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Narrowband Vegetation Indices for
Estimating Boreal Forest Leaf Area Index

Ellen Eigemeier, Janne Heiskanen, Miina Rautiainen, Matti Mottus,
Veli-Heikki Vesanto, Titta Ma jasalmi and Pauline Stenberg
University of Helsinki

Finland

1. Introduction
1.1 Leaf area index

The green photosynthesizing leaf area of a canopyis an important characteristic of the status
of the vegetation in terms of its health and pr oduction potential. At stand level, the amount
of leaf area in a canopy is represented by a varable called the leaf area index (LAI), which is
one of the key biophysical parameters in the global monitoring and mapping of vegetation
by satellite remote sensing (Morisette et al., 2006). In this paper we adopt the, by now
widely accepted, definition of LAl as the hemi-sur face or half of the total surface area of all
leaves or needles in the vegetation canopy dvided by the horizontal ground area below the
canopy. The definition is in line with the original definition of LAI, formulated for flat and
(assumedly) infinitely thin leaves (Watson, 1947), as the one-sided leaf area per unit ground
area. For coniferous canopies, the question arose on how to define the “one-sided” area of
non-flat needles. While projected needle areaformerly often has been used erroneously as a
synonym to one-sided flat leaf area, it is how commonly accepted that the hemi-surface
needle area represents the logical counterpart tothe one-sided area of flat leaves (e.g. Chen
& Black, 1992; Stenberg, 2006).

LAl controls many biological and physical pr ocesses, driving the exchange of matter and
energy flow. Because LAI responds rapidly to di fferent stress factors and changes in climatic
conditions, monitoring of LAl yields a dynamic indicator of forest status and health. The
link between forest productivity and LAI, in turn, lies in that LAl is the main determinant of
the fraction of incoming photosynthetically active radiation absorbed by the canopy
(fAPAR). The absorbed photosynthetically active radiation (APAR) quantifies the energy
available for net primary production (NPP) and is thus a critical variable in NPP and carbon
flux models. NPP is related to APAR by the light-use-efficiency originally introduced by
Monteith (1977) for agricultural crops.

Traditionally, ground-based measurements of LAl have typically involved destructive
sampling and determination of allometric relationships, e.g. between leaf area and the basal
area of stem and/or branches carrying the leaves (the pipe model theory) (Shinozaki et al.,
1964; Waring et al., 1982). However, such “dire¢ methods” are quite laborious and indirect
measurements of LAl using optical instrument s are today the preferred choice (Welles &
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Cohen, 1996; Jonckheere et al., 2004). They prae inverse estimates of LAl based on the
fraction of gaps through the canopy in diff erent directions, which can be measured using
devices such as the LAI-2000 Plant Canopy Analyzer (LI-COR, 1992) or hemispherical
photography. A vast body of classical literature exists on the dependency between LAl and
canopy gap fraction underlying these techniques (e.g. Wilson, 1965; Miller, 1967; Nilson,
1971; Lang, 1986). In short, the inversion methodsrely upon the assumption that leaves are
randomly distributed in the canopy, in which case Beer's law can be applied to plant
canopies (Monsi & Saeki, 1953). However, as the organization of leaves (needles) in forest
canopies is typically more aggregated (“clumped”) than predicted by a purely random
distribution, the technique causes underestimation of LAI, especially in coniferous stands
(e.g. Smith et al., 1993; Stenberg et al., 1994). dtead of the true LAl, the inversion of gap
fraction data without correction for clumping vyields the quantity co mmonly referred to as
the “effective leaf area index” (Black et al., 1991).

Monitoring LAI in a spatially continuous mode and on a regular basis is possible only using
remote sensing. Estimation of LAl from optical satellite images is considered feasible
because LAl is closely linked to the spectral reflectance of plant canopies in the shortwave
solar radiation range (Myneni et al., 1997). The physical relationships between canopy
spectral reflectances and LAI form the basis of retrieval algorithms used in current Earth
observation programs (e.g. MODIS, CYCLOPES, GLOBCARBON products) for mapping
LAI at global scales. They produce bi-weekly and monthly vegetation maps that are widely
used by biologists, natural resources managers, and climate modelers, e.g. to track seasonal
fluctuations in vegetation or changes in land use. The arrival of narrowband reflectance data
(also known as hyperspectral or imaging spectroscopy data) opens up new possibilities for
satellite-derived estimation/monitoring of variab les connected to the status and structure of
vegetation, including LAI.

1.2 Spectral properties of boreal forests

The boreal forest zone, which spreads through Fennoscandia, Russia, Canada and Alaska, is
the largest unbroken forest zone in the world and accounts for approximately one fourth of
the world’s forests. The boreal zone is a maja store of carbon and thus plays an important
role in determining global albedo and climate.

The reflectance spectra of coniferous forests (eva if they have the same leaf area) are very
distinct from similar broadleaved forests. The reasons for the special spectral behaviour of
coniferous forests are versatile, yet primarily related to their structural, not optical,

properties. Firstly, a high level of within-sh oot scattering of conifers was originally noted

nearly four decades ago (Norman & Jarvis, 1975) More recently, Landsat ETM+ data and a
forest reflectance model were used to show that the low near infrared (NIR) reflectances
observed in coniferous areas can largely beexplained simply by within-shoot scattering

(Rautiainen & Stenberg, 2005). Secondly, absorptin by coniferous needles is higher than
that by broadleaved species (Roberts etal., 2004; Williams, 1991), a phenomenon which can
partly contribute to the lower reflectances of conifer-dominated areas. Other explanations
include, for example, that the tree crown surface of coniferous standsis more heterogeneous
than in broadleaved stands (Hame, 1991; Schullet al., 2011). In other words, when surface
roughness (i.e. crown-level clumping) increases, the shaded area within the canopy
increases, thus leading to lower reflectances.Overall, these results highlight the importance
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of various geometric properties as the main reason for the reflectance differences between
broadleaved and coniferous stands.

Remote sensing of the biophysical properties, such as LAI, of a boreal coniferous forest
canopy layer is further complicated by the ofte n dominating role of the understory in the
spectral signal (Rautiainen et al., 2011; Rautiairen et al., 2007; Eriksen et al., 2006; Eklundh
et al., 2001; Chen & Cihlar, 1996; Spanner et al1990). Coniferous forests that are regularly
treated according to forest management practices tend to have relatively clumped and open
canopies. Thus, the role of the understory vegeation in forming boreal forest reflectance
cannot be neglected (Pisek et al., 2011).

1.3 Vegetation indices in LAl estimation

Canopy biophysical variables, such as LAI, can be estimated from remotely sensed data by
two types of algorithms: empirical models and methods that use physically-based radiative
transfer (RT) models. In empirical algorith ms, the estimation is based on statistical
relationships modelled between concurrent gr ound reference measurements and surface
reflectance data. These relationships are typtally expressed in the form of vegetation
indices (VI). Vis include various combinations of spectral bands designed to maximize the
sensitivity to vegetation characteristics while minimizing it to atmospheric conditions,
background, view and solar angles (Baret & Guyot, 1991; Myneni et al., 1995). Operational
LAI algorithms at global-scale typically make use of RT models, but the empirical models
usually outperform them in more localized applications.

The design of a VI that is optimally correlated with a particular vegetation property requires
good physical understanding of the factors affecting the spectral signal reflected from
vegetation. The sensitivity of a VI to a vegetation characteristic is typically maximized by
including bands with high sensitivity (e.g. hi gh absorption) to the monitored entity and
bands mostly unaffected by the same entity. The simplest forms of Vis are simple
differences (Rs1—Rs), ratios (Rsi/R s2) and normalized differences [(Rgi-Rs2)/(R g1tRs2)] of
the reflectances of two spectral bands (R1, Rs2). (In Table 2 we give examples of common
VIs used in this study.) The most apparent characteristic of the green vegetation spectrum is
the pronounced difference between the red and NIR reflectances, the so called red-edge
around 700 nm. For example, the normalized difference vegetation index (NDVI) utilizes
this difference and has been shown to correlate with many interrelated vegetation attributes,
such as chlorophyll content, LAI, frac tional cover, fAPAR and productivity.

The most commonly used VIs were designed for broadband sensors (one spectral band
spans about 50 nm or more) having red and NIR bands, such as NOAA AVHRR and

Landsat MSS (e.g. Tucker, 1979)However, the basic VIs in red and NIR spectral range
suffer from three well-known problems in LAl es timation: (1) they are not sensitive to LAI

over its natural range but tend to saturate already at moderate levels of LAI, (2) they are
sensitive to canopy background variability, an d (3) the VI-LAI relationships are dependent

on the vegetation type. These VIs are also sensitive to atmospheric noise and correction.

The saturation of NDVI occurs typically at LAl levels of 2 to 6 depending on the vegetation
type and environmental conditions (e.g. Sellers, 1985; Myneni et al., 1997). In general, NDVI
saturates as the fractional cover of vegetation approaches one, although LAl still increases
(e.g. Carlson & Ripley, 1998). Over conifer-dominated boreal forests, NDVI varies typically



6 Remote Sensing — Applications

in a narrow range and shows poor relationships with canopy LAl (Chen & Cihlar, 1996;
Stenberg et al., 2004). The reason for this ithe green understory, which results in a non-
contrasting background in the visible part of the spectrum (Nilson & Peterson, 1994; Myneni
etal., 1997).

Many modifications of basic VIs have been suggested to give better sensitivity to LAL
Typical modifications use other visible bands than red (e.g. the green vegetation index,
GNDVI, Gitelson et al., 1996), try to reduce soil effects based on the soil line concept (e.g. the
soil adjusted vegetation index, SAVI, Huete, 1988), or include short wave infrared (SWIR)
bands. Many modifications also attempt to reduce atmospheric effects (e.g. the enhanced
vegetation index, EVI, Huete et al., 2002). The sail line is based on the observation that soil
reflectances fall in a line in the red-NIR spectral space (e.g. Huete, 1988). Many VIs utilize
the parameterized soil line in their calculation, but these VIs have not been successful in
boreal forests as bare soil is rarely visible (e.g. Chen, 1996).

The sensitivity of shortwave infrared (SWIR) re flectance to forest biophysical variables has
been recognized for a long time (e.g. Buterg 1986; Horler & Ahern, 1986) and several Vis
utilizing the SWIR band have been designed. Rock et al. (1986) showed that the moisture
stress index (MSI), i.e. the ratio of SWIR refle¢ance to NIR reflectance, was an indicator of
forest damage. Later, the ratio has commonly been referred to as the infrared simple ratio
(ISR, Chen et al., 2002; Fernandes et al., 2003Jhe SWIR reflectance has also been used for
adjusting NDVI (Nemani et al., 1993) and SR (Bown et al., 2000). The reduced simple ratio
(RSR) has been used specificallyfor estimating LAI (Brown et al., 2000; Stenberg et al., 2004)
and has been employed also in regional and global-scale operational algorithms (Chen et al.,
2002; Deng et al., 2006). RSR seems to redudhe sensitivity to the type and amount of
understory vegetation, because background reflectance varies less in SWIR than in visible
and NIR (Brown et al., 2000; Chen et al., 2002). RSR has also some capability to unify
coniferous and broadleaved forest types, which reduces the need for land cover type specific
LAl algorithms. However, in comparison to ISR, the use of red band makes RSR sensitive to
atmospheric effects (Fernandes et al., 2003). However, although inclusion of SWIR
reflectance increases the sensitivity of VIs to LAI, these indices also have a tendency to
saturate at high levels of LAl (e.g. Brown et al., 2000; Heiskanen et al., 2011).

Imaging spectroscopy provides much narrower spectral bands than typical multispectral
sensors. Due to the more detailed sampling of the vegetation spectra, such data can detect
specific absorption features of vegetation and therefore improve the estimation of vegetation
biochemical properties. For example, the SPOT5 HRG sensors capture a spectral range from
500 nm to 1750 nm with four broad bands, in comparison to Hyperion's 242 (10 nm wide)
bands between 400 nm and 2500 nm. At the canpy scale, the contents of biochemical
components and LAl are highly inter-relate d (e.g. Asner, 1998; Roberts et al., 2004).
Therefore, imaging spectroscopy could potentially improve LAl estimates. Furthermore,
there is potentially complementary informat ion outside the typical spectral bands of
broadband sensors.

One way to utilize imaging spectroscopy data is to calculate narrow-band VIs in a similar
fashion as for broadband data but using narrower bands. The aim is to improve the
sensitivity of the VI to a specific vegetation biochemical property. For example, Ustin et al.
(2009) give a comprehensive review on VIs used as indicators of plant pigments
(chlorophyll, carotenoids and anthocyanin). The methods of estimating the non-pigment
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biochemical composition of vegetation (water, nitrogen, cellulose and lignin), on the other
hand, are reviewed by Kokaly et al. (2009). Many of the developed indices have been
designed to work at leaf level and do not necessarily upscale to canopy level, because of the
high sensitivity to canopy structure, background, solar and view geometry. Another
approach is to find iteratively the simple combinations of bands that give the best
correlation with empirical data (e.g. Muta nga & Skidmore, 2004; Schlerf et al., 2005).

Most chlorophyll indices exploit the information in the red edge around 700 nm (Ustin et al.,
2009). Imaging spectroscopy data aso enables the estimation of the red edge position (REP),
which is particularly sensitive to changes in chlorophyll content (e.g. Dawson & Curran,
1998). Water indices, on the other hand, utilize the water absorbing regions in the SWIR
region of the spectrum (e.g. Gao, 1996; Zeco-Tejada et al., 2003). Those indices seem
particularly interesting for LAl estimation cons idering the importance of the SWIR spectral
region in estimating LAl using broadband indices.

There is growing evidence that imaging spectroscopy data can improve LAI estimates in
comparison to broadband data by reducing the saturation effects. Depending on the
vegetation type and range of LAI, different ty pes of VIs have been found useful. However,
the red edge indices have been most effective in estimating LAI of crops (Wu et al., 2010),
grasslands (Mutanga & Skidmore, 2004) and thicket shrubs (Brantley et al., 2011). On the
other hand, indices based on NIR and SWIR bands have been successful in broadleaved (le
Maire et al., 2008) and coniferous forests (Gong et al., 2003; Schlerf et al., 2005; Pu et al.,
2008). The importance of the SWIR spectral regionin estimating boreal forest LAl has also
been emphasized by multivariate regression analysis (e.g. Lee et al., 2004). However,
broadband sensors can also have advantages over narrowband sensors in LAl estimation,
for example, by being less sensitive to noisedue to the sensor, atmosphere and background
(e.g. Broge & Leblanc, 2000). Although there ae case studies from different biomes, the
performance of narrowband VIs has been poorly assessed over European boreal forests.

2. Case study
2.1 Aims

The aim of the study is to establish the extent to which vegetation indices can be used to
measure variation in LAl based on a test site in southern boreal forest in Finland. We
explore different VIs in LAI estimation during full leaf development. We compare the
performance of narrowband VIs to traditional broadband VIs. The objective is to identify
VIs, which are least sensitive to species composition and, on the other hand, perform well in
coniferous stands.

2.2 Materials and methods
2.2.1 Study area

The study area, Hyytiala, is located in the southern boreal zone in central Finland (61° 50'N,
24°17'E) and has an annual mean temperaire of 3°C and precipitation of 700 mm.
Dominant tree species in the Hyytiala forest area are Norway spruce (Picea abiefl..) Karst),
Scots pine Pinus sylvestrisL.) and Silver birch (Betula penduleRoth). Understory vegetation,
on the other hand, is composed of two layers: an upper understory layer (low dwarf shrubs
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or seedlings, graminoids, herbaceous species) and a ground layer (mosses, lichens). The
growing season typically begins in early May and senescence in late August. We measured
twenty stands from the Hyytidla forest area in July 2010 (see Section 2.2.2, Table 1). The
stands represented different species compositions that are typical to the southern boreal
forest zone in Finland.

Site Vegetation Site type  Tree height, Basal area, LAl
m m2/ha

A4 Pine mesic 15.8 204 177
A5 pine, understory broadleaf mesic 18.6 243 2.67
B2 spruce, understory birch mesic 7.5 10 2.64
D3 pine, understory spruce & birch  sub-xeric 17.8 205 237
D4 spruce, 25% birch mesic 16.5 275 3.72
E1 birch, spruce understory mesic 19.1 10.7 258
E5 50% spruce, 50% birch mesic 23.1 272 412
E6 50% spruce, 40% birch, 10% pine mesic 10.2 222 3.34
E7 Spruce mesic 13.3 3.7 391
F1 birch, spruce understory mesic 13.8 209 3.37
G4 spruce, 15% birch, 10% pine herb-rich 155 29.1 457
H3 Birch herb-rich 14.9 10.7 2.63
H5 Birch herb-rich 14.1 206 2.77
1 gggzii:gsderstory pine, spruce mesic 24 4 261
T  Spruce mesic 24.6 56 3.43
Ul6 Birch mesic 14 21 2.69
Ul7 birch, 10% spruce herb-rich 11.7 27 3.35
Ul8 65% pine, 25% spruce, 10% birch  sub-xeric 16.5 26 3.45
U26 20% pine, 70% spruce, 10% birch  mesic 16.8 249 243
U27 5% pine, 90% spruce, 5% birch mesic 15.2 209 2.63

[pine = Scots pine, spruce = Norway spruce, birch = Silver birch]
Table 1. Study stands.

2.2.2 Ground reference measurements

The LAI-2000 Plant Canopy Analyzer (PCA) is one of the most commonly used optical
devices to measure LAI. The PCA’soptical sensor includes five concentric rings of different
zenith angles (B (together covering almost a full hemisphere), which measure diffuse sky
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radiation between 320-490 nm (LI-COR, 1992). Masurements by the PCA performed below
and above the canopy vyield canopy transmittances, T(H, for each ring. Finally, LAl is
calculated by numerical approximat ion of the integral (Miller, 1967):

92
LAl 2 3In[T(Jcos sih d 7 T (€D)]
0

There are four fundamental assumptions behind the LAI calculation method: 1. leaves
(needles) are optically black in the meawured wavelengths (implying that canopy
transmittance closely corresponds to canopy gap fraction), 2. leaves (needles) are randomly
distributed inside the canopy volume, 3. leaves (needles) are small compared to the area of
view of the PCA’s rings, and 4. leaves (nedlles) are azimuthally randomly oriented. The LAl
estimate produced by Eq. 1 is commonly called effective LAl as the foliage elements are not
randomly organized but typically clumped (or gr ouped) together, which causes the estimate
produced by the PCA to be smaller than the “true” LAl (Chen et al., 1991; Deblonde et al.,
1994).

The LAI measurements can be done either with one or two PCA instruments. One PCA is

used for small plants such as crops, but for tdler plants (e.g. trees), two units are necessary.
When only one instrument is used, the measurement is at first taken below and then above

the canopy. If two instruments are used, one instrument remains above the canopy and the

other one below the canopy. The use of two instruments is preferable since data are logged
nearly simultaneously with both sensors. The LAI estimate is calculated by combining

below and above canopy data. The measurements should be conducted under diffuse light
conditions; for example, when the sky has a full cloud cover or the sun angle is low (less

than 16 degrees). The radius of the sample plotshould be at least three times the dominant
tree height as the PCA instrument has a relatively large opening angle.

In this study, the ground reference LAl (Tab le 1) was acquired by operating two LAI-2000

PCA instruments simultaneously. The instruments were intercalibrated before

measurements were performed. The referencesensor was located above the forest canopy
and set at a 15-second logging interval, while the other sensor was used inside the forest.
The sampling scheme was a ‘VALERI-cross’ (Vdidation of Land European Remote Sensing

Instruments, VALERI) which consists of two perpendicular 6-point transects. The distance
between two measurement points was four meters, so that the sampling scheme
corresponded roughly to a 20 m x 20 m plot. Measurement height was kept constant at 0.7
meters.

2.2.3 Satellite data

In this study, we used narrowband spectral data obtained from a Hyperion satellite image.
Hyperion is a narrowband imaging spectromet er aboard the National Aeronautics and
Space Administration (NASA) Earth Observer-1 (EO-1) satellite launched in 2000. Hyperion
captures data in the ‘pushbroom’ manner in 7.7 km wide strips using 242 spectral bands.
The spectral range of Hyperion is 356-2577 nmwith each band covering a nominal spectral
range of 10 nm. Each pixel in a Hyperion image corresponds to an area of 30 m x 30 m on
the ground. During an acquisition, a scene with a length of either 42 km or 185 km is
recorded. Hyperion is in a re petitive, circular, sun-synchron ous, near-polar orbit at an
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altitude of 705.3 km measured at the equator. Thus, it can image almost any point on Earth
and it flies over all locations at approximatel y the same local time. The nominal revisit time
is 16 days, but due to the possibility of tilting the sensor, the potential revisit frequency is
higher. The scene used in this study was captured on 03 July 2010, and was provided
courtesy of the U.S. Geological Suney (USGS) Earth Explorer service.

Out of the potential 242 spectral bands, severallack illumination (due to the absorption in
the atmosphere or a decrease of incident solar spectral irradiance in the longer infrared
wavelengths) or have a very low spectral response. This leaves the user with 198 usable
spectral bands: bands 8-57 in the visibleand NIR (wavelengths 436-926 nm) and bands 77-
224 in SWIR (wavelengths 933-2406 nm) (Pearhan et al., 2003). Hyperion images have
several known deficiencies which can be corrected using algorithms given in scientific
literature. Firstly, Hyperion suffers from systematic striping in along-track direction of the
image. The stripes are characteristic to all pushbroom sensors. Instruments belonging to
this broad class have a different receiving element for each image line. Hyperion has thus
256 radiation-sensitive elements for each spectal band, each seeing a separate 30 m strip
of the ground, thus producing the 7.7 km wide image. The striping can be broadly
divided into two classes, completely missing lines (due to non-functioning receiving
elements) and actual stripes (arising from slightly different sensitivities of the 256
receivers). We removed the actual striping using Spectral Moment Matching (SpecMM),
outlined by Sun et al. (2008), which uses the average and standard deviation statistics
between highly correlated bands to remove stripes. Next, the missing lines containing no
information were identified and corrected using the values from spatially adjacent pixels
using local destriping (Goodenough et al., 2003). The results of the destriping can be seen
in Figure 1.

Fig. 1. Hyperion band 8 (436nm) uncorrected image (left), and corrected using Spectral
Moment Matching and local destriping (right).

The second known defect in Hyperion imagery is a shift in the wavelength of each column
in the across track direction from the band central wavelength. This shift, known as spectral
smile, is also characteristic to pushbroom sen®rs and is a result of different optical paths
leading to the different receiving elements. The shift is a function of wavelength and the
position of the receiving element in the receiving array. As is the case for most instruments,
the “smile” manifests itself in Hyperion imager y as a “frown”, with the wavelengths of the

columns near the edges of each band shiftingnegatively from the bands average wavelength
(Figure 2). The smile was corrected using the pre-launch laboratory measured spectral shift
(Barry, 2001). We used interpolation to bring each individual pixel to a common central
wavelength based on the pre-launch calibration measurements.
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Fig. 2. Laboratory measured spectial shift of Hyperion (Barry, 2001).

The signal received by the Hyperion instrume nt consists of the photons scattered by the
atmosphere as well as the ground surface. Tostudy surface reflectance, the influence of the
atmosphere needs to be eliminated in a process commonly known as atmospheric
correction. We performed this correction usin g an algorithm known as Fast Line-of-sight
Atmospheric Analysis of Spectral Hypercubes (FLAASH, Matthew et al, 2000). FLAASH is
an absolute atmospheric correction that incorporates the MODTRAN4 radiation transfer
code to model the scattering and transmission properties of the atmosphere at the time of
image capture (San & Suzen,2010). The FLAASH algorithm is incorporated into the ITT
Visual Information Solutions (ITT VIS) ENVI software. For processing, FLAASH requires an
input value for visibility to estimate atmospheric aerosol levels, in addition to basic
geographic and temporal details about the scene. The visibility can be recalculated by
FLAASH, using a ratio between dark pixels at 600 nm and 2100 nm. However, a more
accurate estimate of visibility was achieved using ground based optical measurements from
a weather station in the area.

The final processing stage is to resample the image pixels into a geographic coordinate
system, known as geocorrection. This was done using a polynomial transformation to a
vector base map from the National Land Survey of Finland. The Hyytidla area contains
numerous roads, providing a large number of easily identifiable potential ground control
points (GCPs) at intersections. Around 20 GCPs were selected, with a root mean square
error of 0.4 pixels being achieved. Bilinear interpolation was chosen for resampling the
image pixels due to the better geometric accuracy over nearest neighbour.

The final product is a geocorrected image of the surface hemispherical-directional
reflectance factors (HDRF) of the Hyytidla area. To validate the atmospheric correction, we
compared the HDRF to a field measured reflectance factor. A soccer field of about 130 m by
60 m in the area was sampled during the summer of 2010 every two to three weeks using an
ASD handheld portable spectroradiometer covering a spectral range from 325-1075 nm. The
sampling was done using a transect approach with 42 measurements at around 1 meter
intervals. The final hemispherical-conical reflectance factor (HCRF) used for the comparison
is an average of the transectrepresenting the average for the whole field. While no ground
measurements fell on the exact date of the Hyperion image, the ground measured spectra
was interpolated to dates between two measurements. After interpolation the ground
measured HCRF was binned into corresponding Hyperion bands using the spectral
response of each band.
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Fig. 3. Comparison of a socceffield’s spectral reflectance factors from in situ radiometric
measurements and corrected Hyperion data.

Overall, there is a very good correlation between the field measured reflectance and the
fully processed Hyperion reflectance (Fig. 3). An overall RMSE of 1.8% is achieved, which
gives us confidence in the validity of the pre-processing and atmospheric correction.
However, as the in situ spectrum is considerably smoother than the one measured from the
satellite, a considerable amount of noise is also present in the satellite-derived HDRF.

2.2.4 Vegetation indices an d statistical analysis

First, we studied how HDRFs in single bands are correlated with LAI. Next, in order to
evaluate narrow-band Vls for estimating LAI, we did regression analyses between various
VIs and LAI. We used two approaches to select narrowband indices: 1) We made a literature
survey for narrow-band VIs that have been designed to estimate foliage biochemical
components. (A collection of VIs showing the hi ghest R2 with LAl are shown in Table 2.) 2)
We calculated all the possible Ratio Indices (R) and Normalized Difference Indices (NDI) of
Hyperion bands and correlated them with LAl In other words, the first approach also
contains VIs combining several bands and the seond approach aims to identify the simple
two-band VIs that best correlate with LAL.

To facilitate the comparison of narrowband VIs with broadband indices, we calculated
synthetic HDRFs based on Landsat 7 ETM+ bands. The HDRFs were calculated according to
Jupp et al. (2002) using the ETM+ spectral sasitivity functions, and Hyperion's central
wavelengths and bandwidths. Four broadband in dices were calculated for comparison, SR,
NDVI, ISR and RSR (Table 2). All these indices hae been used for LAl estimation in various
biomes. SR and NDVI were included for reference, and ISR and RSR because they have
shown best performance over conifer-dominated boreal forests (see 1.3).

We analyzed the data both by grouping all the sample plots together and separately for
coniferous plots (> 75% of the trees were Scots pines or Norway spruces). In the birch-
dominated stands, the variation in LAl was too small for reliable regression analysis.

We studied only linear relationships. The stre ngth of the relationship was assessed by the
coefficient of determination (R 2) and the root mean square error (RMSE).
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Abbr. Index Formula Reference Bands
applied

Indices concentrating on the red-edge

Rouse et al. (1974),

SR Simple Ratio SR = Rrm+4/R ETm+3 Birth & McVey ETM+3,
ETM+4
(1968)
Normalized Difference |[NDVI = (R gtm+4- ETM+3,
NDVI Vegetation Index Retm+3)/(R eTm+atRETM+3) Rouse etal. (1974) ETM+4

REP = 700+ (((Rs3+1,5

REP Red Edge Position  |[*Ress) - Reos) / (R 795 Resg)) | 220N & Plummer | 773, 662,

X(740-700) (1995) 692, 733
Indices concentrating on pigment content
pPSSRa | lgment-Specific PSSRa = BoyR es1 Blackburn (1998) | 681, 803

Simple Ratio — chla

Water sensitive indices

Rock et al. (1986),

MSI = Moisture Stress Index _ ETM+4,

ISR = Infrared Simple Ratio ISR = Rerw+s/R emues Ferandes etal. |ery g
(2002)

RSR = (Rtm+4/R grms3) * ETM+3

RSR Reduced Simple Ratio (Rerwes min = Rerwes) g0 et al (2000) |[ETM+4,

/(R eTM+5_max — ETM+5

Retm+5_min))

Table 2. Vegetation indices investigated in this study. The symbol R refers to the HDRF.
Subscripts refer to the applied ETM+ band or the central wavelength (in nm) of the
Hyperion band

2.3 Results
2.3.1 General characteristics of forest spectra

Two examples of forest reflectance factors (HDRFs) are presented in Figure 4. To allow
relating the vegetation spectra to satellite signals, the sensitivity functions of the
corresponding ETM+ bands are shown. Note the correspondence of ETM+2 with the green
peak, ETM+3 with the red local minimum and ETM+4 with the plateau in the NIR. The red-
edge slope (between ETM+ bands 3 and 4) is not covered by ETM+ bands. ETM+5 and
ETM+7 catch the signal in the shortwave infrared region (SWIR-1 (here: 1470-1800 nm) and
SWIR-2 (here: 2030-2360 nm) respectively), avoiding the two strong water absorption bands
in-between.

The average reflectance of coniferous stands is slightly lower in the green region and
decidedly lower in the NIR than the reflectanc e of birch stands. In SWIR-1 (covered by
ETM+5) the reflectances become more comparake, and in SWIR-2 (covered by ETM+7) the
signals almost meet.
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Fig. 4. Average conifer and birch-dominated stand spectra. The grey lines show the spectral
sensitivity of the ETM+ bands.

2.3.2 Regression analysis for single bands

The different average HDRF for the two forest ty pes (Fig. 4) results in different correlations
of the satellite bands to LAI (Fig. 5).

Fig. 5. Correlation coefficient of LAl with ET M+ and Hyperion spectral bands for all sample
stands, and separately for conifer sample stands.

The correlation coefficients for all stands varied between -0.6 and -0.038. All correlations
were negative, except for the two Hyperion bands centred at 2345 nm and 2355 nm. Two
important regions (green and NIR) had almost no correlation with LAI. Only the absorption
peak of chlorophyll produced a strong negati ve correlation at 681nm. The SWIR correlations
were also mostly negative.

For conifer stands, correlation coefficients varied between -0.7 and 0.6. The first peak was at
549 nm, in the middle of the green band, followed by a strong negative correlation in the red
with a peak at 681 nm. In the NIR a strong positive correlation was observed again. A slight
shoulder began at 712 nm, with a plateau at 752nm. In the SWIR, correlation coefficients
were very close to those of all stands.

Fig. 5 also shows the correlation of the ETM+ bands to LAI. The lower spectral resolution
averages wider wavelength ranges and therefore shows less variation in correlation
coefficients.
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2.3.3 Correlation of vegetation indices to LAI for all sample plots

The best broadband index analysed herewas the Infrared Simple Ratio (ISR, R = 0.56),
followed by the Reduced Simple Ratio (RSR, R = 0.40) (Table 3). The best narrowband
combinations (either RI or NDI) showed more potential with R 2s exceeding 0.65 (Table 3,
Fig. 6). If there were several indices based on neighbouring bands (within 10 nm) we chose
the best one to Table 3.

\ Bands applied R 2 RMSE RMSE RMSE
Conifer Broadleaf
broadband indices using simulated ETM+
ISR ETM+4, ETM+5 0.56 0.44 0.42 0.25
RSR ETM+3, ETM+4, ETM+5 0.40 0.52 0.59 0.31
NDVI ETM+3, ETM+4 0.09 0.64 0.68 0.51
SR ETM+3,ETM+4 0.04 0.66 0.73 0.46
narrowband indices usin g Hyperion

RI 1134,1790 0.71 0.36 0.34 0.38
NDI 1134,1790 0.68 0.38 0.36 0.39
RI 732,1790 0.67 0.38 0.42 0.31
RI 1074,1790 0.67 0.38 0.40 0.34
RI 885,1790 0.67 0.39 0.37 0.35
RI 854,1790 0.66 0.39 0.37 0.34
RI 1003,1639 0.66 0.39 0.39 0.26
RI 1044,1790 0.66 0.39 0.39 0.37
NDI 732 1790 0.66 0.39 0.42 0.33
NDI 1084, 1286 0.66 0.39 0.43 0.22

Table 3. Indices most correlated with LAI for all sample plots. RMSE was also calculated
separately for each forest class. Bands for Hyperion refer to the central wavelength (in nm).

The best band combinations for Rl and NDI indices were very similar (Fig. 6). A strong
correlation with LAI existed for bands comb ining the region between 730 to 900 nm and
1130 to 1350 nm. Another interesting region waswithin SWIR-1; especially strong was the
correlation around 1780 and 1790 nm. These bandsalso showed up in the best performing
indices for all forest classes combined (Table 3).

The two best narrowband indices for all forest plots were the RI (R2 = 0.71, RMSE = 0.36)
and NDI (R2=0.68, RMSE = 0.38) based on bands centred at 1134 and 1790 nm (Table 3).
This is consistent with the best broadband index (ISR) which also combines NIR and SWIR.
The same spectral regions are used by all theother best indices except two cases including a
band in the red-edge (732 nm). Examples of tte strongest relationships are shown in Fig. 7.
However, when looking at the RMSE for conifer and broadleaf stands (Table 3) it became
apparent that for some indices (e.g. NDI based on 1084 nm and 1286 nm: RMSE = 0.43 for
conifers and RMSE = 0.22 for broadleaf) their LAl was correlated differently to the same VI.



16 Remote Sensing — Applications

Fig. 6. Matrixes showing the Rz between LAI and simple narrowband indices calculated for
all possible combinations of Hyperion bands. The indices are defined as follows:
RI=Bandl/Band2, and NDI=(Band1-Band2)/(Band1+Band2).

Fig. 7. The relationship of LAl and two best ratio indices (RI).

2.3.4 Correlations for coniferous dominated forest plots

The performance of the broadband indices for conifer-dominated stands was much better
than over all sample stands. R now ranged from 0.60 to 0.79, and NDVI showed the best
correlation with LAI, followed by SR.

The best performing narrowband index over co niferous forest was neither Rl nor NDI but
REP (R2 = 0.89) calculated according to thenethod of Danson & Plummer (1995) (Table 2).
This index combined four bands in the visible and NIR; an area also represented in several
of the other indices which best correlated with LAl in coniferous stands.

The matrixes for all band combinations of Hy perion bands over conifer-dominated stands
(Fig. 8) showed wider spectral regions of high correlation than for all stands (Fig. 6).
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Fig. 8. Matrixes showing the R2 between LAI and two narrowband indices calculated for all
possible combinations of Hyperion bands for conifer-dominated stands.

Fig. 9. The relationship of LAl and the two best performing narrowband indices for conifer-
dominated stands.

Most of the indices with the highest correlations to LAl in coniferous stands used bands
around the red-edge. Almost all of them (e.g. the Pigment-Specific Simple Ratio Index for
chlorophyll a, PSSRa) applied the Hyperion band centred at 681nm, the peak of chlorophyll
a absorption. Exceptions were the RI and NRI using the bands centred at 1185 and 1790 nm
(i.e. combining NIR and SWIR), and Rl and ND 1 using bands centred at 518 and 773 nm (i.e.
combining carotene absorption and NIR).

Scatterplots for the two best indices for coniferous stands are shown in Fig. 9. In both cases,
coniferous plots differed considerably from the other plots. This was indicated also by the
high RMSE for all stands (up to 1.42, Table 4). However, for indices using NIR and SWIR
(e.g. Rl and NDI based on 1185and 1790 nm) the differences were less pronounced. The VI
showing the lowest RMSE for all stands (0.49) was the RI (1185 and 1790 nm) with an Rfor
conifer stands of 0.86 and RMSE 0.29.
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Vi Bands applied R2 RMSE RMSE All

stands
broadband indices using simulated ETM+

NDVI ETM+3, ETM+4 0.79 0.36 1.20
SR ETM+3,ETM+4 0.78 0.36 1.56
ISR ETM+4,ETM+5 0.71 0.42 0.44
RSR ETM+3, ETM+4, ETM+5 0.60 0.50 0.90

narrowband indices using Hyperion

REP 671, 702, 742, 783 0.89 0.26 1.29
NDI 681, 773 0.88 0.27 1.02
RI 681,773 0.88 0.28 1.01
RI 1185,1790 0.86 0.29 0.49
NDI 1185,1790 0.86 0.30 0.50
NDI 681, 742 0.85 0.30 1.01
NDI 681, 824 0.85 0.30 0.98
RI 681,742 0.85 0.31 0.99
NDI 518, 773 0.85 0.31 1.42
PSSRa 803681 0.85 0.31 1.30
RI 518,773 0.85 0.31 1.39

Table 4. Indices most correlated with LAI in conifer-dominated plots. R 2 and RMSE for
conifer-dominated stands, and RMSE separately for all stands. Bands for Hyperion refer to
the central wavelength (in nm).

2.4 Discussion

In our case study, the narrowband VIs provided more accurate LAl estimates than the
broadband VIs synthesized from the same data in a boreal forest study site. The best
narrowband combinations showed relatively strong linear relationships with LAl (R 2 >
0.65), although the Hyperion im age was acquired in the middle of the growing season when
LAl is the highest. The relationships were even stronger if the analysis was restricted to the
conifer stands (R2 > 0.85). The results are promisingas common broadband VIs tend to
saturate at the highest LAl valu es. The improvement of estimation accuracy is in agreement
with the previous studies, which have emphasized the potential of narrowband Vis for
estimating forest canopy LAI (e.g. Lee et al., 2004; Schlerf et al., 2005; Brantley et al., 2011,
Wu et al., 2010).

Most of the narrowband VIs showing the strong est relationships with LAl were based on
reflectances in the far red and at the rededge (680—740 nm), NIR (e.g. 885 and 1134 nm) and
SWIR (e.g. 1639 nm and 1790 nm) wavelengthregions (Figure 10). Many of the most
important spectral regions are not covered by the ETM+ spectral bands, and the spectral
regions are very narrow in comparison to the ETM+ bands.
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Fig. 10. Spectral regions used by the indices showing the strongest relationships with LAI
over all sample stands and conifer stands.

The NIR and SWIR spectral bands were particularly important when all sample plots were
analyzed together. This is in agreement with the best broadband indices, ISR and RSR. The
importance of NIR and SWIR bands has been enphasized also in previous studies testing
narrowband VIs for estimating forest LAl (e.g. Lee et al., 2004; Schlerf et al., 2005). The leaf
(needle) reflectance at those wavelengths is maitty controlled by wate r absorption, although
leaf biochemical components such as proteins, cellulose and lignin also contribute to
absorption in the infrared (e.g. Curran, 1989). The amount of water at the canopy level is
directly related to LAI, which explains strong correlations. The bands centered at 1134 nm
and 1790 nm are among the Hyperion bands, which are closest to the water absorption
regions centered at approximately 1200 nm ard 1940 nm. The spectral bands close to the
water absorption regions at 970 nm and 1400 nmare also employed in some of the best
indices. The spectral bands ofthe broadband sensors are usually placed in the middle of the
atmospheric windows to avoid atmospheric absorption. However, it seems that narrow
spectral bands close to the water absorption regions are particularly interesting for
estimating LAL In these wavelength regions, the reflectance seems to be relatively
insensitive to tree species or composition of the understory vegetation, as suggested earlier
by the studies using broadband indices (e.g. Brown et al., 2000).

When pure coniferous stands were studied separately, the relationships became stronger
and the far red and red edge spectral bands wee included in several of the best Vis.
However, the improvement in a ccuracy relative to the best VI based on NIR and SWIR
reflectance (RI based on bands centered atl185 nm and 1790 nm) was rather modest. The
best broadband indices were NDVI and SR, which are based on ETM+ red and NIR bands.
Usually, NDVI has shown relatively weak re lationships with LAI in conifer dominated
boreal forest (e.g. Stenberg et al., 2004).

The strongest relationship with LAl was provided by the red edge position (REP) calculated

by the method proposed by Danson and Plummer (1995). In general, the REP is considered
to be sensitive to leaf and canopy chlorophyll content, so that increasing the amount of
chlorophyll, or LA, is related to the longer REP wavelength because of the widening of the
chlorophyll absorption region at approxim ately 680 nm (Danson & Plummer, 1995; Dawson
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and Curran, 1998; Sims & Gamon, 2002; Pu eal., 2003). In comparison to SWIR spectral
bands, the far red and red edge spectral regionis sensitive to species composition, shown as
poor relationships over mixed vegetation. Ho wever, sometimes poor relationships between
the REP and LAl have been reported even fa pure coniferous stands (Blackburn, 2002).
However, although the REP calculated in this study showed strong correlation with
coniferous LAl, the estimated wavelengths do not correspond to the Red Edge Inflection
Point (REIP), i.e. the steepest slope of the red-edge. The wavelengths are considerably
longer. Therefore, the unusual inverse relationship between REP and LAl in this study is
explained by the calculation method (Danson and Plummer, 1995). Alternative calculation
methods for REP are summarized, for example, by Pu et al. (2003).

Although many studies testing narrowband VIs for LAl estimation have stressed the
potential of the red edge and SWIR spectral regions, the specific spectral bands providing
the strongest relationships with LAl vary between the studies. Also in our case study, the
optimal band combinations provided stronger relationships with LAI than VIs collected
from the literature. This is somewhat expected, as the number of spectral bands and their
possible combinations is so large that empirically determined optimal band combinations
are likely to depend heavily on the local environmental conditions and type of satellite
image data. For example, approximately 150 useful spectral bands of Hyperion make more
than 20,000 two-band combinations. Because othis, the optimal indices cannot necessarily
be generalized very well. Furthermore, a large number of spectral bands combined with a
small number of sample plots increase the risk that the regression models are overfitted.
However, this should be mostly a problem with multivariate approaches (e.g. Lee et al.,
2004). Moreover, when comparing broadband and narrowband indices, it should be noted
that we used only synthesized ETM+ data and the results could differ to some extent if true
ETM+ data would have been used instead (Lee etal., 2004). This is because the synthetic
broadband data is affected by the lower signal-to-noise ratio of the narrow spectral bands,
even if data are averaged.

3. Future perspectives

Wider use of imaging spectroscopy data is hampered by the availability of the data. Today,
mostly airborne instruments are used to produce remote sensing data with high spectral
resolution. Airborne measurements are associatedwith relatively small spatial coverage and
high operating costs falling directly to data us ers. The Hyperion sensor used in this case
study is a rare exception: it is the only true imaging spectrometer in orbit today, providing
wide spectral coverage with uniform spectral resolution and contiguous bands. The scene,
however, is about to change. At the end of the decade (i.e., around 2020), NASA is planning
to launch the HyspIRI mission, providing narro wband data with routine global coverage
(Samiappan et al., 2010). Before HysplRI, seval national space programs are striving to
launch satellites with capability to produc e narrowband data (e.g. the EnMAP instrument,
Segl et al., 2010). Therefore, the need for deveping algorithms that would make use of the
advanced properties of narrowband data, compared to the more traditional multispectral
data, is evident.

In this case study, we used narrowband VIs to relate forest LAl to remotely sensed
reflectance signals. Historically, vegetation indices have been among the very first tools in
interpreting multispectral remote sensing data from vegetated areas. Later, physically-based
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reflectance modelling has taken over the role of the preferred method in large-scale
retrievals of vegetation biophysical variables. Similar developments may take place in the
interpretation of narrowband imaging spectroscopy data. However, let us first take a closer
look at narrowband indices as they are used in the current study.

As discussed above (section 1.3), VIs are usually treated as empirical (or, at least semi-
empirical) tools in remote sensing. However, it has been known for a long time that the
reflectance indices convey also some information on the physical processes related to the
interaction of light with plant elements. Indeed, Myneni et al. (1995) showed that the
common indices are actually derivatives of canopy reflectance and are physically related to
abundances of absorbing pigments. For this reason, indices commonly make use of two
spectral regions: one inside the spectral regionwhere the absorption of a pigment is strong,
and one outside the absorption band. The use of red and near-infrared wavelengths thus
corresponds to measuring the abundance of one of the most vital plant pigments,
chlorophyll.

Can such an interpretation be extended to narrowband indices? From the point-of-view of
the physics of radiative transfer, there is no fundamental difference between broad- and
narrowband indices. However, for calculating a sp ectral derivative, there is little use of well-
tuned and potentially much noisier narrow spectral bands. For detecting pigments whose
absorption spectra span tens, if not hundreds of nanometers, broadband indices seem a
much more robust tool. Further, vegetation indices, especially early ones like the NDVI,
have been shown both empirically and on the basis of theoretical studies, to be sensitive to
factors others than those of interest, such assoil brightness changes and atmospheric effects.
Most narrowband indices can be viewed as finely tuned versions of their older broadband
counterparts. Site-specific selection of wavelengths leads to a better explanatory power of
narrowband VIs as we also demonstrated in this case study. Unfortunately, the fine tuning
for eliminating environmental effects makes narrowband indices potentially even more site-
specific than broadband ones.

The comparison of narrowband and broadband VIs presented above did not concern indices
capturing truly narrowband effects, e.g. the ph otochemical reflectance index PRI (Gamon et
al., 1992) or various red edge parameters. Intinsically narrowband VIs are based on effects
that cannot be detected from broadband data. These indices are not more site-specific than
broadband indices and do indeed, due to a finer spectral resolution, provide additional
information on vegetation cover on all scales. Similarly, the red edge parameters calculated
above make use of the high spectral resolution of narrowband data in a manner which is not
site-specific. Therefore, it is not surprising that they provide a good fit for estimating forest
stand variables regardless of dominating species.

An alternative to using narrowband indices would be to invert a fu Il canopy reflectance
model: the goals of both methods are to retrieve information on some biophysical variable
of interest (Rautiainen et al., 2010). As discussed in this chapter, the theoretical
foundations of the two approaches are somewhat similar. However, obvious limitations of
index-based inversions lie in that it is not possible to define a spectral index sensitive to
only one process, nor is it possible to design a universal spectral index which would be
optimal for all applications everywhere and all the time (Verstraete & Pinty, 1996).
Further, since vegetation indices carry only part of the information available in the
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original channel reflectances, they assume that the information of interest is contained
exclusively in the observed spectral variations. VIs also often neglect the effects of surface
anisotropy associated with the specific geometry of illumination and observation at the
time of the measurements (Govaerts et al., 1999). Last, but not least, a fundamental
shortcoming of the index-based approach lies in its potentially wide application area. A
user not directly working in the field of remote sensing science may be distracted by a
statistically strong dependence between a variable of interest (e.g. an ecological parameter
describing diversity) and a vegetation index. However, canopy reflectance signals can
carry information only on what are known as state variables of radiative transfer
(abundances of optically active substances, canopy amount and structure, etc.). Other
variables may be correlated with one or more of the state variables, but before drawing
conclusions based on such correlations, the nature and application range of the correlation
should be clarified.

Naturally, physical canopy reflectance models are immune to the problems listed above.
When working in the forward mode, a modern reflectance model can reliably predict the
spectral reflectance signal of a vegetation canopy given the required inputs (e.g.
Widlowski et al., 2007). When run in inverse mode, the models should be able to produce
an estimate of the state variables of radiative transfer based on measured spectral
reflectance values. Unfortunately, due to the large number of the state variables and the
mathematical nature of the inverse problem, a robust result is difficult to achieve (Baret &
Buis, 2008). Despite the present-day problems with inverting canopy reflectance models, it
is clear that physical models hold a clear advantage over index-based biophysical
parameter estimation, especially when using imaging spectroscopy data. Physical models
account for changes in environmental conditions and estimate all state variables
simultaneously. They also have the advantage of failing if unphysical data is fed to them
(e.g. due to sensor failure or preprocessing eror) instead of producing unrealistic results.
The problem with the large number of state variables can be solved by the larger
information content of imaging spectroscopy data (compared with that produced by
multispectral sensors) and development of novel physically based parameterizations
allowing a more efficient description of canopy structure. However, until the full potential
of imaging spectroscopy has been utilized by the developers of physical models,
narrowband vegetation indices remain valuable tools in exploring the richness of high
spectral resolution data.
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1. Introduction

Plant diseases and pests can affect a widerange of commercial crops, and result in a
significant yield loss. It is reported that at least 10% of global food production is lost due to
plant diseases (Christou and Twyman, 2004; Stange and Scott, 2005). Excessive pesticides
are used for protecting crops from diseases ard pests. This not only increases the cost of
production, but also raises the danger of toxic residue in agricultural products. Disease and
pest control could be more efficient if disease and pest patches within fields can be
identified timely and treated locally. This requires obtaining the information of disease
infected boundaries in the field as early and accurately as possible. The most common and
conventional method is manual field survey. The traditional ground-based survey method
requires high labor cost and produces low efficiency. Thus, it is unfeasible for large area.
Fortunately, remote sensing technology can provide spatial distribution information of
diseases and pests over a large area with reltively low cost. The presence of diseases or
insect feedings on plants or canopy suface causes changes in pigment, chemical
concentrations, cell structure, nutrient, water uptake, and gas exchange. These changes
result in differences in color and temperature of the canopy, and affect canopy reflectance
characteristics, which can be detectable by remote sensing (Raikes and Burpee 1998).
Therefore, remote sensing provides a harmless, rapid, and cost-effective means of
identifying and quantifying crop stress from differences in the spectral characteristics of
canopy surfaces affected by bbtic and abiotic stress agents.

This chapter introduces some successful studes about detecting and discriminating yellow
rust and aphid (economically important disease and pest in winter wheat in China) using
field, airborne and satellite remote sensing.

2. Detecting yellow rust of winter wheat by remote sensing

Yellow rust (Biotroph Puccinia striiformis), also known as stripe rust, is a fungal disease of
winter wheat (Triticum aestivum L.).It produces leaf lesions (pustules), which are yellow in
color and tend to be grouped in patches. Yellow rust often occurs in narrow stripes, 2-3 mm
wide that run parallel to the leaf veins. Yellow rust is responsible for approximately 73-85%



32 Remote Sensing — Applications

of recorded yield losses, and grain quality is also significantly reduced (Li et al. 1989).
Consequently, effective monitoring of the incidence and severity of yellow rust in
susceptible regions is of great importance to guide the spray of pesticides and to provide
data for the local agricultural insurance services. Fortunately, remote sensing technology
provides a possible way to detect the incidence and severity of the disease rapidly.

The interaction of electromagnetic radiation with plants varies with the wavelength of the
radiation. The same plant leaves may exhibit significant different re flectance depending on
the level of health and or vigor (Wooley 1971, West et al. 2003, Luo et al., 2010). Healthy and
vigorously growing plant leaves will generally have

1. Low reflectance at visible wavelengths owing to strong absorption by photoactive
pigments (chlorophylls, anth ocyanins, carotenoids).

2. High reflectance in the near infrared because of multiple scattering at the air-cell
interfaces in the leaf’s internal tissue.

3. Low reflectance in wide wavebands in the short-wave infr ared because of absorption by
water, proteins, and other carbon constituents.

The incidence and severity of yellow rust can be monitored according to the differences of
spectral characteristics between healthy and disease plants. In this chapter, we will report
several successful studies on the detection and ientification of yellow rust in winter wheat
by remote sensing.

2.1 Detecting and discriminating yellow rust at canopy level

Hyperspectral remote sensing is one of the advanced and effective techniques in disease
monitoring and mapping. Howeve r, the difficulty in discriminating a disease from common
nutrient stresses largely hampers the practical use of this technique. This is because some
common nutrient stresses such as the shortageor overuse of nitrogen or water could have
similar variations of biochemical properties and plant morphology, and therefore result in
similar spectral responses. However, for the remedial procedures for stressed crops, there is
a significant difference between disease and nutrient stresses. For example, applying
fungicide to water-stressed crops would lead to a disastrous outcome. Therefore, to
discriminate yellow rust from common nutrient stresses is of practical importance to crop
growers or landowners.

The specific objectives of this study are ta (1) systematically test the sensitivity and
consistency of several commonly used spectral features to yellow rust disease during major
growth stages; (2) for those spectral features ttat are consistently sensitive to yellow rust
disease, we will further examine their sensitivity to nutrient stresses to determine whether

there are specifically sensitive to yellow rust disease, but insensitive to water and nitrogen
stresses.

2.1.1 Materials and methods
2.1.1.1 Experimental design and field conditions

The experiments were conducted at Beijing Xiaotangshan Precision Agriculture
Experimental Base, in Changping district, Beijing (40°10.6’'N, 116°26.3'E) for the growing
seasons of 2001-2002 and 2002-2003. Table 1nsmarizes the soil properties including



Crop Disease and Pest Monitoring by Remote Sensing 33

organic matter, total nitrogen, alkali-hydrol ysis nitrogen, available phosphorus and

available potassium for both growing seasons. Three cultivars of winter wheat used in 2001-

2002 experiment (2002 Exp) were Jingdon@, Jing9428 and Zhongyou9507, while the
cultivars used in 2002-2003 (2003 Exp) were Xazao, 98-100 and Jing411. All the cultivars
applied in both growing seasons included erective, middle and loose with respect to the

canopy morphology.

Disease inoculation

Items . Nutrient stress experiment
experiment
Growth period Sep 2002-Jun 2003 Sep 2001-Jun 2002
Organic matter 1.42%-1.48% 1.21%-1.32%
Total nitrogen 0.08%-0.10% 0.092%-0.124%
Alkali-
Top soil :?;(rjorogsls 58.6-68.0 mg kgt 68.8-74.0 mg kgt

nutrient status Ig o

(0-0.3m depth) Available ) )
phosphorus 20.1-55.4 mg kgt 25.2-48.3 mg kgt
Rapidly
available 117.6-129.1 mg kg 96.6-128.8 mg kg
potassium

Jingdong8, Jing9428,
Zhongyou9507

Normal: 200 kg ha-! nitrogen,
450 B ha'l water;

W-SD: 200 kg hat nitrogen,
Normal; YR1: 3mg 100! 225 n® hal water;

ml spores solution; YR2: W-SED: 200 kg hat nitrogen, 0

Cultivars Xuezao, 98-100, Jing411

9mg 1001 ml spores m3 hal water;

solution; YR3: 12mg 100t N-E: 350 kg ha? nitrogen, 450
Treatments :

ml spores solution (all m3 hal water;

treatments applied 200 kg N-D: 0 kg ha-1 nitrogen, 450 m3

hal nitrogen and 450 m3 hal water;

hal water) W-SED+N-E: 350 kg hat
nitrogen, 0 m3 ha'l water; W-
SED+N-D: 0 kg hat nitrogen, 0
m3 hal water;

Spectral reflectance
measurements (on day after 207, 216, 225, 230, 233 196, 214, 225, 232, 239
sowing)

Table 1. Basic information of disease inoculation experiment and nutrient stress experiment

For 2002 Exp, six stress treatments of water and nitrogen were applial, and the treatments
were based on local conditions, which usually suffered from yellow rust in the northern part
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of China. Each treatment was applied on 0.3 ha area, and the treatments were 200 kg ha
nitrogen and 225 m3hal water (slightly deficient water, W-SD),200 kg ha-! nitrogen and no
irrigation (seriously defi cient water, W-SED), 350 kg ha! nitrogen and 450 m3 hal water
(excessive nitrogen, N-E), no fertilization and 450 m3 ha-1 water (deficient nitrogen, N-D),
350 kg hal nitrogen and no irrigation (seriously deficient water and excessive nitrogen, W-

SED+N-E), and no fertilization and no irrigati on (seriously deficient water and deficient

nitrogen, W-SED+N-D). A 0.3 ha reference area (Normal) was applied with the
recommended rate which received 200 kg ha! nitrogen and 450 m3 hal water. Three
cultivars were evenly distribu ted in each treatment plot.

For 2003 Exp, according to the National Plant Protection Standard (Li et al. 1989), three
levels of concentration of summer spores of yellow rust were applied, and they were 3 mg
1001 ml-t (Yellow rust 1, YR1), 9 mg 106t ml-t (Yellow rust 2, YR2) and 12 mg 1006t ml-t
(Yellow rust 3, YR3), with a dosage of 5 ml spores solution per square meter. The reference
area (Normal) that was not inoculated yet was applied with the recommended amount of
fungicide to prevent the occasional infection. Each treatment involved 1.2 ha area, with even
constitution of three cultivars. All plots in 2003 Exp received the recommended rates of
nitrogen (200 kg hal) and water (450 m3 ha1).

2.1.1.2 Canopy spectral measurements

A high spectral resolution spectrometer, ASD FieldSpec Pro spectrometer (Analytical
Spectral Devices, Boulder, CO, USA) fitted with a 25 field of view fore-optic, was used for
in-situ measurement of canopy spectral reflectance for both 2002 Exp and 2003 Exp. All
canopy spectral measurements were taken from a height of 1.3m above ground (the height
of the wheat is 90+3 cm at maturity). Specta were acquired in the 350-2,500 nm spectral
range at a spectral resolution of 3 nm beween 350 nm and 1,050 nm, and 10 nm between
1,050 nm and 2,500 nm. A 40 cm x 40 cm BaSO4 calibration panel was used for calculation of
reflectance. All irradi ance measurements were recorded as an average of 20 scans at an
optimized integration time. Prior to subseque nt preprocessing, all spectral curves were
resampled with 1 nm interval. All measurements were made under clear blue sky conditions
between 10:00 and 14:00 (Beijing Local Time).

The spectral measurements were taken 5 time from 196 days after sowing (DAS) to 239
DAS for 2002 Exp, which covered the growth stages of stem elongation, booting, anthesis
and milk development. For 2003 Exp, the spectral measurements were taken 5 times from
207 DAS to 233 DAS, which covered the growth stages of booting, anthesis and milk
development. The detailed measurement dates far both experiments were given in Table 1.
The stem elongation and antheds stages are essential for the control of yellow rust
development, whereas the milk development stage is important for yield loss assessment.

2.1.1.3 Selection of spectral features

The spectral features that we adopted were related to several commonly used vegetation
indices (VIs), which were proved to be sensitive to variations of pigments and stresses.
Furthermore, in order to conduct a thorough investigation of various types of spectral
features, we also included a number of spectral features that were based on derivative
transformation and continuum removal tran sformation (Gong et al. 2002; Pu et al.
2003;2004). Therefore, the total 38 spectrdkatures are shown in Table 2.



Crop Disease and Pest Monitoring by Remote Sensing 35

Variable Definition Description Literatures
Derivative transformed spectral variables

Blue edge covers 490-530nm. Ris a

Maximum value .
maximum value of 1st order

Do Of. 1.St derivative derivatives within the blue edge of 35 Gong etal., 2002
within blue edge
bands
I Wavelength at Dy, Iy is wavelength position at Dy Gong et al., 2002
Sum of 1st Defined by sum of 1st order derivative
SDy derivative values values of 35 bands within the blue Gong et al., 2002

within blue edge edge

Maximum value Yellow edge covers 550-582nm. Ris a
of 1st derivative maximum value of 1st order

Dy within yellow derivatives within the yellow edge of Gong etal., 2002
edge 28 bands
Iy Wavelength at Dy Iy is wavelength position at D Gong et al., 2002
dsgrr:/;tfivlest/alues Defined by sum of 1st order derivative
Shy - values of 28 bands within the yellow  Gong et al., 2002
within yellow
edge
edge
. Red edge covers 670-737nm. Dis a
Maximum value .
L maximum value of 1st order
D, of 1st derivative o o Gong et al., 2002
- derivatives within the red edge of 61
within red edge
bands
I Wavelength at D, Ir is wavelength position at D, Gong et al., 2002
Sum of 1st ) —
SD, derivative values Defined by sum of 1st order derivative Gong et al., 2002

within red edge values of 61 bands within the red edge

Continuous removal transformed spectral features
DEP550-750 The depth of the [N the range of 550nm-750nm

DEP920-1120feature minimum In the range of 920nm-1120nm
DEP1070- relative to the

Pu et al., 2003;2004

1320 hull In the range of 1070nm-1320nm
WID550-750 The full In the range of 550nm-750nm
WID920-1120 wavelength In the range of 920nm-1120nm .
WID1070.  Width at half Pu et al., 2003;2004
1320 DEP (nm) In the range of 1070nm-1320nm
¢§0EA550- The area of the N the range of 550nm-750nm
absorption
,i\lRZ%A920- feature that is the In the range of 920nm-1120nm Pu et al., 2003;2004

product of DEP
AREA1070- gnd WID

1320 In the range of 1070nm-1320nm
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Variable

Definition Description

Literatures

VI-based variables

Gl

MSR

NDVI

NBNDVI

NRI

PRI

TCARI

SIPI

PSRI

PhRI

NPCI

ARI

TVI

CARI

Greenness Index Rs4dR 677

Modified Simple (ReodR 670-1)/(R g0dR s70+1)12

Ratio

. (Rnir-Rr)/(R nirR*RR), Where Ruir
Normalized . jicates 775-825nm, R indicates
Difference

650nm-700nm, that include most key

Vegetation Index .
pigments

Narrow-band
normalised
difference
vegetation index

Nitro gen
reflectance index

(Reso-Reso)/(R ss0tReso)

(Rs70-Re70)/(R s70+Re70)

Photochemical
Physiological
Reflectance Index

(Rs31-Rs70)/(R 531+Rs70)

The transformed
chlorophyll
Absorption and
Reflectance Index

3*[( Rzoo- Re70)-0.2*( Rroo- Rss0)*( Rzod
Re70)]

Structural
Independent
Pigment Index

Plant Senescence
Reflectance Index

The Physiological
reflectance index

Normalized
Pigment
Chlorophyll ratio
Index

Anthocyanin
Reflectance Index

(Reoo-Ra4s)/(R soc-Reso)

(ResoRs00)/R 750

(Rss0-Rs31)/(R s50tRs31)

(Reso-R430)/(R ss0tRa30)

ARI=(Rs50)1-(R709)!

Triangular

Vegetation Index 0.5[120(Rrs0-Rs50)-200(Rs70-Rss0)]

Chlorophyll
Absorption Ratio

Index a= (R700-R550)/150, b= R55o-(a X 550)

(1(a670+Rezgtb)l/(a 2+1)¥2)x(Rz0dR 670)

Zarco-Tejada et al.,
2005

Chen, 1996;
Haboudane et al.,
2004

Rouse et al., 1973

Thenkabail et al.,
2000

Filella et al., 1995

Gamon et al., 1992

Haboudane et al.,
2002

Pefiuelas et al.,
1995

Merzlyak et al.,
1999

Gamon et al., 1992

Pefuelas et al.,
1994

Gitelson et al.,
2001

Broge and Leblanc,
2000; Haboudane
et al., 2004

Kim et al., 1994
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Variable Definition Description Literatures

Disease Water ~
DSWI Stress Index (Reoz+Rs47)/(R 1657+ Res2) Galvéo et al., 2005

Moisture Stress Hunt and rock,
MSI R160dR 819 1989; Ceccato et

Index al., 2001

Shortwave Fensholt and

SIWSI Infrared Water  (RssoR1640/(R seotR1640 sandholt, 2003

Stress Index

Red-Edge

; Merton and

RVSI Vegetation Stress [(R712+R752)/2]-R 732 Huntington, 1999

Index

Modified

Chlorophyll i i i Daughry et al.,
MCARI Absorption in (R701-R671)-0.2(Rro1-Rs49)l/(R 704/R 671) 2000

Reflectance Index

Pefiuelas et al.,

W Water Index Rg00R 970 1997

Table 2. Definitions of spectral features used in this study

2.1.1.4 Preprocessing and normalization of spectral reflectance data
Aggregating spectral reflectance data

As the first step, all spectra were processed with the following transformation to suppress
possible difference in illumination. The spectr al regions with wavelength of 1330-1450 nm,
1770-2000 nm and 2400-2500 nm were removed due to strong absorption by water vapor.
We then normalized the spectral curves by dividing the mean band reflectance of the curve
(Yu et al., 1999). The normalized reflectance for the bangis given as:

Refc 1F:—ef
~(1 R
nih

where Ref is the normalized reflectance for band;; Ref is the original reflectance of the band; n

is the total number of bands. Fig. 1(a) shows a plot of unnormalized Ref versus band

wavelength for six observations (three YR3 curves and three Normal curves) on 233 DAS. Fig.

1(b) shows the corresponding curves in Fig.1(a) after normalization. The normalization clearly

separated the diseased spectra from the normal sgctra especially over the near infrared region

(approximately from 770 nm to 1300 nm). The ben€fit of eliminating spectral difference caused

by the change of illumination conditions wa s also mentioned by Yu et al. (1999).

Normalization of the difference in measuring dates

As shown in Table 1, although both experiments conducted in five growth stages in 2002
and 2003, most measurement dates were not consistent, except for 255 DAS. Hence, to
improve the comparability of two datasets, we ad apted the 2002 Exp data to match the dates
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(a) Original spectra on 233 days after sowing

(b) Normalized spectra on 233 days after sowing
Fig. 1. Comparison between original spectra and normalized ones
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of 2003 Exp, by using a linear interpolation method. The reflectance curve of a certain date
could be obtained based on the spectra from the adjacent data before and after the
measurement date (using days after sowing asa time scale). Each band of the spectra should
be processed as:

DASrent
DAS

DAS before,
Re Re
DAS efore ( taéore &ter)

Ret:urrent Reﬁéore
after

where Returent represents the reflectance transformel from the date corresponding to an

ideal date in 2003 Exp;Referoreand Refiser represent reflectances respectively, from DASpefore
and DASasier; DAScurrent indicates an ideal date in 2003 Exp while DASpeforeanNd DASaser are the
adjacent dates in 2002 Exp before ad after the ideal date in 2003 Exp.

Fig. 2 provides an example of the progress of the normalization of measurement dates. The
averaged reflectance at central wavelengthsof green band (560 nm) and near-infrared band
(860 nm) of Landsat-5 TM for normal samples were plotted against the measured dates in
both 2002 Exp and 2003 Exp. The date normalied reflectance values were marked as
triangle symbol in the graph. Through this st ep, the datasets collected in these two years
could be considered as acquired in the same dates, which thereby facilitated the subsequent
comparisons and analysis.

Adaptation of average reflectance of normal samples at 560 nm (central wavelengths of green band of
Landsat-5 TM) and 860 nm (central wavelengths of near-infrared band of Landsat-5 TM) to match the
dates of 2003 Exp, by using a linear interpolation method

Fig. 2. An example for normalization of measuring dates
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Normalization of the difference from cultivars and soil backgrounds

The canopy spectra of winter wheat were not only supposed to respond to stresses, but
are also determined and influenced by several other aspects such as cultivars and soll
properties. Although the both 2002 Exp and 2003 Exp were conducted in the same fields
that had approximately identical climate and environmental conditions, the difference in
cultivars and soil properties between 2002 Exp and 2003 Exp should not be ignored (Table
1). To minimize this discrepancy, we calculated a ratio spectral curve for each of
measured dates (after the normalization of the measuring dates) by the averaged spectral
curve from normal samples in 2002 Exp divided by the averaged spectral curve from
normal samples in 2003 Exp, resulting in a total of five ratio curves corresponding to each
growth stage (Fig. 3). After that, all the spectral data measured at different growth stages
were multiplied by the corresponding ratio curv es to yield a set of normalized spectra. It
should be pointed out that the present normalization processing to raw spectral
measurements will only enhance the comparability between the 2002 Exp and 2003 Exp
with little change in internal relations amon g different treatments because all the spectral
data at one growth stage were processed with the same ratio curve. The ultimate goal of
all these preprocessing and normalization steps above is to mitigate effects of the
variation of illumination conditions, measur ement dates, cultivars and soil properties
between the 2002 Exp and 2003 Exp on target spectra.

2.1.1.5 Spectral features calcultion and statistical analysis

With the spectra normalized using the methods above, we calculated 38 spectral features.
An analysis of variance (ANOVA) was employ ed to investigate the spectral differences
between the normal samples and all forms of stressed samples. Firstly, on different
measured dates, both the yellow rust disease dda and nutrient stressed data were compared
with the normal data by ANOVA. For those spectral features that were consistently
sensitive to yellow rust disease, we not only tested their differences between the normal
treatment and different forms of stresses, but also tested the differences between various
kinds of nutrient stresses and varying levels of disease stresses with ANOVA. Statistical
analyses were conducted usng SPSS 13.0 procedure.

2.1.2 Results
2.1.2.1 Spectra after normalizations

The spectral ratio curves in Fig 3 reflect the deviations between 2002 Exp and 2003 Exp’s
reflectance datasets at different wavelength positions. The ratio value close to 1.0 indicates
no difference in reflectance exists between the two years. Generally, tte ratio values ranged
from 0.7 to 1.3, with an uneven distribution along the wavelength axis (Fig 3). The ratio
tended to deviate from 1.0 in the regions of 350 - 730 nm, 1450 - 1570 and 2000 - 2400 nm, but
stayed around 1.0 in the regions of 730 - 1330 nm and 1570 - 1770 nm. To assess the
improvement in comparability, we examined the difference of normalized datasets of
normal samples between 2002 Exp and 2003 Expghrough an ANOVA with all 38 spectral
features. The result showed that the differences of all spectral features were insignificant at

all growth stages (p-value>0.05), with an average p-value (for all measuring dates) of 0.94,
indicating a relatively high level of similarity between two datasets. Therefore, we
confirmed that such normalization processes minimized the spectral difference originated



Crop Disease and Pest Monitoring by Remote Sensing 41

Fig. 3. Ratios of spectra for normalization with different years and varieties

from variation of illumination and different measurement dates, etc., and enabled more
rational comparisons among different treatments.

2.1.2.2 Spectral responses to different forms of stresses

The result of ANOVA between normal samples and different forms of stress samples
indicated that all spectral features had a response (defined asp-value<0.05) to at least one
type of stresses at one growth stage, excepfor the WID1070-1320, which had no response to
any form of stresses at all growth stages. Tdal 37 spectral features responded to water
associated stresses (W-SD, W-SED, W-SED+N-BV-SED+N-D) at least at one growth stage,
followed by 35 spectral features to yellow rust disease, whereas only15 spectral features had
a response to solely nitrogen stress (N-E, N-D). As summarized in Table 3, most spectral
features were sensitive to yellow rust infectio n at least at one growth stage, except for Iy, I
and WID1070-1320. In addition, most spectral feaures tended to be more sensitive at later
growth stages than at the early stages. For eample, several features such as DEP920-1120,
AREA920-1120, ), GI, NDVI and Triangular Vegetation Index (TVI) only had a response to
yellow rust at the last growth stage in our study (233 DAS). However, for the sake of
diagnosis, the spectral features with a consistent response to yellow rust during the
important growing period would be much more valuable. Therefore, those spectral features
that were sensitive to the yellow rust at 4 out of 5 growth stages were selected as candidates
for disease diagnosis. This yielded four vegetation indices (VIs): PRI, PhRI, NPCI and ARI.

2.1.2.3 One way ANOVA of four di sease sensitive spectral features

Particularly for the four identified VIs that closely associated with yellow rust disease, a
throughout one way ANOVA was conducted to compare their differences between the
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Days after sowing

Spectral features

207 216 225 230 233

DEP550-770 ¥ ¥ ¥
AREA550-770 ¥ ¥ ¥
WID550-770 ¥ ¥ ¥
DEP920-1120 ¥
AREA920-1120 ¥
WID920-1120 ¥
DEP1070-1320 ¥
AREA1070-1320 ¥
Db ¥ ¥

SDb ¥ ¥ ¥
Dy ¥
ly ¥
SDy ¥
Dr ¥

SDr Y ¥
Gl ¥
MSR ¥y ¥
NDVI ¥
NBNDVI ¥ ¥
NRI ¥
PRI ¥ ¥ ¥ ¥
TCARI ¥ ¥

SIPI ¥
PSRI ¥ ¥ ¥
PhRI ¥ ¥ ¥ ¥
NPCI ¥ ¥ ¥ ¥
ARI ¥ ¥ ¥ ¥
TVI ¥
CARI ¥ ¥ ¥
DSWiI ¥
MSI ¥
SIWSI y
RVSI ¥ ¥

MCARI ¥ ¥ ¥
Wi ¥

Table 3. Responses of spectral features to yellow rust
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normal sample and various kinds of stressed samples. Moreover, their differences among
each pairs of stress forms were also compared. We conducted this ANOVA based on the
data on 207 DAS, 225 DAS and 233 DAS respectiMg, which were essential growth stages
for carrying out fungicide spraying and yield loss assessing procedures. In addition to the p-
value of ANOVA, we also provided the change direction of spectral features. Positive sign
indicates the average spectral feature value of diseased or nutrient stressed samples is
greater than that of normal samples, and negative sign indicates the opposite cases to the
positive sign. As shown in Table 4, it was observed that for the treatments of N-E and N-D,
all four Vs failed to show any response at all growth stages. For the results of other
treatments, the responses of four VIs behaved ina varied pattern at three growth stages.

For the results on 207 DAS (Table 4a), compared to the normal samples, the NPCI and ARI
had responses to all three levels of yellow rust treatments (YR 1, YR 2, YR 3), and appeared
to be more sensitive than PRI and PhRI. For nutrient stresses, the PRI, NPCI and ARI were
sensitive to W-SED and W-SED+N-E treatments. Among th em, NPCI| and ARI showed
stronger responses (-value<0.01) to W-SD, W-SED, W-SED+N-E and W-SED+N-D
treatments than the other two VIs. For the comparisons between diseased samples and
nutrient stressed samples, significant differences between W-SED and W-SED+N-E
treatments and YR2 and YR3 treatments were identified for PRI, NPCI and ARI. Moreover,
the change directions of the three VIs for diseased and nutrient stressed samples were
identical. At this 207 DAS growth stage, PhRI did not show a significant response to any of
three levels of disease treatments, but responded to W-SD, W-SED and W-SED+N-E
treatments. It is interesting that the change direction of diseased samples of PhRI was
contrary to that of the nutrient stressed samples, suggesting a discriminating potential of the
index.

For the results on 225 DAS (Table 4b), compared tadhe normal samples, all four VIs revealed
a clear response to level 2 and level 3 of yellow rust treatments (YR2, YR3). For nutrient
stresses, PRI, NPCI and ARI also appearedo be sensitive to W-SD, W-SED, W-SED+N-E
and W-SED+N-D treatments. However, PhRI was insensitive to all nutrient stresses. In
addition, when we looked at the difference of those VIs between diseased samples and
nutrient stressed samples, only PhRI showed clear differences between YR2 and YR3
treatments and W-SD, W-SED, W-SED+N-E, and W-SED+N-D treatments. Although a
significant difference between YR3 treatment and W-SED treatment also existed for ARI and
NPCI, the change directions of both treatments were identical. However, for PhRI, the
change directions of all levels of disease treatnents were different from those of the nutrient
stress treatments.

For the results on 233 DAS (Table 4c), withfurther development of disease symptoms,
compared to the normal samples, all four indices showed responses to all three levels of
disease treatments. Comparing to YR1 treatment, the four VIs had shown a stronger
significant level (p-value<0.01) for YR2, YRS treatments. For nutrient stresses, PRI, NPCI and
ARI exhibited clear responses to W-SED, WSED+N-E and W-SED+N-D treatments as well.
For comparisons between diseased and nutrient stressed samples, PRI and NPCI appeared
to be significantly different between YR2 and YRS3 treatments and W-SD treatment.
However, the change directions of both treatments were identical. Unlike the other three VIs,
PhRI remained insensitive to the nutrient stresses, but was significantly different among all
levels of disease treatments (YR1, YR2, and YB) and all forms of nutrient stresses. More
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YR1 YR2 YR3 Normal
Treatments
PRI PhRI NPCI ARI PRI PhRI NPCI ARI PRI PhRI NPCI ARI PRI PhRI NPCI ARI
Normal ©) ©) *)* [CN ) *) *)* Oh ©) *) (AN O
W-SD ©) ©) *) *) ©) O *) *) ©) O *) ©) © (O A RN O
W-SED *) ©) ®* M *) L A A A (GO S A O A M A
N-E ©) *) ¢ ©) O ©) ©) © ¢ ©) [ORN *) ©) e *)
N-D ©) *) G ©) O] *) ©) Q] O] ©) [ORN Ol O] *) Q] *)
W-SED+N-E  (+) ©) ®* M *) (O A & A A O A O *) (GO R © A O A M R
WSED+N-D__ (+) ) ™) ) ™) 0 ™) ) ™) oM ) ™) N ) M o™
(a) 207 DAS
YR1 YR2 YR3 Normal
Treatments
PRI PhRI NPCI ARI PRI PhRI NPCI ARI PRI PhRI NPCI ARI PRI PhRI NPCI ARI
Normal R G
W-SD R O N o R U & S N o S o N & B & Y O B OO SN 5 e S & B OO R
W-SED =60 H ®H ) Ok *) *) *) (O A R G A O M O ()= ()
N-E ) ¢ ) ©) [CN 0> 6 ) Ok [CN [CAN Ol ) ©) ) (O]
N-D ¢ *) ©) ©) ) O O ©) O OM [ORN Ol *) *) *) Q]
W-SED+N-E  (+)* ¢ ®* M ©) Ok *) *) 6 0 *) (GO G R © B G A
W-SED+N-D__ (+)* Q) (GO M Gl ) (Ol *) *) (S 0 *) ) B 0O H=  H
(b) 225 DAS
YR1 YR2 YR3 Normal
Treatments
PRI PhRI NPCI ARI PRI PhRI NPCI ARI PRI PhRI NPCI ARI PRI PhRI NPCI ARI
Normal (#) = )+ )+ #)* (F) (B ()R (B ()R ()RR (4) e
W-sD G Ok ©) [ S A A O ©) (O A O A O * ©) (GO M G
W-SED [CORN S A *) *) [CANNC *) ©) [ORN ¢ (O R © I N € A
N-E 6 6O ©) ©) (O O B © A © A A A © M O ¢ ©) ©) *)
N-D [CANOM ) ©) (O O R © Al O A © A © M © R O A ¢ ©) *) *)
W-SED+N-E  (+) (9™ *) ™) ORI CA *) *) (Ol ¢ [T G B © A A O M
WSED+N-D  (+) ()™ *) H O™ O ) Q) O O™ Q) O O™ O H™ O™
(c) 233 DAS

*mean difference is significant at 0.950 confidence level; **mean difference is significant at 0.990
confidence level;*** mean difference is significant at 0.999 confidence level. (+) means the average
spectral feature value of diseased or nutrient stressel samples greater than that of normal samples; or
means the average spectral feature value of nutrientstressed samples greater than that of diseased
samples; (-) means the opposite cases to the case ¢f). The definitions of treatments are as follows:
“Normal” represents normal samples; “W-SD” represen ts samples treated with slightly deficient water;
“W-SED” represents samples treated with seriously deficient water; “N-E” re presents samples treated
with excessive nitrogen; “N-D” represents samples treated with deficient nitrogen; “W-SED+N-E”
represents samples treated with seriously deficient water and excessive nitrogen; “W-SED+N-D”
represents samples treated with seriously deficient water and deficient nitrogen

Table 4. ANOVA for four VIs separately on 207 DAS, 225 DAS and 233 DAS

importantly for the PhRI, the change directions of diseased samples were opposite to those
of nutrient stressed samples throughout the entire analysis.

In summary, all four VIs showed a significant sensitivity to yellow rust disease on 207 DAS,
225 DAS and 233 DAS. However, most of themalso appeared to be sensitive to water
associated stresses to a varing extent, except for PhRI, which was only sensitive to disease
yet insensitive to any forms of nutrient stre sses on 225 DAS and 233 DAS. More importantly,
the change directions of PhRI to disease treéments were always opposite to those to the
nutrient stress treatments at all relevant growth stages. This further confirmed the
discriminating characteristic of PhRI.
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2.1.3 Conclusion

Combining with a dataset of yellow rust disease inoculation and a dataset of various forms
of nutrient stress treatments, we examined the responses of 38 commonly used spectral
features at five important growth stages from booting stage to milk development stage
using a one-way analysis of variance (ANOVA). There were 37 spectral features sensitive to
water associated stresses, 35 spectral features sensitive to yellow rust disease and only 15
spectral features sensitive to sole nitrogen stresses in at least one growth stage. It was
observed that more spectral features appearedto have a response to yellow rust disease at
later growth stages. A throughout ANOVA was conducted particularly on PRI, PhRI, NPCI
and ARI, which showed a consistent response to yellow rust disease at 4 out of 5 growth
stages. However, PRI, NPCI and ARI were also responsible for water associated stresses,
suggesting a risk of confusion in detecting yellow rust disease. Only PhRI was sensitive to
yellow rust disease, but insensitive to different forms of nutrient stresses. The discriminative
response of PhRI could provide a means of identifying and detecting yellow rust disease
under complicated farmland circumstances. This finding can serve the basis of remote
sensing system for detecting yellow rust disease.

2.2 Detecting yellow rust using field and airborne hyperspectral data

The aim of this study was to evaluate the accuracy of the spectro-optical, photochemical
reflectance index (PRI) for quantifying the disease index (DI) of yellow rust in wheat using
in-situ spectral reflectance measurements, and its applicability in the detection of the disease
using hyperspectral imagery.

2.2.1 Materials and methods
2.2.1.1 Experimental design and field conditions

Experimental design and field conditions was same as 1.1.1. Experimental data from 2002
Exp were used to establish the statistical madels, and the data for 2003 Exp were used to
validate the models developed.

2.2.1.2 Inspection of disease severity

To quantify the severity of the disease of yellow rust, the leaves of plants were grouped into
one of 9 classifications of disease incidence (x): 0,1, 10, 20, 30, 45, 60, 80 and 100% covered by
rust. 0% represented no incidence of yellow rust, and 100% was the greatest incidence. The
disease index (DI) was then cdculated using (Li et al. 1989):
I x uf
DI (%) -L—— 100 u

I
ulf

where f is the total number of leaves of each degree of disease severity and is the degree of
disease severity observed (in this work, n ranged from 0 to 8). In each plot, 20 individuals
were randomly selected for check.

2.2.1.3 Canopy spectral measurements

The method of canopy spectral measurements and data was same as the part 1.1.1.2 above.
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2.2.1.4 Airborne hyperspectral imaging

Airborne hyperspectral images of the trial field were acquired in 2003 using the Pushbroom
Hyperspectral Imager (PHI) designed by the Chinese Academy of Science (CAS) and flown
onboard a Yun-5 aircraft (Shijiazhuang Aircra ft Manufacturing Company, China). The PHI
comprises a solid state, area array, and silicon CCD device of 780 x 244 elements. It has a field
of view of 21°, and is capable of acquiring images of 1 m x 1 m spatial resolution at an altitude
of 1000 m above ground. The wavelength range is 400-850 nm with a spectral resolution of 5
nm. Images of the target field were acquired in 2003 at the phenological growth stages of stem
elongation (April 18, 2003, Zadoks stage 3), anttesis (May 17, 2003, Zadoks stage 5) and milky
maturity (May 31, 2003, Zadoks stage 8). The inoculated wheat was adequately infected by
rust on April 18, obviously infected by May 17, and seriously infected by May 31.
Measurements of DI were made and in situ canopy reflectance spectra were also acquired on
the same dates. All images were geometricallyand radiometrically corrected using an array of
georeferenced light and dark targets (5 m x 5 m) located at the extremes of the field site. The
aforementioned field spectrometer was used to calibrate these targets relative to BaSO4. The
location of each target, as well as field measuements of DI were recorded using a differential
global positioning system (Trimble Sunnyvale California, USA).

2.2.1.5 Photochemical reflectance index (PRI)

Because yellow rust epiphyte reduced foliar physiological activity by destroying foliar
pigments, the photochemical reflectance index (PRI) was selected as the spectrophotometric
method of estimating the disease index. PRIwas calculated by the formula in Table 2.

2.2.2 Results
2.2.2.1 PRI versus DI

Fig. 4 shows a plot of the measured DI as a function of PRI for all varieties. The data points
associated with the variety Xuezao dominate in the top-left region of the scatter plot
(relatively high range of DI), while those associated with the variety 98-100 are located in the
mid region (mid-range DI) an d those associated with Jing 411 dominate the lower right
region. This distribution trend is consistent with the relative susceptibility of these varieties

to rust; Xuezao is the least resistant and Jing411 has the greatest resistance. The regression
equation of DI using PRI in 2002 Exp was obtained as following (n = 64):

DI % 721.22 PRI 2.40 0.14PRI 0.0 dool d

An important feature in, the associated regression equation (Fig. 4) was that the spectrally-
derived PRI explained 91% of the variance observed in the disease index. This explanation
also encompassed the three varietes of wheat as well as the four stages of crop development
for each variety. In the subsequent validation of the PRI-DI regression equation with the

2003 Exp data (Fig. 5), the cofficient of determination (R 2) between the estimated and
measured values was 0.97 (n = 80).

In Fig. 5, the locations of data points associated with individual varieties wew consistent
with the levels of resistance to rust. Xuezao dominated the top right-hand region of the
scatter plot (relatively high range of DI), the variety 98-100 had points scattered all along the
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Fig. 4. Plot of measured disease index (Dl)as a function of measured photochemical
reflectance index(PRI) for all varieties combined in 2002 Exp. |: Jing 411; +: Xuezao;L: 98-100
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Fig. 5. Comparison of measured DIl and PRI-estimated DI for 2003 Exp; ‘|’ = Jing 411;<+' =
Xuezao; ‘L' = 98-100

regression line (predominantly mid-range DI), and Jing 411 was concentrated in the central
lower-left region (lower range DI).

2.2.2.2 Application of multi-temporal PHI images for DI estimation

The DI was estimated on a pixel-by-pixel basis in each of the acquired PHI images using the
regression equation. To map the degree of yellow rust infection in the trial field, the DI was
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binned into the following classes; very Serious (DI > 80%), serious (45% < DI ” 80%),
moderate (10% < DI " 45%), slight (1% < DI ” 10%) and none (0 < DI " 1%) (Fig. 6).

Fig. 6. ClassiAed DI images derived from PHI airborne images of the trial site in 2003 Exp

Fig. 7 shows the relationship between the DI calculated from the multi-temporal PHI images
and the actual measured DI from the 120 sample siteslocated within the field (R 2=0.91).
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Fig. 7. Comparison of PHI-derived estimates of DI and actual DI values for 2002 Exp. Data
were extracted from all three imaging times, although the DI values were< 20% for the April
18 image
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2.2.3 Conclusion

The results of this work confirm PRI is a potential candidate for monitoring of yellow rust,
and could form the basis of an on-the-go sensor and variable-rate spray applicator or remote
detection and mapping process.

2.3 Detecting yellow rust in winter wheat by spectral knowledge base

In most cases, statistical models for monitoring the disease severity of yellow rust are based
on hyperspectral information. The high cost and limited cover of airborne hyperspectral
data make it impossible to apply such data for large scale monitoring. Furthermore, the
established models of disease detection cannot be used for most satellite images because of
the wide range of wavelengths in multispectral imag es (Zhang et al., 2011).

To resolve this dilemma, the study presents a novel approach by constructing a spectral
knowledge base (SKB) of winter wheat diseases, which takes the airborne images as a
medium and links the disease severity with band reflectance from moderate resolution
remotely sensed data, such as environment and disaster reduction small satellite images
(HJ-CCD) accordingly. To achieve this goal, several algorithms and techniques for data
conversion and matching are adopted in the proposed system, including minimum noise
fraction (MNF) transformation and pixel purity index (PPI) function. The performance of
SKB is evaluated with both simulated data and field measured data.

2.3.1 materials and methods

Experimental design and field conditions was same as the part of 1.1.1.1
2.3.1.1 Inspection of disease severity

Please refer to the part of 1.2.1.2 above.

2.3.1.2 Airborne hyperspectral imaging

Please refer to the part of 1.2.1.4 above atut airborne hyperspectral imaging and image
processing.

2.3.1.3 Acquisition of modera te resolution satellite images

In this study, the SKB is designed to fit the charge coupled device (CCD) sensor, which is on
the environment and disaster reduction small satellites (HJ-1A/B). The basic parameters of
the CCD sensor (using ‘HJ-CCD’ in the following ) are given in Table.5. The four bands of

Properties of HJ-CCD

Wavelength range

Band Spatial resolution (m) Swath (km) Revisit time (day)

(nm)
Blue 0.430-0.520
Green 0.520-0.600
30 360 2
Red 0.630-0.690
Near-infrared 0.760-0.900

Table 5. Properties of the ervironment and disaster reduction small satellites (HJ-CCD)
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HJ-CCD covered the visible and near infrared spectral regions. The HJ-CCD sensor has
spectral and spatial characteristics that are similar to those of Landsat-5 TM, but the HJ-
1A/B satellites have more frequent revisit capability (2 days) than the Landsat-5 satellite (16
days), which is of great importan ce for agricultural monitoring.

2.3.1.4 Construction of th e spectral knowledge base

The SKB in this study can be interpreted as a pool of relationships between spectral
characteristics and prior knowledge. Here, prio r knowledge stands for the degree of severity
of yellow rust, and the spectral characteristics are the reflectan@ of the initial four bands of
the HJ-CCD image. Hence, there are two major seps involved in constructing the SKB. First,
the relationship between hyperspectral information and severity is obtained with a stable
empirical reversion model. Then, through th e RSR function of the HJ-CCD sensor, the
hyperspectal data can be transferred to the wide-band reflectance. In this way, a one-to-one
correspondence between the disease severity ofyellow rust and reflectances from the HJ-
CCD sensor is established at the pixel level. The SKB can represent disease severity in two
ways: the DI (%) value and the class of disease severity. The following sections describe each
step for establishing the SKB, including data selection, the reversion model, simulation of
the wide-band reflectance and estimating the degree of severity. A technical flow diagram of
SKB construction is summarized in Fig. 8.

Fig. 8. The flow chart for monitoring of DI(%) of winter wheat stripe rust, b1-b4 represented
the reflectance of the four bands of HJ-CCD images

As noted above, the SKB in this study comprised PHI pixels. The predicted accuracy
obtained by the SKB was determined primarily by the amount of prior knowledge, which
indicated the heterogeneity of disease severty. The design of the yellow rust fungus
inoculation ensured a considerable variation in disease severity within the experimental
field, from healthy plants to ve ry diseased plants. In addition, to avoid using pixels on or
near the ridge in the field that are considered as mixed signals, we chose three rectangular
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shaped areas that were within the field and comprised 7918 ‘crop-only’ pixels for
constructing the SKB.

2.3.1.5 Reversion model

The reversion model construction was the first step of establishing the SKB. Based on the
conclusion of the part above, PRI was a suitable vegetation index for monitoring the severity
of yellow rust disease in winter wheat. Therefore, in this study, PRI was used to establish
the linkage between the disease severity and the hyperspectral data. Specifically, the yellow
rust infection would be apparent at anthesis stage, and this should be closely related with
the subsequent yield loss. Therebre, we chose the PHI image atthis stage to form the SKB.
To obtain a better fitting model, we reanalyzed the PHI-PRI and corresponding DI (%) data
at the anthesis stage specifically, and obtained a linear regression model. It should be noted
that the data range of DI must be between 0 and 100%. Any predicted DI results that
were g 100% or f 0% were redefined as DI = 100% and DI = 0% to represent very infected
plants and healthy plants, respectively.

2.3.1.6 Simulation of the wide band reflectance

The second step of constructing the SKB is to transform the hyperspectral reflectance of PHI-
pixels to wide band reflectance of HJ-pixels. To achieve this goal, the best approach is the
inherent relative spectral response (RSR) fundion of the HJ-CCD sensor. By integrating the
hyperspectral reflectance of PHI-pixels on the RSR function, the band reflectance of HJ-CCD
sensor was thus obtained. Besides, although ttke wavelength range of the fourth band of HJ-
CCD sensor (760 nm-900 nm) was slightly exeeded the maximum wavelength of PHI
sensor (850 nm), for most ground measured spetra, the reflectance basically kept on steady
from 760 nm to 900 nm. Hence, tre simulating results generated using the incomplete range
of wavelength (760nm-850nm) should approach to the true value. The integration can be
shown as follows:

bend
Ru 3 f(x)dx
bslan

where Ry is the simulated reflectance of a certain band; hwar and beng indicate the
beginning and the end wavelength of this band respectively; f(x) indicates the RSR function,
which is obtained from CRESDA.

2.3.1.7 Spectral characteistics of different degrees of disease severity

Another way to define the disease severity of an undefined pixel, apart from the DI (%)

value, is to quantify disease severity by severity classes. The criterion of severity class
provided by Huang et al. (2007) was adopted, which corresponded to the major

physiological alteration of diseased plants. The DI (%) thresholds for each severity class
were: DI f 1% indicated not infected (NI), 1% f DI f 10% indicated a low degree of infection
(L1), 10%f DI f 45% indicated mid-range infection (Ml), 45% f DI f 80% indicated seriously
infected (SI) and DI (%)g80% indicated very seriously infected (VI). The MNF

transformation and PPI functi on, which are used for noise reduction and end-member
identification, were applied here to select the most representative pixels from the PHI

image, and to form the typical spectrum for each severity class.
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2.3.1.8 Spectral matching algorithms

The basic idea of spectral matching is to identify a set of pixels in the SKB that are the closest
to the undefined pixel in terms of spectral characteristics. Before matching, each pixel
should be standardized to eliminate systematic variation caused by aerosol conditions or

other factors as follows:

where Rno is the standardized reflectance of a certan band, R is the original reflectance, and
Rmin @and Rmax are the minimum and maximum band refl ectance values, respectively, of the
corresponding pixel.

Mahalanobis distances (Mah) and Spectral argle (SA) were selected as the distance
measurement criterion. Both types of distance measurements had been proved to be with
high efficiency in reflecting the spectral dis crepancy (South et al., 2004; Goovaerts et al.,
2005; Becker et al., 2007). The Mah distance can be written as:

Dy (X) \/(x Xg) 11X XR)" X=(Xa,Xe,XaXa), XR=(XR1, XR2 XR3, XRe)

where X;.4 are the reflectance of the pixel under test in bandl to band4, respectively; xz1.4 are
the simulated reflectance of a specific pixel in SKB. T the covariance matrix between x and
Xr-SA can be calculated by the following formula:

' XiXgi
T arccos—
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To determine the DI (%) or class of disease severity of an undeed pixel, we have to
calculate the Mah and spectral angle from this pixel to each pixel or class in the SKB. A
longer distance or larger angle indicates that the pixel deviated from the undefined pixel,
whereas a shorter distance or smaller angle indicates that it is similar to the undefined pixel.
By selecting the most similar pixel, the severity class of an undefined pixel can be
determined. To determine the DI (%) of a certain pixel, the weighted average method was
used. According to the distance criteria above, the five most similar pixels were selected
from the SKB. For each band of these pixelghere we used the hyperspectral bands extracted
from the PHI image), the reflectance was processed according to the following equation:
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where Rg is the estimated reflectance of acertain pixel through k-NN estimation; R; is the
reflectance of the i, nearest pixel according to the ranking order of the distance; d; is the
distance between the pixel under test to the i, nearest pixel.



Crop Disease and Pest Monitoring by Remote Sensing 53

2.3.1.9 Verification

To verify the performance of SKB in identify ing and monitoring the severity of yellow rust
diseases, two datasets were used: the simuléed data and the field-measured data with
corresponding satellite images.

1.

Verification of SKB using simulated data

The simulated data comprised 50 randomly selected pixels in the same experimental field,
but outside the three regions selected for constructing the SKB. The hyperspectral
information of each pixel was used to create the reference DI (%) and severity class with
the empirical model and the corresponding thresh old for each severity class. To test the
performance of SKB in terms of DI (%) value, we estimated the DI value with both
distance criteria described above. The samples were split into two: the pixels with a
reference DI between 1 and 100%, i.e. the ‘disased’ pixels, and those with a reference
DI f 1%, i.e. ‘healthy’ pixels. For the diseasedpixels, the estimated DIs were compared
with the reference DI by Pearson correlation analysis and the normalized root mean
square error (NRMSE). For the healthy pixels, we used ‘yes or no’ to determine whether
the estimated value indicated infection or not, which also provided an accuracy ratio. The
estimation of severity class was verified by overall accuracy and the kappa coefficient.
Verification of SKB using field surveyed data

The field surveyed data sets included the ground investigation of disease severity and the
corresponding HJ-CCD images. Between June 1-3, 2009, when the winter wheat was at the
anthesis stage, we conducted a survey in the southeast of GanSu Province. The climate of
the area surveyed is characterized by high humidity and rainfall, and yellow rust disease
occurs almost every year. This area has sinlar environmental condit ions and cultivation
customs to those where we constructing the SKB in Beijing, and this makes it an
appropriate place for model verification. With the aid of the local Department of Plant
Protection, 26 plots were randomly selected and surveyed in the area (Fig. 9). To relate the
surveyed value to the pixel value of the HJ-CCD image, we defined the plot as a uniformly
planted winter wheat region with an area no less than 30 m in radius. The geographical
coordinates of each plot were measured by GPS at the centre of the plot. Disease severity
was measured as described above. We repeated the measurement inAe evenly-
distributed sections in each plot, and 20 individual plants were included in each
measurement. The HJ-CCD images (ID: 12516, 122518) acquired on June 2, 2009
completely covered the surveyed area. The raw data from the HJ-CCD imagery was
calibrated based on the corresponding coefficients provided by CRESDA. The calibrated
data were atmospherically corrected with the algorithm provided by Liang et al. (2001),
which estimated the spatial distribution of atmospheric aerosols and retrieved surface
reflectance under general atmospheric and surface conditions. The images were also
geometrically corrected against historical reference images with the same geographical
coordinates. The images were retified with a root mean square error of less than 0.5 pixels.
The spectrum of the each plot was extractedfrom the image according to the GPS records.
The estimated accuracy in this step followed the same process as the simulated data.

2.3.2 Results

There were 7918 pixels included in the process of constructing the SKB. The linear
regression model between DI (%) and PRI at anthesis stage could be illustrated as follows:
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Fig. 9. The field surveyed area in Gansu Povince. The base image is the HJ-CCD image
acquired on June 2, 2009

DI(%) 538.98 PRI 2.0983(R>=0.88)

The pairs of DI (%) and PRI were plotted in Fig.4, which showed a significant correlation (R2
= 0.88). Based on the model, there were 85 pixis with a DI of 100% and 3991 pixels with a
DI between 1%and 100%, indicating 51.5%pixelsinfected to a varied degree of severity,
whereas the other 48.5% pixels (DI = 0%) were healthy plants. In the experimental field, the
variation in the degree of severity of yellow ru st from totally healthy plants to very infected
plants provided the essential diversity or he terogeneity of infection, which then enabled
establishment of the SKB. The MNF transformation resulted in 9 leading eigenvectors with
eigenvalues greater than 4.0 (Fig. 10), ad these were used for further analysis.

2.3.2.1 Performance of SKB for simulated data

In the simulated dataset, there were six healthy pixels and 44 diseases affected ones. When
estimating DI (%), one pixel with no infection was estimated as infected by the Mah distance
criterion, whereas with the SA criterion two were mislabeled. Fig.11 shows the scatter of the
disease affected pixels plotted in relation to reference DI and estimated DI; the average
reference DI is 36%. The reference DIs and estimated DIs were strongly and linearly
correlated for both the Mah distance (R2 = 0.90) and SA (R = 0.84) criteria. Further, the
NRMSE of Mah distance and SA were 0.20 and0.24, respectively, indicating that the SKB
can estimate Dls accurately from the simulated multi-band reflectance.
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Fig. 10. MNF eigenvalues variation trend

Fig. 11. Estimated DI(%) using simulated data

Table 6 gives the reference class of disease sevéyiand the estimated class in the form of an
error matrix. The overall accuracy with Mah distance and the SA criterion were 0.80 and
0.76, respectively, whereas the kappa coefficietts were 0.71 and 0.65, respectively. However,
we noticed that all the misclassified pixels were assigned to no more than one class adjacent
to the reference class. Therefore, for simulated data, the classification accuracy was
satisfactory in determining the severity class of yellow rust by SKB.

2.3.2.2 Performance of SKB for field surveyed data

Apart from the verification ag ainst simulated data, more impo rtantly, the field surveyed
data can be also used to assess the performance of the SKB. The field investigation showed
that eight out of 26 plots were infected with DI ranged from 4 to 90%, whereas the other 18
plots were not affected by yellow rust. The estimation by DI (%) successfully identified the
eight infected plots when the Mah distance criterion was used, whereas the SA criterion
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Reference
None Low range Mid Serious Very Total
range serious
None 6 0 0 0 0
Low range 0 5 2 0 0
o Mid ran ge 0 1 20 2 0 23

Estimation .

(Mah) Serious 0 0 1 10 1 12
very 0 0 0 1 1 2
serious
Total 6 6 23 13 2 50
None 5 1 0 0 0
Low range 1 4 1 0 0

L Mid ran ge 0 1 20 2 0 23

Estimation .

(SA) Serious 0 0 2 9 1 12
Very 0 0 0 2 1 3
serious
Total 6 6 23 13 2 50

Table 6. Error matrix for simulated data

resulted in one misestimated plot. Figure 7 shows the scatter of the eight data plotted in
relation to reference DI and estimated DI for both distance criteria. There was a significant
linear trend in graphs based on both the Mah distance and SA criteria. The R of Mah distance
and SA were 0.80 and 0.67, respectively, whereashe NRMSE were as high as 0.46 and 0.55. In
real circumstances, approximately 50% error in the estimated disease index is unsatisfactory.
On the other hand, however, most of the uninfe cted plots were correctly identified according
to DI (%) estimates (i.e. a DI<1%). For both the Mah distance and SA criteria, 15 out of 18 non-
infected plots had been identified correctly, resulting in an accuracy of 77.8%. The results for
estimating disease severity by severity class were even more encouraging. The overall
accuracy for the Mah distance and SA criteria were 0.77 and 0.73, respectively, whereas the
kappa coefficients are 0.58 and 0.49, respectively. Table 3 gives the error matrix for both
criteria. The misclassified pixels were also assigned exclusively to the adjacent class.

In general, the above results demonstrate that the proposed SKB scheme has great potential for
detecting the incidence and severity of yellow rust through multispectral images. As shown
from several previous studies, the image processing method of MNF transformation was
efficient in extracting the principle information from the images related to wheat disease
infection (Zhang et al. 2003; Franke and Menz 2007). For the present study, we found that
coupling MNF transformation with the PPI function was an appropriate way of extracting the
principle information on yellow rust disease. To estimate disease severity by DI (%), the
proposed SKB has achieved a satisfactory accuracy for simulated data. However, the estimated
accuracy for field surveyed data was unsatisfactory, implying that the method tends to
underestimate or overestimate the disease severity in practice. Nevertheless, to estimate disease
severity through disease severity class has achieved a satisfactory accuracy for both simulated
data and field surveyed data. Therefore, the disease severity class seems to be more robust in
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determining the disease severity. This might be because it is more rough estimation than DI (%).
It is understandable that for the same sample, the less precise the criterion, the greater accuracy
it would achieve. Moreover, the 5-class disease severity quantification is enough to guide field
applications. We suggest that DI (%) should be used for detecting the disease severity of yellow
rust by SKB. For the distance criteria used in the process of matching with SKB, the Mah
distance criterion might be more appropriate because it performed better than SA in all the
analyses conducted in this study (Figs. 11, 12, Tales 6, 7). Some previous studies have already
emphasized the potential of hyperspectral imagery (Bravo et al. 2003; Moshou et al. 2004;
Huang et al. 2007) and the high-resolution of multispectral imagery (Franke and Menz 2007) for
detecting yellow rust disease. The development of SKB in the present study can be viewed as a
scaling up method, which has extended the capability of detecting yellow rust disease from
hyper- spectral imagery to the moderate resolution of multispectral imagery. However, it
should be noted that the task of monitoring the occurrence and degrees of infection of crop
diseases is far more complex than the cases described in this study. The spectral characteristics
of yellow rust infection might appear similar to  other sources of stress. In addition, the impact
of phenology, cultivation methods, fragmentation of farmlands and other environmental
conditions would also increase the difficulty and uncertainty of the estimation process.
Therefore, the SKB developed in this study should correspond to the situation at the anthesis
stage exclusively, and is only suitable for those regions with similar environmental
characteristics and cultivation methods. For other regions with significantly different
environmental characteristics, this purposed SKB may not work well. The possible solution to
these problems may include incorporating suitable priors, which would require integration
strategies and understanding of the mechanisms underlying some fundamental processes.
Further research is required to address the problems mentioned above.

Fig. 12. Estimated DI(%)using field measurements

2.3.3 Conclusion

The low spatial resolution and few spectral bands have limited the application of moderate
resolution satellite images for monitoring yellow rust disease. The spectral knowledge base
developed enabled disease incidence and severityto be detected by moderate resolution
satellite images. The SKB supported two ways of estimating disease severity: the disease
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Reference

None Lowrange Midrange Serious Very serious Total

None 16 0 0 0 0 16

Low range 2 2 1 0 0 5

Estimation Mid range 1 3 0 0 4
(Mah) Serious 0 0 0 0 1 1
Very serious 0 0 0 0 0 0

Total 18 3 4 0 1 26

None 15 0 0 0 0 15

Low range 3 2 1 0 0 6

Estimation Mid range 1 3 0 0 4
(SA) Serious 0 0 0 0 1 1
Very serious 0 0 0 0 0

Total 18 3 4 0 1 26

Table 7. Error matrix for ground measured data

index and disease severity class. Both methods ofestimation achieved a satisfactory level of
accuracy for simulated data. For field surveyed data, estimation by DI (%) resulted in an
unsatisfactory level of accuracy, whereas it was satisfactory for severity class. The Mah
criterion performed better than spectral angle in all analyses. Therefor, the former should
be considered as the more apropriate distance criterion.

Generally, the purposed SKB has a great potental in extending the capability of detecting
yellow rust to multispectral remote sensing data, especially when the region of interest has
similar environmental conditions to where the SKB was developed. The uncertainties
caused by environmental differences should be further investigated in future studies.

2.4 Detecting yellow rust of winter wh  eat using land surface temperature (LST)

The air temperature and humidity are the most direct and important indicators of
occurrence of yellow rust fungal. Generally, weather stations can provide the dynamic
pattern of meteorological data for site sampled, yet not able to include the information of
spatial heterogeneity. Fortunately, remote sensing technology has great potential for
providing spatially continuous observations of some variables over large areas (Luo et al.,
2010). The aim of the study was to study preliminarily on the relati onship between the
occurrence of wheat yellow rust and land surface temperature (LST) derived from
moderate-resolution imaging spectroradiomete r (MODIS) in order to predict and monitor
incidence of the yellow rust on large scale.

2.4.1 Materials and methods
2.4.1.1 Survey area and field investigations acquisition

Field experiments of winter wheat were cond ucted during the growing seasons (form April
to June) of winter wheat in 2008 and 2009. Theinvestigation locations included Longnan
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district, Tianshui district, Dingxi district and Pingliang district in GanSu province and
Qingyang district in ShanXi province as well as Linxia district in Ningxia Hui Autonomous
Region (Fig.1), where the climates are semiarid and subhumid. Survey areas are located
between latitude 32 %0'N to 35>39'N and longitude 103 >40'E to 107%0’E, and the mean
altitude is over 2000 meter. The climate condition of surveyed area is characterized by high
humidity and rainfall, and yellow rust disease al most occurs every year. It is reported that
Longnan district is an important overwinter ing and oversummering area of yellow rust
fungal (Zeng, 2003).

With the aid of the local Department of Plant Protection, 151 plots, including 68 plots from
April to June in 2008, and 83 plots from April to June in 2009, were randomly selected and
surveyed in the areas. The geographical coordinates of each plot were measured by GPS
navigator at the middlemost of the plot. In addition, the disease severity was inspected.

2.4.1.2 MODIS land surface temp erature (LST) products (MOD11)
Product description

MODIS Land Surface Temperature and Emissivity (LST/E) products (named starting with
MOD11) provide per-pixel temperature and emi ssivity values. Temperatures are extracted
in Kelvin with a view-angle dependent algorithm applied to direct observations. This
method yields the error less than 1 K for materials with known emissivity. The view angle
information is included in each LST/E product.

MOD11 acquisition and processing

24 MOD11A2 images MODIS/Terra land surface temperature/emissivity 8-day L3 global
1km SIN grid vO05 were acquired for free from Web (http://edc.usgs.gov/#/Find_Data)
from April to July in 2008 and 2009, which covered completely the survey area, and 4 scenes
images were acquired in every month. The raw data of MOD11A2 imagery were processed
and transformed by MRT tool, and LST products were extracted from MODII A2 images.
Then the survey area was cutby ENVI from LST images. Followed by that step, 4 scenes 8-
day LST images of every month were all averaged, and 6 average LST images, including
April, May, June in 2008 and 2009, were obtained. Finally, LST of 151 investigation points
were respectively extracted from 6 average LST images.

2.4.2 Result
2.4.2.1 Determining LST threshold of infected points

The spatial resolution of MODIS temperature products is 1 km, while the DI of every
investigation point only stands for the incidenc e of 30 m in semi diameter plots. Therefore,
the scale of MODIS temperature products seemed not satisfied the investigation points for
proper relationship between them. However, sp atial variability of LST is slim, and the law
still exists. A series of results could be found by establishing a two-dimensional spatial
coordinate based on DI and LST, in which all investigation points were displayed (Fig 13).
Firstly, the DI ranged from 0% to 100%, and most of infected points ranged from 0% to 60%.
The LST values were between 292K and 310K withmost of infected points distributed in the
range from 298K to 306K. In addition, the points in the region of less than 298K were not
infected by yellow rust basically; DI were less than 1% expect for one point (296.29K, 16%),
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which was thought as abnormal poin t. In addition, the LST values of all investigation points
were less than 306K expect for one point (20.09K, 24%), which was abnormal because its
LST was far away from LST values of others.

Fig. 13. The distribution of the investigation points

Therefore, without considering other factors, It is concluded that yellow rust can occur
when LST is in the region from 298K to 306K.

2.4.2.2 Yellow rust incidenc e analysis based on LST

According to the results illustrated above, the advanced analysis was performed for
incidence and possible area of yellow rust. The points in different LST range were done
statistical analysis with all points’ numbers an d the infected points’ number, and finally, the
incidences were obtained by the number of the infected points dividing the number of all
points in the different LST range (Table.8). The result showed that all investigation points in
the region of less than 298K were not infected by yellow rust, except for the abnormal point
(296.29K, 16%). On the other hand, in the LST rgion of more than 306K, there was only one
point, which was viewed as abnormal point (310.085K, 24%). Thereby, it is quite possible
that yellow rust fungus can not survive in the region of more than 306K. The conclusion was
consistent with the above result (Fig. 13).

LSTe2 LSTe2 LSTe LSTe LSTe LSTe LSTe LSTe LSTe LSTe LSTe

LST (K) 96 97 298 299 300 301 302 303 304 305 306
Total 126 112 99 79 61 34 25 16 12 8 1
number
Number of
infected 49 48 47 42 39 27 25 16 12 8 1
points

Incidence (%) 38.89 42.86 47.47 53.16 63.93 79.41 100 100 100 100 100

Table 8. Statistic analysis in different LST range
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Furthermore, there was an increasing trend of incidences with the rising of LST in the region
from 296K to 302K. The incidence of yellow rust reached up to 100% when the LST was
graeter than 302K (Fig. 14).

Fig. 14. The incidence of yellow rust in different LST range

2.4.2.3 Dividing yellow rust suitable occurrence region based on LST

According to Table 8 and Fig. 14, the survey areas could be divided into yellow rust
unsuitable area (NSA), of which LST ranged from 298K to 306K, and yellow rust suitable
area (SA), of which the LST was less than298K and more than 306K. Moreover, the SA was
divided into 3 levels according to the infected of yellow rust incidence and LST, and the LST
thresholds for each level were: 298K " LST ” 299K the low suitable area (LSA), on which the
yellow rust occurs with very low possibility (incidence < 60%), 299K ”LST " 301K the
medium suitable area (MSA), which had moderate possibility for the occurrence of yellow
rust (60% <incidence < 100%), and 302K” LST " 306K high suitable area (HSA), of which the
environment was highly favorable to yellow rust (incidence=100%).

2.4.2.4 Verification

Total 26 points (from May 2008) were applied for the verification the method of estimating the
incidence of yellow rust. It should be noted that those points were not used for the defining of
the LST thresholds. (Fig. 15). These 26 points were constituted by 18 infected points and 8 non-
infected points. Results showed the infected points were all in different suitable areas of wheat
yellow rust, while the non-infected points were all in the unsuitable area. Thus the infected
situation of yellow rust of these 26 points was consistent with forecast results. Geographically,
it seemed that the yellow rust was prone to be prevalent in the northeast of Pingliang,
southwest of Qingyang, northeast of Dingxi, th e center part of Tianshui, and the west of
Longnan, because they all were located in MSA and HAS. This result was consistent with the
previous study (Xiao, et al, 2007). To prevent ydlow rust from prevalence, more efforts should
be placed on the farmlands located in the MSA, HAS and LSA.

2.4.3 Conclusions

Plant disease is governed by a number of factors, and the habitat factors play a major role in
the development and propagation of fungal pathogens (Sutton et al., 1984; Héléne et al.,
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Fig. 15. Forecast map of yellow rust and distribution of measured points in May, 2008 based
on LST

2002; Cooke et al., 2006). The yellow rust is n@xception. The weather station can only offer
points data, and remote sensing, however, can be a promising means for acquiring spatially
continuous observations over large area. It has not been reported, if any, that the LST
derived from remote sensing data is used to forecast the development of yellow rust.

The study tried to present a method that could forecast the suitable areas of wheat yellow
rust by MODIS temperature products in a larg e scale. And it was proved that LST derived
from remote sensing data had potential for predicting the occurrence and development of
wheat yellow rust in a large area. From our results, it is clear that preventive measures of
yellow rust can been made over large scale area accordingly with different real-time
prediction methods based on LST derived from remote sensing data.

3. Detecting and discriminating winter wheat aphid by remote sensing

Wheat aphid, Sitobion avenae (Fabricius) is one of the most destructive pests in agricultural
systems, especially in temperate climates of the northern and southern hemispheres. Wheat
aphid appears annually in the wheat planting area of China, causing great economic
damage to plant crops as a result of their direct feeding activities. In high enough densities,
wheat aphids can remove plant nutrients, and potentially reduce the number of heads, the
number of grains per head, and overall seed weight. The damage is especially high when
wheat aphid occurs in the flower ing and filling stage of wheat. It is reported that average
densities over 20 aphids per plant can cause sibstantial losses of yield and quality of wheat
(Basky & Fénagy, 2003). There are also indirectdamages including excretion of honeydew
from aphids and as a vector of viruses, most notably two strains of the Luteovirus Barley
Yellow Dwarf Virus (BYDV-MAV and BYDV-PAV ) (Susan et al, 1992). To prevent the
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occurrence and prevalence of aphid, large amounts of insecticides are used, causing
environment pollution. Th erefore, large-scale, real-time pediction and monitoring of wheat
aphid incidence and damage degree using remote sensing technology are extremely
important.

3.1 Detecting winter wheat aphid using hyperspectral data

The study aimed to identify spectral characteristics of wheat leaf and canopy infected by
aphid and find the sensitive bands to aphid at canopy level in filling stage of wheat, and to

establish an aphid damage hyperspectral index (ADHI) based on those sensitive bands for
detecting aphid damage levels in wheat canopy level in filling stage of wheat.

3.1.1 Materials and methods
3.1.1.1 Field experiments and field inventory

The field experiment plot was located at Xiaotangshan Precision Agriculture Experiment
Base, Changping distract, Beijing (40°10.6’'N,116°26.3'E). The experimental field was about
250 m in length and 80 m in width. The winter wheat was planted in the study area from
Oct 3, 2009, and harvested from June 25, 201ield inventory was conducted on June 7,
2010 when wheat was in the filing stage. Twenty five ground investigations including
different aphid damage levels were selected. Aphid damage level was surveyed according
to the investigation rule.

3.1.1.2 Canopy spectral measurements

Please refer to 1.1.1.2 part above.

3.1.2 Results
3.1.2.1 Leaf spectral characterigics of wheat infested by aphid

Representative reflectance measured from wheat aphid-infested and uninfested wheat
leaves are shown in Fig. 16. It was evident thatthe spectral response of the wheat leaf was
significantly affected by wheat aphid feeding (F ig. 16). The reflectance of wheat leaf infested
by aphid was higher in the visible spectrum and short-wave infrared region and lower in
near-infrared region than that of uninfested leaf. A significant increase in the reflectance
from the wheat aphid-infested leaf in th e visible region (400-700 nm) was observed,
evidently due to reduction of photosynthetic pigment concentrations in particular
chlorophylls caused by wheat aphid feeding (Richardson et al., 2004).

3.1.2.2 Canopy spectral characterstics of wheat infested by aphid

Compared with the canopy spectra of the healthy wheat, the canopy reflectance of aphid-
infested wheat was gradually decreased in the range from 350 nm to 1750 nm, especially in the
near infrared region (Fig. 17). Previous researctes indicated that wheat had higher reflectance
at visible wavelengths than the healthy vigo rously growing wheat because the photoactive
pigments (chlorophylls, anthocyanins, carotenoids) were destroyed. In this study, aphid
occurred in the filling stage of wheat and the honeydew excreted by aphid absorbed dust or
others from surrounding environment and contam inated (darkened) the leaf surface. As a
result, the absorption at light slight wavele ngths became strongerinstead of weaker.
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Fig. 16. The spectral reflectance of winterwheat leaf uninfested and infested by aphid
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Fig. 17. The spectral reflectance of healtly wheat and wheat infested by various aphid
damage levels. (Healthy: the average spectra ofhealthy wheat samples; Slight: the average
spectra of aphid damage level 1and 2; Moderate: he average spectra of aphid damage level
3and 4; Severe: the average spectra of aphid damage level 5 and 6).

3.1.2.3 Aphid damage hyperspectral index for detecting aphid damage degree
Sensitive band selection of aphid infestation based on canopy reflectance

The sensitive bands were selected out by rel&ance analysis between reflectance and aphid
damage levels. The reflectance ranges wee from 400 nm to 690 nm, from 700 to 1300 nm
and from 1500 to 1800 nm. The most sensitive bands to aphid were 551 nm (R0.741) in
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visible light, 823 nm (R2=0.865) in near infrared (NIR) and 1654 nm in short-wave infrared
(SWIR) (R=0.668), respectively (Fig. 18).

Fig. 18. Correlation coefficient between reflectance and aphid damage levels

Aphid damage hyperspectral index (ADHI) was established based on the most sensitive
bands from hyperspectral data in the visible light region, NIR and SWIR and weight
coefficient calculated according to rate of change of reflectance between healthy wheat and
aphid-infected wheat, respectively.

R55]uorma| -RS5}fested 0.51 Ingghormall: - R82ested
R55:Inormal R823hormal
R:I'esdhorr]‘|al - R165¢ested
R:IL'AGI"_"hormaI

where R55%ormal 6 R8230rma and R16540ma are reflectance in 551 nm, 823 nm and 1654 nm
of healthy wheat; R55ntested , R823nfested , R1654ntested @re reflectance in 551 nm, 823 nm and
1654 nm of aphid-infected wheat; 0.32, 0.51 and @7 are weight coefficients calculated by the
contribution to change rates.

ADHI  0.32

0.17

Further more, the correlation analysis was conducted between ADHI and aphid damage
level from 25 investigation points (Fig. 19). It was concluded that ADHI exhibited high
relationship with aphid damage levels (R 2=0.839. Therefore, ADHI was an important index
to estimate aphid damage level in winter wheat.

3.1.3 Conclusions

Hyperspectral remote sensing has gone through rapid development over the past two
decades and there is a trend toward the use of hyperspectral image in the application of
remote sensing for precision farming. The study analyzed the spectral characteristics of
wheat infested by aphid and selected the senstive bands to aphid damage level. Then, an
ADHI was developed using the most sensitive bands in visible light region, NIR and SWIR.
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R?=0.839

Aphid damage leve
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Fig. 19. The correlation between ADHI and aphid damage level

It was concluded that ADHI was a sensitive index to aphid damage levels, and could be
used to retrieve aphid damage levels in the filling stage of wheat.

Crop growth is very dynamic processes and monitoring the condition of agricultural corps

is a complex issue. It is possible that wheat damage symptoms caused by aphids and its
response of canopy reflectance are differentin different wheat growth stages. This study
revealed that the reflectance of wheat infested by aphid was lower than healthy wheat in
filling stage probably because of honeydew excreted by aphid. This was not consistent with
previously published results in early detection of aphid infestation. Therefore, whether the
ADHI can effectively retrieve aphid damage levels in other wheat growth stages remains as
a task of future studies.

3.2 Detecting winter wheat aphi  d incidence using Landsat 5 TM

Wheat aphid occurrence and damage degrees are related to many factors including
temperature, humidity, precipitation, field ma nagement, enemies, etc.. Most of the present
studies on aphid prediction have been conducted based on meteorological data acquired
from weather stations, and aphid density was mo nitored using the spectral characteristics of
wheat infested by aphid. However, it is rare to investigate the relationship between
environmental parameters, vegetable information derived from satellite images and aphid
damage degrees. The aim of the present study isto investigate the relationships of aphid
occurrence and damage degree to LST, NDWI,and MNDWI, which are related to vegetation
water content derived from multi-temporal Landsat 5 TM. Another goal of the current
research is to distinguish the degrees of afhid damage using 2-dimension feature spaces
established by LST-NDWI and LST-MNDWI.

3.2.1 Materials and methods
3.2.1.1 Study areas

The study areas are selected inShunyi district (116°28'—116°58" E6 40°00'—40°18' N) and
Tongzhou district (116° 32'—116°56' E, 39°36' -40°02' N,) of Beijing, China (Fig.20-a). The





















































































































































































































































































































































































































Automatic Mapping of the Lava Flows at
Piton de la Fournaise Volcano, by Combining
Thermal Data in Near and Visible Infrared

Z. Servadio!2, N. Villeneuve ! and P. Bachelery4
1 aboratoire Géosciences Réunion, Université de la Réunion,
Institut de Physique du Globe de Paris, CNRS, UMR 7154,
Géologie des Systemes Volcaniques, Saint Denis
2Institut de Recherche pour le Développement, US 140,
BP172, 97492 Sainte-Clotilde Cedex
3Clermont Université, Université Blaise Pascal,
Laboratoire Magmas et Volcans, CNRS, UMR 6524,
Observatoire de Physique du Globe de Clermont-Ferrand,
BP 10448, F-6300Clermont-Ferrand
4RD, R 163, LMV, F-63038 Clermont-Ferrand

France

1. Introduction

Knowing the eruptive history of a volcano is an essential key to the understanding of its
functioning, and therefore of the evolution of the character of dangerousness of its
eruptions. For an essentially effusive basaltic volcano such as the Piton de la Fournaise, the
spatial and temporal distribution of lava flows allows to deduct numerous parameters of its
activity, on a magmatic and a structural point of view. Satellite imaging brings more
advantages than the methods used in aerial pictures studies, especially by supplying bigger
temporal and spectral series. The revisiting of satellites over a region can allow the
generation of dynamic mappings of the implem entation of the lava flow, and also bring
information on the phenomenology of the er uptions: Surface, volume, flow, spatial
distribution...

Furthermore, satellite images have the advantage of supplying data that grant a global
visualization of the study area, and information on not easily accessible areas. The
interpretation of these satellite data enables obtaining information on the surfaces and
volumes of the lava field flows, but also on its nature and behavior. In a tropical
environment such as La Reunion, where the climatological context presents a strong
cloudiness, a satellite revisit is statistically necessary.

The optical satellite images have already been successfully used to realize mappings of lava
flows. For example, in Nevado Subancaya in Peru (Legelay-Padowanie et al., 1997) or in Etna
in Italy (Honda et al.,2002), the combination of spectral and morphological properties
helped to elaborate surface lava flows mappings and also allowed to individualize the main
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Remote Sensing of
Submerged Aquatic Vegetation
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1. Introduction

Remote sensing has significantly advanced spatal analyses of terrestrial vegetation for
various fields of science. The plant pigments, chlorophyll aand b, strongly absorb the energy
in the blue (centered at 450 nm) and the red (centered at 670 nm) regions of the
electromagnetic spectrum to utilize the light energy for photosynthesis. In addition, the
internal spongy mesophyll structures of the he althy leaves highly reflect the energy in the
near-infrared (NIR) (700- 1300) regions (Jensen2000; Lillesand et al., 2008). The distinctive
spectral characteristics of the green plants, low reflectance in the visible light and high
reflectance in NIR have have been used formapping, monitoring and resource management
of plants; and also have been used to devel@ spectral indices such as Simple Vegetation
Index (SVI = NIR reflectance —red reflectance) and Normalized Difference Vegetation Index
(NDVI = (NIR reflectance — red reflectance)/(NI R reflectance + red reflectance)) (Giri et al.,
2007).

The simplicity and flexibility of vegetation indi ces allow comparison of data obtained under
varying light conditions (Walters et al., 2008). NDVI was first suggested by Ruose et al.
(1973) and is one of the earliest and most popula vegetation index used to date. It is usually
applied in an attempt to decrease the atmaospheric and surface Bidirectional Reflectance
Distribution Function (BRDF) effects by norm alizing the difference between the red and NIR
reflectance by total radiation. Index values have been associated with various plant
characteristics, including vegetation type (Geerken et al., 2005), vegetation cover (du Plessis,
1999), vegetation water content (Jackson et al.2004), biomass and produdivity (Fang et al.,
2001), chlorophyll level (Wu et al., 2008), PAR absorbed by crop canopy (Goward &
Huemmrich, 1992), and flooded biomass (Begetet al., 2007) at a broad span of scales from
individual leaf areas to gl obal vegetation dynamics.
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Remote Sensing Application in
the Maritime Search and Rescue

Jing Peng and Chaojian Shi
Shanghai Maritime University
P.R. China

1. Introduction

Maritime search and rescue (MSR- In the maritime publications, the abbreviation for search
and rescue is also SAR. Here we use MSR to distinguish it from the abbreviation for
Synthetic Aperture Radar.) became an enormous task with the vast growth of marine

transportation and other marine activities. In the year of 2006, the MSR centers and maritime
authorities in China organi zed and coordinated 1620 MSR operations, which involved 5322
vessels and 17498 human lives. The past few yars have witnessed tremendous changes in
the organizations of maritime rescue. A large part of this evolution stems from the

involvement on an international scope and the contribution of the advanced technology.

However, current maritime search operation, especially searching people over board,
depends mostly on human eyes.

SOLAS (International convention for safety of life at sea) convention prescribes that ships must
be equipped with GMDSS (Global maritime distress and safety system) equipments, which
have improved the search and rescue. However, for many non SOLAS convention ships, such
as fishing boats and small crafts the detecti