
�����������������������
�����������������

���
��	���

������������������������������

������������������������������

���
��
��
��
����������������������
�������������������•�
������������
����������������������������������
��	����
��

��������������������
�����������
����������������•���������
��
�������������������
��������������������	���������•���������•��
������•������������������������������
��
��	���•��������������•�����������
��������������������������������
��	���•�������������� ��
������•�������������
����
�����������������������������
��

���
��	���������
����������������������
���������������������€��������•

�����������������������������

���
�	���	��������••�	

���
��	���

INNOVATIVE��
INFORMATION��SYSTEMS��

MODELLING��TECHNIQUES��
��

�����]�š���������Ç��Christos��Kalloniatis��

�1 ��

INNOVATIVE��
INFORMATION��SYSTEMS��

MODELLING��TECHNIQUES��
��

�����]�š���������Ç��Christos��Kalloniatis��

�1 ��

Innovative Information Systems Modelling Techniques
http://dx.doi.org/10.5772/2885
Edited by Christos Kalloniatis

Contributors

Pedro DionÃ sio Valente, Paulo Sampaio, Sorana Cimpan, Hervé Verjus, Ilham Alloui, Gislaine Camila Lapasini Leal,
Tania Fatima Calvi Tait, Elisa Hatsue Moriya Huzita, José Francisco Zelasco, Judith Donayo, Agnes Owuato Odongo,
Andrey Belkin, Achim Kuwertz, Yvonne Fischer, Jürgen Beyerer, Alvaro Fagner Rodrigues Da Silva, Pedro Luiz Pizzigatti
Correa, Carlos Roberto Valêncio, Nicola Restifo, Paolo Locatelli, Mariano Corso, Luca Gastaldi, Huget, Couturier,
Telisson

© The Editor(s) and the Author(s) 2012
The moral rights of the and the author(s) have been asserted.
All rights to the book as a whole are reserved by INTECH. The book as a whole (compilation) cannot be reproduced,
distributed or used for commercial or non-commercial purposes without INTECH’s written permission.
Enquiries concerning the use of the book should be directed to INTECH rights and permissions department
(permissions@intechopen.com).
Violations are liable to prosecution under the governing Copyright Law.

Individual chapters of this publication are distributed under the terms of the Creative Commons Attribution 3.0
Unported License which permits commercial use, distribution and reproduction of the individual chapters, provided
the original author(s) and source publication are appropriately acknowledged. If so indicated, certain images may not
be included under the Creative Commons license. In such cases users will need to obtain permission from the license
holder to reproduce the material. More details and guidelines concerning content reuse and adaptation can be
foundat http://www.intechopen.com/copyright-policy.html.

Notice

Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those
of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published
chapters. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the
use of any materials, instructions, methods or ideas contained in the book.

First published in Croatia, 2012 by INTECH d.o.o.
eBook (PDF) Published by IN TECH d.o.o.
Place and year of publication of eBook (PDF): Rijeka, 2019.
IntechOpen is the global imprint of IN TECH d.o.o.
Printed in Croatia

Legal deposit, Croatia: National and University Library in Zagreb

Additional hard and PDF copies can be obtained from orders@intechopen.com

Innovative Information Systems Modelling Techniques
Edited by Christos Kalloniatis

p. cm.

ISBN 978-953-51-0644-9

eBook (PDF) ISBN 978-953-51-5695-6

Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

4,100+
Open access books available

151
Countries delivered to

12.2%
Contributors from top 500 universities

Our authors are among the

Top 1%
most cited scientists

116,000+
International authors and editors

120M+
Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

Meet the editor

Dr Christos Kalloniatis holds a B.Sc. in Informatics from
the Department of Informatics of the Technological
Educational Institute of Athens, an M.Sc. in Computer
Science from the Department of Computer Science of the
University of Essex, UK ,and a Ph.D. in Informatics from
the Department of Cultural Technology and Communi -
cation of the University of the Aegean. Currently, he is

a lecturer at the Department of Cultural Technology and Communication
of the University of the Aegean. His current research interests include:
Security and privacy in Information Systems, software engineering mod-
els and tools and cloud computing. He is an author of several refereed
papers in international scientific journals and conference proceedings. He
is a member of several program committees of national and international
conferences related to Information Security and Privacy and software engi-
neering and is also a reviewer in several scientific journals. He is a member
of the Greek Computer Society and has served as a member on the ACM
and the IEEE. He is married and lives in Mytilene, the capital of Lesvos
Island, in Greece.

Contents

Preface IX

Chapter 1 Information Systems: From the
Requirements to the Integrated Solution 1
José Francisco Zelasco and Judith Donayo

Chapter 2 An Architecture-Centric Approach
for Information Syste m Architecture
Modeling, Enactement and Evolution 17
Hervé Verjus, Sorana Cîmpan and Ilham Alloui

Chapter 3 Patterns for Agent-Based Information
Systems: A Case Study in Transport 49
Vincent Couturier, Marc-Philippe Huget and David Telisson

Chapter 4 Health Care Information Systems:
Architectural Models and Governance 73
Paolo Locatelli, Nicola Restifo, Luca Gastaldi and Mariano Corso

Chapter 5 Globalization and Socio-Technical Aspects
of Information Systems Development 99
Gislaine Camila L. Leal,
Elisa H. M. Huzita and Tania Fatima Calvi Tait

Chapter 6 Mobile System Applied to
Species Distribution Modelling 123
Álvaro Silva, Pedro Corrêa and Carlos Valêncio

Chapter 7 World Modeling for Au tonomous Systems 137
Andrey Belkin, Achim Kuwertz, Yvonne Fischer and Jürgen Beyerer

Chapter 8 Analysis of Interactive
Information Systems Using Goals 159
Pedro Valente and Paulo N. M. Sampaio

1

Information Systems: From the
Requirements to the Integrated Solution

José Francisco Zelasco and Judith Donayo
Facultad de Ingeniería, Universidad de Buenos Aires

Argentina

1. Introduction

Database integrity of an information system from its beginning to the end of its life cycle is
an important issue of concern among specialists (Melton & Simon, 2002) (Guoqi Feng et al,
2009), (Post & Gagan, 2001) (Eastman C. et al, 1997) (An Lu & Wilfred Ng, 2009). The
proposal solution, concerning all the aspects of an information system project, is introduced
here with the aim of ensuring the integrity of the database throughout the development of
the system. The general aim of this chapter is to propose a method derived from MERISE
(Tardieu et al, 1985), consisting of an interconnected set of tools and those heuristics to
improve the requirements engi neering issues, facilitating the design of specifications,
allowing alternatives of organization in terms of workstation, tasks, etc. Establish the
requirements for the development of a computer system involves collecting information and
expectations from users of various levels of responsibility and belonging to areas that may
have, if not conflicting, at least different intere sts. However, the demands of different users,
should reconciled into a set of specifications that will be acceptable, in a concerted way, for
all of them. It is essential, to fix up the fina l solution, to present the proposed options in an
understandable way to all users (Zelasco & Donayo, 2011).

Consequently, the information produced must be stricter and simpler, and should facilitate,
in terms of design, the use of tools such as those proposed by the Unified Modeling
Language (UML) and the Unified Process (UP) (Zelasco et al, 2007). In this presentation we
will lay special emphasis on those tools that are related to data structuring and that make
their monitoring easier during the optimization and the distribution of data on the physical
level, while protecting their consistency.

As an introduction to the process of conception, we will introduce a diagram called sun
(Figure 1) (Tardieu et al, 1985) in which we can see the stage of creation articulated in three
levels of abstraction:

1. Conceptual level: what the company does, as a whole, to answer the external actor
stimuli.

2. Organizational or logical level: (namely, in volving internal actors), who does what,
where (workstation) and when.

3. Operational or Physical level: how it is done and with what equipment. There is a
distinction here between the tasks performed by men known as men’s tasks, which give

Innovative Information Systems Modelling Techniques 2

rise to the user’s manual and the tasks performed by machines known as machine tasks,
leading to the information system (p rograms) Design and Development.

These diagrams goes from bottom left to bottom right like the movement of the sun, passing
in the middle through the upper level, i.e., the conceptual one. The entire line can be
covered by iterating twice.

The first iteration occurs after the selection of elements that due to their volume (data) and
frequency (events) are of greater importance. This selection is, thus, known as a
representative subset and corresponds to a preliminary study of the project. The second one
comprises the field of study as a whole, so it corresponds to a complete and detailed study
of the system.

The line (fig. 1) from the beginning to the current conceptual level corresponds to the
inverse engineering, which involves the scenarios of the system in its current state: it is the
way the system is working.

Fig. 1. Diagram of the sun

The reengineering phase involves the transition from the current state to the future state.
Some of the factors taken into account for this passage are: the aim of the company, the
external actors that affect it (competition, legi slation, etc.) factors that could eventually have
incidence in the conduct of the organizatio n, all the Board decisions (the company's

Information Systems: From the Requirements to the Integrated Solution 3

corporate rules, policies, strategies, objectives, and available resources), fields of activity, the
different duties that arise from the organization chart, etc. The direction will fix up in one
hand the updated management rules, involving what the company should do as a response
to external requirements (stimuli); and in the other hand, the updated data integrity
constraints and restrictions, will determine the data structure and functional dependencies.
In the lexicon used by this method, the data integrity constraints and restrictions concern the
data structure; management rules concern to the data-treatment: process and procedures -
some authors use the terms Business Rules for integrity constraints and/or Management
Rules together; to avoid confusion, we will not use it-. This updated information determines
the passage from present state to future state, which corrects and enriches the results of the
current conceptual model. The results of the current model, obtained by means of the
inverse engineering, are the starting point, followed by the gathering of information about
the context and definitions of the Board (reengineering) to obtain the future model.

It supported the hypothesis that there is greater invariance in the data, related to properties
and classes or entities, integrity constrains and restrictions than in the treatments,
concerning events and management rules. From now on, we will try to describe how to
determine:

1. 1. The minimal data model that includes all the information of a distributed system, in
terms of properties, entities, relations, integrity constrains and restrictions, and which
will be stored in the physical database to be reached through different transitions,
mechanisms and optimizations.

2. 2. Integrity verification. From the system an alysis we pass on to the design, and once
the relevant objects are created, the consistency between the persistent properties and
the minimal established scheme is verified. This is to be done by updating and querying
each one of the corresponding entities/properties. This heuristic ensures that the
minimal data scheme meets the needs of each subsystem, but the main advantage of
this mechanism is to ensure that each subsystem provides all the elements required by
the other subsystems. In this way the modifi cations of the previous subsystems are to
be minimized when the following ones ar e developed according to the priorities
established by the Board.

3. 3. The treatments model based on Petri nets (Wu et al, 2005) (Chu et al, 1993) are
executed by subsystem. A first scheme describes the Process itself, i.e., what the
company is to do as a response to each external requirement, to initial events of
processes and to those which derive from them. This brings about a concatenated series
of operations, an ongoing activity, per Process. The operations contain tasks expressed
in terms of management rules. Next, that same scheme is enlarged in the Procedure,
replacing each operation in one or many phases, corresponding to the uninterrupted
activity of a specific workstation. This brings about different organization options i.e.,
scenario options that, in this level, could be evaluated comparatively by the company’s
Board and other users, and so, to choose the most convenient one. The scheme describes
the future scenarios and use cases. The following level is the operational level, in which
each job position distributes the tasks according to the human’s activity and the
information systems activity. The tasks performed by a person will lead to the user’s
manual and those automated correspond to the system analysis. The tasks derived from
management rules are expressed less colloquially and eventually more formally.

Innovative Information Systems Modelling Techniques 2

rise to the user’s manual and the tasks performed by machines known as machine tasks,
leading to the information system (p rograms) Design and Development.

These diagrams goes from bottom left to bottom right like the movement of the sun, passing
in the middle through the upper level, i.e., the conceptual one. The entire line can be
covered by iterating twice.

The first iteration occurs after the selection of elements that due to their volume (data) and
frequency (events) are of greater importance. This selection is, thus, known as a
representative subset and corresponds to a preliminary study of the project. The second one
comprises the field of study as a whole, so it corresponds to a complete and detailed study
of the system.

The line (fig. 1) from the beginning to the current conceptual level corresponds to the
inverse engineering, which involves the scenarios of the system in its current state: it is the
way the system is working.

Fig. 1. Diagram of the sun

The reengineering phase involves the transition from the current state to the future state.
Some of the factors taken into account for this passage are: the aim of the company, the
external actors that affect it (competition, legi slation, etc.) factors that could eventually have
incidence in the conduct of the organizatio n, all the Board decisions (the company's

Information Systems: From the Requirements to the Integrated Solution 3

corporate rules, policies, strategies, objectives, and available resources), fields of activity, the
different duties that arise from the organization chart, etc. The direction will fix up in one
hand the updated management rules, involving what the company should do as a response
to external requirements (stimuli); and in the other hand, the updated data integrity
constraints and restrictions, will determine the data structure and functional dependencies.
In the lexicon used by this method, the data integrity constraints and restrictions concern the
data structure; management rules concern to the data-treatment: process and procedures -
some authors use the terms Business Rules for integrity constraints and/or Management
Rules together; to avoid confusion, we will not use it-. This updated information determines
the passage from present state to future state, which corrects and enriches the results of the
current conceptual model. The results of the current model, obtained by means of the
inverse engineering, are the starting point, followed by the gathering of information about
the context and definitions of the Board (reengineering) to obtain the future model.

It supported the hypothesis that there is greater invariance in the data, related to properties
and classes or entities, integrity constrains and restrictions than in the treatments,
concerning events and management rules. From now on, we will try to describe how to
determine:

1. 1. The minimal data model that includes all the information of a distributed system, in
terms of properties, entities, relations, integrity constrains and restrictions, and which
will be stored in the physical database to be reached through different transitions,
mechanisms and optimizations.

2. 2. Integrity verification. From the system an alysis we pass on to the design, and once
the relevant objects are created, the consistency between the persistent properties and
the minimal established scheme is verified. This is to be done by updating and querying
each one of the corresponding entities/properties. This heuristic ensures that the
minimal data scheme meets the needs of each subsystem, but the main advantage of
this mechanism is to ensure that each subsystem provides all the elements required by
the other subsystems. In this way the modifi cations of the previous subsystems are to
be minimized when the following ones ar e developed according to the priorities
established by the Board.

3. 3. The treatments model based on Petri nets (Wu et al, 2005) (Chu et al, 1993) are
executed by subsystem. A first scheme describes the Process itself, i.e., what the
company is to do as a response to each external requirement, to initial events of
processes and to those which derive from them. This brings about a concatenated series
of operations, an ongoing activity, per Process. The operations contain tasks expressed
in terms of management rules. Next, that same scheme is enlarged in the Procedure,
replacing each operation in one or many phases, corresponding to the uninterrupted
activity of a specific workstation. This brings about different organization options i.e.,
scenario options that, in this level, could be evaluated comparatively by the company’s
Board and other users, and so, to choose the most convenient one. The scheme describes
the future scenarios and use cases. The following level is the operational level, in which
each job position distributes the tasks according to the human’s activity and the
information systems activity. The tasks performed by a person will lead to the user’s
manual and those automated correspond to the system analysis. The tasks derived from
management rules are expressed less colloquially and eventually more formally.

Innovative Information Systems Modelling Techniques 4

2. Conceptual data model

The minimal and complete conceptual data model allows an overall view of the information
system data. This overall view of the memory shared by all the actors of the system (all the
subsystems) is the mechanism that allows a truly systemic approach of the project. The
database administrator transfers this mini mal and complete conceptual model without
redundancy, to its physical form th rough passages and optimizations.

To create the minimal conceptual data modeling, that allows for a global view of the
information system, we do not proceed as in object creation, i.e., the starting point are the
fields of activity from which the relevant proper ties are gathered and classified, trying not to
confuse or relate classes to objects. This yields greater objectivity to the integrity verification,
as the person who executes the data scheme is not usually the one who creates the objects of
each subsystem.

During the preliminary study, (first iteration) the most important data are chosen, taking
into account the volume and the most frequent processes. It is important to determine a
representative subset which will allow a good articulation between the Conceptual Data
Model, and all of the subsystems. This can be done iteratively, since at the stage of detailed
study (second iteration including the complete set of data) such model will have all the
properties with no redundancy that have to be stored in the physical base.

A list of integrity constraints and restrictions should be created to give rise to functional
dependencies, relations between entities, etc. From the current model and taking into
consideration the modifications that result from reengineering, we pass on to the future
model, as we have mentioned above.

To avoid property redundancy, this scheme requires the existing relationships to be
expressed without being transforme d into binaries. Although the look here approach
(MERISE proposal) (Tardieu et al, 1985) (Tardieu et al, 1987) (Mounyol) and the look across
one (Chen, 1976) could simplify the representation of options in ternary relationships, it is
useless to discuss their advantages because both of them are complementary. In fact, one
chosen approach should have to be enriched in a simple way, to allows the representation of
all the functional dependencies that both complementary approaches represent.

There are certain points to take into account to reach this minimal model. Some are rather
elementary, others are more subtle:

1. Each property appears only once in the scheme, as a class (entity) or relation attribute.
2. The scheme should respect the second normal rule (Batini et al, 1991) (Ullman et al,

1997) (Yourdon, 1993).
3. If a property depends on the identifiers of tw o or more classes, it is a property of the

relation that links such classes (third normal rule). (Batini et al, 1991) (Ullman et al,
1997) (Yourdon, 1993) (Ullman et al, 1988).

4. Only one value can be assigned to each property.
5. An arc that links a class with a relation cannot be optional , i.e., when there is a relation

occurrence, it should be linked wi th an occurrence of each class. If this is not the case, it is
because there are two different relations that have to be separated because conceptually it
is not the same, even though in the physical level this will not be respected.

Information Systems: From the Requirements to the Integrated Solution 5

6. Only one occurrence of each class converges to each relation occurrence and
reciprocally only one relation occurrence conv erges to each set of occurrences of each
class. If this does not happen it is because the indispensable class that avoids this
ambiguity has been omitted.

7. It should be verified that each class has a set of occurrences, so as not to confuse unique
objects (company’s Board) with data classes, which is a frequent mistake among
beginners.

It should be pointed out that this minimal sch eme can be the basis for a conceptual object-
oriented database model scheme using simple generalization (Zelasco et al, 1998), and
evaluating multiple inheritance.

3. Integrity verification or consistency

Integrity Verification or consistency allows us to ensure data integrity and the harmonic
development of subsystems by reducing costs and the redundancies derived from the
modifications of previous subsystems developed in order to satisfy the subsequent ones.
The verification process consists of contrasting the object persistent properties of each
system with the minimal and complete concep tual data model. With this minimal model
we can verify all the updating and queries of each and every persistent data of each
application or subsystem object; this is the “verification of the integrity” (fig. 2).

Fig. 2. Integrity verification

Conceptual
Data
Model

Fisical
Data
Model

Persistent
Data
Model

Persistent
Data
Model

Subsistema 1

Subsistema 2

Verificator

Innovative Information Systems Modelling Techniques 4

2. Conceptual data model

The minimal and complete conceptual data model allows an overall view of the information
system data. This overall view of the memory shared by all the actors of the system (all the
subsystems) is the mechanism that allows a truly systemic approach of the project. The
database administrator transfers this mini mal and complete conceptual model without
redundancy, to its physical form th rough passages and optimizations.

To create the minimal conceptual data modeling, that allows for a global view of the
information system, we do not proceed as in object creation, i.e., the starting point are the
fields of activity from which the relevant proper ties are gathered and classified, trying not to
confuse or relate classes to objects. This yields greater objectivity to the integrity verification,
as the person who executes the data scheme is not usually the one who creates the objects of
each subsystem.

During the preliminary study, (first iteration) the most important data are chosen, taking
into account the volume and the most frequent processes. It is important to determine a
representative subset which will allow a good articulation between the Conceptual Data
Model, and all of the subsystems. This can be done iteratively, since at the stage of detailed
study (second iteration including the complete set of data) such model will have all the
properties with no redundancy that have to be stored in the physical base.

A list of integrity constraints and restrictions should be created to give rise to functional
dependencies, relations between entities, etc. From the current model and taking into
consideration the modifications that result from reengineering, we pass on to the future
model, as we have mentioned above.

To avoid property redundancy, this scheme requires the existing relationships to be
expressed without being transforme d into binaries. Although the look here approach
(MERISE proposal) (Tardieu et al, 1985) (Tardieu et al, 1987) (Mounyol) and the look across
one (Chen, 1976) could simplify the representation of options in ternary relationships, it is
useless to discuss their advantages because both of them are complementary. In fact, one
chosen approach should have to be enriched in a simple way, to allows the representation of
all the functional dependencies that both complementary approaches represent.

There are certain points to take into account to reach this minimal model. Some are rather
elementary, others are more subtle:

1. Each property appears only once in the scheme, as a class (entity) or relation attribute.
2. The scheme should respect the second normal rule (Batini et al, 1991) (Ullman et al,

1997) (Yourdon, 1993).
3. If a property depends on the identifiers of tw o or more classes, it is a property of the

relation that links such classes (third normal rule). (Batini et al, 1991) (Ullman et al,
1997) (Yourdon, 1993) (Ullman et al, 1988).

4. Only one value can be assigned to each property.
5. An arc that links a class with a relation cannot be optional , i.e., when there is a relation

occurrence, it should be linked wi th an occurrence of each class. If this is not the case, it is
because there are two different relations that have to be separated because conceptually it
is not the same, even though in the physical level this will not be respected.

Information Systems: From the Requirements to the Integrated Solution 5

6. Only one occurrence of each class converges to each relation occurrence and
reciprocally only one relation occurrence conv erges to each set of occurrences of each
class. If this does not happen it is because the indispensable class that avoids this
ambiguity has been omitted.

7. It should be verified that each class has a set of occurrences, so as not to confuse unique
objects (company’s Board) with data classes, which is a frequent mistake among
beginners.

It should be pointed out that this minimal sch eme can be the basis for a conceptual object-
oriented database model scheme using simple generalization (Zelasco et al, 1998), and
evaluating multiple inheritance.

3. Integrity verification or consistency

Integrity Verification or consistency allows us to ensure data integrity and the harmonic
development of subsystems by reducing costs and the redundancies derived from the
modifications of previous subsystems developed in order to satisfy the subsequent ones.
The verification process consists of contrasting the object persistent properties of each
system with the minimal and complete concep tual data model. With this minimal model
we can verify all the updating and queries of each and every persistent data of each
application or subsystem object; this is the “verification of the integrity” (fig. 2).

Fig. 2. Integrity verification

Conceptual
Data
Model

Fisical
Data
Model

Persistent
Data
Model

Persistent
Data
Model

Subsistema 1

Subsistema 2

Verificator

Innovative Information Systems Modelling Techniques 6

When analyzing the object persistent properties in previous subsystems, it is assumed that
some anomalies may occur. However, in the minimal conceptual model these anomalies
would be considered as a sub product of the verification process. Since verification mainly
aims to ensure that each subsystem yields the essential information to the proper
functioning of other subsystems. This interact ion is fundamental when the information is
distributed.

Some applications are developed before others for some priority reasons. In this case, the
verification process guarantees that the cost of the modifications of the previously designed
applications is minimum or inappreciable.

This objective is achieved by verifying that the persistent properties of each subsystem can
be updated and accessed. It is neither necessary nor possible that data structure from the
minimal conceptual model resembles that from the object models. However, there must be
identifiers (or access paths) that allow for the updating of classes and relation occurrences as
well as of particular properties.

From there on, the database administrator may choose between an object-oriented database
and a relational database (Ceri et al, 1997). He will progressively simplify and include
optimizations with the corresponding redundancy that will be documented to allow inverse
engineering to be done without difficulty wh enever necessary. This permits to control
redundancy since reference is always made to the same minimal model. Indeed, whenever a
modification to the database is required, (inverse engineering) that modification must be
expressed in the minimum scheme so that it affects the entire distributed database to ensure
data consistency. Thus, it will be enough to bring down the optimizations tree and
transformations from the minimum model to the database. It should be taken into account
that the optimizations must respect, if possible, the search for the minimum storage cost
function and process time cost (holding cost) and it must also be well documented; thus
facilitating such drop. Besides, the informatio n will be distributed and correctly documented
at the corresponding level. Relying on the documented tracing of the simplification, the
optimization, and the distribution at its different levels are not irrelevant factors to
guarantee integrity and the consequent mini mization of the cost of development and
maintenance of the project.

4. Processing model

We shall present the tools and the way to proceed with the treatments at different levels.

We suggest tools derived from Petri's nets to develop the Conceptual Model of
Treatments (CMT) as well as the Organizational Model of Treatments (OrMT) (Zhang et
al, 1994); (Chu et al, 1993). The richness of the proposed diagrams is superior to that of the
sequence or activity diagrams and therefore more appropriate to model these levels of
abstraction. As it was said, the users dispose of several options of solutions, where he can
evaluate advantages and disadvantages. However, we should note that the tools supplied
by UML (Larman Craig, 2001) are very useful as long as they are applied in the
corresponding level.

Treatment schemes at different levels are made by considering the domains of activity the
company develops and for each function which can be extracted, for example, from its

Information Systems: From the Requirements to the Integrated Solution 7

organization chart. These subsystems proposed by the users and corroborated by the
specialist will lead to different applications and possibly will prioritize stages of
development. The activity of the company, bo th at the conceptual and the organizational
level is reflected from the management rules, in other words, what the company should do
in response to external requests (stimuli), in terms of events. Management rules of the
current model are obtained as a result of reverse engineering, observing which response is
given to each request of an outsider to the organization (event).

The model presented to the users is fundamental for -through reengineering, passing from
the current conceptual model to the future conceptual model-, enabling the users to see in a
very concise way, the changes that involve considering the new circumstances.

4.1 Conceptual model of treatments

The Conceptual Model of Treatments describes the processes that initiate from primary
events which are generally external or assimilable to external ones; that is to say what to do.

These processes are divided into operations which have a set of management rules. The
events as well as such management rules (not business rules) (Ceri et al, 1997) come from
the criteria mentioned in the in troduction. Management rules describe each action that the
company should accomplish to satisfy events, not only the initial ones but also those arising
during the process. The operations involve a series of ongoing or uninterrupted actions. The
necessity of a new operation arises from an interruption, as a result of a response event from
an external actor. The organization thus waits for another external event to restart the
following operation. In terms of events, there is no distinctio n between response and events,
that is to say the response is, in itself, a new event.

These events are linked to the activity sector of the organization; the events that will give
rise to a particular response won’t be equal in the case of a hospital or a bank or an
insurance company. So it is necessary have detected all external events (or assimilable to
external) that affect the organization in matter, sorted by subsystem or software application,
both linked, as we said at the organizational chart. Management rules are the answers that
will give the organization to each of these events. Setting these rules is a critical task because
from it depend the future of the system. The management agreement is essential. It is
noteworthy that different options of conceptual model of treatments, allows comparison in
options of management rules and to choose one of these models implies opting for certain
management rules. Management rules are codified to facilitate their use in the diagrams.
The elements of process diagrams (CMT) are events, synchronization, operation or
transaction with any eventual output condit ion and responses (see the figures in example
below). The operations correspond to the performance of one or more management rules
and, in a whole, will lead to response events. We insist to notice that the management rules
describe each of the actions that the company must take to satisfy events, both initial and
those which arise during the process that will in volve an operation or a chain of operations.
The operations engage a series of uninterrupted actions. The need of a new operation occurs
due to an interruption, as a result of an event-response to an external actor, remaining
waiting for another external event to reset the next operation. No distinction is made in
terms of events between response and event, i.e. the answer is, at the same time, a
new event.

Innovative Information Systems Modelling Techniques 6

When analyzing the object persistent properties in previous subsystems, it is assumed that
some anomalies may occur. However, in the minimal conceptual model these anomalies
would be considered as a sub product of the verification process. Since verification mainly
aims to ensure that each subsystem yields the essential information to the proper
functioning of other subsystems. This interact ion is fundamental when the information is
distributed.

Some applications are developed before others for some priority reasons. In this case, the
verification process guarantees that the cost of the modifications of the previously designed
applications is minimum or inappreciable.

This objective is achieved by verifying that the persistent properties of each subsystem can
be updated and accessed. It is neither necessary nor possible that data structure from the
minimal conceptual model resembles that from the object models. However, there must be
identifiers (or access paths) that allow for the updating of classes and relation occurrences as
well as of particular properties.

From there on, the database administrator may choose between an object-oriented database
and a relational database (Ceri et al, 1997). He will progressively simplify and include
optimizations with the corresponding redundancy that will be documented to allow inverse
engineering to be done without difficulty wh enever necessary. This permits to control
redundancy since reference is always made to the same minimal model. Indeed, whenever a
modification to the database is required, (inverse engineering) that modification must be
expressed in the minimum scheme so that it affects the entire distributed database to ensure
data consistency. Thus, it will be enough to bring down the optimizations tree and
transformations from the minimum model to the database. It should be taken into account
that the optimizations must respect, if possible, the search for the minimum storage cost
function and process time cost (holding cost) and it must also be well documented; thus
facilitating such drop. Besides, the informatio n will be distributed and correctly documented
at the corresponding level. Relying on the documented tracing of the simplification, the
optimization, and the distribution at its different levels are not irrelevant factors to
guarantee integrity and the consequent mini mization of the cost of development and
maintenance of the project.

4. Processing model

We shall present the tools and the way to proceed with the treatments at different levels.

We suggest tools derived from Petri's nets to develop the Conceptual Model of
Treatments (CMT) as well as the Organizational Model of Treatments (OrMT) (Zhang et
al, 1994); (Chu et al, 1993). The richness of the proposed diagrams is superior to that of the
sequence or activity diagrams and therefore more appropriate to model these levels of
abstraction. As it was said, the users dispose of several options of solutions, where he can
evaluate advantages and disadvantages. However, we should note that the tools supplied
by UML (Larman Craig, 2001) are very useful as long as they are applied in the
corresponding level.

Treatment schemes at different levels are made by considering the domains of activity the
company develops and for each function which can be extracted, for example, from its

Information Systems: From the Requirements to the Integrated Solution 7

organization chart. These subsystems proposed by the users and corroborated by the
specialist will lead to different applications and possibly will prioritize stages of
development. The activity of the company, bo th at the conceptual and the organizational
level is reflected from the management rules, in other words, what the company should do
in response to external requests (stimuli), in terms of events. Management rules of the
current model are obtained as a result of reverse engineering, observing which response is
given to each request of an outsider to the organization (event).

The model presented to the users is fundamental for -through reengineering, passing from
the current conceptual model to the future conceptual model-, enabling the users to see in a
very concise way, the changes that involve considering the new circumstances.

4.1 Conceptual model of treatments

The Conceptual Model of Treatments describes the processes that initiate from primary
events which are generally external or assimilable to external ones; that is to say what to do.

These processes are divided into operations which have a set of management rules. The
events as well as such management rules (not business rules) (Ceri et al, 1997) come from
the criteria mentioned in the in troduction. Management rules describe each action that the
company should accomplish to satisfy events, not only the initial ones but also those arising
during the process. The operations involve a series of ongoing or uninterrupted actions. The
necessity of a new operation arises from an interruption, as a result of a response event from
an external actor. The organization thus waits for another external event to restart the
following operation. In terms of events, there is no distinctio n between response and events,
that is to say the response is, in itself, a new event.

These events are linked to the activity sector of the organization; the events that will give
rise to a particular response won’t be equal in the case of a hospital or a bank or an
insurance company. So it is necessary have detected all external events (or assimilable to
external) that affect the organization in matter, sorted by subsystem or software application,
both linked, as we said at the organizational chart. Management rules are the answers that
will give the organization to each of these events. Setting these rules is a critical task because
from it depend the future of the system. The management agreement is essential. It is
noteworthy that different options of conceptual model of treatments, allows comparison in
options of management rules and to choose one of these models implies opting for certain
management rules. Management rules are codified to facilitate their use in the diagrams.
The elements of process diagrams (CMT) are events, synchronization, operation or
transaction with any eventual output condit ion and responses (see the figures in example
below). The operations correspond to the performance of one or more management rules
and, in a whole, will lead to response events. We insist to notice that the management rules
describe each of the actions that the company must take to satisfy events, both initial and
those which arise during the process that will in volve an operation or a chain of operations.
The operations engage a series of uninterrupted actions. The need of a new operation occurs
due to an interruption, as a result of an event-response to an external actor, remaining
waiting for another external event to reset the next operation. No distinction is made in
terms of events between response and event, i.e. the answer is, at the same time, a
new event.

Innovative Information Systems Modelling Techniques 8

It is noteworthy that at this level (CMT), it ignores who does what, when and where in the
organization of the company. The responses to events are made by the company as a whole.
This allows in the subsequent level, propose, analyze and evaluate different options of
organization having previously set the response of the company as a whole in front of each
of the external events. In this CMT is observed the synchronization, prior to each
transaction, the synchronization uses the logical operators of conjunction and disjunction
(and and or) (Fig. 2.5). This allows representing the different sets of events (or a single
event) that trigger the operation. In the case of response events, there can also be an
indication of the output conditions in whic h they are produced. Within the operation or
transaction, which must be identified with a name, it is placed the code of management
rules that apply. The acronyms of the corresponding management rules are inscribed in the
operation which must have a name. These acronyms are in correspondence with the list of
rules where the actions involved are described.

4.2 Organizational model of treatments

The Organizational Model of Treatments (OrMT) describes the characteristics of the
treatments that have not been expressed in the conceptual model of treatment, expanding, in
terms of workstations, the conceptual model of the company’s organization; that is to say,
workstation (who do what, where and when), in other words, time, human resources,
places, etc..

The conceptual model of treatments describes the flow of events, mainly those between the
organization of the company and the environment (what).

The OrMT adds to the conceptual model the company’s flow of events among the different
workstations (Chu et al, 1993).

A process in the CMT expands in a procedure in the OrMT and operations of each process
will result in different phases of the work stat ions of each procedure. The CMT describes the
flow of events, essentially between the organization (the company) and the environment.
The uninterrupted or ongoing acti vity at the procedure level is called phase. The OrMT adds
for the CMT the flow of events within the co mpany among the different phases of the work
stations (see the figures in example below).

The study of a company’s organizational problem, usually, belongs to other experts, so
computer specialists are frequently restricted to taking that model as the working base for
the system development (Dey et al, 1999). Different organization options, other than the one
imposed, show improvements in the informatio n system. This methodological proposal not
only prevents this inconvenie nce and the waste of money and time but also proposes a
study of the company’s organization options setting, possibly in question, the solution
proposed by other experts. When a computer specialist takes part in contributing with this
formal tool, based on Petri nets (He et al, 2003), the advantages of one option over the other
one become obvious, particularly from the au tomatization point of view. The decision about
the company’s organization results, then, in an agreement, and so the computer specialist
faces a more solid and robust option. Besides, this OrMT contributes to a more accurate
elaboration of the user’s manual and to the analysis prior to design.

Information Systems: From the Requirements to the Integrated Solution 9

A chart is used to describe the procedure. The first column or the first set of consecutive
columns corresponds to the external actor/acto rs related to such process. The subsequent
columns correspond to the workstations to wh ich the procedures are expanded. The phase
structure is identical to the operation structur e of the conceptual model of treatments. The
phase has the possibility of synchronizing events by means of logical operators of
conjunction and disjunction (and and or). It ha s an identification name, the acronyms of the
management rules which correspond to the actions that a workstation must carry out during
that phase and the output conditions of the response events. It is important to highlight that
response events may be directed to both external actors and internal actors (other
workstation phases). From the foregoing, it can be said that one or more phases correspond
to each operation and that in the case the operation is divided into various phases, the
management rules contained in the operation will be distributed among the respective
phases.

Finally, in case the phase has rules capable of automatization, the operations that will be
done by the person in that workstation and those operations to be automated will be
established. These actions are called “men’s tasks” and “machine tasks”. This classification
corresponds to the called Operational Treatments Model (OpTM) and gives rise to the user’s
manual and the systems analysis at the level of each use case.

For the OpMT it can establish an analogue diagram between man tasks and machine tasks,
which can facilitate the development of th e using manual and the pre-programming
analysis, however, is not necessary to discuss this scheme with the user as it is an
appropriate tool for the specialist.

The progressive detail grade of these three levels shows that they are three different levels of
abstraction and that they are useful for a better information system definition. In this way
the representation of use cases and scenarios options is facilitated.

5. Examples

This section develops a case study that focuses on the subsystem for admitting patients to an
attention centre just with the purpose of presenting the development of treatment
paradigms. This is not a real case, but an example that brings out the versatility of the
proposed heuristics.

To be able to realize the process for the CMT identifies the events that stimulate and initiate
this process and management rules, which indicate how the organization should respond to
these events (Fig. 2).

5.1 Description of th e admitting process

The admission process begins when a patient arrives at the center of attention. A patient that
request an appointment can reach the center of attention in two conditions, as patient with
health insurance in which case he pays a supplementary amount (reduced) or as a patient
without insurance, in which case he pays the full benefit.

And from the solution 1 they are proposed two options of solution for the OrMT: the
diagram a (Fig. 3) and diagram b (Fig. 4).

Innovative Information Systems Modelling Techniques 8

It is noteworthy that at this level (CMT), it ignores who does what, when and where in the
organization of the company. The responses to events are made by the company as a whole.
This allows in the subsequent level, propose, analyze and evaluate different options of
organization having previously set the response of the company as a whole in front of each
of the external events. In this CMT is observed the synchronization, prior to each
transaction, the synchronization uses the logical operators of conjunction and disjunction
(and and or) (Fig. 2.5). This allows representing the different sets of events (or a single
event) that trigger the operation. In the case of response events, there can also be an
indication of the output conditions in whic h they are produced. Within the operation or
transaction, which must be identified with a name, it is placed the code of management
rules that apply. The acronyms of the corresponding management rules are inscribed in the
operation which must have a name. These acronyms are in correspondence with the list of
rules where the actions involved are described.

4.2 Organizational model of treatments

The Organizational Model of Treatments (OrMT) describes the characteristics of the
treatments that have not been expressed in the conceptual model of treatment, expanding, in
terms of workstations, the conceptual model of the company’s organization; that is to say,
workstation (who do what, where and when), in other words, time, human resources,
places, etc..

The conceptual model of treatments describes the flow of events, mainly those between the
organization of the company and the environment (what).

The OrMT adds to the conceptual model the company’s flow of events among the different
workstations (Chu et al, 1993).

A process in the CMT expands in a procedure in the OrMT and operations of each process
will result in different phases of the work stat ions of each procedure. The CMT describes the
flow of events, essentially between the organization (the company) and the environment.
The uninterrupted or ongoing acti vity at the procedure level is called phase. The OrMT adds
for the CMT the flow of events within the co mpany among the different phases of the work
stations (see the figures in example below).

The study of a company’s organizational problem, usually, belongs to other experts, so
computer specialists are frequently restricted to taking that model as the working base for
the system development (Dey et al, 1999). Different organization options, other than the one
imposed, show improvements in the informatio n system. This methodological proposal not
only prevents this inconvenie nce and the waste of money and time but also proposes a
study of the company’s organization options setting, possibly in question, the solution
proposed by other experts. When a computer specialist takes part in contributing with this
formal tool, based on Petri nets (He et al, 2003), the advantages of one option over the other
one become obvious, particularly from the au tomatization point of view. The decision about
the company’s organization results, then, in an agreement, and so the computer specialist
faces a more solid and robust option. Besides, this OrMT contributes to a more accurate
elaboration of the user’s manual and to the analysis prior to design.

Information Systems: From the Requirements to the Integrated Solution 9

A chart is used to describe the procedure. The first column or the first set of consecutive
columns corresponds to the external actor/acto rs related to such process. The subsequent
columns correspond to the workstations to wh ich the procedures are expanded. The phase
structure is identical to the operation structur e of the conceptual model of treatments. The
phase has the possibility of synchronizing events by means of logical operators of
conjunction and disjunction (and and or). It ha s an identification name, the acronyms of the
management rules which correspond to the actions that a workstation must carry out during
that phase and the output conditions of the response events. It is important to highlight that
response events may be directed to both external actors and internal actors (other
workstation phases). From the foregoing, it can be said that one or more phases correspond
to each operation and that in the case the operation is divided into various phases, the
management rules contained in the operation will be distributed among the respective
phases.

Finally, in case the phase has rules capable of automatization, the operations that will be
done by the person in that workstation and those operations to be automated will be
established. These actions are called “men’s tasks” and “machine tasks”. This classification
corresponds to the called Operational Treatments Model (OpTM) and gives rise to the user’s
manual and the systems analysis at the level of each use case.

For the OpMT it can establish an analogue diagram between man tasks and machine tasks,
which can facilitate the development of th e using manual and the pre-programming
analysis, however, is not necessary to discuss this scheme with the user as it is an
appropriate tool for the specialist.

The progressive detail grade of these three levels shows that they are three different levels of
abstraction and that they are useful for a better information system definition. In this way
the representation of use cases and scenarios options is facilitated.

5. Examples

This section develops a case study that focuses on the subsystem for admitting patients to an
attention centre just with the purpose of presenting the development of treatment
paradigms. This is not a real case, but an example that brings out the versatility of the
proposed heuristics.

To be able to realize the process for the CMT identifies the events that stimulate and initiate
this process and management rules, which indicate how the organization should respond to
these events (Fig. 2).

5.1 Description of th e admitting process

The admission process begins when a patient arrives at the center of attention. A patient that
request an appointment can reach the center of attention in two conditions, as patient with
health insurance in which case he pays a supplementary amount (reduced) or as a patient
without insurance, in which case he pays the full benefit.

And from the solution 1 they are proposed two options of solution for the OrMT: the
diagram a (Fig. 3) and diagram b (Fig. 4).

Innovative Information Systems Modelling Techniques 10

Fig. 3. Conceptual Model of Solution 1 of the example of admission of patients.

Information Systems: From the Requirements to the Integrated Solution 11

Fig. 4. Organizational Model of Solution 1 of the example of admission of patients to a
health centre.

Innovative Information Systems Modelling Techniques 10

Fig. 3. Conceptual Model of Solution 1 of the example of admission of patients.

Information Systems: From the Requirements to the Integrated Solution 11

Fig. 4. Organizational Model of Solution 1 of the example of admission of patients to a
health centre.

Innovative Information Systems Modelling Techniques 12

Fig. 5. Another Organizational Model of Solution 1 of the example of admission of patients
to a health centre.

5.1.1 CMT Solution 1

Next, we present the external events and the management rules corresponding to the
process of the solution 1:

Events:

a. Arrival a patient with insurance.
b. Arrival a patient without insurance.
c. Effectuation of payment.

Rules:

R1: Identification verificati on otherwise is rejected.

Information Systems: From the Requirements to the Integrated Solution 13

R2: Identify specialty and schedule an appointment with the doctor.

R3: With the appointment scheduled concerted, if the patient has insurance, the bond is
issued.

R4: With the appointment scheduled concerted, if the patient hasn’t insurance, the invoice is
issued.

R5: Verified the bonus payment, a permit is issued to the patient with insurance, to make an
appointment scheduled.

R6: Verified the invoice payment, a permit is issued to a patient without insurance, to make
an appointment scheduled.

Note that the operation is interrupted becaus e the payment can be made later, not at the
same time as the application of turn.

5.1.2 CMT Solution 2

Next, we present the external events and the management rules corresponding to the
process of solution 2:

Events:

a. Arrival a patient with insurance.
b. Arrival a patient without insurance.
c. Effectuation of payment.

Rules:

R1: Identification verification otherwise is rejected.

R2: Payment according to condition.

R3: Verified the payment, it proceeds to the specialty identification and it coordinates
appointment scheduled, doctor and emission of authorizatio n of corresponding consult.

It is noted that the operation is not interrupted , because the payment it has to be done at the
same moment than the appointment solicitation. In this case, because the process is reduced
to only one operation, the reader will be able to elaborate this process, including all the rules
in the only operation.

5.1.3 Organizational models of treatments corresponding to solution1

Supposed being selected the solution 1 (Fig. 2) they are analyzed the two solution options
proposed for OrMT: diagram a (Fig. 3), diagram b (Fig. 4).

In diagram a (Fig. 3), the first operation (Validation of appointments scheduled and
documents) of the CMT is performed in the phase validation of appointments scheduled
and documents on the first work station, an d the second operation (Billing) is done in
invoicing phase on the second workplace.

In the diagram b (Fig. 4) the first operatio n (Validation of appointments scheduled and
documents) from the CMT is unfolded in the phase of “document validation” on the first

Innovative Information Systems Modelling Techniques 12

Fig. 5. Another Organizational Model of Solution 1 of the example of admission of patients
to a health centre.

5.1.1 CMT Solution 1

Next, we present the external events and the management rules corresponding to the
process of the solution 1:

Events:

a. Arrival a patient with insurance.
b. Arrival a patient without insurance.
c. Effectuation of payment.

Rules:

R1: Identification verificati on otherwise is rejected.

Information Systems: From the Requirements to the Integrated Solution 13

R2: Identify specialty and schedule an appointment with the doctor.

R3: With the appointment scheduled concerted, if the patient has insurance, the bond is
issued.

R4: With the appointment scheduled concerted, if the patient hasn’t insurance, the invoice is
issued.

R5: Verified the bonus payment, a permit is issued to the patient with insurance, to make an
appointment scheduled.

R6: Verified the invoice payment, a permit is issued to a patient without insurance, to make
an appointment scheduled.

Note that the operation is interrupted becaus e the payment can be made later, not at the
same time as the application of turn.

5.1.2 CMT Solution 2

Next, we present the external events and the management rules corresponding to the
process of solution 2:

Events:

a. Arrival a patient with insurance.
b. Arrival a patient without insurance.
c. Effectuation of payment.

Rules:

R1: Identification verification otherwise is rejected.

R2: Payment according to condition.

R3: Verified the payment, it proceeds to the specialty identification and it coordinates
appointment scheduled, doctor and emission of authorizatio n of corresponding consult.

It is noted that the operation is not interrupted , because the payment it has to be done at the
same moment than the appointment solicitation. In this case, because the process is reduced
to only one operation, the reader will be able to elaborate this process, including all the rules
in the only operation.

5.1.3 Organizational models of treatments corresponding to solution1

Supposed being selected the solution 1 (Fig. 2) they are analyzed the two solution options
proposed for OrMT: diagram a (Fig. 3), diagram b (Fig. 4).

In diagram a (Fig. 3), the first operation (Validation of appointments scheduled and
documents) of the CMT is performed in the phase validation of appointments scheduled
and documents on the first work station, an d the second operation (Billing) is done in
invoicing phase on the second workplace.

In the diagram b (Fig. 4) the first operatio n (Validation of appointments scheduled and
documents) from the CMT is unfolded in the phase of “document validation” on the first

Innovative Information Systems Modelling Techniques 14

work station, and the phase “coordinating of appointment and doctor” on the second work
station; and the second operation (invoicing) is held in the Invoicing phase on the third
workplace.

The diagram b would be selected by an organization that prefers to separate a checkpoint
(security) from assigning appoin tments scheduled and doctors.

It is noted that the same workplace can do several phases, what happens if the procedure is
more complex.

When the operational level of treatment to a certain stage of a workplace, analyzes the
management rules, naturally are being established both the instruction manual
corresponding to operator tasks such as system analysis derived from update tasks that
should make interacting with the operator.

6. Conclusions

Preserving the minimal conceptual mode l along the system life preserves from
inconsistencies

The minimal conceptual data model provides a systemic global view.

The current model of data and treatments, achieved by inverse engineering, guarantees a
higher stability of the system.

And finally, the consistency verification assures minimal modification in previous
developed subsystems.

The overall view through the minimal model permits us also to control redundancies and to
avoid problems of integrity.

Applying this mechanism and consequently reducing the entropy leads to a more balanced
and tolerant system to the changes in the context in which the organization is immersed and
to the requirement modifications.

The application of these tools and heuristics ensures the stability of the database, provides a
reduction of the number of iterations in the development thus contributing to diminish the
system entropy whose cost may be inappreciable mainly at the beginning of the
maintenance phase.

In the other hand, the application of this mechanism based on Petri diagrams, and
respecting the indicated heuristic, is of great interest as a tool of engineering of
requirements. These tools used in abstraction levels superior than usual, lead to relevant
advantages. First allows better interaction between users and the specialist to formalize
the requirements. The user through these schemes, of reading relatively simple, can select
the most convenient solution and will compare management options when it is about
CMT and organization in the OrMT. This adva ntage is accentuated because the proposed
mechanism is performed in an iterative fashion by focusing on a representative subset in
the preliminary study and taking into consideration the entire field of study in the
detailed study. The development of the solution results more robust as it facilitates the

Information Systems: From the Requirements to the Integrated Solution 15

visual comparison of the current model (rev erse engineering), both of management and
organization with different options of the future model (reengineering). The result is
greater clarity in the proposed solution whic h gives greater rigor in the development of
the specifications. In addition , from the diagrams adopted derive both the user manuals
as analysis and design necessary to the development, and from comparing the diagrams
of the current state with the adopted solution diagrams, arises the definition of works
stations and of the intermediate phases necessary for a harmonious integration of the new
system in the company.

7. References

An Lu, Wilfred Ng, 2009: Main taining consistency of vague databases using data
dependencies. Data & Knowledge Engineering, In Press, Corrected Proof, Available
online 28 February 2009

Batini C., S. Ceri y S. B. Navathe, 1991, Database Design: An Entity-Relationship Approach,
Prentice-Hall.

Ceri, S., Fraternali, P., 1997, Designing Database Applications with Objects and Rules: The
IDEA Methodology Addison Wesley ; 1st edition, ISBN: 0201403692.

Chen, P. S., 1976: The entity relationship model: to-ward a unified view of data, ACM
Transactions on Data-base Systems, (1), 9-36.

Chu, f., Proth, J-M., Savi, V. M., 1993: Ordonnancement base sur les reseaux de Petri. Raport
de recher-che No 1960 INRIA Francia.

Dey D., Storey V. C. and Barron T. M., 1999, Im-proving Database Design trough the
Analysis of Relation-ship, ACM Transactions on Database Systems, 24 (4),
453-486.

Dullea J. and I. Y. Song, 1998, An Analysis of Struc-tural Validity of Ternary Relationships in
Entity Relation-ship Modeling, Proceed . 7º Int. Conf. on Information and
Knowledge Management, 331-339.

Eastman C, Stott Parker D. and Tay-Sheng Jeng 1997: Managing the integrity of design
data generated by multiple applications: The principle of patching. Research in
Engineering Design, Volume 9, Number 3 / septiembre de 1997

FAQ Merise et modelisation de donnees - Club d’entraides developpeurs francophones.
http://uml.developpez.com/faq/merise/

González, J. A., Dankel, D., 1993: The Engineering of Knowledge-Based Systems. Prentice
Hall.

Guoqi Feng, Dongliang Cui, Chengen Wang, Jiapeng Yu 2009: Integrated data management
in complex product collaborative design. Computers in Industry, Volume 60, Issue
1, January 2009, Pages 48-63

He, X., Chu, W., Yang, H., 2003: A New Approach to Verify Rule-Based Systems Using Petri
Nets. Information and Software Technology 45(10).

Larman Craig, 2001: Applying UML and Pattern s: An Introduction to Object-Oriented.
Analysis and Design and the Unified Process Prentice Hall PTR; 2d edition July 13,
ISBN: 0130925691.

Melton J, Simon A R, 2002 Constraints, Assertions, and Referential Integrity SQL: 1999, 2002,
Pages 355-394

Innovative Information Systems Modelling Techniques 14

work station, and the phase “coordinating of appointment and doctor” on the second work
station; and the second operation (invoicing) is held in the Invoicing phase on the third
workplace.

The diagram b would be selected by an organization that prefers to separate a checkpoint
(security) from assigning appoin tments scheduled and doctors.

It is noted that the same workplace can do several phases, what happens if the procedure is
more complex.

When the operational level of treatment to a certain stage of a workplace, analyzes the
management rules, naturally are being established both the instruction manual
corresponding to operator tasks such as system analysis derived from update tasks that
should make interacting with the operator.

6. Conclusions

Preserving the minimal conceptual mode l along the system life preserves from
inconsistencies

The minimal conceptual data model provides a systemic global view.

The current model of data and treatments, achieved by inverse engineering, guarantees a
higher stability of the system.

And finally, the consistency verification assures minimal modification in previous
developed subsystems.

The overall view through the minimal model permits us also to control redundancies and to
avoid problems of integrity.

Applying this mechanism and consequently reducing the entropy leads to a more balanced
and tolerant system to the changes in the context in which the organization is immersed and
to the requirement modifications.

The application of these tools and heuristics ensures the stability of the database, provides a
reduction of the number of iterations in the development thus contributing to diminish the
system entropy whose cost may be inappreciable mainly at the beginning of the
maintenance phase.

In the other hand, the application of this mechanism based on Petri diagrams, and
respecting the indicated heuristic, is of great interest as a tool of engineering of
requirements. These tools used in abstraction levels superior than usual, lead to relevant
advantages. First allows better interaction between users and the specialist to formalize
the requirements. The user through these schemes, of reading relatively simple, can select
the most convenient solution and will compare management options when it is about
CMT and organization in the OrMT. This adva ntage is accentuated because the proposed
mechanism is performed in an iterative fashion by focusing on a representative subset in
the preliminary study and taking into consideration the entire field of study in the
detailed study. The development of the solution results more robust as it facilitates the

Information Systems: From the Requirements to the Integrated Solution 15

visual comparison of the current model (rev erse engineering), both of management and
organization with different options of the future model (reengineering). The result is
greater clarity in the proposed solution whic h gives greater rigor in the development of
the specifications. In addition , from the diagrams adopted derive both the user manuals
as analysis and design necessary to the development, and from comparing the diagrams
of the current state with the adopted solution diagrams, arises the definition of works
stations and of the intermediate phases necessary for a harmonious integration of the new
system in the company.

7. References

An Lu, Wilfred Ng, 2009: Main taining consistency of vague databases using data
dependencies. Data & Knowledge Engineering, In Press, Corrected Proof, Available
online 28 February 2009

Batini C., S. Ceri y S. B. Navathe, 1991, Database Design: An Entity-Relationship Approach,
Prentice-Hall.

Ceri, S., Fraternali, P., 1997, Designing Database Applications with Objects and Rules: The
IDEA Methodology Addison Wesley ; 1st edition, ISBN: 0201403692.

Chen, P. S., 1976: The entity relationship model: to-ward a unified view of data, ACM
Transactions on Data-base Systems, (1), 9-36.

Chu, f., Proth, J-M., Savi, V. M., 1993: Ordonnancement base sur les reseaux de Petri. Raport
de recher-che No 1960 INRIA Francia.

Dey D., Storey V. C. and Barron T. M., 1999, Im-proving Database Design trough the
Analysis of Relation-ship, ACM Transactions on Database Systems, 24 (4),
453-486.

Dullea J. and I. Y. Song, 1998, An Analysis of Struc-tural Validity of Ternary Relationships in
Entity Relation-ship Modeling, Proceed . 7º Int. Conf. on Information and
Knowledge Management, 331-339.

Eastman C, Stott Parker D. and Tay-Sheng Jeng 1997: Managing the integrity of design
data generated by multiple applications: The principle of patching. Research in
Engineering Design, Volume 9, Number 3 / septiembre de 1997

FAQ Merise et modelisation de donnees - Club d’entraides developpeurs francophones.
http://uml.developpez.com/faq/merise/

González, J. A., Dankel, D., 1993: The Engineering of Knowledge-Based Systems. Prentice
Hall.

Guoqi Feng, Dongliang Cui, Chengen Wang, Jiapeng Yu 2009: Integrated data management
in complex product collaborative design. Computers in Industry, Volume 60, Issue
1, January 2009, Pages 48-63

He, X., Chu, W., Yang, H., 2003: A New Approach to Verify Rule-Based Systems Using Petri
Nets. Information and Software Technology 45(10).

Larman Craig, 2001: Applying UML and Pattern s: An Introduction to Object-Oriented.
Analysis and Design and the Unified Process Prentice Hall PTR; 2d edition July 13,
ISBN: 0130925691.

Melton J, Simon A R, 2002 Constraints, Assertions, and Referential Integrity SQL: 1999, 2002,
Pages 355-394

Innovative Information Systems Modelling Techniques 16

MERISE - Introduction à la conception de systèmes d’�×nformation.
 http://www.commentcamarche.n et/merise/concintro.php3
Mounyol, R. MERISE étendue: Cas professionnels de synthèse. ISBN: 2729895574. Rojer

Mounyol ed. Elipses
Post G., Kagan A., 2001: Database Management systems: design considerations and attribute

facilities. Journal of Systems and Software, Volume 56, Issue 2, 1 March 2001, Pages
183-193

Song, I. Y., Evans, M. and Park, E. K., 1995: A comparative Análisis of Entity-Relationship
Diagrams, Journal of Computer and Software Engineering, 3 (4), 427-459.

Tardieu, H., Rochfeld, A., Colletti, R., 1985 La Méthode MERISE. Tome 1. ISBN: 2-7081-1106-
X. Ed. Les Edition d’organization.

Tardieu, H., Rochfeld, A., Coll etti, R., Panet, G., Va-hée, G., 1987 La Méthode MERISE. Tome
2. ISBN: 2-7081-0703-8. Ed. Les Edition d’organization.

Ullman J. D. and J. Windom, 1997, A FirstCourse in Database Systems, Prentice-Hall.
Ullman Jeffrey D. & Freeman W. H., 1988, Principles of Database and Knowledge-Base

Systems. Vol. 1, 1a edition, ISBN: 0716781581.
Wu, Q., Zhou, C., Wu, J., Wang, C., 2005: Study on Knowledge Base Verification Based on

Petri Nets. Inter-national Conference on Control and Automation (ICCA 2005)
Budapest, Hungry, June 27-29.

Yourdon, Inc., 1993: Yourdon Method, Prentice-Hall.
Zelasco J. F, Alvano, C. E., Diorio, G., Berrueta, N., O’Neill, P., Gonzalez, C., 1998:

Criterios Metódicos Básicos para Concepción de Bases de Datos Orientadas a
Objetos. Info-Net, III Congreso Intern acional y Exposición de Informática e
Internet. Proceding en CD. Mendoza, Argentina.

Zelasco, J. F., Donayo, J., Merayo, G., 2007, Complementary Utilities for UML and UP in
Information Systems, EATIS 2007. (ACM DL). Faro, Portugal. ISBN:978-1-59593-
598-4

Zelasco, J. F., Donayo, J., 2010, Database integrity in Integrated Systems INSTICC PRESS
2009,. Milán-Italia. May 2009. ISBN 978-989-8111-90-6

Zelasco, J. F., Donayo, J., 2011, Organizational Chart for Engineering of Requirements.
IASTED SE 2011 Soft-ware Engineering, Innsbruck, Austria; 15-17 February 2011

Zhang, D., Nguyen, D., 1994: PREPARE: A Tool for Knowledge Base Verification. IEEE
Trans. on Knowledge and Data Engineering (6).

2

An Architecture-Centric Approach
for Information System Architecture

Modeling, Enactement and Evolution

Hervé Verjus, Sorana Cîmpan and Ilham Alloui
University of Savoie – LISTIC Lab

France

1. Introduction

Information Systems are more and more complex and distributed. As market is
continuously changing, information systems have also to change in order to support new
business opportunities, customers’ satisfaction, partners’ interoperability as well as new
exchanges, technological mutations and organisational transformations. Enterprise agility
and adaptability leads to a new challenge: flexibility and adaptability of its information
system. Most information systems are nowadays software-intensive systems: they integrate
heterogeneous, distributed software components, large-scale software applications, legacy
systems and COTS. In this context, designing, building, maintaining evolvable and
adaptable information systems is an importan t issue for which few rigorous approaches
exist. In particular informatio n system architecture (Zachman, 1997) is an important topic as
it considers information system as interacting components, assembled for reaching
enterprise business goals according to defined strategies and rules. Thus, information
system architecture supports business processes, collaboration among actors and among
organizational units, promotes inter-enterprise interoperability (Vernadat, 2006) and has to
evolve as business and enterprise strategy evolve too (Kardasis & Loucopoulos, 1998;
Nurcan & Schmidt, 2009).

During the past twenty years, several works around system architecture have been
proposed: they mainly focus on software system architecture (Bass et al., 2003), enterprise
and business architecture (Barrios & Nurcan, 2004; Touzi et al., 2009; Nurcan & Schmidt,
2009). All of them mainly propose abstractions and models to describe system architecture.
Research on software architecture (Perry & Wolf, 1992; Bass et al., 2003) proposes
engineering methods, formalisms and tools focusing on software architecture description,
analysis and enactment. In that perspective, Architecture Description Languages (ADLs) are
means for describing software architecture (Medvidovic & Taylor, 2000) and may also be
used to describe software-intensive information system architecture. Such ADLs cope with
software system static aspects at a high level of abstraction. Some of them deal with
behavioral features and properties (Medvidovic & Taylor, 2000). Very few of the proposed
approaches are satisfactory enough to deal with software-intensive system architecture
dynamic evolution; i.e. , a software-intensive system architecture being able to evolve during
enactment.

Innovative Information Systems Modelling Techniques 16

MERISE - Introduction à la conception de systèmes d’�×nformation.
 http://www.commentcamarche.n et/merise/concintro.php3
Mounyol, R. MERISE étendue: Cas professionnels de synthèse. ISBN: 2729895574. Rojer

Mounyol ed. Elipses
Post G., Kagan A., 2001: Database Management systems: design considerations and attribute

facilities. Journal of Systems and Software, Volume 56, Issue 2, 1 March 2001, Pages
183-193

Song, I. Y., Evans, M. and Park, E. K., 1995: A comparative Análisis of Entity-Relationship
Diagrams, Journal of Computer and Software Engineering, 3 (4), 427-459.

Tardieu, H., Rochfeld, A., Colletti, R., 1985 La Méthode MERISE. Tome 1. ISBN: 2-7081-1106-
X. Ed. Les Edition d’organization.

Tardieu, H., Rochfeld, A., Coll etti, R., Panet, G., Va-hée, G., 1987 La Méthode MERISE. Tome
2. ISBN: 2-7081-0703-8. Ed. Les Edition d’organization.

Ullman J. D. and J. Windom, 1997, A FirstCourse in Database Systems, Prentice-Hall.
Ullman Jeffrey D. & Freeman W. H., 1988, Principles of Database and Knowledge-Base

Systems. Vol. 1, 1a edition, ISBN: 0716781581.
Wu, Q., Zhou, C., Wu, J., Wang, C., 2005: Study on Knowledge Base Verification Based on

Petri Nets. Inter-national Conference on Control and Automation (ICCA 2005)
Budapest, Hungry, June 27-29.

Yourdon, Inc., 1993: Yourdon Method, Prentice-Hall.
Zelasco J. F, Alvano, C. E., Diorio, G., Berrueta, N., O’Neill, P., Gonzalez, C., 1998:

Criterios Metódicos Básicos para Concepción de Bases de Datos Orientadas a
Objetos. Info-Net, III Congreso Intern acional y Exposición de Informática e
Internet. Proceding en CD. Mendoza, Argentina.

Zelasco, J. F., Donayo, J., Merayo, G., 2007, Complementary Utilities for UML and UP in
Information Systems, EATIS 2007. (ACM DL). Faro, Portugal. ISBN:978-1-59593-
598-4

Zelasco, J. F., Donayo, J., 2010, Database integrity in Integrated Systems INSTICC PRESS
2009,. Milán-Italia. May 2009. ISBN 978-989-8111-90-6

Zelasco, J. F., Donayo, J., 2011, Organizational Chart for Engineering of Requirements.
IASTED SE 2011 Soft-ware Engineering, Innsbruck, Austria; 15-17 February 2011

Zhang, D., Nguyen, D., 1994: PREPARE: A Tool for Knowledge Base Verification. IEEE
Trans. on Knowledge and Data Engineering (6).

2

An Architecture-Centric Approach
for Information System Architecture

Modeling, Enactement and Evolution

Hervé Verjus, Sorana Cîmpan and Ilham Alloui
University of Savoie – LISTIC Lab

France

1. Introduction

Information Systems are more and more complex and distributed. As market is
continuously changing, information systems have also to change in order to support new
business opportunities, customers’ satisfaction, partners’ interoperability as well as new
exchanges, technological mutations and organisational transformations. Enterprise agility
and adaptability leads to a new challenge: flexibility and adaptability of its information
system. Most information systems are nowadays software-intensive systems: they integrate
heterogeneous, distributed software components, large-scale software applications, legacy
systems and COTS. In this context, designing, building, maintaining evolvable and
adaptable information systems is an importan t issue for which few rigorous approaches
exist. In particular informatio n system architecture (Zachman, 1997) is an important topic as
it considers information system as interacting components, assembled for reaching
enterprise business goals according to defined strategies and rules. Thus, information
system architecture supports business processes, collaboration among actors and among
organizational units, promotes inter-enterprise interoperability (Vernadat, 2006) and has to
evolve as business and enterprise strategy evolve too (Kardasis & Loucopoulos, 1998;
Nurcan & Schmidt, 2009).

During the past twenty years, several works around system architecture have been
proposed: they mainly focus on software system architecture (Bass et al., 2003), enterprise
and business architecture (Barrios & Nurcan, 2004; Touzi et al., 2009; Nurcan & Schmidt,
2009). All of them mainly propose abstractions and models to describe system architecture.
Research on software architecture (Perry & Wolf, 1992; Bass et al., 2003) proposes
engineering methods, formalisms and tools focusing on software architecture description,
analysis and enactment. In that perspective, Architecture Description Languages (ADLs) are
means for describing software architecture (Medvidovic & Taylor, 2000) and may also be
used to describe software-intensive information system architecture. Such ADLs cope with
software system static aspects at a high level of abstraction. Some of them deal with
behavioral features and properties (Medvidovic & Taylor, 2000). Very few of the proposed
approaches are satisfactory enough to deal with software-intensive system architecture
dynamic evolution; i.e. , a software-intensive system architecture being able to evolve during
enactment.

Innovative Information Systems Modelling Techniques

18

As an illustrative example of such a dynamically evolving software-intensive information
system, consider the following supply chain info rmation system that entails a manufacturing
enterprise, its customers and suppliers. The supply chain information system is a software-
intensive system comprising several software components. It is governed by an EAI
(Enterprise Application Integration) software solu tion that itself compri ses an ERP system. The
ERP system includes components dedicated to handling respectively stocks, invoices, orders
and quotations. These software elements form the information system architecture. In a
classical scenario, a customer may ask for a quotation and then make an order. The order may
or may not be satisfied depending on the stock of the ordered product. We may imagine
several alternatives. The first one assumes that the information system is rigid (i.e. , it cannot
dynamically evolve or adapt): if the current pr oduct stock is not big enough to satisfy the
client’s order, a restocking procedure consists in contacting a supplier in order to satisfy the
order. We assume that the supplier is always able to satisfy a restocking demand. Let us now
imagine that the restocking phase is quite undefined (has not been defined in advance – i.e., at
design time) and that it can be dynamically adapted according to bu siness considerations,
market prices, suppliers’ availability and busine ss relationships. Then, the supporting supply
chain information system architecture would ha ve to be dynamically and on-the-fly adapted
according to the dynamic business context. Such dynamicity during system enactment is an
important issue for which an architecture-cen tric development approach is suitable.

This represents an important step forward in software-intensive information system
engineering domain, as software intensive information systems often lack support for
dynamic evolution. When existing, such suppo rt doesn’t ensure the consistency between
design decisions and the running system. Thus, generally first the system model is evolved,
and then the implementation, without necessarily mantaining the consistency between the
two system representations. This leads to undesired situations where the actual system is
not the one intended, or though t by the decision makers.

This chapter presents an architecture-centric development approach that addresses the
above mentioned issues, namely dynamic evolution while preserving the consistency
between the system design and implementation. Our appr oach entails architectural
description formalisms and corresponding engi neering tools to describe, analyze and enact
dynamically evolvable software-intensive information systems.

It presents the overall development approach, briefly introducing the different models and
meta-models involved as well as the different pr ocesses that can be derived from the approach
(see section 2). Although the approach supports the entire development cycle, the chapter
focuses on the way dynamic evolution is handled. More precisely it shows how information
systems, described using suitable architecture-related languages (see section 3), can be
architectured so that their dynamic evolution ca n be handled. Thus section 5 and 6 present the
proposed mechanismes for handling respectively dynamic planned and unplanned evolutions
of the information system ar chitecture. These mechanisms are presented using evolution
scenarios related to a case study which is briefly introduced in section 4. Section 7 presents
related work. We end the chapter with concluding remarks in section 8.

2. On architecture-centric development

Considerable efforts have been made in the software architecture field (Medvidovic &
Taylor, 2000; Bass et al., 2003) (mainly software architecture modeling, architectural property

An Architecture-Centric Approach for
Information System Architecture Modeling, Enactement and Evolution

19

expression and checking) that place the architecture in the heart of a software intensive
system life cycle. “Software architecture is being viewed as a key concept in realizing an
organization’s technical and business goals” (Carrière et al., 1999). Software architectures
shift the focus of developers from implementation to coarser-grained architectural elements
and their overall interconnection st ructure (Medvidovic & Taylor, 2000). In architecture-
centric development approaches, the architecture of the system under construction is considered at
different abstraction levels. Starting with a rather coarse grain representation of the system, the
process stepwise refines this representation producing more detailed representations. At each phase,
architectural properties can be defined and analyzed. Architecture Description Languages (ADLs)
have been proposed as well as architecture-centric development environments, toolkits
(graphical modelers, compilers, analysis/verification tools, etc.) (Schmerl et al., 2004;
ArchStudio) which support software architects’ and engineers’ activities.

We consider the architecture-centric inform ation system development as a model-driven
engineering process (Favre et al., 2006). Every process is centered on design models of
systems to develop. Models are used for several purposes: to understand specific aspects of
a system, to predict the qualities of a system, to reason on the impact of change on a system
and to communicate with different system stak eholders (developers, commercials, clients,
end-users, etc.). Among the objectives of such approaches is their ability to provide (at least
partially) enough details to generate an implementation of the information system software
components and their interconnections. Thus, the generated code is, itself, the expression of
a model. In architecture-centric development approaches (Kyaruzi & van Katwijk, 2000)
models represent mainly software architectures, but can also represent some expected
properties or transformations that can be made on such architectures.

The architecture may be defined at several levels of abstraction. The transition from one
level to another is done through a refinement process along which further details are added
to the architecture description until reaching a desired concrete (implementation) level. The
resulting concrete architecture can either be directly executed if the employed ADL has its
own virtual machine or it can be used to generate an executable description for another
target execution environment (e.g., Java, C++, etc.).

As the system software architecture captures early design decisions that have a significant
impact on the quality of the resulting system, it is important if not essential to check those
decisions as early as possible. Software architecture analysis is an ineluctable activity within
the development process. It focuses on structural and/or behavioral properties one can
expect from both system functional and non-functional behaviors (e.g. are architectural
elements always connected? Is the system behavior robust? etc.). Moreover, evolving a
system must be accompanied by checking whether its correctness is still ensured or not after
the changes. In software engineering processes, checking the correctness of a system relies
on analyzing expected properties at either/bot h design time or/and runtime. This requires
the availability of software tools/support for both checking if the desired properties are
satisfied and detecting those that have been violated with the possibility of reconciling them.
Ideally an approach that aims at considering the evolution along the whole lifecycle should
provide mechanisms for analysis, detection of property violation and its reparation.

The introduction of architecture -centric approaches had as prior intent an improvement of
the software development process, allowing people to gain intellectual control over systems

Innovative Information Systems Modelling Techniques

18

As an illustrative example of such a dynamically evolving software-intensive information
system, consider the following supply chain info rmation system that entails a manufacturing
enterprise, its customers and suppliers. The supply chain information system is a software-
intensive system comprising several software components. It is governed by an EAI
(Enterprise Application Integration) software solu tion that itself compri ses an ERP system. The
ERP system includes components dedicated to handling respectively stocks, invoices, orders
and quotations. These software elements form the information system architecture. In a
classical scenario, a customer may ask for a quotation and then make an order. The order may
or may not be satisfied depending on the stock of the ordered product. We may imagine
several alternatives. The first one assumes that the information system is rigid (i.e. , it cannot
dynamically evolve or adapt): if the current pr oduct stock is not big enough to satisfy the
client’s order, a restocking procedure consists in contacting a supplier in order to satisfy the
order. We assume that the supplier is always able to satisfy a restocking demand. Let us now
imagine that the restocking phase is quite undefined (has not been defined in advance – i.e., at
design time) and that it can be dynamically adapted according to bu siness considerations,
market prices, suppliers’ availability and busine ss relationships. Then, the supporting supply
chain information system architecture would ha ve to be dynamically and on-the-fly adapted
according to the dynamic business context. Such dynamicity during system enactment is an
important issue for which an architecture-cen tric development approach is suitable.

This represents an important step forward in software-intensive information system
engineering domain, as software intensive information systems often lack support for
dynamic evolution. When existing, such suppo rt doesn’t ensure the consistency between
design decisions and the running system. Thus, generally first the system model is evolved,
and then the implementation, without necessarily mantaining the consistency between the
two system representations. This leads to undesired situations where the actual system is
not the one intended, or though t by the decision makers.

This chapter presents an architecture-centric development approach that addresses the
above mentioned issues, namely dynamic evolution while preserving the consistency
between the system design and implementation. Our appr oach entails architectural
description formalisms and corresponding engi neering tools to describe, analyze and enact
dynamically evolvable software-intensive information systems.

It presents the overall development approach, briefly introducing the different models and
meta-models involved as well as the different pr ocesses that can be derived from the approach
(see section 2). Although the approach supports the entire development cycle, the chapter
focuses on the way dynamic evolution is handled. More precisely it shows how information
systems, described using suitable architecture-related languages (see section 3), can be
architectured so that their dynamic evolution ca n be handled. Thus section 5 and 6 present the
proposed mechanismes for handling respectively dynamic planned and unplanned evolutions
of the information system ar chitecture. These mechanisms are presented using evolution
scenarios related to a case study which is briefly introduced in section 4. Section 7 presents
related work. We end the chapter with concluding remarks in section 8.

2. On architecture-centric development

Considerable efforts have been made in the software architecture field (Medvidovic &
Taylor, 2000; Bass et al., 2003) (mainly software architecture modeling, architectural property

An Architecture-Centric Approach for
Information System Architecture Modeling, Enactement and Evolution

19

expression and checking) that place the architecture in the heart of a software intensive
system life cycle. “Software architecture is being viewed as a key concept in realizing an
organization’s technical and business goals” (Carrière et al., 1999). Software architectures
shift the focus of developers from implementation to coarser-grained architectural elements
and their overall interconnection st ructure (Medvidovic & Taylor, 2000). In architecture-
centric development approaches, the architecture of the system under construction is considered at
different abstraction levels. Starting with a rather coarse grain representation of the system, the
process stepwise refines this representation producing more detailed representations. At each phase,
architectural properties can be defined and analyzed. Architecture Description Languages (ADLs)
have been proposed as well as architecture-centric development environments, toolkits
(graphical modelers, compilers, analysis/verification tools, etc.) (Schmerl et al., 2004;
ArchStudio) which support software architects’ and engineers’ activities.

We consider the architecture-centric inform ation system development as a model-driven
engineering process (Favre et al., 2006). Every process is centered on design models of
systems to develop. Models are used for several purposes: to understand specific aspects of
a system, to predict the qualities of a system, to reason on the impact of change on a system
and to communicate with different system stak eholders (developers, commercials, clients,
end-users, etc.). Among the objectives of such approaches is their ability to provide (at least
partially) enough details to generate an implementation of the information system software
components and their interconnections. Thus, the generated code is, itself, the expression of
a model. In architecture-centric development approaches (Kyaruzi & van Katwijk, 2000)
models represent mainly software architectures, but can also represent some expected
properties or transformations that can be made on such architectures.

The architecture may be defined at several levels of abstraction. The transition from one
level to another is done through a refinement process along which further details are added
to the architecture description until reaching a desired concrete (implementation) level. The
resulting concrete architecture can either be directly executed if the employed ADL has its
own virtual machine or it can be used to generate an executable description for another
target execution environment (e.g., Java, C++, etc.).

As the system software architecture captures early design decisions that have a significant
impact on the quality of the resulting system, it is important if not essential to check those
decisions as early as possible. Software architecture analysis is an ineluctable activity within
the development process. It focuses on structural and/or behavioral properties one can
expect from both system functional and non-functional behaviors (e.g. are architectural
elements always connected? Is the system behavior robust? etc.). Moreover, evolving a
system must be accompanied by checking whether its correctness is still ensured or not after
the changes. In software engineering processes, checking the correctness of a system relies
on analyzing expected properties at either/bot h design time or/and runtime. This requires
the availability of software tools/support for both checking if the desired properties are
satisfied and detecting those that have been violated with the possibility of reconciling them.
Ideally an approach that aims at considering the evolution along the whole lifecycle should
provide mechanisms for analysis, detection of property violation and its reparation.

The introduction of architecture -centric approaches had as prior intent an improvement of
the software development process, allowing people to gain intellectual control over systems

Innovative Information Systems Modelling Techniques

20

ever more complex and thus providing solutions for a major software engineering concern.
Software-intensive system evolution is another major concern in software engineering
(Andrade & Fiadeiro, 2003, Mens et al., 2003), as human-centric activities are more and more
supported by software applications that have to evolve according to changing requirements,
technologies, business, etc. Software-intensive systems should be able to adapt according to
those changes (Belady & Lehman, 1985). As changes may impact the information system
architecture, the way of evolving the architecture is part of the information system evolution
problem. Moreover, the problem of handling the evolution of a software-intensive
information system taking into account its arch itecture is closely related to the problem of
keeping the consistency between two layers: the software system concrete (source code,
implementation) architecture, and, the information system conceptual (abstract, design)
architecture as well as continuous switchin g between these layers (Perry & Wolf, 1992).

We distinguish four types of evolution (Cîmpan & Verjus, 2005) according to two criteria: (i)
the architecture evolution is carried out statically (i.e., while some of the information system
executing software components are stopped) or dynamically (i.e., while the system is being
continuously executing), (ii) has the evolution been planned (i.e., at design time) or not (i.e.,
unplanned, may occur at any time during th e information system enactment). A static
evolution, be it planned or not, is de facto supported by all architecture-centric approaches.
It is more or less supported by analysis tools to check the system correctness after the
change implementation. A dynamic evolution is mo re difficult to handle, in particular if it
has not been planned at the design time. Indeed this requires: (i) mechanisms to provide
change specifications without stopping information system executing software components,
(ii) performing the changes while preserving the information system correctness and (iii)
preserving the consistency between the system implementation and its conceptual
architecture.

As depicted by Figure 1, our architecture-centric approach supports information system
development processes based on software architecture models. Different models and meta-
models are proposed, as well as relations among them. Part of them are platform
independent (PIM, represented in the upper part of the figure), while others are platform
specific (PSM, represented in the lower part of the figure). The approach is suitable to
description languages which have a layered construction. They entail a core, generic (and in
our case enactable) description language as well as extension mechanisms enabling the
description of domain specific languages. The figure gives a complete view of the different
models and meta-models, yet not all of them are mandatorily used. Thus, different
processes can be drawn from this picture. A very simple one would for instance consist in
representing architecture in the core language, and use the associated virtual machine to
enact it. A possible enhancement of this process would consist in defining properties the
architecture should obey and check if it indeed does. This implies the additional use of an
architecture analysis language to define such properties as well as the use of associated tools
to verify whether the properties hold for the given architecture. If the enterprise
environment imposes the use of particular platform , it is also possible that rather then using
the virtual machine (VM), code is generated in a target language, using specific
transformation rules. In this chapter, we do not address exhaustively how such processes
are defined and carried out. Rather we focus on how evolution is supported at system
enactment time.

An Architecture-Centric Approach for
Information System Architecture Modeling, Enactement and Evolution

21

Fig. 1. Architecture centric development approach and processes

To illustrate how our archit ecture-centric information system development approach
supports dynamic evolution of software–intensive information system architecture, we use
as modeling language, an ADL allowing us to cope with unpredictable situations and
dynamic changes: ArchWare ADL (Oquendo et al., 2002; Oquendo 2004). This language is
part of the ArchWare (ArchWare 2001) language family and can be used either as a
specification language only or both as a specification and implementation language. In the
first case, a target source code can be generated from specifications using mappings and
adding implementation details related to the target environment. In the second case, an
implementation is a specification, detailed enough, to be interpreted by the ArchWare ADL
virtual machine. In both cases, user-defined expected architectural properties can be
analyzed both at design time and runtime.

3. ArchWare architecture description languages, foundations and design

The ArchWare project (ArchWare, 2001) proposes an architecture-centric software
engineering environment for the develo pment of evolving systems (Oquendo et al., 2004).
The environment provides languages and tools to describe architectures and their
properties, refine them as well as enact them using a virtual machine.

This section introduces part of the ArchWare language family – related to the description of
architectures and their properties. The ArchWar e language familly perfectly fits the above
presented approach (cf. Figure 1). The description language family has a layered structure,

Innovative Information Systems Modelling Techniques

20

ever more complex and thus providing solutions for a major software engineering concern.
Software-intensive system evolution is another major concern in software engineering
(Andrade & Fiadeiro, 2003, Mens et al., 2003), as human-centric activities are more and more
supported by software applications that have to evolve according to changing requirements,
technologies, business, etc. Software-intensive systems should be able to adapt according to
those changes (Belady & Lehman, 1985). As changes may impact the information system
architecture, the way of evolving the architecture is part of the information system evolution
problem. Moreover, the problem of handling the evolution of a software-intensive
information system taking into account its arch itecture is closely related to the problem of
keeping the consistency between two layers: the software system concrete (source code,
implementation) architecture, and, the information system conceptual (abstract, design)
architecture as well as continuous switchin g between these layers (Perry & Wolf, 1992).

We distinguish four types of evolution (Cîmpan & Verjus, 2005) according to two criteria: (i)
the architecture evolution is carried out statically (i.e., while some of the information system
executing software components are stopped) or dynamically (i.e., while the system is being
continuously executing), (ii) has the evolution been planned (i.e., at design time) or not (i.e.,
unplanned, may occur at any time during th e information system enactment). A static
evolution, be it planned or not, is de facto supported by all architecture-centric approaches.
It is more or less supported by analysis tools to check the system correctness after the
change implementation. A dynamic evolution is mo re difficult to handle, in particular if it
has not been planned at the design time. Indeed this requires: (i) mechanisms to provide
change specifications without stopping information system executing software components,
(ii) performing the changes while preserving the information system correctness and (iii)
preserving the consistency between the system implementation and its conceptual
architecture.

As depicted by Figure 1, our architecture-centric approach supports information system
development processes based on software architecture models. Different models and meta-
models are proposed, as well as relations among them. Part of them are platform
independent (PIM, represented in the upper part of the figure), while others are platform
specific (PSM, represented in the lower part of the figure). The approach is suitable to
description languages which have a layered construction. They entail a core, generic (and in
our case enactable) description language as well as extension mechanisms enabling the
description of domain specific languages. The figure gives a complete view of the different
models and meta-models, yet not all of them are mandatorily used. Thus, different
processes can be drawn from this picture. A very simple one would for instance consist in
representing architecture in the core language, and use the associated virtual machine to
enact it. A possible enhancement of this process would consist in defining properties the
architecture should obey and check if it indeed does. This implies the additional use of an
architecture analysis language to define such properties as well as the use of associated tools
to verify whether the properties hold for the given architecture. If the enterprise
environment imposes the use of particular platform , it is also possible that rather then using
the virtual machine (VM), code is generated in a target language, using specific
transformation rules. In this chapter, we do not address exhaustively how such processes
are defined and carried out. Rather we focus on how evolution is supported at system
enactment time.

An Architecture-Centric Approach for
Information System Architecture Modeling, Enactement and Evolution

21

Fig. 1. Architecture centric development approach and processes

To illustrate how our archit ecture-centric information system development approach
supports dynamic evolution of software–intensive information system architecture, we use
as modeling language, an ADL allowing us to cope with unpredictable situations and
dynamic changes: ArchWare ADL (Oquendo et al., 2002; Oquendo 2004). This language is
part of the ArchWare (ArchWare 2001) language family and can be used either as a
specification language only or both as a specification and implementation language. In the
first case, a target source code can be generated from specifications using mappings and
adding implementation details related to the target environment. In the second case, an
implementation is a specification, detailed enough, to be interpreted by the ArchWare ADL
virtual machine. In both cases, user-defined expected architectural properties can be
analyzed both at design time and runtime.

3. ArchWare architecture description languages, foundations and design

The ArchWare project (ArchWare, 2001) proposes an architecture-centric software
engineering environment for the develo pment of evolving systems (Oquendo et al., 2004).
The environment provides languages and tools to describe architectures and their
properties, refine them as well as enact them using a virtual machine.

This section introduces part of the ArchWare language family – related to the description of
architectures and their properties. The ArchWar e language familly perfectly fits the above
presented approach (cf. Figure 1). The description language family has a layered structure,

Innovative Information Systems Modelling Techniques

22

with a minimal core formal language and an extension mechanism that allows the users to
construct more specific description languages.

The core formal language – ArchWare �S-ADL. The ArchWare project proposes a meta-
model, defined by an abstract syntax and formal semantic (Oquendo et al., 2002). Several
concrete syntaxes are proposed (Verjus & Oquendo, 2003; Alloui & Oquendo, 2003),
ArchWare �S-ADL (Cîmpan et al., 2002; Morrison et al., 2004) being the textual one. The core
language is a well-formed extension of the high-order typed �S-calculus (Milner, 1999) that
defines a calculus of communicating and mobile architectural elements. These architectural
elements are defined in terms of behaviors. A behavior expresses in a scheduled way both
an architectural element internal computation and its interactions (sending and receiving
messages via connections that link it to other architectural elements). These actions
(concerning communication as well as internal computing) are scheduled using �S-calculus
based operators to express sequence, choice, composition, replication and matching.
Composite architectural elements are defined by composing behaviors, communicating
through connections. An architecture is itself an architectural element. Moreover, �S-ADL
provides a mechanism to reuse parameterised behavior definitions which can be embedded
in abstractions. Such abstractions are instantiated as behaviors by application. As the core
language is Turing complete, a virtual machine (Morissson et al. 2004) enables enactment of
architectures that are defined using this language.

The extension mechanism – is represented in Figure 1 by ASL. The extension mechanism is
based on architectural styles, representing a family of architectures sharing common
characteristics and obeying a given set of constraints. ArchWare ASL (Architectural Sytle
Language) is a meta-model allowing the definiti on of styles, and hence of domain specific
languages (Leymonerie, 2004). More precisely, architectural element types can be
introduced by a style, forming the style vocabulary. When a style is defined using ASL, it is
possible to associate a new syntax; thus the style provides a domain-specific architecture
description language. Architectural styles and associated languages can then be constructed
using a meta-level tower. If using the nth layer of the language family a style is defined, its
associated syntax constitutes a n+1 layer. By construction, an architecture defined using the
nth layer of the language family, has its corresponding description in the n-1 layer.

The component-connector layer – corresponds to a particular domain language,
dedicated to the definition of component-connector models of software architectures. In
Figure 1, ADSL is the generic term for such domain specific language. Using the extension
mechanism (ASL) a level 1 language has been constructed starting from the core
language (level 0). This language, named ArchWare C&C-ADL is associated to an
architectural style in which architectural el ements are either components or connectors
(Cîmpan et al., 2005; Leymonerie, 2004). Components and connectors are first class citizens
and can be atomic or composed by other components and connectors. An architectural
element interface, represented by its connections, is structured in ports. Each port is thus
composed by a set of connections, and has an associated protocol (corresponding to a
behavior projection of the element to which it pertains). Atomic as well as composite
architectural elements may entail attributes used in their parameterisation. A composite
element behavior results from the parall el composition of its composing element
behaviors. The composite element has its own ports, which ports of composing elements
are attached to.

An Architecture-Centric Approach for
Information System Architecture Modeling, Enactement and Evolution

23

The architecture analysis language – corresponds to AAL in Figure 1. Architectural
properties can be expressed in the ArchWare framework by using a dedicated language:
ArchWare Architecture Analysis Language (AAL) (Alloui et al., 2003; Mateescu & Oquendo,
2006). AAL is a formal language based on first order predicate logic and �P-calculus
(Bradfield and Stirling, 2001). Predicate logic allows users to express structural aspects while
�P-calculus provides the expressive power needed for the representation of dynamic aspects
of an evolving system. A prop erty is expressed in AAL using a predicate formula (concerns
the architecture structure, e.g., the existence of a connection among two elements), an action
formula (concerns the architectural element behavior, e.g., a component must have a
recursive behavior), a regular formul a (regular expression over actions, e.g., after a certain
number of actions of a given type, an architectural element will perform a given action; the
goal of such regular expressions is not to increase the language expressive power, but rather
to enhance the property readability) or a state formula (state pattern, e.g., a given behavior
leads to an expected state, such as true or false). AAL toolset entails theorem provers
(Azaiez & Oquendo, 2005) and model checkers (Bergamini et al., 2004). User-defined
properties are linked to the description of ar chitectural elements they are about. Their
evaluation/analysis may be carried out at both design time and runtime.

The architecture execution languages – correspond to some concrete runtime architecture-
centric languages. Specific defined transformation rules are applied to architectural models
to generate more concrete and/or detailed architectural models. In the proposed approach
(see Figure 1) either Core ArchWare detailed architectural models are generated for being
executed by the ArchWare Virtual Machine (Morrison et al., 2004), or Java code is produced
to be executed by a Java Virtual Machine (Alloui et al., 2003b), or a Nimrod architectural
model (Verjus 2007) is produced to be interpreted by Nimrod (implemented in Pharo,
www.pharo-project.org).

4. Case study introduction and evolution scenarios

Given the four identified kinds of evolution (cf. section 2) in this chapter we focus on the
dynamic evolution, be it planned or not. To illustrate the mechanisms allowing such
evolutions, we consider a supply chain architecture that entails a manufacturing enterprise,
its customers (clients) and suppliers. The supply chain architecture is governed by an EAI
(Enterprise Application Integration) software solution that itself includes an ERP system.
The ERP system includes components dedicated to handling respective ly stocks, invoices,
orders and quotations.

Static evolutions are not considered in this chapter. Such evolutions require the running
system to be stopped before any modification. Then, it is up to the architect to modifiy
statically the system architecture and to launch the system again. Research approaches
dealing with static evolution are manifold and the reader may look closer at works
presented in section 7.

Initial scenario. Whenever a client places an order to the EAI, s/he first asks for a quotation.
In order to simplify the scenario, the decisi on about order commitment by evaluating the
quotation is not covered here. The ordering system (one may frequently meet the term
component in most ADLs) takes the order and updates the stock according to the demanded
product and quantity). The restocking system may ask for restocking if the current product

Innovative Information Systems Modelling Techniques

22

with a minimal core formal language and an extension mechanism that allows the users to
construct more specific description languages.

The core formal language – ArchWare �S-ADL. The ArchWare project proposes a meta-
model, defined by an abstract syntax and formal semantic (Oquendo et al., 2002). Several
concrete syntaxes are proposed (Verjus & Oquendo, 2003; Alloui & Oquendo, 2003),
ArchWare �S-ADL (Cîmpan et al., 2002; Morrison et al., 2004) being the textual one. The core
language is a well-formed extension of the high-order typed �S-calculus (Milner, 1999) that
defines a calculus of communicating and mobile architectural elements. These architectural
elements are defined in terms of behaviors. A behavior expresses in a scheduled way both
an architectural element internal computation and its interactions (sending and receiving
messages via connections that link it to other architectural elements). These actions
(concerning communication as well as internal computing) are scheduled using �S-calculus
based operators to express sequence, choice, composition, replication and matching.
Composite architectural elements are defined by composing behaviors, communicating
through connections. An architecture is itself an architectural element. Moreover, �S-ADL
provides a mechanism to reuse parameterised behavior definitions which can be embedded
in abstractions. Such abstractions are instantiated as behaviors by application. As the core
language is Turing complete, a virtual machine (Morissson et al. 2004) enables enactment of
architectures that are defined using this language.

The extension mechanism – is represented in Figure 1 by ASL. The extension mechanism is
based on architectural styles, representing a family of architectures sharing common
characteristics and obeying a given set of constraints. ArchWare ASL (Architectural Sytle
Language) is a meta-model allowing the definiti on of styles, and hence of domain specific
languages (Leymonerie, 2004). More precisely, architectural element types can be
introduced by a style, forming the style vocabulary. When a style is defined using ASL, it is
possible to associate a new syntax; thus the style provides a domain-specific architecture
description language. Architectural styles and associated languages can then be constructed
using a meta-level tower. If using the nth layer of the language family a style is defined, its
associated syntax constitutes a n+1 layer. By construction, an architecture defined using the
nth layer of the language family, has its corresponding description in the n-1 layer.

The component-connector layer – corresponds to a particular domain language,
dedicated to the definition of component-connector models of software architectures. In
Figure 1, ADSL is the generic term for such domain specific language. Using the extension
mechanism (ASL) a level 1 language has been constructed starting from the core
language (level 0). This language, named ArchWare C&C-ADL is associated to an
architectural style in which architectural el ements are either components or connectors
(Cîmpan et al., 2005; Leymonerie, 2004). Components and connectors are first class citizens
and can be atomic or composed by other components and connectors. An architectural
element interface, represented by its connections, is structured in ports. Each port is thus
composed by a set of connections, and has an associated protocol (corresponding to a
behavior projection of the element to which it pertains). Atomic as well as composite
architectural elements may entail attributes used in their parameterisation. A composite
element behavior results from the parall el composition of its composing element
behaviors. The composite element has its own ports, which ports of composing elements
are attached to.

An Architecture-Centric Approach for
Information System Architecture Modeling, Enactement and Evolution

23

The architecture analysis language – corresponds to AAL in Figure 1. Architectural
properties can be expressed in the ArchWare framework by using a dedicated language:
ArchWare Architecture Analysis Language (AAL) (Alloui et al., 2003; Mateescu & Oquendo,
2006). AAL is a formal language based on first order predicate logic and �P-calculus
(Bradfield and Stirling, 2001). Predicate logic allows users to express structural aspects while
�P-calculus provides the expressive power needed for the representation of dynamic aspects
of an evolving system. A prop erty is expressed in AAL using a predicate formula (concerns
the architecture structure, e.g., the existence of a connection among two elements), an action
formula (concerns the architectural element behavior, e.g., a component must have a
recursive behavior), a regular formul a (regular expression over actions, e.g., after a certain
number of actions of a given type, an architectural element will perform a given action; the
goal of such regular expressions is not to increase the language expressive power, but rather
to enhance the property readability) or a state formula (state pattern, e.g., a given behavior
leads to an expected state, such as true or false). AAL toolset entails theorem provers
(Azaiez & Oquendo, 2005) and model checkers (Bergamini et al., 2004). User-defined
properties are linked to the description of ar chitectural elements they are about. Their
evaluation/analysis may be carried out at both design time and runtime.

The architecture execution languages – correspond to some concrete runtime architecture-
centric languages. Specific defined transformation rules are applied to architectural models
to generate more concrete and/or detailed architectural models. In the proposed approach
(see Figure 1) either Core ArchWare detailed architectural models are generated for being
executed by the ArchWare Virtual Machine (Morrison et al., 2004), or Java code is produced
to be executed by a Java Virtual Machine (Alloui et al., 2003b), or a Nimrod architectural
model (Verjus 2007) is produced to be interpreted by Nimrod (implemented in Pharo,
www.pharo-project.org).

4. Case study introduction and evolution scenarios

Given the four identified kinds of evolution (cf. section 2) in this chapter we focus on the
dynamic evolution, be it planned or not. To illustrate the mechanisms allowing such
evolutions, we consider a supply chain architecture that entails a manufacturing enterprise,
its customers (clients) and suppliers. The supply chain architecture is governed by an EAI
(Enterprise Application Integration) software solution that itself includes an ERP system.
The ERP system includes components dedicated to handling respective ly stocks, invoices,
orders and quotations.

Static evolutions are not considered in this chapter. Such evolutions require the running
system to be stopped before any modification. Then, it is up to the architect to modifiy
statically the system architecture and to launch the system again. Research approaches
dealing with static evolution are manifold and the reader may look closer at works
presented in section 7.

Initial scenario. Whenever a client places an order to the EAI, s/he first asks for a quotation.
In order to simplify the scenario, the decisi on about order commitment by evaluating the
quotation is not covered here. The ordering system (one may frequently meet the term
component in most ADLs) takes the order and updates the stock according to the demanded
product and quantity). The restocking system may ask for restocking if the current product

Innovative Information Systems Modelling Techniques

24

stock is not big enough to satisfy the client’s order. A restocking procedure consists in
contacting a supplier in order to satisfy the order. We first assume that the supplier is
always able to satisfy a restocking demand.

Dynamic planned evolution. The architecture that supports planned dynamic evolution is a
self-contained architecture that is able to evolve in response to external and anticipated
events. The architecture is able to dynamically and automatically evolve (i.e., its structure
and behavior may evolve – for example in our scenario by adding clients or modifying the
invoicing system) without stopping the system an d with no user’s interaction. This kind of
evolution requires anticipation: the evolution strategy is defined and embedded in the
architecture description, before its execution. In our scenarios, the architecture evolves
dynamically in order to support new clients or to change the ERP invoicing system (see
section 5).

Dynamic unplanned evolution. In some situations (most real life systems), the evolution cannot
be anticipated and the architecture is not able to self-adapt. We emphasize scenarios (section
6) for which the architecture has to evolve dynamically (i.e., on-the-fly evolution), without
stopping the system execution to support unpredictable situations. We show how the
architect improves the restocking system by adding dynamically new suppliers and
modifying the restocking process. This evolution scenario shows thus how our proposition
addresses challenging topics such the dynamic and unplanned modification of the
architecture structure (introducing new suppliers) and the dynamic and unplanned
modification of the architecture behavi or (changing the restocking process).

These evolution scenarios help to demonstrate how our approach supports controlled and
consistent aware architecture dynamic evolution. For both planned and unplanned
situations, the architecture consistency is ensured using architectural formal property
verification.

5. Dynamic planned evolution: mechan isms and illustration using the supply
chain architecture

The layer ArchWare C&C allows to handle dynamic planned evolution. As already
mentioned, the language allows the definition of software architectures in terms of
compositions of interacting components and connectors. The language (Cîmpan et al., 2005)
improves previous propositions, such as Dynamic Wright (Allen et al., 1998), Piccola
(Nierstrasz & Achermann, 2000) and �Ñ-Space (Chaudet et al., 2000).

Being based on a process algebra, the language enables a system behavior representation. To
represent architectural dynamic changes the C&C language introduces specific actions, such
as a dynamic element creation and reconfiguration. Moreover, every architectural entity is
potentially dynamic, its definition is used at the dynamic creation of several instances. Thus
such a definition corresponds to a meta entity, a matrix containing an entity definition as
well as information allowing the creation, suppression (dynamic or not) and management of
several occurrences.

Components can be either atomic, either composite, i.e., a composition of components and
connectors. Independently of their atomic or composite nature, architectural elements can
dynamically evolve. Their evolution has nevertheless particularities.

An Architecture-Centric Approach for
Information System Architecture Modeling, Enactement and Evolution

25

The evolution of atomic (cf. section 5.1) and composite elements (cf. section 5.2) is illustrated
using the supply chain case study, for which th e architecture has been defined in terms of
components and connectors using the C&C language.

The Supply Chain architecture is presented in Figure 2. Defined as a composite component,
the supply chain architecture entails two atomic components, a supplier and a client, and a
composite component representing an ERP. The connector between the client and the ERP is
equally represented, the other ones are basic connectors, and not represented in the figure.
The ERP composite component entails four components, to handle respectively quotations,
orders, stock availability and invoices. The quotation system and the order system are
directly connected to one of the composite ports, allowing direct interaction with
components from outside the composite. The stock control and the invoice system are intern
to the composite, and are connected to the order system.

One of the supply chain architecture ports is dedicated to its evolution. Clients communicate
with the ERP essentially for exchanging inform ation related to quotes (quote demands and
propositions) and orders (orders and invoices). Ports are dedicated to this purpose on both
communicating parts.

Fig. 2. The supply chain global architecture

The composite initialization and evolution are handled by its choreographer, as explained in
section 5.2.

Innovative Information Systems Modelling Techniques

24

stock is not big enough to satisfy the client’s order. A restocking procedure consists in
contacting a supplier in order to satisfy the order. We first assume that the supplier is
always able to satisfy a restocking demand.

Dynamic planned evolution. The architecture that supports planned dynamic evolution is a
self-contained architecture that is able to evolve in response to external and anticipated
events. The architecture is able to dynamically and automatically evolve (i.e., its structure
and behavior may evolve – for example in our scenario by adding clients or modifying the
invoicing system) without stopping the system an d with no user’s interaction. This kind of
evolution requires anticipation: the evolution strategy is defined and embedded in the
architecture description, before its execution. In our scenarios, the architecture evolves
dynamically in order to support new clients or to change the ERP invoicing system (see
section 5).

Dynamic unplanned evolution. In some situations (most real life systems), the evolution cannot
be anticipated and the architecture is not able to self-adapt. We emphasize scenarios (section
6) for which the architecture has to evolve dynamically (i.e., on-the-fly evolution), without
stopping the system execution to support unpredictable situations. We show how the
architect improves the restocking system by adding dynamically new suppliers and
modifying the restocking process. This evolution scenario shows thus how our proposition
addresses challenging topics such the dynamic and unplanned modification of the
architecture structure (introducing new suppliers) and the dynamic and unplanned
modification of the architecture behavi or (changing the restocking process).

These evolution scenarios help to demonstrate how our approach supports controlled and
consistent aware architecture dynamic evolution. For both planned and unplanned
situations, the architecture consistency is ensured using architectural formal property
verification.

5. Dynamic planned evolution: mechan isms and illustration using the supply
chain architecture

The layer ArchWare C&C allows to handle dynamic planned evolution. As already
mentioned, the language allows the definition of software architectures in terms of
compositions of interacting components and connectors. The language (Cîmpan et al., 2005)
improves previous propositions, such as Dynamic Wright (Allen et al., 1998), Piccola
(Nierstrasz & Achermann, 2000) and �Ñ-Space (Chaudet et al., 2000).

Being based on a process algebra, the language enables a system behavior representation. To
represent architectural dynamic changes the C&C language introduces specific actions, such
as a dynamic element creation and reconfiguration. Moreover, every architectural entity is
potentially dynamic, its definition is used at the dynamic creation of several instances. Thus
such a definition corresponds to a meta entity, a matrix containing an entity definition as
well as information allowing the creation, suppression (dynamic or not) and management of
several occurrences.

Components can be either atomic, either composite, i.e., a composition of components and
connectors. Independently of their atomic or composite nature, architectural elements can
dynamically evolve. Their evolution has nevertheless particularities.

An Architecture-Centric Approach for
Information System Architecture Modeling, Enactement and Evolution

25

The evolution of atomic (cf. section 5.1) and composite elements (cf. section 5.2) is illustrated
using the supply chain case study, for which th e architecture has been defined in terms of
components and connectors using the C&C language.

The Supply Chain architecture is presented in Figure 2. Defined as a composite component,
the supply chain architecture entails two atomic components, a supplier and a client, and a
composite component representing an ERP. The connector between the client and the ERP is
equally represented, the other ones are basic connectors, and not represented in the figure.
The ERP composite component entails four components, to handle respectively quotations,
orders, stock availability and invoices. The quotation system and the order system are
directly connected to one of the composite ports, allowing direct interaction with
components from outside the composite. The stock control and the invoice system are intern
to the composite, and are connected to the order system.

One of the supply chain architecture ports is dedicated to its evolution. Clients communicate
with the ERP essentially for exchanging inform ation related to quotes (quote demands and
propositions) and orders (orders and invoices). Ports are dedicated to this purpose on both
communicating parts.

Fig. 2. The supply chain global architecture

The composite initialization and evolution are handled by its choreographer, as explained in
section 5.2.

Innovative Information Systems Modelling Techniques

26

5.1 Evolution of atomic components and connectors

Atomic component and connectors definitions are structured in three parts, one for
declaring attributes and meta ports, one to define the initial configuration (where instances
of meta ports are created) and one representing the behavior. Component’s behavior is
named computing, while for connectors we use the term routing. The evolution of atomic
components and connectors implies mainly changes in their interface, i.e., addition or
suppresion of ports. This has two implications on the behavior, who’s representation does
not change. The first implication is that part of it will be dedicated to handling the evolution
while the rest of it, which we call nominal behavior, represents the main purpose of the
element. The second implication is that the nominal behavior is generic, so that it can cope
with the dynamic set of ports.

We will illustrate how dynamically evolving atomic architectural elements can be modeled
by the example of the ClientToERP connector. The later has ports dedicated to the
communication with clients and the ERP as well as an evolution port. As with all
architectural elements described using ArchWare C&C-ADL, the declarations correspond to
meta element declarations, meaning that several instances of the same meta element may co-
exist at runtime. Thus, clientQuotationP , erpQuotationP , clientOrderP , erpOrderP as well as
newClientP are meta ports. An instance of each is created in the configuration part.
Additional instances may be created at runtime, as we will see. Meta elements provide an
additional management level between types and instances, allowing to handle the dynamic
evolution of architectures. In the initial config uration, an instance of each meta port is
created (cf. Figure 3). Recursively, the connector has 3 choices: to transmit a
demand/response for a product quotation, transmit a command, or handle an evolution
request. The first two choices represent the nominal behavior. In the case of an evolution
request, the connector creates two new instances of the clientOrderP and clientQuotationP
ports, so that a new client can be connected to the ERP.

The nominal part of the behavior, which handles the quotation and the command
transmissions, is generic, as it takes into account the fact that the number of clients, and
hence the number of instances for clientOrderP and clientQuotationP , is unknown. Each
meta entity (be it connection, port, component or connector) has a list containing its
instances. The ith instance of the meta entity is accessed using its name follwed by #i, while a
random instance is accessed using the name followed by #any. Thus, in the connector
behavior, clientQuotationP #any=i ~quotationReq is a reference towards the connection
quotationReq of a random instance of the meta port clientQuotationP , while keeping the
reference in the i variable. Saving the reference towards the connection concerned by the
request allows the connector to identify th e request demander, and thus to return the
response to the correct client.

This represention allows the connector between the clients and the ERP to evolve
dynamically to enable the connection of new clients. In the next section we will show how
composite dynamically evolving architectural elements can be described.

5.2 Evolution of composite architectural elements

In this section we have a look at how the arrival of new clients is represented at the supply
chain architectural level. The supply chain is represented as a composite component. Each

An Architecture-Centric Approach for
Information System Architecture Modeling, Enactement and Evolution

27

composite element evolution is handled by a dedicated sub-component – the choreographer.
The latter can change the topology whenever needed by: changing the attachments between
architectural elements, dynamically creating new instances of architectural elements,
excluding elements from the architecture, including elemen ts which arrive into the
architecture (coupling them with the rest of the architecture).

 ClientToErpConnector i s connector with {
 ports { clientOrderP is OrderPort;
 clientQuotationP is QuotationPort;

erpOrderP is OrderDemandPort;
 erpQuotationP is QuotationDemandPort;
 newClientP is port with {
 connections {
 createI is connection(Any) ,
 createO is connection(Any) }
 configuration { new createI ; new createO }
 protocol {
 via createI receive;
 via createO send ;
 recurse
 }
 }}
 configuration { new clientOrderP; new clientQuotationP ;
 new erpOrderP; new erpQuotationP ; new newClientP }

routing {
 choose{
 via clientQuotationP #any=i ~quotationReq
 receive product:String, quantity:Integer ;
 via erpQuotationP~quotationReq send product, quantity ;
 via erpQuotationP~quotationRep receive price:Float ;
 via clientQuotationP #i ~quotationRep send price; }
 or {
 via clientOrderP #any=i ~orderReq
 receive product:String, quantity:Integer ;
 via erpOrderP~orderReq send product, quantity ;
 via erpOrderP~orderRep receive ack:String ;
 via clientOrderP #i ~orderRep send ack;

if (ack==“OK”) then {
 via erpOrderP~invoice receive invoice: String;
 via clientOrderP #i~ invoice send invoice; } }
 or {
 via newClientP~createI receive ;
 new clientOrderP; new clientQuotationP;
 via newClient~createO send }

then recurse }
}

quotation
communication

command
communication

evolution
management

Fig. 3. Connector between clients and the ERP

The SupplyChain choreographer (cf. Figure 4) handles the two evolution scenarios: the
arrival of a new client and the reception of a new invoice system, which is transmitted to the
ERP system. In the first case, the client is inserted into the Client meta component and an
evolution message is sent to the ClientToERP connector, triggering th e connector’s evolution
(cf. section 5.1). The SupplyChain choreographer attaches then the connector last created
ports to the last client instance, i.e., to the client that dynamically joined the supply chain.

Innovative Information Systems Modelling Techniques

26

5.1 Evolution of atomic components and connectors

Atomic component and connectors definitions are structured in three parts, one for
declaring attributes and meta ports, one to define the initial configuration (where instances
of meta ports are created) and one representing the behavior. Component’s behavior is
named computing, while for connectors we use the term routing. The evolution of atomic
components and connectors implies mainly changes in their interface, i.e., addition or
suppresion of ports. This has two implications on the behavior, who’s representation does
not change. The first implication is that part of it will be dedicated to handling the evolution
while the rest of it, which we call nominal behavior, represents the main purpose of the
element. The second implication is that the nominal behavior is generic, so that it can cope
with the dynamic set of ports.

We will illustrate how dynamically evolving atomic architectural elements can be modeled
by the example of the ClientToERP connector. The later has ports dedicated to the
communication with clients and the ERP as well as an evolution port. As with all
architectural elements described using ArchWare C&C-ADL, the declarations correspond to
meta element declarations, meaning that several instances of the same meta element may co-
exist at runtime. Thus, clientQuotationP , erpQuotationP , clientOrderP , erpOrderP as well as
newClientP are meta ports. An instance of each is created in the configuration part.
Additional instances may be created at runtime, as we will see. Meta elements provide an
additional management level between types and instances, allowing to handle the dynamic
evolution of architectures. In the initial config uration, an instance of each meta port is
created (cf. Figure 3). Recursively, the connector has 3 choices: to transmit a
demand/response for a product quotation, transmit a command, or handle an evolution
request. The first two choices represent the nominal behavior. In the case of an evolution
request, the connector creates two new instances of the clientOrderP and clientQuotationP
ports, so that a new client can be connected to the ERP.

The nominal part of the behavior, which handles the quotation and the command
transmissions, is generic, as it takes into account the fact that the number of clients, and
hence the number of instances for clientOrderP and clientQuotationP , is unknown. Each
meta entity (be it connection, port, component or connector) has a list containing its
instances. The ith instance of the meta entity is accessed using its name follwed by #i, while a
random instance is accessed using the name followed by #any. Thus, in the connector
behavior, clientQuotationP #any=i ~quotationReq is a reference towards the connection
quotationReq of a random instance of the meta port clientQuotationP , while keeping the
reference in the i variable. Saving the reference towards the connection concerned by the
request allows the connector to identify th e request demander, and thus to return the
response to the correct client.

This represention allows the connector between the clients and the ERP to evolve
dynamically to enable the connection of new clients. In the next section we will show how
composite dynamically evolving architectural elements can be described.

5.2 Evolution of composite architectural elements

In this section we have a look at how the arrival of new clients is represented at the supply
chain architectural level. The supply chain is represented as a composite component. Each

An Architecture-Centric Approach for
Information System Architecture Modeling, Enactement and Evolution

27

composite element evolution is handled by a dedicated sub-component – the choreographer.
The latter can change the topology whenever needed by: changing the attachments between
architectural elements, dynami cally creating new instances of architectural elements,
excluding elements from the architecture, including elemen ts which arrive into the
architecture (coupling them with the rest of the architecture).

 ClientToErpConnector i s connector with {
 ports { clientOrderP is OrderPort;
 clientQuotationP is QuotationPort;

erpOrderP is OrderDemandPort;
 erpQuotationP is QuotationDemandPort;
 newClientP is port with {
 connections {
 createI is connection(Any) ,
 createO is connection(Any) }
 configuration { new createI ; new createO }
 protocol {
 via createI receive;
 via createO send ;
 recurse
 }
 }}
 configuration { new clientOrderP; new clientQuotationP ;
 new erpOrderP; new erpQuotationP ; new newClientP }

routing {
 choose{
 via clientQuotationP #any=i ~quotationReq
 receive product:String, quantity:Integer ;
 via erpQuotationP~quotationReq send product, quantity ;
 via erpQuotationP~quotationRep receive price:Float ;
 via clientQuotationP #i ~quotationRep send price; }
 or {
 via clientOrderP #any=i ~orderReq
 receive product:String, quantity:Integer ;
 via erpOrderP~orderReq send product, quantity ;
 via erpOrderP~orderRep receive ack:String ;
 via clientOrderP #i ~orderRep send ack;

if (ack==“OK”) then {
 via erpOrderP~invoice receive invoice: String;
 via clientOrderP #i~ invoice send invoice; } }
 or {
 via newClientP~createI receive ;
 new clientOrderP; new clientQuotationP;
 via newClient~createO send }

then recurse }
}

quotation
communication

command
communication

evolution
management

Fig. 3. Connector between clients and the ERP

The SupplyChain choreographer (cf. Figure 4) handles the two evolution scenarios: the
arrival of a new client and the reception of a new invoice system, which is transmitted to the
ERP system. In the first case, the client is inserted into the Client meta component and an
evolution message is sent to the ClientToERP connector, triggering th e connector’s evolution
(cf. section 5.1). The SupplyChain choreographer attaches then the connector last created
ports to the last client instance, i.e., to the client that dynamically joined the supply chain.

Innovative Information Systems Modelling Techniques

28

 SupplyChain is component with{
 ports {
 erpEvolveP is ERPEvolutionPort;
 newClientP is ClientPort; }
 constituents {
 clientComponent is Client;
 erpComponent is ERP;
 clientToErp is ClientToErpConnector; }
 configuration {

new clientComponent; new erpComponent; new clientToErp;
attach clientComponent~orderP to clientToErp~clientOrderP ;
attach clientToErp~erpOrderP to erpComponent~erpOrderP ;
attach clientComponent~quotationP

to clientToErp~clientQuotationP ;
attach clientToErp~erpquotationP

to erpComponent~erpQuotationP ;}
 choreographer {
 choose {
 via erpEvolveP~newInvoice
 receive newInvoiceComponent:InvoiceSystem;
 via erpComponent~erpEvolveP~newInvoice
 send newInvoiceComponent;
 via erpComponent~erpEvolveP~ack receive ack:String; }
 or
 { via newClientP~createOut receive c : Client;
 insert component c in Client ;
 via clientToErp~newClientP~createIn send ;
 via clientToErp~newClient~createOut receive ;
 attach clientComponent #last~orderP
 to clientToErp~clientOrderP #last;
 attach clientComponent #last~quotationP
 to clientToErp~clientQuotationP #last;}
 then recurse
 } }

Invoice system
evolution

New client:

Demand the connector to
evolve

Attach the new client to the
connector

Fig. 4. The SupplyChain composite component

The ERP invoice system is replaced dynamically by a new one, and integrated in the ERP
architecture. It is thus possible to change dynamically a system component. This is due, on
the one hand, to the language formal foundations, the higher order �S-calculus, which allows
architectural elements to transit connections. On the other hand, the choreographer handles
the connectivity among different architectural el ements. It is thus possible to detach a
component or to integrate a new one in a composite. The system topology changes in
response to particular events.

New clients join the architecture dynami cally; the connector evolves by creating
communication ports for the new clients. This evolution scenario highlights the
choreographer role in the evolution, its capacity to change dynamically the system topology.
Other language mechanisms are used here, such as the management of meta elements’
multiple instances and therefore the description of generic behaviors. The Client number of
instances is unknown, and varies during execution. The Client meta entity handles the
different instances, which can be on-the-fly created or come from outsid e the architecture. In
this last case, typing constraints are imposed. The connector to which the Client component
is attached has to evolve dynamically its interface (by adding new specific ports) and its
behavior (the behavior definition does not chan ge but is generic, so as to handle whatever
number of clients).

An Architecture-Centric Approach for
Information System Architecture Modeling, Enactement and Evolution

29

The two evolution scenarios illustrate how Ar chWare C&C-ADL allows the users to define
the architecture of evolving systems. The evolutions presented contain some forms of
mobility, as the new invoice system as well as new clients join the architecture at runtime.
This is possible due to the use of the higher order �S-calculus in the language foundations.
Nevertheless we do not address other aspects related to mobility, only a rough management
of the architecture state is made.

5.3 Property checking during evolution

Different kinds of properties are checked duri ng the evolution. Some of them concern the
typing and are intrinsically related to the language, and others are specified explicitly in
order to represent domain-related properties to be checked. Concerning typing, for instance,
the newClient connection of the newClientP port is typed so that only elements of type
Client (or one of its sub-types) can transit vi a the connection. More precisely, in the
previous example a component of type Client has to have two ports of type
QuotationDemandPort and OrderDemandPort, i.e., ports that have the same kind of connections
and the same protocol. This ensures that a new component, to be integrated in the
architecture as a client, is able to correctly interact with the rest of the system.

The explicit properties are more or less specific to the problem (in our case the supply
chain). The main goal is to ensure the system integrity during the evolution, from structural
as well as from behavioral points of view. An example of generic structural property is the
connectivity: each element is connected to at least another element. While the system evolves
the architectural elements have to remain correctly connected. Concerning the behavior, one
can impose that each response to a command corresponds to an order made by a client.
Properties can also combine both structural and behavioral aspects.

The following properties (structural and/or behavioral) are expressed using the ArchWare
AAL analysis language (Alloui et al., 2003a). Let us remind the reader that this language
allows the users to define properties and comes with tools for property checking.

The property connectivityOfERPArchitecture expresses that each component has to be
connected to at least another component. In our case study the architect has to verify that
once the invoice system is changed, each component is connected to another component in
the ERP composite component.

 connectivityOfERPArchitecture is property {
-- each component is attached to at least another component
on self. components . ports apply
 forall { port1 | on self.components . ports apply
 exists { port2 | attached(port1, port2) }}
}

The property requestBeforeReplyOfOrderSystem expresses the fact that the order system can
send a response only after receiving a request. This property has to be verified also after the
system evolution, i.e. when the invoice system is changed in the architecture.

Innovative Information Systems Modelling Techniques

28

 SupplyChain is component with{
 ports {
 erpEvolveP is ERPEvolutionPort;
 newClientP is ClientPort; }
 constituents {
 clientComponent is Client;
 erpComponent is ERP;
 clientToErp is ClientToErpConnector; }
 configuration {

new clientComponent; new erpComponent; new clientToErp;
attach clientComponent~orderP to clientToErp~clientOrderP ;
attach clientToErp~erpOrderP to erpComponent~erpOrderP ;
attach clientComponent~quotationP

to clientToErp~clientQuotationP ;
attach clientToErp~erpquotationP

to erpComponent~erpQuotationP ;}
 choreographer {
 choose {
 via erpEvolveP~newInvoice
 receive newInvoiceComponent:InvoiceSystem;
 via erpComponent~erpEvolveP~newInvoice
 send newInvoiceComponent;
 via erpComponent~erpEvolveP~ack receive ack:String; }
 or
 { via newClientP~createOut receive c : Client;
 insert component c in Client ;
 via clientToErp~newClientP~createIn send ;
 via clientToErp~newClient~createOut receive ;
 attach clientComponent #last~orderP
 to clientToErp~clientOrderP #last;
 attach clientComponent #last~quotationP
 to clientToErp~clientQuotationP #last;}
 then recurse
 } }

Invoice system
evolution

New client:

Demand the connector to
evolve

Attach the new client to the
connector

Fig. 4. The SupplyChain composite component

The ERP invoice system is replaced dynamically by a new one, and integrated in the ERP
architecture. It is thus possible to change dynamically a system component. This is due, on
the one hand, to the language formal foundations, the higher order �S-calculus, which allows
architectural elements to transit connections. On the other hand, the choreographer handles
the connectivity among different architectural el ements. It is thus possible to detach a
component or to integrate a new one in a composite. The system topology changes in
response to particular events.

New clients join the architecture dynami cally; the connector evolves by creating
communication ports for the new clients. This evolution scenario highlights the
choreographer role in the evolution, its capacity to change dynamically the system topology.
Other language mechanisms are used here, such as the management of meta elements’
multiple instances and therefore the description of generic behaviors. The Client number of
instances is unknown, and varies during execution. The Client meta entity handles the
different instances, which can be on-the-fly created or come from outsid e the architecture. In
this last case, typing constraints are imposed. The connector to which the Client component
is attached has to evolve dynamically its interface (by adding new specific ports) and its
behavior (the behavior definition does not chan ge but is generic, so as to handle whatever
number of clients).

An Architecture-Centric Approach for
Information System Architecture Modeling, Enactement and Evolution

29

The two evolution scenarios illustrate how Ar chWare C&C-ADL allows the users to define
the architecture of evolving systems. The evolutions presented contain some forms of
mobility, as the new invoice system as well as new clients join the architecture at runtime.
This is possible due to the use of the higher order �S-calculus in the language foundations.
Nevertheless we do not address other aspects related to mobility, only a rough management
of the architecture state is made.

5.3 Property checking during evolution

Different kinds of properties are checked duri ng the evolution. Some of them concern the
typing and are intrinsically related to the language, and others are specified explicitly in
order to represent domain-related properties to be checked. Concerning typing, for instance,
the newClient connection of the newClientP port is typed so that only elements of type
Client (or one of its sub-types) can transit vi a the connection. More precisely, in the
previous example a component of type Client has to have two ports of type
QuotationDemandPort and OrderDemandPort, i.e., ports that have the same kind of connections
and the same protocol. This ensures that a new component, to be integrated in the
architecture as a client, is able to correctly interact with the rest of the system.

The explicit properties are more or less specific to the problem (in our case the supply
chain). The main goal is to ensure the system integrity during the evolution, from structural
as well as from behavioral points of view. An example of generic structural property is the
connectivity: each element is connected to at least another element. While the system evolves
the architectural elements have to remain correctly connected. Concerning the behavior, one
can impose that each response to a command corresponds to an order made by a client.
Properties can also combine both structural and behavioral aspects.

The following properties (structural and/or behavioral) are expressed using the ArchWare
AAL analysis language (Alloui et al., 2003a). Let us remind the reader that this language
allows the users to define properties and comes with tools for property checking.

The property connectivityOfERPArchitecture expresses that each component has to be
connected to at least another component. In our case study the architect has to verify that
once the invoice system is changed, each component is connected to another component in
the ERP composite component.

 connectivityOfERPArchitecture is property {
-- each component is attached to at least another component
on self. components . ports apply
 forall { port1 | on self.components . ports apply
 exists { port2 | attached(port1, port2) }}
}

The property requestBeforeReplyOfOrderSystem expresses the fact that the order system can
send a response only after receiving a request. This property has to be verified also after the
system evolution, i.e. when the invoice system is changed in the architecture.

Innovative Information Systems Modelling Techniques

30

 requestBeforeReplyOfOrderSystem i s property {
-- no reply without a request
 on OrderSystem . instances apply
 forall { os | (on os . actions apply isNotEmpty) implies
 (on os.orderP~orderReq.actionsIn apply
 exists { request | on os.orderP~orderRep.actionsOut apply
 forall { reply | every sequence {(not request)*. reply }
 leads to state { false } } }) } }

This is expressed in AAL by a state formula that leads to false for all replies (belonging to
actionsOut) sent before receiving a request (belonging to actionsIn).

The changes presented here were planned during the architecture design. The property
checking takes place at design time too as the system evolves only in an anticipated way.
That means each time that an architectural element is changed, related properties are
checked on its new architecture description.

In the following section we will show how the unplanned architecture evolution can take
place at runtime and how property checking is enabled before integrating the changes.

6. Dynamic unplanned evolution of the supply chain architecture

Let us go back to the original supply chain architecture. The case we are interested in is the
one where no evolution was planned when the architecture was designed. So the
architecture definition does not entail archit ectural changes to be triggered when given
events occur (such as it was the case in the previous section) nor it is known what elements
might evolve. Actually, the industrial reality shows that the maintenance and evolution of
complex systems (client-server, distributed, etc.) is handled pragmatically, each case
individually, without a methodical approach (Demeyer et al., 2002).

The architecture proposed up to now (see section 4) responds to the problems the case study
raises, without covering all possible evolution scenarios. What happens when the stocks for
a product are not big enough to answer the demand, and the situation was not anticipated?
What if the invoice system has to be outsourced, or if the supplier–client relation changes at
runtime? The system initial architecture is unable to react to such unexpected events. So it
has to evolve.

The scenario used for the unplanned dynamic evolution is different from the one presented
in the previous section, although both are based on the initial scenario (section 3). More
precisely a new restock system is to be added to the ERP.

6.1 Initial architecture: The supply chain system architecture before its evolution

We illustrate the dynamic unplanned evolution using an example described in the core
language (rather than the C&C-ADL used for illustrating the dynamic planned evolution).
Using the core language (also named �S-ADL - see sections 2 and 3) enables to look at the
evolution issue in its essence (independently from specific language layers) and to take
advantage of the closeness with the virtual machine1. This induces a change in the architecture

1 The virtual machine can only interpret the core ArchWare ADL language (Morisson et al., 2004)

An Architecture-Centric Approach for
Information System Architecture Modeling, Enactement and Evolution

31

structure, as a description in the core language only uses the generic term of architectural
abstraction (components and connectors used in the previous section are defined in terms of
architectural abstractions (Cîmpan et al. 2005)). As the only terms are architectural abstractions,
connected by connections (no ports, components nor connectors) we use a slightly different
graphical notation as it is shown in Figure 5. There the architectural abstractions and their
hierarchical composition for the init ial architecture are presented.

Fig. 5. The Supply Chain before its Evolution

The �S-ADL descriptions for the client and supplier abstractions (cf. Figure 6) are rather
simple. The client’s behavior consists in sequencing the following action s: send a request for
quotation, wait for the response; then, either make a request for quotation again (i.e., when
the previous one was not satisfactory), or place an order and wait for the invoice. The
supplier receives a restocking request and satisfies it. In the initial scenario we chose a basic
client-supplier relationship, in which any re stock request is supposed to be satisfied
(contractually this is of the suppliers’ respon sibility). The supplier ac knowledges the request
when it is ready to restock. We will see later how this relationship evolves.

Innovative Information Systems Modelling Techniques

30

 requestBeforeReplyOfOrderSystem i s property {
-- no reply without a request
 on OrderSystem . instances apply
 forall { os | (on os . actions apply isNotEmpty) implies
 (on os.orderP~orderReq.actionsIn apply
 exists { request | on os.orderP~orderRep.actionsOut apply
 forall { reply | every sequence {(not request)*. reply }
 leads to state { false } } }) } }

This is expressed in AAL by a state formula that leads to false for all replies (belonging to
actionsOut) sent before receiving a request (belonging to actionsIn).

The changes presented here were planned during the architecture design. The property
checking takes place at design time too as the system evolves only in an anticipated way.
That means each time that an architectural element is changed, related properties are
checked on its new architecture description.

In the following section we will show how the unplanned architecture evolution can take
place at runtime and how property checking is enabled before integrating the changes.

6. Dynamic unplanned evolution of the supply chain architecture

Let us go back to the original supply chain architecture. The case we are interested in is the
one where no evolution was planned when the architecture was designed. So the
architecture definition does not entail archit ectural changes to be triggered when given
events occur (such as it was the case in the previous section) nor it is known what elements
might evolve. Actually, the industrial reality shows that the maintenance and evolution of
complex systems (client-server, distributed, etc.) is handled pragmatically, each case
individually, without a methodical approach (Demeyer et al., 2002).

The architecture proposed up to now (see section 4) responds to the problems the case study
raises, without covering all possible evolution scenarios. What happens when the stocks for
a product are not big enough to answer the demand, and the situation was not anticipated?
What if the invoice system has to be outsourced, or if the supplier–client relation changes at
runtime? The system initial architecture is unable to react to such unexpected events. So it
has to evolve.

The scenario used for the unplanned dynamic evolution is different from the one presented
in the previous section, although both are based on the initial scenario (section 3). More
precisely a new restock system is to be added to the ERP.

6.1 Initial architecture: The supply chain system architecture before its evolution

We illustrate the dynamic unplanned evolution using an example described in the core
language (rather than the C&C-ADL used for illustrating the dynamic planned evolution).
Using the core language (also named �S-ADL - see sections 2 and 3) enables to look at the
evolution issue in its essence (independently from specific language layers) and to take
advantage of the closeness with the virtual machine1. This induces a change in the architecture

1 The virtual machine can only interpret the core ArchWare ADL language (Morisson et al., 2004)

An Architecture-Centric Approach for
Information System Architecture Modeling, Enactement and Evolution

31

structure, as a description in the core language only uses the generic term of architectural
abstraction (components and connectors used in the previous section are defined in terms of
architectural abstractions (Cîmpan et al. 2005)). As the only terms are architectural abstractions,
connected by connections (no ports, components nor connectors) we use a slightly different
graphical notation as it is shown in Figure 5. There the architectural abstractions and their
hierarchical composition for the init ial architecture are presented.

Fig. 5. The Supply Chain before its Evolution

The �S-ADL descriptions for the client and supplier abstractions (cf. Figure 6) are rather
simple. The client’s behavior consists in sequencing the following action s: send a request for
quotation, wait for the response; then, either make a request for quotation again (i.e., when
the previous one was not satisfactory), or place an order and wait for the invoice. The
supplier receives a restocking request and satisfies it. In the initial scenario we chose a basic
client-supplier relationship, in which any re stock request is supposed to be satisfied
(contractually this is of the suppliers’ respon sibility). The supplier ac knowledges the request
when it is ready to restock. We will see later how this relationship evolves.

Innovative Information Systems Modelling Techniques

32

 value client is abstraction(String: quotationRequest , Integer: qty);{
 value quotationReq is free connection(String);
 value quotationRep is free connection(Float);
 value orderReq is free connection(String,Integer);
 value orderRep is free connection(String);
 value invoiceToClient is free connection(String);
 value quotationBeh is behaviour {
 via quotationReq send quotationRequest ;
 via quotationRep receive amount :Float;
 unobservable; }
 quotationBeh();
 replicate {
 choose {

 quotationBeh();
 or
 behaviour {
 via orderReq send quotationRequest , qty ;
 unobservable;
 via orderRep receive ack :String;
 if (ack == "OK) then {
 via invoiceToClient receive invoice :String; } } } };
 done };
value supplier1 is abstraction(); {
 value restockingOrder1Req is free connection(String, Integer);
 value restockingOrder1Rep is free connection(String);
 replicate {
 via restockingOrder1Req receive wares :String, quantity :Integer;
 unobservable ;
 via restockingOrder1Rep send " OK" };
 done };

Fig. 6. Descriptions for Client and Supplier

Building architectures in the core language is done by hierarchically composing
abstractions. The ERP abstraction (cf. Figure 7) is composed by other abstractions. Let us
remind the user that a behavior in the core language is closely related to a �S-calculus process
(Milner, 1999). Here the ERP abstraction is composed of abstractions representing systems for
handling quotations, orders, invoices and restocks. The ERP abstraction is itself part of
another abstraction, the EAI, itself part of another, and so on. The overall architecture
(scm_arch) represents the supply chain management (cf. Figure 8) and its evolution
capabilities. This abstraction composes the scm and evolver abstractions. In the �S-calculus
sense the two abstractions are autonomous processes, which are unified using their
connection names and types (Oquendo et al., 2002). Further in the chapter we will see the
role played by each one of these abstractions.

An Architecture-Centric Approach for
Information System Architecture Modeling, Enactement and Evolution

33

 value quotationSystem i s abstraction(Float: price) ; { . .. }
value orderSystem is abstraction();{...}
value stockControl is abstraction(Integer: stock); {...}
value restockingSystem is abstraction();{...}
value invoiceSystem is abstraction();{...}
value erp is abstraction(Float: price , Integer: stock); {
 compose { quotationSystem(price)
 and orderSystem()
 and invoiceSystem()
 and stockControl (stock)
 and restockingSystem () } };
value eai is abstraction(Float: price , Integer: stock); {
 compose { supplier1 (20)
 and
 erp (price , stock) } } };

Fig. 7. The ERP abstraction

 value scm_arch is abstraction(); {
 compose { scm()
 and

evolver() } };

Fig. 8. The Supply Chain Abstraction (named scm_arch)

6.2 Language mechanisms for supporting dynamic unplanned evolution

The �S-ADL evolution mechanisms are based on the �S-calculus mobility (Milner, 1999). In �S-
ADL, an abstraction C (a behavior /process) can be sent from an abstraction A to another
abstraction B. The latter can then dynamically apply it and may behave as the received
abstraction C. As a consequence, the abstraction B has dynamically evolved, its current
behavior might be radically different from the previous one (Verjus et al., 2006). Such
evolution is (1) dynamic because the new behavior (abstraction C) is dynamically received
and (2) unplanned as the abstraction definition is unknown in advance. An architect can
provide the abstraction definition at runtime, and thus represent the unplanned evolution
(as opposed to the planned evolution illustrated in section 5).

To illustrate the evolution mechanisms let us consider a simple abstraction my_abst (cf.
Figure 9). It receives a boolean (evolution) and an abstraction (evol_arch_part) on its
connection evolRep. If the boolean value is true, my_abst behaves as the evol_arch_part
abstraction definition received and applied. Otherwise (the boolean value is false), my_abst
behaves in accordance to its initial description (// some code in Figure 9).

Thus, my_abst abstraction can be dynamically modified; such modification is unplanned as
the evol_arch_part abstraction definition is unknown at design time and is provided at
runtime by the evolver abstraction. The latter plays an important role in the evolution: it is
always connected to the abstraction that is expected to evolve (the my_abst in this example).

Innovative Information Systems Modelling Techniques

32

 value client is abstraction(String: quotationRequest , Integer: qty);{
 value quotationReq is free connection(String);
 value quotationRep is free connection(Float);
 value orderReq is free connection(String,Integer);
 value orderRep is free connection(String);
 value invoiceToClient is free connection(String);
 value quotationBeh is behaviour {
 via quotationReq send quotationRequest ;
 via quotationRep receive amount :Float;
 unobservable; }
 quotationBeh();
 replicate {
 choose {

 quotationBeh();
 or
 behaviour {
 via orderReq send quotationRequest , qty ;
 unobservable;
 via orderRep receive ack :String;
 if (ack == "OK) then {
 via invoiceToClient receive invoice :String; } } } };
 done };
value supplier1 is abstraction(); {
 value restockingOrder1Req is free connection(String, Integer);
 value restockingOrder1Rep is free connection(String);
 replicate {
 via restockingOrder1Req receive wares :String, quantity :Integer;
 unobservable ;
 via restockingOrder1Rep send " OK" };
 done };

Fig. 6. Descriptions for Client and Supplier

Building architectures in the core language is done by hierarchically composing
abstractions. The ERP abstraction (cf. Figure 7) is composed by other abstractions. Let us
remind the user that a behavior in the core language is closely related to a �S-calculus process
(Milner, 1999). Here the ERP abstraction is composed of abstractions representing systems for
handling quotations, orders, invoices and restocks. The ERP abstraction is itself part of
another abstraction, the EAI, itself part of another, and so on. The overall architecture
(scm_arch) represents the supply chain management (cf. Figure 8) and its evolution
capabilities. This abstraction composes the scm and evolver abstractions. In the �S-calculus
sense the two abstractions are autonomous processes, which are unified using their
connection names and types (Oquendo et al., 2002). Further in the chapter we will see the
role played by each one of these abstractions.

An Architecture-Centric Approach for
Information System Architecture Modeling, Enactement and Evolution

33

 value quotationSystem i s abstraction(Float: price) ; { . .. }
value orderSystem is abstraction();{...}
value stockControl is abstraction(Integer: stock); {...}
value restockingSystem is abstraction();{...}
value invoiceSystem is abstraction();{...}
value erp is abstraction(Float: price , Integer: stock); {
 compose { quotationSystem(price)
 and orderSystem()
 and invoiceSystem()
 and stockControl (stock)
 and restockingSystem () } };
value eai is abstraction(Float: price , Integer: stock); {
 compose { supplier1 (20)
 and
 erp (price , stock) } } };

Fig. 7. The ERP abstraction

 value scm_arch is abstraction(); {
 compose { scm()
 and

evolver() } };

Fig. 8. The Supply Chain Abstraction (named scm_arch)

6.2 Language mechanisms for supporting dynamic unplanned evolution

The �S-ADL evolution mechanisms are based on the �S-calculus mobility (Milner, 1999). In �S-
ADL, an abstraction C (a behavior /process) can be sent from an abstraction A to another
abstraction B. The latter can then dynamically apply it and may behave as the received
abstraction C. As a consequence, the abstraction B has dynamically evolved, its current
behavior might be radically different from the previous one (Verjus et al., 2006). Such
evolution is (1) dynamic because the new behavior (abstraction C) is dynamically received
and (2) unplanned as the abstraction definition is unknown in advance. An architect can
provide the abstraction definition at runtime, and thus represent the unplanned evolution
(as opposed to the planned evolution illustrated in section 5).

To illustrate the evolution mechanisms let us consider a simple abstraction my_abst (cf.
Figure 9). It receives a boolean (evolution) and an abstraction (evol_arch_part) on its
connection evolRep. If the boolean value is true, my_abst behaves as the evol_arch_part
abstraction definition received and applied. Otherwise (the boolean value is false), my_abst
behaves in accordance to its initial description (// some code in Figure 9).

Thus, my_abst abstraction can be dynamically modified; such modification is unplanned as
the evol_arch_part abstraction definition is unknown at design time and is provided at
runtime by the evolver abstraction. The latter plays an important role in the evolution: it is
always connected to the abstraction that is expected to evolve (the my_abst in this example).

Innovative Information Systems Modelling Techniques

34

 value my_abst i s abstraction(); {
 value evolReq is free connection();
 value evolRep is free connection(Boolean, abstraction());
 . . . // some code
 via evolReq send;
 via evolRep receive evolution :Boolean,
 evol_arch_part :abstraction(...);
 if (evolution) then {
 evol_arch_part (...) }
 else {
 . . .//some code } };

The new current abstraction’s behaviour: the
received abstraction is applied at runtime

Fig. 9. Abstraction Dynamic Evolution

 value evolver is abstraction(); {
 value evolReq is free connection();
 value evolRep is free connection(Boolean, abstraction);
 value checkReq is free connection(abstraction);
 value checkRep is free connection(Boolean);
 evol_arch_part is ARCH-EVOLUTION;
 iterate{

via evolReq receive;
 via checkReq send evol_arch_part ;
 via checkRep receive propertyVerification : Boolean;

if (propertyVerification)
 via evolRep send true, evol_arch_part ;
 }
};

Fig. 10. The Evolver Abstraction

The evolver abstraction is the communication means between the virtual machine and the
external world i.e., the architect who decides to evolve the architecture. As unplanned
changes are to be implemented dynamically in the system, an important issue is the
property preservation . Property verifications are made on the evol_arch_part abstraction,
which represents (all) the evolved architecture (see section 6.4 for some insights on the
evolved architecture according to the evolver abstractions’ location(s)). This abstraction is
sent using the mechanism we introduced to enable the on-the-fly exchange of abstractions:
the use of a special abstraction type, ARCH-EVOLUTION. At design time, the evol_arch_part
abstraction is declared of type ARCH-EVOLUTION (inside the evolver). This special type entails
the evolution strategy, which can consist in using files, user’s interfaces, etc. An example of
such a strategy consists in using a file containing the new abstraction definition, at a place
known by the virtual machine. The architect can place the evol_arch_part abstraction
definition in this file. When the evolver sends the evol_arch_part abstraction, its definition
is dynamically loaded by the virtual machine from the file.

However this is done only if property verification results are true, i.e., the properties remain
satisfied if changes contained in evol_arch_part are applied to the executing architecture.
This verification is even more crucial than in the case of anticipated evolution since the
content of evol_arch_part is not known in advance. The earlier property violations are
detected, the lower the maintenance cost is. Thus the decision to evolve or not is taken in the
evolver, depending on whether the properties ar e still verified after the evolution. Property

An Architecture-Centric Approach for
Information System Architecture Modeling, Enactement and Evolution

35

verifications are made on the evol_arch_part abstraction, which represents the evolved
architecture and which is sent by the evolver to the property checker, also represented by an
abstraction. The checker verifies the properties attached to the abstraction to be evolved
tacking into account the changes contained in the evol_arch_part abstraction. It sends then a
boolean value (propertyVerification) to the evolver: true if the properties still hold, false
otherwise. If the properties hold, then the evolver sends the evol_arch_part abstraction to
the abstraction to be evolved. Other strategies can be implemented, such as prompting the
architect with the analysis result s. The architect’s choice to proceed or not is then reflected
on the boolean value. Finally the changes are implemented on the running system taking
into account the architecture execution state (Balasubramaniam et al., 2004).

6.3 Illustration of the dynamic unplanned evolution

This evolution scenario is interesting: on the one hand it implies evolving the system
architecture structure by adding a second and new supplier; on the other hand, it enforces to
change dynamically the restocking process to take into account that a restocking request
may not be satisfied; in this case, a new supplier is appearing and the initial restocking
request has to be split (with some quantity computations) among the two suppliers. The
system behavior has to be changed dynamically according to the new configuration and
process (Figure 11 and Figure 12).

The new architecture description is presented in Figure 12.

Fig. 11. The Evolved Architecture

Innovative Information Systems Modelling Techniques

34

 value my_abst i s abstraction(); {
 value evolReq is free connection();
 value evolRep is free connection(Boolean, abstraction());
 . . . // some code
 via evolReq send;
 via evolRep receive evolution :Boolean,
 evol_arch_part :abstraction(...);
 if (evolution) then {
 evol_arch_part (...) }
 else {
 . . .//some code } };

The new current abstraction’s behaviour: the
received abstraction is applied at runtime

Fig. 9. Abstraction Dynamic Evolution

 value evolver is abstraction(); {
 value evolReq is free connection();
 value evolRep is free connection(Boolean, abstraction);
 value checkReq is free connection(abstraction);
 value checkRep is free connection(Boolean);
 evol_arch_part is ARCH-EVOLUTION;
 iterate{

via evolReq receive;
 via checkReq send evol_arch_part ;
 via checkRep receive propertyVerification : Boolean;

if (propertyVerification)
 via evolRep send true, evol_arch_part ;
 }
};

Fig. 10. The Evolver Abstraction

The evolver abstraction is the communication means between the virtual machine and the
external world i.e., the architect who decides to evolve the architecture. As unplanned
changes are to be implemented dynamically in the system, an important issue is the
property preservation . Property verifications are made on the evol_arch_part abstraction,
which represents (all) the evolved architecture (see section 6.4 for some insights on the
evolved architecture according to the evolver abstractions’ location(s)). This abstraction is
sent using the mechanism we introduced to enable the on-the-fly exchange of abstractions:
the use of a special abstraction type, ARCH-EVOLUTION. At design time, the evol_arch_part
abstraction is declared of type ARCH-EVOLUTION (inside the evolver). This special type entails
the evolution strategy, which can consist in using files, user’s interfaces, etc. An example of
such a strategy consists in using a file containing the new abstraction definition, at a place
known by the virtual machine. The architect can place the evol_arch_part abstraction
definition in this file. When the evolver sends the evol_arch_part abstraction, its definition
is dynamically loaded by the virtual machine from the file.

However this is done only if property verification results are true, i.e., the properties remain
satisfied if changes contained in evol_arch_part are applied to the executing architecture.
This verification is even more crucial than in the case of anticipated evolution since the
content of evol_arch_part is not known in advance. The earlier property violations are
detected, the lower the maintenance cost is. Thus the decision to evolve or not is taken in the
evolver, depending on whether the properties ar e still verified after the evolution. Property

An Architecture-Centric Approach for
Information System Architecture Modeling, Enactement and Evolution

35

verifications are made on the evol_arch_part abstraction, which represents the evolved
architecture and which is sent by the evolver to the property checker, also represented by an
abstraction. The checker verifies the properties attached to the abstraction to be evolved
tacking into account the changes contained in the evol_arch_part abstraction. It sends then a
boolean value (propertyVerification) to the evolver: true if the properties still hold, false
otherwise. If the properties hold, then the evolver sends the evol_arch_part abstraction to
the abstraction to be evolved. Other strategies can be implemented, such as prompting the
architect with the analysis result s. The architect’s choice to proceed or not is then reflected
on the boolean value. Finally the changes are implemented on the running system taking
into account the architecture execution state (Balasubramaniam et al., 2004).

6.3 Illustration of the dynamic unplanned evolution

This evolution scenario is interesting: on the one hand it implies evolving the system
architecture structure by adding a second and new supplier; on the other hand, it enforces to
change dynamically the restocking process to take into account that a restocking request
may not be satisfied; in this case, a new supplier is appearing and the initial restocking
request has to be split (with some quantity computations) among the two suppliers. The
system behavior has to be changed dynamically according to the new configuration and
process (Figure 11 and Figure 12).

The new architecture description is presented in Figure 12.

Fig. 11. The Evolved Architecture

Innovative Information Systems Modelling Techniques

36

 value scm i s abstraction(); {
 value evolReq is free connection();
 value evolRep is free connection(Boolean, abstraction()
);
 compose {
 behaviour {
 via evolReq send;
 via evolRep receive evolution:Boolean,
 evol_arch_part :abstraction(Float,Integer);
 if (evolution) then {

evol_arch_part(100.00, 32) }
 else { eai(100.00 , 32) }}
 and
 client("rollings", 12) } };

value scm_arch is abstraction(); {
 compose { scm()
 and evolver()

and cheker()}
 };

The received
abstraction is
dynamically
applied

Fig. 12. The evolved architecture (scm abstraction description)

Changes between the initial architecture (before evolution – Figure 5) and the modified
architecture (after evolution – Figure 11) take place in the scm abstraction. The scm
abstraction definition contains �S-ADL code that manages the evolution: the scm abstraction
behavior includes and applies both the eai and client abstractions (before evolution), and
both the evol_arch_part and client abstractions (when the evolution occurs). Thus, when
the evolution occurs, the evol_arch_part abstraction substitutes the eai abstraction. The
evolver abstraction is unified with the abstraction that is supposed to evolve (scm). As
explained in section 6.2, the evol_arch_part abstraction is dynamically received and then
applied after property verification by the property checker.

As in the case of planned evolution, architectural properties may hold on both the structure
and behavior of the system. Note that in the present case, the properties are expressed in
AAL using the core ADL concepts; this is because the virtual machine can only interpret the
core language (Morisson et al., 2004). Examples of properties are:

Structural:

�x connectivity: all architecture elements must be connected (no isolated element) in
scm_arch;

�x cardinality: there must be at least one supplier in scm_arch;

Behavioral :

�x no regression of services provided within the architecture: client’s request must always
be satisfied;

�x no regression of behavior safety: a supplier must first receive a request before any other
action.

These properties are formalised using ArchWare-AAL as follows.

An Architecture-Centric Approach for
Information System Architecture Modeling, Enactement and Evolution

37

Architecture connectivity

In scm_arch, each architectural element (abstraction) abst1 is connected to at least another
architectural element abst2 (non empty intersection of their connection sets).

 connectivityOfscm_arch is property {
-- each abstraction must be connected to at least another one

on self . abstractions apply
forall { abst1 | on self . abstractions apply
exists { abst2 | (abst2 <> abst1) and ((abst2 . connections
 apply intersection (abst1 . connections)) apply isNotEmpty) } } }

Supplier cardinality

In scm_arch, there must be at least one abstraction supp of type Supplier.

 atLeastOneSupplierInscm_arch i s property {
-- there must be at least one supplier within the system

on self .abstractions apply
exists { sup | (sup.type=”Supplier”) } }

Client’s request satisfaction

Every client’s request must be satisfied (through receiving an OK reply on orderReq
connection). This property is expressed using a state formula on client’s actions: every
request followed by zero or more non OK reply followed by an OK reply is the expected
behavior (leads to state True).

 clientRequestSatisfaction i s property {
-- the client must always have his(her) request satisfied

 on Client. instances apply
 forall { c | (on c.orderReq.actionsOut apply
 forall { request | on c.orderRep.actionsIn apply
 exists { reply | (reply = “OK”) AND

(every sequence { request.(not reply)*.reply }
 leads to state { true}) } }) } }

Supplier’s safe behavior

Each supplier must receive a request before any other action. This is expressed by a state
formula on supplier’s actions: every sequence starting with zero or more actions that are not
of the restocking order type (i.e., couple (wares, quantity)) and ending by a reply, is not an
expected behavior (leads to state false).

Innovative Information Systems Modelling Techniques

36

 value scm i s abstraction(); {
 value evolReq is free connection();
 value evolRep is free connection(Boolean, abstraction()
);
 compose {
 behaviour {
 via evolReq send;
 via evolRep receive evolution:Boolean,
 evol_arch_part :abstraction(Float,Integer);
 if (evolution) then {

evol_arch_part(100.00, 32) }
 else { eai(100.00 , 32) }}
 and
 client("rollings", 12) } };

value scm_arch is abstraction(); {
 compose { scm()
 and evolver()

and cheker()}
 };

The received
abstraction is
dynamically
applied

Fig. 12. The evolved architecture (scm abstraction description)

Changes between the initial architecture (before evolution – Figure 5) and the modified
architecture (after evolution – Figure 11) take place in the scm abstraction. The scm
abstraction definition contains �S-ADL code that manages the evolution: the scm abstraction
behavior includes and applies both the eai and client abstractions (before evolution), and
both the evol_arch_part and client abstractions (when the evolution occurs). Thus, when
the evolution occurs, the evol_arch_part abstraction substitutes the eai abstraction. The
evolver abstraction is unified with the abstraction that is supposed to evolve (scm). As
explained in section 6.2, the evol_arch_part abstraction is dynamically received and then
applied after property verification by the property checker.

As in the case of planned evolution, architectural properties may hold on both the structure
and behavior of the system. Note that in the present case, the properties are expressed in
AAL using the core ADL concepts; this is because the virtual machine can only interpret the
core language (Morisson et al., 2004). Examples of properties are:

Structural:

�x connectivity: all architecture elements must be connected (no isolated element) in
scm_arch;

�x cardinality: there must be at least one supplier in scm_arch;

Behavioral :

�x no regression of services provided within the architecture: client’s request must always
be satisfied;

�x no regression of behavior safety: a supplier must first receive a request before any other
action.

These properties are formalised using ArchWare-AAL as follows.

An Architecture-Centric Approach for
Information System Architecture Modeling, Enactement and Evolution

37

Architecture connectivity

In scm_arch, each architectural element (abstraction) abst1 is connected to at least another
architectural element abst2 (non empty intersection of their connection sets).

 connectivityOfscm_arch is property {
-- each abstraction must be connected to at least another one

on self . abstractions apply
forall { abst1 | on self . abstractions apply
exists { abst2 | (abst2 <> abst1) and ((abst2 . connections
 apply intersection (abst1 . connections)) apply isNotEmpty) } } }

Supplier cardinality

In scm_arch, there must be at least one abstraction supp of type Supplier.

 atLeastOneSupplierInscm_arch i s property {
-- there must be at least one supplier within the system

on self .abstractions apply
exists { sup | (sup.type=”Supplier”) } }

Client’s request satisfaction

Every client’s request must be satisfied (through receiving an OK reply on orderReq
connection). This property is expressed using a state formula on client’s actions: every
request followed by zero or more non OK reply followed by an OK reply is the expected
behavior (leads to state True).

 clientRequestSatisfaction i s property {
-- the client must always have his(her) request satisfied

 on Client. instances apply
 forall { c | (on c.orderReq.actionsOut apply
 forall { request | on c.orderRep.actionsIn apply
 exists { reply | (reply = “OK”) AND

(every sequence { request.(not reply)*.reply }
 leads to state { true}) } }) } }

Supplier’s safe behavior

Each supplier must receive a request before any other action. This is expressed by a state
formula on supplier’s actions: every sequence starting with zero or more actions that are not
of the restocking order type (i.e., couple (wares, quantity)) and ending by a reply, is not an
expected behavior (leads to state false).

Innovative Information Systems Modelling Techniques

38

 requestBeforeReplyForSupplier i s property {
-- no reply action before receiving a request

 on Supplier . instances apply
 forall { s |
 (on s.restockingOrderReq.actionsIn apply

exists { request | (request.type=’(String, Integer)’)
AND (on s.restockingOrderRep.actionsOut apply

 forall { reply |
every sequence {(not request)*. reply }

 l eads to state { f alse } }) }) } }

Before implementing changes contained in ARCH-EVOLUTION, user-defined properties are
analyzed taking into account those changes. In our scenario, the four properties remain
satisfied when introducing a second supplier: (a) the connectivity is still ensured, (b) there
is still at least one supplier, (c) the client’s request can be satisfied by supplier1 and if
needed with the help of supplier2, (d) the supplier1’s behavior and now the supplier2’s
behavior must remain safe. Consequently evolving the scm_arch this way does not a priori
threaten the stability of the system architecture as unexpected behaviors are detected during
property analysis.

Once the property verification successfully performed by the property checker and the
evol_arch_part abstraction applied, the scm abstraction adopts a new behavior,
defined dynamically by the architect, accord ing to the adopted evolution strategy. This
behavior adds a new supplier (supplier2) and the restocking process in the ERP is
changed taking into account this new supplier . The Figure 13 does not show non-modified
abstractions (for conciseness and clarity purposes). One can note that the new supplier
(supplier2) does not behave as the existing supplier (supplier1) (i.e., both suppliers
are different): the evolution we introduced (see section 4) requires two different suppliers;
we assume that a restocking request to the new supplier (supplier2) will only be
satisfied if the requested quantity is less or equal to the supplier2’s stock quantity (for
a given product). The restocking process takes now into account the existence of a new
supplier, and the initial demand may be split (according to the quantity requested) and
handled respectively by the two suppliers.

We have shown in this section that: (i) the system is able to dynamically evolve with
architectural elements that are dynamically and on-the-fly provided (not known in
advance), (ii) required changes are transmitted to the executing architecture through a
particular abstraction (evolver), (iii) the arch itect can check the architecture before and/or
after the evolution using user-defined prop erties that are expressed in a dedicated
architecture property definition language, (iv) changes are applied according to the results
of the property verification.

An Architecture-Centric Approach for
Information System Architecture Modeling, Enactement and Evolution

39

 value supplier2 is abstraction(Integer capacity) ; {
 value restockingOrder2Req is free connection(String, Integer);
 value restockingOrder2Rep is free connection(String, Integer);
 via restockingOrder2Req receive wares :String, quantity :Integer;
 unobservable;
 if (quantity > capacity) then {
 via restockingOrder2Rep send " NOK", capacity ; }
 else { via restockingOrder2Rep send " OK", capacity ; }
 done };
value restockingSystem is abstraction(); {
 value restockingReq is free connection(String, Integer);
 value restockingOrder2Req is free connection(String, Integer);
 value restockingOrder2Rep is free connection(String, Integer);
 value restockingOrder1Req is free connection(String, Integer);
 value restockingOrder1Rep is free connection(String);
 via restockingReq receive wares :String, quantity :Integer;
 via restockingOrder2Req send wares , quantity ;
 via restockingOrder2Rep receive ack :String, qtyReceived :Integer;
 if (ack == " NOK") then {
 via restockingOrder1Req send wares , (quantity - qtyReceived);
 unobservable;
 via restockingOrder1Rep receives ack2 :String; }
 unobservable;
 done };
value erp is abstraction(Float: price , Integer: stock); {
 compose { quotationSystem (price)
 and orderSystem ()
 and invoiceSystem ()
 and stockControl (stock)
 and restockingSystem () } };
value ARCH-EVOLUTION is abstraction(Float: price , Integer: stock); {
 compose { erp (price , stock)
 and supplier1 ()

and supplier2 (20) } };

The abstraction that will be
sent to the scm abstraction
and applied by this latter

Fig. 13. Definition of the ARCH-EVOLUTION abstraction

6.4 Discussion

Let us now focus on evolution mechanisms illust rated in this section. When unpredictable
situations occur, the architect has to dynamically (at runtime) provide an abstraction
definition entailing the desired architectu ral changes. This abstraction, typed ARCH-
EVOLUTION is (1) checked against architectural properties, (2) sent to the abstraction that is
supposed to evolve and (3) dynamically applied by this latter (see section 6.2). The scope of
an architectural modification is related to th e dedicated abstraction (evolver) that manages
such modification. More precisely it is relate d to the exact place the evolver takes in the
architecture, i.e., which abstraction it is bound to. A given modification that is defined
within an ARCH-EVOLUTION abstraction may only impact the abstraction (and sub-
abstractions) that receives this ARCH-EVOLUTION abstraction from the evolver. As a
consequence, the evolvers (abstractions) are architectural evolution elements. They may be
considered as non-functional architectural elements. Thus, it is up to the architect to decide,
at design time, where to place evolvers. The architect has to decide which abstractions may

Innovative Information Systems Modelling Techniques

38

 requestBeforeReplyForSupplier i s property {
-- no reply action before receiving a request

 on Supplier . instances apply
 forall { s |
 (on s.restockingOrderReq.actionsIn apply

exists { request | (request.type=’(String, Integer)’)
AND (on s.restockingOrderRep.actionsOut apply

 forall { reply |
every sequence {(not request)*. reply }

 l eads to state { f alse } }) }) } }

Before implementing changes contained in ARCH-EVOLUTION, user-defined properties are
analyzed taking into account those changes. In our scenario, the four properties remain
satisfied when introducing a second supplier: (a) the connectivity is still ensured, (b) there
is still at least one supplier, (c) the client’s request can be satisfied by supplier1 and if
needed with the help of supplier2, (d) the supplier1’s behavior and now the supplier2’s
behavior must remain safe. Consequently evolving the scm_arch this way does not a priori
threaten the stability of the system architecture as unexpected behaviors are detected during
property analysis.

Once the property verification successfully performed by the property checker and the
evol_arch_part abstraction applied, the scm abstraction adopts a new behavior,
defined dynamically by the architect, accord ing to the adopted evolution strategy. This
behavior adds a new supplier (supplier2) and the restocking process in the ERP is
changed taking into account this new supplier . The Figure 13 does not show non-modified
abstractions (for conciseness and clarity purposes). One can note that the new supplier
(supplier2) does not behave as the existing supplier (supplier1) (i.e., both suppliers
are different): the evolution we introduced (see section 4) requires two different suppliers;
we assume that a restocking request to the new supplier (supplier2) will only be
satisfied if the requested quantity is less or equal to the supplier2’s stock quantity (for
a given product). The restocking process takes now into account the existence of a new
supplier, and the initial demand may be split (according to the quantity requested) and
handled respectively by the two suppliers.

We have shown in this section that: (i) the system is able to dynamically evolve with
architectural elements that are dynamically and on-the-fly provided (not known in
advance), (ii) required changes are transmitted to the executing architecture through a
particular abstraction (evolver), (iii) the arch itect can check the architecture before and/or
after the evolution using user-defined prop erties that are expressed in a dedicated
architecture property definition language, (iv) changes are applied according to the results
of the property verification.

An Architecture-Centric Approach for
Information System Architecture Modeling, Enactement and Evolution

39

 value supplier2 is abstraction(Integer capacity) ; {
 value restockingOrder2Req is free connection(String, Integer);
 value restockingOrder2Rep is free connection(String, Integer);
 via restockingOrder2Req receive wares :String, quantity :Integer;
 unobservable;
 if (quantity > capacity) then {
 via restockingOrder2Rep send " NOK", capacity ; }
 else { via restockingOrder2Rep send " OK", capacity ; }
 done };
value restockingSystem is abstraction(); {
 value restockingReq is free connection(String, Integer);
 value restockingOrder2Req is free connection(String, Integer);
 value restockingOrder2Rep is free connection(String, Integer);
 value restockingOrder1Req is free connection(String, Integer);
 value restockingOrder1Rep is free connection(String);
 via restockingReq receive wares :String, quantity :Integer;
 via restockingOrder2Req send wares , quantity ;
 via restockingOrder2Rep receive ack :String, qtyReceived :Integer;
 if (ack == " NOK") then {
 via restockingOrder1Req send wares , (quantity - qtyReceived);
 unobservable;
 via restockingOrder1Rep receives ack2 :String; }
 unobservable;
 done };
value erp is abstraction(Float: price , Integer: stock); {
 compose { quotationSystem (price)
 and orderSystem ()
 and invoiceSystem ()
 and stockControl (stock)
 and restockingSystem () } };
value ARCH-EVOLUTION is abstraction(Float: price , Integer: stock); {
 compose { erp (price , stock)
 and supplier1 ()

and supplier2 (20) } };

The abstraction that will be
sent to the scm abstraction
and applied by this latter

Fig. 13. Definition of the ARCH-EVOLUTION abstraction

6.4 Discussion

Let us now focus on evolution mechanisms illust rated in this section. When unpredictable
situations occur, the architect has to dynamically (at runtime) provide an abstraction
definition entailing the desired architectu ral changes. This abstraction, typed ARCH-
EVOLUTION is (1) checked against architectural properties, (2) sent to the abstraction that is
supposed to evolve and (3) dynamically applied by this latter (see section 6.2). The scope of
an architectural modification is related to th e dedicated abstraction (evolver) that manages
such modification. More precisely it is relate d to the exact place the evolver takes in the
architecture, i.e., which abstraction it is bound to. A given modification that is defined
within an ARCH-EVOLUTION abstraction may only impact the abstraction (and sub-
abstractions) that receives this ARCH-EVOLUTION abstraction from the evolver. As a
consequence, the evolvers (abstractions) are architectural evolution elements. They may be
considered as non-functional architectural elements. Thus, it is up to the architect to decide,
at design time, where to place evolvers. The architect has to decide which abstractions may

Innovative Information Systems Modelling Techniques

40

evolve without knowing how these abstractions will evolve. The architect adopts a strategy
that can vary from using a unique evolver a ttached to the abstraction that composes the
entire system to using as many evolvers as abstractions in the architecture. Both strategies
have advantages and drawbacks. The first alternative forces the architect to dynamically
provide the code that corresponds to the new (modified) entire architecture even if only a
small change is occurring; it implies that that property checking is also performed on the
entire architecture. The second alternative is quite heavy as it imposes that an evolver
should be unified with every existing archit ectural abstraction (but when a change is
occurring, only the code that corresponds to the evolved abstraction is redefined). This
decision is related to the number of architectural abstractions and the underlying complexity
of the full specification code (expressed in ArchWare ADL): it is an architectural design
issue that can be solved.

Furthermore as the ADL proposes abstraction composition and evolution-dedicated
abstractions, a given architecture may considerably evolve with cascading evolution
situations. An open issue is, then, when and how an architecture is deviating so far from its
initial configuration that we may consider it as another architecture (not as an evolved one).

During planned evolution or unplanned evolution, user-defined properties are evaluated
taking into account the new architecture. It is worth noting in the scenarios of section 6.3,
that while some property expressions like connectivityOfScm_arch are not affected by the
change, other properties like requestBeforeReplyForSupplier should evolve to express
supplier2’s expected safe behavior as well.

7. Related work

This section presents the work related to the dynamic evolution of software-intensive
information systems using a software architecture-centric approach.

(Bradbury et al., 2004) presents a survey of self-management in dynamic software
architecture specifications. The authors compare well known architecture description
languages and approaches in a self management perspective; dynamic architectural changes
have four steps : (1) initiation of change, (2) selection of architectural transformation, (3)
implementation of reconfiguration and (4) assessment of architecture after reconfiguration.
This chapter focuses on the three first steps. In the Bradbury et al. survey, most of the
studied ADLs support all of the basic change operations (adding or removing components
and connectors) but other more complex operations are not fully satisfied. Particularly,
dynamically modifying internal component beha vior remains an issue that is successfully
addressed only by few ADLs.

The representation of evolvable software-int ensive information system architectures is
related to architecture description languages and their capabilities, i.e., ADLs that allow the
architect to express dynamic evolvable architectures, including adapti ve architectures. Few
ADLs support dynamic architecture representation: Darwin (Magee et al., 1995), Dynamic
Wright (Allen et al., 1998), �S-Space (Chaudet & Oquendo, 2000), C2SADEL (Medvidovic et
al., 1999; Egyed & Medvidovic, 2001; Egyed et al., 2001), Piccola (Nierstrasz & Achermann,
2000), Pilar (Cuesta et al., 2005), ArchWare �S-ADL (Oquendo et al., 2002; Oquendo 2004),
ArchWare C&C-ADL (Cîmpan et al., 2005). Most of them are not suitable to support

An Architecture-Centric Approach for
Information System Architecture Modeling, Enactement and Evolution

41

unplanned dynamic architecture evolution as they consider different representations for the
concrete and abstract levels, and use reflection mechanisms to switch among these
representations: a dynamic architecture is first defined at abstract level and is then reflected
(1) into a dynamic evolvable concrete software-intensive system (Cazzola et al., 1999; Tisato
et al., 2000) or (2) into another, evolved abstract representation (Cuesta et al., 2001; Cuesta et
al., 2005). The link between the abstract level and the concrete one is not maintained, leading
to a situation in which only anticipated modifications can be supported dynamically.
ArchWare �S-ADL uses a unique representation for both levels (Verjus et al., 2006).

Thus, handling the software evolution is closely related to the problem of keeping the
consistency between the abstract and the implementation levels and continuously switching
between these levels. This issue is particularly important in the case of runtime evolution.
The consistency among the abstract and the concrete levels can be seen in two directions:
top-down from the abstract level to the concrete one (such as considered in model-driven
and architecture refinement approaches) and bottom-up from the concrete level to the
abstract one (such as considered by architecture extraction approaches). Our approach
adresses the top-down consistency.

Going from abstract architectural representations to more concrete ones is inherent in
architecture-centric development, and to th e model-driven development in general. The
architecture-centric development highly de pends on maintaining the consistency among
levels. Traditionally, when chan ges on the abstract architecture occur, it is up to the
developer to modify the code accordingly (sometimes assisted by semi-automated code
generation tools). Some architecture-based development approaches maintain mappings
between single versions of the architecture and their corresponding implementations
(Carriere et al., 1999; Medvidovi et al., 1999; Erdogmus, 1998; Egyed 2000; Van der Hoeck et
al., 2001; Egyed et al., 2001; Dashofy et al., 2002; Aldrich et al., 2002).

(Egyed & Medvidovic, 2001) approach introduces an intermediate “design” level between
architectural (abstract) level and implementati on (concrete) level. The consistency between
these levels is managed using mapping rules between UML diagrams with OCL constraints
(at design level) and C2 concepts (at architectural level). The transformation-based
consistency checking is ensured by IVita (Egyed & Medvidovic, 2001). This approach
assumes that changes are applied off-line.

ArchEvol (Nistor et al., 2005) proposes to accurately determine which versions of the
component implementations belo ng to the initial version of the architecture and which
belong to the branched version of the architecture. ArchEvol defines mappings between
architectural descriptions and component implem entations using a versioning infrastructure
(by using conjointly Subversion, Eclipse and Ar chStudio) and addresses the evolution of the
relationship between versions of the architecture and versions of the implementation.
ArchJava (Aldrich et al., 2002) is an extension to Java that unifies the software architecture
with implementation, ensuring that the implementation co nforms to the architectural
constraints. The latter mainly concern the communication integrity, i.e., implementation
components only communicate directly with th e components they are connected to in the
architecture. The limitations of ArchJava are inherent to Java systems, that are difficult to
dynamically evolve without stopping the executing system. In (Garlan et al., 2004), the code
is monitored, changes are made on abstract architectures using a change script language and

Innovative Information Systems Modelling Techniques

40

evolve without knowing how these abstractions will evolve. The architect adopts a strategy
that can vary from using a unique evolver a ttached to the abstraction that composes the
entire system to using as many evolvers as abstractions in the architecture. Both strategies
have advantages and drawbacks. The first alternative forces the architect to dynamically
provide the code that corresponds to the new (modified) entire architecture even if only a
small change is occurring; it implies that that property checking is also performed on the
entire architecture. The second alternative is quite heavy as it imposes that an evolver
should be unified with every existing archit ectural abstraction (but when a change is
occurring, only the code that corresponds to the evolved abstraction is redefined). This
decision is related to the number of architectural abstractions and the underlying complexity
of the full specification code (expressed in ArchWare ADL): it is an architectural design
issue that can be solved.

Furthermore as the ADL proposes abstraction composition and evolution-dedicated
abstractions, a given architecture may considerably evolve with cascading evolution
situations. An open issue is, then, when and how an architecture is deviating so far from its
initial configuration that we may consider it as another architecture (not as an evolved one).

During planned evolution or unplanned evolution, user-defined properties are evaluated
taking into account the new architecture. It is worth noting in the scenarios of section 6.3,
that while some property expressions like connectivityOfScm_arch are not affected by the
change, other properties like requestBeforeReplyForSupplier should evolve to express
supplier2’s expected safe behavior as well.

7. Related work

This section presents the work related to the dynamic evolution of software-intensive
information systems using a software architecture-centric approach.

(Bradbury et al., 2004) presents a survey of self-management in dynamic software
architecture specifications. The authors compare well known architecture description
languages and approaches in a self management perspective; dynamic architectural changes
have four steps : (1) initiation of change, (2) selection of architectural transformation, (3)
implementation of reconfiguration and (4) assessment of architecture after reconfiguration.
This chapter focuses on the three first steps. In the Bradbury et al. survey, most of the
studied ADLs support all of the basic change operations (adding or removing components
and connectors) but other more complex operations are not fully satisfied. Particularly,
dynamically modifying internal component beha vior remains an issue that is successfully
addressed only by few ADLs.

The representation of evolvable software-int ensive information system architectures is
related to architecture description languages and their capabilities, i.e., ADLs that allow the
architect to express dynamic evolvable architectures, including adapti ve architectures. Few
ADLs support dynamic architecture representation: Darwin (Magee et al., 1995), Dynamic
Wright (Allen et al., 1998), �S-Space (Chaudet & Oquendo, 2000), C2SADEL (Medvidovic et
al., 1999; Egyed & Medvidovic, 2001; Egyed et al., 2001), Piccola (Nierstrasz & Achermann,
2000), Pilar (Cuesta et al., 2005), ArchWare �S-ADL (Oquendo et al., 2002; Oquendo 2004),
ArchWare C&C-ADL (Cîmpan et al., 2005). Most of them are not suitable to support

An Architecture-Centric Approach for
Information System Architecture Modeling, Enactement and Evolution

41

unplanned dynamic architecture evolution as they consider different representations for the
concrete and abstract levels, and use reflection mechanisms to switch among these
representations: a dynamic architecture is first defined at abstract level and is then reflected
(1) into a dynamic evolvable concrete software-intensive system (Cazzola et al., 1999; Tisato
et al., 2000) or (2) into another, evolved abstract representation (Cuesta et al., 2001; Cuesta et
al., 2005). The link between the abstract level and the concrete one is not maintained, leading
to a situation in which only anticipated modifications can be supported dynamically.
ArchWare �S-ADL uses a unique representation for both levels (Verjus et al., 2006).

Thus, handling the software evolution is closely related to the problem of keeping the
consistency between the abstract and the implementation levels and continuously switching
between these levels. This issue is particularly important in the case of runtime evolution.
The consistency among the abstract and the concrete levels can be seen in two directions:
top-down from the abstract level to the concrete one (such as considered in model-driven
and architecture refinement approaches) and bottom-up from the concrete level to the
abstract one (such as considered by architecture extraction approaches). Our approach
adresses the top-down consistency.

Going from abstract architectural representations to more concrete ones is inherent in
architecture-centric development, and to th e model-driven development in general. The
architecture-centric development highly de pends on maintaining the consistency among
levels. Traditionally, when chan ges on the abstract architecture occur, it is up to the
developer to modify the code accordingly (sometimes assisted by semi-automated code
generation tools). Some architecture-based development approaches maintain mappings
between single versions of the architecture and their corresponding implementations
(Carriere et al., 1999; Medvidovi et al., 1999; Erdogmus, 1998; Egyed 2000; Van der Hoeck et
al., 2001; Egyed et al., 2001; Dashofy et al., 2002; Aldrich et al., 2002).

(Egyed & Medvidovic, 2001) approach introduces an intermediate “design” level between
architectural (abstract) level and implementati on (concrete) level. The consistency between
these levels is managed using mapping rules between UML diagrams with OCL constraints
(at design level) and C2 concepts (at architectural level). The transformation-based
consistency checking is ensured by IVita (Egyed & Medvidovic, 2001). This approach
assumes that changes are applied off-line.

ArchEvol (Nistor et al., 2005) proposes to accurately determine which versions of the
component implementations belo ng to the initial version of the architecture and which
belong to the branched version of the architecture. ArchEvol defines mappings between
architectural descriptions and component implem entations using a versioning infrastructure
(by using conjointly Subversion, Eclipse and Ar chStudio) and addresses the evolution of the
relationship between versions of the architecture and versions of the implementation.
ArchJava (Aldrich et al., 2002) is an extension to Java that unifies the software architecture
with implementation, ensuring that the implementation co nforms to the architectural
constraints. The latter mainly concern the communication integrity, i.e., implementation
components only communicate directly with th e components they are connected to in the
architecture. The limitations of ArchJava are inherent to Java systems, that are difficult to
dynamically evolve without stopping the executing system. In (Garlan et al., 2004), the code
is monitored, changes are made on abstract architectures using a change script language and

Innovative Information Systems Modelling Techniques

42

then mapped into the code. Each change operator has its transformation into lower level
changes. If the change script execution fails at the code level, the change is aborted. As this
work is made in the context of self-adaptation, issues such as how the change is triggered
are taken into account. The evolution takes place at runtime, and concerns both the design
and the code.

(Huang et al., 2006) focus on dynamic software architecture extraction and evolution by
catching the executing component-based system state and system behavior: an architectural
representation is deduced and can be modified at runtime. The approach can be seen as a
unifying one. However, the deduced architectural representation is incomplete and the
approach is limited to existing component-based systems.

Thus, the issue of dynamic unplanned changes is not satisfactory addressed. Aside
ArchWare, none of the existing proposals unifies the abstract level and the implementation
level in a complete and consistent manner. This is related to the fact that these proposals
consider software-intensive information system architecture at abstract levels only. Most of
the ADLs provide high level architectural means by focusing on abstract architectures. As
we can see, there is an unbalance between the two identified issues, namely the description
of dynamic architectures and the handling of un expected changes. The former is rather well
addressed by existing proposals, but the latter is practically uncovered. For an ADL, to
consider both issues is important, the ADL should not only be a design language but also an
implementation one, i.e., architectures become executable representations. We have
investigated in this chapter dynamic evolva ble software-intensive information system
architectures in a model-based development perspective. Model-based development is
centered around abstract, domain-specific models and transformations of abstract models
into more specific underlying platforms. Our approach addresses both abstract and concrete
architectural models in a model-based development framework and is quite related to the
Monarch approach (Bagheri & Sullivan, 2010). Nevertheless Monarch does not deal with
dynamic architecture evolution support.

8. Conclusion

In this chapter we have presented an architecture model-based development approach
guiding the development of dynamic evolvabl e software-intensive information system
architectures. Our approach supports dynamic evolvable architecture development process
covering modeling, analysis and execution. As the evolution is an important facet of a
software-intensive system (Lehman, 1996), our proposal aims at integrating evolution
modeling and evolution mechanisms into an executable and formal ADLs that can serve at
both abstract and concrete levels (bridging the gap between both levels). In this chapter, we
use ArchWare languages and technologies. Our proposal deals with the dynamic evolution
of architecture using specific architectural elements and ADL built-in mechanisms. We claim
that software-intensive system architectures have to incorporate, at the design time,
evolution mechanisms making those archit ectures evolution-aware at runtime.

Architectural changes can occur at different levels of abstraction and may concern
architecture structure and behavior, internal architectural elements’ structure and behavior
as well as their related properties. The dynamic support elements and mechanisms we have
introduced and formally defined serve not only at classical architectural (abstract) level but

An Architecture-Centric Approach for
Information System Architecture Modeling, Enactement and Evolution

43

also as implementation means. In other words, the software architecture, if completely
detailed and defined, can be the entire executing system itself. In our proposal, even in the
case of information systems incorporating heterogeneous and existing components or legacy
systems, information system components’ “glue” is described as behavior that can be
modified at runtime. Then, components can be dynamically removed, modified or added
and the way they interoperate can also be dynamically modified.

This issue positively impacts software-intensive information system maintenance activities
and underlying costs, budgets, efforts and skills.

As for proposed mechanisms for unplanned evolution, through the concept of evolver and
the ADL virtual machine, we consider them as a significant research advance as at the best
of our knowledge. Moreover as the framework relies on core ADL concepts of abstraction
composition and evolution-dedicated abstractions, a given architecture may considerably
evolve with cascading evolution situatio ns. We did not discuss when and how an
architecture is deviating so far from its initia l configuration so that we may consider it as
another architecture/system (and not as an evolved one). This issue can be further
addressed and related to architectural evolution patterns and paths introduced in (Garlan et
al., 2009). We also think that the ADL-based evolution support we propose is a good
candidate for self-adaptation system design and analysis but further investigations and case
studies are mandatory.

The scenarios used in this chapter, illustrate changes that are related to the composition of
the system (by adding for example a supplier) as well as the behaviour of the system (in
other words the business process) by modifying the restocking process. Other case studies
have been realized using the ArchWare approach and technologies, i.e., for a Manufacturing
Execution System for a Grid-based application in a health-related project (Manset et al.,
2006). Other reserarch activities are directly inspired from th ese results (Pourraz et al., 2006).

9. References

Abrial, J.R. (1996). The B Book, Assigning Programs to Meanings, Cambridge University
Press, Cambridge, 1996.

Aldrich, J.; Chambers, C. & Notkin, D. (2002). ArchJava: Connecting Software Architecture
to Implementation, Proceedings of the 24th International Conference on Software
Architecture (ICSE 2002), Orlando, Florida, May 2002.

Allen, R. ; Douence, R. & Garlan D. (1998). Specifying and Analyzing Dynamic Software
Architectures, Proceedings on Fundamental Approaches to Software Engineering, Lisbon,
Portugal, March 1998.

Alloui, I. & Oquendo, F. (2003). UML Arch- Ware/Style-based ADL, Deliverable D1.4b,
ArchWare European RTD Project, IST-2001-32360, 2003.

Alloui, I. ; Garavel, H. ; Mateescu, R. & Oquendo F.(2003a). The ArchWare Architecture
Analysis Language, Deliverable D3.1b, ArchWare European RTD Project, IST-2001-
32360, 2003.

Alloui, I. ; Megzari, K. & Oquendo F. (2003b). Modelling and Generating Business-To-
Business Applications Using an Architecture Description Language - Based

Innovative Information Systems Modelling Techniques

42

then mapped into the code. Each change operator has its transformation into lower level
changes. If the change script execution fails at the code level, the change is aborted. As this
work is made in the context of self-adaptation, issues such as how the change is triggered
are taken into account. The evolution takes place at runtime, and concerns both the design
and the code.

(Huang et al., 2006) focus on dynamic software architecture extraction and evolution by
catching the executing component-based system state and system behavior: an architectural
representation is deduced and can be modified at runtime. The approach can be seen as a
unifying one. However, the deduced architectural representation is incomplete and the
approach is limited to existing component-based systems.

Thus, the issue of dynamic unplanned changes is not satisfactory addressed. Aside
ArchWare, none of the existing proposals unifies the abstract level and the implementation
level in a complete and consistent manner. This is related to the fact that these proposals
consider software-intensive information system architecture at abstract levels only. Most of
the ADLs provide high level architectural means by focusing on abstract architectures. As
we can see, there is an unbalance between the two identified issues, namely the description
of dynamic architectures and the handling of un expected changes. The former is rather well
addressed by existing proposals, but the latter is practically uncovered. For an ADL, to
consider both issues is important, the ADL should not only be a design language but also an
implementation one, i.e., architectures become executable representations. We have
investigated in this chapter dynamic evolva ble software-intensive information system
architectures in a model-based development perspective. Model-based development is
centered around abstract, domain-specific models and transformations of abstract models
into more specific underlying platforms. Our approach addresses both abstract and concrete
architectural models in a model-based development framework and is quite related to the
Monarch approach (Bagheri & Sullivan, 2010). Nevertheless Monarch does not deal with
dynamic architecture evolution support.

8. Conclusion

In this chapter we have presented an architecture model-based development approach
guiding the development of dynamic evolvabl e software-intensive information system
architectures. Our approach supports dynamic evolvable architecture development process
covering modeling, analysis and execution. As the evolution is an important facet of a
software-intensive system (Lehman, 1996), our proposal aims at integrating evolution
modeling and evolution mechanisms into an executable and formal ADLs that can serve at
both abstract and concrete levels (bridging the gap between both levels). In this chapter, we
use ArchWare languages and technologies. Our proposal deals with the dynamic evolution
of architecture using specific architectural elements and ADL built-in mechanisms. We claim
that software-intensive system architectures have to incorporate, at the design time,
evolution mechanisms making those archit ectures evolution-aware at runtime.

Architectural changes can occur at different levels of abstraction and may concern
architecture structure and behavior, internal architectural elements’ structure and behavior
as well as their related properties. The dynamic support elements and mechanisms we have
introduced and formally defined serve not only at classical architectural (abstract) level but

An Architecture-Centric Approach for
Information System Architecture Modeling, Enactement and Evolution

43

also as implementation means. In other words, the software architecture, if completely
detailed and defined, can be the entire executing system itself. In our proposal, even in the
case of information systems incorporating heterogeneous and existing components or legacy
systems, information system components’ “glue” is described as behavior that can be
modified at runtime. Then, components can be dynamically removed, modified or added
and the way they interoperate can also be dynamically modified.

This issue positively impacts software-intensive information system maintenance activities
and underlying costs, budgets, efforts and skills.

As for proposed mechanisms for unplanned evolution, through the concept of evolver and
the ADL virtual machine, we consider them as a significant research advance as at the best
of our knowledge. Moreover as the framework relies on core ADL concepts of abstraction
composition and evolution-dedicated abstractions, a given architecture may considerably
evolve with cascading evolution situatio ns. We did not discuss when and how an
architecture is deviating so far from its initia l configuration so that we may consider it as
another architecture/system (and not as an evolved one). This issue can be further
addressed and related to architectural evolution patterns and paths introduced in (Garlan et
al., 2009). We also think that the ADL-based evolution support we propose is a good
candidate for self-adaptation system design and analysis but further investigations and case
studies are mandatory.

The scenarios used in this chapter, illustrate changes that are related to the composition of
the system (by adding for example a supplier) as well as the behaviour of the system (in
other words the business process) by modifying the restocking process. Other case studies
have been realized using the ArchWare approach and technologies, i.e., for a Manufacturing
Execution System for a Grid-based application in a health-related project (Manset et al.,
2006). Other reserarch activities are directly inspired from th ese results (Pourraz et al., 2006).

9. References

Abrial, J.R. (1996). The B Book, Assigning Programs to Meanings, Cambridge University
Press, Cambridge, 1996.

Aldrich, J.; Chambers, C. & Notkin, D. (2002). ArchJava: Connecting Software Architecture
to Implementation, Proceedings of the 24th International Conference on Software
Architecture (ICSE 2002), Orlando, Florida, May 2002.

Allen, R. ; Douence, R. & Garlan D. (1998). Specifying and Analyzing Dynamic Software
Architectures, Proceedings on Fundamental Approaches to Software Engineering, Lisbon,
Portugal, March 1998.

Alloui, I. & Oquendo, F. (2003). UML Arch- Ware/Style-based ADL, Deliverable D1.4b,
ArchWare European RTD Project, IST-2001-32360, 2003.

Alloui, I. ; Garavel, H. ; Mateescu, R. & Oquendo F.(2003a). The ArchWare Architecture
Analysis Language, Deliverable D3.1b, ArchWare European RTD Project, IST-2001-
32360, 2003.

Alloui, I. ; Megzari, K. & Oquendo F. (2003b). Modelling and Generating Business-To-
Business Applications Using an Architecture Description Language - Based

Innovative Information Systems Modelling Techniques

44

Approach, Proceedings of International Conference on Enterprise Information Systems
(ICEIS), Anger, France, April 2003.

ArchStudio http://www.isr.uci. edu/projects/archstudio.
Andrade, L.F. & Fiadeiro, J.L. (2003). Architecture Based Evolution of Software Systems, In

Formal Methods for Software Architectures, M.Bernardo & P.Inverardi, pp. 148-181,
LNCS 2804, 2003.

ArchWare Consortium (2001). The EU funded ArchWare – Architecting Evolvable Software –
project, http://www.arch-ware.org, 2001.

Azaiez, S. & Oquendo, F. (2005). Final ArchWare Architecture Analysis Tool by Theorem-
Proving: The ArchWare Analyser, Delivr able D3.5b, ArchWare European RTD
Project IST-2001-32360, 2005.

Bagheri, H. & Sullivan, K. (2010). Monarch: Model-based Development of Software
Architectures, Proceedings of the 13th ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems (MoDELS), Oslo, Norway, October 2010.

Balasubramaniam, D.; Morrison, R.; Mickan, K.; Kirby, GNC.; Warboys, B.C.; Robertson, I.;
Snowdon, B; Greenwood, R.M. & Seet, W. (2004). Support for Feedback and
Change in Self-adaptive Systems, In Proceedings of ACM SIGSOFT Workshop on Self-
Managed Systems (WOSS'04), Newport Beach, CA, USA, ACM, October /November
2004.

Barrios, J. & Nurcan, S. (2004). Model Driven Architectures for Enterprise Information
Systems, In Proceedings of 16th Conference on Advanced Information Systems
Engineering, (CAISE’04), Springer Verlag (pub), Riga, Latvia, June 2004.

Bass, L.; Clements, P. & Kazman, R.(2003). Software architecture in practice, Second Edition,
Addison-Wesley, 2003.

Belady, L. & Lehman, M.(1995). Program Evolution Processes of Software Change, Academic
Press, London, UK, 1995.

Bergamini, D.; Champelovier, D.; Descoubes, N.; Garavel, H.; Mateescu, R. & Serwe, W.
(2004). Final ArchWare Architecture An alysis Tool by Model-Checking, ArchWare
European RTD Project IST-2001-32360, Delivrable D3.6c, December 2004.

Bradbury, J.S.; Cordy, J.R.; Dingel, J.& Wermelinger, M.(2004). A survey of self-management
in dynamic software architecture specifications. In Proceedings of ACM SIGSOFT
Workshop on Self-Managed Systems (WOSS '04). Newport Beach, CA, USA, ACM,
October /November 2004.

Bradfield, J. C.& Stirling, C. (2001). Modal logics and mu-calculi: an introduction , In
Handbook of Process Algebra, Elsevier, pp. 293–330, 2001.

Carriere, S.; Woods, S. & Kazman, R. (1999). Software Architectural Transformation, In
Proceedings of 6th Working Conference on Reverse Engineering, IEEE Computer Society,
Atlanta, Georgia, USA, October 1999.

Cazzola, W.; Savigni, A.; Sosio, A. & Tisato, F. (1999). Architectural Reflection : Concepts,
Design and Evaluation, Technical Report RI-DSI 234-99, DSI, University degli Studi
di Milano. Retrived from http://www.di si.unige.it/CazzolaW/references.html,
1999.

Chaudet, C. & Oquendo, F. (2000). �Œ-SPACE: A Formal Architecture Description Language
Based on Process Algebra for Evolving Software Systems, In Proceedings of 15th

An Architecture-Centric Approach for
Information System Architecture Modeling, Enactement and Evolution

45

IEEE International Conference on Automated Software Engineering, Grenoble, France,
September 2000.

Cîmpan, S.; Oquendo, F.; Balasubramaniam, D.; Kirby, G. & Morrison, R. (2002). The
ArchWare ADL: Definition of the Textual Concrete Syntax, ArchWare Europeean
RTD Project IST-2001-32360, Delivrable D1.2b, December 2002.

Cîmpan, S. & Verjus, H. (2005). Challenges in Architecture Centred Software Evolution, In
CHASE: Challenges in Software Evolution, Bern, Switzerland, 2005.

Cîmpan, S.; Leymonerie, F. & Oquendo, F. (2005). Handeling Dynamic Behaviour in
Software Architectures, In Proceedings of European Workshop on Software
Architectures, Pisa, Italy, 2005.

Cuesta, C.; de la Fuente, P.& Barrio-Solorzano, M. (2001). Dynamic Coordination
Architecture through the use of Reflection, In Proceedings of the 2001 ACM
symposium on Applied Computing, Las Vegas, Nevada, United States, pp. 134 – 140,
March 2001.

Cuesta, C.; de la Fuente, P.; Barrio-Solorzano, M. & Beato, M.E. (2005). An abstract process
approach to algebraic dynamic architecture description, In Journal of Logic and
Algebraic Programming, Elsevier, Vol. 63, pp. 177-214, ISSN 1567-8326, 2005.

Dashofy, E. M.; van der Hoek, A. & Taylor, R. N. (2002). Towards architecture-based self-
healing systems, In Proceedings of the First Workshop on Self-Healing Systems (WOSS
'02),. D. Garlan, J. Kramer, and A. Wolf, Eds., Charleston, South Carolina,
November 2002.

Egyed, A. & Medvidovic, N. (2001). Consistent Architectural Refinement and Evolution
using the Unified Modeling Language, In Proceedings of the 1st Workshop on
Describing Software Architecture with UML, co-located with ICSE 2001, Toronto,
Canada, pp. 83-87, May 2001.

Egyed, A.; Grünbacher, P. & Medvidovic, N.(2001). Refinement and Evolution Issues in
Bridging Requirements and Architectures, In Proceedings of the 1st International
Workshops From Requirements to Architecture (STRAW), co-located with ICSE,
Toronto, Canada, pp. 42-47, May 2001.

Egyed, A. (2000). Validating Consistency between Architecture and Design Descriptions, In
Proceedings of 1st Workshop on Evaluating Software Architecture Solutions (WESAS),
Irvine, CA, USA, May 2000.

Erdogmus H. (1998). Representing Architectural Evolution, In Proceedings of the 1998
Conference of the Centre for Advanced Studies on Collaborative Research, Toronto,
Ontario, Canada, pp. 159-177, November 1998.

Favre, J.-M. ; Estublier, J. & Blay, M. (2006). L'Ingénierie Dirigée par les Modèles : au-délà du
MDA , Edition Hermes-Lavoisier, 240 pages, ISBN 2-7462-1213-7, 2006.

Ghezzi, C.; Jazayeri, M. & Mandrioli D. (1991). Fundamentals of Software Engineering, Prentice
Hall, 1991.

Garlan, D.; Cheng, S.-W.; Huang, A.-C.; Schmerl, B. & Steenkiste, P. (2004). Rainbow:
Architecture-Based Self Adaptation with Reusable Infrastructure, IEEE Computer,
Vol. 37, No. 10, October 2004.

Garlan, D.; Barnes, J.M.; Schmerl, B. & Celiku, O. (2009). Evolution styles: Foundations and
tool support for software architecture evolution, In Proceedings of the 7th Working

Innovative Information Systems Modelling Techniques

44

Approach, Proceedings of International Conference on Enterprise Information Systems
(ICEIS), Anger, France, April 2003.

ArchStudio http://www.isr.uci. edu/projects/archstudio.
Andrade, L.F. & Fiadeiro, J.L. (2003). Architecture Based Evolution of Software Systems, In

Formal Methods for Software Architectures, M.Bernardo & P.Inverardi, pp. 148-181,
LNCS 2804, 2003.

ArchWare Consortium (2001). The EU funded ArchWare – Architecting Evolvable Software –
project, http://www.arch-ware.org, 2001.

Azaiez, S. & Oquendo, F. (2005). Final ArchWare Architecture Analysis Tool by Theorem-
Proving: The ArchWare Analyser, Delivr able D3.5b, ArchWare European RTD
Project IST-2001-32360, 2005.

Bagheri, H. & Sullivan, K. (2010). Monarch: Model-based Development of Software
Architectures, Proceedings of the 13th ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems (MoDELS), Oslo, Norway, October 2010.

Balasubramaniam, D.; Morrison, R.; Mickan, K.; Kirby, GNC.; Warboys, B.C.; Robertson, I.;
Snowdon, B; Greenwood, R.M. & Seet, W. (2004). Support for Feedback and
Change in Self-adaptive Systems, In Proceedings of ACM SIGSOFT Workshop on Self-
Managed Systems (WOSS'04), Newport Beach, CA, USA, ACM, October /November
2004.

Barrios, J. & Nurcan, S. (2004). Model Driven Architectures for Enterprise Information
Systems, In Proceedings of 16th Conference on Advanced Information Systems
Engineering, (CAISE’04), Springer Verlag (pub), Riga, Latvia, June 2004.

Bass, L.; Clements, P. & Kazman, R.(2003). Software architecture in practice, Second Edition,
Addison-Wesley, 2003.

Belady, L. & Lehman, M.(1995). Program Evolution Processes of Software Change, Academic
Press, London, UK, 1995.

Bergamini, D.; Champelovier, D.; Descoubes, N.; Garavel, H.; Mateescu, R. & Serwe, W.
(2004). Final ArchWare Architecture An alysis Tool by Model-Checking, ArchWare
European RTD Project IST-2001-32360, Delivrable D3.6c, December 2004.

Bradbury, J.S.; Cordy, J.R.; Dingel, J.& Wermelinger, M.(2004). A survey of self-management
in dynamic software architecture specifications. In Proceedings of ACM SIGSOFT
Workshop on Self-Managed Systems (WOSS '04). Newport Beach, CA, USA, ACM,
October /November 2004.

Bradfield, J. C.& Stirling, C. (2001). Modal logics and mu-calculi: an introduction , In
Handbook of Process Algebra, Elsevier, pp. 293–330, 2001.

Carriere, S.; Woods, S. & Kazman, R. (1999). Software Architectural Transformation, In
Proceedings of 6th Working Conference on Reverse Engineering, IEEE Computer Society,
Atlanta, Georgia, USA, October 1999.

Cazzola, W.; Savigni, A.; Sosio, A. & Tisato, F. (1999). Architectural Reflection : Concepts,
Design and Evaluation, Technical Report RI-DSI 234-99, DSI, University degli Studi
di Milano. Retrived from http://www.di si.unige.it/CazzolaW/references.html,
1999.

Chaudet, C. & Oquendo, F. (2000). �Œ-SPACE: A Formal Architecture Description Language
Based on Process Algebra for Evolving Software Systems, In Proceedings of 15th

An Architecture-Centric Approach for
Information System Architecture Modeling, Enactement and Evolution

45

IEEE International Conference on Automated Software Engineering, Grenoble, France,
September 2000.

Cîmpan, S.; Oquendo, F.; Balasubramaniam, D.; Kirby, G. & Morrison, R. (2002). The
ArchWare ADL: Definition of the Textual Concrete Syntax, ArchWare Europeean
RTD Project IST-2001-32360, Delivrable D1.2b, December 2002.

Cîmpan, S. & Verjus, H. (2005). Challenges in Architecture Centred Software Evolution, In
CHASE: Challenges in Software Evolution, Bern, Switzerland, 2005.

Cîmpan, S.; Leymonerie, F. & Oquendo, F. (2005). Handeling Dynamic Behaviour in
Software Architectures, In Proceedings of European Workshop on Software
Architectures, Pisa, Italy, 2005.

Cuesta, C.; de la Fuente, P.& Barrio-Solorzano, M. (2001). Dynamic Coordination
Architecture through the use of Reflection, In Proceedings of the 2001 ACM
symposium on Applied Computing, Las Vegas, Nevada, United States, pp. 134 – 140,
March 2001.

Cuesta, C.; de la Fuente, P.; Barrio-Solorzano, M. & Beato, M.E. (2005). An abstract process
approach to algebraic dynamic architecture description, In Journal of Logic and
Algebraic Programming, Elsevier, Vol. 63, pp. 177-214, ISSN 1567-8326, 2005.

Dashofy, E. M.; van der Hoek, A. & Taylor, R. N. (2002). Towards architecture-based self-
healing systems, In Proceedings of the First Workshop on Self-Healing Systems (WOSS
'02),. D. Garlan, J. Kramer, and A. Wolf, Eds., Charleston, South Carolina,
November 2002.

Egyed, A. & Medvidovic, N. (2001). Consistent Architectural Refinement and Evolution
using the Unified Modeling Language, In Proceedings of the 1st Workshop on
Describing Software Architecture with UML, co-located with ICSE 2001, Toronto,
Canada, pp. 83-87, May 2001.

Egyed, A.; Grünbacher, P. & Medvidovic, N.(2001). Refinement and Evolution Issues in
Bridging Requirements and Architectures, In Proceedings of the 1st International
Workshops From Requirements to Architecture (STRAW), co-located with ICSE,
Toronto, Canada, pp. 42-47, May 2001.

Egyed, A. (2000). Validating Consistency between Architecture and Design Descriptions, In
Proceedings of 1st Workshop on Evaluating Software Architecture Solutions (WESAS),
Irvine, CA, USA, May 2000.

Erdogmus H. (1998). Representing Architectural Evolution, In Proceedings of the 1998
Conference of the Centre for Advanced Studies on Collaborative Research, Toronto,
Ontario, Canada, pp. 159-177, November 1998.

Favre, J.-M. ; Estublier, J. & Blay, M. (2006). L'Ingénierie Dirigée par les Modèles : au-délà du
MDA , Edition Hermes-Lavoisier, 240 pages, ISBN 2-7462-1213-7, 2006.

Ghezzi, C.; Jazayeri, M. & Mandrioli D. (1991). Fundamentals of Software Engineering, Prentice
Hall, 1991.

Garlan, D.; Cheng, S.-W.; Huang, A.-C.; Schmerl, B. & Steenkiste, P. (2004). Rainbow:
Architecture-Based Self Adaptation with Reusable Infrastructure, IEEE Computer,
Vol. 37, No. 10, October 2004.

Garlan, D.; Barnes, J.M.; Schmerl, B. & Celiku, O. (2009). Evolution styles: Foundations and
tool support for software architecture evolution, In Proceedings of the 7th Working

Innovative Information Systems Modelling Techniques

46

IEEE/IFIP Conference on Software Architecture (WICSA’09), pp. 131–140, Cambridge,
UK, September 2009.

Huang, G.; Mei, H. & Yang, F.-Q. (2006). Runtime recovery and manipulation of software
architecture of component-based systems, In Journal of Automated Software
Engineering., Vol. 13, No. 2, pp 257-281, 2006.

Kardasis, P. & Loucopoulos, P. (1998). Aligning Legacy Information Systems to Business
Processes , In Proceedings of International Conference on Advanced Information Systems
Engineering (CAISE’98), Pisa, Italy, June 1998.

Kyaruzi, J. J. & van Katwijk, J. (2000). Concerns On Architecture-Centered Software
Development: A Survey, In Journal of Integrated Design and Process Science, Volume
4, No. 3, pp. 13-35, August 2000.

Lehman M. M. (1996). Laws of Software Evolution Revisited, In Proceedings of European
Workshop on Software Process Technology (EWSPT 1996), p. 108-124, Nancy, France,
October 1996.

Leymonerie F. (2004). ASL language and tools for architectural styles. Contribution to
dynamic architectures description, PhD thesis, University of Savoie, December 2004.

Magee, J.; Dulay, N.; Eisenbach, S. & Kramer J. (1995). Specifying Distributed Software
Architectures, In Proceedings of 5th European Software Engineering Conference (ESEC
'95), LNCS 989, pp. 137-153, Sitges, September 1995.

Manset, D.; Verjus, H.; McClatchey, R. & Oquendo, F. (2006). A Formal Architecture-Centric
Model-Driven Approach For The Automatic Generation Of Grid Applications. In
8th International Conference on Enterprise Information Systems (ICEIS’06), Paphos,
Chyprus, 2006.

Mateescu, R. & Oquendo, F. (2006). �Œ-AAL: an architecture analys is language for formally
specifying and verifying structural and behavioural properties of software
architectures, In ACM SIGSOFT Software Engineering Notes, Vol. 31, No. 2, pp. 1-19,
2006.

Medvidovic, N. & Tayl or, R.N. (2000). A Classification and Comparison Framework for
Software Architecture Description Languages, In IEEE Transactions on Software
Engineering, Vol. 26, No. 1, pp. 70-93, 2000.

Medvidovic, N.; Egyed, A. & Rosenblum, D. (1999). Round-Trip Software Engineering
Using UML: From Architecture to Design and Back, In Proceedings of the 2nd
Workshop on Object-Oriented Reengineering, pp. 1-8, Toulouse, France, September
1999.

Mens, T.; Buckley, J.; Rashid, A. & Zenger, M. (2003). Towards a taxonomy of software
evolution, In Workshop on Unanticipated Software Evolution, (in conjunction with
ETAPS 2003) Varsaw, Poland, April 2003.

Milner, R. (1999). Communicating and Mobile Systems: the �Œ -calculus, Cambridge University
Press, 1999.

Morrison, R.; Kirby, GNC.; Balasubramaniam, D.; Mickan, K.; Oquendo, F.; Cîmpan, S.;
Warboys, BC.; Snowdon, B. & Greenwood, RM. (2004). Support for Evolving
Software Architectures in the ArchWare ADL, In Proceedings of the 4th Working
IEEE/IFIP Conference on Software Architecture (WICSA 4), Oslo, Norway 2004.

An Architecture-Centric Approach for
Information System Architecture Modeling, Enactement and Evolution

47

Nierstrasz, O. & Achermann, F. (2000). Supporting Compositional Styles for Software
Evolution, In Proceedings of International Symposium on Principles of Software
Evolution, IEEE, Kanazawa, Japan, pp. 11-19, November 2000.

Nistor, E.; Erenkrantz, J.; Hendrickson, S. & van der Hoek, A. (2005). ArchEvol: Versioning
Architectural-Implementati on Relationships, In Proceedings of the 12th International
Workshop on Software Configuration Management, Lisbon, Portugal, September 2005.

Nurcan, S. & Schmidt, R. (2009). Service Oriented Enterprise-Architecture for enterprise
engineering introduction, In Proceedings of 13th IEEE International Enterprise
Distributed Object Computing Conference, pp. 247-253, Auckland, New Zeeland,
September 2009.

Oquendo, F. (2004). �Œ-ADL: an Architecture Description Language based on the higher-
order typed �Œ-calculus for specifying dynamic and mobile software architectures,
In ACM SIGSOFT Software Engineering Notes, Volume 29, No. 3, pp. 1-14, 2004a.

Oquendo, F.; Alloui, I.; Cîmpan, S. & Verjus, H. (2002). The ArchWare ADL: Definition of
the Abstract Syntax and Formal Semantic, ArchWare European RTD Project IST-2001-
32360, Deliverable D1.1b, 2002.

Oquendo, F.; Warboys, B.; Morrison, R.; Dindeleux, R.; Gallo, F.; Garavel, H. & Occhipinti,
C. (2004). ArchWare: Architecting Evolvable Software, In Proceedings of the 1st
European Workshop on Software Architecture (EWSA 2004), St Andrews, UK, pp. 257-
271, 2004.

Perry, D.E. & Wolf, A.L. (1992). Foundations for the study of software architecture, In ACM
SIGSOFT Software Engineering Notes, Vol. 17, No. 4, pp. 40-52, 1992.

Pourraz,, F. ; Verjus, H. & Oquendo, F. (2006). An Architecture-Centric Approach For
Managing The Evolution Of EAI Service-Oriented Architecture, In 8th International
Conference on Enterprise Information Systems (ICEIS’06), Paphos, Chyprus, 2006.

Tisato, F.; Savigni, A.; Cazzola, W. & Sosio, A. (2000). Architectural Reflection - Realising
Software Architectures via Reflective Activities, In Proceedings of the 2nd
Engineering Distributed Objects Workshop (EDO 2000), University of Callifornia,
Davis, USA, November 2000.

Touzi, J.; Benaben, F.; Pingaud, H. & Lorre, J. (2009). A model-driven approach for
collaborative service- oriented architecture design, In International Journal of
Production Economics, Vol. 121, Issue 1, p. 5-20, 2009.

Van der Hoek, A.; Mikic-Rakic, M.; Roshandel, R. & Medvidovic, N. (2001). Taming
architectural evolution, In Proceedings of the 8th European Software Engineering
Conference, ACM Press, pp.1-10, Viena, Austria, September 2001.

Verjus, H. & Oquendo, F. (2003). Final XML ArchWare style-based ADL (ArchWare AXL),
ArchWare European RTD Project IST-2001-32360, Deliverable D1.3b, June 2003.

Verjus, H. ; Cîmpan, S. ; Alloui, I. & Oquendo, F. (2006). Gestion des architectures évolutives
dans ArchWare, In Proceedings of the First Conférence francophone sur les Architectures
Logicielles (CAL 2006), Nantes, France, September 2006, pp. 41-57.

Verjus, H. (2007). Nimrod: A Software Archit ecture-Centric Engineering Environment -
Revision 2, Nimrod Release 1.4.3, University of Savoie - LISTIC, Number LISTIC No
07/03, June 2007.

Innovative Information Systems Modelling Techniques

46

IEEE/IFIP Conference on Software Architecture (WICSA’09), pp. 131–140, Cambridge,
UK, September 2009.

Huang, G.; Mei, H. & Yang, F.-Q. (2006). Runtime recovery and manipulation of software
architecture of component-based systems, In Journal of Automated Software
Engineering., Vol. 13, No. 2, pp 257-281, 2006.

Kardasis, P. & Loucopoulos, P. (1998). Aligning Legacy Information Systems to Business
Processes , In Proceedings of International Conference on Advanced Information Systems
Engineering (CAISE’98), Pisa, Italy, June 1998.

Kyaruzi, J. J. & van Katwijk, J. (2000). Concerns On Architecture-Centered Software
Development: A Survey, In Journal of Integrated Design and Process Science, Volume
4, No. 3, pp. 13-35, August 2000.

Lehman M. M. (1996). Laws of Software Evolution Revisited, In Proceedings of European
Workshop on Software Process Technology (EWSPT 1996), p. 108-124, Nancy, France,
October 1996.

Leymonerie F. (2004). ASL language and tools for architectural styles. Contribution to
dynamic architectures description, PhD thesis, University of Savoie, December 2004.

Magee, J.; Dulay, N.; Eisenbach, S. & Kramer J. (1995). Specifying Distributed Software
Architectures, In Proceedings of 5th European Software Engineering Conference (ESEC
'95), LNCS 989, pp. 137-153, Sitges, September 1995.

Manset, D.; Verjus, H.; McClatchey, R. & Oquendo, F. (2006). A Formal Architecture-Centric
Model-Driven Approach For The Automatic Generation Of Grid Applications. In
8th International Conference on Enterprise Information Systems (ICEIS’06), Paphos,
Chyprus, 2006.

Mateescu, R. & Oquendo, F. (2006). �Œ-AAL: an architecture analys is language for formally
specifying and verifying structural and behavioural properties of software
architectures, In ACM SIGSOFT Software Engineering Notes, Vol. 31, No. 2, pp. 1-19,
2006.

Medvidovic, N. & Tayl or, R.N. (2000). A Classification and Comparison Framework for
Software Architecture Description Languages, In IEEE Transactions on Software
Engineering, Vol. 26, No. 1, pp. 70-93, 2000.

Medvidovic, N.; Egyed, A. & Rosenblum, D. (1999). Round-Trip Software Engineering
Using UML: From Architecture to Design and Back, In Proceedings of the 2nd
Workshop on Object-Oriented Reengineering, pp. 1-8, Toulouse, France, September
1999.

Mens, T.; Buckley, J.; Rashid, A. & Zenger, M. (2003). Towards a taxonomy of software
evolution, In Workshop on Unanticipated Software Evolution, (in conjunction with
ETAPS 2003) Varsaw, Poland, April 2003.

Milner, R. (1999). Communicating and Mobile Systems: the �Œ -calculus, Cambridge University
Press, 1999.

Morrison, R.; Kirby, GNC.; Balasubramaniam, D.; Mickan, K.; Oquendo, F.; Cîmpan, S.;
Warboys, BC.; Snowdon, B. & Greenwood, RM. (2004). Support for Evolving
Software Architectures in the ArchWare ADL, In Proceedings of the 4th Working
IEEE/IFIP Conference on Software Architecture (WICSA 4), Oslo, Norway 2004.

An Architecture-Centric Approach for
Information System Architecture Modeling, Enactement and Evolution

47

Nierstrasz, O. & Achermann, F. (2000). Supporting Compositional Styles for Software
Evolution, In Proceedings of International Symposium on Principles of Software
Evolution, IEEE, Kanazawa, Japan, pp. 11-19, November 2000.

Nistor, E.; Erenkrantz, J.; Hendrickson, S. & van der Hoek, A. (2005). ArchEvol: Versioning
Architectural-Implementati on Relationships, In Proceedings of the 12th International
Workshop on Software Configuration Management, Lisbon, Portugal, September 2005.

Nurcan, S. & Schmidt, R. (2009). Service Oriented Enterprise-Architecture for enterprise
engineering introduction, In Proceedings of 13th IEEE International Enterprise
Distributed Object Computing Conference, pp. 247-253, Auckland, New Zeeland,
September 2009.

Oquendo, F. (2004). �Œ-ADL: an Architecture Description Language based on the higher-
order typed �Œ-calculus for specifying dynamic and mobile software architectures,
In ACM SIGSOFT Software Engineering Notes, Volume 29, No. 3, pp. 1-14, 2004a.

Oquendo, F.; Alloui, I.; Cîmpan, S. & Verjus, H. (2002). The ArchWare ADL: Definition of
the Abstract Syntax and Formal Semantic, ArchWare European RTD Project IST-2001-
32360, Deliverable D1.1b, 2002.

Oquendo, F.; Warboys, B.; Morrison, R.; Dindeleux, R.; Gallo, F.; Garavel, H. & Occhipinti,
C. (2004). ArchWare: Architecting Evolvable Software, In Proceedings of the 1st
European Workshop on Software Architecture (EWSA 2004), St Andrews, UK, pp. 257-
271, 2004.

Perry, D.E. & Wolf, A.L. (1992). Foundations for the study of software architecture, In ACM
SIGSOFT Software Engineering Notes, Vol. 17, No. 4, pp. 40-52, 1992.

Pourraz,, F. ; Verjus, H. & Oquendo, F. (2006). An Architecture-Centric Approach For
Managing The Evolution Of EAI Service-Oriented Architecture, In 8th International
Conference on Enterprise Information Systems (ICEIS’06), Paphos, Chyprus, 2006.

Tisato, F.; Savigni, A.; Cazzola, W. & Sosio, A. (2000). Architectural Reflection - Realising
Software Architectures via Reflective Activities, In Proceedings of the 2nd
Engineering Distributed Objects Workshop (EDO 2000), University of Callifornia,
Davis, USA, November 2000.

Touzi, J.; Benaben, F.; Pingaud, H. & Lorre, J. (2009). A model-driven approach for
collaborative service- oriented architecture design, In International Journal of
Production Economics, Vol. 121, Issue 1, p. 5-20, 2009.

Van der Hoek, A.; Mikic-Rakic, M.; Roshandel, R. & Medvidovic, N. (2001). Taming
architectural evolution, In Proceedings of the 8th European Software Engineering
Conference, ACM Press, pp.1-10, Viena, Austria, September 2001.

Verjus, H. & Oquendo, F. (2003). Final XML ArchWare style-based ADL (ArchWare AXL),
ArchWare European RTD Project IST-2001-32360, Deliverable D1.3b, June 2003.

Verjus, H. ; Cîmpan, S. ; Alloui, I. & Oquendo, F. (2006). Gestion des architectures évolutives
dans ArchWare, In Proceedings of the First Conférence francophone sur les Architectures
Logicielles (CAL 2006), Nantes, France, September 2006, pp. 41-57.

Verjus, H. (2007). Nimrod: A Software Archit ecture-Centric Engineering Environment -
Revision 2, Nimrod Release 1.4.3, University of Savoie - LISTIC, Number LISTIC No
07/03, June 2007.

Innovative Information Systems Modelling Techniques

48

Vernadat, F. (2006). Interoperable enterprise systems: architecture and methods, Plenary
Lecture at 12th IFAC Symposium on Information Control Problems in Manufacturing,
Saint-Etienne, France, May 2006.

Zachman, J. (1997). Enterprise Architecture : The Issue of the Century, In Database
Programming and Design, Vol. 10, p. 44-53, 1997.

3

Patterns for Agent-Based Information
Systems: A Case Study in Transport

Vincent Couturier, Marc-Philippe Huget and David Telisson
LISTIC – Polytech Annecy-Chambéry, Université de Savoie

France

1. Introduction

Designing information systems is a complex task especially when these systems use agents
to allow adaptability, cooperation and negotiation, and automatic behaviours. Difficulties
arise due to the absence of understandable documentation associated with agent-based
methodologies. These methodologies consider concepts defined implicitly and not explicitly
requiring from engineers a good understanding of agent theory. This has as consequence an
important learning curve for en gineers trying to use agents for their information systems.
This chapter proposes a collection of agent patterns to reduce time required to develop
agent-based information systems.

We propose, in this chapter, to develop software patterns and to reuse them to design
complex information systems such as the ones based on agents. According to Alexander
(Alexander et al., 1977; Alexander, 1979), a pattern describes a problem, which occurs
frequently in an environment as well as a solution that can be adapted for the specific
situation. A software pattern (Beck & Cunni ngham, 1987) follows the same principle and
offers a solution to developers when building software in a specific context.

Different categories of software patterns exist as mentioned in Section 2 and here, we
present in this chapter, examples of agent patterns for analysis, design and implementation.
They are illustrated on our case study in transport: enriched traveller information. These
patterns are completed with reuse support patte rns that help designing and building such
agent-based information systems by guiding them among our collection of patterns.

The chapter is structured as follows. Section 2 presents the concept of pattern. Section 3
describes the categories of patterns dedicated to engineering Agent-based Information
Systems (AIS) and the reuse process. Section 4 describes examples of such patterns. Section 5
illustrates these patterns on a transport inform ation system example. Section 6 compares
with previous works in literature. Finally, Section 7 concludes the chapter and draws
perspectives.

2. The concept of pattern

Alexander introduced the concept of pattern in 1977 for the design and construction of
homes and offices (Alexander et al., 1977; Alexander, 1979). This concept was adapted to

Innovative Information Systems Modelling Techniques

48

Vernadat, F. (2006). Interoperable enterprise systems: architecture and methods, Plenary
Lecture at 12th IFAC Symposium on Information Control Problems in Manufacturing,
Saint-Etienne, France, May 2006.

Zachman, J. (1997). Enterprise Architecture : The Issue of the Century, In Database
Programming and Design, Vol. 10, p. 44-53, 1997.

3

Patterns for Agent-Based Information
Systems: A Case Study in Transport

Vincent Couturier, Marc-Philippe Huget and David Telisson
LISTIC – Polytech Annecy-Chambéry, Université de Savoie

France

1. Introduction

Designing information systems is a complex task especially when these systems use agents
to allow adaptability, cooperation and negotiation, and automatic behaviours. Difficulties
arise due to the absence of understandable documentation associated with agent-based
methodologies. These methodologies consider concepts defined implicitly and not explicitly
requiring from engineers a good understanding of agent theory. This has as consequence an
important learning curve for en gineers trying to use agents for their information systems.
This chapter proposes a collection of agent patterns to reduce time required to develop
agent-based information systems.

We propose, in this chapter, to develop software patterns and to reuse them to design
complex information systems such as the ones based on agents. According to Alexander
(Alexander et al., 1977; Alexander, 1979), a pattern describes a problem, which occurs
frequently in an environment as well as a solution that can be adapted for the specific
situation. A software pattern (Beck & Cunni ngham, 1987) follows the same principle and
offers a solution to developers when building software in a specific context.

Different categories of software patterns exist as mentioned in Section 2 and here, we
present in this chapter, examples of agent patterns for analysis, design and implementation.
They are illustrated on our case study in transport: enriched traveller information. These
patterns are completed with reuse support patte rns that help designing and building such
agent-based information systems by guiding them among our collection of patterns.

The chapter is structured as follows. Section 2 presents the concept of pattern. Section 3
describes the categories of patterns dedicated to engineering Agent-based Information
Systems (AIS) and the reuse process. Section 4 describes examples of such patterns. Section 5
illustrates these patterns on a transport inform ation system example. Section 6 compares
with previous works in literature. Finally, Section 7 concludes the chapter and draws
perspectives.

2. The concept of pattern

Alexander introduced the concept of pattern in 1977 for the design and construction of
homes and offices (Alexander et al., 1977; Alexander, 1979). This concept was adapted to

Innovative Information Systems Modelling Techniques 50

software engineering and mainly to object-oriented programming by Beck and Cunningham
in 1987 (Beck & Cunningham, 1987). These patterns are called software patterns.

In Alexander’s proposition, a pattern describes a problem, which occurs over and over again
in an environment as well as a solution that can be used differently several times. A software
pattern follows the same principle and can be seen as abstractions used by design or code
experts that provide solutions in different phases of software engineering. A pattern can also
be considered as a mean to capitalize, preserve and reuse knowledge and know-how.

Patterns can be divided into five categories: analysis patterns (Coad, 1996; Fowler, 1997),
architectural patterns (Buschmann et al., 1996), design patterns (Gamma et al., 1995),
idioms --also known as implementation patterns --(Coplien, 1992), and process patterns
(Ambler, 1998).

Analysis patterns are used to describe solutions related to problems that arise during both the
requirement analysis and the conceptual data modeling phases. Among them, we can
distinguish generic analysis patterns (Coad, 1992), which represent generic elements that
can be reused whatever the application domain is. There exist as well analysis patterns for
specific domains (Hay, 1996; Fowler, 1997) called domain-specific patterns or domain patterns.
These patterns (Fowler, 1997) represent conceptual domain structures denoting the model of
a business system domain rather than the design of computer programs. Fowler associates
to domain patterns support patterns that show how domain patterns fit into information
system architecture and how conceptual models turn into software. These patterns describe
how to use domain patterns and to apply them to a concrete problem.

Architectural and design patterns are both related to the design process. Though, they differ in
the level of abstraction where each one is applied. Architectural patterns express a
fundamental structural organization schema for software systems and can be considered as
templates for concrete software architectures (Buschmann et al., 1996). Design patterns
(Gamma et al., 1995) provide scheme to refine the subsystems or components of a software
system and thus are more abstract (and of smaller granularity) than architectural patterns.

Idioms are used at code level and deal with the implementation of particular design issues.

Finally, some patterns, called process patterns (Ambler, 1998) describe a collection of general
techniques, actions, and/or tasks for developing object-oriented software. Actions or tasks
can themselves be software patterns.

We present in next section categories of patterns dedicated to develop Agent-based
Information Systems and their reuse process.

3. Categories of patterns dedicated to agent-based information system
engineering

3.1 Pattern categories

The first patterns applied for engineerin g Agent-based Information Systems are Agent
Analysis Patterns. They define agent structure and design multiagent systems at a high level
of abstraction. They can be applied to design agents with or without decision behaviours.
Thus, the designer will be able to reuse these patterns to design agents for his/her IS at a
high level of abstraction.

Patterns for Agent-Based Information Systems: A Case Study in Transport 51

Patterns dedicated to architectural representation and design of AIS are Agent Architectural
Patterns and Agent Design Patterns.

The former has to be applied at the beginning of the design process and help defining the IS
structural organization. They represent the di fferent architectural styles for agent-based
information systems which are means of capturing families of architectures and can be seen as
a set of design rules that guide and constrain the development of IS architecture (levels,
internal elements, collaborations between elements, etc.). Architectural styles depend on which
architecture we choose: Market-based one, Subcontract-based one or Peer-to-Peer-based one.

Agent Design Patterns describe technical elements required to develop agent-based
Information Systems. Analysis and conceptual models obtained by applying Agent Analysis
Patterns are refined with behaviour, collaboratio n and software entities. Thus, the IS design
model is obtained by adapting software elements specified in the design patterns solutions.

Finally, we have specified two kinds of support patterns: Model Transformation Patterns and
Reuse Support Patterns.

Model Transformation Patterns help developers to build applications from design patterns
and can be applied at the end of the design phase. They specify transformation rules to map
design models to models specific to agent development frameworks such as JADE
(Bellifemine et al., 2007) or Madkit (Gutknecht & Ferber, 2000).

Reuse Support Patterns (RSP) are process patterns, which help developers navigating into a
collection of patterns and reusing them. They describe, by using activity diagrams, a
sequence of patterns to apply to resolve a problem. There exists RSP for every category of
patterns (analysis, architectural, design and model transformation).

The different patterns described here regarding the development cycle of an agent-based
information system are shown on Figure 1.

Fig. 1. The use of the different proposed patterns in the development cycle of an agent-based IS.

Innovative Information Systems Modelling Techniques 50

software engineering and mainly to object-oriented programming by Beck and Cunningham
in 1987 (Beck & Cunningham, 1987). These patterns are called software patterns.

In Alexander’s proposition, a pattern describes a problem, which occurs over and over again
in an environment as well as a solution that can be used differently several times. A software
pattern follows the same principle and can be seen as abstractions used by design or code
experts that provide solutions in different phases of software engineering. A pattern can also
be considered as a mean to capitalize, preserve and reuse knowledge and know-how.

Patterns can be divided into five categories: analysis patterns (Coad, 1996; Fowler, 1997),
architectural patterns (Buschmann et al., 1996), design patterns (Gamma et al., 1995),
idioms --also known as implementation patterns --(Coplien, 1992), and process patterns
(Ambler, 1998).

Analysis patterns are used to describe solutions related to problems that arise during both the
requirement analysis and the conceptual data modeling phases. Among them, we can
distinguish generic analysis patterns (Coad, 1992), which represent generic elements that
can be reused whatever the application domain is. There exist as well analysis patterns for
specific domains (Hay, 1996; Fowler, 1997) called domain-specific patterns or domain patterns.
These patterns (Fowler, 1997) represent conceptual domain structures denoting the model of
a business system domain rather than the design of computer programs. Fowler associates
to domain patterns support patterns that show how domain patterns fit into information
system architecture and how conceptual models turn into software. These patterns describe
how to use domain patterns and to apply them to a concrete problem.

Architectural and design patterns are both related to the design process. Though, they differ in
the level of abstraction where each one is applied. Architectural patterns express a
fundamental structural organization schema for software systems and can be considered as
templates for concrete software architectures (Buschmann et al., 1996). Design patterns
(Gamma et al., 1995) provide scheme to refine the subsystems or components of a software
system and thus are more abstract (and of smaller granularity) than architectural patterns.

Idioms are used at code level and deal with the implementation of particular design issues.

Finally, some patterns, called process patterns (Ambler, 1998) describe a collection of general
techniques, actions, and/or tasks for developing object-oriented software. Actions or tasks
can themselves be software patterns.

We present in next section categories of patterns dedicated to develop Agent-based
Information Systems and their reuse process.

3. Categories of patterns dedicated to agent-based information system
engineering

3.1 Pattern categories

The first patterns applied for engineerin g Agent-based Information Systems are Agent
Analysis Patterns. They define agent structure and design multiagent systems at a high level
of abstraction. They can be applied to design agents with or without decision behaviours.
Thus, the designer will be able to reuse these patterns to design agents for his/her IS at a
high level of abstraction.

Patterns for Agent-Based Information Systems: A Case Study in Transport 51

Patterns dedicated to architectural representation and design of AIS are Agent Architectural
Patterns and Agent Design Patterns.

The former has to be applied at the beginning of the design process and help defining the IS
structural organization. They represent the di fferent architectural styles for agent-based
information systems which are means of capturing families of architectures and can be seen as
a set of design rules that guide and constrain the development of IS architecture (levels,
internal elements, collaborations between elements, etc.). Architectural styles depend on which
architecture we choose: Market-based one, Subcontract-based one or Peer-to-Peer-based one.

Agent Design Patterns describe technical elements required to develop agent-based
Information Systems. Analysis and conceptual models obtained by applying Agent Analysis
Patterns are refined with behaviour, collaboratio n and software entities. Thus, the IS design
model is obtained by adapting software elements specified in the design patterns solutions.

Finally, we have specified two kinds of support patterns: Model Transformation Patterns and
Reuse Support Patterns.

Model Transformation Patterns help developers to build applications from design patterns
and can be applied at the end of the design phase. They specify transformation rules to map
design models to models specific to agent development frameworks such as JADE
(Bellifemine et al., 2007) or Madkit (Gutknecht & Ferber, 2000).

Reuse Support Patterns (RSP) are process patterns, which help developers navigating into a
collection of patterns and reusing them. They describe, by using activity diagrams, a
sequence of patterns to apply to resolve a problem. There exists RSP for every category of
patterns (analysis, architectural, design and model transformation).

The different patterns described here regarding the development cycle of an agent-based
information system are shown on Figure 1.

Fig. 1. The use of the different proposed patterns in the development cycle of an agent-based IS.

Innovative Information Systems Modelling Techniques 52

The description of our software patte rns is composed of four parts:

�x The Interface part contains the following fields: Name and Classification (used to
categorize the pattern: Analysis pattern, Design pattern, etc.), Context (defines the
conditions under which the pattern could be applied), Rationale (gives which problems
this pattern addresses) and Applicability (gives the scope of this pattern: Information
Systems in our case).

�x The Solution part when proposed as a model-based solution is composed of the
following fields: Model (an agent pattern presents a solution as a UML class diagram
and/or a UML sequence diagram), Participants (explanation of the different elements
defined on the diagram) and Consequences (advantages and drawbacks of this pattern to
help developers deciding whether this pattern is the correct one). When the Solution
part is proposed as a process-based solution (for instance for Reuse Support patterns),
the Solution part is composed of a unique field entitled Process defined as a UML
activity diagram.

�x The Example part describes one or more illustrations on how to use this pattern.
�x The Relationship part is composed of the following fields: Uses (describes the

relationship: “the pattern X is usin g the pattern Y in its solution”), Requires (“the
pattern X requires the pattern Y to be applied before”), Refines (“the pattern X refines
the pattern Y if and only if the pattern Y solv es the same issues than the pattern X”) and
Looks like (“the pattern X is a variant of the pattern Y”).

Note: The different patterns presented here are reduced versions. We only describe the most important
parts and fields required to understand what a pattern means. As a consequence, we remove the
Example part, which is presented in Section 5.

3.2 Pattern reuse

The reuse of patterns dedicated to develop Agent-based IS consists in applying them during
analysis, design and implementation phases.

First, developers analyze context and problem and should have to answer questions to
decide which patterns have to be applied and in which order. This acti vity can be favoured
by using Reuse Support Patterns which represent sequences of patterns that can be applied to
develop Agent-based IS (See Table 1 for an example of RSP suited for navigating in our
Analysis Pattern collection). They help to navi gate into the pattern collection and to reuse
them. Thus, developers adapt analysis, architectural or design pattern solution elements
(instantiation) to represent the system they want to develop. Finally, th e third activity aims
at using Model Transformation Patterns to generate skeleton application from pattern
instances.

It is worth mentioning that, here, reuse is realised by adaptation. Designers do not directly
reuse the patterns but adapt the different solutions (instantiation) to their specific
applications by modifying the level of abstraction given by the patterns. Moreover, as briefly
depicted in the “Service Integration” RSP below, designers should have to answer questions
to decide which patterns have to be applied. Another example is given in Table 1 where the
“Restrict access to resources” pattern is used if and only if some policies are in use on
resources.

Patterns for Agent-Based Information Systems: A Case Study in Transport 53

Interface
Name

Base Agent Design
Classification

Reuse Support Pattern
Rationale

This pattern presents Agent Analysis Patterns that can be applied to develop a base agent.
Here, a base agent is an agent that plays roles within organisations, lives in an
environment and reacts to events in the environment, and optionally acts on resources
(perception and action) if it has the associated permission.

Applicability
Agent Analysis Pattern Collection ^ Base Agent

Solution
Process

Designers first have to apply the pattern “Def ine system architecture”, then the patterns
“Define environment”, “Define event”, “A dd behaviour” and “Create plan”. After
applying the “Create plan” pattern, it is possi ble either to terminate the process or to
continue with the “Restrict access to resources” pattern depending on the necessity to
have policies on resource access (a resource is for instance digital documents such as
contracts, proposals, enterprise database, etc.). This decision is fuelled by considering the
place of agents in the environment: do all agents access resources? Do some resources
need to be kept private? Based on the answers, designers may decide to apply the
“Restrict access to resources” pattern.

Note : only the “Define System Architecture” Analysis Pattern in this RSP is presented in Section 4.
Relationships

Uses
“Define System Architecture”, “Define Environment”, “Def ine Event”, “Add Behaviour”,
“Create Plan”, “Restrict Access to Resources” Agent Analysis Patterns.

Table 1. Reuse Support Pattern “Base Agent Design”

Several other reuse support patterns (RSP) are proposed in our approach to address specific
needs. Amongst them, we can quote the “Service Integration” RSP. The “Service
Integration” RSP helps designers integrating the notion of services and service-oriented
architectures within the information system. In th is particular RSP, the process is not limited

Innovative Information Systems Modelling Techniques 52

The description of our software patte rns is composed of four parts:

�x The Interface part contains the following fields: Name and Classification (used to
categorize the pattern: Analysis pattern, Design pattern, etc.), Context (defines the
conditions under which the pattern could be applied), Rationale (gives which problems
this pattern addresses) and Applicability (gives the scope of this pattern: Information
Systems in our case).

�x The Solution part when proposed as a model-based solution is composed of the
following fields: Model (an agent pattern presents a solution as a UML class diagram
and/or a UML sequence diagram), Participants (explanation of the different elements
defined on the diagram) and Consequences (advantages and drawbacks of this pattern to
help developers deciding whether this pattern is the correct one). When the Solution
part is proposed as a process-based solution (for instance for Reuse Support patterns),
the Solution part is composed of a unique field entitled Process defined as a UML
activity diagram.

�x The Example part describes one or more illustrations on how to use this pattern.
�x The Relationship part is composed of the following fields: Uses (describes the

relationship: “the pattern X is usin g the pattern Y in its solution”), Requires (“the
pattern X requires the pattern Y to be applied before”), Refines (“the pattern X refines
the pattern Y if and only if the pattern Y solv es the same issues than the pattern X”) and
Looks like (“the pattern X is a variant of the pattern Y”).

Note: The different patterns presented here are reduced versions. We only describe the most important
parts and fields required to understand what a pattern means. As a consequence, we remove the
Example part, which is presented in Section 5.

3.2 Pattern reuse

The reuse of patterns dedicated to develop Agent-based IS consists in applying them during
analysis, design and implementation phases.

First, developers analyze context and problem and should have to answer questions to
decide which patterns have to be applied and in which order. This acti vity can be favoured
by using Reuse Support Patterns which represent sequences of patterns that can be applied to
develop Agent-based IS (See Table 1 for an example of RSP suited for navigating in our
Analysis Pattern collection). They help to navi gate into the pattern collection and to reuse
them. Thus, developers adapt analysis, architectural or design pattern solution elements
(instantiation) to represent the system they want to develop. Finally, th e third activity aims
at using Model Transformation Patterns to generate skeleton application from pattern
instances.

It is worth mentioning that, here, reuse is realised by adaptation. Designers do not directly
reuse the patterns but adapt the different solutions (instantiation) to their specific
applications by modifying the level of abstraction given by the patterns. Moreover, as briefly
depicted in the “Service Integration” RSP below, designers should have to answer questions
to decide which patterns have to be applied. Another example is given in Table 1 where the
“Restrict access to resources” pattern is used if and only if some policies are in use on
resources.

Patterns for Agent-Based Information Systems: A Case Study in Transport 53

Interface
Name

Base Agent Design
Classification

Reuse Support Pattern
Rationale

This pattern presents Agent Analysis Patterns that can be applied to develop a base agent.
Here, a base agent is an agent that plays roles within organisations, lives in an
environment and reacts to events in the environment, and optionally acts on resources
(perception and action) if it has the associated permission.

Applicability
Agent Analysis Pattern Collection ^ Base Agent

Solution
Process

Designers first have to apply the pattern “Def ine system architecture”, then the patterns
“Define environment”, “Define event”, “A dd behaviour” and “Create plan”. After
applying the “Create plan” pattern, it is possi ble either to terminate the process or to
continue with the “Restrict access to resources” pattern depending on the necessity to
have policies on resource access (a resource is for instance digital documents such as
contracts, proposals, enterprise database, etc.). This decision is fuelled by considering the
place of agents in the environment: do all agents access resources? Do some resources
need to be kept private? Based on the answers, designers may decide to apply the
“Restrict access to resources” pattern.

Note : only the “Define System Architecture” Analysis Pattern in this RSP is presented in Section 4.
Relationships

Uses
“Define System Architecture”, “Define Environment”, “Def ine Event”, “Add Behaviour”,
“Create Plan”, “Restrict Access to Resources” Agent Analysis Patterns.

Table 1. Reuse Support Pattern “Base Agent Design”

Several other reuse support patterns (RSP) are proposed in our approach to address specific
needs. Amongst them, we can quote the “Service Integration” RSP. The “Service
Integration” RSP helps designers integrating the notion of services and service-oriented
architectures within the information system. In th is particular RSP, the process is not limited

Innovative Information Systems Modelling Techniques 54

to a set of patterns to apply in a given order but obliges designers to think about the overall
enterprise Inform ation Systems:

�x Do we need to agentify the services from the Information System?
�x Do we consider agents as a wrapper of services?
�x Do we need to present agent behaviours as services to Information Systems?
�x Do we need to provide access to external Information Systems and partners then

requiring interoperability and the definition of ontologies?

Based on designer’s answers, a specific process will appear from the complete activity
diagram in the “Service Integration” RSP.

Moreover, we have developed a toolkit, which is based on our software patterns. It takes as
input a Reuse Support Pattern, guides the developer--by asking questions--through the
different patterns to be used, and finally generates code skeleton. The process is then not
fully automated due to interactions with develo per. Thus, s/he can complete and refine the
generated code and run his/her agents on a target platform.

We present, in next section, Agent Patterns we designed to develop Agent-based IS.

4. Patterns for engineering agent-based information systems

4.1 Patterns for the analysis phase

In following sections, we present patterns fo r the analysis phase of information systems
engineering, which are Agent Analysis Patterns.

4.1.1 Agent analysis patterns

The analysis patterns described below are generic ones used for building agent-based
information systems at a high level of abstraction. Due to space restriction, we only
present two among twelve analysis patterns for building agents used in Information
Systems.

4.1.1.1 Agent analysis pattern “define system architecture”

Interface

Name
Define System Architecture

Classification
Agent Analysis Pattern

Rationale
The aim of this pattern is to define the organi sation and sub-organisations, their relations,
and the roles played by agents in these organisations.

Applicability
Designing agents ^ Information systems

Solution
Model

Patterns for Agent-Based Information Systems: A Case Study in Transport 55

Participants

This pattern describes the overall structure of the multiagent system underlying the IS. A
multiagent system is here an Organisation possibly composed of sub-organisations. Each
(sub-) organisation is related to other (sub-) organisations by some OrganisationRelation.
Agents play Role in these organisations.

The Agent concept corresponds to the notion of agent defined in the agent theory
(Wooldridge, 2002). An agent is an autonomous and active entity, which asynchronously
interacts with other agents and cooperates with others so as to solve a global problem. An
agent is seen as an aggregation of Role. An agent is uniquely iden tified within the system.

The Role concept describes a role that the agent will play. It defines a catalogue of
behaviours played within the system.

An association entitled plays links the Agent concept to the Role concept. This association
has the following cardinalities: an Agent may have 1 or more roles, and a Role may be
played by an agent.

The Organisation concept defines the organisational structure used in the system. There
could be a flat organisation or an organisation composed of sub-organisations.

Table 2. Agent Analysis Pattern “Define System Architecture”

4.1.1.2 Agent analysis pattern “define protocol”

Interface

Name
Define Protocol

Classification
Agent Analysis Pattern

Context

Innovative Information Systems Modelling Techniques 54

to a set of patterns to apply in a given order but obliges designers to think about the overall
enterprise Inform ation Systems:

�x Do we need to agentify the services from the Information System?
�x Do we consider agents as a wrapper of services?
�x Do we need to present agent behaviours as services to Information Systems?
�x Do we need to provide access to external Information Systems and partners then

requiring interoperability and the definition of ontologies?

Based on designer’s answers, a specific process will appear from the complete activity
diagram in the “Service Integration” RSP.

Moreover, we have developed a toolkit, which is based on our software patterns. It takes as
input a Reuse Support Pattern, guides the developer--by asking questions--through the
different patterns to be used, and finally generates code skeleton. The process is then not
fully automated due to interactions with develo per. Thus, s/he can complete and refine the
generated code and run his/her agents on a target platform.

We present, in next section, Agent Patterns we designed to develop Agent-based IS.

4. Patterns for engineering agent-based information systems

4.1 Patterns for the analysis phase

In following sections, we present patterns fo r the analysis phase of information systems
engineering, which are Agent Analysis Patterns.

4.1.1 Agent analysis patterns

The analysis patterns described below are generic ones used for building agent-based
information systems at a high level of abstraction. Due to space restriction, we only
present two among twelve analysis patterns for building agents used in Information
Systems.

4.1.1.1 Agent analysis pattern “define system architecture”

Interface

Name
Define System Architecture

Classification
Agent Analysis Pattern

Rationale
The aim of this pattern is to define the organi sation and sub-organisations, their relations,
and the roles played by agents in these organisations.

Applicability
Designing agents ^ Information systems

Solution
Model

Patterns for Agent-Based Information Systems: A Case Study in Transport 55

Participants

This pattern describes the overall structure of the multiagent system underlying the IS. A
multiagent system is here an Organisation possibly composed of sub-organisations. Each
(sub-) organisation is related to other (sub-) organisations by some OrganisationRelation.
Agents play Role in these organisations.

The Agent concept corresponds to the notion of agent defined in the agent theory
(Wooldridge, 2002). An agent is an autonomous and active entity, which asynchronously
interacts with other agents and cooperates with others so as to solve a global problem. An
agent is seen as an aggregation of Role. An agent is uniquely iden tified within the system.

The Role concept describes a role that the agent will play. It defines a catalogue of
behaviours played within the system.

An association entitled plays links the Agent concept to the Role concept. This association
has the following cardinalities: an Agent may have 1 or more roles, and a Role may be
played by an agent.

The Organisation concept defines the organisational structure used in the system. There
could be a flat organisation or an organisation composed of sub-organisations.

Table 2. Agent Analysis Pattern “Define System Architecture”

4.1.1.2 Agent analysis pattern “define protocol”

Interface

Name
Define Protocol

Classification
Agent Analysis Pattern

Context

Innovative Information Systems Modelling Techniques 56

This pattern requires applying the “Define Communication between Roles” pattern before.
Rationale

This pattern defines the protocol with the messages between roles.
Applicability

Designing agents ^ Information systems
Solution

Model

Participants

The different roles present in the Protocol are denoted by Lifeline. Lifeline specifies when a
Role enters the conversation and when it leaves it.

Message are exchanged between Lifeline and are gathered within InteractionOperand. These
InteractionOperand correspond to sequence of messages. Some InteractionConstraint may
alter how InteractionOperand can be used.

Finally, InteractionOperand are gathered within CombinedFragment and the semantics of
these fragments is given by InteractionOperatorKind. These InteractionOperatorKind are alt
(one InteractionOperand is selected based on InteractionConstraint), opt (an
InteractionOperand is applied if the corresponding InteractionConstraint are satisfied else
nothing is done) and loop (a CombinedFragment is applied over and over again as long as
the InteractionConstraint are satisfied).

Some ProtocolAttribute may be defined for the Protocol, they correspond to parameters for
the protocol.

Relationship
Requires

Agent Analysis Pattern “Define Communication between Roles”.

Table 3. Agent analysis pattern “Define Protocol”

Patterns for Agent-Based Information Systems: A Case Study in Transport 57

4.2 Patterns for the design phase

In this section, we present Agent Architectural and Design Patterns for the architectural and
detailed design of AIS. These patterns have to be applied after analysis patterns described
above.

4.2.1 Agent architectural patterns

We develop three architectural patterns related to the different architectures an AIS could
have:

�x Pattern “Market-based AIS”: a marketplace is defined with this pattern. A marketplace
is composed of several proposers and several task managers. Task managers try to find
the best proposal for a service. Two approaches are possible to retrieve this best
proposal: (1) A descending price auction or (2) A call for proposals.

�x Pattern “Subcontract-based AIS”: An AIS with subcontracts is a restricted version of
the previous pattern “Market-based AIS”. In this particular case, there is only one
task manager and several proposers. The best proposal is found after a call for
proposals.

�x Pattern “Peer-to-Peer-based AIS”: previous patterns impose to use a central server so
as to store the address of the different task managers and proposers. This approach
does not resist to the scalability problem and the bottleneck is located on querying the
central server to retrieve the different task managers and proposers. In this pattern
here, there is no central server and the different task managers and proposers know
each other via social networks. This kind of architecture copes with the scalability
problem.

Below, we only present the pattern “Subcont ract-based Agent-based Information System”.

Note: The different design and model transformation patterns described below are those required for
building a Subcontract-based AIS.

Interface

Name

Subcontract-based Agent-based Information System

Classification

Agent Architectural Pattern

Rationale

This pattern gives the structure of a subcontract-based information system with a unique
Task Manager and several Proposers.��

Applicability

Designing agents ^ Information systems

Solution

Model

Innovative Information Systems Modelling Techniques 56

This pattern requires applying the “Define Communication between Roles” pattern before.
Rationale

This pattern defines the protocol with the messages between roles.
Applicability

Designing agents ^ Information systems
Solution

Model

Participants

The different roles present in the Protocol are denoted by Lifeline. Lifeline specifies when a
Role enters the conversation and when it leaves it.

Message are exchanged between Lifeline and are gathered within InteractionOperand. These
InteractionOperand correspond to sequence of messages. Some InteractionConstraint may
alter how InteractionOperand can be used.

Finally, InteractionOperand are gathered within CombinedFragment and the semantics of
these fragments is given by InteractionOperatorKind. These InteractionOperatorKind are alt
(one InteractionOperand is selected based on InteractionConstraint), opt (an
InteractionOperand is applied if the corresponding InteractionConstraint are satisfied else
nothing is done) and loop (a CombinedFragment is applied over and over again as long as
the InteractionConstraint are satisfied).

Some ProtocolAttribute may be defined for the Protocol, they correspond to parameters for
the protocol.

Relationship
Requires

Agent Analysis Pattern “Define Communication between Roles”.

Table 3. Agent analysis pattern “Define Protocol”

Patterns for Agent-Based Information Systems: A Case Study in Transport 57

4.2 Patterns for the design phase

In this section, we present Agent Architectural and Design Patterns for the architectural and
detailed design of AIS. These patterns have to be applied after analysis patterns described
above.

4.2.1 Agent architectural patterns

We develop three architectural patterns related to the different architectures an AIS could
have:

�x Pattern “Market-based AIS”: a marketplace is defined with this pattern. A marketplace
is composed of several proposers and several task managers. Task managers try to find
the best proposal for a service. Two approaches are possible to retrieve this best
proposal: (1) A descending price auction or (2) A call for proposals.

�x Pattern “Subcontract-based AIS”: An AIS with subcontracts is a restricted version of
the previous pattern “Market-based AIS”. In this particular case, there is only one
task manager and several proposers. The best proposal is found after a call for
proposals.

�x Pattern “Peer-to-Peer-based AIS”: previous patterns impose to use a central server so
as to store the address of the different task managers and proposers. This approach
does not resist to the scalability problem and the bottleneck is located on querying the
central server to retrieve the different task managers and proposers. In this pattern
here, there is no central server and the different task managers and proposers know
each other via social networks. This kind of architecture copes with the scalability
problem.

Below, we only present the pattern “Subcont ract-based Agent-based Information System”.

Note: The different design and model transformation patterns described below are those required for
building a Subcontract-based AIS.

Interface

Name

Subcontract-based Agent-based Information System

Classification

Agent Architectural Pattern

Rationale

This pattern gives the structure of a subcontract-based information system with a unique
Task Manager and several Proposers.��

Applicability

Designing agents ^ Information systems

Solution

Model

Innovative Information Systems Modelling Techniques 58

Participants��

This kind of AIS architecture considers three layers: the Task Manager layer, the Platform
layer and the Proposer layer.

The Task Manager layer contains one unique Task Manager playing the role of task
manager in AIS. It is the one that requests services from Proposer.

The Proposer layer contains one or more Proposer playing the role of proposers who
provide services.

The Platform layer contains two services proposed to the different task manager and
proposers, that is the white pages and the yellow pages. White pages give the address of
the different entities within the system and yellow pages return the service proposed by
proposers.

Collaborations and communicati ons within the architecture:

1. Proposers register their services within the yellow pages with the performative
subscribe.

2. A task manager looks for proposers providin g a specific service (here the service A)
within the yellow pages with the performative search. It then retrieves their address
within the white pages so as to contact them.

3. A Contract Net protocol (Davis & Smith, 1983) is then used between proposers and
task manager so as to find the best proposal for a specific requested service (here the
service A).

Table 4. Agent Architectural Pattern “Subcont ract-based Agent-based Information System”.

4.2.2 Agent design patterns

The following patterns describe the different co ncepts needed for designing an Agent-based
IS. We only present here two examples of such patterns.

Patterns for Agent-Based Information Systems: A Case Study in Transport 59

4.2.2.1 Agent design pattern “pla tform-based system architecture”

Interface
Name

Platform-based System Architecture
Classification

Agent Design Pattern
Rationale

This pattern describes the overall structure of the system taking count of the platform.
Applicability

Designing agents ^ Information systems
Solution

Model

Participants

This pattern describes the overall structure of the multiagent system underlying the IS
from the design point of view. A multiagent system is here an Organisation possibly
composed of sub-organisations. Each (sub-) organization is related to other (sub-)
organizations by some OrganisationRelation. Agents play Role in these organizations.

The Agent concept corresponds to the notion of agent defined in the agent theory
(Wooldridge, 2002). An agent is an autonomous and active entity, which asynchronously
interacts with other agents and cooperates with others so as to solve a global problem. An
agent is seen as an aggregation of Role. An Agent is defined as an abstract class from object

Innovative Information Systems Modelling Techniques 58

Participants��

This kind of AIS architecture considers three layers: the Task Manager layer, the Platform
layer and the Proposer layer.

The Task Manager layer contains one unique Task Manager playing the role of task
manager in AIS. It is the one that requests services from Proposer.

The Proposer layer contains one or more Proposer playing the role of proposers who
provide services.

The Platform layer contains two services proposed to the different task manager and
proposers, that is the white pages and the yellow pages. White pages give the address of
the different entities within the system and yellow pages return the service proposed by
proposers.

Collaborations and communicati ons within the architecture:

1. Proposers register their services within the yellow pages with the performative
subscribe.

2. A task manager looks for proposers providin g a specific service (here the service A)
within the yellow pages with the performative search. It then retrieves their address
within the white pages so as to contact them.

3. A Contract Net protocol (Davis & Smith, 1983) is then used between proposers and
task manager so as to find the best proposal for a specific requested service (here the
service A).

Table 4. Agent Architectural Pattern “Subcont ract-based Agent-based Information System”.

4.2.2 Agent design patterns

The following patterns describe the different co ncepts needed for designing an Agent-based
IS. We only present here two examples of such patterns.

Patterns for Agent-Based Information Systems: A Case Study in Transport 59

4.2.2.1 Agent design pattern “pla tform-based system architecture”

Interface
Name

Platform-based System Architecture
Classification

Agent Design Pattern
Rationale

This pattern describes the overall structure of the system taking count of the platform.
Applicability

Designing agents ^ Information systems
Solution

Model

Participants

This pattern describes the overall structure of the multiagent system underlying the IS
from the design point of view. A multiagent system is here an Organisation possibly
composed of sub-organisations. Each (sub-) organization is related to other (sub-)
organizations by some OrganisationRelation. Agents play Role in these organizations.

The Agent concept corresponds to the notion of agent defined in the agent theory
(Wooldridge, 2002). An agent is an autonomous and active entity, which asynchronously
interacts with other agents and cooperates with others so as to solve a global problem. An
agent is seen as an aggregation of Role. An Agent is defined as an abstract class from object

Innovative Information Systems Modelling Techniques 60

theory since three operations mentioned below are abstract. An agent is uniquely
identified in the system via the attribute id . Getter and setter operations are defined for the
attribute id. Three other operations are defined abstract and have to be instantiated in the
instance of this Agent. Activate() contains behaviours for initialising the agent. Run() is
executed every time it is the turn of the agent to be executed. Finally, terminate() describes
behaviours executed when ending the agent execution.

The Role concept describes a role that the agent will play. It defines a catalogue of
behaviours played wi thin the system. The Role concept defines an attribute name and its
corresponding getter and setter operations.

An association entitled plays links the Agent concept to the Role concept. This association
has the following cardinalities: an Agent may have 1 or more roles, and a Role may be
played by an agent.

The Organisation concept defines the organizational structure used in the system. There
could be a flat organization or an organi zation composed of sub-organisations. An
attribute name and its corresponding getter and setter operations are associated to the
Organisation concept.

An association belongsTo links the Organisation concept to the Agent concept. It expresses
the fact that an agent may belong to several organizations and an organization has zero or
more agents whatever their roles are.

The OrganisationRelation concept describes the relation between two organizations.

Finally, the Platform concept defines the platform and the different services provided by
this one. These services are present by the operations available on the Platform concept:
connection to the platform, disconnection from the platform, send a message, receive a
message saved on the platform, perceive for sensing traces in the environment, and leave
for adding traces in the environment.

Relationships
Requires

Agent Analysis Pattern “Def ine System Architecture”.

Table 5. Agent Design Pattern “Platform-based System Architecture”

4.2.2.2 Agent design pattern “FIPA-based interaction with protocol”

Interface
Name

FIPA-based Interaction with Protocol
Classification

Agent Design Pattern
Rationale

This design pattern describes the notion of cognitive interaction in terms of protocols
within roles. This interaction is FIPA-compliant.

Applicability
Designing agents ^ Information systems

Patterns for Agent-Based Information Systems: A Case Study in Transport 61

Solution
Model

Participants

Interactions between roles are either based on pheromones left in the environment (we
speak about reactive interactions) or based on communicative acts as humans do (we
speak then about cognitive interactions). In this design pattern, we consider cognitive
interactions through protocols. Protocols help directing the conversations between roles
since only messages from the protocol are granted when agents interact with this protocol.

This design pattern is FIPA-compliant (FIPA, 2002) and is based on the UML 2.x sequence
diagram specifications. We just remove some classes that are nonsense for agents.

The following concepts are present in this design pattern:

The Role concept describes a role that the agent will play. It defines a catalogue of
behaviours played wi thin the system. The Role concept defines an attribute name and its

Innovative Information Systems Modelling Techniques 60

theory since three operations mentioned below are abstract. An agent is uniquely
identified in the system via the attribute id . Getter and setter operations are defined for the
attribute id. Three other operations are defined abstract and have to be instantiated in the
instance of this Agent. Activate() contains behaviours for initialising the agent. Run() is
executed every time it is the turn of the agent to be executed. Finally, terminate() describes
behaviours executed when ending the agent execution.

The Role concept describes a role that the agent will play. It defines a catalogue of
behaviours played wi thin the system. The Role concept defines an attribute name and its
corresponding getter and setter operations.

An association entitled plays links the Agent concept to the Role concept. This association
has the following cardinalities: an Agent may have 1 or more roles, and a Role may be
played by an agent.

The Organisation concept defines the organizational structure used in the system. There
could be a flat organization or an organi zation composed of sub-organisations. An
attribute name and its corresponding getter and setter operations are associated to the
Organisation concept.

An association belongsTo links the Organisation concept to the Agent concept. It expresses
the fact that an agent may belong to several organizations and an organization has zero or
more agents whatever their roles are.

The OrganisationRelation concept describes the relation between two organizations.

Finally, the Platform concept defines the platform and the different services provided by
this one. These services are present by the operations available on the Platform concept:
connection to the platform, disconnection from the platform, send a message, receive a
message saved on the platform, perceive for sensing traces in the environment, and leave
for adding traces in the environment.

Relationships
Requires

Agent Analysis Pattern “Def ine System Architecture”.

Table 5. Agent Design Pattern “Platform-based System Architecture”

4.2.2.2 Agent design pattern “FIPA-based interaction with protocol”

Interface
Name

FIPA-based Interaction with Protocol
Classification

Agent Design Pattern
Rationale

This design pattern describes the notion of cognitive interaction in terms of protocols
within roles. This interaction is FIPA-compliant.

Applicability
Designing agents ^ Information systems

Patterns for Agent-Based Information Systems: A Case Study in Transport 61

Solution
Model

Participants

Interactions between roles are either based on pheromones left in the environment (we
speak about reactive interactions) or based on communicative acts as humans do (we
speak then about cognitive interactions). In this design pattern, we consider cognitive
interactions through protocols. Protocols help directing the conversations between roles
since only messages from the protocol are granted when agents interact with this protocol.

This design pattern is FIPA-compliant (FIPA, 2002) and is based on the UML 2.x sequence
diagram specifications. We just remove some classes that are nonsense for agents.

The following concepts are present in this design pattern:

The Role concept describes a role that the agent will play. It defines a catalogue of
behaviours played wi thin the system. The Role concept defines an attribute name and its

Innovative Information Systems Modelling Techniques 62

corresponding getter and setter operations.

The Protocol concept defines a protocol. It contains all the sequences of messages allowed
for this protocol. The Protocol concept defines an attribute name and its corresponding
getter and setter operations.

A protocol may contain some ProtocolAttribute. These attributes correspond to local
attributes required during the execution of the protocol. It could be for instance the set of
recipients of a specific message. The ProtocolAttribute concept defines an attribute as a name
and a value. The corresponding getter and setter operations are defined too.

The different roles are denoted by the Lifeline concept in the protocol.

Since this protocol definition is based on UML 2.x sequence diagram specification, a
protocol is decomposed into CombinedFragment. Each CombinedFragment has an associated
InteractionOperatorKind from the following list: alt, opt and loop. Alt denotes an alternative
between several InteractionOperand. One and only one alternative will be chosen. Opt
denotes an option on an InteractionOperand. This InteractionOperand is executed if and only
if the conditions-represented by InteractionConstraint- are satisfied. Finally, loop denotes the
execution of a set of messages as long as the conditions are satisfied.

The Message concept is the concept following the FIPA definition. It contains a set of
attributes and their getter and setter operations. Sender, recipient, performative and content
denote from whom the message is sent to whom. A message is composed of two parts: a
performative depicting the verb of the communicative act (inform, request, etc.) and a content
on which this performative is applied. The other attributes are for administrative duties:
replywith and inreplyto correspond to identifier respectively for the sender and the
recipient. Language denotes the language in which the content parameter is expressed.
Ontology defines which ontology is used for this message. Finally, encoding denotes the
specific encoding of the content language expression.

Relationships
Requires

Agent Analysis Pattern “Define Protocol”

Table 6. Agent Design Pattern “FIPA-based Interaction with Protocol”.

4.3 Patterns for the implementation phase: Model transformation patterns

We define several Model Transformation Patterns for developing AIS for different
architectures (subcontract-based architectures, market-based ones and peer-to-peer-based
ones) and for different execution platforms (JA DE and Madkit). We only present here in
Table 7, a short version---without method transformations---of a Model Transformation
Pattern for Madkit implementation of a subcontract-based AIS.

Interface
Name

Madkit Implementation of a subcontract-based Agent-based Information System
Classification

Model Transformation Pattern

Patterns for Agent-Based Information Systems: A Case Study in Transport 63

Rationale
This pattern performs the model transformation from a design model of a subcontract-
based Agent-based Information System to the Madkit platform.

Applicability
Implementing agents ^ Subcontr act-based Information Systems

Solution
Model

Note: In this pattern and due to space restriction, we do not consider the OrganisationRelation
concept since it is not mandatory for a subcontract-based AIS.

Participants

This pattern ensures the transformation from a design model of an AIS to a set of classes
for the Madkit platform. Agents on the Madkit platform are defined as a specialization of
the AbstractAgent class provided by the Madkit platform. The AbstractAgent class from the
Madkit platform provides the different methods required for the Agent lifecycle (creation,
invocation, execution and deletion). These methods correspond to the ones proposed in
the Agent concept. The set of attributes and methods from the Role concept is added to the

Innovative Information Systems Modelling Techniques 62

corresponding getter and setter operations.

The Protocol concept defines a protocol. It contains all the sequences of messages allowed
for this protocol. The Protocol concept defines an attribute name and its corresponding
getter and setter operations.

A protocol may contain some ProtocolAttribute. These attributes correspond to local
attributes required during the execution of the protocol. It could be for instance the set of
recipients of a specific message. The ProtocolAttribute concept defines an attribute as a name
and a value. The corresponding getter and setter operations are defined too.

The different roles are denoted by the Lifeline concept in the protocol.

Since this protocol definition is based on UML 2.x sequence diagram specification, a
protocol is decomposed into CombinedFragment. Each CombinedFragment has an associated
InteractionOperatorKind from the following list: alt, opt and loop. Alt denotes an alternative
between several InteractionOperand. One and only one alternative will be chosen. Opt
denotes an option on an InteractionOperand. This InteractionOperand is executed if and only
if the conditions-represented by InteractionConstraint- are satisfied. Finally, loop denotes the
execution of a set of messages as long as the conditions are satisfied.

The Message concept is the concept following the FIPA definition. It contains a set of
attributes and their getter and setter operations. Sender, recipient, performative and content
denote from whom the message is sent to whom. A message is composed of two parts: a
performative depicting the verb of the communicative act (inform, request, etc.) and a content
on which this performative is applied. The other attributes are for administrative duties:
replywith and inreplyto correspond to identifier respectively for the sender and the
recipient. Language denotes the language in which the content parameter is expressed.
Ontology defines which ontology is used for this message. Finally, encoding denotes the
specific encoding of the content language expression.

Relationships
Requires

Agent Analysis Pattern “Define Protocol”

Table 6. Agent Design Pattern “FIPA-based Interaction with Protocol”.

4.3 Patterns for the implementation phase: Model transformation patterns

We define several Model Transformation Patterns for developing AIS for different
architectures (subcontract-based architectures, market-based ones and peer-to-peer-based
ones) and for different execution platforms (JA DE and Madkit). We only present here in
Table 7, a short version---without method transformations---of a Model Transformation
Pattern for Madkit implementation of a subcontract-based AIS.

Interface
Name

Madkit Implementation of a subcontract-based Agent-based Information System
Classification

Model Transformation Pattern

Patterns for Agent-Based Information Systems: A Case Study in Transport 63

Rationale
This pattern performs the model transformation from a design model of a subcontract-
based Agent-based Information System to the Madkit platform.

Applicability
Implementing agents ^ Subcontr act-based Information Systems

Solution
Model

Note: In this pattern and due to space restriction, we do not consider the OrganisationRelation
concept since it is not mandatory for a subcontract-based AIS.

Participants

This pattern ensures the transformation from a design model of an AIS to a set of classes
for the Madkit platform. Agents on the Madkit platform are defined as a specialization of
the AbstractAgent class provided by the Madkit platform. The AbstractAgent class from the
Madkit platform provides the different methods required for the Agent lifecycle (creation,
invocation, execution and deletion). These methods correspond to the ones proposed in
the Agent concept. The set of attributes and methods from the Role concept is added to the

Innovative Information Systems Modelling Techniques 64

Task manager and Proposer classes. The Task manager and Proposer are the two unique roles
in a subcontract-based AIS according to the “Subcontract-based Agent-based Information
System” architectural pattern (see Table 4).

Two rules are added for model transformation. Rule 1 expresses that organizations are
created within agents in the activate() operation. Agents are responsible to create the
organizations. Rule 2 specifies that roles agents have, are taken within the activate()
operation of the corresponding agent.

Relationships
Uses

Agent Design Pattern “Platform-based System Architecture”.

Table 7. Model Transformation Pattern “Mad kit Implementation of a Subcontract-based
Agent-based Information System”

5. A case study

The objectives of our case study are to provide enriched traveller information. This enriched
traveller information is in fact the collaboration of two different tools: (1) A route planner
considering usual travel means such as buses and undergrounds but also taxis, personal
vehicles, rent bicycles and walking, and (2) An adorned travel with points of interests
related to traveller preferences (cultural intere sts, food preferences, etc.). The process of
proposing a route to traveller is as followed. After entering origin and destination, the
information system composed of all the diffe rent operators (bus, underground, taxi, and
rent bicycle) cooperate to find the best route proposals based on the preferences (cost,
duration, number of connections, etc.) and requir ements (no stairs, disabled access, ease of
use, etc.) of the traveller. Then, the system prunes all the proposed routes based on traveller
requirements. Finally, points of interest pr oviders adorn the routes with contextual
information such as restaurants matching the traveller’s food preferences if the route is
during meal hours, shops or monuments, etc.

This information system exhibits some specific features that are compatible with an agent-
based system. First of all, route planning is not realised according a client/server approach.
Every operator is responsible of its data and is the only one to know how to deal with
scheduled and/or unexpected events (delays, traffic jam, disruptions, etc.). As mentioned
above, operators collaborate to find routes from origin to destination.

A second reason is the openness of the system. The list of operators (especially taxis) and
points of interest providers is subject to evolve, especially during execution. The system
should be able to take account of appearing and disappearing providers.

Finally, a third reason is the necessity for the information system to present some
adaptability mechanisms. A route may change du e to unexpected events or after traveller
requests. The system should be able to modify the proposals during execution.

For all these reasons, an agent-based system is well-adapted since adaptability, openness,
and context-aware are part of the intrinsic featur es of agents. We invite the reader to consult
(Wooldridge, 2002) for details on agent-based systems and their characteristics.

Patterns for Agent-Based Information Systems: A Case Study in Transport 65

We focus in this chapter on how designing and building the transport information system
responsible to provide enriched traveller information.

Figures 2 and 3 give the instantiation for our case study of the two analysis patterns
presented in Section 4.1.

Fig. 2. Instantiation of the “Define System Architecture” Agent Analysis Pattern

Figure 2 describes the complete system architecture with one organisation Traveller
Information Organisation, one sub-organisation Transport Operator Organisation, five roles
Traveller Information, Travel Planning, Customisation, POI Integration and Collaborative Travel
Proposal, and four agents User Agent, Travel Planning Agent, POI Agent, and Transport
Operator Agent.

Each agent Transport Operator Agent represents a means to travel inside a city: underground
if available, bus, taxi, rent bicycle, personal vehicle or by foot. These agents play the role
Collaborative Travel Proposal since they try to collaborate so as to complete the travel from
origin to destination. All these agents are part of the Transport Operator Organisation.

The Transport Operator Organisation is part of the Traveller Information Organisation, which
carries information to travellers.

User Agent represents the traveller requesting the system. Travel Planning Agent is
responsible to ask for a list of journeys to Transport Operator Agent. Travel Planning Agent has
two roles: (1) Travel Planning to request journeys and (2) Customisation to prune the journeys
based on user preferences and requirements. This role sends journeys back to the User
Agent.

POI Agent represents point of interests within th e city. These agents intervene when a
journey is completed and add some points of in terest based on user preferences. Points of
interest might be restaurants, monuments, shops to name a few.

Innovative Information Systems Modelling Techniques 64

Task manager and Proposer classes. The Task manager and Proposer are the two unique roles
in a subcontract-based AIS according to the “Subcontract-based Agent-based Information
System” architectural pattern (see Table 4).

Two rules are added for model transformation. Rule 1 expresses that organizations are
created within agents in the activate() operation. Agents are responsible to create the
organizations. Rule 2 specifies that roles agents have, are taken within the activate()
operation of the corresponding agent.

Relationships
Uses

Agent Design Pattern “Platform-based System Architecture”.

Table 7. Model Transformation Pattern “Mad kit Implementation of a Subcontract-based
Agent-based Information System”

5. A case study

The objectives of our case study are to provide enriched traveller information. This enriched
traveller information is in fact the collaboration of two different tools: (1) A route planner
considering usual travel means such as buses and undergrounds but also taxis, personal
vehicles, rent bicycles and walking, and (2) An adorned travel with points of interests
related to traveller preferences (cultural intere sts, food preferences, etc.). The process of
proposing a route to traveller is as followed. After entering origin and destination, the
information system composed of all the diffe rent operators (bus, underground, taxi, and
rent bicycle) cooperate to find the best route proposals based on the preferences (cost,
duration, number of connections, etc.) and requir ements (no stairs, disabled access, ease of
use, etc.) of the traveller. Then, the system prunes all the proposed routes based on traveller
requirements. Finally, points of interest pr oviders adorn the routes with contextual
information such as restaurants matching the traveller’s food preferences if the route is
during meal hours, shops or monuments, etc.

This information system exhibits some specific features that are compatible with an agent-
based system. First of all, route planning is not realised according a client/server approach.
Every operator is responsible of its data and is the only one to know how to deal with
scheduled and/or unexpected events (delays, traffic jam, disruptions, etc.). As mentioned
above, operators collaborate to find routes from origin to destination.

A second reason is the openness of the system. The list of operators (especially taxis) and
points of interest providers is subject to evolve, especially during execution. The system
should be able to take account of appearing and disappearing providers.

Finally, a third reason is the necessity for the information system to present some
adaptability mechanisms. A route may change du e to unexpected events or after traveller
requests. The system should be able to modify the proposals during execution.

For all these reasons, an agent-based system is well-adapted since adaptability, openness,
and context-aware are part of the intrinsic features of agents. We invite the reader to consult
(Wooldridge, 2002) for details on agent-based systems and their characteristics.

Patterns for Agent-Based Information Systems: A Case Study in Transport 65

We focus in this chapter on how designing and building the transport information system
responsible to provide enriched traveller information.

Figures 2 and 3 give the instantiation for our case study of the two analysis patterns
presented in Section 4.1.

Fig. 2. Instantiation of the “Define System Architecture” Agent Analysis Pattern

Figure 2 describes the complete system architecture with one organisation Traveller
Information Organisation, one sub-organisation Transport Operator Organisation, five roles
Traveller Information, Travel Planning, Customisation, POI Integration and Collaborative Travel
Proposal, and four agents User Agent, Travel Planning Agent, POI Agent, and Transport
Operator Agent.

Each agent Transport Operator Agent represents a means to travel inside a city: underground
if available, bus, taxi, rent bicycle, personal vehicle or by foot. These agents play the role
Collaborative Travel Proposal since they try to collaborate so as to complete the travel from
origin to destination. All these agents are part of the Transport Operator Organisation.

The Transport Operator Organisation is part of the Traveller Information Organisation, which
carries information to travellers.

User Agent represents the traveller requesting the system. Travel Planning Agent is
responsible to ask for a list of journeys to Transport Operator Agent. Travel Planning Agent has
two roles: (1) Travel Planning to request journeys and (2) Customisation to prune the journeys
based on user preferences and requirements. This role sends journeys back to the User
Agent.

POI Agent represents point of interests within th e city. These agents intervene when a
journey is completed and add some points of in terest based on user preferences. Points of
interest might be restaurants, monuments, shops to name a few.

Innovative Information Systems Modelling Techniques 66

Fig. 3. Instantiation of the “Defin e Protocol” Agent Analysis Pattern

Figure 3 presents the protocol (instantiation of the “Define Protocol“ analysis pattern) that
initiates the search for a trip between the Traveller Information role acting for the user and the
Travel Planning. The message sent is the Search message.

Figures 4 and 5 give the instantiation for our case study of the two design patterns
presented in Section 4.2. The developer of a transport information system has to apply the
agent analysis and architectural--not presented here--patterns before.

Figure 4 corresponds to Figure 2 after refining analysis model, i.e. inserting some attributes
and operations. All the operations (except for the Platform concept) are getter and setter
operations. We define below the different at tributes for the concepts on this pattern:

UserAgent has attributes corresponding to the travel: there are an origin, a destination, a
maximum amount s/he would like to pay and a maximum duration for the travel.
Preferences and Requirements contain a description attribute describing the preferences or the
requirements the user has.

TravelPlanningAgent has three attributes: queries containing the different user queries the
enriched travel planning system has to satisfy, plannedTravels containing the raw travel
planning answering user queries and finally enrichedTravels contain the list of enriched
travels with points of interest to send to users.

POIAgent has a unique attribute description describing the point of interest (position,
description, etc.) for inclusion in travel plans.

Patterns for Agent-Based Information Systems: A Case Study in Transport 67

TransportOperatorAgent has an attribute TransportOperatorDB corresponding to the database
of all the details about the journeys proposed by the operator. When the operator is a rent
bicycle one, the database contains the different locations of rent and where bicycles are.

Fig. 4. Instantiation of the “Platform-base d System Architecture” Agent Design Pattern

Figure 5 presents the sequence diagram corresponding to the situation where a user asks for
a travel from an origin to a de stination. This figure is the instantiation of the “FIPA-based
Interaction with Protocol” Agent Design Pattern. His/her UserAgent leaves the query in the
environment. This insertion generates an event, a TravelPlanningAgent can perceive. If this
UserAgent is a newcomer in the system, the TravelPlanningAgent asks the UserAgent about its
user’s preferences and requirements.

TravelPlanningAgent then leaves in the environment a travel from origin to destination but
without schedule. This empty travel is perceived by TransportOperatorAgent that tries to
complete it. Every TransportOperatorAgent tries to update this travel or to propose an
alternative. When this travel was considered by all TransportOperatorAgent, it turns into a
planned travel. The TravelPlanningAgent perceives it and turns it in to an enriched travel to
let POIAgent to perceive it.

POIAgent tries to update it with points of interest and leaves the enriched travel plans in the
environment. Finally, Customisation prunes the different proposals based on user’s
preferences and requirements and informs UserAgent of the best proposals.

Innovative Information Systems Modelling Techniques 66

Fig. 3. Instantiation of the “Defin e Protocol” Agent Analysis Pattern

Figure 3 presents the protocol (instantiation of the “Define Protocol“ analysis pattern) that
initiates the search for a trip between the Traveller Information role acting for the user and the
Travel Planning. The message sent is the Search message.

Figures 4 and 5 give the instantiation for our case study of the two design patterns
presented in Section 4.2. The developer of a transport information system has to apply the
agent analysis and architectural--not presented here--patterns before.

Figure 4 corresponds to Figure 2 after refining analysis model, i.e. inserting some attributes
and operations. All the operations (except for the Platform concept) are getter and setter
operations. We define below the different at tributes for the concepts on this pattern:

UserAgent has attributes corresponding to the travel: there are an origin, a destination, a
maximum amount s/he would like to pay and a maximum duration for the travel.
Preferences and Requirements contain a description attribute describing the preferences or the
requirements the user has.

TravelPlanningAgent has three attributes: queries containing the different user queries the
enriched travel planning system has to satisfy, plannedTravels containing the raw travel
planning answering user queries and finally enrichedTravels contain the list of enriched
travels with points of interest to send to users.

POIAgent has a unique attribute description describing the point of interest (position,
description, etc.) for inclusion in travel plans.

Patterns for Agent-Based Information Systems: A Case Study in Transport 67

TransportOperatorAgent has an attribute TransportOperatorDB corresponding to the database
of all the details about the journeys proposed by the operator. When the operator is a rent
bicycle one, the database contains the different locations of rent and where bicycles are.

Fig. 4. Instantiation of the “Platform-base d System Architecture” Agent Design Pattern

Figure 5 presents the sequence diagram corresponding to the situation where a user asks for
a travel from an origin to a de stination. This figure is the instantiation of the “FIPA-based
Interaction with Protocol” Agent Design Pattern. His/her UserAgent leaves the query in the
environment. This insertion generates an event, a TravelPlanningAgent can perceive. If this
UserAgent is a newcomer in the system, the TravelPlanningAgent asks the UserAgent about its
user’s preferences and requirements.

TravelPlanningAgent then leaves in the environment a travel from origin to destination but
without schedule. This empty travel is perceived by TransportOperatorAgent that tries to
complete it. Every TransportOperatorAgent tries to update this travel or to propose an
alternative. When this travel was considered by all TransportOperatorAgent, it turns into a
planned travel. The TravelPlanningAgent perceives it and turns it in to an enriched travel to
let POIAgent to perceive it.

POIAgent tries to update it with points of interest and leaves the enriched travel plans in the
environment. Finally, Customisation prunes the different proposals based on user’s
preferences and requirements and informs UserAgent of the best proposals.

Innovative Information Systems Modelling Techniques 68

Fig. 5. Instantiation of the “FIPA-based Inte raction with Protocol” Agent Design Pattern

6. Related work

We can find two kinds of patterns related to Information Systems and agent-based systems
engineering in literature:

�x Agent-based patterns
�x Patterns for Information Systems engineering

Patterns for Information Systems engineering (for instance, patterns for cooperative IS
(Couturier, 2004) (Saidane, 2005), e-bidding applications (Jureta et al., 2005; Couturier et al.,
2010), distributed IS (Renzel & Keller, 1997), enterprise application architecture (Fowler,
2002), etc.) are generally domain-dependent and/or do not deal with advanced information
systems requiring adaptability, cooperation or negotiation such as agent-based ones.

On the other hand, the concepts of agent technology, which include, among others,
autonomy, proactivity, reactivity, social behaviours, adaptability and agents, differ from
those of traditional software development paradigms. The various concepts and the
relationships among them generate different agent-oriented software engineering problems
for which agent-oriented patterns have been written.

Patterns for Agent-Based Information Systems: A Case Study in Transport 69

According to Oluyomi et al. (Oluyomi et al ., 2007), numerous efforts have been made by
agent software practitioners to document agent-oriented software engineering experiences
as patterns and they establish a listing of ninety-seven agent-oriented patterns gathered
from literature.

Oluyomi et al. classify agent-oriented patter ns based on the definition of the software
tasks/concepts of agent technology and the stages of development.

According to this first point of view, numerous works such as (Kendall et al., 1998) (Aridor
& Lange, 1998) feature agent-oriented concepts as object-oriented ones and adapt existing
object-oriented patterns to their needs. This is not suited for agent-based system engineering
due to the differences between agent technology concepts and object ones and their
implementation languages.

According to the second point of view, existing agent patterns are not designed to capture
all the different phases and processes of agent-oriented software engineering. Indeed,
proposals ((Hung and Pasquale, 1999), (Tahara et al., 1999), (Sauvage, 2003), (Schelfthout et
al., 2002) to name a few) focus either only on the implementation phase of development or
only on some aspects of the design phase but scarcely to analysis. Other works are based on
implementation of only a particular application of agent technology, for example, mobile
agents (Aridor and Lange, 1998), or reactive or cognitive ones (Meira et al., 2001) for
instance. It is worth mentioning that it is difficult to reuse these proposals to realise a
complete agent-based information system: either the proposals only deal with a specific
agent type, or the collection of patterns is partial and not homogeneous enough.

We add a third classification: proposals specifying patterns with or without providing tools
or a methodology to help reusing these patterns. Some patterns underlie methodologies
such as Tropos (Do et al., 2003) or PASSI (Cossentino et al., 2004). These methodologies aim
at guiding developers when using patterns to develop agent-based systems. However,
Tropos only proposes patterns for detailed design. These patterns focus on social and
intentional aspects frequently present in agent-based systems. Patterns in PASSI
methodology deal with detailed design and impl ementation. One hurdle in PASSI is this is
not trivial selecting the appropriate patterns especially for new agent developers. Most of
works do not propose a methodology or a guide to reuse patterns.

Thus, it becomes difficult for a developer to reuse these proposals to design and implement
an agent-based information system:

�x Proposed patterns are too generic and do not match with information systems issues.
�x It is very difficult for non-agent software pr actitioners to easy understand the different

aspects of agent based systems development.
�x Users do not have adequate criteria to search for suitable patterns to solve their

problems (lack of methodology).
�x All stages of software development are not covered and combination of agent-oriented

patterns written by different authors, into a well-defined pattern collection is nearly
impracticable.

Our proposal, which covers all the phases of agent-based information systems engineering,
is suitable for each kind of agent (agents with or without deci sion behaviours) and

Innovative Information Systems Modelling Techniques 68

Fig. 5. Instantiation of the “FIPA-based Inte raction with Protocol” Agent Design Pattern

6. Related work

We can find two kinds of patterns related to Information Systems and agent-based systems
engineering in literature:

�x Agent-based patterns
�x Patterns for Information Systems engineering

Patterns for Information Systems engineering (for instance, patterns for cooperative IS
(Couturier, 2004) (Saidane, 2005), e-bidding applications (Jureta et al., 2005; Couturier et al.,
2010), distributed IS (Renzel & Keller, 1997), enterprise application architecture (Fowler,
2002), etc.) are generally domain-dependent and/or do not deal with advanced information
systems requiring adaptability, cooperation or negotiation such as agent-based ones.

On the other hand, the concepts of agent technology, which include, among others,
autonomy, proactivity, reactivity, social behaviours, adaptability and agents, differ from
those of traditional software development paradigms. The various concepts and the
relationships among them generate different agent-oriented software engineering problems
for which agent-oriented patterns have been written.

Patterns for Agent-Based Information Systems: A Case Study in Transport 69

According to Oluyomi et al. (Oluyomi et al ., 2007), numerous efforts have been made by
agent software practitioners to document agent-oriented software engineering experiences
as patterns and they establish a listing of ninety-seven agent-oriented patterns gathered
from literature.

Oluyomi et al. classify agent-oriented patter ns based on the definition of the software
tasks/concepts of agent technology and the stages of development.

According to this first point of view, numerous works such as (Kendall et al., 1998) (Aridor
& Lange, 1998) feature agent-oriented concepts as object-oriented ones and adapt existing
object-oriented patterns to their needs. This is not suited for agent-based system engineering
due to the differences between agent technology concepts and object ones and their
implementation languages.

According to the second point of view, existing agent patterns are not designed to capture
all the different phases and processes of agent-oriented software engineering. Indeed,
proposals ((Hung and Pasquale, 1999), (Tahara et al., 1999), (Sauvage, 2003), (Schelfthout et
al., 2002) to name a few) focus either only on the implementation phase of development or
only on some aspects of the design phase but scarcely to analysis. Other works are based on
implementation of only a particular application of agent technology, for example, mobile
agents (Aridor and Lange, 1998), or reactive or cognitive ones (Meira et al., 2001) for
instance. It is worth mentioning that it is difficult to reuse these proposals to realise a
complete agent-based information system: either the proposals only deal with a specific
agent type, or the collection of patterns is partial and not homogeneous enough.

We add a third classification: proposals specifying patterns with or without providing tools
or a methodology to help reusing these patterns. Some patterns underlie methodologies
such as Tropos (Do et al., 2003) or PASSI (Cossentino et al., 2004). These methodologies aim
at guiding developers when using patterns to develop agent-based systems. However,
Tropos only proposes patterns for detailed design. These patterns focus on social and
intentional aspects frequently present in agent-based systems. Patterns in PASSI
methodology deal with detailed design and impl ementation. One hurdle in PASSI is this is
not trivial selecting the appropriate patterns especially for new agent developers. Most of
works do not propose a methodology or a guide to reuse patterns.

Thus, it becomes difficult for a developer to reuse these proposals to design and implement
an agent-based information system:

�x Proposed patterns are too generic and do not match with information systems issues.
�x It is very difficult for non-agent software pr actitioners to easy understand the different

aspects of agent based systems development.
�x Users do not have adequate criteria to search for suitable patterns to solve their

problems (lack of methodology).
�x All stages of software development are not covered and combination of agent-oriented

patterns written by different authors, into a well-defined pattern collection is nearly
impracticable.

Our proposal, which covers all the phases of agent-based information systems engineering,
is suitable for each kind of agent (agents with or without deci sion behaviours) and

Innovative Information Systems Modelling Techniques 70

addresses information systems issues such as business rules, legacy systems, services and
enterprise resources, for instance. We also propose a methodology based on our Reuse
Support Patterns.

7. Conclusion

This chapter describes our work about specifying and reusing patterns so as to engineer
Agent-based Information Systems. The different patterns presented here represent the
building blocks which, after adaptation, can be used to develop analysis and design models
for a new IS, define the architecture and ease implementation. The patterns cover all the
phases of IS engineering and a methodology, based on our Reuse Support Patterns, is
provided to favour their reuse. We have also developed a toolkit so as to ease engineering
Information System applications and specifica lly, intelligent transport systems. This toolkit
is based on our software patterns. It takes as input a Reuse Support Pattern, guides the
developer through the different patterns to be used, and finally generates code skeleton.

Our approach and the different patterns are experimentally validated on a specific IS for
transportation. Reusing the patterns help eliciting the business entities (analysis model),
architecting the system (the architecture is a subcontract-based one since there is a unique
task manager and several proposers), defining the design model and generating code
skeleton for the Madkit platform.

Future work aims at reusing the different pa tterns presented here so as to develop other
Enterprise Information Systems (schedule management for instance).

8. References

Alexander, C.; Shikawa, S.; Silverstein, M.; Jacobson, M.; Fiksdahl-King, I., & Angel, S.
(1977). A pattern language: towns, buildings, construction, Oxford University Press,
ISBN 0195019199, New York

Alexander, C. (1979). The timeless way of building, Oxford University Press, ISBN 0195022483,
New York

Ambler S.W. (1998). Process patterns: building large scale systems using object technology, ISBN
0521645689, Cambridge University Press

Aridor, Y. & Lange, D.B. (1998). Agent Design Patterns: Elements of Agent Application
Design, Proceedings of the second international conference on autonomous agents, ISBN
0897919831

Beck, K. & Cunningham, W. (1987). Using pattern languages for object-oriented programs,
technical report CR-87-43, Computer Research Laboratory, Tektronix

Bellifemine, F.L.; Caire, G. & Greenwood, D. (2007). Developing Multi-Agent Systems with
JADE, Wiley, ISBN 0470057475, New York

Buschmann, F.; Meunier, R.; Rohnert, H.; Sommerlad, P. & Stal, M. (1996). Pattern-oriented
software architecture: A system of patterns, John Wiley & Son, ISBN 0471958697,
Chichester, UK

Coad, P. (1992). Object-Oriented Patterns. Communications of the ACM, 35(9), 152-159.
Coad, P. (1996). Object Models: Strategies, Patterns and Applications, Prentice Hall, ISBN

0138401179

Patterns for Agent-Based Information Systems: A Case Study in Transport 71

Coplien, J. O. (1992). Advanced C++ Programming Styles and Idioms, Addison-Wesley, ISBN
9780201548556

Cossentino, M.; Sabatucci, L. & Chella, A. (2004). Patterns Reuse in the PASSI Methodology.
In Engineering Societies in the Agents World, Springer, LNCS, Vol. 3071/2004, 520,
ISBN 978-3-540-22231-6

Couturier, V. (2004). L’ingénierie des systèmes d’information coopératifs : une approche à base de
patterns. Unpublished doctoral dissertation, Un iversité Jean-Moulin Lyon 3, France
(in French).

Couturier, V.; Huget, M.-P. & Telisson, D. (2010). Engineering agent-based information
systems: a case study of automatic contract net systems, Proceedings of the 12th
International Conference on Enterprise Information Systems (ISAS - ICEIS 2010),
Portugal, Volume 3, pp. 242-248

Davis, R. & Smith, R. G. (1983). Negotiation as a Metaphor for Distributed Problem Solving,
Artificial Intelligence, 20(1), pp. 63-109.

Do, T.T.; Kolp, M.; Hang Hoang, T.T. & Piro tte, A. (2003). A Framework for Design Patterns
for Tropos, Proceedings of the 17th Brazilian Symposium on Software Engineering, Brazil

FIPA (2002). FIPA ACL Message Structure Specification, 2002.
Fowler, M. (1997). Analysis Patterns: Reusable Object Models, Addison-Wesley, ISBN

0201895420
Fowler, M. (2002). Patterns of enterprise application architecture, Addison Wesley, ISBN 978-

0321127426
Gamma, E.; Helm, R.; Johnson, R. & Vlissides, J. (1995). Design patterns: Elements of reusable

object-oriented software, Addison Wesley, ISBN 0201633612
Gutknecht, O. & Ferber, J. (2000). The MADKIT agent platform architecture. In T. Wagner

(Ed.), LNCS : vol. 1887. International Workshop on Infrastructure for Multi-Agent
Systems, London, Springer-Verlag, pp. 48-55

Hay, D. C. (1996). Data Model Patterns: Conventions of Thought, Dorset House, ISBN
0932633293, New York

Hung, E. & Pasquale, J. (1999). Agent Usage Patterns: Bridging the Gap Between Agent-Based
Application and Middleware, technical report CS1999-0638, Department of Computer
Science and Engineering, University of California

Jureta, I.; Kolp, M.; Faulkner, S. & Do, T.T. (2005). Patterns for agent oriented e-bidding
practices, Knowledge-Based Intelligent Information and Engineering Systems (KES'05),
Lecture Notes in Computer Sciences 3682, Springer, pp. 814 – 820

Kendall, E. A.; Murali Krishna, P.V.; Pathak , C.V. & Suresh, C.V. (1998). Patterns of
intelligent and mobile agents . In Proceedings of the Second International Conference
on Autonomous Agents, Minneapolis, Minnesota, USA, pp. 92–99

Meira, N. ; Silva, I.C. & Silva, A. (2001). An Agent Pattern for a More Expressive Approach,
Proceedings of the EuroPLOP’2000, Germany

Oluyomi, A.; Karunasekera, S. & Sterling, L. (2007). A comprehensive view of agent-
oriented patterns, Autonomous Agents And Multi-agent Systems, Volume 15, Number
3, pp. 337-377, DOI: 10.1007/s10458-007-9014-9

Renzel, K. & Keller W. (1997). Client/Server Ar chitectures for Business Information Systems
- A Pattern Language, Pattern Languages of Program (PLOP’97), September 3-5,
Monticello, Illinois, USA

Innovative Information Systems Modelling Techniques 70

addresses information systems issues such as business rules, legacy systems, services and
enterprise resources, for instance. We also propose a methodology based on our Reuse
Support Patterns.

7. Conclusion

This chapter describes our work about specifying and reusing patterns so as to engineer
Agent-based Information Systems. The different patterns presented here represent the
building blocks which, after adaptation, can be used to develop analysis and design models
for a new IS, define the architecture and ease implementation. The patterns cover all the
phases of IS engineering and a methodology, based on our Reuse Support Patterns, is
provided to favour their reuse. We have also developed a toolkit so as to ease engineering
Information System applications and specifica lly, intelligent transport systems. This toolkit
is based on our software patterns. It takes as input a Reuse Support Pattern, guides the
developer through the different patterns to be used, and finally generates code skeleton.

Our approach and the different patterns are experimentally validated on a specific IS for
transportation. Reusing the patterns help eliciting the business entities (analysis model),
architecting the system (the architecture is a subcontract-based one since there is a unique
task manager and several proposers), defining the design model and generating code
skeleton for the Madkit platform.

Future work aims at reusing the different pa tterns presented here so as to develop other
Enterprise Information Systems (schedule management for instance).

8. References

Alexander, C.; Shikawa, S.; Silverstein, M.; Jacobson, M.; Fiksdahl-King, I., & Angel, S.
(1977). A pattern language: towns, buildings, construction, Oxford University Press,
ISBN 0195019199, New York

Alexander, C. (1979). The timeless way of building, Oxford University Press, ISBN 0195022483,
New York

Ambler S.W. (1998). Process patterns: building large scale systems using object technology, ISBN
0521645689, Cambridge University Press

Aridor, Y. & Lange, D.B. (1998). Agent Design Patterns: Elements of Agent Application
Design, Proceedings of the second international conference on autonomous agents, ISBN
0897919831

Beck, K. & Cunningham, W. (1987). Using pattern languages for object-oriented programs,
technical report CR-87-43, Computer Research Laboratory, Tektronix

Bellifemine, F.L.; Caire, G. & Greenwood, D. (2007). Developing Multi-Agent Systems with
JADE, Wiley, ISBN 0470057475, New York

Buschmann, F.; Meunier, R.; Rohnert, H.; Sommerlad, P. & Stal, M. (1996). Pattern-oriented
software architecture: A system of patterns, John Wiley & Son, ISBN 0471958697,
Chichester, UK

Coad, P. (1992). Object-Oriented Patterns. Communications of the ACM, 35(9), 152-159.
Coad, P. (1996). Object Models: Strategies, Patterns and Applications, Prentice Hall, ISBN

0138401179

Patterns for Agent-Based Information Systems: A Case Study in Transport 71

Coplien, J. O. (1992). Advanced C++ Programming Styles and Idioms, Addison-Wesley, ISBN
9780201548556

Cossentino, M.; Sabatucci, L. & Chella, A. (2004). Patterns Reuse in the PASSI Methodology.
In Engineering Societies in the Agents World, Springer, LNCS, Vol. 3071/2004, 520,
ISBN 978-3-540-22231-6

Couturier, V. (2004). L’ingénierie des systèmes d’information coopératifs : une approche à base de
patterns. Unpublished doctoral dissertation, Un iversité Jean-Moulin Lyon 3, France
(in French).

Couturier, V.; Huget, M.-P. & Telisson, D. (2010). Engineering agent-based information
systems: a case study of automatic contract net systems, Proceedings of the 12th
International Conference on Enterprise Information Systems (ISAS - ICEIS 2010),
Portugal, Volume 3, pp. 242-248

Davis, R. & Smith, R. G. (1983). Negotiation as a Metaphor for Distributed Problem Solving,
Artificial Intelligence, 20(1), pp. 63-109.

Do, T.T.; Kolp, M.; Hang Hoang, T.T. & Piro tte, A. (2003). A Framework for Design Patterns
for Tropos, Proceedings of the 17th Brazilian Symposium on Software Engineering, Brazil

FIPA (2002). FIPA ACL Message Structure Specification, 2002.
Fowler, M. (1997). Analysis Patterns: Reusable Object Models, Addison-Wesley, ISBN

0201895420
Fowler, M. (2002). Patterns of enterprise application architecture, Addison Wesley, ISBN 978-

0321127426
Gamma, E.; Helm, R.; Johnson, R. & Vlissides, J. (1995). Design patterns: Elements of reusable

object-oriented software, Addison Wesley, ISBN 0201633612
Gutknecht, O. & Ferber, J. (2000). The MADKIT agent platform architecture. In T. Wagner

(Ed.), LNCS : vol. 1887. International Workshop on Infrastructure for Multi-Agent
Systems, London, Springer-Verlag, pp. 48-55

Hay, D. C. (1996). Data Model Patterns: Conventions of Thought, Dorset House, ISBN
0932633293, New York

Hung, E. & Pasquale, J. (1999). Agent Usage Patterns: Bridging the Gap Between Agent-Based
Application and Middleware, technical report CS1999-0638, Department of Computer
Science and Engineering, University of California

Jureta, I.; Kolp, M.; Faulkner, S. & Do, T.T. (2005). Patterns for agent oriented e-bidding
practices, Knowledge-Based Intelligent Information and Engineering Systems (KES'05),
Lecture Notes in Computer Sciences 3682, Springer, pp. 814 – 820

Kendall, E. A.; Murali Krishna, P.V.; Pathak , C.V. & Suresh, C.V. (1998). Patterns of
intelligent and mobile agents . In Proceedings of the Second International Conference
on Autonomous Agents, Minneapolis, Minnesota, USA, pp. 92–99

Meira, N. ; Silva, I.C. & Silva, A. (2001). An Agent Pattern for a More Expressive Approach,
Proceedings of the EuroPLOP’2000, Germany

Oluyomi, A.; Karunasekera, S. & Sterling, L. (2007). A comprehensive view of agent-
oriented patterns, Autonomous Agents And Multi-agent Systems, Volume 15, Number
3, pp. 337-377, DOI: 10.1007/s10458-007-9014-9

Renzel, K. & Keller W. (1997). Client/Server Ar chitectures for Business Information Systems
- A Pattern Language, Pattern Languages of Program (PLOP’97), September 3-5,
Monticello, Illinois, USA

Innovative Information Systems Modelling Techniques 72

Risi, W.A. & Rossi, G. (2004). An architectural pattern catalogue for mobile web information
systems, International journal of mobile communications, vol. 2, no3, pp. 235-247, ISSN
1470-949X

Saidane, M. (2005). Formalisation de Familles d'Architectures Logicielles Coopératives : Démarches,
Modèles et Outils. Unpublished doctoral dissertati on, Université Joseph-Fourier -
Grenoble I, France (in French).

Sauvage, S. (2003). Conception de systèmes multi-agents: un thésaurus de motifs orientés agent.
Unpublished doctoral dissertation, Univ ersité de Caen, France (in French).

Schelfthout, K.; Coninx, T.; Helleboogh, A.; Steegmans, E. & Weyns, D. (2002). Agent
Implementation Patterns. Proceedings of workshop on Agent-Oriented Methodologies,
17th Annual ACM Conference on Object-Oriented Programming, Systems, Languages,
and Applications

Tahara, Y.; Ohsuga, A. & Honiden, S. (1999). Agent system development method based on
agent patterns. In Proceedings of the Fourth International Symposium on Autonomous
Decentralized Systems.

Wooldridge, M. (2002). An introduction to Multi-Agent Systems, John Wiley & Sons, ISBN
0470519460

4

Health Care Information Systems:
Architectural Models and Governance

Paolo Locatelli, Nicola Restifo, Luca Gastaldi and Mariano Corso
Politecnico di Milano, Fondazione Politecnico di Milano and IHCO

Italy

1. Introduction

Health care is an informatio n intensive industry (Rodrigues, 2010), in which reliable and
timely information is a critical resource for the planning and monitoring of service provision
at all levels of analysis: (i) organizational (Nemeth & Cook, 2007), (ii) regional (Harno, 2010;
Pascot et al., 2011), (iii) national (Heeks, 2002; Brown, 2005) and international (Rada, 2008).

As a consequence, Information and Communication Technologies (ICTs) have become
“indispensables” in the health care sector. The general perception that the use of ICT in
health care is ten years behind that of other industrial sectors—such as banking,
manufacturing, and the airl ine industry—is rapidly chan ging (Raghupathi, 2003).

The adoption of ICT within health care has been characterized by a series of phases evolving
since the 1960s (Khoumbati et al., 2009). Health informatics adoption started mainly from
financial systems, providing support to the or ganization’s billing, payroll, accounting and
reporting systems. Clinical departments launch ed a major initiative during the 1970s that
supported such internal activities as radiol ogy, laboratory and pharmacy (Wickramasinghe
& Geisler, 2008), where machinery could support high-volume operations with the
implementation of standardized procedur es. Financial systems once again became
prominent in the 1980s, with major investme nts in cost accounting and materials
management systems (Grimson, 2001). During the 1990s, attention turned towards
enterprise-wide clinical systems, including clin ical data repositories and visions of a fully
computerized Electronic Medical Record (EMR) (Bates, 2005).

Systematic reviews (e.g. Wickramasinghe and Geisler, 2008) show that, in most cases, all
these ICT-based solutions tended to be uncritically adopted by health care organizations
under the pressure of technologically-push ing forces (Burke et al., 2002)—with limited
analysis of the organizational consequences during ICT adoption, and limited focus on both
the support of the core care processes as well as the improvement of effectiveness (Uphoff
and Krane, 1998; Martin et al., 2003; Greenberg et al., 2005). These factors can be linked to an
historically low level of emphasis on ICT governance, and determined by an
inhomogeneous development of Health Care Information Systems (HCISs) (IHCO, 2009e).

In recent years, however, health care providers—faced with an unprecedented era of
competition and pressures to improve care quality and effectiveness—are changing this

Innovative Information Systems Modelling Techniques 72

Risi, W.A. & Rossi, G. (2004). An architectural pattern catalogue for mobile web information
systems, International journal of mobile communications, vol. 2, no3, pp. 235-247, ISSN
1470-949X

Saidane, M. (2005). Formalisation de Familles d'Architectures Logicielles Coopératives : Démarches,
Modèles et Outils. Unpublished doctoral dissertati on, Université Joseph-Fourier -
Grenoble I, France (in French).

Sauvage, S. (2003). Conception de systèmes multi-agents: un thésaurus de motifs orientés agent.
Unpublished doctoral dissertation, Univ ersité de Caen, France (in French).

Schelfthout, K.; Coninx, T.; Helleboogh, A.; Steegmans, E. & Weyns, D. (2002). Agent
Implementation Patterns. Proceedings of workshop on Agent-Oriented Methodologies,
17th Annual ACM Conference on Object-Oriented Programming, Systems, Languages,
and Applications

Tahara, Y.; Ohsuga, A. & Honiden, S. (1999). Agent system development method based on
agent patterns. In Proceedings of the Fourth International Symposium on Autonomous
Decentralized Systems.

Wooldridge, M. (2002). An introduction to Multi-Agent Systems, John Wiley & Sons, ISBN
0470519460

4

Health Care Information Systems:
Architectural Models and Governance

Paolo Locatelli, Nicola Restifo, Luca Gastaldi and Mariano Corso
Politecnico di Milano, Fondazione Politecnico di Milano and IHCO

Italy

1. Introduction

Health care is an informatio n intensive industry (Rodrigues, 2010), in which reliable and
timely information is a critical resource for the planning and monitoring of service provision
at all levels of analysis: (i) organizational (Nemeth & Cook, 2007), (ii) regional (Harno, 2010;
Pascot et al., 2011), (iii) national (Heeks, 2002; Brown, 2005) and international (Rada, 2008).

As a consequence, Information and Communication Technologies (ICTs) have become
“indispensables” in the health care sector. The general perception that the use of ICT in
health care is ten years behind that of other industrial sectors—such as banking,
manufacturing, and the airl ine industry—is rapidly chan ging (Raghupathi, 2003).

The adoption of ICT within health care has been characterized by a series of phases evolving
since the 1960s (Khoumbati et al., 2009). Health informatics adoption started mainly from
financial systems, providing support to the or ganization’s billing, payroll, accounting and
reporting systems. Clinical departments launch ed a major initiative during the 1970s that
supported such internal activities as radiol ogy, laboratory and pharmacy (Wickramasinghe
& Geisler, 2008), where machinery could support high-volume operations with the
implementation of standardized procedur es. Financial systems once again became
prominent in the 1980s, with major investme nts in cost accounting and materials
management systems (Grimson, 2001). During the 1990s, attention turned towards
enterprise-wide clinical systems, including clin ical data repositories and visions of a fully
computerized Electronic Medical Record (EMR) (Bates, 2005).

Systematic reviews (e.g. Wickramasinghe and Geisler, 2008) show that, in most cases, all
these ICT-based solutions tended to be uncritically adopted by health care organizations
under the pressure of technologically-push ing forces (Burke et al., 2002)—with limited
analysis of the organizational consequences during ICT adoption, and limited focus on both
the support of the core care processes as well as the improvement of effectiveness (Uphoff
and Krane, 1998; Martin et al., 2003; Greenberg et al., 2005). These factors can be linked to an
historically low level of emphasis on ICT governance, and determined by an
inhomogeneous development of Health Care Information Systems (HCISs) (IHCO, 2009e).

In recent years, however, health care providers—faced with an unprecedented era of
competition and pressures to improve care quality and effectiveness—are changing this

Innovative Information Systems Modelling Techniques

74

behaviour (Corso and Gastaldi, 2009), and exploring comprehensive perspectives that allow
ICT to improve the quality of health care and of managerial processes, while simultaneously
reducing their cost (Anderson, 2009; Christensen et al., 2009; Corso & Gastaldi, 2010b; 2011;
Finchman et al., 2011).

This new perspective considers the HCISs made up of different systems as a whole, to be
integrated and orchestrated so as to support care in a patient-centric view of
organizations and processes. From this viewpoint, HCISs have much to offer to support
health care cost management and to improve the quality of care (Kolodner et al., 2008). As
a matter of fact, in addition to the embedded role of ICT in clinical and diagnostic
equipment (Corso & Gastaldi, 2011), HCISs are uniquely positioned to capture, store,
process, and communicate timely information to decision makers for better coordination

of health care at all the aforementioned levels of analysis (Finchman et al., 2011).

Over the past decade, the topic of HCIS has flourished, and has germinated an emergent
body of theoretical frameworks, empirical rese arch, and practitioner-based literature that
has many peculiarities if compared to the traditional streams of research active on
information systems (Tan, 2008).

This chapter aims to shed light on this developing research stream—summarizing the status
of the research on the topic, pointing out the most interesting aspects that are currently

under study, and defining theoretical and empirical gaps to be filled with further analyses.

Consistent with these main intents, the objectives of this chapter are the following:

�x Define HCISs as well as the peculiarities that differentiate them from information
systems developed and adopted in other industries (§2);

�x Describe the architectural models that characterize the HCISs, with a specific
emphasis—for their centrality in the creation of value within an health care systems—
on Hospital Information Systems (§3);

�x Analyse the main challenges that are faced in the governance of HCIS—both inside an
health care entity (e.g. a hospital) as well as among the different entities active in the
health care sector (§4);

�x Outline the gaps that the research on HCISs has to fill in the near future (§5).

All the considerations presented in this chapter are not only rooted in the literature on
HCISs but also based on the empirical evidence progressively collected through a
permanent research initiative promoted since 2007 by the Politecnico di Milano School of
Management, i.e. the ICT in Health Care Observatory (IHCO).

The IHCO focuses on the analysis of ICT-driven innovation in the health care industry, with
a specific emphasis on HCISs; and the production of actionable knowledge (Mohrman &
Lawler, 2011) utilizable by the academics and practitioners who want to implement them
(Corso & Gastaldi, 2010a).

The IHCO has traditionally studied the Italian health care industry; however, since 2011, the
study of Danish, Swedish and Norwegian health care systems through an annual set of
cross-comparative surveys, extensive case studies, periodical and engaging focus groups,
and clinical inquiry research projects has been launched. The complete methodology that
describes their overall usage is described in Corso and Gastaldi (2011).

Health Care Information Systems: Architectural Models and Governance

75

Here the main objective is to highlight tw o characteristics of the research process:

�x The adoption of a collaborative framework to conduct the research: collaborative implies
(Pasmore et al., 2008) research efforts that include the active involvement of
practitioners and researchers in: (i) the framing of the research agenda, (ii) the selection
and pursuit of the methods to be used, and (iii) the development of implications for
action. Through its collaborative framework, the IHCO increases the possibilities of
relating its insights to the proble ms of health care practitioners.

�x The adoption of a multi-company and longitudinal framework to conduct the research: the idea
behind this approach is to reconstruct past contexts, processes, and decisions in order to
discover patterns, find underlying mechanisms and triggers, and combine inductive
search with deductive reason (Pettigrew, 2003). Through its multi-company and
longitudinal framework, the IHCO increase the possibilities of accumulating solid
knowledge over time and of generalizing its findings.

2. Health care information systems: definition and peculiarities

Rodrigues (2010) defines HCISs as powerful ICT-based tools able to make health care
delivery more effective and efficient. Coherent ly, Tan (2005) views HCISs as a synergy of
three other disciplines—namely, health care management, organization management, and
information management. Rada (2008) agrees with these views, and recognises that HCISs
are only partly based on the application of management information system concepts to
health care. According to his view, HCISs comprise several different applications that
support the needs of health care organizations, clinicians, patients and policy makers in
collecting and managing all the data related to both clinical and admi nistrative processes.

These data can be used across a number of systems for many different purposes
(Wickramasinghe & Geisler, 2008), have to be integrated with the data from other entities in
order to be effective (Pascot et al., 2011), and—especially for patient data—must be subject
to strict rules in terms of confidentiality and security safeguards (Lobenstein, 2005).

Despite its importance, the health care domain has been underrepresented in the debate on
the development of information systems—from both an empirical (Callen et al., 2007) as
well as theoretical (Fichman et al., 2011) viewpoint.

Only recently a progressive proliferation of health care information systems research has
been pushed by (i) the growing amount of in vestments made in the sector (World Health
Organization, 2009), (ii) the increasing pervasiveness of ICT-based solutions within the
health care domain (Stegwee & Spil., 2001), and (iii) the recognized capability of ICT to
respond to the double challenge of rationalizin g health care costs while, at the same time,
increasing the quality of the health care processes (Stebbins et al., 2009).

Reasons behind this evidence have to be linked with the peculiarity that characterized and still
characterizes health care industry itself (Anderson, 2009). At a general level, a striking

feature of this industry is the level of diversity of (Fichman et al., 2011):

�x Its final “customers” (the patients);
�x The professional disciplines involved in the process to deliver the health care services

(doctors, nurses, administrators, etc.); and

Innovative Information Systems Modelling Techniques

74

behaviour (Corso and Gastaldi, 2009), and exploring comprehensive perspectives that allow
ICT to improve the quality of health care and of managerial processes, while simultaneously
reducing their cost (Anderson, 2009; Christensen et al., 2009; Corso & Gastaldi, 2010b; 2011;
Finchman et al., 2011).

This new perspective considers the HCISs made up of different systems as a whole, to be
integrated and orchestrated so as to support care in a patient-centric view of
organizations and processes. From this viewpoint, HCISs have much to offer to support
health care cost management and to improve the quality of care (Kolodner et al., 2008). As
a matter of fact, in addition to the embedded role of ICT in clinical and diagnostic
equipment (Corso & Gastaldi, 2011), HCISs are uniquely positioned to capture, store,
process, and communicate timely information to decision makers for better coordination

of health care at all the aforementioned levels of analysis (Finchman et al., 2011).

Over the past decade, the topic of HCIS has flourished, and has germinated an emergent
body of theoretical frameworks, empirical rese arch, and practitioner-based literature that
has many peculiarities if compared to the traditional streams of research active on
information systems (Tan, 2008).

This chapter aims to shed light on this developing research stream—summarizing the status
of the research on the topic, pointing out the most interesting aspects that are currently

under study, and defining theoretical and empirical gaps to be filled with further analyses.

Consistent with these main intents, the objectives of this chapter are the following:

�x Define HCISs as well as the peculiarities that differentiate them from information
systems developed and adopted in other industries (§2);

�x Describe the architectural models that characterize the HCISs, with a specific
emphasis—for their centrality in the creation of value within an health care systems—
on Hospital Information Systems (§3);

�x Analyse the main challenges that are faced in the governance of HCIS—both inside an
health care entity (e.g. a hospital) as well as among the different entities active in the
health care sector (§4);

�x Outline the gaps that the research on HCISs has to fill in the near future (§5).

All the considerations presented in this chapter are not only rooted in the literature on
HCISs but also based on the empirical evidence progressively collected through a
permanent research initiative promoted since 2007 by the Politecnico di Milano School of
Management, i.e. the ICT in Health Care Observatory (IHCO).

The IHCO focuses on the analysis of ICT-driven innovation in the health care industry, with
a specific emphasis on HCISs; and the production of actionable knowledge (Mohrman &
Lawler, 2011) utilizable by the academics and practitioners who want to implement them
(Corso & Gastaldi, 2010a).

The IHCO has traditionally studied the Italian health care industry; however, since 2011, the
study of Danish, Swedish and Norwegian health care systems through an annual set of
cross-comparative surveys, extensive case studies, periodical and engaging focus groups,
and clinical inquiry research projects has been launched. The complete methodology that
describes their overall usage is described in Corso and Gastaldi (2011).

Health Care Information Systems: Architectural Models and Governance

75

Here the main objective is to highlight tw o characteristics of the research process:

�x The adoption of a collaborative framework to conduct the research: collaborative implies
(Pasmore et al., 2008) research efforts that include the active involvement of
practitioners and researchers in: (i) the framing of the research agenda, (ii) the selection
and pursuit of the methods to be used, and (iii) the development of implications for
action. Through its collaborative framework, the IHCO increases the possibilities of
relating its insights to the proble ms of health care practitioners.

�x The adoption of a multi-company and longitudinal framework to conduct the research: the idea
behind this approach is to reconstruct past contexts, processes, and decisions in order to
discover patterns, find underlying mechanisms and triggers, and combine inductive
search with deductive reason (Pettigrew, 2003). Through its multi-company and
longitudinal framework, the IHCO increase the possibilities of accumulating solid
knowledge over time and of generalizing its findings.

2. Health care information systems: definition and peculiarities

Rodrigues (2010) defines HCISs as powerful ICT-based tools able to make health care
delivery more effective and efficient. Coherent ly, Tan (2005) views HCISs as a synergy of
three other disciplines—namely, health care management, organization management, and
information management. Rada (2008) agrees with these views, and recognises that HCISs
are only partly based on the application of management information system concepts to
health care. According to his view, HCISs comprise several different applications that
support the needs of health care organizations, clinicians, patients and policy makers in
collecting and managing all the data related to both clinical and admi nistrative processes.

These data can be used across a number of systems for many different purposes
(Wickramasinghe & Geisler, 2008), have to be integrated with the data from other entities in
order to be effective (Pascot et al., 2011), and—especially for patient data—must be subject
to strict rules in terms of confidentiality and security safeguards (Lobenstein, 2005).

Despite its importance, the health care domain has been underrepresented in the debate on
the development of information systems—from both an empirical (Callen et al., 2007) as
well as theoretical (Fichman et al., 2011) viewpoint.

Only recently a progressive proliferation of health care information systems research has
been pushed by (i) the growing amount of in vestments made in the sector (World Health
Organization, 2009), (ii) the increasing pervasiveness of ICT-based solutions within the
health care domain (Stegwee & Spil., 2001), and (iii) the recognized capability of ICT to
respond to the double challenge of rationalizin g health care costs while, at the same time,
increasing the quality of the health care processes (Stebbins et al., 2009).

Reasons behind this evidence have to be linked with the peculiarity that characterized and still
characterizes health care industry itself (Anderson, 2009). At a general level, a striking

feature of this industry is the level of diversity of (Fichman et al., 2011):

�x Its final “customers” (the patients);
�x The professional disciplines involved in the process to deliver the health care services

(doctors, nurses, administrators, etc.); and

Innovative Information Systems Modelling Techniques

76

�x The various stakeholders with interests in the sector (providers, regulators, etc.).

Fichman et al. (2011) have pointed out the effects of this diversity on the distinctiveness that
characterizes the development of an HCIS in comparison to an information system in another
industry. Generalizing their view, there are si x elements that make HCISs so specific:

1. The gravity associated with information mismatches: health care quality is diligently pursued
and vigilantly executed, and information systems can facilitate this pursuit by
highlighting and monitoring errors at vari ous stages along the continuum of care
(Fichman et al., 2011). Even a small error in any one of the various pieces of information
stored and used in the HCIS could have dramatic consequences that directly influence
the quality of human lives (Aron et al., 2011).

2. The personal nature of most of the information managed by health information systems: most of
the information transfer between the different health care actors involves risks—both
actual and perceived—that the informatio n could fall into the wrong hands. The
perception of compromised privacy associated with each information exchange always
makes the latter extremely complex in the health domain.

3. The influence played by regulators and by providers’ competition over information management:
health care is a sector highly subjected to regulatory policies on patients’ data (World
Health Organization, 2009). If one adds to this consideration the difficulties that the
providers of ICT-based solution s experience during the exploitation of the advantages
associated to their offers (IHCO, 2010; Ozdemir et al., 2011), it is easy to understand why
ICT-driven innovation’s realizat ion within the health care indu stry is always so complex.

4. The professional-driven and hierarchical nature of health care organizations: one of the barriers

to the full exploitation of all the potential associated with health information systems is

that powerful actors in care delivery often resist technology (IHCO, 2011; Kane &
Labianca, 2011). Given the hierarchical nature of health care (Fichman et al., 2011),
aversion to technology by an influential physician is likely to irremediably affect other

caregivers’ behaviours (Venkatesh et al., 2011; IHCO, 2010).
5. The multidisciplinarity of the actors who access HCISs: despite the presence of multiple

barriers to the use of ICT in health care, an overall unity in the use of HCISs can emerge
because of the interdisciplinary nature of most of the health care services (Oborn et al.,
2011). Moreover, the heterogeneity of the health care disciplines makes the pattern of
ICT usage complex and entangled—forcing an approach that goes beyond the too
simple classification usually performed in other industries between the adoption and
the rejection of information systems.

6. The implications for learning and adaptation associated to the implementation of an HCIS: the
health care delivery setting is characterized by a tension between the need for orderly
routines and the need for sensitivity to variation in local conditions (Fichman et al.,
2011). This tension magnifies the importance of effective learning and adaptation
surrounding HCISs implementati on (Goh et al., 2011), because the solutions that work
in one specific context can not necessarily work in others .

3. Architectural models for health care information systems

3.1 Overview of health care information systems

From a functional viewpoint, an HCIS supports three main levels of a health care system:

Health Care Information Systems: Architectural Models and Governance

77

�x Central government at national and regional level: this comprises central planning
capabilities, resources management, the definition of the rules and the procedures to be
followed, general controls over financial performance, monitoring of quality and safety.
This level is organized differently depending on the model of each national health care
system, whose main paradigms can follow the mutual-private model typical in the
United States, or the Anglo-Saxon model.

�x Primary Care Health Services: this level includes all the systems that support the services
delivered to the citizens throughout the nation al or regional territory. It includes all the
service providers like general practitioners, local practices, etc.

�x Secondary Care Health Services: this level refers mainly to the systems that support health
care processes among health care providers.

The three levels are usually interconnected only as regards administrative and accounting
flows (Locatelli, 2010; Corso & Gastaldi, 2010b), but the potential data exchange among the
different layers makes ICTs essential for both the exchange and the manipulation of large
sets of clinical data. This evidence provides enormous potential for the future development
of health care. As a matter of fact, the ICT-based solutions that are currently present in the
health care industry have the ability to not only simplify the relationship between the
citizens and the physicians—improving the overall performance of health care services—but
also enable a better control of the whole health care system.

For example, in Italy the national health care system is completely public, and provides
health care services to all the citizens as a constitutional right. The different Italian HCISs
have been based on a set of pillars (Lo Scalzo et al., 2009):

�x The digitalization of the information flow s at a national and a regional level;
�x The development of a national as well as regional social security card;
�x The development of a regional infrastructu re supporting online services to citizens;
�x The development of a strong set of interconnections between health care providers

(secondary care) and general practitioners (primary care);
�x The creation of a regional Electronic Health Record (EHR) to be subsequently integrated

at a national level;
�x The digitalization of the service-delivery processes in secondary care.

As health care is a subject ruled by cooperation between the central government and
regions, most of the efforts aim to organize regional activities and to control costs (Corso
et al., 2010). On the regional level, central institutions develop plans and projects that
address high-level objectives fixed at a national level, and define regional
guidelines/policies to be respected by single health care organizations on the territory
(e.g. as regards the EHR).

This kind of model is reflected as well by the organization of HCISs, which are powered by
a central network dealing with administrative and financial information flows, but have a
much more local connotation as regards support to care processes. Moreover, many
Regional governments have spent the last ten years creating a pervasive networking
infrastructure, digitalizing information flows on activities performed by public providers,
developing social health care identification cards, developing at least basic online services
(e.g. booking), and activating the key elements for a regional EHR (Lo Scalzo et al., 2009).

Innovative Information Systems Modelling Techniques

76

�x The various stakeholders with interests in the sector (providers, regulators, etc.).

Fichman et al. (2011) have pointed out the effects of this diversity on the distinctiveness that
characterizes the development of an HCIS in comparison to an information system in another
industry. Generalizing their view, there are si x elements that make HCISs so specific:

1. The gravity associated with information mismatches: health care quality is diligently pursued
and vigilantly executed, and information systems can facilitate this pursuit by
highlighting and monitoring errors at vari ous stages along the continuum of care
(Fichman et al., 2011). Even a small error in any one of the various pieces of information
stored and used in the HCIS could have dramatic consequences that directly influence
the quality of human lives (Aron et al., 2011).

2. The personal nature of most of the information managed by health information systems: most of
the information transfer between the different health care actors involves risks—both
actual and perceived—that the informatio n could fall into the wrong hands. The
perception of compromised privacy associated with each information exchange always
makes the latter extremely complex in the health domain.

3. The influence played by regulators and by providers’ competition over information management:
health care is a sector highly subjected to regulatory policies on patients’ data (World
Health Organization, 2009). If one adds to this consideration the difficulties that the
providers of ICT-based solution s experience during the exploitation of the advantages
associated to their offers (IHCO, 2010; Ozdemir et al., 2011), it is easy to understand why
ICT-driven innovation’s realizat ion within the health care indu stry is always so complex.

4. The professional-driven and hierarchical nature of health care organizations: one of the barriers

to the full exploitation of all the potential associated with health information systems is

that powerful actors in care delivery often resist technology (IHCO, 2011; Kane &
Labianca, 2011). Given the hierarchical nature of health care (Fichman et al., 2011),
aversion to technology by an influential physician is likely to irremediably affect other

caregivers’ behaviours (Venkatesh et al., 2011; IHCO, 2010).
5. The multidisciplinarity of the actors who access HCISs: despite the presence of multiple

barriers to the use of ICT in health care, an overall unity in the use of HCISs can emerge
because of the interdisciplinary nature of most of the health care services (Oborn et al.,
2011). Moreover, the heterogeneity of the health care disciplines makes the pattern of
ICT usage complex and entangled—forcing an approach that goes beyond the too
simple classification usually performed in other industries between the adoption and
the rejection of information systems.

6. The implications for learning and adaptation associated to the implementation of an HCIS: the
health care delivery setting is characterized by a tension between the need for orderly
routines and the need for sensitivity to variation in local conditions (Fichman et al.,
2011). This tension magnifies the importance of effective learning and adaptation
surrounding HCISs implementati on (Goh et al., 2011), because the solutions that work
in one specific context can not necessarily work in others .

3. Architectural models for health care information systems

3.1 Overview of health care information systems

From a functional viewpoint, an HCIS supports three main levels of a health care system:

Health Care Information Systems: Architectural Models and Governance

77

�x Central government at national and regional level: this comprises central planning
capabilities, resources management, the definition of the rules and the procedures to be
followed, general controls over financial performance, monitoring of quality and safety.
This level is organized differently depending on the model of each national health care
system, whose main paradigms can follow the mutual-private model typical in the
United States, or the Anglo-Saxon model.

�x Primary Care Health Services: this level includes all the systems that support the services
delivered to the citizens throughout the nation al or regional territory. It includes all the
service providers like general practitioners, local practices, etc.

�x Secondary Care Health Services: this level refers mainly to the systems that support health
care processes among health care providers.

The three levels are usually interconnected only as regards administrative and accounting
flows (Locatelli, 2010; Corso & Gastaldi, 2010b), but the potential data exchange among the
different layers makes ICTs essential for both the exchange and the manipulation of large
sets of clinical data. This evidence provides enormous potential for the future development
of health care. As a matter of fact, the ICT-based solutions that are currently present in the
health care industry have the ability to not only simplify the relationship between the
citizens and the physicians—improving the overall performance of health care services—but
also enable a better control of the whole health care system.

For example, in Italy the national health care system is completely public, and provides
health care services to all the citizens as a constitutional right. The different Italian HCISs
have been based on a set of pillars (Lo Scalzo et al., 2009):

�x The digitalization of the information flow s at a national and a regional level;
�x The development of a national as well as regional social security card;
�x The development of a regional infrastructu re supporting online services to citizens;
�x The development of a strong set of interconnections between health care providers

(secondary care) and general practitioners (primary care);
�x The creation of a regional Electronic Health Record (EHR) to be subsequently integrated

at a national level;
�x The digitalization of the service-delivery processes in secondary care.

As health care is a subject ruled by cooperation between the central government and
regions, most of the efforts aim to organize regional activities and to control costs (Corso
et al., 2010). On the regional level, central institutions develop plans and projects that
address high-level objectives fixed at a national level, and define regional
guidelines/policies to be respected by single health care organizations on the territory
(e.g. as regards the EHR).

This kind of model is reflected as well by the organization of HCISs, which are powered by
a central network dealing with administrative and financial information flows, but have a
much more local connotation as regards support to care processes. Moreover, many
Regional governments have spent the last ten years creating a pervasive networking
infrastructure, digitalizing information flows on activities performed by public providers,
developing social health care identification cards, developing at least basic online services
(e.g. booking), and activating the key elements for a regional EHR (Lo Scalzo et al., 2009).

Innovative Information Systems Modelling Techniques

78

If these efforts have proved quite patchy among the different regions, informatisation of
health care providers is even more fragmented.

Inside the Italian health care system, it is possible to identify the CRS-SISS, a forward
looking project promoted by the regional gove rnment of Lombardy, which aims to promote
innovation within public health care organi zations for an intensive e-health strategy,
through the increasing and pervasive usage of ICTs (Corso et al., 2010).

The central elements of the CRS-SISS project are (IHCO, 2011):

�x The social security citizen identification card, a powerful tool for citizens to access every
health care service in the Lombardy region;

�x A pervasive network linking all the health care providers, general practitioners and
regional entities;

�x The regional EHR, a central database where qualified health care organizations publish
digitally signed documents on each clinical ep isode (e.g. outpatient visit reports, clinical
reports, prescriptions, etc.).

The case of Croatia, described in Box 1, is an interesting example of a pervasive initiative
driven by ICT and able not only to improve bu t also to completely redesign the national
health care system.

Croatia is a country of about 56,000 square kilometres in Eastern Europe, with a
population of 4.5 million inhabitants, of which about 17% are over 65 years.

Among its main initiatives, the Ministry of Health wanted to reduce the administrative
burden and bring more transparency into the Croatian health care system. According to
this objective, the Ministry launched the Care4U project that not only digitalized the
workflows within and among health care organi zations, but also integrated on a national
scale all the primary care providers.

The project started in 2004, with the involvement of the Nation al Public Health Institute
and most of the Croatian health insurance agencies. Since March 2007, the Croatian HCIS
operates on a national scale, connects all the offices of the general physicians (about 2,300)
spread on the territory, and manages over 4 million citizens. At the end of 2010, a major
system upgrade integrated into the system more than 1,100 pharmacies, 100 biochemical
analysis laboratories and 66 hospitals.

The features that the HCIS makes available to all these actors are (i) an integrated
management of medical records, (ii) the management of the main information exchanges
(with electronic prescribing solutions, reserv ation, drug management, ADT, laboratories
management, radiology, etc.), and (iii) the reporting of information flows to the Ministry
of Health as well as all the member insurance companies.

The system has led to the achievement of substantial economic benefits—which are
mainly related to the reduction in costs of hospitalization—while, at the same time, an
increase not only in the effectiveness of the health care processes but also the quality
perceived by patients, physicians and nurses. All these advantages have raised Croatia to
the third-place ranking in the EuroHealth Consumer Index assessment performed in 2009
on 27 European countries.

Box 1. The National Health Care Information System in Croatia

Health Care Information Systems: Architectural Models and Governance

79

3.2 Hospital information systems

The core level where ICTs can exploit their full potential both in terms of cost-efficiency as
well as quality improvement is that of secondar y care, i.e. the health care providers level.

A Hospital Information System (HIS) is a set of organizational structures, information flows
and ICT-based solutions that support core and secondary processes of a hospital. HISs are
responsible for supporting secondary care, and are the combination of a variety of
interconnected systems that manage a huge amount of narrative, structured, coded and
multimedia data (Corso and Gastaldi, 2010).

The HIS has not only to manage complex and widespread processes but also to store and
make accessible all the information needed by the staff of the hospital.

The organization of the processes of a general health care provider can be described by a
classic value-chain model (Caccia, 2008), with two main kinds of processes:

�x Primary (or core) processes, related to direct patient care:
�x Admission: disease prevention, inpatient or outpatient event booking and

hospitalization admission;
�x Anamnesis: definition of patient’s clinical status from a medical and nursing

standpoint;
�x Diagnosis: definition of patient’s therapeutic and care plan;
�x Care: therapy, treatment, rehabilitation;
�x Discharge and follow-up: patient discharge and possible transfer to outpatient or

home care for follow-up activities.
�x Secondary (or support) processes:

�x Strategic services: strategy, planning and controlling, supervision of regulations;
�x Administrative services: administration and accounting, information systems, quality

assurance, human resources;
�x Technology services: clinical machinery, biotechnologies, building automation,

auxiliary systems;
�x Sourcing and logistics.

From a technological viewpoint, the concept of HIS includes the technological
infrastructure, the organizational components (structures, policies, procedures) and the
portfolio of the applications implementing them. Biomedical devices are not considered a
part of the HIS, as they should be considered part of the clinical engineering area.

From a functional viewpoint, the main areas of an HIS are (Locatelli, 2010):

�x The administration and management area, which supports strategic and administrative
processes;

�x The front-office area, which supports the admission of inpatients, outpatients, or
emergency/first aid patients;

�x The clinical area, which supports the core health care processes (the processes through
which health care organizations provide treatment to patients).

Typically, these areas implement a number of different systems that have been
progressively acquired over a period of year s, to later be integrated with the aim of
progressively bringing higher levels of proc ess flexibility and organizational coordination.

Innovative Information Systems Modelling Techniques

78

If these efforts have proved quite patchy among the different regions, informatisation of
health care providers is even more fragmented.

Inside the Italian health care system, it is possible to identify the CRS-SISS, a forward
looking project promoted by the regional gove rnment of Lombardy, which aims to promote
innovation within public health care organi zations for an intensive e-health strategy,
through the increasing and pervasive usage of ICTs (Corso et al., 2010).

The central elements of the CRS-SISS project are (IHCO, 2011):

�x The social security citizen identification card, a powerful tool for citizens to access every
health care service in the Lombardy region;

�x A pervasive network linking all the health care providers, general practitioners and
regional entities;

�x The regional EHR, a central database where qualified health care organizations publish
digitally signed documents on each clinical ep isode (e.g. outpatient visit reports, clinical
reports, prescriptions, etc.).

The case of Croatia, described in Box 1, is an interesting example of a pervasive initiative
driven by ICT and able not only to improve bu t also to completely redesign the national
health care system.

Croatia is a country of about 56,000 square kilometres in Eastern Europe, with a
population of 4.5 million inhabitants, of which about 17% are over 65 years.

Among its main initiatives, the Ministry of Health wanted to reduce the administrative
burden and bring more transparency into the Croatian health care system. According to
this objective, the Ministry launched the Care4U project that not only digitalized the
workflows within and among health care organi zations, but also integrated on a national
scale all the primary care providers.

The project started in 2004, with the involvement of the Nation al Public Health Institute
and most of the Croatian health insurance agencies. Since March 2007, the Croatian HCIS
operates on a national scale, connects all the offices of the general physicians (about 2,300)
spread on the territory, and manages over 4 million citizens. At the end of 2010, a major
system upgrade integrated into the system more than 1,100 pharmacies, 100 biochemical
analysis laboratories and 66 hospitals.

The features that the HCIS makes available to all these actors are (i) an integrated
management of medical records, (ii) the management of the main information exchanges
(with electronic prescribing solutions, reserv ation, drug management, ADT, laboratories
management, radiology, etc.), and (iii) the reporting of information flows to the Ministry
of Health as well as all the member insurance companies.

The system has led to the achievement of substantial economic benefits—which are
mainly related to the reduction in costs of hospitalization—while, at the same time, an
increase not only in the effectiveness of the health care processes but also the quality
perceived by patients, physicians and nurses. All these advantages have raised Croatia to
the third-place ranking in the EuroHealth Consumer Index assessment performed in 2009
on 27 European countries.

Box 1. The National Health Care Information System in Croatia

Health Care Information Systems: Architectural Models and Governance

79

3.2 Hospital information systems

The core level where ICTs can exploit their full potential both in terms of cost-efficiency as
well as quality improvement is that of secondar y care, i.e. the health care providers level.

A Hospital Information System (HIS) is a set of organizational structures, information flows
and ICT-based solutions that support core and secondary processes of a hospital. HISs are
responsible for supporting secondary care, and are the combination of a variety of
interconnected systems that manage a huge amount of narrative, structured, coded and
multimedia data (Corso and Gastaldi, 2010).

The HIS has not only to manage complex and widespread processes but also to store and
make accessible all the information needed by the staff of the hospital.

The organization of the processes of a general health care provider can be described by a
classic value-chain model (Caccia, 2008), with two main kinds of processes:

�x Primary (or core) processes, related to direct patient care:
�x Admission: disease prevention, inpatient or outpatient event booking and

hospitalization admission;
�x Anamnesis: definition of patient’s clinical status from a medical and nursing

standpoint;
�x Diagnosis: definition of patient’s therapeutic and care plan;
�x Care: therapy, treatment, rehabilitation;
�x Discharge and follow-up: patient discharge and possible transfer to outpatient or

home care for follow-up activities.
�x Secondary (or support) processes:

�x Strategic services: strategy, planning and controlling, supervision of regulations;
�x Administrative services: administration and accounting, information systems, quality

assurance, human resources;
�x Technology services: clinical machinery, biotechnologies, building automation,

auxiliary systems;
�x Sourcing and logistics.

From a technological viewpoint, the concept of HIS includes the technological
infrastructure, the organizational components (structures, policies, procedures) and the
portfolio of the applications implementing them. Biomedical devices are not considered a
part of the HIS, as they should be considered part of the clinical engineering area.

From a functional viewpoint, the main areas of an HIS are (Locatelli, 2010):

�x The administration and management area, which supports strategic and administrative
processes;

�x The front-office area, which supports the admission of inpatients, outpatients, or
emergency/first aid patients;

�x The clinical area, which supports the core health care processes (the processes through
which health care organizations provide treatment to patients).

Typically, these areas implement a number of different systems that have been
progressively acquired over a period of year s, to later be integrated with the aim of
progressively bringing higher levels of proc ess flexibility and organizational coordination.

Innovative Information Systems Modelling Techniques

80

In the rest of the paragraph the three functional areas will be described, emphasizing their
main functional modules and their role in relation to providers’ proces ses. Fig. 1 provides a
comprehensive picture of how the different areas interact with each other thanks to a bunch
of centralized services and a comprehensive integration layer called “middleware”.

Fig. 1. Conceptual Architecture of a HIS

3.2.1 Administration and management area

The administration and management area supports processes like general administration
and procurement, planning and management control, and resource (especially human
resources) management (Locatelli, 2010). As administration processes are highly similar
across almost all industries, the related systems are technically analogous to the ones used in
other industries (Rodrigues, 2010; Tan, 2008; Greenhalgh et al., 2005; Raghupathi, 2003)—
even if in health care they have to be slightly modified to better fit the peculiarities of the
industry (e.g. its accounting rules).

The components related to this area have the responsibility to support the company in
managing the activities of an administrative/accounting nature.

In particular, we typically identify two main components (IHCO, 2009d):

Health Care Information Systems: Architectural Models and Governance

81

�x Administration and accounting suite: for the management of accounting and business
budget, procurement, storage of assets (general ledger, accounts payable, receivables,
payments and bills for treasury management, tax professionals, management of
requests for supplier bids, contract management, logistics management department,
cost accounting, etc.).

�x Management of human resources: for legal aspects, economic and security staff (allocation
of personnel, analysis and reporting, etc.).

Each one of these components can have its own system that has been historically developed
by each department following its own business requirements. Alternatively, the health care
organization can implement the so-called Enterprise Resource Planning (ERP) suites similar to
the ones being used in other industries since the 90s (Umble et al., 2003; Stegwee and Spil,
2001).

Application fragmentation in the administration and management area—added to a similar
non-homogeneous configuration of clinical support systems—has led to problems like (i)
misalignments and incompleteness of data sources, (ii) data inconsistency, (iii) difficulties in
manipulation and aggregation of data, (iv) inconsistency among the results coming from
different departments (IHCO, 2011).

For this reason, ERP projects are increasingly becoming frequent in health care—especially
starting from the naturally more performance- oriented private providers. In fact, modern
ERP platforms have a central data warehouse able to merge information flows from all
hospital information sources, and, thus, enable advanced functions—e.g. decision support
systems and balanced scorecard tools—that provide managers with up-to-date information
on current activities, profit and loss accounts, and general performance indicators of the
organization (IHCO, 2009a).

3.2.2 Front-office area

The front office area deals with patient reception, and typically distinguishes between
inpatients, outpatients and patients in the emergency unit. These sub-areas are usually
supported by enterprise-wide solutions that manage the workflows related to the waiting
lists or the appointment management. Common solutions are the Centralized Outpatient
Booking Centre (COBC) and the procedures related to Acceptance-Discharge-Transfer (ADT)
(IHCO, 2010). Systems supporting the emergency and first aid wards typically also deal
with clinical information (IHCO, 2011).

COBC supports the processes to manage outpatients:

1. The internal agendas for outpatient diagnost ic service booking (RIS, LIS, AP), with
potential connections to regional booking centres;

2. The communication of work lists to clinical services,
3. The collection and the verification of informed consents;
4. The billing for services and accounting.

The proper functioning of the COBC system is made possible by a front- and back-office
service, responsible for programming functions and access management, as outlined
below. Back-office cares for the maintenance and planning/preparation for the

Innovative Information Systems Modelling Techniques

80

In the rest of the paragraph the three functional areas will be described, emphasizing their
main functional modules and their role in relation to providers’ proces ses. Fig. 1 provides a
comprehensive picture of how the different areas interact with each other thanks to a bunch
of centralized services and a comprehensive integration layer called “middleware”.

Fig. 1. Conceptual Architecture of a HIS

3.2.1 Administration and management area

The administration and management area supports processes like general administration
and procurement, planning and management control, and resource (especially human
resources) management (Locatelli, 2010). As administration processes are highly similar
across almost all industries, the related systems are technically analogous to the ones used in
other industries (Rodrigues, 2010; Tan, 2008; Greenhalgh et al., 2005; Raghupathi, 2003)—
even if in health care they have to be slightly modified to better fit the peculiarities of the
industry (e.g. its accounting rules).

The components related to this area have the responsibility to support the company in
managing the activities of an administrative/accounting nature.

In particular, we typically identify two main components (IHCO, 2009d):

Health Care Information Systems: Architectural Models and Governance

81

�x Administration and accounting suite: for the management of accounting and business
budget, procurement, storage of assets (general ledger, accounts payable, receivables,
payments and bills for treasury management, tax professionals, management of
requests for supplier bids, contract management, logistics management department,
cost accounting, etc.).

�x Management of human resources: for legal aspects, economic and security staff (allocation
of personnel, analysis and reporting, etc.).

Each one of these components can have its own system that has been historically developed
by each department following its own business requirements. Alternatively, the health care
organization can implement the so-called Enterprise Resource Planning (ERP) suites similar to
the ones being used in other industries since the 90s (Umble et al., 2003; Stegwee and Spil,
2001).

Application fragmentation in the administration and management area—added to a similar
non-homogeneous configuration of clinical support systems—has led to problems like (i)
misalignments and incompleteness of data sources, (ii) data inconsistency, (iii) difficulties in
manipulation and aggregation of data, (iv) inconsistency among the results coming from
different departments (IHCO, 2011).

For this reason, ERP projects are increasingly becoming frequent in health care—especially
starting from the naturally more performance- oriented private providers. In fact, modern
ERP platforms have a central data warehouse able to merge information flows from all
hospital information sources, and, thus, enable advanced functions—e.g. decision support
systems and balanced scorecard tools—that provide managers with up-to-date information
on current activities, profit and loss accounts, and general performance indicators of the
organization (IHCO, 2009a).

3.2.2 Front-office area

The front office area deals with patient reception, and typically distinguishes between
inpatients, outpatients and patients in the emergency unit. These sub-areas are usually
supported by enterprise-wide solutions that manage the workflows related to the waiting
lists or the appointment management. Common solutions are the Centralized Outpatient
Booking Centre (COBC) and the procedures related to Acceptance-Discharge-Transfer (ADT)
(IHCO, 2010). Systems supporting the emergency and first aid wards typically also deal
with clinical information (IHCO, 2011).

COBC supports the processes to manage outpatients:

1. The internal agendas for outpatient diagnost ic service booking (RIS, LIS, AP), with
potential connections to regional booking centres;

2. The communication of work lists to clinical services,
3. The collection and the verification of informed consents;
4. The billing for services and accounting.

The proper functioning of the COBC system is made possible by a front- and back-office
service, responsible for programming functions and access management, as outlined
below. Back-office cares for the maintenance and planning/preparation for the

Innovative Information Systems Modelling Techniques

82

reservation of extraordinary activities. Th ese activities are grouped into the main
functions of management and planning the agenda reservation, supporting the booking
and delivery point, and monitoring the mana gement of waiting lists. The COBC is
composed of several channels that allow access to the booking process, and handle different
types of interaction.

ADT systems manage the processes related to hospitalized inpatients. In accordance with
the hospital’s organization (Lo Scalzo et al., 2009), ADT systems can provide the services in
(i) centralized mode, (ii) distributed in the wards, or even (iii) in mixed mode (e.g.
acceptance can be centralized while transfers and dismissals can be handled by wards).

Specifically, ADT systems support the following activities:

�x The management of waiting lists, through integration with the cross-booking
management service;

�x The management of pre-admission;
�x The registration of patient informed consent;
�x The management of post-admission;
�x The admission, the discharge and the transfers of patients within the hospital.

Emergency and first aid systems are made up by the process for both the organizational
aspects of emergency events as well as the direct impact on citizens who request services
considered essential for their health.

In this context, not only the im pact of operational functions (use of informatics tool in an
emergency context) but also the organization of the process (priority based on seriousness of
the case) is highly important. These systems must also be able to support the doctor in
requesting diagnostic support (e.g. analysis, consulting) as well as in making decisions as
quickly and safely as possible (Corso et al., 2010; Locatelli et al., 2010).

The most important features are the following:

�x The management of all the organizational aspects in the emergency and/or first aid
department;

�x The management of triage;
�x The management of the EMR and the patient summary specialist folder (for the

functions or the activities of both the physicians and the nurses);
�x The management of the requests of consultations and examinations;
�x The management of clinical and legal documents for both the patient as well as the

authorities;
�x The management of drug prescriptions;
�x The transfer of data to the ADT system, in the case of a transfer to inpatient wards;
�x The management of all the first aid discharge activities, including reporting.

3.2.3 Clinical area

The third key block of an HIS is the clinical area, which is the most complex and most
delicate area due to its broad support to all the core processes of a hospital. It is also the
most challenging area in terms of management, due on the one side to the involvement of
critical patient data, and on the other side, to pre-existing systems implemented

Health Care Information Systems: Architectural Models and Governance

83

independently by each department or ward in different periods—usually without a
consistent strategic direction by the Chief Information Officers (CIOs) (IHCO, 2011).

Clinical systems are mainly (i) departmental systems or (ii) Electronic Medical Records
(EMRs). The former support both clinical and administrative tasks in diagnostic services
(e.g. anatomical pathology), and are fed by the requests coming from wards or outpatient

offices. The latter should be responsible for the digitally-integrated management of clinical
information flows to support care, and—acting as a unique bedside working tool—for the
role as the unique point of reference for clinical decisions (Locatelli et al., 2010).

Departmental systems receive requests from COBC or from the order management systems
in the wards, they support the execution phases of tests, notify the application regarding the
execution of the examination, and produce report s that are stored in the clinical repository.

The most common departmental systems are (IHCO, 2009d; Locatelli, 2010):

�x The Radiology Information Systems (RIS), which manage the acquisition of radiological
images, their analysis and the relative reporting. These systems are often linked to
Picture Archiving and Communication Systems (PACSs), which acquire, store and
distribute images and videos.

�x The Laboratory Information Systems (LIS), which automatically manage the exam requests
from the clinical units and the auto-analyser connected to the LIS, supporting
sophisticated controls with validation of the results.

�x The applications for the operating room, which are dedicated to the management of the
interventions, to the logging of both the even ts and the data relevant to surgery and to
the production of clinical surgery documentation.

The Electronic Medical Record (EMR) is the central element of the HIS. The fundamental
function of an EMR is to collect information on the clinical histor y of patients during
hospitalization—acting as a tool to support the multidisciplinary communication between
professionals, operations management and decisions.

Literature (e.g. Handler & Hieb, 2007; IHCO, 2009d; Locatelli et al., 2010) allows the
identification of five functional areas that characterize EMRs:

�x The ADT Area: often integrated with the ADT system, this area manages patient
admissions, discharges and transfers within the hospital, as well as vital statistics and
administrative documentatio n (e.g. informed consent);

�x The Diagnostic Area: the features in this area allow the requests of exams and the
delivery of reports to/from wards;

�x The Clinical Dossier: this area embraces the management of all medical and nursing
sheets, including initial assessment, automated vital signs monitoring, anaesthesiology
documents, OR reports, etc.;

�x Therapy management: this area includes support to prescription and administration of
drugs, transfusions, nutrition, etc.;

�x Out-patient management: this area manages admission and medical reporting for out-
patients, and feeds the patient’s EMR with information like preliminary reports or
follow-up examinations.

As depicted in Fig. 2, the most diffused functions of an EMR are inpatient ADT (80%),
diagnostic procedure management (with electron ic clinical exam requirements and reports

Innovative Information Systems Modelling Techniques

82

reservation of extraordinary activities. Th ese activities are grouped into the main
functions of management and planning the agenda reservation, supporting the booking
and delivery point, and monitoring the mana gement of waiting lists. The COBC is
composed of several channels that allow access to the booking process, and handle different
types of interaction.

ADT systems manage the processes related to hospitalized inpatients. In accordance with
the hospital’s organization (Lo Scalzo et al., 2009), ADT systems can provide the services in
(i) centralized mode, (ii) distributed in the wards, or even (iii) in mixed mode (e.g.
acceptance can be centralized while transfers and dismissals can be handled by wards).

Specifically, ADT systems support the following activities:

�x The management of waiting lists, through integration with the cross-booking
management service;

�x The management of pre-admission;
�x The registration of patient informed consent;
�x The management of post-admission;
�x The admission, the discharge and the transfers of patients within the hospital.

Emergency and first aid systems are made up by the process for both the organizational
aspects of emergency events as well as the direct impact on citizens who request services
considered essential for their health.

In this context, not only the im pact of operational functions (use of informatics tool in an
emergency context) but also the organization of the process (priority based on seriousness of
the case) is highly important. These systems must also be able to support the doctor in
requesting diagnostic support (e.g. analysis, consulting) as well as in making decisions as
quickly and safely as possible (Corso et al., 2010; Locatelli et al., 2010).

The most important features are the following:

�x The management of all the organizational aspects in the emergency and/or first aid
department;

�x The management of triage;
�x The management of the EMR and the patient summary specialist folder (for the

functions or the activities of both the physicians and the nurses);
�x The management of the requests of consultations and examinations;
�x The management of clinical and legal documents for both the patient as well as the

authorities;
�x The management of drug prescriptions;
�x The transfer of data to the ADT system, in the case of a transfer to inpatient wards;
�x The management of all the first aid discharge activities, including reporting.

3.2.3 Clinical area

The third key block of an HIS is the clinical area, which is the most complex and most
delicate area due to its broad support to all the core processes of a hospital. It is also the
most challenging area in terms of management, due on the one side to the involvement of
critical patient data, and on the other side, to pre-existing systems implemented

Health Care Information Systems: Architectural Models and Governance

83

independently by each department or ward in different periods—usually without a
consistent strategic direction by the Chief Information Officers (CIOs) (IHCO, 2011).

Clinical systems are mainly (i) departmental systems or (ii) Electronic Medical Records
(EMRs). The former support both clinical and administrative tasks in diagnostic services
(e.g. anatomical pathology), and are fed by the requests coming from wards or outpatient

offices. The latter should be responsible for the digitally-integrated management of clinical
information flows to support care, and—acting as a unique bedside working tool—for the
role as the unique point of reference for clinical decisions (Locatelli et al., 2010).

Departmental systems receive requests from COBC or from the order management systems
in the wards, they support the execution phases of tests, notify the application regarding the
execution of the examination, and produce report s that are stored in the clinical repository.

The most common departmental systems are (IHCO, 2009d; Locatelli, 2010):

�x The Radiology Information Systems (RIS), which manage the acquisition of radiological
images, their analysis and the relative reporting. These systems are often linked to
Picture Archiving and Communication Systems (PACSs), which acquire, store and
distribute images and videos.

�x The Laboratory Information Systems (LIS), which automatically manage the exam requests
from the clinical units and the auto-analyser connected to the LIS, supporting
sophisticated controls with validation of the results.

�x The applications for the operating room, which are dedicated to the management of the
interventions, to the logging of both the even ts and the data relevant to surgery and to
the production of clinical surgery documentation.

The Electronic Medical Record (EMR) is the central element of the HIS. The fundamental
function of an EMR is to collect information on the clinical histor y of patients during
hospitalization—acting as a tool to support the multidisciplinary communication between
professionals, operations management and decisions.

Literature (e.g. Handler & Hieb, 2007; IHCO, 2009d; Locatelli et al., 2010) allows the
identification of five functional areas that characterize EMRs:

�x The ADT Area: often integrated with the ADT system, this area manages patient
admissions, discharges and transfers within the hospital, as well as vital statistics and
administrative documentatio n (e.g. informed consent);

�x The Diagnostic Area: the features in this area allow the requests of exams and the
delivery of reports to/from wards;

�x The Clinical Dossier: this area embraces the management of all medical and nursing
sheets, including initial assessment, automated vital signs monitoring, anaesthesiology
documents, OR reports, etc.;

�x Therapy management: this area includes support to prescription and administration of
drugs, transfusions, nutrition, etc.;

�x Out-patient management: this area manages admission and medical reporting for out-
patients, and feeds the patient’s EMR with information like preliminary reports or
follow-up examinations.

As depicted in Fig. 2, the most diffused functions of an EMR are inpatient ADT (80%),
diagnostic procedure management (with electron ic clinical exam requirements and reports

Innovative Information Systems Modelling Techniques

84

available in 80% of cases) and outpatient management (67%). Even if clinical dossier and
therapy management are the less diffused areas, at the same time, they are also the ones with
the greatest expected growth for the future. Hind rances are mainly related to the difficulties
in change management, in the migration of therapy procedures from paper to digital forms,
in the needs of smart bedside support, and in legal constraints to digital data management.

Fig. 2. The Expected Diffusion of Functional EMR Areas (ICHO, 2010)

Unfortunately these last areas not only have a key impact on clinical activities, but also are
the ones that need higher levels of integration in order to allow the EMR to become a truly
useful clinical tool. Case studies performed by the IHCO have confirmed that the lack of
integration with the rest of the HIS and the absence of an enterprise-wide approach are the
main limitations of current EMR projects. However, many efforts are made not only to
standardize the EMR architecture, but also to drive its evolution towards a mature tool able
to comprehensively support all the health care processes (IHCO, 2009d).

Another important opportunity coming from digitalization of clinical processes regards the
opportunity to feed researchers with first-ha nd, complete and highly reliable datasets on
clinical cases collected in the EMR during daily care and then filtered for clinical research
purposes. The case of the Istituto Besta (see Box 2) briefly highlights how this can happen.

Fondazione IRCCS Istituto Neurologico “Carlo Besta” is a centre of excellence for care
and scientific research on neurological diseases. Recently, a collaboration was started
with the hospital A.O. Ospedale Niguarda “Ca’Granda” and Fondazione Politecnico di
Milano, with the aim of transforming Niguarda’s web EMR into a “clinical-scientific”
portal to not only support pati ents’ management during their en tire care process, but also
to feed scientific research with key inform ation gathered during each clinical event.

Due to its open architecture, the portal was conceived as a unique access point to the HIS,
based on a centralized patient reference registry. The first scientific features were

Health Care Information Systems: Architectural Models and Governance

85

provided in October 2008 supporting comple te outpatient workflow and encoding
pathological diagnoses according to international standards. Since 2009, most features of
an EMR were also implemented to support inpatient management. This means that
admission, anamnesis, diagnosis, clinical diaries, speciality neurology sheets have been
standardized, reengineered and digitalized. Clinicians use RFId badges to access the
clinical dossier on WiFi laptops fixed on mobile trays than can roll to bedside.

The most innovative feature of this system is however that the clinical portal’s EMR is
conceived to structure digital information both to support ward activities as well as to
feed scientific research. Starting from the general EMR, specific design was done in order
to satisfy the requirements of physicians and researchers working in the area of
myasthenia gravis and peripheral neuropathy. A procedure was identified to enrich and
structure usual clinical datasets, so that high quality data could be gathered by physicians
during the clinical event and then it could also be used by the research area. Once the
diffusion of the EMR reaches high coverage in wards, stored data are also made available
to a clinical decision support system, through which users will directly access clinical and
scientific indicators, improve the correctne ss of diagnosis and identify specific
pathological patterns.

This approach at Istituto Besta is also applied to the Epilepsy Pathology Network of the
Lombardy Region (EpiNetwork), introducing au tomatic feeds as a part of its clinical-
scientific-epidemiological EMR. Here, the compliance of all organizations’ HISs to
syntactic and semantic standards is essential to feed the EpiNetwork, thereby increasing
the amount and quality of available data.

Box 2. The EMR in Fondazione IRCCS Istituto Neurologico “Carlo Besta” (Milan, Italy)

Besides supporting clinical operations, over time the clinical information systems have
assumed a growing role in risk management, e.g. as concerns the automated execution of
critical tasks (e.g. laboratory examinations, drug dilution robotization), ensuring timely data
gathering to clinical decision makers, automating patient monitoring and alerting upon
inconsistencies, and so on (Chauldry, 2006).

Crosswise all systems and all applications, Mobile & Wireless (M&W) technologies emerge as

a key element to close the bedside safety loop—filling the gap left by the traditional HIS. In

fact, M&W technologies can on one hand deliver functionalities like decision-making support
directly to the bedside, and on the other, they can strengthen the safe implementation of
Automatic Identification and Data Capture systems (Bates, 2000). From this viewpoint, Box 3
describes an important example, as regards risk management as well.

The Fondazione IRCCS Istituto Nazionale dei Tumori in Milan (henceforth Istituto
Tumori) is recognized as a top Scientific Research and Treatment Institution in Oncology.

Throughout the last decade the Istituto Tumo ri has implemented a state-of-the-art HIS
based on a solid technical infrastructure and international standards (most of all HL7),
effectively integrating information systems amongst each other. Regarding the five main
functional EMR areas, in the Istituto Tumori ADT, Out-patient management and
Diagnostics are the most historically consolidated.

Innovative Information Systems Modelling Techniques

84

available in 80% of cases) and outpatient management (67%). Even if clinical dossier and
therapy management are the less diffused areas, at the same time, they are also the ones with
the greatest expected growth for the future. Hind rances are mainly related to the difficulties
in change management, in the migration of therapy procedures from paper to digital forms,
in the needs of smart bedside support, and in legal constraints to digital data management.

Fig. 2. The Expected Diffusion of Functional EMR Areas (ICHO, 2010)

Unfortunately these last areas not only have a key impact on clinical activities, but also are
the ones that need higher levels of integration in order to allow the EMR to become a truly
useful clinical tool. Case studies performed by the IHCO have confirmed that the lack of
integration with the rest of the HIS and the absence of an enterprise-wide approach are the
main limitations of current EMR projects. However, many efforts are made not only to
standardize the EMR architecture, but also to drive its evolution towards a mature tool able
to comprehensively support all the health care processes (IHCO, 2009d).

Another important opportunity coming from digitalization of clinical processes regards the
opportunity to feed researchers with first-ha nd, complete and highly reliable datasets on
clinical cases collected in the EMR during daily care and then filtered for clinical research
purposes. The case of the Istituto Besta (see Box 2) briefly highlights how this can happen.

Fondazione IRCCS Istituto Neurologico “Carlo Besta” is a centre of excellence for care
and scientific research on neurological diseases. Recently, a collaboration was started
with the hospital A.O. Ospedale Niguarda “Ca’Granda” and Fondazione Politecnico di
Milano, with the aim of transforming Niguarda’s web EMR into a “clinical-scientific”
portal to not only support pati ents’ management during their en tire care process, but also
to feed scientific research with key inform ation gathered during each clinical event.

Due to its open architecture, the portal was conceived as a unique access point to the HIS,
based on a centralized patient reference registry. The first scientific features were

Health Care Information Systems: Architectural Models and Governance

85

provided in October 2008 supporting comple te outpatient workflow and encoding
pathological diagnoses according to international standards. Since 2009, most features of
an EMR were also implemented to support inpatient management. This means that
admission, anamnesis, diagnosis, clinical diaries, speciality neurology sheets have been
standardized, reengineered and digitalized. Clinicians use RFId badges to access the
clinical dossier on WiFi laptops fixed on mobile trays than can roll to bedside.

The most innovative feature of this system is however that the clinical portal’s EMR is
conceived to structure digital information both to support ward activities as well as to
feed scientific research. Starting from the general EMR, specific design was done in order
to satisfy the requirements of physicians and researchers working in the area of
myasthenia gravis and peripheral neuropathy. A procedure was identified to enrich and
structure usual clinical datasets, so that high quality data could be gathered by physicians
during the clinical event and then it could also be used by the research area. Once the
diffusion of the EMR reaches high coverage in wards, stored data are also made available
to a clinical decision support system, through which users will directly access clinical and
scientific indicators, improve the correctne ss of diagnosis and identify specific
pathological patterns.

This approach at Istituto Besta is also applied to the Epilepsy Pathology Network of the
Lombardy Region (EpiNetwork), introducing au tomatic feeds as a part of its clinical-
scientific-epidemiological EMR. Here, the compliance of all organizations’ HISs to
syntactic and semantic standards is essential to feed the EpiNetwork, thereby increasing
the amount and quality of available data.

Box 2. The EMR in Fondazione IRCCS Istituto Neurologico “Carlo Besta” (Milan, Italy)

Besides supporting clinical operations, over time the clinical information systems have
assumed a growing role in risk management, e.g. as concerns the automated execution of
critical tasks (e.g. laboratory examinations, drug dilution robotization), ensuring timely data
gathering to clinical decision makers, automating patient monitoring and alerting upon
inconsistencies, and so on (Chauldry, 2006).

Crosswise all systems and all applications, Mobile & Wireless (M&W) technologies emerge as

a key element to close the bedside safety loop—filling the gap left by the traditional HIS. In

fact, M&W technologies can on one hand deliver functionalities like decision-making support
directly to the bedside, and on the other, they can strengthen the safe implementation of
Automatic Identification and Data Capture systems (Bates, 2000). From this viewpoint, Box 3
describes an important example, as regards risk management as well.

The Fondazione IRCCS Istituto Nazionale dei Tumori in Milan (henceforth Istituto
Tumori) is recognized as a top Scientific Research and Treatment Institution in Oncology.

Throughout the last decade the Istituto Tumo ri has implemented a state-of-the-art HIS
based on a solid technical infrastructure and international standards (most of all HL7),
effectively integrating information systems amongst each other. Regarding the five main
functional EMR areas, in the Istituto Tumori ADT, Out-patient management and
Diagnostics are the most historically consolidated.

Innovative Information Systems Modelling Techniques

86

As regards therapy management and bedside operations, the Istituto has recognized that
lack of ICT support for bedside operations may be dangerous for patient safety. Therefore
the Istituto is pervasively implementing M& W and Radio Frequency Identification (RFId)
technologies in order to avoid errors and enhance patient safety and care quality of care
at bedside.

An RFId enterprise platform, made of a set of process-tailored mobile applications and
RFId devices integrated to the HIS applications, now enables traceability and process
control (e.g. patient-to-treatment cross matches and workflow checks) as regards
transfusions, radiotherapy tr eatments, radiology, surgical operation check and tissue
samples. Traceability data are collected on mobile devices and gathered to the
appropriate subsystem of the HIS, allowing specialists in departments (e.g. the
Transfusion Service) to monitor ward activities.

An interesting project regards chemotherapy process reorganization, where the Istituto is
leading the project “Towards a complete competence framework and an integrated solution
for patient safety in chemotherapy” funded by the Italian Ministry of Health. Results and
knowledge (in terms of risk analysis, process diagnosis evidences, workflow
recommendations, and an ICT pilot system, …) are now being applied wi th the design of an
enterprise-wide therapy management system and a centralized lab to issue chemotherapy
treatments for all wards. Here, RFId will be used to track all cr itical steps of preparation and
administration at bedside, securing patient and drug identification and process monitoring.

Box 3. Therapy Management and Wireless Traceability at Fondazione IRCCS Istituto
Nazionale dei Tumori (Milan, Italy)

In fact, to assess the potential impact and the convenience of digitalization in terms of risk
management, many new methodologies have supported traditional Business Process
Reengineering (BPR) theories (e.g. Davenport, 1993) and process-related risk management
theories. The peculiarity of these approaches is that ICT is seen not only as a means to
reduce process risk, but also as a potential source of new weaknesses in processes. The
Healthcare Failure Mode, Criticality and Effect Analysis (HFMEA) is a recognized technique that
has increasingly been adopted in practice (DeRosier, 2002).

3.2.4 Shared services of a hospital information system

Supporting the main aforementioned areas, there are other components that complement
the HIS architecture. The best practices show that the architectural model of an HIS should
be based on a common infrastructure, made of central services and a comprehensive
integration middleware. More in detail, the shared services are (Locatelli, 2010):

�x Central Patients and Encoding Database: this service has the responsibility to centrally
manage patient identifiers (Master Patient Index, MPI) to make them available to other
components of the HIS, and to manage clinical encodings shared among applications
(e.g. encodings nomenclature or pharmaceutical handbook);

�x Prescriptions Generation: this service allows the preparation, digital signature and issue
of all prescriptions to be used outside the hospital;

�x Order Entry: this service manages ward requests for internal exams and second opinion
consultations;

Health Care Information Systems: Architectural Models and Governance

87

�x Medical Reports Generation: this module supports the issue of legally compliant medical
reports for all hospital services;

�x Clinical Repository: this is a central archive of (i) all kinds of digitally-signed medical
reports, (ii) structured data, (iii) patient events (e.g. transfusions, surgery) and (iv)
many others, from exam requests to therapy prescriptions. The clinical repository is a
core component because it is the central collector of patient data, that all other systems
can consult to retrieve official documents and data on past episodes. This component is
also responsible for feeding the regional health record, via a dedicated network link
(extranet)

Crosswise, the central middleware is responsible for linking all HIS components using
standards, such as Health Level Seven (HL7). The importance of an infrastructural backbone
can be fully understood with the example of St . Olav’s Digital Hospital, described in Box 3.
This is only one case amongst many (e.g. the Orbis Medisch Group hospitals, in Denmark,
and the Julius-Maximilians University Hospit al of Würzburg, in Germany) in which a
pervasive infrastructure enables the implementation of an integrated technological platform

aimed at digitalizing both management activities and clinical processes. A strong
technological partner has proved essential in all cases.

4. Governance of health care information systems

HCISs are developed, maintained and innovated by a complex ecology of multiple agents that
share knowledge (as well as other resources) in often previously unknown interaction paths
(Simon, 1996; Anderson, 1999; IHCO, 2011). If, as a result of this complex process, HCISs
emerge almost unpredictably over considerable time periods—as various agents in the
ecology interact with and react to the actions of others—their governance is naturally
characterized by a shared and multilevel nature (IHCO, 2010; 2011).

The challenge, in this case, concerns how to foster the necessary collaboration among many
diverse organisations over long and uncertain time periods, while, at the same time,
continuing to develop internal solutions able to respond to the specific necessities of the
health care organisations’ different lines of business (IHCO, 2010).

St. Olav 's of Trondheim (www.stolav.no) is the largest hospital in Norway, with 950 beds
and 8,000 employees. The willingness to restructure the campus has given the
opportunity for a pilot project whose goal is the realization of a completely digital
hospital.

Three intervention pillars existed: (i) the review of information flows and clinical
documentation for their complete dematerialization, (ii) the multichannel and continuous
access to systems and information clinics, and (iii) the advanced in frastructure enabler.

The third pillar is the real basis of a digi tal hospital design, and it is made of a
communication and integration infrastructure mainly based on IP and XML protocols. The
main innovative element is on one side the infrastructure’s pervasiveness, and on the other
side the integration of the HIS—including clinical system s, remote control systems,
telecommunications equipment support, buildi ng automation systems, asset management

Innovative Information Systems Modelling Techniques

86

As regards therapy management and bedside operations, the Istituto has recognized that
lack of ICT support for bedside operations may be dangerous for patient safety. Therefore
the Istituto is pervasively implementing M& W and Radio Frequency Identification (RFId)
technologies in order to avoid errors and enhance patient safety and care quality of care
at bedside.

An RFId enterprise platform, made of a set of process-tailored mobile applications and
RFId devices integrated to the HIS applications, now enables traceability and process
control (e.g. patient-to-treatment cross matches and workflow checks) as regards
transfusions, radiotherapy tr eatments, radiology, surgical operation check and tissue
samples. Traceability data are collected on mobile devices and gathered to the
appropriate subsystem of the HIS, allowing specialists in departments (e.g. the
Transfusion Service) to monitor ward activities.

An interesting project regards chemotherapy process reorganization, where the Istituto is
leading the project “Towards a complete competence framework and an integrated solution
for patient safety in chemotherapy” funded by the Italian Ministry of Health. Results and
knowledge (in terms of risk analysis, process diagnosis evidences, workflow
recommendations, and an ICT pilot system, …) are now being applied wi th the design of an
enterprise-wide therapy management system and a centralized lab to issue chemotherapy
treatments for all wards. Here, RFId will be used to track all cr itical steps of preparation and
administration at bedside, securing patient and drug identification and process monitoring.

Box 3. Therapy Management and Wireless Traceability at Fondazione IRCCS Istituto
Nazionale dei Tumori (Milan, Italy)

In fact, to assess the potential impact and the convenience of digitalization in terms of risk
management, many new methodologies have supported traditional Business Process
Reengineering (BPR) theories (e.g. Davenport, 1993) and process-related risk management
theories. The peculiarity of these approaches is that ICT is seen not only as a means to
reduce process risk, but also as a potential source of new weaknesses in processes. The
Healthcare Failure Mode, Criticality and Effect Analysis (HFMEA) is a recognized technique that
has increasingly been adopted in practice (DeRosier, 2002).

3.2.4 Shared services of a hospital information system

Supporting the main aforementioned areas, there are other components that complement
the HIS architecture. The best practices show that the architectural model of an HIS should
be based on a common infrastructure, made of central services and a comprehensive
integration middleware. More in detail, the shared services are (Locatelli, 2010):

�x Central Patients and Encoding Database: this service has the responsibility to centrally
manage patient identifiers (Master Patient Index, MPI) to make them available to other
components of the HIS, and to manage clinical encodings shared among applications
(e.g. encodings nomenclature or pharmaceutical handbook);

�x Prescriptions Generation: this service allows the preparation, digital signature and issue
of all prescriptions to be used outside the hospital;

�x Order Entry: this service manages ward requests for internal exams and second opinion
consultations;

Health Care Information Systems: Architectural Models and Governance

87

�x Medical Reports Generation: this module supports the issue of legally compliant medical
reports for all hospital services;

�x Clinical Repository: this is a central archive of (i) all kinds of digitally-signed medical
reports, (ii) structured data, (iii) patient events (e.g. transfusions, surgery) and (iv)
many others, from exam requests to therapy prescriptions. The clinical repository is a
core component because it is the central collector of patient data, that all other systems
can consult to retrieve official documents and data on past episodes. This component is
also responsible for feeding the regional health record, via a dedicated network link
(extranet)

Crosswise, the central middleware is responsible for linking all HIS components using
standards, such as Health Level Seven (HL7). The importance of an infrastructural backbone
can be fully understood with the example of St . Olav’s Digital Hospital, described in Box 3.
This is only one case amongst many (e.g. the Orbis Medisch Group hospitals, in Denmark,
and the Julius-Maximilians University Hospit al of Würzburg, in Germany) in which a
pervasive infrastructure enables the implementation of an integrated technological platform

aimed at digitalizing both management activities and clinical processes. A strong
technological partner has proved essential in all cases.

4. Governance of health care information systems

HCISs are developed, maintained and innovated by a complex ecology of multiple agents that
share knowledge (as well as other resources) in often previously unknown interaction paths
(Simon, 1996; Anderson, 1999; IHCO, 2011). If, as a result of this complex process, HCISs
emerge almost unpredictably over considerable time periods—as various agents in the
ecology interact with and react to the actions of others—their governance is naturally
characterized by a shared and multilevel nature (IHCO, 2010; 2011).

The challenge, in this case, concerns how to foster the necessary collaboration among many
diverse organisations over long and uncertain time periods, while, at the same time,
continuing to develop internal solutions able to respond to the specific necessities of the
health care organisations’ different lines of business (IHCO, 2010).

St. Olav 's of Trondheim (www.stolav.no) is the largest hospital in Norway, with 950 beds
and 8,000 employees. The willingness to restructure the campus has given the
opportunity for a pilot project whose goal is the realization of a completely digital
hospital.

Three intervention pillars existed: (i) the review of information flows and clinical
documentation for their complete dematerialization, (ii) the multichannel and continuous
access to systems and information clinics, and (iii) the advanced in frastructure enabler.

The third pillar is the real basis of a digi tal hospital design, and it is made of a
communication and integration infrastructure mainly based on IP and XML protocols. The
main innovative element is on one side the infrastructure’s pervasiveness, and on the other
side the integration of the HIS—including clinical system s, remote control systems,
telecommunications equipment support, buildi ng automation systems, asset management

Innovative Information Systems Modelling Techniques

88

applications, automatic guided vehicles transports, and environment sensors.

The experience of St. Olav’s is a case of excellence in terms of a state-of-the art
infrastructure enabling a truly paperless organization. In fact, the communication
infrastructure and the integration platform can support various application modules: the
electronic medical record, the departmental systems, biomedical equipment, bedside
entertainment, and so on.

As an example, pocket PCs are used to both replace cell phones, pagers, and terminals for
patient entertainment as well as use EMR in mobility, also fed with vital sign data as well
as by reports of departmental applications.

Box 4. St. Olav 's Digital Hospital (Trondheim, Norway)

As a matter of fact, the problem is that most of the theoretical and empirical research on
information systems management is mainly focusing on firms and their performance
(Hunter, 2009)—paying little attention to both the interaction among the different actors
inside a specific sector as well as the development of shared solution s like the ones currently
needed by the health care industry (Corso & Gastaldi, 2010b).

A comprehensive governance model must, thus, not only focus on what should be done
inside each organization of the health care industry to make ICT-based solutions efficient
and effective, but also (and especially) consider the decisions that each one of these
organizations has to make during the interact ion with the other actors in the sector. To
simplify the discourse and make it a bit more effective, it is possible to talk about the internal
and external governance of HCISs (IHCO, 2009e).

4.1 Internal governance

By the term internal governance of HCISs we mean the system of policies, processes, decisions
and rules that set the way through which HCIS s are run, managed and developed inside an
health care organization (Corso and Gastaldi, 2009).

Empirical evidence (IHCO, 2008; 2009e; 2010; 2011) as well as literature (Corso et al., 2010;
Venkatesh et al., 2011) emphasize that the low levels of formalization of the governance

models of the HISs are greatly affecting the developmen t of the HISs themselves. Low
financial support—often pointed out as the main problem by health care CIOs —is mainly a
reflection of the low commitment by the majority of the strategic board, which often neither
has a clear idea about how ICT can have an impact that goes beyond mere efficiency, nor
fosters the pursuit of a clear ICT strategy (Callen et al., 2007). The real reasons for a lack of
effectiveness in the implementation of the HISs are multiple, and range from the lack of a
technological perspective on the part of Chief Executive Officers (CEOs), Chief Financial
Officers (CFOs) and Chief Medical Officers (CMOs), and the inability of CIOs to clearly
propose all the advantages tied to ICT solutions, to the need to reach concrete organizational
results for achieving higher investments in HISs.

As regards the ICT department, very few learning processes are launched to enhance the
technical skills of employees, above all in the public sector. Leadership programs are
practically inexistent. The turnover rate is very low, and many difficulties are found in
attracting professionals from other sectors. CIOs tend to ascribe all these criticalities to

Health Care Information Systems: Architectural Models and Governance

89

exogenous causes, rather than internal inadequacy, and to blame operational workload
instead of their own inability to face it. The CIO himself often has a narrow strategic view
that hinders an open approach to innovation. This is due to: (i) a low level of managerial
capabilities, (ii) a difficult alignment with corporate strategies, and (iii) an overuse of
technical language in strategic board interactions.

ICT supplier involvement is almost always oper ational or consultancy-oriented, and in the
few cases in which the relation is continuative , CIOs fail to sufficiently delegate—working
along-side the ICT supplier, even in highly outsourced operations.

To solve this set of problems, CIOs need first to work on their capabilities, as already done
in other sectors (Broadbent and Kitzis, 2005). The research conducted by IHCO (2008;
2009e, 2010) shows an operative role for 65% of health care CIOs. With these values it is
impossible to manage the effective development of HISs, and, thus, their innovation. It is
true that organizations could first work on the ICT department team, but getting out of
the operative vicious circle without a true C-Le vel director is often a challenge (Smaltz et
al., 2006).

Obviously, this simply is not enough: having CIOs with more capabilities does not
necessarily simplify the development or the ma nagement of HISs. Real innovation will not
be attained until the ICT department develops a deep knowledge of clinical processes,
relational and change management capabilities, and the ability to exploit external
knowledge, while working alongside medica l offices (IHCO, 2008). Thus, internal
governance models have to direct their attention to core health care businesses, redesigning
the ICT unit’s skills on three main pillars:

�x Demand management: reconciling the needs expressed by clinical units (and often
anticipating them) with the overall ICT strategy of the organization.

�x Project management: applying process reengineering and change management
methodologies to govern projects, face unexpected events, assure success.

�x Supply management: implementing rigorous procedures for vendor selection and
establishing long-term relationships with key vendors able to support innovation.

A possible solution that combines these aspects is the change from a vertical to a
horizontal governance model of HISs. The former is completely focused on a hierarchical
relationship with the strategic board—forced as ineffective, because of the CIO having
historically an operative profile. The latter directs its attentions to the core of care,
establishes the ICT department as the main interface between the supply and the demand
of the health care organization, and more easily achieves the systemic innovations, the
effectiveness, the confidence and the leadership necessary to play a strategic role in health
care organizations.

In the most advanced situations studied by the IHCO (2008; 2009e; 2010), CIOs confirmed
that good horizontal governance implied incr eased objectives-sharing and thus, not only
more integration between departments, but also a more innovative HCIS.

Reasonably, the change in ICT governance style will expose the CIO and the ICT
department to greater interaction with internal (as well as external) organizational actors. In
order to not lose focus in these difficult tasks—which imply adapting to very different
business needs—a project priority framework is needed (Corso and Gastaldi, 2009).

Innovative Information Systems Modelling Techniques

88

applications, automatic guided vehicles transports, and environment sensors.

The experience of St. Olav’s is a case of excellence in terms of a state-of-the art
infrastructure enabling a truly paperless organization. In fact, the communication
infrastructure and the integration platform can support various application modules: the
electronic medical record, the departmental systems, biomedical equipment, bedside
entertainment, and so on.

As an example, pocket PCs are used to both replace cell phones, pagers, and terminals for
patient entertainment as well as use EMR in mobility, also fed with vital sign data as well
as by reports of departmental applications.

Box 4. St. Olav 's Digital Hospital (Trondheim, Norway)

As a matter of fact, the problem is that most of the theoretical and empirical research on
information systems management is mainly focusing on firms and their performance
(Hunter, 2009)—paying little attention to both the interaction among the different actors
inside a specific sector as well as the development of shared solution s like the ones currently
needed by the health care industry (Corso & Gastaldi, 2010b).

A comprehensive governance model must, thus, not only focus on what should be done
inside each organization of the health care industry to make ICT-based solutions efficient
and effective, but also (and especially) consider the decisions that each one of these
organizations has to make during the interact ion with the other actors in the sector. To
simplify the discourse and make it a bit more effective, it is possible to talk about the internal
and external governance of HCISs (IHCO, 2009e).

4.1 Internal governance

By the term internal governance of HCISs we mean the system of policies, processes, decisions
and rules that set the way through which HCIS s are run, managed and developed inside an
health care organization (Corso and Gastaldi, 2009).

Empirical evidence (IHCO, 2008; 2009e; 2010; 2011) as well as literature (Corso et al., 2010;
Venkatesh et al., 2011) emphasize that the low levels of formalization of the governance

models of the HISs are greatly affecting the developmen t of the HISs themselves. Low
financial support—often pointed out as the main problem by health care CIOs —is mainly a
reflection of the low commitment by the majority of the strategic board, which often neither
has a clear idea about how ICT can have an impact that goes beyond mere efficiency, nor
fosters the pursuit of a clear ICT strategy (Callen et al., 2007). The real reasons for a lack of
effectiveness in the implementation of the HISs are multiple, and range from the lack of a
technological perspective on the part of Chief Executive Officers (CEOs), Chief Financial
Officers (CFOs) and Chief Medical Officers (CMOs), and the inability of CIOs to clearly
propose all the advantages tied to ICT solutions, to the need to reach concrete organizational
results for achieving higher investments in HISs.

As regards the ICT department, very few learning processes are launched to enhance the
technical skills of employees, above all in the public sector. Leadership programs are
practically inexistent. The turnover rate is very low, and many difficulties are found in
attracting professionals from other sectors. CIOs tend to ascribe all these criticalities to

Health Care Information Systems: Architectural Models and Governance

89

exogenous causes, rather than internal inadequacy, and to blame operational workload
instead of their own inability to face it. The CIO himself often has a narrow strategic view
that hinders an open approach to innovation. This is due to: (i) a low level of managerial
capabilities, (ii) a difficult alignment with corporate strategies, and (iii) an overuse of
technical language in strategic board interactions.

ICT supplier involvement is almost always oper ational or consultancy-oriented, and in the
few cases in which the relation is continuative , CIOs fail to sufficiently delegate—working
along-side the ICT supplier, even in highly outsourced operations.

To solve this set of problems, CIOs need first to work on their capabilities, as already done
in other sectors (Broadbent and Kitzis, 2005). The research conducted by IHCO (2008;
2009e, 2010) shows an operative role for 65% of health care CIOs. With these values it is
impossible to manage the effective development of HISs, and, thus, their innovation. It is
true that organizations could first work on the ICT department team, but getting out of
the operative vicious circle without a true C-Le vel director is often a challenge (Smaltz et
al., 2006).

Obviously, this simply is not enough: having CIOs with more capabilities does not
necessarily simplify the development or the ma nagement of HISs. Real innovation will not
be attained until the ICT department develops a deep knowledge of clinical processes,
relational and change management capabilities, and the ability to exploit external
knowledge, while working alongside medica l offices (IHCO, 2008). Thus, internal
governance models have to direct their attention to core health care businesses, redesigning
the ICT unit’s skills on three main pillars:

�x Demand management: reconciling the needs expressed by clinical units (and often
anticipating them) with the overall ICT strategy of the organization.

�x Project management: applying process reengineering and change management
methodologies to govern projects, face unexpected events, assure success.

�x Supply management: implementing rigorous procedures for vendor selection and
establishing long-term relationships with key vendors able to support innovation.

A possible solution that combines these aspects is the change from a vertical to a
horizontal governance model of HISs. The former is completely focused on a hierarchical
relationship with the strategic board—forced as ineffective, because of the CIO having
historically an operative profile. The latter directs its attentions to the core of care,
establishes the ICT department as the main interface between the supply and the demand
of the health care organization, and more easily achieves the systemic innovations, the
effectiveness, the confidence and the leadership necessary to play a strategic role in health
care organizations.

In the most advanced situations studied by the IHCO (2008; 2009e; 2010), CIOs confirmed
that good horizontal governance implied incr eased objectives-sharing and thus, not only
more integration between departments, but also a more innovative HCIS.

Reasonably, the change in ICT governance style will expose the CIO and the ICT
department to greater interaction with internal (as well as external) organizational actors. In
order to not lose focus in these difficult tasks—which imply adapting to very different
business needs—a project priority framework is needed (Corso and Gastaldi, 2009).

Innovative Information Systems Modelling Techniques

90

4.2 External governance

By external governance of HCISs, we mean the set of decisions that allow the development of
the information system adopted in a health care organization to be coordinated with the
other information systems used in th e health care sector (IHCO, 2009e).

As opposed to other sectors, within health care, most of the value that an organization
brings to its customers is highly depend ent on the information localized in other
organizations—e.g. those health care organizations in which the patients previously
received treatments. From this viewpoint, the cooperation am ong the different organizations
in the health care industry is core and, thus, there is an high emphasis in the development of
external governance models able to align the different interests in the sector.

Working on Dougherty and Dunne (2011), and considering the empirical evidences
collected by the IHCO (2011), is it possible to state that all the models that allow the
achievement of good external governance of HCISs are characterized by three dynamics:

�x The development of sufficient connections among health care agents;
�x The development of sufficient deviation-amplifying activities that stretch the overall

health care industry toward integrated solutions with a positive social impact;
�x The development of coordinating mechanisms that recombine, reuse, and recreate

existing solutions, slow down amplifications and keep the system under control.

The first dynamic regards the development of sufficient connections among health care
agents (Anderson, 1999). The presence of these connections is the most basic condition
necessary to allows the emergence as well as the progressive comparison of new patterns
and new solutions in the govern ance of HCISs (IHCO, 2010; 2011).

The process through which these connection are constructed is initiated by a variety of
fluctuations that occur outside the norm, so the various agents need to interact and react to
feedback about the action of others (Lichtenstein & Plowman, 2009). More specifically, the
research of the IHCO (2011) points out that each actor has to strive towards specific
behaviours in order to create solid connections with the rest of the health care industry:

�x Involvement and listening of lower level actors: e.g. a regional council has to continuously
develop channels that allow it to be in contact with its hospitals;

�x Proactivity and availability toward higher level actors: e.g. a physician has to be able to
overcome his natural tendency toward lo calism, offering himself as an open
interlocutor in the dialogues with his referring hospital;

�x Comparison and collaboration with the actors of the same level: e.g. all the hospitals that share
the same geographical area should maintain a continuous dialogue that would allow
them to coordinate their tasks and learn from other experiences.

The second dynamic is composed of deviation-amplifying activities, such as positive feedback,
that move the overall health care system toward a new kind of order (Dougherty & Dunne,
2011) that—being characterized by higher levels of integration among the different health
information systems—is comprehensively better in terms of social impact (IHCO, 2011).

Floricel and Dougherty (2007) suggest that reciprocal value can be created and can persist if
each actor enables the heterogeneity of the possible outputs to be explored and

Health Care Information Systems: Architectural Models and Governance

91

experimented through time. More specifically, the analysis performed with the Italian health
care practitioners by the researchers of the IHCO (2011) points out that each stakeholder has
to work locally in order to set and solv e problems of orchestrating knowledge and
capabilities across the health care ecology—fostering each potential form of strategizing
across the whole health care industry in order to create shared IS applications.

The third dynamic enables new order to come into being and comprises coordinating
mechanisms that recombine and recreate existing solutions, that slow down amplifications,
and keep the new system persistent and under control (Lichtenstein & Plowman, 2009).

This dynamic relies mostly on the development of public policies and standardization
choices that embrace the potential ambiguities that arise in the progressive development of
shared HCISs. Even if currently research (Mahoney et al., 2009) tends to emphasize regulations

as factors that constrain firms, rather than shaping collective action, public policies and

standardization provide an overall direction to bundle knowledge and mitigate risks as well
as provide the long-term continuity necessary to allow the new possibilities to emerge.

5. Future trends in health care information systems

According to the latest literature on HCISs (e.g. Fichman et al., 2011) as well as to the
evidences collected by the IHCO (2010; 2011), there are three areas where major ICT-based
advances are opening promising scenarios to further developments:

�x Evidence Based Medicine;
�x Health care analytics;
�x Social Media in Health care.

Evidence-Based Medicine (EBM) is the conscientious, explicit, and judicious use of current best
evidence in making decisions about the care of individual patients (Sackett et al., 1996).
Recently, EBM has gained increasing attention as a tool to address the concerns about health
care cost and quality—allowing earlier and mo re precise diagnoses, producing cheaper and
more effective treatments, and minimizing the side effects associated to each treatment
(Glaser et al., 2008; Christensen et al., 2009).

If the barriers to the widespread use of EBM are substantial, HCISs can play an important
counteracting role. Generalising Fichman et al. (2011), there are four potential ways through
which the research on HCISs can foster the adoption of EBM inside the health care industry:

�x Depth of knowledge about the efficacy of many common treatments: the rise of digital storage
of personal medical information gives researchers opportunities to discover precise
knowledge about the links betw een treatments and outcomes;

�x Producing and sharing actionable knowledge: health information systems researchers can
study the antecedents and the consequences of sharing actionable knowledge through
digital media in order to better influence practice;

�x Overcoming practitioner resistance: health information systems can be used to promote
education of all the health care stakeholders on the efficacy of diagnostic and treatment
options so that they can hold caregivers more accountable;

�x Focusing on the implications that EBM brings in the field of HCISs: both in terms of privacy
as well as security.

Innovative Information Systems Modelling Techniques

90

4.2 External governance

By external governance of HCISs, we mean the set of decisions that allow the development of
the information system adopted in a health care organization to be coordinated with the
other information systems used in th e health care sector (IHCO, 2009e).

As opposed to other sectors, within health care, most of the value that an organization
brings to its customers is highly depend ent on the information localized in other
organizations—e.g. those health care organizations in which the patients previously
received treatments. From this viewpoint, the cooperation am ong the different organizations
in the health care industry is core and, thus, there is an high emphasis in the development of
external governance models able to align the different interests in the sector.

Working on Dougherty and Dunne (2011), and considering the empirical evidences
collected by the IHCO (2011), is it possible to state that all the models that allow the
achievement of good external governance of HCISs are characterized by three dynamics:

�x The development of sufficient connections among health care agents;
�x The development of sufficient deviation-amplifying activities that stretch the overall

health care industry toward integrated solutions with a positive social impact;
�x The development of coordinating mechanisms that recombine, reuse, and recreate

existing solutions, slow down amplifications and keep the system under control.

The first dynamic regards the development of sufficient connections among health care
agents (Anderson, 1999). The presence of these connections is the most basic condition
necessary to allows the emergence as well as the progressive comparison of new patterns
and new solutions in the govern ance of HCISs (IHCO, 2010; 2011).

The process through which these connection are constructed is initiated by a variety of
fluctuations that occur outside the norm, so the various agents need to interact and react to
feedback about the action of others (Lichtenstein & Plowman, 2009). More specifically, the
research of the IHCO (2011) points out that each actor has to strive towards specific
behaviours in order to create solid connections with the rest of the health care industry:

�x Involvement and listening of lower level actors: e.g. a regional council has to continuously
develop channels that allow it to be in contact with its hospitals;

�x Proactivity and availability toward higher level actors: e.g. a physician has to be able to
overcome his natural tendency toward lo calism, offering himself as an open
interlocutor in the dialogues with his referring hospital;

�x Comparison and collaboration with the actors of the same level: e.g. all the hospitals that share
the same geographical area should maintain a continuous dialogue that would allow
them to coordinate their tasks and learn from other experiences.

The second dynamic is composed of deviation-amplifying activities, such as positive feedback,
that move the overall health care system toward a new kind of order (Dougherty & Dunne,
2011) that—being characterized by higher levels of integration among the different health
information systems—is comprehensively better in terms of social impact (IHCO, 2011).

Floricel and Dougherty (2007) suggest that reciprocal value can be created and can persist if
each actor enables the heterogeneity of the possible outputs to be explored and

Health Care Information Systems: Architectural Models and Governance

91

experimented through time. More specifically, the analysis performed with the Italian health
care practitioners by the researchers of the IHCO (2011) points out that each stakeholder has
to work locally in order to set and solv e problems of orchestrating knowledge and
capabilities across the health care ecology—fostering each potential form of strategizing
across the whole health care industry in order to create shared IS applications.

The third dynamic enables new order to come into being and comprises coordinating
mechanisms that recombine and recreate existing solutions, that slow down amplifications,
and keep the new system persistent and under control (Lichtenstein & Plowman, 2009).

This dynamic relies mostly on the development of public policies and standardization
choices that embrace the potential ambiguities that arise in the progressive development of
shared HCISs. Even if currently research (Mahoney et al., 2009) tends to emphasize regulations

as factors that constrain firms, rather than shaping collective action, public policies and

standardization provide an overall direction to bundle knowledge and mitigate risks as well
as provide the long-term continuity necessary to allow the new possibilities to emerge.

5. Future trends in health care information systems

According to the latest literature on HCISs (e.g. Fichman et al., 2011) as well as to the
evidences collected by the IHCO (2010; 2011), there are three areas where major ICT-based
advances are opening promising scenarios to further developments:

�x Evidence Based Medicine;
�x Health care analytics;
�x Social Media in Health care.

Evidence-Based Medicine (EBM) is the conscientious, explicit, and judicious use of current best
evidence in making decisions about the care of individual patients (Sackett et al., 1996).
Recently, EBM has gained increasing attention as a tool to address the concerns about health
care cost and quality—allowing earlier and mo re precise diagnoses, producing cheaper and
more effective treatments, and minimizing the side effects associated to each treatment
(Glaser et al., 2008; Christensen et al., 2009).

If the barriers to the widespread use of EBM are substantial, HCISs can play an important
counteracting role. Generalising Fichman et al. (2011), there are four potential ways through
which the research on HCISs can foster the adoption of EBM inside the health care industry:

�x Depth of knowledge about the efficacy of many common treatments: the rise of digital storage
of personal medical information gives researchers opportunities to discover precise
knowledge about the links betw een treatments and outcomes;

�x Producing and sharing actionable knowledge: health information systems researchers can
study the antecedents and the consequences of sharing actionable knowledge through
digital media in order to better influence practice;

�x Overcoming practitioner resistance: health information systems can be used to promote
education of all the health care stakeholders on the efficacy of diagnostic and treatment
options so that they can hold caregivers more accountable;

�x Focusing on the implications that EBM brings in the field of HCISs: both in terms of privacy
as well as security.

Innovative Information Systems Modelling Techniques

92

Health care analytics is a rapidly evolving field of HCISs that makes extensive use of data,
computer technologies, statistical and qualitat ive analyses, and explanatory and predictive
modelling to solve problems that generally affect the entire health care sector.

The difference between analytics and EBM lies in the scale of the problems tackled by the
two different solutions. If both of them focu s on extracting knowledg e from the amounts of
digital data available in the health care indu stry, EBM maintains a focus on the individual
while analytics impacts on a larger scale—analysing retrospective population datasets
across multiple clinical conditions with models involving extensive computation. Common
applications of analytics include the statistical analysis performed to understand historical
patterns and, thus, predict and improve future treatments (Davenport, 2006).

According to the analyses conducted by the IHCO, there are three main behaviours that
health care organizations have to adopt in order to increase the exploitation as well as the
effectiveness of analytics in their industry:

�x Designing for consumability: it will be progressively necessary to take into account the

specific context, user, device and intended purpose of each quantitative analysis;
�x Exploiting natural variations in task performance as an “experimental test bed”: as long as

contextual variables are captured, variations in task perfor mance across the enterprise
will be progressively used as experiments to draw causal conclusions;

�x Building capacity and instrumentation to capture and use “external” data: through the
integration and the analysis of the data coming from (i) RFID tags on patients and
providers, (ii) patient personal health record data, (iii) patient mobile device sensor
data, (iv) data from other organizations, (v) social media data, etc.

Social media communities have been particularly active in the health care domain (Kane et
al., 2009)—though with highly different rates ac ross the different countries (IHCO, 2009c).
The primary driver of value, in these communi ties, is a commons-based peer production of
knowledge (Benkler, 2002) in which individuals, in a sponta neous way, collaborate on a
large scale to produce work products withou t hierarchical control (firms) or market
exchanges (price, contracts) to guide them (a famous example is www.patientslikeme.com).

Generalizing Fichman et al. (2011), it is possible to propose a set of the main interesting
questions at the intersection between the new social media and the traditional information
systems currently present in the health care sector:

�x What conditions lead to the formation of health-oriented social media communities,
and what is their impact on tradit ional health information systems?

�x Which kinds of information are these communi ties going to share with the traditional
health information systems?

�x What are the most effective design rules for the platforms supporting these
communities? How can they be seamlessly integrated with the traditional health
information systems?

�x What posture should large providers of ICT- based solutions be taking with regard to
these natural developing platforms?

The conclusive case study presented in this chapter, in Box 4, is paradigmatic of the new
horizons ICTs can nowadays open to health care organizations and public decision-makers.

Health Care Information Systems: Architectural Models and Governance

93

Of course, a mixture of managerial skills, technological knowledge, commitment to
innovate, and adequate resources is needed. However, the cases like the one of the
University of Pittsburgh Medical Centre suggest that the continuous innovation of HISs and
HCIS provides great results both in terms of efficiency and effectiveness in delivering care.

The University of Pittsburgh Medical Centre (UPMC) is a 9 billion USD health care
organization affiliated with the University of Pittsburgh Schools of the Health Sciences.
UPMC counts more than 54,000 employees, over 20 hospitals, and 400 doctors’ offices.

UPMC is a top tier case as regards the integration of ICTs in health care processes. Since
2006 the company has invested 1,45 billion USD to: (i) review its infrastructural backbone,
(ii) digitalize diagnostic services, (iii) implement a complete EMR, (iv) ensure widespread
use of use of M&W devices (laptops, pagers, smartphones, etc.), and (vi) create a unified
communications workspace for staff.

UPMC’s current strategy for ICT is focused on three areas: (i) new telemedicine services,
(ii) analytics development, and (iii) smart human-computer interfaces.

The first area regards the development of a set of telemedicine services. In this case
technology allows the widespread application of new service models like telepathology,
teleradiology, remote second opinion, remote monitoring for chronic patients. An
interesting example, in this case, is the experimental pediatrics TeleICU project that the
health care organizations is developing in partnership with the Mediterranean Institute
for Transplantation and High Specialization Therapies (ISMETT). The project provides
ISMETT surgeons with the vi rtual and real time support of Pittsburgh physicians.

The second frontier is analytics, seen as a tool for supporting both managerial governance
(mainly in terms of financial control, outcome assessments, and process monitoring) and
EBM. In the first case the HIS of UPMC generates key performance indicators that are
provided to managers at different levels. In the second case interesting results have been
achieved in profiling patients and in supportin g clinicians with context-aware tools that
display proper protocols, generate reference cases related to patient’s condition, predict a
treatment’s expected outcome, and analyse in real time the history of similar cases stored
in a centralized database.

The third area in which UPMC is working, in order to develop its HIS, is an innovative
concept of a human-computer interface able to simplify and encourage the use of the HIS by
the physicians. For example UPMC has created a new access to the Clinical Repository,
where the whole patient history is graphically summarized, and key data from each clinical
episode are characterized by graphical landmarks. This interface works as a launch point
for all clinical applications, and allows semant ic searches from multiple data sources.

Box 5. University of Pittsburgh Medical Centre (USA)

6. References

Anderson, J.G. (2009). Improving Patient Safety with Information Technology, In: Handbook
of Research on Advances in Health Informatics and Electronic Healthcare Application,
Khoumbati, K.; Dwivedi, Y.; Srivastava, A. & Lal, B. (Eds.), pp. 1-16, Medical
Information Science Reference, ISBN 978-1-60566-030-1, Hershey (PA)

Innovative Information Systems Modelling Techniques

92

Health care analytics is a rapidly evolving field of HCISs that makes extensive use of data,
computer technologies, statistical and qualitat ive analyses, and explanatory and predictive
modelling to solve problems that generally affect the entire health care sector.

The difference between analytics and EBM lies in the scale of the problems tackled by the
two different solutions. If both of them focu s on extracting knowledg e from the amounts of
digital data available in the health care indu stry, EBM maintains a focus on the individual
while analytics impacts on a larger scale—analysing retrospective population datasets
across multiple clinical conditions with models involving extensive computation. Common
applications of analytics include the statistical analysis performed to understand historical
patterns and, thus, predict and improve future treatments (Davenport, 2006).

According to the analyses conducted by the IHCO, there are three main behaviours that
health care organizations have to adopt in order to increase the exploitation as well as the
effectiveness of analytics in their industry:

�x Designing for consumability: it will be progressively necessary to take into account the

specific context, user, device and intended purpose of each quantitative analysis;
�x Exploiting natural variations in task performance as an “experimental test bed”: as long as

contextual variables are captured, variations in task perfor mance across the enterprise
will be progressively used as experiments to draw causal conclusions;

�x Building capacity and instrumentation to capture and use “external” data: through the
integration and the analysis of the data coming from (i) RFID tags on patients and
providers, (ii) patient personal health record data, (iii) patient mobile device sensor
data, (iv) data from other organizations, (v) social media data, etc.

Social media communities have been particularly active in the health care domain (Kane et
al., 2009)—though with highly different rates ac ross the different countries (IHCO, 2009c).
The primary driver of value, in these communi ties, is a commons-based peer production of
knowledge (Benkler, 2002) in which individuals, in a sponta neous way, collaborate on a
large scale to produce work products withou t hierarchical control (firms) or market
exchanges (price, contracts) to guide them (a famous example is www.patientslikeme.com).

Generalizing Fichman et al. (2011), it is possible to propose a set of the main interesting
questions at the intersection between the new social media and the traditional information
systems currently present in the health care sector:

�x What conditions lead to the formation of health-oriented social media communities,
and what is their impact on tradit ional health information systems?

�x Which kinds of information are these communi ties going to share with the traditional
health information systems?

�x What are the most effective design rules for the platforms supporting these
communities? How can they be seamlessly integrated with the traditional health
information systems?

�x What posture should large providers of ICT- based solutions be taking with regard to
these natural developing platforms?

The conclusive case study presented in this chapter, in Box 4, is paradigmatic of the new
horizons ICTs can nowadays open to health care organizations and public decision-makers.

Health Care Information Systems: Architectural Models and Governance

93

Of course, a mixture of managerial skills, technological knowledge, commitment to
innovate, and adequate resources is needed. However, the cases like the one of the
University of Pittsburgh Medical Centre suggest that the continuous innovation of HISs and
HCIS provides great results both in terms of efficiency and effectiveness in delivering care.

The University of Pittsburgh Medical Centre (UPMC) is a 9 billion USD health care
organization affiliated with the University of Pittsburgh Schools of the Health Sciences.
UPMC counts more than 54,000 employees, over 20 hospitals, and 400 doctors’ offices.

UPMC is a top tier case as regards the integration of ICTs in health care processes. Since
2006 the company has invested 1,45 billion USD to: (i) review its infrastructural backbone,
(ii) digitalize diagnostic services, (iii) implement a complete EMR, (iv) ensure widespread
use of use of M&W devices (laptops, pagers, smartphones, etc.), and (vi) create a unified
communications workspace for staff.

UPMC’s current strategy for ICT is focused on three areas: (i) new telemedicine services,
(ii) analytics development, and (iii) smart human-computer interfaces.

The first area regards the development of a set of telemedicine services. In this case
technology allows the widespread application of new service models like telepathology,
teleradiology, remote second opinion, remote monitoring for chronic patients. An
interesting example, in this case, is the experimental pediatrics TeleICU project that the
health care organizations is developing in partnership with the Mediterranean Institute
for Transplantation and High Specialization Therapies (ISMETT). The project provides
ISMETT surgeons with the vi rtual and real time support of Pittsburgh physicians.

The second frontier is analytics, seen as a tool for supporting both managerial governance
(mainly in terms of financial control, outcome assessments, and process monitoring) and
EBM. In the first case the HIS of UPMC generates key performance indicators that are
provided to managers at different levels. In the second case interesting results have been
achieved in profiling patients and in supportin g clinicians with context-aware tools that
display proper protocols, generate reference cases related to patient’s condition, predict a
treatment’s expected outcome, and analyse in real time the history of similar cases stored
in a centralized database.

The third area in which UPMC is working, in order to develop its HIS, is an innovative
concept of a human-computer interface able to simplify and encourage the use of the HIS by
the physicians. For example UPMC has created a new access to the Clinical Repository,
where the whole patient history is graphically summarized, and key data from each clinical
episode are characterized by graphical landmarks. This interface works as a launch point
for all clinical applications, and allows semant ic searches from multiple data sources.

Box 5. University of Pittsburgh Medical Centre (USA)

6. References

Anderson, J.G. (2009). Improving Patient Safety with Information Technology, In: Handbook
of Research on Advances in Health Informatics and Electronic Healthcare Application,
Khoumbati, K.; Dwivedi, Y.; Srivastava, A. & Lal, B. (Eds.), pp. 1-16, Medical
Information Science Reference, ISBN 978-1-60566-030-1, Hershey (PA)

Innovative Information Systems Modelling Techniques

94

Anderson, P. (1999). Complexity Theory and Organizational Science. Organizational Science,
Vol. 10, No. 3, pp. 216-232, ISSN 1047-7039

Arabnia, H.R.; Open Source Clinical Portals: a Model for Healthcare Information Systems to
Support Care Processes and Feed Clinical Research. An Italian Case Study of
Design, Development, Reuse, Exploitation. In: Software Tools and Algorithms for
Biological Systems. Book series Advances in Experimental Medicine and Biology -
AEMB2. Springer, New York, 2011

Aron, R.; Dutta, S.; Janakiraman, R. & Pathak, P.A. (2011). The Impact of Automation of
Systems on Medical Errors: Evidence from Field Research. Information Systems
Research, Vol. 22, No. 3, pp. 429-446, ISSN 1047-7047

Bates, D.W. (2000). Using information technology to reduce rates of medication errors in
hospitals. British Medical Journal (British Medical Association), 2000;320:788-791

Bates, D. W. (2005). Computerized Physician Order Entry and Medication Errors: Finding a
Balance. Journal of Biomedical Informatics, Vol. 38, No. 4, pp. 259–261, ISSN 1532-0480

Broadbent, M.; Kitzis, E.S. (2005). The new CIO Leader: Setting the Agenda and Delivering
Results, Harvard Business School Press, ISBN 978-1-59139-577-5, Boston (MA)

Brown, G.D. (2005). Introduction: The Role of Information Technology in Transforming
Health Systems, In: Strategic Management of Information Systems in Healthcare,
Brown, F.D.; Stone, T.T. & Patrick T.B. (Eds.), Health Administration Press, ISBN
978-1-56793-242-3, Chicago (IL)

Burke, D.E.; Wang, B.B.L.; Wan T.T.H. & Diana, M.L. (2002). Exploring Hospitals’ Adoption
of IT. Journal of Medical Systems, Vol. 26, No. 4, pp. 349–355, ISSN 0148-5598

Bracchi, G.; Francalanci, C. & Motta, G. (2009). Organizational Information Systems, McGraw-
Hill, ISBN 9-788-83866-328-4, Milan (IT) (in Italian)

Caccia C. (2008). Management of Health Care Information Systems, McGraw-Hill, ISBN 9-788-
83862-532-9, Milan (IT) (in Italian)

Callen, J.L.; Braithwaite, J. & Westbrook, J.I. (2007). Cultures in Hospitals and Their
Influence on Attitudes to, and Satisfaction with, the Use of Clinical Information
Systems. Social Science and Medicine, Vol. 65, No. 4, pp. 635-639, ISSN 0277-9536

Chauldry, B.; Wang, J.; Wu S.; et al.(2006). Systematic Review: Impact of Health Information
Technology on Quality, Efficiency, and Costs of Medical Care. Annals of Internal
Medicine (American College of Physicians), Vol. 144, No. 10, pp. 742–752

Christensen, C.M.; Grossman, J.H. & Hwang, J. (2009). The Innovator’s Prescription: A
Disruptive Solution for Health Care, McGraw–Hill, ISBN 978-0-07-159209-3, New
York

Corso, M. & Gastaldi, L. (2009). Managing ICT-Driven Innovation in the Health Care
Industry: Evidence from an Empirical Study in Italy, Proceedings of the 10th CINet
Conference, pp. 1-14, Brisbane, Australia, September 6-8, 2009

Corso, M. & Gastaldi, L. (2010a). A Multiple and Collaborative Research Methodology to
Study CI Driven by ICT in the Italian Health Care Industry, Proceedings of the 11th
CINet Conference, pp. 290-308, Zürich, Switzerland, September 5–7, 2010

Corso, M. & Gastaldi, L. (2010b). Managing ICT-Driven Innovation to Overcome the
Exploitation-Exploration Trade-Off: A Multiple and Collaborative Research
Methodology in the Italian Health Care Industry, Proceedings of the 11th CINet
Conference, pp. 274-289, Zürich, Switzerland, September 5–7, 2010

Health Care Information Systems: Architectural Models and Governance

95

Corso, M. & Gastaldi, L. (2011). Toward a Relevant, Reflective and Rigorous Methodology
Able to Study CI at Affordable Resource-Consumption Levels, Proceedings of the
12th CINet Conference, pp. 230-254, Århus, Denmark, September 11–13, 2011

Corso, M.; Gastaldi, L. & Locatelli, P. (2010). Enhancing the Diffusion of Electronic Medical
Record and Electronic Health Record: Evidence from an Empirical Study in Italy,
Proceedings of the 16th Congress of International Federation of Health Records
Organizations “Better Information for Better Health”, Milan, Italy, November 15–19,
2010

Davenport, T.H. (1993). Process Innovation. Reengineering Work through Information Technology.
Harvard Business School Press, 1993

Davenport, T.H. (2006). Competing on Analytics. Harvard Business Review, Vol. 84, No. 1, pp.
1–12, ISSN 0017-8012

DeRosier, J.; Stalhandske, E.; Bagian, J.; Nudell, T. (2002). Using Health care Failure Mode
and Effect Analysis (HFMEA). Journal on Quality Improvement, May 2002

Dolin, R.H.; Alschuler , L.; Boyer, S.; Beebe, C.; Behlen, F.M.; Biron, P.V. & Shabo, A. (2001).
The HL7 Clinical Document Architecture, Release 2. The Journal of American Medical
Informatics Associations, Vol. 13 No. 1, pp. 30-39, ISSN 1067-5027

Dougherty, D. & Dunne, D.D. (2011). Organizing Ecologies of Complex Innovation.
Organization Science, Articles in Ad vance (published online ahead of print
February 8, 2011), pp. 1-10, Doi 10.1287/orsc.1100.0605, ISSN 1047-7039

Finchman, R.G.; Kohli, R. & Krishnan, R. (2011) Editorial Overview—The role of IS in
Healthcare. Information Systems Research, Vol. 22, No. 3, pp. 419-428, ISSN 1047-7047

Floricel, S & Dougherty D. (2007). Where Do Games of Innovation Come From? Explaining
the Persistence of Dynamic Innovation Patterns. International Journal of Innovation
Management, Vol. 11, No. 1, pp. 65-92, ISSN 1363-9196

Glaser, J; Henley, D.E.; Downing, G. & Brinner, K.M. (2008). Advancing Personalized Health
Care Through Health Information Technology. Journal of American Medical
Association, Vol. 15, No. 4, pp. 391-396, ISSN 0002-9955

Goh, J.M.; Gao, G. & Agarwal, R. (2011). Evolving Work Rountines: Adaptive Routinization
of Information Technology in Healthcare. Information Systems Research, Vol. 22, No.
3, pp. 565-585, ISSN 1047-7047

Greenhalgh, T.; Robert, G.; Bate, P.; Macfarlane, F. & Kyriakidou, O. (2005). Diffusion of
Innovations in Health Service Organizations: A Systematic Literature Review, Blackwell,
ISBN 978-0-7279-1869-7, Oxford (UK)

Grimson, J. (2001). Delivering the Electronic Healthcare Record for the 21st Century.
International J. of Medical Informatics, Vol. 64, No. 2–3, pp. 111–127, ISSN 1386-5056

Hamid A., Sarmad A. (2009). Towards an Evaluation Framework for E-Health Services, In:
Handbook of Research on Advances in Health Informatics and Electronic Healthcare
Application, Khoumbati, K.; Dwivedi, Y.; Srivasta va, A. & Lal, B. (Eds.), pp. 1-16,
Medical Information Science Reference, ISBN 978-1-60566-030-1, Hershey (PA)

Handler, T.J. & Hieb, B.R. (2009). CPR Generation Criteria Update: Clinical Documentation,
In: Gartner Research, Available from www.gartner.com

Harno, K. (2010). Shared Healthcare in a Regional E-Health Network, In: Health Information
Systems: Concepts, Methodologies, Tools, and Applications, Rodrigues J.J.P.C. (Ed.), pp.
554-568, Medical Information Science Reference, ISBN 978-1-60566-988-5, Hershey

Innovative Information Systems Modelling Techniques

94

Anderson, P. (1999). Complexity Theory and Organizational Science. Organizational Science,
Vol. 10, No. 3, pp. 216-232, ISSN 1047-7039

Arabnia, H.R.; Open Source Clinical Portals: a Model for Healthcare Information Systems to
Support Care Processes and Feed Clinical Research. An Italian Case Study of
Design, Development, Reuse, Exploitation. In: Software Tools and Algorithms for
Biological Systems. Book series Advances in Experimental Medicine and Biology -
AEMB2. Springer, New York, 2011

Aron, R.; Dutta, S.; Janakiraman, R. & Pathak, P.A. (2011). The Impact of Automation of
Systems on Medical Errors: Evidence from Field Research. Information Systems
Research, Vol. 22, No. 3, pp. 429-446, ISSN 1047-7047

Bates, D.W. (2000). Using information technology to reduce rates of medication errors in
hospitals. British Medical Journal (British Medical Association), 2000;320:788-791

Bates, D. W. (2005). Computerized Physician Order Entry and Medication Errors: Finding a
Balance. Journal of Biomedical Informatics, Vol. 38, No. 4, pp. 259–261, ISSN 1532-0480

Broadbent, M.; Kitzis, E.S. (2005). The new CIO Leader: Setting the Agenda and Delivering
Results, Harvard Business School Press, ISBN 978-1-59139-577-5, Boston (MA)

Brown, G.D. (2005). Introduction: The Role of Information Technology in Transforming
Health Systems, In: Strategic Management of Information Systems in Healthcare,
Brown, F.D.; Stone, T.T. & Patrick T.B. (Eds.), Health Administration Press, ISBN
978-1-56793-242-3, Chicago (IL)

Burke, D.E.; Wang, B.B.L.; Wan T.T.H. & Diana, M.L. (2002). Exploring Hospitals’ Adoption
of IT. Journal of Medical Systems, Vol. 26, No. 4, pp. 349–355, ISSN 0148-5598

Bracchi, G.; Francalanci, C. & Motta, G. (2009). Organizational Information Systems, McGraw-
Hill, ISBN 9-788-83866-328-4, Milan (IT) (in Italian)

Caccia C. (2008). Management of Health Care Information Systems, McGraw-Hill, ISBN 9-788-
83862-532-9, Milan (IT) (in Italian)

Callen, J.L.; Braithwaite, J. & Westbrook, J.I. (2007). Cultures in Hospitals and Their
Influence on Attitudes to, and Satisfaction with, the Use of Clinical Information
Systems. Social Science and Medicine, Vol. 65, No. 4, pp. 635-639, ISSN 0277-9536

Chauldry, B.; Wang, J.; Wu S.; et al.(2006). Systematic Review: Impact of Health Information
Technology on Quality, Efficiency, and Costs of Medical Care. Annals of Internal
Medicine (American College of Physicians), Vol. 144, No. 10, pp. 742–752

Christensen, C.M.; Grossman, J.H. & Hwang, J. (2009). The Innovator’s Prescription: A
Disruptive Solution for Health Care, McGraw–Hill, ISBN 978-0-07-159209-3, New
York

Corso, M. & Gastaldi, L. (2009). Managing ICT-Driven Innovation in the Health Care
Industry: Evidence from an Empirical Study in Italy, Proceedings of the 10th CINet
Conference, pp. 1-14, Brisbane, Australia, September 6-8, 2009

Corso, M. & Gastaldi, L. (2010a). A Multiple and Collaborative Research Methodology to
Study CI Driven by ICT in the Italian Health Care Industry, Proceedings of the 11th
CINet Conference, pp. 290-308, Zürich, Switzerland, September 5–7, 2010

Corso, M. & Gastaldi, L. (2010b). Managing ICT-Driven Innovation to Overcome the
Exploitation-Exploration Trade-Off: A Multiple and Collaborative Research
Methodology in the Italian Health Care Industry, Proceedings of the 11th CINet
Conference, pp. 274-289, Zürich, Switzerland, September 5–7, 2010

Health Care Information Systems: Architectural Models and Governance

95

Corso, M. & Gastaldi, L. (2011). Toward a Relevant, Reflective and Rigorous Methodology
Able to Study CI at Affordable Resource-Consumption Levels, Proceedings of the
12th CINet Conference, pp. 230-254, Århus, Denmark, September 11–13, 2011

Corso, M.; Gastaldi, L. & Locatelli, P. (2010). Enhancing the Diffusion of Electronic Medical
Record and Electronic Health Record: Evidence from an Empirical Study in Italy,
Proceedings of the 16th Congress of International Federation of Health Records
Organizations “Better Information for Better Health”, Milan, Italy, November 15–19,
2010

Davenport, T.H. (1993). Process Innovation. Reengineering Work through Information Technology.
Harvard Business School Press, 1993

Davenport, T.H. (2006). Competing on Analytics. Harvard Business Review, Vol. 84, No. 1, pp.
1–12, ISSN 0017-8012

DeRosier, J.; Stalhandske, E.; Bagian, J.; Nudell, T. (2002). Using Health care Failure Mode
and Effect Analysis (HFMEA). Journal on Quality Improvement, May 2002

Dolin, R.H.; Alschuler , L.; Boyer, S.; Beebe, C.; Behlen, F.M.; Biron, P.V. & Shabo, A. (2001).
The HL7 Clinical Document Architecture, Release 2. The Journal of American Medical
Informatics Associations, Vol. 13 No. 1, pp. 30-39, ISSN 1067-5027

Dougherty, D. & Dunne, D.D. (2011). Organizing Ecologies of Complex Innovation.
Organization Science, Articles in Ad vance (published online ahead of print
February 8, 2011), pp. 1-10, Doi 10.1287/orsc.1100.0605, ISSN 1047-7039

Finchman, R.G.; Kohli, R. & Krishnan, R. (2011) Editorial Overview—The role of IS in
Healthcare. Information Systems Research, Vol. 22, No. 3, pp. 419-428, ISSN 1047-7047

Floricel, S & Dougherty D. (2007). Where Do Games of Innovation Come From? Explaining
the Persistence of Dynamic Innovation Patterns. International Journal of Innovation
Management, Vol. 11, No. 1, pp. 65-92, ISSN 1363-9196

Glaser, J; Henley, D.E.; Downing, G. & Brinner, K.M. (2008). Advancing Personalized Health
Care Through Health Information Technology. Journal of American Medical
Association, Vol. 15, No. 4, pp. 391-396, ISSN 0002-9955

Goh, J.M.; Gao, G. & Agarwal, R. (2011). Evolving Work Rountines: Adaptive Routinization
of Information Technology in Healthcare. Information Systems Research, Vol. 22, No.
3, pp. 565-585, ISSN 1047-7047

Greenhalgh, T.; Robert, G.; Bate, P.; Macfarlane, F. & Kyriakidou, O. (2005). Diffusion of
Innovations in Health Service Organizations: A Systematic Literature Review, Blackwell,
ISBN 978-0-7279-1869-7, Oxford (UK)

Grimson, J. (2001). Delivering the Electronic Healthcare Record for the 21st Century.
International J. of Medical Informatics, Vol. 64, No. 2–3, pp. 111–127, ISSN 1386-5056

Hamid A., Sarmad A. (2009). Towards an Evaluation Framework for E-Health Services, In:
Handbook of Research on Advances in Health Informatics and Electronic Healthcare
Application, Khoumbati, K.; Dwivedi, Y.; Srivasta va, A. & Lal, B. (Eds.), pp. 1-16,
Medical Information Science Reference, ISBN 978-1-60566-030-1, Hershey (PA)

Handler, T.J. & Hieb, B.R. (2009). CPR Generation Criteria Update: Clinical Documentation,
In: Gartner Research, Available from www.gartner.com

Harno, K. (2010). Shared Healthcare in a Regional E-Health Network, In: Health Information
Systems: Concepts, Methodologies, Tools, and Applications, Rodrigues J.J.P.C. (Ed.), pp.
554-568, Medical Information Science Reference, ISBN 978-1-60566-988-5, Hershey

Innovative Information Systems Modelling Techniques

96

Heeks, R. (2002). Information Systems and Developing Countries. The Information Society,
Vol. 18, No. 1, pp. 101–112, ISSN 1087-6537

Hsiao, J.L. & Chang, I.C. (2005). An Empirical Study of Establishing Nursing Care Plan
Systems. Journal of Information Management, Vol. 12, No. 2, pp. 27–43, ISSN 0268-
4012

Hunter, M.G. (2009). Strategic Information Systems: An Overview, In: Strategic Information
Systems: Concepts, Methodologies, Tools and Applications, Hunter, M.G. (Ed.), pp.
xxxix-xiix, Information Science Reference, ISBN 978-1-60566-678-5, Hershey (PA)

IHCO (2009a). Clinical Governance Support Systems, School of Management of Politecnico di
Milano, Available from www.osservatori.net (in Italian)

IHCO (2009b). Dematerialization in Health Care, School of Management of Politecnico di
Milano, Available from www.osservatori.net (in Italian)

IHCO (2009c). Digital Services to Patients, School of Management of Politecnico di Milano,
Available from www.osservatori.net (in Italian)

IHCO (2009d). Electronic Medical Record, School of Management of Politecnico di Milano,
Available from www.osservatori.net (in Italian)

IHCO (2009e). ICT in Health Care: Innovation from Theory to Practice, School of Management
of Politecnico di Milano, Available from www.osservatori.net (in Italian)

IHCO (2010). ICT in Health Care: Innovation is in the Network, School of Management of
Politecnico di Milano, Available from www.osservatori.net (in Italian)

IHCO (2011). ICT in Health Care: Innovation in Search of an Author, School of Management of
Politecnico di Milano, Available from www.osservatori.net (in Italian)

Kane, G.C.; Fichman, R.G.; Gallaugher, J. & Glaser, J. (2009). Community Relations 2.0.
Harvard Business Review, Vol. 87, No. 3, pp. 45-50, ISSN 0017-8012

Kane, G.C. & Labianca, G. (2011). IS Avoidance in Health-Care Groups: A Multilevel
Investigation. Information Systems Research, Vol. 22, No. 3, pp. 504-522, ISSN 1047-
7047

Khoumbati, K.; Dwivedi, Y.; Srivastava, A. & Lal B. (2009). Foreword, In: Handbook of
Research on Advances in Health Informatics and Electronic Healthcare Application,
Khoumbati, K.; Dwivedi, Y.; Srivastava, A. & Lal, B. (Eds.), pp. xxvii, Medical
Information Science Reference, ISBN 978-1-60566-030-1, Hershey (PA)

Kolodner, R.M.; Cohn, S.P. & Friedman, C.P. (2008). Health Information Technology:
Strategic Initiatives, Real Progress. Health Affairs, Vol. 27, No. Special Issue, pp.
w137-w139, ISSN 0278-2715

Liaw, S.S. (2002). Understanding User Perceptions of World-Wide Environments. Journal of
Computer Assisted Learning, Vol. 18, No. 2, pp. 137–148, ISSN 1365-2729

Lichtenstein, B.B. & Plowman, D.A. (2009). The Leadership of Emergence: A Complex
Systems Theory of Emergence at Successive Organizational Levels. Leadership
Quarterly, Vol. 20, No. 4, pp. 617-630, ISSN 1048-9843

Lobenstein, K.W. (2005). Information Security and Ethics, In: Strategic Management of
Information Systems in Healthcare, Brown, F.D.; Stone, T.T. & Patrick, T.B. (Eds.), pp.
237-255, Health Administration Press, ISBN 978-1-56793-242-3, Chicago (IL)

Locatelli, P. (2010). Health Information Systems, In: Organizational Information Systems,
Bracchi, G.; Francalanci, C. & Motta, G. (Eds.), pp. 291-311, McGraw-Hill, ISBN 9-
788-83866-328-4, Milan (IT) (in Italian)

Health Care Information Systems: Architectural Models and Governance

97

Locatelli, P.; Restifo, N.; Gastaldi, L.; Sini, E. & Torresani, M. (2010). The Evolution of
Hospital Information Systems and the Role of Electronic Patient Records: From the
Italian Scenario to a Real Case, In: MEDINFO 2010 – Proceedings of the 13th World
Congress on Medical Informatics, Safran C. Reti, S. & Marin, H.F. (Eds.), pp. 247-251,
IOS Press, ISBN 978-1-60750-587-7, Amsterdam (NL)

Lo Scalzo, A.; Donatini, A.; Orzella, L.; Cicchetti, A. & Profili, S (2009). Italy: Health System
Review. Health Systems in Transition, Vol. 11, No. 6, pp. 1–243, ISSN 1817-6127

Mahoney, J.T.; McGahan, J.G. & Pitelis, C.N. (2009) The Interdipendence of Private and
Publix Interests. Organizational Science, Vol. 20, No. 6, pp. 1034-1052, ISSN 1047-
7039

Martin, D.K.; Shulman, K.; Santigao-Sorrell, P. & Singer P.A. (2003). Priority Setting and
Hospital Strategic Planning. Journal of Health Services Research ad Policy, Vol. 8, No.
4, pp. 197–201, ISSN 1355-8196

Mohrman, S.A. & Lawler , E.E. III (Eds.) (2011). Useful Research: Advancing Theory and Practice,
Berret-Koehler, ISBN 978-1-60509-600-1, San Francisco (CA)

Nemeth, C. & Cook, R. (2007). Healthcare IT as a Force of Resilience. Proceedings of the
International Conference on Systems, Management and Cybernetics, pp. 1-12, Montreal,
Canada, November 15–19, 2007

Oborn, E; Barrett, M. & Davidson E. (2011) Unity and Diversity: EPR Use in
Multidisciplinary Practice. Information Systems Research, Vol. 22, No. 3, pp. 547-564,
ISSN 1047-7047

Ozdemir, Z.; Barron, J. & Bandyopadhyay, S. (2011). An Analysis of the Adoption of Digital
Health Records Under Switching Costs. Information Systems Research, Vol. 22, No. 3,
pp. 491-503, ISSN 1047-7047

Pascot, D.; Bouslama, F. & Mellouli, S. (2011). Architecturing Large Integrated Complex
Information Systems: An Application to Healthcare. Knowledge information Systems,
Vol. 27, No. 2, pp. 115–140, ISSN 0219-3116

Pasmore, W.A.; Stymne, B.; Shani, A.B. (Rami); Mohrman, S.A. & Adler, N. (2008). The
Promise of Collaborative Management Research, In: Handbook of Collaborative
Management Research, Shani, A.B. (Rami); Mohrman, S.A.; Pasmore, W.A.; Stymne,
B. & Adler, N. (Eds.), pp. 7-31, Sage, ISBN 978-1-41292-624-9, Thousand Oaks (CA).

Pettigrew, A.M. (2003). Strategy as Process, Power, and Change, In: Images of Strategy,
Cummings, S. & Wilson, D. (Eds.), pp. 301-330, Blakwell Publishing, ISBN 0-631-
22610-9, Oxford (UK)

Rada, R. (2008). Information Systems and Healthcare Enterprises, IGI Publishing, ISBN 978-1-
59904-651-8, Hershey (PA)

Raghupathi, W. (2003). Information Technology in Healthcare: A review of Key
Applications, In: Healthcare Information Systems (2nd Ed.), Beaver, K. (Ed.), pp. 9-27,
Auerbach Publications, ISBN, Boca Raton (FL)

Rodrigues, J.J.P.C. (2010). Preface, In: Health Information Systems: Concepts, Methodologies,
Tools, and Applications, Rodrigues J.J.P.C. (Ed.), pp. i-vi, Medical Information
Science Reference, ISBN 978-1-60566-988-5, Hershey (PA)

Sackett, D.L.; Rosenberg, W.M.C.; Gray, J.A.M.; Haynes, R.B; Richardson W.S. (1996).
Evidence Based Medicine: What It Is and What It Isn’t. British Management Journal,
Vol. 312, No. 7023, pp. 71-72, ISSN 1045-3172

Innovative Information Systems Modelling Techniques

96

Heeks, R. (2002). Information Systems and Developing Countries. The Information Society,
Vol. 18, No. 1, pp. 101–112, ISSN 1087-6537

Hsiao, J.L. & Chang, I.C. (2005). An Empirical Study of Establishing Nursing Care Plan
Systems. Journal of Information Management, Vol. 12, No. 2, pp. 27–43, ISSN 0268-
4012

Hunter, M.G. (2009). Strategic Information Systems: An Overview, In: Strategic Information
Systems: Concepts, Methodologies, Tools and Applications, Hunter, M.G. (Ed.), pp.
xxxix-xiix, Information Science Reference, ISBN 978-1-60566-678-5, Hershey (PA)

IHCO (2009a). Clinical Governance Support Systems, School of Management of Politecnico di
Milano, Available from www.osservatori.net (in Italian)

IHCO (2009b). Dematerialization in Health Care, School of Management of Politecnico di
Milano, Available from www.osservatori.net (in Italian)

IHCO (2009c). Digital Services to Patients, School of Management of Politecnico di Milano,
Available from www.osservatori.net (in Italian)

IHCO (2009d). Electronic Medical Record, School of Management of Politecnico di Milano,
Available from www.osservatori.net (in Italian)

IHCO (2009e). ICT in Health Care: Innovation from Theory to Practice, School of Management
of Politecnico di Milano, Available from www.osservatori.net (in Italian)

IHCO (2010). ICT in Health Care: Innovation is in the Network, School of Management of
Politecnico di Milano, Available from www.osservatori.net (in Italian)

IHCO (2011). ICT in Health Care: Innovation in Search of an Author, School of Management of
Politecnico di Milano, Available from www.osservatori.net (in Italian)

Kane, G.C.; Fichman, R.G.; Gallaugher, J. & Glaser, J. (2009). Community Relations 2.0.
Harvard Business Review, Vol. 87, No. 3, pp. 45-50, ISSN 0017-8012

Kane, G.C. & Labianca, G. (2011). IS Avoidance in Health-Care Groups: A Multilevel
Investigation. Information Systems Research, Vol. 22, No. 3, pp. 504-522, ISSN 1047-
7047

Khoumbati, K.; Dwivedi, Y.; Srivastava, A. & Lal B. (2009). Foreword, In: Handbook of
Research on Advances in Health Informatics and Electronic Healthcare Application,
Khoumbati, K.; Dwivedi, Y.; Srivastava, A. & Lal, B. (Eds.), pp. xxvii, Medical
Information Science Reference, ISBN 978-1-60566-030-1, Hershey (PA)

Kolodner, R.M.; Cohn, S.P. & Friedman, C.P. (2008). Health Information Technology:
Strategic Initiatives, Real Progress. Health Affairs, Vol. 27, No. Special Issue, pp.
w137-w139, ISSN 0278-2715

Liaw, S.S. (2002). Understanding User Perceptions of World-Wide Environments. Journal of
Computer Assisted Learning, Vol. 18, No. 2, pp. 137–148, ISSN 1365-2729

Lichtenstein, B.B. & Plowman, D.A. (2009). The Leadership of Emergence: A Complex
Systems Theory of Emergence at Successive Organizational Levels. Leadership
Quarterly, Vol. 20, No. 4, pp. 617-630, ISSN 1048-9843

Lobenstein, K.W. (2005). Information Security and Ethics, In: Strategic Management of
Information Systems in Healthcare, Brown, F.D.; Stone, T.T. & Patrick, T.B. (Eds.), pp.
237-255, Health Administration Press, ISBN 978-1-56793-242-3, Chicago (IL)

Locatelli, P. (2010). Health Information Systems, In: Organizational Information Systems,
Bracchi, G.; Francalanci, C. & Motta, G. (Eds.), pp. 291-311, McGraw-Hill, ISBN 9-
788-83866-328-4, Milan (IT) (in Italian)

Health Care Information Systems: Architectural Models and Governance

97

Locatelli, P.; Restifo, N.; Gastaldi, L.; Sini, E. & Torresani, M. (2010). The Evolution of
Hospital Information Systems and the Role of Electronic Patient Records: From the
Italian Scenario to a Real Case, In: MEDINFO 2010 – Proceedings of the 13th World
Congress on Medical Informatics, Safran C. Reti, S. & Marin, H.F. (Eds.), pp. 247-251,
IOS Press, ISBN 978-1-60750-587-7, Amsterdam (NL)

Lo Scalzo, A.; Donatini, A.; Orzella, L.; Cicchetti, A. & Profili, S (2009). Italy: Health System
Review. Health Systems in Transition, Vol. 11, No. 6, pp. 1–243, ISSN 1817-6127

Mahoney, J.T.; McGahan, J.G. & Pitelis, C.N. (2009) The Interdipendence of Private and
Publix Interests. Organizational Science, Vol. 20, No. 6, pp. 1034-1052, ISSN 1047-
7039

Martin, D.K.; Shulman, K.; Santigao-Sorrell, P. & Singer P.A. (2003). Priority Setting and
Hospital Strategic Planning. Journal of Health Services Research ad Policy, Vol. 8, No.
4, pp. 197–201, ISSN 1355-8196

Mohrman, S.A. & Lawler , E.E. III (Eds.) (2011). Useful Research: Advancing Theory and Practice,
Berret-Koehler, ISBN 978-1-60509-600-1, San Francisco (CA)

Nemeth, C. & Cook, R. (2007). Healthcare IT as a Force of Resilience. Proceedings of the
International Conference on Systems, Management and Cybernetics, pp. 1-12, Montreal,
Canada, November 15–19, 2007

Oborn, E; Barrett, M. & Davidson E. (2011) Unity and Diversity: EPR Use in
Multidisciplinary Practice. Information Systems Research, Vol. 22, No. 3, pp. 547-564,
ISSN 1047-7047

Ozdemir, Z.; Barron, J. & Bandyopadhyay, S. (2011). An Analysis of the Adoption of Digital
Health Records Under Switching Costs. Information Systems Research, Vol. 22, No. 3,
pp. 491-503, ISSN 1047-7047

Pascot, D.; Bouslama, F. & Mellouli, S. (2011). Architecturing Large Integrated Complex
Information Systems: An Application to Healthcare. Knowledge information Systems,
Vol. 27, No. 2, pp. 115–140, ISSN 0219-3116

Pasmore, W.A.; Stymne, B.; Shani, A.B. (Rami); Mohrman, S.A. & Adler, N. (2008). The
Promise of Collaborative Management Research, In: Handbook of Collaborative
Management Research, Shani, A.B. (Rami); Mohrman, S.A.; Pasmore, W.A.; Stymne,
B. & Adler, N. (Eds.), pp. 7-31, Sage, ISBN 978-1-41292-624-9, Thousand Oaks (CA).

Pettigrew, A.M. (2003). Strategy as Process, Power, and Change, In: Images of Strategy,
Cummings, S. & Wilson, D. (Eds.), pp. 301-330, Blakwell Publishing, ISBN 0-631-
22610-9, Oxford (UK)

Rada, R. (2008). Information Systems and Healthcare Enterprises, IGI Publishing, ISBN 978-1-
59904-651-8, Hershey (PA)

Raghupathi, W. (2003). Information Technology in Healthcare: A review of Key
Applications, In: Healthcare Information Systems (2nd Ed.), Beaver, K. (Ed.), pp. 9-27,
Auerbach Publications, ISBN, Boca Raton (FL)

Rodrigues, J.J.P.C. (2010). Preface, In: Health Information Systems: Concepts, Methodologies,
Tools, and Applications, Rodrigues J.J.P.C. (Ed.), pp. i-vi, Medical Information
Science Reference, ISBN 978-1-60566-988-5, Hershey (PA)

Sackett, D.L.; Rosenberg, W.M.C.; Gray, J.A.M.; Haynes, R.B; Richardson W.S. (1996).
Evidence Based Medicine: What It Is and What It Isn’t. British Management Journal,
Vol. 312, No. 7023, pp. 71-72, ISSN 1045-3172

Innovative Information Systems Modelling Techniques

98

Shaffer, V.; Runyon, B.; Edwards, J.; Handler, T.J.; Lovelock, J.-D.; Rishel, W. & Earley, A.
(2010). The Top 9 Actions for the Healthcare Delivery Organization CIO, In: Gartner
Research, Available from www.gartner.com

Simon, H. (1996). The Sciences of the Artificial. The MIT Press, ISBN 9-780-26219-374-0,
London

Smaltz, D.; Sanbamurthy, V. and Agarwal, R. (2006). The Antecedents of CIO Role
Effectiveness in Organizations: An Empi rical Study in the Healthcare Sector. IEEE
Transactions on Engineering Management, Vol. 53, No. 2, pp. 207–222, ISSN 0018-9391

Stebbins, M.W.; Valenzuela, J.L. & Coget, J.-F. (2009). Long-Term Insider Action Research:
Research in Organizational Change and Development, Woodman, R.W.; Pasmore, W.A.
& Shani, A.B. (Rami) (Eds.), pp. 37-75, Emerald, ISBN 978-1-84855-546-4, Bingley

Stegwee, R & Spil, T. (2001). Strategies of Healthcare Information Systems, IGI Global, ISBN 978-
1-59904-889-5, Hershey (PA)

Tan, J. (2005). E-health Care Information Systems: An Introduction for Students and Professionals,
Jossey-Bass, ISBN 978-0-78796-618-8, San Francisco (CA)

Tan, J. (2008). Preface, In: Healthcare Information Systems and Informatics: Research and
Practices, Tan, J. (Ed.), pp. viii-xviii, Medical Information Science Reference, ISBN
978-1-59904-692-1, Hershey (PA)

Umble, E.J.; Haft, R.R. & Umble M.M. (2003). Enterprise Resource Planning: Implementation
Procedures and Critical Success Factors. European Journal of Operational Research,
Vol. 146, No. 2, pp. 241–257, ISSN 0377-2217

Uphoff, M.E. & Krane D. (1998). Hospital-Based Technology Assessment. Public Productivity
and Management Review, Vol. 22, No. 1, pp. 60–70, ISSN 1044-8039

Venkatesh, V.; Zhang, X. & Sykes, T.A. (2011). “Doctors Do Too Little Technology“: A
Longitudinal Field Study of an Electron ic Healthcare System Implementation.
Information Systems Research, Vol. 22, No. 3, pp. 523-546, ISSN 1047-7047

Wickramasinghe, N. & Geisler, E. (Eds.) (2008). Encyclopedia of Healthcare Information Systems,
Medical Information Science Reference, ISBN 978-1-59904-889-5, Hershey (PA)

World Health Organization (2008). The World Health Report 2008, Available from
www.who.int/whr/2008/en/index.html

5

Globalization and Socio-Technical
Aspects of Information Systems Development

Gislaine Camila L. Leal1, Elisa H. M. Huzita 2 and Tania Fatima Calvi Tait2
1State University of Maringá, Department of Production Engineering

2State University of Maringá, Department of Computer Science

Brazil

1. Introduction

Globalization has reached the spheres including, economy and software development,
making the approach known as Global Software Development (GSD) increasingly adopted.
In that the physical, cultural and temporal distances are inherent. They can introduce
advantages such as better use of resources in different places and thus stimulate cooperation
for the software development. On the ot her hand, brings challenges related to
communication, control and coordination of teams, which reflect in technical, social and
cultural differences management.

According to Cukierman et al. (2007), is very common to deal social issues of software
engineering as “non-technical”ones. So is assumed that most of the software engineering
community believes thats is possible to divide the problems into "technical” and “non-
technical”. Laudon and Laudon (2011) suggest that project managers have to solve technical
and non-technical problems by allocating people in the most effective way.

Currently, both the practice and research have shown, increasingly, that software engineering
community must review projects considering both the technical as well as the social view
point. So a more complete view of the context and impacts that these two points cause in the
products generated are obtained. Further more, the GSD has features that making possible that
the socio-technical aspects be considered in the overall development of information systems.

In the context of this chapter global developm ent of information systems is the work that
involves the collaboration of two or more organizations. These organizations may be in
geographically dispersed locations, which can result in loading of cultural and techniques
differences. So, find guidelines and best practices to support the management and also
analyze the impact of socio-cultural and technical differences are crucial to achieving
success in the global development of information systems.

This chapter is structured as following: Section 2 describes GSD emphasizing their
advantages and challenges. The elements of sócio-technical view are presented in Section 3.
Section 4 shows the socio-technical aspects involved in GSD. Section 5 brings an application
example analysing the impact of the socio-technical factors considered in this chapter.
Finally, Section 6 presents final considerations.

Innovative Information Systems Modelling Techniques

98

Shaffer, V.; Runyon, B.; Edwards, J.; Handler, T.J.; Lovelock, J.-D.; Rishel, W. & Earley, A.
(2010). The Top 9 Actions for the Healthcare Delivery Organization CIO, In: Gartner
Research, Available from www.gartner.com

Simon, H. (1996). The Sciences of the Artificial. The MIT Press, ISBN 9-780-26219-374-0,
London

Smaltz, D.; Sanbamurthy, V. and Agarwal, R. (2006). The Antecedents of CIO Role
Effectiveness in Organizations: An Empi rical Study in the Healthcare Sector. IEEE
Transactions on Engineering Management, Vol. 53, No. 2, pp. 207–222, ISSN 0018-9391

Stebbins, M.W.; Valenzuela, J.L. & Coget, J.-F. (2009). Long-Term Insider Action Research:
Research in Organizational Change and Development, Woodman, R.W.; Pasmore, W.A.
& Shani, A.B. (Rami) (Eds.), pp. 37-75, Emerald, ISBN 978-1-84855-546-4, Bingley

Stegwee, R & Spil, T. (2001). Strategies of Healthcare Information Systems, IGI Global, ISBN 978-
1-59904-889-5, Hershey (PA)

Tan, J. (2005). E-health Care Information Systems: An Introduction for Students and Professionals,
Jossey-Bass, ISBN 978-0-78796-618-8, San Francisco (CA)

Tan, J. (2008). Preface, In: Healthcare Information Systems and Informatics: Research and
Practices, Tan, J. (Ed.), pp. viii-xviii, Medical Information Science Reference, ISBN
978-1-59904-692-1, Hershey (PA)

Umble, E.J.; Haft, R.R. & Umble M.M. (2003). Enterprise Resource Planning: Implementation
Procedures and Critical Success Factors. European Journal of Operational Research,
Vol. 146, No. 2, pp. 241–257, ISSN 0377-2217

Uphoff, M.E. & Krane D. (1998). Hospital-Based Technology Assessment. Public Productivity
and Management Review, Vol. 22, No. 1, pp. 60–70, ISSN 1044-8039

Venkatesh, V.; Zhang, X. & Sykes, T.A. (2011). “Doctors Do Too Little Technology“: A
Longitudinal Field Study of an Electron ic Healthcare System Implementation.
Information Systems Research, Vol. 22, No. 3, pp. 523-546, ISSN 1047-7047

Wickramasinghe, N. & Geisler, E. (Eds.) (2008). Encyclopedia of Healthcare Information Systems,
Medical Information Science Reference, ISBN 978-1-59904-889-5, Hershey (PA)

World Health Organization (2008). The World Health Report 2008, Available from
www.who.int/whr/2008/en/index.html

5

Globalization and Socio-Technical
Aspects of Information Systems Development

Gislaine Camila L. Leal1, Elisa H. M. Huzita 2 and Tania Fatima Calvi Tait2
1State University of Maringá, Department of Production Engineering

2State University of Maringá, Department of Computer Science

Brazil

1. Introduction

Globalization has reached the spheres including, economy and software development,
making the approach known as Global Software Development (GSD) increasingly adopted.
In that the physical, cultural and temporal distances are inherent. They can introduce
advantages such as better use of resources in different places and thus stimulate cooperation
for the software development. On the ot her hand, brings challenges related to
communication, control and coordination of teams, which reflect in technical, social and
cultural differences management.

According to Cukierman et al. (2007), is very common to deal social issues of software
engineering as “non-technical”ones. So is assumed that most of the software engineering
community believes thats is possible to divide the problems into "technical” and “non-
technical”. Laudon and Laudon (2011) suggest that project managers have to solve technical
and non-technical problems by allocating people in the most effective way.

Currently, both the practice and research have shown, increasingly, that software engineering
community must review projects considering both the technical as well as the social view
point. So a more complete view of the context and impacts that these two points cause in the
products generated are obtained. Further more, the GSD has features that making possible that
the socio-technical aspects be considered in the overall development of information systems.

In the context of this chapter global developm ent of information systems is the work that
involves the collaboration of two or more organizations. These organizations may be in
geographically dispersed locations, which can result in loading of cultural and techniques
differences. So, find guidelines and best practices to support the management and also
analyze the impact of socio-cultural and technical differences are crucial to achieving
success in the global development of information systems.

This chapter is structured as following: Section 2 describes GSD emphasizing their
advantages and challenges. The elements of sócio-technical view are presented in Section 3.
Section 4 shows the socio-technical aspects involved in GSD. Section 5 brings an application
example analysing the impact of the socio-technical factors considered in this chapter.
Finally, Section 6 presents final considerations.

Innovative Information Systems Modelling Techniques

100

2. Global software development

In the last decade has been a great investment in the conversion of national markets into
global ones, resulting new ways of competition and collaboration (Herbsleb et al., 2000). In
this context, in search of competitive advantage, many organizations have chosen to
distribute the software development process adopting Global Software Development (GSD).

GSD can be defined as a strategy for software development. This strategy uses teams in
several geographical locations with the involvem ent of people of different nationalities and
different organizational cultures. It has been mainly characterized by collaboration and
cooperation among departments and organizatio ns by creating groups of developers
working together, but located in different cities or countries, physically distant and time
zone (PRIKLADNICKI and AUDY, 2008). Accord ing to Carmel (1999), the GSD projects
consist of teams that working together to achieve common goals in the same project,
however scattered geographically.

In this strategy the process is accelerated due to: reduced costs, access to human resources
improvements in infrastructure (Internet and development and integration tools); advantage
of new markets, the rapid composition of virtua l teams, and improving time to market, with
the use of development "around the sun" (BEGEL and NAGAPAN, 2008).

However, this dispersion has added new challenges to the development mainly related to
communication, coordination and control, which may adversely affect productivity and
therefore the software quality. These factors influence the way in which the software is
designed, developed, tested and delivered to customers, thereby affecting the corresponding
stages of the life cycle of the software.

This configuration of software development, th e GSD, added new factors to the process, such
as temporal distance, geographic dispersion, socio-cultural di fferences, which extended some
of the challenges in of software engineering are and also added new demands that challenge
the processes of communication, coordination and control of projects (LAYMAN et al., 2006).
According to ((Damian, 2002) (Herbsleb et al., 2000) (Mockus and Herbsleb, 2001) (Sangwan et
al., 2007)) these challenges, can be related to technical factors (problems with network
connectivity and differences between development and test environments) and non-technical
(trust, communication, conflict and culture).

The main challenges found in GSD are related to cultural differences, geographic dispersion,
coordination and control, communication an d team spirit. Cultural differences often
exacerbate problems of communication which can lead to frustration, displeasure and even
disagreement between the teams. Holmstrom et al. (2006), report that culture has a
determining effect on how people interpret ce rtain situations, and how they react to these
ones. Cultural differences involve the organizational and national cultures, language,
politics, individual motiva tion and ethic of distributed teams (CARMEL, 1999).

In GSD, the large geographical distances adversely affect communication. Eckhard (2007)
points out that solving the problems of co mmunication is a challenge because of the
complexity of projects GSD. Then complexity is caused by (i) heterogeneity as people, source
code, hardware and software, difficulting the inte gration of tools, (ii) dependency among these
elements, and (iii) and the constant changes in development environments. In addition,
communication affects coordination and control (CLERC, LAGO and VLIET, 2007).

Globalization and Socio-Technical Aspects of Information Systems Development

101

Coordination is the act of integrating each activity with each organizational unit. Integration
usually requires intense and constant communication. Control is the process of adherence to
the objectives, policies, standards and quality levels. For Mockus and Herbsleb (2001),
coordination becomes a problem because the processes of each distributed team are
different, that is, there is not a uniform proce ss. Communication is the mediating factor that
directly affects the coordination and control, and is considered the essential component of
all practices of collaboration in software development. It represents the exchange of
unambiguous and complete info rmation, that is, the sender and receiver can reach a
common understanding. According to Herbsleb et al. (2000), informal communication plays
a key role in the success of distributed teams. The lack of efficient communication in GSD
environments can result in a low level of trus t among the teams and the loss of visibility into
the work progress (DAMIAN, 2002).

3. Socio-technical view

The software development is not just a set of technical objects. It is designed, built and used
by people. The socio-technical perspective provides a deeper analysis on the relationship
between the methods, techniques, tools, development environment and organizational
structure. Damasevieius (2007) also highlights that it is difficult to dissociate the social
aspects of technological one, because they are mutually interdependent.

In the socio-technical view approach the organizational structure is composed by social or
organizational aspects and technical aspects. However, the vision goes beyond the socio-
technical division between technical and social aspects in seeking to put both at the same
level, none is privileged over another. The in tegration between the social and the technical
can to ensure the success and its absence can lead to failure of projects. Motta and
Cukierman (2009) report the failure of a large Brazilian company in the pursuit of the
implementation of CMMI model motivated by non-technical and cultural issues.

The socio-technical aspects involve the coordination of technology, organizations and persons
who shall cooperate with each other and adjust to optimize the performance of the complete
system. Thus, information systems can be considered a team effort, involving people with
different technical, administrative and an alytical skills (LAUDON and LAUDON, 2011).

Cukierman et al. (2007), consider that in the context of software engineering (SE), the social,
cultural, and organizational policies are import ant. But, they do not receive addequated
attention and recognition of their importance neither in literature and events of software
engineering, and especially in practice. These are common questions referred to as "non-
technical" by the SE community, which deals the division of problems into "technical" and
"non-technical" ones.

Discussion on technical and non-technical elements in the development and management
software are also covered by Fuggetta (2000) considering such elements as important to the
success of projects. Cukierman et al. (2007) argue that to meet the growing challenges of
software engineering is necessary break the barrier between "technical" and "non-technical"
aspects. It is necessary deal they in a new design view, a new framework, a sócio-technical
view, that consider both social and technical view concomitantly.

In seeking by physical and human resources shared,, the software development by
distributed teams requires that the software project manager has new skills and concerns

Innovative Information Systems Modelling Techniques

100

2. Global software development

In the last decade has been a great investment in the conversion of national markets into
global ones, resulting new ways of competition and collaboration (Herbsleb et al., 2000). In
this context, in search of competitive advantage, many organizations have chosen to
distribute the software development process adopting Global Software Development (GSD).

GSD can be defined as a strategy for software development. This strategy uses teams in
several geographical locations with the involvem ent of people of different nationalities and
different organizational cultures. It has been mainly characterized by collaboration and
cooperation among departments and organizatio ns by creating groups of developers
working together, but located in different cities or countries, physically distant and time
zone (PRIKLADNICKI and AUDY, 2008). Accord ing to Carmel (1999), the GSD projects
consist of teams that working together to achieve common goals in the same project,
however scattered geographically.

In this strategy the process is accelerated due to: reduced costs, access to human resources
improvements in infrastructure (Internet and development and integration tools); advantage
of new markets, the rapid composition of virtua l teams, and improving time to market, with
the use of development "around the sun" (BEGEL and NAGAPAN, 2008).

However, this dispersion has added new challenges to the development mainly related to
communication, coordination and control, which may adversely affect productivity and
therefore the software quality. These factors influence the way in which the software is
designed, developed, tested and delivered to customers, thereby affecting the corresponding
stages of the life cycle of the software.

This configuration of software development, th e GSD, added new factors to the process, such
as temporal distance, geographic dispersion, socio-cultural di fferences, which extended some
of the challenges in of software engineering are and also added new demands that challenge
the processes of communication, coordination and control of projects (LAYMAN et al., 2006).
According to ((Damian, 2002) (Herbsleb et al., 2000) (Mockus and Herbsleb, 2001) (Sangwan et
al., 2007)) these challenges, can be related to technical factors (problems with network
connectivity and differences between development and test environments) and non-technical
(trust, communication, conflict and culture).

The main challenges found in GSD are related to cultural differences, geographic dispersion,
coordination and control, communication an d team spirit. Cultural differences often
exacerbate problems of communication which can lead to frustration, displeasure and even
disagreement between the teams. Holmstrom et al. (2006), report that culture has a
determining effect on how people interpret ce rtain situations, and how they react to these
ones. Cultural differences involve the organizational and national cultures, language,
politics, individual motiva tion and ethic of distributed teams (CARMEL, 1999).

In GSD, the large geographical distances adversely affect communication. Eckhard (2007)
points out that solving the problems of co mmunication is a challenge because of the
complexity of projects GSD. Then complexity is caused by (i) heterogeneity as people, source
code, hardware and software, difficulting the inte gration of tools, (ii) dependency among these
elements, and (iii) and the constant changes in development environments. In addition,
communication affects coordination and control (CLERC, LAGO and VLIET, 2007).

Globalization and Socio-Technical Aspects of Information Systems Development

101

Coordination is the act of integrating each activity with each organizational unit. Integration
usually requires intense and constant communication. Control is the process of adherence to
the objectives, policies, standards and quality levels. For Mockus and Herbsleb (2001),
coordination becomes a problem because the processes of each distributed team are
different, that is, there is not a uniform proce ss. Communication is the mediating factor that
directly affects the coordination and control, and is considered the essential component of
all practices of collaboration in software development. It represents the exchange of
unambiguous and complete info rmation, that is, the sender and receiver can reach a
common understanding. According to Herbsleb et al. (2000), informal communication plays
a key role in the success of distributed teams. The lack of efficient communication in GSD
environments can result in a low level of trus t among the teams and the loss of visibility into
the work progress (DAMIAN, 2002).

3. Socio-technical view

The software development is not just a set of technical objects. It is designed, built and used
by people. The socio-technical perspective provides a deeper analysis on the relationship
between the methods, techniques, tools, development environment and organizational
structure. Damasevieius (2007) also highlights that it is difficult to dissociate the social
aspects of technological one, because they are mutually interdependent.

In the socio-technical view approach the organizational structure is composed by social or
organizational aspects and technical aspects. However, the vision goes beyond the socio-
technical division between technical and social aspects in seeking to put both at the same
level, none is privileged over another. The in tegration between the social and the technical
can to ensure the success and its absence can lead to failure of projects. Motta and
Cukierman (2009) report the failure of a large Brazilian company in the pursuit of the
implementation of CMMI model motivated by non-technical and cultural issues.

The socio-technical aspects involve the coordination of technology, organizations and persons
who shall cooperate with each other and adjust to optimize the performance of the complete
system. Thus, information systems can be considered a team effort, involving people with
different technical, administrative and an alytical skills (LAUDON and LAUDON, 2011).

Cukierman et al. (2007), consider that in the context of software engineering (SE), the social,
cultural, and organizational policies are import ant. But, they do not receive addequated
attention and recognition of their importance neither in literature and events of software
engineering, and especially in practice. These are common questions referred to as "non-
technical" by the SE community, which deals the division of problems into "technical" and
"non-technical" ones.

Discussion on technical and non-technical elements in the development and management
software are also covered by Fuggetta (2000) considering such elements as important to the
success of projects. Cukierman et al. (2007) argue that to meet the growing challenges of
software engineering is necessary break the barrier between "technical" and "non-technical"
aspects. It is necessary deal they in a new design view, a new framework, a sócio-technical
view, that consider both social and technical view concomitantly.

In seeking by physical and human resources shared,, the software development by
distributed teams requires that the software project manager has new skills and concerns

Innovative Information Systems Modelling Techniques

102

associated with those common in the management such as: plan, lead, coordinate and
monitoring. The challenges stemming from the collaborative work also include the
integration of teams with different cultures that need to share ideas and knowledge.

The sharing of ideas and knowledge is possible by communication among the teams that
need store the information for decision making and better control of activities. Cultural
differences increase the need for better communication and coordination.

4. Socio-technical aspects in GSD

The software development process is an extremely complex activity involving several
technical and non-technical factors. For many managers, the technical aspects of the
project or any matter related to the programming language used, databases, tools or
technology, are absolutely paramount. Thus, often the non-technical problems are
left aside.

According to Pilatti et al. (2007), the non-technical knowledge involves social, cultural,
behavioral, linguistic and political aspects. In the case of distributed software development,
sometimes the socio-cultural aspects are much more evident, since teams located in different
countries with, language and habits totally differe nt, are forced to work at the same project.

Managers see their software project that was developed in distributed way fail. Sometimes it
is due to non adequate a combination of social, political, linguistic and cultural issues (KIEL,
2003). According to Carmel (1999), cultural diversity is among the five major challenges for
the GSD project manager, along with ineffici ent communication, lack of coordination,
geographic dispersion and loss of team spirit.

In GSD projects may exist groups with differences in behavior between people due to their
different cultures. This can lead to complications in work planning, decision-making
process, in the style of argument, in conversation, inconsistent work practices, among others
(OLSON and OLSON, 2003). In countries with continental extensions, such as Brazil, Russia,
China, United States, among others, cultural differences can occur even with people of same
country due to local customers (ENAMI et al., 2006).

Moreover global development, elem ents such as language (Cibotto et al., 2009), religion
(Kotabe and Helsen, 1998), customs, prejudices (Aquino, 1998), rivalry (Brenner, 1990; Vidal
2005), lack of education and professional qualification (Kotabe and Helsen, 1998) stand out
in conjunction with infrastructure problems (Rigolon, 1998), economic and political aspects,
organizational culture (Schein, 2004), among others. So besides allocate the best team for the
development of a project, these other elements should be considered to facilitate the proper
working of the team.

The division between technical and non-technical can lead to a classification that takes the as
primary and that nontechnical as secondary. Among several tasks in the software project
management area is one that deals with people whose actions collaborate to integrate socio-
technical aspects (CUKIERMAN et al., 2007). (Enami et al., 2006), (Trindade et al., 2008),
among others, present elements that contribute to the socio-technical approach such as the
integration of communication Tools that make possible people to perform activities in
distributed development environment.

Globalization and Socio-Technical Aspects of Information Systems Development

103

The development of a system is not a purely technical, but social since it contemplates the
organizational structure and culture. Social st ructures influence and determine behavior at
work and generation of artifacts making it important throughout the development
(DAMASEVIÈIUS, 2007).

The present socio-technical challenges in GSD will be stratified by subdividing them into
categories, so it is easier to characterize them. According to Soares (2011) can be identified
three categories: people, business and infrastructure. These categories were extended
including technical factors that we think should also be considered when they turn as socio-
technical. We divided in four groups (Figure 1):

�x Group 1 - Factors caused by people involved in the project, ie, the adversities that arise
from different cultures, habits, ways of thinking and working of each one.

�x Group 2 - Factors caused by the structure and working style of the company.
�x Group 3 - Factors caused by issues outside the company, ie, due to characteristics of the

environment where they are inserted.
�x Group 4 - Factors caused by technical factors.

Fig. 1. Sociotechnical factors.

Next each item is discussed.

Innovative Information Systems Modelling Techniques

102

associated with those common in the management such as: plan, lead, coordinate and
monitoring. The challenges stemming from the collaborative work also include the
integration of teams with different cultures that need to share ideas and knowledge.

The sharing of ideas and knowledge is possible by communication among the teams that
need store the information for decision making and better control of activities. Cultural
differences increase the need for better communication and coordination.

4. Socio-technical aspects in GSD

The software development process is an extremely complex activity involving several
technical and non-technical factors. For many managers, the technical aspects of the
project or any matter related to the programming language used, databases, tools or
technology, are absolutely paramount. Thus, often the non-technical problems are
left aside.

According to Pilatti et al. (2007), the non-technical knowledge involves social, cultural,
behavioral, linguistic and political aspects. In the case of distributed software development,
sometimes the socio-cultural aspects are much more evident, since teams located in different
countries with, language and habits totally differe nt, are forced to work at the same project.

Managers see their software project that was developed in distributed way fail. Sometimes it
is due to non adequate a combination of social, political, linguistic and cultural issues (KIEL,
2003). According to Carmel (1999), cultural diversity is among the five major challenges for
the GSD project manager, along with ineffici ent communication, lack of coordination,
geographic dispersion and loss of team spirit.

In GSD projects may exist groups with differences in behavior between people due to their
different cultures. This can lead to complications in work planning, decision-making
process, in the style of argument, in conversation, inconsistent work practices, among others
(OLSON and OLSON, 2003). In countries with continental extensions, such as Brazil, Russia,
China, United States, among others, cultural differences can occur even with people of same
country due to local customers (ENAMI et al., 2006).

Moreover global development, elem ents such as language (Cibotto et al., 2009), religion
(Kotabe and Helsen, 1998), customs, prejudices (Aquino, 1998), rivalry (Brenner, 1990; Vidal
2005), lack of education and professional qualification (Kotabe and Helsen, 1998) stand out
in conjunction with infrastructure problems (Rigolon, 1998), economic and political aspects,
organizational culture (Schein, 2004), among others. So besides allocate the best team for the
development of a project, these other elements should be considered to facilitate the proper
working of the team.

The division between technical and non-technical can lead to a classification that takes the as
primary and that nontechnical as secondary. Among several tasks in the software project
management area is one that deals with people whose actions collaborate to integrate socio-
technical aspects (CUKIERMAN et al., 2007). (Enami et al., 2006), (Trindade et al., 2008),
among others, present elements that contribute to the socio-technical approach such as the
integration of communication Tools that make possible people to perform activities in
distributed development environment.

Globalization and Socio-Technical Aspects of Information Systems Development

103

The development of a system is not a purely technical, but social since it contemplates the
organizational structure and culture. Social st ructures influence and determine behavior at
work and generation of artifacts making it important throughout the development
(DAMASEVIÈIUS, 2007).

The present socio-technical challenges in GSD will be stratified by subdividing them into
categories, so it is easier to characterize them. According to Soares (2011) can be identified
three categories: people, business and infrastructure. These categories were extended
including technical factors that we think should also be considered when they turn as socio-
technical. We divided in four groups (Figure 1):

�x Group 1 - Factors caused by people involved in the project, ie, the adversities that arise
from different cultures, habits, ways of thinking and working of each one.

�x Group 2 - Factors caused by the structure and working style of the company.
�x Group 3 - Factors caused by issues outside the company, ie, due to characteristics of the

environment where they are inserted.
�x Group 4 - Factors caused by technical factors.

Fig. 1. Sociotechnical factors.

Next each item is discussed.

Innovative Information Systems Modelling Techniques

104

4.1 People

Language

The language is considered as the major cultural distinction. Even if the groups involved in
the development have different customs and beliefs, but they use a common language
among them, they can develop the project with less difficult. Otherwise, if these groups do
not adopt a common language to communicate, probably they will have more difficult to
develop the project. According to Mockus and Herbsleb (2001), Even with common
language the lack of proficiency of some members and cultural differences that may
influence the interpretation semantics during communication, create problems that can lead
to mistrust or disagreements about the need for respect for hierarchy or even for
punctuality. However, GSD often the spoken language may be different from one location to
another. So, establish an effective communication with a language that is not his natural
language, can be tricky if not well managed. Therefore establish a training programming in
a common language that will be used to develop a project, followed by a face meeting, and
also in loco visit on different places, are good practices that could be adopted.

Religion

An interesting comment refers about the importance of neutrality on religion. Religion has
influenced the politics, economy and also the traditions of a people. In some countries there
is a constant change by government agencies establishing laws and guidelines that influence
the public and private life of the population. As an example, there are countries where some
professional activities can be performed only by men. The women are prevented from acting
in their respective professions. Moreover, they are forced to cover their face completely
when they walk by streets. In business terms, these countries often do not see positively the
presence of women in leadership positions or meetings. However, women in leadership
positions become increasingly common in Western countries in both public and private
organizations. Therefore, where the religion has great influence , it has been used to allocate
teams politically and geographically dispersed. The religious situation must be observed by
managers to ensure that neither the team nor the projects are in risk.

Rivalry

The rivalry can occur at several levels: countries that compete one each other; rivalries
arising from sporting activities, territorial disputes, religious conflicts, among others. In the
management of virtual teams, the rivalry i ssue becomes relevant because often leads to
conflicts between the teams, ie, rivalry goes beyond the limits and starts to affect not only
the development of daily tasks by team members but also their behaviour.

Sometimes the rivalry creates a team spirit among people who share the same opinions. It
results the same type of behavior toward certain situations in which they have to decide or
solve problems.

Prejudice

Another factor that has influenced the developm ent of team activities in projects is the
behavior prejudiced against the differences that there are among people. Prejudices such as
racism, homophobia, anti-semitism, gender, among others, if not properly managed in the
team result in conflicts among the people involved. A project manager who acts from the

Globalization and Socio-Technical Aspects of Information Systems Development

105

socio-technical perspective should certainly observe the characteristics of his/her team.
Anyway it comes to patrolling the ideas expr essed, but is important to be aware of the
respect that should exist between people and the differences identified. Prejudice and
discrimination lead to acts of violence both physically and psychologically, which
configures in intolerance in relationship among people.

Some countries have different laws and opposing positions about criminal acts and
prejudice as well as that related with to the tolerance and encouragement of these types of
discriminatory acts. The project manager need much skills to deal with this kind of
differences. He must always act without discri minate the people. The project manager that
takes discriminatory positioning of any kind can pu t at risk the team's activities and, in the
case of geographically dispersed teams this situation becomes quite complex as they are
added elements from the religious faith and morals.

Trust

Teams are fragile social units, that can easily be broken. When problems such as distance,
cultural differences and time zones appear, the synergistic effect that makes the team a
cohesive unit, is often compromised. Trust is essential when people depend on each other to
achieve common goals. Thus, according to Carmel (1999), trust is based on the individual to
believe in the character, ability, strength and confidence of someone else. Therefore, a team
without trust can not meet th eir commitments effectively.

Trust in an organizational environment is define d as “faith in each one of intentions and
behaviors: trust builds trust, distrust leads to distrust." The importance of trust has become
increasingly recognized as a critical element in the success of operations in organizations
and, specifically, business, professional work and relationships. Trust is the basis of
successful cooperation among individuals within and among organizations. It is essential to
the functioning of an organization and the oper ating units within it. High level of trust
within an organization improves performance, efficiency, productivity, creativity, and
consequently the results obtained.

Trust is a recurring problem in GSD teams due to geographical, temporal, organizational,
cultural and political differences. It is crucial to all business relationships since it enables a
more open communication, in creases performance to deliver better quality products, and
greater satisfaction in the decision making process. Virtual teams with low cohesion require
face to face interactions and synchronous ways to build trust and relationships and also to
share views. An Indian experience has shown ‘Customer references’, ‘Experience in
outsourcing’, ‘Reputation’, ‘Client visits’, ‘Investment’, ‘Processes’, ‘Communication’,
‘Performance’, ‘Honesty’, ‘Commitment’, ‘Confidentiality’, ‘Cooperation’, ‘Understanding’
'Creditability', 'Capabilities', 'P ilot project performance', 'Personal visits', 'Investment' are
important factors to establish the initia l trust between customers and suppliers.

While developing offshore/nearshore can exist trust and good relationships. However it can
be continued if the trust between the staff of involved organizations is broken. This can
result in not a non-cooperative behavior in whic h e-mails are used to attack one each other.
As a result, instead of working as a whole, begin to work discrediting the work of others,
every opportunity being used to obstruct and denigrate colleagues. As a result the projects
fail to meet specifications, over budget, late delivery occurs, and worse, resulting in delivery
of low quality products.

Innovative Information Systems Modelling Techniques

104

4.1 People

Language

The language is considered as the major cultural distinction. Even if the groups involved in
the development have different customs and beliefs, but they use a common language
among them, they can develop the project with less difficult. Otherwise, if these groups do
not adopt a common language to communicate, probably they will have more difficult to
develop the project. According to Mockus and Herbsleb (2001), Even with common
language the lack of proficiency of some members and cultural differences that may
influence the interpretation semantics during communication, create problems that can lead
to mistrust or disagreements about the need for respect for hierarchy or even for
punctuality. However, GSD often the spoken language may be different from one location to
another. So, establish an effective communication with a language that is not his natural
language, can be tricky if not well managed. Therefore establish a training programming in
a common language that will be used to develop a project, followed by a face meeting, and
also in loco visit on different places, are good practices that could be adopted.

Religion

An interesting comment refers about the importance of neutrality on religion. Religion has
influenced the politics, economy and also the traditions of a people. In some countries there
is a constant change by government agencies establishing laws and guidelines that influence
the public and private life of the population. As an example, there are countries where some
professional activities can be performed only by men. The women are prevented from acting
in their respective professions. Moreover, they are forced to cover their face completely
when they walk by streets. In business terms, these countries often do not see positively the
presence of women in leadership positions or meetings. However, women in leadership
positions become increasingly common in Western countries in both public and private
organizations. Therefore, where the religion has great influence , it has been used to allocate
teams politically and geographically dispersed. The religious situation must be observed by
managers to ensure that neither the team nor the projects are in risk.

Rivalry

The rivalry can occur at several levels: countries that compete one each other; rivalries
arising from sporting activities, territorial disputes, religious conflicts, among others. In the
management of virtual teams, the rivalry i ssue becomes relevant because often leads to
conflicts between the teams, ie, rivalry goes beyond the limits and starts to affect not only
the development of daily tasks by team members but also their behaviour.

Sometimes the rivalry creates a team spirit among people who share the same opinions. It
results the same type of behavior toward certain situations in which they have to decide or
solve problems.

Prejudice

Another factor that has influenced the developm ent of team activities in projects is the
behavior prejudiced against the differences that there are among people. Prejudices such as
racism, homophobia, anti-semitism, gender, among others, if not properly managed in the
team result in conflicts among the people involved. A project manager who acts from the

Globalization and Socio-Technical Aspects of Information Systems Development

105

socio-technical perspective should certainly observe the characteristics of his/her team.
Anyway it comes to patrolling the ideas expr essed, but is important to be aware of the
respect that should exist between people and the differences identified. Prejudice and
discrimination lead to acts of violence both physically and psychologically, which
configures in intolerance in relationship among people.

Some countries have different laws and opposing positions about criminal acts and
prejudice as well as that related with to the tolerance and encouragement of these types of
discriminatory acts. The project manager need much skills to deal with this kind of
differences. He must always act without discri minate the people. The project manager that
takes discriminatory positioning of any kind can pu t at risk the team's activities and, in the
case of geographically dispersed teams this situation becomes quite complex as they are
added elements from the religious faith and morals.

Trust

Teams are fragile social units, that can easily be broken. When problems such as distance,
cultural differences and time zones appear, the synergistic effect that makes the team a
cohesive unit, is often compromised. Trust is essential when people depend on each other to
achieve common goals. Thus, according to Carmel (1999), trust is based on the individual to
believe in the character, ability, strength and confidence of someone else. Therefore, a team
without trust can not meet th eir commitments effectively.

Trust in an organizational environment is define d as “faith in each one of intentions and
behaviors: trust builds trust, distrust leads to distrust." The importance of trust has become
increasingly recognized as a critical element in the success of operations in organizations
and, specifically, business, professional work and relationships. Trust is the basis of
successful cooperation among individuals within and among organizations. It is essential to
the functioning of an organization and the oper ating units within it. High level of trust
within an organization improves performance, efficiency, productivity, creativity, and
consequently the results obtained.

Trust is a recurring problem in GSD teams due to geographical, temporal, organizational,
cultural and political differences. It is crucial to all business relationships since it enables a
more open communication, in creases performance to deliver better quality products, and
greater satisfaction in the decision making process. Virtual teams with low cohesion require
face to face interactions and synchronous ways to build trust and relationships and also to
share views. An Indian experience has shown ‘Customer references’, ‘Experience in
outsourcing’, ‘Reputation’, ‘Client visits’, ‘Investment’, ‘Processes’, ‘Communication’,
‘Performance’, ‘Honesty’, ‘Commitment’, ‘Confidentiality’, ‘Cooperation’, ‘Understanding’
'Creditability', 'Capabilities', 'P ilot project performance', 'Personal visits', 'Investment' are
important factors to establish the initia l trust between customers and suppliers.

While developing offshore/nearshore can exist trust and good relationships. However it can
be continued if the trust between the staff of involved organizations is broken. This can
result in not a non-cooperative behavior in whic h e-mails are used to attack one each other.
As a result, instead of working as a whole, begin to work discrediting the work of others,
every opportunity being used to obstruct and denigrate colleagues. As a result the projects
fail to meet specifications, over budget, late delivery occurs, and worse, resulting in delivery
of low quality products.

Innovative Information Systems Modelling Techniques

106

Also, when starting a new project, the goals, objectives, definition of teams that will be
involved and what will be done at each loca tion must be communicated to all involved.
Such information must be documented and pr ovided and so obtain the commitments that
everybody understood and so avoid misunder standings from part of members (LINGS et al.,
2007). A leader to foster trust and commitment among members must be defined.

Culture

Culture can be defined as values and beliefs shared that are historically situated, and also
emerging. They are constantly interpreted and negotiated in social relationships and
interactions of a group of people within a particular socio-cultural context. The development
of Information System is embedded in a socio-cultural and multi-level complex
environment. It generate cultural diversity since the globally distributed team members
have several cultural experiences: national, organizational and pr ofessional. Cultural
difference can promote creativity and innovation that are important for knowledge intensive
work. The other hand it can become a barrier to sharing and knowledge transfer.

Different cultural factors co-exist at differ ent interaction levels and together produce
different environments and group dynamics. The culturally diverse work groups are faced
with difficulties in communication and inte rpersonal conflicts that may become less
pronounced with synchron ous and face to face interactions. The face to face interactions
enhance the ability of team members to work with the spatial and cultural differences.

Culture has a deep impact on communication styles. Someone prefer direct communication
while others prefer indirect communication. Thus, for example, German engineers have a
communication style direct and assertive whereas the Indians have an indirect
communication style and are reluctant to say "no". Often due to cultural differences the
silence is established as a result of conversational style, that can generating
misunderstanding. The knowledg e acquired during the proj ect development can support
Information Technology professionals to develop strategies to achieve greater collaboration
between people.

Another point to consider is that the ‘compromise’ is culturally different in India. When an
Indian software developer says "yes" to a certain deadline, this usually means "yes I'll try
that" instead of "yes I can do it." Punctuality is also taken very seriously by the Indians. If
you have a meeting scheduled for 9:00 pm they usually get 5 minutes before and not 10 or
even 20 minutes later as with the Americans.

Other cultural factors such as masculinity versus femininity, and individualism are covered
by Evaristo (2004). The creation of a code of ethics to be practiced by all partners can help
reduce the impact of these factors.

Cultural prejudices about punctuality, perfectionism, ethics, teamwork, quality and
interaction can affect design decisions. Therefore, the effective management of cultural
diversity is critical to success in the practices of global development.

4.2 Enterprise

Decision Making

Employees can often feel frustrated when they realize that organizational decisions,
workflow, project and infrastructure among others are always centered and coming from

Globalization and Socio-Technical Aspects of Information Systems Development

107

a specific location. This occurs regardless if the teams are in the same group or
organization working together on a project or performing some activities due the fact they
are partners. To minimize this kind of feeling could be established a participatory process
stimulating the motivation, cooperation and also promoting opportunities to release the
creative potential of staff. In this way co uld leading to greater engagement and also
sharing responsibility.

The determination of the authorities, responsi bilities within the organization setting who
does what within the project allows to estab lish the correct leadership, avoids omissions and
prevent recriminations. It is also important to provide practitioners the opportunity to
reflect and share their tacit knowledge acquired in practice.

Organizational culture

Organizational culture has apparent and adjacent features. According to Moscovici (1993)
the apparent features are characterized by formality and documentation standard
established by the organization. The issues surrounding these aspects are considered
informal or hidden, but can influence the project development and team performance. For
example, consider an organization that has clear rules for use of information technology,
which indicate the shape and levels of access to equipment, the proper use of the Internet
and computers. This organization need perfectly disseminate these rules and so they reflect
the behavior of people in the organization.

However, sometimes people have friends outside the organizational structure. These
include, the team of football, members who pr ofess the same religious faith, among others,
that although are in locations outside of the work environmen t, there they also can discuss
problems related with the organization. This in dicates that they may take similar stances on
the problems or to support in performing the activities. Thus, it is sometimes given another
format for the rules. In this context change simple rules as maintain confidentiality about
individual password to access equipment becomes commonplace, since some people share
their passwords with other when they help on e each other in case of some faults or
problems.

This simple example clearly shows the categorization of organizational culture in terms of
formal and informal. While the rules are clear when is considered the formal aspects, when
is considered informal aspects, sometimes the password that should be keep confidential,
because it was informed in confidence, is not. It can generate problems with involved
people.

In addition to these formal and informal aspects there is another view of the
organizational culture that determines the behavior and ways to develop activities in the
organization. Some companies have rules and customs that no there are overtime,
appreciate people who participate in community activities, the use of company products,
among other attitudes that become part of everyday life of organizational members.

The geographical dispersion understand that the organizational culture in each place
becomes a challenge for project managers. While there is a specific local culture, there is also
built-in organizational culture that reflects the behavior of individuals. Moreover the local
culture is part of national culture, in the case of geographic dispersion of teams from
different countries.

Innovative Information Systems Modelling Techniques

106

Also, when starting a new project, the goals, objectives, definition of teams that will be
involved and what will be done at each loca tion must be communicated to all involved.
Such information must be documented and pr ovided and so obtain the commitments that
everybody understood and so avoid misunder standings from part of members (LINGS et al.,
2007). A leader to foster trust and commitment among members must be defined.

Culture

Culture can be defined as values and beliefs shared that are historically situated, and also
emerging. They are constantly interpreted and negotiated in social relationships and
interactions of a group of people within a particular socio-cultural context. The development
of Information System is embedded in a socio-cultural and multi-level complex
environment. It generate cultural diversity since the globally distributed team members
have several cultural experiences: national, organizational and pr ofessional. Cultural
difference can promote creativity and innovation that are important for knowledge intensive
work. The other hand it can become a barrier to sharing and knowledge transfer.

Different cultural factors co-exist at differ ent interaction levels and together produce
different environments and group dynamics. The culturally diverse work groups are faced
with difficulties in communication and inte rpersonal conflicts that may become less
pronounced with synchron ous and face to face interactions. The face to face interactions
enhance the ability of team members to work with the spatial and cultural differences.

Culture has a deep impact on communication styles. Someone prefer direct communication
while others prefer indirect communication. Thus, for example, German engineers have a
communication style direct and assertive whereas the Indians have an indirect
communication style and are reluctant to say "no". Often due to cultural differences the
silence is established as a result of conversational style, that can generating
misunderstanding. The knowledg e acquired during the proj ect development can support
Information Technology professionals to develop strategies to achieve greater collaboration
between people.

Another point to consider is that the ‘compromise’ is culturally different in India. When an
Indian software developer says "yes" to a certain deadline, this usually means "yes I'll try
that" instead of "yes I can do it." Punctuality is also taken very seriously by the Indians. If
you have a meeting scheduled for 9:00 pm they usually get 5 minutes before and not 10 or
even 20 minutes later as with the Americans.

Other cultural factors such as masculinity versus femininity, and individualism are covered
by Evaristo (2004). The creation of a code of ethics to be practiced by all partners can help
reduce the impact of these factors.

Cultural prejudices about punctuality, perfectionism, ethics, teamwork, quality and
interaction can affect design decisions. Therefore, the effective management of cultural
diversity is critical to success in the practices of global development.

4.2 Enterprise

Decision Making

Employees can often feel frustrated when they realize that organizational decisions,
workflow, project and infrastructure among others are always centered and coming from

Globalization and Socio-Technical Aspects of Information Systems Development

107

a specific location. This occurs regardless if the teams are in the same group or
organization working together on a project or performing some activities due the fact they
are partners. To minimize this kind of feeling could be established a participatory process
stimulating the motivation, cooperation and also promoting opportunities to release the
creative potential of staff. In this way co uld leading to greater engagement and also
sharing responsibility.

The determination of the authorities, responsi bilities within the organization setting who
does what within the project allows to estab lish the correct leadership, avoids omissions and
prevent recriminations. It is also important to provide practitioners the opportunity to
reflect and share their tacit knowledge acquired in practice.

Organizational culture

Organizational culture has apparent and adjacent features. According to Moscovici (1993)
the apparent features are characterized by formality and documentation standard
established by the organization. The issues surrounding these aspects are considered
informal or hidden, but can influence the project development and team performance. For
example, consider an organization that has clear rules for use of information technology,
which indicate the shape and levels of access to equipment, the proper use of the Internet
and computers. This organization need perfectly disseminate these rules and so they reflect
the behavior of people in the organization.

However, sometimes people have friends outside the organizational structure. These
include, the team of football, members who pr ofess the same religious faith, among others,
that although are in locations outside of the work environmen t, there they also can discuss
problems related with the organization. This in dicates that they may take similar stances on
the problems or to support in performing the activities. Thus, it is sometimes given another
format for the rules. In this context change simple rules as maintain confidentiality about
individual password to access equipment becomes commonplace, since some people share
their passwords with other when they help on e each other in case of some faults or
problems.

This simple example clearly shows the categorization of organizational culture in terms of
formal and informal. While the rules are clear when is considered the formal aspects, when
is considered informal aspects, sometimes the password that should be keep confidential,
because it was informed in confidence, is not. It can generate problems with involved
people.

In addition to these formal and informal aspects there is another view of the
organizational culture that determines the behavior and ways to develop activities in the
organization. Some companies have rules and customs that no there are overtime,
appreciate people who participate in community activities, the use of company products,
among other attitudes that become part of everyday life of organizational members.

The geographical dispersion understand that the organizational culture in each place
becomes a challenge for project managers. While there is a specific local culture, there is also
built-in organizational culture that reflects the behavior of individuals. Moreover the local
culture is part of national culture, in the case of geographic dispersion of teams from
different countries.

Innovative Information Systems Modelling Techniques

108

Managers would aware and trained to deal with cultural differences when they are to sent
or brought from another country. According to Prikladnicki, Audy an d Evaristo (2003), the
definition of design patterns that can be adopted by the teams involved, help decrease
arguments concerning the way of solving some problems. The use of standards, processes
and certifications are also useful for the standardization of quality in different locations.
When standardization is not possible, local conditions and concepts can make use of
ontology to prevent confusion at the project level (LINGS et al., 2007).

Business models

In a GSD environment the distribution can take some configurations, according to the
distance between the teams and organizations involved in the project. Regarding the
geographical distribution of the units involved in a project, when they are located in more
than one country is called offshore distribution, if all they are in the same country has the
distribution onshore. Considering the relation ship established among the companies, there
is the outsourcing scenario in which a company delegates the control of one or more
activities to an external company which hired the service, and insourcing, when companies
create their own software development centers. From these distribution these settings there
are four business models, as are shown on Figure 2 and discussed as follow:

�x onshore insourcing: in this business model there is a department within the company or
a subsidiary in the same country (onshore), which provides software development
service through internal projects (insourcing);

�x onshore outsourcing: this business model indicates the hiring of a third company
(outsourcing) for the developmen t of certain software products or services to a company.
The third company is located in the same country of the contractin g company (onshore);

�x offshore outsourcing or offshoring: this business model indicates hiring a third party
(outsourcing) for the development of certain software products or services, and the
third party is necessarily located in an other country than the contractor (offshore);

�x offshore insourcing or internal offshoring: the latter business model indicates the creation
of a subsidiary own company to provide software development services (insourcing).
This subsidiary is necessarily located in a country different from the parent company,
or contractor (offshore).

Fig. 2. Models of Distribution.

Globalization and Socio-Technical Aspects of Information Systems Development

109

4.3 External factors

Education

The different business models allow participan ts from different places constituting the
development teams. The geographical dispersion may, refer to two situations: in first one
identify the professional expertise that will cont ribute greatly to generate a software product
with higher quality. On the other hand one can identify professionals who are less
expensive. Often these professionals cost less, can have a lot of willpower, but may not have
availabity to participate as a team member or don’t have the necessary skill or knowledge to
perform project activities. In this case would be interesting that organizations offer the
necessary training to these people whether at undergraduate, graduate or training.

Thus, companies located in places that do not have institutions that can offer the
appropriate courses should encourage employees with opportunities for this qualification.
One solution would be, for example, avail hims elf of the physical dispersion and look for
other sites to establish an exchange in which a given employee could spend a certain period
of time learning and after his return become the disseminator element. This person could
offer training courses on site an thus offer for a large number of people in the company, the
opportunity for a recycling.

Economic and politic factors

When considering the organization as an open system should be checked all the connections
that exist among they and their surroundings. Figure 3 presents the various actors that are
related to the organization, both directly and indirectly. Can be directly included suppliers,
customers, employees. Can be cited as indirectly related the government and non-
governmental organizations that do not determ ine the activities, but may influence the is
which activities are carried out. Often, the need to reconcile the laws of different countries,
especially when it comes to GSD, can impact the progress of a project. This may require
adaptations for dealing with the human and ma terial resources involved in the project.

Fig. 3. Organization in its environment. Adapted from Tait and Pacheco(2001).

Innovative Information Systems Modelling Techniques

108

Managers would aware and trained to deal with cultural differences when they are to sent
or brought from another country. According to Prikladnicki, Audy an d Evaristo (2003), the
definition of design patterns that can be adopted by the teams involved, help decrease
arguments concerning the way of solving some problems. The use of standards, processes
and certifications are also useful for the standardization of quality in different locations.
When standardization is not possible, local conditions and concepts can make use of
ontology to prevent confusion at the project level (LINGS et al., 2007).

Business models

In a GSD environment the distribution can take some configurations, according to the
distance between the teams and organizations involved in the project. Regarding the
geographical distribution of the units involved in a project, when they are located in more
than one country is called offshore distribution, if all they are in the same country has the
distribution onshore. Considering the relation ship established among the companies, there
is the outsourcing scenario in which a company delegates the control of one or more
activities to an external company which hired the service, and insourcing, when companies
create their own software development centers. From these distribution these settings there
are four business models, as are shown on Figure 2 and discussed as follow:

�x onshore insourcing: in this business model there is a department within the company or
a subsidiary in the same country (onshore), which provides software development
service through internal projects (insourcing);

�x onshore outsourcing: this business model indicates the hiring of a third company
(outsourcing) for the developmen t of certain software products or services to a company.
The third company is located in the same country of the contractin g company (onshore);

�x offshore outsourcing or offshoring: this business model indicates hiring a third party
(outsourcing) for the development of certain software products or services, and the
third party is necessarily located in an other country than the contractor (offshore);

�x offshore insourcing or internal offshoring: the latter business model indicates the creation
of a subsidiary own company to provide software development services (insourcing).
This subsidiary is necessarily located in a country different from the parent company,
or contractor (offshore).

Fig. 2. Models of Distribution.

Globalization and Socio-Technical Aspects of Information Systems Development

109

4.3 External factors

Education

The different business models allow participan ts from different places constituting the
development teams. The geographical dispersion may, refer to two situations: in first one
identify the professional expertise that will cont ribute greatly to generate a software product
with higher quality. On the other hand one can identify professionals who are less
expensive. Often these professionals cost less, can have a lot of willpower, but may not have
availabity to participate as a team member or don’t have the necessary skill or knowledge to
perform project activities. In this case would be interesting that organizations offer the
necessary training to these people whether at undergraduate, graduate or training.

Thus, companies located in places that do not have institutions that can offer the
appropriate courses should encourage employees with opportunities for this qualification.
One solution would be, for example, avail hims elf of the physical dispersion and look for
other sites to establish an exchange in which a given employee could spend a certain period
of time learning and after his return become the disseminator element. This person could
offer training courses on site an thus offer for a large number of people in the company, the
opportunity for a recycling.

Economic and politic factors

When considering the organization as an open system should be checked all the connections
that exist among they and their surroundings. Figure 3 presents the various actors that are
related to the organization, both directly and indirectly. Can be directly included suppliers,
customers, employees. Can be cited as indirectly related the government and non-
governmental organizations that do not determ ine the activities, but may influence the is
which activities are carried out. Often, the need to reconcile the laws of different countries,
especially when it comes to GSD, can impact the progress of a project. This may require
adaptations for dealing with the human and ma terial resources involved in the project.

Fig. 3. Organization in its environment. Adapted from Tait and Pacheco(2001).

Innovative Information Systems Modelling Techniques

110

The adjustments in software products can result from changes in legislation or changes in
procedures to incorporate the new rules at the government level. To make the adjustments
necessary to formalize the new procedure can result in higher costs and reallocation of staff.

In thinking about political and economic factors in a distributed environment, it is necessary
to must identify factors in each site which can compromise the project. Countries with high
economic instability and political instability ar e considered unsafe for the installation or
maintenance of existing companies. The insistence into remain in unstable places can put at
risk the security of project teams.

The political and economic factors are part of the organization's external environment and,
in principle, should not have influence on internal activities. However, organizations
depend on these factors to maintain their activities. Thus, it is more over challenge for
software project managers to perform the planni ng and monitoring of projects developed by
geographically dispersed teams.

Legislation

The legal aspect is one of the main problems between different locations. Groups may be
subject to different laws, be they commercial, civil, labor, etc. This diversity affects the
development of several ways. For example, in some countries it is forbidden to import
hardware, while some others countries have reciprocal trade agreements and require that a
company spends part of the revenue in the nation’s economy where it is located. Other
countries prohibit to transfer data to out of their national boundary or have government
restrictions regarding access to the internet.

The laws of each country vary in many ways and in many cases, significantly. Each team
must know the laws of the country in which it is installed. It should be noted that even in a
single country, there may be substantial differences in taxes in different regions. In addition
to general legislation, it is essential to know the labor laws under which the team is
governed. Detailed knowledge of the laws allows each group, when necessary, take action
in accordance with the regulations that surround them, avoiding legal problems and
allowing the group to take the advantages offered in this local. A good legal advice can help
the organization complies with the laws.

Another aspect of the legislation of each place is related to documents stored in electronic
and optical media, which should be reviewed by each team. Just as the general law must be
observed and can present diversity from place to place, there is a category of specific laws
dealing with intellectual property, which may be different in each country that can often
hinder the development of the software. It should be analyzed to see how the organization
can guard against the theft of design information and source code of programs.

In an environment where there are several participants from different countries working is
essential that the project manager worries about the issue of copyright and intellectual
property of software or part thereof. It should be interesting seek legal advice and always be
alert to changes in local laws involved with software development.

Besides being able to apply the penalties provided by law, managers can and should be
aware to the sanctions for which employees must comply with in case of misuse of internal

Globalization and Socio-Technical Aspects of Information Systems Development

111

information or use of them outside the compan y. This action contributes to awareness of
employees regarding the content of the projects developed by them or by third parties.

The software source code and its corresponding documentation is an intellectual resource
that should receive the protection of law. It is the creation that should be protected, it is an
intangible property whose owner has a righ t of ownership over it, and therefore an
intellectual property right.

The intangibles resources are the fruit of intellectual creation that have high economic
importance. Legal protection for resources is to ensure the creativity, to protect and to
encourage the creativity and intellectual work to safeguard the rights of the creator from
economic exploitation.

In Brazil, intellectual property can be guaranteed by copyright. The copyright protection
ensures a work and have externalized the idea. It does not require registration, but it brings
greater guarantees. However, copyright is not permanent, the lifetime for the author,
parents, children and wife and other heirs lasts up to 60 years. The copy for purposes of
comment, criticism, research and teaching is permitted, but in Europe, most countries
recognize the moral character of the copyright while in the U.S. it does not. In order to have
protection in other countries is necessary to search a signatory to the convention on the
subject, and verify the effectiveness to guarantee those rights. The defense is made under
penalty of copyright, it is necessary proof that the accused could not have access to the
software so that it is possible condemnation. Another important aspect is that the software
that was developed in the company belongs to the employer.

Therefore, access to products developed should be preserved only to those who need them
to perform their tasks. Another branch of intelle ctual property is the industrial property in
which the protection is effected to ensure of patents and trademark registration among
others. The patent provides a monopoly on the creation, however, in Brazil is not recognized
on the software. Even in the industrial prop erty the trademark registration protect the
merchant's goods and distinguishi ng them from others. In softwa re the only protection is on
the program (source code).

Time zone

Due to restrictions on working hours and, as well as of time zone, because they are in
different locations, members of virtual teams may not be available for certain tasks or even
to a synchronous communication with other me mbers. There are also two other types of
unavailability that are specifically related to the local context: one due to local holidays and
other socially oriented. In addition to national holidays such as Christmas, Republic Day,
Independence Day, there are also religious holidays. In this case, as there are diversity of
religions in some country, it is also the larger the amount of holidays. In India, for example,
they practice the Hindu, Isla m, Christianity, Sikhism.

The socially oriented unavailability is due to needs of family and social obligations. Among
the social obligations is, for example, the legal liability. The unavailability is a social concept
culturally embedded. For example, China and In dia are countries focused on relationships,
and norms. They care for elders at home, which requires a greater commitment to family.

However, it is possible to have flexible availability with accommodation of availability, in
order to facilitate the temporal coordination in GSD. The flexible availability can be

Innovative Information Systems Modelling Techniques

110

The adjustments in software products can result from changes in legislation or changes in
procedures to incorporate the new rules at the government level. To make the adjustments
necessary to formalize the new procedure can result in higher costs and reallocation of staff.

In thinking about political and economic factors in a distributed environment, it is necessary
to must identify factors in each site which can compromise the project. Countries with high
economic instability and political instability ar e considered unsafe for the installation or
maintenance of existing companies. The insistence into remain in unstable places can put at
risk the security of project teams.

The political and economic factors are part of the organization's external environment and,
in principle, should not have influence on internal activities. However, organizations
depend on these factors to maintain their activities. Thus, it is more over challenge for
software project managers to perform the planni ng and monitoring of projects developed by
geographically dispersed teams.

Legislation

The legal aspect is one of the main problems between different locations. Groups may be
subject to different laws, be they commercial, civil, labor, etc. This diversity affects the
development of several ways. For example, in some countries it is forbidden to import
hardware, while some others countries have reciprocal trade agreements and require that a
company spends part of the revenue in the nation’s economy where it is located. Other
countries prohibit to transfer data to out of their national boundary or have government
restrictions regarding access to the internet.

The laws of each country vary in many ways and in many cases, significantly. Each team
must know the laws of the country in which it is installed. It should be noted that even in a
single country, there may be substantial differences in taxes in different regions. In addition
to general legislation, it is essential to know the labor laws under which the team is
governed. Detailed knowledge of the laws allows each group, when necessary, take action
in accordance with the regulations that surround them, avoiding legal problems and
allowing the group to take the advantages offered in this local. A good legal advice can help
the organization complies with the laws.

Another aspect of the legislation of each place is related to documents stored in electronic
and optical media, which should be reviewed by each team. Just as the general law must be
observed and can present diversity from place to place, there is a category of specific laws
dealing with intellectual property, which may be different in each country that can often
hinder the development of the software. It should be analyzed to see how the organization
can guard against the theft of design information and source code of programs.

In an environment where there are several participants from different countries working is
essential that the project manager worries about the issue of copyright and intellectual
property of software or part thereof. It should be interesting seek legal advice and always be
alert to changes in local laws involved with software development.

Besides being able to apply the penalties provided by law, managers can and should be
aware to the sanctions for which employees must comply with in case of misuse of internal

Globalization and Socio-Technical Aspects of Information Systems Development

111

information or use of them outside the compan y. This action contributes to awareness of
employees regarding the content of the projects developed by them or by third parties.

The software source code and its corresponding documentation is an intellectual resource
that should receive the protection of law. It is the creation that should be protected, it is an
intangible property whose owner has a righ t of ownership over it, and therefore an
intellectual property right.

The intangibles resources are the fruit of intellectual creation that have high economic
importance. Legal protection for resources is to ensure the creativity, to protect and to
encourage the creativity and intellectual work to safeguard the rights of the creator from
economic exploitation.

In Brazil, intellectual property can be guaranteed by copyright. The copyright protection
ensures a work and have externalized the idea. It does not require registration, but it brings
greater guarantees. However, copyright is not permanent, the lifetime for the author,
parents, children and wife and other heirs lasts up to 60 years. The copy for purposes of
comment, criticism, research and teaching is permitted, but in Europe, most countries
recognize the moral character of the copyright while in the U.S. it does not. In order to have
protection in other countries is necessary to search a signatory to the convention on the
subject, and verify the effectiveness to guarantee those rights. The defense is made under
penalty of copyright, it is necessary proof that the accused could not have access to the
software so that it is possible condemnation. Another important aspect is that the software
that was developed in the company belongs to the employer.

Therefore, access to products developed should be preserved only to those who need them
to perform their tasks. Another branch of intelle ctual property is the industrial property in
which the protection is effected to ensure of patents and trademark registration among
others. The patent provides a monopoly on the creation, however, in Brazil is not recognized
on the software. Even in the industrial prop erty the trademark registration protect the
merchant's goods and distinguishi ng them from others. In softwa re the only protection is on
the program (source code).

Time zone

Due to restrictions on working hours and, as well as of time zone, because they are in
different locations, members of virtual teams may not be available for certain tasks or even
to a synchronous communication with other me mbers. There are also two other types of
unavailability that are specifically related to the local context: one due to local holidays and
other socially oriented. In addition to national holidays such as Christmas, Republic Day,
Independence Day, there are also religious holidays. In this case, as there are diversity of
religions in some country, it is also the larger the amount of holidays. In India, for example,
they practice the Hindu, Isla m, Christianity, Sikhism.

The socially oriented unavailability is due to needs of family and social obligations. Among
the social obligations is, for example, the legal liability. The unavailability is a social concept
culturally embedded. For example, China and In dia are countries focused on relationships,
and norms. They care for elders at home, which requires a greater commitment to family.

However, it is possible to have flexible availability with accommodation of availability, in
order to facilitate the temporal coordination in GSD. The flexible availability can be

Innovative Information Systems Modelling Techniques

112

understood as the availability outside of working hours. In India, for example, there is a
well defined boundary between work and private life, and plans can be changed flexibly to
meet different demands. This can lead to situations where a person may not be available
when it was expected, but that may be available when he/she would not be. In India, the
work seems to never end, people even outside of work hours are availabe to compensate for
holidays. Recently the flexible availability has been adopted as a way to gain advantages in
competitive environments. On the other hand, in the United States, the balance between
work and personal life is better balanced.

The accommodation of availability refers to the pr edisposition to shift work hours so that an
overlay is established to encourage greater interaction among team member at these times of
synchronous activities. Thus, if a meeting is scheduled for 8:00 am in the morning hours in
Central America, corresponds to 9:00 pm in Beijing the same day. But for the Chinese team,
it means that their working day will end only ar ound 11:00 pm. Only after this time is that
they go to home by train or bus, which might reflect on issues of personal safety. Thus,
accommodate the meeting time to 7:00 pm in in Central America would correspond to 8:00
am the next day. This illustrates the accommodations that are negotiated based on the
contextual needs.

Thus, GSD teams are exposed to challenges arising from these differences. The project
manager should take it into consideration when distributing the activities of a project and
also be tolerant and understanding when absences occur. Note, therefore it is necessary to
care that this does not reflect a delay in a project schedule and budget no overflows. When
the difference in time is small, has no major effect on quality, but the quality drops as the
time difference increases.

4.4 Technical factors

Comunnication

Effective communication is vital in any organization. However due to the involvement of
different places it is a great source of problems in GSD. Frequent communication is
important to provide a constant confirmation that the members are still here and still
working. The frequency and predictability of co mmunication and the extent with that they
are provided with feedback improves the effe ctiveness of communication leading to greater
confidence and improving team performance. Inexperienced teams may experience anxiety
and low confidence due to negative interpre tations associated with silence or delay
associated with the dispersion time.

Several practices have been proposed to mitigate the challenges related to communication:
regular meetings, whether ad hoc or planned, or video conference organized as weekly
sessions. Communication can be kept flowing swiftly through the use of wiki to document
the discussions and decisions. These regular meetings can improve project definition, makes
better socialization, increase trust, enhance respect among members and enhance the
electronic communication subsequent.

The face to face meetings are crucial when the projects begin, because it offers the chance to
answer important and urgent doubts. Teams can communicate using different tools, from
cell phones, fax, chat, video conference, e-mail and groupware applications. These practices

Globalization and Socio-Technical Aspects of Information Systems Development

113

are used to support the communication needs in GSD: troubleshooting, reporting and
monitoring, relationship building, decision making and coordination. However, success
depends on the predisposition to adopt them and also of the project elaborated. Still, it is
important that the tools are synchronized. Fo r example, despite tools availability, if
individuals forget to report changes or updates made during the day to other members it
results in rework and lost time.

The trust and motivation have a direct impact on the level, content of communication and
effective communication, and also about the use of tools. In general, when the software
development occurs in the offsite model, communication is kept to a minimum, calls are not
returned and emails are not getting answered. So many questions remain unanswered.
When there is a direct communication, the speech is short and aggressive. This may indicate
that online communication was being used as a means to limit and cont rol the quantity and
quality of information that was shared, which ul timately limit the esta blishment of personal
relationships. It is easier to ignore someone that you do not know if he (she) is particularly
one competitor.

Cooperation

Cooperation among team members is essential for the successful of virtual teams. The
distance has a negative impact on the interaction intensity established among remote
colleagues working collaboratively and effectively as a team (HERBSLEB AND MOCKUS,
2003). Yet, it is known, that it is not easy to successfully integrate geographically remote and
culturally diverse individuals or groups into a single team (BATTIN et al., 2001). Add the
impact of fear and it is easy to understand why in these circumstances problems can and
do arise.

In GSD environment to facilitate collaboratio n and cooperation among team members it is
necessary that trust to be established. It is possible by knowing and building relationships
between individual team members. When this is successfully achieved the results can be a
motivated and cohesive team with a common purpose and shared goals and objectives.

The fear by itself undermines and inhibits the development of cooperation and trust. The
studies have shown that in offsite software development, the local engineers mistrusted of
offsite engineers. They see them as a potential threat for their future employment. In this
instance trust was never established. Then, it results in communication problems,
knowledge transfer limited, uncooperative beha vior, and ultimately the failure of offsite
strategy (CASEY and RICHARDSON, 2004); (CASEY and RICHARDSON, 2008).

Coordination

Malone and Crowston (1994) defined coordination as the management of dependencies
between activities. The software development process, especially large scale systems
development, is usually characterized as highly ambiguous, uncertai n, and interdependent.
Therefore, effective communication and coordination are critical to the success of software
development projects, especially when they are globally distributed.

Espinosa et al. (2007) identified three major types of coordination needs in distributed
software development, technical coordination, temporal coordination, and software process
coordination. Temporal coordination refers to the mechanisms to schedule software

Innovative Information Systems Modelling Techniques

112

understood as the availability outside of working hours. In India, for example, there is a
well defined boundary between work and private life, and plans can be changed flexibly to
meet different demands. This can lead to situations where a person may not be available
when it was expected, but that may be available when he/she would not be. In India, the
work seems to never end, people even outside of work hours are availabe to compensate for
holidays. Recently the flexible availability has been adopted as a way to gain advantages in
competitive environments. On the other hand, in the United States, the balance between
work and personal life is better balanced.

The accommodation of availability refers to the pr edisposition to shift work hours so that an
overlay is established to encourage greater interaction among team member at these times of
synchronous activities. Thus, if a meeting is scheduled for 8:00 am in the morning hours in
Central America, corresponds to 9:00 pm in Beijing the same day. But for the Chinese team,
it means that their working day will end only ar ound 11:00 pm. Only after this time is that
they go to home by train or bus, which might reflect on issues of personal safety. Thus,
accommodate the meeting time to 7:00 pm in in Central America would correspond to 8:00
am the next day. This illustrates the accommodations that are negotiated based on the
contextual needs.

Thus, GSD teams are exposed to challenges arising from these differences. The project
manager should take it into consideration when distributing the activities of a project and
also be tolerant and understanding when absences occur. Note, therefore it is necessary to
care that this does not reflect a delay in a project schedule and budget no overflows. When
the difference in time is small, has no major effect on quality, but the quality drops as the
time difference increases.

4.4 Technical factors

Comunnication

Effective communication is vital in any organization. However due to the involvement of
different places it is a great source of problems in GSD. Frequent communication is
important to provide a constant confirmation that the members are still here and still
working. The frequency and predictability of co mmunication and the extent with that they
are provided with feedback improves the effe ctiveness of communication leading to greater
confidence and improving team performance. Inexperienced teams may experience anxiety
and low confidence due to negative interpre tations associated with silence or delay
associated with the dispersion time.

Several practices have been proposed to mitigate the challenges related to communication:
regular meetings, whether ad hoc or planned, or video conference organized as weekly
sessions. Communication can be kept flowing swiftly through the use of wiki to document
the discussions and decisions. These regular meetings can improve project definition, makes
better socialization, increase trust, enhance respect among members and enhance the
electronic communication subsequent.

The face to face meetings are crucial when the projects begin, because it offers the chance to
answer important and urgent doubts. Teams can communicate using different tools, from
cell phones, fax, chat, video conference, e-mail and groupware applications. These practices

Globalization and Socio-Technical Aspects of Information Systems Development

113

are used to support the communication needs in GSD: troubleshooting, reporting and
monitoring, relationship building, decision making and coordination. However, success
depends on the predisposition to adopt them and also of the project elaborated. Still, it is
important that the tools are synchronized. Fo r example, despite tools availability, if
individuals forget to report changes or updates made during the day to other members it
results in rework and lost time.

The trust and motivation have a direct impact on the level, content of communication and
effective communication, and also about the use of tools. In general, when the software
development occurs in the offsite model, communication is kept to a minimum, calls are not
returned and emails are not getting answered. So many questions remain unanswered.
When there is a direct communication, the speech is short and aggressive. This may indicate
that online communication was being used as a means to limit and cont rol the quantity and
quality of information that was shared, which ul timately limit the esta blishment of personal
relationships. It is easier to ignore someone that you do not know if he (she) is particularly
one competitor.

Cooperation

Cooperation among team members is essential for the successful of virtual teams. The
distance has a negative impact on the interaction intensity established among remote
colleagues working collaboratively and effectively as a team (HERBSLEB AND MOCKUS,
2003). Yet, it is known, that it is not easy to successfully integrate geographically remote and
culturally diverse individuals or groups into a single team (BATTIN et al., 2001). Add the
impact of fear and it is easy to understand why in these circumstances problems can and
do arise.

In GSD environment to facilitate collaboratio n and cooperation among team members it is
necessary that trust to be established. It is possible by knowing and building relationships
between individual team members. When this is successfully achieved the results can be a
motivated and cohesive team with a common purpose and shared goals and objectives.

The fear by itself undermines and inhibits the development of cooperation and trust. The
studies have shown that in offsite software development, the local engineers mistrusted of
offsite engineers. They see them as a potential threat for their future employment. In this
instance trust was never established. Then, it results in communication problems,
knowledge transfer limited, uncooperative beha vior, and ultimately the failure of offsite
strategy (CASEY and RICHARDSON, 2004); (CASEY and RICHARDSON, 2008).

Coordination

Malone and Crowston (1994) defined coordination as the management of dependencies
between activities. The software development process, especially large scale systems
development, is usually characterized as highly ambiguous, uncertai n, and interdependent.
Therefore, effective communication and coordination are critical to the success of software
development projects, especially when they are globally distributed.

Espinosa et al. (2007) identified three major types of coordination needs in distributed
software development, technical coordination, temporal coordination, and software process
coordination. Temporal coordination refers to the mechanisms to schedule software

Innovative Information Systems Modelling Techniques

114

development tasks, synchronize activities, and allocate resources in order to use optimally
distributed resources and adhere to scheduled timelines (Espinosa et al., 2007; Massey et al.,
2003; McGrath 1990). Herbsleb (2007) pointed out that the absence or disruption of many
mechanisms (such as formal and informal communication) used to coordinate the work in
co-located settings is the fundamental problem of globally distributed software
development (SANGWAN et al., 2007). Regarding temporal coordination mechanisms,
temporal separation restricts the synchronous communication, immediate information
exchange, on-demand support, and real-time problem solving (CUMMING et al., 2007).
Temporal separation may cause problems in the workflow of globally distributed projects.
So the time to deal with some problem can be longer, causing with this delay for
coordination (ESPINOSA and CARMEL, 2003).

Global teams can adopt some tatics to minimize the effects of time separation and to
facilitate coordination, such as: (i) sequencing or structuring activities for troubleshooting;
(ii) using modular design to assign work to different locations in order to reduce the
dependencies between tasks, and thus facilitate the needs of inter-local coordination; (iii)
making working hours more flexible in order to create or expanding overlapping time, and
thereby facilitating the synchronous communi cation. Similarly the distributed team
members can rearrange their daily workflow, allocating the independent tasks on time slices
overlapping and the dependent tasks in time slices without overlapping.

Process

The software process is the set of policies, organizational structures, technologies,
procedures and artifacts needed to design, develop, deploy and maintain a software product
(FUGGETTA, 2000). It involves steps consisting of a set of activities, methods, practices and
technologies that are used throught development to maintenance and also either related
products.

The process should enable the improvement of quality of serv ice, engineering and design,
reducing costs by increasing predictability an d ability to mitigate risks and improve the
efficiency and productivi ty of the organization.

In GSD environment a common process is essential. It directly assists all team members
providing them with a common nomenclature for tasks and activities, and a common set of
expectations. In GSD the variables and risks increase if there is not an appropriate
methodology for the development process and so increasing chances of not meeting the
initial planning.

A common process improves communication between teams and can minimize the
ambiguity of artifacts. It provides support to the processes of communication, coordination
and control by using a common nomenclature in the case of disciplines, roles, activities and
artifacts to involve everybody.

However, more recently, due to the different business models present in GSD can be
observed that participating organizations can have different process models. In order to
meet this peculiarity, the software engineerin g area, particularly of collaborative systems
have attempted to define techniques, mechanisms and strategies that provide the necessary
support to make process more flexible during software development. An example of such
mechanism could be a process engine that manages expertise of the different participating

Globalization and Socio-Technical Aspects of Information Systems Development

115

organizations with regard to the generation of artifacts during the development process.
Still, the formal specification of tests can minimize the problems of ambiguity and also
reduces the needs for communication (MULLICK et al., 2006), (AVRITZER et al., 2007) and
(AVRITZER et al., 2008)).

Support tools

The geographic distribution and inter-orga nizational software development created the
need for tools and techniques for coordination and cooperation in teams. In order to meet
this need effort have been made to construct Distributed Software Development
Environments (DSDE).

The DSDE have common requirements, such as integration, data management and process.
However, it should be highlighted the need to provide appropriate support to enable
cooperation among team members and an efficient allocation of resources. There are several
approaches explored in the literature to define coordination and cooperation in DSDE:
access control, information sharing, monitoring, support for communication board meeting
(LIMA REIS, REIS, NUNES, 1998).

Since team members are geographically distributed, syncronous and assyncronous tools can
be used by them to establish the effective communiction during activi ties development. So,
chat, video conference are examples of synchronous tools. E-mails, discussin foruns and
blogs are examples of asynchronous tools. Thus, the project activity developed by team
members will determine the convenience and necessity to use one or other tool type.

The data generated from chats, forun or discussion list show the communication that there
are among team members. Information concerned with coordination among team members
in GSD can be obtained from tasks list and bugtracker. The cooperation that could be
established among team members can be extracted from blogs or control version system
logs. Nowadays effort have been made aiming at develop tools to storage and also to
explore socio-technical information from organization repository. With this the idea is to
offer an adequate support for an effective and efficient decision making by project manager
and so turn the organization more competitive in a world so globalized.

Infrastructure

Technological advances have enabled an increasing number of people to have access to a
large volume of information, whether textual, grap hic or audio. To this end, it is not enough
that tools to support different stages of development are available. It is necessary also made
available a whole support infrastructure, incl uding network infrastructure, availability of
electricity, and adequate physical facilities.

The network infrastructure in some situ ations may include local or traditional
underground cables or not. But it is also increasingly common to provide wireless
networks. The continuous availability of elec tricity is of fundamental importance for the
smooth progress of work, incl uding interaction between the participants through different
communication tools and / or interaction as mentioned above and also in situations
where long transactions need to be processed. However, in some places, it may happen
that in the workplace or business energy suppl ier interrupt or rationing energy. This can
often lead to instability or even unsafe. In these cases should be, as far as possible,

Innovative Information Systems Modelling Techniques

114

development tasks, synchronize activities, and allocate resources in order to use optimally
distributed resources and adhere to scheduled timelines (Espinosa et al., 2007; Massey et al.,
2003; McGrath 1990). Herbsleb (2007) pointed out that the absence or disruption of many
mechanisms (such as formal and informal communication) used to coordinate the work in
co-located settings is the fundamental problem of globally distributed software
development (SANGWAN et al., 2007). Regarding temporal coordination mechanisms,
temporal separation restricts the synchronous communication, immediate information
exchange, on-demand support, and real-time problem solving (CUMMING et al., 2007).
Temporal separation may cause problems in the workflow of globally distributed projects.
So the time to deal with some problem can be longer, causing with this delay for
coordination (ESPINOSA and CARMEL, 2003).

Global teams can adopt some tatics to minimize the effects of time separation and to
facilitate coordination, such as: (i) sequencing or structuring activities for troubleshooting;
(ii) using modular design to assign work to different locations in order to reduce the
dependencies between tasks, and thus facilitate the needs of inter-local coordination; (iii)
making working hours more flexible in order to create or expanding overlapping time, and
thereby facilitating the synchronous communi cation. Similarly the distributed team
members can rearrange their daily workflow, allocating the independent tasks on time slices
overlapping and the dependent tasks in time slices without overlapping.

Process

The software process is the set of policies, organizational structures, technologies,
procedures and artifacts needed to design, develop, deploy and maintain a software product
(FUGGETTA, 2000). It involves steps consisting of a set of activities, methods, practices and
technologies that are used throught development to maintenance and also either related
products.

The process should enable the improvement of quality of serv ice, engineering and design,
reducing costs by increasing predictability an d ability to mitigate risks and improve the
efficiency and productivi ty of the organization.

In GSD environment a common process is essential. It directly assists all team members
providing them with a common nomenclature for tasks and activities, and a common set of
expectations. In GSD the variables and risks increase if there is not an appropriate
methodology for the development process and so increasing chances of not meeting the
initial planning.

A common process improves communication between teams and can minimize the
ambiguity of artifacts. It provides support to the processes of communication, coordination
and control by using a common nomenclature in the case of disciplines, roles, activities and
artifacts to involve everybody.

However, more recently, due to the different business models present in GSD can be
observed that participating organizations can have different process models. In order to
meet this peculiarity, the software engineerin g area, particularly of collaborative systems
have attempted to define techniques, mechanisms and strategies that provide the necessary
support to make process more flexible during software development. An example of such
mechanism could be a process engine that manages expertise of the different participating

Globalization and Socio-Technical Aspects of Information Systems Development

115

organizations with regard to the generation of artifacts during the development process.
Still, the formal specification of tests can minimize the problems of ambiguity and also
reduces the needs for communication (MULLICK et al., 2006), (AVRITZER et al., 2007) and
(AVRITZER et al., 2008)).

Support tools

The geographic distribution and inter-orga nizational software development created the
need for tools and techniques for coordination and cooperation in teams. In order to meet
this need effort have been made to construct Distributed Software Development
Environments (DSDE).

The DSDE have common requirements, such as integration, data management and process.
However, it should be highlighted the need to provide appropriate support to enable
cooperation among team members and an efficient allocation of resources. There are several
approaches explored in the literature to define coordination and cooperation in DSDE:
access control, information sharing, monitoring, support for communication board meeting
(LIMA REIS, REIS, NUNES, 1998).

Since team members are geographically distributed, syncronous and assyncronous tools can
be used by them to establish the effective communiction during activi ties development. So,
chat, video conference are examples of synchronous tools. E-mails, discussin foruns and
blogs are examples of asynchronous tools. Thus, the project activity developed by team
members will determine the convenience and necessity to use one or other tool type.

The data generated from chats, forun or discussion list show the communication that there
are among team members. Information concerned with coordination among team members
in GSD can be obtained from tasks list and bugtracker. The cooperation that could be
established among team members can be extracted from blogs or control version system
logs. Nowadays effort have been made aiming at develop tools to storage and also to
explore socio-technical information from organization repository. With this the idea is to
offer an adequate support for an effective and efficient decision making by project manager
and so turn the organization more competitive in a world so globalized.

Infrastructure

Technological advances have enabled an increasing number of people to have access to a
large volume of information, whether textual, grap hic or audio. To this end, it is not enough
that tools to support different stages of development are available. It is necessary also made
available a whole support infrastructure, incl uding network infrastructure, availability of
electricity, and adequate physical facilities.

The network infrastructure in some situ ations may include local or traditional
underground cables or not. But it is also increasingly common to provide wireless
networks. The continuous availability of elec tricity is of fundamental importance for the
smooth progress of work, incl uding interaction between the participants through different
communication tools and / or interaction as mentioned above and also in situations
where long transactions need to be processed. However, in some places, it may happen
that in the workplace or business energy suppl ier interrupt or rationing energy. This can
often lead to instability or even unsafe. In these cases should be, as far as possible,

Innovative Information Systems Modelling Techniques

116

provide alternative ways such as a generator to ensure delivery and avoid situations that
can often mean chaos.

Regarding to adequate physical facilities, it is expected that besides the size, the space has
good lighting, ventilation and adequate furnitur e. The furniture associated with inadequate
or incorrect posture can lead people to diseases that depart from the work.

It is worth noting, also, that when you try to maintain a standard technology infrastructure
and operational in all units, suitable for carry ing out the work, it is important to establish
the collaboration, perform an effective control of documentation and version control of
artifacts.

5. Example

Organizations in the search for better solutions and highly skilled professionals starts to
expand their activities and part nerships with other companies around the world. Thus in its
structure, organizations allocate their teams for projects considering skills and
competencies.

Take the example of a team working on project development in the area of control
earthquakes and volcanic inspections. This team is geographically distributed in three
countries: Brazil, Japan and India. The project will be de ployed in Japan.

In this scenario, the following solutions listed by Soares (2011), identifies some differences
among the three countries regarding the development team. We highlight the local culture,
and organizational culture as there are many differences among the three countries and
local culture can influence the behavior of people working in organizations.

Thus, solutions must be sought to reduce the impact that differences could cause on project
to be developed. The three elements outlined in Table 1, are socio-cultural, independent of
the technical elements, which can impact the success or failure of the project if not properly
managed. At managerial level, allocation of human resources in the distributed team must
also be considered, the risks and the lack of integration and commitment of staff and
additional costs arising from the creation of reporting structures and performance of
training meetings must be reduced.

Regarding to education, specifically in the information technology area, it is expected that
human resources allocated to the projects have the necessary training if team members are
distributed in different places. Therefore, when access the selection process of human
resources, the project manager must know the instituition where the people made
undergraduate and graduate courses and verify how good is that education of students and
future professionals.

The rivalry in the example cited, is not perc eived in the three countries. So, when is
considered Brazil and Japan remains the appreciation of Japanese immigration which results
in both commercial and cultural exchanges. It is possible to see the influences of food,
dancing, and miscegenation in the Brazilian states from Japanese immigrants. On the Indian
religiosity it attracts Brazilian and therefore there is no apparent dispute between the two
countries. There is, for most Brazilians, a mystical vision of India that is associated with the

Globalization and Socio-Technical Aspects of Information Systems Development

117

strong religiosity. In the Japan-India relationsh ip does not detect rivalries that may impact
the development of activities performed by team members.

 Brazil Japan India Solution proposed
(Adapted by Soares
(2011)))

Language Portuguese Japanese India n Standardization of
language.
Preference in hiring
employees who are fluent
in the languages involved.
Courses and foreign
language training within
the company

Religion Catholic
Evangelical

Buddhism Muslim Instructions on the
religious customs to other
members.
Respect for all religions of
those involved in the
project.
Educate teams in order to
avoid arguments and
religious affairs.

Customs Mixture of races
and ethnicities.
Strong regional
customs.

Rigidit y.
Demand for
high level
behavior.

Devaluation
of women.
Strong family.
Respect for
animals.

Exchange of staff.
Meetings and gatherings
whenever possible.

Organizatinal
culture

Relaxation
Many holidays

Stiffness in
the treatment.
Stiffness in
the schedule
compliance.

Does not
accept
women in
negotiations.
Flexibility of
hours.

Trainin g and
standardization.

Infrastructure Continental
country with large
regional
differences.
Government
programs to
bridge gaps
(broadband,
telephony etc.).
Problems in
network
infrastructure and
energy.

Cuttin g-edge
technology.
Environment
prone to
seismic and
climatic
variations,
which can
cause
problems in
organizations.

Infrastructure
problems that
reflects the
use of energy,
and
telephony
networks.
Bad roads.

Knowled ge of reality to
minimize impacts when
problems occur.

Table 1. Differences among countries.

Innovative Information Systems Modelling Techniques

116

provide alternative ways such as a generator to ensure delivery and avoid situations that
can often mean chaos.

Regarding to adequate physical facilities, it is expected that besides the size, the space has
good lighting, ventilation and adequate furnitur e. The furniture associated with inadequate
or incorrect posture can lead people to diseases that depart from the work.

It is worth noting, also, that when you try to maintain a standard technology infrastructure
and operational in all units, suitable for carry ing out the work, it is important to establish
the collaboration, perform an effective control of documentation and version control of
artifacts.

5. Example

Organizations in the search for better solutions and highly skilled professionals starts to
expand their activities and part nerships with other companies around the world. Thus in its
structure, organizations allocate their teams for projects considering skills and
competencies.

Take the example of a team working on project development in the area of control
earthquakes and volcanic inspections. This team is geographically distributed in three
countries: Brazil, Japan and India. The project will be de ployed in Japan.

In this scenario, the following solutions listed by Soares (2011), identifies some differences
among the three countries regarding the development team. We highlight the local culture,
and organizational culture as there are many differences among the three countries and
local culture can influence the behavior of people working in organizations.

Thus, solutions must be sought to reduce the impact that differences could cause on project
to be developed. The three elements outlined in Table 1, are socio-cultural, independent of
the technical elements, which can impact the success or failure of the project if not properly
managed. At managerial level, allocation of human resources in the distributed team must
also be considered, the risks and the lack of integration and commitment of staff and
additional costs arising from the creation of reporting structures and performance of
training meetings must be reduced.

Regarding to education, specifically in the information technology area, it is expected that
human resources allocated to the projects have the necessary training if team members are
distributed in different places. Therefore, when access the selection process of human
resources, the project manager must know the instituition where the people made
undergraduate and graduate courses and verify how good is that education of students and
future professionals.

The rivalry in the example cited, is not perc eived in the three countries. So, when is
considered Brazil and Japan remains the appreciation of Japanese immigration which results
in both commercial and cultural exchanges. It is possible to see the influences of food,
dancing, and miscegenation in the Brazilian states from Japanese immigrants. On the Indian
religiosity it attracts Brazilian and therefore there is no apparent dispute between the two
countries. There is, for most Brazilians, a mystical vision of India that is associated with the

Globalization and Socio-Technical Aspects of Information Systems Development

117

strong religiosity. In the Japan-India relationsh ip does not detect rivalries that may impact
the development of activities performed by team members.

 Brazil Japan India Solution proposed
(Adapted by Soares
(2011)))

Language Portuguese Japanese India n Standardization of
language.
Preference in hiring
employees who are fluent
in the languages involved.
Courses and foreign
language training within
the company

Religion Catholic
Evangelical

Buddhism Muslim Instructions on the
religious customs to other
members.
Respect for all religions of
those involved in the
project.
Educate teams in order to
avoid arguments and
religious affairs.

Customs Mixture of races
and ethnicities.
Strong regional
customs.

Rigidit y.
Demand for
high level
behavior.

Devaluation
of women.
Strong family.
Respect for
animals.

Exchange of staff.
Meetings and gatherings
whenever possible.

Organizatinal
culture

Relaxation
Many holidays

Stiffness in
the treatment.
Stiffness in
the schedule
compliance.

Does not
accept
women in
negotiations.
Flexibility of
hours.

Trainin g and
standardization.

Infrastructure Continental
country with large
regional
differences.
Government
programs to
bridge gaps
(broadband,
telephony etc.).
Problems in
network
infrastructure and
energy.

Cuttin g-edge
technology.
Environment
prone to
seismic and
climatic
variations,
which can
cause
problems in
organizations.

Infrastructure
problems that
reflects the
use of energy,
and
telephony
networks.
Bad roads.

Knowled ge of reality to
minimize impacts when
problems occur.

Table 1. Differences among countries.

Innovative Information Systems Modelling Techniques

118

6. Final considerations

The growing search for greater competitiveness has led companies to adopt increasingly the
GSD. Besides the physical distribution of teams, cultural differences, language, time zone,
among others, increase the complexity of communication, coordination and control during
software development process.

Software processes and their artifacts present perspectives: technological, social,
psychological and others. The socio-technical perspective allows a deeper analysis on the
relationship among methods, techniques, tools, development environment and
organizational structure. The results of this type of analysis can be used to educate team
members, disseminate best practices, improve process performance and quality of generated
artifacts (DAMASEVIÈIUS, 2007).

Fig. 4. Factors and relations.

Globalization and Socio-Technical Aspects of Information Systems Development

119

The growing need to develop systems that meet the most different levels of decision making
generate different types of information systems. Still, adoption of GSD makes increasingly
clear that the differences caused by physical distance, social and time can affect the behavior
of team members participating in the software development. The use of video conferencing
and social networks as a means to improve communication are already increasingly
popular. On the other hand data mining tec hniques have been increasingly exploited to
improve the generation and knowledge sharing.

Thus, this chapter cast and discussed a set of elements stratified in people, organization,
external factors and technical factors that constitute guidelines for better management of
cultural, social and technical factors present in the global information systems development.
Figure 4 present these factors and their relationship.

7. References

Aquino, J. G. (1998); Diferenças e Proconceito - Alternativas teóricas e práticas. Editora Summus
– 8º Edição, 1998.

Avritzer, A.; Hasling, W.; Paulish, D. (2007) Process investigations for the global studio
project version 3.0. In: ICGSE '07: Proceedings of the International Conference on
Global Software Engineering, Washington, DC, USA: IEEE Computer Society, 2007,
p. 247-251.

Avritzer, A.; Paulish, D.; Cai, Y. (2008) Coordination implications of software architecture in
a global software development project. In : WICSA '08: Proceedings of the Seventh
Working IEEE/IFIP Conference on Software Architecture (WICSA 2008),
Washington, DC, USA: IEEE Computer Society, 2008, p. 107-116.

Audy, J.; Prikladnicki, R. (2008) Desenvolvimento Distribuído de Software: Desenvolvimento de
software com equipes distribuídas. Rio de Janeiro, RJ: Elsevier, 2008.

Battin R. D.; Crocker, R.; Kreidler, J. ; Subramanian, K. (2001) Leveraging resources in global
software development, IEEE Software, vol. 18, no. 2, pp. 70-77, 2001.

Begel, A. and Nagapan, N. (2008) Global software development: Who does it? In IEEE
Internacional Conference on Global Software Engineering, pages 195–199, Los
Alamitos, CA, USA.

Brenner, R. (1990) Rivalry: In Business, Science, Among Nations. Cambridge University
Press, 1990.

Carmel, E. (1999) Global software teams: collaborating across borders and time zones. Upper
Saddle River, NJ, USA: Prentice Hall PTR, 1999.

Casey, V.; Richardson, I. (2004) A practical application of the IDEAL model, Software
Process Improvement and Practice, vol. 9, no. 3, pp. 123-132, 2004.

Casey, V.; Richardson, I. (2008) The impact of fear on the operation of virtual teams, in
Proceedings of the 3rd IEEE International Conference on Global Software
Engineering, Bangalore, India, 2008.

Cibotto, G. R. A. ; Pagno, R. T. ; Tait, T F. C. ; Huzita, E H M (2009). Uma análise da dimensão
sócio-cultural no desenvolvimento distribuido de software. In: WOSES - Olhar
sóciotécnico sobre a engenharia de software - SBQS, 2009, Ouro Preto - MG.

Clerc, V., Lago, P., and van Vliet, H. (2007) Global software development: Are architectural
rules the answer? In ICGSE ’07: Proceedings of the International Conference on

Innovative Information Systems Modelling Techniques

118

6. Final considerations

The growing search for greater competitiveness has led companies to adopt increasingly the
GSD. Besides the physical distribution of teams, cultural differences, language, time zone,
among others, increase the complexity of communication, coordination and control during
software development process.

Software processes and their artifacts present perspectives: technological, social,
psychological and others. The socio-technical perspective allows a deeper analysis on the
relationship among methods, techniques, tools, development environment and
organizational structure. The results of this type of analysis can be used to educate team
members, disseminate best practices, improve process performance and quality of generated
artifacts (DAMASEVIÈIUS, 2007).

Fig. 4. Factors and relations.

Globalization and Socio-Technical Aspects of Information Systems Development

119

The growing need to develop systems that meet the most different levels of decision making
generate different types of information systems. Still, adoption of GSD makes increasingly
clear that the differences caused by physical distance, social and time can affect the behavior
of team members participating in the software development. The use of video conferencing
and social networks as a means to improve communication are already increasingly
popular. On the other hand data mining tec hniques have been increasingly exploited to
improve the generation and knowledge sharing.

Thus, this chapter cast and discussed a set of elements stratified in people, organization,
external factors and technical factors that constitute guidelines for better management of
cultural, social and technical factors present in the global information systems development.
Figure 4 present these factors and their relationship.

7. References

Aquino, J. G. (1998); Diferenças e Proconceito - Alternativas teóricas e práticas. Editora Summus
– 8º Edição, 1998.

Avritzer, A.; Hasling, W.; Paulish, D. (2007) Process investigations for the global studio
project version 3.0. In: ICGSE '07: Proceedings of the International Conference on
Global Software Engineering, Washington, DC, USA: IEEE Computer Society, 2007,
p. 247-251.

Avritzer, A.; Paulish, D.; Cai, Y. (2008) Coordination implications of software architecture in
a global software development project. In : WICSA '08: Proceedings of the Seventh
Working IEEE/IFIP Conference on Software Architecture (WICSA 2008),
Washington, DC, USA: IEEE Computer Society, 2008, p. 107-116.

Audy, J.; Prikladnicki, R. (2008) Desenvolvimento Distribuído de Software: Desenvolvimento de
software com equipes distribuídas. Rio de Janeiro, RJ: Elsevier, 2008.

Battin R. D.; Crocker, R.; Kreidler, J. ; Subramanian, K. (2001) Leveraging resources in global
software development, IEEE Software, vol. 18, no. 2, pp. 70-77, 2001.

Begel, A. and Nagapan, N. (2008) Global software development: Who does it? In IEEE
Internacional Conference on Global Software Engineering, pages 195–199, Los
Alamitos, CA, USA.

Brenner, R. (1990) Rivalry: In Business, Science, Among Nations. Cambridge University
Press, 1990.

Carmel, E. (1999) Global software teams: collaborating across borders and time zones. Upper
Saddle River, NJ, USA: Prentice Hall PTR, 1999.

Casey, V.; Richardson, I. (2004) A practical application of the IDEAL model, Software
Process Improvement and Practice, vol. 9, no. 3, pp. 123-132, 2004.

Casey, V.; Richardson, I. (2008) The impact of fear on the operation of virtual teams, in
Proceedings of the 3rd IEEE International Conference on Global Software
Engineering, Bangalore, India, 2008.

Cibotto, G. R. A. ; Pagno, R. T. ; Tait, T F. C. ; Huzita, E H M (2009). Uma análise da dimensão
sócio-cultural no desenvolvimento distribuido de software. In: WOSES - Olhar
sóciotécnico sobre a engenharia de software - SBQS, 2009, Ouro Preto - MG.

Clerc, V., Lago, P., and van Vliet, H. (2007) Global software development: Are architectural
rules the answer? In ICGSE ’07: Proceedings of the International Conference on

Innovative Information Systems Modelling Techniques

120

Global Software Engineering, pages 225–234,Washington, DC, USA. IEEE
Computer Society.

Cukierman, H. L., Teixeira, C. and Prickladnicki, R. (2007) Um olhar sociotécnico sobre a
engenharia de software. Revista de Informática Teórica e Aplicada, XIV.

Cummings, J.N., Espinosa, J.A., and Pickering, C. (2007) Spatial and temporal boundaries in
global teams: distinguishing where you wo rk from when you wo rk. In Proceedings
of the International Federation of Information Processing Wo rking Group 8.2 on
Information Systems and Organizations and 9.5 on Virtuality and Society:
Virtuality and Virtualization, K. Crowston, S. Sieber, and E. Wynn (eds.), Portland,
Oregon, USA, July 29-31, 2007, pp. 85-98.

Damasevieius, R. (2007) Analysis of software design artifacts for socio-technical aspects.
INFOCOMP Journal of Computer Science, 6(4):07–16.

Damian, D. Workshop on global software deve lopment (2002) In: ICSE '02: Proceedings of
the 24th International Conference on Software Engineering, New York, NY, USA:
ACM, 2002, p. 667-668.

Eckhard B. (2007) Context-aware notification in global software development, Master’s
thesis, Institut fr Softwaretechnik und in teraktive Systeme – Technischen Universitt
Wien, 2007.

Enami, L.; Tait, T. F. C.; Huzita, E.H M (2006) A project management model to a distributed
software engineering environment. In: ICEIS 2006 - International Conference on
Enterprise Information Systems, 2006, Papus. Anais do ICEIS 2006, 2006.

Espinosa, J.A., Slaughter, S.A., Kraut, R.E., and Herbsleb, J.D. (2007) Team knowledge and
coordination in geographically distribu ted software development,” Journal of
Management Information Systems (24:1), 2007b, pp. 135-169.

Espinosa, J.A., and Carmel, E. (2003) The impact of time separation on coordination in global
software teams: a conceptual foundation,” Journal of Software Process: Practice and
Improvement (8:4), 2003, pp. 249-266.

Evaristo, J. R; Scudder, R; Desouza, K. C; Sato, O. (2004) A Dimensional Analysis of
Geographically Distributed Project Teams: A Case Study. Journal of Engineering
and Technology Management, vol. forthcoming. 2004.

Fuggetta, A. Software process: a roadmap (2000) In: ICSE '00: Proceedings of the Conference
on The Future of Software Engineering, New York, NY, USA: ACM, 2000, p. 25{34.

Herbsleb, J. D.; Mockus, A.; Finholt, T. A.; Grinter, R. E. (2000) Distance, dependencies, and
delay in a global collaboration. In: CSCW '00: Proceedings of the 2000 ACM
conference on Computer supported cooperative work, New York, NY, USA: ACM,
2000, p. 319-328.

Herbsleb, J. D. ; Mockus, A. (2003) An empirical study of speed and communication in
globally distributed software development, IEEE Transactions on Software
Engineering, vol. 29, no. 6, pp. 481-494.

Herbsleb, J.D. (2007) Global software engineering: the future of socio-technical coordination.
In: Proceedings of Future of Software Engineering (FOSE'07), IEEE, 2007.

Holmstrom, H., Conchuir, E. O ., Agerfalk, P. J., and Fitzgerald, B. (2006) Global software
development challenges: A case study on temporal, geographical and sociocultural
distance. In Global Software Engineering, 2006. ICGSE ’06. International
Conference on, pages 3–11.

Globalization and Socio-Technical Aspects of Information Systems Development

121

Kiel, L. (2003) Experiences in distributed development: a case study. The International
Workshop on Global Software Developm ent, ICSE, Portland, OR, 2003. May 9 pp.
44–47. 2003.

Kotabe, M. and Helsento, K. (1998) Global Marketing Management. Estados Unidos: Edit.
John Wiley e Sons, Inc, 1998.

Laudon, K. and Laudon, J. (2011) Management Information Systems. 12. ed, Prentice
Hall,2011.

Layman, L.; Williams, L.; Damian, D.; Bures, H. (2006) Essential communication practices for
extreme programming in a global softwa re development team. Information and
Software Technology, v. 48, n. 9, p. 781-794, 2006.

Lima Reis, C.A.; Reis, R. Q.;Nunes, D. J. (1998) A Synchronous Cooperative Architecture For
the Prosoft Software Engineering Environment. In: IV Congreso Argentino de
Ciencias de la Computacion – Neuquen, Argentina.

Lings, B.; Lundell, B.; Agerfalk, P. J.; Fitzgerald, B. (2007) A reference model for successful
distributed development of software syst ems. In: ICGSE '07: Proceedings of the
International Conference on Global Software Engineering, Washington, DC, USA:
IEEE Computer Society, 2007, p. 130-139.

Malone, T., and Crowston, K. (1994) The Interdisciplinary Study of Coordination, ACM
Computing Surveys (26:1), 1994, pp. 87-119.

Massey, A.P., Montoya-Weiss, M., and Hung, C (2003) Because time matters: temporal
coordination in global virtual project te ams. Journal of Management Information
Systems (19:4), 2003, pp. 129-156.

McGrath, J.E. (1990) Time matters in groups. In Intellectual Teamwork: Social and
Technological Foundations of Cooperative Work, J. Galegher, R. Kraut, and C.
Egido (eds.), Lawrence Erlbaum, Hillsdale, NJ, 1990, pp. 23-61.

Mockus, A.; Herbsleb, J. (2001) Challenges of global software development. In: METRICS
'01: Proceedings of the 7th International Symposium on Software Metrics,
Washington, DC, USA: IEEE Computer Society, 2001, p. 182.

Moscovici, F. (1993) Renascença organizacional - a revalorização do homem frente à
tecnologia para o sucesso da nova empresa. 3.ed, José Olimpio Editora, Rio de
Janeiro: 1993, 129 págs.

Motta, M.S.; Cukierman, H. L. (2009) As resistências à implantação de um modelo de
desenvolvimentode software em uma empresa pública. V Workshop Um Olhar
Sociotécnico sobre a Engenharia de Software – WOSES 2009.

Mullick, N.; Bass, M.; Houda, Z.; Paulish, P.; Cataldo, M. (2006) Siemens global studio
project: Experiences adopting an integrated gsd infrastructure. In: Global Software
Engineering, 2006. ICGSE '06. International Conference on, 2006, p. 203-212.

Olson J.S.; Olson, G.M. (2004) Culture Surprises in Remote Software Development Teams.
ACM Queue, New York, v. 1, n. 9, p. 52-59, dec./jan. 2003-2004.

Pilatti, L.; Prikladnicki, R.; Audy, J. L. N. (2007) Avaliando os Impactos dos Aspectos Não-
Técnicos da Engenharia de Software em Ambientes de Desenvolvimento Global de Software:
Um Caso Prático. In: Anais III Workshop Um Olhar Sócio-Técnico sobre a
Engenharia de Software (WOSES 07), pp. 85-96. Porto de Galinhas. 2007.

Prikladnicki, R.; Au dy, J. L. N; Evaristo, R (2003) Requirements Management in Global
Software Development: Preliminary Findings from a Case Study in a SW-CMM

Innovative Information Systems Modelling Techniques

120

Global Software Engineering, pages 225–234,Washington, DC, USA. IEEE
Computer Society.

Cukierman, H. L., Teixeira, C. and Prickladnicki, R. (2007) Um olhar sociotécnico sobre a
engenharia de software. Revista de Informática Teórica e Aplicada, XIV.

Cummings, J.N., Espinosa, J.A., and Pickering, C. (2007) Spatial and temporal boundaries in
global teams: distinguishing where you wo rk from when you wo rk. In Proceedings
of the International Federation of Information Processing Wo rking Group 8.2 on
Information Systems and Organizations and 9.5 on Virtuality and Society:
Virtuality and Virtualization, K. Crowston, S. Sieber, and E. Wynn (eds.), Portland,
Oregon, USA, July 29-31, 2007, pp. 85-98.

Damasevieius, R. (2007) Analysis of software design artifacts for socio-technical aspects.
INFOCOMP Journal of Computer Science, 6(4):07–16.

Damian, D. Workshop on global software deve lopment (2002) In: ICSE '02: Proceedings of
the 24th International Conference on Software Engineering, New York, NY, USA:
ACM, 2002, p. 667-668.

Eckhard B. (2007) Context-aware notification in global software development, Master’s
thesis, Institut fr Softwaretechnik und in teraktive Systeme – Technischen Universitt
Wien, 2007.

Enami, L.; Tait, T. F. C.; Huzita, E.H M (2006) A project management model to a distributed
software engineering environment. In: ICEIS 2006 - International Conference on
Enterprise Information Systems, 2006, Papus. Anais do ICEIS 2006, 2006.

Espinosa, J.A., Slaughter, S.A., Kraut, R.E., and Herbsleb, J.D. (2007) Team knowledge and
coordination in geographically distribu ted software development,” Journal of
Management Information Systems (24:1), 2007b, pp. 135-169.

Espinosa, J.A., and Carmel, E. (2003) The impact of time separation on coordination in global
software teams: a conceptual foundation,” Journal of Software Process: Practice and
Improvement (8:4), 2003, pp. 249-266.

Evaristo, J. R; Scudder, R; Desouza, K. C; Sato, O. (2004) A Dimensional Analysis of
Geographically Distributed Project Teams: A Case Study. Journal of Engineering
and Technology Management, vol. forthcoming. 2004.

Fuggetta, A. Software process: a roadmap (2000) In: ICSE '00: Proceedings of the Conference
on The Future of Software Engineering, New York, NY, USA: ACM, 2000, p. 25{34.

Herbsleb, J. D.; Mockus, A.; Finholt, T. A.; Grinter, R. E. (2000) Distance, dependencies, and
delay in a global collaboration. In: CSCW '00: Proceedings of the 2000 ACM
conference on Computer supported cooperative work, New York, NY, USA: ACM,
2000, p. 319-328.

Herbsleb, J. D. ; Mockus, A. (2003) An empirical study of speed and communication in
globally distributed software development, IEEE Transactions on Software
Engineering, vol. 29, no. 6, pp. 481-494.

Herbsleb, J.D. (2007) Global software engineering: the future of socio-technical coordination.
In: Proceedings of Future of Software Engineering (FOSE'07), IEEE, 2007.

Holmstrom, H., Conchuir, E. O ., Agerfalk, P. J., and Fitzgerald, B. (2006) Global software
development challenges: A case study on temporal, geographical and sociocultural
distance. In Global Software Engineering, 2006. ICGSE ’06. International
Conference on, pages 3–11.

Globalization and Socio-Technical Aspects of Information Systems Development

121

Kiel, L. (2003) Experiences in distributed development: a case study. The International
Workshop on Global Software Developm ent, ICSE, Portland, OR, 2003. May 9 pp.
44–47. 2003.

Kotabe, M. and Helsento, K. (1998) Global Marketing Management. Estados Unidos: Edit.
John Wiley e Sons, Inc, 1998.

Laudon, K. and Laudon, J. (2011) Management Information Systems. 12. ed, Prentice
Hall,2011.

Layman, L.; Williams, L.; Damian, D.; Bures, H. (2006) Essential communication practices for
extreme programming in a global softwa re development team. Information and
Software Technology, v. 48, n. 9, p. 781-794, 2006.

Lima Reis, C.A.; Reis, R. Q.;Nunes, D. J. (1998) A Synchronous Cooperative Architecture For
the Prosoft Software Engineering Environment. In: IV Congreso Argentino de
Ciencias de la Computacion – Neuquen, Argentina.

Lings, B.; Lundell, B.; Agerfalk, P. J.; Fitzgerald, B. (2007) A reference model for successful
distributed development of software syst ems. In: ICGSE '07: Proceedings of the
International Conference on Global Software Engineering, Washington, DC, USA:
IEEE Computer Society, 2007, p. 130-139.

Malone, T., and Crowston, K. (1994) The Interdisciplinary Study of Coordination, ACM
Computing Surveys (26:1), 1994, pp. 87-119.

Massey, A.P., Montoya-Weiss, M., and Hung, C (2003) Because time matters: temporal
coordination in global virtual project te ams. Journal of Management Information
Systems (19:4), 2003, pp. 129-156.

McGrath, J.E. (1990) Time matters in groups. In Intellectual Teamwork: Social and
Technological Foundations of Cooperative Work, J. Galegher, R. Kraut, and C.
Egido (eds.), Lawrence Erlbaum, Hillsdale, NJ, 1990, pp. 23-61.

Mockus, A.; Herbsleb, J. (2001) Challenges of global software development. In: METRICS
'01: Proceedings of the 7th International Symposium on Software Metrics,
Washington, DC, USA: IEEE Computer Society, 2001, p. 182.

Moscovici, F. (1993) Renascença organizacional - a revalorização do homem frente à
tecnologia para o sucesso da nova empresa. 3.ed, José Olimpio Editora, Rio de
Janeiro: 1993, 129 págs.

Motta, M.S.; Cukierman, H. L. (2009) As resistências à implantação de um modelo de
desenvolvimentode software em uma empresa pública. V Workshop Um Olhar
Sociotécnico sobre a Engenharia de Software – WOSES 2009.

Mullick, N.; Bass, M.; Houda, Z.; Paulish, P.; Cataldo, M. (2006) Siemens global studio
project: Experiences adopting an integrated gsd infrastructure. In: Global Software
Engineering, 2006. ICGSE '06. International Conference on, 2006, p. 203-212.

Olson J.S.; Olson, G.M. (2004) Culture Surprises in Remote Software Development Teams.
ACM Queue, New York, v. 1, n. 9, p. 52-59, dec./jan. 2003-2004.

Pilatti, L.; Prikladnicki, R.; Audy, J. L. N. (2007) Avaliando os Impactos dos Aspectos Não-
Técnicos da Engenharia de Software em Ambientes de Desenvolvimento Global de Software:
Um Caso Prático. In: Anais III Workshop Um Olhar Sócio-Técnico sobre a
Engenharia de Software (WOSES 07), pp. 85-96. Porto de Galinhas. 2007.

Prikladnicki, R.; Au dy, J. L. N; Evaristo, R (2003) Requirements Management in Global
Software Development: Preliminary Findings from a Case Study in a SW-CMM

Innovative Information Systems Modelling Techniques

122

context. II International Workshop on Global Software Development at ICSE,
Portland, Oregon. 2003.

Rigolon, F. J. Z. (1998) O investimento em infra-estrutura e a retomada do crescimento econômico
sustentável, 1998. In:

 http://ppe.ipea.gov.br/index .php/ppe/article/viewFile/716/656
Sangwan, R., Bass, M., Mullick, N., Paulish, D. J., and Kazmeier, J (2007) Global Software

Development Handbook, Auerbach Pu blications, Boca Raton, FL, 2007.
Schein, E. (2004) Organizational Culture and Leadership . San Francisco: Jossey,2004
Soares, P. H. (2011) Uma Estratégia para Tratar os Aspectos Sócio - Culturais no Desenvolvimento

Distribuído de Software. Dissertação de Mestrado. Programa de Ciência da
Computação, Universidade Estadual de Maringá, 2011.

Tait, T.F.C. Pacheco, R.C. S. (2001) Presentation of an Informatio n Systems Architecture
Model for Public Sector. International Conference on Enterprises Information
Systems ICEIS (1) 2001: 275-278. Portugal.

Trindade, D. G. F.; Tait, T. F. C.; Huzita, E. H M (2008) A tool for supporting the
communicantion in distributed environment for software development. Journal of
Computer Science and Technology (La Plata), v. 8, p. 118-124, 2008.

Vidal, J. A. (2005) Activismo e novas Tecnologias de Informação e Comunicação (TICs). Instituto
Politécnico do Porto - 4º SOPCOM, 2005.

6

Mobile System Applied to
Species Distribution Modelling

Álvaro Silva, Pedro Corrêa and Carlos Valêncio
Nokia Institute of Technology and University of São Paulo, University of São Paulo,
Instituto de Biociências, Letras e Ciências Exatas, UNESP – Univ Estadual Paulista

Brazil

1. Introduction

Species distribution based on ecological niche modelling has been used in several areas of
ecology. It uses mathematics techniques which are applied to weather statistics and other
physical factors which can affect the geographic extension of species in its ecological niche
(Soberón& Peterson, 2005).

Based on known localization data (or absence) occurrences of individual species and
relating them to environmental variables (such as relief, climate, humidity, etc), it is possible
to predict the probability that a region will be favourable for those species survival.

This process depends on the quality of the gathered data in the field. Iwashita (Iwashita,
2008) presents a research concerning the errors influence on the collection point position.
There are, however, human factors that can also influence the quality of these points. Here,
the main problem is related to automate the presence and absence data gathering process
and how to share that data with other scientists.

In order to solve these problems, this chapter presents a mobile system which supports the
data gathering and modelling for the distribution of ecological niche. This solution involves
Service Oriented Architecture applied to mob ile systems. Beyond this, it proposes a new
approach to help scientists choose an area to gather field data by previewing the models
available for the researcher.

2. Distribution species modelling

Distribution species modelling is a way of an alysing data applied mainly in biology which
uses advanced geographic information systems (Peterson, 2001).

To understand what this modelling represents, it is necessary to understand the concept of
ecological niche: according to Hutchinson (1957) ecological niche is defined as “a space with
n-dimensional volume where each dimension represents the interval of environmental
conditions or necessary sources for the species survival and reproduction”.

In Peterson (2001), ecological niche is defined as a group of ecological condition in which a
species is capable of maintaining population without immigration.

Innovative Information Systems Modelling Techniques

122

context. II International Workshop on Global Software Development at ICSE,
Portland, Oregon. 2003.

Rigolon, F. J. Z. (1998) O investimento em infra-estrutura e a retomada do crescimento econômico
sustentável, 1998. In:

 http://ppe.ipea.gov.br/index .php/ppe/article/viewFile/716/656
Sangwan, R., Bass, M., Mullick, N., Paulish, D. J., and Kazmeier, J (2007) Global Software

Development Handbook, Auerbach Pu blications, Boca Raton, FL, 2007.
Schein, E. (2004) Organizational Culture and Leadership . San Francisco: Jossey,2004
Soares, P. H. (2011) Uma Estratégia para Tratar os Aspectos Sócio - Culturais no Desenvolvimento

Distribuído de Software. Dissertação de Mestrado. Programa de Ciência da
Computação, Universidade Estadual de Maringá, 2011.

Tait, T.F.C. Pacheco, R.C. S. (2001) Presentation of an Informatio n Systems Architecture
Model for Public Sector. International Conference on Enterprises Information
Systems ICEIS (1) 2001: 275-278. Portugal.

Trindade, D. G. F.; Tait, T. F. C.; Huzita, E. H M (2008) A tool for supporting the
communicantion in distributed environment for software development. Journal of
Computer Science and Technology (La Plata), v. 8, p. 118-124, 2008.

Vidal, J. A. (2005) Activismo e novas Tecnologias de Informação e Comunicação (TICs). Instituto
Politécnico do Porto - 4º SOPCOM, 2005.

6

Mobile System Applied to
Species Distribution Modelling

Álvaro Silva, Pedro Corrêa and Carlos Valêncio
Nokia Institute of Technology and University of São Paulo, University of São Paulo,
Instituto de Biociências, Letras e Ciências Exatas, UNESP – Univ Estadual Paulista

Brazil

1. Introduction

Species distribution based on ecological niche modelling has been used in several areas of
ecology. It uses mathematics techniques which are applied to weather statistics and other
physical factors which can affect the geographic extension of species in its ecological niche
(Soberón& Peterson, 2005).

Based on known localization data (or absence) occurrences of individual species and
relating them to environmental variables (such as relief, climate, humidity, etc), it is possible
to predict the probability that a region will be favourable for those species survival.

This process depends on the quality of the gathered data in the field. Iwashita (Iwashita,
2008) presents a research concerning the errors influence on the collection point position.
There are, however, human factors that can also influence the quality of these points. Here,
the main problem is related to automate the presence and absence data gathering process
and how to share that data with other scientists.

In order to solve these problems, this chapter presents a mobile system which supports the
data gathering and modelling for the distribution of ecological niche. This solution involves
Service Oriented Architecture applied to mob ile systems. Beyond this, it proposes a new
approach to help scientists choose an area to gather field data by previewing the models
available for the researcher.

2. Distribution species modelling

Distribution species modelling is a way of an alysing data applied mainly in biology which
uses advanced geographic information systems (Peterson, 2001).

To understand what this modelling represents, it is necessary to understand the concept of
ecological niche: according to Hutchinson (1957) ecological niche is defined as “a space with
n-dimensional volume where each dimension represents the interval of environmental
conditions or necessary sources for the species survival and reproduction”.

In Peterson (2001), ecological niche is defined as a group of ecological condition in which a
species is capable of maintaining population without immigration.

Innovative Information Systems Modelling Techniques

124

According to these concepts the ecological niche is nothing more than a determined region
where the group of factors favours the species survival. Environmental features that
influence species survival can be temperature, humidity, salinity, pH, feeding sources,
luminous intensity, predatory pressure, population density, among others. Environmental
factors are limited and remain relatively consta nt on the interval related to these animals
timeline (Bazzaz, 1998).

The ecological niche is divided between realized and fundamental. Fundamental niche is
defined as a group of environmental conditio ns necessary for species survival without
considering the predators influe nce. Realized niche is where the species really occurs
(Malanson et al., 1992). You can say that realized niche is a sub-group of the fundamental one.

Predictive modelling of species distribution is mainly concerned with the ecological niche
modelling. It proposes a solution based on arti ficial intelligence for foreseeing a probable
geographic species distribution of species.

The distribution modelling of ecological niche plays an important role in ecology. Among
main applications is the envi ronmental preservation areas planning (Austin, 2002; Guisan&
Zimmermann, 2000; Sohn, 2009). Choosing a preservation area requires knowledge about a
species ecological niche. With predictive modelling it is possible to identify statistically these
areas.

Another area wherein modelling is a driving force, is in climate change research (Peterson et
al., 2001; V. Canhos et al., 2005) which aims to identify how living crea tures are affected by
global warming.

More applications can be found: species replacement in nature, species and habitat
management, biogeography and others (Guisan& Zimmermann, 2000).

One model visualization is shown on Figure 1, extracted from Sohn(2009) which made the
modelling for cook-of-the-rock (rupicolarupicola) bird in the Brazilian Amazon region.

2.1 Collecting and modelling process

Basically, predictive modelling of ecological niche occurs in three phases: collecting,
modelling and analysing the actual models. Figure 2 shows an IDEF0 diagram used to
represent the business plan modelling. In this fi gure, it can be realized that to obtain a
validated model, the sequence has to be followed: first collect the data, then use the entries
in the model creation phase which are the data collected and the environmental variables,
that are processed with the support of a number of predictive algori thms, thus generating
the model and a set of indicators for this model. Based on these indicators it is possible to
validate the generated model, evaluating its quality.

The first stage of the entire process is to obtain data about a species’ presence or absence to
be studied. Both are basically latitude and longitude.

Presence data represents the species’ incidence or abundance outcomes in a given position
or area. Absence data is given when there was a search for that species in some known
region and even in an indivi dual finding (Engler&Rechstei ner, 2004). Absences may occur
due to the following (Philips et al., 2006):

�x There was a species, but it could not be detected;
�x The habitat is suitable, but for historical reasons the species is absent

Mobile System Applied to Species Distribution Modelling

125

�x The habitat is not suitable.

Fig. 1. Model visualization for cook-of-the-rock in Amazon area.

Fig. 2. IDEF0 diagram for modeling process.

Innovative Information Systems Modelling Techniques

124

According to these concepts the ecological niche is nothing more than a determined region
where the group of factors favours the species survival. Environmental features that
influence species survival can be temperature, humidity, salinity, pH, feeding sources,
luminous intensity, predatory pressure, population density, among others. Environmental
factors are limited and remain relatively consta nt on the interval related to these animals
timeline (Bazzaz, 1998).

The ecological niche is divided between realized and fundamental. Fundamental niche is
defined as a group of environmental conditio ns necessary for species survival without
considering the predators influe nce. Realized niche is where the species really occurs
(Malanson et al., 1992). You can say that realized niche is a sub-group of the fundamental one.

Predictive modelling of species distribution is mainly concerned with the ecological niche
modelling. It proposes a solution based on arti ficial intelligence for foreseeing a probable
geographic species distribution of species.

The distribution modelling of ecological niche plays an important role in ecology. Among
main applications is the envi ronmental preservation areas planning (Austin, 2002; Guisan&
Zimmermann, 2000; Sohn, 2009). Choosing a preservation area requires knowledge about a
species ecological niche. With predictive modelling it is possible to identify statistically these
areas.

Another area wherein modelling is a driving force, is in climate change research (Peterson et
al., 2001; V. Canhos et al., 2005) which aims to identify how living crea tures are affected by
global warming.

More applications can be found: species replacement in nature, species and habitat
management, biogeography and others (Guisan& Zimmermann, 2000).

One model visualization is shown on Figure 1, extracted from Sohn(2009) which made the
modelling for cook-of-the-rock (rupicolarupicola) bird in the Brazilian Amazon region.

2.1 Collecting and modelling process

Basically, predictive modelling of ecological niche occurs in three phases: collecting,
modelling and analysing the actual models. Figure 2 shows an IDEF0 diagram used to
represent the business plan modelling. In this fi gure, it can be realized that to obtain a
validated model, the sequence has to be followed: first collect the data, then use the entries
in the model creation phase which are the data collected and the environmental variables,
that are processed with the support of a number of predictive algori thms, thus generating
the model and a set of indicators for this model. Based on these indicators it is possible to
validate the generated model, evaluating its quality.

The first stage of the entire process is to obtain data about a species’ presence or absence to
be studied. Both are basically latitude and longitude.

Presence data represents the species’ incidence or abundance outcomes in a given position
or area. Absence data is given when there was a search for that species in some known
region and even in an indivi dual finding (Engler&Rechstei ner, 2004). Absences may occur
due to the following (Philips et al., 2006):

�x There was a species, but it could not be detected;
�x The habitat is suitable, but for historical reasons the species is absent

Mobile System Applied to Species Distribution Modelling

125

�x The habitat is not suitable.

Fig. 1. Model visualization for cook-of-the-rock in Amazon area.

Fig. 2. IDEF0 diagram for modeling process.

Innovative Information Systems Modelling Techniques

126

The collecting can be separated into another process which follows the steps below:

1. Selecting the area to be studied: This is the stage where it determines the area used to
collecting. The species is used as one of the inputs for this phase due to the fact that a
species is usually found historically in a pa rticular geographic region (Philips et al.,
2006). This region can be, for example, the Amazon region or throughout Australia.

2. Choosing the spatial resolution: Spatial resolution is the scale used for the collection.
This is an important step that needs to be emphasized. The choice of resolution can
influence the model interpretation, since some patterns can occur in a given resolution,
but on another scale may not be noticeable (Guisan&Thuiller, 2005). There are some
techniques that help identify the best resolution to use in modelling as in Isaaks and
Srivastava (Isaaks&Srivastava, 1989), which suggests the use of variograms to
determine the sampling interval.

3. Restore occurrences in other data bases: It is about getting the data of the occurrence
from other sources such as museums, zoos and environmental agencies. There are some
entities that maintain a database with larg e numbers of environmental collections such
as IABIN/PTN, GB IF, and Ornis.

4. Determination of observation points: Determine how many and where the points are
positioned to observe the species. Based on the chosen spatial resolution and the known
occurrence points, is intended to promote the best possible distribution of these points.

5. Determining the time of collection: It is the strategy to turn into a more efficient
observation. Some species are nocturnal and others diurnal, and some climatic
conditions affect these habits as intense heat, etc. Thus, it is necessary to determine
these times.

6. Observation: In this phase, techniques are applied to the census of the species studied.
These techniques aim to check both the presence and absence. The absence (or record
scratch as it is called) (Engler&Rechsteiner, 2004)is a prominent factor due to the
difficulty in obtaining such da ta (Philips et al., 2006). Depending on the species it can be
used, for example, recorders that play back the sound of the female or male to attract a
species that is in the region, as in Sohn(2009). It is also necessary to determine the time it
will make the observation and the number of attempts.

7. Registration: The presence or absence data is stored electronically. Basically each record
contains the following information: listener id entification, latitude, longitude, type of
observation (sighting, nest location, hearing, etc.) and registration date. Among these,
the latitude and longitude are the ones that deserve greater emphasis. It uses a GPS to
get these coordinates.

3. Architecture propose

With the modelling and collection processes being understood, an architecture can be
elaborated to solve the problem described above. Here, it will be proposed and specified an
architecture of a mobile system applied to species distribution modelling.

The architecture requires a generic basis to be used on any mobile application that needs to
perform the species distributions modelling. Furthe rmore, it should also be able to adapt to
constant changes in this area, such as allowing the use of new algorithms and data formats.
Thus, the SOC paradigm is quite appropriate, and for this reason, this paper presents an
SOA solution.

Mobile System Applied to Species Distribution Modelling

127

Basically, the process described in ANDREI, et al. (Andrei et al., 2004) was followed, which
describes one for designing a service-oriented architecture, which combines the standards
for e-business and concepts of service-oriented computing to solve problems encountered in
industry. The steps are shown below:

1. Domain decomposition
2. Goal service-model creation
3. Subsystem analysis
4. Service allocation
5. Component specification
6. Structure enterprise components using patterns
7. Technology realization mapping

The steps above will be discussed on next sessions, except the steps 5 and 6. The step 5 will
be performed on steps 1 and 3, while the step 6 suggests the use of standard IBM runtime,
which are not applied to the pattern of collaboration.

3.1 Domain decomposition

From a business point of view, the domain consists on a series of functional areas. For this
case one can observe two main areas: the system of collecting and modelling, as shown in
Figure 3.

Fig. 3. IDEF0 diagram for modelling process.

For these functional areas, the following use cases can be identified, in general:

�x UC1: Collect presence and absence data
�x UC2: Create view for localization
�x UC3: Create model
�x UC4: View model

On Figure 4 is shown the use case diagram for this system.

Fig. 4. Business use case diagram.

Innovative Information Systems Modelling Techniques

126

The collecting can be separated into another process which follows the steps below:

1. Selecting the area to be studied: This is the stage where it determines the area used to
collecting. The species is used as one of the inputs for this phase due to the fact that a
species is usually found historically in a pa rticular geographic region (Philips et al.,
2006). This region can be, for example, the Amazon region or throughout Australia.

2. Choosing the spatial resolution: Spatial resolution is the scale used for the collection.
This is an important step that needs to be emphasized. The choice of resolution can
influence the model interpretation, since some patterns can occur in a given resolution,
but on another scale may not be noticeable (Guisan&Thuiller, 2005). There are some
techniques that help identify the best resolution to use in modelling as in Isaaks and
Srivastava (Isaaks&Srivastava, 1989), which suggests the use of variograms to
determine the sampling interval.

3. Restore occurrences in other data bases: It is about getting the data of the occurrence
from other sources such as museums, zoos and environmental agencies. There are some
entities that maintain a database with larg e numbers of environmental collections such
as IABIN/PTN, GB IF, and Ornis.

4. Determination of observation points: Determine how many and where the points are
positioned to observe the species. Based on the chosen spatial resolution and the known
occurrence points, is intended to promote the best possible distribution of these points.

5. Determining the time of collection: It is the strategy to turn into a more efficient
observation. Some species are nocturnal and others diurnal, and some climatic
conditions affect these habits as intense heat, etc. Thus, it is necessary to determine
these times.

6. Observation: In this phase, techniques are applied to the census of the species studied.
These techniques aim to check both the presence and absence. The absence (or record
scratch as it is called) (Engler&Rechsteiner, 2004)is a prominent factor due to the
difficulty in obtaining such da ta (Philips et al., 2006). Depending on the species it can be
used, for example, recorders that play back the sound of the female or male to attract a
species that is in the region, as in Sohn(2009). It is also necessary to determine the time it
will make the observation and the number of attempts.

7. Registration: The presence or absence data is stored electronically. Basically each record
contains the following information: listener id entification, latitude, longitude, type of
observation (sighting, nest location, hearing, etc.) and registration date. Among these,
the latitude and longitude are the ones that deserve greater emphasis. It uses a GPS to
get these coordinates.

3. Architecture propose

With the modelling and collection processes being understood, an architecture can be
elaborated to solve the problem described above. Here, it will be proposed and specified an
architecture of a mobile system applied to species distribution modelling.

The architecture requires a generic basis to be used on any mobile application that needs to
perform the species distributions modelling. Furthe rmore, it should also be able to adapt to
constant changes in this area, such as allowing the use of new algorithms and data formats.
Thus, the SOC paradigm is quite appropriate, and for this reason, this paper presents an
SOA solution.

Mobile System Applied to Species Distribution Modelling

127

Basically, the process described in ANDREI, et al. (Andrei et al., 2004) was followed, which
describes one for designing a service-oriented architecture, which combines the standards
for e-business and concepts of service-oriented computing to solve problems encountered in
industry. The steps are shown below:

1. Domain decomposition
2. Goal service-model creation
3. Subsystem analysis
4. Service allocation
5. Component specification
6. Structure enterprise components using patterns
7. Technology realization mapping

The steps above will be discussed on next sessions, except the steps 5 and 6. The step 5 will
be performed on steps 1 and 3, while the step 6 suggests the use of standard IBM runtime,
which are not applied to the pattern of collaboration.

3.1 Domain decomposition

From a business point of view, the domain consists on a series of functional areas. For this
case one can observe two main areas: the system of collecting and modelling, as shown in
Figure 3.

Fig. 3. IDEF0 diagram for modelling process.

For these functional areas, the following use cases can be identified, in general:

�x UC1: Collect presence and absence data
�x UC2: Create view for localization
�x UC3: Create model
�x UC4: View model

On Figure 4 is shown the use case diagram for this system.

Fig. 4. Business use case diagram.

Innovative Information Systems Modelling Techniques

128

This business use cases are strong candidates for business services that will be exposed.

Once the business use cases are defined it is necessary to define the inputs and outputs of
each service. As the project continues to be developed, the functional areas that were
identified will be directed to a subsystem. It can be explained with the fact that the areas are
a business sense, while subsystems are technology notions.

For each step described by ANDREI (Andrei et al., 2004), a set of IBM corresponding
patterns are applied. Basically, these standards are divided into four parts: the highest
standards, the application standards, runtime patterns and Product mappings.

This step will apply the highest standards. It is necessary to choose the pattern that best fits
the system proposed on this paper. Since this system needs to provide an interaction among
researchers from the field data collection and from other areas, the standard chosen was the
Collaboration. Their application to the system prop osed in this work can be seen in Figure 5.

Fig. 5. Collaboration business pattern diagram.

3.2 Goal service-model creation

This second step is to create a model to identify how the services identified are complete
with respect to the business. The following is the goal-service model in a nested notation,
the mobile system for modeling species distribution:

1. Create accurate species distribution model
a. Create model

2. Aggregate data from distributed teams
3. Collect data in an automated way

a. Collect presence and absence data
b. Provide a friendly interaction experience

 Manage project
 Generate view for localization
 View model

Mobile System Applied to Species Distribution Modelling

129

In this model the objectives are shown in regular text, service in italics and other necessary
services that were not discovered during domain decomposition are shown in bold. It is
observed that the services meet the main objectives of such system. At this stage it was also
possible to identify a new service: managing the project. With this the user can add a new
project for the species they are studying.

3.3 Subsystem analysis

At this stage of architectural design, business use cases are refined into system use cases.
The subsystems are composed by business components and technical components.

High-level business use cases that have been identified in previous steps will be part of the
subsystem components interface. The subsystems identified are Modelling and Collecting.
The collecting subsystem is responsible for providing to the researcher the tools needed to
create a species distribution model. The modelling subsystem is responsible for generating
the model based on data provided by the collection subsystem. The components are shown
in Figure 6.

Fig. 6. Collect and Modelling components.

Based on this analysis the services below were identified:

�x Localization service: Responsible for providing GPS data (latitude, longitude, altitude
and so on).

�x Maps service: Provides maps to be viewed on the mobile device. The answers are made
in terms of small tiles of defined size. It means the service provides small sections of the
map that the client wants. This service is responsible for storing maps to view offline.
Provides both maps with satellite imagery, maps and biological layers.

�x Occurrence points service: Provides an interface to store the presence or absence points
by species.

�x Species distribution modelling service: It is used to request the generation of the model
for the desired species. In the case of mobile device, this service uses other remote
services to generate the model.

The Figure 7 shows the IBM patterns applied to structure these services.

Innovative Information Systems Modelling Techniques

128

This business use cases are strong candidates for business services that will be exposed.

Once the business use cases are defined it is necessary to define the inputs and outputs of
each service. As the project continues to be developed, the functional areas that were
identified will be directed to a subsystem. It can be explained with the fact that the areas are
a business sense, while subsystems are technology notions.

For each step described by ANDREI (Andrei et al., 2004), a set of IBM corresponding
patterns are applied. Basically, these standards are divided into four parts: the highest
standards, the application standards, runtime patterns and Product mappings.

This step will apply the highest standards. It is necessary to choose the pattern that best fits
the system proposed on this paper. Since this system needs to provide an interaction among
researchers from the field data collection and from other areas, the standard chosen was the
Collaboration. Their application to the system prop osed in this work can be seen in Figure 5.

Fig. 5. Collaboration business pattern diagram.

3.2 Goal service-model creation

This second step is to create a model to identify how the services identified are complete
with respect to the business. The following is the goal-service model in a nested notation,
the mobile system for modeling species distribution:

1. Create accurate species distribution model
a. Create model

2. Aggregate data from distributed teams
3. Collect data in an automated way

a. Collect presence and absence data
b. Provide a friendly interaction experience

 Manage project
 Generate view for localization
 View model

Mobile System Applied to Species Distribution Modelling

129

In this model the objectives are shown in regular text, service in italics and other necessary
services that were not discovered during domain decomposition are shown in bold. It is
observed that the services meet the main objectives of such system. At this stage it was also
possible to identify a new service: managing the project. With this the user can add a new
project for the species they are studying.

3.3 Subsystem analysis

At this stage of architectural design, business use cases are refined into system use cases.
The subsystems are composed by business components and technical components.

High-level business use cases that have been identified in previous steps will be part of the
subsystem components interface. The subsystems identified are Modelling and Collecting.
The collecting subsystem is responsible for providing to the researcher the tools needed to
create a species distribution model. The modelling subsystem is responsible for generating
the model based on data provided by the collection subsystem. The components are shown
in Figure 6.

Fig. 6. Collect and Modelling components.

Based on this analysis the services below were identified:

�x Localization service: Responsible for providing GPS data (latitude, longitude, altitude
and so on).

�x Maps service: Provides maps to be viewed on the mobile device. The answers are made
in terms of small tiles of defined size. It means the service provides small sections of the
map that the client wants. This service is responsible for storing maps to view offline.
Provides both maps with satellite imagery, maps and biological layers.

�x Occurrence points service: Provides an interface to store the presence or absence points
by species.

�x Species distribution modelling service: It is used to request the generation of the model
for the desired species. In the case of mobile device, this service uses other remote
services to generate the model.

The Figure 7 shows the IBM patterns applied to structure these services.

�� ����������������������

������� �� �� ������� ����������� �������� �� �������� � �������� �� ���������� ������� �����
������ ����
	��

������	�� �� ������� ���	���� �� �•�
	�
 •�
� •	�•�•
���� ���������� �•• • €•���
���	�� •� �� ‚ ƒ�����
�� ƒ� ƒ� ��� „�� … •��•†
	 •���� ‡� •�����‡���� •���
�� �������

�ˆ‰• ���€�����
�•������ Š� �� ���•��� … ��
•	��
�•��
•	�� �‡ •���†��•�
����
��� ������ ��������� 	������

‰��
�‹	��	�� ƒ� ������ … �	
•�� �‡ 	�
�Œ���•��� ��†•� �‡ 	Ž†�� ��•��
†�	 �� •���
 ��•������

Œ��	� �� �������
� �‡ �•	•�	� ��� �
� �••��•�
���
� ������	� �‡
•	 ‘	�	
�
��� ��
�����• •��������
��������� ��������� ��������� ������ �������������� ������� • �€ˆ•�

�
	��Œ	�� …� ’�� ������� Š� �� ‚ “•�
	� ”� �� ������� �	‘������
�
•	 •�� ��
� ‡†���� ���	��
������ ������� �������������� ����������� ��� �••���������� •���������� �� ��� �•• ���•
•• �

���	�•��� –� �� ����‰�� €������� �� ‚���������� �������� ����������� ������������� —��� �� “��	��
“�������� �� �� �‰„„ˆ�� ƒ������� ��„���� ��������� ��� �������� �����•�� �����…����� ������� ��

�������� ���
	˜�
•	���� ™��†�
	 �••��� �‡ �����		��� ��� �����	�	�
� …� ”�•	
š��
�
†
	 �‡ ƒ	••������� …� ›��‘	��
�� ›�…�

“��……� �‰„„�œ‰„���� “��	 ���
��	 �	� ��Œ��	 �†‘	�����•	�
›��• ���•�††‡‡‡•‡�����•��

158 Innovative Information Systems Modelling Techniques

8

Analysis of Interactive
Information Systems Using Goals

Pedro Valente and Paulo N. M. Sampaio
University of Madeira

Portugal

1. Introduction

The high competitiveness in the world markets le ad enterprises to provide their clients with
the best services and products as possible in order to obtain important advantages over their
opponents. These services and products are result of the enterprise’s business processes
(BPs) which, therefore, need to be improved.

The improvement of BPs can be achieved, both by, reorganizing their tasks, or by
automating (completely or partially) these BPs by means of the development of interactive
information systems (IISs) which articulate the work of every actor, thus improving speed
and reliability of the goal(s) (of the BP) to be achieved.

ISSs are computer based software systems (Land, 2002) that have the ability to manage
structured information which can be manipulated by humans by means of user interfaces in
order to perform their tasks within the en terprises’ BP. Since numerous BPs need
automation, the development of IISs must be planned in order to best schedule the
deployment of new and existing improved services and products, according to the needs of
every stakeholder and available resources.

The successful development of IISs is usually a complex and demanding task that can only
be achieved if a project is organized in such a way that every stakeholder is able to negotiate
its intentions in terms of functional (and also non-functional) requirements. Once these
requirements are implemented in an acceptable price, they will bring an added value to the
enterprise, enhancing its overall business effectiveness and efficiency, and therefore
contributing to ensure its wealth and survival in a demanding market.

The precise identification of functional requir ements (FRs) is a crucial task for the fluent
development of a project, and can be carried out during the organization of new or existing
BPs if every stakeholder is able to express its point of view over the problem and if a final
agreement is achieved. Following the identification of FRs, the implementation effort should
be estimated, the requirements analysed and the system designed in such a way that future
developers have no doubts on its implementation, improving the prob ability that the system
is produced on schedule and with the fewer mistakes as possible.

The work presented in this chapter is based on Goals (Valente, 2009), a software engineering
(SE) process proposed in order to provide the needed tools to define the precise conception

Innovative Information Systems Modelling Techniques

184

Valente, P. & Sampaio, P. (2007b). Goals: Interactive Multimedia Documents Modeling. In:
Lecture Notes in Computer Science, K. Luyten (Ed.), Vol. 4385/2007, pp. 169-185,
Springer Berlin/Heidelberg, ISBN: 978-3-540-70815-5, Hasselt, Belgium.

Webinterx. (2006). Services. Retrieved December 19th 2007:
 http://www.webinterx.com/services/

9

A Scheme for Systematically Selecting
an Enterprise Architecture Framework

Agnes Owuato Odongo, Sungwon Kang and In-Young Ko
Kenya Electricity Generating Company (KENGEN),

Kenya

1. Introduction

EAF is “a logical structure for classifying and organizing the descriptive representations of
an enterprise that are significant to the management of the enterprise as well as to the
development of the enterprise’s systems” [17]. EAF is also defined as “a set of assumptions,
concepts, values, and practices that constitute a way of viewing reality” [27]. It establishes
data element definitions, rules, and relationships and a baseline set of products for
consistent development of systems, integrated, or federated architectures. These architecture
descriptions may include Families of Systems (FoSs), Systems of Systems (SoSs), and net-
centric capabilities for interoperating and interacting in the Net-Centric Environment” [6].
Various EAFs have been developed such as Zachman Framework (ZF) [13][14], Department
of Defense Architecture Framework (DoDAF) [6], The Open Group Architecture Framework
(TOGAF) [36][35], Federal Enterprise Architecture Framework (FEAF) [10][11], Treasury
Enterprise Architecture Framework (TEAF) [8], and The Command, Control,
Communications, Intelligence, Surveillance, and Reconnaissance (C4ISR) [29]. However,
their unique limitations and dissimilarities make it impossible to use any of them in
isolation to completely solve a specific problem. In short, no single existing EAF in isolation
is capable of providing a complete solution to an Enterprise Architecture system design
problem [31][12][19] [3].

Comparisons of EAFs have been done in the past in order to select the best EAF for system
or Enterprise Architecture (EA) development [3][32][31][27][28][24][22][26]. However, none
of the past comparisons have focused on EAFs usages and related perspectives and aspects
in comparing and selecting EAF based on how they support the various usages. A complete
EA system design problem solution may encompass various usages and choosing the right
EAF that best supports each usage is of paramount importance. Research has revealed that
the existing EAFs have weaknesses and strengths. This is to say that none of them in
isolation can offer complete EA design support solution [2][19][17]. EAFs may overlap by
addressing similar views, however, they are developed for particular needs, and they differ
in the stakeholders they support and their domain. In regard to the above statement, EAFs is
used in EA design in order to manage system complexity and to align IT to business [27].
The organizations not using EAFs in EA design spend more in building IT systems which
are costly to maintain and offer little business value. It is a fact to say that failing to use EAFs
in EA design that aligns IT with business needs makes it expensive and difficult to organize

	Innovative Information Systems Modelling Techniques
	Contents
	Preface
	Chapter 1
Information Systems: From the Requirements to the Integrated Solution
	Chapter 2
An Architecture-Centric Approach for Information System Architecture Modeling, Enactement and Evolution
	Chapter 3
Patterns for Agent-Based Information Systems: A Case Study in Transport
	Chapter 4
Health Care Information Systems: Architectural Models and Governance
	Chapter 5
Globalization and Socio-Technical Aspects of Information Systems Development
	Chapter 6
Mobile System Applied to Species Distribution Modelling
	Chapter 7
World Modeling for Autonomous Systems
	Chapter 8
Analysis of Interactive Information Systems Using Goals
	Chapter 9
A Scheme for Systematically Selecting an Enterprise Architecture Framework

