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Nowadays it is hard to find areas of human activity and development that have not 
profited from or contributed to remote sensing. Natural, physical and social activities find 
in remote sensing a common ground for interaction and development. From the end-user 
point of view, Earth science, geography, planning, resource management, public policy 
design, environmental studie s, and health, are some of the areas whose recent 
development has been triggered and motivated by remote sensing. From the 
technological point of view, remote sensing would not be possible without the 
advancement of basic as well as applied research in areas like physics, space technology, 
telecommunications, computer science and engineering. This dual conception of remote 
sensing brought us to the idea of preparing two different books. The present one is meant 
to display recent advances in remote sensing applications, while the accompanying book 
is devoted to new techniques for data processing, sensors and platforms. 

Strictly speaking, remote sensing consists of collecting data from an object or 
phenomenon without making physical contact. In practice, most of the time we refer to 
satellite or aircraft-mounted sensors that use some sort of electromagnetic radiation to 
gather geospatial information from land, oceans and atmosphere with increasingly high 
spatial, spectral and temporal resolutions. Space agencies in charge of collecting 
remotely sensed data have shown a notorious interest in making these data available for 
research and social development. The confluence of remote sensing technology with 
other sciences has resulted in an exponential growth of knowledge, technology 
development and assessment of all kind of physical and na tural phenomena, as well as 
human activities that share a common ground: geospatial information. However, the 
success of remote sensing influencing other areas of knowledge and human activity has 
not always been a paved way. The variables of great interest to scientists in different 
areas are not readily available from the raw remotely-sensed data. Even when the data 
has been processed and converted to physical-related values, or even linked to human 
and natural artifacts like crop fields, road s, urban areas, geomorphologic structures, 
vegetation indices, etc., the relationship between these and the more abstract variables 
that explain them such as human settlement dynamics, geophysical phenomena, climate 
change, etc. remain a major field of study and research. 

This book intends to show the reader how remote sensing impacts other areas of 
science, technology, and human activity, by displaying a selected number of high 
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Narrowband Vegetation Indices for  
Estimating Boreal Forest Leaf Area Index 

Ellen Eigemeier, Janne Heiskanen, Miina Rautiainen, Matti Mõttus,  
Veli-Heikki Vesanto, Titta Ma jasalmi and Pauline Stenberg 

University of Helsinki 
Finland 

1. Introduction 

1.1 Leaf area index 

The green photosynthesizing leaf area of a canopy is an important characteristic of the status 
of the vegetation in terms of its health and pr oduction potential. At stand level, the amount 
of leaf area in a canopy is represented by a variable called the leaf area index (LAI), which is 
one of the key biophysical parameters in the global monitoring and mapping of vegetation 
by satellite remote sensing (Morisette et al., 2006). In this paper we adopt the, by now 
widely accepted, definition of LAI as the hemi-sur face or half of the total surface area of all 
leaves or needles in the vegetation canopy divided by the horizontal ground area below the 
canopy. The definition is in line with the original definition of LAI, formulated for flat and 
(assumedly) infinitely thin leaves (Watson, 1947), as the one-sided leaf area per unit ground 
area. For coniferous canopies, the question arose on how to define the “one-sided” area of 
non-flat needles. While projected needle area formerly often has been used erroneously as a 
synonym to one-sided flat leaf area, it is now commonly accepted that the hemi-surface 
needle area represents the logical counterpart to the one-sided area of flat leaves (e.g. Chen 
& Black, 1992; Stenberg, 2006).  

LAI controls many biological and physical pr ocesses, driving the exchange of matter and 
energy flow. Because LAI responds rapidly to di fferent stress factors and changes in climatic 
conditions, monitoring of LAI yields a dynamic indicator of forest status and health. The 
link between forest productivity and LAI, in turn, lies in that LAI is the main determinant of 
the fraction of incoming photosynthetically active radiation absorbed by the canopy 
(fAPAR). The absorbed photosynthetically active radiation (APAR) quantifies the energy 
available for net primary production (NPP) and is thus a critical variable in NPP and carbon 
flux models. NPP is related to APAR by the light-use-efficiency originally introduced by 
Monteith (1977) for agricultural crops.  

Traditionally, ground-based measurements of LAI have typically involved destructive 
sampling and determination of allometric relationships, e.g. between leaf area and the basal 
area of stem and/or branches carrying the leaves (the pipe model theory) (Shinozaki et al., 
1964; Waring et al., 1982). However, such “direct methods” are quite laborious and indirect 
measurements of LAI using optical instrument s are today the preferred choice (Welles & 
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Cohen, 1996; Jonckheere et al., 2004). They provide inverse estimates of LAI based on the 
fraction of gaps through the canopy in diff erent directions, which can be measured using 
devices such as the LAI-2000 Plant Canopy Analyzer (LI-COR, 1992) or hemispherical 
photography. A vast body of classical literature exists on the dependency between LAI and 
canopy gap fraction underlying these techniques (e.g. Wilson, 1965; Miller, 1967; Nilson, 
1971; Lang, 1986). In short, the inversion methods rely upon the assumption that leaves are 
randomly distributed in the canopy, in which case Beer’s law can be applied to plant 
canopies (Monsi & Saeki, 1953). However, as the organization of leaves (needles) in forest 
canopies is typically more aggregated (“clumped”) than predicted by a purely random 
distribution, the technique causes underestimation of LAI, especially in coniferous stands 
(e.g. Smith et al., 1993; Stenberg et al., 1994). Instead of the true LAI, the inversion of gap 
fraction data without correction for clumping yields the quantity co mmonly referred to as 
the “effective leaf area index” (Black et al., 1991). 

Monitoring LAI in a spatially continuous mode and on a regular basis is possible only using 
remote sensing. Estimation of LAI from optical satellite images is considered feasible 
because LAI is closely linked to the spectral reflectance of plant canopies in the shortwave 
solar radiation range (Myneni et al., 1997). The physical relationships between canopy 
spectral reflectances and LAI form the basis of retrieval algorithms used in current Earth 
observation programs (e.g. MODIS, CYCLOPES, GLOBCARBON products) for mapping 
LAI at global scales. They produce bi-weekly and monthly vegetation maps that are widely 
used by biologists, natural resources managers, and climate modelers, e.g. to track seasonal 
fluctuations in vegetation or changes in land use. The arrival of narrowband reflectance data 
(also known as hyperspectral or imaging spectroscopy data) opens up new possibilities for 
satellite-derived estimation/monitoring of variab les connected to the status and structure of 
vegetation, including LAI. 

1.2 Spectral properties of boreal forests 

The boreal forest zone, which spreads through Fennoscandia, Russia, Canada and Alaska, is 
the largest unbroken forest zone in the world and accounts for approximately one fourth of 
the world’s forests. The boreal zone is a major store of carbon and thus plays an important 
role in determining global albedo and climate.  

The reflectance spectra of coniferous forests (even if they have the same leaf area) are very 
distinct from similar broadleaved forests. The reasons for the special spectral behaviour of 
coniferous forests are versatile, yet primarily related to their structural, not optical, 
properties. Firstly, a high level of within-sh oot scattering of conifers was originally noted 
nearly four decades ago (Norman & Jarvis, 1975). More recently, Landsat ETM+ data and a 
forest reflectance model were used to show that the low near infrared (NIR) reflectances 
observed in coniferous areas can largely be explained simply by within-shoot scattering 
(Rautiainen & Stenberg, 2005). Secondly, absorption by coniferous needles is higher than 
that by broadleaved species (Roberts et al., 2004; Williams, 1991), a phenomenon which can 
partly contribute to the lower reflectances of  conifer-dominated areas. Other explanations 
include, for example, that the tree crown surface of coniferous stands is more heterogeneous 
than in broadleaved stands (Häme, 1991; Schull et al., 2011). In other words, when surface 
roughness (i.e. crown-level clumping) increa ses, the shaded area within the canopy 
increases, thus leading to lower reflectances. Overall, these results highlight the importance 
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of various geometric properties as the main reason for the reflectance differences between 
broadleaved and coniferous stands.  

Remote sensing of the biophysical properties, such as LAI, of a boreal coniferous forest 
canopy layer is further complicated by the ofte n dominating role of the understory in the 
spectral signal (Rautiainen et al., 2011; Rautiainen et al., 2007; Eriksson et al., 2006; Eklundh 
et al., 2001; Chen & Cihlar, 1996; Spanner et al,. 1990). Coniferous forests that are regularly 
treated according to forest management practices tend to have relatively clumped and open 
canopies. Thus, the role of the understory vegetation in forming boreal forest reflectance 
cannot be neglected (Pisek et al., 2011). 

1.3 Vegetation indices in LAI estimation 

Canopy biophysical variables, such as LAI, can be estimated from remotely sensed data by 
two types of algorithms: empirical models and methods that use physically-based radiative 
transfer (RT) models. In empirical algorith ms, the estimation is based on statistical 
relationships modelled between concurrent gr ound reference measurements and surface 
reflectance data. These relationships are typically expressed in the form of vegetation 
indices (VI). VIs include various combinations of spectral bands designed to maximize the 
sensitivity to vegetation characteristics while minimizing it to atmospheric conditions, 
background, view and solar angles (Baret & Guyot, 1991; Myneni et al., 1995). Operational 
LAI algorithms at global-scale typically make use of RT models, but the empirical models 
usually outperform them in more localized applications. 

The design of a VI that is optimally correlated with a particular vegetation property requires 
good physical understanding of the factors a ffecting the spectral signal reflected from 
vegetation. The sensitivity of a VI to a vegetation characteristic is typically maximized by 
including bands with high sensitivity (e.g. hi gh absorption) to the monitored entity and 
bands mostly unaffected by the same entity. The simplest forms of VIs are simple 
differences (RB1–RB2), ratios (RB1/R B2) and normalized differences [(RB1-RB2)/(R B1+RB2)] of 
the reflectances of two spectral bands (RB1, RB2). (In Table 2 we give examples of common 
VIs used in this study.) The most apparent characteristic of the green vegetation spectrum is 
the pronounced difference between the red and NIR reflectances, the so called red-edge 
around 700 nm. For example, the normalized difference vegetation index (NDVI) utilizes 
this difference and has been shown to correlate with many interrelated vegetation attributes, 
such as chlorophyll content, LAI, frac tional cover, fAPAR and productivity. 

The most commonly used VIs were designed for broadband sensors (one spectral band 
spans about 50 nm or more) having red and NIR bands, such as NOAA AVHRR and 
Landsat MSS (e.g. Tucker, 1979). However, the basic VIs in red and NIR spectral range 
suffer from three well-known problems in LAI es timation: (1) they are not sensitive to LAI 
over its natural range but tend to saturate already at moderate levels of LAI, (2) they are 
sensitive to canopy background variability, an d (3) the VI-LAI relationships are dependent 
on the vegetation type. These VIs are also sensitive to atmospheric noise and correction. 

The saturation of NDVI occurs typically at LAI levels of 2 to 6 depending on the vegetation 
type and environmental conditions (e.g. Sellers, 1985; Myneni et al., 1997). In general, NDVI 
saturates as the fractional cover of vegetation approaches one, although LAI still increases 
(e.g. Carlson & Ripley, 1998). Over conifer-dominated boreal forests, NDVI varies typically 
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such as chlorophyll content, LAI, frac tional cover, fAPAR and productivity. 

The most commonly used VIs were designed for broadband sensors (one spectral band 
spans about 50 nm or more) having red and NIR bands, such as NOAA AVHRR and 
Landsat MSS (e.g. Tucker, 1979). However, the basic VIs in red and NIR spectral range 
suffer from three well-known problems in LAI es timation: (1) they are not sensitive to LAI 
over its natural range but tend to saturate already at moderate levels of LAI, (2) they are 
sensitive to canopy background variability, an d (3) the VI-LAI relationships are dependent 
on the vegetation type. These VIs are also sensitive to atmospheric noise and correction. 

The saturation of NDVI occurs typically at LAI levels of 2 to 6 depending on the vegetation 
type and environmental conditions (e.g. Sellers, 1985; Myneni et al., 1997). In general, NDVI 
saturates as the fractional cover of vegetation approaches one, although LAI still increases 
(e.g. Carlson & Ripley, 1998). Over conifer-dominated boreal forests, NDVI varies typically 
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in a narrow range and shows poor relationsh ips with canopy LAI (Chen & Cihlar, 1996; 
Stenberg et al., 2004). The reason for this is the green understory, which results in a non-
contrasting background in the visible part of  the spectrum (Nilson & Peterson, 1994; Myneni 
et al., 1997). 

Many modifications of basic VIs have been suggested to give better sensitivity to LAI. 
Typical modifications use other visible bands than red (e.g. the green vegetation index, 
GNDVI, Gitelson et al., 1996), try to reduce soil effects based on the soil line concept (e.g. the 
soil adjusted vegetation index, SAVI, Huete, 1988), or include short wave infrared (SWIR) 
bands. Many modifications also attempt to reduce atmospheric effects (e.g. the enhanced 
vegetation index, EVI, Huete et al., 2002). The soil line is based on the observation that soil 
reflectances fall in a line in the red-NIR spectral space (e.g. Huete, 1988). Many VIs utilize 
the parameterized soil line in their calculation, but these VIs have not been successful in 
boreal forests as bare soil is rarely visible (e.g. Chen, 1996). 

The sensitivity of shortwave infrared (SWIR) re flectance to forest biophysical variables has 
been recognized for a long time (e.g. Butera, 1986; Horler & Ahern, 1986) and several VIs 
utilizing the SWIR band have been designed. Rock et al. (1986) showed that the moisture 
stress index (MSI), i.e. the ratio of SWIR reflectance to NIR reflectance, was an indicator of 
forest damage. Later, the ratio has commonly been referred to as the infrared simple ratio 
(ISR, Chen et al., 2002; Fernandes et al., 2003). The SWIR reflectance has also been used for 
adjusting NDVI (Nemani et al., 1993) and SR (Brown et al., 2000). The reduced simple ratio 
(RSR) has been used specifically for estimating LAI (Brown et al., 2000; Stenberg et al., 2004) 
and has been employed also in regional and global-scale operational algorithms (Chen et al., 
2002; Deng et al., 2006). RSR seems to reduce the sensitivity to the type and amount of 
understory vegetation, because background reflectance varies less in SWIR than in visible 
and NIR (Brown et al., 2000; Chen et al., 2002). RSR has also some capability to unify 
coniferous and broadleaved forest types, which reduces the need for land cover type specific 
LAI algorithms. However, in comparison to ISR, the use of red band makes RSR sensitive to 
atmospheric effects (Fernandes et al., 2003). However, although inclusion of SWIR 
reflectance increases the sensitivity of VIs to LAI, these indices also have a tendency to 
saturate at high levels of LAI (e.g. Brown et al., 2000; Heiskanen et al., 2011). 

Imaging spectroscopy provides  much narrower spectral bands than typical multispectral 
sensors. Due to the more detailed sampling of the vegetation spectra, such data can detect 
specific absorption features of vegetation and therefore improve the estimation of vegetation 
biochemical properties. For example, the SPOT 5 HRG sensors capture a spectral range from 
500 nm to 1750 nm with four broad bands, in comparison to Hyperion’s 242 (10 nm wide) 
bands between 400 nm and 2500 nm. At the canopy scale, the contents of biochemical 
components and LAI are highly inter-relate d (e.g. Asner, 1998; Roberts et al., 2004). 
Therefore, imaging spectroscopy could potentially improve LAI estimates. Furthermore, 
there is potentially complementary informat ion outside the typical spectral bands of 
broadband sensors. 

One way to utilize imaging spectroscopy data is to calculate narrow-band VIs in a similar 
fashion as for broadband data but using narrower bands. The aim is to improve the 
sensitivity of the VI to a specific vegetation biochemical property. For example, Ustin et al. 
(2009) give a comprehensive review on VIs used as indicators of plant pigments 
(chlorophyll, carotenoids and anthocyanin). The methods of estimating the non-pigment 
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biochemical composition of vegetation (water, nitrogen, cellulose and lignin), on the other 
hand, are reviewed by Kokaly et al. (2009). Many of the developed indices have been 
designed to work at leaf level and do not necessarily upscale to canopy level, because of the 
high sensitivity to canopy structure, background, solar and view geometry. Another 
approach is to find iteratively the simple combinations of bands that give the best 
correlation with empirical data (e.g. Muta nga & Skidmore, 2004; Schlerf et al., 2005). 

Most chlorophyll indices exploit the information in the red edge around 700 nm (Ustin et al., 
2009). Imaging spectroscopy data also enables the estimation of the red edge position (REP), 
which is particularly sensitive to changes in  chlorophyll content (e.g. Dawson & Curran, 
1998). Water indices, on the other hand, utilize the water absorbing regions in the SWIR 
region of the spectrum (e.g. Gao, 1996; Zarco-Tejada et al., 2003). Those indices seem 
particularly interesting for LAI estimation cons idering the importance of the SWIR spectral 
region in estimating LAI using broadband indices. 

There is growing evidence that imaging spectroscopy data can improve LAI estimates in 
comparison to broadband data by reducing the saturation effects. Depending on the 
vegetation type and range of LAI, different ty pes of VIs have been found useful. However, 
the red edge indices have been most effective in estimating LAI of crops (Wu et al., 2010), 
grasslands (Mutanga & Skidmore, 2004) and thicket shrubs (Brantley et al., 2011). On the 
other hand, indices based on NIR and SWIR bands have been successful in broadleaved (le 
Maire et al., 2008) and coniferous forests (Gong et al., 2003; Schlerf et al., 2005; Pu et al., 
2008). The importance of the SWIR spectral region in estimating boreal forest LAI has also 
been emphasized by multivar iate regression analysis (e.g. Lee et al., 2004). However, 
broadband sensors can also have advantages over narrowband sensors in LAI estimation, 
for example, by being less sensitive to noise due to the sensor, atmosphere and background 
(e.g. Broge & Leblanc, 2000). Although there are case studies from different biomes, the 
performance of narrowband VIs has been poorly assessed over European boreal forests. 

2. Case study 

2.1 Aims 

The aim of the study is to establish the extent to which vegetation indices can be used to 
measure variation in LAI based on a test site in southern boreal forest in Finland. We 
explore different VIs in LAI estimation during full leaf development. We compare the 
performance of narrowband VIs to traditional broadband VIs. The objective is to identify 
VIs, which are least sensitive to species composition and, on the other hand, perform well in 
coniferous stands. 

2.2 Materials and methods 

2.2.1 Study area 

The study area, Hyytiälä, is located in the southern boreal zone in central Finland (61° 50'N, 
24°17'E) and has an annual mean temperature of 3°C and precipitation of 700 mm. 
Dominant tree species in the Hyytiälä forest area are Norway spruce (Picea abies (L.) Karst), 
Scots pine (Pinus sylvestris L.) and Silver birch (Betula pendula Roth). Understory vegetation, 
on the other hand, is composed of two layers: an upper understory layer (low dwarf shrubs 
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in a narrow range and shows poor relationsh ips with canopy LAI (Chen & Cihlar, 1996; 
Stenberg et al., 2004). The reason for this is the green understory, which results in a non-
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Typical modifications use other visible bands than red (e.g. the green vegetation index, 
GNDVI, Gitelson et al., 1996), try to reduce soil effects based on the soil line concept (e.g. the 
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vegetation index, EVI, Huete et al., 2002). The soil line is based on the observation that soil 
reflectances fall in a line in the red-NIR spectral space (e.g. Huete, 1988). Many VIs utilize 
the parameterized soil line in their calculation, but these VIs have not been successful in 
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been recognized for a long time (e.g. Butera, 1986; Horler & Ahern, 1986) and several VIs 
utilizing the SWIR band have been designed. Rock et al. (1986) showed that the moisture 
stress index (MSI), i.e. the ratio of SWIR reflectance to NIR reflectance, was an indicator of 
forest damage. Later, the ratio has commonly been referred to as the infrared simple ratio 
(ISR, Chen et al., 2002; Fernandes et al., 2003). The SWIR reflectance has also been used for 
adjusting NDVI (Nemani et al., 1993) and SR (Brown et al., 2000). The reduced simple ratio 
(RSR) has been used specifically for estimating LAI (Brown et al., 2000; Stenberg et al., 2004) 
and has been employed also in regional and global-scale operational algorithms (Chen et al., 
2002; Deng et al., 2006). RSR seems to reduce the sensitivity to the type and amount of 
understory vegetation, because background reflectance varies less in SWIR than in visible 
and NIR (Brown et al., 2000; Chen et al., 2002). RSR has also some capability to unify 
coniferous and broadleaved forest types, which reduces the need for land cover type specific 
LAI algorithms. However, in comparison to ISR, the use of red band makes RSR sensitive to 
atmospheric effects (Fernandes et al., 2003). However, although inclusion of SWIR 
reflectance increases the sensitivity of VIs to LAI, these indices also have a tendency to 
saturate at high levels of LAI (e.g. Brown et al., 2000; Heiskanen et al., 2011). 

Imaging spectroscopy provides  much narrower spectral bands than typical multispectral 
sensors. Due to the more detailed sampling of the vegetation spectra, such data can detect 
specific absorption features of vegetation and therefore improve the estimation of vegetation 
biochemical properties. For example, the SPOT 5 HRG sensors capture a spectral range from 
500 nm to 1750 nm with four broad bands, in comparison to Hyperion’s 242 (10 nm wide) 
bands between 400 nm and 2500 nm. At the canopy scale, the contents of biochemical 
components and LAI are highly inter-relate d (e.g. Asner, 1998; Roberts et al., 2004). 
Therefore, imaging spectroscopy could potentially improve LAI estimates. Furthermore, 
there is potentially complementary informat ion outside the typical spectral bands of 
broadband sensors. 

One way to utilize imaging spectroscopy data is to calculate narrow-band VIs in a similar 
fashion as for broadband data but using narrower bands. The aim is to improve the 
sensitivity of the VI to a specific vegetation biochemical property. For example, Ustin et al. 
(2009) give a comprehensive review on VIs used as indicators of plant pigments 
(chlorophyll, carotenoids and anthocyanin). The methods of estimating the non-pigment 
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biochemical composition of vegetation (water, nitrogen, cellulose and lignin), on the other 
hand, are reviewed by Kokaly et al. (2009). Many of the developed indices have been 
designed to work at leaf level and do not necessarily upscale to canopy level, because of the 
high sensitivity to canopy structure, background, solar and view geometry. Another 
approach is to find iteratively the simple combinations of bands that give the best 
correlation with empirical data (e.g. Muta nga & Skidmore, 2004; Schlerf et al., 2005). 

Most chlorophyll indices exploit the information in the red edge around 700 nm (Ustin et al., 
2009). Imaging spectroscopy data also enables the estimation of the red edge position (REP), 
which is particularly sensitive to changes in  chlorophyll content (e.g. Dawson & Curran, 
1998). Water indices, on the other hand, utilize the water absorbing regions in the SWIR 
region of the spectrum (e.g. Gao, 1996; Zarco-Tejada et al., 2003). Those indices seem 
particularly interesting for LAI estimation cons idering the importance of the SWIR spectral 
region in estimating LAI using broadband indices. 

There is growing evidence that imaging spectroscopy data can improve LAI estimates in 
comparison to broadband data by reducing the saturation effects. Depending on the 
vegetation type and range of LAI, different ty pes of VIs have been found useful. However, 
the red edge indices have been most effective in estimating LAI of crops (Wu et al., 2010), 
grasslands (Mutanga & Skidmore, 2004) and thicket shrubs (Brantley et al., 2011). On the 
other hand, indices based on NIR and SWIR bands have been successful in broadleaved (le 
Maire et al., 2008) and coniferous forests (Gong et al., 2003; Schlerf et al., 2005; Pu et al., 
2008). The importance of the SWIR spectral region in estimating boreal forest LAI has also 
been emphasized by multivar iate regression analysis (e.g. Lee et al., 2004). However, 
broadband sensors can also have advantages over narrowband sensors in LAI estimation, 
for example, by being less sensitive to noise due to the sensor, atmosphere and background 
(e.g. Broge & Leblanc, 2000). Although there are case studies from different biomes, the 
performance of narrowband VIs has been poorly assessed over European boreal forests. 

2. Case study 

2.1 Aims 

The aim of the study is to establish the extent to which vegetation indices can be used to 
measure variation in LAI based on a test site in southern boreal forest in Finland. We 
explore different VIs in LAI estimation during full leaf development. We compare the 
performance of narrowband VIs to traditional broadband VIs. The objective is to identify 
VIs, which are least sensitive to species composition and, on the other hand, perform well in 
coniferous stands. 

2.2 Materials and methods 

2.2.1 Study area 

The study area, Hyytiälä, is located in the southern boreal zone in central Finland (61° 50'N, 
24°17'E) and has an annual mean temperature of 3°C and precipitation of 700 mm. 
Dominant tree species in the Hyytiälä forest area are Norway spruce (Picea abies (L.) Karst), 
Scots pine (Pinus sylvestris L.) and Silver birch (Betula pendula Roth). Understory vegetation, 
on the other hand, is composed of two layers: an upper understory layer (low dwarf shrubs 
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or seedlings, graminoids, herbaceous species) and a ground layer (mosses, lichens). The 
growing season typically begins in early May and senescence in late August. We measured 
twenty stands from the Hyytiälä forest area  in July 2010 (see Section 2.2.2, Table 1). The 
stands represented different species compositions that are typical to the southern boreal 
forest zone in Finland.  
 

Site Vegetation Site type Tree height , 
m 

Basal area, 
m2/ha 

LAI 

A4 Pine mesic 15.8 20.4 1.77 

A5 pine, understory broadleaf mesic 18.6 24.3 2.67 

B2 spruce, understory birch mesic 7.5 10 2.64 

D3 pine, understory spruce & birch sub-xeric 17.8 20.5 2.37 

D4 spruce, 25% birch mesic 16.5 27.5 3.72 

E1 birch, spruce understory mesic 19.1 10.7 2.58 

E5 50% spruce, 50% birch mesic 23.1 27.2 4.12 

E6 50% spruce, 40% birch, 10% pine mesic 10.2 22.2 3.34 

E7 Spruce mesic 13.3 31.7 3.91 

F1 birch, spruce understory mesic 13.8 20.9 3.37 

G4 spruce, 15% birch, 10% pine herb-rich 15.5 29.1 4.57 

H3 Birch herb-rich 14.9 10.7 2.63 

H5 Birch herb-rich 14.1 20.6 2.77 

I4 
birch, understory  pine, spruce 
seedlings  

mesic 
2.4 4 2.61 

T Spruce mesic 24.6 56 3.43 

U16 Birch mesic 14 21 2.69 

U17 birch, 10% spruce herb-rich 11.7 27 3.35 

U18 65% pine, 25% spruce, 10% birch sub-xeric 16.5 26 3.45 

U26 20% pine, 70% spruce, 10% birch mesic 16.8 24.9 2.43 

U27 5% pine, 90% spruce, 5% birch mesic 15.2 20.9 2.63 

[pine = Scots pine, spruce = Norway spruce, birch = Silver birch] 

Table 1. Study stands.  

2.2.2 Ground reference measurements 

The LAI-2000 Plant Canopy Analyzer (PCA) is one of the most commonly used optical 
devices to measure LAI. The PCA’s optical sensor includes five concentric rings of different 
zenith angles (�É) (together covering almost a full hemisphere), which measure diffuse sky 
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radiation between 320-490 nm (LI-COR, 1992). Measurements by the PCA performed below 
and above the canopy yield canopy transmittances, T(�É), for each ring. Finally, LAI is 
calculated by numerical approximat ion of the integral (Miller, 1967): 

 LAI T d
/2

0

2 ln[ ( )]cos sin
�S

�T � T � T � T� �� �³  (1) 

There are four fundamental assumptions behind the LAI calculation method: 1. leaves 
(needles) are optically black in the measured wavelengths (implying that canopy 
transmittance closely corresponds to canopy gap fraction), 2. leaves (needles) are randomly 
distributed inside the canopy volume, 3. leaves (needles) are small compared to the area of 
view of the PCA’s rings, and 4. leaves (needles) are azimuthally randomly oriented. The LAI 
estimate produced by Eq. 1 is commonly called effective LAI as the foliage elements are not 
randomly organized but typically clumped (or gr ouped) together, which causes the estimate 
produced by the PCA to be smaller than the “t rue” LAI (Chen et al., 1991; Deblonde et al., 
1994).  

The LAI measurements can be done either with one or two PCA instruments. One PCA is 
used for small plants such as crops, but for taller plants (e.g. trees), two units are necessary. 
When only one instrument is used, the measurement is at first taken below and then above 
the canopy. If two instruments are used, one instrument remains above the canopy and the 
other one below the canopy. The use of two instruments is preferable since data are logged 
nearly simultaneously with both sensors. Th e LAI estimate is calculated by combining 
below and above canopy data. The measurements should be conducted under diffuse light 
conditions; for example, when the sky has a full cloud cover or the sun angle is low (less 
than 16 degrees). The radius of the sample plot should be at least three times the dominant 
tree height as the PCA instrument has a relatively large opening angle. 

In this study, the ground reference LAI (Tab le 1) was acquired by operating two LAI-2000 
PCA instruments simultaneously. The inst ruments were intercalibrated before 
measurements were performed. The reference sensor was located above the forest canopy 
and set at a 15-second logging interval, while the other sensor was used inside the forest. 
The sampling scheme was a ‘VALERI-cross’ (Validation of Land European Remote Sensing 
Instruments, VALERI) which consists of two perpendicular 6-point transects. The distance 
between two measurement points was four meters, so that the sampling scheme 
corresponded roughly to a 20 m x 20 m plot. Measurement height was kept constant at 0.7 
meters. 

2.2.3 Satellite data 

In this study, we used narrowband spectral data obtained from a Hyperion satellite image. 
Hyperion is a narrowband imaging spectromet er aboard the National Aeronautics and 
Space Administration (NASA) Earth Observer-1  (EO-1) satellite launched in 2000. Hyperion 
captures data in the ‘pushbroom’ manner in 7.7 km wide strips using 242 spectral bands. 
The spectral range of Hyperion is 356-2577 nm with each band covering a nominal spectral 
range of 10 nm. Each pixel in a Hyperion image corresponds to an area of 30 m x 30 m on 
the ground. During an acquisition, a scene wi th a length of either 42 km or 185 km is 
recorded. Hyperion is in a re petitive, circular, sun-synchron ous, near-polar orbit at an 
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or seedlings, graminoids, herbaceous species) and a ground layer (mosses, lichens). The 
growing season typically begins in early May and senescence in late August. We measured 
twenty stands from the Hyytiälä forest area  in July 2010 (see Section 2.2.2, Table 1). The 
stands represented different species compositions that are typical to the southern boreal 
forest zone in Finland.  
 

Site Vegetation Site type Tree height , 
m 

Basal area, 
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A5 pine, understory broadleaf mesic 18.6 24.3 2.67 

B2 spruce, understory birch mesic 7.5 10 2.64 

D3 pine, understory spruce & birch sub-xeric 17.8 20.5 2.37 

D4 spruce, 25% birch mesic 16.5 27.5 3.72 
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E5 50% spruce, 50% birch mesic 23.1 27.2 4.12 

E6 50% spruce, 40% birch, 10% pine mesic 10.2 22.2 3.34 

E7 Spruce mesic 13.3 31.7 3.91 
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G4 spruce, 15% birch, 10% pine herb-rich 15.5 29.1 4.57 

H3 Birch herb-rich 14.9 10.7 2.63 

H5 Birch herb-rich 14.1 20.6 2.77 

I4 
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seedlings  

mesic 
2.4 4 2.61 

T Spruce mesic 24.6 56 3.43 

U16 Birch mesic 14 21 2.69 

U17 birch, 10% spruce herb-rich 11.7 27 3.35 

U18 65% pine, 25% spruce, 10% birch sub-xeric 16.5 26 3.45 

U26 20% pine, 70% spruce, 10% birch mesic 16.8 24.9 2.43 

U27 5% pine, 90% spruce, 5% birch mesic 15.2 20.9 2.63 

[pine = Scots pine, spruce = Norway spruce, birch = Silver birch] 

Table 1. Study stands.  

2.2.2 Ground reference measurements 

The LAI-2000 Plant Canopy Analyzer (PCA) is one of the most commonly used optical 
devices to measure LAI. The PCA’s optical sensor includes five concentric rings of different 
zenith angles (�É) (together covering almost a full hemisphere), which measure diffuse sky 
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radiation between 320-490 nm (LI-COR, 1992). Measurements by the PCA performed below 
and above the canopy yield canopy transmittances, T(�É), for each ring. Finally, LAI is 
calculated by numerical approximat ion of the integral (Miller, 1967): 
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There are four fundamental assumptions behind the LAI calculation method: 1. leaves 
(needles) are optically black in the measured wavelengths (implying that canopy 
transmittance closely corresponds to canopy gap fraction), 2. leaves (needles) are randomly 
distributed inside the canopy volume, 3. leaves (needles) are small compared to the area of 
view of the PCA’s rings, and 4. leaves (needles) are azimuthally randomly oriented. The LAI 
estimate produced by Eq. 1 is commonly called effective LAI as the foliage elements are not 
randomly organized but typically clumped (or gr ouped) together, which causes the estimate 
produced by the PCA to be smaller than the “t rue” LAI (Chen et al., 1991; Deblonde et al., 
1994).  

The LAI measurements can be done either with one or two PCA instruments. One PCA is 
used for small plants such as crops, but for taller plants (e.g. trees), two units are necessary. 
When only one instrument is used, the measurement is at first taken below and then above 
the canopy. If two instruments are used, one instrument remains above the canopy and the 
other one below the canopy. The use of two instruments is preferable since data are logged 
nearly simultaneously with both sensors. Th e LAI estimate is calculated by combining 
below and above canopy data. The measurements should be conducted under diffuse light 
conditions; for example, when the sky has a full cloud cover or the sun angle is low (less 
than 16 degrees). The radius of the sample plot should be at least three times the dominant 
tree height as the PCA instrument has a relatively large opening angle. 

In this study, the ground reference LAI (Tab le 1) was acquired by operating two LAI-2000 
PCA instruments simultaneously. The inst ruments were intercalibrated before 
measurements were performed. The reference sensor was located above the forest canopy 
and set at a 15-second logging interval, while the other sensor was used inside the forest. 
The sampling scheme was a ‘VALERI-cross’ (Validation of Land European Remote Sensing 
Instruments, VALERI) which consists of two perpendicular 6-point transects. The distance 
between two measurement points was four meters, so that the sampling scheme 
corresponded roughly to a 20 m x 20 m plot. Measurement height was kept constant at 0.7 
meters. 

2.2.3 Satellite data 

In this study, we used narrowband spectral data obtained from a Hyperion satellite image. 
Hyperion is a narrowband imaging spectromet er aboard the National Aeronautics and 
Space Administration (NASA) Earth Observer-1  (EO-1) satellite launched in 2000. Hyperion 
captures data in the ‘pushbroom’ manner in 7.7 km wide strips using 242 spectral bands. 
The spectral range of Hyperion is 356-2577 nm with each band covering a nominal spectral 
range of 10 nm. Each pixel in a Hyperion image corresponds to an area of 30 m x 30 m on 
the ground. During an acquisition, a scene wi th a length of either 42 km or 185 km is 
recorded. Hyperion is in a re petitive, circular, sun-synchron ous, near-polar orbit at an 
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altitude of 705.3 km measured at the equator. Thus, it can image almost any point on Earth 
and it flies over all locations at approximatel y the same local time. The nominal revisit time 
is 16 days, but due to the possibility of tilting the sensor, the potential revisit frequency is 
higher. The scene used in this study was captured on 03 July 2010, and was provided 
courtesy of the U.S. Geological Survey (USGS) Earth Explorer service. 

Out of the potential 242 spectral bands, several lack illumination (due to the absorption in 
the atmosphere or a decrease of incident solar spectral irradiance in the longer infrared 
wavelengths) or have a very low spectral response. This leaves the user with 198 usable 
spectral bands: bands 8-57 in the visible and NIR (wavelengths 436-926 nm) and bands 77-
224 in SWIR (wavelengths 933-2406 nm) (Pearlman et al., 2003). Hyperion images have 
several known deficiencies which can be corrected using algorithms given in scientific 
literature. Firstly, Hyperion suffers from systematic striping in along-track direction of the 
image. The stripes are characteristic to all pushbroom sensors. Instruments belonging to 
this broad class have a different receiving element for each image line. Hyperion has thus 
256 radiation-sensitive elements for each spectral band, each seeing a separate 30 m strip 
of the ground, thus producing the 7.7 km wide image. The striping can be broadly 
divided into two classes, completely missing lines (due to non-functioning receiving 
elements) and actual stripes (arising from slightly different sensitivities of the 256 
receivers). We removed the actual striping using Spectral Moment Matching (SpecMM), 
outlined by Sun et al. (2008), which uses the average and standard deviation statistics 
between highly correlated bands to remove stripes. Next, the missing lines containing no 
information were identified and corrected using the values from spatially adjacent pixels 
using local destriping (Goodenough et al., 2003). The results of the destriping can be seen 
in Figure 1.  

  
Fig. 1. Hyperion band 8 (436nm) uncorrected image (left), and corrected using Spectral 
Moment Matching and local destriping (right). 

The second known defect in Hyperion imagery is  a shift in the wavelength of each column 
in the across track direction from the band central wavelength. This shift, known as spectral 
smile, is also characteristic to pushbroom sensors and is a result of different optical paths 
leading to the different receiving elements. Th e shift is a function of wavelength and the 
position of the receiving element in the receiving array. As is the case for most instruments, 
the “smile” manifests itself in Hyperion imager y as a “frown”, with the wavelengths of the 
columns near the edges of each band shifting negatively from the bands average wavelength 
(Figure 2). The smile was corrected using the pre-launch laboratory measured spectral shift 
(Barry, 2001). We used interpolation to bring each individual pixel to a common central 
wavelength based on the pre-launch calibration measurements. 
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Fig. 2. Laboratory measured spectral shift of Hyperion (Barry, 2001).  

The signal received by the Hyperion instrume nt consists of the photons scattered by the 
atmosphere as well as the ground surface. To study surface reflectance, the influence of the 
atmosphere needs to be eliminated in a process commonly known as atmospheric 
correction. We performed this correction usin g an algorithm known as Fast Line-of-sight 
Atmospheric Analysis of Spectral Hypercubes (FLAASH, Matthew et al, 2000). FLAASH is 
an absolute atmospheric correction that incorporates the MODTRAN4 radiation transfer 
code to model the scattering and transmission properties of the atmosphere at the time of 
image capture (San & Suzen, 2010). The FLAASH algorithm is incorporated into the ITT 
Visual Information Solutions (ITT VIS) ENVI software. For processing, FLAASH requires an 
input value for visibility to estimate atmospheric aerosol levels, in addition to basic 
geographic and temporal details about the scene. The visibility can be recalculated by 
FLAASH, using a ratio between dark pixels  at 600 nm and 2100 nm. However, a more 
accurate estimate of visibility was achieved using ground based optical measurements from 
a weather station in the area. 

The final processing stage is to resample the image pixels into a geographic coordinate 
system, known as geocorrection. This was done using a polynomial transformation to a 
vector base map from the National Land Survey of Finland. The Hyytiälä area contains 
numerous roads, providing a large number of easily identifiable potential ground control 
points (GCPs) at intersections. Around 20 GCPs were selected, with a root mean square 
error of 0.4 pixels being achieved. Bilinear interpolation was chosen for resampling the 
image pixels due to the better geometric accuracy over nearest neighbour. 

The final product is a geocorrected image of the surface hemispherical-directional 
reflectance factors (HDRF) of the Hyytiälä area. To validate the atmospheric correction, we 
compared the HDRF to a field measured reflectance factor. A soccer field of about 130 m by 
60 m in the area was sampled during the summer of 2010 every two to three weeks using an 
ASD handheld portable spectroradiometer covering a spectral range from 325-1075 nm. The 
sampling was done using a transect approach with 42 measurements at around 1 meter 
intervals. The final hemispherica l-conical reflectance factor (HCRF) used for the comparison 
is an average of the transect representing the average for the whole field. While no ground 
measurements fell on the exact date of the Hyperion image, the ground measured spectra 
was interpolated to dates between two measurements. After interpolation the ground 
measured HCRF was binned into corresponding Hyperion bands using the spectral 
response of each band. 
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Fig. 1. Hyperion band 8 (436nm) uncorrected image (left), and corrected using Spectral 
Moment Matching and local destriping (right). 

The second known defect in Hyperion imagery is  a shift in the wavelength of each column 
in the across track direction from the band central wavelength. This shift, known as spectral 
smile, is also characteristic to pushbroom sensors and is a result of different optical paths 
leading to the different receiving elements. Th e shift is a function of wavelength and the 
position of the receiving element in the receiving array. As is the case for most instruments, 
the “smile” manifests itself in Hyperion imager y as a “frown”, with the wavelengths of the 
columns near the edges of each band shifting negatively from the bands average wavelength 
(Figure 2). The smile was corrected using the pre-launch laboratory measured spectral shift 
(Barry, 2001). We used interpolation to bring each individual pixel to a common central 
wavelength based on the pre-launch calibration measurements. 

 
Narrowband Vegetation Indices for Estimating Boreal Forest Leaf Area Index 

 

11 

 
Fig. 2. Laboratory measured spectral shift of Hyperion (Barry, 2001).  

The signal received by the Hyperion instrume nt consists of the photons scattered by the 
atmosphere as well as the ground surface. To study surface reflectance, the influence of the 
atmosphere needs to be eliminated in a process commonly known as atmospheric 
correction. We performed this correction usin g an algorithm known as Fast Line-of-sight 
Atmospheric Analysis of Spectral Hypercubes (FLAASH, Matthew et al, 2000). FLAASH is 
an absolute atmospheric correction that incorporates the MODTRAN4 radiation transfer 
code to model the scattering and transmission properties of the atmosphere at the time of 
image capture (San & Suzen, 2010). The FLAASH algorithm is incorporated into the ITT 
Visual Information Solutions (ITT VIS) ENVI software. For processing, FLAASH requires an 
input value for visibility to estimate atmospheric aerosol levels, in addition to basic 
geographic and temporal details about the scene. The visibility can be recalculated by 
FLAASH, using a ratio between dark pixels  at 600 nm and 2100 nm. However, a more 
accurate estimate of visibility was achieved using ground based optical measurements from 
a weather station in the area. 

The final processing stage is to resample the image pixels into a geographic coordinate 
system, known as geocorrection. This was done using a polynomial transformation to a 
vector base map from the National Land Survey of Finland. The Hyytiälä area contains 
numerous roads, providing a large number of easily identifiable potential ground control 
points (GCPs) at intersections. Around 20 GCPs were selected, with a root mean square 
error of 0.4 pixels being achieved. Bilinear interpolation was chosen for resampling the 
image pixels due to the better geometric accuracy over nearest neighbour. 

The final product is a geocorrected image of the surface hemispherical-directional 
reflectance factors (HDRF) of the Hyytiälä area. To validate the atmospheric correction, we 
compared the HDRF to a field measured reflectance factor. A soccer field of about 130 m by 
60 m in the area was sampled during the summer of 2010 every two to three weeks using an 
ASD handheld portable spectroradiometer covering a spectral range from 325-1075 nm. The 
sampling was done using a transect approach with 42 measurements at around 1 meter 
intervals. The final hemispherica l-conical reflectance factor (HCRF) used for the comparison 
is an average of the transect representing the average for the whole field. While no ground 
measurements fell on the exact date of the Hyperion image, the ground measured spectra 
was interpolated to dates between two measurements. After interpolation the ground 
measured HCRF was binned into corresponding Hyperion bands using the spectral 
response of each band. 



 
Remote Sensing – Applications 

 

12

 
Fig. 3. Comparison of a soccer field’s spectral reflectance factors from in situ radiometric 
measurements and corrected Hyperion data. 

Overall, there is a very good correlation between the field measured reflectance and the 
fully processed Hyperion reflectance (Fig. 3). An overall RMSE of 1.8% is achieved, which 
gives us confidence in the validity of the pre-processing and atmospheric correction. 
However, as the in situ spectrum is considerably smoother than the one measured from the 
satellite, a considerable amount of noise is also present in the satellite-derived HDRF.  

2.2.4 Vegetation indices an d statistical analysis 

First, we studied how HDRFs in single bands are correlated with LAI. Next, in order to 
evaluate narrow-band VIs for estimating LAI,  we did regression analyses between various 
VIs and LAI. We used two approaches to select narrowband indices: 1) We made a literature 
survey for narrow-band VIs that have been designed to estimate foliage biochemical 
components. (A collection of VIs showing the hi ghest R² with LAI are shown in Table 2.) 2) 
We calculated all the possible Ratio Indices (RI) and Normalized Difference Indices (NDI) of 
Hyperion bands and correlated them with LAI.  In other words, the first approach also 
contains VIs combining several bands and the second approach aims to identify the simple 
two-band VIs that best correlate with LAI.  

To facilitate the comparison of narrowband VIs with broadband indices, we calculated 
synthetic HDRFs based on Landsat 7 ETM+ bands. The HDRFs were calculated according to 
Jupp et al. (2002) using the ETM+ spectral sensitivity functions, and Hyperion’s central 
wavelengths and bandwidths. Four broadband in dices were calculated for comparison, SR, 
NDVI, ISR and RSR (Table 2). All these indices have been used for LAI estimation in various 
biomes. SR and NDVI were included for reference, and ISR and RSR because they have 
shown best performance over conifer-dominated boreal forests (see 1.3). 

We analyzed the data both by grouping all the sample plots together and separately for 
coniferous plots (> 75% of the trees were Scots pines or Norway spruces). In the birch-
dominated stands, the variation in LAI was too small for reliable regression analysis.  

We studied only linear relationships. The stre ngth of the relationship was assessed by the 
coefficient of determination (R 2) and the root mean square error (RMSE). 
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Abbr. Index Formula Reference Bands 
applied 

Indices concentrating on the red-edge 

SR Simple Ratio SR = RETM+4/R ETM+3 
Rouse et al. (1974), 
Birth & McVey 
(1968) 

ETM+3, 
ETM+4 

NDVI 
Normalized Difference 
Vegetation Index 

NDVI = (R ETM+4-
RETM+3)/(R ETM+4+RETM+3)

Rouse et al. (1974) 
ETM+3, 
ETM+4 

REP Red Edge Position 
REP = 700+ (((R773 +1,5 
*R662) - R692) / (R 733-R692)) 
*(740-700) 

Danson & Plummer 
(1995) 

773, 662, 
692, 733 

Indices concentrating on pigment content 

PSSRa 
Pigment-Specific 
Simple Ratio – chla 

PSSRa = R803/R 681 Blackburn (1998) 681, 803 

Water sensitive indices 

MSI = 
ISR 

Moisture Stress Index 
= Infrared Simple Ratio

ISR = RETM+5/R ETM+4 
Rock et al. (1986), 
Fernandes et al. 
(2002) 

ETM+4, 
ETM+5 

RSR  Reduced Simple Ratio 

RSR = (RETM+4/R ETM+3) * 
((RETM+5_min – RETM+5) 
/(R ETM+5_max – 
RETM+5_min)) 

Brown et al. (2000) 
ETM+3, 
ETM+4, 
ETM+5 

Table 2. Vegetation indices investigated in this study. The symbol R refers to the HDRF. 
Subscripts refer to the applied ETM+ band or the central wavelength (in nm) of the 
Hyperion band 

2.3 Results 

2.3.1 General characteristics of forest spectra 

Two examples of forest reflectance factors (HDRFs) are presented in Figure 4. To allow 
relating the vegetation spectra to satellite signals, the sensitivity functions of the 
corresponding ETM+ bands are shown. Note the correspondence of ETM+2 with the green 
peak, ETM+3 with the red local minimum and ETM+4 with the plateau in the NIR. The red-
edge slope (between ETM+ bands 3 and 4) is not covered by ETM+ bands. ETM+5 and 
ETM+7 catch the signal in the shortwave infrared region (SWIR-1 (here: 1470-1800 nm) and 
SWIR-2 (here: 2030-2360 nm) respectively), avoiding the two strong water absorption bands 
in-between. 

The average reflectance of coniferous stands is slightly lower in the green region and 
decidedly lower in the NIR than the reflectanc e of birch stands. In SWIR-1 (covered by 
ETM+5) the reflectances become more comparable, and in SWIR-2 (covered by ETM+7) the 
signals almost meet. 
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Fig. 3. Comparison of a soccer field’s spectral reflectance factors from in situ radiometric 
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relating the vegetation spectra to satellite signals, the sensitivity functions of the 
corresponding ETM+ bands are shown. Note the correspondence of ETM+2 with the green 
peak, ETM+3 with the red local minimum and ETM+4 with the plateau in the NIR. The red-
edge slope (between ETM+ bands 3 and 4) is not covered by ETM+ bands. ETM+5 and 
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SWIR-2 (here: 2030-2360 nm) respectively), avoiding the two strong water absorption bands 
in-between. 

The average reflectance of coniferous stands is slightly lower in the green region and 
decidedly lower in the NIR than the reflectanc e of birch stands. In SWIR-1 (covered by 
ETM+5) the reflectances become more comparable, and in SWIR-2 (covered by ETM+7) the 
signals almost meet. 
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Fig. 4. Average conifer and birch-dominated stand spectra. The grey lines show the spectral 
sensitivity of the ETM+ bands. 

2.3.2 Regression analysis for single bands 

The different average HDRF for the two forest ty pes (Fig. 4) results in different correlations 
of the satellite bands to LAI (Fig. 5).  

 
Fig. 5. Correlation coefficient of LAI with ET M+ and Hyperion spectral bands for all sample 
stands, and separately for conifer sample stands.  

The correlation coefficients for all stands varied between -0.6 and -0.038. All correlations 
were negative, except for the two Hyperion bands centred at 2345 nm and 2355 nm. Two 
important regions (green and NIR) had almost no  correlation with LAI. Only the absorption 
peak of chlorophyll produced a strong negati ve correlation at 681nm. The SWIR correlations 
were also mostly negative. 

For conifer stands, correlation coefficients varied between -0.7 and 0.6. The first peak was at 
549 nm, in the middle of the green band, followed by a strong negative correlation in the red 
with a peak at 681 nm. In the NIR a strong positive correlation was observed again. A slight 
shoulder began at 712 nm, with a plateau at 752 nm. In the SWIR, correlation coefficients 
were very close to those of all stands. 

Fig. 5 also shows the correlation of the ETM+ bands to LAI. The lower spectral resolution 
averages wider wavelength ranges and therefore shows less variation in correlation 
coefficients.  

 
Narrowband Vegetation Indices for Estimating Boreal Forest Leaf Area Index 

 

15 

2.3.3 Correlation of vegetation indices to LAI for all sample plots 

The best broadband index analysed here was the Infrared Simple Ratio (ISR, R2 = 0.56), 
followed by the Reduced Simple Ratio (RSR, R2 = 0.40) (Table 3). The best narrowband 
combinations (either RI or NDI) showed more potential with R 2s exceeding 0.65 (Table 3, 
Fig. 6). If there were several indices based on neighbouring bands (within 10 nm) we chose 
the best one to Table 3. 
 

VI Bands applied R 2 RMSE RMSE 
Conifer 

RMSE 
Broadleaf 

broadband indices using simulated ETM+

ISR ETM+4, ETM+5 0.56 0.44 0.42 0.25 

RSR ETM+3, ETM+4, ETM+5 0.40 0.52 0.59 0.31 

NDVI ETM+3, ETM+4 0.09 0.64 0.68 0.51 

SR ETM+3, ETM+4 0.04 0.66 0.73 0.46 

narrowband indices usin g Hyperion

RI 1134, 1790 0.71 0.36 0.34 0.38 

NDI 1134, 1790 0.68 0.38 0.36 0.39 

RI 732, 1790 0.67 0.38 0.42 0.31 

RI 1074, 1790 0.67 0.38 0.40 0.34 

RI 885, 1790 0.67 0.39 0.37 0.35 

RI 854, 1790 0.66 0.39 0.37 0.34 

RI 1003, 1639 0.66 0.39 0.39 0.26 

RI 1044, 1790 0.66 0.39 0.39 0.37 

NDI 732 1790 0.66 0.39 0.42 0.33 

NDI 1084, 1286 0.66 0.39 0.43 0.22 

Table 3. Indices most correlated with LAI for all sample plots. RMSE was also calculated 
separately for each forest class. Bands for Hyperion refer to the central wavelength (in nm). 

The best band combinations for RI and NDI indices were very similar (Fig. 6). A strong 
correlation with LAI existed for bands comb ining the region between 730 to 900 nm and 
1130 to 1350 nm. Another interesting region was within SWIR-1; especially strong was the 
correlation around 1780 and 1790 nm. These bands also showed up in the best performing 
indices for all forest classes combined (Table 3).  

The two best narrowband indices for all forest plots were the RI (R 2 = 0.71, RMSE = 0.36) 
and NDI (R 2 = 0.68, RMSE = 0.38) based on bands centred at 1134 and 1790 nm (Table 3). 
This is consistent with the best broadband index (ISR) which also combines NIR and SWIR. 
The same spectral regions are used by all the other best indices except two cases including a 
band in the red-edge (732 nm). Examples of the strongest relationships are shown in Fig. 7. 
However, when looking at the RMSE for conifer and broadleaf stands (Table 3) it became 
apparent that for some indices (e.g. NDI based on 1084 nm and 1286 nm: RMSE = 0.43 for 
conifers and RMSE = 0.22 for broadleaf) their LAI was correlated differently to the same VI.  
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Fig. 6. Matrixes showing the R2 between LAI and simple narrowband indices calculated for 
all possible combinations of Hyperion bands. The indices are defined as follows: 
RI=Band1/Band2, and NDI=(Band1-Band2)/(Band1+Band2). 

 

Fig. 7. The relationship of LAI and two best ratio indices (RI).  

2.3.4 Correlations for coniferous dominated forest plots 

The performance of the broadband indices for conifer-dominated stands was much better 
than over all sample stands. R2 now ranged from 0.60 to 0.79, and NDVI showed the best 
correlation with LAI, followed by SR.  

The best performing narrowband index over co niferous forest was neither RI nor NDI but 
REP (R² = 0.89) calculated according to the method of Danson & Plummer (1995) (Table 2). 
This index combined four bands in the visible and NIR; an area also represented in several 
of the other indices which best correlated with LAI in coniferous stands.  

The matrixes for all band combinations of Hy perion bands over conifer-dominated stands 
(Fig. 8) showed wider spectral regions of high correlation than for all stands (Fig. 6). 

 
Narrowband Vegetation Indices for Estimating Boreal Forest Leaf Area Index 

 

17 

 

Fig. 8. Matrixes showing the R2 between LAI and two narrowband indices calculated for all 
possible combinations of Hyperion bands for conifer-dominated stands. 

 

Fig. 9. The relationship of LAI and the two best performing narrowband indices for conifer-
dominated stands.  

Most of the indices with the highest correlations to LAI in coniferous stands used bands 
around the red-edge. Almost all of them (e.g. the Pigment-Specific Simple Ratio Index for 
chlorophyll a, PSSRa) applied the Hyperion band centred at 681nm, the peak of chlorophyll 
a absorption. Exceptions were the RI and NRI using the bands centred at 1185 and 1790 nm 
(i.e. combining NIR and SWIR), and RI and NDI using bands centred at 518 and 773 nm (i.e. 
combining carotene absorption and NIR). 

Scatterplots for the two best indices for coniferous stands are shown in Fig. 9. In both cases, 
coniferous plots differed considerably from the other plots. This was indicated also by the 
high RMSE for all stands (up to 1.42, Table 4). However, for indices using NIR and SWIR 
(e.g. RI and NDI based on 1185 and 1790 nm) the differences were less pronounced. The VI 
showing the lowest RMSE for all stands (0.49) was the RI (1185 and 1790 nm) with an R2 for 
conifer stands of 0.86 and RMSE 0.29. 
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Fig. 6. Matrixes showing the R2 between LAI and simple narrowband indices calculated for 
all possible combinations of Hyperion bands. The indices are defined as follows: 
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Fig. 7. The relationship of LAI and two best ratio indices (RI).  
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VI Bands applied R2 RMSE RMSE All 
stands 

broadband indices using simulated ETM+ 

NDVI ETM+3, ETM+4 0.79 0.36 1.20 

SR ETM+3, ETM+4 0.78 0.36 1.56 

ISR ETM+4, ETM+5 0.71 0.42 0.44 

RSR ETM+3, ETM+4, ETM+5 0.60 0.50 0.90 

narrowband indices using Hyperion 

REP 671, 702, 742, 783 0.89 0.26 1.29 

NDI 681, 773 0.88 0.27 1.02 

RI 681, 773 0.88 0.28 1.01 

RI 1185, 1790 0.86 0.29 0.49 

NDI 1185, 1790 0.86 0.30 0.50 

NDI 681, 742 0.85 0.30 1.01 

NDI 681, 824 0.85 0.30 0.98 

RI 681, 742 0.85 0.31 0.99 

NDI 518, 773 0.85 0.31 1.42 

PSSRa 803, 681 0.85 0.31 1.30 

RI 518, 773 0.85 0.31 1.39 

Table 4. Indices most correlated with LAI in conifer-dominated plots. R 2 and RMSE for 
conifer-dominated stands, and RMSE separately for all stands. Bands for Hyperion refer to 
the central wavelength (in nm). 

2.4 Discussion 

In our case study, the narrowband VIs prov ided more accurate LAI estimates than the 
broadband VIs synthesized from the same data in a boreal forest study site. The best 
narrowband combinations showed relatively strong linear relationships with LAI (R 2 > 
0.65), although the Hyperion im age was acquired in the middle of the growing season when 
LAI is the highest. The relationships were even stronger if the analysis was restricted to the 
conifer stands (R2 > 0.85). The results are promising as common broadband VIs tend to 
saturate at the highest LAI valu es. The improvement of estimation accuracy is in agreement 
with the previous studies, which have emphasized the potential of narrowband VIs for 
estimating forest canopy LAI (e.g. Lee et al., 2004; Schlerf et al., 2005; Brantley et al., 2011; 
Wu et al., 2010). 

Most of the narrowband VIs showing the strong est relationships with LAI were based on 
reflectances in the far red and at the red edge (680—740 nm), NIR (e.g. 885 and 1134 nm) and 
SWIR (e.g. 1639 nm and 1790 nm) wavelength regions (Figure 10). Many of the most 
important spectral regions are not covered by the ETM+ spectral bands, and the spectral 
regions are very narrow in comparison to the ETM+ bands. 

 
Narrowband Vegetation Indices for Estimating Boreal Forest Leaf Area Index 

 

19 

 
Fig. 10. Spectral regions used by the indices showing the strongest relationships with LAI 
over all sample stands and conifer stands. 

The NIR and SWIR spectral bands were particularly important when all sample plots were 
analyzed together. This is in agreement with the best broadband indices, ISR and RSR. The 
importance of NIR and SWIR bands has been emphasized also in previous studies testing 
narrowband VIs for estimating forest LAI (e.g. Lee et al., 2004; Schlerf et al., 2005). The leaf 
(needle) reflectance at those wavelengths is mainly controlled by wate r absorption, although 
leaf biochemical components such as proteins, cellulose and lignin also contribute to 
absorption in the infrared (e.g. Curran, 1989). The amount of water at the canopy level is 
directly related to LAI, which explains strong correlations. The bands centered at 1134 nm 
and 1790 nm are among the Hyperion bands, which are closest to the water absorption 
regions centered at approximately 1200 nm and 1940 nm. The spectral bands close to the 
water absorption regions at 970 nm and 1400 nm are also employed in some of the best 
indices. The spectral bands of the broadband sensors are usually placed in the middle of the 
atmospheric windows to avoid atmospheric absorption. However, it seems that narrow 
spectral bands close to the water absorption regions are particularly interesting for 
estimating LAI. In these wavelength region s, the reflectance seems to be relatively 
insensitive to tree species or composition of the understory vegetation, as suggested earlier 
by the studies using broadband indices (e.g. Brown et al., 2000). 

When pure coniferous stands were studied separately, the relationships became stronger 
and the far red and red edge spectral bands were included in several of the best VIs. 
However, the improvement in a ccuracy relative to the best VI based on NIR and SWIR 
reflectance (RI based on bands centered at 1185 nm and 1790 nm) was rather modest. The 
best broadband indices were NDVI and SR, which are based on ETM+ red and NIR bands. 
Usually, NDVI has shown relatively weak re lationships with LAI in conifer dominated 
boreal forest (e.g. Stenberg et al., 2004).  

The strongest relationship with LAI was provided by the red edge position (REP) calculated 
by the method proposed by Danson and Plummer (1995). In general, the REP is considered 
to be sensitive to leaf and canopy chlorophyll content, so that increasing the amount of 
chlorophyll, or LAI, is related to the longer REP wavelength because of the widening of the 
chlorophyll absorption region at approxim ately 680 nm (Danson & Plummer, 1995; Dawson 
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and Curran, 1998; Sims & Gamon, 2002; Pu et al., 2003). In comparison to SWIR spectral 
bands, the far red and red edge spectral region is sensitive to species composition, shown as 
poor relationships over mixed vegetation. Ho wever, sometimes poor relationships between 
the REP and LAI have been reported even for pure coniferous stands (Blackburn, 2002). 
However, although the REP calculated in th is study showed strong correlation with 
coniferous LAI, the estimated wavelengths do  not correspond to the Red Edge Inflection 
Point (REIP), i.e. the steepest slope of the red-edge. The wavelengths are considerably 
longer. Therefore, the unusual inverse relationship between REP and LAI in this study is 
explained by the calculation method (Danson and Plummer, 1995). Alternative calculation 
methods for REP are summarized, for example, by Pu et al. (2003). 

Although many studies testing narrowband VIs for LAI estimation have stressed the 
potential of the red edge and SWIR spectral regions, the specific spectral bands providing 
the strongest relationships with LAI vary between  the studies. Also in our case study, the 
optimal band combinations provided stronger relationships with LAI than VIs collected 
from the literature. This is somewhat expected, as the number of spectral bands and their 
possible combinations is so large that empirically determined optimal band combinations 
are likely to depend heavily on the local environmental conditions and type of satellite 
image data. For example, approximately 150 useful spectral bands of Hyperion make more 
than 20,000 two-band combinations. Because of this, the optimal indices cannot necessarily 
be generalized very well. Furthermore, a large number of spectral bands combined with a 
small number of sample plots increase the risk that the regression models are overfitted. 
However, this should be mostly a problem with  multivariate approaches (e.g. Lee et al., 
2004). Moreover, when comparing broadband and narrowband indices, it should be noted 
that we used only synthesized ETM+ data and the results could differ to some extent if true 
ETM+ data would have been used instead (Lee et al., 2004). This is because the synthetic 
broadband data is affected by the lower signal-to-noise ratio of the narrow spectral bands, 
even if data are averaged. 

3. Future perspectives 

Wider use of imaging spectroscopy data is hampered by the availability of the data. Today, 
mostly airborne instruments are used to produce remote sensing data with high spectral 
resolution. Airborne measurements are associated with relatively small spatial coverage and 
high operating costs falling directly to data us ers. The Hyperion sensor used in this case 
study is a rare exception: it is the only true imaging spectrometer in orbit today, providing 
wide spectral coverage with uniform spectral resolution and contiguous bands. The scene, 
however, is about to change. At the end of the decade (i.e., around 2020), NASA is planning 
to launch the HyspIRI mission, providing narro wband data with routine global coverage 
(Samiappan et al., 2010). Before HyspIRI, several national space programs are striving to 
launch satellites with capability to produc e narrowband data (e.g. the EnMAP instrument, 
Segl et al., 2010). Therefore, the need for developing algorithms that would make use of the 
advanced properties of narrowband data, comp ared to the more traditional multispectral 
data, is evident. 

In this case study, we used narrowband VIs to relate forest LAI to remotely sensed 
reflectance signals. Historically, vegetation indices have been among the very first tools in 
interpreting multispectral remote sensing data from vegetated areas. Later, physically-based 
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reflectance modelling has taken over the role of the preferred method in large-scale 
retrievals of vegetation biophysical variables. Similar developments may take place in the 
interpretation of narrowband imaging spectroscopy data. However, let us first take a closer 
look at narrowband indices as they are used in the current study. 

As discussed above (section 1.3), VIs are usually treated as empirical (or, at least semi-
empirical) tools in remote sensing. However, it has been known for a long time that the 
reflectance indices convey also some information on the physical processes related to the 
interaction of light with plant elements. Indeed, Myneni et al. (1995) showed that the 
common indices are actually derivatives of canopy reflectance and are physically related to 
abundances of absorbing pigments. For this reason, indices commonly make use of two 
spectral regions: one inside the spectral region where the absorption of a pigment is strong, 
and one outside the absorption band. The use of red and near-infrared wavelengths thus 
corresponds to measuring the abundance of one of the most vital plant pigments, 
chlorophyll.  

Can such an interpretation be extended to narrowband indices? From the point-of-view of 
the physics of radiative transf er, there is no fundamental difference between broad- and 
narrowband indices. However, for calculating a sp ectral derivative, there is little use of well-
tuned and potentially much noisier narrow spectral bands. For detecting pigments whose 
absorption spectra span tens, if not hundreds of nanometers, broadband indices seem a 
much more robust tool. Further, vegetation indices, especially early ones like the NDVI, 
have been shown both empirically and on the basis of theoretical studies, to be sensitive to 
factors others than those of interest, such as soil brightness changes and atmospheric effects. 
Most narrowband indices can be viewed as finely tuned versions of their older broadband 
counterparts. Site-specific selection of wavelengths leads to a better explanatory power of 
narrowband VIs as we also demonstrated in this case study. Unfortunately, the fine tuning 
for eliminating environmental effects makes narrowband indices potentially even more site-
specific than broadband ones. 

The comparison of narrowband and broadband VIs presented above did not concern indices 
capturing truly narrowband effects, e.g. the ph otochemical reflectance index PRI (Gamon et 
al., 1992) or various red edge parameters. Intrinsically narrowband VIs are based on effects 
that cannot be detected from broadband data. These indices are not more site-specific than 
broadband indices and do indeed, due to a finer spectral resolution, provide additional 
information on vegetation cover on all scales. Similarly, the red edge parameters calculated 
above make use of the high spectral resolution of narrowband data in a manner which is not 
site-specific. Therefore, it is not surprising that they provide a good fit for estimating forest 
stand variables regardless of dominating species. 

An alternative to using narrowband indices would be to invert a fu ll canopy reflectance 
model: the goals of both methods are to retrieve information on some biophysical variable 
of interest (Rautiainen et al., 2010). As discussed in this chapter, the theoretical 
foundations of the two approaches are somewhat similar. However, obvious limitations of 
index-based inversions lie in that it is not possible to define a spectral index sensitive to 
only one process, nor is it possible to design a universal spectral index which would be 
optimal for all applications everywhere and all the time (Verstraete & Pinty, 1996). 
Further, since vegetation indices carry only part of the information available in the 
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original channel reflectances, they assume that the information of interest is contained 
exclusively in the observed spectral variations . VIs also often neglect the effects of surface 
anisotropy associated with the specific geometry of illumination and observation at the 
time of the measurements (Govaerts et al., 1999). Last, but not least, a fundamental 
shortcoming of the index-based approach lies in its potentially wide application area. A 
user not directly working in the field of remote sensing science may be distracted by a 
statistically strong dependence between a variable of interest (e.g. an ecological parameter 
describing diversity) and a vegetation index. However, canopy reflectance signals can 
carry information only on what are known as state variables of radiative transfer 
(abundances of optically active substances, canopy amount and structure, etc.). Other 
variables may be correlated with one or more of the state variables, but before drawing 
conclusions based on such correlations, the nature and application range of the correlation 
should be clarified. 

Naturally, physical canopy reflectance models are immune to the problems listed above. 
When working in the forward mode, a modern reflectance model can reliably predict the 
spectral reflectance signal of a vegetation canopy given the required inputs (e.g. 
Widlowski et al., 2007). When run in inverse mode, the models should be able to produce 
an estimate of the state variables of radiative transfer based on measured spectral 
reflectance values. Unfortunately, due to the large number of the state variables and the 
mathematical nature of the inverse problem, a robust result is difficult to achieve (Baret & 
Buis, 2008). Despite the present-day problems with inverting canopy reflectance models, it 
is clear that physical models hold a clear advantage over index-based biophysical 
parameter estimation, especially when using imaging spectroscopy data. Physical models 
account for changes in environmental conditions and estimate all state variables 
simultaneously. They also have the advantage of failing if unphysical data is fed to them 
(e.g. due to sensor failure or preprocessing error) instead of producing unrealistic results. 
The problem with the large number of state variables can be solved by the larger 
information content of imaging spectroscopy data (compared with that produced by 
multispectral sensors) and development of novel physically based parameterizations 
allowing a more efficient description of canopy  structure. However, until the full potential 
of imaging spectroscopy has been utilized by the developers of physical models, 
narrowband vegetation indices remain valuable tools in exploring the richness of high 
spectral resolution data. 
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original channel reflectances, they assume that the information of interest is contained 
exclusively in the observed spectral variations . VIs also often neglect the effects of surface 
anisotropy associated with the specific geometry of illumination and observation at the 
time of the measurements (Govaerts et al., 1999). Last, but not least, a fundamental 
shortcoming of the index-based approach lies in its potentially wide application area. A 
user not directly working in the field of remote sensing science may be distracted by a 
statistically strong dependence between a variable of interest (e.g. an ecological parameter 
describing diversity) and a vegetation index. However, canopy reflectance signals can 
carry information only on what are known as state variables of radiative transfer 
(abundances of optically active substances, canopy amount and structure, etc.). Other 
variables may be correlated with one or more of the state variables, but before drawing 
conclusions based on such correlations, the nature and application range of the correlation 
should be clarified. 

Naturally, physical canopy reflectance models are immune to the problems listed above. 
When working in the forward mode, a modern reflectance model can reliably predict the 
spectral reflectance signal of a vegetation canopy given the required inputs (e.g. 
Widlowski et al., 2007). When run in inverse mode, the models should be able to produce 
an estimate of the state variables of radiative transfer based on measured spectral 
reflectance values. Unfortunately, due to the large number of the state variables and the 
mathematical nature of the inverse problem, a robust result is difficult to achieve (Baret & 
Buis, 2008). Despite the present-day problems with inverting canopy reflectance models, it 
is clear that physical models hold a clear advantage over index-based biophysical 
parameter estimation, especially when using imaging spectroscopy data. Physical models 
account for changes in environmental conditions and estimate all state variables 
simultaneously. They also have the advantage of failing if unphysical data is fed to them 
(e.g. due to sensor failure or preprocessing error) instead of producing unrealistic results. 
The problem with the large number of state variables can be solved by the larger 
information content of imaging spectroscopy data (compared with that produced by 
multispectral sensors) and development of novel physically based parameterizations 
allowing a more efficient description of canopy  structure. However, until the full potential 
of imaging spectroscopy has been utilized by the developers of physical models, 
narrowband vegetation indices remain valuable tools in exploring the richness of high 
spectral resolution data. 
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1. Introduction 

Plant diseases and pests can affect a wide range of commercial crops, and result in a 
significant yield loss. It is reported that at least 10% of global food production is lost due to 
plant diseases (Christou and Twyman, 2004; Strange and Scott, 2005). Excessive pesticides 
are used for protecting crops from diseases and pests. This not only increases the cost of 
production, but also raises the danger of toxic residue in agricultural  products. Disease and 
pest control could be more efficient if disease and pest patches within fields can be 
identified timely and treated locally. This requires obtaining the information of disease 
infected boundaries in the field as early and accurately as possible. The most common and 
conventional method is manual field survey. The traditional ground-based survey method 
requires high labor cost and produces low efficiency. Thus, it is unfeasible for large area. 
Fortunately, remote sensing technology can provide spatial distribution information of 
diseases and pests over a large area with relatively low cost. The presence of diseases or 
insect feedings on plants or canopy surface causes changes in pigment, chemical 
concentrations, cell structure, nutrient, wa ter uptake, and gas exchange. These changes 
result in differences in color and temperature of the canopy, and affect canopy reflectance 
characteristics, which can be detectable by remote sensing (Raikes and Burpee 1998). 
Therefore, remote sensing provides a harmless, rapid, and cost-effective means of 
identifying and quantifying crop  stress from differences in the spectral characteristics of 
canopy surfaces affected by biotic and abiotic stress agents. 

This chapter introduces some successful studies about detecting and discriminating yellow 
rust and aphid (economically important disease and pest in winter wheat in China) using 
field, airborne and satellite remote sensing.  

2. Detecting yellow rust of winter wheat by remote sensing 

Yellow rust  (Biotroph Puccinia striiformis), also known as stripe rust, is a fungal disease of 
winter wheat  (Triticum aestivum L.). It produces leaf lesions (pustules), which are yellow in 
color and tend to be grouped in patches. Yellow rust often occurs in narrow stripes, 2–3 mm 
wide that run parallel to the leaf veins. Yellow rust is responsible for approximately 73–85% 
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of recorded yield losses, and grain quality is  also significantly reduced (Li et al. 1989). 
Consequently, effective monitoring of the incidence and severity of yellow rust in 
susceptible regions is of great importance to guide the spray of pesticides and to provide 
data for the local agricultural insurance services. Fortunately, remote sensing technology 
provides a possible way to detect the incidence and severity of the disease rapidly.  

The interaction of electromagnetic radiation with  plants varies with the wavelength of the 
radiation. The same plant leaves may exhibit significant different re flectance depending on 
the level of health and or vigor (Wooley 1971, West et al. 2003, Luo et al., 2010). Healthy and 
vigorously growing plant leaves will generally have 

1. Low reflectance at visible wavelengths owing to strong absorption by photoactive 
pigments (chlorophylls, anth ocyanins, carotenoids). 

2. High reflectance in the near infrared because of multiple scattering at the air-cell 
interfaces in the leaf’s internal tissue. 

3. Low reflectance in wide  wavebands in the short-wave infr ared because of absorption by 
water, proteins, and other carbon constituents. 

The incidence and severity of yellow rust can be monitored according to the differences of 
spectral characteristics between healthy and disease plants. In this chapter, we will report 
several successful studies on the detection and identification of yellow rust in winter wheat 
by remote sensing. 

2.1 Detecting and discriminating yellow rust at canopy level 

Hyperspectral remote sensing is one of the advanced and effective techniques in disease 
monitoring and mapping. Howeve r, the difficulty in discriminating a disease from common 
nutrient stresses largely hampers the practical use of this technique. This is because some 
common nutrient stresses such as the shortage or overuse of nitrogen or water could have 
similar variations of biochemical properties and plant morphology, and therefore result in 
similar spectral responses. However, for the remedial procedures for stressed crops, there is 
a significant difference between disease and nutrient stresses. For example, applying 
fungicide to water-stressed crops would lead to a disastrous outcome. Therefore, to 
discriminate yellow rust from common nutrient stresses is of practical importance to crop 
growers or landowners.  

The specific objectives of this study are to: (1) systematically test the sensitivity and 
consistency of several commonly used spectral features to yellow rust disease during major 
growth stages; (2) for those spectral features that are consistently sensitive to yellow rust 
disease, we will further examine their sensitivity to nutrient stresses to determine whether 
there are specifically sensitive to yellow rust disease, but insensitive to water and nitrogen 
stresses. 

2.1.1 Materials and methods 

2.1.1.1 Experimental design and field conditions 

The experiments were conducted at Beijing Xiaotangshan Precision Agriculture 
Experimental Base, in Changping district, Beijing (40º10.6’N, 116º26.3’E) for the growing 
seasons of 2001-2002 and 2002-2003. Table 1 summarizes the soil properties including 
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organic matter, total nitrogen, alkali-hydrol ysis nitrogen, available phosphorus and 
available potassium for both growing seasons. Three cultivars of winter wheat used in 2001-
2002 experiment (2002 Exp) were Jingdong8, Jing9428 and Zhongyou9507, while the 
cultivars used in 2002-2003 (2003 Exp) were Xuezao, 98-100 and Jing411. All the cultivars 
applied in both growing seasons included erective, middle and loose with respect to the 
canopy morphology.  

 

Items  
Disease inoculation 

experiment 
Nutrient stress experiment 

Growth period Sep 2002-Jun 2003 Sep 2001-Jun 2002 

Top soil  
nutrient status 
(0-0.3m depth) 

Organic matter 1.42%-1.48% 1.21%-1.32% 

Total nitrogen 0.08%-0.10% 0.092%-0.124% 

Alkali-
hydrolysis 
nitrogen 

58.6-68.0 mg kg-1 68.8-74.0 mg kg-1 

Available 
phosphorus 

20.1-55.4 mg kg-1 25.2-48.3 mg kg-1 

Rapidly 
available 
potassium 

117.6-129.1 mg kg-1 96.6-128.8 mg kg-1 

Cultivars  Xuezao, 98-100, Jing411 
Jingdong8, Jing9428, 
Zhongyou9507 

Treatments  

Normal; YR1: 3mg 100-1 
ml spores solution; YR2: 
9mg 100-1 ml spores 
solution; YR3: 12mg 100-1 
ml spores solution (all 
treatments applied 200 kg 
ha-1 nitrogen and 450 m3 
ha-1 water)  

Normal: 200 kg ha-1 nitrogen, 
450 m3 ha-1 water; 
W-SD: 200 kg ha-1 nitrogen, 
225 m3 ha-1 water; 
W-SED: 200 kg ha-1 nitrogen, 0 
m3 ha-1 water; 
N-E: 350 kg ha-1 nitrogen, 450 
m3 ha-1 water; 
N-D: 0 kg ha-1 nitrogen, 450 m3 
ha-1 water; 
W-SED+N-E: 350 kg ha-1 
nitrogen, 0 m3 ha-1 water; W-
SED+N-D: 0 kg ha-1 nitrogen, 0 
m3 ha-1 water; 

Spectral reflectance 
measurements (on day after 

sowing) 
207, 216, 225, 230, 233 196, 214, 225, 232, 239 

Table 1. Basic information of disease inoculation experiment and nutrient stress experiment 

For 2002 Exp, six stress treatments of water and nitrogen were applied, and the treatments 
were based on local conditions, which usually suffered from yellow rust in the northern part 
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data for the local agricultural insurance services. Fortunately, remote sensing technology 
provides a possible way to detect the incidence and severity of the disease rapidly.  

The interaction of electromagnetic radiation with  plants varies with the wavelength of the 
radiation. The same plant leaves may exhibit significant different re flectance depending on 
the level of health and or vigor (Wooley 1971, West et al. 2003, Luo et al., 2010). Healthy and 
vigorously growing plant leaves will generally have 

1. Low reflectance at visible wavelengths owing to strong absorption by photoactive 
pigments (chlorophylls, anth ocyanins, carotenoids). 

2. High reflectance in the near infrared because of multiple scattering at the air-cell 
interfaces in the leaf’s internal tissue. 

3. Low reflectance in wide  wavebands in the short-wave infr ared because of absorption by 
water, proteins, and other carbon constituents. 

The incidence and severity of yellow rust can be monitored according to the differences of 
spectral characteristics between healthy and disease plants. In this chapter, we will report 
several successful studies on the detection and identification of yellow rust in winter wheat 
by remote sensing. 

2.1 Detecting and discriminating yellow rust at canopy level 

Hyperspectral remote sensing is one of the advanced and effective techniques in disease 
monitoring and mapping. Howeve r, the difficulty in discriminating a disease from common 
nutrient stresses largely hampers the practical use of this technique. This is because some 
common nutrient stresses such as the shortage or overuse of nitrogen or water could have 
similar variations of biochemical properties and plant morphology, and therefore result in 
similar spectral responses. However, for the remedial procedures for stressed crops, there is 
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disease, we will further examine their sensitivity to nutrient stresses to determine whether 
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organic matter, total nitrogen, alkali-hydrol ysis nitrogen, available phosphorus and 
available potassium for both growing seasons. Three cultivars of winter wheat used in 2001-
2002 experiment (2002 Exp) were Jingdong8, Jing9428 and Zhongyou9507, while the 
cultivars used in 2002-2003 (2003 Exp) were Xuezao, 98-100 and Jing411. All the cultivars 
applied in both growing seasons included erective, middle and loose with respect to the 
canopy morphology.  
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Spectral reflectance 
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Table 1. Basic information of disease inoculation experiment and nutrient stress experiment 

For 2002 Exp, six stress treatments of water and nitrogen were applied, and the treatments 
were based on local conditions, which usually suffered from yellow rust in the northern part 
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of China. Each treatment was applied on 0.3 ha area, and the treatments were 200 kg ha-1 
nitrogen and 225 m3 ha-1 water (slightly deficient water, W-SD),200 kg ha -1 nitrogen and no 
irrigation (seriously defi cient water, W-SED), 350 kg ha-1 nitrogen and 450 m3 ha-1 water 
(excessive nitrogen, N-E), no fertilization and 450 m3 ha-1 water (deficient nitrogen, N-D), 
350 kg ha-1 nitrogen and no irrigation (seriously deficient water and excessive nitrogen, W-
SED+N-E), and no fertilization and no irrigati on (seriously deficient water and deficient 
nitrogen, W-SED+N-D). A 0.3 ha reference area (Normal) was applied with the 
recommended rate which received 200 kg ha-1 nitrogen and 450 m3 ha-1 water. Three 
cultivars were evenly distribu ted in each treatment plot.  

For 2003 Exp, according to the National Plant Protection Standard (Li et al. 1989), three 
levels of concentration of summer spores of yellow rust were applied, and they were 3 mg 
100-1 ml -1 (Yellow rust 1, YR1), 9 mg 100-1 ml -1 (Yellow rust 2, YR2) and 12 mg 100-1 ml -1 
(Yellow rust 3, YR3), with a dosage of 5 ml spores solution per square meter. The reference 
area (Normal) that was not inoculated yet was applied with the recommended amount of 
fungicide to prevent the occasional infection. Each treatment involved 1.2 ha area, with even 
constitution of three cultivars. All plots in 2003 Exp received the recommended rates of 
nitrogen (200 kg ha-1) and water (450 m3 ha-1). 

2.1.1.2 Canopy spectral measurements 

A high spectral resolution spectrometer, ASD FieldSpec Pro spectrometer (Analytical 
Spectral Devices, Boulder, CO, USA) fitted with a 25 field of view fore-optic, was used for 
in-situ measurement of canopy spectral reflectance for both 2002 Exp and 2003 Exp. All 
canopy spectral measurements were taken from a height of 1.3m above ground (the height 
of the wheat is 90±3 cm at maturity). Spectra were acquired in the 350-2,500 nm spectral 
range at a spectral resolution of 3 nm between 350 nm and 1,050 nm, and 10 nm between 
1,050 nm and 2,500 nm. A 40 cm × 40 cm BaSO4 calibration panel was used for calculation of 
reflectance. All irradi ance measurements were recorded as an average of 20 scans at an 
optimized integration time. Prior to subseque nt preprocessing, all spectral curves were 
resampled with 1 nm interval. All measurements  were made under clear blue sky conditions 
between 10:00 and 14:00 (Beijing Local Time). 

The spectral measurements were taken 5 times from 196 days after sowing (DAS) to 239 
DAS for 2002 Exp, which covered the growth stages of stem elongation, booting, anthesis 
and milk development. For 2003 Exp, the spectral measurements were taken 5 times from 
207 DAS to 233 DAS, which covered the growth stages of booting, anthesis and milk 
development. The detailed measurement dates for both experiments were given in Table 1. 
The stem elongation and anthesis stages are essential for the control of yellow rust 
development, whereas the milk  development stage is important for yield loss assessment. 

2.1.1.3 Selection of spectral features 

The spectral features that we adopted were related to several commonly used vegetation 
indices (VIs), which were proved to be sensitive to variations of pigments and stresses. 
Furthermore, in order to conduct a thorough investigation of various types of spectral 
features, we also included a number of spectral features that were based on derivative 
transformation and continuum removal tran sformation (Gong et al. 2002; Pu et al. 
2003;2004). Therefore, the total 38 spectral features are shown in Table 2. 
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Variable Definition Description Literatures 

Derivative transformed spectral variables

Db 
Maximum value 
of 1st derivative 
within blue edge

Blue edge covers 490-530nm. Db is a 
maximum value of 1st order 
derivatives within the blue edge of 35 
bands 

Gong et al., 2002 

�Ìb Wavelength at Db �Ìb is wavelength position at D b Gong et al., 2002 

SDb 
Sum of 1st 
derivative values 
within blue edge

Defined by sum of 1st order derivative 
values of 35 bands within the blue 
edge 

Gong et al., 2002 

Dy 

Maximum value 
of 1st derivative 
within yellow 
edge

Yellow edge covers 550-582nm. Dy is a 
maximum value of 1st order 
derivatives within the yellow edge of 
28 bands 

Gong et al., 2002 

�Ìy Wavelength at Dy �Ìy is wavelength position at D y Gong et al., 2002 

SDy 

Sum of 1st 
derivative values 
within yellow 
edge

Defined by sum of 1st order derivative 
values of 28 bands within the yellow 
edge 

Gong et al., 2002 

Dr 
Maximum value 
of 1st derivative 
within red edge 

Red edge covers 670-737nm. Dr is a 
maximum value of 1st order 
derivatives within the red edge of 61 
bands 

Gong et al., 2002 

�Ìr Wavelength at Dr �Ìr is wavelength position at D r Gong et al., 2002 

SDr 
Sum of 1st 
derivative values 
within red edge 

Defined by sum of 1st order derivative 
values of 61 bands within the red edge

Gong et al., 2002 

Continuous removal transformed spectral features

DEP550-750 The depth of the 
feature minimum 
relative to the 
hull 

In the range of 550nm-750nm

Pu et al., 2003;2004 
DEP920-1120 In the range of 920nm-1120nm

DEP1070-
1320 

In the range of 1070nm-1320nm 

WID550-750 The full 
wavelength 
width at half 
DEP (nm) 

In the range of 550nm-750nm

Pu et al., 2003;2004 
WID920-1120 In the range of 920nm-1120nm

WID1070-
1320 

In the range of 1070nm-1320nm 

AREA550-
750 The area of the 

absorption 
feature that is the 
product of DEP 
and WID 

In the range of 550nm-750nm 

Pu et al., 2003;2004 
AREA920-
1120 

In the range of 920nm-1120nm 

AREA1070-
1320 

In the range of 1070nm-1320nm 
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of China. Each treatment was applied on 0.3 ha area, and the treatments were 200 kg ha-1 
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(excessive nitrogen, N-E), no fertilization and 450 m3 ha-1 water (deficient nitrogen, N-D), 
350 kg ha-1 nitrogen and no irrigation (seriously deficient water and excessive nitrogen, W-
SED+N-E), and no fertilization and no irrigati on (seriously deficient water and deficient 
nitrogen, W-SED+N-D). A 0.3 ha reference area (Normal) was applied with the 
recommended rate which received 200 kg ha-1 nitrogen and 450 m3 ha-1 water. Three 
cultivars were evenly distribu ted in each treatment plot.  

For 2003 Exp, according to the National Plant Protection Standard (Li et al. 1989), three 
levels of concentration of summer spores of yellow rust were applied, and they were 3 mg 
100-1 ml -1 (Yellow rust 1, YR1), 9 mg 100-1 ml -1 (Yellow rust 2, YR2) and 12 mg 100-1 ml -1 
(Yellow rust 3, YR3), with a dosage of 5 ml spores solution per square meter. The reference 
area (Normal) that was not inoculated yet was applied with the recommended amount of 
fungicide to prevent the occasional infection. Each treatment involved 1.2 ha area, with even 
constitution of three cultivars. All plots in 2003 Exp received the recommended rates of 
nitrogen (200 kg ha-1) and water (450 m3 ha-1). 

2.1.1.2 Canopy spectral measurements 

A high spectral resolution spectrometer, ASD FieldSpec Pro spectrometer (Analytical 
Spectral Devices, Boulder, CO, USA) fitted with a 25 field of view fore-optic, was used for 
in-situ measurement of canopy spectral reflectance for both 2002 Exp and 2003 Exp. All 
canopy spectral measurements were taken from a height of 1.3m above ground (the height 
of the wheat is 90±3 cm at maturity). Spectra were acquired in the 350-2,500 nm spectral 
range at a spectral resolution of 3 nm between 350 nm and 1,050 nm, and 10 nm between 
1,050 nm and 2,500 nm. A 40 cm × 40 cm BaSO4 calibration panel was used for calculation of 
reflectance. All irradi ance measurements were recorded as an average of 20 scans at an 
optimized integration time. Prior to subseque nt preprocessing, all spectral curves were 
resampled with 1 nm interval. All measurements  were made under clear blue sky conditions 
between 10:00 and 14:00 (Beijing Local Time). 

The spectral measurements were taken 5 times from 196 days after sowing (DAS) to 239 
DAS for 2002 Exp, which covered the growth stages of stem elongation, booting, anthesis 
and milk development. For 2003 Exp, the spectral measurements were taken 5 times from 
207 DAS to 233 DAS, which covered the growth stages of booting, anthesis and milk 
development. The detailed measurement dates for both experiments were given in Table 1. 
The stem elongation and anthesis stages are essential for the control of yellow rust 
development, whereas the milk  development stage is important for yield loss assessment. 

2.1.1.3 Selection of spectral features 

The spectral features that we adopted were related to several commonly used vegetation 
indices (VIs), which were proved to be sensitive to variations of pigments and stresses. 
Furthermore, in order to conduct a thorough investigation of various types of spectral 
features, we also included a number of spectral features that were based on derivative 
transformation and continuum removal tran sformation (Gong et al. 2002; Pu et al. 
2003;2004). Therefore, the total 38 spectral features are shown in Table 2. 
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feature minimum 
relative to the 
hull 

In the range of 550nm-750nm

Pu et al., 2003;2004 
DEP920-1120 In the range of 920nm-1120nm

DEP1070-
1320 

In the range of 1070nm-1320nm 

WID550-750 The full 
wavelength 
width at half 
DEP (nm) 

In the range of 550nm-750nm

Pu et al., 2003;2004 
WID920-1120 In the range of 920nm-1120nm

WID1070-
1320 

In the range of 1070nm-1320nm 

AREA550-
750 The area of the 

absorption 
feature that is the 
product of DEP 
and WID 

In the range of 550nm-750nm 

Pu et al., 2003;2004 
AREA920-
1120 

In the range of 920nm-1120nm 

AREA1070-
1320 

In the range of 1070nm-1320nm 
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Variable Definition Description Literatures 

VI-based variables

GI Greenness Index R554/R 677 
Zarco-Tejada et al., 
2005 

MSR 
Modified Simple 
Ratio 

(R800/R 670-1)/(R 800/R 670+1)1/2  
Chen, 1996; 
Haboudane et al., 
2004 

NDVI 
Normalized 
Difference 
Vegetation Index

(RNIR-RR)/(R NIR+RR), where RNIR

indicates 775-825nm, RR indicates 
650nm-700nm, that include most key 
pigments 

Rouse et al., 1973  

NBNDVI 

Narrow-band 
normalised 
difference 
vegetation index 

(R850-R680)/(R 850+R680) 
Thenkabail et al., 
2000 

NRI 
Nitro gen 
reflectance index

(R570-R670)/(R 570+R670) Filella et al., 1995 

PRI 
Photochemical
Physiological 
Reflectance Index

(R531-R570)/(R 531+R570)  Gamon et al., 1992  

TCARI 

The transformed 
chlorophyll 
Absorption and 
Reflectance Index

3*[( R700- R670)-0.2*( R700- R550)*( R700/ 
R670)] 

Haboudane et al., 
2002 

SIPI 
Structural 
Independent 
Pigment Index 

(R800-R445)/(R 800-R680) 
Peñuelas et al., 
1995 

PSRI 
Plant Senescence 
Reflectance Index

(R680-R500)/R 750 
Merzl yak et al., 
1999 

PhRI 
The Physiological 
reflectance index

(R550-R531)/(R 550+R531) Gamon et al., 1992  

NPCI 

Normalized 
Pigment 
Chlorophyll ratio 
Index 

(R680-R430)/(R 680+R430) 
Peñuelas et al., 
1994 

ARI 
Anthoc yanin 
Reflectance Index

ARI=(R550)-1-(R700)-1 
Gitelson et al., 
2001 

TVI 
Triangular 
Vegetation Index

0.5[120(R750-R550)-200(R670-R550)] 
Broge and Leblanc, 
2000; Haboudane 
et al., 2004 

CARI 
Chlorophyll 
Absorption Ratio 
Index 

(|(a670+R670+b)|/(a 2+1)1/2 )x(R700/R 670)
a = (R700-R550)/150, b = R550-(a x 550) 

Kim et al., 1994 
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Variable Definition Description Literatures 

DSWI 
Disease Water 
Stress Index 

(R802+R547)/(R 1657+R682) Galvão et al., 2005 

MSI 
Moisture Stress 
Index 

R1600/R 819 
Hunt and rock, 
1989; Ceccato et 
al., 2001 

SIWSI 
Shortwave 
Infrared Water 
Stress Index 

(R860-R1640)/(R 860+R1640)  
Fensholt and 
Sandholt, 2003 

RVSI 
Red-Edge 
Vegetation Stress 
Index 

[(R712+R752)/2]-R 732 
Merton and 
Huntington, 1999 

MCARI 

Modified 
Chlorophyll 
Absorption in 
Reflectance Index

(R701-R671)-0.2(R701-R549)]/(R 701/R 671) 
Daughry et al., 
2000 

WI Water Index R900/R 970 
Peñuelas et al., 
1997 

Table 2. Definitions of spectral features used in this study 

2.1.1.4 Preprocessing and normalization of spectral reflectance data 

Aggregating spectral reflectance data 

As the first step, a ll spectra were processed with the following transformation to suppress 
possible difference in illumination. The spectr al regions with wavelength of 1330-1450 nm, 
1770-2000 nm and 2400-2500 nm were removed due to strong absorption by water vapor. 
We then normalized the spectral curves by dividing the mean band reflectance of the curve 
(Yu et al., 1999). The normalized reflectance for the bandi is given as: 
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where Refi’ is the normalized reflectance for bandi; Refi is the original reflectance of the band; n 
is the total number of bands. Fig. 1(a) shows a plot of unnormalized Refi versus band 
wavelength for six observations (three YR3 curves and three Normal curves) on 233 DAS. Fig. 
1(b) shows the corresponding curves in Fig.1(a) after normalization. The normalization clearly 
separated the diseased spectra from the normal spectra especially over the near infrared region 
(approximately from 770 nm to 1300 nm). The benefit of eliminating spectral difference caused 
by the change of illumination conditions wa s also mentioned by Yu et al. (1999).  

Normalization of the difference in measuring dates 

As shown in Table 1, although both experiments conducted in five growth stages in 2002 
and 2003, most measurement dates were not consistent, except for 255 DAS. Hence, to 
improve the comparability of two datasets, we ad apted the 2002 Exp data to match the dates  
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where Refi’ is the normalized reflectance for bandi; Refi is the original reflectance of the band; n 
is the total number of bands. Fig. 1(a) shows a plot of unnormalized Refi versus band 
wavelength for six observations (three YR3 curves and three Normal curves) on 233 DAS. Fig. 
1(b) shows the corresponding curves in Fig.1(a) after normalization. The normalization clearly 
separated the diseased spectra from the normal spectra especially over the near infrared region 
(approximately from 770 nm to 1300 nm). The benefit of eliminating spectral difference caused 
by the change of illumination conditions wa s also mentioned by Yu et al. (1999).  

Normalization of the difference in measuring dates 

As shown in Table 1, although both experiments conducted in five growth stages in 2002 
and 2003, most measurement dates were not consistent, except for 255 DAS. Hence, to 
improve the comparability of two datasets, we ad apted the 2002 Exp data to match the dates  
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(a) Original spectra on 233 days after sowing 

 
(b) Normalized spectra on 233 days after sowing 

Fig. 1. Comparison between original spectra and normalized ones 
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of 2003 Exp, by using a linear interpolation method. The reflectance curve of a certain date 
could be obtained based on the spectra from the adjacent data before and after the 
measurement date (using days after sowing as a time scale). Each band of the spectra should 
be processed as: 

( )current before
current before before after

after before

DAS DAS
Ref Ref Ref Ref

DAS DAS

��
� � � � �

��
 

where Refcurrent represents the reflectance transformed from the date corresponding to an 
ideal date in 2003 Exp; Refbefore and Refafter represent reflectances, respectively, from DASbefore 
and DASafter; DAScurrent indicates an ideal date in 2003 Exp while DASbefore and DASafter are the 
adjacent dates in 2002 Exp before and after the ideal date in 2003 Exp. 

Fig. 2 provides an example of the progress of the normalization of measurement dates. The 
averaged reflectance at central wavelengths of green band (560 nm) and near-infrared band 
(860 nm) of Landsat-5 TM for normal samples were plotted against the measured dates in 
both 2002 Exp and 2003 Exp. The date normalized reflectance values were marked as 
triangle symbol in the graph. Through this st ep, the datasets collected in these two years 
could be considered as acquired in the same dates, which thereby facilitated the subsequent 
comparisons and analysis.  

 

Adaptation of average reflectance of normal samples at 560 nm (central wavelengths of green band of 
Landsat-5 TM) and 860 nm (central wavelengths of near-infrared band of Landsat-5 TM) to match the 
dates of 2003 Exp, by using a linear interpolation method 

Fig. 2. An example for normalization of measuring dates 
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(a) Original spectra on 233 days after sowing 

 
(b) Normalized spectra on 233 days after sowing 

Fig. 1. Comparison between original spectra and normalized ones 
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Normalization of the difference from cultivars and soil backgrounds 

The canopy spectra of winter wheat were not only supposed to respond to stresses, but 
are also determined and influenced by several other aspects such as cultivars and soil 
properties. Although the both 2002 Exp and 2003 Exp were conducted in the same fields 
that had approximately identical climate and environmental conditions, the difference in 
cultivars and soil properties between 2002 Exp and 2003 Exp should not be ignored (Table 
1). To minimize this discrepancy, we calculated a ratio spectral curve for each of 
measured dates (after the normalization of the measuring dates) by the averaged spectral 
curve from normal samples in 2002 Exp divi ded by the averaged spectral curve from 
normal samples in 2003 Exp, resulting in a total of five ratio curves corresponding to each 
growth stage (Fig. 3). After that, all the spectral data measured at different growth stages 
were multiplied by the corresponding ratio curv es to yield a set of normalized spectra. It 
should be pointed out that the present normalization processing to raw spectral 
measurements will only enhance the comparability between the 2002 Exp and 2003 Exp 
with little change in internal relations amon g different treatments because all the spectral 
data at one growth stage were processed with the same ratio curve. The ultimate goal of 
all these preprocessing and normalization steps above is to mitigate effects of the 
variation of illumination conditions, measur ement dates, cultivars and soil properties 
between the 2002 Exp and 2003 Exp on target spectra. 

2.1.1.5 Spectral features calculation and statistical analysis  

With the spectra normalized using the methods above, we calculated 38 spectral features. 
An analysis of variance (ANOVA) was employ ed to investigate the spectral differences 
between the normal samples and all forms of stressed samples. Firstly, on different 
measured dates, both the yellow rust disease data and nutrient stressed data were compared 
with the normal data by ANOVA. For those spectral features that were consistently 
sensitive to yellow rust disease, we not only tested their differences between the normal 
treatment and different forms of stresses, but also tested the differences between various 
kinds of nutrient stresses and varying levels of disease stresses with ANOVA. Statistical 
analyses were conducted using SPSS 13.0 procedure. 

2.1.2 Results 

2.1.2.1 Spectra after normalizations 

The spectral ratio curves in Fig 3 reflect the deviations between 2002 Exp and 2003 Exp’s 
reflectance datasets at different wavelength positions. The ratio value close to 1.0 indicates 
no difference in reflectance exists between the two years. Generally, the ratio values ranged 
from 0.7 to 1.3, with an uneven distribution  along the wavelength axis (Fig 3). The ratio 
tended to deviate from 1.0 in the regions of 350 - 730 nm, 1450 - 1570 and 2000 - 2400 nm, but 
stayed around 1.0 in the regions of 730 - 1330 nm and 1570 - 1770 nm. To assess the 
improvement in comparability, we examined the difference of normalized datasets of 
normal samples between 2002 Exp and 2003 Exp through an ANOVA with all 38 spectral 
features. The result showed that the differences of all spectral features were insignificant at 
all growth stages (p-value>0.05), with an average p-value (for all measuring dates) of 0.94, 
indicating a relatively high level of similarity between two datasets. Therefore, we 
confirmed that such normalization processes minimized the spectral difference originated  
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Fig. 3. Ratios of spectra for normalization with different years and varieties  

from variation of illumination and different measurement dates, etc., and enabled more 
rational comparisons among different treatments. 

2.1.2.2 Spectral responses to different forms of stresses 

The result of ANOVA between normal samples and different forms of stress samples 
indicated that all spectral features had a response (defined as p-value<0.05) to at least one 
type of stresses at one growth stage, except for the WID1070-1320, which had no response to 
any form of stresses at all growth stages. Total 37 spectral features responded to water 
associated stresses (W-SD, W-SED, W-SED+N-E, W-SED+N-D) at least at one growth stage, 
followed by 35 spectral features to yellow rust  disease, whereas only15 spectral features had 
a response to solely nitrogen stress (N-E, N-D). As summarized in Table 3, most spectral 
features were sensitive to yellow rust infectio n at least at one growth stage, except for �Ìb, �Ìr 
and WID1070-1320. In addition, most spectral features tended to be more sensitive at later 
growth stages than at the early stages. For example, several features such as DEP920-1120, 
AREA920-1120, Dy, GI, NDVI and Triangular Vegetation Index (TVI) only had a response to 
yellow rust at the last growth stage in our study (233 DAS). However, for the sake of 
diagnosis, the spectral features with a consistent response to yellow rust during the 
important growing period would be much more valuable. Therefore, those spectral features 
that were sensitive to the yellow rust at 4 out of 5 growth stages were selected as candidates 
for disease diagnosis. This yielded four vegetation indices (VIs): PRI, PhRI, NPCI and ARI. 

2.1.2.3 One way ANOVA of four di sease sensitive spectral features 

Particularly for the four identified VIs that closely associated with yellow rust disease, a 
throughout one way ANOVA was conducted to compare their differences between the  
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from variation of illumination and different measurement dates, etc., and enabled more 
rational comparisons among different treatments. 

2.1.2.2 Spectral responses to different forms of stresses 

The result of ANOVA between normal samples and different forms of stress samples 
indicated that all spectral features had a response (defined as p-value<0.05) to at least one 
type of stresses at one growth stage, except for the WID1070-1320, which had no response to 
any form of stresses at all growth stages. Total 37 spectral features responded to water 
associated stresses (W-SD, W-SED, W-SED+N-E, W-SED+N-D) at least at one growth stage, 
followed by 35 spectral features to yellow rust  disease, whereas only15 spectral features had 
a response to solely nitrogen stress (N-E, N-D). As summarized in Table 3, most spectral 
features were sensitive to yellow rust infectio n at least at one growth stage, except for �Ìb, �Ìr 
and WID1070-1320. In addition, most spectral features tended to be more sensitive at later 
growth stages than at the early stages. For example, several features such as DEP920-1120, 
AREA920-1120, Dy, GI, NDVI and Triangular Vegetation Index (TVI) only had a response to 
yellow rust at the last growth stage in our study (233 DAS). However, for the sake of 
diagnosis, the spectral features with a consistent response to yellow rust during the 
important growing period would be much more valuable. Therefore, those spectral features 
that were sensitive to the yellow rust at 4 out of 5 growth stages were selected as candidates 
for disease diagnosis. This yielded four vegetation indices (VIs): PRI, PhRI, NPCI and ARI. 

2.1.2.3 One way ANOVA of four di sease sensitive spectral features 

Particularly for the four identified VIs that closely associated with yellow rust disease, a 
throughout one way ANOVA was conducted to compare their differences between the  
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Spectral features 
Days after sowing 

207 216 225 230 233 

DEP550-770 �¥   �¥ �¥ 

AREA550-770 �¥   �¥ �¥ 

WID550-770   �¥ �¥ �¥ 

DEP920-1120     �¥ 

AREA920-1120     �¥ 

WID920-1120     �¥ 

DEP1070-1320     �¥ 

AREA1070-1320     �¥ 

Db   �¥ �¥  

SDb   �¥ �¥ �¥ 

Dy     �¥ 

�Ìy     �¥ 

SDy     �¥ 

Dr    �¥  

SDr    �¥ �¥ 

GI     �¥ 

MSR    �¥ �¥ 

NDVI     �¥ 

NBNDVI    �¥ �¥ 

NRI     �¥ 

PRI  �¥ �¥ �¥ �¥ 

TCARI   �¥ �¥  

SIPI     �¥ 

PSRI �¥   �¥ �¥ 

PhRI  �¥ �¥ �¥ �¥ 

NPCI �¥  �¥ �¥ �¥ 

ARI �¥  �¥ �¥ �¥ 

TVI     �¥ 

CARI   �¥ �¥ �¥ 

DSWI     �¥ 

MSI     �¥ 

SIWSI     �¥ 

RVSI   �¥ �¥  

MCARI   �¥ �¥ �¥ 

WI     �¥ 

Table 3. Responses of spectral features to yellow rust 
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normal sample and various kinds of stressed samples. Moreover, their differences among 
each pairs of stress forms were also compared. We conducted this ANOVA based on the 
data on 207 DAS, 225 DAS and 233 DAS respectively, which were essential growth stages 
for carrying out fungicide spraying and yield loss assessing procedures. In addition to the p-
value of ANOVA, we also provided the change direction of spectral features. Positive sign 
indicates the average spectral feature value of diseased or nutrient stressed samples is 
greater than that of normal samples, and negative sign indicates the opposite cases to the 
positive sign. As shown in Table 4, it was observed that for the treatments of N-E and N-D, 
all four VIs failed to show any response at all growth stages. For the results of other 
treatments, the responses of four VIs behaved in a varied pattern at three growth stages.  

For the results on 207 DAS (Table 4a), compared to the normal samples, the NPCI and ARI 
had responses to all three levels of yellow rust treatments (YR 1, YR 2, YR 3), and appeared 
to be more sensitive than PRI and PhRI. For nutrient stresses, the PRI, NPCI and ARI were 
sensitive to W-SED and W-SED+N-E treatments. Among th em, NPCI and ARI showed 
stronger responses (p-value<0.01) to W-SD, W-SED, W-SED+N-E and W-SED+N-D 
treatments than the other two VIs. For the comparisons between diseased samples and 
nutrient stressed samples, significant differences between W-SED and W-SED+N-E 
treatments and YR2 and YR3 treatments were identified for PRI, NPCI and ARI. Moreover, 
the change directions of the three VIs for diseased and nutrient stressed samples were 
identical. At this 207 DAS growth stage, PhRI did not show a significant response to any of 
three levels of disease treatments, but responded to W-SD, W-SED and W-SED+N-E 
treatments. It is interesting that the change direction of diseased samples of PhRI was 
contrary to that of the nutrient stressed samples, suggesting a discriminating potential of the 
index. 

For the results on 225 DAS (Table 4b), compared to the normal samples, all four VIs revealed 
a clear response to level 2 and level 3 of yellow rust treatments (YR2, YR3). For nutrient 
stresses, PRI, NPCI and ARI also appeared to be sensitive to W-SD, W-SED, W-SED+N-E 
and W-SED+N-D treatments. However, PhRI was insensitive to all nutrient stresses. In 
addition, when we looked at the difference of those VIs between diseased samples and 
nutrient stressed samples, only PhRI showed clear differences between YR2 and YR3 
treatments and W-SD, W-SED, W-SED+N-E, and W-SED+N-D treatments. Although a 
significant difference between YR3 treatment and W-SED treatment also existed for ARI and 
NPCI, the change directions of both treatments were identical. However, for PhRI, the 
change directions of all levels of disease treatments were different from  those of the nutrient 
stress treatments.  

For the results on 233 DAS (Table 4c), with further development of disease symptoms, 
compared to the normal samples, all four indices showed responses to all three levels of 
disease treatments. Comparing to YR1 treatment, the four VIs had shown a stronger 
significant level ( p-value<0.01) for YR2, YR3 treatments. For nutrient stresses, PRI, NPCI and 
ARI exhibited clear responses to W-SED, W-SED+N-E and W-SED+N-D treatments as well. 
For comparisons between diseased and nutrient stressed samples, PRI and NPCI appeared 
to be significantly different between YR2 and YR3 treatments and W-SD treatment. 
However, the change directions of both treatments were identical. Unlike the other three VIs, 
PhRI remained insensitive to the nutrient stresses, but was significantly different among all 
levels of disease treatments (YR1, YR2, and YR3) and all forms of nutrient stresses. More  
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normal sample and various kinds of stressed samples. Moreover, their differences among 
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stronger responses (p-value<0.01) to W-SD, W-SED, W-SED+N-E and W-SED+N-D 
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disease treatments. Comparing to YR1 treatment, the four VIs had shown a stronger 
significant level ( p-value<0.01) for YR2, YR3 treatments. For nutrient stresses, PRI, NPCI and 
ARI exhibited clear responses to W-SED, W-SED+N-E and W-SED+N-D treatments as well. 
For comparisons between diseased and nutrient stressed samples, PRI and NPCI appeared 
to be significantly different between YR2 and YR3 treatments and W-SD treatment. 
However, the change directions of both treatments were identical. Unlike the other three VIs, 
PhRI remained insensitive to the nutrient stresses, but was significantly different among all 
levels of disease treatments (YR1, YR2, and YR3) and all forms of nutrient stresses. More  
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*mean difference is significant at 0.950 confidence level; **mean difference is significant at 0.990 
confidence level;*** mean difference is significant at 0.999 confidence level. (+) means the average 
spectral feature value of diseased or nutrient stressed samples greater than that of normal samples; or 
means the average spectral feature value of nutrient stressed samples greater than that of diseased 
samples; (-) means the opposite cases to the case of (+). The definitions of treatments are as follows: 
“Normal” represents normal samples; “W-SD” represen ts samples treated with slightly deficient water; 
“W-SED” represents samples treated with seriously deficient water; “N-E” re presents samples treated 
with excessive nitrogen; “N-D” represents samples  treated with deficient nitrogen; “W-SED+N-E” 
represents samples treated with seriously deficient water and excessive nitrogen; “W-SED+N-D” 
represents samples treated with seriously deficient water and deficient nitrogen  

Table 4. ANOVA for four VIs separately on 207 DAS, 225 DAS and 233 DAS 

importantly for the PhRI, the change directions of diseased samples were opposite to those 
of nutrient stressed samples throughout the entire analysis.  

In summary, all four VIs showed a significant sensitivity to yellow rust disease on 207 DAS, 
225 DAS and 233 DAS. However, most of them also appeared to be sensitive to water 
associated stresses to a varing extent, except for PhRI, which was only sensitive to disease 
yet insensitive to any forms of nutrient stre sses on 225 DAS and 233 DAS. More importantly, 
the change directions of PhRI to disease treatments were always opposite to those to the 
nutrient stress treatments at all relevant growth stages. This further confirmed the 
discriminating characteristic of PhRI. 
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2.1.3 Conclusion 

Combining with a dataset of yellow rust disease inoculation and a dataset of various forms 
of nutrient stress treatments, we examined the responses of 38 commonly used spectral 
features at five important growth stages fr om booting stage to milk development stage 
using a one-way analysis of variance (ANOVA). There were 37 spectral features sensitive to 
water associated stresses, 35 spectral features sensitive to yellow rust disease and only 15 
spectral features sensitive to sole nitrogen stresses in at least one growth stage. It was 
observed that more spectral features appeared to have a response to yellow rust disease at 
later growth stages. A throughout ANOVA was conducted particularly on PRI, PhRI, NPCI 
and ARI, which showed a consistent response to yellow rust disease at 4 out of 5 growth 
stages. However, PRI, NPCI and ARI were also responsible for water associated stresses, 
suggesting a risk of confusion in detecting yellow rust disease. Only PhRI was sensitive to 
yellow rust disease, but insensitive to different forms of nutrient stresses. The discriminative 
response of PhRI could provide a means of identifying and detecting yellow rust disease 
under complicated farmland circumstances. This finding can serve the basis of remote 
sensing system for detecting yellow rust disease.  

2.2 Detecting yellow rust using field and airborne hyperspectral data 

The aim of this study was to evaluate the accuracy of the spectro-optical, photochemical 
reflectance index (PRI) for quantifying the disease index (DI) of yellow rust in wheat using 
in-situ spectral reflectance measurements, and its applicability in the detection of the disease 
using hyperspectral imagery. 

2.2.1 Materials and methods 

2.2.1.1 Experimental design and field conditions 

Experimental design and field conditions was same as 1.1.1. Experimental data from 2002 
Exp were used to establish the statistical models, and the data for 2003 Exp were used to 
validate the models developed.  

2.2.1.2 Inspection of disease severity 

To quantify the severity of the disease of yellow  rust, the leaves of plants were grouped into 
one of 9 classifications of disease incidence (x): 0,1, 10, 20, 30, 45, 60, 80 and 100% covered by 
rust. 0% represented no incidence of yellow rust, and 100% was the greatest incidence. The 
disease index (DI) was then calculated using (Li et al. 1989): 

�� ��
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n f
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where f is the total number of leaves of each degree of disease severity and n is the degree of 
disease severity observed (in this work, n ranged from 0 to 8). In each plot, 20 individuals 
were randomly selected for check. 

2.2.1.3 Canopy spectral measurements 

The method of canopy spectral measurements and data was same as the part 1.1.1.2 above. 
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stages. However, PRI, NPCI and ARI were also responsible for water associated stresses, 
suggesting a risk of confusion in detecting yellow rust disease. Only PhRI was sensitive to 
yellow rust disease, but insensitive to different forms of nutrient stresses. The discriminative 
response of PhRI could provide a means of identifying and detecting yellow rust disease 
under complicated farmland circumstances. This finding can serve the basis of remote 
sensing system for detecting yellow rust disease.  

2.2 Detecting yellow rust using field and airborne hyperspectral data 

The aim of this study was to evaluate the accuracy of the spectro-optical, photochemical 
reflectance index (PRI) for quantifying the disease index (DI) of yellow rust in wheat using 
in-situ spectral reflectance measurements, and its applicability in the detection of the disease 
using hyperspectral imagery. 

2.2.1 Materials and methods 

2.2.1.1 Experimental design and field conditions 

Experimental design and field conditions was same as 1.1.1. Experimental data from 2002 
Exp were used to establish the statistical models, and the data for 2003 Exp were used to 
validate the models developed.  

2.2.1.2 Inspection of disease severity 

To quantify the severity of the disease of yellow  rust, the leaves of plants were grouped into 
one of 9 classifications of disease incidence (x): 0,1, 10, 20, 30, 45, 60, 80 and 100% covered by 
rust. 0% represented no incidence of yellow rust, and 100% was the greatest incidence. The 
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where f is the total number of leaves of each degree of disease severity and n is the degree of 
disease severity observed (in this work, n ranged from 0 to 8). In each plot, 20 individuals 
were randomly selected for check. 

2.2.1.3 Canopy spectral measurements 

The method of canopy spectral measurements and data was same as the part 1.1.1.2 above. 
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2.2.1.4 Airborne hyperspectral imaging 

Airborne hyperspectral images of the trial field were acquired in 2003 using the Pushbroom 
Hyperspectral Imager (PHI) designed by the Chinese Academy of Science (CAS) and flown 
onboard a Yun-5 aircraft (Shijiazhuang Aircra ft Manufacturing Company, China). The PHI 
comprises a solid state, area array, and silicon CCD device of 780 × 244 elements. It has a field 
of view of 21o, and is capable of acquiring images of 1 m × 1 m spatial resolution at an altitude 
of 1000 m above ground. The wavelength range is 400–850 nm with a spectral resolution of 5 
nm. Images of the target field were acquired in 2003 at the phenological growth stages of stem 
elongation (April 18, 2003, Zadoks stage 3), anthesis (May 17, 2003, Zadoks stage 5) and milky 
maturity (May 31, 2003, Zadoks stage 8). The inoculated wheat was adequately infected by 
rust on April 18, obviously infected by May 17, and seriously infected by May 31. 
Measurements of DI were made and in situ canopy reflectance spectra were also acquired on 
the same dates. All images were geometrically and radiometrically corrected using an array of 
georeferenced light and dark targets (5 m x 5 m) located at the extremes of the field site. The 
aforementioned field spectrometer was used to calibrate these targets relative to BaSO4. The 
location of each target, as well as field measurements of DI were recorded using a differential 
global positioning system (Trimble Sunnyvale California, USA).  

2.2.1.5 Photochemical reflectance index (PRI) 

Because yellow rust epiphyte reduced foliar physiological activity by destroying foliar 
pigments, the photochemical reflectance index (PRI) was selected as the spectrophotometric 
method of estimating the disease index. PRI was calculated by the formula in Table 2. 

2.2.2 Results 

2.2.2.1 PRI versus DI 

Fig. 4 shows a plot of the measured DI as a function of PRI for all varieties. The data points 
associated with the variety Xuezao dominate in the top-left region of the scatter plot 
(relatively high range of DI), while those associ ated with the variety 98-100 are located in the 
mid region (mid-range DI) an d those associated with Jing 411 dominate the lower right 
region. This distribution trend is consistent with the relative susceptibility of these varieties 
to rust; Xuezao is the least resistant and Jing 411 has the greatest resistance. The regression 
equation of DI using PRI in 2002 Exp was obtained as following (n = 64): 

� � � � � � � � �� ��2DI % 721.22 2.40         0.14 0.02 0 91PRI PRI ; r .�  � � � � � � � d � d �    

An important feature in, the associated regression equation (Fig. 4) was that the spectrally-
derived PRI explained 91% of the variance observed in the disease index. This explanation 
also encompassed the three varieties of wheat as well as the four stages of crop development 
for each variety. In the subsequent validation of the PRI-DI regression equation with the 
2003 Exp data (Fig. 5), the coefficient of determination (R 2) between the estimated and 
measured values was 0.97 (n = 80). 

In Fig. 5, the locations of data points associated with individual varieties wew consistent 
with the levels of resistance to rust. Xuezao dominated the top right-hand region of the 
scatter plot (relatively high range of DI), the variety 98-100 had points scattered all along the  

 
Crop Disease and Pest Monitoring by Remote Sensing 

 

47 

R
2
 = 0.91

0

10

20

30

40

50

60

70

80

90

100

-0.14 -0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02

PRI

D
I (

%
)

 
Fig. 4. Plot of measured disease index (DI) as a function of measured photochemical 
reflectance index(PRI) for all varieties combined in 2002 Exp. �¦ : Jing 411; +: Xuezao; �L: 98–100 
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Fig. 5. Comparison of measured DI and PRI-estimated DI for 2003 Exp; ‘�¦’ = Jing 411;�< +’ = 
Xuezao; ‘�L’ = 98–100 

regression line (predominantly mid-range DI), and Jing 411 was concentrated in the central 
lower-left region (lower range DI).  

2.2.2.2 Application of multi-temporal PHI images for DI estimation 

The DI was estimated on a pixel-by-pixel basis in each of the acquired PHI images using the 
regression equation. To map the degree of yellow rust infection in the trial field, the DI was 
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2.2.1.4 Airborne hyperspectral imaging 
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pigments, the photochemical reflectance index (PRI) was selected as the spectrophotometric 
method of estimating the disease index. PRI was calculated by the formula in Table 2. 

2.2.2 Results 
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Fig. 4 shows a plot of the measured DI as a function of PRI for all varieties. The data points 
associated with the variety Xuezao dominate in the top-left region of the scatter plot 
(relatively high range of DI), while those associ ated with the variety 98-100 are located in the 
mid region (mid-range DI) an d those associated with Jing 411 dominate the lower right 
region. This distribution trend is consistent with the relative susceptibility of these varieties 
to rust; Xuezao is the least resistant and Jing 411 has the greatest resistance. The regression 
equation of DI using PRI in 2002 Exp was obtained as following (n = 64): 
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An important feature in, the associated regression equation (Fig. 4) was that the spectrally-
derived PRI explained 91% of the variance observed in the disease index. This explanation 
also encompassed the three varieties of wheat as well as the four stages of crop development 
for each variety. In the subsequent validation of the PRI-DI regression equation with the 
2003 Exp data (Fig. 5), the coefficient of determination (R 2) between the estimated and 
measured values was 0.97 (n = 80). 

In Fig. 5, the locations of data points associated with individual varieties wew consistent 
with the levels of resistance to rust. Xuezao dominated the top right-hand region of the 
scatter plot (relatively high range of DI), the variety 98-100 had points scattered all along the  
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regression line (predominantly mid-range DI), and Jing 411 was concentrated in the central 
lower-left region (lower range DI).  

2.2.2.2 Application of multi-temporal PHI images for DI estimation 

The DI was estimated on a pixel-by-pixel basis in each of the acquired PHI images using the 
regression equation. To map the degree of yellow rust infection in the trial field, the DI was 
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binned into the following classes; very Serious (DI > 80%), serious (45% < DI �” 80%), 
moderate (10% < DI �” 45%), slight (1% < DI �” 10%) and none (0 < DI �” 1%) (Fig. 6). 

 
Fig. 6. Classi�Àed DI images derived from PHI airborne images of the trial site in 2003 Exp 

Fig. 7 shows the relationship between the DI calculated from the multi-temporal PHI images 
and the actual measured DI from the 120 sample sites located within the field (R 2=0.91). 
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Fig. 7. Comparison of PHI-derived estimates of DI and actual DI values for 2002 Exp. Data 
were extracted from all three imaging times, al though the DI values were< 20% for the April 
18 image 
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2.2.3 Conclusion 

The results of this work confirm PRI is a potential candidate for monitoring of yellow rust, 
and could form the basis of an on-the-go sensor and variable-rate spray applicator or remote 
detection and mapping process. 

2.3 Detecting yellow rust in winter wheat by spectral knowledge base 

In most cases, statistical models for monitoring the disease severity of yellow rust are based 
on hyperspectral information. The high cost and limited cover of airborne hyperspectral 
data make it impossible to apply such data for large scale monitoring. Furthermore, the 
established models of disease detection cannot be used for most satellite images because of 
the wide range of wavelengths in multispectral imag es (Zhang et al., 2011). 

To resolve this dilemma, the study presents a novel approach by constructing a spectral 
knowledge base (SKB) of winter wheat diseases, which takes the airborne images as a 
medium and links the disease severity with band reflectance from moderate resolution 
remotely sensed data, such as environment and disaster reduction small satellite images 
(HJ-CCD) accordingly. To achieve this goal, several algorithms and techniques for data 
conversion and matching are adopted in th e proposed system, including minimum noise 
fraction (MNF) transformation and pixel purity index (PPI) function. The performance of 
SKB is evaluated with both simulated data and field measured data. 

2.3.1 materials and methods 

Experimental design and field conditions was same as the part of 1.1.1.1 

2.3.1.1 Inspection of disease severity 

Please refer to the part of 1.2.1.2 above. 

2.3.1.2 Airborne hyperspectral imaging 

Please refer to the part of 1.2.1.4 above about airborne hyperspectral imaging and image 
processing. 

2.3.1.3 Acquisition of modera te resolution satellite images 

In this study, the SKB is designed to fit the charge coupled device (CCD) sensor, which is on 
the environment and disaster reduction small satellites (HJ-1A/B). The basic parameters of 
the CCD sensor (using ‘HJ-CCD’ in the following ) are given in Table.5. The four bands of  
 

 Properties of HJ-CCD 

Band 
Wavelength range 

(nm) 
Spatial resolution (m) Swath (km) Revisit time (day) 

Blue 0.430–0.520 

30 360 2 
Green 0.520–0.600 

Red 0.630–0.690 

Near-infrared 0.760–0.900 

Table 5. Properties of the environment and disaster reduction small satellites (HJ-CCD)  
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Fig. 7. Comparison of PHI-derived estimates of DI and actual DI values for 2002 Exp. Data 
were extracted from all three imaging times, al though the DI values were< 20% for the April 
18 image 
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(HJ-CCD) accordingly. To achieve this goal, several algorithms and techniques for data 
conversion and matching are adopted in th e proposed system, including minimum noise 
fraction (MNF) transformation and pixel purity index (PPI) function. The performance of 
SKB is evaluated with both simulated data and field measured data. 

2.3.1 materials and methods 

Experimental design and field conditions was same as the part of 1.1.1.1 

2.3.1.1 Inspection of disease severity 

Please refer to the part of 1.2.1.2 above. 

2.3.1.2 Airborne hyperspectral imaging 

Please refer to the part of 1.2.1.4 above about airborne hyperspectral imaging and image 
processing. 

2.3.1.3 Acquisition of modera te resolution satellite images 

In this study, the SKB is designed to fit the charge coupled device (CCD) sensor, which is on 
the environment and disaster reduction small satellites (HJ-1A/B). The basic parameters of 
the CCD sensor (using ‘HJ-CCD’ in the following ) are given in Table.5. The four bands of  
 

 Properties of HJ-CCD 

Band 
Wavelength range 

(nm) 
Spatial resolution (m) Swath (km) Revisit time (day) 

Blue 0.430–0.520 

30 360 2 
Green 0.520–0.600 

Red 0.630–0.690 

Near-infrared 0.760–0.900 

Table 5. Properties of the environment and disaster reduction small satellites (HJ-CCD)  
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HJ-CCD covered the visible and near infrared spectral regions. The HJ-CCD sensor has 
spectral and spatial characteristics that are similar to those of Landsat-5 TM, but the HJ-
1A/B satellites have more frequent revisit capability (2 days) than the Landsat-5 satellite (16 
days), which is of great importan ce for agricultural monitoring. 

2.3.1.4 Construction of th e spectral knowledge base 

The SKB in this study can be interpreted as a pool of relationships between spectral 
characteristics and prior knowledge. Here, prio r knowledge stands for the degree of severity 
of yellow rust, and the spectral characteristics are the reflectance of the initial four bands of 
the HJ-CCD image. Hence, there are two major steps involved in constructing the SKB. First, 
the relationship between hyperspectral information and severity is obtained with a stable 
empirical reversion model. Then, through th e RSR function of the HJ-CCD sensor, the 
hyperspectal data can be transferred to the wide-band reflectance. In this way, a one-to-one 
correspondence between the disease severity of yellow rust and reflectances from the HJ-
CCD sensor is established at the pixel level. The SKB can represent disease severity in two 
ways: the DI (%) value and the class of disease severity. The following sections describe each 
step for establishing the SKB, including data selection, the reversion model, simulation of 
the wide-band reflectance and estimating the degree of severity. A technical flow diagram of 
SKB construction is summarized in Fig. 8. 

 

 
 

Fig. 8. The flow chart for monitoring of DI(%) of winter wheat stripe rust, b1-b4 represented 
the reflectance of the four bands of HJ-CCD images 

As noted above, the SKB in this study comprised PHI pixels. The predicted accuracy 
obtained by the SKB was determined primarily by the amount of prior knowledge, which 
indicated the heterogeneity of disease severity. The design of the yellow rust fungus 
inoculation ensured a considerable variation in  disease severity within the experimental 
field, from healthy plants to ve ry diseased plants. In addition, to avoid using pixels on or 
near the ridge in the field that  are considered as mixed signals, we chose three rectangular 
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shaped areas that were within the field and comprised 7918 ‘crop-only’ pixels for 
constructing the SKB. 

2.3.1.5 Reversion model 

The reversion model construction was the first step of establishing the SKB. Based on the 
conclusion of the part above, PRI was a suitable vegetation index for monitoring the severity 
of yellow rust disease in winter wheat. Therefore, in this study, PRI was used to establish 
the linkage between the disease severity and the hyperspectral data. Specifically, the yellow 
rust infection would be apparent at anthesis stage, and this should be closely related with 
the subsequent yield loss. Therefore, we chose the PHI image at this stage to form the SKB. 
To obtain a better fitting model, we reanalyzed the PHI-PRI and corresponding DI (%) data 
at the anthesis stage specifically, and obtained a linear regression model. It should be noted 
that the data range of DI must be between 0 and 100%. Any predicted DI results that 
were�g 100% or �f 0% were redefined as DI = 100% and DI = 0% to represent very infected 
plants and healthy plants, respectively. 

2.3.1.6 Simulation of the wide band reflectance 

The second step of constructing the SKB is to transform the hyperspectral reflectance of PHI-
pixels to wide band reflectance of HJ-pixels. To achieve this goal, the best approach is the 
inherent relative spectral response (RSR) function of the HJ-CCD sensor. By integrating the 
hyperspectral reflectance of PHI-pixels on the RSR function, the band reflectance of HJ-CCD 
sensor was thus obtained. Besides, although the wavelength range of the fourth band of HJ-
CCD sensor (760 nm-900 nm) was slightly exceeded the maximum wavelength of PHI 
sensor (850 nm), for most ground measured spectra, the reflectance basically kept on steady 
from 760 nm to 900 nm. Hence, the simulating results generated using the incomplete range 
of wavelength (760nm-850nm) should approach to the true value. The integration can be 
shown as follows: 

( )
end

start

b

TM
b

R f x dx� �³  

where RTM is the simulated reflectance of a certain band; bstart and bend indicate the 
beginning and the end wavelength of this band respectively; f(x) indicates the RSR function, 
which is obtained from CRESDA. 

2.3.1.7 Spectral characteristics of different degrees of disease severity 

Another way to define the disease severity of an undefined pixel, apart from the DI (%) 
value, is to quantify disease severity by severity classes. The criterion of severity class 
provided by Huang et al. (2007) was adopted, which corresponded to the major 
physiological alteration of diseased plants. The DI (%) thresholds for each severity class 
were: DI�f 1% indicated not infected (NI), 1%�f DI �f 10% indicated a low degree of infection 
(LI), 10%�f DI �f 45% indicated mid-range infection (MI), 45%�f DI �f 80% indicated seriously 
infected (SI) and DI (%)�g 80% indicated very seriously infected (VI). The MNF 
transformation and PPI functi on, which are used for noise reduction and end-member 
identification, were applied here to select the most representative pixels from the PHI 
image, and to form the typical spectrum for each severity class. 
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shaped areas that were within the field and comprised 7918 ‘crop-only’ pixels for 
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rust infection would be apparent at anthesis stage, and this should be closely related with 
the subsequent yield loss. Therefore, we chose the PHI image at this stage to form the SKB. 
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sensor was thus obtained. Besides, although the wavelength range of the fourth band of HJ-
CCD sensor (760 nm-900 nm) was slightly exceeded the maximum wavelength of PHI 
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where RTM is the simulated reflectance of a certain band; bstart and bend indicate the 
beginning and the end wavelength of this band respectively; f(x) indicates the RSR function, 
which is obtained from CRESDA. 
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Another way to define the disease severity of an undefined pixel, apart from the DI (%) 
value, is to quantify disease severity by severity classes. The criterion of severity class 
provided by Huang et al. (2007) was adopted, which corresponded to the major 
physiological alteration of diseased plants. The DI (%) thresholds for each severity class 
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(LI), 10%�f DI �f 45% indicated mid-range infection (MI), 45%�f DI �f 80% indicated seriously 
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transformation and PPI functi on, which are used for noise reduction and end-member 
identification, were applied here to select the most representative pixels from the PHI 
image, and to form the typical spectrum for each severity class. 
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2.3.1.8 Spectral matching algorithms 

The basic idea of spectral matching is to identify a set of pixels in the SKB that are the closest 
to the undefined pixel in terms of spectral characteristics. Before matching, each pixel 
should be standardized to eliminate systematic variation caused by aerosol conditions or 
other factors as follows: 

min

max min
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R R

R R
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��

 

where Rnor is the standardized reflectance of a certain band, R is the original reflectance, and 
Rmin and Rmax are the minimum and maximum band refl ectance values, respectively, of the 
corresponding pixel. 

Mahalanobis distances (Mah) and Spectral angle (SA) were selected as the distance 
measurement criterion. Both types of distance measurements had been proved to be with 
high efficiency in reflecting the spectral dis crepancy (South et al., 2004; Goovaerts et al., 
2005; Becker et al., 2007). The Mah distance can be written as: 
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where x1-4 are the reflectance of the pixel under test in band1 to band4, respectively; xR1-4 are 
the simulated reflectance of a specific pixel in SKB. �™ is the covariance matrix between x and 
xR.SA can be calculated by the following formula: 
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To determine the DI (%) or class of disease severity of an unde�Àned pixel, we have to 
calculate the Mah and spectral angle from this pixel to each pixel or class in the SKB. A 
longer distance or larger angle indicates that the pixel deviated from the undefined pixel, 
whereas a shorter distance or smaller angle indicates that it is similar to the undefined pixel. 
By selecting the most similar pixel, the severity class of an undefined pixel can be 
determined. To determine the DI (%) of a certain pixel, the weighted average method was 
used. According to the distance criteria above, the five most similar pixels were selected 
from the SKB. For each band of these pixels (here we used the hyperspectral bands extracted 
from the PHI image), the reflectance was processed according to the following equation:  
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where RE is the estimated reflectance of a certain pixel through k-NN estimation; Ri is the 
reflectance of the ith nearest pixel according to the ranking order of the distance; di is the 
distance between the pixel under test to the ith nearest pixel. 
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2.3.1.9 Verification 

To verify the performance of SKB in identify ing and monitoring the severity of yellow rust 
diseases, two datasets were used: the simulated data and the field-measured data with 
corresponding satellite images. 

1. Verification of SKB using simulated data 
The simulated data comprised 50 randomly selected pixels in the same experimental field, 
but outside the three regions selected for constructing the SKB. The hyperspectral 
information of each pixel was used to create the reference DI (%) and severity class with 
the empirical model and the corresponding thresh old for each severity class. To test the 
performance of SKB in terms of DI (%) value, we estimated the DI value with both 
distance criteria described above. The samples were split into two: the pixels with a 
reference DI between 1 and 100%, i.e. the ‘diseased’ pixels, and those with a reference 
DI�f 1%, i.e. ‘healthy’ pixels. For the diseased pixels, the estimated DIs were compared 
with the reference DI by Pearson correlation analysis and the normalized root mean 
square error (NRMSE). For the healthy pixels, we used ‘yes or no’ to determine whether 
the estimated value indicated infection or not, which also provided an accuracy ratio. The 
estimation of severity class was verified by overall accuracy and the kappa coefficient. 

2. Verification of SKB using field surveyed data 
The field surveyed data sets included the ground investigation of disease severity and the 
corresponding HJ-CCD images. Between June 1–3, 2009, when the winter wheat was at the 
anthesis stage, we conducted a survey in the southeast of GanSu Province. The climate of 
the area surveyed is characterized by high humidity and rainfall, and yellow rust disease 
occurs almost every year. This area has similar environmental condit ions and cultivation 
customs to those where we constructing the SKB in Beijing, and this makes it an 
appropriate place for model verification. With the aid of the local Department of Plant 
Protection, 26 plots were randomly selected and surveyed in the area (Fig. 9). To relate the 
surveyed value to the pixel value of the HJ-CCD image, we defined the plot as a uniformly 
planted winter wheat region with an area no less than 30 m in radius. The geographical 
coordinates of each plot were measured by GPS at the centre of the plot. Disease severity 
was measured as described above. We repeated the measurement in �Àve evenly-
distributed sections in each plot, and 20 individual plants were included in each 
measurement. The HJ-CCD images (ID: 122516, 122518) acquired on June 2, 2009 
completely covered the surveyed area. The raw data from the HJ-CCD imagery was 
calibrated based on the corresponding coefficients provided by CRESDA. The calibrated 
data were atmospherically corrected with the algorithm provided by Liang et al. (2001), 
which estimated the spatial distribution of atmospheric aerosols and retrieved surface 
reflectance under general atmospheric and surface conditions. The images were also 
geometrically corrected against historical reference images with the same geographical 
coordinates. The images were rectified with a root mean square  error of less than 0.5 pixels. 
The spectrum of the each plot was extracted from the image according to the GPS records. 
The estimated accuracy in this step followed the same process as the simulated data. 

2.3.2 Results 

There were 7918 pixels included in the process of constructing the SKB. The linear 
regression model between DI (%) and PRI at anthesis stage could be illustrated as follows: 
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other factors as follows: 
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To determine the DI (%) or class of disease severity of an unde�Àned pixel, we have to 
calculate the Mah and spectral angle from this pixel to each pixel or class in the SKB. A 
longer distance or larger angle indicates that the pixel deviated from the undefined pixel, 
whereas a shorter distance or smaller angle indicates that it is similar to the undefined pixel. 
By selecting the most similar pixel, the severity class of an undefined pixel can be 
determined. To determine the DI (%) of a certain pixel, the weighted average method was 
used. According to the distance criteria above, the five most similar pixels were selected 
from the SKB. For each band of these pixels (here we used the hyperspectral bands extracted 
from the PHI image), the reflectance was processed according to the following equation:  
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where RE is the estimated reflectance of a certain pixel through k-NN estimation; Ri is the 
reflectance of the ith nearest pixel according to the ranking order of the distance; di is the 
distance between the pixel under test to the ith nearest pixel. 
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the estimated value indicated infection or not, which also provided an accuracy ratio. The 
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corresponding HJ-CCD images. Between June 1–3, 2009, when the winter wheat was at the 
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appropriate place for model verification. With the aid of the local Department of Plant 
Protection, 26 plots were randomly selected and surveyed in the area (Fig. 9). To relate the 
surveyed value to the pixel value of the HJ-CCD image, we defined the plot as a uniformly 
planted winter wheat region with an area no less than 30 m in radius. The geographical 
coordinates of each plot were measured by GPS at the centre of the plot. Disease severity 
was measured as described above. We repeated the measurement in �Àve evenly-
distributed sections in each plot, and 20 individual plants were included in each 
measurement. The HJ-CCD images (ID: 122516, 122518) acquired on June 2, 2009 
completely covered the surveyed area. The raw data from the HJ-CCD imagery was 
calibrated based on the corresponding coefficients provided by CRESDA. The calibrated 
data were atmospherically corrected with the algorithm provided by Liang et al. (2001), 
which estimated the spatial distribution of atmospheric aerosols and retrieved surface 
reflectance under general atmospheric and surface conditions. The images were also 
geometrically corrected against historical reference images with the same geographical 
coordinates. The images were rectified with a root mean square  error of less than 0.5 pixels. 
The spectrum of the each plot was extracted from the image according to the GPS records. 
The estimated accuracy in this step followed the same process as the simulated data. 

2.3.2 Results 

There were 7918 pixels included in the process of constructing the SKB. The linear 
regression model between DI (%) and PRI at anthesis stage could be illustrated as follows: 
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Fig. 9. The field surveyed area in Gansu Province. The base image is the HJ-CCD image 
acquired on June 2, 2009 

(%) 538.98 2.0983DI PRI�  � � � u � � (R2=0.88) 

The pairs of DI (%) and PRI were plotted in Fig.4, which showed a significant correlation (R2 
= 0.88). Based on the model, there were 85 pixels with a DI of 100% and 3991 pixels with a 
DI between 1%and 100%, indicating 51.5%pixels infected to a varied degree of severity, 
whereas the other 48.5% pixels (DI = 0%) were healthy plants. In the experimental field, the 
variation in the degree of severity of yellow ru st from totally healthy plants to very infected 
plants provided the essential diversity or he terogeneity of infection, which then enabled 
establishment of the SKB. The MNF transformation resulted in 9 leading eigenvectors with 
eigenvalues greater than 4.0 (Fig. 10), and these were used for further analysis. 

2.3.2.1 Performance of SKB for simulated data 

In the simulated dataset, there were six healthy pixels and 44 diseases affected ones. When 
estimating DI (%), one pixel with no infection was estimated as infected by the Mah distance 
criterion, whereas with the SA criterion two were mislabeled. Fig.11 shows the scatter of the 
disease affected pixels plotted in relation to reference DI and estimated DI; the average 
reference DI is 36%. The reference DIs and estimated DIs were strongly and linearly 
correlated for both the Mah distance (R2 = 0.90) and SA (R2 = 0.84) criteria. Further, the 
NRMSE of Mah distance and SA were 0.20 and 0.24, respectively, indicating that the SKB 
can estimate DIs accurately from the simulated multi-band reflectance.  
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Fig. 10. MNF eigenvalues variation trend 

 
Fig. 11. Estimated DI(%) using simulated data 

Table 6 gives the reference class of disease severity and the estimated class in the form of an 
error matrix. The overall accuracy with Mah distance and the SA criterion were 0.80 and 
0.76, respectively, whereas the kappa coefficients were 0.71 and 0.65, respectively. However, 
we noticed that all the misclassified pixels were  assigned to no more than one class adjacent 
to the reference class. Therefore, for simulated data, the classification accuracy was 
satisfactory in determining the severity  class of yellow rust by SKB.  

2.3.2.2 Performance of SKB for field surveyed data 

Apart from the verification ag ainst simulated data, more impo rtantly, the field surveyed 
data can be also used to assess the performance of the SKB. The field investigation showed 
that eight out of 26 plots were infected with  DI ranged from 4 to 90%, whereas the other 18 
plots were not affected by yellow rust. The estimation by DI (%) successfully identified the 
eight infected plots when the Mah distance cr iterion was used, whereas the SA criterion  
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Fig. 11. Estimated DI(%) using simulated data 
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 Reference

  None Low range 
Mid 

range 
Serious 

Very 
serious 

Total 

Estimation 
(Mah) 

None 6 0 0 0 0 6 

Low ran ge 0 5 2 0 0 7 

Mid ran ge 0 1 20 2 0 23 

Serious 0 0 1 10 1 12 

Very 
serious

0 0 0 1 1 2 

Total 6 6 23 13 2 50 

Estimation 
(SA) 

None 5 1 0 0 0 6 

Low ran ge 1 4 1 0 0 6 

Mid ran ge 0 1 20 2 0 23 

Serious 0 0 2 9 1 12 

Very 
serious

0 0 0 2 1 3 

Total 6 6 23 13 2 50 

Table 6. Error matrix for simulated data 

resulted in one misestimated plot. Figure 7 shows the scatter of the eight data plotted in 
relation to reference DI and estimated DI for both distance criteria. There was a significant 
linear trend in graphs based on both the Mah distance and SA criteria. The R2 of Mah distance 
and SA were 0.80 and 0.67, respectively, whereas the NRMSE were as high as 0.46 and 0.55. In 
real circumstances, approximately 50% error in the estimated disease index is unsatisfactory. 
On the other hand, however, most of the uninfected plots were correctly identified according 
to DI (%) estimates (i.e. a DI<1%). For both the Mah distance and SA criteria, 15 out of 18 non-
infected plots had been identified correctly, resu lting in an accuracy of 77.8%. The results for 
estimating disease severity by severity class were even more encouraging. The overall 
accuracy for the Mah distance and SA criteria were 0.77 and 0.73, respectively, whereas the 
kappa coefficients are 0.58 and 0.49, respectively. Table 3 gives the error matrix for both 
criteria. The misclassified pixels were also assigned exclusively to the adjacent class.  

In general, the above results demonstrate that the proposed SKB scheme has great potential for 
detecting the incidence and severity of yellow rust through multispectral images. As shown 
from several previous studies, the image processing method of MNF transformation was 
efficient in extracting the principle information from the images related to wheat disease 
infection (Zhang et al. 2003; Franke and Menz 2007). For the present study, we found that 
coupling MNF transformation with the PPI function was an appropriate way of extracting the 
principle information on yellow rust disease. To estimate disease severity by DI (%), the 
proposed SKB has achieved a satisfactory accuracy for simulated data. However, the estimated 
accuracy for field surveyed data was unsatisfactory, implying that the method tends to 
underestimate or overestimate the disease severity in practice. Nevertheless, to estimate disease 
severity through disease severity class has achieved a satisfactory accuracy for both simulated 
data and field surveyed data. Therefore, the disease severity class seems to be more robust in 
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determining the disease severity. This might be because it is more rough estimation than DI (%). 
It is understandable that for the same sample, the less precise the criterion, the greater accuracy 
it would achieve. Moreover, the 5-class disease severity quantification is enough to guide field 
applications. We suggest that DI (%) should be used for detecting the disease severity of yellow 
rust by SKB. For the distance criteria used in the process of matching with SKB, the Mah 
distance criterion might be more appropriate because it performed better than SA in all the 
analyses conducted in this study (Figs. 11, 12, Tables 6, 7). Some previous studies have already 
emphasized the potential of hyperspectral imagery (Bravo et al. 2003; Moshou et al. 2004; 
Huang et al. 2007) and the high-resolution of multispectral imagery (Franke and Menz 2007) for 
detecting yellow rust disease. The development of SKB in the present study can be viewed as a 
scaling up method, which has extended the capability of detecting yellow rust disease from 
hyper- spectral imagery to the moderate resolution of multispectral imagery. However, it 
should be noted that the task of monitoring the occurrence and degrees of infection of crop 
diseases is far more complex than the cases described in this study. The spectral characteristics 
of yellow rust infection might appear similar to other sources of stress. In addition, the impact 
of phenology, cultivation methods, fragmentation of farmlands and other environmental 
conditions would also increase the difficulty and uncertainty of the estimation process. 
Therefore, the SKB developed in this study should correspond to the situation at the anthesis 
stage exclusively, and is only suitable for those regions with similar environmental 
characteristics and cultivation methods. For other regions with significantly different 
environmental characteristics, this purposed SKB may not work well. The possible solution to 
these problems may include incorporating suitable priors, which would require integration 
strategies and understanding of the mechanisms underlying some fundamental processes. 
Further research is required to address the problems mentioned above. 

 
Fig. 12. Estimated DI(%) using field measurements 

2.3.3 Conclusion 

The low spatial resolution and few spectral ban ds have limited the application of moderate 
resolution satellite images for monitoring yellow rust disease. The spectral knowledge base 
developed enabled disease incidence and severity to be detected by moderate resolution 
satellite images. The SKB supported two ways of estimating disease severity: the disease 



 
Remote Sensing – Applications 

 

56

 Reference

  None Low range 
Mid 

range 
Serious 

Very 
serious 

Total 

Estimation 
(Mah) 

None 6 0 0 0 0 6 

Low ran ge 0 5 2 0 0 7 

Mid ran ge 0 1 20 2 0 23 

Serious 0 0 1 10 1 12 

Very 
serious

0 0 0 1 1 2 

Total 6 6 23 13 2 50 

Estimation 
(SA) 

None 5 1 0 0 0 6 

Low ran ge 1 4 1 0 0 6 

Mid ran ge 0 1 20 2 0 23 

Serious 0 0 2 9 1 12 

Very 
serious

0 0 0 2 1 3 

Total 6 6 23 13 2 50 

Table 6. Error matrix for simulated data 

resulted in one misestimated plot. Figure 7 shows the scatter of the eight data plotted in 
relation to reference DI and estimated DI for both distance criteria. There was a significant 
linear trend in graphs based on both the Mah distance and SA criteria. The R2 of Mah distance 
and SA were 0.80 and 0.67, respectively, whereas the NRMSE were as high as 0.46 and 0.55. In 
real circumstances, approximately 50% error in the estimated disease index is unsatisfactory. 
On the other hand, however, most of the uninfected plots were correctly identified according 
to DI (%) estimates (i.e. a DI<1%). For both the Mah distance and SA criteria, 15 out of 18 non-
infected plots had been identified correctly, resu lting in an accuracy of 77.8%. The results for 
estimating disease severity by severity class were even more encouraging. The overall 
accuracy for the Mah distance and SA criteria were 0.77 and 0.73, respectively, whereas the 
kappa coefficients are 0.58 and 0.49, respectively. Table 3 gives the error matrix for both 
criteria. The misclassified pixels were also assigned exclusively to the adjacent class.  

In general, the above results demonstrate that the proposed SKB scheme has great potential for 
detecting the incidence and severity of yellow rust through multispectral images. As shown 
from several previous studies, the image processing method of MNF transformation was 
efficient in extracting the principle information from the images related to wheat disease 
infection (Zhang et al. 2003; Franke and Menz 2007). For the present study, we found that 
coupling MNF transformation with the PPI function was an appropriate way of extracting the 
principle information on yellow rust disease. To estimate disease severity by DI (%), the 
proposed SKB has achieved a satisfactory accuracy for simulated data. However, the estimated 
accuracy for field surveyed data was unsatisfactory, implying that the method tends to 
underestimate or overestimate the disease severity in practice. Nevertheless, to estimate disease 
severity through disease severity class has achieved a satisfactory accuracy for both simulated 
data and field surveyed data. Therefore, the disease severity class seems to be more robust in 

 
Crop Disease and Pest Monitoring by Remote Sensing 

 

57 

determining the disease severity. This might be because it is more rough estimation than DI (%). 
It is understandable that for the same sample, the less precise the criterion, the greater accuracy 
it would achieve. Moreover, the 5-class disease severity quantification is enough to guide field 
applications. We suggest that DI (%) should be used for detecting the disease severity of yellow 
rust by SKB. For the distance criteria used in the process of matching with SKB, the Mah 
distance criterion might be more appropriate because it performed better than SA in all the 
analyses conducted in this study (Figs. 11, 12, Tables 6, 7). Some previous studies have already 
emphasized the potential of hyperspectral imagery (Bravo et al. 2003; Moshou et al. 2004; 
Huang et al. 2007) and the high-resolution of multispectral imagery (Franke and Menz 2007) for 
detecting yellow rust disease. The development of SKB in the present study can be viewed as a 
scaling up method, which has extended the capability of detecting yellow rust disease from 
hyper- spectral imagery to the moderate resolution of multispectral imagery. However, it 
should be noted that the task of monitoring the occurrence and degrees of infection of crop 
diseases is far more complex than the cases described in this study. The spectral characteristics 
of yellow rust infection might appear similar to other sources of stress. In addition, the impact 
of phenology, cultivation methods, fragmentation of farmlands and other environmental 
conditions would also increase the difficulty and uncertainty of the estimation process. 
Therefore, the SKB developed in this study should correspond to the situation at the anthesis 
stage exclusively, and is only suitable for those regions with similar environmental 
characteristics and cultivation methods. For other regions with significantly different 
environmental characteristics, this purposed SKB may not work well. The possible solution to 
these problems may include incorporating suitable priors, which would require integration 
strategies and understanding of the mechanisms underlying some fundamental processes. 
Further research is required to address the problems mentioned above. 

 
Fig. 12. Estimated DI(%) using field measurements 

2.3.3 Conclusion 

The low spatial resolution and few spectral ban ds have limited the application of moderate 
resolution satellite images for monitoring yellow rust disease. The spectral knowledge base 
developed enabled disease incidence and severity to be detected by moderate resolution 
satellite images. The SKB supported two ways of estimating disease severity: the disease 



 
Remote Sensing – Applications 

 

58

  Reference 

  None Low range Mid range Serious Very serious Total 

Estimation 
(Mah) 

None 16 0 0 0 0 16 

Low range 2 2 1 0 0 5 

Mid range 0 1 3 0 0 4 

Serious 0 0 0 0 1 1 

Very serious 0 0 0 0 0 0 

Total 18 3 4 0 1 26 

Estimation 
(SA) 

None 15 0 0 0 0 15 

Low range 3 2 1 0 0 6 

Mid range 0 1 3 0 0 4 

Serious 0 0 0 0 1 1 

Very serious 0 0 0 0 0 0 

Total 18 3 4 0 1 26 

Table 7. Error matrix for ground measured data 

index and disease severity class. Both methods of estimation achieved a satisfactory level of 
accuracy for simulated data. For field surveyed data, estimation by DI (%) resulted in an 
unsatisfactory level of accuracy, whereas it was satisfactory for severity class. The Mah 
criterion performed better than spectral angle in  all analyses. Therefore, the former should 
be considered as the more appropriate distance criterion. 

Generally, the purposed SKB has a great potential in extending the capability of detecting 
yellow rust to multispectral remote sensing data, especially when the region of interest has 
similar environmental conditions to where the SKB was developed. The uncertainties 
caused by environmental differences should be further investigated in future studies. 

2.4 Detecting yellow rust of winter wh eat using land surface temperature (LST) 

The air temperature and humidity are the most direct and important indicators of 
occurrence of yellow rust fungal. Generally , weather stations can provide the dynamic 
pattern of meteorological data for site sampled, yet not able to include the information of 
spatial heterogeneity. Fortunately, remote sensing technology has great potential for 
providing spatially continuous observations of some variables over large areas (Luo et al., 
2010). The aim of the study was to study preliminarily on the relati onship between the 
occurrence of wheat yellow rust and land  surface temperature (LST) derived from 
moderate-resolution imaging spectroradiomete r (MODIS) in order to predict and monitor 
incidence of the yellow rust on large scale. 

2.4.1 Materials and methods 

2.4.1.1 Survey area and field investigations acquisition 

Field experiments of winter wheat were cond ucted during the growing seasons (form April 
to June) of winter wheat in 2008 and 2009. The investigation locations included Longnan 
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district, Tianshui district, Dingxi district and Pingliang district in GanSu province and 
Qingyang district in ShanXi province as well as Linxia district in Ningxia Hui Autonomous 
Region (Fig.1), where the climates are semiarid and subhumid. Survey areas are located 
between latitude 32�»40’N to 35�»39’N and longitude 103�»10’E to 107�»40’E, and the mean 
altitude is over 2000 meter. The climate condition of surveyed area is characterized by high 
humidity and rainfall, and yellow rust disease al most occurs every year. It is reported that 
Longnan district is an important overwinter ing and oversummering area of yellow rust 
fungal (Zeng, 2003). 

With the aid of the local Department of Plant Protection, 151 plots, including 68 plots from 
April to June in 2008, and 83 plots from April to June in 2009, were randomly selected and 
surveyed in the areas. The geographical coordinates of each plot were measured by GPS 
navigator at the middlemost of the plot. In addition, the disease severity was inspected. 

2.4.1.2 MODIS land surface temp erature (LST) products (MOD11) 

Product description 

MODIS Land Surface Temperature and Emissivity  (LST/E) products (named starting with 
MOD11) provide per-pixel temperature and emi ssivity values. Temperatures are extracted 
in Kelvin with a view-angle dependent algorithm applied to direct observations. This 
method yields the error less than 1 K for materials with known emissivity. The view angle 
information is included in each LST/E product. 

MOD11 acquisition and processing 

24 MOD11A2 images�� MODIS/Terra land surface temperature/emissivity 8-day L3 global 
1km SIN grid v005�� were acquired for free from Web (http://edc.usgs.gov/#/Find_Data) 
from April to July in 2008 and 2009, which covered completely the survey area, and 4 scenes 
images were acquired in every  month. The raw data of MOD11A2 imagery were processed 
and transformed by MRT tool, and LST produc ts were extracted from MODII A2 images. 
Then the survey area was cut by ENVI from LST images. Followed by that step, 4 scenes 8-
day LST images of every month were all averaged, and 6 average LST images, including 
April, May, June in 2008 and 2009, were obtained. Finally, LST of 151 investigation points 
were respectively extracted from 6 average LST images. 

2.4.2 Result 

2.4.2.1 Determining LST threshold of infected points  

The spatial resolution of MODIS temperature products is 1 km, wh ile the DI of every 
investigation point only stands for the incidenc e of 30 m in semi diameter plots. Therefore, 
the scale of MODIS temperature products seemed not satisfied the investigation points for 
proper relationship between them. However, sp atial variability of LST is slim, and the law 
still exists. A series of results could be found by establishing a two-dimensional spatial 
coordinate based on DI and LST, in which all investigation points were displayed (Fig 13). 
Firstly, the DI ranged from 0% to 100%, and most of infected points ranged from 0% to 60%. 
The LST values were between 292K and 310K with most of infected points distributed in the 
range from 298K to 306K. In addition, the points in the region of less than 298K were not 
infected by yellow rust basically; DI were less than 1% expect for one point (296.29K, 16%), 
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index and disease severity class. Both methods of estimation achieved a satisfactory level of 
accuracy for simulated data. For field surveyed data, estimation by DI (%) resulted in an 
unsatisfactory level of accuracy, whereas it was satisfactory for severity class. The Mah 
criterion performed better than spectral angle in  all analyses. Therefore, the former should 
be considered as the more appropriate distance criterion. 

Generally, the purposed SKB has a great potential in extending the capability of detecting 
yellow rust to multispectral remote sensing data, especially when the region of interest has 
similar environmental conditions to where the SKB was developed. The uncertainties 
caused by environmental differences should be further investigated in future studies. 
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The air temperature and humidity are the most direct and important indicators of 
occurrence of yellow rust fungal. Generally , weather stations can provide the dynamic 
pattern of meteorological data for site sampled, yet not able to include the information of 
spatial heterogeneity. Fortunately, remote sensing technology has great potential for 
providing spatially continuous observations of some variables over large areas (Luo et al., 
2010). The aim of the study was to study preliminarily on the relati onship between the 
occurrence of wheat yellow rust and land  surface temperature (LST) derived from 
moderate-resolution imaging spectroradiomete r (MODIS) in order to predict and monitor 
incidence of the yellow rust on large scale. 

2.4.1 Materials and methods 
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in Kelvin with a view-angle dependent algorithm applied to direct observations. This 
method yields the error less than 1 K for materials with known emissivity. The view angle 
information is included in each LST/E product. 
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24 MOD11A2 images�� MODIS/Terra land surface temperature/emissivity 8-day L3 global 
1km SIN grid v005�� were acquired for free from Web (http://edc.usgs.gov/#/Find_Data) 
from April to July in 2008 and 2009, which covered completely the survey area, and 4 scenes 
images were acquired in every  month. The raw data of MOD11A2 imagery were processed 
and transformed by MRT tool, and LST produc ts were extracted from MODII A2 images. 
Then the survey area was cut by ENVI from LST images. Followed by that step, 4 scenes 8-
day LST images of every month were all averaged, and 6 average LST images, including 
April, May, June in 2008 and 2009, were obtained. Finally, LST of 151 investigation points 
were respectively extracted from 6 average LST images. 
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The spatial resolution of MODIS temperature products is 1 km, wh ile the DI of every 
investigation point only stands for the incidenc e of 30 m in semi diameter plots. Therefore, 
the scale of MODIS temperature products seemed not satisfied the investigation points for 
proper relationship between them. However, sp atial variability of LST is slim, and the law 
still exists. A series of results could be found by establishing a two-dimensional spatial 
coordinate based on DI and LST, in which all investigation points were displayed (Fig 13). 
Firstly, the DI ranged from 0% to 100%, and most of infected points ranged from 0% to 60%. 
The LST values were between 292K and 310K with most of infected points distributed in the 
range from 298K to 306K. In addition, the points in the region of less than 298K were not 
infected by yellow rust basically; DI were less than 1% expect for one point (296.29K, 16%), 
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which was thought as abnormal poin t. In addition, the LST values of all investigation points 
were less than 306K expect for one point (310.09K, 24%), which was abnormal because its 
LST was far away from LST values of others. 

 
Fig. 13. The distribution of the investigation points 

Therefore, without considering other factors, It is concluded that yellow rust can occur 
when LST is in the region from 298K to 306K. 

2.4.2.2 Yellow rust incidenc e analysis based on LST 

According to the results illustrated above, the advanced analysis was performed for 
incidence and possible area of yellow rust. The points in different LST range were done 
statistical analysis with all points’ numbers an d the infected points’ number, and finally, the 
incidences were obtained by the number of the infected points dividing the number of all 
points in the different LST range (Table.8). The result showed that all investigation points in 
the region of less than 298K were not infected by yellow rust, except for the abnormal point 
(296.29K, 16%). On the other hand, in the LST region of more than 306K, there was only one 
point, which was viewed as abnormal point (310.085K, 24%). Thereby, it is quite possible 
that yellow rust fungus can not survive in the region of more than 306K. The conclusion was 
consistent with the above result (Fig. 13). 
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Furthermore, there was an increasing trend of incidences with  the rising of LST in the region 
from 296K to 302K. The incidence of yellow rust reached up to 100% when the LST was 
graeter than 302K (Fig. 14). 

 
Fig. 14. The incidence of yellow rust in different LST range 

2.4.2.3 Dividing yellow rust suitable occurrence region based on LST 

According to Table 8 and Fig. 14, the survey areas could be divided into yellow rust 
unsuitable area (NSA), of which LST ranged from 298K to 306K, and yellow rust suitable 
area (SA), of which the LST was less than 298K and more than 306K. Moreover, the SA was 
divided into 3 levels according to the infected of yellow rust incidence and LST, and the LST 
thresholds for each level were: 298K �” LST �” 299K the low suitable area (LSA), on which the 
yellow rust occurs with very low possibility (incidence < 60%), 299K �” LST �” 301K the 
medium suitable area (MSA), which had moderate possibility for the occurrence of yellow 
rust (60% <incidence < 100%), and 302K �” LST �” 306K high suitable area (HSA), of which the 
environment was highly favorable to yellow rust (incidence=100%). 

2.4.2.4 Verification 

Total 26 points (from May 2008) were applied for the verification the method of estimating the 
incidence of yellow rust. It should be noted that those points were not used for the defining of 
the LST thresholds. (Fig. 15). These 26 points were constituted by 18 infected points and 8 non-
infected points. Results showed the infected points were all in different suitable areas of wheat 
yellow rust, while the non-infected points were all in the unsuitable area. Thus the infected 
situation of yellow rust of these 26 points was consistent with forecast results. Geographically, 
it seemed that the yellow rust was prone to be prevalent in the northeast of Pingliang, 
southwest of Qingyang, northeast of Dingxi, th e center part of Tianshui, and the west of 
Longnan, because they all were located in MSA and HAS. This result was consistent with the 
previous study (Xiao, et al, 2007). To prevent yellow rust from prevalence, more efforts should 
be placed on the farmlands located in the MSA, HAS and LSA.  

2.4.3 Conclusions  

Plant disease is governed by a number of factors, and the habitat factors play a major role in 
the development and propagation of fungal pathogens (Sutton et al., 1984; Hélène et al.,  
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Fig. 15. Forecast map of yellow rust and distribution of measured points in May, 2008 based 
on LST 

2002; Cooke et al., 2006). The yellow rust is no exception. The weather station can only offer 
points data, and remote sensing, however, can be a promising means for acquiring spatially 
continuous observations over large area. It has not been reported, if any, that the LST 
derived from remote sensing data is used to forecast the development of yellow rust. 

The study tried to present a method that coul d forecast the suitable areas of wheat yellow 
rust by MODIS temperature products in a larg e scale. And it was proved that LST derived 
from remote sensing data had potential for predicting the occurrence  and development of 
wheat yellow rust in a large area. From our result s, it is clear that preventive measures of 
yellow rust can been made over large scale area accordingly with different real-time 
prediction methods based on LST derived from remote sensing data.  

3. Detecting and discriminating winter wheat aphid by remote sensing 

Wheat aphid, Sitobion avenae (Fabricius), is one of the most destructive pests in agricultural 
systems, especially in temperate climates of the northern and southern hemispheres. Wheat 
aphid appears annually in the wheat planting  area of China, causing great economic 
damage to plant crops as a result of their direct feeding activities. In high enough densities, 
wheat aphids can remove plant nutrients, and potentially reduce the number of heads, the 
number of grains per head, and overall seed weight. The damage is especially high when 
wheat aphid occurs in the flower ing and filling stage of wheat. It is reported that average 
densities over 20 aphids per plant can cause substantial losses of yield and quality of wheat 
(Basky & Fónagy, 2003). There are also indirect damages including excretion of honeydew 
from aphids and as a vector of viruses, most notably two strains of the Luteovirus Barley 
Yellow Dwarf Virus (BYDV-MAV and BYDV-PAV ) (Susan et al, 1992). To prevent the 
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occurrence and prevalence of aphid, large amounts of insecticides are used, causing 
environment pollution. Th erefore, large-scale, real-time prediction and monitoring of wheat 
aphid incidence and damage degree using remote sensing technology are extremely 
important. 

3.1 Detecting winter wheat aphid using hyperspectral data 

The study aimed to identify spectral characteristics of wheat leaf and canopy infected by 
aphid and find the sensitive bands to aphid at canopy level in filling stage of wheat, and to 
establish an aphid damage hyperspectral index (ADHI) based on those sensitive bands for 
detecting aphid damage levels in wheat canopy level in filling stage of wheat. 

3.1.1 Materials and methods 

3.1.1.1 Field experiments and field inventory  

The field experiment plot was located at Xiaotangshan Precision Agriculture Experiment 
Base, Changping distract, Beijing (40º10.6’N, 116º26.3’E). The experimental field was about 
250 m in length and 80 m in width. The winter  wheat was planted in the study area from 
Oct 3, 2009, and harvested from June 25, 2010. Field inventory was conducted on June 7, 
2010 when wheat was in the fillin g stage. Twenty five ground  investigations including 
different aphid damage levels were selected. Aphid damage level was surveyed according 
to the investigation rule. 

3.1.1.2 Canopy spectral measurements 

Please refer to 1.1.1.2 part above. 

3.1.2 Results 

3.1.2.1 Leaf spectral characteristics of wheat infested by aphid 

Representative reflectance measured from wheat aphid-infested and uninfested wheat 
leaves are shown in Fig. 16. It was evident that the spectral response of the wheat leaf was 
significantly affected by wheat aphid feeding (F ig. 16). The reflectance of wheat leaf infested 
by aphid was higher in the visible spectrum and short-wave infrared region and lower in 
near-infrared region than that of uninfested leaf. A significant increase in the reflectance 
from the wheat aphid-infested leaf in th e visible region (400-700 nm) was observed, 
evidently due to reduction of photosynthetic  pigment concentrations in particular 
chlorophylls caused by wheat aphi d feeding (Richardson et al., 2004). 

3.1.2.2 Canopy spectral characteristics of wheat infested by aphid 

Compared with the canopy spectra of the healthy wheat, the canopy reflectance of aphid-
infested wheat was gradually decreased in the range from 350 nm to 1750 nm, especially in the 
near infrared region (Fig. 17). Previous researches indicated that wheat had higher reflectance 
at visible wavelengths than the healthy vigo rously growing wheat because the photoactive 
pigments (chlorophylls, anthocyanins, carotenoids) were destroyed. In this study, aphid 
occurred in the filling stage of  wheat and the honeydew excreted by aphid absorbed dust or 
others from surrounding environment and contam inated (darkened) the leaf surface. As a 
result, the absorption at light slight wavele ngths became stronger instead of weaker. 
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Fig. 15. Forecast map of yellow rust and distribution of measured points in May, 2008 based 
on LST 
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wheat aphids can remove plant nutrients, and potentially reduce the number of heads, the 
number of grains per head, and overall seed weight. The damage is especially high when 
wheat aphid occurs in the flower ing and filling stage of wheat. It is reported that average 
densities over 20 aphids per plant can cause substantial losses of yield and quality of wheat 
(Basky & Fónagy, 2003). There are also indirect damages including excretion of honeydew 
from aphids and as a vector of viruses, most notably two strains of the Luteovirus Barley 
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occurrence and prevalence of aphid, large amounts of insecticides are used, causing 
environment pollution. Th erefore, large-scale, real-time prediction and monitoring of wheat 
aphid incidence and damage degree using remote sensing technology are extremely 
important. 

3.1 Detecting winter wheat aphid using hyperspectral data 

The study aimed to identify spectral characteristics of wheat leaf and canopy infected by 
aphid and find the sensitive bands to aphid at canopy level in filling stage of wheat, and to 
establish an aphid damage hyperspectral index (ADHI) based on those sensitive bands for 
detecting aphid damage levels in wheat canopy level in filling stage of wheat. 

3.1.1 Materials and methods 

3.1.1.1 Field experiments and field inventory  

The field experiment plot was located at Xiaotangshan Precision Agriculture Experiment 
Base, Changping distract, Beijing (40º10.6’N, 116º26.3’E). The experimental field was about 
250 m in length and 80 m in width. The winter  wheat was planted in the study area from 
Oct 3, 2009, and harvested from June 25, 2010. Field inventory was conducted on June 7, 
2010 when wheat was in the fillin g stage. Twenty five ground  investigations including 
different aphid damage levels were selected. Aphid damage level was surveyed according 
to the investigation rule. 

3.1.1.2 Canopy spectral measurements 

Please refer to 1.1.1.2 part above. 

3.1.2 Results 

3.1.2.1 Leaf spectral characteristics of wheat infested by aphid 

Representative reflectance measured from wheat aphid-infested and uninfested wheat 
leaves are shown in Fig. 16. It was evident that the spectral response of the wheat leaf was 
significantly affected by wheat aphid feeding (F ig. 16). The reflectance of wheat leaf infested 
by aphid was higher in the visible spectrum and short-wave infrared region and lower in 
near-infrared region than that of uninfested leaf. A significant increase in the reflectance 
from the wheat aphid-infested leaf in th e visible region (400-700 nm) was observed, 
evidently due to reduction of photosynthetic  pigment concentrations in particular 
chlorophylls caused by wheat aphi d feeding (Richardson et al., 2004). 

3.1.2.2 Canopy spectral characteristics of wheat infested by aphid 

Compared with the canopy spectra of the healthy wheat, the canopy reflectance of aphid-
infested wheat was gradually decreased in the range from 350 nm to 1750 nm, especially in the 
near infrared region (Fig. 17). Previous researches indicated that wheat had higher reflectance 
at visible wavelengths than the healthy vigo rously growing wheat because the photoactive 
pigments (chlorophylls, anthocyanins, carotenoids) were destroyed. In this study, aphid 
occurred in the filling stage of  wheat and the honeydew excreted by aphid absorbed dust or 
others from surrounding environment and contam inated (darkened) the leaf surface. As a 
result, the absorption at light slight wavele ngths became stronger instead of weaker. 
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Fig. 16. The spectral reflectance of winter wheat leaf uninfested and infested by aphid 

0

5

10

15

20

25

30

35

40

350 650 950 1250 1550 1850 2150 2450
Wavelength/nm

R
e

fle
ct

a
n

ce
/%

Healthy

Slight

Moderate

Severe

 
Fig. 17. The spectral reflectance of healthy wheat and wheat infested by various aphid 
damage levels. (Healthy: the average spectra of healthy wheat samples; Slight: the average 
spectra of aphid damage level 1and 2; Moderate: he average spectra of aphid damage level 
3and 4; Severe: the average spectra of aphid damage level 5 and 6). 

3.1.2.3 Aphid damage hyperspectral index for detecting aphid damage degree 

Sensitive band selection of aphid infestation based on canopy reflectance  

The sensitive bands were selected out by relevance analysis between reflectance and aphid 
damage levels. The reflectance ranges were from 400 nm to 690 nm, from 700 to 1300 nm 
and from 1500 to 1800 nm. The most sensitive bands to aphid were 551 nm (R2=0.741) in 
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visible light, 823 nm (R2=0.865) in near infrared (NIR) and 1654 nm in short-wave infrared 
(SWIR) (R2=0.668), respectively (Fig. 18). 

 
Fig. 18. Correlation coefficient between reflectance and aphid damage levels 

Aphid damage hyperspectral index (ADHI) was established based on the most sensitive 
bands from hyperspectral data in the visi ble light region, NIR and SWIR and weight 
coefficient calculated according to rate of change of reflectance between healthy wheat and 
aphid-infected wheat, respectively. 
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where R551normal �ô R823normal  and R1654normal  are reflectance in 551 nm, 823 nm and 1654 nm 
of healthy wheat; R551infested , R823 infested , R1654 infested are reflectance in 551 nm, 823 nm and 
1654 nm of aphid-infected wheat; 0.32, 0.51 and 0.17 are weight coefficients calculated by the 
contribution to change rates.  

Further more, the correlation analysis was conducted between ADHI and aphid damage 
level from 25 investigation points (Fig. 19). It was concluded that ADHI exhibited high 
relationship with aphid damage levels (R 2=0.839). Therefore, ADHI was an important index 
to estimate aphid damage level in winter wheat.  

3.1.3 Conclusions 

Hyperspectral remote sensing has gone through rapid development over the past two 
decades and there is a trend toward the use of hyperspectral image in the application of 
remote sensing for precision farming. The study analyzed the spectral characteristics of 
wheat infested by aphid and selected the sensitive bands to aphid damage level. Then, an 
ADHI was developed using the most sensitive bands in visible light region, NIR and SWIR.  
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Fig. 17. The spectral reflectance of healthy wheat and wheat infested by various aphid 
damage levels. (Healthy: the average spectra of healthy wheat samples; Slight: the average 
spectra of aphid damage level 1and 2; Moderate: he average spectra of aphid damage level 
3and 4; Severe: the average spectra of aphid damage level 5 and 6). 

3.1.2.3 Aphid damage hyperspectral index for detecting aphid damage degree 

Sensitive band selection of aphid infestation based on canopy reflectance  

The sensitive bands were selected out by relevance analysis between reflectance and aphid 
damage levels. The reflectance ranges were from 400 nm to 690 nm, from 700 to 1300 nm 
and from 1500 to 1800 nm. The most sensitive bands to aphid were 551 nm (R2=0.741) in 
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visible light, 823 nm (R2=0.865) in near infrared (NIR) and 1654 nm in short-wave infrared 
(SWIR) (R2=0.668), respectively (Fig. 18). 
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level from 25 investigation points (Fig. 19). It was concluded that ADHI exhibited high 
relationship with aphid damage levels (R 2=0.839). Therefore, ADHI was an important index 
to estimate aphid damage level in winter wheat.  
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decades and there is a trend toward the use of hyperspectral image in the application of 
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Fig. 19. The correlation between ADHI and aphid damage level 

It was concluded that ADHI was a sensitive index to aphid damage levels, and could be 
used to retrieve aphid damage levels in the filling stage of wheat.  

Crop growth is very dynamic processes and monitoring the condition of agricultural corps 
is a complex issue. It is possible that wheat damage symptoms caused by aphids and its 
response of canopy reflectance are different in different wheat growth stages. This study 
revealed that the reflectance of wheat infested by aphid was lower than healthy wheat in 
filling stage probably because of honeydew excreted by aphid. This was not consistent with 
previously published results in early detection of aphid infestation. Therefore, whether the 
ADHI can effectively retrieve aphid damage levels in other wheat growth stages remains as 
a task of future studies. 

3.2 Detecting winter wheat aphi d incidence using Landsat 5 TM 

Wheat aphid occurrence and damage degrees are related to many factors including 
temperature, humidity, precipitation, field ma nagement, enemies, etc.. Most of the present 
studies on aphid prediction have been conducted based on meteorological data acquired 
from weather stations, and aphid density was mo nitored using the spectral characteristics of 
wheat infested by aphid. However, it is ra re to investigate the relationship between 
environmental parameters, vegetable information derived from satellite images and aphid 
damage degrees. The aim of the present study is to investigate the relationships of aphid 
occurrence and damage degree to LST, NDWI, and MNDWI, which are related to vegetation 
water content derived from multi-temporal Landsat 5 TM. Another goal of the current 
research is to distinguish the degrees of aphid damage using 2-dimension feature spaces 
established by LST-NDWI and LST-MNDWI. 

3.2.1 Materials and methods 

3.2.1.1 Study areas 

The study areas are selected in Shunyi district (116°28'—116°58' E�ô 40°00'—40°18' N) and 
Tongzhou district (116° 32'—116°56' E, 39°36' —40°02' N,) of Beijing, China (Fig.20-a). The  
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Fig. 20. The study area and the spatial distribution of sample plots 

study areas have flat topography, with elevatio n ranging from 20 m to 40 m. The study areas 
have semi-humid warm temperate climate with  yearly precipitation of 625 mm and mean 
temperature of 11.5°C in the Shunyi district  and yearly precipitation 620 mm and mean 
temperature of 11.3°C in the Tongzhou district . Both districts are considered main winter 
wheat planting areas in Beijing, and aphid in festations occur in both areas almost every 
year. 
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1. Introduction 

Knowing the eruptive history of a volcano is an essential key to the understanding of its 
functioning, and therefore of the evolution of the character of dangerousness of its 
eruptions. For an essentially effusive basaltic volcano such as the Piton de la Fournaise, the 
spatial and temporal distribution of lava flows allows to deduct numerous parameters of its 
activity, on a magmatic and a structural po int of view. Satellite imaging brings more 
advantages than the methods used in aerial pictures studies, especially by supplying bigger 
temporal and spectral series. The revisiting of satellites over a region can allow the 
generation of dynamic mappings of the implem entation of the lava flow, and also bring 
information on the phenomenology of the er uptions: Surface, volume, flow, spatial 
distribution…  

Furthermore, satellite images have the advantage of supplying data that grant a global 
visualization of the study area, and information on not easily accessible areas. The 
interpretation of these satellite data enables obtaining information on the surfaces and 
volumes of the lava field flows, but also on its nature and behavior. In a tropical 
environment such as La Reunion, where the climatological context presents a strong 
cloudiness, a satellite revisit is statistically necessary. 

The optical satellite images have already been successfully used to realize mappings of lava 
flows. For example, in Nevado Subancaya in Peru (Legelay-Padovanie et al., 1997) or in Etna 
in Italy (Honda et al.,2002), the combination of spectral and morphological properties 
helped to elaborate surface lava flows mappings  and also allowed to individualize the main 
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1. Introduction 

Remote sensing has significantly advanced spatial analyses of terrestrial vegetation for 
various fields of science. The plant pigments, chlorophyll a and b, strongly absorb the energy 
in the blue (centered at 450 nm) and the red (centered at 670 nm) regions of the 
electromagnetic spectrum to utilize the light energy for photosynthesis. In addition, the 
internal spongy mesophyll structures of the he althy leaves highly reflect the energy in the 
near-infrared (NIR) (700- 1300) regions (Jensen, 2000; Lillesand et al., 2008). The distinctive 
spectral characteristics of the green plants, low reflectance in the visible light and high 
reflectance in NIR have have been used for mapping, monitoring and resource management 
of plants; and also have been used to develop spectral indices such as Simple Vegetation 
Index (SVI = NIR reflectance – red reflectance) and Normalized Difference Vegetation Index 
(NDVI = (NIR reflectance – red reflectance)/(NI R reflectance + red reflectance)) (Giri et al., 
2007).  

The simplicity and flexibility of vegetation indi ces allow comparison of data obtained under 
varying light conditions (Walters et al., 2008). NDVI was first suggested by Ruose et al. 
(1973) and is one of the earliest and most popular vegetation index used to date. It is usually 
applied in an attempt to decrease the atmospheric and surface Bidirectional Reflectance 
Distribution Function (BRDF) effects by norm alizing the difference between the red and NIR 
reflectance by total radiation. Index values have been associated with various plant 
characteristics, including vegetation type (Geerken et al., 2005), vegetation cover (du Plessis, 
1999), vegetation water content (Jackson et al., 2004), biomass and productivity (Fang et al., 
2001), chlorophyll level (Wu et al., 2008), PAR absorbed by crop canopy (Goward & 
Huemmrich, 1992), and flooded biomass (Beget et al., 2007) at a broad span of scales from 
individual leaf areas to gl obal vegetation dynamics.  
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Remote Sensing Application in  
the Maritime Search and Rescue 

Jing Peng and Chaojian Shi 
Shanghai Maritime University 

P.R. China 

1. Introduction 

Maritime search and rescue (MSR- In the maritime publications, the abbreviation for search 
and rescue is also SAR. Here we use MSR to distinguish it from the abbreviation for 
Synthetic Aperture Radar.) became an enormous task with the vast growth of marine 
transportation and other marine activities. In the year of 2006, the MSR centers and maritime 
authorities in China organi zed and coordinated 1620 MSR operations, which involved 5322 
vessels and 17498 human lives. The past few years have witnessed tremendous changes in 
the organizations of maritime rescue. A larg e part of this evolution stems from the 
involvement on an international scope and th e contribution of the advanced technology. 
However, current maritime search operation,  especially searching people over board, 
depends mostly on human eyes. 

SOLAS (International convention for safety of life at sea) convention prescribes that ships must 
be equipped with GMDSS (Global maritime distress and safety system) equipments, which 
have improved the search and rescue. However, for many non SOLAS convention ships, such 
as fishing boats and small crafts, the detection results are not very much satisfied. With the 
complex sea environment, the searching of distress vessel becomes a nail-biting task. Because 
of the physiological characteristics of human eyes, it is difficult for the rescuer to find small 
target in the adverse background lighting, night or dark condition, wave or clustered seas. 
Continuous long time observation also causes fatigue of human eyes, resulting poor sensitivity 
of detection. All those factors decay the results of searching operation.  

In order to improve the effect of MSR operat ions during the dark hours or in adverse 
lighting or sea conditions, remote sensing technique is a potential approach to overcome the 
limitation of human eyes in MSR, and thereby may hopefully improve the searching 
performance in complex environment or in a fatigued state of human being. Regarding ship 
monitoring, compared with shore-base, shipboar d or airborne detecting devices, and other 
visible visible or infrared monitoring method s, the Synthetic Aperture Radar (SAR) remote 
sensing system possesses the capability of all-time, all weather, extensive and high 
resolution for detecting ships on the sea. Especially due to its working characteristics of not 
being limited by the sea surface, weather or human factors, it can detect the sea areas with 
geographical remote positions and hostile environment which cannot be entered directly. 

In this chapter, some remote sensing techniques and algorithms concerned with the MSR are 
introduced. A Remote Sensing Monitoring System for Maritime Search and Rescue (RS-MSR) 
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1. Introduction 

Cities in Africa and developing countries in general are having a difficult time coping with 
the influx of people arriving every day. Info rmal settlements are growing, and governments 
are struggling to provide even the most fundam ental services to their urban populations.  

Kibera (edge region within the Nairobi) is the biggest informal settlement in Kenya, and one 
of the biggest in Africa. The population estimates vary between 170,000 and 1 million and 
are highly debatable. What is certain is that the area is large (roughly 2.5 km2), host at least 
hundreds of thousands people, is informal and self-organized, stricken by poverty, disease, 
population increase, environmental degradation, corruption, lack of security and - often 
overlooked but extremely important – lack of information which all contribute to lack of 
basic services such as access to safe water, sanitation, health care and formal education. 

In Africa, but also in other continents, urban growth has reached alarming figures. Informal 
settlements formation has been associated with the rapid growth of urban population 
caused by rural immigration, triggered by difficult livelihood, civil wars and internal 
disturbances. The result of this very rapid and unplanned urban growth is that 30% to 60% 
of residents of most large cities in developing countries live in informal settlements 
(UNHSP, 2005). Nowadays, informal residential environments (slums) are an important 
component reflecting fast urban expansion in poor living conditions. 

Densely populated urban areas in developing countries often lack any kind of data that 
would enable the monitoring systems. Monitoring systems joining spatial (location) and 
social data can be used for the monitoring, planning and management purposes. New 
methods of monitoring are required to generate  adequate data to help link the location 
and socioeconomic data in urban systems to local policies and controlling actions. In the 
past, rapid urban growth was quite difficult to manage and regulate when processes were 
in progress. Available census data barely accounts for the reality, as in most cases, they 
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are based on figures extrapolated from old census, carried out in the 1970s or, if recent, 
they are obtained with poor accuracy, as informal settlements are difficult to survey 
(Sartori et al., 2002). More can now be done at least to monitor the extent and 
consequences of rapid urban growth. Where accurate maps of informal settlements and 
relevant census data completely lack, answers can be found using independent survey, 
derived from satellite or aerial technologies . Usage of satellite imagery nowadays enables 
rather quick answers to questions such as: where informal settlements are, what was the 
dynamics of their growth, how many people po tentially live there, what basic services 
inhabitants need. Among the main issues to be addressed in informal settlements are the 
needs for potable water, waste evacuation, energy, education and health care facilities, 
and crime control. It is believed these actions can be planned based on quality mapping of 
the phenomena. 

The spatial resolution of space-borne remote sensing has improved to such extent that their 
products are comparable with the ones provid ed by aerial photography. Satellite images 
taken with very high ��resolution (VHR) sensors, i.e. resolution around and below 1 m, enable 
skilled user to identify and extract buildin gs, trees, narrow paths and other objects of 
comparable size. A side effect of higher resolution is larger quantity of data which require 
more storage capacities and processing costs. Detection of informal residential settlements 
from satellite imagery is especially challenging task due to the microstructure, 
merged/overlapping rooftops and irregular shap es of buildings in slum-like areas. High 
spatial resolution is essential to facilitate extraction of individual buildings that are 
characterized by small, densely packed shanties and other structures. Informal settlement 
Kibera is composed of varying sizes of houses, where roofs can be a combination of many 
different materials, and mainly unpaved road and path network. Typically this can produce 
a spectral response on satellite imagery that is difficult to interpret and makes it difficult for 
traditional classification strategies to differentiate across object class type. 

Various approaches enable to extract data from imagery in urban environments. 
Simultaneously with expansion of VHR satellite systems an object-based image analysis 
(OBIA) was developed to answer new technological opportunities. OBIA approach works 
in similar way as human brain perceives nature/environme nt, namely (high detailed) 
image is segmented into homogeneous regions called segments or “image objects” (Benz 
et al., 2004), which are then classified into meaningful classes, following the specific 
context of the study. 

1.1 Objectives of the research 

Objective of the work perform was to help Map Kibera Trust initiative with satellite data 
processing. Studies on Kibera informal settlement had two aims: first, to derive detailed 
land use/cover map that can further supply po pulation estimation, an d second, to analyse 
the potential of VHR imagery for detecting changes and settlement growth in recent past. 

Since object-based classification of VHR satellite data has been argued as the most 
appropriate method to obtain information from urban remote sensing applications, this 
approach was used to derive accurate land cover map. The study involved GeoEye and 
QuickBird satellite images acquired between 2006 and 2009. Object-based approach was 
used to determine detailed urban structure in  informal settlements area. Urban expansion 
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was analyzed through comparison of images taken on different dates, using contextual 
multi-level pixel based approach. The results of object-based analysis based on morphology 
attributes were further explored to estima te the potential population. There is a big 
discrepancy among estimations on Kibera population, thus different density parameters 
were tested to approach the potential population scenario. 

The first, introductory chapter sets the informal residentia l settlement issue in the wider 
context of the remote sensing possibilities framework, highlighting the methodology of the 
study. Chapter 2 gives an overview of research and applications of informal residential 
environments monitoring. Chapter 3 reviews existing conditions in Kibera, Nairobi’s 
informal residential settlement, bringing into perspective the historical development of the 
slum, and its current characteristics. Chapter 4 consists of a set of specific procedures 
performed at two spatial extents, to attain both aims of the study. Entire Kibera settlement 
was being reviewed, to map the general state and dynamics of housing (change detection) 
between years 2006 and 2009. Raila village was studied in detail using object-based analysis 
to derive precise map of the village land cover/use to derive population estimation models 
in a given situation. Chapter 5 collects the results of mapping and population estimations. 
Chapter 6 discusses the data and analyses involved in managing monitoring aspects of the 
slums. The last chapter concludes the study with some suggestions for future work. 

2. Informal residential environments monitoring 

Although there is a strong need to obtain spatial information about informal settlements in 
order to increase living conditions for its re sidents and regarding the fact that remote 
sensing images offer a well suited data source, studies on informal settlements with VHR 
data are not frequent. Nevertheless, in Hoffman (2001), first results of detecting informal 
settlements from IKONOS data in Cape Town showed the principle feasibilities using 
object-oriented approach. The results were promising but seemed to be very dependent on 
the data. Later on Hoffman et al. (2006) showed that several adaptations were necessary to 
OBIA algorithm improvement when applying their extraction methods to the QuickBird 
scene. Automatic image analysis procedures for a rapid and reliable iden tification of refugee 
tents from IKONOS imagery over the Lukole re fugee camp in Tanzania was made by Giada 
et al. (2002). Sliuzas and Kuffer (2008) analyzed the spatial heterogeneity of informal 
settlements using selected high resolution remote sensing based spatial indicators such as 
roof coverage densities and a lack of proper road network characterized by the irregular 
layout of settlements. Cooperation between KeyObs, UNOSAT, OCHA and Metria resulted 
in digitalization of VHR GeoEye satellite im age of Afgooye corridor (Somalia) from 2009, 
where all temporary shelters were identified  (UNHCR, 2010). Different methods to detect 
and monitor spatial behaviour of informal settl ements were presented also by Lemma et al. 
(2005), Radnaabazar et al. (2004), Kuffer (2003), Sartori et al. (2002), Dare & Fraser (2001) and 
Mason et al. (1998). 

3. Study area description 

Kibera is a division of Nairobi area, Kenya, within Langata constituency. Located southwest 
of the city centre of Nairobi, Kibera encompasses an area of 2.5 km2, accounting for less than 
percent of Nairobi’s total area while containing more than 25% of its population. It is the 
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are based on figures extrapolated from old census, carried out in the 1970s or, if recent, 
they are obtained with poor accuracy, as informal settlements are difficult to survey 
(Sartori et al., 2002). More can now be done at least to monitor the extent and 
consequences of rapid urban growth. Where accurate maps of informal settlements and 
relevant census data completely lack, answers can be found using independent survey, 
derived from satellite or aerial technologies . Usage of satellite imagery nowadays enables 
rather quick answers to questions such as: where informal settlements are, what was the 
dynamics of their growth, how many people po tentially live there, what basic services 
inhabitants need. Among the main issues to be addressed in informal settlements are the 
needs for potable water, waste evacuation, energy, education and health care facilities, 
and crime control. It is believed these actions can be planned based on quality mapping of 
the phenomena. 

The spatial resolution of space-borne remote sensing has improved to such extent that their 
products are comparable with the ones provid ed by aerial photography. Satellite images 
taken with very high ��resolution (VHR) sensors, i.e. resolution around and below 1 m, enable 
skilled user to identify and extract buildin gs, trees, narrow paths and other objects of 
comparable size. A side effect of higher resolution is larger quantity of data which require 
more storage capacities and processing costs. Detection of informal residential settlements 
from satellite imagery is especially challenging task due to the microstructure, 
merged/overlapping rooftops and irregular shap es of buildings in slum-like areas. High 
spatial resolution is essential to facilitate extraction of individual buildings that are 
characterized by small, densely packed shanties and other structures. Informal settlement 
Kibera is composed of varying sizes of houses, where roofs can be a combination of many 
different materials, and mainly unpaved road and path network. Typically this can produce 
a spectral response on satellite imagery that is difficult to interpret and makes it difficult for 
traditional classification strategies to differentiate across object class type. 

Various approaches enable to extract data from imagery in urban environments. 
Simultaneously with expansion of VHR satellite systems an object-based image analysis 
(OBIA) was developed to answer new technological opportunities. OBIA approach works 
in similar way as human brain perceives nature/environme nt, namely (high detailed) 
image is segmented into homogeneous regions called segments or “image objects” (Benz 
et al., 2004), which are then classified into meaningful classes, following the specific 
context of the study. 

1.1 Objectives of the research 

Objective of the work perform was to help Map Kibera Trust initiative with satellite data 
processing. Studies on Kibera informal settlement had two aims: first, to derive detailed 
land use/cover map that can further supply po pulation estimation, an d second, to analyse 
the potential of VHR imagery for detecting changes and settlement growth in recent past. 

Since object-based classification of VHR satellite data has been argued as the most 
appropriate method to obtain information from urban remote sensing applications, this 
approach was used to derive accurate land cover map. The study involved GeoEye and 
QuickBird satellite images acquired between 2006 and 2009. Object-based approach was 
used to determine detailed urban structure in  informal settlements area. Urban expansion 
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was analyzed through comparison of images taken on different dates, using contextual 
multi-level pixel based approach. The results of object-based analysis based on morphology 
attributes were further explored to estima te the potential population. There is a big 
discrepancy among estimations on Kibera population, thus different density parameters 
were tested to approach the potential population scenario. 

The first, introductory chapter sets the informal residentia l settlement issue in the wider 
context of the remote sensing possibilities framework, highlighting the methodology of the 
study. Chapter 2 gives an overview of research and applications of informal residential 
environments monitoring. Chapter 3 reviews existing conditions in Kibera, Nairobi’s 
informal residential settlement, bringing into perspective the historical development of the 
slum, and its current characteristics. Chapter 4 consists of a set of specific procedures 
performed at two spatial extents, to attain both aims of the study. Entire Kibera settlement 
was being reviewed, to map the general state and dynamics of housing (change detection) 
between years 2006 and 2009. Raila village was studied in detail using object-based analysis 
to derive precise map of the village land cover/use to derive population estimation models 
in a given situation. Chapter 5 collects the results of mapping and population estimations. 
Chapter 6 discusses the data and analyses involved in managing monitoring aspects of the 
slums. The last chapter concludes the study with some suggestions for future work. 

2. Informal residential environments monitoring 

Although there is a strong need to obtain spatial information about informal settlements in 
order to increase living conditions for its re sidents and regarding the fact that remote 
sensing images offer a well suited data source, studies on informal settlements with VHR 
data are not frequent. Nevertheless, in Hoffman (2001), first results of detecting informal 
settlements from IKONOS data in Cape Town showed the principle feasibilities using 
object-oriented approach. The results were promising but seemed to be very dependent on 
the data. Later on Hoffman et al. (2006) showed that several adaptations were necessary to 
OBIA algorithm improvement when applying their extraction methods to the QuickBird 
scene. Automatic image analysis procedures for a rapid and reliable iden tification of refugee 
tents from IKONOS imagery over the Lukole re fugee camp in Tanzania was made by Giada 
et al. (2002). Sliuzas and Kuffer (2008) analyzed the spatial heterogeneity of informal 
settlements using selected high resolution remote sensing based spatial indicators such as 
roof coverage densities and a lack of proper road network characterized by the irregular 
layout of settlements. Cooperation between KeyObs, UNOSAT, OCHA and Metria resulted 
in digitalization of VHR GeoEye satellite im age of Afgooye corridor (Somalia) from 2009, 
where all temporary shelters were identified  (UNHCR, 2010). Different methods to detect 
and monitor spatial behaviour of informal settl ements were presented also by Lemma et al. 
(2005), Radnaabazar et al. (2004), Kuffer (2003), Sartori et al. (2002), Dare & Fraser (2001) and 
Mason et al. (1998). 

3. Study area description 

Kibera is a division of Nairobi area, Kenya, within Langata constituency. Located southwest 
of the city centre of Nairobi, Kibera encompasses an area of 2.5 km2, accounting for less than 
percent of Nairobi’s total area while containing more than 25% of its population. It is the 
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1. Introduction 

The spectral capability of early satellite sensors opened new perspectives in the field of 
archaeological research. The recent availability of hyperspectral and multispectral satellite 
imageries has established a valid and low cost alternative to aerial imagery in the field of 
archaeological remote sensing. The high spatial resolution and spectral capability can make 
the VHR satellite images a valuable data source for archaeological investigation, ranging 
from synoptic views to small details. Since the beginning of the 20th century, aerial 
photography has been used in archaeology primarily to view features on the earth’s surface, 
which are difficult if not impossible to visualiz e from the ground leve l (Rowland and Sarris, 
2006 ; Vermeulen, F. and Verhoeven, G., 2004). Archaeology is a recent application area of 
satellite remote sensing and features such as ancient settlements can be detected with 
remote sensing procedures, provided that the spatial resolution of the sensor is adequate 
enough to detect the features (Menze et al., 2006). A number of different satellite sensors 
have been employed in a variety of archaeological applications to the mapping of 
subsurface remains and the management and protection of archaeological sites (Liu et al., 
2003). The advantage of satellite imagery over aerial photography is the greater spectral 
range, due to the capabilities of the various on-board sensors. 

Most satellite multi-spectral sensors have the ability to capture data within the visible and non-
visible spectrum, encompassing a portion of the ultraviolet region, the visible, and the IR 
region, enabling a more comprehensive analysis (Paulidis, L., 2005). Multispectral imagery 
such as Landsat or ASTER is considered to be a standard means for the classification of ground 
cover and soil types (Fowler M.J.F., 2002). Concerning the detection of settlement mounds the 
above sensors have been proved to be helpful for the identification of un-vegetated and 
eroded sites. In recent years the high spatial resolution imageries of IKONOS and Quickbird 
have been used for the detection of settlements and shallow depth monuments (De Laet et al., 
2007; 36 Massini et al., 2007; Sarris, A., 2005). Hyperspectral imagery (both airborne and 
satellite) has been also applied in archaeological investigations on an experimental basis and 
need further investigation (Cavalli et al., 2008; Merola et al., 2006). 
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1. Introduction 

Radar-based remote sensing techniques are typically employed to determine the velocities 
and positions of targets such as aircraft, ships, and land vehicles. In particular, X- and K-
band microwave devices, including oscillator s and antennas, have been used to measure 
the velocity of automobiles and other moving objects in recent years. Microwave devices 
that are compact, accurate, reliable, and inexpensive are currently commercially available. 
Over the past few years, there have been increasing attempts to apply such techniques to 
biomedical measurements. Although some studies have applied these devices to medicine 
and health care, such research is still in its infancy. This chapter focuses on the 
mechanisms of and the recent research trends in microwave remote sensing techniques 
that are used to detect minute vibrations on the body surface induced by heartbeat and 
respiration.  

1.1 Background 

The increasing proportion of el derly in the population represen ts an appreciable problem in 
developed countries due to social concerns such as increased medical and social welfare 
costs and a shortage of manpower. Such concerns are expected to worsen in the future. It is 
thus necessary to focus on preventing illnesses and to promote healthy lifestyles. 
Consequently, simple equipment that can be used to self-monitor medical conditions and to 
acquire related data is required for homes as well as medical facilities. 

Vital signs are parameters of physiological func tions that are used to express the physical 
condition. They are used by medical professionals for making initial diagnoses. There are 
four primary vital signs: heart rate, respirator y rate, body temperature, and blood pressure. 
Thermometers for home use are commercially available and are generally approved by 
medical bodies. In addition, heart rate and respir atory rate can be easily confirmed by visual 
and palpation methods. However, there is currently still not spread to home device capable 
of accurately measuring and recording vital sign data that can be used to make detailed 
diagnoses. Monitoring cardiac function can be used for diagnosing arrhythmia and mental 
stress (Akselrod et al., 1981, Singh et al., 1996, Carney et al., 2001). Recently, monitoring 
mental condition has attracted more attentio n than monitoring physiological parameters. 
And also obesity and aging are thought to contri bute to the risk of developing sleep apnea 
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1. Introduction 

Airborne hyperspectral imagers have been available from various providers for many years 
and their performance keeps improving. On the other hand, space-based hyperspectral 
sensors have only been available from few exploratory missions such as NASA Hyperion on 
EO-1 (Pearlman et al, 2003) and ESA CHRIS on Proba (Cutter et al, 2003). In recent years, 
there have been many civilian space missions being planned in different countries 
(Buckingham & Staenz, 2008), as well as military space demonstrations (Cooley et al, 2006). 

Given the increase in potential space-based hyperspectral sensors, Defence R&D Canada 
(DRDC), which is part of the Canadian department of National defence, began in 2005 a 
project to demonstrate the military utility of space-based reflective hyperspectral imagery 
(0.4-2.5 microns) to the Canadian Forces (CF). The project is called HYperspectral iMage 
EXploitation (HYMEX) and ended its activities in 2010 (Ardouin et al, 2007). 

Before the HYMEX project, DRDC had been conducting and sponsoring R&D in the area of 
hyperspectral image exploitation for a number of years to explore its various possibilities 
(Davenport & Ressl, 1999; Sentlinger et al, 2003; Webster et al, 2006). The focus of this work 
was on military target detection applications. In parallel with these activities, the Canadian 
remote sensing community has also been active in developing hyperspectral applications for 
various civilian applications related to forestry, agriculture, fisheries, mineral exploration 
and environmental monitoring (Buckingham et al, 2002). Many hyperspectral techniques 
developed for civilian applications can be applied to military applications such as terrain 
characterization.  

Building on previous efforts at DRDC and with support from Canadian industry, academic 
institutions and other government departments, the HYMEX project identified a set of 
applications and related algorithms to be demonstrated to the Canadian Forces.  

This chapter presents an overview of the project, beginning with a description of its main 
activities (Section 2.0), including field trials, data analysis and algorithms evaluation and the 
development of an image exploitation software. Then, for each application areas, target 
detection (Section 3.0), land mapping (Section 4.0) and marine mapping (Section 5.0), we 




















































	Remote Sensing - Applications
	Contents
	Preface
	Section 1
Land Cover
	Chapter 1
Narrowband Vegetation Indices for Estimating Boreal Forest Leaf Area Index
	Chapter 2
Crop Disease and Pest Monitoring by Remote Sensing
	Chapter 3
Seasonal Variability of Vegetation and Its Relationship to Rainfall and Fire in the Brazilian Tropical Savanna
	Chapter 4
Land Cover Change Detection in Southern Brazil Through Orbital Imagery Classification Methods
	Chapter 5
Mapping Soil Salinization of Agricultural Coastal Areas in Southeast Spain
	Chapter 6
Remote Sensing Based Modeling of Water and Heat Regimes in a Vast Agricultural Region
	Chapter 7
High Resolution Remote Sensing Images Based Catastrophe Assessment Method
	Chapter 8
Automatic Mapping of the Lava Flows at Piton de la Fournaise Volcano, by Combining Thermal Data in Near and Visible Infrared

	Section 2
Climate and Atmosphere
	Chapter 9
Coupled Terrestrial Carbon and Water Dynamics in Terrestrial Ecosystems: Contributions of Remote Sensing
	Chapter 10
Oceanic Evaporation: Trends and Variability
	Chapter 11
Multi-Wavelength and Multi-Direction Remote Sensing of Atmospheric Aerosols and Clouds

	Section 3
Oceans and Cryosphere
	Chapter 12
Remote Sensing of Submerged Aquatic Vegetation
	Chapter 13
Remote Sensing and Environmental Sensitivity for Oil Spill in the Amazon, Brazil
	Chapter 14
Satellite Remote Sensing of Coral Reef Habitats Mapping in Shallow Waters at Banco Chinchorro Reefs, México: A Classification Approach
	Chapter 15
Predictability of Water Sources Using Snow Maps Extracted from the Modis Imagery in Central Alborz, Iran
	Chapter 16
Remote Sensing of Cryosphere
	Chapter 17
Remote Sensing Application in the Maritime Search and Rescue

	Section 4
Human Activity Assessment
	Chapter 18
Object-Based Image Analysis of VHR Satellite Imagery for Population Estimation in Informal Settlement Kibera-Nairobi, Kenya
	Chapter 19
Remote Sensing Applications in Archaeological Research
	Chapter 20
The Mapping of the Urban Growth of Kinshasa (DRC) Through High Resolution Remote Sensing Between 1995 and 2005
	Chapter 21
Remote Sensing for Medical and Health Care Applications
	Chapter 22
Demonstration of Hyperspectral Image Exploitation for Military Applications


