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Preface

It is more than a century since Karl Pearson invented the concept of Principal
Component Analysis (PCA). Nowadays, it is a very useful tool in data analysis in
many fields. PCA is the technique of dimensionality reduction, which transforms
data in the high-dimensional space to space of lower dimensions. The advantages of
this subspace are numerous. First of all, the reduced dimension has the effect of
retaining the most of the useful information while reducing noise and other
undesirable artifacts. Secondly, the time and memory that used in data processing
are smaller. Thirdly, it provides a way to understand and visualize the structure of
complex data sets. Furthermore, it helps us identify new meaningful underlying
variables.

Indeed, PCA itself does not reduce the dimension of the data set. It only rotates the
axes of data space along lines of maximum variance. The axis of the greatest
variance is called the first principal component. Another axis, which is orthogonal to
the previous one and positioned to represent the next greatest variance, is called the
second principal component, and so on. The dimension reduction is done by using
only the first few principal components as a basis set for the new space. Therefore,
this subspace tends to be small and may be dropped with minimal loss of
information.

Originally, PCA is the orthogonal transformation which can deal with linear data.
However, the real-world data is usually nonlinear and some of it, especially
multimedia data, is multilinear. Recently, PCA is not limited to only linear
transformation. There are many extension methods to make possible nonlinear and
multilinear transformations via manifolds based, kernel-based and tensor-based
techniques. This generalization makes PCA more useful for a wider range of
applications.

In this book the reader will find the applications of PCA in many fields such as energy,
multi-sensor data fusion, materials science, gas chromatographic analysis, ecology,
video and image processing, agriculture, color coating, climate and automatic target
recognition. It also includes the core concepts and the state-of-the-art methods in data
analysis and feature extraction.
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Finally, I would like to thank all recruited authors for their scholarly contributions and
also to InTech staff for publishing this book, and especially to Mr.Oliver Kurelic, for
his kind assistance throughout the editing process. Without them this book could not
be possible. On behalf of all the authors, we hope that readers will benefit in many
ways from reading this book.

Parinya Sanguansat
Faculty of Engineering and Technology, Panyapiwat Institute of Management
Thailand



Principal Component Analysis —
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1. Introduction

The field of measurement technology in the sensors domain is rapidly changing due to the
availability of statistical tools to handle many variables simultaneously. The phenomenon
has led to a change in the approach of generating dataset from sensors. Nowadays, multiple
sensors, or more specifically multi sensor data fusion (MSDF) are more favourable than a
single sensor due to significant advantages over single source data and has better
presentation of real cases. MSDF is an evolving technique related to the problem for
combining data systematically from one or multiple (and possibly diverse) sensors in order
to make inferences about a physical event, activity or situation. Mitchell (2007) defined
MSDF as the theory, techniques, and tools which are used for combining sensor data, or
data derived from sensory data into a common representational format. The definition also
includes multiple measurements produced at different time instants by a single sensor as
described by (Smith & Erickson, 1991).

Although the concept of MSDF was first introduced in the 1960s and implemented in the
1970s in the robotic and defense application, today, the application of MSDF has proliferated
into various nonmilitary applications. However the method is still disparate, where it is
impossible to create a one-fits-all data fusion framework. The applications of MSDF are now
multidisciplinary in nature. Some specific applications of MSDF include multimodal
biometric systems using face and palm-print (Raghavendra et al., 2011); renewable energy
system (Li et al., 2010); color texture analysis (Wu et al., 2007); face and voice outdoor multi-
biometric system (Vajaria et al., 2007); medical decision making (Harper, 2005); image
recognition (Sun et al., 2005), road traffic accidents (Sohn et al., 2003); and personal
authentication (Duc et al., 1997; Kumar et al., 2006).

MSDF technique has become as a prominent tool in food quality assessment. Quality
assessment in food processing industries aims to guarantee the standard and safety control
of food products. Traditional approach of exploiting trained human panels to evaluate
quality parameters can be replaced by artificial sensors. An example of artificial sensor
receiving great interest from researcher in these industries is the electronic nose (i.e. e-nose)
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sensor that mimics the function of human smell. In the context of MSDF, usually e-nose is
applied with another sensor called electronic tongue (i.e. e-tongue) which imitates the
human taste function. Several applications of e-nose and e-tongue in food research include
flavor sensing system (Cole et al.,, 2011); honey classification (Zakaria et al., 2011);
classification of orthosiphon stamineus (Zakaria et al., 2010); detection of polluted food
(Maciejak et al., 2003); discrimination of standard fruit solutions (Boilot et al., 2003); quality
control of yoghurt fermentation (Cimander et al., 2002); and discrimination of several types
of fruit juices (Winquist et al., 1999).

It is believed that the application of MSDF such as the fusion of e-nose and e-tongue, may
overcome some drawbacks of using trained human panels especially for on-line food
production. The use of artificial sensors is capable of overcoming human exhaustion and
stress, minimize between-panels variability, and obviously human panels are not suitable for
online measurements. Thus, this chapter focuses on the application of Principal Component
Analysis (PCA) and Linear Discriminant Analysis (LDA) in MSDF. Two models of MSDF
proposed by Hall (1992) namely low level data fusion and intermediate level data fusion are
proposed in order to identify and classify different types of pure honey, beet sugar, cane sugar
and adulterated samples (i.e. mixtures of pure honey with cane sugar and beet sugar). This
chapter also aim to provide a concept to the constructive and lists some advantageousness of
PCA in the application of MSDF especially in the analysis of multivariate data.

1.1 The fusion of artificial sensors

The appreciation of food is basically based on the combination of many human senses
including sight, touch, sound, taste and smell. However, due to the expensive cost of having
panels of trained expert to evaluate food quality parameters, a more rapid technique for
objective measurement of food products in a consistent and cost-effective manner is highly
needed in the food industry (Winquist et al., 2003). Two human senses that are believed to
be closely correlated in the perception of flavour are the sense of smell and taste. The e-nose
and e-tongue have been defined as the artificial sensing systems capable of producing a
digital fingerprint of a given chemical ambient (D’Amico, 2000). Both devices consist of
chemical sensor arrays coupled with an appropriate pattern recognition system capable of
extracting information from complex signals (Buratti et al., 2004).

Basically, an e-nose is formed by having an array of gas sensors with different selectivity, a
signal collecting unit and suitable pattern recognition software, all controlled and executed
by a computer. The principle of e-tongue is similar to that of the e-nose, except for the array
of sensors designed for liquids (Cosio et al., 2007). The ultimate task of these sensors is to
collect the digital fingerprint or signals that would be further interpreted using multivariate
statistical tools before the objective of the fusion approach is attained. One of the most
popular exploratory data analyses in chemical sensors is PCA (Di Natale et al., 2006). PCA is
a procedure that permits to extract useful information from the data, to explore the data
structure, the relationship between the objects and features, and the global correlation of the
features. Further details of PCA are described in Section 2. The selected principal
components based on certain criteria will be used as an input for classification procedure
using linear discriminant analaysis (LDA). Further descriptions of this technique are
illustrated in section 3 of this chapter.
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The selected architecture of MSDF in this research focuses on the approach of identity
fusion. Identity fusion is a fusion of parametric data to determine the identity of an observed
object. Our interest is to convert multiple sensor observations of a target attributes (such as
e-nose and e-tongue responses) to a joint declaration of target identity. One of the key issues
in developing an MSDF system is to determine the stage or phase in the data flow to
combine or fuse the data (Hall & Llinas, 1997). In an identity fusion, Hall (1992) suggested
three frameworks to be applied; (i) low level data fusion (or data level fusion); (ii)
intermediate level data fusion (or feature level fusion); and (iii) high level data fusion (or
decision level fusion). However, for the purpose of this discussion only data level and
feature level fusion are discussed.

1.1.1 Low level data fusion

In low level data fusion, the e-nose and e-tongue sensors observe the target objects
independently, and later the raw sensor data (i.e. original data collected from each sensor)
are combined. In order to fuse raw sensor data, the original sensor data must be
commensurate i.e. must be observations of similar physical quantities (Hall et al., 1997).
Sometimes, the number of features recorded by the e-nose and e-tongue are different, but
the raw sensor data can still be fused if both datasets are of the same sample size (equal 7).
It is important to ensure the new dataset is formed from the original non-normalized data. A
framework of low level data fusion is illustrated in Fig. 1.

§ v &
= = E 2 . .
k<! 3T 8 5 E Joint Identity
5] P» < g @ = & .
Q [ (5= Declaration
@ = =%

2d]
<

E-Tongue

Fig. 1. Framework of low level data fusion by Hall (1992)

It is believed that the low level data fusion in identity fusion provides the most accurate result
(Hall et al., 1997). This may be due to the fact that the originality information from each sensor
is maintained and used in further processes. Thus, low level data fusion is potentially more
accurate than the other two fusion methods. However, the difficulties in the application of low
level data fusion method are due to the noise that frequently occurs in the sensor data and
redundant data, which have an adverse effect on the classification results.

1.1.2 Intermediate level data fusion

This approach consists of extracting features from the signals of each sensor to yield feature
vectors. Then, the feature vectors are fused and identity declaration is made based on the
joint feature vectors. The identity declaration process includes techniques such as
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knowledge-based approach that includes expert system and fuzzy logic, or training-based
approach like discriminant analysis, neural network, Bayesian technique, k-nearest
neighbors and centre mobile algorithms. Fig. 2 illustrates the framework of the intermediate
level data fusion.

Joint Identity
Declaration

E-Tongue

Fig. 2. Framework of intermediate level data fusion by Hall (1992)

It is important to note that both low and intermediate level data fusion apply feature
extraction in transforming the raw signals provided by the sensor into a reduced vector of
features describing parsimoniously the original information. Then, in the identity
declaration, a quality class is assigned to the signals based on the feature extraction result.

2. Principal component analysis

Principal component analysis (PCA) was first described by Karl Pearson in 1901. A
description of practical computing methods came much later from Harold Hotelling in 1933
(Manly, 2004). The idea of PCA is to keep the variation of the number of p original features
into a fewer number of k unobservable variables (k < p), which is termed as principal
components, as maximum as possible. Let Table 1 below describes the original data of a
sensor data set with 1 objects each was observed with p features.

Case X, X, 3% X,
1 1 X12 1p
2 le Xzz 2p
n an Xn2 o an

Table 1. The form of data for a principal component analysis with p features on n cases
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The aim of PCA is to find a new set of variables, say Z,,Z,, .., Z; in a form of a linear
combination of X’s which is Z=a’X .Here, 2=(21,Z,,.,Z,) is a vector of principal

components and a’ is a matrix of coefficients i for ,j=1,2,.,p.

The first principal component (Z;) is the linear combination of the original features which
mathematically written as Z; =0y, Xy + 05X, +...+09,X,, assemble as the largest as
possible of variance of p features subject to the condition that a3, + a2, +...+ a%p =1. Then,
the second principal component (Z, ) is chosen to have the property of having the second
largest possible variance of Xy,X,,.., X, while being uncorrelated with the first component
(Z;). The remaining principal components are defined similarly, with the jth principal
component having the largest possible variance given that it is uncorrelated with the ith
principal component for i <j. Let 4 be the variance (eigenvalues) of Z;, and «; be the
eigenvectors of Z, where i,j=1,2,---, p, then these conditions hold for the eigenvalues and
eigenvectors:

MW2A>2.212>0 1)
a'a,=1 @
a'a,=0 where i#j 3)

Before we proceed to discuss on the issue of reducing the dimension intended for further
analysis, it is a need to understand which matrix of information should be used, either a
correlation matrix or a covariance matrix to allow for a computation of principal
components. One should clearly understand when to use either one of the input matrix as
often the results of these two are different. The next sections 2.1 and 2.2 briefly discuss the
guidelines.

2.1 Information matrix for principal component analysis
2.1.1 Principal component using covariance matrix

An implicit assumption when using covariance matrix as an input is that the features should
not have grossly different variances. Such differences in variance might arise because of
different scales of measurements, different magnitude of measurements, or some
combination of the two factors (Krzanowski, 2000). If they do, then the first few principal
components will be pulled toward those features with the larger variances (Dillon &
Goldstein, 1984).

In such cases, the data should be standardized and it means the correlation matrix is used
in the PCA. As a general guideline, it would seem sensible to standardize first whenever
the measured features show differences in variances, or whenever the user is concerned
with very different measured entities or units (Krzanowski, 2000). However,
transformation on the original data would result PC scores of a different meaning
(Martinez & A.R. Martinez, 2001). Obviously, the big drawback of PCA based on
covariance matrix is the sensitivity of the PCs to the units of measurement used for each
element of X (Jolliffe, 2002).
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2.1.2 Principal component analysis using correlation matrix

PCA aims to create linear combination of new variables that are uncorrelated to each other,
thus, if the correlation matrix portrays nearly small correlation, then there is probably not
much point in carrying PCA (Chatfield & Collins, 1980). PCA calculation based on
correlation matrix is suitable for features with unequal scales of measure. One way to trace
unequal scales is through wide differing variances among the features. In computing a
correlation coefficient between two features, differences due to the mean and the dispersion
of the features are removed (Dillon & Goldstein, 1984). This is recommended as the original
features are all standardized to unit variance (Borgognone et al., 2001).

Therefore, data that is used to calculate PCA for correlation input does not need any
transformation as it is applied automatically in the correlation computation. However, a
disadvantage in using correlation matrix to calculate the principal components are that they
give coefficients for standardized variables and are therefore less easy to interpret directly.
Thus, to interpret the principal components in terms of the original variables, each
coefficient must be divided by the standard deviation of the corresponding variables
(Jolliffe, 2002).

2.2 Deciding the number of components to retain

Mathematically, the choice of values for coefficients 0 is subjected to the restrictions given in
equations (2) and (3). Thus, the obtained principal components are in decreasing order of
variance, var(Z,)zvar(Z;)2..2var(Z,)=k; 21, 2..2%,. In practice, only the first k
numbers of principal components account for most of the variability of the original data, thus
keeping all the p principal components sound impractical. This mean, only the first k principal
components will be used in further analysis while the p-k principal components will be
ignored. However, there is no universally accepted method to do so because the decision is
largely judgemental and a matter of taste (Dillon & Goldstein, 1984). A number of procedures
to determine k have been suggested. Among the most common procedures are as follows.

2.2.1 Average eigenvalue

The most common criterion to determine the number of informative principal components
in PCA is the Guttman-Kaiser criterion (Jackson, 1993). Principal components associated
with eigenvalues (1) derived from a covariance matrix which are larger in magnitude than
the average of the eigenvalues, are retained. In the case of eigenvalues derived from a
correlation matrix, the average is 1.0 for the variables to retain. Therefore, any principal
component associated with an eigenvalue whose magnitude is greater than or equal to 1.0 is
choosen for further analysis. However, Rencher (1998) warned that this method works well
in practice but when it identifies wrongly, it is likely to retain too many components. It is
well known as simple and the most suitable criterion to be applied especially when
confronted with numerous variables.

2.2.2 Proportion of total variance explained

In a PCA model, each eigenvalue represents the level of variation of the original features
explained by the associated principal components. Another popular decision criterion is
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based on the proportion of the total variance explained by the principal components
retained in the model. If k-components are retained, then we may represent the cumulative
variance explained by the first k principal components by,

= @

Often, the researcher decides on a satisfactory value for fy and then determines k
accordingly. The obvious problem with the technique is to decide on an appropriate #. In
practice, it is common to select from 70% to 90% (Jolliffe, 2002). Because of such obviously
arbitrary, this approach has sometimes been criticized for its subjectivity (Kim & Mueller,
1978). While Jackson (1993) strongly argues against the use of this method except possibly
for exploratory purposes when little are known about the population of the data.

2.2.3 Scree plot

Perhaps much easier decision on k can be made based on graphical approaches as suggested
by Cattell (1966) called the scree plot. A scree plot is a plot of the eigenvalues versus the
index of the eigenvalue. With this approach, the eigenvalues of each component are plotted
in successive order of their extraction, and then an elbow in the curve is identified by
applying a straightedge to the bottom portion of the eigenvalues to see where they form an
approximate straight line (Dillon & Goldstein, 1984).

The value of k is given by the point at which the components curve above the straight line
formed by the smaller eigenvalues. Fig. 3 shows a case in which k is equal to three and the
straight line (shallow) begins at the forth until the last component. As we can observe from
Fig. 3, the third component is marked exactly at eigenvalue is equal to 1. Dillon and
Goldstein (1984) argue that this method is inconclusive when there is no obvious break or
there may be several breaks. And it become more troublesome when two breaks occur
among the first half of the eigenvalues, since it will be difficult to decide which of the breaks
reflect the correct number of components.

Scree Plot

Eigenvalue

N —= m

T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
12 45 6 7 8 9 10111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Component Number

Fig. 3. Illustration of the scree plot.
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3. Linear discriminant analysis

Linear discriminant analysis or discriminant function analysis or in short discriminant
analysis is a supervised technique for classifying objects into two or more groups, given the
measurements for these objects is from several features (i.e. sensor responses). It involves
deriving linear combinations of the independent features that will discriminate between the
a priori defined groups in such a way that the misclassification error are minimized (Dillon
& Goldstein, 1984). The discrimination can be accomplished by maximizing the between
group variance relative to the within-group variance. The basic discriminant analysis is the
one that involves only two-group problem which was first suggested by R. A. Fisher (1936).
In the two-group problem, the aim is to find a single linear composite of the predictor
features that could discriminate between the two groups. The linear composite then acts as a
new axis along which the groups were maximally separated.

In reality, we may encounter discrimination problems of more than two groups which
require an extension of the basic discriminant analysis called the multiple discriminant
analysis. The goal in multiple discriminant analysis is much similar with discriminant
analysis for two groups. Dillon and Goldstein (1984) describe in general, with k groups and
p predictor features, there are in total, min(p, k-1) possible discriminant functions (i.e. linear
composites). In most applications, since the number of features (p) is exceeding the number
of groups (k), at most k-1 discriminant functions will be considered. However, not all of
these functions show statistically significant variation among the groups, and fewer than k-1
discriminant functions is actually needed. Likewise in forming principal components in
PCA, discriminant functions are generated so that the scores of each new discriminant
function are uncorrelated with the scores of previously obtained discriminant function.
Thus, each linear composite is the new single function that maximizes the ratio of the
between-groups to within-groups variability, accordingly. Besides, the discriminant
functions are extracted in a decreasing order of accounted variation.

There are assumptions that need to be considered by researchers for obtaining optimal
procedure in the sense of producing smallest misclassification error rate. According to
Dillon and Goldstein (1984), for optimality, we assume (i) multivariate normality of the p
predictor features, and (ii) equal variance-covariance matrices in each of the k groups. They
added that the objectives of multiple discriminant analysis are for the most part is the
generalizations of those of the two-group problem. Among others it includes:

i. To find the linear composites with as large as possible between-groups variability
subject to each uncovered linear composites being uncorrelated with previously
extracted composites. The accounted variations for all linear composites are in
decreasing order.

ii. To determine whether the group centroids are statistically different.

iii. To determine the number of discriminant functions that is statistically significant.

iv. To successfully assign new signal or observation to one of the several groups.

v. To determine the predictor features that contributes most for discrimination among
groups.

The goal in constructing classification rules is to minimize the mistakes in assigning new
signals to its groups. Less mistakes means less error for the classification rules to correctly
allocate the signals. In real problem, often one has a set of data to be discriminated
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accordingly to g groups. However, using the same data for constructing a rule and
evaluating a rule is biased. As the matter of fact, it does not mimic the real use of
discrimination rule to classify a future object where the rule is constructed based on the
existing data. There are some techniques that can be considered in an attempt to avoid such
bias. Some of the techniques are re-substitution method, cross validation method which is
also known as sample-splitting method and leave-one-out method. Lachenbruch and
Mickey (1968) in (Krzanowski, 2000) proposed the leave-one-out method that was believed
to be able to overcome most problems inherent in the previous two methods. The technique
consists of determining the allocation rule using the sample data minus one observation and
then using the subsequent rule to classify the omitted observation. Repeating this procedure
by omitting each of the individuals in the two training set in turn yields, an estimate of the
error rates, the proportions of misclassified signals in the two training sets.

4. Materials and methods

The experiment was implemented in the Sensor Laboratory, Centre of Excellence for
Advanced Sensor Technology, University Malaysia Perlis. The aim is to identify and classify
different types of pure honey, beet sugar, cane sugar and adulterated samples (i.e. mixtures
of pure honey with cane sugar and beet sugar) by applying the low level data fusion and
intermediate level data fusion. PCA was employed to reduce the data dimension and
further classification was fulfilled by LDA.

4.1 Sample selection and preparation

In this experiment, 10 different brands of Tualang honey were purchased from the local
market with three different batches of each particular honey. While for the adulteration
purposes, two types of sugar solution namely beet sugar and cane sugar were imported
from Germany and United Kingdom respectively. Display of pure honey and sugar are
illustrated in Fig. 4 and all honey and sugar samples are summarized in Table 2.

Item Descriptions Group
AG Agromas 1
AS As-Syifa 1
ST Syair Timur 1
T3 Tualang 3 1
TB Tayyibah 1
TK Tualang King 1
TLH Tualang TLH 1
TN Tualang Napis 1
WT Wild Tualang 1
YB Yubalam Bahtera 1
BS Beet Sugar 2
Cs Cane Sugar 3
XXBS Pure Honey + BS 4 (20%), 5 (40%)
XXCS Pure Honey + CS 6 (20%), 7 (40%)

Table 2. Description and abbreviation of honey samples, sugar and adulterated samples
used in the experiments
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Based on the three different batches of each pure honey, three samples of 5ml was prepared
for further measurement. For adulteration samples, each pure honey was mixed with sugar
of different concentration (i.e. 20% and 40%) as shown in Table 3. Each pure sugar was also
measured. Each sampling of pure honey, sugar and adulterated were repeated ten times. In
total there were about 172 samples of pure honey, pure sugar and adulterated mixtures.

Percentage of

Pure Honey
20% pure honey 1:4 (ratio of pure honey /sugar solution)
40% pure honey 2:3 (ratio of pure honey /sugar solution)

Descriptions

Table 3. Description of mixture for different samples of honey and sugar

Fig. 4. Display of different samples of honey and sugar

4.2 Electronic nose setup and measurement

The e-nose used was Cyranose320 from Smith Detection™, consists of 32 non-selective
sensors of different types of polymer matrix, blended with carbon black composite,
configured as an array. It can be trained to analyze both simple and complex vapor mixtures
with equal ease. When the sensors are exposed to vapors or aromatic volatile compounds
they swell, changing the conductivity of the carbon pathways and causing an increase in the
resistance value that is monitored as the sensor signal. The resistance changes across the
array are captured as a digital pattern i.e. representative of the test smell (Dutta et al., 2006).

The e-nose setup for this experiment is illustrated in Fig. 5 and the setting of the sniffing
cycle is also indicated in Table 4. Each sample was drawn from the bottle using 10ml syringe
and kept in a 13 x 100 mm test tube and seal with a silicone stopper. Each sample was
replicated ten times. Before measurement, each sample was placed in a heater block and
heat up for 10 minutes to generate sufficient headspace volatiles. The temperature of sample
was controlled at 50 + °C during the headspace collection.

Preliminary experiments were performed to determine the optimal experimental setup for
the purging, baseline purge and sample draw durations. Ten seconds baseline purge with 40
seconds sample draw produced an optimal result (result is not shown). Baseline purge was
set longer to ensure residual gases were properly removed since all the samples are in a
liquid form and contains moisture. The pump setting was set to medium speed during
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sample draw. The filter used is made up of activated carbon granules and has large surface
area which is effective to remove a wide range of volatile organic compounds and moisture
in the ambient air. The experiment was carried out using e-nose for a variety of honey
samples followed by sugar and adulterated samples.

Ambient Air

Charcoal
Filter

Purge
Inlet

Purge Outlet

Headspace
Inlet

Sample Inlet

z 7
| [ ]
Heating Block—"
HTS320 =
Computer
Digital Hotplate
Stirrer

Fig. 5. E-nose setup for headspace evaluation of honey, sugar concentration and adulteration
sample

Cycle Time (s) Pump Speed

Sampling Baseline Purge 10 120 mL/min

Setting Sample Draw 40 120 mL/min
Idle Time 3 -

Air Intake Purge 40 120mL/min

Table 4. E-nose parameter setting for honey, sugar and adulterated samples assessment

4.3 Electronic tongue setup and measurement

The chalcogenide-based potentiometric e-tongue was made up of eleven distinct ion-
selective sensors from Sensor Systems (St. Petersburg, Russia). The e-tongue system shown
in Figure 6 was implemented by arranging an array of potentiometric sensors around the
reference probe. Table 5 describes the potentiometric sensors used in this experiment. Each
sensor output was connected to the analogue input of a data acquisition board (NI USB-
6008) from National Instruments (Austin TX, USA).

A 10% (w/v) solution of honey in distilled water was prepared and stirred for 3 minutes at
1000rpm before making any measurements. Each sample was replicated ten times. For each
measurement, the e-tongue was steeped simultaneously and left for two minutes, and the
potential readings were recorded for the whole duration. After each sampling, the e-tongue
was rinsed twice using distilled water (stirred at 400rpm for two minutes) to remove any
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sticky residues from previous sample sticking on the sensor surface to avoid contaminating

of the next sample.

Ag/AgCl

Arrangement of
chalcogenide sensor

array

NI USB 6008

Honey solution

Chalcogenide Sensor v
array

(NiDaQ)

Virtual Instrument
(VI) Interface

Pattern Recognition

v

Multivariate
analysis

Fig. 6. E-tongue setup for headspace evaluation of honey, sugar concentration and

adulterated sample

Sensor Label  Description

Fe3+ Ion-selective sensor for Iron ions

Cd2+ Ion-selective sensor for Cadmium ions
Cu2* Ion-selective sensor for Copper ions
Hgz* Ion-selective sensor for Mercury ions
Ti+ Ion-selective sensor for Titanium ions
S Ion-selective sensor for Sulfur ions
Cr(VI) Ion-selective sensor for Chromium ions
Agt Ion-selective sensor for Argentum ions
Pb2+ Ion-selective sensor for Plumbum ions
HI 5311 pH sensor

HI 2111 Reference probe using Ag/AgCl electrode

Table 5. Chalcogenide-based potentiometric electrodes used in the e-tongue.

4.4 Data preprocessing

The fractional measurement method is essential when using a multi-modalities sensor
fusion. This technique is often known as baseline manipulation and was applied to
preprocess the data of both modalities (Gardner & Bartlett, 1999). The maximum sensor
response, S; is subtracted from the baseline, Spand then divided again by the So. The formula
for this dimensionless and normalized Sy, is determined as follows:
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Sfmc = [Sf - SO]/SO (5)

This gives a unit response for each sensor array output with respect to the baseline, which
compensates for sensors that have intrinsically large varying response levels. It can also
further minimize the effect of temperature, humidity and temporal drifts (Gardner &
Bartlett, 1999).

The data from different modalities were processed separately and all sensors were used in
this analysis. In the case of the e-nose, Sp is the minimum value taken during the baseline
purge with ambient air and S; was measured during the sample draw. Each sampling cycle
was repeated three times and the average was obtained for each of ten replicated samples.
For the e-tongue measurements, Sy (baseline reading) is the average reading of distilled
water, while S; is the sensor reading when steeped in the solution. The steeping cycle was
repeated three times for each sample and the average was obtained for each ten of the
replicated samples. Each Sg, data point from each e-nose and e-tongue sensor formed the
Sfac matrix for further analyses.

4.4.1 Low level data fusion

For the purpose of low level data fusion, measurements recorded from both sensors were
fused during the data level. For the e-nose data, there were 720 observations with 32
features from 16 different honey, sugar and adulterated samples. Likewise for the e-tongue
data, 720 observations with 11 features from 16 different honey, sugar and adulterated
samples were recorded. As a result, a new dimension for the fused data was represented by
720 observations with 43 features. At this stage, the original data from both measurements is
formed in a data matrix, and is described in Fig. 7 as follows. No transformation is being
applied at this stage.

e-tongue e-nose Fused Data Pfoéi?zz(ir? "
n |:> |:> matrix

(720 x 11) (720 x 32) (720 x 43) Select 4 >1

(nlxpl) (nzxpz) (I’l Xp) ~ 6 PCs

Fig. 7. lllustration of fusing data in low level data fusion

The correlation input matrix from the fused data was proceeded for the PCA calculation. For
the purpose of classification in LDA, the reduced number of principal components was
selected based on magnitude eigenvalues greater or equal to 1 (4, >1). The result from the
scree plot is also applied for comparison and confirmation purposes.

4.4.2 Intermediate level data fusion

In this framework, fusion was applied after feature extraction process. For that purpose,
PCA was calculated based on the correlation matrix from both datasets. The number of
principal components to retain is decided based on the associated eigenvalues with
magnitude greater than or equal to 1.0 (4, >1). The results were double checked using the
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scree plot of each dataset. Fig. 8 illustrates the related processes. The resulting principal
components from each sensor which is three principal components were then combined
before the classification using LDA is performed.

Data Feature Extraction
e-tongue PCA based on
correlation matrix Fused
720x11 =) Select 4, >1 — Features
(n xp) ~3 PCs
e-tongue
3 PCs
+
e-nose PCA based on e-nose
correlation matrix 3PCs
720x32 =) Select 4 >1 —
(n, x p,) ~3 PCs

Fig. 8. Illustration of fusing extracted features in intermediate level data fusion

5. Results and discussion

Before the analyses of PCA was continued, a thorough study on each and every selected
principal components (i.e. at low level data fusion) considered for classification using LDA
was performed and the resulting classification error rate for each case are highlighted in Fig.
9. Comparisons and evaluations of classification error rate were performed differently based
on correlation or covariance input matrix, procedure to evaluate performance of leave-one-
out approach and the elimination of the least important of principal components (i.e.
elimination begin with principal components of the smallest eigenvalue). Table 6 shows the
total of variance explained using the correlation and covariance matrix input for the low
level data fusion.

Number of Correlation Matrix Covariance Matrix
Retained ] ]

Principal Total Eigenvalue Error Rate Total Eigenvalue Error Rate
Component (%) (Leave-one-out) (%) (Leave-one-out)
2 72.070 0.546 77.277 0.546
3 77.836 0.500 86.640 0.500
20 99.581 0.151 99.999 0.153
21 99.649 0.151 100.000 0.150
42 99.998 0.142 100.000 0.142
43 100.000 0.144 100.000 0.144

Table 6. Total variance explained for low level data fusion
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Fig. 9. Different classification performance for correlation and covariance input matrix with
leave-one-out approach.

Fig. 9 clearly reveals similar classification performance of correlation and covariance input
matrix with a leave-one-out approach for the low level data fusion. It should be highlighted
here that the performance of classification for the correlation and covariance input is not
much differ because the standard deviations for each features in the fused dataset is
slightly small.

In reality, good classification performance is not determined by the greater number of
features included in data. What we need is features with the most discriminative effect
which often measured by the error rate. In the case of low level data fusion, the PCA based
on the correlation matrix of fused data was used to extract the most important features in a
linear combination form. Table 7 displays the total of variance explained for the principal
components of low level data fusion. Six principal components with eigenvalues greater
than or equal to 1.0 were retained to be the input for classification using LDA. It can be seen
that with only six linear combinations of the original features out of 43-principal-
component, we only loose about 9.3% of information to proceed with classification task. The
scree plot in Fig. 10 also shows that six principal components should be retained.

Extraction Sums of Squared Loadings
Component - -

Total % of Variance| Cumulative %

1 27.167 63.179 63.179

2 3.823 8.891 72.070

3 2.480 5.767 77.836

4 2.223 5.169 83.005

5 1.966 4572 87.577

6 1.356 3.153 90.730

Table 7. Total variance explained for low level data fusion
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Fig. 10. Scree plot for the low level data fusion

Table 8. Total variance explained of e-tongue data for intermediate level data fusion

Extraction Sums of Squared Loadings
Component
Total % of Variance | Cumulative %
1 4.023 36.573 36.573
2 2.232 20.289 56.862
3 1.930 17.549 74411

Extraction Sums of Squared Loadings
Component
Total % of Variance | Cumulative %
1 26.652 83.287 83.287
2 2.336 7.300 90.587
3 1.287 4.023 94.610

Table 9. Total variance explained of e-nose data for intermediate level data fusion

Table 8 and 9 display the total of variance explained for the principal components of
intermediate level data fusion. Based on the eigenvalues greater than or equal to 1.0 from
both e-tongue and e-nose data, three principal components each were retained to be the
input for classification using LDA. With the three principal components selected from e-
tongue and e-nose data, we loose about 31% of information which is quite high compared to
the low level data fusion. The scree plot in Fig. 11 seems agrees that three principal
components are adequate to represent the original features.
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Fig. 11. Scree plot for (a) e-tongue data and (b) e-nose data low level data fusion

The selected principal components for low and intermediate level data fusion are further
analyzed. The classification and prediction of the class of different types of pure honey, sugar,
and adulterated samples were carried out using LDA with leave-one-out procedure. Table 10
indicates the significant differences in means of the predictors (i.e. the selected principal
components) between the seven groups for both fused models. The results indirectly show the
importance of the principal component to the discrimination function. Based on the Wilk’s
Lambda, principal component with smaller value means it is an important predictor. The most
important principal components to the least important were arranged according to the italic
number. Note in contrast, the bigger the Wilk’s Lambda, the smaller the F values. Besides
knowing the important predictors for the discrimination function, it is worth to investigate
whether the assumption of homogeneity of covariance matrices is met. Table 11 displays the
Box’s M test for both data fusion models. The significant values of both data fusion models
indicate that the covariance matrices are not similar for the seven groups.

Tests of Equality of Group Means
Low Level Data Fusion Intermediate Level Data Fusion
L‘;Vrﬂll;ja F Sig. L‘;Vrﬁll;cslla F Sig.
PC1 7775 34.109 .000 PC1_EN 7945 30.742 .000
PC2 .6862 54.404 .000 PC2_EN 6122 75.467 .000
PC3 7414 41.578 .000 PC3_EN .9286 9.206 .000
PC4 7393 42.005 .000 PC1_ET 7184 46.707 .000
PC5 3991 178.960 .000 PC2_ET 6763 56.940 .000
PCé6 9216 10.183 .000 PC3_ET 4231 162.029 .000

Table 10. Test of equality of group means to identify the important variable to the
discrimination function
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Test Results
Low Level Intermediate Level
Box's M 3194.447 Box's M 3450.654
F Approx. 22.505 F Approx. 24.310
df1 126 df1 126
df2 6677.884 df2 6677.884
Sig. .000 Sig. .000

Table 11. Test null hypothesis of equal population covariance matrices.

Based on Table 12 and Table 13, all the first five discriminant functions for low and
intermediate level data fusion are able to explain 100%of the total variance. However, the
canonical correlation values greater than 0.5 reveal that only the first two discriminant

functions from both fusion model describe strong relationship.

Eigenvalues
Function Eigenvalue % of Variance Cumulative % CCo ir;(:)lr; ltcf)L
1 7.151 75.1 75.1 937
2 2177 229 98.0 .828
3 106 1.1 99.1 .309
4 .076 .8 99.9 267
5 .008 1 100.0 .090
6 .000 .0 100.0 .000

Table 12. Percentage of variance explained for each discrimination function for low level

data fusion.

Eigenvalues
Function Eigenvalue % of Variance Cumulative % CCo iI;eOII; ltjiln
1 6.365 74.3 74.3 .930
2 2.015 23.5 97.8 .818
3 .105 1.2 99.1 309
4 074 9 99.9 263
5 .006 1 100.0 077
6 .000 .0 100.0 .002

Table 13. Percentage of variance explained for each discrimination function for intermediate

level data fusion.
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The best predictors in predicting the types of honey, sugar, and adulterated samples from
the respective discrimination functions of each data fusion model are marked italic in Table
14. The highest value in each function (column) marks as the best predictor. For example,
the best predictor for the first discriminant function of the low level data fusion is the third
principal components (PC3).

Standardized Canonical Discriminant Function Coefficients

Function (Low Level Data Fusion)

1 2 3 4 5 6
PC1 -420 .758 277 583 404 -165
PC2 -342 .902 .353 -.500 -.018 .265
PC3 1.299 -128 139 275 .057 .661
PC4 1.097 -452 352 -312 497 -281
PC5 -1.236 -.580 A71 -.008 179 218
PC6 115 -317 716 193 -591 -207

Standardized Canonical Discriminant Function Coefficients (cont’d)
Function (Intermediate Level Data Fusion)

1 2 3 4 5 6
PC1_T 1.238 -117 161 340 -.089 .628
PC2_T 968 -.363 384 -144 621 -166
PC3_T -1.263 -512 146 .074 177 258
PCI_N -.084 615 -153 562 .636 -.027
PC2_N -.020 923 434 -320 119 275
PC3_N .005 .032 741 551 -.287 -297

Table 14. Indication of relative importance of the independent variables in predicting the

groups for both data fusion models.

Graphical representations of the classification for low level data fusion and intermediate
level data fusion are as of Fig. 12 and Fig. 13 respectively. Table 15 and 16 describes in detail
the classification results for each fusion model. It seems that the classification of several
types of pure honey (group 1), beet sugar (group 2) and cane sugar (group 3) were very
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good. Confusions occur a lot for adulterated samples of group 4, 5, 6 and 7. As we can see
the classification performance of the intermediate level data fusion based on the leave-one-
out approach is slightly better than the classification performance of the same approach of

low level data fusion with 73.5% and 71.5% correct classification respectively.

Cross-validated Classification Results of Leave-One-Out Procedure

Predicted Group Membership

Group Total
2 3 4 5 6 7
Count 1 300 0 0 0 0 0 0 300
2 0 10 0 0 0 0 0 10
3 0 0 10 0 0 0 0 10
4 6 10 4 49 0 31 0 100
5 0 0 8 0 41 4 47 100
6 1 6 0 35 0 58 0 100
7 0 0 0 0 53 0 47 100
Table 15. Classification performance for low level data fusion
Cross-validated Classification Results of Leave-One-Out Procedure
Predicted Group Membership
Group

1 2 3 4 5 6 7 Total

Count 1 300 0 0 0 0 0 0 300

2 0 10 0 0 0 0 0 10

3 0 0 10 0 0 0 0 10

4 7 9 4 46 0 34 0 100

5 0 0 10 1 45 5 39 100

6 2 6 0 23 4 65 0 100

7 0 0 0 0 47 0 53 100

Table 16. Classification performance for intermediate level data fusion
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Fig. 12. Seven groups discriminating plot for low level data fusion
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Fig. 13. Seven groups discriminating plot for intermediate level data fusion

6. Conclusions

This study focuses on the application of PCA in reducing the dimension of fused data from
e-tongue and e-nose at low level and intermediate level data fusion. Previous studies on
PCA have proven that this method is strongly advisable to be applied before performing
any classification. In this study, we have shown the ability of PCA to create new variables in
the form of principal components of the original features. Even though with some loss of
information, special characteristics preserved in the selected principal components have
made the new variables as reliable predictors in the discrimination and classification
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process. In order to improve the classification performance of the multi sensor data fusion
models in this study, there are two special attentions that should be given. Firstly, to fulfil
the discriminant analysis assumption on the homogeneity of covariance for each group, and
secondly to study and overcome the violation effect to discriminant analysis method caused
by the existence of outliers. In future, we will attempt to solve these problems.
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1. Introduction

Nowadays we are living in the information age with the fast development of computational
technologies and modern facilities. Larger data sets are produced by experiments and
computer simulations. In contrast to conventional scientific approaches where simple
models are built to fit the data, automated procedures are urged to obtain insights into the
core messages carried by the large volume of data.

Many problems encountered in materials science involve complicated data models. For
example, in biological materials, the collective motion of protein domains usually defines
the structural and biological activity of proteins, which should be separated from the
irrelevant localized motion of atoms and molecules with high-frequencies. An efficient
approach to capture the essential subspace of protein dynamics can remarkably reduce the
complexity and directly uncovers the underlying physics (Amadei et al., 1993). On the other
hand, nanostructures, which are widely used in nanoscale devices, also have several
functional modes that are closely tied to their operation. To visualize them in a thermal and
noisy environment requires some insightful treatment (Xu et al., 2008).

Principal component analysis (PCA), as invented by Karl Pearson in 1901, is a procedure to
convert a set of correlated variables into uncorrelated ones called principal components
(Joliff, 2002). Using mathematical algorithms such as eigenvalue decomposition of the
covariance tensor or single value decomposition (SVD), PCA methods find successful
applications in many fields as covered in this book. Figure 1 shows the principal modes of
ubiquitin in solvent and carbon nanotubes (CNTs) under water flow, as mined from their
correlated dynamics in solvents.

In this chapter we will introduce the applications of PCA method in materials science, which
not only assist to find useful patterns from the detailed dynamics of atoms and molecules,
but also advances the development of PCA technique itself.

2. The mathematics and algorithms of PCA

There are many areas of scientific explorations that lead to enormous quantities of data.
Post-processing of such a huge data to extract only the most valuable information is often a
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(b)

Fig. 1. Applications of principal component analysis (PCA) methods in (a) protein dynamics
(Yang et al., 2009) and (b) dynamics of carbon nanotubes under water flow (Chen & Xu, 2011).

tedious task. In a very broad perspective, PCA belongs to a particular set of techniques
aimed at reducing a large dataset to a smaller one which can describe the essential
characteristics of the underlying system at hand. Molecular dynamics (MD) is a powerful
and widely utilized approach in simulating various materials properties and in this chapter,
we will focus on the usefulness of PCA in analyzing trajectories generated by MD.

2.1 PCA on MD trajectories

A typical MD trajectory consists of the information of time-evolution of the coordinates of all
the constituent atoms forming the system being studied. Commonly used MD timesteps are on
the order of 1 fs while the simulation time may range from a few to tens of nanoseconds, in
any moderately sized configuration. A single resultant trajectory can thus easily contain a
huge amount of data. For an N-atom system, the input dataset for PCA can be constructed as a
trajectory matrix in which each column contains a cartesian coordinate for a given atom at
each output timestep (x(t)). Prior to performing PCA, it is ususally necessary to remove any
net translational or rotational motion of the system by fitting the coordinate data to a reference
structure to obtain the proper trajectory matrix (X). The standardized trajectory data is then
utilized to generate a covariance matrix (C), elements of which are defined as

Cij = {0 = (x ) (x5 = (x;))) 1)

where (...) denotes an average performed over the all the timesteps of the trajectory. The
next step consists of diagonalization of the symmetric 3Nx3N covariance matrix and can be
achieved via eigenvector decomposition method as

C=TATT )

where T is a matrix of column eigenvectors and /A is a diagonal matrix containing the
corresponding eigenvalues. This procedure thus transforms the original trajectory matrix in
a new orthornormal basis set composed of the eigenvectors. The eigenvalues themselves are
indicative of the mean squared displacements of atoms along the corresponding
eigenvector. There will be 3N resulting eigenvalues if the number of configurations (M) is
greater than 3N. If M<3N there will be the number of eigenvalues will be reduced to M.
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The simplest manner of visualizing these results requires sorting the eigenvectors in a
descending order in their eigenvalues. The plot of eignevalues against the index of the
corresponding eigenvector can then be obtained and is called a ‘scree plot.
Characteristically, a scree plot shows that only a few first eigenvectors possess large
eignevalues with the higher indexed vectors having eignevalues many orders of magnitude
smaller. As a result, most of the variance in the original data is contained and described by
only a few first modes. It is then imperative to presume that the motions along these
‘essential eigenmodes’ dominate the dynamics of the systems and contain the most
important global information.

In simple systems, visualization of the components of individual eigenvector can be helpful
to gauge the nature of the eigenmode. Followed by identification of a subset of important
eigenmodes, further analysis detailing each mode can be undertaken by projecting the
original trajectory along a given (or a set of) eigenvector. The corresponding projection
matrix (P) can be obtained as

P = XT. €)

The time evolution given by the projection matrix yields a manner in which the excitation
amplitude of a given eigenvector can be examined. The column vectors in P (p(t)) are called
as the ‘principal components’.

To analyze the motion along any given eigenvector, the column vector from P multiplied by
the corresponding eignevector in TT yields a reduced trajectory containing motion only
along the selected mode. Such filtering of modes can be performed for a single or more than
one eigenmodes as well and the resulting trajectory provides a visual guidance to the nature
of the mode.

A quantitive measure of similarity (S) between different principal modes can be obtained by
taking inner product of the corresponding eigenvectors (v; amd w;) from T as follows:

Sij = vi.Wj (4)

The same concept can be further extended to calculate a measure of overlap (O(v,w))
between an essential subspace spanned by eigenvectors w; (j=1,2,..,n) and another spanned
by eigenvectors v; (i=1,2,..,m) as (Amadei et al. 1999; Hess 2002):

0(w,w) = -1, T, Sy )

The overlap will be equal to unity if the subspace spanned by v; is a subset of w;.

2.2 Computational implementations

Apart from long-time MD simulations to generate sufficient trajectory data, the
diagonalization of the 3N X 3N covariance matrix poses the most computationally
exhaustive step during PCA. The computational expense as well as memory requirements
increase roughly with the square of the number of atoms in the system. As a result, for quite
large systems (which can easily be the case when considering large biomolecules), use of
efficient algorithms such as QR decomposition is required for matrix diagonalization. Due
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to the widespread use of PCA, some existing molecular dynamics programs including open
source packages such as GROMACS (Hess et al., 2004) and AMBER (Case et al., 2005) and
commercially available Accelrys Materials Studio have incorporated implementations of
PCA. Another helpful utility is Interactive Essential Dynamics (IED) which can use the
output of PCA performed with GROMACS/AMBER to visualize filtered trajectories via a
graphical user interface (Morgan, 2004).

2.3 Demonstrative calculations on a single walled carbon nanotube

Emergence of CNTs and graphene as potential candidates for nanoscale machines has led to
their exhaustive probing by using molecular dynamics. It is likely that PCA can prove
extremely useful in uncovering many novel dynamical features in such scenarios. In this
section, we thus apply PCA to MD simulations of a single walled carbon nanotube (SWNT)
with its chirality specified as (5,5). Two different approaches viz. fine-grained and coarse-
grained models are studied. The fine-grained approach consists of the regular full atomistic
simulations on the SWNT configuration. The other approach adopted from Buehler et al.
consists of approximating the structure of the SWNT as finite-sized beads connected with
stiff springs (Buehler, 2006).

2.3.1 Fine-grained (fully atomistic) approach

A long (5,5) SWNT configuration with lengths ~ 100 nm (8000 atoms) is considered, a
schematic of which is shown in figure 2(a). The intratube C-C interactions are described by
Adaptive Intermolecular Reactive Bond Order (AIREBO) potential (Stuart et al., 2000) and
MD simulations are performed on the equilibrated structures in a canonical ensemble at 300
K. Temperature control is exercised through the use of Berendsen thermostat (Berendsen et
al., 1984).

Fig. 2. (a) A schematic of atomistic model of a (5,5) SWNT and (b) a corresponding coarse-
grained bead-spring model.

All the simulations are performed using the massively parallelized open source MD
software LAMMPS (http:/ /www.cs.sandia.gov/~sjplimp/lammps.html) with a timestep
of 1 fs (Plimpton, 1995). At first, the system is thermalized at 300 K for 100 ps. The
production run is carried out for 10 ns and the obtained trajectories are subjected to PCA
using various tools available in GROMACS. For analyzing the long tube, the production run
trajectory is sampled every 50 ps. This sampling rate is chosen to focus on low frequency
bending modes and to match the time-scale for a fair comparison with coarse-grained model
described in the next subsection.
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2.3.2 Coarse-grained approach

Fully atomistic simulations become increasingly computationally prohibitive as the number
of atoms in the system grows. As a result, especially when the study of the structural
properties at micro-scale is required, the precise atomistic information is rendered
redundant. A coarse-graining approach delineated in the work of Buehler et al. can be
useful to circumvent the computational expenses and allow for investigation on longer
scales. In this approach, a SWNT is essentially modeled as a linear chain of beads connected
via springs as depicted in figure 2(b). The properties of individual beads (such as mass) and
the springs (such as tensile stretch, angle bend and torsion) can be determined from full
molecular dynamics. In this work, we adopt the same approach and coarse-grain a 100 nm
long (5,5) CNT as a 100 beads-chain with an equilibrium inter-bead separation distance of 1
nm. All the required parameters can be found in (Buehler 2006) and the dynamics of this
system is simulated using LAMMPS. The time-step chosen for the dynamics is 50 fs and the
production run is carried out for 10 ns. Using a sampling rate of every 1000 timesteps,
PCA is performed on the coordinates’” data of all the beads in an analogous way as
explained before.

2.3.3 PCA results

Figure 3 shows the scree plot for both the coarse-grained and the atomistic model of the
CNT for the first 30 modes. It can be observed in either case that only a few of the first
modes occupy high eigenvalue position and thus contain the essential information of the
bead dynamics. Modes at higher indices correspond to smaller eigenvalues. Although both
the models show a high-eigenvalue first mode, as compared to the coarse-grained model the
atomistic model shows a more gradual decrease in the eigenvalues. One of the reasons in
the difference is that the correspondance between the similarly indexed modes from the two
models is not strictly perfect and as described later, the atomistic system displays a slighly
more complicated hierarchy of modes.
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Fig. 3. Eigenvalues against the index of eigenvector obtained from PCA on (a)
coarse-grained model of (5,5) SWNT and (b) full atomistic model.

As the coarse-grained system is quite simple, it is intuitive to take a look at the components of
individual eigenvectors. For the first five modes, the eigenvector components corresponding to
x, y and z coordinates of each bead’s center are shown in figure 4. It becomes apparent that the
eigenvectors indeed represent the fundamental vibrational modes of the bead-spring system
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and its harmonics which resemble to that of the vibrational modes of a strectched spring.
Being a slightly more complex system than a vibrating string, the individual principal modes
in the bead-spring model can further be seen as the superimposed vibrational modes along X
and Y directions. A rough estimation of the mode frequency can also be obtained from their
projections on the original trajectory. Note that within a coarse-grained model, any of the
modes constituting radial displacements cannot be present and thus, the top principal modes
revealed are the bending-like oscillatory modes.
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Fig. 4. The components of the most significant five eigenmodes for the (5,5) SWNT. The
principal modes resemble fundamental vibrational mode and its harmonics for a stretched
string.

The components of the first five eigenvectors of the atomistic model can also be examined in a
similar manner and are shown in figure 5 such that the atom numbers are indexed
consecutively along the circumference and length. With respect to full atomic contributions (all
the X, Y and Z variables) certain qualitative similarities between the mode patterns among the
two models can be easily observed. Similar to the bead-spring model, the first eigenmode is
the fundamental bending mode of the CNT while the next higher modes represent more or
less the sequentially higher harmonics as well. However, a closer look reveals a slightly more
complexity, e.g. in the nature of 3rd and 4th principal modes. It can be noted that unlike the
bead-spring model, the third mode here appears to be a superimposition of the third harmonic
along X-axis and second harmonic along the Y -axis of CNT.
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Fig. 5. The components of the first five significant eigemodes for a 100 nm long (5,5) SWNT.

These simple representative calculations thus demonstrate how PCA can help identify
various essential modes in a molecular system. In addition to MD simulations, mesoscale
simulations of CNTs have started to appear in recent literature. Here, we have purposefully
chosen comparisons of atomistic simulations with coarse-grained model of a long carbon
nanotube to focus mainly on the out-of plane bending modes. Comparisons between
different simulation models for studying material properties at different scales can thus be
seen greatly assisted with the use of PCA.

3. Applications in biology, advantages and limitations of PCA
3.1 PCA in biomolecular MD

Biological systems are of immense research interest not only because of the fundamental
mysteries of living systems involved, but also because of the possibilities of imitating
principles of natural designs in advanced technologies. Proteins, which are the basic
building blocks of life, exhibit a striking functional dependence on their conformation. At
the cellular level, a variety of biological machinery work precisely amidst extremely noisy
environments. Extraction of physical principles that govern such directional dynamics may
prove crucial in constructing their artifical counterparts at the molecular level. MD
simulations of large biomolecules in fact presented the need of introduction of PCA
(Amadei et al., 1993). Amadei et al. proposed that except for the degrees of freedom that
belong to the ‘essential subspace’ of proteins, all the other modes are largely irrelevant
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Gaussian fluctuations. The technique quickly became popular in analyzing MD simulations
of a large number of biomolecules.

Folding of a protein in a well defined characteristic three-dimensional structure from a
random coil structure is one of the most crictical biophysical processes, and PCA has proved
vastly useful in its exploration using MD. Ligand binding in proteins such as Myoglobin is
strongly influenced by very specific conformational changes near the binding sites. Touriner
and Smith investigated MD simulations of hydrated myglobin and found a single principal
mode primarily responsible for a dynamical transition appearing at about 180 K (Tournier &
Smith, 2003). A class of proteins called membrane proteins such as gramicidin, serves a
crucial role of formation of selective ion channels that regulate fluxes across the cell
membrane. Recently, Kurylowicz et al. probed the role of anharmonic principal modes such
as tilting of peptide planes towards its function as ion channel in gramicidin-A (Kurylowicz
et al., 2010). Here we resctrict ourselves to enlist only a few representative examples from
the vast literature exists pertaining to PCA in biololecules.

3.2 Inadequacies of PCA

PCA can be performed on either a long single MD trajectory or an ensemble of short
trajectories. The latter route is usually advocated since in biomolecular MD simulations, since
it is well known that PCA presents difficulties with respect to proper sampling (Balsera et al.
1996; Caves et al. 1998). An excellent analysis about reliability of PCA with respect to sampling
issues can be found in the work of Skjaerven et al. (Skjaerven et al., 2011). PCA perfomed on
multiple independent runs of the protein systems under the same simulation conditions except
the initial atomic velocities, revals noticable differences (de Groot et al., 1998; Skjaerven et al.,
2011). While PCA on a single trajectory unambiguosly identifies essential modes during the
simulation time, significant differences that can be found among independent runs suggest
inadequancy of the sampling of dyamics in the trajectory.

Computational limitations make MD possible on ns timescale while many conformational
transitions in proteins, nucleic acids may occur on ms or greater scale. As a result, a single
MD trajectory may not entail all possible modes that are essential towards dynamical
conformational changes. A direct consequence of such considerations is that even for a
single trajectory, the principal modes obtained during one observation window may differ
from an another window. While this remains true, a very long (few hundreds of ns) MD
simulation may not necessarily yield highly convergent eigenvectors from PCA as
compared to simulations with a timespan on the order of tens of ns. Even though efforts
have been put in devising methods of enhanced sampling of essential dynamics (Amadei et
al., 1999; Hess, 2002), convergence of eigenmodes remains a critical issue.

3.3 Variants of standard PCA

In certain cases, it is also possible and perhaps more useful to disregard less important
internal coordinates such as bond lengths and restrict the consideration to dihedral angles.
Implementation of PCA based on dihedral angles is commonly referred to as dihedral PCA
(dPCA) and was introduced by Mu et al. (Mu et al., 2005). The developement of this
approach is mainly aimed at reduction in the dimensionality of the input covariance matrix
itself. It has been shown that the dPCA yields results generally equivalent to those obtained



Applications of Principal Component Analysis (PCA) in Materials Science 33

with the conventional cartesian PCA (Altis et al., 2007). Further, instead of MD simulations,
it is also possible to use the experimentally generated structural data such as from Nuclear
Magnetic Resonance (NMR) or X-ray techniques, for performing PCA. In such a case, an
ensemble containing a sufficient number of structural models of the biomolecule needs to be
determined from the aforementioned experiments (Howe, 2001; Yang et al., 2009). Although
analysis on structural analysis cannot resolve precise atomic motion and is thus of ‘coarse’
nature as compared to MD simulations, it can still provide a crude approach to compare MD
models with experimental data (van Aalten et al., 1998).

3.4 Comparison with Normal Mode Analysis (NMA)

In its standard form, NMA is essentially a harmonic analysis technique which relies on an
assertion that the functionally important modes can be extracted as the low frequency
normal vibrational modes. The underying assumption is that the conformational energy
surface for a given system is approximately parabolic at the global energy minimum. NMA
has also been vastly used in structural biology to gain an understanding of the fundamental
functional modes in macromolecules such as proteins, lipids and nucleic acids. For a
comprehensive account of NMA in reference to biological simulations, reader is referred to
an excellent review by Hayward and Go (Hayward & Go 1995).

As NMA demands the structure to be in its lowest energy state, it first needs to be subjected

to thorough energy minimization. The next step consists of evaluation of the ‘Hessian’ (H),

which is a matrix of second derivatives of the energy (U) with respect to displacements
along cartesian coordinates (x;), and is calculated as
au

Hy; = ©)

6xi6xj

The diagonalization of the mass weighted Hessian (M~'/2HM~1/2) where the diagonal
matrix M contains the information of atomic masses then yields the eigenvectors and
corresponding eigenfrequencies. As opposed to PCA, the normal modes are sorted in
ascending manner according to their frequencies.

The fundamental difference between NMA and PCA is in the harmonicity of the resulting
modes. Due to the underlying assumption, NMA invariably is restricted to small amplitude
harmonic fluctuations around the energy minimum. PCA on the other hand, deals with the
positional fluctuations and is thus well suited to study anharmonic vibrations. Furthermore,
existing evidence suggests the functional modes in biomolecules to be anharmonic in nature
(Amadei et al., 1993; Hayward et al., 1995), which implies that at the physiological
temperatures, the underlying assumption of NMA becomes too drastic to be relevant. As a
result PCA can be viewed as the more apt technique among the two for exploring dynamical
transitions. Yet, standard NMA and its variants such as elastic network NMA have been
quite extensively utilized in understanding low frequency functional modes in proteins.
Due to the need of long-time MD trajectories, PCA is much more computationaly exhaustive
as compared to NMA whereas NMA simply requires a single lowest energy configuration.

4. Applications of PCA in nanomaterials

Compared to biological systems, application of PCA in materials simulations has been
sparse. The possible reasons include a lack of material systems for which detailed molecular
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motions influence the macroscopic dynamical behavior significantly. However, past couple
of decades have witnessed a huge increase in interest in nanoscale transport and mechanical
phenomena such as carbon nanotube based hyper-GHz mechanical oscillators, resonators,
rotational bearings and actuators (Bourlon et al., 2004; Cumings & Zettl 2000). Double
walled CNTs (DWNTs) and multiwalled CNTs are blessed with a rare combination of
strong mechanical elements in the form of constituent SWNTs which interact weakly via van
der Waal's forces. This sets up an ideal scenario to construct devices in which relative inter-
tube rotation or translation can be achieved at the expense of negligible frictional loss. While
the required technology at the atomic level is yet to mature, theoretical and molecular
dynamics based approaches have opened up proactive paths of investigating characteristics
of such nanomachines. This is one of the promising fields of materials research that PCA can
fruitfully debut in.

4.1 Analyzing dynamics of CNT based nanomachines

In our previous work, we were able to deduce analogies between dynamics of a rapidly
translating SWNT inside a larger SWNT and an aircraft flying near supersonic speed (Xu et
al., 2008). It was discovered that for most of the travelling speeds, the core tube can translate
without any significant frictional dissipation. However, at certain specific values of axial
velocities, abrupt increase in frictional effects can take place. Such kind of energy dissipation
points to possibility of resonance effects at particular travelling velocities and is in contrast
with the phononic friction commonly observed in nanodevices. We used PCA to gain
insights into the nature of modes present in the nanotube-shuttle systems, in one of the first
direct applications of PCA in analysing nanodevices.

Using detailed PCA, the underlying principal modes constituting the total motion in the MD
trajectories were identified as shown in figure 6. The striking feature in the scree plots
corresponding to those initial velocities (1000 m/s and 1900 m/s) at which frictional
enhancements appear can be observed in the excitation of high indexed vibrational modes.
It was found that at the detrimental critical speed range, a resonance occurs between the
‘washboard frequency” and the radial breathing mode (RBM) frequency of the constituent
DWNT. The coupling of RBMs with other non-rigid body modes such as bending modes
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Fig. 6. (A) The scree plot for (7,7)/(12,12) DWNT configuration with different initial
travelling speeds of inner nanotube, of which 1000 m/s and 1900 m/s lead to resonant
frictional effects. (B)-(D) The projections of wavy, RBM and bending modes for 1000 m/s.
(E) Projection of RBM-like mode towards the end of simulation (Xu et al., 2008).
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further ensures a nonreversible energy dissipation. Resonant excitation of RBM is evident in
figure 6(C) and figure 6(E) that promotes the excitation of various non-rigid body modes
such as wavy or bending modes (see figure 6B and 6D). As a result, uncovering new
resonant frictional regimes in nanoscale devices by using PCA was demonstrated
successfully.

In the case of rotational nanobearings based on DWNTs, Shenai et al. found operational
behavior for short sleeved configuration reminiscent of the trans-phonon effect in the
translational counterparts (Shenai et al.,, 2010). It was found that the rotational bearing
exhibits a step-like dissipative operation in which at certain angular speeds, the bearing
appears to rotate in nearly frictionless manner. The stable rotation, can get hampered
however, in such a manner that the angular velocity dissipates more or less abruptly until
the bearing stabilizes in a next lower favorable angular speed range. In this case as well, by
application of PCA to the bearing trajectory during stable operation and during dissipative
operation, it was detected that excitation of dissipative wavy modes takes place during the
decay period shown as the 4th eigenmode in figure 7(d).
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Fig. 7. (a)-(d) Projections of first four eigenvectors on the trajectory of a DWNT based
rotational nanobearing. While axial translation reveals itself as the first eigenmode, the
rotation is represented by 2nd and 3+ modes together. (e) Depiction of the dissipative wavy
mode as the 4th eigenmode. Right panel shows similar analysis for the first eigenvector in
different time periods from the initial 600 ps (Shenai et al., 2010).

As a rotational nanobearing was studied in this work, the three lowest eigenmodes are the
rigid body modes such as translation (Ist eigenvector) and rotation of sleeve (2nd and 3rd
eigenvector in combination). More interestingly, it was found that the leakage of the
rotational kinetic energy of the sleeve to dissipative wavy modes occurs via another
channeling mode - the axial translation of the sleeve. Due to the atomic arrangement of a
DWNT, the interaction energy surface between the two tubes exhibits periodic corrugation
with respect to relaive axial displacement. Due to typically small corrugation against axial
sliding and the small mass of the sleeve, excitation of such translational mode can take place
through extraction of a small part of the rotational kinetic energy. When the energy
occupation of the axial sliding mode is low, the motion occurs in step-like manner between
adjacent energy wells. However when it acquires highly enough translational energies, its
enhanced coupling with the higher indexed wavy modes leads to chanelling of the excess
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energy as shown in the right panel of figure 7. As soon as the axial oscillation dies, the
undesirable channel to the wavy modes gets closed as well, thereby suppressing further
decay in rotational kinetic energy. The intricacies of the axial sliding motion and its role in
the corresponding excitation of wavy modes was thus successfully resolved.

Negi et al. performed a rigorous study of normal modes via singular value decomposition
(SVD) to analyze MD trajectories of single walled carbon nanotubes (Negi & Chaturvedi,
2010) under NVE and NPT conditions. Their approach essentially produces results similar
to those with the standard PCA. The full spectrum of principal modes including RBMs and
other non-rigid body modes was successfully extracted, see for example, figure 8. In the
detailed analysis, they categorized the principal modes according to the uniformities in the
displacement characteristics of tube atoms along radial, axial and angular directions. In
another subsequent study involving rotational nanomotors driven by external electric field,

similar SVD analysis was put to use in understanding the operational regimes and
characteristics (Negi et al., 2010).
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Fig. 8. (a) A typical scree plot obtained from PCA on a (5,0) SWNT. (b) Corresponding

power spectrum showing a peak corresponding to frquency of RBM, which is first principal
mode (Negi & Chaturvedi 2010).

The aforementioned studies involving the most basic types of CNT based nanomachines
demonstrate the usefulness of PCA in analyzing their dynamical features. In future studies
probing frictional dissipation or energy channeling between different modes in various

nanomechanical devices, PCA can be expected to prove significantly helpful in providing
valuable insights.

4.2 Applications in non-linear dynamics of other materials

In another interesting approach by Battisti et al, PCA was innovatively used to study
coherent and chaotic dynamics of a small molecule, butane (Battisti et al., 2009).
Characterization of chaoticity in the butane molecule was based on evaluation of Lyapunov
exponent (LE), which essentially determines the exponential rate of divergence between two
trajectories in the phase space separated by a very small distance in their initial conditions.
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In this study, a conjecture that in chaotic systems at low energies, different degrees of
freedom may entail different degrees of chaoticity was examined. The “essential’ degrees of
freedom were obtained as the eigenmodes obtained from PCA on the MD trajectories of
butane. Using the individual trajectories reconstructed by projecting different eigenvectors
on the original trajectory, it was possible to calculate LE for individual degree of freedom (in
terms of principal modes). It was revealed that depending upon the system temperature,
there exists a hierarchy of degrees of freedom with respect to ‘coherence time’ - a measure
of degree of order. Certain degrees of freedom exhibit more chaoticity than the system as
whole, may exhibit lower chaoticity as shown in figure 9.
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Fig. 9. Differential evolution of Lyapunov exponent during short time for the trajectories
filtered along different principal modes for a butane molecule investigated with molecular

dynamics in (a) coordinate space at 180 K, and (b) velocity space at 147 K (Battisti et al.,
2009).

In general, at relatively high temperatures, the first two eigenmodes turn out to be the most
coherent degrees of freedom. Such hierarchy was further shown to vary significantly at
varying temperatures as well as under the particular subspaces (coordinate or velocity) at
which calculations are performed.

5. Conclusions and perspectives

In this chapter, we have presented a comprehensive account of PCA and its applications in
different fields of materials science, in particular. An overview of the underlying theory is
presented followed by demonstration of its applications in the study of SWNTs, based on
two different approaches - coarse-grained simulations and fully atomistic fine-grained
simulations. The results emphasizing the importance of ‘essential subspace’ and
identification of lowest principal modes are presented with respect to the two models along
with comparisons between them.

While it has been extensively applied in the studies of biomolecules over the past two
decades, possibilities of its usage in the study of materials, have started to emerge only
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recently. The vast applications of PCA in structural biology have led to developements of its
variants such as coarse-grained PCA or dihedral-PCA. Despite being highly successful,
concerns regarding accuracy and robustness of PCA such as sampling issues must be
addressed very carefully. Such limitations have not been thoroughly investigated when
PCA is employed in the study of materials. Strictly speaking, direct application of PCA in
core materials science is sill quite limited. Yet, the emerging field of nanomachines based on
carbon nanotubes or graphene focussed on MD, undoubtedly stands out as the most
promising area where PCA appears to be quite useful in understanding dynamical
characteristics.
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1. Introduction

The research of polymer blends, or alloys, has experienced enormous growth in size and
sophistication in terms of its scientific base, technology and commercial development (Paul
& Bucknall, 2000). As a consequence two very important issues arise: the increased
availability of new materials and the need for materials with better performance.

Polymer blends are polymer systems originated from the physical mixture of two or more
polymers and/or copolymers, without a high degree of chemical reactions between them.
To be considered a blend, the compounds should have a concentration above 2% in mass of
the second component (Hage & Pessan, 2001; Ihm & White, 1996). However, the commercial
viability of new polymers has begun to become increasingly difficult, due to several factors.

The advantages of polymer blends lie in the ability to combine existing polymers into new
compositions obtaining in this way, materials with specific properties. This strategy allows
for savings in research and development of new materials with equivalent properties, as
well as versatility, simplicity, relatively low cost (Koning et al., 1998) and faster
development time of new materials (Silva, 2011).

Rossini (2005) mentions that economically and environmentally, a very viable alternative is
to replace the recycling of pure polymers by mixtures of discarded materials. Mechanical
recycling causes the breakdown of polymer chains, which impairs the properties of
polymers. This degradation is directly proportional to the number of cycles of recycling.
Therefore, the blend of two or more discarded polymers can be a realistic alternative, since it
can result in materials with very interesting properties, at a low cost. Besides its
inexpensiveness, this choice is also a smart solution to the reutilization of garbage. Post-
consumption package disposal always occurs in a disorderly manner and without regard for
the environment. The recycling process becomes increasingly more important and necessary
to remediate environmental impact.
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According Pang et al. (2000) apud Marconcini & Ruvolo Filho (2006) polyolefins such as
high density polyethylene (HDPE), low density polyethylene (LDPE) and polypropylene
(PP) and polyesters such as poly (ethylene terephthalate) (PET) are classes of thermoplastics
that have been widely used in packaging and constitute a large part of post-consumer
waste. The recycling of these materials and their mechanical characterization anticipating
the possibility of a new cycle of life in the form of new products is challenging, although
technologically and environmentally correct (Marconcini & Ruvolo Filho, 2006).

The polymer blends can be obtained basically in two ways (Rossini, 2005):

e By dissolving the polymers in a good solvent, common to them, and subsequently
letting the solvent evaporate; and

e In a mixer where the working temperature is high enough to melt or mollify the
polymeric components, without causing degradation of the same.

According to Wessler (2007), the polymer blends may be miscible or immiscible. The
miscibility is the most important property to be analyzed in a blend, given that all other
system properties depend on the number of phases, their morphology and adhesion
between them. The miscibility term is directly related to the solubility, i.e., a blend is
miscible when the polymers dissolve in each other mutually (Silva, 2011). The immiscible
between the various engineering polymers is a limiting factor for its production. Thus, it is
necessary to use compatibilization agents for their production.

Computational modeling has become increasingly popular. The main objective of models is
to assist process optimization with minimal investment of time and resources for
experimental work. Most techniques are classified into two main groups: physical models
and statistical models as shown by Malinov & Sha (2003).

Statistical methods are chosen according to research objectives. There are several
multivariate analysis methods for purposes quite different from each other. The desired
value and quality of one or more product characteristics can be obtained via experiment
analysis and DOE. These methods help determining optimal settings and controllable
factors of a process such as: temperature, pressure, amount of reagents, operating time, etc..
When compared to the method of trial and error, DOE also allows a reduction of the
number of required tests, and savings in time, labor and money.

An important application of DOE is the optimization of experimental formulations as, for
example, the composition of mixtures. The formulation development is a fundamental part
of the food industry, chemicals, plastics, rubber, paints, medicines, and the like.

In materials science, it is important to understand the correlation between material
processing, microstructure and properties that enable the optimization of process
parameters and compositions of materials to achieve the desired combination of properties,
according Malinov & Sha (2003).

The problem presented here is to determine the fraction of each polymer blend component,
and to determine the agent or, in some cases, an agents system, when it is necessary to use
more than one compatibilizing agent. Thus, this text studies the effect of factors, for
example, amount of polypropylene, additive type, and amount of additive in the
composition of polymer blends, ie., the optimal polymer blends formulation using
factorial design.
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Pawlak ef al. (2002) pointed out that the elongation at break and impact strength of recycled
HDPE/PET blends has increased with the addition of EGMA or maleic anhydride grafted
styrene-ethylene butylene-styrene (SEBS-g-MA). The best results were obtained for
PET/HDPE/EGMA at 75%/25% /4 pph and PET/HDPE/SEBS-¢-MA at 75%/25% /10 pph.
The mechanical properties of the blends were related to the phase dispersion. The increase
in the viscosities of the compatibilized blends was observed due to the reaction during
blending. Carvalho et al. (2003) considered blend composition complexity as a function of
the ideal percentage of each one of their components in their computer study for
optimization of polymeric blends. With the objective of analyzing the mechanical behavior
of the blend in relation to PET and to PP, the same speed test was adopted for the three
tested materials. The results are presented in Table 1.

Tensile
Modu!u.s of Strength at Elongation at
Elasticity
Break Rupture [%]
[MPa] [MPa]

PET 2230 50.2 3.2

PET/PP 75/25 1740 313 17

PP 1130 26.9 615

Table 1. Results of the traction for PET, PP and the blend PET/PP.

2. Design of Experiments (DOE)
2.1 Introduction to design of experiments

One of the most common and challenging problems in experiments concerns the
determination of the influence that one or more variables has on the variable of interest.
Designed experiments address these problems and also have extensive application in the
development of new processes and design of new products. Some of its applications are

e  Characterization of a process (experiment screening): It aims to determine which
factors affect the response;

e  Optimization of an experiment: It aims to determine the important factors in the region
leading to an optimal response; and

e Product planning: It tries to determine the factors that influence the most the
verification effort.

A DOE is the pre-requisite for a successful experimental study (Tang et al., 2010). Assuming
that the goal of experimentation is to find a function, or at least a satisfactory approximation
of it, which acts on k factors producing observed responses (as outlined in Figure 1), the
system acts like an initially unknown transfer (or modifying) function, which operates on
the factors, producing as output, the observed responses. Thus, a better understanding of
the nature of the reaction under study in order to choose the best system operating
conditions (Silva, 2011).
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Fig. 1. System Representation

2.2 Factorials design

In a designed experiment, the data-producing process is actively manipulated to improve
the data quality and to eliminate redundancy. A common goal of all experimental designs is
to collect data as parsimoniously as possible while providing sufficient information to
accurately estimate model parameters. By factorial experiment we mean that in each
replication of the experiment, all possible combinations of levels are investigated.

Multilevel designs is used to systematically vary experimental factors and then assign each
factor a discrete set of levels. Full factorial designs (FD) measure response variables using
every treatment (combination of the factor levels).

Plackett-Burman designs are used when only main effects are considered significant. They
require a number of experimental runs that are a multiple of 4 rather than a power of 2.

Binary factor levels are indicated by +1. The design is for eight runs manipulating seven
two-level factors. The number of runs is a fraction 8/27 = 0.0625 of the runs required by a
full factorial design. Economy is achieved at the expense of confounding main effects with
any two-way interactions.

2.2.1 Two-level designs

Two-Level designs are often used in experiments involving several factors, in which is
necessary to study the combined effect of factors on a response. However, several special
cases of general factorial design are important because they are widely used in research and
form the basis for other designs of considerable practical value. The most important of these
special cases is of k factors, where each one has only two levels.

When planning an experiment, one should first determine the factors and the answers
adequate to the system under study. The factors, that is, the variables controlled by the
experimenter, can be both quantitative (such as values of temperature, pressure or time) and
qualitative (such as two machines, two operators, levels "up" and "down" of a factor, or
perhaps the presence or absence of a factor). Depending on the problem, there may be more
than a response of interest and, eventually, these responses can also be qualitative.

After determination of the factors to be observed, it is necessary to implement the factorial
design, i.e., the values of the factors that will be used in the experiment. All possible
combinations of factors are investigated. Among the many advantages of factorial design,
the following (Button, 2005) can be named:
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The number of trials can be reduced without jeopardizing the quality of information;

It permits simultaneous study of several variables while separating its effects;

It assesses the reliability of results;

It allows stepwise research realization which in general adds new tests an iterative; and
It selects the variables that influence a process with a minimum number of tests;

o oo o

In factorial design, the factors and levels are pre-determined by setting and they correspond
to a fixed effects model. This type of planning is normally used in the early stages of
research. Since there are only two levels for each factor analysis, its assumed that the
response variable presents a linear behavior between these levels (Button, 2005). Effects are
defined as "the change in response down level (-) for the up level (+)" and they can be
classified in two categories: main effect (effect on the level change of a single factor) and
interaction effect (effect on the change in level between two or more factors at the same
time).

2.2.2 2* factorial design

Geometrically, the design 22 can be represented by a square where each vertex corresponds
to an experiment.

Figure 2 shows, geometrically, the 22 factorial design and its planning matrix. The letters A
and B represent the factors. The levels are represented by - and +, which correspond to low
and high levels of factors. The combination of experiments, with both factors at low level is
represented by the number 1. The effects of interest in the 22 factorial design are the main
effects A (represented by number 2) and B (represented by number 3). The interaction factor
AB, also called contrast (represented by the number 4) is generated from the product of the
signs of the columns of the main effects A and B.

Level
(*+)
B Treatment | Effects | Responses
Combinatio | A | B
n
Level (1 - Y1
) 2 * |- E
Level A Level 3 -+ Y3
) (+) 4 + |+ Vs

Fig. 2. Geometrical Notation and Planning Matrix for 22 Factorial Design.

The main effect of A is by definition the average of the effects of A in two levels of B. The
same happens with the main effect B, as seen in (1) and (2).

YoatlYay Y11Ys
)- (ks

A:y+—]/-=( 2

)
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+ +
B:y+_y7:(y42y3)_(y22yl) (2)
The interaction effect AB is given by:
+ +
AB:(% .’/4)_(}/2 y3) 3)

2 2

2.2.3 2 factorial design

23 factorial designs have three factors at two different levels, which request the performance
of eight experimental trials (each of these experiments in which the system is subjected to a
defined set of levels). Based on factors that you want to study and their levels, it is possible
to build a planning matrix as shown in Table 1. The first column of the effects (A factor) is
filled alternating one by one the levels of factors (- + - + ...), column 2 (B factor) is filled
alternating two by two the levels of factors (- - + + ...) and, finally, the third column (C
factor) the first four experiments are filled with the lowest level and last four with the higher
level (- - - - + + + +). The combination of experiments with both factors at low level (-) is also
represented by the number 1.

Based on the planning matrix (Table 2) it is possible to generate the table of contrast
coefficients. This matrix is composed of three main effects (A, B and C) and four
interaction effects (AB, AC, BC and ABC). Table 3 shows the signs of effects for the 23
factorial design.

Treatment Effects

Combination | A | B | C
M [-[-[-

2 + | -] -

3 -+ -

4 + | + -

5 -1+

6 + | - |+

7 -+ ]+

8 + |+ | +

Table 2. Planning Matrix 23 Factorial Design

In conformity to Neto et al. (2003), the effects on the 23 factorial design can also be
interpreted as contrasts geometric, whose representation is a cube, in which the eight trials
of the planning matrix corresponding to its vertices. The main effects and interactions of two
factors are contrasts between two planes, which can be identified by examining the
coefficients of contrast. In general, one main effect on the planning 23 is a contrast between
the opposite sides and perpendicular to the axis of the corresponding variable. The
interactions between two factors, in turn, are contrasts between two diagonal planes. These
planes are perpendicular to a third plane, defined by the axes of the two variables involved
in the interaction.
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Treatment Effects

Combination | [ | A | B| C|AB|AC|BC | ABC
)] + - - | - + + + -
2 + 0+ -] -1 - -
3 + | - - - + -
4 + |+ - - - -
5 + | - -+ ] + - - +
6 + 0+ - |+ - + - -
7 + | - + | - - -
8 + |+ + |+ | + | + +

Table 3. Signs of Effects for the 23 Factorial Design.

If K is the number factors, then a general form for the effects can be given by:

1

ef = FXTy, and )
1 7

My =22 Xy ®)

2.2.4 Fractional designs

For experiments with many factors, two-level full FD can lead to large amounts of data. For
example, a two-level full factorial design with 11 factors requires 211 = 2048 runs. Often,
however, individual factors or their interactions have no distinguishable effects on a
response. This is especially true of higher order interactions. As a result, a well-designed
experiment can use fewer runs for estimating model parameters.

Fractional FD use a fraction of the runs required by full FD. A subset of experimental
treatments is selected based on an evaluation (or assumption) of which factors and
interactions have the most significant effects. Once this selection is made, the experimental
design must separate these effects. In particular, significant effects should not be
confounded, that is, the measurement of one should not depend on the measurement of
another. The challenge is to choose basic factors and generators so that the design achieves a
specified resolution in a specified number of runs. The confounding pattern shows that
main effects are effectively separated by the design, but two-way interactions are
confounded with various other two-way interactions.

2.3 Response Surface Methodology (RSM)

RSM is defined how a collection of mathematical and statistical techniques useful for the
modeling and analysis of problems in which a response of interest is influenced by several
process variables (termed factors) whose objective is to optimize this response
(Montgomery, 2005; Box & Draper 1987; Myers & Montgomery, 1995 apud Tang et al., 2010).
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Box & Draper (1987) define RSM how a collection of statistical techniques useful in
researches, with the purpose to determine the best conditions and give greater insight into
the nature of certain phenomena. It comprises the following three main components (Tang
et al., 2010):

a. Experimental design to determine the process factors values based on which the
experiments are conducted and data are collected;

b. Empirical modeling to approximate the relationship (i.e. the response surface) between
responses and factors; and

c. Optimization to find the best response value based on the empirical model.

It can be assumed that the system under study is governed by a function which is
described by the experimental variables. Normally this function can be approximated by a
polynomial, which provides a good description of the factors and response. The order of
the polynomial is limited by the type of planning used. Two-level FD, fractional or
complete, can only estimate main effects and interactions. Factorial design with three
levels (central point) can estimate, moreover, degree of curvature in the response. In
general, the relationship is:

y={(xy, %, %) + €, (6)

where the true response f is unknown and sometimes very complicated; & represents
disturbances in f, such as, measurement error on the response, background noise, the effect
of other variables, and so on. In any planned experiment, there is a strong relationship
between the analysis of a designed experiment and a regression analysis that can be used for
predictions of an experiment 2k,

Because f is unknown, we must approximate it. In fact, successful use of RSM is critically
dependent upon the experimenter’s ability to develop a suitable approximation for f.
Usually, a low-order polynomial is sought after.

The first-order model is likely to be appropriate when the experimenter is interested in
approximating the true response surface over a relatively small region of the independent
variable space in a location where there is little curvature in f.

To describe these models in a screening study, are used simple polynomials, i.e., those
containing only linear terms. A simple model of a response y in an experiment with two
controlled factors x; and x», two polynomials is:

y=p5+bix+ Boxy +e @)

Y=o+ Brixy + Xy + Proxyxy + &, 8)

where x; and x; are main effects; x1x2 is a two-way interaction effect; By is the average value
of all responses; ¢ includes both experimental error and the effects of any uncontrolled
factors in the experiment; and f1, f» and f, are, respectively, the coefficients related to the
main variables x1 and x», and the coefficient for the interaction between x; and x> So, x1 and
x2 should be manipulated while measuring y, with the objective of accurately estimating S0,
p1 and B2. Equations (7) and (8) can be combined and the resulting model is given by:
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y=Xpg, ©)
where Y is the vector of responses estimated by model; X is the coefficient contrast matrix;
and f is the coefficient of the model or regression vector. In RSM design, there should be at
least three levels for each factor. In this way, the factor values that are not actually tested
using fewer experimental combinations and the combinations themselves can be estimated
(Neseli et al., 2011). The effect of a factor is defined as the variation in the response produced
by the change in the factor level.

3. Development and discussion

Factorial DOE has been used to measure the influence of the following input variables:
amount of polypropylene, additive type and amount of additive on the values of response
variables. Relevant mechanical properties for polymeric blends PET/PP are ME, elongation
at rupture and TS at rupture. The following experiments were accomplished by a 23 factorial
design. Their specifications are presented in the Table 4.

PET PP
Manufacturing Fairway Polibrasil
Type 201050 NT TM 6100
Apparent density [g/m3] ASTM-D 1505 0.88 0.5
Index of fluidity [g/10 min] ASTM-D 1238 *) 16
Intrinsic viscosity [d]/g] 0.82 (*)
Melting [°C] ASTM-D 3418 > 240 160 - 175

(*) = not available

Table 4. Specification supplied by the manufacturers of PET and PP (Carvalho et al., 2003).

The factors will be analyzed on two levels (top and bottom) according to data presented in
Table 5.

Main Effects Factors Level (-) Level (+)
A Amount of polypropylene 5% 25%
B Additive type C2 (acrylic acid) | CI (maleic anhydride)
C Amount of additive 1% 5%

Table 5. Planning Matrix

The preparation of test specimens and tests were performed according to the Standard Test
Method for Tensile Properties of Plastics - ASTM D-638 (2010). The mechanical properties of
ME, elongation at rupture and TS were evaluated in ten executions for each test.

Tables of contrast coefficients for ME (Table 6), contrast coefficients for study of Strain at
Break (Table 7) and contrast coefficients for TS (Table 8) were obtained from the Table 3 and
Table 4. All tables were composed by three main effects: A (amount of polypropylene), B
(additive type), C (amount of additive), and the four interaction effects AB, AC, BC and
ABC. The last column of each table contains the values of Y, (n = 1, 2 and 3, respectively,
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ME, elongation at rupture and TS at rupture), corresponds to the average of the
experimental results found for each test, in 10 executions.

Treatment Effects Y:
Combination | T | A | B | C | AB|AC|BC |ABC| (MPa)
) + - -1-] + + + - 1605
2 + |+ - -] - - + + 1448
3 + | - |+ - + - + 1445
4 + |+ |+ -]+ - - - 1371
5 + | - -]+ - - + 1562
6 + |+ -+ - + - - 1355
7 + | -+ |+ - - + - 1550
8 + |+ |+ |+ ] + + + + 1232

Table 6. Contrast Coefficients and average values by modulus of elasticity.

Treatment Effects Y
Combination | T | A| B | C | AB| AC| BC | ABC (Y0)
1) + | - - -]+ |+ |+ - 4.36
2 + |+ - -] - - + + 3.80
3 + - + - - + - + 4.01
4 + |+ |+ | - - - - 3.60
5 + - -1+ - - + 422
6 + | + - + - + - - 4.55
7 + - + + - - + - 4.50
8 + | + + | + |+ | + + 4.24

Table 7. Contrast Coefficients and average values by elongation at rupture

Treatment Effects Y;
Combination (MPa)
I | A|B|C|AB|AC|BC | ABC
1 + | - -] -+ + + - 50
2 + |+ | -] - - - + + 41
3 + |- |+ - - + - + 43
4 + |+ |+ | - + - - - 37
5 + _ + + - - + 46
6 + |+ | -]+ - + - - 40
7 + | -+ + | - + - 48
8 + |+ |+ |+ |+ + + + 37

Table 8. Contrast Coefficients and average values by tensile strength at rupture

4. Calculation of effects and results interpretation

The 8 x 8 matrix factorial design is
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+1 -1 -1 -1 +1 +1 +1 -1]
+ +1 -1 -1 -1 -1 +1 -1
+1 -1 +1 -1 -1 +1 -1 +1
+1 +1 +1 -1 +1 -1 -1 -1
+1 -1 -1 +1 +1 -1 -1 +1
+1 +1 -1 +1 -1 +1 -1 -1
+1 -1 +1 +1 -1 -1 +1 -1
1 +1 +1 +1 +1 +1 +1 +1}

Tables 6, 7 and 8 include all necessary values for calculating the effects on Modulus of
Elasticity (ME), Strain at Break and TS. The column vectors Y3, Y, and Y3, with respective
average values are shown in (11) and the product of XT (1) by the respective vectors (11)
appears in (12).

(1605 | [4.36] 50 |
1448 3.80 41
1445 4.01 43
1371 3.60 37

Y, = ;Y= ;Y= (11)

1562 4.22 46
1355 4.55 40
1550 4.50 48

11232 | [4.24 | 137 |

Returning to Tables 5, 6 and 7 can be seen that in all columns except the first, have four
positive and four negative signs. To find the global average to fairly apportion the first
element of each of the vectors XT.Y;, XT.Y; e XT.Y3 by 8. The other elements of the vectors
correspond to the effects and will be divided by 4, result in (13).

(11568 [33.28] [342]

756 0.9 -32

-372 -0.58 12

. -170| 174 . 0
XTY, = ; XY, = ; XY, = (12)

28 ~0.44 -2

294 1.04 -2

102 0.52 10

| 194 |0.74] | 8]
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Y, | [16] [y, 416] [y, ] [4275]
A -189| | A -0225| |A -8
B 93| |B 0145, |B -3
C |25 |c | o5 e | |0 13)
AB -7|" |AB | |-0110|" |AB 0.5
AC | [-735| |AC 0260 |AC 05
BC 255| |BC 0130| |BC 25
|ABC| |485| |ABC| |-0185| [ABC| | -2,

The Gauss method, which is a direct method for solving linear systems, can be used to solve
the system found. In this case, the elements of columns of matrix X (10), that the
corresponding effects were divided by 2, as shown in (14). The vectors y;, y2 and y;3 are the
terms independent of the linear system. The results are the same as described in (13).

RS R
A R R T
TU UK K KK
AR AR A T "
R R A AT
A A AR
1Y YU KKK
a B YUY 4% Y Y

The three tables below show data contained in the vectors (13) in order to enable analysis of
the influence of each factor individually and the interaction of these factors on the ME,
strain at break and tensile strength (TS).

Table 9 shows that the three main effects, the factors of polypropylene amount, additive type and
amount of additive reduce the ME. The amount of polypropylene is the major contributing factor
to the reduction of elasticity. The model obtained for the ME is presented in (15).

Average: 1446
Main Effects:

A (Amount of polypropylene) -189
B (Additive type) -93
C (Amount of Additive) -42.5
Interaction between two factors:

AB -7
AC -73.5
BC 25.5
Interaction between three factors:

ABC -48.5

Table 9. Effects calculated for the modulus elasticity.
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modulus of elasticity =1446+25.5*B*C (15)

Figure 3 represents the RS for the ME as a function of B and C. The additive type and
amount of additive increase the ME. Hence, the interaction between type and amount of
additive can improve the interaction between molecules and compatibility of the mixture.

Al (a0 -
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Fig. 3. Response surface for modulus of elasticity as a function of the factors B and C

With respect to the elongation at rupture, observed in Table 10, the main effect, amount of
additive, increases the strain at rupture. The same happens with the interaction of two
factors AC and BC. The obtained ME model appears in (16) and (17).

Average: 416

Main Effects:

A (Amount of polypropylene) -0.225

B (Additive type) -0.145

C (Amount of Additive) 0.435

Interaction between two factors:

AB -0.110

AC 0.260

BC 0.130

Interaction between three factors:

ABC -0.185
Table 10. Effects calculated for elongation at rupture

elongation at rupture =4.16 +0.435*C +0.268* A*C (16)

elongation at rupture =416 +0.435*C+0.13*B*C

(17)
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Figure 4 represents the graphic of the response surface elongation at rupture as a function of
the factors A and C. Note that the additive type and amount of additive increases the
elongation at rupture, fact already observed in Table 10. Figure 4 show that this factor has a
significant effect on elongation at rupture. It is evident in the Figures (4) and (5) that the
amount of additive is more significant than the types of additive analyzed.

Furyali nal Pt

A P ) -
FETT T

Fig. 4. Response surface for elongation at rupture as a function of the factors A and C
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Fig. 5. Response surface for elongation at rupture as a function of the factors B and C
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In Table 11, the main effect C has no significant value for TS, since the main effects A and B
show a reduction. Interaction BC shows an increase in TS, while the interaction between the
three factors (ABC) reduces TS. The model obtained for the modulus of TS is presented in (17).

Average: 42.75
Main Effects:

A (Amount of polypropylene) -8
B (Additive type) -3
C (Amount of Additive) 0
Interaction between two factors:

AB -0.5
AC -0.5
BC 25
Interaction between three factors:

ABC -2

Table 11. Effects calculated for tensile strength

Figure 6 represents the graphic of the response surface for TS as a function of the factors B
and C. Note that the additive type and amount of additive increases the TS.

tensile strenght = 42.75+2.5* B*C (18)

Iznzie zlznclh
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Fig. 6. Response surface for tensile strength as a function of the factors B and C

4.1 Geometrical interpretation of effects

The eight trials of each of the three planning matrices correspond to the vertices of the cube.
The effects can be identified by examining the coefficients of contrast. Figure 5 reveals that
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the tests are all negative on one side of the cube, which is perpendicular to the axis of factor
1 (amount of polypropylene) and is located on the lower level of this factor. The other essays
are on the opposite side, which corresponds to the upper level. The effect of factor 1 can be
considered, therefore, as the contrast between these two faces of the cube. The effects, 2 and
3, also are contrasts between healthy opposite sides and perpendicular to the axis of the
corresponding variable. The interaction between two factors, appear as contrasts between
two diagonal planes. These planes are perpendicular to a third plane, defined by the axes of
the two variables involved in the interaction.

Figure 7 presents the geometric interpretation of the effects. For instance, vertex 1 has the
following coordinates: 5% polypropylene and 1% additive, which is acrylic acid.

Maleic |
Anhydride
Additive
Type
yp %
Acrylic | 1%  Amount of
Acid Additive
>
5% 25%
Amount of
Polypropylene

Fig. 7. Geometric interpretation of the effects

5. Model-based DOE (PCA-based DOE)

Nowadays, design, monitoring and optimization of applications by means of mathematical
models are very advantageous in process control. Nevertheless, a trustworthy model that
complies with operation constraints is as a rule difficult to develop not trivial. According to
Asprey & Macchietto (2000), a wide-ranging modeling method comprises:

¢ Aninitial analysis and structure modeling of the system based on process knowledge;

¢ Designing optimal experiments according to the planned model;

e  Perform experiments; and

¢ Using experimental information to estimate model parameters and accomplish model
validation by probing available estimated parameters and existing data.

This chapter deals with experiments designed for a specific algebraic equations (AE) system
called model-based DOE (MBDOE) while factorial analysis based on DOE uses empirical
models. Numerical models are often nonlinear algebraic equations (NAE), dynamic
algebraic equations (DAE), or partial differential equations (PDE). MBDOE is done before
any real in order to describe structure selection, to model parameter estimation, and so
forth. Pragmatically speaking, MBDOE sets up a DOE objective function.
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From an algorithmic point of view, DOE has been combined with AE systems for a long
time and applied to DAE systems by Zullo (1991) and Asprey & Macchietto (2002). Several
optimal design criteria (ODC) have been suggested and considered by different case studies;
Walter & Pronzato (1990) gave a detailed discussion of available ODC and their geometrical
interpretations. Lately, Atkinson (2003) used DOE for non-constant measurement variance
cases and Galvanin et al. (2007) extended the DOE territory to parallel experiment designs.

This work focuses on a DOE global methodology relying on PCA, so that a large system can
separated into small pieces and a sequence of experiments can be designed to avoid
numerical problems. Moreover, the problem can be transformed into familiar ODC under
certain assumptions and a subset of model parameters can be chosen to boost estimation
precision without changing the objective function form.

5.1 Parameter estimation
Parameter estimation can be generalized into the following optimization problem:

2

n 9q
Z:mngZ(ym,i/j—fj(t/xize/u)) 7 (19)

i=1 j=1

subject to:

Hx=f].(t,xi,0,u)

9 mimS 0 < emax

where 7 is the number of experiments, g is the number of equations, respectively, y stands
for measured variables and subscript m indicates a measurement. x is the state variables of
the DAE system. For simplicity, the variables x are assumed to be measurable, thus y=x.f
represents the DAE equations and H is used to discriminate algebraic and dynamic
equations (the corresponding rows for AEs are zero). &stands for the model parameters and
u has the controlled variables. Assume the control profile u is known over a predefined time
interval [ty, tf. In parameter estimation, the only unknown in integrating fis # and normally
the boundary of @ is defined according to the nature of the process to be modeled. The
measurement noises is considered a multivariate normal distribution (N(0,V,,)), otherwise
Eq. (19) needs to be rebuilt from MLE according to the specific noise distribution function.
In most cases, normally distributed noise is a safe assumption. Eq. (19) is similar to the
classical optimal control problem in which the objective function usually is Z = muin x(tr)-

This dynamic system optimization problem can be solved by sequential and simultaneous
methods.
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In sequential approaches, only the unknown variables (e.g., &for parameter estimation, u for
optimal control) are discretized and manipulated directly by the non-linear programming
(NLP) solver. After the unknown variables are updated, the DAE is integrated given the
initial condition xy and integration interval [to, t].

For simultaneous methods, the entries of x are discretized along t and approximated by
polynomials between two neighboring discretization grids. Thus, the integration step is
avoided and both state and unknown variables are changed by NLP directly with certain
constraints. A review of these methods can be found in Espie & Macchietto (1989). After the

NLP solver converges, the corresponding 6 is our best estimate (@) based on the

measurements at hand. To evaluate the accuracy of the estimation, the posterior covariance
matrix (parameter covariance matrix) is defined by:

V(6,0) [z vt (20)

where ¢ is the design vector which typically contains the time, initial state condition, control
variables, etc. vy, ;s is the r-th term in V that can be estimated by:

ZYH Xl’e (yﬂ - fr(xi’g))

Vm,rs n-— 1

(21)

A

For AEs, the sensitivity matrix is ], = df, /06 , evaluated at n experimental points

(sampling times). For DAEs, V can be treated as a sequential experimental design result
according to Zullo (1991). With Eq. (20) kept the same, ], contains the sensitivity coefficient

of output y, with respect to the parameter vector 8 evaluated at different sampling times #:
0y, /06, 0oy, |06, --- 0y.[00, | < Atsampling time t;

_|dy,/06, oy,[06, - 0y,[06, | < Atsampling time t,
0y, /06, 0dy,[06, --- 0y,[00, | < Atsampling time ¢,

The diagonal terms of Vlead to the following estimation of the confidence region:

o. =F(a,n,m)xdiag(V"”) (22)
o

F (o, n, m) represents a probability distribution with confidence level o with n and m

degrees of freedom. The smaller c is the better estimate 2 turns out to be. Moreover, c is
closely related to V as in Eq. (22) which paves the way to the following mxm Fisher
information matrix M (where m is the number of model parameters):

9.4
M(0,0)=3 > v ], (23)

r=1s=1
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In MBDOE, M helps designing a series of experiments based on the model structure. By
carrying out these experiments, the model parameters can be estimated with the best
accuracy. The unknown design vector ¢ contains measured time, initial conditions, control
variables, and so on. Minimizing V, corresponds to maximizing the absolute value of M with
respect to ¢. For a single parameter model, | is nx1 and V is a scalar. Parameter estimation
and DOE rely on the maximization of M(0,¢) with respect to 6 while and ¢ correspondingly.
The smallest amount of experiments amounts to the best model. It corresponds to the
objective function suggested by Espie & Macchietto (1989).

te Ny Ny

F=max [} 3 T, (¢t)dt (24)

£y i=1 j=i+1

where

T, = (E(0,8., 0~ £(0,8,1) x(£(0.4,1)~f(p.4,1)), and

Ny is the number of candidate model structures. As continuous sampling is not feasible, the
integration is replaced by Zu. Eq. (24) gives the ¢ that maximizes the differences among
models f. Thus, after getting the real experiment profile y,, the best candidate model
predicts y,, most truthfully.

MBDOE has still some drawbacks that require further study:

1. Now and then, it fails to find out the optimal experiment for medium and large scale
DAE systems and it generally takes a long time even for small scale systems;

2. There is no trivial/automatic way to classify model parameters sensibly;

3. All criteria depend on optimizing the prediction error variance and V of M in some
sense. When M is ill-conditioned, V cannot be numerically calculated, because M cannot
be inverted. A possible solution is working with M instead of V;

4. Itis difficult to handle models for DAE systems.

5.2 Principal Component Analysis (PCA)

PCA decomposes the data matrix from experiments X by the following expression:

X=T'P+E, (25)

according to Coelho et al. (2009), where Xe%Rm*n, with scores Te R, , loadings PeRmxn,,
residual E and #,,. is the number of principal components (PCs). Nice PCA features are:

1. If b; is the ith eigenvalue of the covariance matrix (XT X/n-1) in descending order, then
the columns ¢; of T are orthonormal and explain the relationship between each row:

T
B=£=diag(b1,b2,...,bm). (26)
n-1
2. The columns p; of P are orthonormal (I=PTP), and capture the relationship between
each column of X. Because XT X is symmetric, its eigenvalues and eigenvectors
are real.
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The first few columns of T and P explain most of the variance in X. When n,.=min(m,n), E=0.
The Cumulative Percent Variance (CPV) is one such method of obtaining the optimal 7,
that separates useful information and from noise and the threshold for this method can be
set to 90% (Qin & Dunia, 1998; Zhang & Edgar, 2007).

)=| 27)

The relationship between PCA and Singular Value Decomposition (SVD) can be explained
by the next equations:

SVD: %XTX =WLCT (28)
n —

pCA: L 1(TPT)T «(TPT) =

— L p. (T"T)x P" = PBT" (29)
n-— 1

n-—

Since XX is a real symmetric matrix, IW(mxm) contains the left eigenvectors, C(mxm) has the
right eigenvectors and P=C=W. The related eigenvalues are in L(mxm)=B.

5.3 PCA and Information matrix combined criterion for DOE (P-optimality)

For the sake of simplicity, assume there is only one measured output (g=1) and the
measurement error is vy, =1, such that Eq. (20) becomes:

V©,0)=[]"JT"=M" (30)

The sensitivity matrix | can be viewed as X in the above PCA equations, and M is
proportional to V (the scaling factor (1/n-1) in the covariance is contained in vy,s). Assume
the eigenvalue and eigenvector matrices of M are A and P, respectively. Inserting Eqgs. (25),
and (29) into Eq. (30) yields:

M=]"]=(TP") x(TP")=PAP", and (31)

V=M"'=({PAP) =P T AP (32)

Since PT.P=[=P-1.P, and PT=P-, then V(6 ¢)=P-T.A1.P-1=P.A1PT. From PCA analysis, V comes
from M, by means of SVD or NIPALS. If the smallest eigenvalue in M is 4, then 4,,1 will be
the largest eigenvalue of V, which indicates the largest variance in the prediction error
covariance matrix. The corresponding eigenvector P, gives the direction of the largest
variance in the m parameter space R.

Figure 8 shows the covariance matrix of a two-parameter system. Two eigenvectors p2, p:
indicate the direction of largest and second largest direction of variance. The projection of
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long axis (p; direction) on @ and short axis (p; direction) on & is proportional to the
coincidence region of & and &, respectively. In Figure 8, when 4; is much larger than A,, the
ellipsoid will degenerate into a line and it is reasonable to look at A, alone. Instead, when &
is well known, one can only focus on shrinking the projection of both ellipsoid axes on &
direction: min(| p; /4 |x|p,/4|). In order to eliminate the absolute value and take

advantage of the unit length of p;, we use the following expression:

~in m(l)zxpz(l)zjzm ( 2 N 2 )
© { PR e P A e

|
|

Fig. 8. Geometric interpretation of PCA combined DOE criteria

It is reasonable to reformulate the objective function as follows:

F=min I [biZPﬁJ, (33)
j

pep 1':m—n‘JC +1

where b; are eigenvalues of V in ascending order (b=1/4;) and /4 is in descending order) and
P is the corresponding eigenvector matrix. The advantage of storing eigenvalues of V in
ascending order is that P can be used directly without transformation; otherwise, P for V
needs to be transformed by:

P, =Py =|: .
1 -« 0

j corresponds to the parameters selected to increase estimation accuracy. To improve the
precision of all parameters (j=1:m) all the PCs are retained and Eq. (33) becomes:

m m
F:minn[biZP]%], with Y Pi=1
j 1

ped i=1

When only the largest eigenvalues of V are used by PCA (i=m) and all parameters are to be
estimated, Eq. (33) turns out to be
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F=min| b, P2 34
¢7€¢[ mZJ: /mJ ( )

When all the PCs are to be used with specific parameters to be estimated (e.g., the first s),
Eq. (33) becomes

m
F=minII
ped i=1

b il’ﬁ] 5)
1

i
j=

After obtaining the eigenvalues of the V matrix (b;), a series of experiments are designed to
minimize bi, by,...bn respectively. In general, by minimizing some eigenvalues, the
estimation of certain parameters will improve.

When calculating 7,,, the eigenvalues of either M or V can be chosen. If V is used, then the
last 1, eigenvalues (kept in ascending order such that P does not need to be transformed)
and the corresponding eigenvectors should be used to characterize the objective function.
When using M, if the first k eigenvalues sum to 90%, then the remaining m-k eigenvalues
np=m-k and eigenvectors are used in Eq. (30). In general, for most model parameters a single
eigenvalue cannot comprise information for most parameters (some elements in p; are close
to zero), thus retaining more eigenvalues in the objective function for the first few runs is
better. Commonly speaking, the new criterion has the following advantages:

For medium and large-scale DAE systems, it is easier to shrink the scale of the DOE problem
by choosing certain parameters out of the entire set to be the focus. By introducing PCA to
carry out both eigenvalue calculation and selecting the optimal number of eigenvalues to
evaluate, the ill-conditioning of M is avoided. PCA automatically chooses the optimal
number of eigenvalues to be investigated, and reduces the problem scale. P gives a clue on
grouping the estimated parameters, so it is easy to design an experiment for improving
specific parameter estimation, compared with conventional methods.

6. Summary

It is noticed that the factorial design does not determine the optimal values in a single step,
but this procedure suitably indicates the path to reach a nice experimental design.

Main effects and the interaction effect are calculated using all the observed responses. Half
of the observations belong to one mean, while the remaining half appears in other mean.
There is not, therefore, idle information’s in the planning. This is an important characteristic
of factorial design two-level.

Using factorial design, the calculation of the effects becomes an easy task. The formulation
can be extended to any two-level factorial design. The system generated can be solved with
the aid of a computer program for solving linear systems.

Modeling focuses on mathematic equations that try to reproduce the real-world behavior
accurately over a wide range. Still, regardless of modeling approach chosen, the resulting
mathematical models are frequently nonlinear algebraic equations (AE), dynamic algebraic
equations (DAE), or partial differential equations (PDE). AE and DAE systems are the most
frequently used modeling techniques. Model parameters are in general used to describe
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special properties such as reaction orders, adsorption kinetics, etc. Hence factorial designs
may not be satisfactory for intricate systems.

As a rule, model parameters are not known a priori and have to be estimated from
measurements. Moreover, disturbing the system under study very often leads to repetitive
measurements and does not produce new data. This leads to the problem of designing
experiments prudently to maximize information for specific modeling purposes. An
alternative to DOE relying on the previous assumptions is MBDOE.

This work introduces a PCA-based optimal criterion (P-optimal) for model-based DOE that
combines PCA with information matrix analysis proposed by Zhang et al. (2007). The main
advantages of P-optimal DOE include ease of reducing the scale of optimization problem by
choosing parameter subsets to increase estimation accuracy of specific parameters and avoid
an ill-conditioned information matrix.

Countless products are produced from the investigation of a large amount of sensors to
mine data for analysis. In such cases, the available data maybe correlated, and PCA in
addition to other multivariate methods are normally used. PCA is a multivariate technique
in which a large number of related variables is transformed into a smaller number of
uncorrelated variables (dimensionality reduction).
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1. Introduction

The application of Principal Component Analysis (PCA) in biochemical studies lies in the
field of Chemometrics, the discipline which describes and applies statistical multivariate
methods to the laboratory studies. PCA like Cluster Analysis (CA), belongs to the so called
unsupervised pattern recognition methods, multivariate methods which can be applied to
any data set without requiring or supposing any preliminary knowledge about the
information present in the data (Massart & Kauffman, 1983; Brereton, 2003).

PCA has been also defined “a data reduction form” for its peculiar ability to reduce the
dimension of an experimental data set without loosing the qualitative and quantitative
information present (Brereton, 2003). In matrix notation, the PCA decomposition of a
multivariate experimental data set including several samples and called X, is reported in the
equation 1

X =SV +E 1)

where the S term is the score matrix, V' is the transposed loading matrix and E is the noise
matrix . With respect to the original X (n-sample, t-variables) set, the dimension of the new
matrices is changed; S has (n-sample, p) dimension, V has (p, t-variables) dimension and E
only retains the same dimension of X obviously. The term “ p ” of S and V matrices
represents the number of significant principal components or factors determined by PCA;
they have the peculiar ability of describing a high fraction of the total variance (i.e.

information ) present in the X matrix and very important, the “p” dimension is always
significantly lower than the “ t ” dimension of the original variables of the X matrix.

This data reduction ability of PCA is very helpful when large size of multivariate data sets
have to be analyzed and interpreted. In common environmental monitoring studies PCA is
applied in the analysis of discrete multivariate data when for instance, several sites with
their pollutant loads have to be analysed and compared (Cicero et al., 2001; Conti &
Mecozzi, 2008). However in environmental studies, the power of PCA becomes even more
helpful when large size set of analytical signals such as GC chromatograms have to be

* Corresponding Author



66 Principal Component Analysis — Engineering Applications

analyzed. In fact, gas chromatography is a widespread technique for the monitoring of oil
spills in terrestrial and marine environments (Wang et al., 1999) and in the case of marine
sediments, gas chromatography tries to establish several aspects concerning total
hydrocarbon content and distribution for testing homogeneity and or heterogeneity of
pollutant loads and for identifying the sources of oil spills (Wang et al., 1999). In any case,
this last task can be hardly obtained because any chromatogram is a multivariate sample
where many hydrocarbons are usually present. A typical GC chromatogram, reported in
Figure 1, is a data file with 2 columns, the acquisition time of the analytical signals and their
detected intensities respectively. Here, the present hydrocarbons are identified by means of
their retention time (i.e. the time corresponding to the maximum peak intensity).

The chromatogram of Figure 1 shows the presence of more than fifty hydrocarbons and in
addition, the fast sampling signal causes the presence of a not negligible noise which
corrupts the real intensity of signals (Mecozzi & Tomassetti, 2007; Kokaly et al., 2001). As a
consequence, we can hardly perform a numerical and visual comparison of different
chromatograms when we try to establish homogeneous or heterogeneous hydrocarbon
compositions among samples as shown by the example of Figure 2.
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Fig. 1. Example of a GC chromatogram arising from the analysis of hydrocarbons extracted
by a marine sediment. Any detected peak represents a hydrocarbon present in the sample.

According to Equation 1, PCA re-describes the starting X data set by means of a set of the
new “p” variables (i.e. factors), which being significantly lower than the number of the
original variables, allow to compare samples by means of simple two or three dimensional
plots, using the score matrix. In addition, PCA examines the variables which determine
similarity or dissimilarity among samples by means of the loading analysis. Loadings are
the statistical weights of the original “t” variables of the X matrix and in the case of
chromatographic data their analysis allows to identify the hydrocarbons which characterise

any samples. This is a peculiar advantages of PCA with respect Cluster Analysis, that is
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known as a fast screening method to determine similarity in experimental data set but in
any case, it allows neither to determine the statistical weight of the variable nor to study
peculiar variables determining qualitative similarities and dissimilarities among samples
(Brereton, 2003).

However, the application of PCA to large size data set requires some necessary
preprocessing treatments so to avoid potential misinterpretation of its results. In fact, a GC
data file. such as the chromatogram of Figure 1, consists of about 20.000 analytical signals
and when we examine a data file including thirty or forty samples, the resulting X matrix
has high data dimension and redundancy. This causes high time for PCA computation and
analytical problems such as reduction of the signal to noise (S/N) ratio and baseline drift.
The selection of proper preprocessing treatments of chromatograms can solve all these
problems and supports the correct application of PCA to large size multivariate data.
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Fig. 2. GC chromatograms of hydrocarbons extracted by some sediments sampled along the
Italian coasts. The simple visual examination of peak positions in the four plotted
chromatograms shows how the related samples can be hardly compared for establishing
similarities and dissimilarities of composition.

In this paper we discuss the application of PCA for performing the hydrocarbon monitoring
in two different GC chromatographic sets. Our study takes into account all the steps for a
correct application of PCA to high dimension chromatographic data files. The first set
consists of 29 superficial sediments from two different areas along the coasts of Italian seas,
seventeen from Venice lagoon (Adriatic sea) and twelve from Bagnoli (near Naples,
Tyrrhenian sea) respectively; the second set consists of 39 subsamples of marine sediments
coming from a sediment core taken in Antarctic sea.
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The main purpose of PCA application is that to retrieve information hardly detectable by
means of conventional methods of GC analysis of hydrocarbons in environmental studies.

2. Experimental section

This experimental study consists of five different steps; sampling of marine sediments,
hydrocarbon extraction and purification from other lipid compounds present in marine
sediments (Mecozzi et al., 2011), gas chromatographic analysis of the extracts, chemometric
pretreatment of chromatograms and application of PCA. PCA was applied to the two
different chromatographic data matrices including all the samples from the Italian coasts
and the Antarctic sediment core.

2.1 Sampling of marine sediments

Marine sediment sampling from the Italian coasts was performed by a box corer, taking the
upper 5 cm layer. Figure 3 reports the location of the two sampling areas along the Italian
coasts. Samples were stored frozen at -25°C until chemical analysis.

Fig. 3. Map of Italian coasts showing the two areas where surface sediments were sampled.
The white arrows shows the area of the Venice Lagoon in Northern Adriatic sea and the
grey one shows the area of Bagnoli near Naples in Tyrrhenian Sea.
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The Antarctic sediment core was sampled in the B5/Y5 station (75° 04" South, 164° 13’ East)
in the Ross bay at 550 meter of depth. This area is characterised by an intense stratification
of sediment and of biogenic organic materials. The sediment core was taken by means of
dredge sampler and the core was stored frozen at -25°C until GC analysis.

2.2 Hydrocarbon extraction

Hydrocarbon content was extracted and purified by means of an ultrasound method
developed in our laboratory (Mecozzi et al., 2011). Each sediment sample (20 g) was added
with n-hexane (20 ml) and H,O (40 ml) at pH 2 obtained by adding concentrated HCI.
Sediment was sonicated in an ultrasound cleaning bath operating at 35 kHz for 20 minutes
at room temperature. Then the supernatant was separated from sediment by centrifugation.
The separation of the aqueous phase from the organic phase was performed in a separating
funnel; then he organic phase was dried on anhydrous Na;SO,. This process was repeated
other twice, the extracts joint together and the organic phase was concentrated under
vacuum down to 1 ml of final volume for GC analysis.

2.3 Gas chromatographic analysis

The determinations of hydrocarbons extracted by marine sediments were performed using a
Carlo Erba (Milano Italy) instrument with flame ionization detector. The apparatus was
equipped with a capillary GC Column Therm 1 (Thermo Scientific Milano Italy), 30 m
length, i. d. 0.22 mm. Experimental conditions were injector 320°C, FID detector 360°C and
the introduction was performed in spleatless mode (one minute). The temperature program
used for chromatographic separation of hydrocarbons was 70°C for four minutes, thermal
gradient 15°C min? to 340°C; This temperature was finally held for fourteen minutes.
Chromatograms were saved as ASCII files for any further elaboration.

2.4 Chemometric pretreatments of chromatograms prior to PCA application
2.4.1 Improvements of analytical quality data and reduction of computation time

Handling of large data set prior to PCA application requires the preliminary solution of
several drawbacks; in fact, the high frequency sampling of analytical signals produces data
redundancy, high time of computation, with in addition analytical drawbacks such as
reduction of the signal to noise (S/N) ratio and baseline drift (Christensen and Tomasi
(2007). The same authors suggested several chemometric procedures for reducing these
effects prior to apply PCA to GC data; with this aim, an in house MATLAB (Natik, USA)
routine was applied to any collected chromatogram. In the appendix we report a MATLAB
routine according to the algorithms described by Christensen and Tomasi (2007). Figure 4
reports an example of this approach. After this pretreatment, GC chromatograms were
saved again as ASCII files.

2.4.2 Standardisation of the GC data set

Standardisation, also called scaling, is another fundamental step prior to PCA application,
necessary for reducing the effect of the different magnitude of intensity variations in the
case of multivariate data, causing uncorrected determination of the total variance of the data
system (Brereton, 2003; Wang et al., 1999; Noda, 2008).
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Fig. 4. Example of chemometric pretreatment of a GC chromatogram., Original
chromatogram, upper plot; chromatogram with data redundancy reduction, smoothed
signals and background correction, middle plot; bottom plot, removed baseline.

In environmental monitoring, where PCA is often applied to study the distribution of
pollutant loads, a common scaling technique is autoscaling; given the Y column vector to be
included in the X matrix and having n-sampled analytical signals, autoscaling performs the
data transformation according to

Yias = (Yl _YM)/0 (2)

where Yi, Yis , Ym and o are the original value iy, value, its autoscaled term, the average
value of the Y vector and standard deviation of the Y vector respectively. After autoscaling,
any new Y series to be included in the X matrix has mean value 0 and variance value 1.

This is a very powerful approach to reduce the effect of different size ranges on the total
variance of discrete data set but when applied to other types of variables such as the cases of
analytical signals, autoscaling has a marked drawback. In fact, digitised files of
spectroscopic and chromatographic data generally consist of several thousands of signals
sampled with high frequency acquisition. In this case autoscaling can often produce the
enhancement of noise depending on its division by a small value of standard deviation
(Noda, 2008; Kokalj et al., 2011).

Other scaling techniques are available for solving the disadvantage originating from
autoscaling. In the mean centred technique data are scaled according to

Yime = (Yi- Ynm) 3)

where Yimc is mean centred scaled value of the Y series while Y; and Yum are the same
meaning of the equation 2.
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Normalization scaling consists of transforming data according to

Yinorm = (YI _Ymin)/ (Ymax - Ymin) (4)

where Yinorm, Ymin and Ymax are the normalized Y; term, the minimum and the maximum

values of the Y series respectively. After normalization, all the Y vectors range between
Oand 1.

Pareto scaling is a technique proposed by the Italian economist Vilfredo Pareto (Noda,
2008); it consists of the division of the Y series values by the square root of its standard
deviation according to

Yi, =Yi/Vo )

where Yj, is the Pareto scaled of the original Yi value and o has the same meaning of
equation 2.

Any scaling technique produces different effects on the quality of analytical signals so that
the selection of the opportune scaling needs a carefully evaluation of the produced results.
We report examples of application of all the above scaling methods in Figures 5 and 6 so to
support the selection of the most appropriate methods prior to PCA application to GC data.
With respect to the original chromatogram, autoscaling causes baseline drift with negative
analytical signals and in addition, noise is enhanced in some zones of the chromatogram as
shown by the example of Figure 5 (middle plot).

Mean centred scaling causes a baseline drift with negative analytical signals as well, though
it does not cause a S/N ratio reduction as observed for autoscaling instead (Figure 5,
bottom plot).

Normalization and Pareto scaling techniques do not cause negative baseline drifts and
evident noise enhancements (Figure 6) so that we recommend to apply one of these as
scaling pretreatments. These techniques can be applied by means of a common
spreadsheet such as Excel for Windows. In any case, in the Appendix section we report
two ad hoc routines written in MATLAB language for applying the above scaling
techniques.

2.5 Application of PCA to gas chromatographic data set

PCA was applied to GC chromatograms by an in house routine written in MATLAB
(Natik, Wi, USA, ver 5.0) language according to the singular value decomposition
algorithm described by Geladi (2002). The list of the routine is reported in the Appendix
section.

2.6 Chemical reagents

All the chemical reagents used for the experimental work were of analytical reagent grade
(Carlo Erba, Milan, Italy) and only ultrapure MilliQ water was used for any chemical
treatments of samples.
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Fig. 5. Scaling methods applied to GC set. Conventional chromatogram, upper plot ;
autoscaling, middle plot; mean centred scaling, bottom plot. The arrow shows a case where
autoscaling increases noise with respect to the original plot.
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Fig. 6. Plots of original chromatogram (upper plot), normalization scaling chromatogram
(middle plot) and Pareto scaling chromatogram (bottom plot).
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3. Results and discussion

3.1 Application of PCA to hydrocarbon analysis in sediments from two areas of
Italian coasts

Figure 7 reports the score plot of the first vs. the second factor obtained by PCA application
to the GC chromatograms of superficial sediment samples taken along the coasts of
Adriatic and Tyrrhenian sea. These two factors extracted by PCA explain the 90.7 % of a
total variance of the chromatographic data set. This very high fraction of information,
retained in two factors only, is an impressive example of PCA ability as “data reduction
form”; now, the visual comparison of GC samples is possible by means of a simple two-
dimensional plot depending on the reduction of the starting 20.000 variables (i.e. the
retention times of hydrocarbons) to the two PCA factors.

The clustering of samples determining homogeneity and heterogeneity among samples is
also evident and does not require further multivariate methods such ad discriminant
analysis to investigate the classification of samples. Though these samples come from
different seas and areas, some samples of the two areas have comparable hydrocarbon
compositions as results from several VL and BG samples present in a same cluster, while
samples of the Bagnoli area show different hydrocarbon compositions. This result means
that the contributions of several biogenic (i.e. natural) and anthropogenic hydrocarbons
can make sometimes comparable even sediments from different areas such as the two
seas. These results can be hardly retrieved by the visual examination of the 29
chromatographic plots.
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Fig. 7. Score plot of the first (PC1) vs. the second (PC2) factor from PCA applied to GC
chromatograms of the Venice lagoon in Northern Adriatic (VL) and Bagnoli (BG) in
Tyrrhenian sea. The two factors explain the 83.9 % and the 6.8 % respectively of the total
variance. The ellipses are arbitrary and show the three different clusters.
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However PCA can give additional information concerning the qualitative composition of
samples because loading analysis can detect the hydrocarbon characteristics determining the
similarities and dissimilarities observed in Figure 7.

The loading plot of the first factor (Figure 8) shows the generally high variability present
in the hydrocarbon distribution of environmental samples as this factor explains the 83.9%
of the total variance. Moreover, Figure 8 shows allows to retrieve characteristics
concerning the hydrocarbon distribution of these samples. Pristane and phytane are two
peculiar hydrocarbons able to characterise the biogenic and the anthropogenic sources
present in environmental samples. In fact, pristane is a hydrocarbon typical of biogenic
sources whereas phytane is a hydrocarbon typical of anthropogenic sources (Wang et al.,
1999; Mecozzi et al., 2008; Duan et al., 2010). In this loading plot, pristane is negligible
(retention time 15.5 minutes) whereas phytane is present (retention time 16.2 minutes in
Figure 8, upper plot). In addition, the wax hydrocarbons (i.e. number of carbon higher
than 24) which are also typical of biogenic sources (Wang et al., 1999; Duane et al., 2010;
Ibbotson and Ibhadon, 2010; Ahad et al., 2011), are absent as shown by the negligible
presence of chromatographic peaks with retention time higher than 20 minutes
(Mecozzi et al., 2011). So the first loading plot describes the anthropogenic feature of the
examined samples.
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Fig. 8. Loading plot of first factor for data from the two areas from the Venice lagoon and
Bagnoli near Naples. The arrows show the position of pristane (negligible) and phytane
(present) in the corresponding chromatogram plot.
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The loading plot of the second factor (Figure 9) , though explaining about the 7% of the total
variance only, shows that samples in the upper cluster of Figure 7 are characterised by little
concentration changes of some specific hydrocarbons related to biogenic hydrocarbon
sources. In fact, with respect to the loading plot of Figure 8, here several linear hydrocarbons
with carbon number higher than 24 are present and this is a marker of biogenic
hydrocarbons (Wang et al, 1999; Duane et al., 2010). Obviously, due to the heterogeneity of
the hydrocarbon composition, PCA can not specify the concentration changes of a single
hydrocarbon, but in any case, it is relevant that we can compare samples of different origins
solving the problem related to the general lack of methods to compare regional differences
in areas submitted to potential hydrocarbon spills (Fraser at al., 2008).

Another interesting and useful advantage of using PCA in GC monitoring data consists of
its support to the application of another well diffused unsupervised pattern recognition
method such as Cluster Analysis. According to its name, CA performs the classification of
data by identifying clusters of data having relevant similarities and for this purposes, it uses
the multivariate distance among samples (Massart and Kaufmann, 1983).

CA is considered a fast screening method to perform exploratory data analysis though it
does not identify the variables which determine similarity and or dissimilarity among
samples; this remains a peculiar ability of PCA (Figures 8 and 9).
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Fig. 9. Loading plot of second factor for data from the two areas from the Venice lagoon and
Bagnoli near Naples. The arrows show the presence of some linear high molecular weight
hydrocarbons, with more than 24 carbon atoms, typical of biogenic sources.
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However, the application of CA to samples with over than 20.000 variables such as the case
of the GC data is almost impossible due to computational and collinearity problems among
variables (Massart and Kaufman, 1983). Conversely when CA is applied by means of the
PCA scores, we have many peculiar advantages because this approach requires a small
number of uncorrelated factors only while it does not require the use of specific distance
such as the Mahalanobis one (Massart and Kaufman, 1983). This approach reported in
Figure 10, shows that samples are clustered in a perfect agreement with Figure 7 obviously
and now, by means of the data reduction of PCA, we can apply CA for estimating the
percent of similarity existing among samples.
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Fig. 10. Cluster Analysis of GC data performed by means of PCA scores. The ratio
(Dlink/Dmax)* 100 of the ordinate axis is the quantitative measurements of the dissimilarity
among samples.

3.2 Application of PCA to hydrocarbon analysis of sediment samples from an
Antarctic core

The application of PCA to the chromatographic data set of an Antarctic sediment core
(Figure 11) gives even more peculiar results with respect to those obtained in the previous
section. Being Antarctic continent uncontaminated, we can suppose reasonably that
hydrocarbons present in sediment core samples depend on biogenic contribution essentially
with negligible anthropogenic contributions. If so, the hydrocarbon composition changes
observed along the sections of the Antarctic sediment core should have a qualitative
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homogeneous composition depending on the biogenic contributions. As a consequence, the
observed quantitative changes should depend on the natural stratification events only. The
results reported in the score plot of Figure 11 supports this hypothesis.
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Fig. 11. Score plot of the first vs. the second factor from PCA applied to GC chromatograms
of the Antarctic sediment core. The two factors explain the 67.0 % and the 11.56 %
respectively of the total variance.

The first factors explains the 67.0 % of the total variance and the score values have an almost
constant value while the positions of the samples changes with the scores of the second
factor explaining the 11.56 % of the variance. The loading analysis reported in Figure 11,
gives many details for the clarification of these findings. In the first factor, it is evident the
presence of a significant hydrocarbon peak at high molecular weight (retention time close to
35 minutes) assigned to the linear hydriacrbon with 38 carbon atom number. This is a wax
hydrocarbon, typical of biogenic contributions arising from the degradation of living cells
(Duane et al., 2010).

PCA confirms the supposed prevalence of biogenic contributions for these samples
depending on prevalent presence of the biogenic linear hydrocarbon with 38 carbon
number, suggesting a significant homogeneous composition mostly governed by the natural
stratification of sediments as well. In addition, if the hydrocarbon distribution along the
sections core is determined by the natural stratification of sediments only, we can suppose
that it is governed by time. In this case, we could test the hypothesis of the time depending
relationship between stratification of hydrocarbon distribution in sediments by means of the
autocorrelation function, a typical approach for time series analysis (Brereton, 2003). In fact,
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autocorrelation is a tool for studying time trend and periodicity present in an univariate
data set according to the regressive model

Y1 =mYi+ cost t=1,2,........ n (6)

Autocorrelation has an easy application to univariate time series data but its application to
multivariate data such chromatographic ones can be performed after a PCA data reduction,
under the condition that its first factor explains a high percent of the total variance (Brereton,
2003). In the case of the Antarctic core samples this condition is fulfilled (i.e. 67% in the first
factor) and the first factors can be considered as an univariate time series. So we can examine
our data by the autocorrelation method using the score values of the first factor.
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Fig. 12. Loading plot of the first (upper) and second (bottom) factors related to data of the
Antarctic sediment core.

We report the result of this time series PCA application in Figure 13. The time descending
trend of hydrocarbon distribution, depending on the natural stratification of sediments only,
is clearly supported by the shape of the autocorrelation plot. On the base of this finding, we
can verify that the hydrocarbon distribution shows a time trend depending on its biogenic
contributions, because if anthropogenic sources were also present, we should observe a
more irregular vertical profile and not the time trend supposed by Figure 11 and clearly
confirmed by Figure 13.
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Fig. 13. Autocorrelation plot of the first factor of PCA applied to the hydrocarbon data

distribution. The abscissa axis corresponds to the number of the sediment sections of the

Antarctic core, while the number on the ordinate axis corresponds to the value of the

autocorrelation function determined by the first PCA factor.

4. Conclusion

In this study, we have presented all the aspects of pretreatment, scaling and use related to
the application of PCA to complex multivariate chromatographic data set coming from
environmental studies. As far as data pretreatment concerns, we stress the importance of
data redundancy reduction, signal to noise improvement and data scaling. For this latter
aspect, we have evidenced the peculiar advantages given by normalization and Pareto
scaling techniques with respect to the most applied autoscaling technique. When applied to
two specific cases of environmental studies PCA allows to retrieve much more information
than that obtained by the conventional visual examination of GC chromatograms. Both case
of studies show the power of PCA for explorative data analysis in chromatography and in
addition, its ability as “data reduction form “supports the use of other statistic and
complimentary techniques such CA and Time Series Analysis in the interpretation and
verification of the environmental results.
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6. Appendix

6.1 MATLAB routine for performing reduction of data redundancy, smoothing and
baseline correction and removal

function [d,g]=gcpretreatment(chromatogram,factored);
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% Routine for data redundancy reduction, Savitzky Goaly filtering and baseline removal in
chromatograms
% Ref. "Practical Aspects of Chemometrics for Oil Spill Fingerprinting"
% J.H. Chrinstensen and G. Tomasi, ]. Chromatography A, 1169 (2007) 1-122
% chromatogram is a data file with X (time),Y(mV) in ASCII format
% factored is a number specifying the entity of the data reduction
% for N number of X,Y couples of signals, factored=2 gives a final an N/2 length data file
% "g" is the reduced chromatogram
% "d" is the removed baseline
% “g” has to be saved as ASCII file for further elaboration by PCA
% Data redundancy reduction
a=chromatogram(;1);
b=chromatogram(:,2);
a(1:factored:length(a))=[];
b(1:factored:length(b))=[];
% Formation of reduced chromatogram (matrix)
c=[a,b];
%
% Baseline removal
rid=c(:,2);
% determination of baseline "d"
for i=1:length(rid)-1
if i==1
d(1)=rid(1);
end
d(i)=rid(i+1)-rid(i);
end
d=[d(1),d];
f=rid-d’;
%
% Savitzki Golay filtering (third order function 17 points)
g=sgolayfilt(f,3,35);
subplot(3,1,1)
plot(chromatogram(:,1), chromatogram(:,2),'k')
title('Original Chromatogram')
xlabel('Time (min)')
ylabel('Intensity (mV)")
axis([min(chromatogram(:, 1)) max(chromatogram(;,1)) min(g) max(g)])
subplot(3,1,2)
plot(a,g,'k")
title('Chromatogram After Baseline Removal and Savitzky Golay Filtering)
xlabel('Time (min)')
ylabel('Intensity (mV)'")
axis([min(a) max(a) min(g) max(g)])
subplot(3,1,3)
plot(a,d,'k")
title(' Removed Baseline ')
xlabel('Time (min)")
ylabel('Intensity (mV)'")



Applications of PCA to the Monitoring of Hydrocarbon Content
in Marine Sediments by Means of Gas Chromatographic Measurements 81

axis([min(a) max(a) min(d) max(d)])

6.2 MATLAB routine for performing normalisation scaling

function [b]=norma(dataset);

% Routine for normalization of a spectral or chromatographic data samples
% Data matrix is column wise; each column corresponds to one sample
% dataset is the ASCII files of data to be normalized

% Files are uploaded as ASCII file

[m,n]=size(dataset);

for j=1:m

fori=1:n

b(j,i)=(dataset(j,i)-min(dataset(:,i)))/ (max(dataset(:,i))-min(dataset(:,i)));
end

end

6.3 MATLAB routine for performing Pareto scaling

function [b]=paretoscaling(dataset);

% Routine for scaling of a spectral or chromatographic data samples
% by the Pareto approach

% Data matrix is column wise; each column corresponds to one sample
% dataset is the ASCII files of data to be normalized
[m,n]=size(dataset);

for j=I:m

fori=1:n

b(j,i)=(dataset(j,i))/ sqrt(std (dataset(:i)));

end

end

6.4 MATLAB routine for performing PCA

function [scores,loadings,varpercent]=pcawp(x);

% Principal Component Analysis (PCA)according to the algorithm Singular Value
% described by P. Geladi in Calculating Principal Component Loadings and Scores
% ISBN 91-7191-083-2, Umea, Sweden

% the “x” file is the data file after all the pretreatments

% Matrix r*c whit "r" rows (samples) and "c" columns (variables) can be analysed
% use the "save filename.txt a -ascii -tabs" instruction for saving files

% varpecent is the file with percent of variance explained by all the factors
[u,d,v]=svd(x);

% Determination of explained variance retained by each factor

I=d.*d;

varpercent=diag(l./trace(l))*100

scores=u*d;

loadings=v;
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Application of Principal Component
Analysis in Surface Water Quality Monitoring

Yared Kassahun Kebede and Tesfu Kebedee
Ethiopian Institute of Agricultural Research
Ethiopia

1. Introduction

Surface water systems such as rivers, lakes and ground water are affected by the natural
processes such as erosion of minerals and dissolution of nutrients from the overlying rocks
as well as anthropogenic influences from urban, industrial and agricultural activities. These
degradation of surface water quality resulted in altered species composition and decreased
overall health of aquatic communities (Ouyang et al., 2002). Therefore, in view of the spatial
and temporal variations in the physico-chemical, hydrological and biological attributes of
surface water systems, regular monitoring programs are required for reliable estimates of
the water quality.

Rivers are the only ecosystem characterized by strong and predominantly unidirectional
flows of materials that intimately connect the upstream and downstream reaches
(Thompson & Lake, 2010) and thus, rivers play a major role in assimilation or carrying off
the municipal and industrial wastewater and nutrient removal from agricultural fields and
mineral rocks by surface runoff are responsible for river pollution. The municipal and
industrial wastewater discharge constitutes the constant polluting source, whereas, the
surface run-off is a seasonal phenomenon, largely affected by climate in the basin (Sing et al.
2004; Vega et al., 1998). Therefore, since rivers are the most important inland water
resources for human consumption, it is imperative to have reliable information on
characteristics and trends of water quality for effective water management.

The usual program of water quality assessment is the periodic measurement of multiple
parameters in different monitoring stations which resulted in a complex data matrix of a
large number of physico-chemical parameters that should be assessed to evaluate water
quality (Chapman, 1992; Dixon & Chiswell, 1996). To simplify the problem of data reduction
and to draw meaningful conclusion, several researchers used water quality indices (WQI) to
verify the influence of waste discharges on water quality of streams and rivers (e.g. Cao et
al., 1996; Pesce & Wundelin, 2000). However, WQI are often specific to the type of pollution
or the geographical area involved (Rosenbeg & Resh, 1993) and has difficulty in universal
applications. In addition, they do not provide evidences on the pollution sources (Pesce &
Wundelin, 2000). Similarly, univariate procedure is a common technique applied in river
water quality monitoring which does not adequately characterize simultaneous similarities
and differences between samples or variables (Dixon & Chiswell, 1996). In addition, the
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intrinsic values of analytical data are inadequate for the investigation of multivariate data
table as the variables are correlated (Vega et al. 1998). Therefore, the indirect relationship
between analytical parameters should be taken in to account for complete understanding of
surface water quality.

Multivariate statistical methods have been widely applied in environmental data reduction
and interpretation of multiconstituent chemical, physical biological measurements
(Ramzakh et al., 2010; ter Braak & Verdonschot, 1995; Wenning and Erickson, 1994). These
techniques have been applied for identification factors that influence water systems for
reliable management of water resources as well as for rapid solution for pollution problems
(Reghunath et al., 2002; Simeonov et al., 2004). In this regard, PCA is a very powerful
multivariate statistical analysis method technique which is applied to reduce the
dimensionality of a data set consisting of a large number of inter-related variables, while
retaining as much as possible the variability present in data set (Jiangin et al. 2010; Sing et al.
2004). In addition, it allows to assess the association between variables, since they indicate
participation of individual chemicals in several influence factors (Vega et al., 1998).

Since certain correlations exist among multi-indicators, PCA attempts to transform a large
set of inter-correlated indicators into a smaller set of composite indicators, uncorrelated
(orthogonal) variables called principal components (PCs), and simplifies the structure of the
statistical analysis system (Jianqin et al. 2010). In this way, the correlation coefficient matrix
measures how well the variance of each constituent can be explained by relationship with
each of the others (Liu et al., 2003) and PC provides information on the most meaningful
parameters, which describe the whole data set affording data reduction with minimum loss
of original information (Helena et al., 2000; Vega et al., 1998). The characteristic root
(eigenvalues) of the PCs is a measure of associated variances and the sum of the eigenvalues
coincides with the total number of variables (Razmkhah et al. 2010). Correlation of PCs and
original variables is given by loadings, and individual transformed observations are called
scores (Wunderlin et al., 2001). Liu et al. (2003) classified the factor loadings as ‘strong’,
‘moderate” and ‘weak’, corresponding to absolute loading values of >0.75, 0.75-0.50 and
0.50-0.30, respectively. However, loading reflects the relative importance of a variable
within the component and does not reflect the importance of the component itself (Davis,
1986 cited in Ouyang, 2005).

A rotation of principal components can achieve a simpler and more meaningful
representation of the underlying factors by decreasing the contribution to PCs of variables
with minor significance and increasing the more significant ones (Vega et al. 1998).
However, rotation might have resulted in an increase of the number of factors necessary to
explain the same amount of variance of the original data set. However, it allows the
association of small groups of variables and individual rotated factors with a clearer
hydrochemical meaning (Vega et al., 1998) which greatly helps in data interpretation
(Helena et al., 2000; Morales et al., 1999; Simeonov et al., 2003; Vega et al., 1998).

2. Application of PCA in physico-chemical water quality monitoring

The main problem in regular water quality monitoring programmes is the generation of
large physico-chemical data matrix in a relatively short period of time which necessitate
effective data handling mechanism for interpretation of results, association of variables and
meaningful conclusion.
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2.1 Anthropogenic and seasonal effects on water quality

Vega et al. (1998) applied exploratory data analysis for the assessment of the seasonal and
polluting effects on water quality of Pisuerga river (Duero basin, Spain). These authors
reported that the overall component loadings (i.e., no seasonal loading provided) for 22
experimental variables. PC1 explained 46.1% of the variance and PC2 explains 19.0% of the
variance and it is highly participated by the variables related to anthropogenic pollution like
BOD, COD, phosphorous or nitrogen. However, VF1 explained 37.2% of the total variance
and is highly participated by mineral component of the river water (calcium, chloride,
conductivity, dissolved solids, hardness, bicarbonate, magnesium, sodium and sulphate).
VF2 contained 16.7% of the variance and include BOD, COD and ammonia. Therefore, these
two verifactors identified the natural (mineral) component of pollution from anthropogenic
organic pollution.

However, the study conducted by Vega et al. (1998) has not address seasonal effects which
are known to have significant effect on water quality and might have affected the results of
the study when interpreted for the different seasons. Ouyang et al. (2006) addressed the
seasonal changes in surface water quality of the Lower Saint John River (LSJR) by the
application of PCA. The authors found that PC1 explained 56.8% of the total variance
measure the preponderance of physical (i.e., color, DO, and BOD) and organic-related (i.e.,
TKN, TOC, and DOC) water quality parameters over the mineral (i.e., alkalinity, salinity,
and EC) and inorganic nutrient (i.e,TNHs;, DNOx, TP, and PO4-3) related water quality
parameters while component 2 explained 26.8% of the total variance distinguished the
importance of anthropogenic inputs and physical parameters (e.g., temperature and
turbidity) over the natural inputs (e.g., pH, alkalinity, and salinity) during the spring season.
However, unlike the cases for PC1 in spring and summer, the PC1 in fall which explained
54.2% of the total variance was positively contributed by mineral inorganic nutrient-related
parameters and was negatively participated by the physical and organic-related parameters.
Overall, their results revealed a high seasonal variation of water quality parameters in the
dynamic river system and showed their significance (seasonal variation) when establishing
the pollutant load reduction goals (PLRGs) and developing the total maximum daily loads
(TMDLs). In a separate study, Ouyang (2005) applied PCA for evaluation of river water
quality monitoring stations (22) in the same stream. Results showed that the first component
accounted for about 94.6% and the second component accounted for about 4.5% of the total
variance in the data set. PC1 is, therefore, the only one major source of data variation and 3
monitoring stations were identified as less important (non-principal) in explaining the
annual variance of the data set. The authors attributed the very high variation explained by
PC1 to the use of monitoring stations rather than water quality parameters in. In fact, it is
expected that the water quality parameters which are controlled by hydrological, chemical
and biological conditions to have higher correlations than water quality parameters which
are solely controlled by hydrological conditions.

Numerous studies also confirmed that multivariate statistical techniques served as an
excellent exploratory tool in understanding their temporal and spatial variations on water
quality (Sing et al, 2004). The application of PCA by Razmkhah et al. (2010) discriminate the
anthropogenic and “natural” influences on Jajrood river in Iran. PCA has allowed
identification of a reduced number of mean 5 varifactors, pointing out 85% of both temporal
and spatial changes. Rotation of the selected factors explained that VF1 (mineral contents)
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and VF2 (mineral and anthropogenic contamination) in spring time identified sites with
worst water quality (high mineral content and higher organic pollution) and 43% of the
existing variance was briefly contributed by minerals (temporal variations) whereas 26% by
anthropogenic factors (spatial variations). However, PCA extracted 3 VFs for the summer
season and 15.5% of the variance is contributed to by organic factors, 15.5% by minerals and
55% by both and identified the most polluted rivers. Performing PCA in the autumn season
found that 39% of the variation was due to temporal factors, 10% due to organic factors and
36% was the result of both sources. PCA extracted 4 VFs for winter season and 38% was due
to minerals, 12% due to organics and 31% developed by both sources. Overall, every season
revealed the presence of either mineral or anthropogenic or both sources of pollution.

Recently, Fan et al. (2010) applied PCA for spatial water quality assessment and pollution
sources identification in Northern, Western and Eastern part of Pearl River delta (China).
The results of the PCA suggested the parameters responsible for water quality variations
in North River region was mainly related to organic related parameters (DO and CODwn ),
inorganic nutrients (NHs;-N and TP) and metal Hg; but in East River region, it was mainly
related to organic related parameters (BODs) and inorganic nutrients (NHs-N and TP),
and in West River Region, mainly related to organic related parameters (CODwn ) and
inorganic nutrients (NHs-N and TP). Therefore, PCA offer a useful tool for assessment of
water quality and management of water resources in some regions with a large number
complex water quality datasets involved. Similarly, Sing et al. (2004) applied multivariate
statistical techniques for evaluation of temporal and spatial variations in water quality in
Gomti river (India). A varimax rotation (raw) of the PCs to six different VFs of eigenvalue
> lwhich are considered significant (Kim & Mueller, 1987; Liu et al., 2003) explained
about 71% of the total variance. VF1 explained 17.6% of total variance and has strong
positive loadings on EC, chloride, potassium and sodium and this VF represents a mineral
component of the river water. VF2, explained 16.2% of total variance and has strong
positive loadings on BOD and COD which represent anthropogenic pollution sources.
Overall, these results from temporal PCA suggested that most of the variations is
explained by the set of soluble salts (natural) and organic pollutants (anthropogenic).
However, this finding is in contrast to other studies (e.g. Fan et al., 2010; Vega et al., 1998)
as PCA does not result in much data reduction, as it still need 14 parameters (about 60%
of the 24 parameters) to explain 71% of the data variance. Parinet et al. (2004) successfully
reduced the number of analytical parameters from 18 to 4 (pH, conductivity, UV
absorbance at 254 nm and permanganate index for raw water) in a study of 10 tropical
lakes in Ivory Coast without notably impairing the quality of the PCA representation.
However, this difference might be related to the difference in the water system (river vs.
lake) and geographical factors. Overall, simplification of water quality parameters to
easily quantifiable ones eases water quality monitoring programmes.

3. Changes in biological community structure

Kebede et al (2010) applied PCA to detect changes in community composition of
macronvertebrates arising from wet coffee processing effluents in major coffee producing
region of Ethiopia by comparing upstream sites (control sites without any impact from the
effluent and other possible pollutants because of their location above processing stations)
with downstream locations (locations below coffee processing stations which are effluent
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receivers). The relationships between the environmental and biological data were assessed
using canonical multivariate analysis with the software program CANOCO 4.5 (ter Braak,
Smilauer 2002). First, detrended correspondence analysis (DCA) of square-root transformed
taxa abundance, with down weighting of rare taxa, detrending by segments and non-linear
rescaling was used to determine the biological turnover, or gradient length, of the species
data set. DCA for taxa (species) abundance of the first axis was less than 3, implying that
taxa abundance exhibit linear response to environmental gradients (Leps & Smilauer, 2003).
Therefore, principal component analysis (PCA) was used in the ordination of taxa
abundance, and sampling sites by focusing scaling on inter-sample distances,
standardization the species score (species score divided by the standard deviation), log
transformation and centring by the species. In addition, to check the influence of
environmental variable in explaining the variation among response variables (species), a
PCA analysis of the response variable was run by using the physico-chemical data as
supplementary environmental variable.

3.1 Physcico-chemical parameters

There was a highly significant variation between BOD values of the study sites (p < 0.01).
BOD levels extend from 0.8 mg/1 at upstream site of Urgessa river to 1900 mg/1 and 1700
mg/1 at downstream sites of Bore and Fite rivers, respectively. Similarly, there was a
significant variation between DO values of the study sites as expected (p < 0.05). The
upstream sites showed good oxygen content as the DO values were above 5mg/1. However,
DO value is totally depleted at the downstream site of Bore river which is in agreement with
the high BOD value recorded for the site. Conversely, a slight reduction in pH values on
average (7.03 to 6.74) might be attributed to the high assimilation capacity of water. The
relatively higher amount of TDS at the upper site of Chiseche river might be attributed by
the high mucilage coming out from coffee processing stations which are located around
Chiseche river while the variation in temperature could be related to daily temperature
variation during sampling period. A general pattern of NO; and NH4* increment at
downstream sites compared the upstream sites was observed during the sampling periods.
Opverall, the result of the physico-chemical analysis supports similar findings such that the
main ecological effect of organic pollution in a watercourse is the decrease in oxygen content
(Murthy et al., 2004; von Enden & Calbert, 2002).

3.2 Descriptive analysis of macroinvertebrates

To assess the downstream water quality (river water that receive discharge from wet coffee
processing stations), 6047 macroinvertebrate individuals representing 27 different taxa were
collected and identified from riffle sampling sites at the upstream and downstream locations
(Table 2).

Species abundance is generally believed to be a useful measure of the severity of pollution
(Sheehan, 1984). The total number of individuals found at the downstream sites was 5459
which was compared to 588 individuals collected from their respective upstream sites. The
highest number of individuals was found at the lower course of Guracho river (2166
individuals) while the lowest number was recorded at the upper course of Chore river with
a total of 3 individuals. Almost all the sampling sites displayed higher number of
individuals at the downstream sites than the upper ones (Table 3). The highest number of
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