. 176–187.

Diao, Y., Ganesan, D., Mathur, G. & Shenoy, P. (2007). Rethinking data management for
storage-centric sensor networks.

Dunkels, A., Gronvall, B. & Voigt, T. (2004). Contiki - a lightweight and flexible operating
system for tiny networked sensors, Proceedings of the 29th Annual IEEE International
Conference on Local Computer Networks, LCN ’04, IEEE Computer Society, Washington,
DC, USA, pp. 455–462.
URL: http://dx.doi.org/10.1109/LCN.2004.38

Escolar, S., Carretero, J., Isaila, F. & Lama, S. (2008). A lightweight storage system for sensor
nodes, in H. R. Arabnia & Y. Mun (eds), PDPTA, CSREA Press, pp. 638–644.

Escolar, S., Isaila, F., Calderón, A., Sánchez, L. M. & Singh, D. E. (2010). Senfis: a sensor node
file system for increasing the scalability and reliability of wireless sensor networks
applications, The Journal of Supercomputing 51(1): 76–93.

Fung, W. F., Sun, D. & Gehrke, J. (2002). Cougar: the network is the database, Proceedings of
the 2002 ACM SIGMOD international conference on Management of data, SIGMOD ’02,
ACM, New York, NY, USA, pp. 621–621.
URL: http://doi.acm.org/10.1145/564691.564775

Gay, D. (2003). The Matchbox File System,
URL: http://webs.cs.berkeley.edu/tos/tinyos-1.x/doc/matchbox-design.pdf.

Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E. & Culler, D. (2003). The nesc language:
A holistic approach to networked embedded systems, PLDI ’03: Proceedings of the
ACM SIGPLAN 2003 conference on Programming language design and implementation,
ACM, New York, NY, USA, pp. 1–11.

134 Flash Memories Survey of the State-of-the-Art
in Flash-based Sensor Nodes 23

Han, C.-C., Kumar, R., Shea, R., Kohler, E. & Srivastava, M. (2005). A dynamic
operating system for sensor nodes, Proceedings of the 3rd international conference on
Mobile systems, applications, and services, MobiSys ’05, ACM, New York, NY, USA,
pp. 163–176.
URL: http://doi.acm.org/10.1145/1067170.1067188

Handziski, V., Polastrey, J., Hauer, J.-H., Sharpy, C., Wolisz, A. & Culler, D. (2005). Flexible
Hardware Abstraction for Wireless Sensor Networks, 2nd European Workshop on
Wireless Sensor Networks (EWSN 2005), Istanbul, Turkey.

Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D. & Pister, K. (2000). System architecture
directions for networked sensors, SIGPLAN Not. 35: 93–104.
URL: http://doi.acm.org/10.1145/356989.356998

Instrument, T. (2008). Msp430x1xx 8mhz datasheet, Available in: URL:
http://www.ti.com/lit/gpn/msp430c1101 .

Intel Strataflash (2002).
URL: http://www-mtl.mit.edu/Courses/6.111/labkit/datasheets/28F128J3A.pdf.

Jaikaeo, C., Srisathapornphat, C. & chung Shen, C. (2000). Querying and tasking in sensor
networks.

Kawaguchi, A., Nishioka, S. & Motoda, H. (1995). A flash-memory based file system, USENIX
Winter, pp. 155–164.
URL: citeseer.ist.psu.edu/kawaguchi95flashmemory.html

Levis, P. & Culler, D. (2002). Mate: a tiny virtual machine for sensor networks, ASPLOS-X:
Proceedings of the 10th international conference on Architectural support for programming
languages and operating systems, ACM, New York, NY, USA, pp. 85–95.

Li, S., Lin, Y., Son, S. H., Stankovic, J. A. & Wei, Y. (2003). Event detection services using data
service middleware in distributed sensor networks.

M25P40 Serial Flash Memory (2002).
URL: http://www.datasheetcatalog.org/datasheet/stmicroelectronics/7737.pdf .

Madden, S. R., Franklin, M. J., Hellerstein, J. M. & Hong, W. (2005). TinyDB: an
acquisitional query processing system for sensor networks, ACM Trans. Database Syst.
30(1): 122–173.

Marrón, P. J. (2005). Middleware approaches for sensor networks. University of Stuttgart,
Summer School on WSNs and Smart Objects. Schloss Dagstuhl, Aug. Germany. URL:
http://www.vs.inf.ethz.ch/events/dag2005/program/lectures/marron-2.pdf.

Marrón, P. J., Gauger, M., Lachenmann, A., Minder, D., Saukh, O. & Rothermel, K. (2006).
Flexcup: A flexible and efficient code update mechanism for sensor networks.
URL: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.71.8622

Munawar, W., Alizai, M. H., L, O. & Wehrle, K. (2010). Dynamic tinyos: Modular and
transparent incremental code-updates for sensor networks.

nRF2401 Radio Transceiver Data Sheet (2003). URL: http://www.nvlsi.no/.
Panta, R. K., Bagchi, S. & Midkiff, S. P. (2009). Zephyr: efficient incremental reprogramming of

sensor nodes using function call indirections and difference computation, Proceedings
of the 2009 conference on USENIX Annual technical conference, USENIX’09, USENIX
Association, Berkeley, CA, USA, pp. 32–32.
URL: http://portal.acm.org/citation.cfm?id=1855807.1855839

SAMSUNG (2003). Samsung K9K1G08R0B, 128M x 8 bit NAND Flash Memory.

135Survey of the State-of-the-Art in Flash-Based Sensor Nodes

22 Will-be-set-by-IN-TECH

7. References

Akyildiz, I. F., Su, W., Sankarasubramaniam, Y. & Cayirci, E. (2002). Wireless sensor networks:
a survey., Computer Networks 38(4): 393–422.

Atmel (2011). Atmel 8-bit AVR microcontroller Datasheet, Available in:
URL: http://www.atmel.com/dyn/resources/prod_documents/doc2467.pdf .

Atmel AT45DB011 Serial DataFlash (2001). URL: http://www.datasheetcatalog.com/datasheets_pdf/A/
T/4/5/AT45DB.shtml.

Balani, R., chieh Han, C., Raghunathan, V. & Srivastava, M. (2005). Remote storage for sensor
networks.

Cao, Q. & Abdelzaher, T. (2006). LiteOS: a lightweight operating system for C++ software
development in sensor networks, SenSys ’06: Proceedings of the 4th international
conference on Embedded networked sensor systems, ACM, New York, NY, USA,
pp. 361–362.

Cao, Q., Stankovic, J. A., Abdelzaher, T. F. & He, T. (2008). LiteOS, A Unix-like operating
system and programming platform for wireless sensor networks, Information
Processing in Sensor Networks(IPSN/SPOTS), St. Loius, MO, USA.

CC1000 Single Chip Very Low Power RF Transceiver (2002).
URL: http://focus.ti.com/lit/ds/symlink/cc1000.pdf.

CC2400 2.4GHz Low-Power RF Transceiver (2003).
URL: http://focus.ti.com/lit/ds/symlink/cc2400.pdf.

Dai, H., Neufeld, M. & Han, R. (2004). Elf: an efficient log-structured flash file system for micro
sensor nodes, SenSys ’04: Proceedings of the 2nd international conference on Embedded
networked sensor systems, ACM, New York, NY, USA, pp. 176–187.

Diao, Y., Ganesan, D., Mathur, G. & Shenoy, P. (2007). Rethinking data management for
storage-centric sensor networks.

Dunkels, A., Gronvall, B. & Voigt, T. (2004). Contiki - a lightweight and flexible operating
system for tiny networked sensors, Proceedings of the 29th Annual IEEE International
Conference on Local Computer Networks, LCN ’04, IEEE Computer Society, Washington,
DC, USA, pp. 455–462.
URL: http://dx.doi.org/10.1109/LCN.2004.38

Escolar, S., Carretero, J., Isaila, F. & Lama, S. (2008). A lightweight storage system for sensor
nodes, in H. R. Arabnia & Y. Mun (eds), PDPTA, CSREA Press, pp. 638–644.

Escolar, S., Isaila, F., Calderón, A., Sánchez, L. M. & Singh, D. E. (2010). Senfis: a sensor node
file system for increasing the scalability and reliability of wireless sensor networks
applications, The Journal of Supercomputing 51(1): 76–93.

Fung, W. F., Sun, D. & Gehrke, J. (2002). Cougar: the network is the database, Proceedings of
the 2002 ACM SIGMOD international conference on Management of data, SIGMOD ’02,
ACM, New York, NY, USA, pp. 621–621.
URL: http://doi.acm.org/10.1145/564691.564775

Gay, D. (2003). The Matchbox File System,
URL: http://webs.cs.berkeley.edu/tos/tinyos-1.x/doc/matchbox-design.pdf.

Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E. & Culler, D. (2003). The nesc language:
A holistic approach to networked embedded systems, PLDI ’03: Proceedings of the
ACM SIGPLAN 2003 conference on Programming language design and implementation,
ACM, New York, NY, USA, pp. 1–11.

134 Flash Memories Survey of the State-of-the-Art
in Flash-based Sensor Nodes 23

Han, C.-C., Kumar, R., Shea, R., Kohler, E. & Srivastava, M. (2005). A dynamic
operating system for sensor nodes, Proceedings of the 3rd international conference on
Mobile systems, applications, and services, MobiSys ’05, ACM, New York, NY, USA,
pp. 163–176.
URL: http://doi.acm.org/10.1145/1067170.1067188

Handziski, V., Polastrey, J., Hauer, J.-H., Sharpy, C., Wolisz, A. & Culler, D. (2005). Flexible
Hardware Abstraction for Wireless Sensor Networks, 2nd European Workshop on
Wireless Sensor Networks (EWSN 2005), Istanbul, Turkey.

Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D. & Pister, K. (2000). System architecture
directions for networked sensors, SIGPLAN Not. 35: 93–104.
URL: http://doi.acm.org/10.1145/356989.356998

Instrument, T. (2008). Msp430x1xx 8mhz datasheet, Available in: URL:
http://www.ti.com/lit/gpn/msp430c1101 .

Intel Strataflash (2002).
URL: http://www-mtl.mit.edu/Courses/6.111/labkit/datasheets/28F128J3A.pdf.

Jaikaeo, C., Srisathapornphat, C. & chung Shen, C. (2000). Querying and tasking in sensor
networks.

Kawaguchi, A., Nishioka, S. & Motoda, H. (1995). A flash-memory based file system, USENIX
Winter, pp. 155–164.
URL: citeseer.ist.psu.edu/kawaguchi95flashmemory.html

Levis, P. & Culler, D. (2002). Mate: a tiny virtual machine for sensor networks, ASPLOS-X:
Proceedings of the 10th international conference on Architectural support for programming
languages and operating systems, ACM, New York, NY, USA, pp. 85–95.

Li, S., Lin, Y., Son, S. H., Stankovic, J. A. & Wei, Y. (2003). Event detection services using data
service middleware in distributed sensor networks.

M25P40 Serial Flash Memory (2002).
URL: http://www.datasheetcatalog.org/datasheet/stmicroelectronics/7737.pdf .

Madden, S. R., Franklin, M. J., Hellerstein, J. M. & Hong, W. (2005). TinyDB: an
acquisitional query processing system for sensor networks, ACM Trans. Database Syst.
30(1): 122–173.

Marrón, P. J. (2005). Middleware approaches for sensor networks. University of Stuttgart,
Summer School on WSNs and Smart Objects. Schloss Dagstuhl, Aug. Germany. URL:
http://www.vs.inf.ethz.ch/events/dag2005/program/lectures/marron-2.pdf.

Marrón, P. J., Gauger, M., Lachenmann, A., Minder, D., Saukh, O. & Rothermel, K. (2006).
Flexcup: A flexible and efficient code update mechanism for sensor networks.
URL: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.71.8622

Munawar, W., Alizai, M. H., L, O. & Wehrle, K. (2010). Dynamic tinyos: Modular and
transparent incremental code-updates for sensor networks.

nRF2401 Radio Transceiver Data Sheet (2003). URL: http://www.nvlsi.no/.
Panta, R. K., Bagchi, S. & Midkiff, S. P. (2009). Zephyr: efficient incremental reprogramming of

sensor nodes using function call indirections and difference computation, Proceedings
of the 2009 conference on USENIX Annual technical conference, USENIX’09, USENIX
Association, Berkeley, CA, USA, pp. 32–32.
URL: http://portal.acm.org/citation.cfm?id=1855807.1855839

SAMSUNG (2003). Samsung K9K1G08R0B, 128M x 8 bit NAND Flash Memory.

135Survey of the State-of-the-Art in Flash-Based Sensor Nodes

24 Will-be-set-by-IN-TECH

Shenker, S., Ratnasamy, S., Karp, B., Govindan, R. & Estrin, D. (2003). Data-centric storage in
sensornets, SIGCOMM Comput. Commun. Rev. 33(1): 137–142.

Tsiftes, N., Dunkels, A., He, Z. & Voigt, T. (2009). Enabling Large-Scale Storage in Sensor
Networks with the Coffee File System, Proceedings of the 8th ACM/IEEE International
Conference on Information Processing in Sensor Networks (IPSN 2009), San Francisco,
USA.
URL: http://www.sics.se/ adam/tsiftes09enabling.pdf

Xu, N. (2002). A survey of sensor network applications, IEEE Communications Magazine 40.

136 Flash Memories

0

Adaptively Reconfigurable Controller
for the Flash Memory

Ming Liu1,2, Zhonghai Lu2, Wolfgang Kuehn1 and Axel Jantsch2

1Justus-Liebig-University Giessen
2Royal Institute of Technology

1Germany
2Sweden

1. Introduction

As the continuous development on the capacity and work frequency, Programmable
Logic Devices (PLD) especially Field-Programmable Gate Arrays (FPGA) are playing an
increasingly important role in embedded systems designs. The FPGA market has hit about
3 and 4 billion US dollars respectively in 2009 and 2010, and is expected by Xilinx CEO Moshe
Gavrielov to grow steadily to 4.5 billion by the end of 2012 and 6 billion by the end of 2015.
The application fields of FPGAs and other PLDs range from bulky industrial and military
facilities to portable computer devices or communication terminals. Figure 1 demonstrates
the market statistics of some most significant fields in the third quarter of 2009.

Fig. 1. PLD market by end applications in the third quarter of 2009 (Dillien, 2009)

FPGAs were originally used as programmable glue logic in the early period after its birth. Due
to the capacity and clock frequency constraints at that time, they typically worked to bridge
Application-Specific Integrated Circuit (ASIC) chips by adapting signal formats or conducting
simple logic calculation. However at present, modern FPGAs have obtained enormous
capacity and many advanced computation/communication features from the semiconductor
process development; they can accommodate complete computer systems consisting of
hardcore or softcore microprocessors, memory controllers, customized hardware accelerators,

7

24 Will-be-set-by-IN-TECH

Shenker, S., Ratnasamy, S., Karp, B., Govindan, R. & Estrin, D. (2003). Data-centric storage in
sensornets, SIGCOMM Comput. Commun. Rev. 33(1): 137–142.

Tsiftes, N., Dunkels, A., He, Z. & Voigt, T. (2009). Enabling Large-Scale Storage in Sensor
Networks with the Coffee File System, Proceedings of the 8th ACM/IEEE International
Conference on Information Processing in Sensor Networks (IPSN 2009), San Francisco,
USA.
URL: http://www.sics.se/ adam/tsiftes09enabling.pdf

Xu, N. (2002). A survey of sensor network applications, IEEE Communications Magazine 40.

136 Flash Memories

0

Adaptively Reconfigurable Controller
for the Flash Memory

Ming Liu1,2, Zhonghai Lu2, Wolfgang Kuehn1 and Axel Jantsch2

1Justus-Liebig-University Giessen
2Royal Institute of Technology

1Germany
2Sweden

1. Introduction

As the continuous development on the capacity and work frequency, Programmable
Logic Devices (PLD) especially Field-Programmable Gate Arrays (FPGA) are playing an
increasingly important role in embedded systems designs. The FPGA market has hit about
3 and 4 billion US dollars respectively in 2009 and 2010, and is expected by Xilinx CEO Moshe
Gavrielov to grow steadily to 4.5 billion by the end of 2012 and 6 billion by the end of 2015.
The application fields of FPGAs and other PLDs range from bulky industrial and military
facilities to portable computer devices or communication terminals. Figure 1 demonstrates
the market statistics of some most significant fields in the third quarter of 2009.

Fig. 1. PLD market by end applications in the third quarter of 2009 (Dillien, 2009)

FPGAs were originally used as programmable glue logic in the early period after its birth. Due
to the capacity and clock frequency constraints at that time, they typically worked to bridge
Application-Specific Integrated Circuit (ASIC) chips by adapting signal formats or conducting
simple logic calculation. However at present, modern FPGAs have obtained enormous
capacity and many advanced computation/communication features from the semiconductor
process development; they can accommodate complete computer systems consisting of
hardcore or softcore microprocessors, memory controllers, customized hardware accelerators,

7

2 Will-be-set-by-IN-TECH

as well as peripherals, etc. Taking advantage of design IP cores and interconnection
architecture, it has become a reality to easily implement System-on-Programmable-Chip
(SoPC) or system-on-an-FPGA.
In spite of large advances, the chip area utilization efficiency as well as the clock speed of
FPGAs is still very low in comparison with ASICs. One of the reasons is that FPGA employs
Look-Up Table (LUT) to construct combinational logic, rather than primary gates as in ASICs.
In (Kuon & Rose, 2006), the authors have measured FPGAs to be 35X larger in area and 3X
slower in speed than a standard cell ASIC flow, both using 90-nm technology; In (Lu et al.,
2008), a 12 year old Pentium� design was ported on a Xilinx Virtex-4 FPGA. A 3X slower
system speed (25 MHz vs. 75 MHz) is still observed, although the FPGA uses a recent
90-nm technology while the original ASICs were 600-nm. The speed and area utilization gap
between FPGAs and ASICs has been additionally quantified in (Zuchowski et al., 2002) and
(Wilton et al., 2005) for various designs. Therefore we understand that FPGA programmable
resources are still comparatively expensive. Efficient resource management and utilization
remain to be a challenge especially for those applications with simultaneous high performance
and low cost requirements.
Flash memory is often used to store nonvolatile data in embedded systems. Due to its
intrinsic access mode, normally it does not feature as high speed read and write operations
as volatile memories such as Dynamic Random Access Memory (DRAM) or Static Random
Access Memory (SRAM). In many applications, flash memory is only used to hold data or
programs which are expected to be retrievable after each time power off. It is only addressed
very occasionally or even never during the system run-time, when those data or programs
have already been loaded in the main memory of the system. For example, an embedded
Operating System (OS) kernel may be loaded from the flash into DDR for fast execution in
case of system power-on. Afterwards, the flash memory will never be addressed in systems
operation unless the OS kernel is scheduled to be updated. Because of the occasionality of
flash accesses, it generates resource utilization inefficiency if the flash memory controller is
statically mapped on the FPGA design but does not operate frequently.
In the recent years, an advanced FPGA technology called Dynamic Partial Reconfiguration
(DPR or PR) has emerged and become gradually mature for practical designs. It offers
the capability to dynamically change part of the design without disturbing the remaining
system. Based on the FPGA PR technology, which enables more efficient run-time resource
management, we present a peripheral controller reconfigurable system design in this chapter:
A NOR flash memory controller can be multiplexed with other peripheral components (in
the case study an SRAM controller), time-sharing the same hardware resources with all
the required system functionalities realized. We will elaborate the design in the following
sections.

2. Conventional static design on FPGAs

2.1 Static design approach
A peripheral controller is the design component which interfaces to the peripheral device
and interprets or responds to access instructions from the CPU or other master devices. So a
flash memory controller is the design by which CPU addresses external flash chips. Figure 2
shows the top-level block diagram of a flash memory controller for the Processor Local Bus

138 Flash Memories Adaptively Reconfigurable Controller
for the Flash Memory 3

(PLB) (IBM, 2007) connection. It receives control commands from the PLB to read from and
write to external memory devices. The controller design provides basic read/write control
signals, as well as the ability to configure the access time for read, write, and recovery time
when switching between read and write operations. In addition, the memory data width and
the bus data width are parameterizable. They can be automatically matched by performing
multiple memory cycles when the memory data width is less than PLB. This design structure
is capable of realizing both synchronous and asynchronous device access. It may also support
other parallel memory accesses with small modification effort, such as SRAM.

Fig. 2. Top-level block diagram of the PLB flash memory controller (Xilinx, 2006)

Figure 3 demonstrates a typical system-on-an-FPGA design for embedded applications. As an
example, we adopt the Xilinx Virtex-4 FX FPGA for the implementation. We observe that all
components are interconnected by the PLB, including the microprocessor, memory controllers,
the application-specific algorithm accelerator as well as peripheral devices. In case of system
power-on, the FPGA firmware bitstream is firstly downloaded to configure the FPGA via a
special configuration interface (Dunlap & Fischaber, 2010). Afterwards an embedded Linux
OS kernel is loaded by a bootloader program into the main memory of DDR for fast execution.
In the design, a NOR flash memory stores nonvolatile data necessary for system startup in the
field, including both the bitstream file and the OS kernel.
Suppose we are constructing a system aiming at memory bandwidth hungry computation
for certain applications. Hence a Zero-Bus Turnaround (ZBT) SRAM is integrated in the
system in addition to the main DDR memory. The SRAM is utilized as a Look-Up Table
(LUT) component by the algorithm accelerator to carry out application-specific computation.
It features higher data bandwidth and more efficient data movement than DDR. With the

139Adaptively Reconfigurable Controller for the Flash Memory

2 Will-be-set-by-IN-TECH

as well as peripherals, etc. Taking advantage of design IP cores and interconnection
architecture, it has become a reality to easily implement System-on-Programmable-Chip
(SoPC) or system-on-an-FPGA.
In spite of large advances, the chip area utilization efficiency as well as the clock speed of
FPGAs is still very low in comparison with ASICs. One of the reasons is that FPGA employs
Look-Up Table (LUT) to construct combinational logic, rather than primary gates as in ASICs.
In (Kuon & Rose, 2006), the authors have measured FPGAs to be 35X larger in area and 3X
slower in speed than a standard cell ASIC flow, both using 90-nm technology; In (Lu et al.,
2008), a 12 year old Pentium� design was ported on a Xilinx Virtex-4 FPGA. A 3X slower
system speed (25 MHz vs. 75 MHz) is still observed, although the FPGA uses a recent
90-nm technology while the original ASICs were 600-nm. The speed and area utilization gap
between FPGAs and ASICs has been additionally quantified in (Zuchowski et al., 2002) and
(Wilton et al., 2005) for various designs. Therefore we understand that FPGA programmable
resources are still comparatively expensive. Efficient resource management and utilization
remain to be a challenge especially for those applications with simultaneous high performance
and low cost requirements.
Flash memory is often used to store nonvolatile data in embedded systems. Due to its
intrinsic access mode, normally it does not feature as high speed read and write operations
as volatile memories such as Dynamic Random Access Memory (DRAM) or Static Random
Access Memory (SRAM). In many applications, flash memory is only used to hold data or
programs which are expected to be retrievable after each time power off. It is only addressed
very occasionally or even never during the system run-time, when those data or programs
have already been loaded in the main memory of the system. For example, an embedded
Operating System (OS) kernel may be loaded from the flash into DDR for fast execution in
case of system power-on. Afterwards, the flash memory will never be addressed in systems
operation unless the OS kernel is scheduled to be updated. Because of the occasionality of
flash accesses, it generates resource utilization inefficiency if the flash memory controller is
statically mapped on the FPGA design but does not operate frequently.
In the recent years, an advanced FPGA technology called Dynamic Partial Reconfiguration
(DPR or PR) has emerged and become gradually mature for practical designs. It offers
the capability to dynamically change part of the design without disturbing the remaining
system. Based on the FPGA PR technology, which enables more efficient run-time resource
management, we present a peripheral controller reconfigurable system design in this chapter:
A NOR flash memory controller can be multiplexed with other peripheral components (in
the case study an SRAM controller), time-sharing the same hardware resources with all
the required system functionalities realized. We will elaborate the design in the following
sections.

2. Conventional static design on FPGAs

2.1 Static design approach
A peripheral controller is the design component which interfaces to the peripheral device
and interprets or responds to access instructions from the CPU or other master devices. So a
flash memory controller is the design by which CPU addresses external flash chips. Figure 2
shows the top-level block diagram of a flash memory controller for the Processor Local Bus

138 Flash Memories Adaptively Reconfigurable Controller
for the Flash Memory 3

(PLB) (IBM, 2007) connection. It receives control commands from the PLB to read from and
write to external memory devices. The controller design provides basic read/write control
signals, as well as the ability to configure the access time for read, write, and recovery time
when switching between read and write operations. In addition, the memory data width and
the bus data width are parameterizable. They can be automatically matched by performing
multiple memory cycles when the memory data width is less than PLB. This design structure
is capable of realizing both synchronous and asynchronous device access. It may also support
other parallel memory accesses with small modification effort, such as SRAM.

Fig. 2. Top-level block diagram of the PLB flash memory controller (Xilinx, 2006)

Figure 3 demonstrates a typical system-on-an-FPGA design for embedded applications. As an
example, we adopt the Xilinx Virtex-4 FX FPGA for the implementation. We observe that all
components are interconnected by the PLB, including the microprocessor, memory controllers,
the application-specific algorithm accelerator as well as peripheral devices. In case of system
power-on, the FPGA firmware bitstream is firstly downloaded to configure the FPGA via a
special configuration interface (Dunlap & Fischaber, 2010). Afterwards an embedded Linux
OS kernel is loaded by a bootloader program into the main memory of DDR for fast execution.
In the design, a NOR flash memory stores nonvolatile data necessary for system startup in the
field, including both the bitstream file and the OS kernel.
Suppose we are constructing a system aiming at memory bandwidth hungry computation
for certain applications. Hence a Zero-Bus Turnaround (ZBT) SRAM is integrated in the
system in addition to the main DDR memory. The SRAM is utilized as a Look-Up Table
(LUT) component by the algorithm accelerator to carry out application-specific computation.
It features higher data bandwidth and more efficient data movement than DDR. With the

139Adaptively Reconfigurable Controller for the Flash Memory

4 Will-be-set-by-IN-TECH

Fig. 3. Static design on an FPGA. The system is bus-based and all components are connected
to the PLB. We may see that both the flash controller and the SRAM controller are
concurrently placed in the design with the conventional static approach.

conventional static design approach, both the flash and the SRAM controller are concurrently
placed on the FPGA in order to address the two types of memories.

2.2 Motivation
The flash memory is used to hold nonvolatile data for in-field system startup. It will be rarely
addressed during the system operation unless external management commands require the
bitstream or the OS kernel to be updated. On the other hand, application-specific computation
starts only after the FPGA firmware is configured and the OS is successfully booted.
Therefore on account of the occasionality of flash access as well as the operation exclusiveness
between flash and SRAM, it generates resource utilization inefficiency if the flash controller
is permanently mapped on the FPGA design but does not function frequently. Hence we
consider to make the flash memory controller dynamically changeable and time-share the
same on-chip resources with the SRAM controller.

3. FPGA partial reconfiguration technology

Modern FPGAs (e.g. Xilinx Virtex-4, 5, and 6, Altera Stratix 5 FPGAs) offer the partial
reconfiguration capability to dynamically change part of the design without disturbing the
remaining system. This feature enables alternate utilization of on-FPGA programmable
resources, therefore resulting in large benefits such as more efficient resource utilization
and less static power dissipation (Kao, 2005). Figure 4 illustrates a reconfigurable design
example on Xilinx FPGAs: In the design process, one Partially Reconfigurable Region
(PRR) A is reserved in the overall design layout mapped on the FPGA. On the early-stage
dynamically reconfigurable FPGAs (e.g. Xilinx Virtex-II and Virtex-II Pro), PRR reservation
must run through a complete slice column, because a slice column is the smallest load unit
of a configuration bitstream frame (Hubner et al., 2006; Xilinx, 2004). With respect to the

140 Flash Memories Adaptively Reconfigurable Controller
for the Flash Memory 5

latest FPGA generations (e.g. Xilinx Virtex-4, 5, and 6), PRRs can be the combination of
slice squares. Various functional Partially Reconfigurable Modules (PRM) are individually
implemented within the PR region in the implementation process, and their respective
partial bitstreams are generated and collectively initialized in a design database residing
in a memory device in the system. During the system run-time, various bitstreams can
be dynamically loaded into the FPGA configuration memory by its controller named
Internal Configuration Access Port (ICAP). With a new module bitstream overwriting the
original one in the FPGA configuration memory, the PRR is loaded with the new module
and the circuit functions according to its concrete design. In the dynamic reconfiguration
process, the PRR has to stop working for a short time (reconfiguration overhead) until the
new module is completely loaded. The static portion of the system will not be interfered at all.

Fig. 4. Partially reconfigurable design on Xilinx FPGAs

The ICAP primitive is the hardwired FPGA logic by which the bitstream can be downloaded
into the configuration memory. As shown in Figure 5, ICAP interfaces to the configuration
memory and provides parallel access ports to the circuit design based on programmable
resources. During the system run-time, a master device (typically an embedded
microprocessor or Direct Memory Access (DMA)) may transfer partial reconfiguration
bitstreams from the storage device to ICAP to accomplish dynamic reconfiguration. The
complete ICAP design, in which the ICAP primitive is instantiated, interfaces to the
system interconnection fabric to communicate with the processor and memories. In
(Liu, Kuehn, Lu & Jantsch, 2009), (Delorme et al., 2009) and (Liu, Pittman & Forin, 2009), the
authors explore the design space of ICAP IP module and present optimized designs. Through
using either DDR or SRAM memories to hold partial bitstreams, these designs may achieve
a run-time reconfiguration throughput of about 235 MB/s or close to 400 MB/s. The
reconfiguration time overhead is linearly proportional to the size of partial bitstreams. Thus,
a typical modular design of several tens or hundreds of KiloBytes in the partial bitstream
requires several tens up to hundreds of microseconds (μs) for run-time reconfiguration.
The PR technology is coupled very closely to the underlying framework of the FPGA chip
itself. We use the Xilinx FPGAs to explain the PR design flow as illustrated in Figure 6:
The design begins from partitioning the system between the static base design and the
reconfigurable part. Usually basic hardware infrastructures that expect continuous work

141Adaptively Reconfigurable Controller for the Flash Memory

4 Will-be-set-by-IN-TECH

Fig. 3. Static design on an FPGA. The system is bus-based and all components are connected
to the PLB. We may see that both the flash controller and the SRAM controller are
concurrently placed in the design with the conventional static approach.

conventional static design approach, both the flash and the SRAM controller are concurrently
placed on the FPGA in order to address the two types of memories.

2.2 Motivation
The flash memory is used to hold nonvolatile data for in-field system startup. It will be rarely
addressed during the system operation unless external management commands require the
bitstream or the OS kernel to be updated. On the other hand, application-specific computation
starts only after the FPGA firmware is configured and the OS is successfully booted.
Therefore on account of the occasionality of flash access as well as the operation exclusiveness
between flash and SRAM, it generates resource utilization inefficiency if the flash controller
is permanently mapped on the FPGA design but does not function frequently. Hence we
consider to make the flash memory controller dynamically changeable and time-share the
same on-chip resources with the SRAM controller.

3. FPGA partial reconfiguration technology

Modern FPGAs (e.g. Xilinx Virtex-4, 5, and 6, Altera Stratix 5 FPGAs) offer the partial
reconfiguration capability to dynamically change part of the design without disturbing the
remaining system. This feature enables alternate utilization of on-FPGA programmable
resources, therefore resulting in large benefits such as more efficient resource utilization
and less static power dissipation (Kao, 2005). Figure 4 illustrates a reconfigurable design
example on Xilinx FPGAs: In the design process, one Partially Reconfigurable Region
(PRR) A is reserved in the overall design layout mapped on the FPGA. On the early-stage
dynamically reconfigurable FPGAs (e.g. Xilinx Virtex-II and Virtex-II Pro), PRR reservation
must run through a complete slice column, because a slice column is the smallest load unit
of a configuration bitstream frame (Hubner et al., 2006; Xilinx, 2004). With respect to the

140 Flash Memories Adaptively Reconfigurable Controller
for the Flash Memory 5

latest FPGA generations (e.g. Xilinx Virtex-4, 5, and 6), PRRs can be the combination of
slice squares. Various functional Partially Reconfigurable Modules (PRM) are individually
implemented within the PR region in the implementation process, and their respective
partial bitstreams are generated and collectively initialized in a design database residing
in a memory device in the system. During the system run-time, various bitstreams can
be dynamically loaded into the FPGA configuration memory by its controller named
Internal Configuration Access Port (ICAP). With a new module bitstream overwriting the
original one in the FPGA configuration memory, the PRR is loaded with the new module
and the circuit functions according to its concrete design. In the dynamic reconfiguration
process, the PRR has to stop working for a short time (reconfiguration overhead) until the
new module is completely loaded. The static portion of the system will not be interfered at all.

Fig. 4. Partially reconfigurable design on Xilinx FPGAs

The ICAP primitive is the hardwired FPGA logic by which the bitstream can be downloaded
into the configuration memory. As shown in Figure 5, ICAP interfaces to the configuration
memory and provides parallel access ports to the circuit design based on programmable
resources. During the system run-time, a master device (typically an embedded
microprocessor or Direct Memory Access (DMA)) may transfer partial reconfiguration
bitstreams from the storage device to ICAP to accomplish dynamic reconfiguration. The
complete ICAP design, in which the ICAP primitive is instantiated, interfaces to the
system interconnection fabric to communicate with the processor and memories. In
(Liu, Kuehn, Lu & Jantsch, 2009), (Delorme et al., 2009) and (Liu, Pittman & Forin, 2009), the
authors explore the design space of ICAP IP module and present optimized designs. Through
using either DDR or SRAM memories to hold partial bitstreams, these designs may achieve
a run-time reconfiguration throughput of about 235 MB/s or close to 400 MB/s. The
reconfiguration time overhead is linearly proportional to the size of partial bitstreams. Thus,
a typical modular design of several tens or hundreds of KiloBytes in the partial bitstream
requires several tens up to hundreds of microseconds (μs) for run-time reconfiguration.
The PR technology is coupled very closely to the underlying framework of the FPGA chip
itself. We use the Xilinx FPGAs to explain the PR design flow as illustrated in Figure 6:
The design begins from partitioning the system between the static base design and the
reconfigurable part. Usually basic hardware infrastructures that expect continuous work

141Adaptively Reconfigurable Controller for the Flash Memory

6 Will-be-set-by-IN-TECH

Fig. 5. The ICAP primitive on Xilinx FPGAs

and do not want to be unloaded or replaced during the operation are classfied into the
static category, such as the system processor or the main memory controller. The partially
reconfigurable part delegates those modules with dynamically swapping needs in the PR
region. All the modular designs including PRMs are assembled to form an entire system.
After synthesis, netlist files are generated for all the modules as well as the top-level system.
The netlists serve as input files to the FPGA implementation. Before implementation, the Area
Group (AG) constraints must be defined to prevent the logics in PRMs from being merged
with the ones in the base design. Each PRR will be only restricted in the area defined by
the RANGE constraints. Then after the following independent implementation of the base
design and PR modules, the final step in the design flow is to merge them and create both the
complete bitstream (with default PR modules equipped) and partial bitstreams for respective
PR modules. Hence, the run-time reconfiguration process is initiated when one partial
bitstream is loaded into the FPGA configuration memory and overwrites the corresponding
segment.

Fig. 6. Xilinx PR design flow

4. Design framework of adaptively reconfigurable peripherals

The modular design concept popularly adopted in static systems applies also to run-time
reconfigurable designs on FPGAs. As we discussed in the previous section, the entire system

142 Flash Memories Adaptively Reconfigurable Controller
for the Flash Memory 7

is partitioned and different tasks are individually implemented as functional modules in
dynamically reconfigurable designs. Analogous to software processes running on top of OSes
and competing for the CPU time, each functional module can be regarded as a hardware
process which is to be loaded into reconfigurable slots (i.e. PRRs) on the FPGA rather
than General-Purpose microprocessors (GPCPU). Multiple hardware processes share the
programmable resources and are scheduled to work according to certain types of disciplines
on the awareness of computation requirements. Context switching happens when the current
hardware process in charge of one task is leaving the reconfigurable slot (being overwritten)
and another new task is to be loaded to start working. All these key issues in the adaptive
computing framework are classified into and addressed within certain layers in hardware or
software. Figure 7 demonstrates the layered hardware/software architecture and details in
different aspects will be presented in the following subsections respectively.

Fig. 7. Hardware/software layers of the adaptive reconfigurable system

4.1 Hardware structure
A dynamically reconfigurable platform may contain a general-purpose host computer system
and application-specific functional modules. Figure 8 shows a system on a Xilinx Virtex-4
FPGA. Existing commercial IP cores can be exploited to quickly construct the general
computer design, consisting of the processor core, the main DDR memory controller,
peripherals, and the interconnection infrastructure using the PLB bus. In addition to the
fundamental host computer system, run-time reconfigurable slots are reserved for being
dynamically equipped with different functional modules. In the figure we show only one PRR
to explain the principle. When incorporated in the PRR, PR modules communicate with the
static base design, specifically the PLB bus for receiving controls from the processor and I/O
buffers to external devices. Noting that the output signals of a PR module may unpredictably
toggle during active reconfiguration, “disconnect” logic (illustrated in the callout frame in
Figure 8) is required to be inserted to disable PRM outputs and isolate the unsteady signal
state for the base design from being interfered. Furthermore, a dedicated “reset” signal aims to
solely reset the newly loaded module after each partial reconfiguration. Both the “disconnect”

143Adaptively Reconfigurable Controller for the Flash Memory

6 Will-be-set-by-IN-TECH

Fig. 5. The ICAP primitive on Xilinx FPGAs

and do not want to be unloaded or replaced during the operation are classfied into the
static category, such as the system processor or the main memory controller. The partially
reconfigurable part delegates those modules with dynamically swapping needs in the PR
region. All the modular designs including PRMs are assembled to form an entire system.
After synthesis, netlist files are generated for all the modules as well as the top-level system.
The netlists serve as input files to the FPGA implementation. Before implementation, the Area
Group (AG) constraints must be defined to prevent the logics in PRMs from being merged
with the ones in the base design. Each PRR will be only restricted in the area defined by
the RANGE constraints. Then after the following independent implementation of the base
design and PR modules, the final step in the design flow is to merge them and create both the
complete bitstream (with default PR modules equipped) and partial bitstreams for respective
PR modules. Hence, the run-time reconfiguration process is initiated when one partial
bitstream is loaded into the FPGA configuration memory and overwrites the corresponding
segment.

Fig. 6. Xilinx PR design flow

4. Design framework of adaptively reconfigurable peripherals

The modular design concept popularly adopted in static systems applies also to run-time
reconfigurable designs on FPGAs. As we discussed in the previous section, the entire system

142 Flash Memories Adaptively Reconfigurable Controller
for the Flash Memory 7

is partitioned and different tasks are individually implemented as functional modules in
dynamically reconfigurable designs. Analogous to software processes running on top of OSes
and competing for the CPU time, each functional module can be regarded as a hardware
process which is to be loaded into reconfigurable slots (i.e. PRRs) on the FPGA rather
than General-Purpose microprocessors (GPCPU). Multiple hardware processes share the
programmable resources and are scheduled to work according to certain types of disciplines
on the awareness of computation requirements. Context switching happens when the current
hardware process in charge of one task is leaving the reconfigurable slot (being overwritten)
and another new task is to be loaded to start working. All these key issues in the adaptive
computing framework are classified into and addressed within certain layers in hardware or
software. Figure 7 demonstrates the layered hardware/software architecture and details in
different aspects will be presented in the following subsections respectively.

Fig. 7. Hardware/software layers of the adaptive reconfigurable system

4.1 Hardware structure
A dynamically reconfigurable platform may contain a general-purpose host computer system
and application-specific functional modules. Figure 8 shows a system on a Xilinx Virtex-4
FPGA. Existing commercial IP cores can be exploited to quickly construct the general
computer design, consisting of the processor core, the main DDR memory controller,
peripherals, and the interconnection infrastructure using the PLB bus. In addition to the
fundamental host computer system, run-time reconfigurable slots are reserved for being
dynamically equipped with different functional modules. In the figure we show only one PRR
to explain the principle. When incorporated in the PRR, PR modules communicate with the
static base design, specifically the PLB bus for receiving controls from the processor and I/O
buffers to external devices. Noting that the output signals of a PR module may unpredictably
toggle during active reconfiguration, “disconnect” logic (illustrated in the callout frame in
Figure 8) is required to be inserted to disable PRM outputs and isolate the unsteady signal
state for the base design from being interfered. Furthermore, a dedicated “reset” signal aims to
solely reset the newly loaded module after each partial reconfiguration. Both the “disconnect”

143Adaptively Reconfigurable Controller for the Flash Memory

8 Will-be-set-by-IN-TECH

and the separate “reset” signal can be driven by software-accessible General-Purpose I/Os
(GPIO).

Fig. 8. The hardware infrastructure of the PR system

In the previous Xilinx Partial Reconfiguration Early Access design flow (Xilinx, 2008), a
special type of component called Bus Macro (BM) must be instantiated to straddle the PR
region and the static design, in order to lock the implementation routing between them.
This is the particular treatment on the communication channels between the static and the
dynamically reconfigurable regions. The BM components have been removed in the new PR
design flow (Xilinx, 2010). They are no longer needed and the partition I/Os are automatically
managed by the development software tool.
One significant advantage of this hardware structure, is that it conforms to the modular
design appraoch: Different functional tasks are respectively implemented into IP cores. They
are wrapped by the PLB interface and integrated in the bus-based system design. Normal
static designs can be easily converted into a PR system by attentively treating the connection
interface and mapping various functional modules in the same time-shared PR region. Little
special consideration is needed to construct a PR system on the basis of conventional static
designs.

4.2 OS and device drivers
As in conventional static designs, all hardware modules sharing a same reconfigurable slot can
be managed by the host processor with or without OS support. In a standalone mode without
OS, the processor addresses device components with low-level register accesses in application
programs. While in OSes, device drivers are expected to be customized. In a Unix-like OS,
common file operations are programmed to access devices (Corbet et al., 2005), including
“open", “close", “read", “write", “ioctl", etc. Interrupt handlers should also be implemented if
the hardware provides interrupt services.
Different device components multiplexed in a same PR region are allowed to share the same
physical address space for system bus addressing, due to their operation exclusiveness on the

144 Flash Memories Adaptively Reconfigurable Controller
for the Flash Memory 9

time axis. In order to match software operations with the equipped hardware component, two
approaches can be adopted: Either a universal driver is customized for all the reconfigurable
modules sharing a same PR region. Respective device operations are regulated and collected
in the code. The ID number of PR modules is kept track of and passed to the driver, branching
to the correct instructions according to the currently activated hardware module; or the
drivers are separately compiled into software modules for different hardware components.
The old driver is to be removed and the new one inserted, along with the presence of a newly
loaded hardware device. Among these two approaches, the former one can avoid the driver
module removing/inserting time overhead in the OS, while the latter one is more convenient
for system upgrades when a new task is added to share a PR region.
Little special consideration or modification effort is required on the OS and device drivers
for run-time reconfigurable systems in comparison with static designs. The most important
thing to note, is to keep track of the presently activated module in the PRR and correctly
match the driver software with the hardware. Otherwise the device module may suffer from
misoperations.

4.3 Reconfiguration management
In dynamically reconfigurable designs, run-time module loading/unloading is managed by a
scheduler. Analogous to the scheduler in an OS kernel which determines the active process
for CPU execution, the scheduler in FPGA reconfigurable designs monitors trigger events and
decides which functional module is to be configured next to utilize the reconfigurable slot. All
hardware processes are preemptable and they must comply with the management from the
scheduler. The scheduling policy may be implemented in hardware with Finit State Machines
(FSM). However for more design convenience, it can be ported in the software application
program running on the host processor with or without OS support. Distinguished from
the kernel space scheduling in (So et al., 2006) and the management unit design in hardware
in (Ito et al., 2006), the user space software scheduling possesses significant advantages of
convenient portability to other platforms, avoidance of error-prone OS kernel modification,
and flexibility to optimize scheduling disciplines. Scheduling policies are very flexible. But
they have direct effect on the system performance and should be optimized according to
concrete application requireiments, such as throughput or reaction latency. One general
rule is to minimize the hardware context switching times, taking into account the dynamic
reconfiguration time overhead and extra power dissipation needed during the reconfiguration
process.
The scheduler program is only in charge of light-weight control work and usually does
not feature intensive computation. In addition, the host CPU only initiates run-time
reconfiguration by providing the bitstream storage address as well as the length, and
it is actually the master block or the DMA component in the ICAP designs that
transports the configuration data (Delorme et al., 2009; Liu, Kuehn, Lu & Jantsch, 2009;
Liu, Pittman & Forin, 2009). Therefore dynamic reconfiguration scheduling does not typically
take much CPU time, especially when the trigger events of module switching happen only
infrequently and the scheduler is informed by CPU interrupts.

145Adaptively Reconfigurable Controller for the Flash Memory

8 Will-be-set-by-IN-TECH

and the separate “reset” signal can be driven by software-accessible General-Purpose I/Os
(GPIO).

Fig. 8. The hardware infrastructure of the PR system

In the previous Xilinx Partial Reconfiguration Early Access design flow (Xilinx, 2008), a
special type of component called Bus Macro (BM) must be instantiated to straddle the PR
region and the static design, in order to lock the implementation routing between them.
This is the particular treatment on the communication channels between the static and the
dynamically reconfigurable regions. The BM components have been removed in the new PR
design flow (Xilinx, 2010). They are no longer needed and the partition I/Os are automatically
managed by the development software tool.
One significant advantage of this hardware structure, is that it conforms to the modular
design appraoch: Different functional tasks are respectively implemented into IP cores. They
are wrapped by the PLB interface and integrated in the bus-based system design. Normal
static designs can be easily converted into a PR system by attentively treating the connection
interface and mapping various functional modules in the same time-shared PR region. Little
special consideration is needed to construct a PR system on the basis of conventional static
designs.

4.2 OS and device drivers
As in conventional static designs, all hardware modules sharing a same reconfigurable slot can
be managed by the host processor with or without OS support. In a standalone mode without
OS, the processor addresses device components with low-level register accesses in application
programs. While in OSes, device drivers are expected to be customized. In a Unix-like OS,
common file operations are programmed to access devices (Corbet et al., 2005), including
“open", “close", “read", “write", “ioctl", etc. Interrupt handlers should also be implemented if
the hardware provides interrupt services.
Different device components multiplexed in a same PR region are allowed to share the same
physical address space for system bus addressing, due to their operation exclusiveness on the

144 Flash Memories Adaptively Reconfigurable Controller
for the Flash Memory 9

time axis. In order to match software operations with the equipped hardware component, two
approaches can be adopted: Either a universal driver is customized for all the reconfigurable
modules sharing a same PR region. Respective device operations are regulated and collected
in the code. The ID number of PR modules is kept track of and passed to the driver, branching
to the correct instructions according to the currently activated hardware module; or the
drivers are separately compiled into software modules for different hardware components.
The old driver is to be removed and the new one inserted, along with the presence of a newly
loaded hardware device. Among these two approaches, the former one can avoid the driver
module removing/inserting time overhead in the OS, while the latter one is more convenient
for system upgrades when a new task is added to share a PR region.
Little special consideration or modification effort is required on the OS and device drivers
for run-time reconfigurable systems in comparison with static designs. The most important
thing to note, is to keep track of the presently activated module in the PRR and correctly
match the driver software with the hardware. Otherwise the device module may suffer from
misoperations.

4.3 Reconfiguration management
In dynamically reconfigurable designs, run-time module loading/unloading is managed by a
scheduler. Analogous to the scheduler in an OS kernel which determines the active process
for CPU execution, the scheduler in FPGA reconfigurable designs monitors trigger events and
decides which functional module is to be configured next to utilize the reconfigurable slot. All
hardware processes are preemptable and they must comply with the management from the
scheduler. The scheduling policy may be implemented in hardware with Finit State Machines
(FSM). However for more design convenience, it can be ported in the software application
program running on the host processor with or without OS support. Distinguished from
the kernel space scheduling in (So et al., 2006) and the management unit design in hardware
in (Ito et al., 2006), the user space software scheduling possesses significant advantages of
convenient portability to other platforms, avoidance of error-prone OS kernel modification,
and flexibility to optimize scheduling disciplines. Scheduling policies are very flexible. But
they have direct effect on the system performance and should be optimized according to
concrete application requireiments, such as throughput or reaction latency. One general
rule is to minimize the hardware context switching times, taking into account the dynamic
reconfiguration time overhead and extra power dissipation needed during the reconfiguration
process.
The scheduler program is only in charge of light-weight control work and usually does
not feature intensive computation. In addition, the host CPU only initiates run-time
reconfiguration by providing the bitstream storage address as well as the length, and
it is actually the master block or the DMA component in the ICAP designs that
transports the configuration data (Delorme et al., 2009; Liu, Kuehn, Lu & Jantsch, 2009;
Liu, Pittman & Forin, 2009). Therefore dynamic reconfiguration scheduling does not typically
take much CPU time, especially when the trigger events of module switching happen only
infrequently and the scheduler is informed by CPU interrupts.

145Adaptively Reconfigurable Controller for the Flash Memory

10 Will-be-set-by-IN-TECH

(a) x = a + b (b) y = c × d

Fig. 9. Contextless module switching in the reconfigurable design

4.4 Context switching
The context of hardware processes refers to the buffered incoming raw data, intermediate
calculation results and control parameters in registers or on-chip memory blocks residing in
the shared resources of PR regions or static interface blocks. In some applications, it becomes
contextless when the buffered raw data are completely consumed and no intermediate
state is needed to be recorded. Thus the scheduler may simply swap out an active PR
module. After some time when it resumes, a module reset will be adequate to restore its
operation. Otherwise, context saving and restoring must be accomplished. Figure 9 and 10
respectively demonstrate these two circumstances: In the design in Figure 9, two dynamically
reconfigurable functional modules (adder and multiplier) do not share the interface registers
and they both feature pure conbinational logic in using the PRR. Hence during each time
when the PRR is reconfigured with an arithmetic operator, the register values in the interface
block are not needed to be saved or restored in order to obtain correct results of x and y. By
contrast in the design of Figure 10, the operand registers in the static interface are shared and
the reconfigurable region also contains the context of one operand for the addition operation.
Therefore in case of module switching, the operands of the former operation must be saved in
the system memory, and the ones for the recently resumed operator are to be restored.
Generally speaking, two approaches can be employed to address the context saving and
restoring issue: In case of small amounts of parameters or intermediate results, register
accesses can efficiently read out the context into external memories and restore it when the
corresponding hardware module resumes (Huang & Hsiung, 2008). When there are large
quantities of data buffered in on-chip memory blocks, the ICAP interface can be utilized to
read out the bitstream and extract the storage values for context saving (Kalte & Porrmann,
2005). In order to avoid the design effort and large time overhead in the latter case, an
alternative solution is to intentionally generate some periodic “pause” states without any
context for the data processing module. Context switching can be then delayed by the
scheduler until meeting a pause state.

4.5 Inter-process communication
Reconfigurable modules (hardware processes) placed at run-time may need to exchange data
among each other. With respect to those modules that are located in different PR regions,

146 Flash Memories Adaptively Reconfigurable Controller
for the Flash Memory 11

(a) x = a + b (b) y = c × d

Fig. 10. Context saving and restoring in the reconfigurable design

(a) Direct connection (b) Shared memory (c) Reconfigurable multiple bus

(d) Crossbar

Fig. 11. Inter-process communication approaches among PRRs (Majer et al., 2007)

they can communicate through canonical approaches as in static designs. For example
Figure 11 demonstrates some general solutions for inter-PRR communications, including
direct connection, shared memory, Reconfigurable Multiple Bus (RMB) (Ahmadinia et al.,
2005; Elgindy et al., 1996), and crossbar. Detailed description on these approaches can be
found in (Majer et al., 2007) and (Fekete et al., 2006), in which inter-module communications
have been intensively investigated in dynamically reconfigurable designs.

147Adaptively Reconfigurable Controller for the Flash Memory

10 Will-be-set-by-IN-TECH

(a) x = a + b (b) y = c × d

Fig. 9. Contextless module switching in the reconfigurable design

4.4 Context switching
The context of hardware processes refers to the buffered incoming raw data, intermediate
calculation results and control parameters in registers or on-chip memory blocks residing in
the shared resources of PR regions or static interface blocks. In some applications, it becomes
contextless when the buffered raw data are completely consumed and no intermediate
state is needed to be recorded. Thus the scheduler may simply swap out an active PR
module. After some time when it resumes, a module reset will be adequate to restore its
operation. Otherwise, context saving and restoring must be accomplished. Figure 9 and 10
respectively demonstrate these two circumstances: In the design in Figure 9, two dynamically
reconfigurable functional modules (adder and multiplier) do not share the interface registers
and they both feature pure conbinational logic in using the PRR. Hence during each time
when the PRR is reconfigured with an arithmetic operator, the register values in the interface
block are not needed to be saved or restored in order to obtain correct results of x and y. By
contrast in the design of Figure 10, the operand registers in the static interface are shared and
the reconfigurable region also contains the context of one operand for the addition operation.
Therefore in case of module switching, the operands of the former operation must be saved in
the system memory, and the ones for the recently resumed operator are to be restored.
Generally speaking, two approaches can be employed to address the context saving and
restoring issue: In case of small amounts of parameters or intermediate results, register
accesses can efficiently read out the context into external memories and restore it when the
corresponding hardware module resumes (Huang & Hsiung, 2008). When there are large
quantities of data buffered in on-chip memory blocks, the ICAP interface can be utilized to
read out the bitstream and extract the storage values for context saving (Kalte & Porrmann,
2005). In order to avoid the design effort and large time overhead in the latter case, an
alternative solution is to intentionally generate some periodic “pause” states without any
context for the data processing module. Context switching can be then delayed by the
scheduler until meeting a pause state.

4.5 Inter-process communication
Reconfigurable modules (hardware processes) placed at run-time may need to exchange data
among each other. With respect to those modules that are located in different PR regions,

146 Flash Memories Adaptively Reconfigurable Controller
for the Flash Memory 11

(a) x = a + b (b) y = c × d

Fig. 10. Context saving and restoring in the reconfigurable design

(a) Direct connection (b) Shared memory (c) Reconfigurable multiple bus

(d) Crossbar

Fig. 11. Inter-process communication approaches among PRRs (Majer et al., 2007)

they can communicate through canonical approaches as in static designs. For example
Figure 11 demonstrates some general solutions for inter-PRR communications, including
direct connection, shared memory, Reconfigurable Multiple Bus (RMB) (Ahmadinia et al.,
2005; Elgindy et al., 1996), and crossbar. Detailed description on these approaches can be
found in (Majer et al., 2007) and (Fekete et al., 2006), in which inter-module communications
have been intensively investigated in dynamically reconfigurable designs.

147Adaptively Reconfigurable Controller for the Flash Memory

12 Will-be-set-by-IN-TECH

(a) Flash controller (b) SRAM controller

Fig. 12. Blackboxes of the flash controller and the SRAM controller

More generally, communications among PR modules that are time-multiplexed in the same
reconfigurable slot may also exist and be required in the hardware implementation. In this
circumstance, static buffer devices must be employed to hold the IPC information while the
PRR is being dynamically reconfigured (Liu et al., 2010). As the producer module is active to
work, the IPC information is injected into the buffer. Afterwards the consumer module may
take the place of the producer in the reconfigurable slot and digest the IPC data destined to it.
The buffer device can either directly interface to the PRR, or be located in the main memory
and accessed via interconnection architectures such as the system bus. The concrete IPC using
this approach for the reconfigurable controller design will be revisited in the next section.

5. Reconfigurable design of flash/SRAM controllers

5.1 Hardware/software design
Both the flash and the SRAM controllers are picked up from the Xilinx IP library. We do
not concern their in-depth design details, but simply regard them as blackboxes instead with
communication interfaces demonstrated in Figure 12. In the figure, the left side is the interface
to external memory devices (Flash or SRAM) and the right side is to the system bus.
Figure 13 shows the hardware structure: An off-chip asynchronous NOR flash memory and
a synchronous SRAM share the same data, address and control bus I/O pads of the FPGA.
These two chips are exclusively selected by the “CE” signal. The flash and the SRAM
controllers are both slave devices on the system bus. They are selectively activated in the
reserved PRR by run-time partial reconfiguration. In order to isolate the unsteady output
signals from the PRR during active reconfiguration, “disconnect” logic is inserted in both
interfaces between the controllers and the PLB bus or external devices. Moreover, a dedicated
“reset” signal takes charge of solely reseting the newly loaded module after each run-time
reconfiguration. Both the “disconnect" and the separate “reset" signals are driven by a GPIO
core under the control of the host processor.
An open-source Linux kernel runs on the host PowerPC 405 processor. To manage run-time
operations in Linux, device drivers for hardware IP cores have been brought up to provide
programming interfaces to application programs. We configure the open-source Memory
Technology Device (MTD) driver (Woodhouse, 2005) to support NOR flash accesses in
Linux. Other drivers are customized specifically for the LUT block in SRAM, PLB_GPIO and
MST_HWICAP. With drivers loaded, device nodes will show up in the “/dev” directory of
the Linux file system, and can be accessed by predefined file operations. The drivers are

148 Flash Memories Adaptively Reconfigurable Controller
for the Flash Memory 13

Fig. 13. Hardware structure of the flash/SRAM PR design

Fig. 14. Flow chart of multiplexing flash/SRAM in Linux

compiled into modules. They will be inserted into the OS kernel when the corresponding
device hardware is configured, or removed when not needed any longer.
The hardware process scheduler is implemented in a C program. It detects the memory access
requirements on flash or SRAM from either the system interior or external user commands,
and meanwhile manages the work sequence of both types of memories. Figure 14 shows a
flow chart, in which the scheduler alternately loads the flash and the SRAM controller with
context awareness. During the device module reconfiguration, the Linux OS as well as the
remaining hardware system keeps running without breaks. In this figure, steps labeled with
“a - g” are used to dynamically configure the SRAM controller, and the ones labeled with

149Adaptively Reconfigurable Controller for the Flash Memory

12 Will-be-set-by-IN-TECH

(a) Flash controller (b) SRAM controller

Fig. 12. Blackboxes of the flash controller and the SRAM controller

More generally, communications among PR modules that are time-multiplexed in the same
reconfigurable slot may also exist and be required in the hardware implementation. In this
circumstance, static buffer devices must be employed to hold the IPC information while the
PRR is being dynamically reconfigured (Liu et al., 2010). As the producer module is active to
work, the IPC information is injected into the buffer. Afterwards the consumer module may
take the place of the producer in the reconfigurable slot and digest the IPC data destined to it.
The buffer device can either directly interface to the PRR, or be located in the main memory
and accessed via interconnection architectures such as the system bus. The concrete IPC using
this approach for the reconfigurable controller design will be revisited in the next section.

5. Reconfigurable design of flash/SRAM controllers

5.1 Hardware/software design
Both the flash and the SRAM controllers are picked up from the Xilinx IP library. We do
not concern their in-depth design details, but simply regard them as blackboxes instead with
communication interfaces demonstrated in Figure 12. In the figure, the left side is the interface
to external memory devices (Flash or SRAM) and the right side is to the system bus.
Figure 13 shows the hardware structure: An off-chip asynchronous NOR flash memory and
a synchronous SRAM share the same data, address and control bus I/O pads of the FPGA.
These two chips are exclusively selected by the “CE” signal. The flash and the SRAM
controllers are both slave devices on the system bus. They are selectively activated in the
reserved PRR by run-time partial reconfiguration. In order to isolate the unsteady output
signals from the PRR during active reconfiguration, “disconnect” logic is inserted in both
interfaces between the controllers and the PLB bus or external devices. Moreover, a dedicated
“reset” signal takes charge of solely reseting the newly loaded module after each run-time
reconfiguration. Both the “disconnect" and the separate “reset" signals are driven by a GPIO
core under the control of the host processor.
An open-source Linux kernel runs on the host PowerPC 405 processor. To manage run-time
operations in Linux, device drivers for hardware IP cores have been brought up to provide
programming interfaces to application programs. We configure the open-source Memory
Technology Device (MTD) driver (Woodhouse, 2005) to support NOR flash accesses in
Linux. Other drivers are customized specifically for the LUT block in SRAM, PLB_GPIO and
MST_HWICAP. With drivers loaded, device nodes will show up in the “/dev” directory of
the Linux file system, and can be accessed by predefined file operations. The drivers are

148 Flash Memories Adaptively Reconfigurable Controller
for the Flash Memory 13

Fig. 13. Hardware structure of the flash/SRAM PR design

Fig. 14. Flow chart of multiplexing flash/SRAM in Linux

compiled into modules. They will be inserted into the OS kernel when the corresponding
device hardware is configured, or removed when not needed any longer.
The hardware process scheduler is implemented in a C program. It detects the memory access
requirements on flash or SRAM from either the system interior or external user commands,
and meanwhile manages the work sequence of both types of memories. Figure 14 shows a
flow chart, in which the scheduler alternately loads the flash and the SRAM controller with
context awareness. During the device module reconfiguration, the Linux OS as well as the
remaining hardware system keeps running without breaks. In this figure, steps labeled with
“a - g” are used to dynamically configure the SRAM controller, and the ones labeled with

149Adaptively Reconfigurable Controller for the Flash Memory

14 Will-be-set-by-IN-TECH

“A - G” are to load the flash controller. Events marked by the symbol “�” are detected
by the scheduler to trigger hardware context switching. Main switching steps before device
operations include:

1. To save the register context of the to-be-unloaded device in DDR variables if necessary.

2. To remove the driver module of the to-be-unloaded device from the OS.

3. To disconnect the PRR outputs for isolating its unsteady state during active reconfiguration
from the static design.

4. To dynamically load the partial bitstream of the expected controller by initiating the
MST_HWICAP core.

5. To solely reset the newly loaded device controller, and recover its register context if there
exists.

6. To re-enable the PRR outputs, restoring the communication links from the PRR to the static
design.

7. To insert the corresponding device driver in the OS, for the processor access with high-level
application software.

After these steps, the recently equipped controller module becomes ready for memory
accesses on the NOR flash or the SRAM.
In this design, IPC operations can be realized through the third-party shared memory such
as DDR. For example when the system is just powered on, the SRAM LUT initialization data
are retrieved from the nonvolatile flash and buffered in the system DDR memory. After the
flash controller is unloaded and the SRAM controller is activated in the PRR by dynamic
reconfiguration, the LUT data are then migrated into the SRAM chip for application-specific
computation. The IPC data flow is illustrated in Figure 15.

5.2 Results
Through enabling either the flash controller or the SRAM controller with system
self-awareness, multitasking has been accomplished within a single reconfigurable slot on
the FPGA. Figure 16 demonstrates the rectangular shape of the reserved PR region on a
Virtex-4 FX20 FPGA layout, as well as two controller implementations after place-and-route.
The reconfigurable design results in a more efficient utilization of hardware resources, as
listed in Table 1. We understand that both the flash memory controller and the SRAM
controller must be concurrently placed in the static system design, implying a total resource
consumption equivalent to the sum of both device modules. A PR region is reserved in the
reconfigurable design, sufficiently large to accommodate all kinds of needed resources of both
device modules. Moreover, a little more resource margin is added for the place-and-route
convenience of the software tool. In contrast to the conventional static approach, we observe
that the reconfigurable system saves 43.7% LUTs, 33.8% slice registers and 47.9% I/O pads,
with both flash and SRAM services realized. The reduced resource requirement not only
enables to fit a large system design on small FPGA chips for lower hardware cost, but also
makes the I/O pads shared and simplifys the Printed Circuit Board (PCB) routing.

150 Flash Memories Adaptively Reconfigurable Controller
for the Flash Memory 15

Fig. 15. Migrating LUT initialization data from the flash memory to the SRAM

(a) The flash implementation in
PRR

(b) The SRAM implementation
in PRR

Fig. 16. Implementation of the flash and the SRAM controller within the PRR on a Virtex-4
FX20 FPGA

6. Conclusion

Based on the FPGA run-time reconfigurability, we present a dynamically reconfigurable
NOR flash controller for embedded designs. This technique is motivated by the operation
occasionality of the flash memory and the resultant programmable resource waste on the
FPGA, when adopting the conventional static development approach. We discuss the

151Adaptively Reconfigurable Controller for the Flash Memory

14 Will-be-set-by-IN-TECH

“A - G” are to load the flash controller. Events marked by the symbol “�” are detected
by the scheduler to trigger hardware context switching. Main switching steps before device
operations include:

1. To save the register context of the to-be-unloaded device in DDR variables if necessary.

2. To remove the driver module of the to-be-unloaded device from the OS.

3. To disconnect the PRR outputs for isolating its unsteady state during active reconfiguration
from the static design.

4. To dynamically load the partial bitstream of the expected controller by initiating the
MST_HWICAP core.

5. To solely reset the newly loaded device controller, and recover its register context if there
exists.

6. To re-enable the PRR outputs, restoring the communication links from the PRR to the static
design.

7. To insert the corresponding device driver in the OS, for the processor access with high-level
application software.

After these steps, the recently equipped controller module becomes ready for memory
accesses on the NOR flash or the SRAM.
In this design, IPC operations can be realized through the third-party shared memory such
as DDR. For example when the system is just powered on, the SRAM LUT initialization data
are retrieved from the nonvolatile flash and buffered in the system DDR memory. After the
flash controller is unloaded and the SRAM controller is activated in the PRR by dynamic
reconfiguration, the LUT data are then migrated into the SRAM chip for application-specific
computation. The IPC data flow is illustrated in Figure 15.

5.2 Results
Through enabling either the flash controller or the SRAM controller with system
self-awareness, multitasking has been accomplished within a single reconfigurable slot on
the FPGA. Figure 16 demonstrates the rectangular shape of the reserved PR region on a
Virtex-4 FX20 FPGA layout, as well as two controller implementations after place-and-route.
The reconfigurable design results in a more efficient utilization of hardware resources, as
listed in Table 1. We understand that both the flash memory controller and the SRAM
controller must be concurrently placed in the static system design, implying a total resource
consumption equivalent to the sum of both device modules. A PR region is reserved in the
reconfigurable design, sufficiently large to accommodate all kinds of needed resources of both
device modules. Moreover, a little more resource margin is added for the place-and-route
convenience of the software tool. In contrast to the conventional static approach, we observe
that the reconfigurable system saves 43.7% LUTs, 33.8% slice registers and 47.9% I/O pads,
with both flash and SRAM services realized. The reduced resource requirement not only
enables to fit a large system design on small FPGA chips for lower hardware cost, but also
makes the I/O pads shared and simplifys the Printed Circuit Board (PCB) routing.

150 Flash Memories Adaptively Reconfigurable Controller
for the Flash Memory 15

Fig. 15. Migrating LUT initialization data from the flash memory to the SRAM

(a) The flash implementation in
PRR

(b) The SRAM implementation
in PRR

Fig. 16. Implementation of the flash and the SRAM controller within the PRR on a Virtex-4
FX20 FPGA

6. Conclusion

Based on the FPGA run-time reconfigurability, we present a dynamically reconfigurable
NOR flash controller for embedded designs. This technique is motivated by the operation
occasionality of the flash memory and the resultant programmable resource waste on the
FPGA, when adopting the conventional static development approach. We discuss the

151Adaptively Reconfigurable Controller for the Flash Memory

16 Will-be-set-by-IN-TECH

Resources Static flash
controller

Static SRAM
controller

Total PRR Resource
saving

4-input
LUTs

923 954 1877 1056 43.7%

Slice
Flip-Flops

867 728 1595 1056 33.8%

I/O pads 56 61 117 61 47.9%

Table 1. Resource utilization of the static/reconfigurable flash/SRAM designs

design framework of adaptively reconfigurable peripherals in this chapter, concerning various
aspects in hardware and software. In the practical experiment, a reserved reconfigurable
slot is time-shared by the flash memory controller and an SRAM controller. Both system
requirements of accessing the flash memory and the SRAM are equally accomplished in the
reconfigurable design, with much less resource utilization of FPGA LUTs, slice registers as
well as I/O pads.
This design technique is not limited to memory controller modules, but can apply to all kinds
of modular devices operating exclusively. In addition, system functionalities can be later
extended by adding more functional modules to time-share a same reconfigurable slot. It not
only enhances the resource utilization efficiency on FPGAs, but also enables the possibility of
future firmware upgrade without hardware modification.

7. Acknowledgment

This work was supported in part by BMBF under contract Nos. 06GI9107I and 06GI9108I,
FZ-Jülich under contract No. COSY-099 41821475, HIC for FAIR, and WTZ: CHN 06/20. The
authors also thank Xilinx Inc. for the software donation.

8. References

Ahmadinia, A., Bobda, C., Ding, J., Majer, M., Teich, J., Fekete, S. & van der Veen, J. (2005). A
practical approach for circuit routing on dynamic reconfigurable devices, Proceedings
of the IEEE International Workshop on Rapid System Prototyping, pp. 84–90.

Corbet, J., Rubini, A. & Kroah-Hartman, G. (2005). Linux Device Drivers (Third Edition),
O’REILLY & Associates, Inc.

Delorme, J., Nafkha, A., Leray, P. & Moy, C. (2009). New opbhwicap interface for
realtime partial reconfiguration of fpga, Proceedings of the International Conference on
Reconfigurable Computing and FPGAs, pp. 386–391.

Dillien, P. (2009). An overview of fpga market dynamics. SOCcentral webpage.
URL: http://www.soccentral.com

Dunlap, C. & Fischaber, T. (2010). Partial reconfiguration user guide. UG702, Xilinx Inc.
Elgindy, H. A., Somani, A. K., Schroeder, H., Schmeck, H. & Spray, A. (1996). Rmb ĺc a

reconfigurable multiple bus network, Proceedings of the International Symposium on
High-Performance Computer Architecture, pp. 108–117.

Fekete, S., van der Veen, J., Majer, M. & Teich, J. (2006). Minimizing communication cost
for reconfigurable slot modules, Proceedings of the International Conference on Field
Programmable Logic and Applications, pp. 1–6.

152 Flash Memories Adaptively Reconfigurable Controller
for the Flash Memory 17

Huang, C. & Hsiung, P. (2008). Software-controlled dynamically swappable hardware design
in partially reconfigurable systems, EURASIP Journal on Embedded Systems 2008: 1–11.

Hubner, M., Schuck, C. & Becker, J. (2006). Elementary block based 2-dimensional dynamic
and partial reconfiguration for virtex-ii fpgas, Proceedings of the International Parallel
and Distributed Processing Symposium.

IBM (2007). 128-bit processor local bus architecture specifications. Version 4.7, IBM Inc.
Ito, T., Mishou, K., Okuyama, Y. & Kuroda, K. (2006). A hardware resource management

system for adaptive computing on dynamically reconfigurable devices, Proceedings
of the Japan-China Joint Workshop on Frontier of Computer Science and Technology,
pp. 196–202.

Kalte, H. & Porrmann, M. (2005). Context saving and restoring for multitasking
in reconfigurable systems, Proceedings of the International Conference on Field
Programmable Logic and Applications, pp. 223–228.

Kao, C. (2005). Benefits of partial reconfiguration, Xcell Journal Fourth Quarter: 65–67.
Kuon, I. & Rose, J. (2006). Measuring the gap between fpgas and asics, Proceedings of the

International Symposium on Field-Programmable Gate Arrays, ACM Press, pp. 21–30.
Liu, M., Kuehn, W., Lu, Z. & Jantsch, A. (2009). Run-time partial reconfiguration

speed investigation and architectural design space exploration, Proceedings of the
International Conference on Field Programmable Logic and Applications, pp. 498–502.

Liu, M., Lu, Z., Kuehn, W. & Jantsch, A. (2010). Inter-process communications using pipes
in fpga-based adaptive computing, Proceedings of the IEEE Computer Society Annual
Symposium on VLSI, p. 80.

Liu, S., Pittman, R. N. & Forin, A. (2009). Minimizing partial reconfiguration overhead
with fully streaming dma engines and intelligent icap controller, Technical Report
MSR-TR-2009-150, Microsoft Research.

Lu, S., Yiannacouras, P., Suh, T., Kassa, R. & Konow, M. (2008). A desktop computer with a
reconfigurable pentium�, ACM Transactions on Reconfigurable Technology and Systems
1(1): 1–15.

Majer, M., Teich, J., Ahmadinia, A. & Bobda, C. (2007). The erlangen slot machine:
A dynamically reconfigurable fpga-based computer, The Journal of VLSI Signal
Processing 47(1): 15–31.

So, H. K., Tkachenko, A. & Brodersen, R. (2006). A unified hardware/software runtime
environment for fpga-based reconfigurable computers using borph, Proceedings
of the International Conference on Hardware/Software Codesign and System Synthesis,
pp. 259–264.

Wilton, S., Kafafi, N., Wu, J., Bozman, K., Aken’Ova, V. & Saleh, R. (2005). Design
considerations for soft embedded programmable logic cores, IEEE Journal of
Solid-State Circuits 40(2): 485–497.

Woodhouse, D. (2005). Memory technology device (mtd) subsystem for linux. MTD webpage.
URL: http://linux-mtd.infradead.org/archive/index.html

Xilinx (2004). Two flows for partial reconfiguration: Module based or difference based.
XAPP290, Xilinx Inc.

Xilinx (2006). Plb external memory controller (plb emc) (2.00a). DS418, Xilinx Inc.
Xilinx (2008). Early access partial reconfiguration user guide for ise 9.2.04i. UG208, Xilinx Inc.
Xilinx (2010). Partial reconfiguration user guide. UG702, Xilinx Inc.

153Adaptively Reconfigurable Controller for the Flash Memory

16 Will-be-set-by-IN-TECH

Resources Static flash
controller

Static SRAM
controller

Total PRR Resource
saving

4-input
LUTs

923 954 1877 1056 43.7%

Slice
Flip-Flops

867 728 1595 1056 33.8%

I/O pads 56 61 117 61 47.9%

Table 1. Resource utilization of the static/reconfigurable flash/SRAM designs

design framework of adaptively reconfigurable peripherals in this chapter, concerning various
aspects in hardware and software. In the practical experiment, a reserved reconfigurable
slot is time-shared by the flash memory controller and an SRAM controller. Both system
requirements of accessing the flash memory and the SRAM are equally accomplished in the
reconfigurable design, with much less resource utilization of FPGA LUTs, slice registers as
well as I/O pads.
This design technique is not limited to memory controller modules, but can apply to all kinds
of modular devices operating exclusively. In addition, system functionalities can be later
extended by adding more functional modules to time-share a same reconfigurable slot. It not
only enhances the resource utilization efficiency on FPGAs, but also enables the possibility of
future firmware upgrade without hardware modification.

7. Acknowledgment

This work was supported in part by BMBF under contract Nos. 06GI9107I and 06GI9108I,
FZ-Jülich under contract No. COSY-099 41821475, HIC for FAIR, and WTZ: CHN 06/20. The
authors also thank Xilinx Inc. for the software donation.

8. References

Ahmadinia, A., Bobda, C., Ding, J., Majer, M., Teich, J., Fekete, S. & van der Veen, J. (2005). A
practical approach for circuit routing on dynamic reconfigurable devices, Proceedings
of the IEEE International Workshop on Rapid System Prototyping, pp. 84–90.

Corbet, J., Rubini, A. & Kroah-Hartman, G. (2005). Linux Device Drivers (Third Edition),
O’REILLY & Associates, Inc.

Delorme, J., Nafkha, A., Leray, P. & Moy, C. (2009). New opbhwicap interface for
realtime partial reconfiguration of fpga, Proceedings of the International Conference on
Reconfigurable Computing and FPGAs, pp. 386–391.

Dillien, P. (2009). An overview of fpga market dynamics. SOCcentral webpage.
URL: http://www.soccentral.com

Dunlap, C. & Fischaber, T. (2010). Partial reconfiguration user guide. UG702, Xilinx Inc.
Elgindy, H. A., Somani, A. K., Schroeder, H., Schmeck, H. & Spray, A. (1996). Rmb ĺc a

reconfigurable multiple bus network, Proceedings of the International Symposium on
High-Performance Computer Architecture, pp. 108–117.

Fekete, S., van der Veen, J., Majer, M. & Teich, J. (2006). Minimizing communication cost
for reconfigurable slot modules, Proceedings of the International Conference on Field
Programmable Logic and Applications, pp. 1–6.

152 Flash Memories Adaptively Reconfigurable Controller
for the Flash Memory 17

Huang, C. & Hsiung, P. (2008). Software-controlled dynamically swappable hardware design
in partially reconfigurable systems, EURASIP Journal on Embedded Systems 2008: 1–11.

Hubner, M., Schuck, C. & Becker, J. (2006). Elementary block based 2-dimensional dynamic
and partial reconfiguration for virtex-ii fpgas, Proceedings of the International Parallel
and Distributed Processing Symposium.

IBM (2007). 128-bit processor local bus architecture specifications. Version 4.7, IBM Inc.
Ito, T., Mishou, K., Okuyama, Y. & Kuroda, K. (2006). A hardware resource management

system for adaptive computing on dynamically reconfigurable devices, Proceedings
of the Japan-China Joint Workshop on Frontier of Computer Science and Technology,
pp. 196–202.

Kalte, H. & Porrmann, M. (2005). Context saving and restoring for multitasking
in reconfigurable systems, Proceedings of the International Conference on Field
Programmable Logic and Applications, pp. 223–228.

Kao, C. (2005). Benefits of partial reconfiguration, Xcell Journal Fourth Quarter: 65–67.
Kuon, I. & Rose, J. (2006). Measuring the gap between fpgas and asics, Proceedings of the

International Symposium on Field-Programmable Gate Arrays, ACM Press, pp. 21–30.
Liu, M., Kuehn, W., Lu, Z. & Jantsch, A. (2009). Run-time partial reconfiguration

speed investigation and architectural design space exploration, Proceedings of the
International Conference on Field Programmable Logic and Applications, pp. 498–502.

Liu, M., Lu, Z., Kuehn, W. & Jantsch, A. (2010). Inter-process communications using pipes
in fpga-based adaptive computing, Proceedings of the IEEE Computer Society Annual
Symposium on VLSI, p. 80.

Liu, S., Pittman, R. N. & Forin, A. (2009). Minimizing partial reconfiguration overhead
with fully streaming dma engines and intelligent icap controller, Technical Report
MSR-TR-2009-150, Microsoft Research.

Lu, S., Yiannacouras, P., Suh, T., Kassa, R. & Konow, M. (2008). A desktop computer with a
reconfigurable pentium�, ACM Transactions on Reconfigurable Technology and Systems
1(1): 1–15.

Majer, M., Teich, J., Ahmadinia, A. & Bobda, C. (2007). The erlangen slot machine:
A dynamically reconfigurable fpga-based computer, The Journal of VLSI Signal
Processing 47(1): 15–31.

So, H. K., Tkachenko, A. & Brodersen, R. (2006). A unified hardware/software runtime
environment for fpga-based reconfigurable computers using borph, Proceedings
of the International Conference on Hardware/Software Codesign and System Synthesis,
pp. 259–264.

Wilton, S., Kafafi, N., Wu, J., Bozman, K., Aken’Ova, V. & Saleh, R. (2005). Design
considerations for soft embedded programmable logic cores, IEEE Journal of
Solid-State Circuits 40(2): 485–497.

Woodhouse, D. (2005). Memory technology device (mtd) subsystem for linux. MTD webpage.
URL: http://linux-mtd.infradead.org/archive/index.html

Xilinx (2004). Two flows for partial reconfiguration: Module based or difference based.
XAPP290, Xilinx Inc.

Xilinx (2006). Plb external memory controller (plb emc) (2.00a). DS418, Xilinx Inc.
Xilinx (2008). Early access partial reconfiguration user guide for ise 9.2.04i. UG208, Xilinx Inc.
Xilinx (2010). Partial reconfiguration user guide. UG702, Xilinx Inc.

153Adaptively Reconfigurable Controller for the Flash Memory

18 Will-be-set-by-IN-TECH

Zuchowski, P., Reynolds, C., Grupp, R., Davis, S., Cremen, B. & Troxel, B. (2002). A hybrid
asic and fpga architecture, Proceedings of the International Conference on Computer-Aided
Design, pp. 187–194.

154 Flash Memories

8

Programming Flash Memory in Freescale
S08/S12/CordFire MCUs Family

Yihuai Wang and Jin Wu
Soochow University

China

1. Introduction
The features of Flash memory include electrically erasable, no back-up power to protect
data, in-circuit programming, high-density memory, low-cost and so on, which rapidly
increase the using of Flash memory in embedded system.
The programming methods of Flash memory include Programmer Mode and In-Circuit
Programmer Mode. Programmer Mode means erasing/programming Flash by
programming tool (programmer), with the purpose of writing programs into MCU1. In-
Circuit Programmer Mode means erasing/programming some region of Flash by MCU’s
internal programs during run time, with the purpose of saving relevant data and preventing
from lost after power off. Take AW60/XS128/MCF52233 in Freescale 8/16/32bits
S08/S12/ColdFire serials’ MCUs for example, we elaborate the In-Circuit Programming
method of Flash memory in this chapter. The programming method of the other MCUs in
the whole Freescale S08/S12/ColdFire MCU family is similar. Besides, we discuss the
protection mechanisms and security operations for AW60/XS128/MCF52233 Flash memory.
Some instances are also provided in this chapter.

1.1 Flash memory characteristics
The most perfect memory should be a high-speed, non-volatile, low-cost and high-density
memory. But only one or several specialties are implemented in general memory. With
the maturity of its technology, flash memory has become an ideal memory in recent years.
It is endowed with characteristics such as electrical erasure, data preservation without
power supply, in-system programming, high storage density, low power consumption
and low cost. These are just what MCU are expecting, because MCU with internal flash
memory introduced in earlier years has some shortages in reliability and stability. With
the maturity of the Flash technology, now more and more above characteristics are
integrated to MCU and become an important part of it. Hence flash memory makes MCU
progress enormously.
Flash memory is really a high-density, high-performance reading/writing memory with
non-volatility, low-power and high-reliability and has the following characteristics
comparing with old solid state memory.

1 MCU—Microcontroller Unit

18 Will-be-set-by-IN-TECH

Zuchowski, P., Reynolds, C., Grupp, R., Davis, S., Cremen, B. & Troxel, B. (2002). A hybrid
asic and fpga architecture, Proceedings of the International Conference on Computer-Aided
Design, pp. 187–194.

154 Flash Memories

8

Programming Flash Memory in Freescale
S08/S12/CordFire MCUs Family

Yihuai Wang and Jin Wu
Soochow University

China

1. Introduction
The features of Flash memory include electrically erasable, no back-up power to protect
data, in-circuit programming, high-density memory, low-cost and so on, which rapidly
increase the using of Flash memory in embedded system.
The programming methods of Flash memory include Programmer Mode and In-Circuit
Programmer Mode. Programmer Mode means erasing/programming Flash by
programming tool (programmer), with the purpose of writing programs into MCU1. In-
Circuit Programmer Mode means erasing/programming some region of Flash by MCU’s
internal programs during run time, with the purpose of saving relevant data and preventing
from lost after power off. Take AW60/XS128/MCF52233 in Freescale 8/16/32bits
S08/S12/ColdFire serials’ MCUs for example, we elaborate the In-Circuit Programming
method of Flash memory in this chapter. The programming method of the other MCUs in
the whole Freescale S08/S12/ColdFire MCU family is similar. Besides, we discuss the
protection mechanisms and security operations for AW60/XS128/MCF52233 Flash memory.
Some instances are also provided in this chapter.

1.1 Flash memory characteristics
The most perfect memory should be a high-speed, non-volatile, low-cost and high-density
memory. But only one or several specialties are implemented in general memory. With
the maturity of its technology, flash memory has become an ideal memory in recent years.
It is endowed with characteristics such as electrical erasure, data preservation without
power supply, in-system programming, high storage density, low power consumption
and low cost. These are just what MCU are expecting, because MCU with internal flash
memory introduced in earlier years has some shortages in reliability and stability. With
the maturity of the Flash technology, now more and more above characteristics are
integrated to MCU and become an important part of it. Hence flash memory makes MCU
progress enormously.
Flash memory is really a high-density, high-performance reading/writing memory with
non-volatility, low-power and high-reliability and has the following characteristics
comparing with old solid state memory.

1 MCU—Microcontroller Unit

Flash Memories 156

1. Non-volatility: Flash memory protects data without power supply the same as magnetic
storage.

2. Easy-updating: Comparing with old EPROM2, the electrical erasure of flash memory
shortens the programming cycle for developers and makes end users’ updating
memory become true.

3. Low-cost, high-density and reliability: The parameters are much better than EEPROM
(or E2PROM).

1.2 Flash memory program concepts
In many embedded systems, the memory which can protect program parameters and
important data without external power supply is necessary as EEPROM previously was. The
ColdFire MCU family provides the function of in-system programming of flash memory in
user mode instead of EEPROM, hence making the circuit design simpler and cost lower.
However, different from the reading/writing of generic RAM, flash memory operations
need two special processes—Erase and Program. The former, which converts all bits to 1,
consists of mass erase and page erase. The latter, which converts bit to 0, can program only
one word at a time. During erasing and programming, voltage higher than the power is
usually needed and it is generated by Coldfire MCU inner electric charge pump. Besides,
before programming, it should be insured that the program field has not been written after
last erasure. That is, the field is blank (the content is $FF). So generally, erase should be
carried out before perform.

1.3 In-circuit programming concepts of flash memory
In-circuit programming of flash memory in user mode (U-ICP) is a technique by which user
programs stored in flash memory can modify data or programs also stored in the flash
memory during run time. The electrically erasable characteristics of flash memory allow
such programs to execute erase or write functions. This important branch of computer
technology, an outgrowth of embedded systems development, makes it possible to update
embedded programs, provide power-off protection and the recovery of important
parameters, and modify the static parameters of embedded applications. In addition, U-ICP
improves the expansibility and upgradeability of embedded systems. Portions of flash
memory can substitute for the traditional EEPROM functions mentioned above, increasing
system stability. And make the circuit design simpler and cost lower.
U-ICP was introduced to MCU technology by the semiconductor department of Motorola
(now called Freescale) in 2000, and has been widely applied and developed ever since.
However, different from the reading/writing of generic RAM, flash memory operations
need two special processes—Erase and Program. The former, which converts all bits to 1,
consists of mass erase and page erase. The latter, which converts bit to 0, can program only
one word at a time. During erasing and programming, voltage higher than the power is
usually needed and it is generated by Freescale S08/S12/CordFire MCU inner electric
charge pump. Besides, before programming, it should be insured that the program field has
not been written after last erasure. That is, the field is blank (the content is $FF). So
generally, erase should be carried out before perform.
U-ICP can erase and reprogram other regions of flash memory by executing internal flash
functions, but these may also prove unstable at high voltage. This problem, which is indicated

2 EEPROM—Electrically Programmable Read-Only-Memory

Programming Flash Memory in Freescale S08/S12/CordFire MCUs Family 157

in the data sheet of the Freescale S08/S12/CordFire MCU family, has not yet been solved by
hardware design. It can be solved on the software level, by proper design of the U-ICP bottom
driver program. So we describe an embedded software engineering rule that should improve
the stability of the general erase and write functions in U-ICP for any flash device.

2. Programming flash in freescale MC9S08AW60 MCU
The flash memory in-circuit programming implement for 8bit MC9S08AW60 MCU will be
explained in this section, as follows:

2.1 How to operate MC9S08AW60 flash memory
2.1.1 MC9S08AW60 Flash memory-mapping
S08 serials MCUs’ addressable address space is 64Kbyte, which ranges from $0000 ~ $FFFF.
This addressing range is divided into different sectors. Each sector has different function.
The memory map of AW60 MCU is shown in Fig.1, which includes the address distribution
of 2KB RAM3, 2 parts of Flash memory and some I/O image registers.
As can be seen from the Fig.1, the Flash memory of AW60 is divided into two parts in this
64K memory address space. These addresses range from $0870～$17FF(3984 bytes) and
$1860～$FFFF(59296 bytes). Among $1860～$FFFF only the addresses range from $1860～
$FFAF can be used to erase and program user program. The addresses range from $FFB0～
$FFBF are the 16 bytes non-volatile registers region and the addresses range from $FFC0～
$FFFF are the 64 bytes interrupt vector region.
Flash memory is organized by page and row in the chip. The size of each page is 512 bytes.
And the size of each row is 64 bytes. There are about 60K bytes of Flash memory address
space in AW60, the page addresses are rounding 512 in $0000～$FFFF. For example, the first
page’s address of Flash memory in the 3984bytes region ($0870～$17FF) is $1000～$11FF,
instead of $0870～$0A6F.

Fig. 1. The memory map of AW60 MCU

3RAM—Random Access Memory

Flash Memories 156

1. Non-volatility: Flash memory protects data without power supply the same as magnetic
storage.

2. Easy-updating: Comparing with old EPROM2, the electrical erasure of flash memory
shortens the programming cycle for developers and makes end users’ updating
memory become true.

3. Low-cost, high-density and reliability: The parameters are much better than EEPROM
(or E2PROM).

1.2 Flash memory program concepts
In many embedded systems, the memory which can protect program parameters and
important data without external power supply is necessary as EEPROM previously was. The
ColdFire MCU family provides the function of in-system programming of flash memory in
user mode instead of EEPROM, hence making the circuit design simpler and cost lower.
However, different from the reading/writing of generic RAM, flash memory operations
need two special processes—Erase and Program. The former, which converts all bits to 1,
consists of mass erase and page erase. The latter, which converts bit to 0, can program only
one word at a time. During erasing and programming, voltage higher than the power is
usually needed and it is generated by Coldfire MCU inner electric charge pump. Besides,
before programming, it should be insured that the program field has not been written after
last erasure. That is, the field is blank (the content is $FF). So generally, erase should be
carried out before perform.

1.3 In-circuit programming concepts of flash memory
In-circuit programming of flash memory in user mode (U-ICP) is a technique by which user
programs stored in flash memory can modify data or programs also stored in the flash
memory during run time. The electrically erasable characteristics of flash memory allow
such programs to execute erase or write functions. This important branch of computer
technology, an outgrowth of embedded systems development, makes it possible to update
embedded programs, provide power-off protection and the recovery of important
parameters, and modify the static parameters of embedded applications. In addition, U-ICP
improves the expansibility and upgradeability of embedded systems. Portions of flash
memory can substitute for the traditional EEPROM functions mentioned above, increasing
system stability. And make the circuit design simpler and cost lower.
U-ICP was introduced to MCU technology by the semiconductor department of Motorola
(now called Freescale) in 2000, and has been widely applied and developed ever since.
However, different from the reading/writing of generic RAM, flash memory operations
need two special processes—Erase and Program. The former, which converts all bits to 1,
consists of mass erase and page erase. The latter, which converts bit to 0, can program only
one word at a time. During erasing and programming, voltage higher than the power is
usually needed and it is generated by Freescale S08/S12/CordFire MCU inner electric
charge pump. Besides, before programming, it should be insured that the program field has
not been written after last erasure. That is, the field is blank (the content is $FF). So
generally, erase should be carried out before perform.
U-ICP can erase and reprogram other regions of flash memory by executing internal flash
functions, but these may also prove unstable at high voltage. This problem, which is indicated

2 EEPROM—Electrically Programmable Read-Only-Memory

Programming Flash Memory in Freescale S08/S12/CordFire MCUs Family 157

in the data sheet of the Freescale S08/S12/CordFire MCU family, has not yet been solved by
hardware design. It can be solved on the software level, by proper design of the U-ICP bottom
driver program. So we describe an embedded software engineering rule that should improve
the stability of the general erase and write functions in U-ICP for any flash device.

2. Programming flash in freescale MC9S08AW60 MCU
The flash memory in-circuit programming implement for 8bit MC9S08AW60 MCU will be
explained in this section, as follows:

2.1 How to operate MC9S08AW60 flash memory
2.1.1 MC9S08AW60 Flash memory-mapping
S08 serials MCUs’ addressable address space is 64Kbyte, which ranges from $0000 ~ $FFFF.
This addressing range is divided into different sectors. Each sector has different function.
The memory map of AW60 MCU is shown in Fig.1, which includes the address distribution
of 2KB RAM3, 2 parts of Flash memory and some I/O image registers.
As can be seen from the Fig.1, the Flash memory of AW60 is divided into two parts in this
64K memory address space. These addresses range from $0870～$17FF(3984 bytes) and
$1860～$FFFF(59296 bytes). Among $1860～$FFFF only the addresses range from $1860～
$FFAF can be used to erase and program user program. The addresses range from $FFB0～
$FFBF are the 16 bytes non-volatile registers region and the addresses range from $FFC0～
$FFFF are the 64 bytes interrupt vector region.
Flash memory is organized by page and row in the chip. The size of each page is 512 bytes.
And the size of each row is 64 bytes. There are about 60K bytes of Flash memory address
space in AW60, the page addresses are rounding 512 in $0000～$FFFF. For example, the first
page’s address of Flash memory in the 3984bytes region ($0870～$17FF) is $1000～$11FF,
instead of $0870～$0A6F.

Fig. 1. The memory map of AW60 MCU

3RAM—Random Access Memory

Flash Memories 158

For S08 serials MCU (AW60, etc.), we can do mass erasing operation for the Flash memory,
or can erasing one page(512 bytes) from a certain start address. But we can’t only erase a
certain byte or some bytes which are less than 512 bytes. Noting this feature, it is important
for the data arranging. The programming operation of AW60 is based on row (64 bytes). The
data which can be programmed continuously at a time is only within one row. Certainly, the
region that has not been erased can’t be programmed.
As can be seen from the above, in order to program Flash memory, we should prepare a set
of data and move them into RAM, then erase the corresponding region of Flash memory, so
programming operation can be done. Because erasing /programming a certain byte of Flash
memory will influence the follow-up one page, it is necessary to reasonably arrange the
relevant data of erasing region before erasing/programming the Flash.

2.1.2 MC9S08AW60 FLASH registers and control bits
In AW60, Erasing and programming operations relate to registers such as FCDIV、FOPT、
FCNFG、FPROT、FSTAT and FCMD. Their corresponding addresses are $1820、$1821、
$1823、$1824、$1825 and $1826. For the detailed function and use of these registers, please
refer to the Reference Manual “MC9S08AW60 Data Sheet (HCS08 Microcontrollers)”[1].

2.1.3 Flash programming procedure
1. The execution steps of Flash commands

a. Write a data in an address of Flash. The address and data information will be
locked into Flash interface. For blank check command, the data information is an
arbitrary value; For page erase command, the address information is either one of
the address in erase page (512 bytes) addresses; For blank check and mass erase
commands, the address information is either one of the address in flash.

b. Write the commands which are needed to be executed into FCMD.
c. Execute commands. The FCBEF bit of FSTAT register is set, simultaneously execute

the commands in the FCMD.
2. The flowcharts of the Flash programming
When programming flash, we need follow strict timing process. Fig.2 gives the
programming flowchart with the other flash commands (not include the command “burst
mode byte program”). Writing a byte with burst mode command is very different from the
execution with other commands. Burst mode means a lot of continuous data need to be
written into Flash. Each time a write command has been executed, the writing high voltage
in flash will not be removed, which will speed up the write speed of data; But for other
commands, the high voltage is given to ensure the command executing, and the high
voltage is immediately removed when the command ended. The programming flowchart
with burst mode command is shown in Fig.3.
3. Flash Memory Illegal Operations

In the following processing, an error occurs, and the FACCERR bit is automatically set.
a. Writing the flash memory before initializing FCDIV register.
b. Writing the flash memory while FCBEF is not set.
c. Writing the second command to the FCMD register before executing the previously

written command。
d. After write the flash memory, initializing the other flash control registers in

addition to FCMD.

Programming Flash Memory in Freescale S08/S12/CordFire MCUs Family 159

Fig. 2. AW60 Flash programming flowchart Fig. 3. AW60 Flash burst mode programming

flowchart

e. Writing an invalid flash normal mode command to the FCMD register.
f. Try to operate the other registers in addition to FSTAT after finished writing

command values to FCMD.
g. MCU enters into STOP mode when execute the command.
h. When MCU is in secure state, erase pages or write flash memory with background

debug interface (If MCU is in encrypted state, we can only execute blank check or
mass erase commands with background debug interface).

i. Aborting a command write sequence by writing 0 to the FCBEF flag.

2.2 MC9S08AW60 flash memory in-circuit programming instance
We first give the AW60's Flash programming subroutine in this section. Then put forward
the Flash in-circuit programming instance in user mode. And verify the result by the serial
communication mode with PC.

Flash Memories 158

For S08 serials MCU (AW60, etc.), we can do mass erasing operation for the Flash memory,
or can erasing one page(512 bytes) from a certain start address. But we can’t only erase a
certain byte or some bytes which are less than 512 bytes. Noting this feature, it is important
for the data arranging. The programming operation of AW60 is based on row (64 bytes). The
data which can be programmed continuously at a time is only within one row. Certainly, the
region that has not been erased can’t be programmed.
As can be seen from the above, in order to program Flash memory, we should prepare a set
of data and move them into RAM, then erase the corresponding region of Flash memory, so
programming operation can be done. Because erasing /programming a certain byte of Flash
memory will influence the follow-up one page, it is necessary to reasonably arrange the
relevant data of erasing region before erasing/programming the Flash.

2.1.2 MC9S08AW60 FLASH registers and control bits
In AW60, Erasing and programming operations relate to registers such as FCDIV、FOPT、
FCNFG、FPROT、FSTAT and FCMD. Their corresponding addresses are $1820、$1821、
$1823、$1824、$1825 and $1826. For the detailed function and use of these registers, please
refer to the Reference Manual “MC9S08AW60 Data Sheet (HCS08 Microcontrollers)”[1].

2.1.3 Flash programming procedure
1. The execution steps of Flash commands

a. Write a data in an address of Flash. The address and data information will be
locked into Flash interface. For blank check command, the data information is an
arbitrary value; For page erase command, the address information is either one of
the address in erase page (512 bytes) addresses; For blank check and mass erase
commands, the address information is either one of the address in flash.

b. Write the commands which are needed to be executed into FCMD.
c. Execute commands. The FCBEF bit of FSTAT register is set, simultaneously execute

the commands in the FCMD.
2. The flowcharts of the Flash programming
When programming flash, we need follow strict timing process. Fig.2 gives the
programming flowchart with the other flash commands (not include the command “burst
mode byte program”). Writing a byte with burst mode command is very different from the
execution with other commands. Burst mode means a lot of continuous data need to be
written into Flash. Each time a write command has been executed, the writing high voltage
in flash will not be removed, which will speed up the write speed of data; But for other
commands, the high voltage is given to ensure the command executing, and the high
voltage is immediately removed when the command ended. The programming flowchart
with burst mode command is shown in Fig.3.
3. Flash Memory Illegal Operations

In the following processing, an error occurs, and the FACCERR bit is automatically set.
a. Writing the flash memory before initializing FCDIV register.
b. Writing the flash memory while FCBEF is not set.
c. Writing the second command to the FCMD register before executing the previously

written command。
d. After write the flash memory, initializing the other flash control registers in

addition to FCMD.

Programming Flash Memory in Freescale S08/S12/CordFire MCUs Family 159

Fig. 2. AW60 Flash programming flowchart Fig. 3. AW60 Flash burst mode programming

flowchart

e. Writing an invalid flash normal mode command to the FCMD register.
f. Try to operate the other registers in addition to FSTAT after finished writing

command values to FCMD.
g. MCU enters into STOP mode when execute the command.
h. When MCU is in secure state, erase pages or write flash memory with background

debug interface (If MCU is in encrypted state, we can only execute blank check or
mass erase commands with background debug interface).

i. Aborting a command write sequence by writing 0 to the FCBEF flag.

2.2 MC9S08AW60 flash memory in-circuit programming instance
We first give the AW60's Flash programming subroutine in this section. Then put forward
the Flash in-circuit programming instance in user mode. And verify the result by the serial
communication mode with PC.

Flash Memories 160

2.2.1 The erasing and programming c language subroutines of flash memory
For the Flash programming subroutines are not solidified in the internal monitoring ROM4
of AW60, the initial loaded user program should contain the flash erasing and programming
subroutines in order to do in-circuit programming for Flash. Because these subroutines
resident in Flash, when running the erasing/programming subroutines, the whole Flash
region will be added programming voltage that is higher than the normal operating voltage,
which results in instable Flash region’s reading, and may lead to program’s error running.
In order to make the erasing/programming subroutines running normally, these
subroutines should be moved into RAM and run in RAM. Therefore, a buffer should be
opened up in RAM to store these subroutines. The following sample program gives a
convenient method to save the machine codes which are generated by
erasing/programming subroutines in RAM. The machine codes include 57 bytes.
Necessarily, you can directly call these codes to implement the Flash in-circuit
erasing/programming. For the detailed Erasing and Programming subroutines, please refer
to the program in our program directory “..\Flash_Program\S08(AW60)-Flash”5. These
subroutines contain the following operations:
1. Some public operation of erasing/programming processing
For the codes of erasing/programming operation must run in RAM, so we write the C
language program according to Fig.2. After being compiled, the corresponding machine
code bytes are saved in the array PGM (volatile unsigned char PGM[57]). Therefore we need
not copy the codes to RAM to realize the erasing/programming operations.
2. Page erasing subroutine (Flash_PageErase)
In this subroutine we should calculate the page’s top address by the page number, and
change the Flash command to erasing command 0x40, then call and execute the erasing
codes.
3. Flash programming subroutine
In this subroutine we calculate the top programming address according to the page number
and page offset, then change the Flash command to erasing command 0x20, and program
flash one byte by one byte.

2.2.2 Programming essentials of erasing /programming subroutines
Using Flash in-circuit programming technology eliminates the need for external EEPROM,
which not only simplify the circuit design, but also improve the stability of system. We
compile the Flash programs and save them in Flash. When you need to use these codes, they
will be copied to RAM. Just because of this special procedure, we put forward the following
notes according to the experience which is accumulated in the actual programming and
debugging, and project development process.
1. There are 57 bytes in RAM to store the erasing/programming machine codes, don’t

forget to calculate when using RAM.
2. The region that has been erased for one time and has not been programmed can be

programmed by calling Flash programming subroutine again, but the region that has
been programmed can’t be programmed again if it hasn’t been erased.

4 ROM—Read Only Memory

5 You can download the program directory “Flash_Program” in our website
(http://sumcu.suda.edu.cn/flash.htm), which involves three Flash programming instances in three
subdirectory (“\S08(AW60)-Flash”, “\ S12X(XS128)-Flash” and “\ ColdFire(MCF52233)-Flash”).

Programming Flash Memory in Freescale S08/S12/CordFire MCUs Family 161

3. For we do erasing for one page (512 bytes) each time, so we should arrange the data
reasonably to avoid wrong erasing.

4. The start address of the page should be defined according to the rules of the FPROT
register.

5. It is invalid to do in-circuit programming for the protection block set in FPROT.

2.2.3 Validate flash memory implements
In order to more clearly understand the method of Flash memory in-circuit programming,
we give a flash memory validating project. Its function is as the following: the MCU receives
formatted data from PC6 by SCI7 tools and erases, programs or reads its flash memory. The
PC software is any SCI testing tool.
Now, list some flash operating commands using the SCI debug (as shown in Table 1):

Commands Functions

? MCU sends some items to PC

E:8 Erase page 8

R:8:0:4 Read 4 bytes the word 0 of page 8

W:8:0:4:A,C,B,D Write “ACBD” (4 bytes) to the word 0 of page 8

B:8,7,6,5,4,3,2,1 Set the Flash back door key, the password is "87654321"

M:8,7,6,5,4,3,2,1 Verify the Flash back door key, the password is "87654321"

D Delete passwords

U Encryption lift

P:8 Protect block, protect the addresses from 8 to 0xFFFF

Table 1. Flash operating commands using the SCI debug

Above examples only give the program data less than one page (512 bytes). Only slightly
modify the program, you can program data that exceeds one page.

2.3 Protection mechanisms and security operations of MC9S08AW60 flash memory
2.3.1 Protection mechanisms
Being a non-volatile memory (NVM), flash memory may be used by programmers to store
some important parameters and data. To prevent from erasing or programming these
significant regions by accident, the MC9S08AW60 MCU supplies protection mechanisms for
its flash memory. That’s to say, it can’t erase or program the protected region.
The Flash Protect Register (FPROT and NVPROT [1]) is interrelated with the protection
mechanisms of S08 flash memory. And for the register’s bit definition and programming
method you can refer to the reference manual [1]. By setting this register, we can protect the
Flash memory.

6 PC—Personal Computer
7 SCI—Serial Communication Interface

Flash Memories 160

2.2.1 The erasing and programming c language subroutines of flash memory
For the Flash programming subroutines are not solidified in the internal monitoring ROM4
of AW60, the initial loaded user program should contain the flash erasing and programming
subroutines in order to do in-circuit programming for Flash. Because these subroutines
resident in Flash, when running the erasing/programming subroutines, the whole Flash
region will be added programming voltage that is higher than the normal operating voltage,
which results in instable Flash region’s reading, and may lead to program’s error running.
In order to make the erasing/programming subroutines running normally, these
subroutines should be moved into RAM and run in RAM. Therefore, a buffer should be
opened up in RAM to store these subroutines. The following sample program gives a
convenient method to save the machine codes which are generated by
erasing/programming subroutines in RAM. The machine codes include 57 bytes.
Necessarily, you can directly call these codes to implement the Flash in-circuit
erasing/programming. For the detailed Erasing and Programming subroutines, please refer
to the program in our program directory “..\Flash_Program\S08(AW60)-Flash”5. These
subroutines contain the following operations:
1. Some public operation of erasing/programming processing
For the codes of erasing/programming operation must run in RAM, so we write the C
language program according to Fig.2. After being compiled, the corresponding machine
code bytes are saved in the array PGM (volatile unsigned char PGM[57]). Therefore we need
not copy the codes to RAM to realize the erasing/programming operations.
2. Page erasing subroutine (Flash_PageErase)
In this subroutine we should calculate the page’s top address by the page number, and
change the Flash command to erasing command 0x40, then call and execute the erasing
codes.
3. Flash programming subroutine
In this subroutine we calculate the top programming address according to the page number
and page offset, then change the Flash command to erasing command 0x20, and program
flash one byte by one byte.

2.2.2 Programming essentials of erasing /programming subroutines
Using Flash in-circuit programming technology eliminates the need for external EEPROM,
which not only simplify the circuit design, but also improve the stability of system. We
compile the Flash programs and save them in Flash. When you need to use these codes, they
will be copied to RAM. Just because of this special procedure, we put forward the following
notes according to the experience which is accumulated in the actual programming and
debugging, and project development process.
1. There are 57 bytes in RAM to store the erasing/programming machine codes, don’t

forget to calculate when using RAM.
2. The region that has been erased for one time and has not been programmed can be

programmed by calling Flash programming subroutine again, but the region that has
been programmed can’t be programmed again if it hasn’t been erased.

4 ROM—Read Only Memory

5 You can download the program directory “Flash_Program” in our website
(http://sumcu.suda.edu.cn/flash.htm), which involves three Flash programming instances in three
subdirectory (“\S08(AW60)-Flash”, “\ S12X(XS128)-Flash” and “\ ColdFire(MCF52233)-Flash”).

Programming Flash Memory in Freescale S08/S12/CordFire MCUs Family 161

3. For we do erasing for one page (512 bytes) each time, so we should arrange the data
reasonably to avoid wrong erasing.

4. The start address of the page should be defined according to the rules of the FPROT
register.

5. It is invalid to do in-circuit programming for the protection block set in FPROT.

2.2.3 Validate flash memory implements
In order to more clearly understand the method of Flash memory in-circuit programming,
we give a flash memory validating project. Its function is as the following: the MCU receives
formatted data from PC6 by SCI7 tools and erases, programs or reads its flash memory. The
PC software is any SCI testing tool.
Now, list some flash operating commands using the SCI debug (as shown in Table 1):

Commands Functions

? MCU sends some items to PC

E:8 Erase page 8

R:8:0:4 Read 4 bytes the word 0 of page 8

W:8:0:4:A,C,B,D Write “ACBD” (4 bytes) to the word 0 of page 8

B:8,7,6,5,4,3,2,1 Set the Flash back door key, the password is "87654321"

M:8,7,6,5,4,3,2,1 Verify the Flash back door key, the password is "87654321"

D Delete passwords

U Encryption lift

P:8 Protect block, protect the addresses from 8 to 0xFFFF

Table 1. Flash operating commands using the SCI debug

Above examples only give the program data less than one page (512 bytes). Only slightly
modify the program, you can program data that exceeds one page.

2.3 Protection mechanisms and security operations of MC9S08AW60 flash memory
2.3.1 Protection mechanisms
Being a non-volatile memory (NVM), flash memory may be used by programmers to store
some important parameters and data. To prevent from erasing or programming these
significant regions by accident, the MC9S08AW60 MCU supplies protection mechanisms for
its flash memory. That’s to say, it can’t erase or program the protected region.
The Flash Protect Register (FPROT and NVPROT [1]) is interrelated with the protection
mechanisms of S08 flash memory. And for the register’s bit definition and programming
method you can refer to the reference manual [1]. By setting this register, we can protect the
Flash memory.

6 PC—Personal Computer
7 SCI—Serial Communication Interface

Flash Memories 162

For the programming codes for setting block protection, please refer to the program in our
program directory “..\Flash_Program\S08(AW60)-Flash”

2.3.2 Security operations
The debug module is added in the S08 series MCUs, which increased the practicality of the
chip, and brought risks to the security of the chip. In order to ensure the safety of the chip,
the security mechanisms are much more complex.
S08 series MCUs use hardware mechanisms to prevent unauthorized users trying to access
the Flash and RAM memory data. Having been set security, Flash and RAM are all counted
as secure resources. But the direct page register, high-end page register and background
debugging module are all counted as unsecure resources. During executing process, we can
access any memory data, but can’t access secure sources by background debugging interface
or unsafe method.
The security can be set by the nonvolatile data bit SEC01：SEC00 in FOPT. Table.2 gives the
security state of MCU.

SEC01:SEC00 state
0:0 Secure
0:1 Secure
1:0 Unsecure
1:1 Secure

Table 2. Security state

1. Set MCU to Security Mode
To prevent the programs in the flash memory from being read out illegally, the MCU should
be set in security mode. Two methods for locking the flash memory are shown in the
following.
Method A. Lock the MCU by modifying the security configuration field in the file isr.c(that
is, modify the values of the FOPT’s address 0xFFBF and the key’s address 0xFFB0~0xFFB7).
Method B. we can lock the flash memory by calling the custom subroutine Flash_Secure to
modify relevant address matters when the program is running. By modify the content in the
address of NVOPT, the value of this register are automatically loaded in FPOT while the
system is set. For the detailed Flash_secure subroutine, please refer to the program in our
program directory “..\Flash_Program\S08(AW60)-Flash”
2. Unlock from Security Mode
If we want to program locked S08 serials MCU again, we should unlock it. Here two
methods are provided to unlock it.
Method A. Use the BDM interface of our writer, mass erase the locked MCU. (The writer is
designed by our lab.)
Method B. Call the subroutine Flash_KEY_Match to erase password or flash by memory-
resident program. For the detailed Flash_KEY_Match subroutine, please refer to the program
in our program directory “..\Flash_Program\S08(AW60)-Flash”

3. Programming flash memory in freescale S12XS128
The flash memory in-circuit programming implement for 16bit S12XS128 MCU will be
explained in this section, as follows:

Programming Flash Memory in Freescale S08/S12/CordFire MCUs Family 163

3.1 How to operate S12XS128 flash memory
3.1.1 The paging mechanism and MMC module in XS128 flash
1. The paging mechanism of S12XS memory
Take XS128 of S12XS serials MCU for example, XS128 contains 8KB RAM, 8KB D-Flash and
128KB P-Flash. But the basic address line of S12XS serials MCUs is 16bits, which determine
its addressing scope range from 0x0000~0xFFFF. So the size of addressing space is
216B=64KB. That is, in most case MCU can only “see” these 64KB memory space.
As shown in Fig.4, the 64KB address space in S12XS serials MCUs is divided into four parts:
I/O register, data Flash memory (D-Flash, also called as EEPROM), RAM and program
Flash memory (P-Flash, directly called as Flash). The I/O register region ranges from
0x0000~0x07FF (2KB). D-Flash region ranges from 0x0800~0x0FFF (2K). RAM region ranges
from 0x1000~0x3FFF (12K). P-Flash region ranges from 0x4000~0xFFFF (48K).

Fig. 4. S12XS’s 64KB address space

In order to expand the memory space when using 16 bits address line, S12XS serials MCU
integrates MMC (Memory Mapping Control) module, which expand the addressing space
from 64KB (16bits) to 8MB (23bits) by using paging management mechanism.
Address analyzing and addressing are managed by the MMC module in XS128. The main
functions of MMC module include address mapping, controlling the operation mode of
MCU, multi-agent (MCU and BDM) priority addressing, choosing the internal resource and
controlling internal bus (which include memory space and peripheral resources) etc.
When we provide a certain address, whether it is a local 16bits address or a global 23 bits
address, it will be analysized by MMC and assigned automatically to PPAGE or EPAGE,
then gain a remainning 16bits address so that 16bits machine can directly calculate the
address space and addess. Without these registers, 16bits machine should calculate twice to
deal with 23bits address. Using these registers can improve the addressing efficiency. The
whole procedure is automatically completed by MMC without user’s special care. Users
only need to provide correct address.
There is a Global Page Index Register (GPAGE) in MMC. The highest bit of this register is
fixed to 0, so GPAGE actually become a 7-bits register. MCU expands its 16 bits address to
be 23 bits by means of GPAGE register. The 23 bits global address is composed of 7 bits
GPAGE value [22:16] and CPU local address [15:0]. Meanwhile, specified 23 bits address
read/write instructions are added in the instruction system of CPU. Only when CPU

Flash Memories 162

For the programming codes for setting block protection, please refer to the program in our
program directory “..\Flash_Program\S08(AW60)-Flash”

2.3.2 Security operations
The debug module is added in the S08 series MCUs, which increased the practicality of the
chip, and brought risks to the security of the chip. In order to ensure the safety of the chip,
the security mechanisms are much more complex.
S08 series MCUs use hardware mechanisms to prevent unauthorized users trying to access
the Flash and RAM memory data. Having been set security, Flash and RAM are all counted
as secure resources. But the direct page register, high-end page register and background
debugging module are all counted as unsecure resources. During executing process, we can
access any memory data, but can’t access secure sources by background debugging interface
or unsafe method.
The security can be set by the nonvolatile data bit SEC01：SEC00 in FOPT. Table.2 gives the
security state of MCU.

SEC01:SEC00 state
0:0 Secure
0:1 Secure
1:0 Unsecure
1:1 Secure

Table 2. Security state

1. Set MCU to Security Mode
To prevent the programs in the flash memory from being read out illegally, the MCU should
be set in security mode. Two methods for locking the flash memory are shown in the
following.
Method A. Lock the MCU by modifying the security configuration field in the file isr.c(that
is, modify the values of the FOPT’s address 0xFFBF and the key’s address 0xFFB0~0xFFB7).
Method B. we can lock the flash memory by calling the custom subroutine Flash_Secure to
modify relevant address matters when the program is running. By modify the content in the
address of NVOPT, the value of this register are automatically loaded in FPOT while the
system is set. For the detailed Flash_secure subroutine, please refer to the program in our
program directory “..\Flash_Program\S08(AW60)-Flash”
2. Unlock from Security Mode
If we want to program locked S08 serials MCU again, we should unlock it. Here two
methods are provided to unlock it.
Method A. Use the BDM interface of our writer, mass erase the locked MCU. (The writer is
designed by our lab.)
Method B. Call the subroutine Flash_KEY_Match to erase password or flash by memory-
resident program. For the detailed Flash_KEY_Match subroutine, please refer to the program
in our program directory “..\Flash_Program\S08(AW60)-Flash”

3. Programming flash memory in freescale S12XS128
The flash memory in-circuit programming implement for 16bit S12XS128 MCU will be
explained in this section, as follows:

Programming Flash Memory in Freescale S08/S12/CordFire MCUs Family 163

3.1 How to operate S12XS128 flash memory
3.1.1 The paging mechanism and MMC module in XS128 flash
1. The paging mechanism of S12XS memory
Take XS128 of S12XS serials MCU for example, XS128 contains 8KB RAM, 8KB D-Flash and
128KB P-Flash. But the basic address line of S12XS serials MCUs is 16bits, which determine
its addressing scope range from 0x0000~0xFFFF. So the size of addressing space is
216B=64KB. That is, in most case MCU can only “see” these 64KB memory space.
As shown in Fig.4, the 64KB address space in S12XS serials MCUs is divided into four parts:
I/O register, data Flash memory (D-Flash, also called as EEPROM), RAM and program
Flash memory (P-Flash, directly called as Flash). The I/O register region ranges from
0x0000~0x07FF (2KB). D-Flash region ranges from 0x0800~0x0FFF (2K). RAM region ranges
from 0x1000~0x3FFF (12K). P-Flash region ranges from 0x4000~0xFFFF (48K).

Fig. 4. S12XS’s 64KB address space

In order to expand the memory space when using 16 bits address line, S12XS serials MCU
integrates MMC (Memory Mapping Control) module, which expand the addressing space
from 64KB (16bits) to 8MB (23bits) by using paging management mechanism.
Address analyzing and addressing are managed by the MMC module in XS128. The main
functions of MMC module include address mapping, controlling the operation mode of
MCU, multi-agent (MCU and BDM) priority addressing, choosing the internal resource and
controlling internal bus (which include memory space and peripheral resources) etc.
When we provide a certain address, whether it is a local 16bits address or a global 23 bits
address, it will be analysized by MMC and assigned automatically to PPAGE or EPAGE,
then gain a remainning 16bits address so that 16bits machine can directly calculate the
address space and addess. Without these registers, 16bits machine should calculate twice to
deal with 23bits address. Using these registers can improve the addressing efficiency. The
whole procedure is automatically completed by MMC without user’s special care. Users
only need to provide correct address.
There is a Global Page Index Register (GPAGE) in MMC. The highest bit of this register is
fixed to 0, so GPAGE actually become a 7-bits register. MCU expands its 16 bits address to
be 23 bits by means of GPAGE register. The 23 bits global address is composed of 7 bits
GPAGE value [22:16] and CPU local address [15:0]. Meanwhile, specified 23 bits address
read/write instructions are added in the instruction system of CPU. Only when CPU

Flash Memories 164

Fig. 5. S12XS’s 8MB expanded address space

performs a global command GPAGE register is used. GPAGE provides a method to
addressing 8MB space by using 23 bits global address. At this time the 8MB continuous
addresses are distributed as Fig.5. The specific distribution is also shown as below:

0x00_0000~0x00_07FF 2KB I/O register address space
0x00_0800~0x0F_FFFF 64KB×16-2KB=1MB-2KB RAM space
0x10_0000~0x13_FFFF 64KB×4=256KB D-Flash space
0x14_0000~0x3F_FFFF 64KB×44=2816KB unused space
0x40_0000~0x7F_FFFF 64KB×64=4MB Flash space

Besides, in order to manage and use D-Flash, RAM and P-Flash, MMC adds three memory
page registers: Data FLASH Page Index Register (EPAGE)[2], RAM Page Index Register
(RPAGE)[2] and Program Page Index Register (PPAGE)[2], which are used to addressing
corresponding expanded region. CPU opens up several windows in its 64KB addressing
space. By using above page registers, CPU can map the memory space out of 64KB into
these windows in 64KB space at any time. Meanwhile the window which is not used
temporarily will be exchanged out. By using this method CPU can expand its addressing
space. Besides, these page registers are also used to addressing the global address.
2. Paging memory mapping of XS128
For specific chip, not all the address spaces correspond to actual physical memory. For
example, XS128 involves 8KB RAM, 8KB D-Flash and 128KB P-Flash. The address spaces
used by these actual physical memories have been determined when chip is designed.
The global addresses of 8KB RAM in XS128 range from 0x0F_E000~0x0F_FFFF.
RPAGE=0xFE~0xFF. When chip is reset, the default value in RPAGE is 0xFD, which is a
invalid value. That is, addressing 0x1000~0x1FFF will make mistakes and produce illegal
address interrupt. When MCU is initialized, we can initialize RPAGE to be 0xFE. So directly
addressing 0x2000~0x2FFF will be same to addressing with global address
0x0F_E000~0x0F_EFFF. The global addresses of 8KB D-Flash range from
0x10_0000~0x10_1FFF, EPAGE=0x00~0x07. And the global addresses of 128KB P-Flash
range from 0x7E_0000~0x7F_FFFF, PPAGE=0xF8~0xFF. Only these memory address
resources mentioned above can be used in actual programming. The operation for the
memory addresses outside of these addresses has no meaning.
3. The conversion of Local address, Logical address and Global address

Programming Flash Memory in Freescale S08/S12/CordFire MCUs Family 165

Correctly comprehending the Local address, Logical address and Global address is the
foundation to flexibly apply XS128 Flash module. In fact, for 16bits address line MCU,
logical address is just the traditional 64Kb address space 0x0000~0xFFFF. Logical address is
the expanded 24bits address. Its general format is 0xXX_XXXX. The two hexadecimal bits
before “_” are the value of PPAGE or EPAGE (Page number). The other four hexadecimal
bits behind “_” are the corresponding window address. For example, 0xFE_8000 is a logical
address. 0xFE is P-Flash’s page number, and 0x8000 is the P-Flash’s corresponding window
address in 64KB memory space. Global address is the physical space’s address used to save
data. The global address of XS128 has 23 bits. That is, range from 0x00_0000~0x7F_FFFF. For
example, if PPAGE=0xFE, addressing any address in the local address space 0x8000~0xBFFF
actually means addressing the logical address space 0xFE_8000~0xFE_BFFF, while the
corresponding global address space is 0x7F_8000~0x7F_BFFF. These two addresses are
equivalent, and they are only two kinds of index patterns.
The conversion of logical address and global address in P-Flash is shown as Fig.6

Fig. 6. The conversion of logical address and global address

As shown in Figure.6, the logical address ranges from 0xFC_8000~0xFC_BFFF. The
corresponding value of PPAGE is 0xFC. When the logical address is converted into
corresponding global address, the top bit [22] in the 23bits address is fixed to 1, the
following 8bits [21:14] are the value of PPAGE, that is 0xFC. The lower 14bits are local
address, which ranges from 0x0000~0x3FFF. So the corresponding global address ranges
from 0x7F_0000~0x7F_3FFF.
On the contrary, the global address ranges from 0x7F_0000~0x7F_3FFF. The corresponding
value of PPAGE is the value of [21:14] (0xFC). Bit [22]=1 means a P-Flash page’s global
address. The lower 16bits of logical address ranges from 0x8000~0xBFFF (P-Flash window
address region). So the corresponding logical address ranges from 0xFC_8000~0xFC_BFFF.
Fig.7 provides the relation between local address and global address. The local address of P-
Flash in XS128 ranges from 0x4000~0xFFFF. 0x8000~0xBFFF is P-Flash window address
region. Its corresponding global address region is 0x7E_0000~0x7F_FFFF. 0x4000~0x7FFF
and 0xC000~0xFFFF can directly addressing the global physical addresses
(0x7F_4000~0x7F_7FFF and 0x7F_C000~0x7F_FFFF). The local address of D-Flash range
from 0x0800~0x0FFF, which is used for EPAGE address mapping window. And the
corresponding global address for this window range from 0x10_0000~0x10_1FFF.

Flash Memories 164

Fig. 5. S12XS’s 8MB expanded address space

performs a global command GPAGE register is used. GPAGE provides a method to
addressing 8MB space by using 23 bits global address. At this time the 8MB continuous
addresses are distributed as Fig.5. The specific distribution is also shown as below:

0x00_0000~0x00_07FF 2KB I/O register address space
0x00_0800~0x0F_FFFF 64KB×16-2KB=1MB-2KB RAM space
0x10_0000~0x13_FFFF 64KB×4=256KB D-Flash space
0x14_0000~0x3F_FFFF 64KB×44=2816KB unused space
0x40_0000~0x7F_FFFF 64KB×64=4MB Flash space

Besides, in order to manage and use D-Flash, RAM and P-Flash, MMC adds three memory
page registers: Data FLASH Page Index Register (EPAGE)[2], RAM Page Index Register
(RPAGE)[2] and Program Page Index Register (PPAGE)[2], which are used to addressing
corresponding expanded region. CPU opens up several windows in its 64KB addressing
space. By using above page registers, CPU can map the memory space out of 64KB into
these windows in 64KB space at any time. Meanwhile the window which is not used
temporarily will be exchanged out. By using this method CPU can expand its addressing
space. Besides, these page registers are also used to addressing the global address.
2. Paging memory mapping of XS128
For specific chip, not all the address spaces correspond to actual physical memory. For
example, XS128 involves 8KB RAM, 8KB D-Flash and 128KB P-Flash. The address spaces
used by these actual physical memories have been determined when chip is designed.
The global addresses of 8KB RAM in XS128 range from 0x0F_E000~0x0F_FFFF.
RPAGE=0xFE~0xFF. When chip is reset, the default value in RPAGE is 0xFD, which is a
invalid value. That is, addressing 0x1000~0x1FFF will make mistakes and produce illegal
address interrupt. When MCU is initialized, we can initialize RPAGE to be 0xFE. So directly
addressing 0x2000~0x2FFF will be same to addressing with global address
0x0F_E000~0x0F_EFFF. The global addresses of 8KB D-Flash range from
0x10_0000~0x10_1FFF, EPAGE=0x00~0x07. And the global addresses of 128KB P-Flash
range from 0x7E_0000~0x7F_FFFF, PPAGE=0xF8~0xFF. Only these memory address
resources mentioned above can be used in actual programming. The operation for the
memory addresses outside of these addresses has no meaning.
3. The conversion of Local address, Logical address and Global address

Programming Flash Memory in Freescale S08/S12/CordFire MCUs Family 165

Correctly comprehending the Local address, Logical address and Global address is the
foundation to flexibly apply XS128 Flash module. In fact, for 16bits address line MCU,
logical address is just the traditional 64Kb address space 0x0000~0xFFFF. Logical address is
the expanded 24bits address. Its general format is 0xXX_XXXX. The two hexadecimal bits
before “_” are the value of PPAGE or EPAGE (Page number). The other four hexadecimal
bits behind “_” are the corresponding window address. For example, 0xFE_8000 is a logical
address. 0xFE is P-Flash’s page number, and 0x8000 is the P-Flash’s corresponding window
address in 64KB memory space. Global address is the physical space’s address used to save
data. The global address of XS128 has 23 bits. That is, range from 0x00_0000~0x7F_FFFF. For
example, if PPAGE=0xFE, addressing any address in the local address space 0x8000~0xBFFF
actually means addressing the logical address space 0xFE_8000~0xFE_BFFF, while the
corresponding global address space is 0x7F_8000~0x7F_BFFF. These two addresses are
equivalent, and they are only two kinds of index patterns.
The conversion of logical address and global address in P-Flash is shown as Fig.6

Fig. 6. The conversion of logical address and global address

As shown in Figure.6, the logical address ranges from 0xFC_8000~0xFC_BFFF. The
corresponding value of PPAGE is 0xFC. When the logical address is converted into
corresponding global address, the top bit [22] in the 23bits address is fixed to 1, the
following 8bits [21:14] are the value of PPAGE, that is 0xFC. The lower 14bits are local
address, which ranges from 0x0000~0x3FFF. So the corresponding global address ranges
from 0x7F_0000~0x7F_3FFF.
On the contrary, the global address ranges from 0x7F_0000~0x7F_3FFF. The corresponding
value of PPAGE is the value of [21:14] (0xFC). Bit [22]=1 means a P-Flash page’s global
address. The lower 16bits of logical address ranges from 0x8000~0xBFFF (P-Flash window
address region). So the corresponding logical address ranges from 0xFC_8000~0xFC_BFFF.
Fig.7 provides the relation between local address and global address. The local address of P-
Flash in XS128 ranges from 0x4000~0xFFFF. 0x8000~0xBFFF is P-Flash window address
region. Its corresponding global address region is 0x7E_0000~0x7F_FFFF. 0x4000~0x7FFF
and 0xC000~0xFFFF can directly addressing the global physical addresses
(0x7F_4000~0x7F_7FFF and 0x7F_C000~0x7F_FFFF). The local address of D-Flash range
from 0x0800~0x0FFF, which is used for EPAGE address mapping window. And the
corresponding global address for this window range from 0x10_0000~0x10_1FFF.

Flash Memories 166

Fig. 7. The relation between the local address and global address in XS128

3.1.2 S12XS128 flash memory registers
In XS128 MCU, the relative registers for Flash programming include general registers and
dedicated registers. Setting the general register can simultaneously set the characteristics of
two Flash parts. While the dedicated register can only give service to a single Flash part at a
certain time interval, the corresponding dedicated registers of the two Flash parts share the
same address, so we should illustrate which Flash part is operated before using it.
There are 5 registers used in erasing and programming operation, which include FCLKDIV,
FCNFG, FSTAT, FCCOBIX /FCCOB etc. FCLKDIV and FCNFG are general registers. FSTAT
and FCCOBIX/FCCOB are dedicated registers. For the detailed function and use of these
registers, please refer to the Reference Manual “MC9S12XS256 Reference Manual”[2].

3.1.3 XS128 special command mode NVM
For Loading of Flash commands, XS128 is different from the other Freescale MCUs (include
DG128). The other MCUs mostly use a command register, which can be writen
erasing/programming command codes directly. However, XS128 improve the previous

Programming Flash Memory in Freescale S08/S12/CordFire MCUs Family 167

mechanism. It loads the commands and parameters by using FCCOBIX register cooperate
with FCCOB register.
The essence of NVM command mode is using the indexed FCCOB register to provide a
command code and relevant parameter for memory controller. Users first according to need
to set up all needed FCCOB registers domain, then initialize the execution of command by
setting the CCIF bit in FSTAT register. When users clear the CCIF bit in FSTAT register, all
the parameters in FCCOB register will be locked, which can’t be modified before the
completion of command execution. (When command finished, CCIF is set to be 1).
In NVM command mode, the general command formats of FCCOB are shown as Fig.8

Fig. 8. The general command formats of FCCOB

Users can load commands by assigning FCCOB and FCCOBIX register according to the
specific command formats. For the detailed programming method, please refer to the
follow-up section which gives specific erasing/programming subroutines.

3.1.4 Flash programming procedure
In general, the erasing/programming operation of Flash involves four steps as below.
1. Set FCLKDIV register
For the detailed setting, please refer to the introduction of FCLKDIV register in the above
section.
Caution: If the frequency is less than 1MHz, the Flash erasing/programming operation
will be unsuccessfully. Too high setting of FDIV may damage Flash memory module. But
too low setting may lead to unsuccessfully erasing and incomplete programming for
Flash memory units. So users should choice appropriate Clock Divider.
2. Set the corresponding commands and parameters for FCCOB and FCCOBIX registers as

needed
3. Set the CCIF bit in FSTAT register
4. Judge whether errors occur during the running of commands
Fig.9 gives a general Flash programming flowchart. According to this flowchart we can
erase/program Flash successfully. We only need to pay attention to that part of Flash codes
for P-FLASH operation should be moved in RAM.

Flash Memories 166

Fig. 7. The relation between the local address and global address in XS128

3.1.2 S12XS128 flash memory registers
In XS128 MCU, the relative registers for Flash programming include general registers and
dedicated registers. Setting the general register can simultaneously set the characteristics of
two Flash parts. While the dedicated register can only give service to a single Flash part at a
certain time interval, the corresponding dedicated registers of the two Flash parts share the
same address, so we should illustrate which Flash part is operated before using it.
There are 5 registers used in erasing and programming operation, which include FCLKDIV,
FCNFG, FSTAT, FCCOBIX /FCCOB etc. FCLKDIV and FCNFG are general registers. FSTAT
and FCCOBIX/FCCOB are dedicated registers. For the detailed function and use of these
registers, please refer to the Reference Manual “MC9S12XS256 Reference Manual”[2].

3.1.3 XS128 special command mode NVM
For Loading of Flash commands, XS128 is different from the other Freescale MCUs (include
DG128). The other MCUs mostly use a command register, which can be writen
erasing/programming command codes directly. However, XS128 improve the previous

Programming Flash Memory in Freescale S08/S12/CordFire MCUs Family 167

mechanism. It loads the commands and parameters by using FCCOBIX register cooperate
with FCCOB register.
The essence of NVM command mode is using the indexed FCCOB register to provide a
command code and relevant parameter for memory controller. Users first according to need
to set up all needed FCCOB registers domain, then initialize the execution of command by
setting the CCIF bit in FSTAT register. When users clear the CCIF bit in FSTAT register, all
the parameters in FCCOB register will be locked, which can’t be modified before the
completion of command execution. (When command finished, CCIF is set to be 1).
In NVM command mode, the general command formats of FCCOB are shown as Fig.8

Fig. 8. The general command formats of FCCOB

Users can load commands by assigning FCCOB and FCCOBIX register according to the
specific command formats. For the detailed programming method, please refer to the
follow-up section which gives specific erasing/programming subroutines.

3.1.4 Flash programming procedure
In general, the erasing/programming operation of Flash involves four steps as below.
1. Set FCLKDIV register
For the detailed setting, please refer to the introduction of FCLKDIV register in the above
section.
Caution: If the frequency is less than 1MHz, the Flash erasing/programming operation
will be unsuccessfully. Too high setting of FDIV may damage Flash memory module. But
too low setting may lead to unsuccessfully erasing and incomplete programming for
Flash memory units. So users should choice appropriate Clock Divider.
2. Set the corresponding commands and parameters for FCCOB and FCCOBIX registers as

needed
3. Set the CCIF bit in FSTAT register
4. Judge whether errors occur during the running of commands
Fig.9 gives a general Flash programming flowchart. According to this flowchart we can
erase/program Flash successfully. We only need to pay attention to that part of Flash codes
for P-FLASH operation should be moved in RAM.

Flash Memories 168

Fig. 9. A general Flash programming flowchart

3.2 XS128 D-FLASH in-circuit programming instance
We provide a D-FLASH In-circuit Programming Instance in our program directory
“..\Flash_Program\ S12X(XS128)-Flash”, which contains the following parts:

3.2.1 Preparation for D-FLASH programming
XS128 contains 8Kb D-FLASH spaces, which is divided into 8 pages (1KB/page). The
minimum erasable unit in programming is a sector, which is 256 bytes. There are 32 sectors
in D-FLASH. For the detailed blocking codes, please refer to the head file EEPROM.h in our
program directory “..\Flash_Program\ S12X(XS128)-Flash”.

3.2.2 Some common operation for erasing/programming procedure
The erasing/programming programs for D-FLASH need not run in RAM. For this kind of
memory mode with multi paging mechanism, it is necessary to design a function which
calculate the specific address with sector number and block number. Besides, we should set
the FCLKDIV register before erasing/programming D-FLASH. And we also should detect
the error flags to judge whether command run successfully.

Programming Flash Memory in Freescale S08/S12/CordFire MCUs Family 169

3.2.3 Erasing subroutine
First we calculate the first address of erasing sector by sector number, load this first address
and the D-FLASH sector erasing command CMD_D_ERASE_SECTOR (0x12) into FCCOB
register by NVM command mode. Then execute the erasing command.

3.2.4 Programming subroutine
Calculate the first address of the programming sector by sector number and offset block
number, load this first address and the D-FLASH sector programming command
CMD_D_PROGRAM (0x11) into FCCOB register by NVM command mode. Then execute
the programming command.

3.2.5 Reading/writing data
In regard to the reading/writing for content of Flash region, special additional remarks
should be provided here.
The address space of Flash usually corresponds with multiple addresses. Here we elaborate
the using method of these addresses, which apply some technique of C language.
Reading Flash can adopt the following 3 addressing patterns.
1. Addressing by Local Address. That is, addressing through 64KB address space. The

addresses range from 0x0000~0xFFFF.
For example: Data= *(volatile uint8 *)0x0400;

2. Addressing by Logical Address (Global Logical Address). The addresses cooperated by
EPAGE range from 0x0800~0x0c00, which can be addressed by the format “__eptr”.
Caution: “__eptr” includes two underlines.
For example: Data= *(volatile uint8 * __eptr)0x00_0800;

3. Addressing by Global address (Global Physical Address). According to the actual
physical location of the whole memory, access the memory with the format “__far”.
Caution: “__far” includes two underlines.
For example: Data= *(volatile uint8 * __far)0x10_0000;

Caution: A sector is the minimum unit to erase. For D-FLASH, the minimum size is 256 bytes.

3.3 XS128 P-FLASH in-circuit programming instance
XS128 contains 128Kb P-FLASH spaces, which is divided into 8 pages (16KB/page). The
minimum erasable unit in programming is a sector, which is 1024 bytes. There are 128
sectors in P-FLASH. The programming procedure of P-FLASH is similar to that of D-
FLASH. So we omit the detailed description for this P-FLASH programming instance. For
the detailed program codes, please refer to the program in our program directory
“..\Flash_Program\ S12X(XS128)-Flash”.

3.4 Protection mechanisms and security operations Of XS128 flash memory
3.4.1 Protection mechanisms
The registers relate with XS128 Flash’s protection mechanisms include FPROT (Flash
Protection Register) and DFPROT (D-Flash Protection Register). After set the protection
registers, the protected region can’t be erased or programmed.

3.4.2 Security operations
The debugging module in XS128 improves the practical applicability of MCU, but
simultaneously brings about hidden danger to the security of MCU. The common users may

Flash Memories 168

Fig. 9. A general Flash programming flowchart

3.2 XS128 D-FLASH in-circuit programming instance
We provide a D-FLASH In-circuit Programming Instance in our program directory
“..\Flash_Program\ S12X(XS128)-Flash”, which contains the following parts:

3.2.1 Preparation for D-FLASH programming
XS128 contains 8Kb D-FLASH spaces, which is divided into 8 pages (1KB/page). The
minimum erasable unit in programming is a sector, which is 256 bytes. There are 32 sectors
in D-FLASH. For the detailed blocking codes, please refer to the head file EEPROM.h in our
program directory “..\Flash_Program\ S12X(XS128)-Flash”.

3.2.2 Some common operation for erasing/programming procedure
The erasing/programming programs for D-FLASH need not run in RAM. For this kind of
memory mode with multi paging mechanism, it is necessary to design a function which
calculate the specific address with sector number and block number. Besides, we should set
the FCLKDIV register before erasing/programming D-FLASH. And we also should detect
the error flags to judge whether command run successfully.

Programming Flash Memory in Freescale S08/S12/CordFire MCUs Family 169

3.2.3 Erasing subroutine
First we calculate the first address of erasing sector by sector number, load this first address
and the D-FLASH sector erasing command CMD_D_ERASE_SECTOR (0x12) into FCCOB
register by NVM command mode. Then execute the erasing command.

3.2.4 Programming subroutine
Calculate the first address of the programming sector by sector number and offset block
number, load this first address and the D-FLASH sector programming command
CMD_D_PROGRAM (0x11) into FCCOB register by NVM command mode. Then execute
the programming command.

3.2.5 Reading/writing data
In regard to the reading/writing for content of Flash region, special additional remarks
should be provided here.
The address space of Flash usually corresponds with multiple addresses. Here we elaborate
the using method of these addresses, which apply some technique of C language.
Reading Flash can adopt the following 3 addressing patterns.
1. Addressing by Local Address. That is, addressing through 64KB address space. The

addresses range from 0x0000~0xFFFF.
For example: Data= *(volatile uint8 *)0x0400;

2. Addressing by Logical Address (Global Logical Address). The addresses cooperated by
EPAGE range from 0x0800~0x0c00, which can be addressed by the format “__eptr”.
Caution: “__eptr” includes two underlines.
For example: Data= *(volatile uint8 * __eptr)0x00_0800;

3. Addressing by Global address (Global Physical Address). According to the actual
physical location of the whole memory, access the memory with the format “__far”.
Caution: “__far” includes two underlines.
For example: Data= *(volatile uint8 * __far)0x10_0000;

Caution: A sector is the minimum unit to erase. For D-FLASH, the minimum size is 256 bytes.

3.3 XS128 P-FLASH in-circuit programming instance
XS128 contains 128Kb P-FLASH spaces, which is divided into 8 pages (16KB/page). The
minimum erasable unit in programming is a sector, which is 1024 bytes. There are 128
sectors in P-FLASH. The programming procedure of P-FLASH is similar to that of D-
FLASH. So we omit the detailed description for this P-FLASH programming instance. For
the detailed program codes, please refer to the program in our program directory
“..\Flash_Program\ S12X(XS128)-Flash”.

3.4 Protection mechanisms and security operations Of XS128 flash memory
3.4.1 Protection mechanisms
The registers relate with XS128 Flash’s protection mechanisms include FPROT (Flash
Protection Register) and DFPROT (D-Flash Protection Register). After set the protection
registers, the protected region can’t be erased or programmed.

3.4.2 Security operations
The debugging module in XS128 improves the practical applicability of MCU, but
simultaneously brings about hidden danger to the security of MCU. The common users may

Flash Memories 170

easily steal the programs from MCU by BDM. In order to prevent software piracy, XS128
brings in complex security mechanism to guarantee the security of MCU. When the MCU is
encrypted, the common users can’t read any content in memory by BDM8 (Only messy
codes can be read.) But the programs running in MCU can access arbitrary resources of
MCU, and can decrypt MCU by using the back-door key access mechanism provided by
MCU.
1. Set MCU to Security Mode
To prevent the programs in the flash memory from being read out illegally, the MCU should
be set in security mode. The corresponding register is FSEC (Flash Security Register). If it is
reset, FSEC register automatically load value from the configuration address 0x7F_FF0F. All
bits of FSEC are related to the security of device, and these bits are read-only.
2. Unlock from Security Mode
a. Can’t unlock by BDM
As manual states we can’t unlock MCU by BDM with backdoor key access mechanism. Facts
also show that we can’t unlock MCU and obtain valid data by BDM. It is worth noting that
we can entirely erase the locked MCU by BDM, while the flag bit FPVIOL of FSTAT register
will be set. If we don’t want to secure MCU now, we should program immediately by
changing the later two bits of the byte in 0x7F_FF0F as the value 1:0. So after the next reset
MCU will be in unlocked state.
b. The only way to unlock MCU—using backdoor key access mechanism.
Programs like buried treasure locked in chip. Treasure pretenders have tried every means to
get it, but they are always blocked by an indestructible security door. Only intelligent
master owns the key to open this security door. This is the so-called backdoor key access
mechanisms.
How to start and use this kind of mechanism?
First, 8 bytes backdoor key together with the programs should be programmed into MCU.
That is, 8 bytes key should be successively programmed into the addresses
0x7F_FF00~0x7F_FF07.
After that, the bits KEYEN[1:0] of FSEC register should be set as the value 10 to enable the
backdoor key access mechanism.
Concerning how to unlock:
First, prepare to match the key. This step will use the FLASH backdoor key comparison
command 0x0C. The backdoor key comparison command and 8 bytes key can be set to
FCCOB. And setting flag bit CCIF can enable the comparison. If the comparison is
successful, the security state will temporarily be unlocked. If the comparison is unsuccessful,
the next comparison can be done only after reset, otherwise none operation can be done.
Besides, if the comparison is successful, SEC[1:0] will be 10 which means unlocked state. If
at this time users want to disable the encryption function, the bits KEY[1:0] should be set as
disabled state to disable the backdoor key comparison function.

4. Programming flash in freescale MCF52233 flash
The flash memory in-circuit programming implement for 32bits MCF52233 MCU will be
explained in this section, as follows:

8 BDM-- Background Debug Monitor

Programming Flash Memory in Freescale S08/S12/CordFire MCUs Family 171

4.1 How to operate coldfire flash memory
4.1.1 The basic concepts of MCF52233 flash memory
ColdFire Flash Module (CFM) is made up of 4 arrays, and each consists of 32K*16 bits, thus
composing a flash memory space of 256 Kbytes, as is shown in Fig.10. Inner flash controller
needs 2 cycles to access to the flash memory, but since across accessing enabled, it can read
the flash consecutively with a higher frequency. Only one cycle is needed for reading each
word.

Fig. 10. CFM Block Diagram

In MCF52233, the 256KB flash memory space is divided into 32 8KB sectors. Each section
has 4 pages and each page is of 2KB. When programming, note that the erase is carried out
by page. That is to say, at least one page needs to be erased at a time. 2 words (4 bytes) are
performed at a time.
The 32-bit MCF52233 has 32 address buses, and can address 4GB space. In principle, the
initial address of MCF52233 is alterable. By setting the corresponding register, the 256KB 32-
bit flash can be located to any continuous space. However, in practice its start address is set
to 0x0000_0000. And it is suggested not to alter the address.

4.1.2 ColdFire flash memory registers
Erasing and programming relate to registers such as FLASHBAR, CFMCLKD, CFMMCR,
CFMPROT, CFMSEC, CFMUSTAT and CFMCMD. For the detailed function and use of
these registers, please refer to the Reference Manual “MCF52235 ColdFire integrated
Microcontroller Reference Manual”[3].

4.1.3 ColdFire flash memory erase and program implements
For ColdFire MCU, the entire flash memory or only one page (2KB) at the start address can
be erased. That is, more than one byte or 2KB is erased at a time. To perform, a row of data
should be prepared and put into the RAM first. Only after erasing the corresponding region
in Flash memory can perform be carried out. Furthermore, the erasing or performing of any

Flash Memories 170

easily steal the programs from MCU by BDM. In order to prevent software piracy, XS128
brings in complex security mechanism to guarantee the security of MCU. When the MCU is
encrypted, the common users can’t read any content in memory by BDM8 (Only messy
codes can be read.) But the programs running in MCU can access arbitrary resources of
MCU, and can decrypt MCU by using the back-door key access mechanism provided by
MCU.
1. Set MCU to Security Mode
To prevent the programs in the flash memory from being read out illegally, the MCU should
be set in security mode. The corresponding register is FSEC (Flash Security Register). If it is
reset, FSEC register automatically load value from the configuration address 0x7F_FF0F. All
bits of FSEC are related to the security of device, and these bits are read-only.
2. Unlock from Security Mode
a. Can’t unlock by BDM
As manual states we can’t unlock MCU by BDM with backdoor key access mechanism. Facts
also show that we can’t unlock MCU and obtain valid data by BDM. It is worth noting that
we can entirely erase the locked MCU by BDM, while the flag bit FPVIOL of FSTAT register
will be set. If we don’t want to secure MCU now, we should program immediately by
changing the later two bits of the byte in 0x7F_FF0F as the value 1:0. So after the next reset
MCU will be in unlocked state.
b. The only way to unlock MCU—using backdoor key access mechanism.
Programs like buried treasure locked in chip. Treasure pretenders have tried every means to
get it, but they are always blocked by an indestructible security door. Only intelligent
master owns the key to open this security door. This is the so-called backdoor key access
mechanisms.
How to start and use this kind of mechanism?
First, 8 bytes backdoor key together with the programs should be programmed into MCU.
That is, 8 bytes key should be successively programmed into the addresses
0x7F_FF00~0x7F_FF07.
After that, the bits KEYEN[1:0] of FSEC register should be set as the value 10 to enable the
backdoor key access mechanism.
Concerning how to unlock:
First, prepare to match the key. This step will use the FLASH backdoor key comparison
command 0x0C. The backdoor key comparison command and 8 bytes key can be set to
FCCOB. And setting flag bit CCIF can enable the comparison. If the comparison is
successful, the security state will temporarily be unlocked. If the comparison is unsuccessful,
the next comparison can be done only after reset, otherwise none operation can be done.
Besides, if the comparison is successful, SEC[1:0] will be 10 which means unlocked state. If
at this time users want to disable the encryption function, the bits KEY[1:0] should be set as
disabled state to disable the backdoor key comparison function.

4. Programming flash in freescale MCF52233 flash
The flash memory in-circuit programming implement for 32bits MCF52233 MCU will be
explained in this section, as follows:

8 BDM-- Background Debug Monitor

Programming Flash Memory in Freescale S08/S12/CordFire MCUs Family 171

4.1 How to operate coldfire flash memory
4.1.1 The basic concepts of MCF52233 flash memory
ColdFire Flash Module (CFM) is made up of 4 arrays, and each consists of 32K*16 bits, thus
composing a flash memory space of 256 Kbytes, as is shown in Fig.10. Inner flash controller
needs 2 cycles to access to the flash memory, but since across accessing enabled, it can read
the flash consecutively with a higher frequency. Only one cycle is needed for reading each
word.

Fig. 10. CFM Block Diagram

In MCF52233, the 256KB flash memory space is divided into 32 8KB sectors. Each section
has 4 pages and each page is of 2KB. When programming, note that the erase is carried out
by page. That is to say, at least one page needs to be erased at a time. 2 words (4 bytes) are
performed at a time.
The 32-bit MCF52233 has 32 address buses, and can address 4GB space. In principle, the
initial address of MCF52233 is alterable. By setting the corresponding register, the 256KB 32-
bit flash can be located to any continuous space. However, in practice its start address is set
to 0x0000_0000. And it is suggested not to alter the address.

4.1.2 ColdFire flash memory registers
Erasing and programming relate to registers such as FLASHBAR, CFMCLKD, CFMMCR,
CFMPROT, CFMSEC, CFMUSTAT and CFMCMD. For the detailed function and use of
these registers, please refer to the Reference Manual “MCF52235 ColdFire integrated
Microcontroller Reference Manual”[3].

4.1.3 ColdFire flash memory erase and program implements
For ColdFire MCU, the entire flash memory or only one page (2KB) at the start address can
be erased. That is, more than one byte or 2KB is erased at a time. To perform, a row of data
should be prepared and put into the RAM first. Only after erasing the corresponding region
in Flash memory can perform be carried out. Furthermore, the erasing or performing of any

Flash Memories 172

byte influences the page it is in, so before that it is necessary to arrange relevant data in the
erasing region by linking files. In other words, the page which is being programmed cannot
be erased. Below is a detailed procedure of Coldfire Flash memory erase and program. The
corresponding sub-program instances are also provided in our program directory
“..\Flash_Program\ ColdFire(MCF52233)-Flash”.
1. Common Operations for Erase and Program

a. If the CFMCLKD register is written, the DIVLD bit is set automatically. If the
DIVLD bit is 0, the CFMCLKD register has not been written since last reset. No
command can be executed if the CFMCLKD register has not been written.

b. Before starting a command write sequence, the ACCERR and PVIOL flags in the
CFMUSTAT register must be cleared.

2. Erase
Step 1. set the clock frequency division by writing the CFMCLKD register. Clear error

flags, and set the sector number. These operations take place at the beginning of all
operations, and have been packaged into a subroutine which can be called directly.

Step 2. locate the sector to be erased. Write a value to any location in that sector.
Step 3. write 0x40 to command register CFMCMD (section 10.2.1 “CFM Registers”).
Step 4. write a “1” to the command buffer empty interrupt flag (CBEIF) of register

CFMUSTAT. This clears the flag and launches the flash command described in step
three.

Step 5. wait for the command to be accomplished. This is indicated by the command
complete interrupt flag (CCIF), which is also located in status register CFMUSTAT.
This bit is set when the command is completed.

3. Program
If we need to write some words to a specific start address in flash memory (note: the address
should be clean—non-written), detailed steps are as follows.
Step 1. is the same as in the erasing operation.
Step 2. set the start address. The process of writing words is then divided into sub-steps as

follows:
Step A. select a word (provide the source address and the target address).
Step B. Step B, write 0x20 to command register CFMCMD (section 10.2.1 “CFM

Registers”).
Step C. write a “1” to CBEIF in register CFMUSTAT, clearing the flag bit and

executing the flash command.
Step D. wait for the command to be accomplished (the CBEIF flag of register

CFMUSTAT is 1), meanwhile the next command is receivable only.
Step E. if data remain to be written, increase the source and target addresses then

go to step B.
Notes: the register CFMCLKD is set only once anterior erase operation and in no any
program case. Don’t erase any region which stores codes.
4. Flash Memory Illegal Operations

a. Writing to the flash memory before initializing CFMCLKD; Writing to the flash
memory while CBEIF is not set; Writing to a flash block with a data size other than
32 bits; After writing to the even flash block, writing an additional word to the
flash memory during the flash command write sequence other than the odd flash
block; Writing an invalid flash normal mode command to the CFMCMD register
(out of the 5 values); Writing to any CFM register other than CFMCMD after
writing to the flash memory; Writing a second command to the CFMCMD register

Programming Flash Memory in Freescale S08/S12/CordFire MCUs Family 173

before executing the previously written command;. Writing to any CFM register
other than CFMUSTAT (to clear CBEIF) after writing to the command register,
CFMCMD; entering stop mode with some commands uncompleted. Upon entering
STOP mode, any active command is aborted; Aborting a command write sequence
by writing a 0 to the CBEIF flag after writing to the flash memory or after writing a
command to the CFMCMD register but before the command is launched.

b. The PVIOL flag is set during the command write sequence if any of the following
illegal operations are performed, causing the command write sequence to
immediately abort: Writing a program command if the address to program is in a
protected flash logical sector; Writing a page erase command if the address to erase
is in a protected flash logical sector; Writing a mass erase command while any
protection is enabled. If a read operation is attempted on a flash logical block while
a command is active on that logical block (CCIF=0), the read operation returns
invalid data and the ACCERR flag in the CFMUSTAT register is not set.

For predigesting programming, various illegal operation types listed above are ignored in
practice and are simply classified as: completed or aborted.

4.2 Validate ColdFire flash memory implements
The validate ColdFire flash memory application in our network site is as the following: the
MCU receives formatted data from PC by SCI interface and erases, programs or reads its
flash memory. The PC software is SCI debug or our testing tool. For the detailed codes and
running windows, please refer to the program in our program directory
“..\Flash_Program\ ColdFire(MCF52233)-Flash”.
Now, list some flash operating commands using the SCI debug:

 Commands Functions
 ? MCU sends some items to PC
 E:8 Erase page 8
 R:8:0:4 Read 4 bytes the word 0 of page 8
 W:8:0:4:A,C,B,D Write “ACBD” (4 bytes) to the word 0 of page 8
 P:8,7,6,5,4,3,2,1 Encrypt Flash and the password is "87654321"
 D Delete passwords

Above examples only give the program data less than one page (2048 bytes). Flash memory
application for data that exceeds one page can been found in the aforesaid network site.

4.3 CFM protection mechanisms and security operations
4.3.1 CFM protection mechanisms
The CFMPROT register (refer to the reference manual[3]) is interrelated with the protection
mechanisms of ColdFire flash memory which is divided to 32 sectors and each controlled by
a flag of CFMPROT—the sector is presumed as in protected state while the corresponding
flag is set to 1—there will be Illegal when erasing or programming the sector. Note to get it
back to the protected state after erasing or programming the sector. In erase subroutine
Flash_Page_Erase and program subroutine Flash_Page_Write, the Flash_Protect(page,FALSE)
releases the sector from the protected state, but the MCF_CFM_CFMPROT = 0xffffffff
reverses that.

4.3.2 CFM security operations
The ColdFire 0x0400~0x0417 is the flash configuration field whose security word is read
automatically after each reset and is stored in the CFMSEC register. If the low 2 bytes of the

Flash Memories 172

byte influences the page it is in, so before that it is necessary to arrange relevant data in the
erasing region by linking files. In other words, the page which is being programmed cannot
be erased. Below is a detailed procedure of Coldfire Flash memory erase and program. The
corresponding sub-program instances are also provided in our program directory
“..\Flash_Program\ ColdFire(MCF52233)-Flash”.
1. Common Operations for Erase and Program

a. If the CFMCLKD register is written, the DIVLD bit is set automatically. If the
DIVLD bit is 0, the CFMCLKD register has not been written since last reset. No
command can be executed if the CFMCLKD register has not been written.

b. Before starting a command write sequence, the ACCERR and PVIOL flags in the
CFMUSTAT register must be cleared.

2. Erase
Step 1. set the clock frequency division by writing the CFMCLKD register. Clear error

flags, and set the sector number. These operations take place at the beginning of all
operations, and have been packaged into a subroutine which can be called directly.

Step 2. locate the sector to be erased. Write a value to any location in that sector.
Step 3. write 0x40 to command register CFMCMD (section 10.2.1 “CFM Registers”).
Step 4. write a “1” to the command buffer empty interrupt flag (CBEIF) of register

CFMUSTAT. This clears the flag and launches the flash command described in step
three.

Step 5. wait for the command to be accomplished. This is indicated by the command
complete interrupt flag (CCIF), which is also located in status register CFMUSTAT.
This bit is set when the command is completed.

3. Program
If we need to write some words to a specific start address in flash memory (note: the address
should be clean—non-written), detailed steps are as follows.
Step 1. is the same as in the erasing operation.
Step 2. set the start address. The process of writing words is then divided into sub-steps as

follows:
Step A. select a word (provide the source address and the target address).
Step B. Step B, write 0x20 to command register CFMCMD (section 10.2.1 “CFM

Registers”).
Step C. write a “1” to CBEIF in register CFMUSTAT, clearing the flag bit and

executing the flash command.
Step D. wait for the command to be accomplished (the CBEIF flag of register

CFMUSTAT is 1), meanwhile the next command is receivable only.
Step E. if data remain to be written, increase the source and target addresses then

go to step B.
Notes: the register CFMCLKD is set only once anterior erase operation and in no any
program case. Don’t erase any region which stores codes.
4. Flash Memory Illegal Operations

a. Writing to the flash memory before initializing CFMCLKD; Writing to the flash
memory while CBEIF is not set; Writing to a flash block with a data size other than
32 bits; After writing to the even flash block, writing an additional word to the
flash memory during the flash command write sequence other than the odd flash
block; Writing an invalid flash normal mode command to the CFMCMD register
(out of the 5 values); Writing to any CFM register other than CFMCMD after
writing to the flash memory; Writing a second command to the CFMCMD register

Programming Flash Memory in Freescale S08/S12/CordFire MCUs Family 173

before executing the previously written command;. Writing to any CFM register
other than CFMUSTAT (to clear CBEIF) after writing to the command register,
CFMCMD; entering stop mode with some commands uncompleted. Upon entering
STOP mode, any active command is aborted; Aborting a command write sequence
by writing a 0 to the CBEIF flag after writing to the flash memory or after writing a
command to the CFMCMD register but before the command is launched.

b. The PVIOL flag is set during the command write sequence if any of the following
illegal operations are performed, causing the command write sequence to
immediately abort: Writing a program command if the address to program is in a
protected flash logical sector; Writing a page erase command if the address to erase
is in a protected flash logical sector; Writing a mass erase command while any
protection is enabled. If a read operation is attempted on a flash logical block while
a command is active on that logical block (CCIF=0), the read operation returns
invalid data and the ACCERR flag in the CFMUSTAT register is not set.

For predigesting programming, various illegal operation types listed above are ignored in
practice and are simply classified as: completed or aborted.

4.2 Validate ColdFire flash memory implements
The validate ColdFire flash memory application in our network site is as the following: the
MCU receives formatted data from PC by SCI interface and erases, programs or reads its
flash memory. The PC software is SCI debug or our testing tool. For the detailed codes and
running windows, please refer to the program in our program directory
“..\Flash_Program\ ColdFire(MCF52233)-Flash”.
Now, list some flash operating commands using the SCI debug:

 Commands Functions
 ? MCU sends some items to PC
 E:8 Erase page 8
 R:8:0:4 Read 4 bytes the word 0 of page 8
 W:8:0:4:A,C,B,D Write “ACBD” (4 bytes) to the word 0 of page 8
 P:8,7,6,5,4,3,2,1 Encrypt Flash and the password is "87654321"
 D Delete passwords

Above examples only give the program data less than one page (2048 bytes). Flash memory
application for data that exceeds one page can been found in the aforesaid network site.

4.3 CFM protection mechanisms and security operations
4.3.1 CFM protection mechanisms
The CFMPROT register (refer to the reference manual[3]) is interrelated with the protection
mechanisms of ColdFire flash memory which is divided to 32 sectors and each controlled by
a flag of CFMPROT—the sector is presumed as in protected state while the corresponding
flag is set to 1—there will be Illegal when erasing or programming the sector. Note to get it
back to the protected state after erasing or programming the sector. In erase subroutine
Flash_Page_Erase and program subroutine Flash_Page_Write, the Flash_Protect(page,FALSE)
releases the sector from the protected state, but the MCF_CFM_CFMPROT = 0xffffffff
reverses that.

4.3.2 CFM security operations
The ColdFire 0x0400~0x0417 is the flash configuration field whose security word is read
automatically after each reset and is stored in the CFMSEC register. If the low 2 bytes of the

Flash Memories 174

CFMSEC register offset (0x0414~0x0417) in the file vectors.s is equal to 0x4ac8, the MCU is
in its security mode and programs in the flash memory can’t be read, erased or programmed
by 32-bit ColdFire programming writer in the BDM mode. Whereas it allows the password
matching while the high 2 bytes is 0xc000. If the 32-bit ColdFire programming writer is set
in JTAG mode, the password can be released by erasing the page 0 (the programs in the
flash memory can’t be used any longer), and then the flash memory can erase or program in
the BDM mode again.
1. Set MCU to Security Mode
To prevent the programs in the flash memory from being read out illegally, the MCU should
be set in security mode. Two methods for locking the flash memory are shown in the
following.
Method A. Lock the MCU by modifying the security configuration field in the file vectors.s.
Method B. we can lock the flash memory by calling the custom subroutine Flash_Secure to
modify relevant address matters when the program is running. For the locked subroutine,
please refer to the program directory “..\Flash_Program\ ColdFire(MCF52233)-Flash”.
2. Unlock from Security Mode
We must unlock the MCU first then can write into the program if it has been locked, because
locked ColdFire family can’t be mass erased by BDM. And here two methods are provided
to unlock it.
First, after setting the writer into JTAG mode, mass erase the locked MCU. Refer to “32-bit
ColdFire writer” in our network site (http://sumcu.suda.edu.cn) for details.
Second, call the subroutine Flash_Delete_Key to erase password or flash by memory-
resident program. (the subroutine Flash_Delete_Key is shown in the program directory
“..\Flash_Program\ ColdFire(MCF52233)-Flash”)

5. Reference
[1] Freescale: MC9S08AW60 Data Sheet ,Rev.2,2006
[2] Freescale: MC9S12XS256 Reference Manual, Rev. 1.09, 2009
[3]Freescale: MCF52235 ColdFire integrated Microcontroller Reference Manual,Rev.4, 2007
[4] WANG Yi-huai, LIU Xiao-sheng, Embedded systems-design and application on HCS12

MCUs, Beihang, University Press, 2008
[5] Yihuai Wang ,Zhigui Lin. Stable In circuit Programming of Flash Memory in Freescale’s

MC9S12 MCU family. Proceedings–ICMTMA2010. Volume III:477-480 . IEEE
Computer Society,2010

Part 3

Technology, Materials and Design Issues

Flash Memories 174

CFMSEC register offset (0x0414~0x0417) in the file vectors.s is equal to 0x4ac8, the MCU is
in its security mode and programs in the flash memory can’t be read, erased or programmed
by 32-bit ColdFire programming writer in the BDM mode. Whereas it allows the password
matching while the high 2 bytes is 0xc000. If the 32-bit ColdFire programming writer is set
in JTAG mode, the password can be released by erasing the page 0 (the programs in the
flash memory can’t be used any longer), and then the flash memory can erase or program in
the BDM mode again.
1. Set MCU to Security Mode
To prevent the programs in the flash memory from being read out illegally, the MCU should
be set in security mode. Two methods for locking the flash memory are shown in the
following.
Method A. Lock the MCU by modifying the security configuration field in the file vectors.s.
Method B. we can lock the flash memory by calling the custom subroutine Flash_Secure to
modify relevant address matters when the program is running. For the locked subroutine,
please refer to the program directory “..\Flash_Program\ ColdFire(MCF52233)-Flash”.
2. Unlock from Security Mode
We must unlock the MCU first then can write into the program if it has been locked, because
locked ColdFire family can’t be mass erased by BDM. And here two methods are provided
to unlock it.
First, after setting the writer into JTAG mode, mass erase the locked MCU. Refer to “32-bit
ColdFire writer” in our network site (http://sumcu.suda.edu.cn) for details.
Second, call the subroutine Flash_Delete_Key to erase password or flash by memory-
resident program. (the subroutine Flash_Delete_Key is shown in the program directory
“..\Flash_Program\ ColdFire(MCF52233)-Flash”)

5. Reference
[1] Freescale: MC9S08AW60 Data Sheet ,Rev.2,2006
[2] Freescale: MC9S12XS256 Reference Manual, Rev. 1.09, 2009
[3]Freescale: MCF52235 ColdFire integrated Microcontroller Reference Manual,Rev.4, 2007
[4] WANG Yi-huai, LIU Xiao-sheng, Embedded systems-design and application on HCS12

MCUs, Beihang, University Press, 2008
[5] Yihuai Wang ,Zhigui Lin. Stable In circuit Programming of Flash Memory in Freescale’s

MC9S12 MCU family. Proceedings–ICMTMA2010. Volume III:477-480 . IEEE
Computer Society,2010

Part 3

Technology, Materials and Design Issues

9

Source and Drain Junction Engineering for
Enhanced Non-Volatile Memory Performance

Sung-Jin Choi and Yang-Kyu Choi
Department of Electrical Engineering, KAIST

Republic of Korea

1. Introduction
There is strong demand to maintain the trend of increasing bit density and reducing bit cost
in Flash memory technology. To this end, aggressive scaling of the device dimension and
multi-level cell (MLC) or multi-bit cell (MBC) have been proposed in NAND and NOR Flash
memory architectures. However, especially in NAND Flash memory, bit cost is expected to
rise in the near future, because the process cost will increase more rapidly than the shrink
rate. One solution to avoid such challenges is the use of three dimensionally stacked array
structures, based on polycrystalline silicon (poly-Si). The utilization of poly-Si in the channel
not only increases pass disturbs but also reduces the worst case string current. Indeed, for
every doubling in density, the worst case string current halves. Since the channel of these
devices is poly-Si and source/drain (S/D) regions are not formed (i.e., a junction-free
structure), the worst case string current (all cells in a string with high threshold voltage (VT))
will quickly tend toward unreadably low values as density increases (Walker, 2009).
Therefore, it is worthwhile to note that the impact on the S/D structures becomes important.
Moreover, Fowler-Nordheim (FN) tunneling for programming is still very slow for certain
applications that require high-speed operation.
In NOR Flash memory, channel length scaling has threatened continued scaling and
approaching its end point. For uniform channel hot electron injection (CHEI) programming,
a robust margin for punch-through is a pre-requisite for cell transistors. However, CHEI
programming aggravates immunity against punch-through by increasing the drain voltage
to a level that will trigger CHEI. It is clear that the drain voltage window to guarantee both
programming speed and margin from drain disturbance is narrowed as the channel length
scales down. Moreover, the low injection efficiency compromising from vertical and lateral
fields and the high parasitic resistance at the S/D junctions also impose a constraint on
scaling the cell size reduction. Consequently, the lower effective program voltage due to the
high parasitic S/D resistance in an extremely scaled cell results in a small VT window and
thereafter retards the program speed.
Herein S/D engineering for enhanced performance of Flash memory for two novel
structures is demonstrated: (i) a dopant-segregated Schottky-barrier device (DSSB), and (ii) a
junctionless MOSFET. First, we utilized dopant-segregated metallic silicide S/D junctions
on charge trapping memory cells. They boosted the program speed even at a low program
bias with the aid of abrupt band bending at the edge of metal silicided junctions. Second, the

9

Source and Drain Junction Engineering for
Enhanced Non-Volatile Memory Performance

Sung-Jin Choi and Yang-Kyu Choi
Department of Electrical Engineering, KAIST

Republic of Korea

1. Introduction
There is strong demand to maintain the trend of increasing bit density and reducing bit cost
in Flash memory technology. To this end, aggressive scaling of the device dimension and
multi-level cell (MLC) or multi-bit cell (MBC) have been proposed in NAND and NOR Flash
memory architectures. However, especially in NAND Flash memory, bit cost is expected to
rise in the near future, because the process cost will increase more rapidly than the shrink
rate. One solution to avoid such challenges is the use of three dimensionally stacked array
structures, based on polycrystalline silicon (poly-Si). The utilization of poly-Si in the channel
not only increases pass disturbs but also reduces the worst case string current. Indeed, for
every doubling in density, the worst case string current halves. Since the channel of these
devices is poly-Si and source/drain (S/D) regions are not formed (i.e., a junction-free
structure), the worst case string current (all cells in a string with high threshold voltage (VT))
will quickly tend toward unreadably low values as density increases (Walker, 2009).
Therefore, it is worthwhile to note that the impact on the S/D structures becomes important.
Moreover, Fowler-Nordheim (FN) tunneling for programming is still very slow for certain
applications that require high-speed operation.
In NOR Flash memory, channel length scaling has threatened continued scaling and
approaching its end point. For uniform channel hot electron injection (CHEI) programming,
a robust margin for punch-through is a pre-requisite for cell transistors. However, CHEI
programming aggravates immunity against punch-through by increasing the drain voltage
to a level that will trigger CHEI. It is clear that the drain voltage window to guarantee both
programming speed and margin from drain disturbance is narrowed as the channel length
scales down. Moreover, the low injection efficiency compromising from vertical and lateral
fields and the high parasitic resistance at the S/D junctions also impose a constraint on
scaling the cell size reduction. Consequently, the lower effective program voltage due to the
high parasitic S/D resistance in an extremely scaled cell results in a small VT window and
thereafter retards the program speed.
Herein S/D engineering for enhanced performance of Flash memory for two novel
structures is demonstrated: (i) a dopant-segregated Schottky-barrier device (DSSB), and (ii) a
junctionless MOSFET. First, we utilized dopant-segregated metallic silicide S/D junctions
on charge trapping memory cells. They boosted the program speed even at a low program
bias with the aid of abrupt band bending at the edge of metal silicided junctions. Second, the

Flash Memories

178

structure of the junctionless transistor was examined from S/D junction engineering and cell
size scaling points of view.

2. Schottky-Barrier (SB) MOSFET
SB-MOSFETs were initially proposed by Lepselter and Sze four decades ago (1968 – Bell
Labs.), shortly after the invention of the current type of MOSFET by Kahng and Attala (1960
– Bell Labs.). Being different from the conventional MOSFET with doped/diffused S/D
junctions, the SB-MOSFET has metallic silicided S/D junctions, realizing by employing a
self-aligned silicide process, as shown in Fig. 2-1. The operating principle is based on gate
induced electronic band bending to modulate the S/D thermionic and tunneling barrier
(Larson et al., 2006). One remarkable advantage of the SB-MOSFETs is their low interface
contact resistivity: ρc ~ 10-9 Ω·cm2 for metallic S/D compared with ρc ~ 10-7 Ω·cm2 in
standard doped S/D junctions. Moreover, it is easier to control the abruptness/shallowness
of the S/D junctions in metallic S/D junctions than in standard doped S/D junctions, and
the solid solubility limitation associated with doping can also be resolved. From a
fabrication viewpoint, the silicidation process is fully compatible with the standard CMOS
technologies and does not require a high temperature annealing process; this prevents
thermal degradation (in particular, for high-k gate dielectric layers and metal-gates) and
reduces fabrication costs. However, for typical SB-MOSFETs, the on-state current is
significantly limited by the existence of a SB height (SBH) at the S/D junctions; thus, the
performance of SB-MOSFETs is still not comparable with that of conventional MOSFETs
with highly doped S/D junctions. Therefore, it is necessary to find an appropriate material
with a low SBH and develop a method to reduce the effective SBH, such as a dopant-
segregation technique (Kinoshita et al., 2004), in order to enhance the performance of SB-
MOSFETs.

Si substrate

Silicide Silicide
Gate

Heavily
doped n+

Si substrate

Silicide Silicide
GateS D S D

 (a) (b)

Fig. 2-1. Simplified schematic of (a) the conventional and (b) the SB devices

SB-MOSFETs are also interesting devices from a physics perspective. They can be used for
high speed devices in highly scaled regimes because they have an abrupt energy band
bending, which results from a large voltage drop at the source to the inversion channel.
Importantly, a high lateral electric field exists around not the drain but the source edge. The
carriers, e.g., electrons for an n-channel SB-MOSFET, injected from the source thermally or
via tunneling are accelerated by this electric field and become hot around the source edge.
These properties are very useful and interesting for both logic and memory devices.

Source and Drain Junction Engineering for Enhanced Non-Volatile Memory Performance

179

2.1 Operating principle of SB-MOSFETs
A band diagram schematically depicting the different operations of SB-MOSFETs is shown
in Fig. 2-2. A small off-state current is possible at a gate voltage of 0 V as a result of the high
effective barrier height for both electrons and holes. The effective barrier height for holes at
a gate voltage of 0 V consists of two components: the intrinsic barrier for holes (Φbp) and the
contact barrier (Φcontact). The contact potential results from the built-in potential energy (ψb)
arising from the metal-semiconductor interface and the surface potential energy (ψs)
resulting from the gate (Φcontact = ψb + ψs) (Fig. 2-2(a)). As a negative gate bias is applied, the
effective barrier for holes is reduced to the intrinsic barrier height (Φbp) and the current
increases as holes are ejected over the barrier primarily via thermionic emission (Fig. 2-2(b)).
Note that when the effective barrier height (Φeffective = Φbp + Φcontact) is the same as the
intrinsic barrier height, the flat band source-to-body condition is formed (i.e., Φcontact ~ 0 eV).
For small gate voltage values, the drain voltage will mostly drop at the source, i.e., the
reverse bias contact, and current transport can be performed by the thermionic emission.
This also holds in the subthreshold regime (small gate voltage). Further increases of the gate
bias cause the bands to bend upwards and holes to tunnel through the barrier either directly
or with thermal assistance (Fig. 2-2(c)). As noted above, the SBH limits the current flow in
the subthreshold regime and becomes conductive in the on-state, where the channel
resistance limits the current flow in an ideal case.

Source
Drain

VD

Φcontact

Φbp

Source
Drain

Φbp

Source
Drain

(a) (b) (c)

Fig. 2-2. Band diagrams of the different operating regimes of an SB-MOSFET: (a) off-state,
(b) subthreshold regime, and (c) on-state.

2.2 Dopant-segregation technique
As mentioned earlier, the SB can limit the current drivability if an appropriate low SB
material is not used. The dopant-segregation technique, an attractive technique to enhance
the current density, has been introduced to SB-MOSFETs. If silicidation is performed on the
doped silicon regions, the dopants can be redistributed at the interface between the silicide
and silicon, which significantly affects the electrostatic properties of the SB junctions
(Muraka, S. P. et al., 1087). The redistribution of dopants is determined by the diffusivity
and solid solubility of dopants in the silicide and the presence of point defects at the
interface between the silicide and silicon. Thermal annealing of silicide materials on ion
implanted or doped (i.e., activated or non-activated) silicon can induce redistribution of
dopants during the silicidation process. In particular, dopants are segregated at the interface
between the silicide and silicon as a result of the different solid solubility of these materials.
Atoms of nickel (Ni), a candidate material in SB-MOSFETs, are the moving species, supplied
by diffusion through the growing silicide layer to the silicide/Si interface. Subsequently, the
covalent bonding of Si atoms is softened by the diffusion of Ni atoms. A significant change
of volume occurs when the silicide is formed, which leads to high strain at the interface. As

Flash Memories

178

structure of the junctionless transistor was examined from S/D junction engineering and cell
size scaling points of view.

2. Schottky-Barrier (SB) MOSFET
SB-MOSFETs were initially proposed by Lepselter and Sze four decades ago (1968 – Bell
Labs.), shortly after the invention of the current type of MOSFET by Kahng and Attala (1960
– Bell Labs.). Being different from the conventional MOSFET with doped/diffused S/D
junctions, the SB-MOSFET has metallic silicided S/D junctions, realizing by employing a
self-aligned silicide process, as shown in Fig. 2-1. The operating principle is based on gate
induced electronic band bending to modulate the S/D thermionic and tunneling barrier
(Larson et al., 2006). One remarkable advantage of the SB-MOSFETs is their low interface
contact resistivity: ρc ~ 10-9 Ω·cm2 for metallic S/D compared with ρc ~ 10-7 Ω·cm2 in
standard doped S/D junctions. Moreover, it is easier to control the abruptness/shallowness
of the S/D junctions in metallic S/D junctions than in standard doped S/D junctions, and
the solid solubility limitation associated with doping can also be resolved. From a
fabrication viewpoint, the silicidation process is fully compatible with the standard CMOS
technologies and does not require a high temperature annealing process; this prevents
thermal degradation (in particular, for high-k gate dielectric layers and metal-gates) and
reduces fabrication costs. However, for typical SB-MOSFETs, the on-state current is
significantly limited by the existence of a SB height (SBH) at the S/D junctions; thus, the
performance of SB-MOSFETs is still not comparable with that of conventional MOSFETs
with highly doped S/D junctions. Therefore, it is necessary to find an appropriate material
with a low SBH and develop a method to reduce the effective SBH, such as a dopant-
segregation technique (Kinoshita et al., 2004), in order to enhance the performance of SB-
MOSFETs.

Si substrate

Silicide Silicide
Gate

Heavily
doped n+

Si substrate

Silicide Silicide
GateS D S D

 (a) (b)

Fig. 2-1. Simplified schematic of (a) the conventional and (b) the SB devices

SB-MOSFETs are also interesting devices from a physics perspective. They can be used for
high speed devices in highly scaled regimes because they have an abrupt energy band
bending, which results from a large voltage drop at the source to the inversion channel.
Importantly, a high lateral electric field exists around not the drain but the source edge. The
carriers, e.g., electrons for an n-channel SB-MOSFET, injected from the source thermally or
via tunneling are accelerated by this electric field and become hot around the source edge.
These properties are very useful and interesting for both logic and memory devices.

Source and Drain Junction Engineering for Enhanced Non-Volatile Memory Performance

179

2.1 Operating principle of SB-MOSFETs
A band diagram schematically depicting the different operations of SB-MOSFETs is shown
in Fig. 2-2. A small off-state current is possible at a gate voltage of 0 V as a result of the high
effective barrier height for both electrons and holes. The effective barrier height for holes at
a gate voltage of 0 V consists of two components: the intrinsic barrier for holes (Φbp) and the
contact barrier (Φcontact). The contact potential results from the built-in potential energy (ψb)
arising from the metal-semiconductor interface and the surface potential energy (ψs)
resulting from the gate (Φcontact = ψb + ψs) (Fig. 2-2(a)). As a negative gate bias is applied, the
effective barrier for holes is reduced to the intrinsic barrier height (Φbp) and the current
increases as holes are ejected over the barrier primarily via thermionic emission (Fig. 2-2(b)).
Note that when the effective barrier height (Φeffective = Φbp + Φcontact) is the same as the
intrinsic barrier height, the flat band source-to-body condition is formed (i.e., Φcontact ~ 0 eV).
For small gate voltage values, the drain voltage will mostly drop at the source, i.e., the
reverse bias contact, and current transport can be performed by the thermionic emission.
This also holds in the subthreshold regime (small gate voltage). Further increases of the gate
bias cause the bands to bend upwards and holes to tunnel through the barrier either directly
or with thermal assistance (Fig. 2-2(c)). As noted above, the SBH limits the current flow in
the subthreshold regime and becomes conductive in the on-state, where the channel
resistance limits the current flow in an ideal case.

Source
Drain

VD

Φcontact

Φbp

Source
Drain

Φbp

Source
Drain

(a) (b) (c)

Fig. 2-2. Band diagrams of the different operating regimes of an SB-MOSFET: (a) off-state,
(b) subthreshold regime, and (c) on-state.

2.2 Dopant-segregation technique
As mentioned earlier, the SB can limit the current drivability if an appropriate low SB
material is not used. The dopant-segregation technique, an attractive technique to enhance
the current density, has been introduced to SB-MOSFETs. If silicidation is performed on the
doped silicon regions, the dopants can be redistributed at the interface between the silicide
and silicon, which significantly affects the electrostatic properties of the SB junctions
(Muraka, S. P. et al., 1087). The redistribution of dopants is determined by the diffusivity
and solid solubility of dopants in the silicide and the presence of point defects at the
interface between the silicide and silicon. Thermal annealing of silicide materials on ion
implanted or doped (i.e., activated or non-activated) silicon can induce redistribution of
dopants during the silicidation process. In particular, dopants are segregated at the interface
between the silicide and silicon as a result of the different solid solubility of these materials.
Atoms of nickel (Ni), a candidate material in SB-MOSFETs, are the moving species, supplied
by diffusion through the growing silicide layer to the silicide/Si interface. Subsequently, the
covalent bonding of Si atoms is softened by the diffusion of Ni atoms. A significant change
of volume occurs when the silicide is formed, which leads to high strain at the interface. As

Flash Memories 180

a result, point defects (self-interstitial or vacancies) can be generated to partially relieve the
stress. Due to the formation of vacancies, the diffusivity of the arsenic in the silicon is
enhanced and it is forced out of the silicon after the silicide is formed. The arsenic dopants
move towards the interface where they accumulates at the moving interface between the
silicide and silicon. Although the dopant concentrations are generally below the solid
solubility limit in the silicides and silicon, the point defects induced by the high strain
interface can lead to the increment of local dopant concentrations that are higher than the
solid solubility. This segregation of dopants is possible with boron, antimony, sulfur,
chlorine, etc. as well as arsenic. The segregated dopants form a thin layer with a high
concentration, which causes strong upward or downward band bending depending on the
type of dopants, as shown in Fig. 2-3. As a consequence, the tunneling probability of the
carriers through the effectively lowered Schottky barrier increases significantly. Although
dopant-segregation is performed at relatively low temperatures, a fraction of the dopants is
located at substitution sites in the silicon lattice and is therefore activated. Therefore, owing
to enhanced injection efficiency, dopant-segregated SB (DSSB) MOSFETs have attracted
considerable attention as a candidate for a high performance devices in future ULSIs.

Φbn

Φbp

Ec

Ev

Silicide Silicon

Ec

Ev

Silicide Silicon

e- Ec

Ev

h+

Silicide Silicon

n+ segregation p+ segregation

EF

 (a) (b) (c)

Fig. 2-3. Schematic band diagrams of (a) a mid-gap silicide with equal SB-heights for
electrons and holes, (b) band bending induced by segregated n-type dopants, and (c) band
bending induced by segregated p-type dopants.

2.3 Application to non-volatile memory devices
The metal-semiconductor SB diode is also known as a ‘hot carrier diode’. The injected
carriers from the semiconductor to the metal electrode, regardless of whether the injection
mechanism is thermionic emission or tunneling, are forward biased Schottky barrier
diodes, and they can obtain higher energies than the Fermi energies at the metal side.
Moreover, the carriers injected from the metal to the semiconductor in the reverse biased
junction can obtain higher energies than the Fermi energies in the semiconductor side, as
shown in Fig. 2-4.
Both SB and DSSB MOSFETs at the on-state have an abrupt lateral voltage drop at the
source end of the device due to the reverse biased source Schottky diode (Uchida et al., 2000,
Kinoshita et al., 2006); therefore, a natural high electric field exists around the source edge.
The carriers injected from the source electrode thermally or by tunneling will be accelerated
by this electric field and will become hot around the source edge.

Source and Drain Junction Engineering for Enhanced Non-Volatile Memory Performance

181

Metal Semiconductor

VF (forward bias)

Ec

Thermionic-emission

TunnelingExtra kinetic
energy

Metal

Ec
EF

EF

Semiconductor

Tunneling

VR (reverse bias)

 (a) (b)

Fig. 2-4. (a) Conceptual explanation of hot carriers in (a) forward biased and (b) reverse
biased in Schottky barrier diodes.

3. SB Flash memory
3.1 Hot-carrier program in double-gate DSSB FinFETs
Gate length scaling is the most critical limit in a NOR Flash memory cell, which uses a
program method known as CHEI. This method aggravates immunity against punchthrough
by increasing the drain voltage to a level that can trigger CHEI, as shown in Fig. 3-1(a). In
addition, the low injection efficiency of the hot electrons generated at the drain side and the
high parasitic resistance at the S/D also impose a constraint on scaling the cell size down.
Consequently, the lower effective program voltage due to the high parasitic S/D resistance
in an extremely scaled cell results in a small VT window and thereupon retards the program
speed. CHEI programming in conventional NOR-type Flash memories also poses a
constraint on the choice of the proper gate voltage (VG) and drain voltage (VD), as shown in
Fig. 3-1(b). A high VD is necessary to induce a high lateral electric field for the generation of
hot electrons. Furthermore, a high VG is indispensable for attaining a sufficient vertical
electric field for the injection of hot electrons into a charge storage node. Simultaneous
optimization of the lateral and vertical electric fields is very difficult. Moreover, the high
voltage needed to generate an adequate amount of hot electrons for programming consumes
a large amount of power.
The source-side injection of hot electrons for programming at low voltage is therefore
attractive because of its high injection efficiency and the absence of constraints on the co-
optimization of VG and VD. Previous reports on source-side injection by the decoupling of
hot electrons from the drain field demonstrated a fast low-voltage programming operation
(Wu et al., 1986); however, it is difficult to adapt this approach to NOR-type Flash memory
as it requires extra processes and different circuitry. In this section, an intensive analysis of
NOR Flash memory, where double-gate (DG) DSSB FinFET silicon-oxide-nitride-oxide-
silicon (SONOS) devices are employed, is carried out. The program speed is boosted even at
a low program bias owing to the improved CHEI, which is enabled by the inherent sharp
band bending of the DSSB at the source side. The DSSB structure provides several benefits,
including increased lateral and vertical fields, excellent injection efficiency into the charge
storage node, and a drain disturbance-free feature against a conventional device composed
of diffused p-n junctions.

Flash Memories 180

a result, point defects (self-interstitial or vacancies) can be generated to partially relieve the
stress. Due to the formation of vacancies, the diffusivity of the arsenic in the silicon is
enhanced and it is forced out of the silicon after the silicide is formed. The arsenic dopants
move towards the interface where they accumulates at the moving interface between the
silicide and silicon. Although the dopant concentrations are generally below the solid
solubility limit in the silicides and silicon, the point defects induced by the high strain
interface can lead to the increment of local dopant concentrations that are higher than the
solid solubility. This segregation of dopants is possible with boron, antimony, sulfur,
chlorine, etc. as well as arsenic. The segregated dopants form a thin layer with a high
concentration, which causes strong upward or downward band bending depending on the
type of dopants, as shown in Fig. 2-3. As a consequence, the tunneling probability of the
carriers through the effectively lowered Schottky barrier increases significantly. Although
dopant-segregation is performed at relatively low temperatures, a fraction of the dopants is
located at substitution sites in the silicon lattice and is therefore activated. Therefore, owing
to enhanced injection efficiency, dopant-segregated SB (DSSB) MOSFETs have attracted
considerable attention as a candidate for a high performance devices in future ULSIs.

Φbn

Φbp

Ec

Ev

Silicide Silicon

Ec

Ev

Silicide Silicon

e- Ec

Ev

h+

Silicide Silicon

n+ segregation p+ segregation

EF

 (a) (b) (c)

Fig. 2-3. Schematic band diagrams of (a) a mid-gap silicide with equal SB-heights for
electrons and holes, (b) band bending induced by segregated n-type dopants, and (c) band
bending induced by segregated p-type dopants.

2.3 Application to non-volatile memory devices
The metal-semiconductor SB diode is also known as a ‘hot carrier diode’. The injected
carriers from the semiconductor to the metal electrode, regardless of whether the injection
mechanism is thermionic emission or tunneling, are forward biased Schottky barrier
diodes, and they can obtain higher energies than the Fermi energies at the metal side.
Moreover, the carriers injected from the metal to the semiconductor in the reverse biased
junction can obtain higher energies than the Fermi energies in the semiconductor side, as
shown in Fig. 2-4.
Both SB and DSSB MOSFETs at the on-state have an abrupt lateral voltage drop at the
source end of the device due to the reverse biased source Schottky diode (Uchida et al., 2000,
Kinoshita et al., 2006); therefore, a natural high electric field exists around the source edge.
The carriers injected from the source electrode thermally or by tunneling will be accelerated
by this electric field and will become hot around the source edge.

Source and Drain Junction Engineering for Enhanced Non-Volatile Memory Performance

181

Metal Semiconductor

VF (forward bias)

Ec

Thermionic-emission

TunnelingExtra kinetic
energy

Metal

Ec
EF

EF

Semiconductor

Tunneling

VR (reverse bias)

 (a) (b)

Fig. 2-4. (a) Conceptual explanation of hot carriers in (a) forward biased and (b) reverse
biased in Schottky barrier diodes.

3. SB Flash memory
3.1 Hot-carrier program in double-gate DSSB FinFETs
Gate length scaling is the most critical limit in a NOR Flash memory cell, which uses a
program method known as CHEI. This method aggravates immunity against punchthrough
by increasing the drain voltage to a level that can trigger CHEI, as shown in Fig. 3-1(a). In
addition, the low injection efficiency of the hot electrons generated at the drain side and the
high parasitic resistance at the S/D also impose a constraint on scaling the cell size down.
Consequently, the lower effective program voltage due to the high parasitic S/D resistance
in an extremely scaled cell results in a small VT window and thereupon retards the program
speed. CHEI programming in conventional NOR-type Flash memories also poses a
constraint on the choice of the proper gate voltage (VG) and drain voltage (VD), as shown in
Fig. 3-1(b). A high VD is necessary to induce a high lateral electric field for the generation of
hot electrons. Furthermore, a high VG is indispensable for attaining a sufficient vertical
electric field for the injection of hot electrons into a charge storage node. Simultaneous
optimization of the lateral and vertical electric fields is very difficult. Moreover, the high
voltage needed to generate an adequate amount of hot electrons for programming consumes
a large amount of power.
The source-side injection of hot electrons for programming at low voltage is therefore
attractive because of its high injection efficiency and the absence of constraints on the co-
optimization of VG and VD. Previous reports on source-side injection by the decoupling of
hot electrons from the drain field demonstrated a fast low-voltage programming operation
(Wu et al., 1986); however, it is difficult to adapt this approach to NOR-type Flash memory
as it requires extra processes and different circuitry. In this section, an intensive analysis of
NOR Flash memory, where double-gate (DG) DSSB FinFET silicon-oxide-nitride-oxide-
silicon (SONOS) devices are employed, is carried out. The program speed is boosted even at
a low program bias owing to the improved CHEI, which is enabled by the inherent sharp
band bending of the DSSB at the source side. The DSSB structure provides several benefits,
including increased lateral and vertical fields, excellent injection efficiency into the charge
storage node, and a drain disturbance-free feature against a conventional device composed
of diffused p-n junctions.

Flash Memories 182

0.0 0.1 0.2 0.3 0.4
2

3

4

5

6

7

65nm
90nm

130nm 220nm

Theoretical limit ~ 3.2VD
ra

in
 v

ol
ta

ge
, V

D (
V)

LG (m)

 Max. VD for Disturb
 Min. VD for Program

Gate

S

Silicon substrate

D

WL (VG)

CSL BL (VD)

High field region

Lateral E-field
(Elateral ~ VD/LG)

Ve
rti

ca
l E

-fi
el

d
(E

ve
rti

ca
l~

 V
G

D
/t E

O
T)

LG

tEOT

WL: word line
CSL: common source line
BL: bit line

 (a) (b)

Fig. 3-1. (a) Scaling trend of drain biases. Minimum bias for programming speed and
maximum bias for allowable drain disturbance are drawn for NOR flash generations. (b)
Trade-off relations between vertical field and lateral field in the conventional CHEI
programming method.

3.1.1 Device fabrication
The process schematics and sequences are summarized in Fig. 3-2. The process flow of the
DSSB FinFET SONOS device is the same as that of the conventional FinFET except for the
formation of gate spacers and the silicided S/D junctions. Using a shallow implantation of
arsenic (As) after the formation of gate spacers, the SB height is effectively modulated by
using segregated dopants. During the formation of the gate spacers, the S/D regions are
recessed so that they subsequently provide a uniform S/D along the fin depth (vertical
direction). This task is challenging with only S/D implantation and activation. Finally, the
DSSB S/D was formed by means of nickel silicidation (NiSi) in a two-step rapid thermal
processing (RTP), which can minimize the lateral diffusion of NiSi.

Si substrate
Buried oxide layer

Spacer Gate

NiSi fin
Dopant segregation

Recessed

Fin

Gate
O/N/O layer

Si substrate
Buried oxide layer

Fin

Si substrate
Buried oxide layer

Hard mask

Si substrate
Buried oxide layer

Si

(1) (2)

(3) (4)

WFIN

LG

(100) SOI wafer
Channel implantation
Fin patterning
O/N/O and poly-Si deposition
Gate formation
Spacer formation (GPOX)
Arsenic (5 keV) implantation
Ni Silicidation (RTP, 2-step annealing)
Unreacted metal removal
(sulfuric peroxide mixture)

 (a) (b)

Fig. 3-2. Flow chart of the DSSB FinFET SONOS device. In the silicidation process, a two-
step RTP is used to reduce any overgrowth of NiSi and mitigate lateral diffusion. Since the
SB height is effectively modulated by the dopant concentration, a shallow implantation (5
keV) of As was applied.

Source and Drain Junction Engineering for Enhanced Non-Volatile Memory Performance

183

Hard mask
O/N/O

Gate Spacer

Buried oxide

Recessed
S/D

NiSi
Si Fin

5 nm

S
O
N

O
S

Fin channel

3 nm

6 nm

4 nm

Gate

Source

Drain

Gate

Gate

a

a’b

b’

Si

Gate

50 nm

O/N/O

(a) (b)

(c) (d)

Fig. 3-3. SEM and TEM images of the fabricated devices (Choi et al., 2008).

The SEM photograph in Fig. 3-3(a) shows a bird’s-eye view of the fabricated DSSB FinFET
SONOS device. Fig. 3-3(b), 3-3(c), and 3-3(d) are cross-sectional TEM images from various
points of view of the DSSB FinFET SONOS device. The device has a gate length of 220 nm and
a fin that ranges in width from 30nm to 100nm. For the control group, a conventional FinFET
SONOS device with a diffused p-n junction was also fabricated. In Fig. 3-4, the results obtained
from a scanning TEM image for verification of dopant segregation are shown. Dopant
segregation at the interface between the silicon and the silicide is clearly observed.

0 10 20 30 40

Intensity (a.u.)In
te

ns
ity

 (a
.u

.)

Depth (nm)

Si

As

NiSi/Si
interface

Buried oxide

50 nm

Gate

Hard
mask

Si
channel

EDS
direction

NiSi

a

a’

Fig. 3-4. TEM image of DG DSSB SONOS and STEM energy dispersive spectromotry (EDS)
analysis. (Choi et al., 2009a)

3.1.2 Memory characteristics
Fig. 3-5(a) schematically illustrates the different injection mechanism of hot electrons for the
DSSB Flash memory device and the conventional Flash memory device under the

Flash Memories 182

0.0 0.1 0.2 0.3 0.4
2

3

4

5

6

7

65nm
90nm

130nm 220nm

Theoretical limit ~ 3.2VD
ra

in
 v

ol
ta

ge
, V

D (
V)

LG (m)

 Max. VD for Disturb
 Min. VD for Program

Gate

S

Silicon substrate

D

WL (VG)

CSL BL (VD)

High field region

Lateral E-field
(Elateral ~ VD/LG)

Ve
rti

ca
l E

-fi
el

d
(E

ve
rti

ca
l~

 V
G

D
/t E

O
T)

LG

tEOT

WL: word line
CSL: common source line
BL: bit line

 (a) (b)

Fig. 3-1. (a) Scaling trend of drain biases. Minimum bias for programming speed and
maximum bias for allowable drain disturbance are drawn for NOR flash generations. (b)
Trade-off relations between vertical field and lateral field in the conventional CHEI
programming method.

3.1.1 Device fabrication
The process schematics and sequences are summarized in Fig. 3-2. The process flow of the
DSSB FinFET SONOS device is the same as that of the conventional FinFET except for the
formation of gate spacers and the silicided S/D junctions. Using a shallow implantation of
arsenic (As) after the formation of gate spacers, the SB height is effectively modulated by
using segregated dopants. During the formation of the gate spacers, the S/D regions are
recessed so that they subsequently provide a uniform S/D along the fin depth (vertical
direction). This task is challenging with only S/D implantation and activation. Finally, the
DSSB S/D was formed by means of nickel silicidation (NiSi) in a two-step rapid thermal
processing (RTP), which can minimize the lateral diffusion of NiSi.

Si substrate
Buried oxide layer

Spacer Gate

NiSi fin
Dopant segregation

Recessed

Fin

Gate
O/N/O layer

Si substrate
Buried oxide layer

Fin

Si substrate
Buried oxide layer

Hard mask

Si substrate
Buried oxide layer

Si

(1) (2)

(3) (4)

WFIN

LG

(100) SOI wafer
Channel implantation
Fin patterning
O/N/O and poly-Si deposition
Gate formation
Spacer formation (GPOX)
Arsenic (5 keV) implantation
Ni Silicidation (RTP, 2-step annealing)
Unreacted metal removal
(sulfuric peroxide mixture)

 (a) (b)

Fig. 3-2. Flow chart of the DSSB FinFET SONOS device. In the silicidation process, a two-
step RTP is used to reduce any overgrowth of NiSi and mitigate lateral diffusion. Since the
SB height is effectively modulated by the dopant concentration, a shallow implantation (5
keV) of As was applied.

Source and Drain Junction Engineering for Enhanced Non-Volatile Memory Performance

183

Hard mask
O/N/O

Gate Spacer

Buried oxide

Recessed
S/D

NiSi
Si Fin

5 nm

S
O
N

O
S

Fin channel

3 nm

6 nm

4 nm

Gate

Source

Drain

Gate

Gate

a

a’b

b’

Si

Gate

50 nm

O/N/O

(a) (b)

(c) (d)

Fig. 3-3. SEM and TEM images of the fabricated devices (Choi et al., 2008).

The SEM photograph in Fig. 3-3(a) shows a bird’s-eye view of the fabricated DSSB FinFET
SONOS device. Fig. 3-3(b), 3-3(c), and 3-3(d) are cross-sectional TEM images from various
points of view of the DSSB FinFET SONOS device. The device has a gate length of 220 nm and
a fin that ranges in width from 30nm to 100nm. For the control group, a conventional FinFET
SONOS device with a diffused p-n junction was also fabricated. In Fig. 3-4, the results obtained
from a scanning TEM image for verification of dopant segregation are shown. Dopant
segregation at the interface between the silicon and the silicide is clearly observed.

0 10 20 30 40

Intensity (a.u.)In
te

ns
ity

 (a
.u

.)

Depth (nm)

Si

As

NiSi/Si
interface

Buried oxide

50 nm

Gate

Hard
mask

Si
channel

EDS
direction

NiSi

a

a’

Fig. 3-4. TEM image of DG DSSB SONOS and STEM energy dispersive spectromotry (EDS)
analysis. (Choi et al., 2009a)

3.1.2 Memory characteristics
Fig. 3-5(a) schematically illustrates the different injection mechanism of hot electrons for the
DSSB Flash memory device and the conventional Flash memory device under the

Flash Memories

184

programming bias condition of CHEI (VG > 0 and VD > 0). In the case of the conventional
Flash memory device, hot electrons are generated near the drain-side where the device is
under a high lateral electric field; the hot electrons are then injected into the drain-side
charge storage node. However, the drain-side region has a low vertical electric field due to
the low gate-to-drain potential difference (VGD = VG - VD). As a result, the injection efficiency
is lowered. Moreover, due to high VD, a Flash memory cell that uses a conventional CHEI
method is not suitable for applications with low power operation and high density. In
contrast to the conventional device, however, the DSSB device has an abrupt band bending
capability near the source-side region, and this capability provides a naturally built-in high
lateral electric field that generates sufficient source-side hot electrons, even at a low voltage.
In addition, this source-side region experiences a high vertical field due to the high gate-to-
source potential difference (VGS = VG - VS, VS = grounded). As a result, hot electrons are
injected into the source-side storage node rather than the drain-side storage node;
consequently, the DSSB device has higher injection efficiency than the conventional device.
Fig. 3-5(b) shows a simulated energy band diagram for both cases at the programming state.
The magnitude of the simulated lateral electric field in a programming state is also shown in
Fig. 3-5(c) for different drain voltages. Note that the DSSB FinFET SONOS device has a
larger lateral electric field than the conventional FinFET SONOS device under the same
programming conditions. This is mainly attributed to the intrinsic sharp band bending of
the DSSB junction at the source-side, which is marked by dashed circle in Fig. 3-5(b).

Gate

Source Drain

Silicon substrate

VG > 0

VD = 0 VD > 0

Buried oxide

DSSB Conv.
e-

-4

-3

-2

-1

0

1

Drain

Source

Program bias condition
@ VG = 7 V, VD = 4 V

Conv.

DSSB

El
ec

tr
on

 e
ne

rg
y

(e
V)

Channel length direction
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8 Source side

Drain side

VG = 7V
VD = 3V, 4V

DSSB

La
te

ra
l e

-fi
el

d
(M

V/
cm

)

Conv.

La
te

ra
l E

-fi
el

d
(M

V/
cm

)DSSB region

(a) (b) (c)

Fig. 3-5. (a) Comparison of the DSSB device and the conventional device in terms of the
charge injection point of hot electrons. (b) Simulated energy band diagrams of both devices
at the programming state. The sharp energy band bending should be noted. (c) Simulated
lateral electric field for the DSSB device at the source-side and the conventional device at the
drain-side. (Choi et al., 2009a)

Fig. 3-6 illustrates the measured programming and erasing transient characteristics. A
comparative study was performed with a conventional FinFET SONOS device with the
diffused p-n junction as a reference. Under program conditions of VG = 7 V and VD = 4 V
with tPGM = 350 ns, a VT shift of approximately 4.5 V is observed in the DSSB FinFET SONOS
device. The DSSB FinFET SONOS device and a conventional FinFET SONOS device for
programming show a difference of roughly 3.5 V in the VT shift value at a programming
time of 350 ns. This difference is attributed to the high lateral and vertical electric fields at
the source-side, which would originate from the sharp band bending caused by the dopant
segregated region as well as the intrinsic band profile. In the programming state, electrons
injected from the source electrode via thermionic emission or a tunneling process are
accelerated by the high lateral electric field and can become hot at the source-side. The

Source and Drain Junction Engineering for Enhanced Non-Volatile Memory Performance 185

electrons can subsequently surmount the tunnel oxide barrier around the source-side. As a
result, the programming is more efficient. On the other hand, in the erasing state created by
FN tunneling, there is no significant difference between the DSSB FinFET SONOS device
and the conventional FinFET SONOS device. However, it can be straightforwardly expected
that the erasing characteristics can be enhanced by engineering of the gate stack, such as
metal-gate (with high workfunction) or bandgap.

10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1

0

2

4

6

8

Conv.

DSSB

LG = 300nm
WFIN = 30nm

VG / VD
8V / 4V
7V / 4V
7V / 3V

Th
re

sh
ol

d
vo

lta
ge

, V
T (

V)

Program time, tPGM (sec)
10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100
0

1

2

3

4

5

O/N/O=3nm/6nm/4nm

VERS=-15V, -14V

LG = 300nm
WFIN = 30nmTh

re
sh

ol
d

vo
lta

ge
, V

T (
V)

Erase time, tERS (sec)
 (a) (b)

Fig. 3-6. (a) Program and (b) erase characteristics for DG DSSB and DG conventional SONOS
devices (Choi et al., 2009a)

To trace the position of the injected charges experimentally, the transfer characteristics were
analyzed after CHEI programming, and the results are shown in Fig. 3-7(a). The
observations confirm that hot electrons preferentially inject into the source-side in the DSSB
FinFET SONOS device. The behavior of the DSSB FinFET SONOS device is exactly opposite
to that of the conventional FinFET SONOS device. After the CHEI programming, the surface
potential of the DSSB FinFET SONOS device is more sensitive to VD in the reverse state than
in the forward state because of the source-side injection of hot electrons. Even though the VT
shift as well as the degradation of the subthreshold swing (SS) caused by captured hot
electrons at the drain-side is shown in the forward read state (tPGM = 320 ns), the amount of
captured electrons at the drain-side is much smaller than at the source-side. As a result, the
VT shift as well as the degradation of SS is not shown in high drain bias of the forward read
state. Furthermore, Fig. 3-7(a) shows increased off-state current in relation to VD during the
reverse read operation. As shown in Fig. 3-7(b), the simulated energy band diagrams of the
forward and reverse read operation are plotted to explain the VT shift and the changed off-
state current with varying VD voltage in Fig. 3-7(a). The off-state current in the Schottky-
barrier (SB) MOSFET is known to originate from hole tunneling because of the narrowed
tunneling width at the drain-side. In a reverse read operation (i.e., the charge trapped region
is at the drain-side and read voltage is applied to the drain), the trapped charge can narrow
the tunneling width of the drain-side in the off-state. As a result, the off-state current is more
sensitive to VD in the reverse read state than in the forward read state; it also increases in
relation to the increment of VD.
The retention characteristics of the DSSB FinFET SONOS device at various 1k post-cycled
programmed states are illustrated in Fig. 3-8. The characteristics are measured at room
temperature. The VT window at tPGM = 1 ms is expected to have a value exceeding 4 V after
10 years.
The drain disturbance of a programmed cell with a relatively high program bias (VD = 5 V)
was also characterized. In Fig. 3-9, the memory architecture in NOR Flash memory is

Flash Memories

184

programming bias condition of CHEI (VG > 0 and VD > 0). In the case of the conventional
Flash memory device, hot electrons are generated near the drain-side where the device is
under a high lateral electric field; the hot electrons are then injected into the drain-side
charge storage node. However, the drain-side region has a low vertical electric field due to
the low gate-to-drain potential difference (VGD = VG - VD). As a result, the injection efficiency
is lowered. Moreover, due to high VD, a Flash memory cell that uses a conventional CHEI
method is not suitable for applications with low power operation and high density. In
contrast to the conventional device, however, the DSSB device has an abrupt band bending
capability near the source-side region, and this capability provides a naturally built-in high
lateral electric field that generates sufficient source-side hot electrons, even at a low voltage.
In addition, this source-side region experiences a high vertical field due to the high gate-to-
source potential difference (VGS = VG - VS, VS = grounded). As a result, hot electrons are
injected into the source-side storage node rather than the drain-side storage node;
consequently, the DSSB device has higher injection efficiency than the conventional device.
Fig. 3-5(b) shows a simulated energy band diagram for both cases at the programming state.
The magnitude of the simulated lateral electric field in a programming state is also shown in
Fig. 3-5(c) for different drain voltages. Note that the DSSB FinFET SONOS device has a
larger lateral electric field than the conventional FinFET SONOS device under the same
programming conditions. This is mainly attributed to the intrinsic sharp band bending of
the DSSB junction at the source-side, which is marked by dashed circle in Fig. 3-5(b).

Gate

Source Drain

Silicon substrate

VG > 0

VD = 0 VD > 0

Buried oxide

DSSB Conv.
e-

-4

-3

-2

-1

0

1

Drain

Source

Program bias condition
@ VG = 7 V, VD = 4 V

Conv.

DSSB

El
ec

tr
on

 e
ne

rg
y

(e
V)

Channel length direction
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8 Source side

Drain side

VG = 7V
VD = 3V, 4V

DSSB

La
te

ra
l e

-fi
el

d
(M

V/
cm

)

Conv.

La
te

ra
l E

-fi
el

d
(M

V/
cm

)DSSB region

(a) (b) (c)

Fig. 3-5. (a) Comparison of the DSSB device and the conventional device in terms of the
charge injection point of hot electrons. (b) Simulated energy band diagrams of both devices
at the programming state. The sharp energy band bending should be noted. (c) Simulated
lateral electric field for the DSSB device at the source-side and the conventional device at the
drain-side. (Choi et al., 2009a)

Fig. 3-6 illustrates the measured programming and erasing transient characteristics. A
comparative study was performed with a conventional FinFET SONOS device with the
diffused p-n junction as a reference. Under program conditions of VG = 7 V and VD = 4 V
with tPGM = 350 ns, a VT shift of approximately 4.5 V is observed in the DSSB FinFET SONOS
device. The DSSB FinFET SONOS device and a conventional FinFET SONOS device for
programming show a difference of roughly 3.5 V in the VT shift value at a programming
time of 350 ns. This difference is attributed to the high lateral and vertical electric fields at
the source-side, which would originate from the sharp band bending caused by the dopant
segregated region as well as the intrinsic band profile. In the programming state, electrons
injected from the source electrode via thermionic emission or a tunneling process are
accelerated by the high lateral electric field and can become hot at the source-side. The

Source and Drain Junction Engineering for Enhanced Non-Volatile Memory Performance 185

electrons can subsequently surmount the tunnel oxide barrier around the source-side. As a
result, the programming is more efficient. On the other hand, in the erasing state created by
FN tunneling, there is no significant difference between the DSSB FinFET SONOS device
and the conventional FinFET SONOS device. However, it can be straightforwardly expected
that the erasing characteristics can be enhanced by engineering of the gate stack, such as
metal-gate (with high workfunction) or bandgap.

10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1

0

2

4

6

8

Conv.

DSSB

LG = 300nm
WFIN = 30nm

VG / VD
8V / 4V
7V / 4V
7V / 3V

Th
re

sh
ol

d
vo

lta
ge

, V
T (

V)

Program time, tPGM (sec)
10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100
0

1

2

3

4

5

O/N/O=3nm/6nm/4nm

VERS=-15V, -14V

LG = 300nm
WFIN = 30nmTh

re
sh

ol
d

vo
lta

ge
, V

T (
V)

Erase time, tERS (sec)
 (a) (b)

Fig. 3-6. (a) Program and (b) erase characteristics for DG DSSB and DG conventional SONOS
devices (Choi et al., 2009a)

To trace the position of the injected charges experimentally, the transfer characteristics were
analyzed after CHEI programming, and the results are shown in Fig. 3-7(a). The
observations confirm that hot electrons preferentially inject into the source-side in the DSSB
FinFET SONOS device. The behavior of the DSSB FinFET SONOS device is exactly opposite
to that of the conventional FinFET SONOS device. After the CHEI programming, the surface
potential of the DSSB FinFET SONOS device is more sensitive to VD in the reverse state than
in the forward state because of the source-side injection of hot electrons. Even though the VT
shift as well as the degradation of the subthreshold swing (SS) caused by captured hot
electrons at the drain-side is shown in the forward read state (tPGM = 320 ns), the amount of
captured electrons at the drain-side is much smaller than at the source-side. As a result, the
VT shift as well as the degradation of SS is not shown in high drain bias of the forward read
state. Furthermore, Fig. 3-7(a) shows increased off-state current in relation to VD during the
reverse read operation. As shown in Fig. 3-7(b), the simulated energy band diagrams of the
forward and reverse read operation are plotted to explain the VT shift and the changed off-
state current with varying VD voltage in Fig. 3-7(a). The off-state current in the Schottky-
barrier (SB) MOSFET is known to originate from hole tunneling because of the narrowed
tunneling width at the drain-side. In a reverse read operation (i.e., the charge trapped region
is at the drain-side and read voltage is applied to the drain), the trapped charge can narrow
the tunneling width of the drain-side in the off-state. As a result, the off-state current is more
sensitive to VD in the reverse read state than in the forward read state; it also increases in
relation to the increment of VD.
The retention characteristics of the DSSB FinFET SONOS device at various 1k post-cycled
programmed states are illustrated in Fig. 3-8. The characteristics are measured at room
temperature. The VT window at tPGM = 1 ms is expected to have a value exceeding 4 V after
10 years.
The drain disturbance of a programmed cell with a relatively high program bias (VD = 5 V)
was also characterized. In Fig. 3-9, the memory architecture in NOR Flash memory is

Flash Memories 186

-1 0 1 2 3 4 5 6
10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

VD
= 0.05 V, 1 V

Fresh

tPGM
= 320nsD

ra
in

 c
ur

re
nt

, I
D (

A)

Gate voltage, VG (V)

-3

-2

-1

0

1

-3

-2

-1

0

1

Channel length direction

El
ec

tr
on

 e
ne

rg
y

(e
V)

VD = 0.05 V, 2 V

Forward read state Reverse read state

Charge trapped region

 (a) (b)

Fig. 3-7. (a) The ID-VG characteristics as a parameter of VD at the fresh and programmed
states in forward and reverse read operations. (b) The simulated energy band diagram of the
forward and reverse read state at the off-state. The trapped charges can narrow the
tunneling width of the drain-side in the off-state. (Choi et al., 2009b)

10-1 100 101 102 103 104 105 106 107 108 109
-2

0

2

4

6

8

tPGM = 32 ns

tPGM = 320 ns

tPGM = 1ms

Erased, VERS=-15V, tERS=10ms

After 1k cycling, Program : VG = 8 V, VD = 4 V

10 years

Th
re

sh
ol

d
vo

lta
ge

, V
th
 (V

)

Time (sec)
Fig. 3-8. Retention characteristics of a DG DSSB device for MLC in NOR Flash memory
operation. (Choi et al., 2009a)

illustrated and the low drain disturbance in DSSB devices is conceptually explained. For the
case of cell A (programmed cell), electrons are captured at the source side rather than the
drain side. On the other hand, in the case of a conventional device (cell B), trapped electrons
at the drain side increase the potential for hot holes to be generated, which results in a drain
disturbance (i.e., soft erase). Therefore, improved immunity against drain disturbances is
achieved in the DSSB NOR Flash device, as shown in Fig. 3-10. This is primarily due to the
trapped electrons located at the source side, as they inhibit hot holes from being injected
into the trapped regions.

3.2 Fowler-Nordheim tunneling program in double-gate DSSB MOSFETs
One of the advantages of SONOS type Flash memory devices is natural immunity to
floating-gate coupling issues, thereby allowing downscaling to the nano-regime. SONOS-
type devices can operate with very few electrons without displaying erratic behavior.

Source and Drain Junction Engineering for Enhanced Non-Volatile Memory Performance

187

NiSi

NiSi

n+

n+

Low drain
disturbance

High drain
disturbance

Silicon

Silicon

(1)

(2)

DSSB device

Conv. device

Gate

Source Drain
a a’

(1) (2)

Gate

PGM BL
(VD = 4 V)

Programming
cell (VG = 7 V)

Programmed
drain disturbance
cell (VG = 0 V)

Cell A

Cell B

CSL

 (a) (b) (c)

Fig. 3-9. (a) Schematic of the DG DSSB FinFET SONOS device. (b) Architecture of NOR Flash
memory. (c) Conceptually illustrated energy band diagrams at the programmed state for the
DSSB and the conventional device. (Choi et al., 2009a)

10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1

1

2

3

4

5

Programmed
cells

Th
re

sh
ol

d
vo

lta
ge

, V
T (

V)

Drain disturb time (sec)

 DSSB VG = 0 V / VD = 5 V
 Conv. VG = 0 V / VD = 5 V

Fig. 3-10. Drain disturbances of DG DSSB and DG conventional devices: Compared to the
conventional device, high immunity to drain disturbance is achieved in the DG DSSB
device. (Choi et al., 2009a)

However, their programming time is excessively long, falling in a range of 10-6 ~ 10-3 sec due
to the Fowler-Nordheim (FN) tunneling mechanism in conventional NAND Flash memory.
This makes it difficult for applications requiring high-speed application such as solid-state
drive (SSD). In addition, the conventional diffused S/D with deep junctions obstructs
further aggressive scaling in the SONOS type memory devices.
Current research on NAND Flash memory is mainly focusing on a 3-D stacking structure
realized by deposition of a poly-Si channel. In addition, a junction-free structure, i.e., S/D
junctions are not formed, is indispensable, as the formation of S/D junctions is quite
difficult due to vertical stacked 3-D Flash memory (Lue et al., 2008). However, this structure
cannot be directly applicable to Flash memory with poly-Si channel because of high
resistance at the S/D junctions, as aforementioned. Therefore, another method to form S/D
junctions is needed. In this section, a novel NAND Flash architecture implemented in the
same double-gate DSSB FinFETs SONOS is demonstrated. Fast programming is achieved
due to the electrons with extra kinetic energy, i.e., hot carriers, on the dopant segregated

Flash Memories 186

-1 0 1 2 3 4 5 6
10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

VD
= 0.05 V, 1 V

Fresh

tPGM
= 320nsD

ra
in

 c
ur

re
nt

, I
D (

A)

Gate voltage, VG (V)

-3

-2

-1

0

1

-3

-2

-1

0

1

Channel length direction

El
ec

tr
on

 e
ne

rg
y

(e
V)

VD = 0.05 V, 2 V

Forward read state Reverse read state

Charge trapped region

 (a) (b)

Fig. 3-7. (a) The ID-VG characteristics as a parameter of VD at the fresh and programmed
states in forward and reverse read operations. (b) The simulated energy band diagram of the
forward and reverse read state at the off-state. The trapped charges can narrow the
tunneling width of the drain-side in the off-state. (Choi et al., 2009b)

10-1 100 101 102 103 104 105 106 107 108 109
-2

0

2

4

6

8

tPGM = 32 ns

tPGM = 320 ns

tPGM = 1ms

Erased, VERS=-15V, tERS=10ms

After 1k cycling, Program : VG = 8 V, VD = 4 V

10 years

Th
re

sh
ol

d
vo

lta
ge

, V
th
 (V

)

Time (sec)
Fig. 3-8. Retention characteristics of a DG DSSB device for MLC in NOR Flash memory
operation. (Choi et al., 2009a)

illustrated and the low drain disturbance in DSSB devices is conceptually explained. For the
case of cell A (programmed cell), electrons are captured at the source side rather than the
drain side. On the other hand, in the case of a conventional device (cell B), trapped electrons
at the drain side increase the potential for hot holes to be generated, which results in a drain
disturbance (i.e., soft erase). Therefore, improved immunity against drain disturbances is
achieved in the DSSB NOR Flash device, as shown in Fig. 3-10. This is primarily due to the
trapped electrons located at the source side, as they inhibit hot holes from being injected
into the trapped regions.

3.2 Fowler-Nordheim tunneling program in double-gate DSSB MOSFETs
One of the advantages of SONOS type Flash memory devices is natural immunity to
floating-gate coupling issues, thereby allowing downscaling to the nano-regime. SONOS-
type devices can operate with very few electrons without displaying erratic behavior.

Source and Drain Junction Engineering for Enhanced Non-Volatile Memory Performance

187

NiSi

NiSi

n+

n+

Low drain
disturbance

High drain
disturbance

Silicon

Silicon

(1)

(2)

DSSB device

Conv. device

Gate

Source Drain
a a’

(1) (2)

Gate

PGM BL
(VD = 4 V)

Programming
cell (VG = 7 V)

Programmed
drain disturbance
cell (VG = 0 V)

Cell A

Cell B

CSL

 (a) (b) (c)

Fig. 3-9. (a) Schematic of the DG DSSB FinFET SONOS device. (b) Architecture of NOR Flash
memory. (c) Conceptually illustrated energy band diagrams at the programmed state for the
DSSB and the conventional device. (Choi et al., 2009a)

10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1

1

2

3

4

5

Programmed
cells

Th
re

sh
ol

d
vo

lta
ge

, V
T (

V)

Drain disturb time (sec)

 DSSB VG = 0 V / VD = 5 V
 Conv. VG = 0 V / VD = 5 V

Fig. 3-10. Drain disturbances of DG DSSB and DG conventional devices: Compared to the
conventional device, high immunity to drain disturbance is achieved in the DG DSSB
device. (Choi et al., 2009a)

However, their programming time is excessively long, falling in a range of 10-6 ~ 10-3 sec due
to the Fowler-Nordheim (FN) tunneling mechanism in conventional NAND Flash memory.
This makes it difficult for applications requiring high-speed application such as solid-state
drive (SSD). In addition, the conventional diffused S/D with deep junctions obstructs
further aggressive scaling in the SONOS type memory devices.
Current research on NAND Flash memory is mainly focusing on a 3-D stacking structure
realized by deposition of a poly-Si channel. In addition, a junction-free structure, i.e., S/D
junctions are not formed, is indispensable, as the formation of S/D junctions is quite
difficult due to vertical stacked 3-D Flash memory (Lue et al., 2008). However, this structure
cannot be directly applicable to Flash memory with poly-Si channel because of high
resistance at the S/D junctions, as aforementioned. Therefore, another method to form S/D
junctions is needed. In this section, a novel NAND Flash architecture implemented in the
same double-gate DSSB FinFETs SONOS is demonstrated. Fast programming is achieved
due to the electrons with extra kinetic energy, i.e., hot carriers, on the dopant segregated

Flash Memories 188

S/D side. These hot electrons require neither high programming voltage nor long
programming time. With the same ground voltage on the S/D junction, hot electrons
triggered by sharp energy band bending at the edge of silicided S/D junctions are naturally
generated.

3.2.1 Memory characteristics
Fig. 3-11(a) explains the operating principle at the programming state. Fast programming is
achievable by applying the same ground voltage on both S/D junctions simultaneously (Fig.
3-11(b)). In this case, a locally high lateral of electric field is generated by a sharpened band
structure at the dopant-segregated region. Thus, electrons thermally injected or tunneled
from S/D edges, i.e., with extra kinetic energy, are energized by this high electric field and
are mainly used to program the NAND Flash device. Therefore, fast programming with low
voltage is feasible with enhanced tunneling probability. Note that most of trapped electrons
in short programming time can be located at the edge of S/D junctions.

Si substrate

NiSi NiSi

Gate

Hot electron
injection

O/N/O

Buried oxide
Dopant segregated region

VWL1=Vpass

VWL32=Vpass

VWL16=+12V

VBL1=GND VBL1=VCC

VBL1=GND

0 V

0 V

2 V

2 V

Selected
transistor

Selected
transistor

VBL1=VCC
 (a) (b)

Fig. 3-11. (a) Schematic of the operating principle of the DSSB FinFET SONOS. (b) The hot
electrons energized by the DSSB are used to program for a NAND Flash application by
applying the ground voltage on the S/D junctions. (Choi et al., 2009c)

Figs. 3-12(a) and 3-12(b) illustrate the programming and erasing transient characteristics,
respectively. As a reference, a conventional FinFET SONOS with a diffused p-n junction is
compared. The results demonstrate the excellent program efficiency of the DSSB FinFET
SONOS. The program conditions VPGM = 12 V with tPGM = 100 ns exhibit a VT shift of 4.5 V in
the DSSB FinFET SONOS. It should be noted that a significant VT shift for programming was
achieved within a few tens of nanoseconds, which is approximately 1000 times faster than the
conventional device. The difference in the VT shift between the DSSB FinFET SONOS and a
conventional FinFET SONOS for programming was approximately 3 V at 100 ns programming
time. This difference is attributed to hot carrier injection energized by sharp band bending at
the dopant segregated S/D junction edge. These outstanding results are among the best results
in terms of VT window and programming/erasing speed reported to date for FinFET structure
flash memory devices. However, there is no significant difference in the erase characteristics of
the DSSB FinFET SONOS as compared with a conventional FinFET SONOS because electron
de-trapping from the nitride to the silicon substrate is not different between them.

Source and Drain Junction Engineering for Enhanced Non-Volatile Memory Performance 189

10-7 10-6 10-5 10-4 10-3 10-2 10-1 100
-1

0

1

2

3

4

5
Solid: Conv.
Open: DSSB

VERS = -14 V, -13 V

LG = 220 nm
WFIN = 50 nm
VD = 0.05 VTh

re
sh

ol
d

vo
lta

ge
, V

T (
V)

Erase time, tERS (sec)
10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2

0

2

4

6

8
LG = 220 nm
WFIN = 50 nm
VD = 0.05 V

DSSB

Conv.

VPGM = 12 V, 11 V, 10 VTh
re

sh
ol

d
vo

lta
ge

, V
T (

V)

Program time, tPGM (sec)
 (a) (b)

Fig. 3-12. Program (a) and erase (b) transient characteristics with various program voltages.
Excellent program efficiency compared to the control group is achieved due to hot electrons
energized by sharp band bending at the S/D. (Choi et al., 2009c)

The tunneling oxide of conventional devices may be non-uniform due to the non-uniform
etching profile of the narrow silicon channel; therefore the tunneling probability of electrons
at the channel fluctuates significantly in conventional devices. However, for the case of
DSSB devices, the trapped electrons are mainly located at the edges of the S/D junction.
Therefore, a more parallel VT shift can be achieved in the DSSB device. As shown in Fig. 3-
13, a parallel shift among programmed states was found in the DSSB device but not in the
conventional device. This implies that two-sided charge injection at the S/D prevails in the
DSSB FinFET SONOS device. Note, on the other hand, that an unwanted non-uniform
charge injection by FN tunneling occurs in the conventional FinFET SONOS device,
resulting in an oblique shift and degradation of the slope.

-1 0 1 2 3 4 5 6 7
10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

"Parallel shift"

Circle : DSSB FinFET
Line : Conv. FinFET

Fresh

Program : VPGM = 12 V

D
ra

in
 c

ur
re

nt
, I

D (
A)

Gate voltage, VG (V)
Fig. 3-13. Comparison of the ID-VG shift among various programmed states. A two-sided
injected charge produces a parallel shift of I-V. (Choi et al., 2008)

The retention characteristics after 1k cycling and P/E cycling endurance of the DSSB FinFET
SONOS were compared to the control group, a conventional FinFET SONOS, and the results
are presented in Figs. 3-14 (a) and 3-14(b), respectively. These characteristics were measured
at room temperature. Fig. 3-14(a) shows that a rapid degradation of the retention
characteristics was monitored during longer programming time. Under this condition the

Flash Memories 188

S/D side. These hot electrons require neither high programming voltage nor long
programming time. With the same ground voltage on the S/D junction, hot electrons
triggered by sharp energy band bending at the edge of silicided S/D junctions are naturally
generated.

3.2.1 Memory characteristics
Fig. 3-11(a) explains the operating principle at the programming state. Fast programming is
achievable by applying the same ground voltage on both S/D junctions simultaneously (Fig.
3-11(b)). In this case, a locally high lateral of electric field is generated by a sharpened band
structure at the dopant-segregated region. Thus, electrons thermally injected or tunneled
from S/D edges, i.e., with extra kinetic energy, are energized by this high electric field and
are mainly used to program the NAND Flash device. Therefore, fast programming with low
voltage is feasible with enhanced tunneling probability. Note that most of trapped electrons
in short programming time can be located at the edge of S/D junctions.

Si substrate

NiSi NiSi

Gate

Hot electron
injection

O/N/O

Buried oxide
Dopant segregated region

VWL1=Vpass

VWL32=Vpass

VWL16=+12V

VBL1=GND VBL1=VCC

VBL1=GND

0 V

0 V

2 V

2 V

Selected
transistor

Selected
transistor

VBL1=VCC
 (a) (b)

Fig. 3-11. (a) Schematic of the operating principle of the DSSB FinFET SONOS. (b) The hot
electrons energized by the DSSB are used to program for a NAND Flash application by
applying the ground voltage on the S/D junctions. (Choi et al., 2009c)

Figs. 3-12(a) and 3-12(b) illustrate the programming and erasing transient characteristics,
respectively. As a reference, a conventional FinFET SONOS with a diffused p-n junction is
compared. The results demonstrate the excellent program efficiency of the DSSB FinFET
SONOS. The program conditions VPGM = 12 V with tPGM = 100 ns exhibit a VT shift of 4.5 V in
the DSSB FinFET SONOS. It should be noted that a significant VT shift for programming was
achieved within a few tens of nanoseconds, which is approximately 1000 times faster than the
conventional device. The difference in the VT shift between the DSSB FinFET SONOS and a
conventional FinFET SONOS for programming was approximately 3 V at 100 ns programming
time. This difference is attributed to hot carrier injection energized by sharp band bending at
the dopant segregated S/D junction edge. These outstanding results are among the best results
in terms of VT window and programming/erasing speed reported to date for FinFET structure
flash memory devices. However, there is no significant difference in the erase characteristics of
the DSSB FinFET SONOS as compared with a conventional FinFET SONOS because electron
de-trapping from the nitride to the silicon substrate is not different between them.

Source and Drain Junction Engineering for Enhanced Non-Volatile Memory Performance 189

10-7 10-6 10-5 10-4 10-3 10-2 10-1 100
-1

0

1

2

3

4

5
Solid: Conv.
Open: DSSB

VERS = -14 V, -13 V

LG = 220 nm
WFIN = 50 nm
VD = 0.05 VTh

re
sh

ol
d

vo
lta

ge
, V

T (
V)

Erase time, tERS (sec)
10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2

0

2

4

6

8
LG = 220 nm
WFIN = 50 nm
VD = 0.05 V

DSSB

Conv.

VPGM = 12 V, 11 V, 10 VTh
re

sh
ol

d
vo

lta
ge

, V
T (

V)

Program time, tPGM (sec)
 (a) (b)

Fig. 3-12. Program (a) and erase (b) transient characteristics with various program voltages.
Excellent program efficiency compared to the control group is achieved due to hot electrons
energized by sharp band bending at the S/D. (Choi et al., 2009c)

The tunneling oxide of conventional devices may be non-uniform due to the non-uniform
etching profile of the narrow silicon channel; therefore the tunneling probability of electrons
at the channel fluctuates significantly in conventional devices. However, for the case of
DSSB devices, the trapped electrons are mainly located at the edges of the S/D junction.
Therefore, a more parallel VT shift can be achieved in the DSSB device. As shown in Fig. 3-
13, a parallel shift among programmed states was found in the DSSB device but not in the
conventional device. This implies that two-sided charge injection at the S/D prevails in the
DSSB FinFET SONOS device. Note, on the other hand, that an unwanted non-uniform
charge injection by FN tunneling occurs in the conventional FinFET SONOS device,
resulting in an oblique shift and degradation of the slope.

-1 0 1 2 3 4 5 6 7
10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

"Parallel shift"

Circle : DSSB FinFET
Line : Conv. FinFET

Fresh

Program : VPGM = 12 V

D
ra

in
 c

ur
re

nt
, I

D (
A)

Gate voltage, VG (V)
Fig. 3-13. Comparison of the ID-VG shift among various programmed states. A two-sided
injected charge produces a parallel shift of I-V. (Choi et al., 2008)

The retention characteristics after 1k cycling and P/E cycling endurance of the DSSB FinFET
SONOS were compared to the control group, a conventional FinFET SONOS, and the results
are presented in Figs. 3-14 (a) and 3-14(b), respectively. These characteristics were measured
at room temperature. Fig. 3-14(a) shows that a rapid degradation of the retention
characteristics was monitored during longer programming time. Under this condition the

Flash Memories 190

stored charges are more likely to be lost due to larger damage by hot carriers, degrading the
tunneling oxide quality. Nevertheless, the VT margin of the DSSB FinFET SONOS after ten
years is larger than that of the conventional device. This is attributed to the high efficiency of
programming originating from the sharpened energy band bending by the DSSB structure.
P/E endurance characteristics are also plotted in Fig. 3-14(b). After 105 P/E cycles, only a
negligible VT shift can be seen, thus verifying that the reliability characteristics are
satisfactory.

100 101 102 103 104 105 106 107 108 109
-1

0

1

2

3

4

5

6

10 years

Triangle:
Conv. FinFET

Circle:
DSSB FinFET

Solid : tPGM = 1 s
Open : tPGM = 100 ns

Erase : VERS = -14 V, tERS = 10 ms

Program :VPGM = 12 V, after 1k cycling

Th
re

sh
ol

d
vo

lta
ge

, V
T (

V)

Retention time (sec)
100 101 102 103 104 105

0

1

2

3

4

5

Circle : DSSB, Triangle : Conv.

Program/Erase condition (CONV.)
VPGM = 12 V for 10sec
VERS = -14V for 10msec

Program/Erase condition (DSSB)
VPGM = 12 V for 100nsec
VERS = -14 V for 10msec

Erased

Programmed

Th
re

sh
ol

d
vo

lta
ge

, V
T (

V)

P/E cycle number
 (a) (b)

Fig. 3-14. (a) Post cycling retention comparison of the DSSB FinFET SONOS and a
conventional FinFET SONOS. Due to damage of hot electrons, the charge loss of the DSSB
FinFET SONOS is larger than that of the conventional device. (b) Measured endurance
characteristics of the DSSB FinFET SONOS and the conventional device. A negligible VT
shift is observed in the P/E states. (Choi et al., 2009c)

4. Junctionless MOSFETs
Flash memory has recently scaled rapidly down to a 20 ~ 30 nm node. However, with
researchers relying on conventional approaches, critical scaling limits are being faced,
foreshadowing the possibility that further downscaling will eventually be impossible.
Hence, a new and innovative device structure is urgently required. Most importantly,
among the crucial limitations, the short-channel effects (SCEs) have increasingly become
unavoidable technical challenges, as it is difficult to scale the equivalent oxide thickness
(EOT) below 10 nm due to the nature of multi-layered gate dielectrics. Shallow junctions are
very important to suppress the SCEs; however, it is difficult to precisely control the junction
depth and profile. Moreover, the formation of such shallow junctions becomes a serious
concern with 3-dimensional (3D) multi-stacking integration due to the large thermal budget
required. For this reason, a “junction-free transistor” based on junction-free virtual S/D for
NAND Flash memory was previously reported, and the concept was applied to other types
of 3D integrated Flash memory such as Bit Cost Scalable (BiCS) memory (Tanaka et al.,
2007), Vertical-Stacked-Array-Transistor (VSAT) memory (Kim et al., 2009), and Terabit Cell
Array Transistor (TCAT) memory (Jang et al., 2009), among others (Hubert et al., 2009).
However, it can be expected that current flowing through a string of NAND Flash memory
will be significantly degraded by pre-existing high resistance regions, i.e., undoped
source/drain (S/D) regions, despite that these regions can be transformed into low

Source and Drain Junction Engineering for Enhanced Non-Volatile Memory Performance 191

resistance regions via an inversion process by fringing the field from the gate. This can
therefore lead to severe back-pattern dependency or result in the failure of read operations.
These challenging issues tend to be more severe in 3-D multi-stacked Flash memory where
poly-crystalline silicon (poly-Si) is used as a channel (Walker et al., 2009).
Recently, a nanowire transistor known as a “junctionless transistor” or a “gated resistor”
was introduced (Colinge et al., 2010). It consists of n+ (or p+ for a p-channel device)
homogenously doped silicon nanowire (SiNW), i.e., an n+ source - n+ channel - n+ drain (or a
p+ source - p+ channel - p+ drain) for the p-channel device, with a gate electrode. Junctionless
transistors have several advantages compared to traditional inversion-mode transistors: (i)
they are easily fabricated; (ii) they are free from S/D junctions therefore have less dopant
fluctuation; (iii) they can reduce SCEs; (iv) they can reduce mobility degradation by surface
roughness scattering; and (iv) they relax the stringent requirements reducing the gate
dielectric thickness. These intrinsic strengths make the concept proposed here attractive for
application of a junctionless transistor to Flash memory. However, existing junctionless
transistors have an inherent limitation in that they primarily implemented on a SOI wafer.
In this section, an all-around-gate (AAG) junctionless transistor is applied to oxide-nitride-
oxide (O/N/O) type charge-trapping Flash memory. By utilizing a deep reactive ion etching
(RIE) system (Ng et al., 2009), a junctionless transistor with a suspended SiNW channel with
a width of 4 nm (WNW = 4 nm) and a length of 20 nm (LG = 20 nm) is fabricated, where the
channel is completely separated from the bulk substrate. The performance is comparable to
that of currently reported Flash memory, but it can be scaled down further, below the 20 nm
node, due to the simplified process and the advantages inherited from the junctionless
transistor.

4.1 Operating principle of junctionless MOSFETs
The operational principle of an n-type junctionless MOSFET is different from that of a
standard n-type conventional MOSFET. In the subthreshold region, shown in Fig. 4-1(a), the
highly doped channel is fully depleted, and hence it can hold a large electric field. By
increasing the gate voltage, the electric field in the channel reduces until a neutral region is
created in the center of the channel. At this point, it is possible to define the threshold
voltage, because bulk current starts to flow through the center of the channel, as illustrated
in Fig. 4-1(b). Then, by further increasing the gate voltage, the depletion width reduces until
a completely neutral channel is created, as seen in Fig. 4-1(c). This occurs when the gate
voltage equals the flat band voltage. At the onset of this condition, the bulk current reaches
its maximum value. Thereafter, by increasing the gate voltage further, negative charges
accumulate on the surfaces of the channel, as shown in Fig. 4-1(d). These charges result in
surface current, which is similar to the current in a standard n-type conventional MOSFET.

GateGate

S D
++++++
++++++
++++++
++++++

GateGate

S D
++++++
++++++

GateGate

S D
GateGate

S D

n+ n+ n+ n+ n+ n+ n+ n+ n+ n+ n+ n+
 (a) (b) (c) (d)

Fig. 4-1. (a) Fully depleted channel in subthreshold mode, (b) semi-depleted channel in bulk
current mode, (c) flat band mode, and (d) accumulation mode.

Flash Memories 190

stored charges are more likely to be lost due to larger damage by hot carriers, degrading the
tunneling oxide quality. Nevertheless, the VT margin of the DSSB FinFET SONOS after ten
years is larger than that of the conventional device. This is attributed to the high efficiency of
programming originating from the sharpened energy band bending by the DSSB structure.
P/E endurance characteristics are also plotted in Fig. 3-14(b). After 105 P/E cycles, only a
negligible VT shift can be seen, thus verifying that the reliability characteristics are
satisfactory.

100 101 102 103 104 105 106 107 108 109
-1

0

1

2

3

4

5

6

10 years

Triangle:
Conv. FinFET

Circle:
DSSB FinFET

Solid : tPGM = 1 s
Open : tPGM = 100 ns

Erase : VERS = -14 V, tERS = 10 ms

Program :VPGM = 12 V, after 1k cycling

Th
re

sh
ol

d
vo

lta
ge

, V
T (

V)

Retention time (sec)
100 101 102 103 104 105

0

1

2

3

4

5

Circle : DSSB, Triangle : Conv.

Program/Erase condition (CONV.)
VPGM = 12 V for 10sec
VERS = -14V for 10msec

Program/Erase condition (DSSB)
VPGM = 12 V for 100nsec
VERS = -14 V for 10msec

Erased

Programmed

Th
re

sh
ol

d
vo

lta
ge

, V
T (

V)

P/E cycle number
 (a) (b)

Fig. 3-14. (a) Post cycling retention comparison of the DSSB FinFET SONOS and a
conventional FinFET SONOS. Due to damage of hot electrons, the charge loss of the DSSB
FinFET SONOS is larger than that of the conventional device. (b) Measured endurance
characteristics of the DSSB FinFET SONOS and the conventional device. A negligible VT
shift is observed in the P/E states. (Choi et al., 2009c)

4. Junctionless MOSFETs
Flash memory has recently scaled rapidly down to a 20 ~ 30 nm node. However, with
researchers relying on conventional approaches, critical scaling limits are being faced,
foreshadowing the possibility that further downscaling will eventually be impossible.
Hence, a new and innovative device structure is urgently required. Most importantly,
among the crucial limitations, the short-channel effects (SCEs) have increasingly become
unavoidable technical challenges, as it is difficult to scale the equivalent oxide thickness
(EOT) below 10 nm due to the nature of multi-layered gate dielectrics. Shallow junctions are
very important to suppress the SCEs; however, it is difficult to precisely control the junction
depth and profile. Moreover, the formation of such shallow junctions becomes a serious
concern with 3-dimensional (3D) multi-stacking integration due to the large thermal budget
required. For this reason, a “junction-free transistor” based on junction-free virtual S/D for
NAND Flash memory was previously reported, and the concept was applied to other types
of 3D integrated Flash memory such as Bit Cost Scalable (BiCS) memory (Tanaka et al.,
2007), Vertical-Stacked-Array-Transistor (VSAT) memory (Kim et al., 2009), and Terabit Cell
Array Transistor (TCAT) memory (Jang et al., 2009), among others (Hubert et al., 2009).
However, it can be expected that current flowing through a string of NAND Flash memory
will be significantly degraded by pre-existing high resistance regions, i.e., undoped
source/drain (S/D) regions, despite that these regions can be transformed into low

Source and Drain Junction Engineering for Enhanced Non-Volatile Memory Performance 191

resistance regions via an inversion process by fringing the field from the gate. This can
therefore lead to severe back-pattern dependency or result in the failure of read operations.
These challenging issues tend to be more severe in 3-D multi-stacked Flash memory where
poly-crystalline silicon (poly-Si) is used as a channel (Walker et al., 2009).
Recently, a nanowire transistor known as a “junctionless transistor” or a “gated resistor”
was introduced (Colinge et al., 2010). It consists of n+ (or p+ for a p-channel device)
homogenously doped silicon nanowire (SiNW), i.e., an n+ source - n+ channel - n+ drain (or a
p+ source - p+ channel - p+ drain) for the p-channel device, with a gate electrode. Junctionless
transistors have several advantages compared to traditional inversion-mode transistors: (i)
they are easily fabricated; (ii) they are free from S/D junctions therefore have less dopant
fluctuation; (iii) they can reduce SCEs; (iv) they can reduce mobility degradation by surface
roughness scattering; and (iv) they relax the stringent requirements reducing the gate
dielectric thickness. These intrinsic strengths make the concept proposed here attractive for
application of a junctionless transistor to Flash memory. However, existing junctionless
transistors have an inherent limitation in that they primarily implemented on a SOI wafer.
In this section, an all-around-gate (AAG) junctionless transistor is applied to oxide-nitride-
oxide (O/N/O) type charge-trapping Flash memory. By utilizing a deep reactive ion etching
(RIE) system (Ng et al., 2009), a junctionless transistor with a suspended SiNW channel with
a width of 4 nm (WNW = 4 nm) and a length of 20 nm (LG = 20 nm) is fabricated, where the
channel is completely separated from the bulk substrate. The performance is comparable to
that of currently reported Flash memory, but it can be scaled down further, below the 20 nm
node, due to the simplified process and the advantages inherited from the junctionless
transistor.

4.1 Operating principle of junctionless MOSFETs
The operational principle of an n-type junctionless MOSFET is different from that of a
standard n-type conventional MOSFET. In the subthreshold region, shown in Fig. 4-1(a), the
highly doped channel is fully depleted, and hence it can hold a large electric field. By
increasing the gate voltage, the electric field in the channel reduces until a neutral region is
created in the center of the channel. At this point, it is possible to define the threshold
voltage, because bulk current starts to flow through the center of the channel, as illustrated
in Fig. 4-1(b). Then, by further increasing the gate voltage, the depletion width reduces until
a completely neutral channel is created, as seen in Fig. 4-1(c). This occurs when the gate
voltage equals the flat band voltage. At the onset of this condition, the bulk current reaches
its maximum value. Thereafter, by increasing the gate voltage further, negative charges
accumulate on the surfaces of the channel, as shown in Fig. 4-1(d). These charges result in
surface current, which is similar to the current in a standard n-type conventional MOSFET.

GateGate

S D
++++++
++++++
++++++
++++++

GateGate

S D
++++++
++++++

GateGate

S D
GateGate

S D

n+ n+ n+ n+ n+ n+ n+ n+ n+ n+ n+ n+
 (a) (b) (c) (d)

Fig. 4-1. (a) Fully depleted channel in subthreshold mode, (b) semi-depleted channel in bulk
current mode, (c) flat band mode, and (d) accumulation mode.

Flash Memories

192

4.2 Device fabrication
A (100) bulk silicon wafer is used as a starting material. First, the top of a silicon bulk wafer
is uniformly doped by ion implantation with arsenic for the n-channel devices. The implant
energies and doses are chosen to yield uniform doping of 2 × 1019 /cm3. High doping is
required in the junctionless transistor to ensure a high driving current and good
source/drain contact resistance. After patterning the active region with WNW = 30 nm, the
Bosch process enabled by the RIE system is employed to form the suspended SiNW
separated from the bulk substrate. The suspended SiNW via the Bosch process is achieved
by balancing anisotropic etching and passivation steps. Details of the Bosch process can be
found in the literature (Ng et al., 2009). The scanning electron microscopy (SEM) images in
Fig. 4-2 clearly show the suspended SiNWs. The gap distance between the SiNW and bulk
substrate is approximately 250 nm. After the formation of the SiNWs, channel stop
implantation with boron ions is applied. Subsequently, two iterations of sacrificial oxidation
are employed for further reduction of the width (WNW = 4 nm) of the SiNW and to make the
channel smooth, followed by the formation of shallow trench isolation (STI). Next, an
O/N/O layer with a thickness of 2.8nm/6.2nm/7nm (using a thermal oxide and LP-CVD
nitride/TEOS oxide) and an in-situ n+ poly-Si gate (using LP-CVD poly-Si) are formed
sequentially. Afterwards, a gate length (LG) of 20 nm is patterned. Horizontal and vertical
transmission electron microscopy (TEM) images of the fabricated junctionless transistor are
also shown in Fig. 4-2.

2 μm

Suspended
SiNW

Si bulk substrate

50 nm 10 nm

O/N/O
Gate dielectric

SiNW50 nm

10 nm

LG

Oxide
Nitride
Oxide

WNW

 (a) (b)

Fig. 4-2. (a) SEM image and magnified views of the suspended SiNW on the bulk substrate
and (b) Horizontal and vertical TEM images in the LG direction in the AAG junctionless
transistor with the O/N/O gate dielectric. The width (WNW) and length (LG) of the SiNW
channel are approximately 4 nm and 20 nm, respectively. The thickness of the O/N/O
layers for the charge storage node is 2.8nm/6.2nm/7nm. (Choi et al., 2011)

4.3 Memory characteristics
Fig. 4-3(a) shows the P/E transient characteristics of junctionless AAG SONOS devices with
a 20 nm LG and a 4 nm WNW for various P/E conditions. A large P/E window (ΔVT) up to
6.5 V was attained with the aid of a GAA structure despite the highly scaled device size,
demonstrating the cell suitability for MLC operations. No erase saturation phenomenon was
observed, even at -15V, despite the n+ poly-Si gate. This indicates that there is no need to use
a metal-gate or high-k blocking oxide. Moreover, as seen in Fig. 4-3(b), program inhibition is

Source and Drain Junction Engineering for Enhanced Non-Volatile Memory Performance 193

achieved by direct raising of the unselected bit-line potential. It is implicit that there is no
need to introduce a complex self-boosting method. A high incremental step pulse program
(ISPP) slope (0.7) is also attained, even with a LG value of 20 nm.

10-6 10-5 10-4 10-3 10-2 10-1
-2

-1

0

1

2

3

4

5

6
VPGM/VERS
15V/-15V
14V/-14V
13V/-13V
12V/-12V

LG=20nm
WNW=4nm
O/N/O=2.8nm/6.2nm/7nmTh

re
sh

ol
d

vo
lta

ge
, V

T (
V)

P/E time (sec)

VBL1 (0V)

SSL

WL1

WL2

WL3

GSL

VPGM

VBL2 (6V)

A B

12 13 14 15
-2
-1
2

3

4

5

Cell A

Cell B

WNW=4nm
LG=20nm
10sec/shot

slope~0.7

Th
re

sh
ol

d
vo

lta
ge

, V
T (

V)

Program voltage, VPGM (V)
 (a) (b) (c)

Fig. 4-3. (a) Program and erase transient characteristics of the junctionless AAG SONOS
device. (b) ISPP programming and related inhibit method. Program inhibition is achieved
by directly raising the unselected bit-line potential. For a programmed cell, a higher
incremental step pulse program (ISPP) slope is also attained, even at 20nm LG. (Choi et al.,
2011)

3D NAND structures with a floating body require careful consideration when designing
S/D junctions for enhanced erase characteristics. To fix the floating body potential during
erase operations effectively, a sufficient number of holes must be generated by band-to-band
tunneling from the S/D junctions. Therefore, the S/D junctions need to be heavily doped,
abrupt, and uniform. Unless 3D NAND structures satisfy the aforementioned demands,
uniform and efficient erase characteristics cannot be ensured in conventional diffused S/D
and junction-free virtual S/D structures (Figs. 4-3(a) and 4-3(b)). Fig. 4-3(c) compares the
distribution of the erased VT for the junctionless and inversion-mode AAG SONOS devices.
Contrary to the inversion-mode devices, the S/D of junctionless devices is precisely
controlled by the gate electric field. As a result, a uniformly distributed erased VT is
successfully obtained without any VT correction methods.
Because the conduction of a junctionless device initially occurs in the center of an n+-doped
SiNW channel, the device can be less sensitive to the interface trap generated from P/E
cycles compared to a conventional inversion-mode device, as shown in Fig. 4-4. In a TCAD
simulation, it is confirmed that the acceptor-type interface trap does not significantly affect
the VT shift in a junctionless device. Note that the higher the doping concentration of a
SiNW channel is, the stronger the P/E endurance becomes. Moreover, reasonable post-cyclic
data retention characteristics were achieved.

5. Conclusions
In this chapter, as we confront challenges of current Flash memory technology and as the
design rule deviates from the historical scaling paradigm, a new type of Flash memory cell
based on the structure of dopant-segregated Schottky-barrier (DSSB) MOSFETs, which has
an ultra-thin pocket layer with high-dose dopants surrounding the interface between the

Flash Memories

192

4.2 Device fabrication
A (100) bulk silicon wafer is used as a starting material. First, the top of a silicon bulk wafer
is uniformly doped by ion implantation with arsenic for the n-channel devices. The implant
energies and doses are chosen to yield uniform doping of 2 × 1019 /cm3. High doping is
required in the junctionless transistor to ensure a high driving current and good
source/drain contact resistance. After patterning the active region with WNW = 30 nm, the
Bosch process enabled by the RIE system is employed to form the suspended SiNW
separated from the bulk substrate. The suspended SiNW via the Bosch process is achieved
by balancing anisotropic etching and passivation steps. Details of the Bosch process can be
found in the literature (Ng et al., 2009). The scanning electron microscopy (SEM) images in
Fig. 4-2 clearly show the suspended SiNWs. The gap distance between the SiNW and bulk
substrate is approximately 250 nm. After the formation of the SiNWs, channel stop
implantation with boron ions is applied. Subsequently, two iterations of sacrificial oxidation
are employed for further reduction of the width (WNW = 4 nm) of the SiNW and to make the
channel smooth, followed by the formation of shallow trench isolation (STI). Next, an
O/N/O layer with a thickness of 2.8nm/6.2nm/7nm (using a thermal oxide and LP-CVD
nitride/TEOS oxide) and an in-situ n+ poly-Si gate (using LP-CVD poly-Si) are formed
sequentially. Afterwards, a gate length (LG) of 20 nm is patterned. Horizontal and vertical
transmission electron microscopy (TEM) images of the fabricated junctionless transistor are
also shown in Fig. 4-2.

2 μm

Suspended
SiNW

Si bulk substrate

50 nm 10 nm

O/N/O
Gate dielectric

SiNW50 nm

10 nm

LG

Oxide
Nitride
Oxide

WNW

 (a) (b)

Fig. 4-2. (a) SEM image and magnified views of the suspended SiNW on the bulk substrate
and (b) Horizontal and vertical TEM images in the LG direction in the AAG junctionless
transistor with the O/N/O gate dielectric. The width (WNW) and length (LG) of the SiNW
channel are approximately 4 nm and 20 nm, respectively. The thickness of the O/N/O
layers for the charge storage node is 2.8nm/6.2nm/7nm. (Choi et al., 2011)

4.3 Memory characteristics
Fig. 4-3(a) shows the P/E transient characteristics of junctionless AAG SONOS devices with
a 20 nm LG and a 4 nm WNW for various P/E conditions. A large P/E window (ΔVT) up to
6.5 V was attained with the aid of a GAA structure despite the highly scaled device size,
demonstrating the cell suitability for MLC operations. No erase saturation phenomenon was
observed, even at -15V, despite the n+ poly-Si gate. This indicates that there is no need to use
a metal-gate or high-k blocking oxide. Moreover, as seen in Fig. 4-3(b), program inhibition is

Source and Drain Junction Engineering for Enhanced Non-Volatile Memory Performance 193

achieved by direct raising of the unselected bit-line potential. It is implicit that there is no
need to introduce a complex self-boosting method. A high incremental step pulse program
(ISPP) slope (0.7) is also attained, even with a LG value of 20 nm.

10-6 10-5 10-4 10-3 10-2 10-1
-2

-1

0

1

2

3

4

5

6
VPGM/VERS
15V/-15V
14V/-14V
13V/-13V
12V/-12V

LG=20nm
WNW=4nm
O/N/O=2.8nm/6.2nm/7nmTh

re
sh

ol
d

vo
lta

ge
, V

T (
V)

P/E time (sec)

VBL1 (0V)

SSL

WL1

WL2

WL3

GSL

VPGM

VBL2 (6V)

A B

12 13 14 15
-2
-1
2

3

4

5

Cell A

Cell B

WNW=4nm
LG=20nm
10sec/shot

slope~0.7

Th
re

sh
ol

d
vo

lta
ge

, V
T (

V)

Program voltage, VPGM (V)
 (a) (b) (c)

Fig. 4-3. (a) Program and erase transient characteristics of the junctionless AAG SONOS
device. (b) ISPP programming and related inhibit method. Program inhibition is achieved
by directly raising the unselected bit-line potential. For a programmed cell, a higher
incremental step pulse program (ISPP) slope is also attained, even at 20nm LG. (Choi et al.,
2011)

3D NAND structures with a floating body require careful consideration when designing
S/D junctions for enhanced erase characteristics. To fix the floating body potential during
erase operations effectively, a sufficient number of holes must be generated by band-to-band
tunneling from the S/D junctions. Therefore, the S/D junctions need to be heavily doped,
abrupt, and uniform. Unless 3D NAND structures satisfy the aforementioned demands,
uniform and efficient erase characteristics cannot be ensured in conventional diffused S/D
and junction-free virtual S/D structures (Figs. 4-3(a) and 4-3(b)). Fig. 4-3(c) compares the
distribution of the erased VT for the junctionless and inversion-mode AAG SONOS devices.
Contrary to the inversion-mode devices, the S/D of junctionless devices is precisely
controlled by the gate electric field. As a result, a uniformly distributed erased VT is
successfully obtained without any VT correction methods.
Because the conduction of a junctionless device initially occurs in the center of an n+-doped
SiNW channel, the device can be less sensitive to the interface trap generated from P/E
cycles compared to a conventional inversion-mode device, as shown in Fig. 4-4. In a TCAD
simulation, it is confirmed that the acceptor-type interface trap does not significantly affect
the VT shift in a junctionless device. Note that the higher the doping concentration of a
SiNW channel is, the stronger the P/E endurance becomes. Moreover, reasonable post-cyclic
data retention characteristics were achieved.

5. Conclusions
In this chapter, as we confront challenges of current Flash memory technology and as the
design rule deviates from the historical scaling paradigm, a new type of Flash memory cell
based on the structure of dopant-segregated Schottky-barrier (DSSB) MOSFETs, which has
an ultra-thin pocket layer with high-dose dopants surrounding the interface between the

Flash Memories

194

Gate

VERS

GND GND

Floating body
(i)

EC

EV

BTB

EC

EV

(ii)

Generated
holes

S D

S DCharge-up

VG=-15V
VS/D=0V

tPGM=1ms

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0 PGM: 15V, 100s
ERS: -14V, 100ms

LG=20nm
dNW=4nm

=0.41

=0.19

C
um

ul
at

iv
e

di
st

rib
ut

io
n

(%
)

Erased VT (V)

 JL-FET
 IM-FET

 (a) (b) (c)

Fig. 4-3. (a) Erase operations for the 3D NAND structure with a floating body: (i) First, the
floating body potential follows the gate potential (VERS). As a result, holes are generated by
band-to-band tunneling. (ii) Second, the generated holes can pin the floating body potential.
(b) TCAD simulation of the floating body potential during the erase operation. (c)
Distribution of erased VT values for junctionless and inversion-mode AAG SONOS devices.
(Choi et al., 2011)

100 101 102 103 104 105 106
-2
-1
0
1
2
3
4
5

Dumb-mode PGM: 15V,100s, ERS: -14V,100ms

4.8V

V T (
V)

Time (sec)

 P/E 1-cycle
 P/E 103-cycle

100 101 102 103 104 105 106
-2
-1
0
1
2
3
4
5
6

 JL (1x1019/cm3)
 JL (5x1018/cm3)
 IM

5.3V

V T (
V)

P/E cycling (#)

1010 1011 1012
0.0

0.2

0.4

0.6

0.8

1.0

JL
IM 0.3eV

Energy level: 0.5eV

Body conc.=2e19/cm3

tEOT=14nm

V T s
hi

ft
(V

)

Int. trap density (/cm2)
1019

0.0

0.2

0.4

0.6

0.8

1.0

Int. trap density

JL FET
Energy level: 0.3 eV

2 x 10195 x 1018

Doping conc. (/cm3)

 5E12 /cm2

 3E12 /cm2

 1E12 /cm2

Energy level

Acceptor trap

Donor trap

EC

EV

Ei

(a) (b)

(c)

(d)

Fig. 4-4. (a) Simulated VT shift versus interface trap density (Nit) as a parameter of the
energy level of both acceptor- and donor-type traps. (b) Simulated VT shift versus doping
concentration of the SiNW channel in the junctionless device. (c) Dumb-mode P/E cycling
(without any P/E verify) endurance test. (d) Post-cycling retention characteristics of the
junctionless device. (Choi et al., 2011)

metallic silicide material for source/drain (S/D) and the channel, is proposed. The hot
carriers intrinsically generated from the shallow DSSB S/D junctions can be utilized for the
advancement of both the NAND and the NOR type Flash memory cell. With the aid of hot
carriers that can be generated by elevated electric field at the DSSB S/D junctions stemming
from the abrupt band bending, the probability to be trapped into a charge storage node of
Flash memory, such as polysilicon layer in the floating gate memory device or the nitride
layer in the SONOS memory device, is enhanced. Therefore, the DSSB MOSFET shows very
fast programming time at low programming voltage, compared to conventional MOSFET

Source and Drain Junction Engineering for Enhanced Non-Volatile Memory Performance 195

based on p-n S/D junctions. Besides, the superior scalability resulting from the abrupt and
shallow junctions can also be achieved without the constraint of the parasitic resistance due
to metallic silicided material. Therefore, the DSSB devices can be a premier choice for future
nano-electronics applications of the logic and Flash memory device since they do not only
enable continuation of device scaling due to the improved electrostatics but also provide
benefits for an alternative memory cell.
Moreover, a highly scaled AAG junctionless transistor SONOS memory cell with acceptable
P/E behaviors, cycling endurance, and data retention is also demonstrated. The junctionless
transistor memory cell inherited the scaling advantages of not only the AAG structure but
also the junctionless transistor. Therefore, the junctionless transistor memory cell, together
with DSSB MOSFETs, is an excellent candidate for the next-generation 3-D NAND Flash
memory.

6. Acknowledgment
This work was supported by the IT R&D program of MKE/KEIT [10035320, Development of
novel 3D stacked devices and core materials forthe next generation flash memory], the
National Research Foundation (NRF) grant funded by the Korea government (No.
K20901000002-09E0100-00210), Nano R&D program through the National Research
Foundation of Korea funded by the Ministry of Education, Science, and Technology (grant
number : 2009-0082583), and Samsung Electronics Co., Ltd.

7. References
Walker, A. J. (2009). Sub-50-nm dual-gate thin-film transistors for monolithic 223 3-D Flash,

IEEE Transaction on Electron Devices, Vol. 56, No. 11, pp. 2703–2710, IEEE,
ISSN:0018-9383

Larson, J. M. et al. (2006). Overview and Status of Metal S/D Schottky-Barrier MOSFET
Technology, IEEE Transaction on Electron Devices, Vol. 53, No. 5, pp. 1048-1058, IEEE
ISSN:0018-9383

Kinoshita, A. et al. (2004). Solution for High-Performance Schottky-Source/Drain MOSFETs:
Schottky Barrier Height Engineering with Dopant Segregation Technique, IEEE
VLSI Symp. Tech. Dig., pp. 168-169, IEEE, ISBN:4-900784-00-1

Muraka, S. P. et al. (1987). Dopant redistribution in silicide–silicon and silicide–
polycrystalline silicon bilayered structures, Journal of Vacuum Science & Technology,
Vol. 5, No. 6, pp. 1674-1688, ISSN:1071-1023

Uchida, K. et al. (2000). Enhancement of hot-electron generation rate in Schottky source
metal–oxide–semiconductor field-effect transistors, Applied Physics Letters, Vol. 76,
No. 26, pp. 3992-3994, ISSN:0003-6951

Kinoshita, A. et al. (2006). Comprehensive Study on Injection Velocity Enhancement in
Dopant-Segregated Schottky MOSFETs, IEEE IEDM Tech. Dig., pp. 1-4, IEEE,
ISBN:978-1-4244-237-4

Wu, A. T. et al. (1986). A novel high-speed, 5-volt programming EPROM structure with
source-side injection, IEEE IEDM Tech. Dig., pp. 584-587, IEEE, ISBN:978-1-4244-
237-4

Flash Memories

194

Gate

VERS

GND GND

Floating body
(i)

EC

EV

BTB

EC

EV

(ii)

Generated
holes

S D

S DCharge-up

VG=-15V
VS/D=0V

tPGM=1ms

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0 PGM: 15V, 100s
ERS: -14V, 100ms

LG=20nm
dNW=4nm

=0.41

=0.19

C
um

ul
at

iv
e

di
st

rib
ut

io
n

(%
)

Erased VT (V)

 JL-FET
 IM-FET

 (a) (b) (c)

Fig. 4-3. (a) Erase operations for the 3D NAND structure with a floating body: (i) First, the
floating body potential follows the gate potential (VERS). As a result, holes are generated by
band-to-band tunneling. (ii) Second, the generated holes can pin the floating body potential.
(b) TCAD simulation of the floating body potential during the erase operation. (c)
Distribution of erased VT values for junctionless and inversion-mode AAG SONOS devices.
(Choi et al., 2011)

100 101 102 103 104 105 106
-2
-1
0
1
2
3
4
5

Dumb-mode PGM: 15V,100s, ERS: -14V,100ms

4.8V

V T (
V)

Time (sec)

 P/E 1-cycle
 P/E 103-cycle

100 101 102 103 104 105 106
-2
-1
0
1
2
3
4
5
6

 JL (1x1019/cm3)
 JL (5x1018/cm3)
 IM

5.3V

V T (
V)

P/E cycling (#)

1010 1011 1012
0.0

0.2

0.4

0.6

0.8

1.0

JL
IM 0.3eV

Energy level: 0.5eV

Body conc.=2e19/cm3

tEOT=14nm

V T s
hi

ft
(V

)

Int. trap density (/cm2)
1019

0.0

0.2

0.4

0.6

0.8

1.0

Int. trap density

JL FET
Energy level: 0.3 eV

2 x 10195 x 1018

Doping conc. (/cm3)

 5E12 /cm2

 3E12 /cm2

 1E12 /cm2

Energy level

Acceptor trap

Donor trap

EC

EV

Ei

(a) (b)

(c)

(d)

Fig. 4-4. (a) Simulated VT shift versus interface trap density (Nit) as a parameter of the
energy level of both acceptor- and donor-type traps. (b) Simulated VT shift versus doping
concentration of the SiNW channel in the junctionless device. (c) Dumb-mode P/E cycling
(without any P/E verify) endurance test. (d) Post-cycling retention characteristics of the
junctionless device. (Choi et al., 2011)

metallic silicide material for source/drain (S/D) and the channel, is proposed. The hot
carriers intrinsically generated from the shallow DSSB S/D junctions can be utilized for the
advancement of both the NAND and the NOR type Flash memory cell. With the aid of hot
carriers that can be generated by elevated electric field at the DSSB S/D junctions stemming
from the abrupt band bending, the probability to be trapped into a charge storage node of
Flash memory, such as polysilicon layer in the floating gate memory device or the nitride
layer in the SONOS memory device, is enhanced. Therefore, the DSSB MOSFET shows very
fast programming time at low programming voltage, compared to conventional MOSFET

Source and Drain Junction Engineering for Enhanced Non-Volatile Memory Performance 195

based on p-n S/D junctions. Besides, the superior scalability resulting from the abrupt and
shallow junctions can also be achieved without the constraint of the parasitic resistance due
to metallic silicided material. Therefore, the DSSB devices can be a premier choice for future
nano-electronics applications of the logic and Flash memory device since they do not only
enable continuation of device scaling due to the improved electrostatics but also provide
benefits for an alternative memory cell.
Moreover, a highly scaled AAG junctionless transistor SONOS memory cell with acceptable
P/E behaviors, cycling endurance, and data retention is also demonstrated. The junctionless
transistor memory cell inherited the scaling advantages of not only the AAG structure but
also the junctionless transistor. Therefore, the junctionless transistor memory cell, together
with DSSB MOSFETs, is an excellent candidate for the next-generation 3-D NAND Flash
memory.

6. Acknowledgment
This work was supported by the IT R&D program of MKE/KEIT [10035320, Development of
novel 3D stacked devices and core materials forthe next generation flash memory], the
National Research Foundation (NRF) grant funded by the Korea government (No.
K20901000002-09E0100-00210), Nano R&D program through the National Research
Foundation of Korea funded by the Ministry of Education, Science, and Technology (grant
number : 2009-0082583), and Samsung Electronics Co., Ltd.

7. References
Walker, A. J. (2009). Sub-50-nm dual-gate thin-film transistors for monolithic 223 3-D Flash,

IEEE Transaction on Electron Devices, Vol. 56, No. 11, pp. 2703–2710, IEEE,
ISSN:0018-9383

Larson, J. M. et al. (2006). Overview and Status of Metal S/D Schottky-Barrier MOSFET
Technology, IEEE Transaction on Electron Devices, Vol. 53, No. 5, pp. 1048-1058, IEEE
ISSN:0018-9383

Kinoshita, A. et al. (2004). Solution for High-Performance Schottky-Source/Drain MOSFETs:
Schottky Barrier Height Engineering with Dopant Segregation Technique, IEEE
VLSI Symp. Tech. Dig., pp. 168-169, IEEE, ISBN:4-900784-00-1

Muraka, S. P. et al. (1987). Dopant redistribution in silicide–silicon and silicide–
polycrystalline silicon bilayered structures, Journal of Vacuum Science & Technology,
Vol. 5, No. 6, pp. 1674-1688, ISSN:1071-1023

Uchida, K. et al. (2000). Enhancement of hot-electron generation rate in Schottky source
metal–oxide–semiconductor field-effect transistors, Applied Physics Letters, Vol. 76,
No. 26, pp. 3992-3994, ISSN:0003-6951

Kinoshita, A. et al. (2006). Comprehensive Study on Injection Velocity Enhancement in
Dopant-Segregated Schottky MOSFETs, IEEE IEDM Tech. Dig., pp. 1-4, IEEE,
ISBN:978-1-4244-237-4

Wu, A. T. et al. (1986). A novel high-speed, 5-volt programming EPROM structure with
source-side injection, IEEE IEDM Tech. Dig., pp. 584-587, IEEE, ISBN:978-1-4244-
237-4

Flash Memories 196

Choi, S.–J. et al. (2008). High Speed Flash Memory and 1T-DRAM on Dopant Segregated
Schottky Barrier (DSSB) FinFET SONOS Device for Multi-functional SoC
Applications, IEEE IEDM Tech. Dig., pp. 223-226, IEEE, ISBN:978-1-4244-237-4

Choi, S.-J. et al. (2009a). Performance Breakthrough in NOR Flash Memory with Dopant-
Segregated Schottky-Barrier (DSSB) SONOS Devices, IEEE VLSI Symp. Tech. Dig.,
pp. 222-223, IEEE, ISBN:4-900784-00-1

Choi, S.-J. et al. (2009b). High Injection Efciency and Low-Voltage Programming in a
Dopant-Segregated Schottky Barrier (DSSB) FinFET SONOS for NOR-type Flash
Memory, IEEE Electron Device Letters, Vol. 30, No. 3, pp. 265-268, IEEE, ISSN:0741-
3106

Lue, H.-T. et al. (2008). A novel junction-free BE-SONOS NAND Flash, IEEE VLSI Symp.
Tech. Dig., pp. 140-141, IEEE, ISBN:4-900784-00-1

Choi, S.-J. et al. (2009c). Enhancement of Program Speed in Dopant-Segregated Schottky-
Barrier (DSSB) FinFET SONOS for NAND-Type Flash Memory, IEEE Electron
Device Letters, Vol. 30, No. 1, pp. 78-81, IEEE, ISSN:0741-3106

Tanaka, H. et al. (2007). Bit cost scalable technology with punch and plug process for ultra
high density Flash memory, IEEE VLSI Symp. Tech. Dig., pp. 14-15, IEEE, ISBN:4-
900784-00-1

Kim, J. et al. (2009). Novel vertical-stacked-array-transistor (VSAT) for ultra-high-density
and cost-effective NAND Flash memory devices and SSD (solid state drive), IEEE
VLSI Symp. Tech. Dig., pp. 186-187, IEEE, ISBN:4-900784-00-1

Jang, J. et al. (2009). Vertical cell array using TCAT (terabit cell array transistor) technology
for ultra high density NAND Flash memory, IEEE VLSI Symp. Tech. Dig., pp. 192-
193, IEEE, ISBN:4-900784-00-1

Hubert, A. et al. (2009). A stacked SONOS technology, up to 4 levels and 6 nm crystalline
nanowires, with gate-all-around or independent gates (Φ-Flash), suitable for full 3-
D integration, IEEE IEDM Tech. Dig., pp. 637-640, IEEE, ISBN:978-1-4244-237-4

Colinge, J.-P. et al. (2010). Nanowire transistors without junctions, Nature Nanotechnology,
Vol. 5, pp. 225-229, ISSN: 1748-3387

Ng, R. M. Y. et al. (2009). Vertically Stacked Silicon Nanowire Transistors Fabricated by
Inductive Plasma Etching and Stress-Limited Oxidation, IEEE Electron Device
Letters, Vol. 30, No. 5, pp. 520-522, IEEE, ISSN:0741-3106

Choi, S.-J et al. (2011) A Novel Junctionless All-Around-Gate SONOS Device with a
Quantum Nanowire on a Bulk Substrate for 3D Stack NAND Flash Memory, IEEE
VLSI Symp. Tech. Dig., in press, IEEE, ISBN:4-900784-00-1

10

Non-Volatile Memory Devices
Based on Chalcogenide Materials

Fei Wang
California State University, Long Beach,

United States of America

1. Introduction

Non-volatile memory refers to memory devices that can retain stored information even
when electric power is not applied. Usually, non-volatile memories are utilized as secondary
storage in computers, long term persistent storage and portable data storage. The most
popular portable non-volatile memory nowadays is the Flash memory. The common device
structure of a flash memory cell contains a MOSFET with a floating gate. The information
storage relies on charge storage on the floating gate. Currently, there exist two types of flash
technology: NOR and NAND technology. NAND technology tends to dominate because of
its better scaling potential and lower cost. The major concerns regarding the floating gate
based flash memory now is its scaling limitations. Challenges, such as cell-to-cell
interference and programming disturbance, require closer attention, especially for short
gated devices. Solutions have been researched in both software development for flash
memory, such as sophisticated reading/writing controller, and physical structure
improvement. Nano-floating gate structure is one of the proposed physical solutions to
overcome the scaling challenges of flash memory [38]. Instead of using a floating gate, this
new proposed structure uses silicon nanocrystals to trap charges. This structure can be used
to build devices with much thinner oxide layer, which reduces the size. However, concerns
still exist about its data retention capabilities.
Moreover, the current prevailing writing operation for flash memory is called block writing,
which includes four steps: 1) Dump the whole block into a buffer DRAM; 2) Write new
information into DRAM; 3) Erase old information in Flash; 4) Write information stored in
DRAM into Flash. This requirement on buffer DRAM adds complexity to flash memory,
which results in more chip space occupation and lower speed.
As the demand for data storage capability increases, memory density and
reading/writing speed have become key factors for technology advancement. To
overcome or compensate the limitations of flash memory technology, innovative concepts
and materials are being investigated. Non-volatile memory devices based on chalcogenide
materials are the most promising technology due to its fast reading/writing speed and
high scalability. In addition to those, since the information storage for chalcogenide
devices are based on phase or electrochemical reaction, chalcogenide based devices
display excellent retention characteristic, especially so when compared to flash memories
that rely on charge storage.

Flash Memories 196

Choi, S.–J. et al. (2008). High Speed Flash Memory and 1T-DRAM on Dopant Segregated
Schottky Barrier (DSSB) FinFET SONOS Device for Multi-functional SoC
Applications, IEEE IEDM Tech. Dig., pp. 223-226, IEEE, ISBN:978-1-4244-237-4

Choi, S.-J. et al. (2009a). Performance Breakthrough in NOR Flash Memory with Dopant-
Segregated Schottky-Barrier (DSSB) SONOS Devices, IEEE VLSI Symp. Tech. Dig.,
pp. 222-223, IEEE, ISBN:4-900784-00-1

Choi, S.-J. et al. (2009b). High Injection Efciency and Low-Voltage Programming in a
Dopant-Segregated Schottky Barrier (DSSB) FinFET SONOS for NOR-type Flash
Memory, IEEE Electron Device Letters, Vol. 30, No. 3, pp. 265-268, IEEE, ISSN:0741-
3106

Lue, H.-T. et al. (2008). A novel junction-free BE-SONOS NAND Flash, IEEE VLSI Symp.
Tech. Dig., pp. 140-141, IEEE, ISBN:4-900784-00-1

Choi, S.-J. et al. (2009c). Enhancement of Program Speed in Dopant-Segregated Schottky-
Barrier (DSSB) FinFET SONOS for NAND-Type Flash Memory, IEEE Electron
Device Letters, Vol. 30, No. 1, pp. 78-81, IEEE, ISSN:0741-3106

Tanaka, H. et al. (2007). Bit cost scalable technology with punch and plug process for ultra
high density Flash memory, IEEE VLSI Symp. Tech. Dig., pp. 14-15, IEEE, ISBN:4-
900784-00-1

Kim, J. et al. (2009). Novel vertical-stacked-array-transistor (VSAT) for ultra-high-density
and cost-effective NAND Flash memory devices and SSD (solid state drive), IEEE
VLSI Symp. Tech. Dig., pp. 186-187, IEEE, ISBN:4-900784-00-1

Jang, J. et al. (2009). Vertical cell array using TCAT (terabit cell array transistor) technology
for ultra high density NAND Flash memory, IEEE VLSI Symp. Tech. Dig., pp. 192-
193, IEEE, ISBN:4-900784-00-1

Hubert, A. et al. (2009). A stacked SONOS technology, up to 4 levels and 6 nm crystalline
nanowires, with gate-all-around or independent gates (Φ-Flash), suitable for full 3-
D integration, IEEE IEDM Tech. Dig., pp. 637-640, IEEE, ISBN:978-1-4244-237-4

Colinge, J.-P. et al. (2010). Nanowire transistors without junctions, Nature Nanotechnology,
Vol. 5, pp. 225-229, ISSN: 1748-3387

Ng, R. M. Y. et al. (2009). Vertically Stacked Silicon Nanowire Transistors Fabricated by
Inductive Plasma Etching and Stress-Limited Oxidation, IEEE Electron Device
Letters, Vol. 30, No. 5, pp. 520-522, IEEE, ISSN:0741-3106

Choi, S.-J et al. (2011) A Novel Junctionless All-Around-Gate SONOS Device with a
Quantum Nanowire on a Bulk Substrate for 3D Stack NAND Flash Memory, IEEE
VLSI Symp. Tech. Dig., in press, IEEE, ISBN:4-900784-00-1

10

Non-Volatile Memory Devices
Based on Chalcogenide Materials

Fei Wang
California State University, Long Beach,

United States of America

1. Introduction

Non-volatile memory refers to memory devices that can retain stored information even
when electric power is not applied. Usually, non-volatile memories are utilized as secondary
storage in computers, long term persistent storage and portable data storage. The most
popular portable non-volatile memory nowadays is the Flash memory. The common device
structure of a flash memory cell contains a MOSFET with a floating gate. The information
storage relies on charge storage on the floating gate. Currently, there exist two types of flash
technology: NOR and NAND technology. NAND technology tends to dominate because of
its better scaling potential and lower cost. The major concerns regarding the floating gate
based flash memory now is its scaling limitations. Challenges, such as cell-to-cell
interference and programming disturbance, require closer attention, especially for short
gated devices. Solutions have been researched in both software development for flash
memory, such as sophisticated reading/writing controller, and physical structure
improvement. Nano-floating gate structure is one of the proposed physical solutions to
overcome the scaling challenges of flash memory [38]. Instead of using a floating gate, this
new proposed structure uses silicon nanocrystals to trap charges. This structure can be used
to build devices with much thinner oxide layer, which reduces the size. However, concerns
still exist about its data retention capabilities.
Moreover, the current prevailing writing operation for flash memory is called block writing,
which includes four steps: 1) Dump the whole block into a buffer DRAM; 2) Write new
information into DRAM; 3) Erase old information in Flash; 4) Write information stored in
DRAM into Flash. This requirement on buffer DRAM adds complexity to flash memory,
which results in more chip space occupation and lower speed.
As the demand for data storage capability increases, memory density and
reading/writing speed have become key factors for technology advancement. To
overcome or compensate the limitations of flash memory technology, innovative concepts
and materials are being investigated. Non-volatile memory devices based on chalcogenide
materials are the most promising technology due to its fast reading/writing speed and
high scalability. In addition to those, since the information storage for chalcogenide
devices are based on phase or electrochemical reaction, chalcogenide based devices
display excellent retention characteristic, especially so when compared to flash memories
that rely on charge storage.

Flash Memories

198

In general, information storage devices based on chalcogenide materials could be categorized
into two types. Phase change memory (PCM) is one of them. The information storage is
realized by converting nanoscale grains of chalcogenide materials between an amorphous
state and a crystalline state [1]. The conversion requires applying heat onto nanoscale memory
grain. This can be done through either optical or electrical methods. Optical phase change
memory was developed and commercialized in 1990s. Now it is widely used in rewritable
optical data recording (e.g. RW-DVD discs). Electronic phase change memory did not attract
much attention at the beginning, mainly due to the vast developemnt of charge-storage
memories, such as EPROM and Flash. Not until the recent decade, when scaling limitation
raise concerns on charge-storage memories, does electronic PCM re-gain attention of the
memory industry. Materials used as active recording layers for PCM are Sb-Te containing
alloys, with the most widely used material being the Ge-Sb-Te (GST) system [2-4].
The other type of information storage mechanism is relatively new. It is known as
Programmable Metallization Cell memory (PMC). This type of memory device relocates
metal ions in a solid state electrolyte using electrochemical methods [5-6]. Therefore, one can
control the resistivity of the solid state electrolyte to achieve the data recording purpose.
The PMC was first suggested by M. Kozicki [5] in early 2000s. Several research groups and
indutrial R&D are inverstigating in this direction now. A variety of names have been given
to this type of devices, such as conductive-bridge RAM, nanobridge memory and eletrolytic
memory etc. Materials used as active recording films for this category are metal containing
chacogenides, such as Ag-Se, Ag-S [7], Ag-Ge-Se [5-6], Ag-Ge-S [8], Cu-S [9] etc. PMC,
compared to PCM, has the advantages in terms of short recording time, low recording
power as well as better scaling capability [5-6].

2. Chalcogenide materials
Chalcogenide materials used in both PCM and PMC are usually in glassy form. Glass is also
called amorphous materials or disordered materials. Not like crystals, glassy materials do
not have long range order in their lattice. This kind of disordered structure makes possible
some unique properties of glassy materials. Chalcogenide glasses are simply glasses
containing elements from group VI of periodic table; usually they are alloys of group IV
and/or group V elements together with group VI elements. When heated, solid glass
experience three critical temperatures (Fig 1): glass transition temperature (Tg),
crystallization temperature (Tc) and melting temperature (Tm). Glass transition temperature
is a signature of significant softening of glasses; it is measured by probing the viscosity of
glasses. Glasses with temperature above Tg but below Tm are still in solid format, but with
lower viscosity. This is significantly different from crystals, which do not have Tg. When
temperature increases up to Tc, glasses starts to crystallize, results in poly-crystal in most
situations. Increasing temperature above Tm will melt the glasses. Genrallay, crystallizaon
process has two states, nucleation state and crystal growth state. At crsystallization
temperature, molecules starts to gather into clusters, thus forms nuclei. The crystal will
further grow from those nuclei. The crystal growth process needs time, which is material
dependent. Glasses are usually obtained by quickly quenching melts. This quenching
process forces temperature to by-pass Tc quickly, so that crystallization does not have time
to happen. The GST system (Ge-Sb-Te) used in PCM devices has a typical melting
temperature of 600oC, and its crystalization temperature is between 100-150oC depend on
specific chemical composition.

Non-Volatile Memory Devices Based on Chalcogenide Materials

199

Fig. 1. Phase changes of glassy materials as a function of temperature. Three critical
temperatures are observed: glass transition temperature (Tg), crystallization temperature (Tc)
and melting temperature (Tm).

Not all compositions can form glasses; some compositions tend to crystallize easily during
quenching, those compositions are called poor glass formers. Application of chalcogenide
glasses requires their glassy state to be stable, i.e. good glass formers. Boolchand et. al.
suggested that chalcogenide glasses display three elastic phases as a function of their mean
coordination number: floppy phase, Intermediate phase (IP) and stressed rigid phase (Fig 2)
[10-22]. Glass compositions in floppy phase and stressed rigid phase are usually poor glass
formers due to the high internal stress in their molecular structure. Compositions in IP are
usually good glass formers because their molecular networks are nearly stress free. Good
glass formers are needed for PCM devices since they can form glass even when temperature
is brought down slowly. Therefore, compositions in IP are ideal for PCM devices. Within the
glass forming region of Ge-Sb-Te system, increasing composition of Ge usually increases the
melting temperature, which is undesireable because of the power concerns. On the other
hand, decreasing the Ge content will cause the glass become unstable in glassy states, which
causes problem in term of data retention. Therefore, typical compositions selected for PCM

Fig. 2. Elastic phases in chalcogenide glasses as a function of mean coordination number of
glasses. Mean coordination number is an indicator of chemical composition.

Flash Memories

198

In general, information storage devices based on chalcogenide materials could be categorized
into two types. Phase change memory (PCM) is one of them. The information storage is
realized by converting nanoscale grains of chalcogenide materials between an amorphous
state and a crystalline state [1]. The conversion requires applying heat onto nanoscale memory
grain. This can be done through either optical or electrical methods. Optical phase change
memory was developed and commercialized in 1990s. Now it is widely used in rewritable
optical data recording (e.g. RW-DVD discs). Electronic phase change memory did not attract
much attention at the beginning, mainly due to the vast developemnt of charge-storage
memories, such as EPROM and Flash. Not until the recent decade, when scaling limitation
raise concerns on charge-storage memories, does electronic PCM re-gain attention of the
memory industry. Materials used as active recording layers for PCM are Sb-Te containing
alloys, with the most widely used material being the Ge-Sb-Te (GST) system [2-4].
The other type of information storage mechanism is relatively new. It is known as
Programmable Metallization Cell memory (PMC). This type of memory device relocates
metal ions in a solid state electrolyte using electrochemical methods [5-6]. Therefore, one can
control the resistivity of the solid state electrolyte to achieve the data recording purpose.
The PMC was first suggested by M. Kozicki [5] in early 2000s. Several research groups and
indutrial R&D are inverstigating in this direction now. A variety of names have been given
to this type of devices, such as conductive-bridge RAM, nanobridge memory and eletrolytic
memory etc. Materials used as active recording films for this category are metal containing
chacogenides, such as Ag-Se, Ag-S [7], Ag-Ge-Se [5-6], Ag-Ge-S [8], Cu-S [9] etc. PMC,
compared to PCM, has the advantages in terms of short recording time, low recording
power as well as better scaling capability [5-6].

2. Chalcogenide materials
Chalcogenide materials used in both PCM and PMC are usually in glassy form. Glass is also
called amorphous materials or disordered materials. Not like crystals, glassy materials do
not have long range order in their lattice. This kind of disordered structure makes possible
some unique properties of glassy materials. Chalcogenide glasses are simply glasses
containing elements from group VI of periodic table; usually they are alloys of group IV
and/or group V elements together with group VI elements. When heated, solid glass
experience three critical temperatures (Fig 1): glass transition temperature (Tg),
crystallization temperature (Tc) and melting temperature (Tm). Glass transition temperature
is a signature of significant softening of glasses; it is measured by probing the viscosity of
glasses. Glasses with temperature above Tg but below Tm are still in solid format, but with
lower viscosity. This is significantly different from crystals, which do not have Tg. When
temperature increases up to Tc, glasses starts to crystallize, results in poly-crystal in most
situations. Increasing temperature above Tm will melt the glasses. Genrallay, crystallizaon
process has two states, nucleation state and crystal growth state. At crsystallization
temperature, molecules starts to gather into clusters, thus forms nuclei. The crystal will
further grow from those nuclei. The crystal growth process needs time, which is material
dependent. Glasses are usually obtained by quickly quenching melts. This quenching
process forces temperature to by-pass Tc quickly, so that crystallization does not have time
to happen. The GST system (Ge-Sb-Te) used in PCM devices has a typical melting
temperature of 600oC, and its crystalization temperature is between 100-150oC depend on
specific chemical composition.

Non-Volatile Memory Devices Based on Chalcogenide Materials

199

Fig. 1. Phase changes of glassy materials as a function of temperature. Three critical
temperatures are observed: glass transition temperature (Tg), crystallization temperature (Tc)
and melting temperature (Tm).

Not all compositions can form glasses; some compositions tend to crystallize easily during
quenching, those compositions are called poor glass formers. Application of chalcogenide
glasses requires their glassy state to be stable, i.e. good glass formers. Boolchand et. al.
suggested that chalcogenide glasses display three elastic phases as a function of their mean
coordination number: floppy phase, Intermediate phase (IP) and stressed rigid phase (Fig 2)
[10-22]. Glass compositions in floppy phase and stressed rigid phase are usually poor glass
formers due to the high internal stress in their molecular structure. Compositions in IP are
usually good glass formers because their molecular networks are nearly stress free. Good
glass formers are needed for PCM devices since they can form glass even when temperature
is brought down slowly. Therefore, compositions in IP are ideal for PCM devices. Within the
glass forming region of Ge-Sb-Te system, increasing composition of Ge usually increases the
melting temperature, which is undesireable because of the power concerns. On the other
hand, decreasing the Ge content will cause the glass become unstable in glassy states, which
causes problem in term of data retention. Therefore, typical compositions selected for PCM

Fig. 2. Elastic phases in chalcogenide glasses as a function of mean coordination number of
glasses. Mean coordination number is an indicator of chemical composition.

Flash Memories

200

devices is Ge2Sb2Te5 system (GST-225). The GST-225 system have typical melting
temperature of 600oC, and its crystalization temperature is around 120oC. Glasses in IP are
also ideal for PMC devices. The stress free nature of their network structure makes them
good solid state solvent for metal additives, which is necessary for PMC devices.

3. Phase Change Memory (PCM)
3.1 Theoretical background
The operation of PCM devices relies on the resistance difference between the glassy phase
(amorphous phase) and the crystalline phase. The materials used in PCM are mostly
Tellurium based glasses, i.e. GST systems. As shown in Fig. 1, amorphous phase usually
displays high resistance, which corresponds to logic ‘0’; crystalline phase usually displays
lower resistance, which corresponds to logic ‘1’. The typical high resistance, i.e. Off
resistance, is in 106 range, and the typical low resistance, i.e. On resistance, is in 103
range.
In order to convert the active material from amorphous phase (logic ‘0’) to crystalline phase
(logic ‘1’), one needs to increase the cell temperature above Tc, but below Tm. This
corresponds to the SET process in logic memory. However, crystallization process needs
time. Depends on the size of the cell, it may take 100~500ns. This somewhat limits the
speeds of PCM memory. On the other hand, to convert from crystalline phase to amorphous
phase, one needs to increase temperature to a higher level, all the way up to above Tm. Once
the cell melts, remove heat and let the cell quench. The cell then returns to amorphous
phase, i.e. logic ‘0’. This process corresponds to the RESET process.
Fig. 3 shows the SET and RESET process of PCM cell. The heating is controlled by cell
current. During SET process, cell current is controlled in SET region, this assures the cell
temperature is between Tc and Tm. During RESET process, cell current is much higher, at
least above IRESET_min, this assures cell temperature is high enough to form melts.

Fig. 3. SET and RESET process of PCM cell. PCM cell temperature is controlled by cell
current. iSET_min corresponds to crystallization temperature Tc; iRESET_min corresponds to
melting temperature Tm.

Non-Volatile Memory Devices Based on Chalcogenide Materials

201

3.2 Device structure
Fig. 4 shows a typical structure of a vertical PCM cell. This figure is taken from Woo Yeong
Cho et. al.’s IEEE contribution [23]. A PCM cell is composed of an access transistor and an
active element, which is usually GST material sandwiched between two electrodes. The gate
of the access transistor is controlled by word line. The top electrode (TE) is connected to bit
line. Only when both bit line and word line are active, this PCM cell is selected, i.e. current
is allowed. In order to improve the heating efficiency, The bottom electrode (BE) is in
contact of GST material through a narrow bottom electrode contact (BEC). This BEC
structure increases the current density of the cell, therefore, the heating efficiency as well.

Fig. 4. Typical structure of PCM cell. Left picture indicates a cell during SET process; Right
picture indicates a cell during RESET process. Top electrode (TE) is connected to bit line,
while the gate of access transistor is connected to word line. [23]

Fig. 5. Current pulses used in reading, SET and RESET processes. [24]

3.3 Reading and writing process
Fig. 5 shows the basic reading and writing process of PCM cell. This figure is taken from
Byung-Do Yang et. al.’s IEEE contribution [24]. Writing has two different processes, SET

Flash Memories

200

devices is Ge2Sb2Te5 system (GST-225). The GST-225 system have typical melting
temperature of 600oC, and its crystalization temperature is around 120oC. Glasses in IP are
also ideal for PMC devices. The stress free nature of their network structure makes them
good solid state solvent for metal additives, which is necessary for PMC devices.

3. Phase Change Memory (PCM)
3.1 Theoretical background
The operation of PCM devices relies on the resistance difference between the glassy phase
(amorphous phase) and the crystalline phase. The materials used in PCM are mostly
Tellurium based glasses, i.e. GST systems. As shown in Fig. 1, amorphous phase usually
displays high resistance, which corresponds to logic ‘0’; crystalline phase usually displays
lower resistance, which corresponds to logic ‘1’. The typical high resistance, i.e. Off
resistance, is in 106 range, and the typical low resistance, i.e. On resistance, is in 103
range.
In order to convert the active material from amorphous phase (logic ‘0’) to crystalline phase
(logic ‘1’), one needs to increase the cell temperature above Tc, but below Tm. This
corresponds to the SET process in logic memory. However, crystallization process needs
time. Depends on the size of the cell, it may take 100~500ns. This somewhat limits the
speeds of PCM memory. On the other hand, to convert from crystalline phase to amorphous
phase, one needs to increase temperature to a higher level, all the way up to above Tm. Once
the cell melts, remove heat and let the cell quench. The cell then returns to amorphous
phase, i.e. logic ‘0’. This process corresponds to the RESET process.
Fig. 3 shows the SET and RESET process of PCM cell. The heating is controlled by cell
current. During SET process, cell current is controlled in SET region, this assures the cell
temperature is between Tc and Tm. During RESET process, cell current is much higher, at
least above IRESET_min, this assures cell temperature is high enough to form melts.

Fig. 3. SET and RESET process of PCM cell. PCM cell temperature is controlled by cell
current. iSET_min corresponds to crystallization temperature Tc; iRESET_min corresponds to
melting temperature Tm.

Non-Volatile Memory Devices Based on Chalcogenide Materials

201

3.2 Device structure
Fig. 4 shows a typical structure of a vertical PCM cell. This figure is taken from Woo Yeong
Cho et. al.’s IEEE contribution [23]. A PCM cell is composed of an access transistor and an
active element, which is usually GST material sandwiched between two electrodes. The gate
of the access transistor is controlled by word line. The top electrode (TE) is connected to bit
line. Only when both bit line and word line are active, this PCM cell is selected, i.e. current
is allowed. In order to improve the heating efficiency, The bottom electrode (BE) is in
contact of GST material through a narrow bottom electrode contact (BEC). This BEC
structure increases the current density of the cell, therefore, the heating efficiency as well.

Fig. 4. Typical structure of PCM cell. Left picture indicates a cell during SET process; Right
picture indicates a cell during RESET process. Top electrode (TE) is connected to bit line,
while the gate of access transistor is connected to word line. [23]

Fig. 5. Current pulses used in reading, SET and RESET processes. [24]

3.3 Reading and writing process
Fig. 5 shows the basic reading and writing process of PCM cell. This figure is taken from
Byung-Do Yang et. al.’s IEEE contribution [24]. Writing has two different processes, SET

Flash Memories

202

(writing logic ‘1’) and RESET (writing logic ‘0’). As mentioned earlier, SET process needs
lower writing current, but longer time. On the contrary, RESET process needs higher writing
current but shorter duration. This is because melting is an instantaneous phase change, but
crystallization is a gradual process. Typical SET time is 100~500ns, while typical RESET time
is 50-100ns, depends on the size of the device.
Reading is actually a sensing process. During reading process, the phase of active material
cannot be affected. Therefore, reading current is much lower than the ISET_min. This assures
the cell temperature is always lower than Tc during reading process; therefore, the cell
resistance remains in its original category. Typical reading time is around 50ns.
The detailed programming steps are explained as the following [23-24]:
1. RESET
A high voltage is applied on the bit line (BL), while the word line (WL) is active for
50~100ns so that the access transistor is ON during RESET time. This high voltage generate
high current, which will melt the GST material. Once RESET time elapses, the current is
removed abruptly by de-activate WL. This forces GST material to cool rapidly, hence turns
into glass.
2. SET
A medium voltage is applied on BL, while the WL is active for 100~500ns so that the access
transistor is ON during SET time. This voltage is not so high to melt the GST material, but is
enough to heat it above crystallization temperature (Tc). During SET time, small crystal
nucleus form firstly, then grow into larger crystalline structures. Once SET time elapses,
heat is removed, proper crystalline phase is formed.
3. READ
A low voltage is applied on BL, while WL is active to turn on access transistor during read
time. The stored data is sensed by comparing the BL current with a reference value. If BL
current is higher than reference, a logic ‘1’ is identified; if BL current is lower than reference,
a logic ‘0’ is identified.
As we mentioned earlier, the programming process of PCM cells heavily relies on resistive
heating by elevated currents. This requires the adjacent PCM cells to be isolated properly.
Otherwise, disturbances in un-selected cells may cause unwanted writing. On the other
hand, reading, SET and RESET current/voltage needs to be carefully calibrated to guarantee
1) they are within design limits; 2) within current/voltage rating of the device.

3.4 Current development in the field
The most widely used information storage media for Phase Change Memory now is
Ge2Sb2Te5 (GST). Nevertheless, concerns regarding the high SET/RESET threshold and low
SET speed of GST material stimulate the efforts in seeking new phase change materials. S.
Song et al. [28] recently reported the potential of a low power phase change application
using Sb2Te3-Ta2O5. They claim that the above mentioned material can achieve phase change
with lower RESET threshold and shorter pulse width. With a pulse width of 100ns, the
RESET threshold is 1.6V, compared to 4.0V for single-layer GST device. This reduction in
RESET voltage is due to two factors: 1) The reduced thermal conductivity of Sb2Te3-Ta2O5,
which is 0.46W/mK compared to 0.54W/mK of crystalline GST. This leads to efficient Joule
heating, thereby reducing the voltage required to amorphorize; 2) The lower melting point
of Sb2Te3-Ta2O5 compared to GST. They also found that the Sb2Te3-Ta2O5 based device could
achieve fast programming with pulse width as short as 20ns.

Non-Volatile Memory Devices Based on Chalcogenide Materials

203

In addition, binary Sb80Te20 material is also found to display desirable properties, such as
low threshold and fast SET speed. The problem with the pure binary Sb80Te20 is its low
crystallization temperature, which would be a stability concern. Research has been devoted
into doping materials into Sb80Te20 [29] or forming a multilayer structure [30] to overcome
this issue. Wang et al. [31] recently reported a nano-composite multilayer structure
incorporating Sb80Te20 and the dielectric material SiO2. They found by tuning the thickness
of Sb80Te20 film with respect to SiO2 layer, one can tune the crystallization temperature,
making it higher than that of pure Sb80Te20.
With the purpose of increasing the data storage density, research has also been devoted into
seeking multi-level storage using a single cell. Y. Gu et al. [32] recently reported that by
adjusting the composition of Ge-Sb-Te, one can achieve 3 distinct resistance level by carefully
controlling the SET current. They found that Ge15Sb85Se0.8 composition display a first resistance
shift from 1x104 to 5x103 at 528K and a second resistance shift from 5x103 to 1x102 at
602K. This indicates the possibility to store more than 1 bit of information in the same cell. Y.
Yin and S. Hosaka [33] also reported multi-level storage using SbTeN materials. They proved
that a 2 bits storage is feasible using the above mentioned material, as shown in Fig. 6.
According to their experiment, the SET from R0 to R1 needs 0.4 mA, SET from R1 to R2 needs
0.8 mA, while SET from R2-R3 needs 1.2 mA. The spaces between SET current thresholds are
pretty large, so that the manipulation is not hard.

Fig. 6. Multi-level resistance based on promotion of nano-crystallization with programming
currents [33]

4. Programmable Metallization Cell (PMC)
4.1 Theoretical background
Active materials forming PMC cells are called solid state electrolytes. They are named so
because they are somewhat analogous to liquid state electrolytes. We all know that in liquid
electrolytes, ions’ mobility is high enough to serve as current carriers. Similarly, solid state

Flash Memories

202

(writing logic ‘1’) and RESET (writing logic ‘0’). As mentioned earlier, SET process needs
lower writing current, but longer time. On the contrary, RESET process needs higher writing
current but shorter duration. This is because melting is an instantaneous phase change, but
crystallization is a gradual process. Typical SET time is 100~500ns, while typical RESET time
is 50-100ns, depends on the size of the device.
Reading is actually a sensing process. During reading process, the phase of active material
cannot be affected. Therefore, reading current is much lower than the ISET_min. This assures
the cell temperature is always lower than Tc during reading process; therefore, the cell
resistance remains in its original category. Typical reading time is around 50ns.
The detailed programming steps are explained as the following [23-24]:
1. RESET
A high voltage is applied on the bit line (BL), while the word line (WL) is active for
50~100ns so that the access transistor is ON during RESET time. This high voltage generate
high current, which will melt the GST material. Once RESET time elapses, the current is
removed abruptly by de-activate WL. This forces GST material to cool rapidly, hence turns
into glass.
2. SET
A medium voltage is applied on BL, while the WL is active for 100~500ns so that the access
transistor is ON during SET time. This voltage is not so high to melt the GST material, but is
enough to heat it above crystallization temperature (Tc). During SET time, small crystal
nucleus form firstly, then grow into larger crystalline structures. Once SET time elapses,
heat is removed, proper crystalline phase is formed.
3. READ
A low voltage is applied on BL, while WL is active to turn on access transistor during read
time. The stored data is sensed by comparing the BL current with a reference value. If BL
current is higher than reference, a logic ‘1’ is identified; if BL current is lower than reference,
a logic ‘0’ is identified.
As we mentioned earlier, the programming process of PCM cells heavily relies on resistive
heating by elevated currents. This requires the adjacent PCM cells to be isolated properly.
Otherwise, disturbances in un-selected cells may cause unwanted writing. On the other
hand, reading, SET and RESET current/voltage needs to be carefully calibrated to guarantee
1) they are within design limits; 2) within current/voltage rating of the device.

3.4 Current development in the field
The most widely used information storage media for Phase Change Memory now is
Ge2Sb2Te5 (GST). Nevertheless, concerns regarding the high SET/RESET threshold and low
SET speed of GST material stimulate the efforts in seeking new phase change materials. S.
Song et al. [28] recently reported the potential of a low power phase change application
using Sb2Te3-Ta2O5. They claim that the above mentioned material can achieve phase change
with lower RESET threshold and shorter pulse width. With a pulse width of 100ns, the
RESET threshold is 1.6V, compared to 4.0V for single-layer GST device. This reduction in
RESET voltage is due to two factors: 1) The reduced thermal conductivity of Sb2Te3-Ta2O5,
which is 0.46W/mK compared to 0.54W/mK of crystalline GST. This leads to efficient Joule
heating, thereby reducing the voltage required to amorphorize; 2) The lower melting point
of Sb2Te3-Ta2O5 compared to GST. They also found that the Sb2Te3-Ta2O5 based device could
achieve fast programming with pulse width as short as 20ns.

Non-Volatile Memory Devices Based on Chalcogenide Materials

203

In addition, binary Sb80Te20 material is also found to display desirable properties, such as
low threshold and fast SET speed. The problem with the pure binary Sb80Te20 is its low
crystallization temperature, which would be a stability concern. Research has been devoted
into doping materials into Sb80Te20 [29] or forming a multilayer structure [30] to overcome
this issue. Wang et al. [31] recently reported a nano-composite multilayer structure
incorporating Sb80Te20 and the dielectric material SiO2. They found by tuning the thickness
of Sb80Te20 film with respect to SiO2 layer, one can tune the crystallization temperature,
making it higher than that of pure Sb80Te20.
With the purpose of increasing the data storage density, research has also been devoted into
seeking multi-level storage using a single cell. Y. Gu et al. [32] recently reported that by
adjusting the composition of Ge-Sb-Te, one can achieve 3 distinct resistance level by carefully
controlling the SET current. They found that Ge15Sb85Se0.8 composition display a first resistance
shift from 1x104 to 5x103 at 528K and a second resistance shift from 5x103 to 1x102 at
602K. This indicates the possibility to store more than 1 bit of information in the same cell. Y.
Yin and S. Hosaka [33] also reported multi-level storage using SbTeN materials. They proved
that a 2 bits storage is feasible using the above mentioned material, as shown in Fig. 6.
According to their experiment, the SET from R0 to R1 needs 0.4 mA, SET from R1 to R2 needs
0.8 mA, while SET from R2-R3 needs 1.2 mA. The spaces between SET current thresholds are
pretty large, so that the manipulation is not hard.

Fig. 6. Multi-level resistance based on promotion of nano-crystallization with programming
currents [33]

4. Programmable Metallization Cell (PMC)
4.1 Theoretical background
Active materials forming PMC cells are called solid state electrolytes. They are named so
because they are somewhat analogous to liquid state electrolytes. We all know that in liquid
electrolytes, ions’ mobility is high enough to serve as current carriers. Similarly, solid state

Flash Memories

204

electrolyte also contains ions that are highly movable, majorly they are metal ions that carry
positive charges. Many materials can serve as solid state electrolytes. Basically, they can be
categorized into two types, chalcogenide-based electrolytes (Ag-Se/S, Cu-Se/S, Ag-Ge-
Se/S, Cu-Ge-Se/S [5-9]etc.) and oxide-based electrolytes (WO3) [25]. We will focus on
chalcogenide based electrolytes in this paper.
The process of PMC operation is actually an electro-chemical process. A simple PMC cell is
just a thin layer of solid state electrolyte sandwiched between an anode and a cathode.
Anode is an electrode that serves as a source of metal ions in active layers. For example, if
the solid state electrolyte is silver (Ag) based, i.e. Ag-Se or Ag-Ge-Se, the anode must be Ag.
Cathode is an inert electrode, such as nickel (Ni) or aluminum (Al).
A forward voltage bias across the PMC cell will cause the metal ions move towards cathode
and eventually be oxidized into metal atoms. Oxidized metal atoms accumulate on cathode,
growing towards anode. On the other hand, metal atoms in anode are reduced into metal ions
and enter electrolyte to replenish the loss from oxidation. The process is self sustaining until
the metal atoms accumulate all the way to anode. This forms a conduction link between two
electrodes; therefore, PMC reaches a low resistivity state that corresponds to logic ‘1’.
A reverse voltage bias will just do the opposite. This time cathode becomes source of
reduction. The previous accumulated metal atoms on cathode will be reduced into ions and
move toward anode. However, this process cannot sustain since once all metal atoms on
cathode are oxidized, there is no longer any oxidation source, and the process will stop
automatically. This reverse process dissolves the conduction link between electrodes;
therefore, PMC cell returns to high resistivity state, which corresponds to logic ‘0’.

4.2 Device structure
Fig. 7 illustrates the structure of a PMC cell using silver based solid state electrolyte, as we
reported in [26] and [27]. The device is fabricated on a glass substrate using aluminum
cathode. We found that the thickness of solid state electrolyte layer has great effects on
device performance. We will discuss the thickness dependence in detail in section 4.4. All
three layers are evaporated using a thermal vacuum evaporator. In order to avoid spitting
during evaporation, a special evaporation boat was designed for chalcogenide layer. The
active layer thickness ranges from 8nm to 30nm.

Fig. 7. Cross-section view of a PMC cell structure fabricated on glass substrate. This device is
a silver-based PMC. [26]

4.3 Reading and writing process
Fig. 8 shows I-V characteristic of the above mentioned PMC cell. The active layer thickness
of the testing device is 15nm. Electric current through PMC cell is measured using a

Non-Volatile Memory Devices Based on Chalcogenide Materials

205

Keitheley source meter while voltage across device is tuned. Starting from 0V, voltage was
increased up to 1V, then decreased to -1V, and finally brought back to 0V. We can clearly
observe that the resistance of PMC device switches from high to low at 0.8V (SET voltage);
and resistance switches from low to high at around -0.5V (RESET voltage). The measured
‘ON” resistance (corresponds to logic ‘1’) is 3 order of magnitude higher than the measured
“OFF” resistance (corresponds to logic ‘0’).

Fig. 8. I-V characteristic of a PMC testing cell. This cell is 100 by 100 m and 60 nm in
thickness. [8]

Therefore, the reading and writing process can be summarized as following:
1. SET
To SET PMC cell, a positive voltage pulse is needed. Since the electro-chemical process only
need several ns to complete, a 30-50 ns SET pulse is enough. This, compared to SET pulse of
PCM cell, is a significant advantage in term of device speed.
2. RESET
A negative voltage pulse is needed for RESET. This requires the access circuit of PMC cell
allows access in both polarities. Therefore, a single access transistor is no longer enough. A
possible access structure could be a NMOS transistor plus a PMOS transistor. This
somewhat increased the complexity of memory circuit. However, since thermal isolation is
not so essential for PMC memory as that for PCM memory, chip spaces for thermal isolation
can be saved significantly. Therefore, PMC cell is still a highly scalable solution.
3. READ
A very low voltage pulse, as low as 0.1V, is needed for Reading. Similar to PCM reading,
the device current is compared to a reference value. If device current is higher than
reference, a logic ‘1’ is identified; if device current is lower than reference, a logic ‘0’ is
identified. The typical resistance difference between logic ‘1’ and ‘0’ is at least 2 order of
magnitude for PMC cell.

Flash Memories

204

electrolyte also contains ions that are highly movable, majorly they are metal ions that carry
positive charges. Many materials can serve as solid state electrolytes. Basically, they can be
categorized into two types, chalcogenide-based electrolytes (Ag-Se/S, Cu-Se/S, Ag-Ge-
Se/S, Cu-Ge-Se/S [5-9]etc.) and oxide-based electrolytes (WO3) [25]. We will focus on
chalcogenide based electrolytes in this paper.
The process of PMC operation is actually an electro-chemical process. A simple PMC cell is
just a thin layer of solid state electrolyte sandwiched between an anode and a cathode.
Anode is an electrode that serves as a source of metal ions in active layers. For example, if
the solid state electrolyte is silver (Ag) based, i.e. Ag-Se or Ag-Ge-Se, the anode must be Ag.
Cathode is an inert electrode, such as nickel (Ni) or aluminum (Al).
A forward voltage bias across the PMC cell will cause the metal ions move towards cathode
and eventually be oxidized into metal atoms. Oxidized metal atoms accumulate on cathode,
growing towards anode. On the other hand, metal atoms in anode are reduced into metal ions
and enter electrolyte to replenish the loss from oxidation. The process is self sustaining until
the metal atoms accumulate all the way to anode. This forms a conduction link between two
electrodes; therefore, PMC reaches a low resistivity state that corresponds to logic ‘1’.
A reverse voltage bias will just do the opposite. This time cathode becomes source of
reduction. The previous accumulated metal atoms on cathode will be reduced into ions and
move toward anode. However, this process cannot sustain since once all metal atoms on
cathode are oxidized, there is no longer any oxidation source, and the process will stop
automatically. This reverse process dissolves the conduction link between electrodes;
therefore, PMC cell returns to high resistivity state, which corresponds to logic ‘0’.

4.2 Device structure
Fig. 7 illustrates the structure of a PMC cell using silver based solid state electrolyte, as we
reported in [26] and [27]. The device is fabricated on a glass substrate using aluminum
cathode. We found that the thickness of solid state electrolyte layer has great effects on
device performance. We will discuss the thickness dependence in detail in section 4.4. All
three layers are evaporated using a thermal vacuum evaporator. In order to avoid spitting
during evaporation, a special evaporation boat was designed for chalcogenide layer. The
active layer thickness ranges from 8nm to 30nm.

Fig. 7. Cross-section view of a PMC cell structure fabricated on glass substrate. This device is
a silver-based PMC. [26]

4.3 Reading and writing process
Fig. 8 shows I-V characteristic of the above mentioned PMC cell. The active layer thickness
of the testing device is 15nm. Electric current through PMC cell is measured using a

Non-Volatile Memory Devices Based on Chalcogenide Materials

205

Keitheley source meter while voltage across device is tuned. Starting from 0V, voltage was
increased up to 1V, then decreased to -1V, and finally brought back to 0V. We can clearly
observe that the resistance of PMC device switches from high to low at 0.8V (SET voltage);
and resistance switches from low to high at around -0.5V (RESET voltage). The measured
‘ON” resistance (corresponds to logic ‘1’) is 3 order of magnitude higher than the measured
“OFF” resistance (corresponds to logic ‘0’).

Fig. 8. I-V characteristic of a PMC testing cell. This cell is 100 by 100 m and 60 nm in
thickness. [8]

Therefore, the reading and writing process can be summarized as following:
1. SET
To SET PMC cell, a positive voltage pulse is needed. Since the electro-chemical process only
need several ns to complete, a 30-50 ns SET pulse is enough. This, compared to SET pulse of
PCM cell, is a significant advantage in term of device speed.
2. RESET
A negative voltage pulse is needed for RESET. This requires the access circuit of PMC cell
allows access in both polarities. Therefore, a single access transistor is no longer enough. A
possible access structure could be a NMOS transistor plus a PMOS transistor. This
somewhat increased the complexity of memory circuit. However, since thermal isolation is
not so essential for PMC memory as that for PCM memory, chip spaces for thermal isolation
can be saved significantly. Therefore, PMC cell is still a highly scalable solution.
3. READ
A very low voltage pulse, as low as 0.1V, is needed for Reading. Similar to PCM reading,
the device current is compared to a reference value. If device current is higher than
reference, a logic ‘1’ is identified; if device current is lower than reference, a logic ‘0’ is
identified. The typical resistance difference between logic ‘1’ and ‘0’ is at least 2 order of
magnitude for PMC cell.

Flash Memories

206

Fig. 9. I-V characteristic of PMC devices with different active layer thickness. Three devices
are displayed for each thickness group. [27]

4.4 Effects of active layer thickness
Recently, Wang et. al studied the thickness dependency of PMC devices [27]. They found
that the device metrics, such as Ron, Roff as well as switching threshold, has significant
dependency on the active layer thickness. Fig. 9 shows the I-V characteristics of devices with
thickness of 8nm, 15nm and 30nm. Table 1 summarizes the essential devices metrics for each
thickness group.
From Table 1, one should notice that the devices with 8nm active layer thickness are not
effectively conductive. This can be observed from Peak SET Current and Peak RESET
Current. The Peak SET Current is less than a micro-ampere, while the Peak RESET Current
is in nano-ampere range. The extremely small current is comparable to the parasitic current

Non-Volatile Memory Devices Based on Chalcogenide Materials

207

in reading/writing control circuit, which brings difficulty to reading process. 15nm and
30nm devices do not have this problem.

Device Active Layer Thickness 8 nm (STD) 15nm (STD) 30nm (STD)
Peak SET Current (mA) 4.51E-04 (0.82E-04) 2.356 (1.04) 33.8 (7.92)

Peak RESET Current (mA) -9.28E-06 (0.10E-06) -1.123 (0.66) -17.900 (4.23)

Average Roff (M 30.77 (7.78) 40.88 (9.91) 52.26 (11.12)

Average Ron (M) 4.65 (0.69) 0.48 (0.14) 0.003 (0.0009)
Average Roff/Ron 5.05 137.6 18899.3
SET Voltage (V) 0.71 (0.025) 0.64 (0.054) 0.62 (0.13)

RESET Voltage(V) 0.05 (0.024) 0.46 (0.089) 0.57 (0.025)

Table 1. Average Device Parameters of three batches. Standard deviations are shown in
parenthesis. [27]

The Peak SET Current and Peak RESET Current are both increasing as a function of active
layer thickness. This is due to the reduced ON resistance (Ron) for thicker devices. The
formation of conduction links during ‘SET’ process is an electrochemical deposition process,
which always happens at surface first (in this case, electrolyte/cathode surface) [14]. This
process relies on the availability of deposition nuclei and the prompt movement of Ag+ ions
towards the surface. Therefore, the number of conduction links that can be formed mostly
depends on the number of nuclei that can be formed at the beginning of this electrochemical
deposition process. According to our previous work on Ag-Ge-S [15], the distribution of
Ag+ in Ag-Ge-S electrolyte is not uniform. Rather, Ag+ ions are accumulated in some silver
rich islands that are distributed in the backbone. Therefore, at the very beginning, Ag+ ions
from islands near the surface tend to form nuclei. Once nuclei are formed, new comers of
Ag+ ions would prefer to accumulate around the nuclei. For thinner electrolyte films, the
distribution of Ag+ rich islands is dispersed and the size of those islands reduces too.
Therefore, for 8nm devices, the formation of deposition nuclei is highly dispersed and not
continuous. The result of this discontinuity is that less conduction links can be formed to
connect cathode and anode. Moreover, when the active layer is thin, Ag’s accumulation at
cathodes localizes the Ag ions’ movements due to the size of Ag (around 0.32nm in
diameter). The overall effect is higher Ron for thinner devices.
It is also observed that the Roff of all 3 groups are roughly in the same order of magnitude,
but slightly increase as a function of thickness. This is obvious since the resistance increases
if one extends the length of the resistor. Therefore, the extremely large Roff/Ron ratio for
30nm devices is majorly due to their low ON resistance.
The SET voltage of the three groups shows very slightly decreasing trend as a function of
thickness. This is probably due to the localization of Ag ions’ movement in thinner devices.
However, since the Ag ions move super fast, the difference among SET voltage is not very
significant.
On the other hand, the RESET voltage shows significant discrepancy among three thickness
groups. Overall, an increasing trend in RESET voltage is observed as a function of active
layer thickness. While the RESET voltage is comparable between 15nm (0.64V) and 30nm
(0.62V) devices, the RESET voltage of 8nm devices is significantly lower (0.05V) than that of

Flash Memories

206

Fig. 9. I-V characteristic of PMC devices with different active layer thickness. Three devices
are displayed for each thickness group. [27]

4.4 Effects of active layer thickness
Recently, Wang et. al studied the thickness dependency of PMC devices [27]. They found
that the device metrics, such as Ron, Roff as well as switching threshold, has significant
dependency on the active layer thickness. Fig. 9 shows the I-V characteristics of devices with
thickness of 8nm, 15nm and 30nm. Table 1 summarizes the essential devices metrics for each
thickness group.
From Table 1, one should notice that the devices with 8nm active layer thickness are not
effectively conductive. This can be observed from Peak SET Current and Peak RESET
Current. The Peak SET Current is less than a micro-ampere, while the Peak RESET Current
is in nano-ampere range. The extremely small current is comparable to the parasitic current

Non-Volatile Memory Devices Based on Chalcogenide Materials

207

in reading/writing control circuit, which brings difficulty to reading process. 15nm and
30nm devices do not have this problem.

Device Active Layer Thickness 8 nm (STD) 15nm (STD) 30nm (STD)
Peak SET Current (mA) 4.51E-04 (0.82E-04) 2.356 (1.04) 33.8 (7.92)

Peak RESET Current (mA) -9.28E-06 (0.10E-06) -1.123 (0.66) -17.900 (4.23)

Average Roff (M 30.77 (7.78) 40.88 (9.91) 52.26 (11.12)

Average Ron (M) 4.65 (0.69) 0.48 (0.14) 0.003 (0.0009)
Average Roff/Ron 5.05 137.6 18899.3
SET Voltage (V) 0.71 (0.025) 0.64 (0.054) 0.62 (0.13)

RESET Voltage(V) 0.05 (0.024) 0.46 (0.089) 0.57 (0.025)

Table 1. Average Device Parameters of three batches. Standard deviations are shown in
parenthesis. [27]

The Peak SET Current and Peak RESET Current are both increasing as a function of active
layer thickness. This is due to the reduced ON resistance (Ron) for thicker devices. The
formation of conduction links during ‘SET’ process is an electrochemical deposition process,
which always happens at surface first (in this case, electrolyte/cathode surface) [14]. This
process relies on the availability of deposition nuclei and the prompt movement of Ag+ ions
towards the surface. Therefore, the number of conduction links that can be formed mostly
depends on the number of nuclei that can be formed at the beginning of this electrochemical
deposition process. According to our previous work on Ag-Ge-S [15], the distribution of
Ag+ in Ag-Ge-S electrolyte is not uniform. Rather, Ag+ ions are accumulated in some silver
rich islands that are distributed in the backbone. Therefore, at the very beginning, Ag+ ions
from islands near the surface tend to form nuclei. Once nuclei are formed, new comers of
Ag+ ions would prefer to accumulate around the nuclei. For thinner electrolyte films, the
distribution of Ag+ rich islands is dispersed and the size of those islands reduces too.
Therefore, for 8nm devices, the formation of deposition nuclei is highly dispersed and not
continuous. The result of this discontinuity is that less conduction links can be formed to
connect cathode and anode. Moreover, when the active layer is thin, Ag’s accumulation at
cathodes localizes the Ag ions’ movements due to the size of Ag (around 0.32nm in
diameter). The overall effect is higher Ron for thinner devices.
It is also observed that the Roff of all 3 groups are roughly in the same order of magnitude,
but slightly increase as a function of thickness. This is obvious since the resistance increases
if one extends the length of the resistor. Therefore, the extremely large Roff/Ron ratio for
30nm devices is majorly due to their low ON resistance.
The SET voltage of the three groups shows very slightly decreasing trend as a function of
thickness. This is probably due to the localization of Ag ions’ movement in thinner devices.
However, since the Ag ions move super fast, the difference among SET voltage is not very
significant.
On the other hand, the RESET voltage shows significant discrepancy among three thickness
groups. Overall, an increasing trend in RESET voltage is observed as a function of active
layer thickness. While the RESET voltage is comparable between 15nm (0.64V) and 30nm
(0.62V) devices, the RESET voltage of 8nm devices is significantly lower (0.05V) than that of

Flash Memories

208

15nm and 30nm devices. Our explanation to this phenomenon is thicker devices (i.e. 30nm)
have more conduction links once SET; hence, during RESET, more Ag atoms need to be
ionized. This requires certainly higher reverse voltage. The 8nm group needs only -0.05 volt
to RESET. Also notice, the Roff/Ron ratio of 8nm devices is only 5.05, significantly lower than
that of 15nm and 30nm devices. This indicates that there were very few Ag conduction links
formed in 8nm devices during ‘SET’ process due to dispersed deposition nuclei. Therefore,
during RESET, there are not many Ag atoms on cathode to be ionized, which explains the
low RESET voltage.

4.4 Current developments in the field
The first generation of programmable metallization cell was built based on metal containing
chalcogenide solid electrolytes, such as Ag-Ge-S, Ag-Ge-S and Cu-Ge-S etc, with Ag or Cu
as reactive electrodes. People then discovered that using Cu doped SiO2 as the active
medium of PMC is also viable. This new type of device has the advantage of easier
integration with the current CMOS technology, since Cu is currently used as the
interconnect metal in integrated circuits, while SiO2 is known as the insulating material.
However, unlike chalcogenide based devices, Cu can hardly be photodiffused into SiO2.
Instead, thermal diffusion or ion implantation has to be used to introduce Cu into SiO2
backbone. Several groups reported the feasibility of fabricating Cu/SiO2 based devices
[34-35].
Approaches aiming to increase the data storage density is also vastly investigated for PMC
devices. The research is diverted into two directions; one aims to improve the architecture of
the device, i.e. 3-D devices [36] ; the other focuses on multilevel programming of the cell
itself [37]. Russo et. al. [37] reported the knetics of the conductive filament’s formation and
growth during the programming can be controled by limiting the current compliance. The
resistance of the cell can be tuned to 4 distinguished resistance states. This suggests the
posibility of 2 bits storage of a single PMC cell.

5. Conclusion
In this chapter, we reviewed two non-volatile memory solutions based on chalcogenide
glasses. PCM device is a relative mature solution now. PMC is a new concept and still in
experimental stage. Non-volatile memory devices based on chalcogenide materials are the
most promising replacement of charge-storage based memories due to its fast
reading/writing speed and high scalability. In addition to those, since the information
storage for chalcogenide devices are based on phase conversion or electrochemical reaction,
chalcogenide based devices display excellent data retention characteristic when compared
with charge-storage based devices.

6. Acknowledgment
Special thanks go to Dr. Punit Boolchand from University of Cincinnati for helps in bulk
sample synthesis; Dr. Jagadeesh Moodera from MIT for helps in fabricating the masks; Dr.
Richard Savage from California Polytechnic State University for helps in evaporator and
characterization instruments.

Non-Volatile Memory Devices Based on Chalcogenide Materials

209

7. References
[1] G S. R. Ovshingsky, “Reversible Electrical Switching Phenomena in Disordered

Structures” Phys. Rev. Lett. 21 (1968) pp1450
[2] T. Ohta, “Phase-change optical memory promotes the DVD optical disk” J. Optoelectron.

Adv. Mater. 3 (2001) pp609
[3] J. Siegel, A. Schropp, J. Solis, C.N. Afonso, M.Wuttig, “Rewritable phase-change optical

recording in Ge2Sb2Te5 films induced by picosecond laser pulses” Appl. Phys. Lett.
84 (2004) 2250

[4] T. Ohta, E.R. Ovshynsky, in Photo-Induced Metastavility in Amorphous Semiconductors,
edited by A.V. Kovobov, Wiley-VCH, Weinheim, (2003) p. 310

[5] M.N. Kozicki, M. Yun, S. J. Yang, J.P Aberouette, J.P. Bird, “Nanoscale effects in devices
based on chalcogenide solid solutions” Superlattices and Microstructures, 27 (2000)
No. 5/6, pp485-488

[6] M. N. Kozicki, C. Gopalan, M. Balakrishnan, M. Park, M. Mitkova, “Nonvolatile memory
based on solid electrolytes” Non-Volatile Memory Technology Symposium Proceedings
(2004) 15-17

[7] I. Chaitanya et al. “Metal-semiconductor-metal Junctions with silver sulfide barrier
layer” presentation at American Physical Society March Meeting, Baltimore, MD, (2006)
(unpublished)

[8] Carter De Leo, Senior Project Report, California Polytechnic State University (2007)
[9] Sakamoto et al. “Nanometer-scale switches using copper sulfide” Appl. Phys. Lett. 82

(2003) pp3032
[10] S.Chakravarty, D.G.Georgiev, P.Boolchand and M.Micoulaut, "Ageing, fragility and the

reversibility window in bulk alloy glasses", J. Phys. Condens. Matter, 17, (2005) L1-L7
[11] D.G.Georgiev, P.Boolchand and M.Micoulaut , “Rigidity transitions and molecular

structure of AsxSe1-x glasses.” Phys.Rev. B 62, 14 (2000) pp9268
[12] Tao Qu, D.G. Georgiev, P.Boolchand and M.Micoulaut, “The Intermediate Phase in

Ternary GexAsxSe1-2x Glasses” Mat. Res. Soc. Symp. Proc. 754 (2003) pp111
[13] Tao Qu and P.Boolchand, "Shift in elastic phase boundaries due to nanoscale phase

separation in network glasses: the case of GexAsxS1-2x". Phil. Mag, 85, (2005), pp875
[14] D. Selvanathan, W.J.Bresser and P. Boolchand, “Stiffness transitions in SixSe1-x glasses

from Raman scattering and temperature-modulated differential scanning
calorimetry.” Phys. Rev B 61, (2000) pp15061

[15] P.Boolchand, D.G.Georgiev and B. Goodman , “Discovery of the intermediate phase in
chalcogenide glasses” J.Opto. and Adv. Mater. 3 (2001) pp703.

[16] J.C. Phillips, “Universal Intermediate Phases of Dilute Electronic and Molecular
Glasses” Phys. Rev. Lett. 88, (2002) 216401

[17] M.F. Thorpe, D.J. Jacobs, M.V. Chubynsky, and J.C.Phillips, “Self-organization in
network glasses” J. Non-Cryst. Solids 266-269 (2001) pp859

[18] M.Micoulaut and J.C.Phillips, “Rings and rigidity transitions in network glasses” Phys.
Rev. B 67 (2003) 104204.

[19] P.Boolchand, X.Feng, W.J.Bresser, “Rigidity transition in binary Ge-Se glasses and
intermediate phase” J. Non- Cryst. Solids 293-295 (2001) pp348

[20] X. Feng, W.J. Bresser, P.Boolchand, “Direct Evidence for Stiffness Threshold in
Chalcogenide Glasses” Phys. Rev. Lett. 78 (1997) pp4422

[21] Fei Wang, S. Mamedov, P. Boochand and B. Goodman, “Pressure Raman effects and
internal stress in network glasses” Physical Rev B. 71 (2005) pp174210

Flash Memories

208

15nm and 30nm devices. Our explanation to this phenomenon is thicker devices (i.e. 30nm)
have more conduction links once SET; hence, during RESET, more Ag atoms need to be
ionized. This requires certainly higher reverse voltage. The 8nm group needs only -0.05 volt
to RESET. Also notice, the Roff/Ron ratio of 8nm devices is only 5.05, significantly lower than
that of 15nm and 30nm devices. This indicates that there were very few Ag conduction links
formed in 8nm devices during ‘SET’ process due to dispersed deposition nuclei. Therefore,
during RESET, there are not many Ag atoms on cathode to be ionized, which explains the
low RESET voltage.

4.4 Current developments in the field
The first generation of programmable metallization cell was built based on metal containing
chalcogenide solid electrolytes, such as Ag-Ge-S, Ag-Ge-S and Cu-Ge-S etc, with Ag or Cu
as reactive electrodes. People then discovered that using Cu doped SiO2 as the active
medium of PMC is also viable. This new type of device has the advantage of easier
integration with the current CMOS technology, since Cu is currently used as the
interconnect metal in integrated circuits, while SiO2 is known as the insulating material.
However, unlike chalcogenide based devices, Cu can hardly be photodiffused into SiO2.
Instead, thermal diffusion or ion implantation has to be used to introduce Cu into SiO2
backbone. Several groups reported the feasibility of fabricating Cu/SiO2 based devices
[34-35].
Approaches aiming to increase the data storage density is also vastly investigated for PMC
devices. The research is diverted into two directions; one aims to improve the architecture of
the device, i.e. 3-D devices [36] ; the other focuses on multilevel programming of the cell
itself [37]. Russo et. al. [37] reported the knetics of the conductive filament’s formation and
growth during the programming can be controled by limiting the current compliance. The
resistance of the cell can be tuned to 4 distinguished resistance states. This suggests the
posibility of 2 bits storage of a single PMC cell.

5. Conclusion
In this chapter, we reviewed two non-volatile memory solutions based on chalcogenide
glasses. PCM device is a relative mature solution now. PMC is a new concept and still in
experimental stage. Non-volatile memory devices based on chalcogenide materials are the
most promising replacement of charge-storage based memories due to its fast
reading/writing speed and high scalability. In addition to those, since the information
storage for chalcogenide devices are based on phase conversion or electrochemical reaction,
chalcogenide based devices display excellent data retention characteristic when compared
with charge-storage based devices.

6. Acknowledgment
Special thanks go to Dr. Punit Boolchand from University of Cincinnati for helps in bulk
sample synthesis; Dr. Jagadeesh Moodera from MIT for helps in fabricating the masks; Dr.
Richard Savage from California Polytechnic State University for helps in evaporator and
characterization instruments.

Non-Volatile Memory Devices Based on Chalcogenide Materials

209

7. References
[1] G S. R. Ovshingsky, “Reversible Electrical Switching Phenomena in Disordered

Structures” Phys. Rev. Lett. 21 (1968) pp1450
[2] T. Ohta, “Phase-change optical memory promotes the DVD optical disk” J. Optoelectron.

Adv. Mater. 3 (2001) pp609
[3] J. Siegel, A. Schropp, J. Solis, C.N. Afonso, M.Wuttig, “Rewritable phase-change optical

recording in Ge2Sb2Te5 films induced by picosecond laser pulses” Appl. Phys. Lett.
84 (2004) 2250

[4] T. Ohta, E.R. Ovshynsky, in Photo-Induced Metastavility in Amorphous Semiconductors,
edited by A.V. Kovobov, Wiley-VCH, Weinheim, (2003) p. 310

[5] M.N. Kozicki, M. Yun, S. J. Yang, J.P Aberouette, J.P. Bird, “Nanoscale effects in devices
based on chalcogenide solid solutions” Superlattices and Microstructures, 27 (2000)
No. 5/6, pp485-488

[6] M. N. Kozicki, C. Gopalan, M. Balakrishnan, M. Park, M. Mitkova, “Nonvolatile memory
based on solid electrolytes” Non-Volatile Memory Technology Symposium Proceedings
(2004) 15-17

[7] I. Chaitanya et al. “Metal-semiconductor-metal Junctions with silver sulfide barrier
layer” presentation at American Physical Society March Meeting, Baltimore, MD, (2006)
(unpublished)

[8] Carter De Leo, Senior Project Report, California Polytechnic State University (2007)
[9] Sakamoto et al. “Nanometer-scale switches using copper sulfide” Appl. Phys. Lett. 82

(2003) pp3032
[10] S.Chakravarty, D.G.Georgiev, P.Boolchand and M.Micoulaut, "Ageing, fragility and the

reversibility window in bulk alloy glasses", J. Phys. Condens. Matter, 17, (2005) L1-L7
[11] D.G.Georgiev, P.Boolchand and M.Micoulaut , “Rigidity transitions and molecular

structure of AsxSe1-x glasses.” Phys.Rev. B 62, 14 (2000) pp9268
[12] Tao Qu, D.G. Georgiev, P.Boolchand and M.Micoulaut, “The Intermediate Phase in

Ternary GexAsxSe1-2x Glasses” Mat. Res. Soc. Symp. Proc. 754 (2003) pp111
[13] Tao Qu and P.Boolchand, "Shift in elastic phase boundaries due to nanoscale phase

separation in network glasses: the case of GexAsxS1-2x". Phil. Mag, 85, (2005), pp875
[14] D. Selvanathan, W.J.Bresser and P. Boolchand, “Stiffness transitions in SixSe1-x glasses

from Raman scattering and temperature-modulated differential scanning
calorimetry.” Phys. Rev B 61, (2000) pp15061

[15] P.Boolchand, D.G.Georgiev and B. Goodman , “Discovery of the intermediate phase in
chalcogenide glasses” J.Opto. and Adv. Mater. 3 (2001) pp703.

[16] J.C. Phillips, “Universal Intermediate Phases of Dilute Electronic and Molecular
Glasses” Phys. Rev. Lett. 88, (2002) 216401

[17] M.F. Thorpe, D.J. Jacobs, M.V. Chubynsky, and J.C.Phillips, “Self-organization in
network glasses” J. Non-Cryst. Solids 266-269 (2001) pp859

[18] M.Micoulaut and J.C.Phillips, “Rings and rigidity transitions in network glasses” Phys.
Rev. B 67 (2003) 104204.

[19] P.Boolchand, X.Feng, W.J.Bresser, “Rigidity transition in binary Ge-Se glasses and
intermediate phase” J. Non- Cryst. Solids 293-295 (2001) pp348

[20] X. Feng, W.J. Bresser, P.Boolchand, “Direct Evidence for Stiffness Threshold in
Chalcogenide Glasses” Phys. Rev. Lett. 78 (1997) pp4422

[21] Fei Wang, S. Mamedov, P. Boochand and B. Goodman, “Pressure Raman effects and
internal stress in network glasses” Physical Rev B. 71 (2005) pp174210

Flash Memories

210

[22] Fei Wang, P. Boolchand and K. A. Jackson, “Chemical Alloying and light-induced
collapse of the intermediate phase in chalcohalide glasses” J. Phys.: Condens. Matter
19 (2007) pp226201

[23] Woo Yeong Cho et al. “A 0.18-/spl mu/m 3.0-V 64-Mb nonvolatile phase-transition
random access memory (PRAM)” IEEE Journal of Solid State Circuits, Vol 40, No. 1
(2005) pp293-300

[24] Byung-Do Yang, Jae-Eun Lee, Jang-Su Kim and Junghyun Cho, “A Low Power Phase-
change Random Access Memory using a Data-Comparison Write Scheme” Proceeding
of IEEE International Symposium on Circuit and Systems, (2007) pp3014-3017

[25] A. Antonaia, M.C. Santoro, G. Fameli and T. Polichetti, “Transport mechanism and IR
structural characterisation of evaporated amorphous WO3 films” Thin Solid Films,
Vol 426 (2003) pp281-287

[26] P.W. Dunn, Master Thesis, California Polytechnic State University, (2008) (unpublished)
[27] F. Wang, P.W. Dunn, M. Jain, C. De Leo and N. Vickers, “The effects of active layer

thickness on programmable metallization cell based on Ag-Ge-S“, Solid State
Electronics, in press (2011)

[28] S. Song, Z. Song, Y. Lu, B. Liu, L. Wu and S. Feng,“Sb2Te3-Ta2O5 nano-composite films
for low-power phase-change memory application“, Materials Letters 64 (2010)
pp2718-2730

[29] H.Y. Cheng, K.F. Kao, C.M. Lee and T.S. Chin,“Crystallization kinetics of Ga–Sb–Te
films for phase change memory „ Thin Solid Films 516 (2008) pp5513-5517.

 [30] T.C. Chong, L.P. Shi, R. Zhao, P.K. Tan, J.M. Li, K.G. Lim and L.P. Shi,“ Phase change
random access memory cell with superlattice-like structure„ Applied Physical
Letters 88 (2006) pp122144.

[31] C. Wang, S. Li, J. Zhai, B. Shen, M. Sun and T. Lai,“Rapid crystallization of
SiO2/Sb80Te20 nanocomposite multilayer films fro phase-change memory
applications“ Scripta Materialia 64 (2011) pp 645-648

[32] Y. Gu, Z. Song, T. Zhang, B. Liu and S. Feng,“Novel phase-change material GeSbTe for
application of three-level phase-change random access memory“, Solid State
Electronis 54 (2010) pp443-446

[33] Y. Yin and S. Hosaka,“Multilevel storage in lateral phase-change memory by promotion
of nanocrystallization“, Microelectronic Engineering, in press (2011)

[34] S. Puthen Thermandam, S.K. Bhagat, T.L. Alford, Y. Sakaguchi, M.N. Kozicki and M.
Mitkova,“Influence of Cu diffusion conditions on the switching of Cu-SiO2-based
resistive memory devices“, Thin Solid Films, 518 (2010), pp3293-3298

[35] Y. Bernard, V.T. Renard, P. Gonon and V. Jousseaume,“Back-end-of-line compatible
Conductive Bridging RAM based on Cu and SiO2“, Microelectronic Engineering
(2010) in press

[36]C. Kugeler, M. Meier, R. Rosezin, S. Gilles and R. Waser,“High density 3D memory
architecture based on the resistive switching effect“, Solid State Electronics 53
(2009) pp1287-1292

[37] U. Russo, D Kamalanathan, D. Ielmini, A. Lacaita and M. Kozicki,“Study of multilevel
programming in programmable metallization cell memory“, IEEE Transaction on
Electron Devices, 56, No. 5 (2009) pp1040-1047

[38] R. Bez and A. Pirovano,“Non-volatile Memory technologies: emerging concepts and new
materials“ , Material Science in Semiconductor Processing, vol. 7 (2004) pp349-355

11

Radiation Hardness of Flash
and Nanoparticle Memories

Emanuele Verrelli1 and Dimitris Tsoukalas1,2
1National Technical University of Athens, Dept. of Applied Physics,

2Insitute of Microelectronics, NCSR “Demokritos”,
Greece

1. Introduction

Recently, the research for new non-volatile memory in the semiconductor industry has
become intense, because current flash memory technologies based on the floating-gate (FG)
concept are expected to be difficult to scale down for high density, high performance
devices (Lankhorst et al., 2005 ; Ouyang et al., 2004 ; Vanheusden et al., 1997). Therefore, a
type of non-volatile memory using nanoparticles (NP) as floating gates has attracted much
research attention because of its excellent memory performance and high scalability (Tiwari
et al., 1996; Park et al., 2002). By utilizing discrete NP as the charge storage element, NP
memory is more immune to local oxide defects than flash memory, thus exhibiting longer
retention time and allowing more aggressive tunnel oxide scaling than conventional flash
memory (Blauwe, 2002; Hanafi et al., 1996). In NP memory, the device performance and
reliability depend on many factors, such as the ability to control NP size, size distribution,
crystallinity, area density, oxide passivation quality, and the isolation that prevents lateral
charge conduction in the NP layer (Ostraat et al., 2001). Thus, NP memory has driven
extensive efforts to form NP acting as charging and discharging islands by various methods.
Up to now, several techniques have been developed to form uniform NP in gate oxides. For
example, Kim (Kim et al., 1999) employed low pressure chemical vapour deposition
(LPCVD) to fabricate Si NP with a 4.5 nm average size and 5×1011cm-2 average density. King
(King et al., 1998) fabricated Ge NPs by oxidation of a SiGe layer formed by ion implantation,
and demonstrated quasi-nonvolatile memory operation with a 0.4 V threshold-voltage shift.
Takata (Takata et al., 2003) applied a sputtering method with a special target to fabricate metal
nano dots embedded in SiO. Various NP memory devices have been made to realize the fast
and low-power operation of such devices, mostly using Si NP devices surrounded by SiO
(Gonzalez-Varona et al., 2003). The programming efficiency has been improved with program
voltages reduced far below 10 V, owing to the scaling of tunneling SiO2. Among the
advantages related with the NP approach to FLASH technologies, worth to emphasize that
owing to the discrete nature of the storage nodes, NP memories are expected to behave much
better than standard FG devices in radiation environments.
This chapter focuses on this particular issue of the radiation hardness of FLASH, and in
particular, NP memory technologies. After a review of the main sources of radiation in space
and on earth, we will present a detailed review of the effects of radiation on CMOS electronic
devices and discuss the state of the art of radiation effects on standard FG FLASH memories

Flash Memories

210

[22] Fei Wang, P. Boolchand and K. A. Jackson, “Chemical Alloying and light-induced
collapse of the intermediate phase in chalcohalide glasses” J. Phys.: Condens. Matter
19 (2007) pp226201

[23] Woo Yeong Cho et al. “A 0.18-/spl mu/m 3.0-V 64-Mb nonvolatile phase-transition
random access memory (PRAM)” IEEE Journal of Solid State Circuits, Vol 40, No. 1
(2005) pp293-300

[24] Byung-Do Yang, Jae-Eun Lee, Jang-Su Kim and Junghyun Cho, “A Low Power Phase-
change Random Access Memory using a Data-Comparison Write Scheme” Proceeding
of IEEE International Symposium on Circuit and Systems, (2007) pp3014-3017

[25] A. Antonaia, M.C. Santoro, G. Fameli and T. Polichetti, “Transport mechanism and IR
structural characterisation of evaporated amorphous WO3 films” Thin Solid Films,
Vol 426 (2003) pp281-287

[26] P.W. Dunn, Master Thesis, California Polytechnic State University, (2008) (unpublished)
[27] F. Wang, P.W. Dunn, M. Jain, C. De Leo and N. Vickers, “The effects of active layer

thickness on programmable metallization cell based on Ag-Ge-S“, Solid State
Electronics, in press (2011)

[28] S. Song, Z. Song, Y. Lu, B. Liu, L. Wu and S. Feng,“Sb2Te3-Ta2O5 nano-composite films
for low-power phase-change memory application“, Materials Letters 64 (2010)
pp2718-2730

[29] H.Y. Cheng, K.F. Kao, C.M. Lee and T.S. Chin,“Crystallization kinetics of Ga–Sb–Te
films for phase change memory „ Thin Solid Films 516 (2008) pp5513-5517.

 [30] T.C. Chong, L.P. Shi, R. Zhao, P.K. Tan, J.M. Li, K.G. Lim and L.P. Shi,“ Phase change
random access memory cell with superlattice-like structure„ Applied Physical
Letters 88 (2006) pp122144.

[31] C. Wang, S. Li, J. Zhai, B. Shen, M. Sun and T. Lai,“Rapid crystallization of
SiO2/Sb80Te20 nanocomposite multilayer films fro phase-change memory
applications“ Scripta Materialia 64 (2011) pp 645-648

[32] Y. Gu, Z. Song, T. Zhang, B. Liu and S. Feng,“Novel phase-change material GeSbTe for
application of three-level phase-change random access memory“, Solid State
Electronis 54 (2010) pp443-446

[33] Y. Yin and S. Hosaka,“Multilevel storage in lateral phase-change memory by promotion
of nanocrystallization“, Microelectronic Engineering, in press (2011)

[34] S. Puthen Thermandam, S.K. Bhagat, T.L. Alford, Y. Sakaguchi, M.N. Kozicki and M.
Mitkova,“Influence of Cu diffusion conditions on the switching of Cu-SiO2-based
resistive memory devices“, Thin Solid Films, 518 (2010), pp3293-3298

[35] Y. Bernard, V.T. Renard, P. Gonon and V. Jousseaume,“Back-end-of-line compatible
Conductive Bridging RAM based on Cu and SiO2“, Microelectronic Engineering
(2010) in press

[36]C. Kugeler, M. Meier, R. Rosezin, S. Gilles and R. Waser,“High density 3D memory
architecture based on the resistive switching effect“, Solid State Electronics 53
(2009) pp1287-1292

[37] U. Russo, D Kamalanathan, D. Ielmini, A. Lacaita and M. Kozicki,“Study of multilevel
programming in programmable metallization cell memory“, IEEE Transaction on
Electron Devices, 56, No. 5 (2009) pp1040-1047

[38] R. Bez and A. Pirovano,“Non-volatile Memory technologies: emerging concepts and new
materials“ , Material Science in Semiconductor Processing, vol. 7 (2004) pp349-355

11

Radiation Hardness of Flash
and Nanoparticle Memories

Emanuele Verrelli1 and Dimitris Tsoukalas1,2
1National Technical University of Athens, Dept. of Applied Physics,

2Insitute of Microelectronics, NCSR “Demokritos”,
Greece

1. Introduction

Recently, the research for new non-volatile memory in the semiconductor industry has
become intense, because current flash memory technologies based on the floating-gate (FG)
concept are expected to be difficult to scale down for high density, high performance
devices (Lankhorst et al., 2005 ; Ouyang et al., 2004 ; Vanheusden et al., 1997). Therefore, a
type of non-volatile memory using nanoparticles (NP) as floating gates has attracted much
research attention because of its excellent memory performance and high scalability (Tiwari
et al., 1996; Park et al., 2002). By utilizing discrete NP as the charge storage element, NP
memory is more immune to local oxide defects than flash memory, thus exhibiting longer
retention time and allowing more aggressive tunnel oxide scaling than conventional flash
memory (Blauwe, 2002; Hanafi et al., 1996). In NP memory, the device performance and
reliability depend on many factors, such as the ability to control NP size, size distribution,
crystallinity, area density, oxide passivation quality, and the isolation that prevents lateral
charge conduction in the NP layer (Ostraat et al., 2001). Thus, NP memory has driven
extensive efforts to form NP acting as charging and discharging islands by various methods.
Up to now, several techniques have been developed to form uniform NP in gate oxides. For
example, Kim (Kim et al., 1999) employed low pressure chemical vapour deposition
(LPCVD) to fabricate Si NP with a 4.5 nm average size and 5×1011cm-2 average density. King
(King et al., 1998) fabricated Ge NPs by oxidation of a SiGe layer formed by ion implantation,
and demonstrated quasi-nonvolatile memory operation with a 0.4 V threshold-voltage shift.
Takata (Takata et al., 2003) applied a sputtering method with a special target to fabricate metal
nano dots embedded in SiO. Various NP memory devices have been made to realize the fast
and low-power operation of such devices, mostly using Si NP devices surrounded by SiO
(Gonzalez-Varona et al., 2003). The programming efficiency has been improved with program
voltages reduced far below 10 V, owing to the scaling of tunneling SiO2. Among the
advantages related with the NP approach to FLASH technologies, worth to emphasize that
owing to the discrete nature of the storage nodes, NP memories are expected to behave much
better than standard FG devices in radiation environments.
This chapter focuses on this particular issue of the radiation hardness of FLASH, and in
particular, NP memory technologies. After a review of the main sources of radiation in space
and on earth, we will present a detailed review of the effects of radiation on CMOS electronic
devices and discuss the state of the art of radiation effects on standard FG FLASH memories

Flash Memories

212

and NP FLASH memories. In the second part of the chapter, we will present and discuss an
extensive study conducted on prototype Si nanocrystal (NC) FLASH memories irradiated
with protons.

2. The main sources of radiation
Radiation environments are encountered in military applications, nuclear power stations,
nuclear waste disposal sites, high-altitude avionics, medical and space applications.
Radiation type, energy, dose1 rate and total dose may be very different in each of these
application areas and require in many cases radiation-tolerant electronic systems.
The space radiation environment poses a certain radiation risk to all electronic components
on the earth-orbiting satellites and planetary mission spacecrafts. The irradiating particles in
this environment consist primarily of high-energy electrons, protons, alpha particles, and
cosmic rays. The weapon environment such as a nuclear explosion (often referred to as the
"gamma dot") is characterized by X-rays, gamma, neutrons, and other reaction debris
constituents occurring within a short time span. This can cause latchup and transient upsets
in integrated circuits such as memories. Although the natural space environment does not
contain the high dose rate pulse characteristics of a nuclear weapon, the electronics systems
exposed can accumulate a significant total dose from the electron and protons over a period
of several years. The radiation effects of charged particles in the space environment are
dominated by ionization, which refers to any type of high energy particle that creates
electron-hole (e-h) pairs when passing through a material. It can be either particulate in
nature or electromagnetic. In addition to creating e-h pairs, the radiation can cause
displacement damage in the crystal lattice by breaking the atomic bonds and creating
trapping recombination centers. Both of these damage mechanisms can lead to degradation
of the electronic performance. The ionizing electromagnetic radiations of importance are the
X-rays and gamma rays. Ionizing particulate radiation can be light uncharged particles such
as neutrons, light charged particles such as electrons, protons, alpha, and beta particles, and
heavy charged particles (heavy ions) such as iron, bromine, krypton, xenon, etc., which are
present in the cosmic ray fluences. Gamma rays (or X-rays) basically produce a similar kind
of damage as light charged particles since the dominant mechanism is charge interaction
with the material. Neutrons have no charge, and react primarily with the nucleus, causing
lattice damage. In Fig. 1 is shown a summary of the possible radiation sources and their
effects on electronic, optical and mechanical components.

2.1 Space radiation environments
Our planet is surrounded by a radiation rich environment, consisting of mainly energetic
charged particles (electrons, protons, heavy ions, see Table 1). They can either be trapped
particles, bound to trajectories dictated by the earth’s magnetic field, or free, transiting
particles originating from the sun or from galactic sources and can be classified in three
main categories: the Van Allen belts, the solar cosmic rays (solar flares), the cosmic rays
(galactic and not).

1The dose is the energy deposited per unit mass of the target material by the incident radiation and in
the S.I. is measured in Gray, Gy. The unit “rad” (radiation absorbed dose) is related to the abandoned
“cgs” system and correspond to 0.01Gy. In this study all the doses are transformed into the
correspondent doses in SiO2.

Radiation Hardness of Flash and Nanoparticle Memories

213

Fig. 1. Radiation sources and their effects on electronic, optical and mechanical components.

Particle type Maximum Energy

Trapped electrons 10s of MeV
Trapped Protons and Heavy Ions 100s of MeV

Solar Protons GeV
Solar Heavy Ions GeV

Galactic cosmic rays TeV

Table 1. Maximum energies of particles in the space radiation environment (Barth et al.,
2002).

2.1.1 The Van-Allen belts
This section discusses natural space environments in which most of the satellites operate, in
orbits ranging in altitudes from low earth orbits (150-600 km) to geosynchronous orbits
(roughly 35,880 km). Most of the particles in interplanetary space come from the sun in the
form of a hot ionized gas called the solar wind; it flows radially from the sun with a speed
that in proximity of the Earth varies from about 300 to 1000 km/s, and represents a solar
mass loss of about 1014 kilograms per day.
The radiation environment of greatest interest is the near earth region, about 1-12 earth radii
Re (where Re = 6380 km), which is mainly dominated by electrically charged particles
trapped in the earth's magnetosphere, and to a lesser extent by the heavy ions from cosmic
rays (solar and galactic). As the earth sweeps through the solar wind, a geomagnetic cavity
is formed by the earth's magnetic field (Fig. 2).
The motion of the trapped charge particles is complex, as they gyrate and bounce along the
magnetic field lines, and are reflected back and forth between the pairs of conjugate mirror
points (regions of maximum magnetic field strength along their trajectories) in the opposite
hemispheres. Also, because of the charge, the electrons drift in an easterly direction around
earth, whereas protons and heavy ions drift westward. Interplanetary space probes such as
the Voyager (and Galileo to Jupiter) encounter ionizing particles trapped in the
magnetosphere of other planets, as well as the solar flares and heavy ions from cosmic rays.

Flash Memories

212

and NP FLASH memories. In the second part of the chapter, we will present and discuss an
extensive study conducted on prototype Si nanocrystal (NC) FLASH memories irradiated
with protons.

2. The main sources of radiation
Radiation environments are encountered in military applications, nuclear power stations,
nuclear waste disposal sites, high-altitude avionics, medical and space applications.
Radiation type, energy, dose1 rate and total dose may be very different in each of these
application areas and require in many cases radiation-tolerant electronic systems.
The space radiation environment poses a certain radiation risk to all electronic components
on the earth-orbiting satellites and planetary mission spacecrafts. The irradiating particles in
this environment consist primarily of high-energy electrons, protons, alpha particles, and
cosmic rays. The weapon environment such as a nuclear explosion (often referred to as the
"gamma dot") is characterized by X-rays, gamma, neutrons, and other reaction debris
constituents occurring within a short time span. This can cause latchup and transient upsets
in integrated circuits such as memories. Although the natural space environment does not
contain the high dose rate pulse characteristics of a nuclear weapon, the electronics systems
exposed can accumulate a significant total dose from the electron and protons over a period
of several years. The radiation effects of charged particles in the space environment are
dominated by ionization, which refers to any type of high energy particle that creates
electron-hole (e-h) pairs when passing through a material. It can be either particulate in
nature or electromagnetic. In addition to creating e-h pairs, the radiation can cause
displacement damage in the crystal lattice by breaking the atomic bonds and creating
trapping recombination centers. Both of these damage mechanisms can lead to degradation
of the electronic performance. The ionizing electromagnetic radiations of importance are the
X-rays and gamma rays. Ionizing particulate radiation can be light uncharged particles such
as neutrons, light charged particles such as electrons, protons, alpha, and beta particles, and
heavy charged particles (heavy ions) such as iron, bromine, krypton, xenon, etc., which are
present in the cosmic ray fluences. Gamma rays (or X-rays) basically produce a similar kind
of damage as light charged particles since the dominant mechanism is charge interaction
with the material. Neutrons have no charge, and react primarily with the nucleus, causing
lattice damage. In Fig. 1 is shown a summary of the possible radiation sources and their
effects on electronic, optical and mechanical components.

2.1 Space radiation environments
Our planet is surrounded by a radiation rich environment, consisting of mainly energetic
charged particles (electrons, protons, heavy ions, see Table 1). They can either be trapped
particles, bound to trajectories dictated by the earth’s magnetic field, or free, transiting
particles originating from the sun or from galactic sources and can be classified in three
main categories: the Van Allen belts, the solar cosmic rays (solar flares), the cosmic rays
(galactic and not).

1The dose is the energy deposited per unit mass of the target material by the incident radiation and in
the S.I. is measured in Gray, Gy. The unit “rad” (radiation absorbed dose) is related to the abandoned
“cgs” system and correspond to 0.01Gy. In this study all the doses are transformed into the
correspondent doses in SiO2.

Radiation Hardness of Flash and Nanoparticle Memories

213

Fig. 1. Radiation sources and their effects on electronic, optical and mechanical components.

Particle type Maximum Energy

Trapped electrons 10s of MeV
Trapped Protons and Heavy Ions 100s of MeV

Solar Protons GeV
Solar Heavy Ions GeV

Galactic cosmic rays TeV

Table 1. Maximum energies of particles in the space radiation environment (Barth et al.,
2002).

2.1.1 The Van-Allen belts
This section discusses natural space environments in which most of the satellites operate, in
orbits ranging in altitudes from low earth orbits (150-600 km) to geosynchronous orbits
(roughly 35,880 km). Most of the particles in interplanetary space come from the sun in the
form of a hot ionized gas called the solar wind; it flows radially from the sun with a speed
that in proximity of the Earth varies from about 300 to 1000 km/s, and represents a solar
mass loss of about 1014 kilograms per day.
The radiation environment of greatest interest is the near earth region, about 1-12 earth radii
Re (where Re = 6380 km), which is mainly dominated by electrically charged particles
trapped in the earth's magnetosphere, and to a lesser extent by the heavy ions from cosmic
rays (solar and galactic). As the earth sweeps through the solar wind, a geomagnetic cavity
is formed by the earth's magnetic field (Fig. 2).
The motion of the trapped charge particles is complex, as they gyrate and bounce along the
magnetic field lines, and are reflected back and forth between the pairs of conjugate mirror
points (regions of maximum magnetic field strength along their trajectories) in the opposite
hemispheres. Also, because of the charge, the electrons drift in an easterly direction around
earth, whereas protons and heavy ions drift westward. Interplanetary space probes such as
the Voyager (and Galileo to Jupiter) encounter ionizing particles trapped in the
magnetosphere of other planets, as well as the solar flares and heavy ions from cosmic rays.

Flash Memories

214

Fig. 2. Interactions between Earth magnetosphere and the solar wind2

Electrons in the earth's magnetosphere have energies ranging from low kilo electronvolts to
about 7 MeV, and are trapped in the roughly toroidal region which is centered on the
geomagnetic equator and extends to about 1-12 earth radii. These trapped electrons are
differentiated by "inner zone" (<5 MeV) and "outer zone" (~7 MeV) electron populations.
The trapped protons originating mostly from the solar and galactic cosmic rays have
energies ranging from a few MeV to about 800 MeV. They occupy generally the same region
as the electrons, although the region of highest proton flux for energies Ep > 30 MeV is
concentrated in a relatively small area at roughly 1.5 Re. The actual electron and proton flux
encountered by a satellite is strongly dependent upon the orbital parameters, mission
launch time, and duration. Electrons and protons from the trapped radiation belts on
interacting with spacecraft materials produce secondary radiation (e.g., "bremsstrahlung" or
braking radiation from the deceleration of electrons). This secondary radiation can extend
the penetration range of primary radiation and lead to an increase in dose deposition.
Incident electron and proton fluxes are typically calculated from the trapped radiation
environmental models developed by the U.S. National Space Sciences Data Center (NSSDC).
The trapped particle fluxes responding to changes in the geomagnetic field induced by the
solar activity exhibit dynamic behavior.

2.1.2 Solar cosmic rays- solar flares
In addition to the trapped geomagnetic radiation, another contribution to incident particle
flux for an orbiting satellite is the transiting radiation from the solar flares. These solar
energy particle events (SPE), usually occurring in association with the solar flares, consist
mainly of protons (90%), some alpha particles (5-10%), heavy ions, and electrons. This solar
flare phenomenon is categorized as an ordinary (OR) event or an anomalously large (AL)
event. Particle fluxes from the solar flares can last from a few hours to several days and peak
flux during an SPE may be two to five orders of magnitude greater than background, within
hours of the event onset. Periods of enhanced flux may last for days, with successive peaks

2http://helios.gsfc.nasa.gov/magnet.html

Radiation Hardness of Flash and Nanoparticle Memories

215

due to multiple events and enhancements during shock passage. AL events (Fig. 3),
although occurring rarely, can cause serious damage to ICs. For ordinary solar events, the
relative abundance of helium ions can be between 5-10%, whereas ions heavier than He
(e.g., carbon, oxygen, iron, etc.), referred to as the "heavy ions," are very small. However, the
solar flare protons which contribute to the total ionizing dose radiation are not that
significant a factor compared to the trapped radiation environment.

Fig. 3. Distribution in energy of proton fluxes for major past SPEs (free space)

The particles from energetic solar flares (OR events) are heavily attenuated by the
geomagnetic field at low altitude and low inclination orbits, such as U.S. Space Shuttle orbits
(28.5° inclination). In a 500 km, 57° inclination orbit, some particle fluxes do penetrate. A
characteristic of the geomagnetic field which is particularly significant is the South Atlantic
Anomaly (SAA), referring to an apparent depression of the magnetic field over the coast of
Brazil where the Van Allen radiation belts dip low into the earth's atmosphere. This SAA is
responsible for most of the trapped radiation in low earth orbits (LEOs). On the opposite
side of the globe, the Southeast-Asian anomaly displays strong particle fluxes at higher
altitudes. A polar orbit at any altitude experiences a high degree of exposure, and at
geosynchronous orbit, geomagnetic shielding is rather ineffective.

2.1.3 Galactic cosmic rays
Another significant contribution to the transiting radiation is from cosmic rays originating
from outside the solar system and consisting of 85% protons, 14% alpha particles, and 1%
heavier ions. These galactic cosmic rays (GCR) range in energy from a few MeV to over GeV
or TeV per nucleon. The total flux of cosmic ray particles (primarily composed of protons)
seen outside the magnetosphere at a distance of earth from the sun (1 AU) is approximately
4 particles/cm2s.
Heavy energetic nuclei, HZE, represent ~1% of the GCR and as shown in Fig. 4, where is
presented the distribution in energy of several important HZE nuclei, these particles have
very high energies, sufficient to penetrate many centimetres of tissue or other materials. In
addition, the HZE nuclei are highly charged and, therefore, very densely ionizing. As a
consequence, even though the number of HZE particles is relatively small, they have a
significant biological impact that is comparable to that of protons.

Flash Memories

214

Fig. 2. Interactions between Earth magnetosphere and the solar wind2

Electrons in the earth's magnetosphere have energies ranging from low kilo electronvolts to
about 7 MeV, and are trapped in the roughly toroidal region which is centered on the
geomagnetic equator and extends to about 1-12 earth radii. These trapped electrons are
differentiated by "inner zone" (<5 MeV) and "outer zone" (~7 MeV) electron populations.
The trapped protons originating mostly from the solar and galactic cosmic rays have
energies ranging from a few MeV to about 800 MeV. They occupy generally the same region
as the electrons, although the region of highest proton flux for energies Ep > 30 MeV is
concentrated in a relatively small area at roughly 1.5 Re. The actual electron and proton flux
encountered by a satellite is strongly dependent upon the orbital parameters, mission
launch time, and duration. Electrons and protons from the trapped radiation belts on
interacting with spacecraft materials produce secondary radiation (e.g., "bremsstrahlung" or
braking radiation from the deceleration of electrons). This secondary radiation can extend
the penetration range of primary radiation and lead to an increase in dose deposition.
Incident electron and proton fluxes are typically calculated from the trapped radiation
environmental models developed by the U.S. National Space Sciences Data Center (NSSDC).
The trapped particle fluxes responding to changes in the geomagnetic field induced by the
solar activity exhibit dynamic behavior.

2.1.2 Solar cosmic rays- solar flares
In addition to the trapped geomagnetic radiation, another contribution to incident particle
flux for an orbiting satellite is the transiting radiation from the solar flares. These solar
energy particle events (SPE), usually occurring in association with the solar flares, consist
mainly of protons (90%), some alpha particles (5-10%), heavy ions, and electrons. This solar
flare phenomenon is categorized as an ordinary (OR) event or an anomalously large (AL)
event. Particle fluxes from the solar flares can last from a few hours to several days and peak
flux during an SPE may be two to five orders of magnitude greater than background, within
hours of the event onset. Periods of enhanced flux may last for days, with successive peaks

2http://helios.gsfc.nasa.gov/magnet.html

Radiation Hardness of Flash and Nanoparticle Memories

215

due to multiple events and enhancements during shock passage. AL events (Fig. 3),
although occurring rarely, can cause serious damage to ICs. For ordinary solar events, the
relative abundance of helium ions can be between 5-10%, whereas ions heavier than He
(e.g., carbon, oxygen, iron, etc.), referred to as the "heavy ions," are very small. However, the
solar flare protons which contribute to the total ionizing dose radiation are not that
significant a factor compared to the trapped radiation environment.

Fig. 3. Distribution in energy of proton fluxes for major past SPEs (free space)

The particles from energetic solar flares (OR events) are heavily attenuated by the
geomagnetic field at low altitude and low inclination orbits, such as U.S. Space Shuttle orbits
(28.5° inclination). In a 500 km, 57° inclination orbit, some particle fluxes do penetrate. A
characteristic of the geomagnetic field which is particularly significant is the South Atlantic
Anomaly (SAA), referring to an apparent depression of the magnetic field over the coast of
Brazil where the Van Allen radiation belts dip low into the earth's atmosphere. This SAA is
responsible for most of the trapped radiation in low earth orbits (LEOs). On the opposite
side of the globe, the Southeast-Asian anomaly displays strong particle fluxes at higher
altitudes. A polar orbit at any altitude experiences a high degree of exposure, and at
geosynchronous orbit, geomagnetic shielding is rather ineffective.

2.1.3 Galactic cosmic rays
Another significant contribution to the transiting radiation is from cosmic rays originating
from outside the solar system and consisting of 85% protons, 14% alpha particles, and 1%
heavier ions. These galactic cosmic rays (GCR) range in energy from a few MeV to over GeV
or TeV per nucleon. The total flux of cosmic ray particles (primarily composed of protons)
seen outside the magnetosphere at a distance of earth from the sun (1 AU) is approximately
4 particles/cm2s.
Heavy energetic nuclei, HZE, represent ~1% of the GCR and as shown in Fig. 4, where is
presented the distribution in energy of several important HZE nuclei, these particles have
very high energies, sufficient to penetrate many centimetres of tissue or other materials. In
addition, the HZE nuclei are highly charged and, therefore, very densely ionizing. As a
consequence, even though the number of HZE particles is relatively small, they have a
significant biological impact that is comparable to that of protons.

Flash Memories

216

Fig. 4. Abundances (a) and energy spectra (b) of GCR.

3. Ionizing radiation effects on MOS devices
Silicon MOS (metal-oxide-semiconductor) devices are by many decades the mainstay of the
semiconductor industry. When these devices are exposed to ionizing radiation, significant
changes can occur in their characteristics. Ionizing radiation creates mobile electrons and
holes in both the insulator and silicon substrate in MOS devices that may lead to a damage
of the device. It is interesting to note that these properties have allowed the use of ionizing
radiation damage as a tool for scientific study in a number of areas. Indeed, in the past, the
basic mechanisms of carrier transport in insulators have been very effectively explored by
using various types of ionizing radiation to create mobile carriers and then monitoring their
motion by electrical means. These studies have furthered our understanding of polarons,
excitons and trap-hopping processes. The generation of interface traps and oxide trapped
charge in large numbers by ionizing radiation has allowed the identification of the atomic
structures associated with these defects. By providing a means of altering the trapped
charge at the SiO2/Si interface in a given device, the interaction of mobile charge carriers in
the channel of an MOS device with that trapped charge can be explored. By creating trapped
charge distributions in the oxide layer which provide traps for carriers, tunneling and
carrier capture phenomena can be effectively studied. As the semiconductor industry
progresses deep into the ULSI era, the technological impact of ionizing radiation effects
becomes more and more important. In order to produce the extremely fine geometries
required at high levels of integration, the processes used in the manufacture of the
integrated circuits themselves may produce ionizing radiation. At the small geometries of
current and future integrated circuits, latchup initiated by normal operating conditions has
become a major concern. This trend toward small devices has made normal commercial ICs
susceptible to single event upsets caused by ionizing particles created by the decay of
residual radioactive material in IC packaging material. Thus many of the concerns for
radiation hardened circuits have become a concern for standard commercial products. In
addition, in order to make circuits for specialized applications requiring operation in an
ionizing radiation environment, significant modifications to the technology employed must
be made. There are a large number of specialized applications requiring ICs that have a

Radiation Hardness of Flash and Nanoparticle Memories

217

known, predictable response to ionizing radiation. Satellite systems need electronic
components that can operate in the harsh radiation environment around the earth and in
space. Without such components satellites would have extremely limited capabilities. Many
weapon systems require hardened components to perform their tasks properly trough an
operational scenario. Nuclear power plants need instrumentation which can withstand the
environment near the reactor and continue to provide reliable data. In the nuclear medicine
field, is straightforward the importance of having electronic components with higher
performances in radiation environments.

3.1 Damaging mechanisms
The way ionizing radiation affects MOS devices is mainly related to build up of oxide
trapped charge, increased amount of density of interface states at the oxide boundaries and
to the possibility to have single-event-upsets, SEU (Ma & Dressendorfer, 1989). When
ionizing radiation passes through the oxide, the energy deposited creates electron/hole
pairs with a generation energy of 18 eV/pair. The radiation generated electrons are much
more mobile that holes and are swept quickly out of the oxide. Some of them undergo
recombination with holes, depending on many different experimental factors. A final
positive charge is then observed into the oxide, resulting from the unrecombined holes
generated by radiation that remain trapped in the strained areas of the oxide close to the
interfaces with Si or the gate material (Fig. 5). The trap sites responsible for this positive
charge build up have been identified as E’centers, deep traps in the bulk of SiO2 originated
by a silicon dangling bond in the oxide matrix. Furthermore, an increased amount of
interface states is also observed after irradiation at Si/oxide interface. Pb centers have been
found to be responsible of the observed interface states, microscopically related to non
bridging silicon atoms between the crystalline silicon substrate and the silicon oxide matrix.
This interface bond breaking during irradiation seems to be driven by the excess positive
charge and strain present at interface. Finally, in the case of heavy ion irradiation when the
incident particle has high enough Linear-Energy-Transfer(LET) transient effects become also
important. Indeed the ion along its path inside the device create a dense cloud of electrons-
hole pairs generating very intense transient currents that in many cases may result in
different kinds of failures of the device itself, even rupture.

Fig. 5. Detailed representation of the ionizing radiation damage mechanisms into SiO2.

Flash Memories

216

Fig. 4. Abundances (a) and energy spectra (b) of GCR.

3. Ionizing radiation effects on MOS devices
Silicon MOS (metal-oxide-semiconductor) devices are by many decades the mainstay of the
semiconductor industry. When these devices are exposed to ionizing radiation, significant
changes can occur in their characteristics. Ionizing radiation creates mobile electrons and
holes in both the insulator and silicon substrate in MOS devices that may lead to a damage
of the device. It is interesting to note that these properties have allowed the use of ionizing
radiation damage as a tool for scientific study in a number of areas. Indeed, in the past, the
basic mechanisms of carrier transport in insulators have been very effectively explored by
using various types of ionizing radiation to create mobile carriers and then monitoring their
motion by electrical means. These studies have furthered our understanding of polarons,
excitons and trap-hopping processes. The generation of interface traps and oxide trapped
charge in large numbers by ionizing radiation has allowed the identification of the atomic
structures associated with these defects. By providing a means of altering the trapped
charge at the SiO2/Si interface in a given device, the interaction of mobile charge carriers in
the channel of an MOS device with that trapped charge can be explored. By creating trapped
charge distributions in the oxide layer which provide traps for carriers, tunneling and
carrier capture phenomena can be effectively studied. As the semiconductor industry
progresses deep into the ULSI era, the technological impact of ionizing radiation effects
becomes more and more important. In order to produce the extremely fine geometries
required at high levels of integration, the processes used in the manufacture of the
integrated circuits themselves may produce ionizing radiation. At the small geometries of
current and future integrated circuits, latchup initiated by normal operating conditions has
become a major concern. This trend toward small devices has made normal commercial ICs
susceptible to single event upsets caused by ionizing particles created by the decay of
residual radioactive material in IC packaging material. Thus many of the concerns for
radiation hardened circuits have become a concern for standard commercial products. In
addition, in order to make circuits for specialized applications requiring operation in an
ionizing radiation environment, significant modifications to the technology employed must
be made. There are a large number of specialized applications requiring ICs that have a

Radiation Hardness of Flash and Nanoparticle Memories

217

known, predictable response to ionizing radiation. Satellite systems need electronic
components that can operate in the harsh radiation environment around the earth and in
space. Without such components satellites would have extremely limited capabilities. Many
weapon systems require hardened components to perform their tasks properly trough an
operational scenario. Nuclear power plants need instrumentation which can withstand the
environment near the reactor and continue to provide reliable data. In the nuclear medicine
field, is straightforward the importance of having electronic components with higher
performances in radiation environments.

3.1 Damaging mechanisms
The way ionizing radiation affects MOS devices is mainly related to build up of oxide
trapped charge, increased amount of density of interface states at the oxide boundaries and
to the possibility to have single-event-upsets, SEU (Ma & Dressendorfer, 1989). When
ionizing radiation passes through the oxide, the energy deposited creates electron/hole
pairs with a generation energy of 18 eV/pair. The radiation generated electrons are much
more mobile that holes and are swept quickly out of the oxide. Some of them undergo
recombination with holes, depending on many different experimental factors. A final
positive charge is then observed into the oxide, resulting from the unrecombined holes
generated by radiation that remain trapped in the strained areas of the oxide close to the
interfaces with Si or the gate material (Fig. 5). The trap sites responsible for this positive
charge build up have been identified as E’centers, deep traps in the bulk of SiO2 originated
by a silicon dangling bond in the oxide matrix. Furthermore, an increased amount of
interface states is also observed after irradiation at Si/oxide interface. Pb centers have been
found to be responsible of the observed interface states, microscopically related to non
bridging silicon atoms between the crystalline silicon substrate and the silicon oxide matrix.
This interface bond breaking during irradiation seems to be driven by the excess positive
charge and strain present at interface. Finally, in the case of heavy ion irradiation when the
incident particle has high enough Linear-Energy-Transfer(LET) transient effects become also
important. Indeed the ion along its path inside the device create a dense cloud of electrons-
hole pairs generating very intense transient currents that in many cases may result in
different kinds of failures of the device itself, even rupture.

Fig. 5. Detailed representation of the ionizing radiation damage mechanisms into SiO2.

Flash Memories

218

Thus, when we are interested into the transient response of an MOS component to single
events we perform heavy ion irradiations. When on the other hand we are interested into
the effect on devices performance of accumulated damage during long time irradiation
exposure we perform total ionizing dose (TID) irradiations, using gamma rays or in special
cases electrons or protons.

3.2 Performance degradation of FLASH memory devices under irradiation
In MOS microelectronic memory devices, information is stored as quantities of charge.
Pulses of ionizing radiation are known to be effective in corrupting the information
integrated circuits store. Errors induced by ionizing radiation can be classified in three main
classes: soft errors, hard errors and failures. Soft errors are correctable simply by re-entering
correct information into the affected elements and can be generated by single ionizing
particle or by pulses of ionizing radiation. Hard errors are not recoverable, i.e. are not
altered by attempts to rewrite correct information and are caused by single particles like
neutrons and heavy ions. Finally, failure events prevent normal device operation and
generally are connected to the high transient currents initiated by pulsed ionizing radiation
or single events. While RAM can be made insensible to soft errors in many different ways (
by design (Liaw, 2003) or by software (Klein, 2005 ; Huang, 2010)), NVMs are susceptible to
all three categories of errors above. The lack of any refresh cycle of the stored information
make flash memories vulnerable to data loss at each exposure to ionizing radiation.
Considering that Flash memories standards impose a retention time for the data stored of 10
years at least and a minimum 106 write/erase operations before performance degradation
starts, is clear that non-volatile memory cells are in a passive state for most of their lifetime.
Until recently, the effects of radiation in Flash memories have mainly been a concern for the
space or aircraft applications. The heavy ions and other high energy particles which are
abundantly present at altitudes far above the sea-level cause a variety of problems including
the soft errors (mainly SEU, Single-Event-Functional-Interrupts (SEFI)), latchup (If the
induced parasitic current levels are sufficiently high, they can cause permanent device
failures such as a junction burnout) and hard errors pertaining to oxide degradation due to
total dose (irreversible bit-flips due for example to high leakage current in the gate oxide).
Recent experiments on current generation Flash memories have however shown that
significant amount of radiation effects can be observed at the sea level or terrestrial
environments. Previously, the most sensitive component of Flash memory used to be the
control circuitry for sense amplifiers and charge pumps. The FG cell array on the other hand
was considered to be relatively insensitive to radiation strikes at least at terrestrial levels.
This is however changing rapidly because with only ~1000 or fewer electrons stored in the
FG, the cells have now become sensitive to charge deposited by the terrestrial cosmic ray
neutrons and alpha particles. But most important, because of the conductive nature of the
floating gate, in presence of a weak spot in the tunnel oxide, possibly radiation induced, the
whole charge stored could be lost with total loss of information. Even in the case that the
damage does not generate device failure, data retention and device performance would be
dramatically affected by this defect in the tunnel oxide (Oldham et al., 2006).

4. Brief review of radiation effects on FG FLASH memories
In the last decade different teams already investigated the effect of ionizing radiation on FG
Flash memories and a summary on the results can be found in the works of Cellere (Cellere
et al., 2004a , 2004b, 2004c, 2005) and Oldham (Oldham et al., 2006, 2007).

Radiation Hardness of Flash and Nanoparticle Memories

219

Cellere investigate the radiation hardness of standard FG memories, under 60Co, X-ray and
100 MeV protons. The result that worth to mention here is that independently (almost) from
the radiation used, information loss starts at doses as low as 100 krad(Si).
Oldham investigates TID and SEE effects on commercial 2Gbit and 4Gbit NAND FG
memories. TID effects, in reasonable agreement with Cellere, show that static errors rise
abruptly above 75 krad(SiO2) while dynamic errors rise quickly at even lower doses. The
errors were found to arise from zeroes that could not be erased into ones due to the failure
of the erase function. The SEE were monitored in static and various dynamic modes for LET
in the range 0-80 MeV cm2 mg-1. Error Cross sections seem to saturate to a value of ~10-12
cm2/bit.

5. Nanocrystal FLASH memory devices under irradiation - A review
NCMs are expected to have better resistance to ionizing radiation: being able to retain
information with only a residual fraction of nanocrystals charged, these devices should be
quite immune to radiation-induced leakage current, RILC (Larcher et al., 1999; Scarpa et al.,
1997; Ceschia et al., 2000 ; Oldham et al., 2005), and they may in principle exhibit high
resistance to both single event (SEE) and total ionizing dose (TID) effects. While some works
already investigated the effect of ionizing radiation on FG Flash memories, until now, few
works have investigated this issue in NC NVMs and will be briefly reviewed in the next.
Petkov (Petkov et al., 2004) report the first results pertinent to the high total dose (TID)
tolerance of Si nanocrystal NVM cells studying prototype NC–Si field effect transistors
made by ion implantation. Si ions were implanted at 5 keV to a fluence of 1.3 1016cm-2 into a
bare 15 nm-thick SiO2 layer, grown on top of p-type doped Si wafer. The ion implantation
profile shows a peak depth of 10 nm and a stoichiometry at the peak of 1.75:2. The wafers
were annealed at 1050°C for 5 min in dry oxygen, during which time the nanocrystals were
formed and the majority of the implantation-induced defects were annealed out. An
optically transparent 50 nm poly-Si gate was deposited on top of the wafers. Reference
samples without Si NCs were also used. Unfortunately Petkov et al. don't give further
details about the final geometry of the device. Radiation experiments were carried out using
60Co and two different conditions were used: (1) VS = 0 V; VDS=1.5V; VG=±6V (write/erase
square wave potential), and (2) all contacts grounded. They yielded indistinguishable results
for the duration of the experiments, in which the maximum achieved dose was 15 Mrad(Si).
The typical hysteresis of a device prior to and after irradiation were recorded on 15 NC–Si
FETs with write/erase square wave potential applied to the gate. The electrical
characteristics of all transistors were virtually unchanged and it is clear that negligible is the
effect of ionizing radiation on position and height of the memory hysteresis. In their work,
Petkov et al. consider also another set of 6 NC–Si FETs and three conventional FETs,
exposed to ionizing radiation environment with all contacts grounded. The control n-
channel FET yielded decreasing gate threshold with dose, notably below 1 Mrad(Si) and
according to Petkov, this is considered to be consistent with the accepted models for
degradation of metal-oxide-silicon structures under irradiation . The lack of change at 2
Mrad(Si) doses is attributed to saturation of interface defect generation and hole trapping.
Both of the NC–Si FET show no significant changes in the entire test range of up to 15
Mrad(Si). This is ascribed to the ion-implantation-induced damage and the subsequent
reconstruction of the oxide. Petkov et. al. justify this fact with the argument that oxide
properties, especially these related to defect density, charge trapping and mobility, can

Flash Memories

218

Thus, when we are interested into the transient response of an MOS component to single
events we perform heavy ion irradiations. When on the other hand we are interested into
the effect on devices performance of accumulated damage during long time irradiation
exposure we perform total ionizing dose (TID) irradiations, using gamma rays or in special
cases electrons or protons.

3.2 Performance degradation of FLASH memory devices under irradiation
In MOS microelectronic memory devices, information is stored as quantities of charge.
Pulses of ionizing radiation are known to be effective in corrupting the information
integrated circuits store. Errors induced by ionizing radiation can be classified in three main
classes: soft errors, hard errors and failures. Soft errors are correctable simply by re-entering
correct information into the affected elements and can be generated by single ionizing
particle or by pulses of ionizing radiation. Hard errors are not recoverable, i.e. are not
altered by attempts to rewrite correct information and are caused by single particles like
neutrons and heavy ions. Finally, failure events prevent normal device operation and
generally are connected to the high transient currents initiated by pulsed ionizing radiation
or single events. While RAM can be made insensible to soft errors in many different ways (
by design (Liaw, 2003) or by software (Klein, 2005 ; Huang, 2010)), NVMs are susceptible to
all three categories of errors above. The lack of any refresh cycle of the stored information
make flash memories vulnerable to data loss at each exposure to ionizing radiation.
Considering that Flash memories standards impose a retention time for the data stored of 10
years at least and a minimum 106 write/erase operations before performance degradation
starts, is clear that non-volatile memory cells are in a passive state for most of their lifetime.
Until recently, the effects of radiation in Flash memories have mainly been a concern for the
space or aircraft applications. The heavy ions and other high energy particles which are
abundantly present at altitudes far above the sea-level cause a variety of problems including
the soft errors (mainly SEU, Single-Event-Functional-Interrupts (SEFI)), latchup (If the
induced parasitic current levels are sufficiently high, they can cause permanent device
failures such as a junction burnout) and hard errors pertaining to oxide degradation due to
total dose (irreversible bit-flips due for example to high leakage current in the gate oxide).
Recent experiments on current generation Flash memories have however shown that
significant amount of radiation effects can be observed at the sea level or terrestrial
environments. Previously, the most sensitive component of Flash memory used to be the
control circuitry for sense amplifiers and charge pumps. The FG cell array on the other hand
was considered to be relatively insensitive to radiation strikes at least at terrestrial levels.
This is however changing rapidly because with only ~1000 or fewer electrons stored in the
FG, the cells have now become sensitive to charge deposited by the terrestrial cosmic ray
neutrons and alpha particles. But most important, because of the conductive nature of the
floating gate, in presence of a weak spot in the tunnel oxide, possibly radiation induced, the
whole charge stored could be lost with total loss of information. Even in the case that the
damage does not generate device failure, data retention and device performance would be
dramatically affected by this defect in the tunnel oxide (Oldham et al., 2006).

4. Brief review of radiation effects on FG FLASH memories
In the last decade different teams already investigated the effect of ionizing radiation on FG
Flash memories and a summary on the results can be found in the works of Cellere (Cellere
et al., 2004a , 2004b, 2004c, 2005) and Oldham (Oldham et al., 2006, 2007).

Radiation Hardness of Flash and Nanoparticle Memories

219

Cellere investigate the radiation hardness of standard FG memories, under 60Co, X-ray and
100 MeV protons. The result that worth to mention here is that independently (almost) from
the radiation used, information loss starts at doses as low as 100 krad(Si).
Oldham investigates TID and SEE effects on commercial 2Gbit and 4Gbit NAND FG
memories. TID effects, in reasonable agreement with Cellere, show that static errors rise
abruptly above 75 krad(SiO2) while dynamic errors rise quickly at even lower doses. The
errors were found to arise from zeroes that could not be erased into ones due to the failure
of the erase function. The SEE were monitored in static and various dynamic modes for LET
in the range 0-80 MeV cm2 mg-1. Error Cross sections seem to saturate to a value of ~10-12
cm2/bit.

5. Nanocrystal FLASH memory devices under irradiation - A review
NCMs are expected to have better resistance to ionizing radiation: being able to retain
information with only a residual fraction of nanocrystals charged, these devices should be
quite immune to radiation-induced leakage current, RILC (Larcher et al., 1999; Scarpa et al.,
1997; Ceschia et al., 2000 ; Oldham et al., 2005), and they may in principle exhibit high
resistance to both single event (SEE) and total ionizing dose (TID) effects. While some works
already investigated the effect of ionizing radiation on FG Flash memories, until now, few
works have investigated this issue in NC NVMs and will be briefly reviewed in the next.
Petkov (Petkov et al., 2004) report the first results pertinent to the high total dose (TID)
tolerance of Si nanocrystal NVM cells studying prototype NC–Si field effect transistors
made by ion implantation. Si ions were implanted at 5 keV to a fluence of 1.3 1016cm-2 into a
bare 15 nm-thick SiO2 layer, grown on top of p-type doped Si wafer. The ion implantation
profile shows a peak depth of 10 nm and a stoichiometry at the peak of 1.75:2. The wafers
were annealed at 1050°C for 5 min in dry oxygen, during which time the nanocrystals were
formed and the majority of the implantation-induced defects were annealed out. An
optically transparent 50 nm poly-Si gate was deposited on top of the wafers. Reference
samples without Si NCs were also used. Unfortunately Petkov et al. don't give further
details about the final geometry of the device. Radiation experiments were carried out using
60Co and two different conditions were used: (1) VS = 0 V; VDS=1.5V; VG=±6V (write/erase
square wave potential), and (2) all contacts grounded. They yielded indistinguishable results
for the duration of the experiments, in which the maximum achieved dose was 15 Mrad(Si).
The typical hysteresis of a device prior to and after irradiation were recorded on 15 NC–Si
FETs with write/erase square wave potential applied to the gate. The electrical
characteristics of all transistors were virtually unchanged and it is clear that negligible is the
effect of ionizing radiation on position and height of the memory hysteresis. In their work,
Petkov et al. consider also another set of 6 NC–Si FETs and three conventional FETs,
exposed to ionizing radiation environment with all contacts grounded. The control n-
channel FET yielded decreasing gate threshold with dose, notably below 1 Mrad(Si) and
according to Petkov, this is considered to be consistent with the accepted models for
degradation of metal-oxide-silicon structures under irradiation . The lack of change at 2
Mrad(Si) doses is attributed to saturation of interface defect generation and hole trapping.
Both of the NC–Si FET show no significant changes in the entire test range of up to 15
Mrad(Si). This is ascribed to the ion-implantation-induced damage and the subsequent
reconstruction of the oxide. Petkov et. al. justify this fact with the argument that oxide
properties, especially these related to defect density, charge trapping and mobility, can

Flash Memories

220

differ greatly prior to implantation and after reconstruction. They conclude their work
suggesting that for NC–Si technologies that do not utilize implantation, we can expect to
observe a shift of the erased state upon radiation exposure, as in conventional FETs.
Oldham (Oldham et al., 2005) reported on the exposition to heavy ion bombardment and
total ionizing dose of advanced nanocrystal nonvolatile memories. The test chips were
experimental 4Mb Flash EEPROM memories fabricated using 0.13 μm design rules, with
NAND architecture (Freescale). Channel hot electron (CHE) injection is used to write (that
is, to add electrons to the nanocrystal array), and Fowler-Nordheim tunneling to erase (that
is, to remove electrons from the array). The nanocrystals are deposited by a CVD process,
where the density and diameter of the particles can be controlled by adjusting the
deposition conditions. The tunneling oxide and control gate oxide are SiO2 with thicknesses
of 4.3 nm and 5.6 nm respectively while the Si NCs have diameter of 4 nm. The heavy ion
testing was done using a Single Event Effects Test Facility, which was tuned to 15
MeV/nucleon, using Ar, Kr, Xe and Au ions. Each exposure was to a total fluence of 107
particles/cm2. Total dose testing was done using a 60Co source with dose rate of 10 rad/s.
Oldham et al. performed their tests in three modes: static mode, in dynamic read mode, and
dynamic program and erase modes. In the static testing, a pattern was written, and errors
counted after the exposure. In dynamic read testing, a stored pattern was read continuously
during the exposure, and the errors counted. The write or program mode was tested by
continuously doing a write/read cycle. The erase mode was tested by cycling continuously
through erase/write/read steps, and counting errors when the pattern read differed from
the pattern expected. Patterns that could be written were all zeroes, all ones, checkerboard,
and inverse checkerboard. In heavy ion testing, the errors appear to be all static bit flips,
zeroes (electrons storage) turned into ones(holes storage). Oldham estimates that about one
ion out of 6 that hits the active gate area changes the state of the cell, even at the highest LET
tested so far and the observed cross section is about one sixth times the geometric gate cross-
section.
Cester (Cester et al., 2006) performed heavy ion irradiation tests on experimental
nanocrystal memory cell arrays provided by ST microelectronics based on CAST
architecture. Each nanocrystal MOSFET features W/L 0.2μm/0.3μm, with a tunnel oxide 5-
nm thick and thermally grown on Si. The external control oxide consists of an oxide-nitride-
oxide (ONO) stack with an equivalent oxide thickness (EOT) of 12 nm. Silicon nano-islands
were realized by low pressure CVD (LPCVD) process in the Si nucleation regime using SiH
as a precursor, followed by a post-deposition crystallization annealing of the islands. A
nanocrystal density of 5 1011 cm-2 was determined by TEM measurements, with an average
nanocrystal diameter of 6 nm. On average each cell contains 300 nanocrystals. Irradiations
were performed using a tandem van der graaf accelerator. I (301 MeV, LET=64 MeV cm2
mg-1) and Ni (182 MeV, LET=31,3 MeV cm2 mg-1) ions were considered at three different
fluencies: 0.83 108 cm-2, 1.7 108 cm-2, 3.3 108 cm-2. The devices were unbiased during
irradiations. Irradiations induce negligible changes in the drain current without affecting the
subthreshold slope (swing). On the other hand Cester et al. observe that as the fluence of
ions increases, the gate leakage current also increases being higher for ions with higher LET.
Wrachien (Wrachien et al., 2008) investigated the performance of nanocrystal memories,
similar to those of Cester, and floating gate memories when irradiated with protons of 5
MeV and x-rays of 10 keV. The terminals were kept floating during irradiations and some of
the devices were in write or erase state. Wrachien observe that X-rays are much more
effective than protons in charge removal from charged devices. What arises in the work of

Radiation Hardness of Flash and Nanoparticle Memories

221

Wrachien et al. is that the nanocrystal memories seem to behave better than the floating gate
memories in these environments since higher doses are needed in the former case respect to
the latter to observe a certain charge loss. Also the swing is found to behave better for NCM
than FG and the charge retention measurements confirm these results indicating much
higher retention for NC memories than FG and thus justifies the interest of the radiation
effects community on NC NVMs.

6. Fabrication and characterization of Si NC NVMs
The optimized Si NC NVM structures were in the form of capacitors and transistors with Si
NCs fabricated according to the ultra-low-energy ion-beam-synthesis (ULE-IBS) technique
(Normand et al., 2004). A schematic cross section of the gate area of the devices is shown in
Fig. 6. The capacitors had a control-oxide (CO) thickness around 15.5 nm, a tunnelling-oxide
(TO) of ~8 nm while the transistors had a CO thickness of 5 nm and TO thickness of 6.5 nm.
For both capacitor and transistor structures, the NC layer consisted of Si NCs with mean
size of 2-3 nm and density of 5 1011 cm-2. Reference devices with no Si NCs have been
fabricated as well.

Fig. 6. Schematic of the gate area of the Si NC NVM devices considered in our work.

6.1 The Si NC MOS capacitors
The capacitor structures comprise 3 kind of square gates: 400x400 μm2, 200x200 μm2 and
100x100 μm2. The process flow considered in order to fabricate these devices is the following:
1. p-Si substrate with 9 nm thermally grown SiO2
2. Si+ implantation 1 keV, 2 1016 cm-2
3. annealing at 950°C/30 min in N2 (1.5% O2)
4. deposition 10 nm TEOS oxide
5. annealing at 900°C/15 min in N2
6. Al evaporation
7. Annealing 320°C/30min in N2
The TEOS oxide has been added in order to increase the CO thickness and thus improve the
retention properties of the devices. The total gate oxide thickness of the implanted samples
was ~25.5nm while reference samples (steps 2 and 3 skipped) had a thickness of ~19nm. The
electrical properties of the above devices will be briefly presented in the next paragraphs.
The electrical properties of reference (no Si NCs) capacitors are shown in Fig. 7 where the high
and low frequency C-V characteristics are presented together with the density of interface
states (Dit) distribution along the Si band-gap. The oxide thickness extracted from Cox values is
~18.7 nm. The density of interface states throughout the band-gap is extremely low, 2 1010 eV-1
cm-2, thanks to the very good quality of the SiO2 oxide thermally grown on Si substrate.

Flash Memories

220

differ greatly prior to implantation and after reconstruction. They conclude their work
suggesting that for NC–Si technologies that do not utilize implantation, we can expect to
observe a shift of the erased state upon radiation exposure, as in conventional FETs.
Oldham (Oldham et al., 2005) reported on the exposition to heavy ion bombardment and
total ionizing dose of advanced nanocrystal nonvolatile memories. The test chips were
experimental 4Mb Flash EEPROM memories fabricated using 0.13 μm design rules, with
NAND architecture (Freescale). Channel hot electron (CHE) injection is used to write (that
is, to add electrons to the nanocrystal array), and Fowler-Nordheim tunneling to erase (that
is, to remove electrons from the array). The nanocrystals are deposited by a CVD process,
where the density and diameter of the particles can be controlled by adjusting the
deposition conditions. The tunneling oxide and control gate oxide are SiO2 with thicknesses
of 4.3 nm and 5.6 nm respectively while the Si NCs have diameter of 4 nm. The heavy ion
testing was done using a Single Event Effects Test Facility, which was tuned to 15
MeV/nucleon, using Ar, Kr, Xe and Au ions. Each exposure was to a total fluence of 107
particles/cm2. Total dose testing was done using a 60Co source with dose rate of 10 rad/s.
Oldham et al. performed their tests in three modes: static mode, in dynamic read mode, and
dynamic program and erase modes. In the static testing, a pattern was written, and errors
counted after the exposure. In dynamic read testing, a stored pattern was read continuously
during the exposure, and the errors counted. The write or program mode was tested by
continuously doing a write/read cycle. The erase mode was tested by cycling continuously
through erase/write/read steps, and counting errors when the pattern read differed from
the pattern expected. Patterns that could be written were all zeroes, all ones, checkerboard,
and inverse checkerboard. In heavy ion testing, the errors appear to be all static bit flips,
zeroes (electrons storage) turned into ones(holes storage). Oldham estimates that about one
ion out of 6 that hits the active gate area changes the state of the cell, even at the highest LET
tested so far and the observed cross section is about one sixth times the geometric gate cross-
section.
Cester (Cester et al., 2006) performed heavy ion irradiation tests on experimental
nanocrystal memory cell arrays provided by ST microelectronics based on CAST
architecture. Each nanocrystal MOSFET features W/L 0.2μm/0.3μm, with a tunnel oxide 5-
nm thick and thermally grown on Si. The external control oxide consists of an oxide-nitride-
oxide (ONO) stack with an equivalent oxide thickness (EOT) of 12 nm. Silicon nano-islands
were realized by low pressure CVD (LPCVD) process in the Si nucleation regime using SiH
as a precursor, followed by a post-deposition crystallization annealing of the islands. A
nanocrystal density of 5 1011 cm-2 was determined by TEM measurements, with an average
nanocrystal diameter of 6 nm. On average each cell contains 300 nanocrystals. Irradiations
were performed using a tandem van der graaf accelerator. I (301 MeV, LET=64 MeV cm2
mg-1) and Ni (182 MeV, LET=31,3 MeV cm2 mg-1) ions were considered at three different
fluencies: 0.83 108 cm-2, 1.7 108 cm-2, 3.3 108 cm-2. The devices were unbiased during
irradiations. Irradiations induce negligible changes in the drain current without affecting the
subthreshold slope (swing). On the other hand Cester et al. observe that as the fluence of
ions increases, the gate leakage current also increases being higher for ions with higher LET.
Wrachien (Wrachien et al., 2008) investigated the performance of nanocrystal memories,
similar to those of Cester, and floating gate memories when irradiated with protons of 5
MeV and x-rays of 10 keV. The terminals were kept floating during irradiations and some of
the devices were in write or erase state. Wrachien observe that X-rays are much more
effective than protons in charge removal from charged devices. What arises in the work of

Radiation Hardness of Flash and Nanoparticle Memories

221

Wrachien et al. is that the nanocrystal memories seem to behave better than the floating gate
memories in these environments since higher doses are needed in the former case respect to
the latter to observe a certain charge loss. Also the swing is found to behave better for NCM
than FG and the charge retention measurements confirm these results indicating much
higher retention for NC memories than FG and thus justifies the interest of the radiation
effects community on NC NVMs.

6. Fabrication and characterization of Si NC NVMs
The optimized Si NC NVM structures were in the form of capacitors and transistors with Si
NCs fabricated according to the ultra-low-energy ion-beam-synthesis (ULE-IBS) technique
(Normand et al., 2004). A schematic cross section of the gate area of the devices is shown in
Fig. 6. The capacitors had a control-oxide (CO) thickness around 15.5 nm, a tunnelling-oxide
(TO) of ~8 nm while the transistors had a CO thickness of 5 nm and TO thickness of 6.5 nm.
For both capacitor and transistor structures, the NC layer consisted of Si NCs with mean
size of 2-3 nm and density of 5 1011 cm-2. Reference devices with no Si NCs have been
fabricated as well.

Fig. 6. Schematic of the gate area of the Si NC NVM devices considered in our work.

6.1 The Si NC MOS capacitors
The capacitor structures comprise 3 kind of square gates: 400x400 μm2, 200x200 μm2 and
100x100 μm2. The process flow considered in order to fabricate these devices is the following:
1. p-Si substrate with 9 nm thermally grown SiO2
2. Si+ implantation 1 keV, 2 1016 cm-2
3. annealing at 950°C/30 min in N2 (1.5% O2)
4. deposition 10 nm TEOS oxide
5. annealing at 900°C/15 min in N2
6. Al evaporation
7. Annealing 320°C/30min in N2
The TEOS oxide has been added in order to increase the CO thickness and thus improve the
retention properties of the devices. The total gate oxide thickness of the implanted samples
was ~25.5nm while reference samples (steps 2 and 3 skipped) had a thickness of ~19nm. The
electrical properties of the above devices will be briefly presented in the next paragraphs.
The electrical properties of reference (no Si NCs) capacitors are shown in Fig. 7 where the high
and low frequency C-V characteristics are presented together with the density of interface
states (Dit) distribution along the Si band-gap. The oxide thickness extracted from Cox values is
~18.7 nm. The density of interface states throughout the band-gap is extremely low, 2 1010 eV-1
cm-2, thanks to the very good quality of the SiO2 oxide thermally grown on Si substrate.

Flash Memories

222

a) b)

Fig. 7. C-V characteristics and Dit for a reference MOS capacitor with p-Si substrate (1015 cm-

3), 18.7 nm SiO2 and Al gate of 400μm side: a) HF - LF characteristics, b) density of states
calculated using the high-low frequency method (the HF and LF C-Vs are also shown)

In Fig. 8 is shown the J-V characteristic of the reference MOS capacitor. It is demonstrated
there that the conduction mechanism through the oxide is based on Fowler-Nordheim (F-N)
tunneling

 J = A E2 e-B/E (1)

a) b)

Fig. 8. a) Experimental J-V characteristic for a reference MOS capacitor with p-Si substrate
(1015 cm-3), 18.7 nm SiO2 and Al gate of 400μm. Probe light was kept on during the
measurement in order to ensure a reasonable amount of minority carriers in inversion(green
curve), b) F-N plot of the J-V data in which is clear that for E-1 below 0.2 (MV/cm)-1 , i.e. E
above 5-6 MV/cm, F-N conduction starts.

and the B parameters extracted from the F-N plot are 194 MV/cm in accumulation (Al-side
injection) and 287 MV/cm in inversion (Si-side injection). It should be reminded that the B
parameter is related to the effective mass of the tunneling charge carrier and the barrier
height. Assuming an electron effective mass in SiO2 of 0.42m0, the extracted barrier heights
are 2.7eV and 3.4eV respectively.

Radiation Hardness of Flash and Nanoparticle Memories

223

a) b)

Fig. 9. C-V characteristics and Dit for a Si NC MOS capacitor with p-Si substrate (1015 cm-3), 8
nm SiO2 TO, 2-3 nm NCs, 15.5 nm CO and Al gate of 400 μm side: a) HF - LF characteristics,
b) density of states calculated using the high-low frequency method (the HF and LF C-Vs
are also shown).

The Si NC MOS capacitors present similar electrical properties with the reference capacitors.
In Fig. 9, the high and low frequency C-V characteristics are shown together with the Dit
distribution along the Si band-gap. The oxide thickness extracted from Cox values is ~24.5
nm. the density of interface states throughout the band-gap is extremely low, 2 1010 eV-1 cm-

2, thanks to the very good quality of the SiO2 oxide thermally grown on Si substrate.
In Fig. 10 is shown the J-V characteristic of the reference MOS capacitor. It is demonstrated
there that the conduction mechanism through the oxide is again based on F-N tunneling at
least in accumulation (Al-side injection) with a B parameter extracted from the F-N plot of
186 MV/cm reasonably comparable with the one of the reference devices. In inversion (Si-
side injection) on the other hand the B parameter extracted is very low in comparison with
that of the reference capacitor: 100 MV/cm. Fig. 10c can help us in the explanation of this
difference since as it is shown there, comparing the leakage current through the reference
and the Si NC MOS becomes clear that for the latter conduction starts at much smaller fields
in inversion, around 3.5MV/cm. Such a field cannot ignite F-N conduction so the above
argument demonstrate that there is another conduction mechanism in competition with
(maybe dominates) the F-N tunneling from substrate in the Si-NC memory devices in
inversion. Of course the fact that F-N plot shows the characteristic linear behavior of every
F-N mechanism is telling us that the mechanism dominating over the F-N injection from the
Si substrate should be also an F-N mechanism. This last observation drives to the conclusion
that the 100 MV/cm B value should arise from the F-N taking place from the electrons
trapped in the NC layer that tunnel toward the gate and ignited by the augmented electric
field present in the CO when electrons are present into the NCs while, at the same time, the
electric field in the TO is reduced. It can be shown that when the overall, through the
dielectric structure, electric field is 4 MV/cm and there is a detectable (in terms of flat-band
voltage shifts) negative charge into the NCs, the electric field into the CO is around 5
MV/cm and thus able to ignite F-N. Thus the 100 MV/cm of the B value extracted for the Si-
side injection case is related not to the barrier SiO2/Si-conduction band but SiO2/NC-Si-
conduction band (Fig. 10d). The barrier extracted from the 100 MV/cm value is around 1.8 eV.

Flash Memories

222

a) b)

Fig. 7. C-V characteristics and Dit for a reference MOS capacitor with p-Si substrate (1015 cm-

3), 18.7 nm SiO2 and Al gate of 400μm side: a) HF - LF characteristics, b) density of states
calculated using the high-low frequency method (the HF and LF C-Vs are also shown)

In Fig. 8 is shown the J-V characteristic of the reference MOS capacitor. It is demonstrated
there that the conduction mechanism through the oxide is based on Fowler-Nordheim (F-N)
tunneling

 J = A E2 e-B/E (1)

a) b)

Fig. 8. a) Experimental J-V characteristic for a reference MOS capacitor with p-Si substrate
(1015 cm-3), 18.7 nm SiO2 and Al gate of 400μm. Probe light was kept on during the
measurement in order to ensure a reasonable amount of minority carriers in inversion(green
curve), b) F-N plot of the J-V data in which is clear that for E-1 below 0.2 (MV/cm)-1 , i.e. E
above 5-6 MV/cm, F-N conduction starts.

and the B parameters extracted from the F-N plot are 194 MV/cm in accumulation (Al-side
injection) and 287 MV/cm in inversion (Si-side injection). It should be reminded that the B
parameter is related to the effective mass of the tunneling charge carrier and the barrier
height. Assuming an electron effective mass in SiO2 of 0.42m0, the extracted barrier heights
are 2.7eV and 3.4eV respectively.

Radiation Hardness of Flash and Nanoparticle Memories

223

a) b)

Fig. 9. C-V characteristics and Dit for a Si NC MOS capacitor with p-Si substrate (1015 cm-3), 8
nm SiO2 TO, 2-3 nm NCs, 15.5 nm CO and Al gate of 400 μm side: a) HF - LF characteristics,
b) density of states calculated using the high-low frequency method (the HF and LF C-Vs
are also shown).

The Si NC MOS capacitors present similar electrical properties with the reference capacitors.
In Fig. 9, the high and low frequency C-V characteristics are shown together with the Dit
distribution along the Si band-gap. The oxide thickness extracted from Cox values is ~24.5
nm. the density of interface states throughout the band-gap is extremely low, 2 1010 eV-1 cm-

2, thanks to the very good quality of the SiO2 oxide thermally grown on Si substrate.
In Fig. 10 is shown the J-V characteristic of the reference MOS capacitor. It is demonstrated
there that the conduction mechanism through the oxide is again based on F-N tunneling at
least in accumulation (Al-side injection) with a B parameter extracted from the F-N plot of
186 MV/cm reasonably comparable with the one of the reference devices. In inversion (Si-
side injection) on the other hand the B parameter extracted is very low in comparison with
that of the reference capacitor: 100 MV/cm. Fig. 10c can help us in the explanation of this
difference since as it is shown there, comparing the leakage current through the reference
and the Si NC MOS becomes clear that for the latter conduction starts at much smaller fields
in inversion, around 3.5MV/cm. Such a field cannot ignite F-N conduction so the above
argument demonstrate that there is another conduction mechanism in competition with
(maybe dominates) the F-N tunneling from substrate in the Si-NC memory devices in
inversion. Of course the fact that F-N plot shows the characteristic linear behavior of every
F-N mechanism is telling us that the mechanism dominating over the F-N injection from the
Si substrate should be also an F-N mechanism. This last observation drives to the conclusion
that the 100 MV/cm B value should arise from the F-N taking place from the electrons
trapped in the NC layer that tunnel toward the gate and ignited by the augmented electric
field present in the CO when electrons are present into the NCs while, at the same time, the
electric field in the TO is reduced. It can be shown that when the overall, through the
dielectric structure, electric field is 4 MV/cm and there is a detectable (in terms of flat-band
voltage shifts) negative charge into the NCs, the electric field into the CO is around 5
MV/cm and thus able to ignite F-N. Thus the 100 MV/cm of the B value extracted for the Si-
side injection case is related not to the barrier SiO2/Si-conduction band but SiO2/NC-Si-
conduction band (Fig. 10d). The barrier extracted from the 100 MV/cm value is around 1.8 eV.

Flash Memories

224

 a) b)

 c) d)

Fig. 10. a) Experimental J-V characteristic for a Si NC MOS capacitor with p-Si substrate (1015
cm-3), 8nm SiO2 TO, 2-3nm NCs, 15.5nm CO and Al gate of 400 μm side. Probe light was
kept on during the measurement in order to ensure a reasonable amount of minority carriers
in inversion(green curve), b) F-N plot of the J-V data in which is clear that in accumulation
F-N conduction starts at -6MV/cm while in inversion it seem to start at 3-4 MV/cm, c)
comparison between the J-E characteristic of reference and Si NC MOS capacitors, d) Band
diagram of the Si NC capacitor under VG=10 V without charges into the NC layer.

6.1.1 Memory window
The memory properties of the devices with Si NCs have been recorded with two equivalent
ways: gate sweeps and gate pulses. The latter of course is the one in which we are most
interested since the memory in its final application is written/erased by voltage pulses.
Gate sweep bias measurements are performed sweeping the the gate voltage circularly i.e.
inversion - accumulation - inversion with increasing amplitude of the applied maximum
bias. In Fig. 11a are shown the C-V curves obtained with such a measurement; large
hysteresis were found for amplitudes above 10V. It should be noted that the hysteresis are
counter clock wise, indicating that charging is taking place from the substrate. Upon
extraction of the flat-band voltages from the above C-Vs, it is possible to present the data as
in Fig. 11b where the memory behaviour of the devices becomes clearer. Electron injection
(backward sweeps) seem to start at around 10V, slightly earlier than holes injection (forward
sweeps) which start at around 12V while saturation starts at 16V and 18V respectively.

Radiation Hardness of Flash and Nanoparticle Memories

225

 a) b)

Fig. 11. a) C-V characteristics under gate bias sweeps of several amplitudes; Large hysteresis
for amplitudes above 10V are shown, b) memory characteristic as extracted from Fig. 11a.

 a) b)

Fig. 12. a) memory characteristic extracted from gate pulse measurements (the upper branch
refers to positive pulses), b) Memory behavior under repeated positive and negative pulses.
The black curve is obtained keeping the constant the erase (negative) pulse and varying the
height of the write (positive) pulse, and the opposite is done for the red one.

Gate pulse measurements are performed applying in sequence pulses of increasing height to
the gate and measuring at every pulse a C-V characteristic to monitor the flat-band voltage
position. In such a way, with pulses of 1s duration, the results shown in Fig. 12a were
obtained (where the upper branch refers to positive pulses and the lower branch to negative
pulses). There are similarities between the memory behavior under gate bias sweeps and
gate pulses like the maximum width and the saturation behavior at high fields, but, also one
difference that is the decreasing (increasing) flat-band voltage in order to approach
saturation for positive (negative) pulses. The reason of this phenomenon is that when the
fields become high enough charges are not only injected into the NCs but also extracted.
Actually there is a dynamic equilibrium between this two components at steady regime that

Flash Memories

224

 a) b)

 c) d)

Fig. 10. a) Experimental J-V characteristic for a Si NC MOS capacitor with p-Si substrate (1015
cm-3), 8nm SiO2 TO, 2-3nm NCs, 15.5nm CO and Al gate of 400 μm side. Probe light was
kept on during the measurement in order to ensure a reasonable amount of minority carriers
in inversion(green curve), b) F-N plot of the J-V data in which is clear that in accumulation
F-N conduction starts at -6MV/cm while in inversion it seem to start at 3-4 MV/cm, c)
comparison between the J-E characteristic of reference and Si NC MOS capacitors, d) Band
diagram of the Si NC capacitor under VG=10 V without charges into the NC layer.

6.1.1 Memory window
The memory properties of the devices with Si NCs have been recorded with two equivalent
ways: gate sweeps and gate pulses. The latter of course is the one in which we are most
interested since the memory in its final application is written/erased by voltage pulses.
Gate sweep bias measurements are performed sweeping the the gate voltage circularly i.e.
inversion - accumulation - inversion with increasing amplitude of the applied maximum
bias. In Fig. 11a are shown the C-V curves obtained with such a measurement; large
hysteresis were found for amplitudes above 10V. It should be noted that the hysteresis are
counter clock wise, indicating that charging is taking place from the substrate. Upon
extraction of the flat-band voltages from the above C-Vs, it is possible to present the data as
in Fig. 11b where the memory behaviour of the devices becomes clearer. Electron injection
(backward sweeps) seem to start at around 10V, slightly earlier than holes injection (forward
sweeps) which start at around 12V while saturation starts at 16V and 18V respectively.

Radiation Hardness of Flash and Nanoparticle Memories

225

 a) b)

Fig. 11. a) C-V characteristics under gate bias sweeps of several amplitudes; Large hysteresis
for amplitudes above 10V are shown, b) memory characteristic as extracted from Fig. 11a.

 a) b)

Fig. 12. a) memory characteristic extracted from gate pulse measurements (the upper branch
refers to positive pulses), b) Memory behavior under repeated positive and negative pulses.
The black curve is obtained keeping the constant the erase (negative) pulse and varying the
height of the write (positive) pulse, and the opposite is done for the red one.

Gate pulse measurements are performed applying in sequence pulses of increasing height to
the gate and measuring at every pulse a C-V characteristic to monitor the flat-band voltage
position. In such a way, with pulses of 1s duration, the results shown in Fig. 12a were
obtained (where the upper branch refers to positive pulses and the lower branch to negative
pulses). There are similarities between the memory behavior under gate bias sweeps and
gate pulses like the maximum width and the saturation behavior at high fields, but, also one
difference that is the decreasing (increasing) flat-band voltage in order to approach
saturation for positive (negative) pulses. The reason of this phenomenon is that when the
fields become high enough charges are not only injected into the NCs but also extracted.
Actually there is a dynamic equilibrium between this two components at steady regime that

Flash Memories

226

drives to the smooth behavior observed with gate sweep measurements, on the contrary,
this equilibrium is perturbed in presence of pulses favoring charge extraction at high fields
and this explains the peculiar shape found for the memory characteristic in Fig. 12a.
In its final operation, the memory always switches from write state to erase state and vice
versa. Thus, the gate pulse measurement, although gives important informations about the
pulsed operation of the memory device, isn’t the best one to decide the program and erase
condition to be used during its final operation. What should be done is to establish the
strength of each positive (negative) pulse starting always from the same erased
(programmed) state. This has been done for the Si NC capacitor memories and is shown in
Fig. 12b. The most effective programming pulses are +14V and -18V. From now on we will
consider as write state or erase state the condition into which is brought the device when
programmed with a write pulse +14V,1s or erased with an erase pulse of -18V,1s
respectively. The memory window of the device arises then as the difference between the
flat-band voltages of the write and erase states. For the Si NC MOS capacitors presented
here, the memory window is around 3V.

6.1.2 Charge retention measurements
Charge retention measurements are performed charging a device into one of the two states
write or erase and then the evolution with time of the flat-band voltage is recorded for 12 h
at least. This is done 1) measuring at regular interval of times the C-V of the device (that was
written or erased) in order to obtain a result similar to the example shown in Fig. 13a, and
then 2) extracting from the C-Vs the flat-band voltage which is graphed as function of time.

 a) b)

Fig. 13. a) Evolution with time of the C-V characteristic measured at regular interval of times
for a Si NC MOS capacitor in the write state. The arrow show increasing time direction.
Measurement at room temperature. b) Charge retention measurement in the write and the
erase state of the Si NC MOS memory. Measurement performed at room temperature. The
electrons loss rate is -4 mV/dec and the holes loss rate is 103 mV/dec.

The above procedure applied to our capacitors drives to the results shown in Fig. 13b where
are summarized the measurements for both the write and the erase state. Since the retention
curves present in log(t) a linear behavior it is usual to speak in terms of mV/dec loss rate.
So, fitting the two curves shown, and assuming that the loss rate will be constant, it is

Radiation Hardness of Flash and Nanoparticle Memories

227

possible to extrapolate the retention measurements to 10 years. For the erase state the charge
loss rate is around 103 mV/dec while for the write state is much smaller, around -4 mV/dec.
The charge loss extrapolated at the 10 years retention limit is 20%, thus within the FLASH
design standards.
The higher loss rate in erase state (holes retention) than in the write state (electrons
retention) has to do with the fact that holes may tunnel back to the substrate by means of
imperfections in the TO remained after the implantation and annealing of the Si ions.
Electrons on the other hand are not affected by such imperfections and thus the large TO
thickness ensures a reliable quantum mechanical barrier against electron loss.

6.2 The Si NC MOSFETs
Si NC MOSFETs were provided in structures of two types: depletion (D) and enrichment
(E). Furthermore, both types are provided in various W/L configurations: a) constant
W=100μm and L=12,10,8,6,4,2 μm, b) L=100 μm/W=100 μm and constant L=40μm and
W=40,20,15,10,8 μm.
Si-NC nMOS transistors were fabricated using a 7 nm thick SiO2 layer that was Si implanted
and annealed under the same conditions as for NC MOS capacitors. No additional TEOS
control oxide was deposited. The final gate dielectric stack includes 6.5 nm thick injection
oxide, 2.5 nm thick Si NC layer and 5 nm thick control oxide.

6.2.1 Memory window
The memory behavior of the Si NC MOSFETs has been recorded with the gate pulse method
mentioned previously. Positive or negative Gate pulses of increasing height are applied in
sequence on Fresh devices and after each pulse the Id-VG characteristic is recorded in order
to monitor the transistor threshold voltage position. The outcome of such a measurement on

 a) b)

Fig. 14. a) Id-VG characteristics after the application, in sequence, of positive or negative
pulses of increasing height (in the legend); the fresh curve refer to the device at the
beginning of the measurement i.e. uncharged; on the right of the fresh curve are the
characteristics related to positive pulses while on the left are the ones related to negative
pulses. b) threshold voltage extracted from a) as function of the gate pulse height; the upper
branch is related to positive pulses while the lower branch arises from negative pulses. The
pulse duration was constant: 30ms.

Flash Memories

226

drives to the smooth behavior observed with gate sweep measurements, on the contrary,
this equilibrium is perturbed in presence of pulses favoring charge extraction at high fields
and this explains the peculiar shape found for the memory characteristic in Fig. 12a.
In its final operation, the memory always switches from write state to erase state and vice
versa. Thus, the gate pulse measurement, although gives important informations about the
pulsed operation of the memory device, isn’t the best one to decide the program and erase
condition to be used during its final operation. What should be done is to establish the
strength of each positive (negative) pulse starting always from the same erased
(programmed) state. This has been done for the Si NC capacitor memories and is shown in
Fig. 12b. The most effective programming pulses are +14V and -18V. From now on we will
consider as write state or erase state the condition into which is brought the device when
programmed with a write pulse +14V,1s or erased with an erase pulse of -18V,1s
respectively. The memory window of the device arises then as the difference between the
flat-band voltages of the write and erase states. For the Si NC MOS capacitors presented
here, the memory window is around 3V.

6.1.2 Charge retention measurements
Charge retention measurements are performed charging a device into one of the two states
write or erase and then the evolution with time of the flat-band voltage is recorded for 12 h
at least. This is done 1) measuring at regular interval of times the C-V of the device (that was
written or erased) in order to obtain a result similar to the example shown in Fig. 13a, and
then 2) extracting from the C-Vs the flat-band voltage which is graphed as function of time.

 a) b)

Fig. 13. a) Evolution with time of the C-V characteristic measured at regular interval of times
for a Si NC MOS capacitor in the write state. The arrow show increasing time direction.
Measurement at room temperature. b) Charge retention measurement in the write and the
erase state of the Si NC MOS memory. Measurement performed at room temperature. The
electrons loss rate is -4 mV/dec and the holes loss rate is 103 mV/dec.

The above procedure applied to our capacitors drives to the results shown in Fig. 13b where
are summarized the measurements for both the write and the erase state. Since the retention
curves present in log(t) a linear behavior it is usual to speak in terms of mV/dec loss rate.
So, fitting the two curves shown, and assuming that the loss rate will be constant, it is

Radiation Hardness of Flash and Nanoparticle Memories

227

possible to extrapolate the retention measurements to 10 years. For the erase state the charge
loss rate is around 103 mV/dec while for the write state is much smaller, around -4 mV/dec.
The charge loss extrapolated at the 10 years retention limit is 20%, thus within the FLASH
design standards.
The higher loss rate in erase state (holes retention) than in the write state (electrons
retention) has to do with the fact that holes may tunnel back to the substrate by means of
imperfections in the TO remained after the implantation and annealing of the Si ions.
Electrons on the other hand are not affected by such imperfections and thus the large TO
thickness ensures a reliable quantum mechanical barrier against electron loss.

6.2 The Si NC MOSFETs
Si NC MOSFETs were provided in structures of two types: depletion (D) and enrichment
(E). Furthermore, both types are provided in various W/L configurations: a) constant
W=100μm and L=12,10,8,6,4,2 μm, b) L=100 μm/W=100 μm and constant L=40μm and
W=40,20,15,10,8 μm.
Si-NC nMOS transistors were fabricated using a 7 nm thick SiO2 layer that was Si implanted
and annealed under the same conditions as for NC MOS capacitors. No additional TEOS
control oxide was deposited. The final gate dielectric stack includes 6.5 nm thick injection
oxide, 2.5 nm thick Si NC layer and 5 nm thick control oxide.

6.2.1 Memory window
The memory behavior of the Si NC MOSFETs has been recorded with the gate pulse method
mentioned previously. Positive or negative Gate pulses of increasing height are applied in
sequence on Fresh devices and after each pulse the Id-VG characteristic is recorded in order
to monitor the transistor threshold voltage position. The outcome of such a measurement on

 a) b)

Fig. 14. a) Id-VG characteristics after the application, in sequence, of positive or negative
pulses of increasing height (in the legend); the fresh curve refer to the device at the
beginning of the measurement i.e. uncharged; on the right of the fresh curve are the
characteristics related to positive pulses while on the left are the ones related to negative
pulses. b) threshold voltage extracted from a) as function of the gate pulse height; the upper
branch is related to positive pulses while the lower branch arises from negative pulses. The
pulse duration was constant: 30ms.

Flash Memories

228

our devices, for pulses of 30 ms, is shown in Fig. 14a, while in Fig. 14b the threshold voltages
extracted from the Id-VG characteristics are graphed as function of the gate pulse height.
Thus, the write or erase states are defined here as the conditions determined by the
application of the write pulse +9 V, 30 ms or the erase pulse -9 V, 30 ms respectively.
Should be mentioned that the swing of the Id-VG characteristics of such devices is around
127 mV/dec.

6.2.2 Charge retention measurements
Charge retention measurements are performed in a similar manner with the measurement
on capacitors except the fact that now Id-Vg characteristics will be monitored instead of C-
Vs. The results are presented in Fig. 15. The overall behavior is very similar to that of NC
MOS capacitors but the charge loss rates are much higher because of the thinner TO and CO
of the transistor with respect to the capacitor structure. Values of -54mV/dec and
150mV/dec have been extracted for electrons and holes loss rates respectively. The overall
charge loss extrapolated to 10 years retention is estimated to be ~57%.

Fig. 15. Charge retention measurement in the write and the erase state of the Si NC MOSFET
memory. Measurement performed at room temperature. The electrons loss rate is -54
mV/dec and the holes loss rate is 150 mV/dec.

6.2.3 Endurance to write/erase cycles
In order to perform the measurement within few hours, smaller pulse durations have been
considered here. The write and erase pulse are always +9 V and -9 V respectively but the
duration is now 15 ms so the memory window will be smaller than ~2 V found with 30 ms.
The endurance in these transistor memories is outstanding. Results are presented in Fig. 16a
where endurance up to 106 W/E cycles demonstrate the robustness of these devices against
stress induced leakage currents (SILC). The endurance measurement is a quite stressful
operation for the memory device and for this reason is quite common provide, according to
FLASH standards, the retention behavior of a transistor memory cell before and after
endurance. In our case the comparison is shown in Fig. 16b. After endurance, the charge loss
rates are both increased: electrons loss rate before endurance was -54mV/dec while after
was -60mV/dec, holes loss rate before endurance was 150mV/dec while after was
172mV/dec. The extrapolated charge loss after 10 year retention is after endurance ~70% i.e.
13% charge lost because of the stress to which the memory underwent.

Radiation Hardness of Flash and Nanoparticle Memories

229

 a) b)

Fig. 16. a) Endurance to w/e cycles performed on Si NC MOSFETs. A reduced pulse
duration of 15ms has been considered with write pulses of +9V and erase pulses of -9V. b)
charge retention measurement before and after endurance.

7. Proton radiation effects on nanocrystal non-volatile memories
The Si NC memory devices, in capacitor and transistor form, presented in section 6, have
been irradiated with protons at the Tandem accelerator of the Institute of Nuclear Physics,
N.C.S.R. “Demokritos”. The energies used ensure that the kind of damage produced is
related to TID effects. The ways TID effects alter the operation of NVM cells are essentially
two: 1) loss of stored information in the form of bit-flips, and 2) charge retention issues after
irradiations (failure to retain the information for 10 years). According to the existing
literature on TID effects on standard FG NVMs, briefly reviewed in the previous sections, it
is concluded that in FG cells, bit-flips are observed above 100 krad(SiO2) while retention
issues are observed above ~5 Mrad(SiO2). In the next it will be demonstrated that NC NVM
cells present a much higher hardness to TID effects than FG cells (Verrelli et al., 2006, 2007).

7.1 Irradiations details
The protons considered in our irradiation tests had energies of 1.5MeV and 6.5 MeV. The
proton fluences (particles/cm2) and the doses (rad(SiO2)) considered are shown in Table 2.
One important parameter that was constantly monitored during the irradiation was the flux
(particles/cm2s) of the particles that was kept at ~5 109 protons/cm2s and this was done
keeping constant both the proton current driven by the Tandem (200pA) and the beam spot
size. It is very important that the flux remain constant during irradiation cause it is known
to be related to changes in the effects produced by radiation (Ma & Dressendorfer, 1989) and
thus may complicate the interpretation of the results. The samples irradiated have physical
dimension of 1.5x1.5 cm2 while the proton beam spot has been tuned to be the largest
possible i.e. 0.5x0.5 cm2. One sample at a time has been irradiated and upon irradiation of all
the samples, their electrical characteristics have been studied in our laboratory. The
irradiation and all the electrical measurements took place at room temperature and the
characterization of the radiation effects ended within one month period time from
irradiation. Actually the fastest the samples are characterized after irradiation the better it is,

Flash Memories

228

our devices, for pulses of 30 ms, is shown in Fig. 14a, while in Fig. 14b the threshold voltages
extracted from the Id-VG characteristics are graphed as function of the gate pulse height.
Thus, the write or erase states are defined here as the conditions determined by the
application of the write pulse +9 V, 30 ms or the erase pulse -9 V, 30 ms respectively.
Should be mentioned that the swing of the Id-VG characteristics of such devices is around
127 mV/dec.

6.2.2 Charge retention measurements
Charge retention measurements are performed in a similar manner with the measurement
on capacitors except the fact that now Id-Vg characteristics will be monitored instead of C-
Vs. The results are presented in Fig. 15. The overall behavior is very similar to that of NC
MOS capacitors but the charge loss rates are much higher because of the thinner TO and CO
of the transistor with respect to the capacitor structure. Values of -54mV/dec and
150mV/dec have been extracted for electrons and holes loss rates respectively. The overall
charge loss extrapolated to 10 years retention is estimated to be ~57%.

Fig. 15. Charge retention measurement in the write and the erase state of the Si NC MOSFET
memory. Measurement performed at room temperature. The electrons loss rate is -54
mV/dec and the holes loss rate is 150 mV/dec.

6.2.3 Endurance to write/erase cycles
In order to perform the measurement within few hours, smaller pulse durations have been
considered here. The write and erase pulse are always +9 V and -9 V respectively but the
duration is now 15 ms so the memory window will be smaller than ~2 V found with 30 ms.
The endurance in these transistor memories is outstanding. Results are presented in Fig. 16a
where endurance up to 106 W/E cycles demonstrate the robustness of these devices against
stress induced leakage currents (SILC). The endurance measurement is a quite stressful
operation for the memory device and for this reason is quite common provide, according to
FLASH standards, the retention behavior of a transistor memory cell before and after
endurance. In our case the comparison is shown in Fig. 16b. After endurance, the charge loss
rates are both increased: electrons loss rate before endurance was -54mV/dec while after
was -60mV/dec, holes loss rate before endurance was 150mV/dec while after was
172mV/dec. The extrapolated charge loss after 10 year retention is after endurance ~70% i.e.
13% charge lost because of the stress to which the memory underwent.

Radiation Hardness of Flash and Nanoparticle Memories

229

 a) b)

Fig. 16. a) Endurance to w/e cycles performed on Si NC MOSFETs. A reduced pulse
duration of 15ms has been considered with write pulses of +9V and erase pulses of -9V. b)
charge retention measurement before and after endurance.

7. Proton radiation effects on nanocrystal non-volatile memories
The Si NC memory devices, in capacitor and transistor form, presented in section 6, have
been irradiated with protons at the Tandem accelerator of the Institute of Nuclear Physics,
N.C.S.R. “Demokritos”. The energies used ensure that the kind of damage produced is
related to TID effects. The ways TID effects alter the operation of NVM cells are essentially
two: 1) loss of stored information in the form of bit-flips, and 2) charge retention issues after
irradiations (failure to retain the information for 10 years). According to the existing
literature on TID effects on standard FG NVMs, briefly reviewed in the previous sections, it
is concluded that in FG cells, bit-flips are observed above 100 krad(SiO2) while retention
issues are observed above ~5 Mrad(SiO2). In the next it will be demonstrated that NC NVM
cells present a much higher hardness to TID effects than FG cells (Verrelli et al., 2006, 2007).

7.1 Irradiations details
The protons considered in our irradiation tests had energies of 1.5MeV and 6.5 MeV. The
proton fluences (particles/cm2) and the doses (rad(SiO2)) considered are shown in Table 2.
One important parameter that was constantly monitored during the irradiation was the flux
(particles/cm2s) of the particles that was kept at ~5 109 protons/cm2s and this was done
keeping constant both the proton current driven by the Tandem (200pA) and the beam spot
size. It is very important that the flux remain constant during irradiation cause it is known
to be related to changes in the effects produced by radiation (Ma & Dressendorfer, 1989) and
thus may complicate the interpretation of the results. The samples irradiated have physical
dimension of 1.5x1.5 cm2 while the proton beam spot has been tuned to be the largest
possible i.e. 0.5x0.5 cm2. One sample at a time has been irradiated and upon irradiation of all
the samples, their electrical characteristics have been studied in our laboratory. The
irradiation and all the electrical measurements took place at room temperature and the
characterization of the radiation effects ended within one month period time from
irradiation. Actually the fastest the samples are characterized after irradiation the better it is,

Flash Memories

230

because the irradiation effects have the property to anneal out with time also at room
temperatures (Ma & Dressendorfer, 1989). All the samples have been irradiated with
floating terminals except some NC MOS capacitors and transistor which were programmed
to “1” or “0”.

Irradiation at 1,5 MeV Irradiation at 6,5 MeV
CAPACITORS

FLUENCE
(cm-2)

DOSE
(Mrad(SiO2)

FLUENCE
(cm-2)

DOSE
(Mrad(SiO2)

5*1013 123 5*1013 119
1*1013 24.6 1*1013 23.7
5*1012 12.3 5*1012 11.9
1*1012 2.46 1*1012 2.37
5*1011 1.23 5*1011 1.19

TRANSISTORS
3*1011 0.74
3*1012 7.42
1*1013 24.6
3*1013 74.2

Table 2. Fluencies and doses for the samples involved in this experiment. The capacitors
were both NC MOS devices and reference devices i.e. MOS capacitors with no NCs. The
transistors were NC MOSFET devices only.

7.2 Electrical characterization of the irradiated devices
At first, we should remark that the capacitor and the transistor samples have a main
difference: the former work “vertically” while the latter work “horizontally”. Indeed, in
capacitors, the substrate-gate electric field rules everything while in transistors, Id passes
from the source to the drain through the channel formed by the inversion layer in the Si
substrate and the whole process is confined into few μm from Si-SiO2 interface.
SRIM simulations on our structures show that 1.5 MeV and 6.5 MeV protons end their
trajectories into the Si substrate at depths from the Si-SiO2 interface of 80 and 400μm
respectively (for this reason irradiation took place with the devices face to the beam i.e.
protons always enter the devices from their gates). This represent an important limitation
for capacitor structures which work vertically. The reason is that when a particle like a
proton with the energies above mentioned penetrate matter, at the beginning of its track it
loses energy in small steps slowing down almost entirely through Coulomb interactions
with the atomic electrons of the target material. Because of the large number of these
interactions, the slowing down procedure is nearly continuous and along a straight-line
path. As the particle slows down, it captures electron(s) to form a neutral atom and thus
has an increased probability to have nuclear collisions that may induce displacements and
vacancies in the target material lattice. The result is that at the end of range of their tracks,
protons destroy the Si crystalline structure transforming it into a porous-like material. Of
course the above mentioned effect depends from the fluence of protons. It was found

Radiation Hardness of Flash and Nanoparticle Memories

231

experimentally that for fluencies above 1014 protons/cm2 the MOS behavior is completely
lost due to the isolation achieved between the Si back contact and the gate of the
capacitor. The presence of the damage and its amount can be monitored through the value
of the series resistance in C-V measurements which increases as the fluence is increased.
As it is demonstrated in Fig. 17, this dependence has been found to be approximately
linear with the fluence in both the NC MOS capacitors and the reference (no NCs) MOS
capacitors.

Fig. 17. Dependence upon the fluence of the series resistance measured during C-V
measurements on irradiated NC MOS capacitors and reference (no NCs) MOS capacitors.

7.2.1 Radiation effects on the Dit
As mentioned in 3.1, one of the parameter of MOS devices more affected by ionizing
radiation is the density of interface states. After irradiation the C-V and G-f characteristics of
reference (no NCs) MOS and NC MOS capacitors have been measured in order to estimate
the Dit. Both methods, high-low frequency and conductance, give similar estimations. An
example of the effects on the MOS characteristics is shown in Fig. 18a-18c where the C-V
frequency dispersion is shown for some of the irradiated NC MOS capacitors.
The exctracted values of Dit at mid-gap have been graphed in function of the dose and are
shown in Fig. 18d.
For both reference and NC MOS devices, Dit increases sub-linearly with dose. Within the
measurement errors, our data are in good agreement with the empirical relationship (Ma &
Dressendorfer, 1989) that asserts Dit to be proportional to Dose2/3. Dit distributions were
found to be U shaped for the various MOS capacitor samples, with a clear peak in the upper
half of the band gap, at around 0.2eV above mid-gap, giving evidence of a sharply
distributed electron state in agreement with other observations (Ma & Dressendorfer, 1989).

7.2.2 Effects on F-N injection
One important question to answer was to which extent the radiation effects described above
affect the MOS characteristics. In order to determine whether the F-N injection mechanism
was altered by the ionizing radiation damage to the SiO2, the B parameter has been
monitored on all the irradiated samples and the result is shown in Fig. 19. This parameter,
within experimental errors, does not seem to be affected by the irradiation dose.

Flash Memories

230

because the irradiation effects have the property to anneal out with time also at room
temperatures (Ma & Dressendorfer, 1989). All the samples have been irradiated with
floating terminals except some NC MOS capacitors and transistor which were programmed
to “1” or “0”.

Irradiation at 1,5 MeV Irradiation at 6,5 MeV
CAPACITORS

FLUENCE
(cm-2)

DOSE
(Mrad(SiO2)

FLUENCE
(cm-2)

DOSE
(Mrad(SiO2)

5*1013 123 5*1013 119
1*1013 24.6 1*1013 23.7
5*1012 12.3 5*1012 11.9
1*1012 2.46 1*1012 2.37
5*1011 1.23 5*1011 1.19

TRANSISTORS
3*1011 0.74
3*1012 7.42
1*1013 24.6
3*1013 74.2

Table 2. Fluencies and doses for the samples involved in this experiment. The capacitors
were both NC MOS devices and reference devices i.e. MOS capacitors with no NCs. The
transistors were NC MOSFET devices only.

7.2 Electrical characterization of the irradiated devices
At first, we should remark that the capacitor and the transistor samples have a main
difference: the former work “vertically” while the latter work “horizontally”. Indeed, in
capacitors, the substrate-gate electric field rules everything while in transistors, Id passes
from the source to the drain through the channel formed by the inversion layer in the Si
substrate and the whole process is confined into few μm from Si-SiO2 interface.
SRIM simulations on our structures show that 1.5 MeV and 6.5 MeV protons end their
trajectories into the Si substrate at depths from the Si-SiO2 interface of 80 and 400μm
respectively (for this reason irradiation took place with the devices face to the beam i.e.
protons always enter the devices from their gates). This represent an important limitation
for capacitor structures which work vertically. The reason is that when a particle like a
proton with the energies above mentioned penetrate matter, at the beginning of its track it
loses energy in small steps slowing down almost entirely through Coulomb interactions
with the atomic electrons of the target material. Because of the large number of these
interactions, the slowing down procedure is nearly continuous and along a straight-line
path. As the particle slows down, it captures electron(s) to form a neutral atom and thus
has an increased probability to have nuclear collisions that may induce displacements and
vacancies in the target material lattice. The result is that at the end of range of their tracks,
protons destroy the Si crystalline structure transforming it into a porous-like material. Of
course the above mentioned effect depends from the fluence of protons. It was found

Radiation Hardness of Flash and Nanoparticle Memories

231

experimentally that for fluencies above 1014 protons/cm2 the MOS behavior is completely
lost due to the isolation achieved between the Si back contact and the gate of the
capacitor. The presence of the damage and its amount can be monitored through the value
of the series resistance in C-V measurements which increases as the fluence is increased.
As it is demonstrated in Fig. 17, this dependence has been found to be approximately
linear with the fluence in both the NC MOS capacitors and the reference (no NCs) MOS
capacitors.

Fig. 17. Dependence upon the fluence of the series resistance measured during C-V
measurements on irradiated NC MOS capacitors and reference (no NCs) MOS capacitors.

7.2.1 Radiation effects on the Dit
As mentioned in 3.1, one of the parameter of MOS devices more affected by ionizing
radiation is the density of interface states. After irradiation the C-V and G-f characteristics of
reference (no NCs) MOS and NC MOS capacitors have been measured in order to estimate
the Dit. Both methods, high-low frequency and conductance, give similar estimations. An
example of the effects on the MOS characteristics is shown in Fig. 18a-18c where the C-V
frequency dispersion is shown for some of the irradiated NC MOS capacitors.
The exctracted values of Dit at mid-gap have been graphed in function of the dose and are
shown in Fig. 18d.
For both reference and NC MOS devices, Dit increases sub-linearly with dose. Within the
measurement errors, our data are in good agreement with the empirical relationship (Ma &
Dressendorfer, 1989) that asserts Dit to be proportional to Dose2/3. Dit distributions were
found to be U shaped for the various MOS capacitor samples, with a clear peak in the upper
half of the band gap, at around 0.2eV above mid-gap, giving evidence of a sharply
distributed electron state in agreement with other observations (Ma & Dressendorfer, 1989).

7.2.2 Effects on F-N injection
One important question to answer was to which extent the radiation effects described above
affect the MOS characteristics. In order to determine whether the F-N injection mechanism
was altered by the ionizing radiation damage to the SiO2, the B parameter has been
monitored on all the irradiated samples and the result is shown in Fig. 19. This parameter,
within experimental errors, does not seem to be affected by the irradiation dose.

Flash Memories

232

 a) b)

 c) d)

Fig. 18. C-V frequency dispersion for irradiated NC MOS capacitors at different proton
fluences: a) 5 1013 p/cm2, b) 5 1012 p/cm2, 5 1011 p/cm2. d) Dit versus dose for Reference
(without NCs) MOS and NC MOS capacitors irradiated with protons 1.5 MeV and 6.5 MeV.
Dit reference value for non irradiated devices is also shown. The lines correspond to linear
fits of the NC MOS capacitors experimental data to the relationship Dit ~ Doseb .

7.2.3 Radiation induced Flat-band/threshold voltage shift
MOS capacitors irradiated with floating terminals exhibit C-V characteristics shifted to
lower voltages compared to the characteristics of non-irradiated samples, in agreement to
the well-known observation (Ma & Dressendorfer, 1989) that irradiation creates a net
trapped positive charge (Qot) into the SiO2 layer.
After irradiation of fresh and programmed (+14V/1s write pulse) MOS capacitors, the net
positive trapped charge was calculated according to the relation: Qot = -ΔVfb • Cox where
ΔVfb is the flat-band voltage shift induced by irradiation. The Qot vs. radiation-dose data
shown in Fig. 20 indicate the following:

Radiation Hardness of Flash and Nanoparticle Memories

233

 a) b)

Fig. 19. Values of the B parameter related to F-N conduction in (a) reference MOS and (b)
NC MOS capacitors after irradiation. The dashed lines correspond to the values observed
before irradiation.

 a) b)

Fig. 20. Values of the B parameter related to F-N conduction in reference MOS (a) and NC
MOS capacitors (B) after irradiation. The dashed lines correspond to the values observed
before irradiation.

1. In all cases, Qot is well below the number of the created electron-hole pairs, thus indicating
that only a relatively small number of holes survive the initial fast recombination process
i.e. the radiation yeld is far smaller than unity (Fig. 20b). The number of electron-hole
pairs created by irradiation was evaluated as the ratio of the energy lost by the incident
protons into the SiO2 layer (obtained through TRIM simulations) to the 17eV electron-hole
pair generation energy (Ma & Dressendorfer, 1989) in silicon dioxide.

2. Programmed NC-MOS capacitors, exhibit increased (~ 2 times) Qot values compared to
capacitors with uncharged NCs. This is attributed to the internal electric field generated
by the charged NCs that reduces the hole recombination probability (Ma &
Dressendorfer, 1989).

Flash Memories

232

 a) b)

 c) d)

Fig. 18. C-V frequency dispersion for irradiated NC MOS capacitors at different proton
fluences: a) 5 1013 p/cm2, b) 5 1012 p/cm2, 5 1011 p/cm2. d) Dit versus dose for Reference
(without NCs) MOS and NC MOS capacitors irradiated with protons 1.5 MeV and 6.5 MeV.
Dit reference value for non irradiated devices is also shown. The lines correspond to linear
fits of the NC MOS capacitors experimental data to the relationship Dit ~ Doseb .

7.2.3 Radiation induced Flat-band/threshold voltage shift
MOS capacitors irradiated with floating terminals exhibit C-V characteristics shifted to
lower voltages compared to the characteristics of non-irradiated samples, in agreement to
the well-known observation (Ma & Dressendorfer, 1989) that irradiation creates a net
trapped positive charge (Qot) into the SiO2 layer.
After irradiation of fresh and programmed (+14V/1s write pulse) MOS capacitors, the net
positive trapped charge was calculated according to the relation: Qot = -ΔVfb • Cox where
ΔVfb is the flat-band voltage shift induced by irradiation. The Qot vs. radiation-dose data
shown in Fig. 20 indicate the following:

Radiation Hardness of Flash and Nanoparticle Memories

233

 a) b)

Fig. 19. Values of the B parameter related to F-N conduction in (a) reference MOS and (b)
NC MOS capacitors after irradiation. The dashed lines correspond to the values observed
before irradiation.

 a) b)

Fig. 20. Values of the B parameter related to F-N conduction in reference MOS (a) and NC
MOS capacitors (B) after irradiation. The dashed lines correspond to the values observed
before irradiation.

1. In all cases, Qot is well below the number of the created electron-hole pairs, thus indicating
that only a relatively small number of holes survive the initial fast recombination process
i.e. the radiation yeld is far smaller than unity (Fig. 20b). The number of electron-hole
pairs created by irradiation was evaluated as the ratio of the energy lost by the incident
protons into the SiO2 layer (obtained through TRIM simulations) to the 17eV electron-hole
pair generation energy (Ma & Dressendorfer, 1989) in silicon dioxide.

2. Programmed NC-MOS capacitors, exhibit increased (~ 2 times) Qot values compared to
capacitors with uncharged NCs. This is attributed to the internal electric field generated
by the charged NCs that reduces the hole recombination probability (Ma &
Dressendorfer, 1989).

Flash Memories

234

3. The amount of trapped charges in irradiated un-programmed NC MOS capacitors was
found to be almost one order of magnitude higher than in the reference MOS samples.
This can be related to the extra trapping sites located in the injection and control oxide
in the form of excess silicon atoms left behind by the ULE-IBS technique.

4. In all cases Qot shows saturation for high irradiation doses (Fig. 20a).
5. All the programmed NC MOS capacitors undergo a bit flip 1→0 following irradiation,

(Fig. 21b), in agreement with Petkov (Petkov et al., 2004) where bit flip were observed at
150krad.

 a) b)

Fig. 21. Flat-band voltage after irradiation for a) fresh NC MOS capacitors and b)
programmed “1” NC MOS capacitors.

Fig. 21a indicates that under irradiation the induced positive oxide trapped charge results in
a shift of the C-V characteristics by 2V (the overall memory window is about 2.9V). If the
oxide trapped charge is not removed from the oxide a permanent shift of the memory
window would result, causing serious problems in reading the memory state. It was found
that our devices could be restored to their initial memory window by tunnel annealing i.e.
by electric field stressing (Ma & Dressendorfer, 1989). The memory behavior of 1.5MeV
irradiated NC MOS capacitors was examined by symmetrical sweep C-V measurements of
increasing width (2→-2→2, 8→-8→8,etc.) and under pulse operating conditions (see Fig.
22a). The initial, dose dependent, radiation induced shift disappears gradually by increasing
the voltage sweep. Therefore, the memory window of irradiated devices approaches the
memory window of the unirradiated devices, as also reported by Petkov (Petkov et al.,
2004). In particular it was found that the radiation induced oxide charge can be removed
with 1 write or erase pulse as shown in Fig. 22b.
For what concerns the NC MOSFETs similar results with the one presented above holds. As
found for the NC MOS capacitors, the radiation induced oxide charge can be easily removed
by electric field stressing (for example 1 write or erase pulse). No bit flip has been observed
on charged (write state) devices as shown in Fig. 23. Comparing the VFB shifts observed for
the programmed NC MOS capacitors with the Vth shifts for programmed NC nMOS
transistors it can be concluded that for the latter devices the effect of radiation induced
positive charge trapped into the gate oxide is reduced. It is believed that this effect can be
ascribed to the smaller thickness of control and tunneling oxides in the transistor case i.e. to

Radiation Hardness of Flash and Nanoparticle Memories

235

 a) b)

Fig. 22. a) Memory behavior after application of positive and negative pulses (heights from
2V to 20V, 1s duration) on irradiated NC MOS capacitors at 1.5MeV. The initial flat-band
voltage differences disappear as higher gate pulses are applied, indicating the removal of
the radiation induced positive oxide charge. b) Flat-band voltage evolution during 1s
+14V/-16V write/erase cycles on irradiated NC MOS capacitors. The 0 cycle represent the
after irradiation flat-band voltage. Differences between the flat-band voltage values of
unirradiated and irradiated devices are not observed after the very first write or erase pulse,
indicating the immediate removal of the radiation induced positive oxide charge.

Fig. 23. Threshold voltage measured after irradiation for charged (write) transistors.

the fact that a larger percentage of oxide volume is at tunneling distance from the gate or
substrate and thus a smaller volume is left for the radiation induced Qot (Ma &
Dressendorfer, 1989).
The above result indicate that the read failure of irradiated NC transistor cells may appear
only at doses above 1-10 Mrad(SiO2), thus more than 10 times higher than in FG cells.

7.2.4 Effects on charge retention
The charge retention time of the NC non-volatile memory devices is a characteristic of
critical importance. What is required is that the write and erase states remain clearly

Flash Memories

234

3. The amount of trapped charges in irradiated un-programmed NC MOS capacitors was
found to be almost one order of magnitude higher than in the reference MOS samples.
This can be related to the extra trapping sites located in the injection and control oxide
in the form of excess silicon atoms left behind by the ULE-IBS technique.

4. In all cases Qot shows saturation for high irradiation doses (Fig. 20a).
5. All the programmed NC MOS capacitors undergo a bit flip 1→0 following irradiation,

(Fig. 21b), in agreement with Petkov (Petkov et al., 2004) where bit flip were observed at
150krad.

 a) b)

Fig. 21. Flat-band voltage after irradiation for a) fresh NC MOS capacitors and b)
programmed “1” NC MOS capacitors.

Fig. 21a indicates that under irradiation the induced positive oxide trapped charge results in
a shift of the C-V characteristics by 2V (the overall memory window is about 2.9V). If the
oxide trapped charge is not removed from the oxide a permanent shift of the memory
window would result, causing serious problems in reading the memory state. It was found
that our devices could be restored to their initial memory window by tunnel annealing i.e.
by electric field stressing (Ma & Dressendorfer, 1989). The memory behavior of 1.5MeV
irradiated NC MOS capacitors was examined by symmetrical sweep C-V measurements of
increasing width (2→-2→2, 8→-8→8,etc.) and under pulse operating conditions (see Fig.
22a). The initial, dose dependent, radiation induced shift disappears gradually by increasing
the voltage sweep. Therefore, the memory window of irradiated devices approaches the
memory window of the unirradiated devices, as also reported by Petkov (Petkov et al.,
2004). In particular it was found that the radiation induced oxide charge can be removed
with 1 write or erase pulse as shown in Fig. 22b.
For what concerns the NC MOSFETs similar results with the one presented above holds. As
found for the NC MOS capacitors, the radiation induced oxide charge can be easily removed
by electric field stressing (for example 1 write or erase pulse). No bit flip has been observed
on charged (write state) devices as shown in Fig. 23. Comparing the VFB shifts observed for
the programmed NC MOS capacitors with the Vth shifts for programmed NC nMOS
transistors it can be concluded that for the latter devices the effect of radiation induced
positive charge trapped into the gate oxide is reduced. It is believed that this effect can be
ascribed to the smaller thickness of control and tunneling oxides in the transistor case i.e. to

Radiation Hardness of Flash and Nanoparticle Memories

235

 a) b)

Fig. 22. a) Memory behavior after application of positive and negative pulses (heights from
2V to 20V, 1s duration) on irradiated NC MOS capacitors at 1.5MeV. The initial flat-band
voltage differences disappear as higher gate pulses are applied, indicating the removal of
the radiation induced positive oxide charge. b) Flat-band voltage evolution during 1s
+14V/-16V write/erase cycles on irradiated NC MOS capacitors. The 0 cycle represent the
after irradiation flat-band voltage. Differences between the flat-band voltage values of
unirradiated and irradiated devices are not observed after the very first write or erase pulse,
indicating the immediate removal of the radiation induced positive oxide charge.

Fig. 23. Threshold voltage measured after irradiation for charged (write) transistors.

the fact that a larger percentage of oxide volume is at tunneling distance from the gate or
substrate and thus a smaller volume is left for the radiation induced Qot (Ma &
Dressendorfer, 1989).
The above result indicate that the read failure of irradiated NC transistor cells may appear
only at doses above 1-10 Mrad(SiO2), thus more than 10 times higher than in FG cells.

7.2.4 Effects on charge retention
The charge retention time of the NC non-volatile memory devices is a characteristic of
critical importance. What is required is that the write and erase states remain clearly

Flash Memories

236

distinguished after a 10 yrs retention period. Charge retention was here measured through a
waiting time of 12h after placing the devices in full write or erase state conditions. In Fig.
24a is presented the overall evolution of the memory window with time, while in Fig. 24b
and Fig. 24d are shown the extracted flat-band voltage decay rates, dVfb/dLog(t).
Charge loss rate for the write state is strongly dependent on the irradiation dose while for
the erase state no such dependence is observed. It was found that the write state flat-band
voltage decay rate depends on irradiation dose as Dose2/3, (see Fig. 24b); the same dose

 a) b)

 c) d)

Fig. 24. a) Memory window evolution with time for 1.5MeV protons irradiated NC MOS
capacitors. Memory window for unirradiated devices is also indicated. The dashed line is the
Vfb of fresh unirradiated devices. These results applies also for 6.5MeV irradiations. b) Flat-
band voltage decay rates for write state(1s, +14V) vs dose for irradiated NC MOS capacitors
with 1.5MeV and 6.5MeV proton energies. The electron loss rate follows the relationship
Dose2/3, the same valid for Dit. c) Flat-band voltage decay rates for write state (1s, +14V) are
plotted vs Dit and comparison with the relationship dVfb/dLog(t)=const*Dit is also shown to
demonstrate the linear correlation found between electron loss rate and Dit. d) Flat-band
voltage decay rates for erase state (1s, -16V) vs dose for 1.5MeV and 6.5MeV proton energies. A
small increase in the loss rate is observed but not clear is the dependence with dose.

Radiation Hardness of Flash and Nanoparticle Memories

237

dependence that applies for Dit. This strongly suggests that the loss rate of stored electrons
is directly related to the damage induced by irradiation at the Si-substrate/SiO2 interface
(Fig. 24c) as it was initially postulated by Shi (Shi et al., 1998). Previous measurements of
electron loss at high temperatures revealed that the long-term retention of the present
devices is due to the electron storage in NC traps (Dimitrakis & Normand, 2005).
Regarding the erase state (hole storage), the measured flat-band voltage decay rates show a
small increase with respect to those of non-irradiated samples and unlike electrons they do
not exhibit any clear dependence on dose. These results indicate that the discharging of “0”
programmed NC MOS devices is indeed through defects located in the Si-rich injection
oxide.
Compared to unirradiated NC devices, the reduction in the extrapolated memory window
at 10-yrs of irradiated NC devices does not exceed ~20% (worst case of samples irradiated
with 120Mrad(SiO2)) being ~15% the charge lost by unirradiated devices while for irradiated
ones it raises to ~35%.
Concerning the transistors, once again similar results with those presented for the capacitors
have been found. Memory window as a function of the waiting time is shown in Fig. 25. It is
clear that even in the worst case of NC MOS transistors irradiated with 75Mrad(SiO2), long
time charge storage behavior is still observed. The 10-yrs extrapolated values show that the
charge lost is ~74% after irradiation at 75Mrad(SiO2) with ~17% more charge lost respect to
the unirradiated devices.
It should be remarked that both capacitors and transistor structures irradiated with doses
up to ~100 Mrad(SiO2) do not show failure of the retention characteristic. This means that
retention failure in NC NVM cells may appear only at doses higher than 100 Mrad(SiO2),
thus more than 10 times higher than in FG cells.

Fig. 25. Memory window evolution for unirradiated and irradiated at the highest dose NC
MOS transistors. Extrapolations at 10 years shows that irradiated devices lost 40% of
reference window.

7.2.5 Effects onto the endurance to write/erase cycles
Another important specification for non-volatile memories relate to the ability to endure
repeated write/erase cycles. Endurance measurements, shown in Fig. 26, were carried out
through a 15ms +9V/-9V write/erase pulse regime on all irradiated transistors. Neither
degradation, nor drift in the memory window has been observed for all irradiated devices.

Flash Memories

236

distinguished after a 10 yrs retention period. Charge retention was here measured through a
waiting time of 12h after placing the devices in full write or erase state conditions. In Fig.
24a is presented the overall evolution of the memory window with time, while in Fig. 24b
and Fig. 24d are shown the extracted flat-band voltage decay rates, dVfb/dLog(t).
Charge loss rate for the write state is strongly dependent on the irradiation dose while for
the erase state no such dependence is observed. It was found that the write state flat-band
voltage decay rate depends on irradiation dose as Dose2/3, (see Fig. 24b); the same dose

 a) b)

 c) d)

Fig. 24. a) Memory window evolution with time for 1.5MeV protons irradiated NC MOS
capacitors. Memory window for unirradiated devices is also indicated. The dashed line is the
Vfb of fresh unirradiated devices. These results applies also for 6.5MeV irradiations. b) Flat-
band voltage decay rates for write state(1s, +14V) vs dose for irradiated NC MOS capacitors
with 1.5MeV and 6.5MeV proton energies. The electron loss rate follows the relationship
Dose2/3, the same valid for Dit. c) Flat-band voltage decay rates for write state (1s, +14V) are
plotted vs Dit and comparison with the relationship dVfb/dLog(t)=const*Dit is also shown to
demonstrate the linear correlation found between electron loss rate and Dit. d) Flat-band
voltage decay rates for erase state (1s, -16V) vs dose for 1.5MeV and 6.5MeV proton energies. A
small increase in the loss rate is observed but not clear is the dependence with dose.

Radiation Hardness of Flash and Nanoparticle Memories

237

dependence that applies for Dit. This strongly suggests that the loss rate of stored electrons
is directly related to the damage induced by irradiation at the Si-substrate/SiO2 interface
(Fig. 24c) as it was initially postulated by Shi (Shi et al., 1998). Previous measurements of
electron loss at high temperatures revealed that the long-term retention of the present
devices is due to the electron storage in NC traps (Dimitrakis & Normand, 2005).
Regarding the erase state (hole storage), the measured flat-band voltage decay rates show a
small increase with respect to those of non-irradiated samples and unlike electrons they do
not exhibit any clear dependence on dose. These results indicate that the discharging of “0”
programmed NC MOS devices is indeed through defects located in the Si-rich injection
oxide.
Compared to unirradiated NC devices, the reduction in the extrapolated memory window
at 10-yrs of irradiated NC devices does not exceed ~20% (worst case of samples irradiated
with 120Mrad(SiO2)) being ~15% the charge lost by unirradiated devices while for irradiated
ones it raises to ~35%.
Concerning the transistors, once again similar results with those presented for the capacitors
have been found. Memory window as a function of the waiting time is shown in Fig. 25. It is
clear that even in the worst case of NC MOS transistors irradiated with 75Mrad(SiO2), long
time charge storage behavior is still observed. The 10-yrs extrapolated values show that the
charge lost is ~74% after irradiation at 75Mrad(SiO2) with ~17% more charge lost respect to
the unirradiated devices.
It should be remarked that both capacitors and transistor structures irradiated with doses
up to ~100 Mrad(SiO2) do not show failure of the retention characteristic. This means that
retention failure in NC NVM cells may appear only at doses higher than 100 Mrad(SiO2),
thus more than 10 times higher than in FG cells.

Fig. 25. Memory window evolution for unirradiated and irradiated at the highest dose NC
MOS transistors. Extrapolations at 10 years shows that irradiated devices lost 40% of
reference window.

7.2.5 Effects onto the endurance to write/erase cycles
Another important specification for non-volatile memories relate to the ability to endure
repeated write/erase cycles. Endurance measurements, shown in Fig. 26, were carried out
through a 15ms +9V/-9V write/erase pulse regime on all irradiated transistors. Neither
degradation, nor drift in the memory window has been observed for all irradiated devices.

Flash Memories

238

Fig. 26. Memory window evolution for unirradiated and irradiated at the highest dose NC
MOS transistors. Extrapolations at 10 years shows that irradiated devices lost 40% of
reference window.

8. Conclusions
In this chapter Si nanocrystal non-volatile memory devices were presented and
characterized electrically. Memory windows as large as 3-4V have been shown with
excellent retention and endurance characteristics. The above devices, in capacitor and
transistor configuration, have been used in irradiation experiments with high energy
protons and high fluencies showing superior radiation hardness, more than 10 times,
respect to standard floating gate memories. It was found that transistor memory cells lose
their information only above 108 rad(SiO2) which is outstanding. Furthermore, electron
retention is affected by radiation and in particular has been identified a clear relationship
between electron loss rate and density of interface states, driving to the conclusion that the
Si NC NVMs considered in this work loose stored electrons by tunneling through the
interface states. Hole’s loss rate doesn't seem to be affected by the radiation. Endurance to
w/e cycles remains unaltered after irradiation.

9. Acknowledgments
The authors would like to acknowledge the European Space Agency for financial support.
We would like also to thank the collaborators who contributed to this research: Dr. P.
Normand, Dr. P. Dimitrakis, Prof. M. Kokkoris and Mr. I. Anastasiadis.

10. References
Barth J.L, C.S. Dyer, E.G. Stassinopoulos, Space, atmospheric, and terrestrial radiation

environments, IEEE Trans. Nucl. Sci. 50(3), Jun 2003, p. 466-482
Blauwe J., “Nanocrystal nonvolatile memory devices”, IEEE Trans. Nanotechnol., vol.1, pp.

72-77, 2002.
Cellere G., A. Paccagnella, , “Charge loss after Co irradiation of flash arrays,” IEEE Trans.

Nucl. Sci., vol. 51, pp. 2912–2916, Oct. 2004a.

Radiation Hardness of Flash and Nanoparticle Memories

239

Cellere G., A. Paccagnella, S. Lora, A. Pozza, G. Tao, A. Scarpa, “A review of ionizing
radiation effects in floating gate memories,” IEEE—Trans. Device Mater. Rel., vol. 4,
pp. 359–370, Sept. 2004b.

Cellere G., A. Paccagnella, A. Visconti, M. Bonanomi, P. Caprara, S. Lora, “A model for TID
effects on floating gate memory cells,” IEEE Trans. Nucl. Sci., vol. 51, pp. 3753–3758,
Dec. 2004c.

Cellere G., A. Paccagnella, A. Visconti, M. Bonanomi, A. Candelori, S. Lora, “Effect of
different total ionizing dose sources on charge loss from programmed floating gate
cells,” IEEE Trans. Nucl. Sci., vol. 52, pp. 2372–2377, Dec. 2005.

Ceschia M., A. Paccagnella, M. Turrini, A. Candelori, G. Ghidini and J. Wyss, "Heavy ion
irradiation of thin oxides," IEEE Trans. Nucl. Sci., vol. 47, pp. 2648-2655, December
2000

Cester A., A. Gasperin, N. Wrachien, A. Paccagnella, V. Ancarani, C. Gerardi, "Impact of
heavy ion strikes on nanocrystal non volatile memory cell arrays", IEEE Trans Nucl.
Sci., vol. 53, pp. 3195–3202, Dec. 2006.

Dimitrakis P., P.Normand, Semiconductor Nanocrystal Floating-gate Memory Devices,
Mater. Res. Soc. Symp. Proc. Vol 830, D5.1.1(2005)

Gonzalez-Varona O., Garrido B., Cheylan S., Pérez-Rodríguez A., Cuadras A., Morante J.R.,
“Control of tunnel oxide thickness in Si-nanocrystal array memories obtained by
ion implantation and its impact in writing speed and volatility”, Appl. Phys. Lett.,
vol. 82, pp. 2151-2153, 2003.

Hanafi H. I., S. Tiwari & I. Khan, “Fast and long retention-time nanocrystal memory”, IEEE
Trans. Electron Devices, vol. 43, pp. 1553-1558, 1996.

Huang C., Method and system for correcting soft errors in memory circuit, United States
Patent 7644341, 2010, http://www.freepatentsonline.com/7644341.html

Kim Ilgweon, Sangyeon Han, Kwangseok Han, Jongho Lee & Hyungcheol Shin, “Room
temperature single electron effects in a Si nano-crystal memory”, IEEE Electron
Device Letters, vol. 20, pp. 630-631, 1999.

King Ya-Chin, Tsu-Jae King & Chenming Hu, “MOS memory using germanium nanocrystals
formed by thermal oxidation of Si1-xGex”, IEDM Tech. Dig., pp. 115-118, 1998.

Klein D., Method and system for dynamically operating memory in a power-saving error
correction mode, United States Patent 6838331, 2005,

 http://www.freepatentsonline.com/6838331.html
Lankhorst Martijn H. R., Bas W. S. M. M. Ketelaars & R. A. M. Wolters, “Low-cost and

nanoscale non-volatile memory concept for future silicon chips”, Nature materials,
vol. 4, pp. 347-352, 2005.

Larcher L., A. Paccagnella, M. Ceschia, and G. Ghidini, “A model of radiation induced
leakage current (RILC) in ultra-thin gate oxides,” IEEE Trans. Nucl. Sci., vol. 46, pp.
1553–1561, Dec. 1999.

Liaw J., SRAM cell design for soft error rate immunity, United States Patent 6649456, 2003,
 http://www.freepatentsonline.com/6649456.html
Ma T. P. and P. V. Dressendorfer, Ionizing Radiation Effects in MOS Devices and Circuits.

New York: Wiley, 1989.
Normand P., E. Kapetanakis, P. Dimitrakis, D. Skarlatos, K. Beltsios, D. Tsoukalas, C.

Bonafos, G. Ben Asssayag, N. Cherkashin, A. Claverie, J. A. Van Den Berg, V.
Soncini, A. Agarwal, M. Ameen, M. Perego and M. Fanciulli, Nanocrystals

Flash Memories

238

Fig. 26. Memory window evolution for unirradiated and irradiated at the highest dose NC
MOS transistors. Extrapolations at 10 years shows that irradiated devices lost 40% of
reference window.

8. Conclusions
In this chapter Si nanocrystal non-volatile memory devices were presented and
characterized electrically. Memory windows as large as 3-4V have been shown with
excellent retention and endurance characteristics. The above devices, in capacitor and
transistor configuration, have been used in irradiation experiments with high energy
protons and high fluencies showing superior radiation hardness, more than 10 times,
respect to standard floating gate memories. It was found that transistor memory cells lose
their information only above 108 rad(SiO2) which is outstanding. Furthermore, electron
retention is affected by radiation and in particular has been identified a clear relationship
between electron loss rate and density of interface states, driving to the conclusion that the
Si NC NVMs considered in this work loose stored electrons by tunneling through the
interface states. Hole’s loss rate doesn't seem to be affected by the radiation. Endurance to
w/e cycles remains unaltered after irradiation.

9. Acknowledgments
The authors would like to acknowledge the European Space Agency for financial support.
We would like also to thank the collaborators who contributed to this research: Dr. P.
Normand, Dr. P. Dimitrakis, Prof. M. Kokkoris and Mr. I. Anastasiadis.

10. References
Barth J.L, C.S. Dyer, E.G. Stassinopoulos, Space, atmospheric, and terrestrial radiation

environments, IEEE Trans. Nucl. Sci. 50(3), Jun 2003, p. 466-482
Blauwe J., “Nanocrystal nonvolatile memory devices”, IEEE Trans. Nanotechnol., vol.1, pp.

72-77, 2002.
Cellere G., A. Paccagnella, , “Charge loss after Co irradiation of flash arrays,” IEEE Trans.

Nucl. Sci., vol. 51, pp. 2912–2916, Oct. 2004a.

Radiation Hardness of Flash and Nanoparticle Memories

239

Cellere G., A. Paccagnella, S. Lora, A. Pozza, G. Tao, A. Scarpa, “A review of ionizing
radiation effects in floating gate memories,” IEEE—Trans. Device Mater. Rel., vol. 4,
pp. 359–370, Sept. 2004b.

Cellere G., A. Paccagnella, A. Visconti, M. Bonanomi, P. Caprara, S. Lora, “A model for TID
effects on floating gate memory cells,” IEEE Trans. Nucl. Sci., vol. 51, pp. 3753–3758,
Dec. 2004c.

Cellere G., A. Paccagnella, A. Visconti, M. Bonanomi, A. Candelori, S. Lora, “Effect of
different total ionizing dose sources on charge loss from programmed floating gate
cells,” IEEE Trans. Nucl. Sci., vol. 52, pp. 2372–2377, Dec. 2005.

Ceschia M., A. Paccagnella, M. Turrini, A. Candelori, G. Ghidini and J. Wyss, "Heavy ion
irradiation of thin oxides," IEEE Trans. Nucl. Sci., vol. 47, pp. 2648-2655, December
2000

Cester A., A. Gasperin, N. Wrachien, A. Paccagnella, V. Ancarani, C. Gerardi, "Impact of
heavy ion strikes on nanocrystal non volatile memory cell arrays", IEEE Trans Nucl.
Sci., vol. 53, pp. 3195–3202, Dec. 2006.

Dimitrakis P., P.Normand, Semiconductor Nanocrystal Floating-gate Memory Devices,
Mater. Res. Soc. Symp. Proc. Vol 830, D5.1.1(2005)

Gonzalez-Varona O., Garrido B., Cheylan S., Pérez-Rodríguez A., Cuadras A., Morante J.R.,
“Control of tunnel oxide thickness in Si-nanocrystal array memories obtained by
ion implantation and its impact in writing speed and volatility”, Appl. Phys. Lett.,
vol. 82, pp. 2151-2153, 2003.

Hanafi H. I., S. Tiwari & I. Khan, “Fast and long retention-time nanocrystal memory”, IEEE
Trans. Electron Devices, vol. 43, pp. 1553-1558, 1996.

Huang C., Method and system for correcting soft errors in memory circuit, United States
Patent 7644341, 2010, http://www.freepatentsonline.com/7644341.html

Kim Ilgweon, Sangyeon Han, Kwangseok Han, Jongho Lee & Hyungcheol Shin, “Room
temperature single electron effects in a Si nano-crystal memory”, IEEE Electron
Device Letters, vol. 20, pp. 630-631, 1999.

King Ya-Chin, Tsu-Jae King & Chenming Hu, “MOS memory using germanium nanocrystals
formed by thermal oxidation of Si1-xGex”, IEDM Tech. Dig., pp. 115-118, 1998.

Klein D., Method and system for dynamically operating memory in a power-saving error
correction mode, United States Patent 6838331, 2005,

 http://www.freepatentsonline.com/6838331.html
Lankhorst Martijn H. R., Bas W. S. M. M. Ketelaars & R. A. M. Wolters, “Low-cost and

nanoscale non-volatile memory concept for future silicon chips”, Nature materials,
vol. 4, pp. 347-352, 2005.

Larcher L., A. Paccagnella, M. Ceschia, and G. Ghidini, “A model of radiation induced
leakage current (RILC) in ultra-thin gate oxides,” IEEE Trans. Nucl. Sci., vol. 46, pp.
1553–1561, Dec. 1999.

Liaw J., SRAM cell design for soft error rate immunity, United States Patent 6649456, 2003,
 http://www.freepatentsonline.com/6649456.html
Ma T. P. and P. V. Dressendorfer, Ionizing Radiation Effects in MOS Devices and Circuits.

New York: Wiley, 1989.
Normand P., E. Kapetanakis, P. Dimitrakis, D. Skarlatos, K. Beltsios, D. Tsoukalas, C.

Bonafos, G. Ben Asssayag, N. Cherkashin, A. Claverie, J. A. Van Den Berg, V.
Soncini, A. Agarwal, M. Ameen, M. Perego and M. Fanciulli, Nanocrystals

Flash Memories

240

manufacturing by ultra-low-energy ion-beam-synthesis for non-volatile memory
applications, Nucl. Instrum. Meth. B 216, 228 (2004).

Oldham T.R., M. Suhail, P. Kuhn, E. Prinz, H. S. Kim, and K. A. LaBel, "Effects of heavy ion
exposure on nanocrystal nonvolatile memories", IEEE Trans Nucl. Sci., vol. 52, pp.
2366–2371, Dec. 2005.

Oldham T.R., R. L. Ladbury, Member, IEEE, M. Friendlich, H. S. Kim, M. D. Berg, T. L.
Irwin, C. Seidleck, and K. A. LaBel, "SEE and TID characterization of an advanced
commercial 2Gbit NAND flash nonvolatile memory", IEEE Trans Nucl. Sci., vol. 53,
pp. 3217–3222, Dec. 2006.

Oldham T.R., M. Friendlich, J. Howard, M. Berg, H. Kim, T. Irwin, K. LaBel, TID and SEE
Response of an Advanced Samsung 4Gb NAND Flash Memory, IEEE Radiation
Effects Data Workshop, pp. 221–225, 2007.

Ostraat M. L., De Blauwe J.W., Green M.L., Bell L.D., Brongersma M.L., Casperson J., Flagan
R.C., Atwater H.A., “Synthesis and characterization of aerosol silicon nanocrystal
nonvolatile floating-gate memory devices”, Appl. Phys. Lett., vol. 79, pp. 433-435, 2001.

Ouyang Jiantong, Chih-Wei Chu, Charles R. Szmanda, Liping Ma & Yang Yang,
“Programmable polymer thin film and non-volatile memory device”, Nature
materials, vol. 3, pp. 918-922, 2004.

Park Nae-Man, Suk Ho Choi, Seong-Ju Park, “Electron charging and discharging in
amorphous silicon quantum dots embedded in silicon nitride”, Appl. Phys. Lett.,
vol. 81, pp. 1092-1094, 2002.

Petkov M. P., L.D. Bell, H.A. Atwater, “High total dose tolerance of prototype silicon
nanocrystal non-volatile memory cells,” IEEE Trans Nucl. Sci., vol. 51, pp. 3822–
3826, Dec. 2004.

Scarpa A., A. Paccagnella, F. Montera, G. Ghibaudo, G. Pananakakis, G. Ghidini, and P. G.
Fuochi, “Ionizing radiation induced leakage current on ultra-thin gate oxides,”
IEEE Trans. Nucl. Sci., vol. 44, no. 6, pp. 1818–1825, Dec. 1997.

Shi Y., K.Saito,H.Ishikuro, T.Hiramoto, Effects of traps on charge storage characteristics in
metal-oxide-semiconductor memory structures based on silicon nanocrystals,
J.Appl.Phys. 84(4), 2358 (1998).

Takata M., Kondoh S., Sakaguchi T., Choi H., Shim J.-C., Kurino H., Koyanagi M., “New
non-volatile memory with extremely high density metal nano-dots”, IEDM Tech.
Dig., pp. 553-556, 2003.

Tiwari S., F. Rana, H. Hanafi, A. Hartstein & E. F. Crabbe, A silicon nanocrystals based
memory, Appl. Phys. Lett., vol. 68, pp.1377-1379, 1996.

Vanheusden K., Warren W.L., Devine R.A.B., Fleetwood D.M., Schwank J.R., Shaneyfelt
M.R., Winokur P.S., Lemnios Z.J.,“Non-volatile memory device based on mobile
protons in SiO2 thin films”, Nature, vol. 386, 587-589 (1997).

Verrelli E., D. Tsoukalas, M. Kokkoris, R. Vlastou, P. Dimitrakis and P. Normand, Proton
Radiation Effects on Nanocrystal Non-Volatile Memories, IEEE T. Nucl. Sc., Vol. 54,
No. 4, August 2007.

Verrelli E., I. Anastassiadis, D. Tsoukalas, M. Kokkoris, R. Vlastou, P. Dimitrakis, P. Normand,
Proton radiation tolerance of nanocrystal memories, Physica E 38 (2007) 67–70.

Wrachien N., A. Cester, R. Portoghese, C. Gerardi, "Investigation of proton and x-ray
irradiation effects on nanocrystal and floating gate memory cell arrays", IEEE Trans
Nucl. Sci., vol. 55, pp. 3000–3008, Dec. 2008.

0

Atomistic Simulations of Flash Memory Materials
Based on Chalcogenide Glasses

Bin Cai, Binay Prasai and D. A. Drabold
Department of Physics and Astronomy, Ohio University, Athens, Ohio

United States

1. Introduction

In the last decade, the market for non-volatile computer storage has experienced rapid growth.
However, as the device size scales down, currently used NOR and NAND technology is facing
limitations from tunnel oxide and electrostatic interactions between cells (Lacaita & Wouters,
2008). To solve the scaling problems, in the last fifteen years, a number of alternative
Flash memory technologies have been proposed and studied. The phase-change memory,
solid electrolyte memory, ferroelectric memory, magnetic memory and molecular memory
using conducting molecules and carbon nanotubes all are promising candidates to replace
technologies that are reaching their limit (Chung et al., 2010; Drabold, 2009).
Vitreous materials involving chemical species from column VI other than oxygen are called
Chalcogenide glasses. Chalcogenide glasses have long held interest for applications such
as infrared detectors and optical fibers. Recently, chalcogenide glasses attracted further
attention due to their promising application in data storage devices. Two of the examples
are phase-change memory materials based on tellurium alloys and solid electrolyte memory
materials based on metal-doped Ge-Se glasses. In this chapter, by using ab-initio molecular
dynamics, we introduce the latest simulation results on two materials for flash memory
devices: Ge2Sb2Te5 and Ge-Se-Cu-Ag. This chapter is a review of our previous work including
some of our published figures and text in Cai et al. (2010) and Prasai & Drabold (2011) and
also includes several new results. We organized the chapter as follows: we first introduce the
simulation method used in all calculations in section 2; in section 3, we show the key findings
on Ge2Sb2Te5(Cai et al., 2010); then we switch to the study on Ge-Se-Cu-Ag in section 4
(Prasai & Drabold, 2011). For both cases, after forming realistic atomistic models, we analyze
the topology and electronic structure, predict their properties, and compare with experimental
results.

2. Simulation method

We use the ab-initio molecular dynamics method (ab-MD) to generate atomistic models. When
such schemes are applied, the initial position of atoms are usually randomized and the system
is then annealed or relaxed to seek suitable local energy minima. The final model will be the
one with a minimum total energy and agreeing with experimental measurements. One of
the popular techniques based on ab-MD is the "Cook and Quench" method, for which the
MD simulation is performed at a temperature well above melting point, which will force the
system to lose memory of the initial configuration. Finally, the system is equilibrated at a

12

Flash Memories

240

manufacturing by ultra-low-energy ion-beam-synthesis for non-volatile memory
applications, Nucl. Instrum. Meth. B 216, 228 (2004).

Oldham T.R., M. Suhail, P. Kuhn, E. Prinz, H. S. Kim, and K. A. LaBel, "Effects of heavy ion
exposure on nanocrystal nonvolatile memories", IEEE Trans Nucl. Sci., vol. 52, pp.
2366–2371, Dec. 2005.

Oldham T.R., R. L. Ladbury, Member, IEEE, M. Friendlich, H. S. Kim, M. D. Berg, T. L.
Irwin, C. Seidleck, and K. A. LaBel, "SEE and TID characterization of an advanced
commercial 2Gbit NAND flash nonvolatile memory", IEEE Trans Nucl. Sci., vol. 53,
pp. 3217–3222, Dec. 2006.

Oldham T.R., M. Friendlich, J. Howard, M. Berg, H. Kim, T. Irwin, K. LaBel, TID and SEE
Response of an Advanced Samsung 4Gb NAND Flash Memory, IEEE Radiation
Effects Data Workshop, pp. 221–225, 2007.

Ostraat M. L., De Blauwe J.W., Green M.L., Bell L.D., Brongersma M.L., Casperson J., Flagan
R.C., Atwater H.A., “Synthesis and characterization of aerosol silicon nanocrystal
nonvolatile floating-gate memory devices”, Appl. Phys. Lett., vol. 79, pp. 433-435, 2001.

Ouyang Jiantong, Chih-Wei Chu, Charles R. Szmanda, Liping Ma & Yang Yang,
“Programmable polymer thin film and non-volatile memory device”, Nature
materials, vol. 3, pp. 918-922, 2004.

Park Nae-Man, Suk Ho Choi, Seong-Ju Park, “Electron charging and discharging in
amorphous silicon quantum dots embedded in silicon nitride”, Appl. Phys. Lett.,
vol. 81, pp. 1092-1094, 2002.

Petkov M. P., L.D. Bell, H.A. Atwater, “High total dose tolerance of prototype silicon
nanocrystal non-volatile memory cells,” IEEE Trans Nucl. Sci., vol. 51, pp. 3822–
3826, Dec. 2004.

Scarpa A., A. Paccagnella, F. Montera, G. Ghibaudo, G. Pananakakis, G. Ghidini, and P. G.
Fuochi, “Ionizing radiation induced leakage current on ultra-thin gate oxides,”
IEEE Trans. Nucl. Sci., vol. 44, no. 6, pp. 1818–1825, Dec. 1997.

Shi Y., K.Saito,H.Ishikuro, T.Hiramoto, Effects of traps on charge storage characteristics in
metal-oxide-semiconductor memory structures based on silicon nanocrystals,
J.Appl.Phys. 84(4), 2358 (1998).

Takata M., Kondoh S., Sakaguchi T., Choi H., Shim J.-C., Kurino H., Koyanagi M., “New
non-volatile memory with extremely high density metal nano-dots”, IEDM Tech.
Dig., pp. 553-556, 2003.

Tiwari S., F. Rana, H. Hanafi, A. Hartstein & E. F. Crabbe, A silicon nanocrystals based
memory, Appl. Phys. Lett., vol. 68, pp.1377-1379, 1996.

Vanheusden K., Warren W.L., Devine R.A.B., Fleetwood D.M., Schwank J.R., Shaneyfelt
M.R., Winokur P.S., Lemnios Z.J.,“Non-volatile memory device based on mobile
protons in SiO2 thin films”, Nature, vol. 386, 587-589 (1997).

Verrelli E., D. Tsoukalas, M. Kokkoris, R. Vlastou, P. Dimitrakis and P. Normand, Proton
Radiation Effects on Nanocrystal Non-Volatile Memories, IEEE T. Nucl. Sc., Vol. 54,
No. 4, August 2007.

Verrelli E., I. Anastassiadis, D. Tsoukalas, M. Kokkoris, R. Vlastou, P. Dimitrakis, P. Normand,
Proton radiation tolerance of nanocrystal memories, Physica E 38 (2007) 67–70.

Wrachien N., A. Cester, R. Portoghese, C. Gerardi, "Investigation of proton and x-ray
irradiation effects on nanocrystal and floating gate memory cell arrays", IEEE Trans
Nucl. Sci., vol. 55, pp. 3000–3008, Dec. 2008.

0

Atomistic Simulations of Flash Memory Materials
Based on Chalcogenide Glasses

Bin Cai, Binay Prasai and D. A. Drabold
Department of Physics and Astronomy, Ohio University, Athens, Ohio

United States

1. Introduction

In the last decade, the market for non-volatile computer storage has experienced rapid growth.
However, as the device size scales down, currently used NOR and NAND technology is facing
limitations from tunnel oxide and electrostatic interactions between cells (Lacaita & Wouters,
2008). To solve the scaling problems, in the last fifteen years, a number of alternative
Flash memory technologies have been proposed and studied. The phase-change memory,
solid electrolyte memory, ferroelectric memory, magnetic memory and molecular memory
using conducting molecules and carbon nanotubes all are promising candidates to replace
technologies that are reaching their limit (Chung et al., 2010; Drabold, 2009).
Vitreous materials involving chemical species from column VI other than oxygen are called
Chalcogenide glasses. Chalcogenide glasses have long held interest for applications such
as infrared detectors and optical fibers. Recently, chalcogenide glasses attracted further
attention due to their promising application in data storage devices. Two of the examples
are phase-change memory materials based on tellurium alloys and solid electrolyte memory
materials based on metal-doped Ge-Se glasses. In this chapter, by using ab-initio molecular
dynamics, we introduce the latest simulation results on two materials for flash memory
devices: Ge2Sb2Te5 and Ge-Se-Cu-Ag. This chapter is a review of our previous work including
some of our published figures and text in Cai et al. (2010) and Prasai & Drabold (2011) and
also includes several new results. We organized the chapter as follows: we first introduce the
simulation method used in all calculations in section 2; in section 3, we show the key findings
on Ge2Sb2Te5(Cai et al., 2010); then we switch to the study on Ge-Se-Cu-Ag in section 4
(Prasai & Drabold, 2011). For both cases, after forming realistic atomistic models, we analyze
the topology and electronic structure, predict their properties, and compare with experimental
results.

2. Simulation method

We use the ab-initio molecular dynamics method (ab-MD) to generate atomistic models. When
such schemes are applied, the initial position of atoms are usually randomized and the system
is then annealed or relaxed to seek suitable local energy minima. The final model will be the
one with a minimum total energy and agreeing with experimental measurements. One of
the popular techniques based on ab-MD is the "Cook and Quench" method, for which the
MD simulation is performed at a temperature well above melting point, which will force the
system to lose memory of the initial configuration. Finally, the system is equilibrated at a

12

2 Will-be-set-by-IN-TECH

lower temperature, like room temperature. Then an energy minimization is applied. Many
realistic models are made by such a simple but powerful method.
In our work, all of the calculations were carried out using periodic boundary conditions
with the Vienna Ab-initio Simulation Package(VASP). VASP is based on density functional
theory using a plane wave basis (Kresse & Furthmuller, 1996). For Ge2Sb2Te5, we used the
projector augmented-wave (PAW) potentials and generalized gradient approximation PBE
(GGA-PBE) method (Kresse & Joubert, 1999; Perdew et al., 1996); for Ge-Se-Cu-Ag, we used
the local density approximation (LDA) for the exchange correlation energy in conjunction with
the Vanderbilt Ultra Soft pseudopotentials (Kresse & Hafner, 1994; Perdew & Zunger, 1981).
Both systems were annealed, equilibrated and cooled using molecular dynamic (MD) option
of VASP and relaxation is carried out in conjugate gradient (CG) mode. Moreover, to obtain a
better estimation for electronic gap, we applied Hartree-Fock (HF) calculation when analyzing
the electronic structure of amorphous Ge2Sb2Te5. Though HF is known to exaggerate both
the optical gap and charge fluctuation in the electron gas. These features are helpful to us for
diagnosing the correlations between topology and electronic properties.

3. Phase-change memory material

3.1 Background
For Ge-Sb-Te (GST) alloys, there exists a rapid and reversible transition between crystalline
and amorphous states. Controlled modification of electrical conductivity and optical
properties of the transition is the basis for promising FLASH and optical memory devices.
Akola and Jones (Akola & Jones, 2007) analyzed the structure of liquid and amorphous
phases, and compared the electronic structure with the crystal phase. In 2008, Hegedus
and Elliott (Hegedus & Elliott, 2008) reproduced the crystal-amorphous transition by MD
simulation, and they found that the rapid crystal growth was due to the presence of crystal
fragments – four member square rings (so-called "seeds") in amorphous and liquid phases.
Their work provided a way to track the dynamic changes of network topology and electronic
structure at the same time. Welnic and co-workers (Welnic et al., 2007) studied the origin of
optical properties and argued that the optical contrast between amorphous and crystalline
phases is due to a change in local order of Ge atoms. Despite this progress, the correlation
between topology and electronic structure, most especially the origin of the change in the
electronic gap, is still imperfectly understood. One of the challenges is the basic limitation of
the LDA for estimating the gap.

3.2 Model preparation
We began our work by creating amorphous Ge2Sb2Te5 models by using the Vienna Ab-initio
Simulation Package (VASP)– a plane-wave DFT code, using a PAW potential and the
GGA-PBE method (Hegedus & Elliott, 2008). 63-atom amorphous Ge2Sb2Te5 models with
lattice constant 12.5 Å were made as follows. The system was first melted and equilibrated at
1000K, followed by a rapid quench to 500K with a quench rate of 16K/ps. Then the system
was equilibrated for 20 ps and data collection began at 10ps. For the crystal phase, 108-atom
crystal Ge2Sb2Te5 cells with lattice constant 21.316Å are generated based on NaCl rock-salt
structure with 10% vacancies: 60 Te atoms occupied the Na sites; 24 Ge atoms and 24 Sb
atoms randomly occupied the Cl sites which left 10 Cl sites unoccupied. The system was then
relaxed under zero-pressure till the minimum total energy was obtained.

242 Flash Memories Atomistic Simulations of Flash Memory Materials Based on Chalcogenide Glasses 3

Ntot NTe NGe NSb
Te 3.4(3.0) 20%(30%) 47%(41%) 33%(29%)
Ge 4.6(4.3) 86%(71%) 5%(13%) 9%(16%)
Sb 4.1(3.6) 69%(62%) 11%(20%) 20%(18%)

Nseed 18(1.8) 52%(10%) 69%(12%) 53%(10%)

Table 1. Mean coordinations, bond types and seeds(four member square rings) statistics at
500K. The result obtained at 1000K is listed in brackets (coordination cutoff=3.2Å).

3.3 Result and discussions
3.3.1 Bond statistics

Fig. 1. Partial radial distribution functions for a-Ge2Sb2Te5.

The calculated atomic coordinations for a-Ge2Sb2Te5(500K) and l-Ge2Sb2Te5(1000K) are listed
in Table 1 with a 3.2Å cut-off. These results are similar to Akola & Jones (2007), although
in our case, the mean coordination of Ge atoms is slightly increased after thermal quench
and equilibration, which may be due to the higher equilibration temperature used and/or
size artifacts for our smaller model. More highly-coordinated Ge and Sb (5-fold,6-fold) atoms
appeared in the amorphous phase, which suggests that a near-octahedral structure may be
formed (square-rings and 8-atom cubes). These results indicate that structural ordering is
enhanced in the amorphous phase relative to the liquid. Moreover, the number of wrong
bonds (Te-Te,Ge-Ge,Sb-Sb and Ge-Sb) are decreased from 1000K to 500K which indicates that
the chemical order is also improved. The average number of "seeds" (four member square
rings) shows an increase in the amorphous phase and more than 50% of the atoms are involved
in "seeds", compared to only 10% in the liquid phase. The calculated partial radial distribution
functions are plotted in Fig. 1. The first peak in the Te-Ge and Te-Sb partials are located at
2.81Å and 2.92Å. The shallow first minima imply that the coordination is sensitive to the
cutoff value selected. The Te-Ge partial has a broad and weak second peak. However, the
Te-Sb partial possesses a second peak with a maximum at 4.4Å which indicates that Ge and
Sb atoms differ in local environment relative to Te atoms. Regarding the homopolar bonds,

243Atomistic Simulations of Flash Memory Materials Based on Chalcogenide Glasses

2 Will-be-set-by-IN-TECH

lower temperature, like room temperature. Then an energy minimization is applied. Many
realistic models are made by such a simple but powerful method.
In our work, all of the calculations were carried out using periodic boundary conditions
with the Vienna Ab-initio Simulation Package(VASP). VASP is based on density functional
theory using a plane wave basis (Kresse & Furthmuller, 1996). For Ge2Sb2Te5, we used the
projector augmented-wave (PAW) potentials and generalized gradient approximation PBE
(GGA-PBE) method (Kresse & Joubert, 1999; Perdew et al., 1996); for Ge-Se-Cu-Ag, we used
the local density approximation (LDA) for the exchange correlation energy in conjunction with
the Vanderbilt Ultra Soft pseudopotentials (Kresse & Hafner, 1994; Perdew & Zunger, 1981).
Both systems were annealed, equilibrated and cooled using molecular dynamic (MD) option
of VASP and relaxation is carried out in conjugate gradient (CG) mode. Moreover, to obtain a
better estimation for electronic gap, we applied Hartree-Fock (HF) calculation when analyzing
the electronic structure of amorphous Ge2Sb2Te5. Though HF is known to exaggerate both
the optical gap and charge fluctuation in the electron gas. These features are helpful to us for
diagnosing the correlations between topology and electronic properties.

3. Phase-change memory material

3.1 Background
For Ge-Sb-Te (GST) alloys, there exists a rapid and reversible transition between crystalline
and amorphous states. Controlled modification of electrical conductivity and optical
properties of the transition is the basis for promising FLASH and optical memory devices.
Akola and Jones (Akola & Jones, 2007) analyzed the structure of liquid and amorphous
phases, and compared the electronic structure with the crystal phase. In 2008, Hegedus
and Elliott (Hegedus & Elliott, 2008) reproduced the crystal-amorphous transition by MD
simulation, and they found that the rapid crystal growth was due to the presence of crystal
fragments – four member square rings (so-called "seeds") in amorphous and liquid phases.
Their work provided a way to track the dynamic changes of network topology and electronic
structure at the same time. Welnic and co-workers (Welnic et al., 2007) studied the origin of
optical properties and argued that the optical contrast between amorphous and crystalline
phases is due to a change in local order of Ge atoms. Despite this progress, the correlation
between topology and electronic structure, most especially the origin of the change in the
electronic gap, is still imperfectly understood. One of the challenges is the basic limitation of
the LDA for estimating the gap.

3.2 Model preparation
We began our work by creating amorphous Ge2Sb2Te5 models by using the Vienna Ab-initio
Simulation Package (VASP)– a plane-wave DFT code, using a PAW potential and the
GGA-PBE method (Hegedus & Elliott, 2008). 63-atom amorphous Ge2Sb2Te5 models with
lattice constant 12.5 Å were made as follows. The system was first melted and equilibrated at
1000K, followed by a rapid quench to 500K with a quench rate of 16K/ps. Then the system
was equilibrated for 20 ps and data collection began at 10ps. For the crystal phase, 108-atom
crystal Ge2Sb2Te5 cells with lattice constant 21.316Å are generated based on NaCl rock-salt
structure with 10% vacancies: 60 Te atoms occupied the Na sites; 24 Ge atoms and 24 Sb
atoms randomly occupied the Cl sites which left 10 Cl sites unoccupied. The system was then
relaxed under zero-pressure till the minimum total energy was obtained.

242 Flash Memories Atomistic Simulations of Flash Memory Materials Based on Chalcogenide Glasses 3

Ntot NTe NGe NSb
Te 3.4(3.0) 20%(30%) 47%(41%) 33%(29%)
Ge 4.6(4.3) 86%(71%) 5%(13%) 9%(16%)
Sb 4.1(3.6) 69%(62%) 11%(20%) 20%(18%)

Nseed 18(1.8) 52%(10%) 69%(12%) 53%(10%)

Table 1. Mean coordinations, bond types and seeds(four member square rings) statistics at
500K. The result obtained at 1000K is listed in brackets (coordination cutoff=3.2Å).

3.3 Result and discussions
3.3.1 Bond statistics

Fig. 1. Partial radial distribution functions for a-Ge2Sb2Te5.

The calculated atomic coordinations for a-Ge2Sb2Te5(500K) and l-Ge2Sb2Te5(1000K) are listed
in Table 1 with a 3.2Å cut-off. These results are similar to Akola & Jones (2007), although
in our case, the mean coordination of Ge atoms is slightly increased after thermal quench
and equilibration, which may be due to the higher equilibration temperature used and/or
size artifacts for our smaller model. More highly-coordinated Ge and Sb (5-fold,6-fold) atoms
appeared in the amorphous phase, which suggests that a near-octahedral structure may be
formed (square-rings and 8-atom cubes). These results indicate that structural ordering is
enhanced in the amorphous phase relative to the liquid. Moreover, the number of wrong
bonds (Te-Te,Ge-Ge,Sb-Sb and Ge-Sb) are decreased from 1000K to 500K which indicates that
the chemical order is also improved. The average number of "seeds" (four member square
rings) shows an increase in the amorphous phase and more than 50% of the atoms are involved
in "seeds", compared to only 10% in the liquid phase. The calculated partial radial distribution
functions are plotted in Fig. 1. The first peak in the Te-Ge and Te-Sb partials are located at
2.81Å and 2.92Å. The shallow first minima imply that the coordination is sensitive to the
cutoff value selected. The Te-Ge partial has a broad and weak second peak. However, the
Te-Sb partial possesses a second peak with a maximum at 4.4Å which indicates that Ge and
Sb atoms differ in local environment relative to Te atoms. Regarding the homopolar bonds,

243Atomistic Simulations of Flash Memory Materials Based on Chalcogenide Glasses

4 Will-be-set-by-IN-TECH

there is a major peak for the Sb-Sb partial centered at 2.9Å. These results are similar to other
simulations (Akola & Jones, 2007) and also experimental results (Natio et al., 2010).

3.3.2 Electronic structure

Fig. 2. Electronic densities of states projected onto different atomic species and orbitals. The
Fermi level is at 0 eV.

The electronic structure is analyzed through the electronic density of states (EDOS) obtained
from Hartree-Fock (HF) calculations. HF is used only to analyze the EDOS, not for forces
and total energies. HF is known to exaggerate both the optical gap and charge fluctuations in
the electron gas. These features are helpful to us here for diagnosing structural correlations.
In the following discussion, the calculated EDOS is averaged over 1000 configurations from
the last 2 ps when the cell is in thermal equilibrium at a fixed temperature of 500K. Finally,
the averaged HF result of the amorphous phase gives an electronic gap around 0.4eV which
is wider than the DFT result–0.2eV (Akola & Jones, 2007) and is closer to the experimental
value–0.7eV (Lee et al., 2005). Although the gap is still smaller than the experimental value, it
is much improved over LDA, and this may imply that HF provides a better starting point for
analysis of the electronic structure.
To correlate topology with electronic structure, we projected the EDOS onto different local
sites and are able to attribute the electronic states to specific structural units. We first show
the averaged EDOS for different species and orbitals in Fig. 2. The key findings are that,
for all three species, p orbitals dominate the gap and tail states; if considering the species,
Te-p,Sb-p,Ge-p,Ge-s and Sb-s are important in determining tail states and the magnitude of
the gap (Fig. 2). To further correlate structural oddities with electronic states, we also sort
atoms with specific features into different groups and accumulate the contribution to EDOS.
We briefly report that groups forming homopolar or heteropolar bonds showed that there is
a significant difference at a “deep gap" around -7eV below the Fermi level (0eV) in EDOS
(atoms involved in heteropolar bonds form a bigger deep gap); however, atoms forming
homopolar bonds have a minor impact on tail states and the electronic gap near the Fermi

244 Flash Memories Atomistic Simulations of Flash Memory Materials Based on Chalcogenide Glasses 5

Fig. 3. Projected EDOS on Ge atoms at tetrahedral and octahedral sites. “T" and “O"
represent tetrahedral and octahedral sites. The “Ge-T/O site" plot only considers the
contribution of Ge atoms to the EDOS, while the “Ge-T/O site with neighbors" plot contains
the contribution of Ge atoms and their neighbors. The Fermi level is at 0 eV.

level. Considering the coordination, for Te, 2-fold Te atoms contribute to a narrowed gap and
conduction-band tail states appear; for Ge atoms, the contributions for 3, 4, 5 and 6-fold atoms
are almost the same; for Sb atoms, the conduction-band tail of 6-fold Sb atoms is pushed to
a low-energy level and the valence-band tail associated with 3-fold Sb atoms which satisfy
the “8-N" rule is pushed into a higher energy region. While there are differences in electronic
tail states and the gap value associated with coordination numbers, the influence is fairly
weak. Similarly, sorting atoms involved in “seeds" or not also showed a minor impact on gap
magnitude and tail states.
We also considered the “umbrella flip" of Ge atoms. We compared the EDOS of Ge atoms
sitting at octahedral sites (O-site) and tetrahedral sites (T-site), as we illustrate in Fig. 3. The
projected EDOS on Ge atoms and their neighbors are all considered. The results indicate
that 6-fold octahedral Ge and tetrahedral Ge have a similar local gap. However, 4-fold Ge at
an octahedral site (4 neighbors with 90 degree angles) have both a shifted valence-band tail
and conduction-band tail which may result in a bigger gap. Thus, from our result, sp3 hybrids

245Atomistic Simulations of Flash Memory Materials Based on Chalcogenide Glasses

4 Will-be-set-by-IN-TECH

there is a major peak for the Sb-Sb partial centered at 2.9Å. These results are similar to other
simulations (Akola & Jones, 2007) and also experimental results (Natio et al., 2010).

3.3.2 Electronic structure

Fig. 2. Electronic densities of states projected onto different atomic species and orbitals. The
Fermi level is at 0 eV.

The electronic structure is analyzed through the electronic density of states (EDOS) obtained
from Hartree-Fock (HF) calculations. HF is used only to analyze the EDOS, not for forces
and total energies. HF is known to exaggerate both the optical gap and charge fluctuations in
the electron gas. These features are helpful to us here for diagnosing structural correlations.
In the following discussion, the calculated EDOS is averaged over 1000 configurations from
the last 2 ps when the cell is in thermal equilibrium at a fixed temperature of 500K. Finally,
the averaged HF result of the amorphous phase gives an electronic gap around 0.4eV which
is wider than the DFT result–0.2eV (Akola & Jones, 2007) and is closer to the experimental
value–0.7eV (Lee et al., 2005). Although the gap is still smaller than the experimental value, it
is much improved over LDA, and this may imply that HF provides a better starting point for
analysis of the electronic structure.
To correlate topology with electronic structure, we projected the EDOS onto different local
sites and are able to attribute the electronic states to specific structural units. We first show
the averaged EDOS for different species and orbitals in Fig. 2. The key findings are that,
for all three species, p orbitals dominate the gap and tail states; if considering the species,
Te-p,Sb-p,Ge-p,Ge-s and Sb-s are important in determining tail states and the magnitude of
the gap (Fig. 2). To further correlate structural oddities with electronic states, we also sort
atoms with specific features into different groups and accumulate the contribution to EDOS.
We briefly report that groups forming homopolar or heteropolar bonds showed that there is
a significant difference at a “deep gap" around -7eV below the Fermi level (0eV) in EDOS
(atoms involved in heteropolar bonds form a bigger deep gap); however, atoms forming
homopolar bonds have a minor impact on tail states and the electronic gap near the Fermi

244 Flash Memories Atomistic Simulations of Flash Memory Materials Based on Chalcogenide Glasses 5

Fig. 3. Projected EDOS on Ge atoms at tetrahedral and octahedral sites. “T" and “O"
represent tetrahedral and octahedral sites. The “Ge-T/O site" plot only considers the
contribution of Ge atoms to the EDOS, while the “Ge-T/O site with neighbors" plot contains
the contribution of Ge atoms and their neighbors. The Fermi level is at 0 eV.

level. Considering the coordination, for Te, 2-fold Te atoms contribute to a narrowed gap and
conduction-band tail states appear; for Ge atoms, the contributions for 3, 4, 5 and 6-fold atoms
are almost the same; for Sb atoms, the conduction-band tail of 6-fold Sb atoms is pushed to
a low-energy level and the valence-band tail associated with 3-fold Sb atoms which satisfy
the “8-N" rule is pushed into a higher energy region. While there are differences in electronic
tail states and the gap value associated with coordination numbers, the influence is fairly
weak. Similarly, sorting atoms involved in “seeds" or not also showed a minor impact on gap
magnitude and tail states.
We also considered the “umbrella flip" of Ge atoms. We compared the EDOS of Ge atoms
sitting at octahedral sites (O-site) and tetrahedral sites (T-site), as we illustrate in Fig. 3. The
projected EDOS on Ge atoms and their neighbors are all considered. The results indicate
that 6-fold octahedral Ge and tetrahedral Ge have a similar local gap. However, 4-fold Ge at
an octahedral site (4 neighbors with 90 degree angles) have both a shifted valence-band tail
and conduction-band tail which may result in a bigger gap. Thus, from our result, sp3 hybrids

245Atomistic Simulations of Flash Memory Materials Based on Chalcogenide Glasses

6 Will-be-set-by-IN-TECH

introduced by a Ge umbrella-flip may not be the reason for an increased gap in the amorphous
phase, but the octahedral Ge existing in the amorphous phase at least would not increase the
electronic gap. Analysis of Ge1Sb2Te5 showed a similar result (Raty et al., 2010).

Fig. 4. AC Dielectric function of a-Ge2Sb2Te5. Due to finite size effect, the calculation can not
predict valid value for small ω (ω � 2eV).

Finally for this section, we show one last static property – the dielectric function �(ω) in Fig. 4.
The imaginary part of the dielectric function in three directions are plotted in Fig. 4. � reaches
its peak for an energy of about 2.5eV and this spectrum is comparable with both experimental
and simulation result (Raty et al., 2010; Wuttig et al., 2007). Notice that due to the finite-size
effect, the result is not valid for ω → 0. To obtain accurate results for small ω, an extrapolation
procedure is required.

3.3.3 Dynamic analysis
Next, we performed a dynamic analysis for a-Ge2Sb2Te5. We tracked the structure and the
electronic gap during a quench from 1000K to 500K with thermal equilibration at 500K (Fig. 5).
Significant structural changes started to occur after 24ps (the temperature was then near
640K). The number of homopolar bonds dropped, the number of 4-membered rings increased,
and the mean coordination increased. The changes in topology are similar to those reported
by Hegedus & Elliott (2008) and all these shifts signal an increase of both chemical order and
structural order. The electronic gap, which we take to be the difference between LUMO and
HOMO levels, increased overall, but we observed that there are considerable fluctuations,
even for the well-equilibrated system. Local geometry may have huge consequences on the
gap.
To study how changes in the local environment at a specific site affected the electronic gap, we
tracked a specific unit in the system during equilibration and we show such an evolution for

246 Flash Memories Atomistic Simulations of Flash Memory Materials Based on Chalcogenide Glasses 7

Fig. 5. Dynamic change of temperature, gap value, number of wrong bonds and squares
(seeds).

Fig. 6. Snapshots of topology changes for one Ge atom and its six neighbors (Ge-blue,
Sb-brown, Te-green). The central Ge atom is identified by black arrows. The valence-band
tail states appear in Config.2 and are localized on yellow atoms. The conduction-band tail
states appear in Config.3 and are localized on black atoms.

247Atomistic Simulations of Flash Memory Materials Based on Chalcogenide Glasses

6 Will-be-set-by-IN-TECH

introduced by a Ge umbrella-flip may not be the reason for an increased gap in the amorphous
phase, but the octahedral Ge existing in the amorphous phase at least would not increase the
electronic gap. Analysis of Ge1Sb2Te5 showed a similar result (Raty et al., 2010).

Fig. 4. AC Dielectric function of a-Ge2Sb2Te5. Due to finite size effect, the calculation can not
predict valid value for small ω (ω � 2eV).

Finally for this section, we show one last static property – the dielectric function �(ω) in Fig. 4.
The imaginary part of the dielectric function in three directions are plotted in Fig. 4. � reaches
its peak for an energy of about 2.5eV and this spectrum is comparable with both experimental
and simulation result (Raty et al., 2010; Wuttig et al., 2007). Notice that due to the finite-size
effect, the result is not valid for ω → 0. To obtain accurate results for small ω, an extrapolation
procedure is required.

3.3.3 Dynamic analysis
Next, we performed a dynamic analysis for a-Ge2Sb2Te5. We tracked the structure and the
electronic gap during a quench from 1000K to 500K with thermal equilibration at 500K (Fig. 5).
Significant structural changes started to occur after 24ps (the temperature was then near
640K). The number of homopolar bonds dropped, the number of 4-membered rings increased,
and the mean coordination increased. The changes in topology are similar to those reported
by Hegedus & Elliott (2008) and all these shifts signal an increase of both chemical order and
structural order. The electronic gap, which we take to be the difference between LUMO and
HOMO levels, increased overall, but we observed that there are considerable fluctuations,
even for the well-equilibrated system. Local geometry may have huge consequences on the
gap.
To study how changes in the local environment at a specific site affected the electronic gap, we
tracked a specific unit in the system during equilibration and we show such an evolution for

246 Flash Memories Atomistic Simulations of Flash Memory Materials Based on Chalcogenide Glasses 7

Fig. 5. Dynamic change of temperature, gap value, number of wrong bonds and squares
(seeds).

Fig. 6. Snapshots of topology changes for one Ge atom and its six neighbors (Ge-blue,
Sb-brown, Te-green). The central Ge atom is identified by black arrows. The valence-band
tail states appear in Config.2 and are localized on yellow atoms. The conduction-band tail
states appear in Config.3 and are localized on black atoms.

247Atomistic Simulations of Flash Memory Materials Based on Chalcogenide Glasses

8 Will-be-set-by-IN-TECH

Fig. 7. Instantaneous snapshots of EDOS correlated with the configurations of Fig. 6. A
smaller gap appear in Config.2&3. The valence-band tail states (orange arrow) are associated
with yellow atoms in Config.2 of Fig. 6. The conduction-band tail states (black arrow) are
associated with black atoms in Config.3 of Fig. 6. The Fermi level is at 0 eV.

both the topology and the electronic structure in Fig. 6 and Fig. 7. We mainly focused on one
Ge atom which occupied a near-octahedral site (6 nearest Te neighbors with around 90 degree
bond angles, indicated by a black arrow in Fig. 6) and its six nearest neighbors. We correlated
their local bondings and electronic density of states for many time steps. Configurations 1
and 4 exhibit the biggest gap. However, at intermediate steps between configurations 1 to 4,
tail states appear. At configuration 2, a valence-band tail state was present and it was mainly
localized on the central Ge atom and four of its nearest neighbors (yellow atoms in Config.2 of
Fig. 6); at configuration 3, a conduction-band tail appears, mainly localized on the center Ge
atom and two of its nearest neighbors (black atoms in Config.3 of Fig. 6). We should emphasize
that from configurations 1 to 4, the whole network did not experience a major change, but the
electronic gap fluctuates. Thus, the appearance of valence-band and conduction-band tails are
strongly associated with distortions at this Ge site. Our simulations emphasize the dynamic
nature of the electronic band tails in Ge2Sb2Te5.

3.3.4 Relaxation analysis for crystal phase of Ge2Sb2Te5
In this section, we discuss relaxation effects for crystalline Ge2Sb2Te5 with 10% vacancies.
As mentioned above, the 108-atom cell was obtained based on the NaCl rock-salt structure.
We show the electronic density of states for both unrelaxed and relaxed models in Fig. 8
obtained through HF calculations. For both models, Te atoms have a major effect on the
valence tail which may be due to the vacancies; Sb atoms contribute more to conduction
tail. We could see clearly that the electronic gap opened up after relaxation. Moreover, we
tracked the dynamic change of the Highest Occupied Molecular Orbital (HOMO) and Lowest
Unoccupied Molecular Orbital (LUMO) and plot them in Fig. 9. It is clear from the plot that
the total energy is reduced and both HOMO and LUMO levels are shifted. The HOMO level
is pushed away by 0.1eV and the LUMO level is pushed up by 0.2eV.

248 Flash Memories Atomistic Simulations of Flash Memory Materials Based on Chalcogenide Glasses 9

Fig. 8. Electronic density of states of crystal models projected onto different species of atoms.
Unrelaxed crystal model with vacancies (top-panel). Relaxed crystal model (bottom-panel).
The Fermi level is at 0eV.

Since the crystal model has 10% vacancies, the relaxation actually introduced slight distortion
into the network. The structural statistics indicate that the mean coordination of Te, Ge and
Sb atoms all decreased. The mean coordination of Te are decreased from 4.8 to 4.28, Sb and Ge
dropped from 6 to 5.47 and 5.23 correspondingly. The angle distribution, especially the X-Ge-X
and X-Sb-X angle distributions, are also changed. This result indicates that the existence of
vacancies and the distortion happened to the network will have a impact on gap. Thus, by
controlling the concentration of vacancies and distortion, we may obtained different electronic
gap values. This result is similar to results on other Ge-Sb-Te alloys (Wuttig et al., 2007).

3.3.5 Conclusions on Ge2Sb2Te5
We made Ge2Sb2Te5 models with a ‘quench from melt’ method. HF calculations give a
0.4eV electronic gap for the amorphous phase. We found that Te-p, Sb-p, Ge-p, Ge-s and
Sb-s orbitals are most important to tail states. 6-fold octahedral Ge and 4-fold tetrahedral
Ge give rise to similar gaps but 4-fold octahedral Ge results in a bigger gap with both
shifted valence-band and conduction-band tails. The study also reveals a large fluctuation
in gap value during thermal equilibration which is partially due to the appearance and
disappearance of conduction-band and valence-band tail states. Such fluctuations could be

249Atomistic Simulations of Flash Memory Materials Based on Chalcogenide Glasses

8 Will-be-set-by-IN-TECH

Fig. 7. Instantaneous snapshots of EDOS correlated with the configurations of Fig. 6. A
smaller gap appear in Config.2&3. The valence-band tail states (orange arrow) are associated
with yellow atoms in Config.2 of Fig. 6. The conduction-band tail states (black arrow) are
associated with black atoms in Config.3 of Fig. 6. The Fermi level is at 0 eV.

both the topology and the electronic structure in Fig. 6 and Fig. 7. We mainly focused on one
Ge atom which occupied a near-octahedral site (6 nearest Te neighbors with around 90 degree
bond angles, indicated by a black arrow in Fig. 6) and its six nearest neighbors. We correlated
their local bondings and electronic density of states for many time steps. Configurations 1
and 4 exhibit the biggest gap. However, at intermediate steps between configurations 1 to 4,
tail states appear. At configuration 2, a valence-band tail state was present and it was mainly
localized on the central Ge atom and four of its nearest neighbors (yellow atoms in Config.2 of
Fig. 6); at configuration 3, a conduction-band tail appears, mainly localized on the center Ge
atom and two of its nearest neighbors (black atoms in Config.3 of Fig. 6). We should emphasize
that from configurations 1 to 4, the whole network did not experience a major change, but the
electronic gap fluctuates. Thus, the appearance of valence-band and conduction-band tails are
strongly associated with distortions at this Ge site. Our simulations emphasize the dynamic
nature of the electronic band tails in Ge2Sb2Te5.

3.3.4 Relaxation analysis for crystal phase of Ge2Sb2Te5
In this section, we discuss relaxation effects for crystalline Ge2Sb2Te5 with 10% vacancies.
As mentioned above, the 108-atom cell was obtained based on the NaCl rock-salt structure.
We show the electronic density of states for both unrelaxed and relaxed models in Fig. 8
obtained through HF calculations. For both models, Te atoms have a major effect on the
valence tail which may be due to the vacancies; Sb atoms contribute more to conduction
tail. We could see clearly that the electronic gap opened up after relaxation. Moreover, we
tracked the dynamic change of the Highest Occupied Molecular Orbital (HOMO) and Lowest
Unoccupied Molecular Orbital (LUMO) and plot them in Fig. 9. It is clear from the plot that
the total energy is reduced and both HOMO and LUMO levels are shifted. The HOMO level
is pushed away by 0.1eV and the LUMO level is pushed up by 0.2eV.

248 Flash Memories Atomistic Simulations of Flash Memory Materials Based on Chalcogenide Glasses 9

Fig. 8. Electronic density of states of crystal models projected onto different species of atoms.
Unrelaxed crystal model with vacancies (top-panel). Relaxed crystal model (bottom-panel).
The Fermi level is at 0eV.

Since the crystal model has 10% vacancies, the relaxation actually introduced slight distortion
into the network. The structural statistics indicate that the mean coordination of Te, Ge and
Sb atoms all decreased. The mean coordination of Te are decreased from 4.8 to 4.28, Sb and Ge
dropped from 6 to 5.47 and 5.23 correspondingly. The angle distribution, especially the X-Ge-X
and X-Sb-X angle distributions, are also changed. This result indicates that the existence of
vacancies and the distortion happened to the network will have a impact on gap. Thus, by
controlling the concentration of vacancies and distortion, we may obtained different electronic
gap values. This result is similar to results on other Ge-Sb-Te alloys (Wuttig et al., 2007).

3.3.5 Conclusions on Ge2Sb2Te5
We made Ge2Sb2Te5 models with a ‘quench from melt’ method. HF calculations give a
0.4eV electronic gap for the amorphous phase. We found that Te-p, Sb-p, Ge-p, Ge-s and
Sb-s orbitals are most important to tail states. 6-fold octahedral Ge and 4-fold tetrahedral
Ge give rise to similar gaps but 4-fold octahedral Ge results in a bigger gap with both
shifted valence-band and conduction-band tails. The study also reveals a large fluctuation
in gap value during thermal equilibration which is partially due to the appearance and
disappearance of conduction-band and valence-band tail states. Such fluctuations could be

249Atomistic Simulations of Flash Memory Materials Based on Chalcogenide Glasses

10 Will-be-set-by-IN-TECH

Fig. 9. Change of LUMO, HOMO level, gap value and total energy during relaxation.

associated with the local structural change/distortion of Ge atoms, which introduce localized
tail states and have an impact on the electronic gap. Also, the relaxation analysis on crystal
phase of Ge2Sb2Te5 indicates that vacancies and distortions may play an important role in
determining the electronic gap.

4. Electrolyte materials

4.1 Background
Electrolytes are materials with high ionic conductivity and high electrical resistivity. When
doped with metals like Ag, chalcogenide glasses (e.g. Ge-Se) become solid electrolytes
offering high ionic conductivities. Such electrolytes are getting attention for their
technological importance with the application in "conducting bridge" (flash) memory devices
(Mitkova & Kozicki, 2002). It has been believed that a variety of different coordination
patterns of Ag+ ions in the glassy host with tiny energy differences is the basic reason why
Ag+ is mobile. Since the properties of chalcogenide glasses accrue from their structure, the
knowledge of the structure of these glasses is an essential precursor for further study. From a
material point of view it is interesting that an amorphous material should allow rapid motion
of a transition metal ion through the network, and a great deal of energy has been devoted to
understanding this phenomenon. Such diffusive processes in glasses have been studied for
decades with a variety of experimental methods. There have also been several approaches to
modeling such diffusive behavior.
There have been a wide range of experimental studies on the atomic structure of the
amorphous state of electrolyte material and some computer simulations, typically on Ge-Se
glasses doped with transition metals. Ge-Se-Ag based electrolyte materials have been studied
experimentally using various techniques. For example, X-ray (Piarristeguy et al., 2000) and
neutron (Cuello et al., 2007; Dejus et al., 1992) diffraction, and other experimental methods

250 Flash Memories Atomistic Simulations of Flash Memory Materials Based on Chalcogenide Glasses 11

have been used to study the structure of Ge-Se-Ag glass. There have also been some
computational studies to model the structure. Tafen et al. (Tafen et al., 2005) reported two
ab-initio models; (GeSe3)0.9Ag0.1and (GeSe3)0.85Ag0.15with short range order consistent with
the experimental results. It has also been reported that Ag atoms prefer to sit at trapping
center (TC) which is near the midpoint of a line joining two host atoms (Ge or Se) separated
by a distance between 4.7 and 5.2 Å with the bond length of Ag to the host atoms ranging
between 2.4-2.6 Å (Chaudhuri et al., 2009) for low Ag concentration. The simulation work has
been also extended by introducing Cu into the network (Prasai & Drabold, 2011).
Beside structural studies, there have been quite a few studies on the conductivity of Ag doped
chalcogenide glasses including both experimental and simulation work. Agx(GeSe3)100−x
glasses have been particularly studied for the ionic conductivity within a wide range of
x (10 to 25%). Ureña et al. (Ureña et al., 2005) predicted that the ionic conductivity
follows an Arrhenius law. Tafen et al. presented a molecular dynamics(MD) simulation
on Agx(GeSe3)100−x with x = 10 and 15% (Tafen et al., 2005) at different temperatures. In
recent work, we have also presented a MD simulations on these glasses with the addition of
Cu and illustrated the motion of the ions on the accessible time scales (tens of picoseconds)
(Prasai & Drabold, 2011). Some of the results will be discussed in the following sections.

4.2 Simulation of properties of electrolyte materials
The models of Ag- and Cu-doped chalcogenide glasses discussed here were generated
using the melt-quenching method. A cubic supercell is constructed with a fixed volume
and a fixed number of atoms in order to reproduce the experimental density according
to the desired stoichiometry. The atoms were randomly placed in the supercell with
minimum acceptable distance between two atoms set to 2Å. The calculations were
carried out under periodic boundary condition using the Vienna Ab-initio Simulation
Package(VASP)(Kresse & Furthmuller, 1996), with Vanderbilt ultrasoft pseudopotentials. We
used the local density approximation (LDA) for the exchange correlation energy. The details
of the model generation can be found in the reference Prasai & Drabold (2011). Beside the
models discussed there, two more models (GeSe3)0.8Cu0.2 and (GeSe3)0.8Cu0.1Ag0.1 have been
added to the discussion.

4.3 Results and discussion
4.3.1 Structural properties
Fig. 10 shows the calculated total radial distribution functions (RDFs) and structure
factors for the models; g-(GeSe3)0.9Ag0.1, g-(GeSe3)0.8Ag0.2, g-(GeSe3)0.9Cu0.1and
g-(GeSe3)0.77Cu0.03Ag0.2. The first peak of the RDF is the contribution from Ge-Se and
Se-Se correlations whereas the second peak is due to Se-Se and Ge-Ag/Cu correlations(Fig. 11
and Fig. 12). There is not much variation in the short range order (SRO) i.e. nearest neighbor
distance and second nearest neighbor distance for the different models. We observed a
slight change in the nearest neighbor distance for the Ag rich model and Cu rich model. The
average bond length and the mean coordination numbers are presented in Table 2. We did not
detect Ge-Ge bonds in any of our models as seen previously in g-(GeSe3)0.9Ag0.1(Tafen et al.,
2005). We also observed that both Ag and Cu preferred to have Se as neighbor with only
16% of Cu/Ag bonded with Ge in our models. These results are very close to bond lengths
measured by Piarristeguy et al. (Piarristeguy et al., 2000). We also obtained the silver and
copper coordination number for each model. The coordination number 3.1 of silver at 20%
is as predicted(3.0) by Mitkova et al. (Mitkova et al., 1999). The coordination number 4.67 of
copper at 10% is much higher than 2.16 of silver (found to be 2.0 by Tafen et al. (Tafen et al.,

251Atomistic Simulations of Flash Memory Materials Based on Chalcogenide Glasses

10 Will-be-set-by-IN-TECH

Fig. 9. Change of LUMO, HOMO level, gap value and total energy during relaxation.

associated with the local structural change/distortion of Ge atoms, which introduce localized
tail states and have an impact on the electronic gap. Also, the relaxation analysis on crystal
phase of Ge2Sb2Te5 indicates that vacancies and distortions may play an important role in
determining the electronic gap.

4. Electrolyte materials

4.1 Background
Electrolytes are materials with high ionic conductivity and high electrical resistivity. When
doped with metals like Ag, chalcogenide glasses (e.g. Ge-Se) become solid electrolytes
offering high ionic conductivities. Such electrolytes are getting attention for their
technological importance with the application in "conducting bridge" (flash) memory devices
(Mitkova & Kozicki, 2002). It has been believed that a variety of different coordination
patterns of Ag+ ions in the glassy host with tiny energy differences is the basic reason why
Ag+ is mobile. Since the properties of chalcogenide glasses accrue from their structure, the
knowledge of the structure of these glasses is an essential precursor for further study. From a
material point of view it is interesting that an amorphous material should allow rapid motion
of a transition metal ion through the network, and a great deal of energy has been devoted to
understanding this phenomenon. Such diffusive processes in glasses have been studied for
decades with a variety of experimental methods. There have also been several approaches to
modeling such diffusive behavior.
There have been a wide range of experimental studies on the atomic structure of the
amorphous state of electrolyte material and some computer simulations, typically on Ge-Se
glasses doped with transition metals. Ge-Se-Ag based electrolyte materials have been studied
experimentally using various techniques. For example, X-ray (Piarristeguy et al., 2000) and
neutron (Cuello et al., 2007; Dejus et al., 1992) diffraction, and other experimental methods

250 Flash Memories Atomistic Simulations of Flash Memory Materials Based on Chalcogenide Glasses 11

have been used to study the structure of Ge-Se-Ag glass. There have also been some
computational studies to model the structure. Tafen et al. (Tafen et al., 2005) reported two
ab-initio models; (GeSe3)0.9Ag0.1and (GeSe3)0.85Ag0.15with short range order consistent with
the experimental results. It has also been reported that Ag atoms prefer to sit at trapping
center (TC) which is near the midpoint of a line joining two host atoms (Ge or Se) separated
by a distance between 4.7 and 5.2 Å with the bond length of Ag to the host atoms ranging
between 2.4-2.6 Å (Chaudhuri et al., 2009) for low Ag concentration. The simulation work has
been also extended by introducing Cu into the network (Prasai & Drabold, 2011).
Beside structural studies, there have been quite a few studies on the conductivity of Ag doped
chalcogenide glasses including both experimental and simulation work. Agx(GeSe3)100−x
glasses have been particularly studied for the ionic conductivity within a wide range of
x (10 to 25%). Ureña et al. (Ureña et al., 2005) predicted that the ionic conductivity
follows an Arrhenius law. Tafen et al. presented a molecular dynamics(MD) simulation
on Agx(GeSe3)100−x with x = 10 and 15% (Tafen et al., 2005) at different temperatures. In
recent work, we have also presented a MD simulations on these glasses with the addition of
Cu and illustrated the motion of the ions on the accessible time scales (tens of picoseconds)
(Prasai & Drabold, 2011). Some of the results will be discussed in the following sections.

4.2 Simulation of properties of electrolyte materials
The models of Ag- and Cu-doped chalcogenide glasses discussed here were generated
using the melt-quenching method. A cubic supercell is constructed with a fixed volume
and a fixed number of atoms in order to reproduce the experimental density according
to the desired stoichiometry. The atoms were randomly placed in the supercell with
minimum acceptable distance between two atoms set to 2Å. The calculations were
carried out under periodic boundary condition using the Vienna Ab-initio Simulation
Package(VASP)(Kresse & Furthmuller, 1996), with Vanderbilt ultrasoft pseudopotentials. We
used the local density approximation (LDA) for the exchange correlation energy. The details
of the model generation can be found in the reference Prasai & Drabold (2011). Beside the
models discussed there, two more models (GeSe3)0.8Cu0.2 and (GeSe3)0.8Cu0.1Ag0.1 have been
added to the discussion.

4.3 Results and discussion
4.3.1 Structural properties
Fig. 10 shows the calculated total radial distribution functions (RDFs) and structure
factors for the models; g-(GeSe3)0.9Ag0.1, g-(GeSe3)0.8Ag0.2, g-(GeSe3)0.9Cu0.1and
g-(GeSe3)0.77Cu0.03Ag0.2. The first peak of the RDF is the contribution from Ge-Se and
Se-Se correlations whereas the second peak is due to Se-Se and Ge-Ag/Cu correlations(Fig. 11
and Fig. 12). There is not much variation in the short range order (SRO) i.e. nearest neighbor
distance and second nearest neighbor distance for the different models. We observed a
slight change in the nearest neighbor distance for the Ag rich model and Cu rich model. The
average bond length and the mean coordination numbers are presented in Table 2. We did not
detect Ge-Ge bonds in any of our models as seen previously in g-(GeSe3)0.9Ag0.1(Tafen et al.,
2005). We also observed that both Ag and Cu preferred to have Se as neighbor with only
16% of Cu/Ag bonded with Ge in our models. These results are very close to bond lengths
measured by Piarristeguy et al. (Piarristeguy et al., 2000). We also obtained the silver and
copper coordination number for each model. The coordination number 3.1 of silver at 20%
is as predicted(3.0) by Mitkova et al. (Mitkova et al., 1999). The coordination number 4.67 of
copper at 10% is much higher than 2.16 of silver (found to be 2.0 by Tafen et al. (Tafen et al.,

251Atomistic Simulations of Flash Memory Materials Based on Chalcogenide Glasses

12 Will-be-set-by-IN-TECH

Fig. 10. Comparison of total radial distribution functions and static structure factors for all
amorphous models

Fig. 11. Partial radial distribution functions for amorphous (GeSe3)0.9Ag0.1(black) and
(GeSe3)0.8Ag0.2(red/dashed line)

252 Flash Memories Atomistic Simulations of Flash Memory Materials Based on Chalcogenide Glasses 13

Fig. 12. Partial radial distribution functions for amorphous (GeSe3)0.9Ag0.1(black) and
(GeSe3)0.9Cu0.1(green/thin line)

NN(Å) NNN(Å) CN
(GeSe3)0.9Ag0.1 2.49 3.75 2.50
(GeSe3)0.8Ag0.2 2.51 3.80 2.92

(GeSe3)0.77Cu0.03Ag0.2 2.45 3.80 2.9
(GeSe3)0.9Cu0.1 2.40 3.83 2.8

Table 2. Short range order; nearest neighbor distance(NN), next nearest neighbor
distance(NNN) and mean coordination number(CN).

2005)) for the same concentration. We detected a few 3-fold Ge and 3 and 4 fold Se that we
interpret as a structural defect in our models. Detailed bond parameters can be found in
Prasai & Drabold (2011).
We also compared the static structure factors for our models (Fig. 10). There is no significant
change in the position of the first two peaks. We observed a weak peak in S(Q) slightly
above 1 Å −1. This peak, which is a precursor to the first sharp diffraction peak (FSDP),
varies as a function of Ag concentration and the peak disappears as Ag concentration
increases, also shown by Piarristeguy et al. (Piarristeguy et al., 2003). We did not observe
any particular correlation contributing to this peak as the partial structure factors shows that
the peak has contribution from all of the partials. We compared partial structure factors for
(GeSe3)0.9Ag0.1 and (GeSe3)0.9Cu0.1 and observed the only differences in correlation of Ag-Ag
and Cu-Cu as well as in Se-Ag/Cu.
We performed thermal MD simulation at 1000K for 25ps in order to obtain well-equilibrated
liquid systems. We calculated the total and partial radial distribution functions (RDF).
The RDFs are averaged over the last 2.5 ps. The major peak positions in total RDF are
2.45 Å for (GeSe3)0.9Cu0.1, 2.48 Å for (GeSe3)0.9Ag0.1 and 2.53 Å for (GeSe3)0.8Ag0.2 and

253Atomistic Simulations of Flash Memory Materials Based on Chalcogenide Glasses

12 Will-be-set-by-IN-TECH

Fig. 10. Comparison of total radial distribution functions and static structure factors for all
amorphous models

Fig. 11. Partial radial distribution functions for amorphous (GeSe3)0.9Ag0.1(black) and
(GeSe3)0.8Ag0.2(red/dashed line)

252 Flash Memories Atomistic Simulations of Flash Memory Materials Based on Chalcogenide Glasses 13

Fig. 12. Partial radial distribution functions for amorphous (GeSe3)0.9Ag0.1(black) and
(GeSe3)0.9Cu0.1(green/thin line)

NN(Å) NNN(Å) CN
(GeSe3)0.9Ag0.1 2.49 3.75 2.50
(GeSe3)0.8Ag0.2 2.51 3.80 2.92

(GeSe3)0.77Cu0.03Ag0.2 2.45 3.80 2.9
(GeSe3)0.9Cu0.1 2.40 3.83 2.8

Table 2. Short range order; nearest neighbor distance(NN), next nearest neighbor
distance(NNN) and mean coordination number(CN).

2005)) for the same concentration. We detected a few 3-fold Ge and 3 and 4 fold Se that we
interpret as a structural defect in our models. Detailed bond parameters can be found in
Prasai & Drabold (2011).
We also compared the static structure factors for our models (Fig. 10). There is no significant
change in the position of the first two peaks. We observed a weak peak in S(Q) slightly
above 1 Å −1. This peak, which is a precursor to the first sharp diffraction peak (FSDP),
varies as a function of Ag concentration and the peak disappears as Ag concentration
increases, also shown by Piarristeguy et al. (Piarristeguy et al., 2003). We did not observe
any particular correlation contributing to this peak as the partial structure factors shows that
the peak has contribution from all of the partials. We compared partial structure factors for
(GeSe3)0.9Ag0.1 and (GeSe3)0.9Cu0.1 and observed the only differences in correlation of Ag-Ag
and Cu-Cu as well as in Se-Ag/Cu.
We performed thermal MD simulation at 1000K for 25ps in order to obtain well-equilibrated
liquid systems. We calculated the total and partial radial distribution functions (RDF).
The RDFs are averaged over the last 2.5 ps. The major peak positions in total RDF are
2.45 Å for (GeSe3)0.9Cu0.1, 2.48 Å for (GeSe3)0.9Ag0.1 and 2.53 Å for (GeSe3)0.8Ag0.2 and

253Atomistic Simulations of Flash Memory Materials Based on Chalcogenide Glasses

14 Will-be-set-by-IN-TECH

Fig. 13. Comparison of partial radial distribution functions for all liquid models at 1000K

(GeSe3)0.77Cu0.03Ag0.2. We present partial radial distribution functions in Fig. 13
showing Ge-Ge, Ge-Se, Se-Se and Se-Ag/Cu correlations. All of our models except
(GeSe3)0.9Ag0.1(2.6Å) confirm the presence of Ge-Ge homopolar bonds with peak position
at 2.71 Å in contrast with the glass. We also observed Se-Se and Ge-Se bond distances of 2.47Å
and 2.50 Å, respectively. We observe no concentration dependence on the first peak position
of Ge-Se,Se-Se and Se-Ag/Cu correlations. The major contribution to the first peak of the total
RDF is from Ge-Se,Se-Se and Se-Ag/Cu correlations with Se-Ag/Cu correlation causing the
shifts on the first peak positions. The second peak of the total RDF is mainly due to Se-Se
correlation.

4.3.2 Ion dynamics
We studied the dynamics of Ag and Cu ions in the GeSe3 host by computing the mean square
displacement (MSD) for each atomic constituent as:

�r2(t)�a =
1

Na

Na

∑
i=1

�|�ri(t)−�ri(0)|2� (1)

where the quantity in �� is the calculated statistical average over the particular atomic species
α. We carried out constant temperature MD calculations at three different temperatures 300K,
700K and 1000K in order to study ion dynamics in our the amorphous as well as the liquid
systems.

4.3.2.1 Amorphous Ge-Se-Cu-Ag

As expected, at 300K none of the ions showed measurable diffusion. In order to investigate
the diffusion in the solid place, we chose T = 700K and present the MSD for each species
for each system calculated at this temperature in Fig. 14. At 700K Ag+ ions show significant

254 Flash Memories Atomistic Simulations of Flash Memory Materials Based on Chalcogenide Glasses 15

Fig. 14. Mean square displacement of atoms in amorphous (GeSe3)0.9Ag0.1, (GeSe3)0.8Ag0.2,
(GeSe3)0.77Cu0.03Ag0.2and (GeSe3)0.9Cu0.1(top to bottom respectively) glasses at T = 700K.
Ag(black) Ge(green), Se(red) and Cu(blue)

Fig. 15. Trajectories of the most and the least diffusive Ag ions at 700K as a function of time
in amorphous (GeSe3)0.9Ag0.1.

255Atomistic Simulations of Flash Memory Materials Based on Chalcogenide Glasses

14 Will-be-set-by-IN-TECH

Fig. 13. Comparison of partial radial distribution functions for all liquid models at 1000K

(GeSe3)0.77Cu0.03Ag0.2. We present partial radial distribution functions in Fig. 13
showing Ge-Ge, Ge-Se, Se-Se and Se-Ag/Cu correlations. All of our models except
(GeSe3)0.9Ag0.1(2.6Å) confirm the presence of Ge-Ge homopolar bonds with peak position
at 2.71 Å in contrast with the glass. We also observed Se-Se and Ge-Se bond distances of 2.47Å
and 2.50 Å, respectively. We observe no concentration dependence on the first peak position
of Ge-Se,Se-Se and Se-Ag/Cu correlations. The major contribution to the first peak of the total
RDF is from Ge-Se,Se-Se and Se-Ag/Cu correlations with Se-Ag/Cu correlation causing the
shifts on the first peak positions. The second peak of the total RDF is mainly due to Se-Se
correlation.

4.3.2 Ion dynamics
We studied the dynamics of Ag and Cu ions in the GeSe3 host by computing the mean square
displacement (MSD) for each atomic constituent as:

�r2(t)�a =
1

Na

Na

∑
i=1

�|�ri(t)−�ri(0)|2� (1)

where the quantity in �� is the calculated statistical average over the particular atomic species
α. We carried out constant temperature MD calculations at three different temperatures 300K,
700K and 1000K in order to study ion dynamics in our the amorphous as well as the liquid
systems.

4.3.2.1 Amorphous Ge-Se-Cu-Ag

As expected, at 300K none of the ions showed measurable diffusion. In order to investigate
the diffusion in the solid place, we chose T = 700K and present the MSD for each species
for each system calculated at this temperature in Fig. 14. At 700K Ag+ ions show significant

254 Flash Memories Atomistic Simulations of Flash Memory Materials Based on Chalcogenide Glasses 15

Fig. 14. Mean square displacement of atoms in amorphous (GeSe3)0.9Ag0.1, (GeSe3)0.8Ag0.2,
(GeSe3)0.77Cu0.03Ag0.2and (GeSe3)0.9Cu0.1(top to bottom respectively) glasses at T = 700K.
Ag(black) Ge(green), Se(red) and Cu(blue)

Fig. 15. Trajectories of the most and the least diffusive Ag ions at 700K as a function of time
in amorphous (GeSe3)0.9Ag0.1.

255Atomistic Simulations of Flash Memory Materials Based on Chalcogenide Glasses

16 Will-be-set-by-IN-TECH

Fig. 16. Trajectories of the most and the least diffusive Cu ions at 700K as a function of time in
amorphous (GeSe3)0.9Cu0.1.

diffusion consistent with the previous result(Tafen et al., 2005) in contrast to Cu ions that do
not diffuse much. To elucidate the diffusion of these ions we examine the trajectories for
20ps. Fig. 15 and 16 show two dimensional projections of the trajectories of the most and
the least diffusive ions in (GeSe3)0.9Ag0.1 and (GeSe3)0.9Cu0.1. The trajectories illustrate the
wide range of diffusion for the ions with displacement ranging 1Å-3.87Å in (GeSe3)0.9Ag0.1,
2Å-6.71Å in (GeSe3)0.8Ag0.2 and 1Å-3.74Å in (GeSe3)0.9Cu0.1. For the mixed-ion model
(GeSe3)0.77Cu0.03Ag0.2, this displacement ranges between 1.73Å-2.82Å for Cu and 1.41Å -
8.06Å for Ag. For Ag rich models more than 60% of the ions exhibit displacements greater than
the average displacement (2.36Å in (GeSe3)0.9Ag0.1 and 4.47Å in (GeSe3)0.8Ag0.2) whereas
for Cu, the majority has displacement smaller than the average(2.11Å). The wide range of
diffusion can be attributed to variation in the local environment of the ions. To illustrate this
we calculated the local densities of the most and the least mobile ions. We employed a sphere
of radius 5.0Å around the ion and calculated the mean density of atoms inside the sphere. We
observed that the most diffusive ion is located in the region with lower local density. In other
words the most mobile ions have the wider variation of the local density as compared to that
of the least mobile ion.

4.3.2.2 Liquid Ge-Se-Cu-Ag

One of the essential properties of a liquid is the high diffusivity of atoms in the system. To
illustrate this, we calculated the mean square displacements for each species at 1000K in all of
our models. The diffusion plots as presented in Fig. 17 shows that the MSD of each species
increases rapidly as compared to that at 700K. We observe Ag diffusion still significantly larger
than the host particles however; Ge and Se atoms are also diffusing rapidly. As before Cu still
does not show high diffusion as Ag does compared to the host atoms.

256 Flash Memories Atomistic Simulations of Flash Memory Materials Based on Chalcogenide Glasses 17

Fig. 17. Mean square displacement of atoms in liquid (GeSe3)0.9Ag0.1, (GeSe3)0.8Ag0.2,
(GeSe3)0.77Cu0.03Ag0.2and (GeSe3)0.9Cu0.1(top to bottom respectively) glasses at T = 1000K.
Ag(black) Ge(green), Se(red) and Cu(blue)

Based on the plots we calculated diffusion coefficients using Einstein relation (Chandler, 1987).
The Einstein relation for self-diffusion is given by:

�|�ri(t)−�ri(0)|2� = 6Dt + C (2)

where C is a constant and D is the self-diffusion coefficient. The conductivity can be calculated
from the equation

σ =
ne2D
kBT

(3)

where n is the number density of ions. The temperature dependence of the diffusion is shown
in Fig. 18 and the values of diffusion coefficients and conductivities at different temperatures
are presented in Table 3. We did not find experimental results for the conductivity of Cu ions;
however Ag conductivity is close to ones reported by Ureña et al.(Ureña et al., 2005).

4.3.3 Trap centers and hopping of ions
To illustrate the different ionic transport properties of Ag and Cu, it is essential to study the
local environment of Ag and Cu in our models. Fig. 19 shows the local environment for
Ag and Cu in (GeSe3)0.9Ag0.1 and (GeSe3)0.9Cu0.1respectively. In the relaxed networks, most
of the Ag ions(58.3%) are found to occupy the trap centers, between two of the host sites
as also predicted by the previous workers (Chaudhuri et al., 2009; Tafen et al., 2005) but this
is not the same case with Cu. Cu is always surrounded by more than two host atoms that
makes the traps for Cu more rigid than for Ag. In Ag rich systems at 300K, we observed
that Ag is basically trapped with only a few hopping events. At 700K the lifetime of the
trap decreases and hopping occurs. We observed the lifetime of the traps varying from 1ps

257Atomistic Simulations of Flash Memory Materials Based on Chalcogenide Glasses

16 Will-be-set-by-IN-TECH

Fig. 16. Trajectories of the most and the least diffusive Cu ions at 700K as a function of time in
amorphous (GeSe3)0.9Cu0.1.

diffusion consistent with the previous result(Tafen et al., 2005) in contrast to Cu ions that do
not diffuse much. To elucidate the diffusion of these ions we examine the trajectories for
20ps. Fig. 15 and 16 show two dimensional projections of the trajectories of the most and
the least diffusive ions in (GeSe3)0.9Ag0.1 and (GeSe3)0.9Cu0.1. The trajectories illustrate the
wide range of diffusion for the ions with displacement ranging 1Å-3.87Å in (GeSe3)0.9Ag0.1,
2Å-6.71Å in (GeSe3)0.8Ag0.2 and 1Å-3.74Å in (GeSe3)0.9Cu0.1. For the mixed-ion model
(GeSe3)0.77Cu0.03Ag0.2, this displacement ranges between 1.73Å-2.82Å for Cu and 1.41Å -
8.06Å for Ag. For Ag rich models more than 60% of the ions exhibit displacements greater than
the average displacement (2.36Å in (GeSe3)0.9Ag0.1 and 4.47Å in (GeSe3)0.8Ag0.2) whereas
for Cu, the majority has displacement smaller than the average(2.11Å). The wide range of
diffusion can be attributed to variation in the local environment of the ions. To illustrate this
we calculated the local densities of the most and the least mobile ions. We employed a sphere
of radius 5.0Å around the ion and calculated the mean density of atoms inside the sphere. We
observed that the most diffusive ion is located in the region with lower local density. In other
words the most mobile ions have the wider variation of the local density as compared to that
of the least mobile ion.

4.3.2.2 Liquid Ge-Se-Cu-Ag

One of the essential properties of a liquid is the high diffusivity of atoms in the system. To
illustrate this, we calculated the mean square displacements for each species at 1000K in all of
our models. The diffusion plots as presented in Fig. 17 shows that the MSD of each species
increases rapidly as compared to that at 700K. We observe Ag diffusion still significantly larger
than the host particles however; Ge and Se atoms are also diffusing rapidly. As before Cu still
does not show high diffusion as Ag does compared to the host atoms.

256 Flash Memories Atomistic Simulations of Flash Memory Materials Based on Chalcogenide Glasses 17

Fig. 17. Mean square displacement of atoms in liquid (GeSe3)0.9Ag0.1, (GeSe3)0.8Ag0.2,
(GeSe3)0.77Cu0.03Ag0.2and (GeSe3)0.9Cu0.1(top to bottom respectively) glasses at T = 1000K.
Ag(black) Ge(green), Se(red) and Cu(blue)

Based on the plots we calculated diffusion coefficients using Einstein relation (Chandler, 1987).
The Einstein relation for self-diffusion is given by:

�|�ri(t)−�ri(0)|2� = 6Dt + C (2)

where C is a constant and D is the self-diffusion coefficient. The conductivity can be calculated
from the equation

σ =
ne2D
kBT

(3)

where n is the number density of ions. The temperature dependence of the diffusion is shown
in Fig. 18 and the values of diffusion coefficients and conductivities at different temperatures
are presented in Table 3. We did not find experimental results for the conductivity of Cu ions;
however Ag conductivity is close to ones reported by Ureña et al.(Ureña et al., 2005).

4.3.3 Trap centers and hopping of ions
To illustrate the different ionic transport properties of Ag and Cu, it is essential to study the
local environment of Ag and Cu in our models. Fig. 19 shows the local environment for
Ag and Cu in (GeSe3)0.9Ag0.1 and (GeSe3)0.9Cu0.1respectively. In the relaxed networks, most
of the Ag ions(58.3%) are found to occupy the trap centers, between two of the host sites
as also predicted by the previous workers (Chaudhuri et al., 2009; Tafen et al., 2005) but this
is not the same case with Cu. Cu is always surrounded by more than two host atoms that
makes the traps for Cu more rigid than for Ag. In Ag rich systems at 300K, we observed
that Ag is basically trapped with only a few hopping events. At 700K the lifetime of the
trap decreases and hopping occurs. We observed the lifetime of the traps varying from 1ps

257Atomistic Simulations of Flash Memory Materials Based on Chalcogenide Glasses

18 Will-be-set-by-IN-TECH

Fig. 18. Temperature dependence of conductivity of ions for different models

T(K) D(cm2/s) σ(Scm−1)
This work Expt.Ureña et al. (2005)

10%Ag 300K 1.15×10−9 2.63×10−5 1.3×10−5

700K 4.53×10−6 4.44×10−2 2.07×10−2

1000K 1.23×10−5 8.45×10−2 8.98×10−2

20% 300K 1.16×10−8 5.3×10−4 7.5×10−5

700K 1.20×10−5 2.35×10−1 6.57×10−2

1000K 2.53×10−5 3.47×10−1 2.584×10−1

10%Cu 300K 7.3×10−10 1.67×10−5

700K 3.3×10−6 3.23×10−2

1000K 1.13×10−5 7.75×10−2

0.77%Cu 300K DAg=1.06×10−8 4.85×10−4

DCu=7.16×10−9 1.63×10−5

700K DAg=1.30×10−5 2.54×10−1

DCu=1.16×10−6 3.8×10−3

1000K DAg=2.42×10−5 3.32×10−1

DCu=5.24×10−6 1.2×10−2

Table 3. Self diffusion coefficient D and conductivity σ at 300K, 700K and 1000K for
(GeSe3)0.9Ag0.1(10%Ag), (GeSe3)0.8Ag0.2(20%Ag), (GeSe3)0.9Cu0.1(10%Cu) and
(GeSe3)0.77Cu0.03Ag0.2(0.77%Cu)

258 Flash Memories Atomistic Simulations of Flash Memory Materials Based on Chalcogenide Glasses 19

Fig. 19. Local environments of Ag atoms(top) and Cu atoms (bottom). Black, green,blue and
yellow colored atoms respectively represent Ag, Se, Ge and Cu

- 3.5ps. However at 1000K we failed to observe well defined hopping events because of the
high the diffusion of the host itself. In the Cu rich system the story is completely different.
Even at 700K we could observe only a few hopping events with much larger trap life time.
It has also been shown by previous workers that the nature of trap or cage depends mainly
on coordination number, nearest neighboring distance and angular distribution of the nearest
neighbors (Kraemer & Naumis, 2008). The low coordination number of Ag makes it easy to
escape the trap whereas for Cu, high coordination number, smaller neighbor distance and a
more uniform angular distribution makes it more difficult to escape from the trap.

4.3.4 Mixed ion conductivity
One big challenge in these materials is to fully understand the effect on the dynamic properties
such as ionic conductivity when one of the mobile ion is partially substituted by another type
of mobile ion. There is a non-linear change in ionic mobility when two or more than two
types of mobile ions are mixed in ion conducting glasses and crystals, and the effect is known
as mixed ion effect. This section reveals that the mixed ion effect in Ag and Cu doped GeSe3
glasses is present in our simulation. Constant temperature MD simulations were carried out
in (GeSe3)0.8(Ag1−xCux)0.2 where x = 0, 0.5 and 1 at two different temperatures of 700K and
1000K. The calculated ion conductivities are presented in Fig. 20. The figure shows a drastic
drop in the ionic conductivity when both Ag and Cu ions are present in the system. This
result implies a mixed ion effect in Ag/Cu doped chalcogenide glass, where Ag+ conduction
is greatly reduced by the presence of Cu+. It is encouraging to see a mixed-ion effect in our
simulations; its atomistic origin is under study.

4.4 Conclusion: Fast ion conducting glasses
We prepared different Ag and Cu doped GeSe3 glass and liquid models by ab initio simulation
using the ’melt-quench’ method and analyzed their structural and electronic properties. We
also simulated dynamics of Ag and Cu ions using molecular dynamics. We were able to
reproduce structural data as provided by X-ray diffraction. From the electronic density of state
we observed that the increase in Ag concentration widens the optical gap whereas increase in
Cu concentration narrows the gap. We were also able to see the metallic behavior for the
liquid systems with the gap closing completely at 1000K. We were able to show the diffusion

259Atomistic Simulations of Flash Memory Materials Based on Chalcogenide Glasses

18 Will-be-set-by-IN-TECH

Fig. 18. Temperature dependence of conductivity of ions for different models

T(K) D(cm2/s) σ(Scm−1)
This work Expt.Ureña et al. (2005)

10%Ag 300K 1.15×10−9 2.63×10−5 1.3×10−5

700K 4.53×10−6 4.44×10−2 2.07×10−2

1000K 1.23×10−5 8.45×10−2 8.98×10−2

20% 300K 1.16×10−8 5.3×10−4 7.5×10−5

700K 1.20×10−5 2.35×10−1 6.57×10−2

1000K 2.53×10−5 3.47×10−1 2.584×10−1

10%Cu 300K 7.3×10−10 1.67×10−5

700K 3.3×10−6 3.23×10−2

1000K 1.13×10−5 7.75×10−2

0.77%Cu 300K DAg=1.06×10−8 4.85×10−4

DCu=7.16×10−9 1.63×10−5

700K DAg=1.30×10−5 2.54×10−1

DCu=1.16×10−6 3.8×10−3

1000K DAg=2.42×10−5 3.32×10−1

DCu=5.24×10−6 1.2×10−2

Table 3. Self diffusion coefficient D and conductivity σ at 300K, 700K and 1000K for
(GeSe3)0.9Ag0.1(10%Ag), (GeSe3)0.8Ag0.2(20%Ag), (GeSe3)0.9Cu0.1(10%Cu) and
(GeSe3)0.77Cu0.03Ag0.2(0.77%Cu)

258 Flash Memories Atomistic Simulations of Flash Memory Materials Based on Chalcogenide Glasses 19

Fig. 19. Local environments of Ag atoms(top) and Cu atoms (bottom). Black, green,blue and
yellow colored atoms respectively represent Ag, Se, Ge and Cu

- 3.5ps. However at 1000K we failed to observe well defined hopping events because of the
high the diffusion of the host itself. In the Cu rich system the story is completely different.
Even at 700K we could observe only a few hopping events with much larger trap life time.
It has also been shown by previous workers that the nature of trap or cage depends mainly
on coordination number, nearest neighboring distance and angular distribution of the nearest
neighbors (Kraemer & Naumis, 2008). The low coordination number of Ag makes it easy to
escape the trap whereas for Cu, high coordination number, smaller neighbor distance and a
more uniform angular distribution makes it more difficult to escape from the trap.

4.3.4 Mixed ion conductivity
One big challenge in these materials is to fully understand the effect on the dynamic properties
such as ionic conductivity when one of the mobile ion is partially substituted by another type
of mobile ion. There is a non-linear change in ionic mobility when two or more than two
types of mobile ions are mixed in ion conducting glasses and crystals, and the effect is known
as mixed ion effect. This section reveals that the mixed ion effect in Ag and Cu doped GeSe3
glasses is present in our simulation. Constant temperature MD simulations were carried out
in (GeSe3)0.8(Ag1−xCux)0.2 where x = 0, 0.5 and 1 at two different temperatures of 700K and
1000K. The calculated ion conductivities are presented in Fig. 20. The figure shows a drastic
drop in the ionic conductivity when both Ag and Cu ions are present in the system. This
result implies a mixed ion effect in Ag/Cu doped chalcogenide glass, where Ag+ conduction
is greatly reduced by the presence of Cu+. It is encouraging to see a mixed-ion effect in our
simulations; its atomistic origin is under study.

4.4 Conclusion: Fast ion conducting glasses
We prepared different Ag and Cu doped GeSe3 glass and liquid models by ab initio simulation
using the ’melt-quench’ method and analyzed their structural and electronic properties. We
also simulated dynamics of Ag and Cu ions using molecular dynamics. We were able to
reproduce structural data as provided by X-ray diffraction. From the electronic density of state
we observed that the increase in Ag concentration widens the optical gap whereas increase in
Cu concentration narrows the gap. We were also able to see the metallic behavior for the
liquid systems with the gap closing completely at 1000K. We were able to show the diffusion

259Atomistic Simulations of Flash Memory Materials Based on Chalcogenide Glasses

20 Will-be-set-by-IN-TECH

Fig. 20. Mixed ion effect: comparison of ion conductivities (GeSe3)0.8(Ag1−xCux)0.2 glasses
as a function of x.

of the ions even in our time scale and predict the conductivity close to the experimental data.
We also studied the trap and found that Cu traps are more rigid that those for Ag making very
hard for Cu to diffuse.

5. Conclusion

By using molecular dynamic simulations, we generate the atomistic models of Ge2Sb2Te5 and
Ge-Se-Ag-Cu and analyzed their topology and electronic structures. Both phase-change
and electrolyte solid materials show the promising properties as candidates to replace the
contemporary technologies in Flash memory. With further development, we believe the new
generation of the computer storage device will eventually appear with much smaller size,
higher speed and more reliable features. We show that computer simulation can lend insight
into promising technologies.

6. Acknowledgement

The authors would like to particularly thank Professor S.R. Elliott and Dr. J. Hegedus for an
introduction to phase-change memory materials and collaboration on GST work. DAD thanks
Professor M. Mitkova and M. Kozicki for years of advice and collaboration. The authors also
want to thank Prof. Gang Chen and Dr. Mingliang Zhang for their assistance and suggestions.
This work was partly supported by the US NSF grant DMR-09033225, DMR-0844014 and
DMR-0903225.

260 Flash Memories Atomistic Simulations of Flash Memory Materials Based on Chalcogenide Glasses 21

7. References

Akola, J. & Jones, R.O. (2007). Structural phase transitions on the nanoscale: The crucial
pattern in the phase-change materials Ge2Sb2Te5 and GeTe, Physical Review B Vol.
76, 235201.

Akola, J. & Jones, R.O. (2007). Density functional study of amorphous, liquid and crystalline
Ge2Sb2Te5: homopolar bonds and/or AB alternation? Journal of Physics: Condensed
Matter Vol.20, 46103.

Cai, B., Drabold, D.A.& Elliott, S.R. (2010). Structural fingerprints of electronic change in the
phase-change-material:Ge2Sb2Te5, Applied Physics Letters Vol. 97, 191908.

Chandler, D. (1987). Introduction to Modern Statistical Mechanics (Oxford University Press, New
York) pp. 249-250.

Chaudhuri, I., Inam, F. & Drabold, D.A. (2009). Ab initio determination of ion traps and
the dynamics of silver in silver-doped chalcogenide glass, Physical Review B Vol. 79,
100201(R).

Chung, A., Deen, J., Lee, J.-S. & Meyyappan, M. (2010). Nanoscale memory devices,
Nanotechnology Vol. 21, 412001.

Cuello, G., Piarristeguy, A., Fernández-Martínez, A., Fontana, M. & Pradel, A.(2007). Structure
of chalcogenide glasses by neutron diffraction, Journal of Non-Crystalline Solids Vol.
353, 729-732.

Dejus, R., Susman, S., Volin, K., Montague, D. & Price, D. (1992). Structure of vitreous
Ag-Ge-Se, Journal of Non-Crystalline Solids Vol. 143, 162.

Drabod, D. (2009). Topics in the theory of amorphous materials, The European Physical Journal
B Vol. 68, 1.

Hegedus, J. & Elliott, S.R. (2008). Microscopic origin of the fast crystallization ability of
GeĺCSb-Te phase-change memory materials, Nature Materials Vol. 7, 399.

Kraemer, A.S. & Naumis, G.G. (2008). Use of the cage formation probability for obtaining
approximate phase diagrams, Journal of Chemical Physics Vol. 128, 134516.

Kresse, G. & Furthmüller, J. (1996). Efficient iterative schemes for ab-initio total-energy
calculations using a plane-wave basis set, Physical Review B Vol. 54, 11169;
http://cmp.univie.ac.at/vasp/.

Kresse, G. & Hafner, J. (1994). Norm-conserving and ultrasoft pseudopotentials for first-row
and transition-elements, Journal of Physics: Condensed Matter Vol. 6, 8245, 1994

Kresse, G. & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector
augmented-wave method, Physical Review B Vol. 59, 1758.

Lacaita, A.J. & Wouters, D. J. (2008). Phase-change memories, Physica status solidi(a) Vol. 205,
No.10, 2281.

Lee, B.S., Abelson, J.R., Bishop, S.G., Kang, D.H., Cheong, B. & Kim, K.B. (2005). Investigation
of the optical and electronic properties of Ge2Sb2Te5 phase change material in its
amorphous, cubic, and hexagonal phases, Journal of Applied Physics Vol. 97, 093509.

Mitkova, M., Wang, Y. & Boolchand, P. (1999). Dual chemical role of Ag as an additive in
chalcogenide glasses, Physical Review Letters Vol. 83, 3848.

Mitkova, M. & Kozicki, M.N. (2002). Silver incorporation in Ge-Se glasses used in
programmable metallization cell devices, Journal of Non-Crystalline Solids Vol.
299-302, 1023.

Natio, M., Ishimaru, M., Hirotsu, Y., Kojima, R. & Yamada, N. (2010). Direct observations of
Ge2Sb2Te5 recording marks in the phase-change disk, Journal of Applied Physics Vol.
107, 103507.

261Atomistic Simulations of Flash Memory Materials Based on Chalcogenide Glasses

20 Will-be-set-by-IN-TECH

Fig. 20. Mixed ion effect: comparison of ion conductivities (GeSe3)0.8(Ag1−xCux)0.2 glasses
as a function of x.

of the ions even in our time scale and predict the conductivity close to the experimental data.
We also studied the trap and found that Cu traps are more rigid that those for Ag making very
hard for Cu to diffuse.

5. Conclusion

By using molecular dynamic simulations, we generate the atomistic models of Ge2Sb2Te5 and
Ge-Se-Ag-Cu and analyzed their topology and electronic structures. Both phase-change
and electrolyte solid materials show the promising properties as candidates to replace the
contemporary technologies in Flash memory. With further development, we believe the new
generation of the computer storage device will eventually appear with much smaller size,
higher speed and more reliable features. We show that computer simulation can lend insight
into promising technologies.

6. Acknowledgement

The authors would like to particularly thank Professor S.R. Elliott and Dr. J. Hegedus for an
introduction to phase-change memory materials and collaboration on GST work. DAD thanks
Professor M. Mitkova and M. Kozicki for years of advice and collaboration. The authors also
want to thank Prof. Gang Chen and Dr. Mingliang Zhang for their assistance and suggestions.
This work was partly supported by the US NSF grant DMR-09033225, DMR-0844014 and
DMR-0903225.

260 Flash Memories Atomistic Simulations of Flash Memory Materials Based on Chalcogenide Glasses 21

7. References

Akola, J. & Jones, R.O. (2007). Structural phase transitions on the nanoscale: The crucial
pattern in the phase-change materials Ge2Sb2Te5 and GeTe, Physical Review B Vol.
76, 235201.

Akola, J. & Jones, R.O. (2007). Density functional study of amorphous, liquid and crystalline
Ge2Sb2Te5: homopolar bonds and/or AB alternation? Journal of Physics: Condensed
Matter Vol.20, 46103.

Cai, B., Drabold, D.A.& Elliott, S.R. (2010). Structural fingerprints of electronic change in the
phase-change-material:Ge2Sb2Te5, Applied Physics Letters Vol. 97, 191908.

Chandler, D. (1987). Introduction to Modern Statistical Mechanics (Oxford University Press, New
York) pp. 249-250.

Chaudhuri, I., Inam, F. & Drabold, D.A. (2009). Ab initio determination of ion traps and
the dynamics of silver in silver-doped chalcogenide glass, Physical Review B Vol. 79,
100201(R).

Chung, A., Deen, J., Lee, J.-S. & Meyyappan, M. (2010). Nanoscale memory devices,
Nanotechnology Vol. 21, 412001.

Cuello, G., Piarristeguy, A., Fernández-Martínez, A., Fontana, M. & Pradel, A.(2007). Structure
of chalcogenide glasses by neutron diffraction, Journal of Non-Crystalline Solids Vol.
353, 729-732.

Dejus, R., Susman, S., Volin, K., Montague, D. & Price, D. (1992). Structure of vitreous
Ag-Ge-Se, Journal of Non-Crystalline Solids Vol. 143, 162.

Drabod, D. (2009). Topics in the theory of amorphous materials, The European Physical Journal
B Vol. 68, 1.

Hegedus, J. & Elliott, S.R. (2008). Microscopic origin of the fast crystallization ability of
GeĺCSb-Te phase-change memory materials, Nature Materials Vol. 7, 399.

Kraemer, A.S. & Naumis, G.G. (2008). Use of the cage formation probability for obtaining
approximate phase diagrams, Journal of Chemical Physics Vol. 128, 134516.

Kresse, G. & Furthmüller, J. (1996). Efficient iterative schemes for ab-initio total-energy
calculations using a plane-wave basis set, Physical Review B Vol. 54, 11169;
http://cmp.univie.ac.at/vasp/.

Kresse, G. & Hafner, J. (1994). Norm-conserving and ultrasoft pseudopotentials for first-row
and transition-elements, Journal of Physics: Condensed Matter Vol. 6, 8245, 1994

Kresse, G. & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector
augmented-wave method, Physical Review B Vol. 59, 1758.

Lacaita, A.J. & Wouters, D. J. (2008). Phase-change memories, Physica status solidi(a) Vol. 205,
No.10, 2281.

Lee, B.S., Abelson, J.R., Bishop, S.G., Kang, D.H., Cheong, B. & Kim, K.B. (2005). Investigation
of the optical and electronic properties of Ge2Sb2Te5 phase change material in its
amorphous, cubic, and hexagonal phases, Journal of Applied Physics Vol. 97, 093509.

Mitkova, M., Wang, Y. & Boolchand, P. (1999). Dual chemical role of Ag as an additive in
chalcogenide glasses, Physical Review Letters Vol. 83, 3848.

Mitkova, M. & Kozicki, M.N. (2002). Silver incorporation in Ge-Se glasses used in
programmable metallization cell devices, Journal of Non-Crystalline Solids Vol.
299-302, 1023.

Natio, M., Ishimaru, M., Hirotsu, Y., Kojima, R. & Yamada, N. (2010). Direct observations of
Ge2Sb2Te5 recording marks in the phase-change disk, Journal of Applied Physics Vol.
107, 103507.

261Atomistic Simulations of Flash Memory Materials Based on Chalcogenide Glasses

22 Will-be-set-by-IN-TECH

Perdew, J.P. & Zunger, A. (1981). Self-interaction correction to density-functional
approximations for many-electron systems, Physical Review B Vol 23, 5048.

Perdew, J.P., Burke, K. & Ernzerhof, M. (1996). Generalized gradient approximation made
simple, Physical Review Letters Vol. 77, 3865.

Piarristeguy, A., Mirandou, M.,Fontana, M. & Arcondo, B.(2000). X-ray analysis of GeSeAg
glasses, Journal of Non-Crystalline Solids Vol. 273, 30-35.

Piarristeguy, A., Fontana, M. & Arcondo, B. (2003). Structural considerations about the
(Ge0.25Se0.75)100−xAgx glasses, Journal of Non-Crystalline Solids Vol. 332, 1-10.

Prasai, B. & Drabold, D.A. (2011). Ab initio simulation of solid electrolyte materials in liquid
and glassy phases, Physical Review B Vol. 83, 094202.

Raty, J.Y., Otijacques, C., Gaspard, J.P., Bichara, C. (2010). Amorphous structure and electronic
properties of the Ge1Sb2Te4 phase change material, Solid State Sciences Vol. 12, 193.

Tafen, D. N., Drabold, D.A. & Mitkova, M. (2005). Silver transport in GexSe1−x:Ag materials:
Ab initio simulation of a solid electrolyte, Physical Review B Vol. 72, 054206.

Ureña, M.A., Piarristeguy, A., Fontana, M. & Arcondo, B. (2005). Ionic conductivity (Ag+) in
AgGeSe glasses, Solid State Ionics Vol. 176, 505.

Welnic, W., Botti, S., Reining, L. & Wuttig, M. (2007). Origin of the Optical Contrast in
Phase-Change Materials, Physical Review Letters Vol. 98, 236403.

Wuttig, M., Lusebrink, D., Wamwangi, D., Welnic, W., Gilleben, M. & Dronskowksi, R.
(2007). The role of vacancies and local distortions in the design of new phase-change
materials, Nature Materials Vol. 6, 122.

262 Flash Memories

22 Will-be-set-by-IN-TECH

Perdew, J.P. & Zunger, A. (1981). Self-interaction correction to density-functional
approximations for many-electron systems, Physical Review B Vol 23, 5048.

Perdew, J.P., Burke, K. & Ernzerhof, M. (1996). Generalized gradient approximation made
simple, Physical Review Letters Vol. 77, 3865.

Piarristeguy, A., Mirandou, M.,Fontana, M. & Arcondo, B.(2000). X-ray analysis of GeSeAg
glasses, Journal of Non-Crystalline Solids Vol. 273, 30-35.

Piarristeguy, A., Fontana, M. & Arcondo, B. (2003). Structural considerations about the
(Ge0.25Se0.75)100−xAgx glasses, Journal of Non-Crystalline Solids Vol. 332, 1-10.

Prasai, B. & Drabold, D.A. (2011). Ab initio simulation of solid electrolyte materials in liquid
and glassy phases, Physical Review B Vol. 83, 094202.

Raty, J.Y., Otijacques, C., Gaspard, J.P., Bichara, C. (2010). Amorphous structure and electronic
properties of the Ge1Sb2Te4 phase change material, Solid State Sciences Vol. 12, 193.

Tafen, D. N., Drabold, D.A. & Mitkova, M. (2005). Silver transport in GexSe1−x:Ag materials:
Ab initio simulation of a solid electrolyte, Physical Review B Vol. 72, 054206.

Ureña, M.A., Piarristeguy, A., Fontana, M. & Arcondo, B. (2005). Ionic conductivity (Ag+) in
AgGeSe glasses, Solid State Ionics Vol. 176, 505.

Welnic, W., Botti, S., Reining, L. & Wuttig, M. (2007). Origin of the Optical Contrast in
Phase-Change Materials, Physical Review Letters Vol. 98, 236403.

Wuttig, M., Lusebrink, D., Wamwangi, D., Welnic, W., Gilleben, M. & Dronskowksi, R.
(2007). The role of vacancies and local distortions in the design of new phase-change
materials, Nature Materials Vol. 6, 122.

262 Flash Memories

Flash Memories
Edited by Igor Stievano

Edited by Igor Stievano

Photo by alfexe / iStock

Flash memories and memory systems are key resources for the development of
electronic products implementing converging technologies or exploiting solid-state

memory disks. This book illustrates state-of-the-art technologies and research studies
on Flash memories. Topics in modeling, design, programming, and materials for

memories are covered along with real application examples.

ISBN 978-953-307-272-2

Flash M
em

ories

ISBN 978-953-51-5545-4

	Flash Memories
	Contents
	Preface
	Part 1
Modeling, Algorithms and Programming Techniques
	Chapter 1
Design Issues and Challenges of File Systems for Flash Memories
	Chapter 2
Error Control Coding for Flash Memory
	Chapter 3
Error Correction Codes and Signal Processing in Flash Memory
	Chapter 4
Block Cleaning Process in Flash Memory
	Chapter 5
Behavioral Modeling of Flash Memories

	Part 2
Applications
	Chapter 6
Survey of the State-of-the-Art in Flash-based Sensor Nodes
	Chapter 7
Adaptively Reconfigurable Controller for the Flash Memory
	Chapter 8
Programming Flash Memory in Freescale S08/S12/CordFire MCUs Family

	Part 3
Technology, Materials and Design Issues
	Chapter 9
Source and Drain Junction Engineering for Enhanced Non-Volatile Memory Performance
	Chapter 10
Non-Volatile Memory Devices Based on Chalcogenide Materials
	Chapter 11
Radiation Hardness of Flash and Nanoparticle Memories
	Chapter 12
Atomistic Simulations of Flash Memory Materials Based on Chalcogenide Glasses

