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Preface 

Most of Earth's surface is covered with water. These water areas have been used for 
fishing and transportation by mankind since ancient times but only with the invention 
of sonar systems an opportunity was created for in depth exploration and use of the 
ocean because the mechanical acoustic waves are the only physical phenomena 
applicable for underwater sensing. This book is an edited collection of research articles 
covering the current state of sonar systems, the signal processing methods and their 
applications prepared by experts in the field. 

The book is grouped into three major sections: Innovative Sonar Systems, Modeling 
and Simulation; Sonar Signal Processing; Biology and Marine Science Sonar 
Applications. However, there are interrelations between sections and chapters because 
it is impossible to strictly divide the sonar system engineering level from the used 
signal pre- and post-processing methods and the applications.  

Even though the synthetic aperture has been a known method for increasing the 
angular resolution in sonar and radar sensors for more than half a century, 
operational sonar systems have been developed only in the last years. The chapter of 
R. Hansen is an excellent introduction in synthetic aperture sonar and shapes the
future use of interferometric principles for 3D reconstruction of underwater ocean
scenes. The current state of the sensor network technology fosters the application of
the longstanding bistatic and multistatic sonar concepts. The chapter of D. Orlando
and F. Ehlers presents the advances in multistatic signal processing for tracking of
low target strength targets in noisy environment. The sonar systems simulation
methodology is covered in the chapter of D. Gueriot and C. Sintes. Modeling and
simulation are an important area of investigation leading to enhancing the design of
current sonar systems, algorithm performances estimation and new system models
development.

Several authors in their chapters present important signal pre- and post-processing 
principles and applications. The chapter of J. Piper gives the fundamentals of sonar 
array beamforming and direction of arrival estimation. The quality and capability of 
passive sonar array systems are maybe of greatest concern for naval submarines sonar 
designers in order to make them undetectable for the enemy sensor systems and give 



XII Preface

an operational advantage.  Next follows the contribution of  Nunes de Moura et al. on 
passive sonar signal detection and classification based on independent component 
analysis covering DEMON and LOFAR signal processing principles with application 
in the experimental results presented on submarine sonar system operator displays. 
Modern sonar passive array systems are using adaptive matched field signal 
processing techniques. The submission of N. Kolev and G. Georgiev presents the 
basics of vertical sonar array matched field signal processing for underwater source 
localization in depth and range. Sonar video signal post processing is important to 
improve the image quality, data interpretation and applies image recognition 
techniques. The chapter of E. Dura presents image processing techniques for detection 
and classification of artificial mine like objects on side scan sonar images. Current state 
of sonar images denoising techniques is presented in the chapter by Isar et al. The 
chapter of Peyvandi et al. bridges the gap between classical passive sonar signal 
processing methods and some newly introduced probabilistic concepts of signal 
processing and classification as the Hidden Markov Model and Artificial Neural 
Networks. An application in underwater sensor network acoustic communication is 
outlined. 

Nature has created air passive hearing mechanism for humans but also a sophisticated 
biosonar for some earth and water species which combines active and passive acoustic 
principles, subject to a scientific investigation and a challenge for technical 
implementation. The chapters of  Gudra et al. and Mora et al. give an interesting 
insight for readers on these topics. H. Manik has developed bottom surface and fish 
target strength models and a multi frequency acoustics methodology to characterize 
and quantify the fish and sea bottom scattering by an echo sounder. Experimental 
results are presented for the area of Jawa Island. Georgakarakos et al. have made a 
review of acoustic biomass estimation methods. Experimental results for a fish-school 
species identification using a neural network with multibeam sonar data are 
presented. The side scan sonar is the most affordable and used system for constructing 
images of the sea bottom with applications in the marine geology. A. Savini has 
analyzed the influence of side scan sonar parameters on bottom sonar images from 
geomorphological point of view. The chapter represents a valuable source of seafloor 
images and reference documentation about the main features and sediment 
characteristics of the Mediterranean continental shelf.  

On one hand the book will be interesting for scientists, engineers and students 
specializing in the area of sonar systems, signal processing and marine science 
because they will find in depth investigations and practical solutions of a broad 
range of problems presented by the authors. On the other hand, it will be also useful 
for readers with general knowledge as a guide and an introduction in sonar systems 
principles of operation, signal processing methods and many interesting 
applications nowadays.  

Preface XI 

I am grateful to contributing authors, InTech team and especially to Mr. Vidic for the 
continuous help and support during the editorial process.

Assoc. Prof., Ph.D, Nikolai Kolev,
Department of Electronics, 

NV Naval Academy, Bulgaria
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Introduction to Synthetic Aperture Sonar

Roy Edgar Hansen
Norwegian Defence Research Establishment

Norway

1. Introduction

SONAR is an acronym for SOund Navigation And Ranging. The basic principle of sonar is
to use sound to detect or locate objects, typically in the ocean. Sonar technology is similar to
other technologies such as: RADAR = RAdio Detection And Ranging; ultrasound, which
typically is used with higher frequencies in medical applications; and seismic processing,
which typically uses lower frequencies in the sediments. There are many good books that
cover the topic of sonar (Burdic, 1984; Lurton, 2010; Urick, 1983). There are also a large number
of books that cover the theory of underwater acoustics more thoroughly (Brekhovskikh &
Lysanov, 1982; Medwin & Clay, 1998).
The principle of Synthetic aperture sonar (SAS) is to combine successive pings coherently
along a known track in order to increase the azimuth (along-track) resolution. A typical data
collection geometry is illustrated in Fig. 1. SAS has the potential to produce high resolution
images down to centimeter resolution up to hundreds of meters range. This makes SAS a
suitable technique for imaging of the seafloor for applications such as search for small objects,
imaging of wrecks, underwater archaeology and pipeline inspection.
SAS has a very close resemblance with synthetic aperture radar (SAR). While SAS technology
is maturing fast, it is still relatively new compared to SAR. There is a large amount of SAR
literature (Carrara et al., 1995; Cumming & Wong, 2005; Curlander & McDonough, 1991;
Franceschetti & Lanari, 1999; Jakowatz et al., 1996; Massonnet & Souyris, 2008).
This chapter gives an updated introduction to SAS. The intended reader is familiar with
sonar but not SAS. The only difference between traditional sonar and synthetic aperture is

Fig. 1. Data acquisition geometry for synthetic aperture sonar.
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Fig. 2. Basic imaging geometry.

the construction of the aperture (or array). We start by giving a review of sonar imaging and
describe the backprojection method. Then, we derive the angular resolution. We describe the
multi-element receiver concept and calculate the area coverage rate for SAS. We explain the
frequency dependence in SAS, and discuss some of the choices and trade-offs in SAS design.
We list some of the specific challenges in SAS, and suggest possible solutions. We give an
overview of the signal processing involved in a SAS processor, and we discuss properties of
SAS images. Finally, we show numerous examples of SAS images from a particular system,
the HISAS 1030 interferometric SAS.

2. Sonar Imaging

Assume a transmitter that insonifies a scene with acoustic reflecting material represented by
a reflectivity function γ(x, y). A part of the scattered acoustic field is recorded by one or more
receiver hydrophones. This is illustrated in Fig. 2. Sonar imaging is the inverse problem, namely
to estimate the reflectivity function from the received data from one or more transmitted
pulses.
Sonar imaging can be separated into range processing of the data and angular processing
(beamforming) of the data. Beamforming is defined as the method or processing algorithm that
focuses the signal from several receivers in a particular direction. Beamforming can be applied
to all types of multi-receiver sonars: active, passive, towed array, bistatic, multistatic, and
synthetic aperture. Sonar beamforming is well covered in (Burdic, 1984; Johnson & Dudgeon,
1993; Nielsen, 1991).
Range processing is signal processing applied to each time series individually. The processing
is a function of transmit waveform. There are several types of signals that are used as transmit
waveforms. Classical sonar often uses gated continuous-wave (CW) pulses, sometimes
referred to as pings. Modern sonar, and virtually all SAS systems, use phase coded transmit
signals where the signal bandwidth is determined by the phase coding (or frequency spread of
the signal modulation). The reason to use phase coded waveforms is to increase the transmit
signal energy while maintaining large signal bandwidth. The range processing done on phase
coded signals are referred to as pulse compression or matched filtering. This is covered in a
number of excellent books such as (Franceschetti & Lanari, 1999; Levanon, 1988).

2.1 Imaging by backprojection
The simplest and most intuitive type of beamforming is time-domain beamforming by
backprojection. This is done by back propagating the received signal via each pixel in the scene
to be imaged and into the transmitter. This is illustrated in Fig. 3. Backprojection is also
known as Delay-And-Sum (DAS) (Johnson & Dudgeon, 1993, pages 117-119). Functionally,
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Fig. 3. Backprojection geometry.

backprojection is also closely related to Kirchhoff migration in seismic processing (Claerbout,
1995). Formally, backprojection is straightforward and can be done as follows. First the signals
in each receiver are filtered and pulse compressed. Then the signal from each receiver is
delayed to the pixel of interest

tn(x, y) = (rt + rn)/c. (1)
where rt is the distance from the transmitter to the pixel, rn is the distance from the pixel to
receiver n, and c is the sound velocity. Then the recorded, pulse compressed signals sn are
summed coherently over all receivers to produce an estimate of the reflectivity function

γ̂(x, y) =
1
N

N

∑
n=1

Ansn(tn(x, y)). (2)

The amplitude An is generally a function of geometry and frequency An = An(rt, rr, ω).
In addition, the direction dependent sensitivity of the receivers can be taken into account.
This amplitude factor can also be used to control the sidelobe suppression vs the angular
resolution (Van Trees, 2002). For sampled time series sn(tn(x, y)) may have to be interpolated
to obtain accurate values in the image. A simple algorithmic description of the backprojection
algorithm is shown in Listing 1. We immediately realise why this method is called
Delay-And-Sum. The signals are delayed to the correct pixel, and then summed.

2.2 Angular resolution
The angular resolution can be defined as the minimum angle for which two reflectors can be
separated in the sonar image. A very simple and intuitive way to derive this is as follows.
Assume a phased array receiver of length L consisting of a number of elements as illustrated
in Fig. 4. The angular resolution for this receiver is the angle difference for which the echo from
two reflectors gives destructive interference in the receivers. Consider a reflector at broadside
and a reflector at an angle β/2. As the maximum range difference will always be on the ends
of the array, we only consider the center element and the end element displaced L/2 apart.
The distance difference between these two reflectors is

δR = R0 − R1. (3)

5Introduction to Synthetic Aperture Sonar
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f o r a l l d i r e c t i o n s
f o r a l l ranges

f o r a l l r e c e i v e r s
C a l c u l a t e the time delay
I n t e r p o l a t e the rece ived time s e r i e s
Apply appropriate amplitude f a c t o r

end
sum over r e c e i v e r s and s t o r e in gamma( x , y )

end
end

Listing 1. Backprojection Pseudo-code

For range differences larger than δR = λ/4 destructive interference will start to occur. The
difference in range is

δR = R0 − R1 = L/2 sin(β/2). (4)

We define β as the angular resolution and solve for when destructive interference will start

δR = L/2 sin(β/2) = λ/4. (5)

For small angles, we can approximate the sin-function

L/2β/2 = λ/4 ⇒ β =
λ

L
. (6)

Hence, the angular resolution (in radians) equals the inverse length of the array measured in
wavelengths. A longer array or a higher frequency (shorter wavelength) gives better angular
resolution. More details and a more accurate derivation of angular resolution can be found in
(Van Trees, 2002).

2.3 Imaging techniques for phased arrays
Fig. 5 shows the basic imaging geometry for an array of receivers (a phased array). The field
of view is defined by the beamwidth of each of the receivers and their look direction. The

Fig. 4. Geometrical derivation of angular resolution.
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Fig. 5. Field of view and resolution in imaging sonar.

angular resolution is given by the array length and the wavelength. If the individual elements
are more than λ/2 apart, the directivity of each element must be small enough to mitigate alias
lobes (see section 3.1). For an active system, the range resolution is defined by the bandwidth
of the system. The maximum range is determined by the pulse repetition interval and/or the
sensitivity of the receiver elements. For a linear array it can be fruitful and efficient for the
imaging to define a polar coordinate system fixed to the sonar.
In underwater applications, beamforming can be used to produce different types of products.
For high frequency sonar imaging, this can be categorized into three different types, as
illustrated in Fig. 6:

Sectorscan sonar produces a two-dimensional image for each pulse. These images are
usually shown on a display pulse by pulse. Sectorscanning sonar is often used as
hull mounted sonars for forward looking imaging or wide swath imaging. In fisheries
acoustics, some cylindrical arrays actually produce full 360 degrees view.

Sidescan sonar is a particular type of sonar that uses the platform motion to cover different
parts of the seafloor. A sidescan sonar produces one or a few beams around broadside,
and an image of the seafloor is produced by moving the sonar and using repeated pulses.
This is a very popular technology, it has fairly low hardware complexity and can therefore
be more affordable. There are several books covering sidescan sonar very thoroughly
(Blondel, 2009; Fish & Carr, 2001).

Synthetic aperture sonar uses multiple pulses to create a large synthetic array (or aperture).
From this, an image of the seafloor is produced such that the information from multiple
pulses goes into each pixel on the seafloor. It is, from a certain point of view, the
combination of sidescan sonar and sectorscan sonar.

3. SAS sampling and coverage rate

In all types of array signal processing, the sampling of the array, or the spacing of the elements
and their directivity, is critical. If the array is too sparsely sampled, grating or alias lobes will
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f o r a l l d i r e c t i o n s
f o r a l l ranges

f o r a l l r e c e i v e r s
C a l c u l a t e the time delay
I n t e r p o l a t e the rece ived time s e r i e s
Apply appropriate amplitude f a c t o r

end
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Listing 1. Backprojection Pseudo-code
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λ

L
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resolution. More details and a more accurate derivation of angular resolution can be found in
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of the system. The maximum range is determined by the pulse repetition interval and/or the
sensitivity of the receiver elements. For a linear array it can be fruitful and efficient for the
imaging to define a polar coordinate system fixed to the sonar.
In underwater applications, beamforming can be used to produce different types of products.
For high frequency sonar imaging, this can be categorized into three different types, as
illustrated in Fig. 6:

Sectorscan sonar produces a two-dimensional image for each pulse. These images are
usually shown on a display pulse by pulse. Sectorscanning sonar is often used as
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acoustics, some cylindrical arrays actually produce full 360 degrees view.

Sidescan sonar is a particular type of sonar that uses the platform motion to cover different
parts of the seafloor. A sidescan sonar produces one or a few beams around broadside,
and an image of the seafloor is produced by moving the sonar and using repeated pulses.
This is a very popular technology, it has fairly low hardware complexity and can therefore
be more affordable. There are several books covering sidescan sonar very thoroughly
(Blondel, 2009; Fish & Carr, 2001).

Synthetic aperture sonar uses multiple pulses to create a large synthetic array (or aperture).
From this, an image of the seafloor is produced such that the information from multiple
pulses goes into each pixel on the seafloor. It is, from a certain point of view, the
combination of sidescan sonar and sectorscan sonar.

3. SAS sampling and coverage rate

In all types of array signal processing, the sampling of the array, or the spacing of the elements
and their directivity, is critical. If the array is too sparsely sampled, grating or alias lobes will
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Fig. 6. Phased array imaging concepts for sonar.

occur, and the image quality will be reduced. In this section we describe the sampling criterion
and show how this affects SAS design.

3.1 Undersampling of arrays
Consider a simple array with two elements displaced D apart, as illustrated in Fig. 7. Assume
an inbound plane wave at broadside θ = 0 with wavelength λ from a reflector in the far field.
Any plane wave coming in the direction

sin θn = ±n
λ

2D
(7)

where n is an integer, will be perfectly in phase with the plane wave at broadside. Note that the
factor two, i.e. λ/2, comes from assuming two-way propagation (transmission and reception).
This ambiguity will cause grating lobes or alias lobes in the beampattern (Manolakis et al.,
2000; Van Trees, 2002). To avoid grating lobes, the beamwidth of each individual element
must be smaller than the distance to the first grating lobe. Assuming that each element is of
size d with a beamwidth of β ≈ λ/d, we get the sampling criterion

D ≤ d/2. (8)

Hence, for a well sampled array, the effective distance between each element must be half the
size of each element. This is fulfilled for a densely populated array without gaps between
elements (see below).
Grating lobes are such that the problem they cause cannot be fixed in signal processing
afterwards. For linear uniform arrays (ULAs), there is a deterministic and simple one-to-one

Fig. 7. Along track sampling and grating (alias) lobes.
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Fig. 8. Multi-element receiver array and the Phase Center Approximation.

relation between the sampling of the array and the angular position of the grating lobes.
Grating lobes are frequency dependent. For large bandwidth systems, the grating lobes will
be less defined due to the fact that their positions change with frequency.

3.2 Multi-element receiver arrays in SAS
In SAS, the transmitter-receiver pair is moved along-track and pulsed repeatedly to form a
long synthetic antenna. The sampling criterion (8) imposes a maximum allowed displacement
between pings, which again, transforms into a maximum range for a given speed. The
maximum range Rmax is given by

2Rmax/c = Tpri = D/v ⇒ Rmax =
cD
2v

(9)

where v is the platform speed and Tpri is the pulse repetition interval. This relation imposes
a very strong limitation to SAS. Consider a platform speed of v = 2 m/s. For a displacement
of D = 5 cm, the maximum range then becomes Rmax = 18.75 m for a sound velocity of
c = 1500 m/s. This is an unacceptable small range for most applications. To overcome
this, a receiver array of multiple elements can be used (Bruce, 1992; Cutrona, 1975). The
multi-element receiver array is used in almost all existing SAS systems today.
A simple description of how a single transmitter multiple receiver system can be used to
form a synthetic aperture is as follows. Consider a single transmitter Tx and N receivers
of size d in a linear array Rx, as illustration shown in Fig. 8. In stead of treating this as a
bistatic system with one transmitter and many receivers, we assume a virtual array where each
element is placed at the middle position between each transmitter-receiver pair (indicated
in light green). In this array, each element is a transmitter-receiver (monostatic). This is the
Phase Center Approximation (PCA) (Bellettini & Pinto, 2002). The virtual array (or PCA array)
is half the length of the receiver array, with element size d/2, and each of the elements in
the virtual array can be placed directly in a synthetic array (similar to SAR). The maximum
displacement between two pulses becomes the length of the PCA array D = Nd/2 = L/2,
and the maximum range becomes

Rmax =
cL
4v

(10)

where L is the length of the receiver array. The maximum range can then be increased by
increasing the length of the receiver array. Fig. 9 shows the maximum range as function of
vehicle speed for three different receiver array lengths. Note that the area coverage rate (speed
times range) is a constant proportional to the array length.
In airborne SAR, aperture undersampling is not a problem, since the phase velocity for
electromagnetic waves in air is relatively high compared to the platform speed. In large
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Fig. 6. Phased array imaging concepts for sonar.
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size d with a beamwidth of β ≈ λ/d, we get the sampling criterion
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Hence, for a well sampled array, the effective distance between each element must be half the
size of each element. This is fulfilled for a densely populated array without gaps between
elements (see below).
Grating lobes are such that the problem they cause cannot be fixed in signal processing
afterwards. For linear uniform arrays (ULAs), there is a deterministic and simple one-to-one
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relation between the sampling of the array and the angular position of the grating lobes.
Grating lobes are frequency dependent. For large bandwidth systems, the grating lobes will
be less defined due to the fact that their positions change with frequency.

3.2 Multi-element receiver arrays in SAS
In SAS, the transmitter-receiver pair is moved along-track and pulsed repeatedly to form a
long synthetic antenna. The sampling criterion (8) imposes a maximum allowed displacement
between pings, which again, transforms into a maximum range for a given speed. The
maximum range Rmax is given by

2Rmax/c = Tpri = D/v ⇒ Rmax =
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(9)

where v is the platform speed and Tpri is the pulse repetition interval. This relation imposes
a very strong limitation to SAS. Consider a platform speed of v = 2 m/s. For a displacement
of D = 5 cm, the maximum range then becomes Rmax = 18.75 m for a sound velocity of
c = 1500 m/s. This is an unacceptable small range for most applications. To overcome
this, a receiver array of multiple elements can be used (Bruce, 1992; Cutrona, 1975). The
multi-element receiver array is used in almost all existing SAS systems today.
A simple description of how a single transmitter multiple receiver system can be used to
form a synthetic aperture is as follows. Consider a single transmitter Tx and N receivers
of size d in a linear array Rx, as illustration shown in Fig. 8. In stead of treating this as a
bistatic system with one transmitter and many receivers, we assume a virtual array where each
element is placed at the middle position between each transmitter-receiver pair (indicated
in light green). In this array, each element is a transmitter-receiver (monostatic). This is the
Phase Center Approximation (PCA) (Bellettini & Pinto, 2002). The virtual array (or PCA array)
is half the length of the receiver array, with element size d/2, and each of the elements in
the virtual array can be placed directly in a synthetic array (similar to SAR). The maximum
displacement between two pulses becomes the length of the PCA array D = Nd/2 = L/2,
and the maximum range becomes

Rmax =
cL
4v

(10)

where L is the length of the receiver array. The maximum range can then be increased by
increasing the length of the receiver array. Fig. 9 shows the maximum range as function of
vehicle speed for three different receiver array lengths. Note that the area coverage rate (speed
times range) is a constant proportional to the array length.
In airborne SAR, aperture undersampling is not a problem, since the phase velocity for
electromagnetic waves in air is relatively high compared to the platform speed. In large
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Fig. 9. Maximum range for given platform speed for three different receiver array lengths.

swath high resolution space-borne SAR, there is a limitation related to the sampling criterion.
Advanced SAR systems have 2D phased arrays and use electronic steering of the transmitter
and receiver arrays for different SAR modes. ScanSAR (Franceschetti & Lanari, 1999) and
Terrain Observation by Progressive Scans (TOPS) (Gebert et al., 2010) are used to increase the
area coverage rate while lowering the resolution. Spotlight mode (Jakowatz et al., 1996) is
used to increase the resolution while lowering the area coverage rate.

4. Design of Synthetic Aperture Sonar

SAS is different from traditional sonar in several ways. In this section we describe some of the
significant differences that affect the performance and application areas of SAS.

4.1 Resolution
While traditional imaging sonar has constant angular resolution, and thereby range
dependent along-track resolution, SAS produces range independent along-track resolution.
This is done by increasing the length of the synthetic array as function of range. Consider the
left illustration of Fig. 10. The maximum length of the synthetic aperture is given by the field
of view of each transmitter/receiver element. At range R1, the length of the synthetic aperture
becomes

L1 ≈ βR1 (11)

where β = λ/d is the field of view. The along-track resolution is given by the synthetic
antenna

δx ≈ R1
λ

2L1
(12)

where the factor 2 comes from the fact that both the transmitter and receiver is moved along
the synthetic aperture (creating a focused receiver and transmitter). Inserting for L1 and β we
get a resolution of

δx ≈ R1
λ

2L1
= R1

λ

2βR1
= R1

λ

2λ/dR1
=

d
2

. (13)
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Fig. 10. Left: Range independent along-track resolution in SAS. Right: Frequency
independent along-track resolution in SAS.

Hence, the along-track resolution for full length synthetic apertures is given by the element
size alone, independent of range. This is a well known result, and there are numerous
books covering this (Curlander & McDonough, 1991; Franceschetti & Lanari, 1999). This
gives a degree of freedom not available in traditional sonar, where the cross-range resolution
inevitably decreases with increasing range.
The length of the synthetic aperture is range dependent. Consider again the left drawing
in Fig. 10. At range R2, the length of the synthetic aperture becomes L2 to obtain the same
along-track resolution as for range R1. The image quality becomes range dependent, since
the transmission loss (Lurton, 2010) and thereby the Signal to Noise Ratio (SNR) is range
dependent. Since the synthetic aperture is longer at longer range, the required accuracy in
navigation, sound velocity and topography becomes thougher (see section 5). Hence, SAS at
long range is inherently more difficult than SAS at short range.

4.2 Frequency dependence
Another intriguing fact is that SAS provides frequency independent along-track resolution.
This is achieved by increasing the length of the synthetic aperture for decreasing frequency.
The right drawing in Fig. 10 illustrates this. The lower frequency (red curve) requires a longer
synthetic aperture than the higher frequency (blue curve) for a fixed resolution. The angular
spread, however, becomes frequency dependent. For lower frequency SAS, larger angular
spread is needed for a given along-track resolution. There is a lower limit to the resolution,
where (13) does not hold. The best possible along-track resolution that can be achieved is
δx = λ/4, for 180◦ field of view.
The frequency independence gives a degree of freedom compared to traditional sonar.
Seawater is a dissipative medium for acoustic waves through viscosity and chemical processes
(Brekhovskikh & Lysanov, 1982, pages 9-11), (Lurton, 2010, pages 23-27), (Medwin & Clay,
1998, pages 104-110). Acoustic absorption in seawater is frequency dependent, such that lower
frequencies reach longer than higher frequencies. Fig. 11 shows the two-way transmission
loss for some typical frequencies used in high frequency sonar imaging. For a given reception
threshold (sensitivity), the maximum achievable range changes substantially. In traditional
sonar, a typical design criterion is to choose the highest possible frequency for the desired
range. Then design the transmitter and receiver arrays to obtain best possible azimuth
resolution. In SAS, the along-track resolution is independent of frequency. This allows the
center frequency to be chosen for other reasons than resolution.
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Fig. 9. Maximum range for given platform speed for three different receiver array lengths.
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dependent along-track resolution, SAS produces range independent along-track resolution.
This is done by increasing the length of the synthetic array as function of range. Consider the
left illustration of Fig. 10. The maximum length of the synthetic aperture is given by the field
of view of each transmitter/receiver element. At range R1, the length of the synthetic aperture
becomes

L1 ≈ βR1 (11)

where β = λ/d is the field of view. The along-track resolution is given by the synthetic
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where the factor 2 comes from the fact that both the transmitter and receiver is moved along
the synthetic aperture (creating a focused receiver and transmitter). Inserting for L1 and β we
get a resolution of
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Fig. 10. Left: Range independent along-track resolution in SAS. Right: Frequency
independent along-track resolution in SAS.

Hence, the along-track resolution for full length synthetic apertures is given by the element
size alone, independent of range. This is a well known result, and there are numerous
books covering this (Curlander & McDonough, 1991; Franceschetti & Lanari, 1999). This
gives a degree of freedom not available in traditional sonar, where the cross-range resolution
inevitably decreases with increasing range.
The length of the synthetic aperture is range dependent. Consider again the left drawing
in Fig. 10. At range R2, the length of the synthetic aperture becomes L2 to obtain the same
along-track resolution as for range R1. The image quality becomes range dependent, since
the transmission loss (Lurton, 2010) and thereby the Signal to Noise Ratio (SNR) is range
dependent. Since the synthetic aperture is longer at longer range, the required accuracy in
navigation, sound velocity and topography becomes thougher (see section 5). Hence, SAS at
long range is inherently more difficult than SAS at short range.

4.2 Frequency dependence
Another intriguing fact is that SAS provides frequency independent along-track resolution.
This is achieved by increasing the length of the synthetic aperture for decreasing frequency.
The right drawing in Fig. 10 illustrates this. The lower frequency (red curve) requires a longer
synthetic aperture than the higher frequency (blue curve) for a fixed resolution. The angular
spread, however, becomes frequency dependent. For lower frequency SAS, larger angular
spread is needed for a given along-track resolution. There is a lower limit to the resolution,
where (13) does not hold. The best possible along-track resolution that can be achieved is
δx = λ/4, for 180◦ field of view.
The frequency independence gives a degree of freedom compared to traditional sonar.
Seawater is a dissipative medium for acoustic waves through viscosity and chemical processes
(Brekhovskikh & Lysanov, 1982, pages 9-11), (Lurton, 2010, pages 23-27), (Medwin & Clay,
1998, pages 104-110). Acoustic absorption in seawater is frequency dependent, such that lower
frequencies reach longer than higher frequencies. Fig. 11 shows the two-way transmission
loss for some typical frequencies used in high frequency sonar imaging. For a given reception
threshold (sensitivity), the maximum achievable range changes substantially. In traditional
sonar, a typical design criterion is to choose the highest possible frequency for the desired
range. Then design the transmitter and receiver arrays to obtain best possible azimuth
resolution. In SAS, the along-track resolution is independent of frequency. This allows the
center frequency to be chosen for other reasons than resolution.
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Fig. 11. Two-way transmission loss for typical frequencies in SAS.

4.3 Design parameters
There are many different SAS designs based on different philosophies. Here, we list some
systems to illustrate the variety in existing designs. In (Bellettini & Pinto, 2009), the sonar
has a center frequency of 300 kHz, and a receiver array length of 1.2 m with 36 elements.
This sonar was designed to have a maximum range of 200 m at 2 m/s, good shallow water
performance and as little angular spread as possible on the targets. In (Larsen et al., 2010), the
center frequency is 60 kHz, and the receiver array is 4.3 m with 32 elements and a maximum
range is 1500 m at 1 m/s speed. This system was specifically designed for deep tow with very
large swath. The system described in (Jean, 2008) has a center frequency of 100 kHz, a receiver
array of length 2 m with 24 elements, giving a maximum range of 300 m at 2.5 m/s speed. The
system described in (Glover & Campell, 2010) is a dual frequency SAS at 17.5 kHz and 150
kHz, with a receiver array of 0.6 m length and 24 receiver elements. This gives a maximum
range of 100 m at 2 m/s speed. The system described in section 8.1 has a center frequency of
100 kHz and a receiver length of 1.2 m with 32 elements, giving 200 m range at 2 m/s speed.
In Table 1 we list some design parameters (left column) and what controls these (right
column). The general rule of thumb is that higher performance in resolution and area coverage
rate requires more hardware, more processing capability and thereby also more space and
power consumption (as expected). A slightly less obvious conclusion is that a high resolution
system inherently is more robust. The future will surely bring new designs as the frequency
agility of transducers improves, and the ability for large number of channels increases.

5. Challenges in SAS

The principle of SAS has been known in more than 40 years (Gough & Hawkins, 1998; Hayes
& Gough, 2009), but it is only the last few years SAS has become commercially available. The
main reason for this is the specific challenges that has to be solved for successful SAS imagery.
In this section, we list some fundamental challenges and indicate how these can be solved.
More details can be found in (Hagen & Hansen, 2008; 2009; Hansen, 2010; Hansen, Callow,
Sæbø & Synnes, 2010).
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Design Parameter Relation
Range resolution System Bandwidth
Along-track resolution Element size
Area coverage rate Receiver array length
Maximum range Frequency, receiver array length and speed
Signal to Noise Ratio Frequency, geometry and maximum range
Robustness Relative bandwidth and redundancy
Complexity Beamwidth, number of elements and relative bandwidth
Throughput Bandwidth times number of receiver elements

Table 1. Design parameters and their relation in SAS.

5.1 Navigation
The sonar has to be positioned with accuracy better than a fraction of a wavelength along the
synthetic aperture. This is the same requirement as for any other array sensor, but inherently
more difficult to obtain since a synthetic antenna is formed by a moving platform. A sharp
image depends on accurate positioning of the elements in the array. How much error is
tolerated is dependent on the scale of the error and the required image quality (Carrara et al.,
1995). Navigation of underwater platforms is more difficult than navigation of airborne and
terrestrial platforms because GPS is not available. This challenge is the most important, and
the first that has to be overcome for successful SAS imagery.
One solution is to use the sonar data itself for navigation (referred to as micronavigation).
Compare the illustration in Fig. 12 with Fig. 8. By moving the SAS system a distance
D = Md/2 such that M < N, there will be redundancy (or overlap) in the synthetic aperture.
The overlap in the phase center antenna (PCA) is indicated in orange. Estimating which
channels overlap can be used to estimate the displacement along-track and cross-track. This
can be done by cross correlating the data recorded by elements from ping p with data recorded
by other elements from ping p + 1. The method is named displaced phase center antenna
(DPCA) or redundant phase center (RPC). DPCA was first used in Moving Target Indicator
(MTI) radars in the 1950s (Dickey Jr et al., 1991). In SAS, early descriptions of DPCA can be
found in (Pinto et al., 1997; Sheriff, 1992). A very good overview of the method is given in
(Pinto, 2002), and a detailed study of the performance is given in (Bellettini & Pinto, 2002). In
(Hansen et al., 2003) different strategies to combine DPCA with traditional inertial navigation
is described.
Micronavigation using DPCA causes a trade-off between navigation performance and
efficiency (area coverage rate). This is due to the fact that the displacement between pings
has to be less than the maximum displacement L/2. More overlap gives better navigation but
lower area coverage rate. An exception to this is if several transmitters, specific bandwidth,
and a specific pulse regime is used (Billon & Fohanno, 2002).

5.2 Topographic errors
When running a vehicle on a non-straight track, a non-straight synthetic aperture is formed
and the imaging geometry becomes dependent on the full three-dimensional geometry. This
means that the position of the sonar has to be known and the topography (or bathymetry)
of the scene to be imaged has to be known (Jakowatz et al., 1996, pages 187-197). Only
then, successful SAS processing can be done. This is critical for robust SAS, and a significant
problem since the topographic changes in rough terrain may impose severe non-linear tracks
(Hansen et al., 2009). There are two solutions to this challenge: either run on a straight line or
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Fig. 11. Two-way transmission loss for typical frequencies in SAS.

4.3 Design parameters
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column). The general rule of thumb is that higher performance in resolution and area coverage
rate requires more hardware, more processing capability and thereby also more space and
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main reason for this is the specific challenges that has to be solved for successful SAS imagery.
In this section, we list some fundamental challenges and indicate how these can be solved.
More details can be found in (Hagen & Hansen, 2008; 2009; Hansen, 2010; Hansen, Callow,
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12  Sonar Systems Introduction to Synthetic Aperture Sonar 11

Design Parameter Relation
Range resolution System Bandwidth
Along-track resolution Element size
Area coverage rate Receiver array length
Maximum range Frequency, receiver array length and speed
Signal to Noise Ratio Frequency, geometry and maximum range
Robustness Relative bandwidth and redundancy
Complexity Beamwidth, number of elements and relative bandwidth
Throughput Bandwidth times number of receiver elements
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The sonar has to be positioned with accuracy better than a fraction of a wavelength along the
synthetic aperture. This is the same requirement as for any other array sensor, but inherently
more difficult to obtain since a synthetic antenna is formed by a moving platform. A sharp
image depends on accurate positioning of the elements in the array. How much error is
tolerated is dependent on the scale of the error and the required image quality (Carrara et al.,
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the first that has to be overcome for successful SAS imagery.
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by other elements from ping p + 1. The method is named displaced phase center antenna
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(MTI) radars in the 1950s (Dickey Jr et al., 1991). In SAS, early descriptions of DPCA can be
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is described.
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has to be less than the maximum displacement L/2. More overlap gives better navigation but
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and a specific pulse regime is used (Billon & Fohanno, 2002).

5.2 Topographic errors
When running a vehicle on a non-straight track, a non-straight synthetic aperture is formed
and the imaging geometry becomes dependent on the full three-dimensional geometry. This
means that the position of the sonar has to be known and the topography (or bathymetry)
of the scene to be imaged has to be known (Jakowatz et al., 1996, pages 187-197). Only
then, successful SAS processing can be done. This is critical for robust SAS, and a significant
problem since the topographic changes in rough terrain may impose severe non-linear tracks
(Hansen et al., 2009). There are two solutions to this challenge: either run on a straight line or
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Fig. 12. Multi-element receiver array and the principle for Displaced Phase Center Antenna.

obtain a map of the area before synthetic aperture processing. The former is impractical (or
impossible) on small platforms such as autonomous underwater vehicles (AUVs) or towfish
systems. The latter can be obtained by using an interferometric sonar to map the scene prior
to SAS processing.

5.3 Ocean environment
SAS is near-field imaging. This implies that the sound velocity has to be accurately estimated
for well focused imaging. The sound velocity in the ocean varies with depth (Brekhovskikh
& Lysanov, 1982, pages 1-9), (Lurton, 2010, chapter 2.6). There might also be local horizontal
and temporal variations. This can cause variation in the sound velocity of up to 2% along
the acoustic path. The effect of incorrect sound velocity on SAS is described in (Hansen
et al., 2007; Hansen, Callow, Sæbø & Synnes, 2010). To overcome this, the sound velocity
can be measured directly or calculated using a Conductivity, Temperature, Depth (CTD)
sensor. Another possibility is to auto correct for incorrect sound velocity by using an autofocus
technique (Hansen et al., 2007; Jakowatz et al., 1996).

5.4 Vehicle stability
SAS systems are generally multi-element receiver systems (see section 3.1). This affects
synthetic aperture processing in several ways. For vehicles operated in a crabbing
environment (where the heading is not aligned with the track), a baseline occurs between
overlapping elements. Even if the track is perfectly linear, the synthetic aperture becomes
non-linear and the image quality in SAS processing becomes dependent on the topography
accuracy (see section 5.2). Large crab-induced baselines is challenging for imaging and also
micronavigation (Callow, 2010).

5.5 Multipath environment
When operating in shallow waters, multiple reflections (or multipath) via the sea surface
might affect the performance of sonar (Lurton, 2010, chapter 2.4), (Bellettini et al., 2003).
This can affect the SAS data threefold: Multipath can potentially lower the temporal
coherence between pings in the micronavigation; multipath can reduce the spatial coherence
in interferometry; and multipath can add unwanted signal to the SAS images, causing loss of
shadow contrast and fidelity. The latter two problems applies to all sonars in shallow waters,
not only SAS. How much the shallow water environment affects SAS is actually dependent
of the seafloor conditions, the sound velocity profile and the sea surface roughness (Synnes
et al., 2009).
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Fig. 13. Overview of SAS signal processing flow.

6. Signal processing of SAS data

Signal processing of SAS data can be done in many different ways. Fig. 13 shows the shcematic
overview of a processing flow. Signal processing of SAS data is similar to SAR processing,
with a few exceptions. Accurate knowledge of the vehicle navigation (track position and
sensor orientation), the ocean environment and in particular the sound velocity, and the
seafloor topography must be obtained for successful SAS imagery (see section 5).
The first step (blocking) in the processing is to divide the data into portions suitable for
synthetic aperture processing. The blocking selects which pings to put into one synthetic
aperture, and decides what to do with the data. If micronavigation is required, this
must take place before imaging. There are two classes of image formation algorithms:
time domain imaging and frequency domain imaging. In general, the frequency domain
algorithms are more efficient but require more controlled vehicle behavior (close to straight
line tracks). Candidates are the wavenumber algorithm (Soumekh, 1994),(Cumming & Wong,
2005, chapter 8), (Carrara et al., 1995, chapter 10) (also referred to as range migration algorithm
or Omega-K algorithm), and the chirp scaling algorithm (Cumming & Wong, 2005, chapter 7),
(Franceschetti & Lanari, 1999). Alternatively, the image formation can be done in time domain
(see section 2.1). An overview of different algorithms used in SAS imaging can be found in
(Gough & Hawkins, 1997).The benefit of time domain beamforming is that the imaging grid
can be arbitrary and the data acquisition (the synthetic aperture) can be severely distorted.
This gives an added flexibility not available in frequency domain imaging (Massonnet &
Souyris, 2008, chapter 2.4). The disadvantage of time domain imaging is the computational
load. After image formation, blind correction for residual errors (known as autofocus) in
the image can be performed (Jakowatz et al., 1996, chapter 4), (Callow, 2003). It should be
noted that most autofocusing techniques are local methods - they have a certain success in
correcting local errors, but do not perform well on a large image with different sources for
errors in different locations in the image. For interferometric systems, the final stage in the
SAS processing flow is bathymetry estimation using interferometry (Hanssen, 2001; Sæbø,
2010).
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Fig. 12. Multi-element receiver array and the principle for Displaced Phase Center Antenna.
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7. Properties of SAS images

The goal of sonar imaging is to estimate the acoustic reflectivity in the best possible manner,
given the sensor and geometry (see section 2). (Oliver & Quegan, 1998) gives an excellent
overview of the properties of SAR images (highly relevant for SAS), related to the signal
processing and the scene content. In the following, we list common measures of system
performance, applicable to any imaging system.

Geometrical resolution or detail resolution. This is the minimum distance between two
reflectors where they can be resolved in the image. The theoretical geometric resolution is
given by the bandwidth for the range dimension and the element size for the along-track
dimension (see section 4.1). The true geometrical resolution is also dependent on the image
quality. Defocus will reduce the geometrical resolution (Oliver & Quegan, 1998, chapter
3.2).

Radiometric resolution or contrast / value resolution, echogenicity or target strength
accuracy. This is the accuracy of the estimated value in each pixel. All coherent imaging
systems suffers from speckle (Goodman, 2007; Oliver & Quegan, 1998). Speckle is
random variability caused by constructive and destructive interference between individual
scatterers in each geometrical resolution cell. Speckle causes a variance in the pixel value
and thereby a reduced radiometric resolution. There are different methods to despeckle
images and to estimate the scattering cross section. The traditional approach in SAR
has been to apply multilook processing to reduce speckle (Jakowatz et al., 1996, chapter
3.3). There also exist more advanced methods to estimate the scattering cross section
(Massonnet & Souyris, 2008, chapter 3.11), (Oliver & Quegan, 1998, chapter 6). The
radiometric resolution strictly depends on a fully calibrated system, where the whole
system has to be energy preserving. This is non-trivial to obtain, and it implies that all
the terms except the Target Strength in the sonar equation has to be accounted for (Ainslie,
2010; Lurton, 2010), (Curlander & McDonough, 1991, chapter 7).

Dynamic range or resolvability of small targets in the presence of large targets. This is a
function of the sidelobe levels or the shape of the point spread function. There is a trade-off
between geometrical resolution and dynamic range. Large dynamic range requires large
sidelobe suppression which causes poorer geometrical resolution (Franceschetti & Lanari,
1999, chapter 3.1), (Carrara et al., 1995, chapter 8). In addition to the sidelobes, the alias
lobes (or grating lobes) must also be controlled in order to obtain the desired dynamic
range. This can only be achieved by oversampling the synthetic aperture (Bellettini &
Pinto, 2009; Gough & Hawkins, 1997).

Sensitivity or detection ability of low level targets. This is determined by several of the terms
in the sonar equation (Lurton, 2010; Urick, 1983), such as system self noise, transmit power,
transmission loss (which is a function of acoustic frequency) and processing gain. See
(Ainslie, 2010) for a detailed description of the terms in the sonar equation. A system with
larger pulse compression gain will have improved sensitivity.

Temporal resolution or framerate. This is the number of independent images on the scene
per unit time. Since SAS is based on space-time processing (spatial movement uses time to
generate aperture), SAS only has one frame on the scene when using full aperture length.
Multi-aspect imaging (Hansen et al., 2008) can be applied to produce multiple aspects from
different apertures and thereby different time intervals. There is a trade-off between looks
and along-track resolution (since the aperture becomes shorter).
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Fig. 14. The ability to retrieve relevant information from a SAS image is dependent on a
number of different factors.

The ability to extract the relevant information from a SAS image depends on a number of
different factors, as illustrated in Fig. 14. Observation geometry given by range and elevation
angle is important for interpretation of the highlight structure and shadow. Backscattered
target signals can contain elements of specular reflections, diffuse scattering, transparency,
resonant scattering and multiple scattering, all of which complicate the process of retrieving
the relevant information. Finally, image resolution is critical in resolving or classifying objects,
shadow shape and the surrounding scatterers on the seafloor.

8. Applications of SAS

There are many applications where SAS is suitable. Very high resolution acoustic imaging
can be achieved on traditional sonar using very high frequencies, and there are sonar systems
today using up to 2 MHz frequency. They are, hovewer, very limited in range. When large
area coverage and very high resolution is needed at the same time, SAS is really the only
technology that can provide a solution. In this section, we describe a particular SAS system,
the HISAS 1030, and show example images from different applications.

8.1 The HISAS 1030 interferometric SAS
HISAS 1030 is a wideband widebeam interferometric SAS developed by Kongsberg Maritime
and FFI (Fossum et al., 2008; Hagen et al., 2008). The sonar contains two along-track receiver
arrays of 1.2 m length with 32 elements in each array, and a vertical baseline approximately
30 cm which equals 20 wavelengths. The transmitter is a vertical phased array with 16
elements, and the transmit beam can be electronically steered and shaped to obtain the best
possible performance in shallow waters (see Section 5.5). The transmitter can also be used as a
receiver, giving 16 individual receiver channels along a vertical array. Fig. 15 shows the sonar
mounted on a HUGIN 1000-MR AUV. Typical HISAS 1030 specifications are listed in Table
2. The SAS processing is done in a software suite named FOCUS Toolbox (Hansen et al., 2005;
2003).
Fig. 16 shows an example SAS image made by the HISAS 1030 on the HUGIN 1000 AUV. The
image shows the wreck of the 1500 dwt oil tanker Holmengraa lying on a slanted seabed at
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Fig. 15. The HISAS 1030 interferometric SAS on the HUGIN autonomous underwater
vehicle. The picture was taken just before launch during a scientific mission on board the
research vessel H U Sverdrup II in Norwegian waters in April 2010.

Center frequency 100 kHz
Wavelength 1.5 cm
Bandwidth 30 kHz
Total frequency range 50-120 kHz
Along-track resolution 3 cm
Cross-track resolution 3 cm
Maximum range @ 2 m/s 200 m
Area coverage rate 2 km2/h

Table 2. Typical system specifications for the HISAS 1030 interferometric SAS.

depth 77 m. The distance to the center of the image is about 95 m. The length of the wreck is
about 68 m and width about 9 m.
Fig. 17 captures the essence of SAS: Long range and high resolution at the same time. The large
(middle) image shows a SAS image where the range is 25 m (left) to 325 m (right), and the
dynamic range is 32 dB. The data was collected with HISAS 1030 on HUGIN AUV running at
2.3 knots at 40 m altitude, outside Horten, Norway in approximately 200 m water depth. The
upper image shows a section from 200 m range to 250 m range with the wreck of the German
WWII submarine U735. The lower image shows a section from 260 m range to 290 m range
with a 1 m3 cube. The length of the synthetic aperture is (see section 4.1)

Lsa ≈ Rη
λ

d
(14)
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Fig. 16. SAS image of the wreck of the Norwegian tanker Holmengraa that was sunk during
WWII in 1944. Courtesy of Kongsberg Maritime.

where R is the range, λ is the wavelength at center frequency, d is the along-track element
size in the array. η is a programmable parameter controlling the process beamwidth, that is, the
beamwidth actually processed. In this particular case, η = 2/3, and the length of the synthetic
aperture at maximum range becomes Lsa ≈ 90 m = 6000λ. The SAS resolution-gain, defined
as the ratio between along-track resolution in real aperture δxra and synthetic aperture δxsa is

Qsa =
δxra

δxsa
=

Lsa

L/2
≈ Rη

2λ

Ld
, (15)

where and L is the array length. In Fig. 17, the SAS resolution-gain is Qsa ≈ 150 at maximum
range. This is a considerable resolution improvement, and the equivalent along-track
resolution is very difficult to obtain using real aperture techniques.

8.2 Underwater archaeology
SAS is a candidate technology in searching for wrecks and other objects of historic interest.
Fig. 18 shows a SAS image collected by the Royal Norwegian Navy in a training mission close
to the town of Tromsø in the winter of 2009. The data was collected at 34 m water depth,
close to shore. The image shows the wreck of a German WWII Heinkel He 115 seaplane. The
original length of the plane is 17 m and the wingspan was 22 m. Note the small part outside
the right wing of the seaplane. This is probably one of the floats. The object in the lower left
part of the image is probably the tail-section of another plane of the same type.
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Fig. 17. Middle: SAS image where the range is 25 m (left) to 325 m (right). Courtesy of
Kongsberg Maritime.
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Fig. 18. SAS image of a German WWII Heinkel He 115 seaplane lying on the seafloor.
Courtesy of the Royal Norwegian Navy. Photograph is from wikipedia.

8.3 Search for small objects
When searching for small objects over very large areas, SAS is an excellent tool. Fig. 19 shows
a SAS image from an area with debris. The sonar has traveled along the vertical direction
of the image, and the sonar look direction is towards right. The size of the image is 190 m
(along-track) and 30 m to 165 m cross-track, and the water depth is around 70 m. The yellow
boxes indicates three objects, and the small images below show zoomed images of the objects.
These are two drums of approximate size 0.9 m length and 0.6 m diameter, and a cylinder of
approximate length 2.5 m. The lower row of images shows optical images of the same objects.
The optical images were collected with another HUGIN AUV. The altitude was 5 m on the
data collection of the optical images. We see several interesting features in the objects. The
drum at 73 m has clear indications of partial transparency. The back end of the barrel is clearly
visible, and there is acoustic pollution in the shadow region. The drum at 112 m has a less
defined back end and deeper shadow contrast, indicating that this object is less transparent.
In the optical images, indeed, we see that the drum at 73 m has severe damage and holes,
while the drum at 112 m looks to be more intact. In the optical image of the cylinder, we see a
small cavity in the lower right end. This appears as a highlight in the SAS image.
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Fig. 17. Middle: SAS image where the range is 25 m (left) to 325 m (right). Courtesy of
Kongsberg Maritime.

20  Sonar Systems Introduction to Synthetic Aperture Sonar 19

Fig. 18. SAS image of a German WWII Heinkel He 115 seaplane lying on the seafloor.
Courtesy of the Royal Norwegian Navy. Photograph is from wikipedia.
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of the image, and the sonar look direction is towards right. The size of the image is 190 m
(along-track) and 30 m to 165 m cross-track, and the water depth is around 70 m. The yellow
boxes indicates three objects, and the small images below show zoomed images of the objects.
These are two drums of approximate size 0.9 m length and 0.6 m diameter, and a cylinder of
approximate length 2.5 m. The lower row of images shows optical images of the same objects.
The optical images were collected with another HUGIN AUV. The altitude was 5 m on the
data collection of the optical images. We see several interesting features in the objects. The
drum at 73 m has clear indications of partial transparency. The back end of the barrel is clearly
visible, and there is acoustic pollution in the shadow region. The drum at 112 m has a less
defined back end and deeper shadow contrast, indicating that this object is less transparent.
In the optical images, indeed, we see that the drum at 73 m has severe damage and holes,
while the drum at 112 m looks to be more intact. In the optical image of the cylinder, we see a
small cavity in the lower right end. This appears as a highlight in the SAS image.
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Fig. 19. Upper: SAS image of an area with small objects. The range is 30 m (left) to 165 m
(right), and the along-track (vertical) is 190 m. The small cut-outs shows zoomed images of
three different objects. The lower row shows optical images of the same targets. Courtesy of
Kongsberg Maritime / FFI.
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8.4 Inspection of man made constructions
External inspection of underwater constructions such as pipelines is an important task. The
objective of these inspections is to detect burial, exposure, free spans and buckling of the
pipeline, as well as possible damages due to trawling, anchoring and debris near the pipeline.
SAS may be well suited technology for some of these tasks (Hagen et al., 2010), (Hansen,
Sæbø, Callow & Hagen, 2010). Fig. 20 shows an example SAS image collected by a HUGIN
AUV during a demonstration in San Diego, USA, in 2010. The image shows a sewer pipeline,
and a rope or wire on the seafloor.

Fig. 20. Upper: SAS image of a pipeline outside San Diego. The range in the upper image is
65 m - 145 m. Lower: 20 m times 10 m zoomed area at range 85 m of a rope or wire on the
seafloor. Courtesy of Kongsberg Maritime.
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9. Conclusion

Synthetic aperture sonar (SAS) is an advanced signal processing technique to improve
resolution in sonar imagery. The main application is detailed documentation of the seafloor,
in areas such as search for small objects, underwater archaeology, detailed seabed mapping
and documentation of underwater installations. Successful SAS is dependent on accurate
knowledge about the sonar position, the ocean environment and the seabed topography.
SAS is substantially more mature now than 10 years ago. To illustrate the maturity of
commercially available systems, we show a final example of SAS data collected by the HUGIN
AUV carrying the HISAS 1030. Fig. 21 shows SAS images and interferometric SAS relative
bathymetries of a German WWII Focke Wulf 190 A-3 aeroplane that was found by the Royal
Norwegian Navy mine warfare flotilla. The length of the plane is 9 m and the wingspan is
10.5 m. The tail was damaged as we see in the SAS images and the bathymetries. The motor
fell off during the recovery. These images was produced at sea by the Royal Norwegian Navy
personnel during the search operation. The images was constructed using micronavigation
and sidescan bathymetry as a preprocessing step, then backprojection in three dimensions
for image formation, and finally bathymetry estimation using a maximum likelihood phase
estimator in the interferometric processing.
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(c) Bathymetry by SAS interferometry 1 (d) Bathymetry by SAS interferometry 2

Fig. 21. The German WWII Focke Wulf 190 A-3 aircraft. The plane was found by the Royal
Norwegian Navy Mine warfare flotilla at 98 m water depth during an underwater
archaeology mission. Courtesy of the Royal Norwegian Navy.

(e) Photograph taken during the recovery (f) Photograph taken during the recovery
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1. Introduction

Although the concept of multistatic active sonar (MAS) has been around for over 50 years,
new trends have brought this technology to the forefront of anti-submarine warfare research.
These trends include advancements in sonar sensors and signal processing, advancements
in submarine stealth, and a desire to track targets in noisy and reverberant environments,
such as near-shore or shallow waters. The latest trend is to exploit the really game-changing
capabilities of unmanned and autonomously operating underwater vehicles.
The focus of this chapter is on advances in signal processing enabling especially the tracking
of low signature targets, namely targets with low signal-to-noise ratio (SNR), in a multisensor
environment. In particular, the track-before-detect (TBD) approach and its adaption to
pre-selected contact-based tracking are addressed. The TBD approach is designed to track low
SNR targets. TBD-based procedures jointly process several consecutive pings and, relying on
target kinematics or, simply, exploiting the physically admissible target transitions, declare
the presence of a target and, eventually, its track (Orlando et al., IEEE-TSP 2010). A TBD
algorithm is typically fed by unthresholded data or thresholded data with significantly lower
thresholds than the ones used by conventional trackers. Moreover an important feature of
a TBD scheme is the so-called constant false track acceptance rate (CFTAR) property: if a
TBD scheme ensures the constant false alarm rate property with respect to the unknown
statistics of the disturbance, then it allows controlling the overall false track acceptance rate.
The TBD algorithm herein presented considers a bistatic sonar architecture and is capable
of handling raw hydrophone data (Orlando et al., CIP 2010). Remarkably, it guarantees the
CFTAR property. Performance analysis highlights its potential to implement automatic track
continuation and to prepare automatic classification for temporarily weak targets as these
tasks are usually the challenges that MAS systems have to overcome.
In the context of multistatic sonar, a batch algorithm is also introduced, that jointly processes
measurements provided by multiple sensors over a certain number of consecutive pings
(Orlando et al., FUSION 2010). These measurements are time differences of arrival and
bearing information of a target maneuvering in the surveillance region. This approach
is tested on a benchmark data set provided by METRON in the context of collaborative
international multi-laboratory research that is ongoing in the ISIF Multi-Static Tracking
Working Group (Orlov, Metron Data set 2009).
The remainder of this chapter is organized as follows: the next section is devoted to the
description of bistatic and multistatic sonar systems. Section III focuses on the derivation
of the TBD (or TBD-based) processors. In Section IV a node selection strategy for multistatic
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1. Introduction

Although the concept of multistatic active sonar (MAS) has been around for over 50 years,
new trends have brought this technology to the forefront of anti-submarine warfare research.
These trends include advancements in sonar sensors and signal processing, advancements
in submarine stealth, and a desire to track targets in noisy and reverberant environments,
such as near-shore or shallow waters. The latest trend is to exploit the really game-changing
capabilities of unmanned and autonomously operating underwater vehicles.
The focus of this chapter is on advances in signal processing enabling especially the tracking
of low signature targets, namely targets with low signal-to-noise ratio (SNR), in a multisensor
environment. In particular, the track-before-detect (TBD) approach and its adaption to
pre-selected contact-based tracking are addressed. The TBD approach is designed to track low
SNR targets. TBD-based procedures jointly process several consecutive pings and, relying on
target kinematics or, simply, exploiting the physically admissible target transitions, declare
the presence of a target and, eventually, its track (Orlando et al., IEEE-TSP 2010). A TBD
algorithm is typically fed by unthresholded data or thresholded data with significantly lower
thresholds than the ones used by conventional trackers. Moreover an important feature of
a TBD scheme is the so-called constant false track acceptance rate (CFTAR) property: if a
TBD scheme ensures the constant false alarm rate property with respect to the unknown
statistics of the disturbance, then it allows controlling the overall false track acceptance rate.
The TBD algorithm herein presented considers a bistatic sonar architecture and is capable
of handling raw hydrophone data (Orlando et al., CIP 2010). Remarkably, it guarantees the
CFTAR property. Performance analysis highlights its potential to implement automatic track
continuation and to prepare automatic classification for temporarily weak targets as these
tasks are usually the challenges that MAS systems have to overcome.
In the context of multistatic sonar, a batch algorithm is also introduced, that jointly processes
measurements provided by multiple sensors over a certain number of consecutive pings
(Orlando et al., FUSION 2010). These measurements are time differences of arrival and
bearing information of a target maneuvering in the surveillance region. This approach
is tested on a benchmark data set provided by METRON in the context of collaborative
international multi-laboratory research that is ongoing in the ISIF Multi-Static Tracking
Working Group (Orlov, Metron Data set 2009).
The remainder of this chapter is organized as follows: the next section is devoted to the
description of bistatic and multistatic sonar systems. Section III focuses on the derivation
of the TBD (or TBD-based) processors. In Section IV a node selection strategy for multistatic
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sonar systems is described on a conceptual level while Section V provides some illustrative
examples. Finally, Section VI contains concluding remarks and hints for future work.

2. Multistatic sonar

When low frequency active sonar was first used to find and track underwater targets, the
required hardware for both the acoustic source and the acoustic receiver was installed onboard
a single unit. The deployed part (or wet-end) of the system is quite heavy and large in
extend and there has to be a synchronization between the activating source and the receiving
hydrophones. Hence, the natural approach is to use such a monostatic system (source and
receiver collocated) in order to avoid the necessity and cost for multiple units involved and
data synchronization issues. However, looking at the cylindrical structure of the target it turns
out that approaching or opening aspects of the target result in very low detection probabilities
for those monostatic systems.
An enormous improvement in performance is possible if multiple acoustic sources and
receivers are deployed in a spatially distributed manner. Multiple units have to be used and
data synchronization has to be solved in order to implement these so called multistatic active
sonar systems. A multistatic architecture can provide:

• short latency (due to effective Doppler processing);

• high precision (due to triangulation);

• fewer false alarms;

• anti-stealth.

These benefits can only be exploited by automatic fusion and tracking of the multistatic
data. Automatic tracking algorithms use the information from consecutive measurements to
discriminate between physically feasible movements and random movements of prospective
targets. By this discrimination the overall false alarm rate can be reduced, especially when
different bistatic aspects on the target are combined within the tracking algorithm. It is
possible to summarize the major issues of MAS as follows:

1. estimation task: non-linear and noisy measurements and variable sound channels;

2. multi-target issue: false alarms, clutter targets, and bottom reflections;

3. non-cooperative evader: stealthy target with evading actions;

4. multi-agent coordination whereby communication between sensors needed, but not
always present.

In this chapter, two TBD-based techniques are introduced in order to overcome limitations
due to the issues 1 and 2.
Before proceeding further, notice that a multistatic system consists of multiple sources and
multiple receivers and, hence, it can be viewed as composed of different bistatic subsystems.
For this reason, the bistatic configuration is first introduced in Subsection 2.1, then the
description of the multistatic architecture is given in Subsection 2.2.

2.1 System description: the bistatic architecture
The bistatic sonar scenario involves a projector and a receiver, placed at a different location
and equipped with an array of sensors, a point-like target at a certain “distance” from the
array (range), and a signal that travels from the projector to the target and from the target to
the receiver. The system under consideration utilizes a planar array (see Figure 1) consisting of
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Na arms; each of them contains Ns identical sensors spaced d meters apart from one another.
The total number of sensors is

N = Na(Ns − 1) + 1, (1)

where we are accounting for the fact that the arms share the central sensor. Moreover, let
θa = 2π/Na be the separation angle between two consecutive arms, θr the azimuthal angle of
the impinging target echo, measured clockwise from the reference arm, and

θi = θr − (i − 1)θa, i = 1, . . . , Na, (2)

the angle of arrival with respect to the ith arm.
Suppose that the projector omnidirectionally transmits the following pulse waveform

Re
{

Aejφ p(t)ej2π fct
}

, t ∈ [0, Tp[, (3)

where
p(t) =

1√
Tp

ejπkt2
(4)

is a frequency modulated waveform of duration Tp, A > 0 is an amplitude factor related to
the transmitted power, φ ∈ [0, 2π[ is the initial phase of the carrier signal, fc is the carrier
frequency, Re{z} denotes the real part of the complex number z, and k = B/Tp, with B the
pulse bandwidth. In the next subsection, we derive the discrete-time form for the received
signal.

Fig. 1. The planar array and the associated reference system: each sensor is represented by a
filled circle.
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Fig. 2. Bistatic geometry

2.1.1 Discrete-time sensor model
Consider the geometry depicted in Figure 2 and suppose that a prospective (point-like) target
is moving within the surveillance area with a velocity vector v ∈ R2×1. The received signal at
the nth sensor of the ith arm is given by

rn,i(t) = Re

{
α√
Tp

ejπk(t−τn,i(t))2
ej2π fc(t−τn,i(t))

}
+ nn,i(t), (5)

where

• α ∈ C is a complex and unknown (deterministic) factor accounting for the transmitted
power, the transmitting and receiving gain, the two-way path loss, and the sonar
cross-section of the target; hereafter α denotes any proper modification of the previous
constant;

• τn,i(t) is the time delay between the transmission by the source and the arrival of the target
echo at the nth sensor of the ith arm;

• nn,i(t) is the overall disturbance component; in the sequel we use the above symbol to
denote any modification of the noise components.

Now observe that τn,i(t) consists of three components

τn,i(t) = τ1(t) + τ2(t)− d(n − 1)
c

cos θi, (6)

where1 c (� �v�) is2 the speed of sound in water, τ1(t) is the travel time of the transmitted
signal from source to target, and τ2(t) is the travel time of the target echo from target to
receiver3.
For the sake of convenience, it is worth defining the following time difference of arrival

τ�(t) = τ1(t) + τ2(t)− τ3, (7)

where τ3 = D3/c is the travel time from source to receiver (D3 is the distance between the
source and the receiver). It follows that equation (5) can be recast as

rn,i(t) ≈ Re
{

αejπk(t−τ�(t)−τ3)2
ej2π fctej2π(n−1)νie−j2π fcτ3 e−j2π fcτ�(t)

}
+ nn,i(t), (8)

1 Recall that d is the interelement spacing
2 � · � denotes the Euclidean norm.
3 To be more precise, τ2(t) is the travel time of the target echo from the target to the origin of the reference

system which coincides with the center of the receiver (see Figure 1).
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where

νi =
d
λ

cos θi (9)

is the spatial frequency with respect to the ith arm. An equivalent monostatic range D�(t),
corresponding to τ�(t), can be defined as follows

D�(t) = cτ�(t)
2

= D� − v�
(

t − τ�(t)
2

)
, (10)

where D� is the initial equivalent monostatic range and (Willis, Scitech Pub. 2005)

v� = �v� cos θTB cos
β

2
(< �v� � c). (11)

Equation (11) can be obtained by writing D�(t) as follows

D�(t) =
[

D1(t) + D2(t)− D3

2

]
, (12)

where D1(t) is the source-target distance and D2(t) is the receiver-target distance, and
evaluating its first derivative with respect to t, namely

d
dt

D�(t) = 1
2
�v�(cos θTR + cos θTS), (13)

where

θTR = θTB − β/2, (14)

θTS = θTB + β/2. (15)

It is not difficult to show that knowledge of D� and θr allows to evaluate the initial
receiver-target distance, D2 say. Indeed, from Figure 2 the following relation among the initial
source-target distance, D1 say, D2, and D3 holds true

D2
1 = D2

2 + D2
3 − 2D2D3 cos γ. (16)

Then, solving the next equation

D� = D1 + D2 − D3

2
(17)

with respect to D1 and substituting the solution into (16) yields

D2 = D�
[

1 + D3/D�
1 + (D3/D�)(1 − cos γ)/2

]
. (18)

The above equation allows us to recast the expression of the received signal in terms of the
equivalent monostatic quantities v�, D�, and τ�(t). More specifically, from equation (10) we
obtain

τ�(t) ≈ 2D�
c

− 2v�t
c

= τ� − 2v�t
c

, (19)

where4

τ� = 2D�
c

. (20)

4 Remember that c � v�.
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Then, inserting (19) into (8) yields

rn,i(t) ≈ Re
{

αejπk(t−τ�−τ3)
2
ej2π fctej2π(n−1)νi ej2π f �Dt

}
+ nn,i(t), (21)

where

f �D = 2
fcv�
c

. (22)

After complex baseband conversion, the output of a filter matched to p(t) is given by (see
(Bandiera at al., M&C 2009))

yn,i(t) = α
∫ +∞

−∞
ejπk(u−τ�−τ3)2

ej2π(n−1)νi ej2π f �Due−jπk(t−u)2
du + nn,i(t). (23)

Let u1 = u − τ� − τ3, then

yn,i(t) = αej2π(n−1)νi

∫ +∞

−∞
ej2π f �Du1 ejπku2

1 e−jπk[u1−(t−τ�−τ3)]2du1 + nn,i(t)

= αχp(t − τ� − τ3, f �D)ej2π(n−1)νi + nn,i(t), (24)

where again α and nn,i(t) denote a proper modification of the target response and of the noise
component, respectively, and χp(·, ·) is the (complex) ambiguity function of p(t).
In order to generate the vector of the noisy returns corresponding to the lth range gate, l =
1, . . . , L, the output of the matched filter yn,i(t) is sampled at

tl = tmin + (l − 1)TB, (25)

where tmin denotes the beginning of the sampling process and TB = 1/B. The time samples
are grouped to form an N-dimensional vector (recall that N = Na(Ns − 1) + 1), as follows

zl = [y1,1(tl) · · · yNs,1(tl) y2,2(tl) · · · yNs,2(tl) · · · y2,Na(tl) · · · yNs,Na(tl)]
T

= sl + nl , (26)

where

• T denotes transpose;

• sl ∈ CN×1 is the useful signal vector5;

• nl ∈ CN×1 is the noise vector.

It is important to stress here that the bistatic range resolution is conventionally taken to be

δ = c
TB

2
. (27)

However, two targets lying on the isorange contours must be at least physically separated by
a distance given by

cTB

2 cos(β/2)
(28)

to generate a separation δ at the receiver (Willis, Scitech Pub. 2005).

5 sl incorporates the complex amplitude α
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Now, assuming that
τ� + τ3 ∈ [tmin, tmin + (L − 1)TB ], (29)

it follows that
∃l̄ ∈ {1, . . . , L − 1} : τ� + τ3 = tmin + (l̄ − 1)TB + ��, (30)

0 ≤ �� ≤ TB, and, hence, that

sl =

⎧
⎨
⎩

αχp(−��, f �D)v(θr), l = l̄,
αχp(Tp − ��, f �D)v(θr), l = l̄ + 1,
0, l �= l̄, l̄ + 1,

(31)

where 0 is a null vector of proper dimensions and

v(θr) =
�
1 ej2πν1 · · · ej2π(Ns−1)ν1 · · · ej2πνNa · · · ej2π(Ns−1)νNa

�T
(32)

is the spatial steering vector.
In the following we assume that the target is located at the center of the lth range gate, namely
that there is no spillover of target energy to adjacent matched filter samples. Thus, equation
(31) becomes

sl =

�
αv(θr), l = l̄,
0, l �= l̄. (33)

A remark is now in order. Observe that the zl’s (equation (26)) are usually processed to
generate the contacts used by conventional trackers. An alternative to the traditional approach
consists in feeding the zl ’s to a TBD processor that operates with raw data (see Subsection 3.1).

2.2 Contact-based multistatic architecture
This subsection is devoted to the description of a multisensor surveillance sonar system
that processes thresholded data to track prospective targets. In particular, we focus our
attention on a sensor network which provides a set of time difference of arrival (TDOA) and
bearing information on M consecutive pings. Notice that each network node makes hard
decisions and transmits these results to the fusion center for track estimate. In other words,
we consider a parallel fusion network employing centralized fusion architecture (Varshney,
Springer 1997).
The considered system consists of multiple acoustic sound sources and multiple receivers,
more precisely

• Nsr sources that alternately illuminate the surveillance region with a ping occurring every
Tpg seconds; the Nsr-source ping schedule is

nsr = [(m − 1) mod Nsr] + 1, (34)

where nsr is the index of the transmitting source at the mth ping and [a mod b], a, b ∈ N,
is the remainder of the division a/b.

• Nr synchronous omnidirectional receivers.

Source and receiver positions are known. Each receiver provides a set of measurements (or
contacts), denoted as follows

Zi,m = {zi,1,m, . . . , zi,Ni,m,m}, i = 1, . . . , Nr, m = 1, . . . , M, (35)
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1 e−jπk[u1−(t−τ�−τ3)]2du1 + nn,i(t)

= αχp(t − τ� − τ3, f �D)ej2π(n−1)νi + nn,i(t), (24)

where again α and nn,i(t) denote a proper modification of the target response and of the noise
component, respectively, and χp(·, ·) is the (complex) ambiguity function of p(t).
In order to generate the vector of the noisy returns corresponding to the lth range gate, l =
1, . . . , L, the output of the matched filter yn,i(t) is sampled at

tl = tmin + (l − 1)TB, (25)

where tmin denotes the beginning of the sampling process and TB = 1/B. The time samples
are grouped to form an N-dimensional vector (recall that N = Na(Ns − 1) + 1), as follows

zl = [y1,1(tl) · · · yNs,1(tl) y2,2(tl) · · · yNs,2(tl) · · · y2,Na(tl) · · · yNs,Na(tl)]
T

= sl + nl , (26)

where

• T denotes transpose;

• sl ∈ CN×1 is the useful signal vector5;

• nl ∈ CN×1 is the noise vector.

It is important to stress here that the bistatic range resolution is conventionally taken to be

δ = c
TB

2
. (27)

However, two targets lying on the isorange contours must be at least physically separated by
a distance given by

cTB

2 cos(β/2)
(28)

to generate a separation δ at the receiver (Willis, Scitech Pub. 2005).

5 sl incorporates the complex amplitude α
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Now, assuming that
τ� + τ3 ∈ [tmin, tmin + (L − 1)TB ], (29)

it follows that
∃l̄ ∈ {1, . . . , L − 1} : τ� + τ3 = tmin + (l̄ − 1)TB + ��, (30)

0 ≤ �� ≤ TB, and, hence, that

sl =

⎧
⎨
⎩

αχp(−��, f �D)v(θr), l = l̄,
αχp(Tp − ��, f �D)v(θr), l = l̄ + 1,
0, l �= l̄, l̄ + 1,

(31)

where 0 is a null vector of proper dimensions and

v(θr) =
�
1 ej2πν1 · · · ej2π(Ns−1)ν1 · · · ej2πνNa · · · ej2π(Ns−1)νNa

�T
(32)

is the spatial steering vector.
In the following we assume that the target is located at the center of the lth range gate, namely
that there is no spillover of target energy to adjacent matched filter samples. Thus, equation
(31) becomes

sl =

�
αv(θr), l = l̄,
0, l �= l̄. (33)

A remark is now in order. Observe that the zl’s (equation (26)) are usually processed to
generate the contacts used by conventional trackers. An alternative to the traditional approach
consists in feeding the zl ’s to a TBD processor that operates with raw data (see Subsection 3.1).

2.2 Contact-based multistatic architecture
This subsection is devoted to the description of a multisensor surveillance sonar system
that processes thresholded data to track prospective targets. In particular, we focus our
attention on a sensor network which provides a set of time difference of arrival (TDOA) and
bearing information on M consecutive pings. Notice that each network node makes hard
decisions and transmits these results to the fusion center for track estimate. In other words,
we consider a parallel fusion network employing centralized fusion architecture (Varshney,
Springer 1997).
The considered system consists of multiple acoustic sound sources and multiple receivers,
more precisely

• Nsr sources that alternately illuminate the surveillance region with a ping occurring every
Tpg seconds; the Nsr-source ping schedule is

nsr = [(m − 1) mod Nsr] + 1, (34)

where nsr is the index of the transmitting source at the mth ping and [a mod b], a, b ∈ N,
is the remainder of the division a/b.

• Nr synchronous omnidirectional receivers.

Source and receiver positions are known. Each receiver provides a set of measurements (or
contacts), denoted as follows

Zi,m = {zi,1,m, . . . , zi,Ni,m,m}, i = 1, . . . , Nr, m = 1, . . . , M, (35)
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where M is the total number of consecutive illuminations and Ni,m is the number of
measurements collected by the ith receiver at the mth ping. As to the zi,j,m’s, they are
2-dimensional vectors defined as

zi,j,m =

[
di,j,m
φi,j,m

]
∈ R2×1, (36)

where φi,j,m is the bearing measured clockwise from the receiver north and di,j,m denotes the
TDOA between the direct blast and the contact.

2.2.1 Sensor model
In the sequel, we assume that when a measurement has originated from the target, the errors
for TDOA and bearing are independent zero-mean Gaussian random variables, namely

Δdi,j,m ∼ N 1(0, σ2
d ) and Δφi,j,m ∼ N 1(0, σ2

φ), ∀i, j, m, (37)

where σd > 0 and σφ > 0 are the respective standard deviations and are supposed known.
On the other hand, when the contacts are due to the noise, we assume that they are uniformly
distributed in the measurement space, i.e.,

di,j,m ∼ U (dmin
i,m , dmax

i,m ) and φi,j,m ∼ U (φmin
i,m , φmax

i,m ), (38)

where

• dmin
i,m and φmin

i,m denote the minimum values for TDOA and bearing, respectively;

• dmax
i,m and φmax

i,m are the maximum values for TDOA and bearing, respectively.

These parameters are tied to the application in question and to the employed technology, more
precisely they can be chosen on the basis of: the surveillance area size, the peculiarities of the
sought target, the quality of the used sensors, etc.
In Subsection 3.2 a tracking algorithm which takes advantage of the above multistatic system
is introduced. In addition, such an algorithm relies on the main idea behind the TBD
paradigm, namely, it jointly processes the available measurements over several consecutive
pings.

3. Target tracking: the track-before-detect approach

Traditional tracking algorithms are designed assuming that the sensor provides a set of
discrete measurements at each scan (or ping). In an activated surveillance system such
measurements could be obtained by thresholding the output of a matched filter fed by
a baseband version of collected data. Then, the tracking algorithm links measurements
across time and estimates the parameters of interest. The threshold value must be low
enough to guarantee a sufficiently high probability of target detection. However, a low
threshold gives rise to a high rate of false alarms. It follows that to avoid false tracks
it is necessary to effectively solve the data association problem (Bar-Shalom & Fortmann,
Academic Press 1988). A reliable means of validating the track estimate as a target-originated
one is also required.
An alternative approach, referred to as track-before-detect (TBD), consists of feeding the
processor with unthresholded data or thresholded data with significantly lower thresholds
than the ones used by conventional trackers. TBD-based procedures jointly process several
consecutive pings (or scans) and, relying on a target kinematics or, simply, exploiting the
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physically admissible target transitions, jointly declare the presence of a target and, eventually,
its track. A TBD algorithm can improve track accuracy and follow low SNR targets at the
price of an increase of the computational complexity. Moreover, a TBD scheme ensuring the
constant false alarm rate property with respect to the unknown statistics of the disturbance
controls the overall false track acceptance probability and, hence, it is capable of guaranteeing
the constant false track acceptance rate (CFTAR property).
Most of the TBD algorithms existing in the open literature are conceived to be
implemented in optical and radar systems. Their use in connection with sonar systems
has received less attention. For a description of existing results see (Orlando et al.,
IEEE-TSP 2010; Buzzi et al., IEEE-TAES 2005; S. Buzzi et al., IEEE-TAES 2008; Kramer & Reid,
Radar Conference 1990; Wallace, Radar Conference 2002). A family of low-complexity
power-efficient TBD procedures has been presented in (Buzzi et al., IEEE-TAES 2005).
Therein, the continuous-time continuous-amplitude signal collected by a pulse Doppler radar
is discretized to reflect the sectorization of the coverage area and the range gating operation,
and the generalized likelihood ratio test (GLRT) is solved resorting to a Viterbi-like tracking
algorithm. The proposed algorithm has a complexity linear in the number of integrated scans
and in the time on target. The emphasis is on detection performance more than tracking:
in fact, the GLRT does not rely on the target kinematics; it simply takes into account a
maximum target velocity in order to define the admissible target transitions in range and
azimuth (the Doppler is dealt with as a nuisance quantity due to the considered system
and target parameters). However, a rough estimate of the target parameters is obtained
as a by-product of the construction of the target statistic. (Orlando et al., IEEE-TSP 2010)
extends the derivation of (Buzzi et al., IEEE-TAES 2005) to the context of space-time adaptive
processing.
In the next subsection, we focus on a bistatic architecture and describe a proper modification
of the algorithms proposed in (Orlando et al., IEEE-TSP 2010) to handle raw hydrophone data.
In Subsection 3.2 we apply the main idea behind the TBD approach to thresholded data
provided by a sensor network over several consecutive pings.

3.1 Track-before-detect strategies for bistatic sonars
The system considered here has a bistatic configuration and integrates the returns from M
consecutive pings before deciding whether or not a target is present in the surveillance area.
Relying on the mathematical model for the received signal derived in Subsection 2.1.1, we
utilize design criteria based upon the GLRT to derive a class of adaptive detectors which
guarantee the CFTAR property under design assumptions with respect to the overall spectral
properties of the noise. Moreover, at the design stage, we assume that the unknown clutter
covariance matrix can possibly change from ping to ping. The performance assessment
is provided in Section 5. It is carried out resorting to real sonar data collected by the
deployable underwater surveillance system, called DEMUS, of NATO Undersea Research
Centre (NURC).

3.1.1 Detector designs
As stated above, the receiver jointly processes data from M consecutive pings before
discriminating between the noise-only hypothesis and the signal-plus-noise hypothesis. Thus,
the track-before-detect problem at hand can be formulated in terms of a binary hypothesis
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where M is the total number of consecutive illuminations and Ni,m is the number of
measurements collected by the ith receiver at the mth ping. As to the zi,j,m’s, they are
2-dimensional vectors defined as

zi,j,m =
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]
∈ R2×1, (36)

where φi,j,m is the bearing measured clockwise from the receiver north and di,j,m denotes the
TDOA between the direct blast and the contact.

2.2.1 Sensor model
In the sequel, we assume that when a measurement has originated from the target, the errors
for TDOA and bearing are independent zero-mean Gaussian random variables, namely

Δdi,j,m ∼ N 1(0, σ2
d ) and Δφi,j,m ∼ N 1(0, σ2

φ), ∀i, j, m, (37)

where σd > 0 and σφ > 0 are the respective standard deviations and are supposed known.
On the other hand, when the contacts are due to the noise, we assume that they are uniformly
distributed in the measurement space, i.e.,

di,j,m ∼ U (dmin
i,m , dmax
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i,m , φmax

i,m ), (38)

where

• dmin
i,m and φmin

i,m denote the minimum values for TDOA and bearing, respectively;

• dmax
i,m and φmax

i,m are the maximum values for TDOA and bearing, respectively.

These parameters are tied to the application in question and to the employed technology, more
precisely they can be chosen on the basis of: the surveillance area size, the peculiarities of the
sought target, the quality of the used sensors, etc.
In Subsection 3.2 a tracking algorithm which takes advantage of the above multistatic system
is introduced. In addition, such an algorithm relies on the main idea behind the TBD
paradigm, namely, it jointly processes the available measurements over several consecutive
pings.

3. Target tracking: the track-before-detect approach

Traditional tracking algorithms are designed assuming that the sensor provides a set of
discrete measurements at each scan (or ping). In an activated surveillance system such
measurements could be obtained by thresholding the output of a matched filter fed by
a baseband version of collected data. Then, the tracking algorithm links measurements
across time and estimates the parameters of interest. The threshold value must be low
enough to guarantee a sufficiently high probability of target detection. However, a low
threshold gives rise to a high rate of false alarms. It follows that to avoid false tracks
it is necessary to effectively solve the data association problem (Bar-Shalom & Fortmann,
Academic Press 1988). A reliable means of validating the track estimate as a target-originated
one is also required.
An alternative approach, referred to as track-before-detect (TBD), consists of feeding the
processor with unthresholded data or thresholded data with significantly lower thresholds
than the ones used by conventional trackers. TBD-based procedures jointly process several
consecutive pings (or scans) and, relying on a target kinematics or, simply, exploiting the
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physically admissible target transitions, jointly declare the presence of a target and, eventually,
its track. A TBD algorithm can improve track accuracy and follow low SNR targets at the
price of an increase of the computational complexity. Moreover, a TBD scheme ensuring the
constant false alarm rate property with respect to the unknown statistics of the disturbance
controls the overall false track acceptance probability and, hence, it is capable of guaranteeing
the constant false track acceptance rate (CFTAR property).
Most of the TBD algorithms existing in the open literature are conceived to be
implemented in optical and radar systems. Their use in connection with sonar systems
has received less attention. For a description of existing results see (Orlando et al.,
IEEE-TSP 2010; Buzzi et al., IEEE-TAES 2005; S. Buzzi et al., IEEE-TAES 2008; Kramer & Reid,
Radar Conference 1990; Wallace, Radar Conference 2002). A family of low-complexity
power-efficient TBD procedures has been presented in (Buzzi et al., IEEE-TAES 2005).
Therein, the continuous-time continuous-amplitude signal collected by a pulse Doppler radar
is discretized to reflect the sectorization of the coverage area and the range gating operation,
and the generalized likelihood ratio test (GLRT) is solved resorting to a Viterbi-like tracking
algorithm. The proposed algorithm has a complexity linear in the number of integrated scans
and in the time on target. The emphasis is on detection performance more than tracking:
in fact, the GLRT does not rely on the target kinematics; it simply takes into account a
maximum target velocity in order to define the admissible target transitions in range and
azimuth (the Doppler is dealt with as a nuisance quantity due to the considered system
and target parameters). However, a rough estimate of the target parameters is obtained
as a by-product of the construction of the target statistic. (Orlando et al., IEEE-TSP 2010)
extends the derivation of (Buzzi et al., IEEE-TAES 2005) to the context of space-time adaptive
processing.
In the next subsection, we focus on a bistatic architecture and describe a proper modification
of the algorithms proposed in (Orlando et al., IEEE-TSP 2010) to handle raw hydrophone data.
In Subsection 3.2 we apply the main idea behind the TBD approach to thresholded data
provided by a sensor network over several consecutive pings.

3.1 Track-before-detect strategies for bistatic sonars
The system considered here has a bistatic configuration and integrates the returns from M
consecutive pings before deciding whether or not a target is present in the surveillance area.
Relying on the mathematical model for the received signal derived in Subsection 2.1.1, we
utilize design criteria based upon the GLRT to derive a class of adaptive detectors which
guarantee the CFTAR property under design assumptions with respect to the overall spectral
properties of the noise. Moreover, at the design stage, we assume that the unknown clutter
covariance matrix can possibly change from ping to ping. The performance assessment
is provided in Section 5. It is carried out resorting to real sonar data collected by the
deployable underwater surveillance system, called DEMUS, of NATO Undersea Research
Centre (NURC).

3.1.1 Detector designs
As stated above, the receiver jointly processes data from M consecutive pings before
discriminating between the noise-only hypothesis and the signal-plus-noise hypothesis. Thus,
the track-before-detect problem at hand can be formulated in terms of a binary hypothesis
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testing problem as follows (Orlando et al., IEEE-TSP 2010)
⎧⎪⎨
⎪⎩

H0 : zl,m = nl,m, l = 1, . . . , L, m = 1, . . . , M

H1 :
�

zl,m = αmv(θr,m) + nl,m,
zl,m = nl,m,

l = lm, m = 1, . . . , M,
l �= lm, m = 1, . . . , M,

(39)

where

• l ∈ {1, . . . , L} and m ∈ {1, . . . , M} are integers indexing the range cells and the pings,
respectively;

• zl,m ∈ CN×1, l = 1, . . . , L, m = 1, . . . , M, are the vectors containing the noisy returns;

• nl,m ∈ CN×1, l = 1, . . . , L, m = 1, . . . , M, are independent and identically distributed
complex normal random vectors with zero mean and unknown covariance matrices Rm ∈
CN×N ;

• θr,m denotes the azimuthal angle of the impinging target echo at the mth ping.

The above assumptions imply that the probability density function (pdf) of the overall data
matrix, denoted by

Z = [z1,1 · · · zL,M], (40)

can be written as

f0(Z; R1, . . . , RM) =
M

∏
m=1

1
πNL det(Rm)L exp

�
−Tr

�
R−1

m

�
zlm,mz†

lm,m + Slm,m

���
(41)

under H0 and

f1(Z; R1, . . . , RM, α) =
M

∏
m=1

1
πNL det(Rm)L exp

�
−Tr

�
R−1

m

�
ulm,mu†

lm,m + Slm,m

���
(42)

under H1, where

• det(·) and Tr[·] denote the determinant and the trace of a square matrix, respectively;

• Slm,m ∈ CN×N is (L − 1) times the sample covariance matrix of the noise based on the
available data over the mth ping, but for the lmth range cell, namely

Slm,m = ∑
l �=lm

zl,mz†
l,m; (43)

• α = [α1 · · · αM]T is the vector of target responses and6

ulm,m = zlm,m − αmvm(θr,m). (44)

In the following we apply the so-called two-step GLRT-based design procedure
(Kelly & Nitzberg, IEEE-TAES 1992) in order to come up with a class of fully-adaptive
detectors. To be more precise, the following rationale is adopted

• first assume that the covariance matrices of the noise are known ∀m and implement the
GLRT maximizing the likelihood functions over the unknown parameters;

6 Recall that vm is defined by (32)
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• then, replace the unknown matrices Rm, m = 1, . . . , M, with proper estimates.

Thus, the GLRT under the assumption that the Rm’s are known is given by

maxD∈S
max

α
f1(Z;D, α, R1, . . . , RM)

f0(Z; R1, . . . , RM)

H1
>
<
H0

η, (45)

where

• D = {(l1, θr,1), . . . , (lM, θr,M)} ∈ S is the sequence of points occupied by a prospective
target in the Range-Azimuth domain, with S the set of all physically admissible target
trajectories;

• η is the threshold value to be set in order to ensure the desired probability of false alarm
(Pf a).

Performing the maximization of (45) with respect to α yields

maxD ∈ S
M

∑
m=1

∣∣∣v(θr,m)†R−1
m zlm,m

∣∣∣2

v(θr,m)†R−1
m v(θr,m)

H1
>
<
H0

η. (46)

An adaptive version of decision scheme (46) can be obtained by replacing the Rm’s with
proper estimates, R̂m’s say. The most common estimate of Rm is the sample covariance matrix
based upon the available data at the mth ping, namely

R̂m =
1
L

L

∑
l=1

zl,mz†
l,m. (47)

The above estimate can be alternatively modified in order to exclude range cells contaminated
by useful echoes as follows

R̂m =
1
K ∑

l∈ΩR\ΩT

zl,mz†
l,m, (48)

where

• ΩR = {1, . . . , L};

• ΩT is the set of consecutive integers indexing the range cells contaminated by target
returns;

• K is the cardinality of ΩR \ ΩT , namely the set containing the elements of ΩR that do not
belong to ΩT.

3.1.2 Implementation issues
This subsection is aimed at discussing some implementation issues concerning the above TBD
algorithm. In fact, an adaptive version of (46) is time consuming since it requires maximization
with respect to the sequence D of pairs (lm, θr,m). In order to overcome this limitation, observe
that maximization over D cannot be conducted separately with respect to the (lm, θr,m) pairs:
indeed, physical constraints on the target trajectory imply that (lm+1, θr,m+1) depends upon

{(l1, θr,1), . . . , (lm, θr,m)}, m = 1, . . . , M − 1. (49)

39Advances in Multistatic Sonar



10 Will-be-set-by-IN-TECH

testing problem as follows (Orlando et al., IEEE-TSP 2010)
⎧⎪⎨
⎪⎩

H0 : zl,m = nl,m, l = 1, . . . , L, m = 1, . . . , M

H1 :
�

zl,m = αmv(θr,m) + nl,m,
zl,m = nl,m,

l = lm, m = 1, . . . , M,
l �= lm, m = 1, . . . , M,

(39)

where

• l ∈ {1, . . . , L} and m ∈ {1, . . . , M} are integers indexing the range cells and the pings,
respectively;

• zl,m ∈ CN×1, l = 1, . . . , L, m = 1, . . . , M, are the vectors containing the noisy returns;

• nl,m ∈ CN×1, l = 1, . . . , L, m = 1, . . . , M, are independent and identically distributed
complex normal random vectors with zero mean and unknown covariance matrices Rm ∈
CN×N ;

• θr,m denotes the azimuthal angle of the impinging target echo at the mth ping.

The above assumptions imply that the probability density function (pdf) of the overall data
matrix, denoted by

Z = [z1,1 · · · zL,M], (40)

can be written as

f0(Z; R1, . . . , RM) =
M

∏
m=1

1
πNL det(Rm)L exp

�
−Tr

�
R−1

m

�
zlm,mz†

lm,m + Slm,m

���
(41)

under H0 and

f1(Z; R1, . . . , RM, α) =
M

∏
m=1

1
πNL det(Rm)L exp

�
−Tr

�
R−1

m

�
ulm,mu†

lm,m + Slm,m

���
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under H1, where

• det(·) and Tr[·] denote the determinant and the trace of a square matrix, respectively;

• Slm,m ∈ CN×N is (L − 1) times the sample covariance matrix of the noise based on the
available data over the mth ping, but for the lmth range cell, namely

Slm,m = ∑
l �=lm

zl,mz†
l,m; (43)

• α = [α1 · · · αM]T is the vector of target responses and6

ulm,m = zlm,m − αmvm(θr,m). (44)

In the following we apply the so-called two-step GLRT-based design procedure
(Kelly & Nitzberg, IEEE-TAES 1992) in order to come up with a class of fully-adaptive
detectors. To be more precise, the following rationale is adopted

• first assume that the covariance matrices of the noise are known ∀m and implement the
GLRT maximizing the likelihood functions over the unknown parameters;

6 Recall that vm is defined by (32)
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• then, replace the unknown matrices Rm, m = 1, . . . , M, with proper estimates.

Thus, the GLRT under the assumption that the Rm’s are known is given by

maxD∈S
max

α
f1(Z;D, α, R1, . . . , RM)

f0(Z; R1, . . . , RM)

H1
>
<
H0

η, (45)

where

• D = {(l1, θr,1), . . . , (lM, θr,M)} ∈ S is the sequence of points occupied by a prospective
target in the Range-Azimuth domain, with S the set of all physically admissible target
trajectories;

• η is the threshold value to be set in order to ensure the desired probability of false alarm
(Pf a).

Performing the maximization of (45) with respect to α yields

maxD ∈ S
M

∑
m=1

∣∣∣v(θr,m)†R−1
m zlm,m

∣∣∣2

v(θr,m)†R−1
m v(θr,m)

H1
>
<
H0

η. (46)

An adaptive version of decision scheme (46) can be obtained by replacing the Rm’s with
proper estimates, R̂m’s say. The most common estimate of Rm is the sample covariance matrix
based upon the available data at the mth ping, namely

R̂m =
1
L

L

∑
l=1

zl,mz†
l,m. (47)

The above estimate can be alternatively modified in order to exclude range cells contaminated
by useful echoes as follows

R̂m =
1
K ∑

l∈ΩR\ΩT

zl,mz†
l,m, (48)

where

• ΩR = {1, . . . , L};

• ΩT is the set of consecutive integers indexing the range cells contaminated by target
returns;

• K is the cardinality of ΩR \ ΩT , namely the set containing the elements of ΩR that do not
belong to ΩT.

3.1.2 Implementation issues
This subsection is aimed at discussing some implementation issues concerning the above TBD
algorithm. In fact, an adaptive version of (46) is time consuming since it requires maximization
with respect to the sequence D of pairs (lm, θr,m). In order to overcome this limitation, observe
that maximization over D cannot be conducted separately with respect to the (lm, θr,m) pairs:
indeed, physical constraints on the target trajectory imply that (lm+1, θr,m+1) depends upon

{(l1, θr,1), . . . , (lm, θr,m)}, m = 1, . . . , M − 1. (49)
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Moreover, let us partition the azimuth region as follows

ΩA =

{
1
q

2π,
2
q

2π, . . . , 2π

}
, (50)

where q ∈ N is a parameter which controls the accuracy of the azimuthal angle estimate.
With these simplifications in mind, it is possible to recast detector (46) as follows

max
D ∈ (ΩR × ΩA)

M

(lm, θr,m) ∈ P((lm−1, θr,m−1))

M

∑
m=1

∣∣∣vm(θr,m)†R−1
m zlm,m

∣∣∣2

vm(θr,m)†R−1
m vm(θr,m)

H1
>
<
H0

η, (51)

where

• × denotes the Cartesian product;

• (ΩR × ΩA)
M is the Mth Cartesian power of the set (ΩR × ΩA);

• P((lm−1, θr,m−1)) denotes the set of elements of (ΩR × ΩA) that can be reached from
(lm−1, θr,m−1) under the upper bounds VR and VA on the radial velocity and on the
tangential velocity of the target, respectively.

The above optimization problem can be solved constructing an expanded trellis diagram,
whose states are the elements of ΩR × ΩA and hence using a Viterbi-like procedure to
find the best path metric in this expanded trellis (Buzzi et al., IEEE-TAES 2005; Forney,
IEEE Proc. 1973). The Viterbi algorithm would require determining (at most) Lq paths in the
expanded trellis diagram of depth M, with a consequent maximum complexity7 O(LqM)
(linear in the number of ping). Finally, it is easy to prove that (51) coupled with (47) or (48)
ensures the CFTAR property with respect to the unknown noise parameters.

3.2 A batch tracking algorithm for multistatic sonars
In this subsection, a tracking algorithm for multistatic sonars is derived, that borrows the main
idea of the TBD approach by jointly processing thresholded data over several consecutive
pings. The considered system is described in Subsection 2.2. In order to estimate the target
trajectory, the likelihood function of the measurements (that depends on the target position at
each ping) is maximized by resorting to a Viterbi-like procedure (see Subsection 3.1). For the
reader’s ease, recall that

Zi,m = {zi,1,m, . . . , zi,Ni,m,m} (52)

denotes the set of measurements transmitted to the fusion center by the ith receiver at the mth
ping, where

zi,j,m =

[
di,j,m
φi,j,m

]
(53)

with di,j,m the TDOA and φi,j,m the bearing. In the following, we assume the presence of one
maneuvering target with deterministic motion in the surveillance region.
Let us start denoting by

Z = {Z1,1, . . . , Z1,M, . . . , ZNr,1, . . . , ZNr,M} (54)

7 We resort to the usual Landau notation.
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the overall data set and defining a grid G of Nx Ny points8, that covers the entire surveillance
region. At the mth ping the nominal position of the target is given by

xm =

�
xm
ym

�
, (xm, ym) ∈ G. (55)

Now, assuming that, given the sequence of the nominal target positions over M consecutive
pings, denoted by

X = {x1, x2, . . . , xM}, (56)

the measurements are independent of each other, it is not difficult to show that the pdf of Z
can be written as follows

f1(Z; X, J) =
M

∏
m=1

Nr

∏
i=1

�
(1 − Pi,m)

(Ui,m)
Ni,m

+ Pi,m
fz(zi,ji,m,m; xm)

(Ui,m)
Ni,m−1

�
, (57)

where Pi,m is the probability of detection of the ith receiver at the mth ping9, ji,m ∈ N is an
integer indexing the target originated contact for the ith receiver at the mth ping,

J = {J1, . . . , JM}, with Jm = {j1,m, . . . , jNr,m}, (58)

Ui,m = (dmax
i,m − dmin

i,m )(φmax
i,m − φmin

i,m ). (59)

Finally, fz(·; ·) is given by

fz(zi,ji,m,m; xm) =
1

2π[det(R)]1/2

× exp
�
− 1

2

�
zi,ji,m,m − ζ(xm, ri, snsr)

�T
R−1

�
zi,ji,m,m − ζ(xm, ri, snsr)

��
, (60)

where

R =

�
σ2

d 0
0 σ2

θ

�
, ri =

�
rx,i
ry,i

�
∈ R2×1, and snsr =

�
sx,nsr

sy,nsr

�
∈ R2×1 (61)

are the covariance matrix of zi,ji,m,m, the position of the ith receiver, and the position of the
nsrth source10, respectively, and ζ(·, ·, ·) is a vector valued function such that

ζ(xm, ri, snsr) =

⎡
⎢⎢⎣

1
c
(�snsr − xm�+ �xm − ri� − �ri − snsr�)
π

2
+ π(1 − u(x))− tan−1 (ym − ry,i)

(xm − rx,i)

⎤
⎥⎥⎦ , (62)

where11 u(·) is a step function taking value 1 over the interval [0 + ∞[. In other words,
ζ(·, ·, ·) converts coordinates (xm, ym) into the corresponding values of TDOA and bearing
with respect to the ith receiver and the nsrth source.

8 Nx, Ny ∈ N
9 The Pi,m’s are assumed known.

10 nsr is given by equation (34).
11 Recall that � · � denotes the Euclidean norm of a vector and c is the sound propagation velocity.
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Moreover, let us partition the azimuth region as follows
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q
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}
, (50)
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M
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M

∑
m=1

∣∣∣vm(θr,m)†R−1
m zlm,m

∣∣∣2

vm(θr,m)†R−1
m vm(θr,m)

H1
>
<
H0

η, (51)
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where11 u(·) is a step function taking value 1 over the interval [0 + ∞[. In other words,
ζ(·, ·, ·) converts coordinates (xm, ym) into the corresponding values of TDOA and bearing
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Dividing equation (57) by the pdf of Z under the noise-only hypothesis, given by

f0(Z) =
M

∏
m=1

Nr

∏
i=1

1

UNi,m
i,m

, (63)

we obtain the likelihood ratio

Λ(Z; X, J) =
M

∏
m=1

Nr

∏
i=1

{
(1 − Pi,m) + Pi,m f (zi,ji,m,m; xm)Ui,m

}
, (64)

which, by taking the logarithm, becomes

Λ(Z; X, J) =
M

∑
m=1

Nr

∑
i=1

log
{
(1 − Pi,m) + Pi,m f (zi,ji,m,m; xm)Ui,m

}
. (65)

Observe that the likelihood ratio (65) is a function of the target state sequence X and of the
target originated measurement indexes J, which are unknown and, consequently, have to
be estimated. To this end, the likelihood ratio (65) is maximized with respect to X and J.
The optimization with respect to jm, m = 1, . . . , M, is straightforward and solves the data
association problem; in fact, given the ping index m and the target state xm, for each receiver
it is possible to select that measurement index12, ĵi,m say, which minimizes the following
Mahalanobis distance

ĵi,m = arg min
ji,m∈Jm

(
zi,ji,m,m − ζ(xm, ri, snsr)

)T
R−1

(
zi,ji,m,m − ζ(xm, ri, snsr)

)
. (66)

It follows that (65) can be recast as

Λ(Z; X, Ĵ) =
M

∑
m=1

Nr

∑
i=1

log
{
(1 − Pi,m) + Pi,m f (zi, ĵi,m,m; xm)Ui,m

}
, (67)

where
Ĵ =

{
Ĵ1, . . . , ĴM

}
with Ĵm =

{
ĵ1,m, . . . , ĵNr,m

}
. (68)

Finally, in order to estimate the sequence of target positions, it is worth taking into
consideration physical constraints on the target trajectory, that limit the maximum number
of point transitions throughout G between two consecutive pings. With this assumption in
mind, an estimate of X can be obtained as follows

X̂ = arg max Λ(Z; X, Ĵ),
X

xm ∈ P(xm−1)
(69)

where P(xm−1) denotes the set of target states that can be reached from xm−1 under an upper
bound on the target velocity. The above optimization problem can be solved by resorting to a
Viterbi-like procedure to find the best path metrics in an expanded trellis diagram of depth M
whose states are the points of G (see Figures 3). In Section 5 some illustrative examples show
the effectiveness of the above approach.

12 Recall that the Jm’s are finite discrete sets.
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Fig. 3. The expanded trellis whose states are the points of G.

4. Sensor selection strategies for multistatic sonars

This section describes on a conceptual level a method to select those sensors whose
measurements will be fed to the batch algorithm presented in Subsection 3.2. Consider the
sensor network described in Subsection 2.2 and assume that SNR measurements, SNRi,j,m say,
are also available at the fusion center. The statistical distribution of the SNR measurements is
assigned as follows

SNRi,j,m ∼ N 1(μi,m, σ2
SNR), (70)

i = 1, . . . , Nr, j = 1, . . . , Ni,m, m = 1, . . . , M, (71)

where σSNR > 0 is the standard deviation and (Urick, McGraw-Hill 1983)

μi,m =

�
SL + TLST

m + TLTR
i,m + TS(ψi,m), if the contact is originated from the target,

γi,m, otherwise.
(72)

In (72), γi,m ∈ R, SL is the source level, TLST
m is the transmission loss between the nsrth source,

with nsr given by (34), and the target, TLTR
i,m is the transmission loss between the target and the

ith receiver, and TS(ψi,m) is the target strength which depends on the aspect angle of the target,
ψi,m say, with respect to the ith receiver. The transmission loss TLAB between two points A and
B spaced D meters apart from one another is defined as follows (Urick, McGraw-Hill 1983)

TLAB =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

10 log10

�
1

D2

�
, in case of spherical spreading of the sound wave,

10 log10

�
1
D

�
, in case of cylindrical spreading of the sound wave.

(73)

The likelihood function of the SNR for the ith receiver at the mth ping can be written as follows

f i,m
SNR(αi,m; ji,m, ψi,m) =

(1 − Pi,m)

(
√

2πσSNR)Ni,m
exp

�
− 1

2σ2
SNR

Ni,m

∑
k=1

(SNRi,k,m − γi,m)
2

�

+ Pi,m

exp

⎧⎨
⎩− 1

2σ2
SNR

⎡
⎣

Ni,m

∑
k=1,k �=ji,m

(SNRi,k,m − γi,m)
2 + (SNRi,ji,m,m − C − TS(ψi,m))

2

⎤
⎦
⎫⎬
⎭

(
√

2πσSNR)Ni,m
, (74)
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bound on the target velocity. The above optimization problem can be solved by resorting to a
Viterbi-like procedure to find the best path metrics in an expanded trellis diagram of depth M
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the effectiveness of the above approach.
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Fig. 3. The expanded trellis whose states are the points of G.
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This section describes on a conceptual level a method to select those sensors whose
measurements will be fed to the batch algorithm presented in Subsection 3.2. Consider the
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In (72), γi,m ∈ R, SL is the source level, TLST
m is the transmission loss between the nsrth source,

with nsr given by (34), and the target, TLTR
i,m is the transmission loss between the target and the

ith receiver, and TS(ψi,m) is the target strength which depends on the aspect angle of the target,
ψi,m say, with respect to the ith receiver. The transmission loss TLAB between two points A and
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The likelihood function of the SNR for the ith receiver at the mth ping can be written as follows
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2πσSNR)Ni,m
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2σ2
SNR

Ni,m
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(SNRi,k,m − γi,m)
2

�

+ Pi,m

exp

⎧⎨
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2σ2
SNR
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∑
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where

• αi,m =
{

SNRi,1,m, SNRi,2,m, . . . , SNRi,Ni,m ,m

}
;

• ji,m ∈ {1, . . . , Ni,m} is the index of the target-originated measurement;

• C = SL +TLST
m + TLTR

i,m.

In (74), ji,m and ψi,m are not known and have to be estimated from the observables. To this end
f i,m

SNR(·; ·, ·) is maximized with respect to such parameters. More specifically, observe that

ψ̂i,m = arg max
ψi,m∈[0, 360)

f i,m
SNR(αi,m; ji,m, ψi,m) = arg max

ψi,m∈[0, 360)
TS(ψi,m) (75)

and that maximization over ji,m can be performed in the same manner as pointed out for (66).
Next, we arrange the likelihood functions at the mth ping in ascending order, namely

f i1,m,m
SNR < f i2,m,m

SNR < . . . < f iNr,m ,m
SNR (76)

and select the last K to form the following set of indexes13

Sm = {iNr−K+1,m, iNr−K+2,m, . . . , iNr,m} . (77)

Once sensors have been selected, the target trajectory can be estimated as follows

X̂ = arg max
[

max
J

Λ1(Z; X, J)
]

,
X

xm ∈ P(xm−1)

(78)

where

Λ1(Z; X, J) =
M

∑
m=1

∑
i∈Sm

log
{
(1 − Pi,m) + Pi,m f (zi,ji,m,m; xm)Ui,m

}
. (79)

Observe that (78) is less time-demanding than (69) since the maximizations over J and X are
performed processing data from K < Nr receivers.

5. Illustrative examples and discussion

5.1 Track-before-detect approach for raw data
The TBD approach described in Subsection 3.1 leads to a class of algorithms capable of
handling raw hydrophone data. This subsection is aimed at proving the feasibility and
the effectiveness of such algorithms using experimental bistatic sonar data collected by the
NURC’s DEMUS sensor array in the course of PreDEMUS’06 sea trial.
The setup of PreDEMUS’06 is shown in Figure 4 and involves a transmitter, three receivers
and as target a towed sound source, called echo-repeater (E-R). The E-R, towed by a surface
vessel at a depth of 80 m, retransmits received source signals with a specified amplification
and a certain delay. The source transmits a frequency-modulated pulse waveform of duration
Tp = 1 sec, bandwidth B = 100 Hz, and carrier frequency fc = 2500 Hz. The resulting range
resolution is about 7 m (we are assuming that c = 1500 m/sec). The receiver is a planar array
(as shown in Figure 1) with Na = 9 arms, Ns = 8 sensors, θa = 40 degrees, and d = 0.289 m.
The total number of sensors is N = 64 (remember that the arms share the central sensor).

13 K may be chosen according to a preassigned criterion.
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Fig. 4. PreDEMUS’06 setup. The fuchsia circle represents the transmitter, the red triangle
represents the receiver 1, the blue triangle represents the receiver 2, finally the fuchsia
triangle represents the receiver 3. The sequence of green circles is the target trajectory.
[Courtesy M. Daun]

In the sequel, we examine the behavior of the receiver (51) only coupled with (48), where ΩT
is appropriately selected. Moreover, we consider a scenario where the useful signal echoes
are strong enough to guarantee a good number of contacts for traditional tracking systems
(strong-target scenario) and a scenario where the detection performance of the envelope
detector is poor (weak-target scenario). The algorithm processes data corresponding to a little
patch of the surveillance area and the target is moving within such a patch throughout the
entire observation time. The processed patch takes up a region of about 2 seconds in range
and at most 35 degrees in azimuth14. As to the threshold, it is set in order to have no detection
when the algorithm is fed by noise-only data.
In Figures 5a-5c, we show the performance of the proposed algorithm in terms of target
position estimate when it operates in the first scenario (for more details on the data set see
Figure 4 of (Daun & Ehlers, JASP 2010)); more precisely, we process data from receiver 1 and
pings 91-99 (scenario A1) in Fig. 5a, from receiver 2 and pings 76-84 (scenario A2) in Fig. 5b,
and from receiver 3 and pings 100-108 (scenario A3) in Fig. 5c. The figures also report the
trajectory of the E-R which is taken as reference. Observe that in this case the estimated target
locations, represented by the line markers, closely follow the reference track. Observe that
the estimated tracks exhibit some “fluctuations”. This is partly due to the fact that estimation
errors also depend on the undercurrent which modifies the receiver orientation (heading)
and, consequently, introduces an additional uncertainty in the azimuth estimation. Otherwise
stated, the position of the reference arm of each receiver is time-varying. Such heading errors
can be partly compensated by using data recorded from an on-board compass. In Figure
5d, we plot the estimated target positions returned by the algorithm in the case of a low
observable target; in particular, we consider data from receiver 1 and pings 16-26 (scenario
B1). The figure highlights two important aspects of the TBD approach. First, the proposed
algorithm can detect a low SNR target, whereas the envelope detectors, used by conventional
tracking systems, are completely blind (Daun & Ehlers, JASP 2010). Second, it provides, as a
by product, a rough estimate of the target locations. Notice that also in this figure, the heading
errors make the curve representing the estimated trajectory “convoluted”.

14 A preliminary statistical analysis highlights that such data exhibit a “good” level of homogeneity.
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where

• αi,m =
{

SNRi,1,m, SNRi,2,m, . . . , SNRi,Ni,m ,m

}
;

• ji,m ∈ {1, . . . , Ni,m} is the index of the target-originated measurement;

• C = SL +TLST
m + TLTR

i,m.

In (74), ji,m and ψi,m are not known and have to be estimated from the observables. To this end
f i,m

SNR(·; ·, ·) is maximized with respect to such parameters. More specifically, observe that

ψ̂i,m = arg max
ψi,m∈[0, 360)

f i,m
SNR(αi,m; ji,m, ψi,m) = arg max

ψi,m∈[0, 360)
TS(ψi,m) (75)

and that maximization over ji,m can be performed in the same manner as pointed out for (66).
Next, we arrange the likelihood functions at the mth ping in ascending order, namely

f i1,m,m
SNR < f i2,m,m

SNR < . . . < f iNr,m ,m
SNR (76)

and select the last K to form the following set of indexes13

Sm = {iNr−K+1,m, iNr−K+2,m, . . . , iNr,m} . (77)

Once sensors have been selected, the target trajectory can be estimated as follows

X̂ = arg max
[

max
J

Λ1(Z; X, J)
]

,
X

xm ∈ P(xm−1)

(78)

where

Λ1(Z; X, J) =
M

∑
m=1

∑
i∈Sm

log
{
(1 − Pi,m) + Pi,m f (zi,ji,m,m; xm)Ui,m

}
. (79)

Observe that (78) is less time-demanding than (69) since the maximizations over J and X are
performed processing data from K < Nr receivers.

5. Illustrative examples and discussion

5.1 Track-before-detect approach for raw data
The TBD approach described in Subsection 3.1 leads to a class of algorithms capable of
handling raw hydrophone data. This subsection is aimed at proving the feasibility and
the effectiveness of such algorithms using experimental bistatic sonar data collected by the
NURC’s DEMUS sensor array in the course of PreDEMUS’06 sea trial.
The setup of PreDEMUS’06 is shown in Figure 4 and involves a transmitter, three receivers
and as target a towed sound source, called echo-repeater (E-R). The E-R, towed by a surface
vessel at a depth of 80 m, retransmits received source signals with a specified amplification
and a certain delay. The source transmits a frequency-modulated pulse waveform of duration
Tp = 1 sec, bandwidth B = 100 Hz, and carrier frequency fc = 2500 Hz. The resulting range
resolution is about 7 m (we are assuming that c = 1500 m/sec). The receiver is a planar array
(as shown in Figure 1) with Na = 9 arms, Ns = 8 sensors, θa = 40 degrees, and d = 0.289 m.
The total number of sensors is N = 64 (remember that the arms share the central sensor).

13 K may be chosen according to a preassigned criterion.
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Fig. 4. PreDEMUS’06 setup. The fuchsia circle represents the transmitter, the red triangle
represents the receiver 1, the blue triangle represents the receiver 2, finally the fuchsia
triangle represents the receiver 3. The sequence of green circles is the target trajectory.
[Courtesy M. Daun]

In the sequel, we examine the behavior of the receiver (51) only coupled with (48), where ΩT
is appropriately selected. Moreover, we consider a scenario where the useful signal echoes
are strong enough to guarantee a good number of contacts for traditional tracking systems
(strong-target scenario) and a scenario where the detection performance of the envelope
detector is poor (weak-target scenario). The algorithm processes data corresponding to a little
patch of the surveillance area and the target is moving within such a patch throughout the
entire observation time. The processed patch takes up a region of about 2 seconds in range
and at most 35 degrees in azimuth14. As to the threshold, it is set in order to have no detection
when the algorithm is fed by noise-only data.
In Figures 5a-5c, we show the performance of the proposed algorithm in terms of target
position estimate when it operates in the first scenario (for more details on the data set see
Figure 4 of (Daun & Ehlers, JASP 2010)); more precisely, we process data from receiver 1 and
pings 91-99 (scenario A1) in Fig. 5a, from receiver 2 and pings 76-84 (scenario A2) in Fig. 5b,
and from receiver 3 and pings 100-108 (scenario A3) in Fig. 5c. The figures also report the
trajectory of the E-R which is taken as reference. Observe that in this case the estimated target
locations, represented by the line markers, closely follow the reference track. Observe that
the estimated tracks exhibit some “fluctuations”. This is partly due to the fact that estimation
errors also depend on the undercurrent which modifies the receiver orientation (heading)
and, consequently, introduces an additional uncertainty in the azimuth estimation. Otherwise
stated, the position of the reference arm of each receiver is time-varying. Such heading errors
can be partly compensated by using data recorded from an on-board compass. In Figure
5d, we plot the estimated target positions returned by the algorithm in the case of a low
observable target; in particular, we consider data from receiver 1 and pings 16-26 (scenario
B1). The figure highlights two important aspects of the TBD approach. First, the proposed
algorithm can detect a low SNR target, whereas the envelope detectors, used by conventional
tracking systems, are completely blind (Daun & Ehlers, JASP 2010). Second, it provides, as a
by product, a rough estimate of the target locations. Notice that also in this figure, the heading
errors make the curve representing the estimated trajectory “convoluted”.

14 A preliminary statistical analysis highlights that such data exhibit a “good” level of homogeneity.
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(c) Scenario A3 assuming M = 9 and K > 2N.
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(d) Scenario B1 assuming M = 11 and K > 2N.

Fig. 5. Estimated target locations for scenarios A1, A2, A3, and B1.

As a final remark, the estimation of the Rm’s can be automated modifying detector (51) as
follows (Bandiera et al., IEEE-SPL 2006)

max
ΩT

max
D ∈ (ΩR × ΩA)

M

(lm, θr,m) ∈ P((lm−1, θr,m−1))

M

∑
m=1

|vm(θr,m)†R̂
−1
m zlm,m|2

vm(θr,m)†R̂
−1
m vm(θr,m)

H1
>
<
H0

γ, (80)

where again R̂m is given by (48).

5.2 Contact-based maximum-likelihood tracker
The subsection contains some illustrative examples to show the tracking performance of the
contact-based tracker introduced in Subsection 3.2. Two different scenarios are considered.

5.2.1 Test scenario 1
Consider Nr = 12 hydrophones (Rx) and Nsr = 4 sources (Sr) placed in the positions listed
in Table 1. Moreover, we assume Pi,m = Pd, ∀i, m. The surveillance region is a 16740 × 16740
m2 square with the upper left corner at (37500, 34500) m and it is covered by a grid of 31 ×
31 points 540 m spaced apart. Such a separation corresponds to a nominal target velocity
of 6 knots. The total number of processed ping is M = 20 and the time interval between
consecutive pings is Tpg = 180 seconds. As to the synthetic target, we assume that it moves
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within the surveillance area with a constant velocity of about 6 knots and that after 10 pings
its direction of motion changes and becomes orthogonal to the previous direction.
The standard deviations of target originated measurements are set as follows

σd = 0.4 sec and σφ = 8 degrees, (81)

while for each couple source-receiver the false contacts are distributed uniformly in the bistatic
ellipse that contains the surveillance region.
Finally, the number of false contacts, namely those not originated from the target, obeys to the
Poisson distribution with parameter

λ = Pf aNcell, (82)

where Pf a is the probability of false alarm in any cell and Ncell is the total number of cells. All
simulation results assume Pf a = 0.01 and λ = 9.6.
In Figures 6a-6c we show the estimated tracks from 4 independent trials. Each figure refers to
different values of Pd and reports the actual trajectory of the target (ground truth). Observe
that for low values of Pd (Pd = 0.3) the proposed algorithm is still capable of providing an
estimate of the target positions, even though the estimation error is significant. On the other
hand, for greater values of Pd the estimated target locations closely follow the ground truth.
Such results are confirmed by Figure 6d, where we plot the root mean square (RMS) values
based on 300 independent trials versus the Pd.

5.2.2 Test scenario 2 (from the multistatic tracking working group)
The intent of the multistatic tracking working group (MSTWG) is to foster the exchange of
scientific and technical ideas, problems, and solutions related to multistatic tracking for sonar
and radar. This includes the collaborative analysis of common data sets and culminate in
workshops or special sessions disseminating the results. The MSTWG was founded as an ad
hoc working group in December 2004, with a three year charter. In July 2007, based on mutual
agreement between the International Society of Information Fusion (ISIF) board of directors
and the current group membership, it was agreed to formalize the MSTWG as a working
group under the auspices of ISIF. The objective of the ISIF MSTWG is to promote collaboration
among its members in multisensor fusion and tracking, with a current focus on multistatic
sonar and radar. This collaboration is achieved through regular meetings, participation in
special sessions at conferences, and the analysis of common data sets. One of these data sets is

Rx number X (meters) Y (meters) Rx number X (meters) Y (meters)
1 26752,91 8219,99 10 36033,99 36000
2 26752,91 26740 11 54581,52 17479,99
3 26752,91 45259,99 12 54581,52 36000
4 45285,83 8219,99 Sr number X (meters) Y (meters)
5 45285,83 45259,99 1 17486.46 54520
6 63818,75 8219,99 2 54581,52 17480
7 63818,75 26740 3 54581,52 54520
8 63818,75 45259,99 4 17486.46 17480
9 36033,99 17479,99

Table 1. Sensor coordinates.
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(c) Scenario A3 assuming M = 9 and K > 2N.
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(d) Scenario B1 assuming M = 11 and K > 2N.

Fig. 5. Estimated target locations for scenarios A1, A2, A3, and B1.

As a final remark, the estimation of the Rm’s can be automated modifying detector (51) as
follows (Bandiera et al., IEEE-SPL 2006)

max
ΩT

max
D ∈ (ΩR × ΩA)

M

(lm, θr,m) ∈ P((lm−1, θr,m−1))
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−1
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where again R̂m is given by (48).

5.2 Contact-based maximum-likelihood tracker
The subsection contains some illustrative examples to show the tracking performance of the
contact-based tracker introduced in Subsection 3.2. Two different scenarios are considered.

5.2.1 Test scenario 1
Consider Nr = 12 hydrophones (Rx) and Nsr = 4 sources (Sr) placed in the positions listed
in Table 1. Moreover, we assume Pi,m = Pd, ∀i, m. The surveillance region is a 16740 × 16740
m2 square with the upper left corner at (37500, 34500) m and it is covered by a grid of 31 ×
31 points 540 m spaced apart. Such a separation corresponds to a nominal target velocity
of 6 knots. The total number of processed ping is M = 20 and the time interval between
consecutive pings is Tpg = 180 seconds. As to the synthetic target, we assume that it moves
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within the surveillance area with a constant velocity of about 6 knots and that after 10 pings
its direction of motion changes and becomes orthogonal to the previous direction.
The standard deviations of target originated measurements are set as follows

σd = 0.4 sec and σφ = 8 degrees, (81)

while for each couple source-receiver the false contacts are distributed uniformly in the bistatic
ellipse that contains the surveillance region.
Finally, the number of false contacts, namely those not originated from the target, obeys to the
Poisson distribution with parameter

λ = Pf aNcell, (82)

where Pf a is the probability of false alarm in any cell and Ncell is the total number of cells. All
simulation results assume Pf a = 0.01 and λ = 9.6.
In Figures 6a-6c we show the estimated tracks from 4 independent trials. Each figure refers to
different values of Pd and reports the actual trajectory of the target (ground truth). Observe
that for low values of Pd (Pd = 0.3) the proposed algorithm is still capable of providing an
estimate of the target positions, even though the estimation error is significant. On the other
hand, for greater values of Pd the estimated target locations closely follow the ground truth.
Such results are confirmed by Figure 6d, where we plot the root mean square (RMS) values
based on 300 independent trials versus the Pd.

5.2.2 Test scenario 2 (from the multistatic tracking working group)
The intent of the multistatic tracking working group (MSTWG) is to foster the exchange of
scientific and technical ideas, problems, and solutions related to multistatic tracking for sonar
and radar. This includes the collaborative analysis of common data sets and culminate in
workshops or special sessions disseminating the results. The MSTWG was founded as an ad
hoc working group in December 2004, with a three year charter. In July 2007, based on mutual
agreement between the International Society of Information Fusion (ISIF) board of directors
and the current group membership, it was agreed to formalize the MSTWG as a working
group under the auspices of ISIF. The objective of the ISIF MSTWG is to promote collaboration
among its members in multisensor fusion and tracking, with a current focus on multistatic
sonar and radar. This collaboration is achieved through regular meetings, participation in
special sessions at conferences, and the analysis of common data sets. One of these data sets is

Rx number X (meters) Y (meters) Rx number X (meters) Y (meters)
1 26752,91 8219,99 10 36033,99 36000
2 26752,91 26740 11 54581,52 17479,99
3 26752,91 45259,99 12 54581,52 36000
4 45285,83 8219,99 Sr number X (meters) Y (meters)
5 45285,83 45259,99 1 17486.46 54520
6 63818,75 8219,99 2 54581,52 17480
7 63818,75 26740 3 54581,52 54520
8 63818,75 45259,99 4 17486.46 17480
9 36033,99 17479,99

Table 1. Sensor coordinates.
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the Metron data set (Orlov, Metron Data set 2009). In the following a brief description of the
data set is given (further details can be found in (Orlov, Metron Data set 2009)).
The operational field is a 72000 × 72000 m2 square with the origin at (0, 0) m. The sensors
are laid out as two concentric square grids centered about (x, y) = (36000, 36000) m. All
sensors are stationary. The first grid consists of 16 sensors, laid out 4 × 4 beginning at (x, y) =
(8220, 8220) m, with four receivers within a row 18520 m apart horizontally and four rows
18520 m apart vertically. All of these sensors are receivers. The second grid consists of 9
sensors, laid out 3 × 3 beginning at (x, y) = (17480, 17480) m, with three receivers within a
row 18520 m apart horizontally and three rows 18520 m apart vertically. The four sensors at
the corners of this grid are co-located source/receiver units, and the remaining five sensors are
receivers. Figures 6e and 6f contain the results obtained by applying the proposed algorithm
to the first MSTWG Metron data set described above.

6. Conclusions and hints for future works

This work has addressed new trends in the field of multistatic sonar systems. Specifically, the
focus is on the design and analysis of tracking algorithms capable of operating in highly noisy
environments. The TBD approach is investigated and it is shown that TBD (or TBD-based)
algorithms can overcome the limitations exhibited by the conventional trackers in case of
low SNR targets or low-quality sensors. In fact, the class of decision schemes described
in Subsection 3.1 guarantees good detection performance of weak moving targets and, as
a byproduct, provides a rough estimate of the target locations, while the batch algorithm
introduced in Subsection 3.2 ensures acceptable performance also when the probability of
detection per sensor is low.
Several important issues would deserve further attention. First, observe that since the spectral
properties of the noise may change with the distance from the sensor, the homogeneity
assumption does not generally hold. In such a case, it would be important to assess the
performance of the TBD algorithm proposed in Subsection 3.1 coupled with other possible
estimates of the noise covariance matrix, like the so-called normalized sample covariance
matrix, introduced in (Conte et al., EUSIPCO 1994), or the one introduced in (Conte et al.,
IEEE-TSP 2002). In addition, the Gaussian assumption is not always met in realistic scenarios
and, hence, it would also be of interest a performance analysis in non-Gaussian disturbance.
Another key point that has not been sufficiently investigated is the design and the analysis
of TBD (or TBD-based) algorithms for extended and/or multiple targets; a first work on
the design of TBD algorithms for multiple targets has been presented in (S. Buzzi et al.,
IEEE-TAES 2008).

6.1 Acknowledgment
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del Salento, Italy.
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(b) Estimated tracks assuming Pd = 0.5.
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(c) Estimated tracks assuming Pd = 0.8.
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Fig. 6. Estimated tracks from 4 independent Monte Carlo trials, RMS errors, and estimated
tracks from the first MSTWG Metron data set.

49Advances in Multistatic Sonar



20 Will-be-set-by-IN-TECH

the Metron data set (Orlov, Metron Data set 2009). In the following a brief description of the
data set is given (further details can be found in (Orlov, Metron Data set 2009)).
The operational field is a 72000 × 72000 m2 square with the origin at (0, 0) m. The sensors
are laid out as two concentric square grids centered about (x, y) = (36000, 36000) m. All
sensors are stationary. The first grid consists of 16 sensors, laid out 4 × 4 beginning at (x, y) =
(8220, 8220) m, with four receivers within a row 18520 m apart horizontally and four rows
18520 m apart vertically. All of these sensors are receivers. The second grid consists of 9
sensors, laid out 3 × 3 beginning at (x, y) = (17480, 17480) m, with three receivers within a
row 18520 m apart horizontally and three rows 18520 m apart vertically. The four sensors at
the corners of this grid are co-located source/receiver units, and the remaining five sensors are
receivers. Figures 6e and 6f contain the results obtained by applying the proposed algorithm
to the first MSTWG Metron data set described above.

6. Conclusions and hints for future works

This work has addressed new trends in the field of multistatic sonar systems. Specifically, the
focus is on the design and analysis of tracking algorithms capable of operating in highly noisy
environments. The TBD approach is investigated and it is shown that TBD (or TBD-based)
algorithms can overcome the limitations exhibited by the conventional trackers in case of
low SNR targets or low-quality sensors. In fact, the class of decision schemes described
in Subsection 3.1 guarantees good detection performance of weak moving targets and, as
a byproduct, provides a rough estimate of the target locations, while the batch algorithm
introduced in Subsection 3.2 ensures acceptable performance also when the probability of
detection per sensor is low.
Several important issues would deserve further attention. First, observe that since the spectral
properties of the noise may change with the distance from the sensor, the homogeneity
assumption does not generally hold. In such a case, it would be important to assess the
performance of the TBD algorithm proposed in Subsection 3.1 coupled with other possible
estimates of the noise covariance matrix, like the so-called normalized sample covariance
matrix, introduced in (Conte et al., EUSIPCO 1994), or the one introduced in (Conte et al.,
IEEE-TSP 2002). In addition, the Gaussian assumption is not always met in realistic scenarios
and, hence, it would also be of interest a performance analysis in non-Gaussian disturbance.
Another key point that has not been sufficiently investigated is the design and the analysis
of TBD (or TBD-based) algorithms for extended and/or multiple targets; a first work on
the design of TBD algorithms for multiple targets has been presented in (S. Buzzi et al.,
IEEE-TAES 2008).
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(b) Estimated tracks assuming Pd = 0.5.
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(c) Estimated tracks assuming Pd = 0.8.
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Fig. 6. Estimated tracks from 4 independent Monte Carlo trials, RMS errors, and estimated
tracks from the first MSTWG Metron data set.
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1. Introduction

1.1 What is the need for sonar data simulation ?

At-sea daily costs for performing data collection are high and acquiring specific data to either
validate hypotheses or try new algorithms is often too expensive to be achieved. Thus, due
to operational constraints for underwater data acquisition, simulating realistic sonar data,
like images and swath bathymetry profiles, is crucial for designing and tuning detection and
classification algorithms according to sensors settings, sea-bottom nature and topography. To
sum up, an accurate and realistic simulation tool is a very good asset to enhance system &
algorithm performances, thus appearing as a complement to real data collections.

1.2 Requirements for simulating realistic sonar data

The robustness of any performances estimation or prediction algorithms can be greatly
improved as soon as such an accurate simulation tool provides a way to introduce within
the simulation: a modular and flexible underwater world representation, multiple kinds of
sensors, multiple kinds of environments (propagation, . . .) and multiple kinds of acquisition
conditions (including sensor trajectories). Indeed, controlling the full data acquisition process
through a highly modular sea-world representation, allows to produce many datasets with
various dedicated configurations.
However, another axis of modularity is required as different computational engines may be
used depending on simulation cases (ray theory, normal mode or parabolic equation), all
solving the Helmholtz equation with specific approximations (Burdic, 1984).
Starting with this equation and assuming high frequency signals, the first approximation
leads to the eikonal equation that allows acoustic wave to be modeled as rays following a
trajectory bent according to sound celerity gradients. The engines that will be described
in this chapter derive from this model. Relying on wave guide propagation mechanisms,
the second approximations open into modes solutions. Assuming extra constraints (specific
stratification), the modes equation may become parabolic (Brekhovskikh & Lysanov, 1982) or
using Perkins model, admit trigonometric function based solutions (Perkins & Baer, 1982).
Green functions may also be introduced leading to Fourier transforms (Harrison, 1989).
However all these methods (based on differential equations) are computationally expensive as
numerical approaches (FDTD, TLM techniques) are required to compute their final solutions.
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trajectory bent according to sound celerity gradients. The engines that will be described
in this chapter derive from this model. Relying on wave guide propagation mechanisms,
the second approximations open into modes solutions. Assuming extra constraints (specific
stratification), the modes equation may become parabolic (Brekhovskikh & Lysanov, 1982) or
using Perkins model, admit trigonometric function based solutions (Perkins & Baer, 1982).
Green functions may also be introduced leading to Fourier transforms (Harrison, 1989).
However all these methods (based on differential equations) are computationally expensive as
numerical approaches (FDTD, TLM techniques) are required to compute their final solutions.
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1.3 Chapter objectives

Therefore, responding to the presented needs, we have developed a framework for simulators
allowing both underwater scene design and computational simulation engine choices. More
precisely, this generic framework provides the reader with a common and simple software
system in which various sensors, environments and computational engines can be plugged
in.
The first section of this chapter presents the framework architecture pointing at the
interactions between all its components. Subsequent sections of the chapter focus on specific
computational engines describing all the phenomena to be considered and the problems to be
answered in order to produce realistic simulated sonar data. Section 3 details how ray and
tube engines collect exhaustively all the backscattered acoustic waves resulting from scene
interactions with the transmitting acoustic wave.
Using these two engines and considering acoustic waves and scene interactions as energy
based only, Section 4 presents realistic simulated results for several imaging systems (sidescan
and front-looking sonars).
However, several phenomena such as speckle effect or diffraction, have a great impact
on collected sonar data and they cannot be simulated using energy only: simulating full
sonar signals (including the phase component) is absolutely required. Section 5 describes
the difficulties such a complete simulation involves, and proposes solutions to model and
implement the needed local signal/scene interactions. Finally, two standard phase-based
sonar processing (beamforming an interferometry) fed with simulated full sonar signals,
successfully produces output exhibiting very good behaviors compared to real measurement.

2. A multi-sensor simulator framework with engine plugins

The main goal of this simulation framework is to propose a common environment for
developing modular simulation tools. The keyword "modular" stands for the simulation
objects describing the underwater scene but also for all the algorithms developed to deal
with acoustic propagation or object interactions (reflection, refraction . . .). Thus, a user can
pick among several families of components to tune its simulation environment. Some of these
components are relative to static properties of the environment while others are meant to
represent dynamic phenomena. Figure 1 offers a synthetic view of the software components
of this framework.

2.1 Scene components

The scene components constitute the basic and common blocks for describing the simulation
underwater environment; all the processing engines will operate on these blocks. Several
families of scene components can be listed:

• Objects: All the geometric features of the scene are described through objects either using
mathematical definitions (sphere . . .) or lists of facets which are a more flexible way of
description. Objects mean real objects like wrecks or containers but also stand for sea
bottom elevation maps (or Digital Terrain Model). Vehicles supporting sensors are also
considered as objects, as their geometric descriptions may impact the simulation.

• Media: Such medium elements gather all the intrinsic properties of the water (sound
velocity profiles . . .) because of the impact on the propagation (Ziomek & Polnicky, 1993).

• Sensors: Different kinds of sensor are defined like sidescan sonar or multibeam
echosounders. The purpose of these sensor objects is to model their specific behaviors
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Fig. 1. Framework main software components

especially when aggregating the incoming acoustic waves and reconstructing the output
"signal" (Bell & Linnett, 1997).

• Trajectories: Objects may be associated to trajectories (typically, vehicles supporting sensors
during a survey). These trajectories allow a time varying environment to be taken into
account.

This framework design aims at proposing flexibility for developing new items within these
component families, allowing reuse and specialization of existing components.

2.2 Propagation

The propagation package gathers all the models available for simulating acoustic wave
propagation within a medium (like rays or tubes, for instance). The medium properties greatly
affect the propagation behavior: sound velocity variations according to depth may bend the
rays depending on the sign of the velocity gradient (Urick, 1983).

2.3 Engines

The engines part relies on a scene description and a propagation model to propose a full
simulation of the acoustic propagation within the environment. Therefore, it main goal is
to generate a propagation history from the transmitting to the receiving sensor, gathering
along the propagation path, all the interactions between the acoustic wave and the scene
elements. Preserving such a propagation history allows each receiving sensor to aggregate
all the incoming contribution to produce specific sonar simulated data.
In fact, one key feature of this framework is to separate the rendering part (through the various
sensors) from the acoustic propagation simulation, thus allowing more flexible updates (with
new sensors or simply for testing several sensor settings).

3. A tube engine for propagation history building

Within the global framework presented in the previous section, two engines have been
developed in order to validate the required computational modularity. These first two engines
basically rely on a ray approach to model the acoustic field propagation: the first considers
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an acoustic wave as a series of rays while the second uses these rays as support for a volume
description of the insonified area.
Previous works on simulating sonar images through acoustic ray tracing techniques have
already shown interesting results (Bell, 1997). From these developments, the core engine
dealing with ray propagation has been extracted and redesigned to fit in a framework
compatible ray engine. The results obtained with this new implementation concur with
simulations from the previous version (Guériot et al., 1998).

3.1 Why a volume approach ?

The main challenge of such an engine lays in the volume approach of the acoustic wave to be
simulated. The previous engine represents the wave propagation as a series of rays always
orthogonal to the current local wave front. The involved sampling of the studied volume,
for both the propagation itself and the wave interactions with the scene elements, introduces
artifacts as each ray has only a very localized interaction with the environment. Thus, tuning
this sampling has a great impact on the quality of the simulated data (missing objects falling
between two neighboring rays, missing object characteristics like refraction or border effects,
artificial backscattering density due to the chosen sampling . . .). It is then obvious that the
key feature for this new engine is to implement a volume model of the acoustic wave along
with propagation and scene interaction algorithms in order to guarantee an exhaustive energy
transport.

3.2 Describing tube propagation

Figure 2 presents the geometrical sensor-centered reference, used for all the computations.
Within this reference, ℘ corresponds to the selected acoustic propagation model used to build
the rays supporting each tube.

Fig. 2. From rays to tube definition

All the following definitions will be useful to clearly define the basic principles of the tube
engine algorithm.
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Definition 1 (Ray). A ray r(A, θ, ϕ) is defined as an acoustical trajectory f℘(t) along the time t and
according to the selected propagation model ℘. θ and ϕ specify the launching angles of the ray r, from
the point A. Thus, the tuple (θ, ϕ, t) corresponds to the propagation coordinates of a geographical point
(x, y, z) within the scene, according to the ray r. It is important to note that a geographical point may
have several propagation coordinates.

Definition 2 (Tube). A tube C(A, ri) is a 3D region of the scene bounded by a series of n rays
ri(A, θi, ϕi) such as the polygon ξ(C) defined in Θ × Φ, by the vertices list (θi, ϕi) is simple. ξ(C) is
the tube C angular footprint. A sector is a 4-rays tube; its goal is to easily split the scene volume space.

Definition 3 (Tube membership). A ray r(S, θ, ϕ) belongs to a tube C(S, ri(S, θi, ϕi)) if the point
(θ, ϕ) defined in Θ × Φ, belongs to its angular footprint ξ(C).

Definition 4 (Elementary tube). A facet F in the scene is intersected by a tube C if it exists a ray r
belonging to this tube such as r intersects this facet. In general, a tube may intersect several facets but
an elementary tube intersects only one facet of the scene.

Definition 5 (Tube footprint). As shown in Figure 2, the footprint EC of an elementary tube C on a
facet, is the unique polygon which vertices are the intersections between the rays defining the tube and
this facet.

Definition 6 (Footprint intersection). The footprint intersection E1 ∩ E2 between two elementary
tubes C1 and C2 is either empty if the footprints E1 and E2 do not belong to the same facet, or a set of
polygons (general case of intersection between two non-convex polygons).

Definition 7 (Tube intersection). The intersection C1 ∩ C2 between two tubes C1 and C2 is equal to a
set of elementary tubes ℑ included in C1 such as it exists no ray belonging to C1 that has an intersection
with the footprint E1 ∩ E2 and does not belong to an elementary tube in ℑ.

3.3 Acoustic tube tracing algorithm

Fig. 3. Geometrical configuration for an elementary tube intersection from Tx to Rx sensors

With all these definitions, the tube engine basic computation algorithm is a 4-step processing
(see Figure 3):
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With all these definitions, the tube engine basic computation algorithm is a 4-step processing
(see Figure 3):





6 Will-be-set-by-IN-TECH

• The transmitting sector, defined by the Tx sensor properties, is split as long as it contains
non-elementary tubes.

• The same splitting process is performed for the receiving Rx sensor.

• For each intersection between an elementary Rx tube and an elementary Tx tube, the
corresponding footprint is computed allowing for the receiver to properly aggregate the
transmitter contribution after its interaction with the intersected facet.

• In case of multiple paths simulations, all the footprints belonging to a facet are gathered
in order for this facet to become a new transmitter. The amount of levels in this recursive
loop defines the number of multiple paths to consider.

3.4 Tube engine generic output

Computing the full 3D acoustic wave propagation history is the major key feature of this
algorithm. Each sensor uses it then to output data according to their specific appropriate
aggregation algorithm (complete signal or amplitude for images. . .). Next section will use this
propagation history in order for several sensors to output simulated data.

4. Multiple sensors simulation data

Based on the previously computed propagation history, this section presents simulated data
from three different sensors: sidescan sonar, multibeam echosounder and acoustic camera.
Following their specific aggregation algorithms, results are shown with focuses on specific
simulator features.

4.1 Simulating sidescan sonar

4.1.1 Aggregation principles

According to Figure 3, the geometrical configuration and properties of the facet supporting an
elementary tube, characterize the energy backscattered through that tube. When arriving on
the Rx sensor, this temporal backscattered energy is sampled according to the sensor sampling
frequency to fill up the corresponding pixels in the output image. Processing all the Rx
elementary tubes with respect to their intersection with Tx elementary tubes, completes the
full image and involves a full energy preservation from the Rx sensor point of view.

4.1.2 Imaging complex objects

High resolution simulated sonar images have been produced by our simulator when using
this tube engine and a virtual sidescan sonar to perform the acoustic data collection. An
oil well head model has been read from a "Wavefront" formatted file in order to extract the
geometrical description of the object (mainly its vertices and facets). Using this facet-based
description, a tube engine based simulation was launched assuming the oil well head lies on a
flat sandy bottom. Several rotations (none, then 45° along the sonar path, then 30° more across
the sonar path) have been applied to the oil well head in order to produce the images shown
in Figure 4. The resulting images clearly agree with the 3D model (also presented).

4.1.3 Imaging real sea-bottom

For this test, a Digital Terrain Model built with bathymetric measurements on a small area near
the Brittany shores, has been used as sea bottom on which rocky patches appear along with
a small ridge and rippled sandy regions. Figure 5 (upper part) shows the obtained simulated
image on such a sea bottom and displays the links between the real sea bed features (rocky
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Fig. 4. Oil well head simulated sonar images (according to its 3D model)

patches, ridges, sandy areas limits) and how they are rendered on the simulated image. The
main goal of this sketch is to show the consistency between the simulator inputs and the
produced data.

Fig. 5. From sea bottom topography to sonar image

4.1.4 Ray vs. tube engines

As explained in section 3.3, the tube engine makes a complete energy summation over the
whole solid angles. Even if tube borders are defined using rays, the inside volume is taken
into account for all scene intersections, removing undersampling artifacts observed with the
pure ray engine like missing sea-bottom features as shown in Figure 6. Moreover the medium
absorption is directly taken into account through the volume approach involving a more
realistic output (before a Time Varying Gain correction).
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Fig. 6. Comparing ray vs. tube simulated sonar images on the same sea-bottom area (with
subsampling effects).

4.1.5 Comparing simulated with real sonar images

In order to check the quality of the simulator outputs, we compared real sonar
images with simulated ones using the same acquisition conditions (sensor trajectory &
attitude). Data collected for the Shallow Survey ’99 conference (Australia Defense Science &
Technology Organization, 1999) in Sydney harbor have been used for this test according to
the methodology given in Figure 7. During this survey, several kinds of sensors were used: a
RESON 8101 multibeam echosounder for bathymetry data and a Klein 5400 for high resolution
sonar images. Extra information such as sound velocity profiles and tide charts were also
provided to correct bathymetry measurements in order to build a 2km by 3km DTM of the
observed region with a 1.5m resolution cell.

Fig. 7. Comparing simulated vs. real data procedure

The purpose of using such a survey is to compare real sonar images with simulated ones
produced by the simulator fed with either raw data (sound velocity profile, trajectories . . .) or
preprocessed information (DTM), but excluding the real sonar images. The expectation is to
find on the simulated images, the features appearing on the real ones.
A sidescan sonar antenna matching the KLEIN 5400 specifications has also been defined to
produce images as output. Figure 8 presents both simulated and real sonar images. A quick
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(a) Klein 5400 vs. simulated sonar image (DTM built with 1999 MBES
data collection)

(b) Simulated sonar image
using a DTM built from MBES
data acquired in 2003

Fig. 8. Comparing Klein 5400 sonar images with simulated one on the same sea-bottom area
(Sydney bay).

look shows that all the features (wrecks or bottom slopes) even the smaller ones, existing in
reality (and shown on the real sonar image), also appear in the simulated data:

• Objects: both wrecks (main one on the bottom part, smaller one on the central part, end of
range) can be identified. Two other spots corresponding to impacts (purple plain circle) or
objects (orange dotted circle) also match.

• Marks: even fine sea-bottom marks appear on the simulated image.

• Backscattering strength: with recorded sidescan images only, determining the reason for
having sandy lighter texture areas is not easy; their appearance in the simulated data
involves they come from an elevation change (with a slope facing the sensor), besides
sediment differences. This aspect is very interesting from a scene interpretation point of
view.

The smoothing effect appearing on features of the simulated image can be explained by the
DTM grid resolution (1.5m by 1.5m cell) compared to the resolution of the real or simulated
sonar images (a few centimeters).
Some artifacts are also observed on the simulated data. These ripples come from the DTM
building phase with not so well-calibrated MBES data. This lack of calibration introduced a
few centimeters height difference between XYZ points coming from end-of-range overlapping
tracks. As with this survey, only one or two points participated to the height of a DTM
cell located at the end of the sonar range, for these cells, the poor amount of data leads to
alternating heights between neighboring cells.
Therefore, having an accurate world representation is crucial as the simulation accuracy puts
into relief all its details. Thus, when using a DTM built on the same area but with different
MBES data (2003 instead of 1999 survey), these artifacts do not show off. Figure 8(b) presents
such a simulated image with a sensor trajectory slightly shifted to the left: the sonar path flies
just over the main wreck, as revealed by the water column limit.
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4.2 Simulating multibeam echosounders

4.2.1 Aggregation principles

Each Rx beam from the multibeam echosounder is described by a specific Rx sector which is
split into Rx elementary tubes according to the same process as previously. A series of energy
contribution along time is then computed for each Rx beam. Based on amplitude detection, the
first temporal return among these contributions, provides the beam sounding characterizing
the return time travel between the sensor and the intersected scene.

4.2.2 Results

A RESON 8101 survey has been simulated on the Sydney area using a previously built
DTM. On the simulated data, the two wrecks observed on the simulated sidescan images
are logically present along with some small rocks over the slopes of the basin.

Fig. 9. Multibeam echosounder simulation on the Sydney harbor area

4.3 Simulating front-looking imaging sonar : DIDSON front looking camera

Based on high frequency sonar, DIDSON acoustic cameras provide short range, high
resolution images of underwater environments when optical systems get blind mainly due to
water high turbidity. Moreover, their image refresh rate can be rather high providing several
views of quite the same area, allowing various applications like inspection (Belcher et al.,
2001), navigation or surveillance missions (Asada et al., 2007).

4.3.1 Aggregation principles

Besides the generic propagation history building, some DIDSON specificities need to be taken
into account to create realistic images. DIDSON system uses acoustic lenses to perform direct
and energy saving beamforming. The antenna length is split into 48 or 96 cells or beams, each
beam being 0.3° width with spacing ranging from 0.3° to 0.4°, for a full 29° azimuth coverage.
Sampling along time the energy focused inside each cell provides per-beam backscattered
signal according to range (Belcher et al., 2002). A DIDSON image gathers all these collected
backscattered signal samples per beam and per range.
However, according to the system frequency (high or low resolution), a full DIDSON image
(48 or 96 beams) is built from the reverberation received by 4 or 8 sets of 12 non-adjacent beams
fired simultaneously. This interlacing technique requires several Tx/Rx cycles to produce a
complete image but aims at preventing beams cross-talk. Indeed, the acoustic beam pattern
width for one beam is almost 2°, showing that two neighboring (0.3° spaced) beams cannot be
used within a single cycle. Nevertheless, depending on the shape and nature of the observed
object, cross-talk phenomena are still observed on real images (see Figure 10(a)) as side lobes
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may gather enough energy contributions from round-shaped objects that reflect transmitted
energy to all directions.
All the built images are stored within a DDF file (DIDSON format for sequences of recorded
images) as frames.

(a) Real DIDSON images (metal plate and tire) (b) Simulated images extracted from a
simulated sequence on Sydney bay

Fig. 10. Examples of real and simulated DIDSON images.

4.3.2 Results

The component in charge of building DIDSON images from the propagation history gathers
the backscattered energy described through the lists of Rx elementary tubes according to
sensor Tx and Rx patterns. Moreover, depending on the considered cycle, only sectors
corresponding to the fired beams are used for data collection.

4.3.2.1 Image simulations

Figure 10(b) exhibits two frames extracted from a simulated DDF file using Sydney harbor
survey data (DTM). These images clearly show the big wreck and the rocky patches already
displayed by both the previous sensors.

4.3.2.2 Observing cross-talk phenomenon

When performing simulation on round-shaped objects, cross-talk phenomena are observed
the same way as with images coming from a real DIDSON camera. Figure 11 presents both real
and simulated images on a scene containing a sphere lying on a flat bottom. Cross-talks are
logically observed on both real and simulated images as round objects reflect the transmitted
acoustic wave to all directions. This realistic result clearly shows the ability of the simulator
to take into account the actual sensor beam pattern and its specific aggregation algorithm,
without questioning the propagation history principle.

4.4 Why using georeferenced perturbations ?

Using facets or DTM cells for describing items inside an underwater scene defines the
resolution of the geometrical features seen by the sensors during any simulation. However,
many phenomena come from higher resolution scene features. For instance, on real DIDSON
images collected in a flat bottom pool, some patterns between consecutive images are
observed, besides the fluctuating noise. Being clearly georeferenced, these patterns show that
modeling a flat bottom by a flat DTM only, is not enough. Indeed, they reveal the bottom
response occurs at a finer resolution than the one used for DTM description.
Next sections will present two approaches to allow a more detailed scene description,
producing either macro-textures or micro-textures.
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logically observed on both real and simulated images as round objects reflect the transmitted
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to take into account the actual sensor beam pattern and its specific aggregation algorithm,
without questioning the propagation history principle.

4.4 Why using georeferenced perturbations ?

Using facets or DTM cells for describing items inside an underwater scene defines the
resolution of the geometrical features seen by the sensors during any simulation. However,
many phenomena come from higher resolution scene features. For instance, on real DIDSON
images collected in a flat bottom pool, some patterns between consecutive images are
observed, besides the fluctuating noise. Being clearly georeferenced, these patterns show that
modeling a flat bottom by a flat DTM only, is not enough. Indeed, they reveal the bottom
response occurs at a finer resolution than the one used for DTM description.
Next sections will present two approaches to allow a more detailed scene description,
producing either macro-textures or micro-textures.
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(a) Real (b) Simulated

Fig. 11. Real & simulated DIDSON images with crosstalk phenomenon on a sphere lying on
a flat bottom

4.4.1 Macro-textures

This first approach introduces georeferenced perturbations to the elevation surface modeling
the observed scene, by decomposing each facet into smaller ones (sub-facets). Adding the
global elevation coming from the underlying facet (DTM or object) to a small variation
produced by a local and finer elevation map, gives each sub-facet elevation. Thus,
each sub-facet produces a specific response giving a more realistic characterization of the
encompassing facet.
Various techniques may produce adequate local elevation maps depending on the textures to
be simulated. These textures clearly depend on the scene sea-bottom sedimentology. Rocky
sea-bottoms may be obtained using standard fractal techniques like fractional Brownian
motion (Pentland, 1984). Moreover, shifting fractional Brownian motion spectral components
allows producing oriented textures; the direction and amplitude of the produced ripples
depend on the direction and length of the spectral translation (Guillaudeux & Maillard, 1998).

(a) Soft ripples (b) Sharp ripples (c) Rocky area

Fig. 12. Using macro-textures to simulate sea-bottom elevation features

Figure 12 shows examples of simulated texture images using these techniques to produce
local elevation maps. Thus, without any modification of the simulator core, introducing
local georeferenced perturbations to the global elevation map, allows producing more realistic
sea-bottoms textures (with structured shadows) reflecting local seabed altitude variations.

4.4.2 Micro-textures

The second approach that produces micro-textures does not involve elevation perturbations
but introduces georeferenced perturbations to the facet reflection properties. In that case, the
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standard backscattered energy transmitted by each Rx elementary tube is modulated by a local
contribution linked to both the statistical properties of the facet (sediment nature, material. . .)
and the location on this facet.
Figure 13 illustrates the impact of such georeferenced backscattering modifications on
simulated images with various micro-textures corresponding to several sandy sea-bottoms.
Indeed, modifying the backscattered energy at the elementary tube resolution allows tuning
image granularity inside facets, but unlike the macro-texture approach, this micro-texture
approach cannot produce textures with shadows.

(a) Mud (b) Sand (c) Gravel

Fig. 13. Using micro-textures to simulate various kind of sandy sea-bottoms

As for macro-textures, micro-textures can be generated using existing maps or georeferenced
perturbation functions computed during the simulation. The underlying micro-texture used
for the next simulation results has been generated online using Perlin noise (Perlin, 2002) and
counted for 25% of the diffuse reflection component.

4.5 Simulation results

As previously mentioned, consecutive DIDSON frames exhibit a meaningful level of
correlation between images. Micro-textures, being georeferenced by definition, induce such
cross-correlations between simulated images observing same scene areas as illustrated by
Figure 14 which shows several consecutive images extracted from a sequence simulated with
a flat sea-bottom with a straight constant speed trajectory. The yellow dotted circle outlines a
visible pattern between the three frames. As the sensor moves along its trajectory, the pattern
slowly drifts towards the sensor water column (first return recorded by the sensor).

Fig. 14. Neighboring frames (with consistent micro-textures) extracted from a simulated
DIDSON sequence with a straight constant speed sensor trajectory

Finally, Figure 15 compares two simulations performed with the oil well head scene. As
the sea-bottom from the left image is only modeled by a flat DTM with no micro-textures,
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no structured pattern appears: the backscattered energy is only affected by random and
uncorrelated noise. On the contrary, the right image integrates georeferenced perturbations
into the reflection: the underlying flat bottom produces uneven intensities across the
image. Moreover, as micro-textures adds spatially structured contributions to the basic
backscattering, some smoothing effect is also observed.

(a) No cross-talk, no
micro-texture

(b) Cross-talk, micro-texture

Fig. 15. DIDSON simulated images and georeferenced perturbations using Perlin noise

5. Simulating sonar full signal

Previous sections have explained how realistic images can be produced by simply gathering
incoherent contributions from the observed sea-bottom. No speckle effect although very
obvious on sidescan sonar image, can be produced with this approach. However, extra
contributions looking like speckle noise may be added to the simulated images, after
simulation. Partial diffraction effects for specific configurations may also be integrated to
simulated images, using the same kind of shortcuts. However, simulating phase signal is
absolutely required in the general case and clearly to feed standard sonar processing like
interferometry or beamforming. Simulating images only is not enough.
Simulating the phase of a sonar signal is a matter of aggregation resolution. Indeed, when
simulating sonar images, the scale of aggregation is the sensor sampling cell which defines
the scale used to aggregate the backscattered contributions. However, coherent phenomena
involving the signal phase component, occur at the signal wavelength scale. Simulating
the phase signal thus requires the simulator to process the propagation history at this scale.
Hopefully, this propagation knowledge is already available.
The notion of coherence is the key feature for any realistic signal simulation. Indeed, the
sampled backscattered signal is the result of coherent summations of contributions from
sea-bottom tiny parts. These tiny reflectors behaving according to many parameters such
as local sea-bottom properties, the summation is strongly linked to the observed sea-bottom
small area. Indeed, estimating the correlation between two distinct sea-bottom patches,
returns 0 while the correlation of two partially overlapping areas is only proportional to their
common surface: the specific identity of every sea-bottom part affected by the transmitted
signal, controls the coherent summation.
Thus, any simulation engine looking forward to being used as input for sensor array
processing (beam processing or interferometry) has to deliver a georeferenced phase
associated to every sampling cell using the underlying coherent summation. The challenge is
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to find a sea-bottom sampling model which is computationally simple enough to be used for
full track simulations. Next paragraphs will describe a proposed attempt to get realistic phase
simulation. First, the required formalism is introduced to fully explain the approach. Then, a
Brownian-based optimization is proposed to lighten the computational burden needed to get
reflectors behaving according to wished statistics properties.

5.1 Requirements for building a coherent sea-bottom simulation

The first engine plugged in this simulator uses ray tracing and only involves geometrical
interactions between the acoustic wave and the scene. These local interactions are closely
related to punctual scatterers but how to use these rays to simulate coherent backscattering
still remains a big issue since two major parameters of the acoustic wave are not taken into
account: the signal wavelength and the signal bandwidth which quantifies the quantity of
information transported by the carrier frequency and thus, the sensor resolution.

5.1.1 Sonar resolution cell

Each time sample of the backscattered signal (after sonar demodulation) corresponds to a
footprint on the sea-bottom, also called resolution cell. The energy level contained in such
a sample results from a very intricate combination of several contributing parts within the
resolution cell. Figure 16(a) illustrates such a resolution cell according to the sampling
interval τ and the sound speed c. Thus, the challenge of this simulator is to use the acoustic
propagation history in order to create a summation process, representative of the coherent
aggregation.

(a) Resolution cell definition (b) Interferometry (c) Beamforming

Fig. 16. Basic principles for interferometry and beamforming

5.1.2 Sonar processing involving phase signal: interferometry and beamforming principles

Simulating full sonar signal including the phase component is absolutely required to feed
standard sonar processing like interferometry or beamforming with signal generated by
the simulator. This section quickly describes how the phase component is crucial for such
processing and clearly shows that phase simulation is intrinsically linked to the sea-bottom
coherence.

5.1.2.1 Interferometry principles

Interferometry is a widely-used method that provides accurate bathymetric information
by measuring the phase difference between two sensors (Lurton, 2003)(Denbigh, 1989).
Figure 16(b) depicts the standard geometrical configuration for interferometric sonar systems
where θ0 is the direction of arrival (DOA) of the backscattered signal and ψ, the steering angle.
Assuming a non-dispersive medium hypothesis (i.e. the phase and group velocity have a
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no structured pattern appears: the backscattered energy is only affected by random and
uncorrelated noise. On the contrary, the right image integrates georeferenced perturbations
into the reflection: the underlying flat bottom produces uneven intensities across the
image. Moreover, as micro-textures adds spatially structured contributions to the basic
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(a) No cross-talk, no
micro-texture

(b) Cross-talk, micro-texture

Fig. 15. DIDSON simulated images and georeferenced perturbations using Perlin noise
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small area. Indeed, estimating the correlation between two distinct sea-bottom patches,
returns 0 while the correlation of two partially overlapping areas is only proportional to their
common surface: the specific identity of every sea-bottom part affected by the transmitted
signal, controls the coherent summation.
Thus, any simulation engine looking forward to being used as input for sensor array
processing (beam processing or interferometry) has to deliver a georeferenced phase
associated to every sampling cell using the underlying coherent summation. The challenge is
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linear connection), Equation 1 gives the searched phase difference ∆ϕ which represents indeed
a backscattered signal delay between the sensors.

∆ϕ =
2π

λ
δ =

2π

λ
dbsl cos(θ0 + ψ) + 2πk (1)

where λ is the acoustic wavelength, dbsl measures the spacing (or baseline) between the
sub-arrays centers and k corresponds to the number of 2π phase ambiguities as ∆ϕ can go
beyond 2π for high angles and large baselines, while the measured phase difference (the
cosine term) remains trapped within the [0, 2π] interval.

5.1.2.2 Beamforming principles

Beamforming is also widely used to build the backscattered signal from the receiving antenna
considered as an array of several elementary sensors with wide aperture. Basic beamforming
thus consists in an in-phase summation of the backscattered signal collected by all the M
elementary sensors. As shown in Figure 16(c), when assuming the incoming signal s(t) comes

from a far field source with a direction of arrival θ0, Equation 2 gives the signal �y(t) arriving
on each sensor of a d-spaced line array.

�y(t) = �a(θ0)s(t) + �b(t) (2)

where �b(t) represents noise contribution on each sensor and �a(θ0), the goniometric vector

�a(θ0)
T
=

[
e2π j 0

λ sin(θ0), ..., e2π j d.(M−1)
λ sin(θ0)

]
(3)

Building the final backscattered signal yBF(t) through beamforming consists in introducing

a phase correction on each sensor to compensate for the �a(θ0) effect before summing all the

elementary contributions yk(t) from �y(t). Equation 4 gives this in-phase summation.

yBF(t) =
M−1

∑
k=0

e−2π j d.k
λ sin(θ0)yk(t) (4)

5.1.3 How to model the phase brought by resolution cells ?

Many works model various properties of these resolution cells and how they contribute to the
backscattered signal in terms of phase behavior (Mourad, 1989)(Kuo, 1964).

5.1.3.1 Exact and continuous models

Two main approaches try to exactly describe resolution cells backscattering behavior using
continuous models. The first one takes benefit from the rough surface theory with Kirchoff
condition while the second one deals with diffraction phenomena through micro-roughness
with Bragg wavelength (Jackson et al., 1986). These models heavily rely on finding
Green function solutions to solve the propagation equation making the computation of one
resolution cell backscattered signal very complex and time consuming. Moreover, all these
models make strong assumptions about isotropy or angle of incidence.
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5.1.3.2 Single scatterers approach

A third approach considers a resolution cell as a set of point scatterers. Then the backscattered
signal F of a resolution cell is equal to the coherent summation of the incoming signal s(t)
transmitted back by the N single scatterers belonging to this resolution cell. As shown in
Equation 5, this atomistic model is very appealing when the amount of scatterers remains
small as each scatterer i receives the incident signal s(t) and transmits it back with modified
power ai and phase φi corresponding to the scatterer properties.

F =
N

∑
i=1

aie
jφi s(t) (5)

As within a resolution cell, the amount N of scatterers, the amplitude ai and phase φi of
every scatterer are random, it easily explains the reverberation diversity such a model is
able to produce. However, finding basic single scatterer properties fitting both experimental
and theoretical models is the main drawback of this model as the involved mathematical
developments may become rapidly complicated due to the manipulation of complex random
variable summation.
Moreover, when performing interferometry, several sensors observe almost the same
sea-bottom from different points of view. To each sensor corresponds a series of resolution
cells. A small patch of sea-bottom is then covered by one resolution cell per sensor, each
one having slightly different boundaries on the sea-bottom due to the various points of view.
Spatial and angular decorrelations are then introduced between these resolution cells as they
do not include exactly the same set of single scatterers (Sintes et al., 2010). The spatial
distribution of the scatterers is thus a crucial point to consider in order to perform consistent
correlation between the resolution cells and compute for instance, their phase difference.
Thus controlling both the spatial correlation and random properties of single scatterers are
fundamental to obtain a realistic full sonar signal simulation.

5.2 Simulating phase for sensor resolution cells

Generally speaking, the key feature to create a simulated signal (both intensity and phase), is
to make interfere different parts of the resolution cells.

5.2.1 An atomistic approach : single scatterers and ray tracing

This paragraph gives a short introduction on how to simulate the response of a resolution cell
through a single scatterer model and a ray tracing approach within a simulation context.

5.2.1.1 Building a resolution cell response from single scatterers

Equation 6 gives the temporal response h(t) of a single scatterer which distance from the
receiver is r/2, δ standing for the Dirac function.

h(t) = δ(t − r/c) (6)

As shown in Equation 7, we consider the sonar transmits a simple truncated sinusoidal signal
s(t) where T is the signal duration and f , the carrier frequency. A(u) stands for the indicator
function and is equal to 1 when u ∈ A, 0 anywhere else.

s(t) = T(t − r/c).ej2π f t (7)
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The received signal x(t) depends on s(t) with a phase shift depending on the total traveled
distance r.

x(t) = T(t − r/c).ej2π f (t−r/c) (8)

Finally, demodulating the received signal x(t) gives y(t) with

y(t) = x(t)e−j2π f t = T(t − r/c).e−j2π f r/c (9)

This signal y(t) is sampled in a z(k) vector according to the sampling step (or resolution cell
duration) Te. Assuming the sampling step is close to the signal duration (T ≈ Te), Equation 10
computes the contribution of one ri distant single scatterer i to the sampling cell z(k + 1).

z(k + 1) = T ((k + 1)Te − ri/c) .e−j2π f ri/c = e−j2π f ri/c (10)

The sampling cell z(k + 1) gathers the contributions of all the scatterers i within the
corresponding resolution cell: the scatterers i must check kTe < ri/c < (k+ 1)Te to be summed
into z(k + 1) as shown in Equation 11.

z(k + 1) = ∑
i

ai.e
−j2π f ri/c (11)

5.2.1.2 Simulation through ray tracing

Performing the sensor aggregation step according to Equation 11 is straightforward when
using a ray engine. However, the amount of rays hitting each resolution cell has to be dense
enough to compute the contribution of every single scatterer within this resolution cell.
Relying on this model, Figure 17 proposes two simulated interferometric signals on a flat
sea bottom. In this example, the amplitude of every single scatterer is kept constant. The
difference between the two signals lies on the average amount of scatterers per resolution cell,
at the end of the swath: 3 for Figure 17(a) and 40 for Figure 17(b). The second simulated
signal seems more realistic because of a higher noise level, coming from a bigger amount of
contributions per resolution cell. Indeed, as the resolution cell has a finer description (more
single scatterers), the spatial decorrelation effect is better described.

(a) 3 single scatterers (b) 40 single scatterers

Fig. 17. Simulated interferometric signal using ray tracing engine

This first attempt is very interesting as it clearly shows the simulator (using the ray engine)
can be used to simulate interferometric signals. Nevertheless, some key features remain
to be addressed: for instance, choosing a unique constant coefficient of reflection for all
single scatterers involves important constraints on the random properties of the simulated
backscattered signal. As shown, the random properties of the resolution cell are also affected
by the amount of scatterers per resolution cell (i.e. the amount of rays hitting this cell).
A more continuous approach may be used to solve this acoustic wave discretization effect:
this atomistic model may be extended for being used by a tube engine. It mainly requires to
rewrite the summation of the incoming contributions within a continuous context.
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a Te/2 time contribution within the Te duration resolution cells. Then the integration duration
Te is divided into 4 parts, to take into account all the combination between the overlapping
scatterers from sensor #1 and sensor #2 within the two resolution cells but also the time delay
between the cells. Each part has its own phase properties. Sensor #1 and sensor #2 signals
can then be computed according to Equation 12, over the appropriate integration area. Using
the simulated signals from sensor #1 and #2, the interferometric signal (and its phase) can be
obtained through standard interferometry processing as given in Equation 1.

Fig. 18. How the continuous approach with extended scatterers allows taking into account
spatial decorrelation effect when integrating backscattered contributions within the final
resolution cell

5.2.3 Results

Next paragraphs present some results of full signal simulation (including phase) using the
proposed extended scatterer approach. Such signals have been used as inputs feeding two
typical sonar processing relying on phase information: interferometry and beamforming.

5.2.3.1 Computing phase differences for interferometry

Figure 19 presents simulated interferometric signals using the extended single scatterers
technique. Figure 19(a) is obtained using 3 extended single scatterers, for each resolution
cell located at end of the swath. Figure 19(b) presents the same simulation with 40 extended
single scatterers, for the same conditions.

(a) 3 single scatterers (b) 40 single scatterers

Fig. 19. Simulated interferometric signal using tube tracing engine on a flat sea-bottom

The interferometric signal computed from the simulated full signal for two sensors observing
the same sea-bottom clearly indicates the proposed approach embedding extended single
scatterers succeeds.

5.2.3.2 Application to beamforming

The extended scatterer approach can also be used prior to beamforming. Figure 20 shows
simulated raw signal for a multibeam echosounder consisting of 60 sensors uniformly spaced
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on a horizontal line. The frequency carrier f is 300 kHz and the transmitted signal is a pulsed
wave with f /Δ f = 10. The simulated multibeam echosounder observes a flat sea-bottom
with a cube located in the middle of the swath. Both amplitude and phase results are
very realistic: for instance, on the simulated phase image, interferometric fringes are clearly
observed around the object.

(a) Phase image (b) Amplitude image

Fig. 20. Simulated full signal (both phase and amplitude) using tube tracing engine for a
multibeam echosounder observing a small object lying on flat sea-bottom

5.2.4 Discussion

The proposed approach clearly allows the simulation of realistic full sonar signal. However,
two features still remain to be studied: what is the best strategy for representing a sea-bottom
with unique extended scatterers? what is the influence of extended scatterers distribution in
the resolution cell response properties.
It has been shown that the sea-bottom needs to be divided into extended scatterers with
unique identifications (like beacons). A global strategy of splitting is required in order for
simulated signals over same sea-bottoms to have meaningful correlations. This strategy is
independent of sensor trajectory; however, the resolution of the splitting depends on the
wavelength of the signal to be simulated. Indeed, at least three extended scatterers are
required within a sensor resolution cell, to simulate a realistic signal.
The second question deals with the simulation signal statistics evolution in relation to
the amount of extended scatterers per resolution cell. To estimate this impact on a final
interferometric signal, a simulation has been performed, considering a constant delay between
the two sensors with an amount of extended scatterers varying from 3 to 100. The experience
shows the amount of extended scatterers roughly does not affect globally the simulated
amplitude. However, having more extended scatterers greatly reduces the variance of the
simulated signals from 3 to 20 scatterers per resolution cell. After 20, the variance remains
almost stable. This simple analysis clearly shows that to simulate specific random response
of a sea-bottom, the statistics nature, distribution and amount of extended scatterers gathered
within a resolution cell should be carefully taken into account.
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5.3 Optimizing signal simulation through a Brownian sheet technique
As previously mentioned, the extended scatterers approach has two main drawbacks. The
first one concerns the statistical properties of the generated signals because they do not
correspond to actual phase statistics (Tough et al., 1995). The second drawback deals with the
identity assigned to each extended scatterer: although assigning along simulation, a random
phase to each single extended scatterer grants good interferences (Sintes & Guériot, 2008),
this identification strategy is not robust enough to be used from track to track or survey to
survey. Thus, an extended scatterer identity (or individual phase) clearly needs to be linked
with the scatterer geographic location in order for several overlapping tracks to correlate when
observing the same scatterers, the level of correlation depending on the amount of common
observed scatterers. For this two-dimensional problem, the idea is to create a map where each
position (or pixel) is a random variable, holding phase statistics that allows such correlation
properties.
To produce such a georeferenced map, different techniques may be implemented such as
Perlin (gradient) noise (Perlin, 2002) widely used in computer texture graphic technology, or
fractional Brownian motion (Pesquet-Popescu & Vehel, 2002) bringing interesting Gaussian
properties. Perlin noise main advantage is to compute the value of a given pixel
independently of its neighborhood; however, the generated signal has no real statistical sense.
Conversely, a Brownian-based solution does permit the generation of uncorrelated Gaussian
signals from which it is possible to derive various kinds of statistics.
Thus, the next section discusses the proposed Brownian-based solution and how it has been
adapted to generate both amplitude and phase information. Interferometry is then used to
check the correctness of such signal simulations.

5.3.1 Assigning specific phase to extended scatterers using Brownian-based model
The effort described in this paragraph consists in assigning each extended scatterer a random
phase with specific properties, instead of using a uniform random phase.
Starting from Equation 12, the sea-bottom contribution z(k + 1) to the k + 1 resolution cell can
be written in a more general way. Equation 15 proposes such an expression and introduces
the function g(u) that gives the random signal associated to any extended scatterer u.

z(k + 1) =
∫ t2

t1

g(u) · e−j2π f udu (15)

Using Equation 15 for a system supporting 2 antennas (#1 and #2), the sea-bottom contribution
z1(k + 1) (resp. z2(k + 1)) to sensor #1 (resp. sensor #2) k + 1 resolution cell can be written for
each receiver as:

z1(k + 1) = H(tb)− H(ta)

z2(k + 1) = H(td)− H(tc) (16)

where [ta, tb] (resp. [tc, td]) defines temporal boundaries of the k + 1 resolution cell from
receiver #2 (resp. receiver #1) as illustrated in Figure 21 and H(tx) denotes the antiderivative
or cumulative function at tx, of the integrand in Equation 15.

H(tx) =
∫ tx

−∞
g(u) · e−j2π f udu (17)
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Fig. 21. Splitting integration range due to decorrelation between receivers.

In order to model H(x), let us evaluate the cross-correlation function between the received
signals:

z1(k + 1).z∗2(k + 1) = [H(td)− H(tc)][H(tb)− H(ta)] (18)

= [H(td)− H(ta)︸ ︷︷ ︸
α

+ H(ta)− H(tc)︸ ︷︷ ︸
β

].[H(tb)− H(td)︸ ︷︷ ︸
γ

+ H(td)− H(ta)︸ ︷︷ ︸
α

]

= α2 + αγ + βα + βγ (19)

with α, β and γ being defined in Figure 21 as the increments between antiderivatives. Thus,
α gives the correlated contribution while β and γ represents the uncorrelated contributions
between the two resolution cells.
Equation 19 permits the modeling of the received signals. Indeed, in order to ensure both a
correct cross-correlation between signals and independent increments, Equations 20 must be
checked.

E{z1(k + 1).z∗2(k + 1)} = E{α2
} =⇒ E{αγ} = E{αβ} = E{βγ} = 0 (20)

Now, assuming the signal g(u) associated to extended scatterers, is a white
Gaussian-distributed noise, its integration in Equation 17 leads the antiderivatives H(tx) to be
a Wiener process also known as Brownian motion (Saupe, 1988). As a result, the increments
given in Equation 16 are also Gaussian distributed, producing Gaussian signals at reception.

5.3.2 Brownian sheet simulation

A 1-D Brownian motion can be simulated by creating a zero-mean Gaussian random
vector and computing the cumulative sum function. In order to check the properties of
cross-correlation between resolution cells, a 1024-length Brownian vector composed of 1024
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observations was created. Then, the cross-correlation function was computed between two
ten-units length resolution cells. In the case the resolution cells were 3 units apart (resp. 6),
the resulting correlations were 0.7 (resp. 0.4) on average, as expected.
For a two-dimensional case, the simulation of a Brownian sheet is carried out by creating a
zero-mean Gaussian random matrix, applying the cumulative sum function along one axis
direction and then, applying this function again to the result along the other axis direction. As
in the previous case, the measured cross-correlations behave as expected.
The main drawback of this model is that computing every pixel of the Brownian sheet requires
the whole map to be processed. Moreover, as already said, as the map resolution depends on
sonar characteristics (signal wavelength, baselines...), this map may become huge. Thus, one
solution is to find a way for computing Equation 15 without requiring each time, a full map
processing. Using a series expansion of the integral in Equation 15, it has been possible to
simulate coherent signals, bypassing such a costly processing (Llort-Pujol et al., 2010).

5.3.3 Results

Using the Brownian optimization approach (and the proposed extended scatterers), Figure 22
presents simulated signals for a two-sensors interferometer along with the produced
interferogram. Fringes of interference are correctly produced showing adequate correlations
properties have been taken into account when simulating the two signals over the sea-bottom.

Fig. 22. Simulating sonar signals coming from two different tracks and resulting
interferogram.

Nevertheless, the georeferenced grid size remains a major drawback for this method, when
computing (once) the Brownian sheet. Indeed, for instance, to generate a 100 meters by
100 meters map for simulating a sidescan sonar which transmits 0.15 ms duration signals,
the simulator engine should store the position of about seven million scatterers in order for
each resolution cell to encompass only three scatterers. Generating complex signals from the
resulting Brownian sheet thus requires a huge amount of both memory and pre-computation
processing power.
A more attractive approach, compatible with polygonal ray tubes footprint, would consist in
using extensions of the Brownian bridge (Khoshnevisan & Xiao, 2007) to enable on-demand
refinement of an already simulated rough grid. The idea is to develop techniques close to
Perlin noise generation which can deliver a random number with appropriate properties from
its 2D coordinates only.
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6. Conclusion

Using tubes for modeling acoustic waves underwater propagation allows the framework we
presented in this chapter, to simulate very realistic sonar images. Indeed, the whole energy
transmitted by one sensor, can be tracked down through scene interactions, till its aggregation
in the receiving sensor. Moreover, this energy-based method has been successfully enhanced
to simulate full sonar signal (intensity + phase) developing a coherent aggregation processing
relying on the tubes propagation. Indeed, using a sea-bottom representation through
extended single scatterers, a coherent summation of their backscattered contributions has
allowed a complete backscattered signal to be simulated. The realism of such simulated
signals have been proven as beamforming and interferometry have successfully worked on
these signals.
Some improvements remains to be integrated within this simulation framework such as
more complex signals transmission, Doppler effect checking and diffraction propagation
through the tube history. To achieve these new goals, other methods (modes simulation
or FDTD techniques) mostly based on analytical calculations, are required to finely model
both propagation and interaction of the acoustic wave with the observed scene (sea-bottom,
objects...). However, their computational burden is very high and to produce realistic output
within an acceptable computation time, they should be used only locally in the scene where
specific and impacting phenomena (like diffraction) occur. Such an hybrid behavior has
already been successfully implemented for radar simulation, outside this simulator (Lurton,
2010). While electromagnetic wave propagation is performed through rays, interactions with
the sea surface rely on FDTD computation. Next developments around this simulator will
then consist in integrating this promising hybrid scheme, as the current framework already
support multiple engines.
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1. Introduction 
 The history of beamforming in sonar applications goes back many years. Perhaps Collodon 
and Sturm’s use of a horn receiver in their 1826 measurement of the speed of sound in water 
is a first example. Their 13-km range certainly required a receiver with a good beam pattern 
to increase the signal to a measureable level. Although receivers have changed over the 
years, beamforming is still an active area of interest and research. 
Modern sonars often utilize multiple sensors in an array configuration. More sensors yield 
more signal information and can help suppress noise and interference. The key to extracting 
information from the array is to exploit the fact that the signals arrive at the different sensors 
at different times due to the array geometry and signal angle. An example of the time delay 
for a signal incident on two sensors is shown below. 
 

 
Fig. 1. Time delay, Δ, associated with a signal incident on a two-sensor array. 

Modelling the signal interaction with the array can be conveniently done using matrices. 
The measured data, y(t), over an array of n sensors is represented as a mapping of the signal, 
s(t), onto the array plus noise.  
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The mapping involves a series of time delays, which are functionally represented by Δ. The 
signal is referenced to the first array sensor, and the time delays are also referenced to the 
first array sensor. It is convenient to call this mapping vector, D. 
The essence of beamforming involves inverting (1) to yield the best estimate of the signal from 
the measured data. The optimal solution in a least-squares sense can be constructed using 
the Moore-Penrose inverse. This inverse is well known and widely used in a variety of 
applications. It is implemented by first left multiplying (1) by the complex transpose of the 
mapping vector, D†. Then, since D†D is a square matrix (in this case a scalar), left 
multiplying by (D†D)-1. This allows the best estimate of the signal, s(t), to be expressed in 
terms of the measured sensor data, y(t), and the mapping vector, D. 
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since, 

 D†D = n (4) 

The mathematical interpretation of (3) corresponds to what is commonly called delay-and-
sum beamforming. This equation forms the foundation for beamforming methods. 
An important observation needs to be noted. The model in (1) was developed for only one 
signal. It is the optimal solution for the case that includes only one signal. However, the one-
signal model is often used in multiple-signal environments. Much work has gone into 
mitigating the effects of other signals on (3) by introducing weights on the sensors that 
reduce the leakage from other directions or can sometimes put a null in the direction of the 
interfering signal. However, these methods have their limitations. It is best to use a 
multiple-signal model in a multiple-signal environment. 

2. Narrowband signals 
The required time shifts in the mapping matrix have a particularly simple representation for 
narrowband signals. This is based on the observation that shifting the phase of a 
narrowband signal approximates a time shift. The resulting equations allow for high 
resolution beamforming and direction-of-arrival estimation.  

2.1 Phase shift approximation 
The extra distance, ∆, that the signal, s, has to travel to the second array element in Fig. 1 is 
geometrically determined by the distance between the sensors, a, and the angle of incidence, 
 . This extra distance is simply 
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 sin( )a    (5) 
For narrowband signals it is convenient to express this distance as the radian measure of the 
fraction of a wavelength extra distance that the signal travels. 

 2 sin( )a



  (6) 

This phase angle can then be used to simulate advancing or delaying a narrowband signal 
by simple multiplication of the phase term.  

  (7) 

It should be noted that this is only an approximation in the sense that it does not actually 
shift the signal in time. Instead it only changes the phase to match a signal shifted in time. 
This phase-shifted signal still starts and stops at the same time samples as the original 
signal. So, it is not actually time shifted, but it does approximate a time-shifted signal over 
part of its interval. This can be problematic for short signal pulses and large time shifts. 

2.2 Narrowband beamforming 
The general sonar problem involves multiple sensors and multiple signals. This can be 
expressed as a mapping, D, of the m signals onto the n sensors in the array. 
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The narrowband mapping or steering matrix, D, can be expressed in terms of the phase 
shifts, φ, associated with the various directions of arrival. Here, each column in the matrix 
corresponds to a diffent signal. For a uniform linear array, which is often the case, the 
steering matrix has the following Vandermonde stucture.  
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Other array geometries can be easily accommodated with this approach by correctly 
modeling the various phase delays associated with the various time delays. 
Beamforming requires inverting (8). As before, the Moore-Penrose inverse should be used. 
This yields the following representation for the signals. 
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The mapping involves a series of time delays, which are functionally represented by Δ. The 
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first array sensor. It is convenient to call this mapping vector, D. 
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since, 

 D†D = n (4) 

The mathematical interpretation of (3) corresponds to what is commonly called delay-and-
sum beamforming. This equation forms the foundation for beamforming methods. 
An important observation needs to be noted. The model in (1) was developed for only one 
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mitigating the effects of other signals on (3) by introducing weights on the sensors that 
reduce the leakage from other directions or can sometimes put a null in the direction of the 
interfering signal. However, these methods have their limitations. It is best to use a 
multiple-signal model in a multiple-signal environment. 
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narrowband signals. This is based on the observation that shifting the phase of a 
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For narrowband signals it is convenient to express this distance as the radian measure of the 
fraction of a wavelength extra distance that the signal travels. 
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This phase angle can then be used to simulate advancing or delaying a narrowband signal 
by simple multiplication of the phase term.  
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It should be noted that this is only an approximation in the sense that it does not actually 
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The narrowband mapping or steering matrix, D, can be expressed in terms of the phase 
shifts, φ, associated with the various directions of arrival. Here, each column in the matrix 
corresponds to a diffent signal. For a uniform linear array, which is often the case, the 
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Other array geometries can be easily accommodated with this approach by correctly 
modeling the various phase delays associated with the various time delays. 
Beamforming requires inverting (8). As before, the Moore-Penrose inverse should be used. 
This yields the following representation for the signals. 
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It is important to note that in this representation the m signals are decoupled or separated. 
This is generally not the case when conventional beamforming techniques are applied in a 
multiple signal environment, since conventional beamforming uses a one-signal model that 
cannot correctly solve the multiple signal case. 
It is worthwhile to understand the mathematical details in (10). The term D†y can be thought 
of as forming m conventional beams from the array data. These beams are then multiplied 
by the matrix (D†D)-1 as prescribed by Moore-Penrose. The (D†D)-1 term allows the beams to 
be be decoupled. This matrix is more fully described in the next section where the 
importance of the off-diagonal terms in this matrix becomes clear. There is no analog in the 
conventional approach since the (D†D)-1 term reduces to a simple scalar in the one-signal 
model. 
A simulation example is shown in Fig. 2 for two overlapping narrowband +20 dB signals 
arriving on a two-sensor array with half-wavelength spacing at incident angles of ±3º. This 
example simulates a direct signal plus a multipath signal that reflects off the water’s surface 
and arrives at a slightly later time. The top plot shows the output using simple beam 
steering. The two signals are not separated since the beamwidth of this approach cannot 
differentiate signals with small angular separation. The next two plots show the outputs of 
the Moore-Penrose beamformer directed at +3º and −3º. The two signals are seen to be 
clearly separated with this approach. 
 

 
Fig. 2. Simple beam steering and Moore-Penrose beamformer outputs for a two-sensor array 
with two overlapping narrowband +20 dB signals at ±3º. 

Sonar data was collected with a synthetic aperture rail system at the NSWC test pool. A 
short 20-kHz narrow beam signal was projected and two vertical wide beam elements 
received the signal. Fig. 3 shows the results from simple beam steering and from the Moore-
Penrose beamformer output. The vertical axis corresponds to the ping number along the rail 
length, and the horizontal axis corresponds to the relative time sample. The bottom target is 
clearly seen between time samples 1100 and 1500 in both images. A multipath signal can 
also be seen between time samples 2500 and 2900 using simple beam steering, since it is 
within the array’s mainlobe. However, the output from the two-signal Moore-Penrose 
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beamformer steered towards the bottom target effectively eliminates or cancels the 
multipath signal. 
 

 
Fig. 3. Direct and multipath signals with beam steering (left) and only a direct signal with 
the Moore-Penrose beamformer (right). 

The separation of the direct path and the multipath signals in Fig. 2 and 3 is interesting since 
both signals exist deep within the classical mainlobe of the steered beam. The ability to 
separate the signals comes from using a multiple-signal model. Null beam steering is 
somewhat similar in the sense that by placing a null at a second signal effectively leads to 
decoupling. However, null beam steering is limited by its fundamental dependency on a 
one-signal model, which has no analog to the important (D†D)-1 term.  

2.3 Likelihood function 
The least-squares method offers a robust high resolution approach for direction-of-arrival 
estimation. The likelihood function, L, can be constructed as the least-squares difference 
between the measured array data, y, and the parametric model, Ds. 

 2L y Ds   (11) 

It is useful to insert the Moore-Penrose representation for s into (11). After multiplying 
terms, this yields the following representation for L. 

 † † † 1 †( )L y y y D D D D y   (12) 

It is convenient to drop the constant term y†y and flip the sign to yield a maximization 
problem 

† † 1 †( )L y D D D D y  (13) 

This representation can be interpreted as an inner product of the vector D†y and its Hermitian 
conjugate, y†D. The (D†D)-1 term should be interpreted as the inner product metric tensor. 
Inner product spaces are of considerable interest in physics and mathematics. This array 
processing example is likewise interesting.  



 
Sonar Systems 82

It is important to note that in this representation the m signals are decoupled or separated. 
This is generally not the case when conventional beamforming techniques are applied in a 
multiple signal environment, since conventional beamforming uses a one-signal model that 
cannot correctly solve the multiple signal case. 
It is worthwhile to understand the mathematical details in (10). The term D†y can be thought 
of as forming m conventional beams from the array data. These beams are then multiplied 
by the matrix (D†D)-1 as prescribed by Moore-Penrose. The (D†D)-1 term allows the beams to 
be be decoupled. This matrix is more fully described in the next section where the 
importance of the off-diagonal terms in this matrix becomes clear. There is no analog in the 
conventional approach since the (D†D)-1 term reduces to a simple scalar in the one-signal 
model. 
A simulation example is shown in Fig. 2 for two overlapping narrowband +20 dB signals 
arriving on a two-sensor array with half-wavelength spacing at incident angles of ±3º. This 
example simulates a direct signal plus a multipath signal that reflects off the water’s surface 
and arrives at a slightly later time. The top plot shows the output using simple beam 
steering. The two signals are not separated since the beamwidth of this approach cannot 
differentiate signals with small angular separation. The next two plots show the outputs of 
the Moore-Penrose beamformer directed at +3º and −3º. The two signals are seen to be 
clearly separated with this approach. 
 

 
Fig. 2. Simple beam steering and Moore-Penrose beamformer outputs for a two-sensor array 
with two overlapping narrowband +20 dB signals at ±3º. 

Sonar data was collected with a synthetic aperture rail system at the NSWC test pool. A 
short 20-kHz narrow beam signal was projected and two vertical wide beam elements 
received the signal. Fig. 3 shows the results from simple beam steering and from the Moore-
Penrose beamformer output. The vertical axis corresponds to the ping number along the rail 
length, and the horizontal axis corresponds to the relative time sample. The bottom target is 
clearly seen between time samples 1100 and 1500 in both images. A multipath signal can 
also be seen between time samples 2500 and 2900 using simple beam steering, since it is 
within the array’s mainlobe. However, the output from the two-signal Moore-Penrose 

 
Beamforming Narrowband and Broadband Signals 83 

beamformer steered towards the bottom target effectively eliminates or cancels the 
multipath signal. 
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one-signal model, which has no analog to the important (D†D)-1 term.  
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It is worthwhile to investigate the properties of this metric tensor for the two-signal and n-
element case. The metric tensor is constructed from the steering matrix, D. 
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where 2 1    . The inverse is then 
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It can be seen that when n is large, the inner product metric tensor tends to become 
diagonally dominant. In this case the off-diagonal terms tend to be relatively less important, 
and the conventional signal processing approach starts to assume some validity.  
The off-diagonal terms in (15) are particularly interesting. These terms are a measure of the 
coupling between the signals. Interestingly, as the angle between the two signals becomes 
small, the off-diagonal terms approach the magnitude of the diagonal terms. 
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Since the off-diagonal terms can grow to be nearly as large as the diagonal terms when the 
separation angle is small, they clearly cannot be simply ignored.  
There are special cases when the off-diagonal terms can be safely ignored. These special 
cases occur when the off-diagonal terms are zero, which occur when 

 2 , 4 , .n        (17)  

Because the off-diagonal terms are zero at these values, the problem naturally decouples and 
the signals can be completely separated. These zeros correspond to the zeros commonly seen 
in conventional sidelobe structures. This is the goal of null steering, which adaptively adds 
weights to the steering matrix to produce nulls in the beam pattern in the direction of an 
unwanted signal by exploiting the condition in (17) where the off-diagonal terms go to zero.  
The likelihood function is commonly expressed using a projection operator and a sample 
covariance matrix representation. This may be derived by taking the trace of (13) and 
rotating the vector y† to the right side of the equation.  

 † 1 † †( ( ) )L tr D D D D y y † 1 †( ( ) )tr D D D D R  (18) 
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The least-squares function for the one-signal case reduces to the familiar periodogram 
representation, since (D†D)-1 reduces to a simple scalar. The peak in this function 
corresponds to the best estimate of the parameters. 

 † 2L D y  (19) 

2.4 Direction-of-arrival estimation 
Direction-of-arrival estimation of signals is an important function of array processing. This 
information can be used for localization applications or used as input for high resolution 
beamforming applications. The likelihood function approach can be used to solve this 
problem by finding the parameters that maximize the function.  
A simulation example is shown in Fig. 4 for the same two overlapping narrowband +20 dB 
signals arriving on an array at incident angles of ±3º as seen in Fig. 2. The likelihood 
function is calculated over the 250 time sample interval. Two cases are considered; the first 
one with an array of four sensors and the second with eight sensors with half-wavelength 
spacing.  
 

    
Fig. 4. Example likelihood functions for two narrowband signals with incident angles of ±3º 
on arrays with 4 and 8 sensors. 

The peak in the likelihood function corresponds to the best estimate of the directions of 
arrival. This approach has been shown to approach the Cramer-Rao bound in applications 
[Stoica 1989]. The Cramer-Rao bound has been derived in the literature and is given as  

 CRB = (SNR)-1 (n(n2 -1)/6)-1 (20) 

So, the ability to estimate the directions of arrival depends on two terms. The bound is 
inversely proportional to the signal-to-noise ratio. The bound is also inversely related to the 
number of sensors in a nonlinear way. Four sensors yield ten-fold better estimates than two 
sensors. Likewise, eight sensors yield an eight-fold better estimate than four sensors. This 
increase in resolution with more sensors is seen in the above figure. 
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It is worthwhile to investigate the properties of this metric tensor for the two-signal and n-
element case. The metric tensor is constructed from the steering matrix, D. 
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and the conventional signal processing approach starts to assume some validity.  
The off-diagonal terms in (15) are particularly interesting. These terms are a measure of the 
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The least-squares function for the one-signal case reduces to the familiar periodogram 
representation, since (D†D)-1 reduces to a simple scalar. The peak in this function 
corresponds to the best estimate of the parameters. 
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The peak in the likelihood function corresponds to the best estimate of the directions of 
arrival. This approach has been shown to approach the Cramer-Rao bound in applications 
[Stoica 1989]. The Cramer-Rao bound has been derived in the literature and is given as  

 CRB = (SNR)-1 (n(n2 -1)/6)-1 (20) 

So, the ability to estimate the directions of arrival depends on two terms. The bound is 
inversely proportional to the signal-to-noise ratio. The bound is also inversely related to the 
number of sensors in a nonlinear way. Four sensors yield ten-fold better estimates than two 
sensors. Likewise, eight sensors yield an eight-fold better estimate than four sensors. This 
increase in resolution with more sensors is seen in the above figure. 
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An alternative and popular approach to direction-of-arrival estimation is the signal 
subspace method [Schmidt 1986]. This alternative method depends on the eigenvalue 
structure of the sample covariance matrix. There are a couple of problems with this method. 
Noise in the sample covariance matrix can lead to poor estimation of the true eigenvalues. 
Additionally, coherent signals such as seen in multipath lead to problems in the structure of 
the sample covariance matrix. A number of signal subspace techniques have been developed 
to address these problems [Wang 1985], [Di Claudio 2001]. 

2.5 Number of signals resolvable by an array  
The number of signals resolvable by an array is somewhat dependent on the array 
processing methods used. Signal subspace methods are strictly limited to n−1 signals with 
an array of n sensors [Friedlander 1991]. This limit is imposed since of the n eigenvalues of 
the sample covariance matrix at least one needs to be assigned to the noise subspace. Hence, 
that leaves at most n−1 eigenvalues to be assigned to the signal subspace. It may be possible 
to assign all the eigenvalues to the signal subspace, but then it would technically not be a 
subspace. 
Both the Moore-Penrose inverse and the likelihood function require the inversion of the 
term D†D. This inverse may or may not exist. In order for it to exist, it is necessary for D†D to 
be full rank. This requirement constrains the number of resolvable signals. 
Consider the n by m general steering matrix for n uniformly spaced array elements and m 
signals. If the incident angles for the incoming signals are all different, then D has m 
independent columns. For uniformly spaced sensors and most other geometries there are n 
independent rows. Since the rank of an n by m matrix is less than or equal to min(m,n), D 
has full rank if and only if rank(D) = min(m,n). In this case, rank(D†D) = min(m,n), so that 
when the incident angles for the incoming angles are distinct, the m by m matrix D†D is 
invertible if and only if n ≥ m.  
This result that an n-sensor array can resolve n signals differs from the signal subspace 
result of n−1 signals. Simulation and test pool examples of two signals resolved by two 
sensors are seen in Fig. 2 and 3. These signals are resolved in the sense that they can be fully 
decoupled in beamforming and direction-of-arrival methods. 

3. Time-shift operators 
Proper array processing requires shifting the signals in time. Time-shift operators, Δ, are 
useful to translate a digitized signal by an arbitrary amount of time, τ. These can be 
functionally expressed as  

 Δ(τ) s(t) = s(t + τ) (21) 

Unitary matrix operators can be constructed for this task [Piper 2009]. Although the specific 
time-shift matrices developed in this chapter are very useful for solving the general 
broadband problem, they have numerous applications in other signal processing problems 
[Laakso 1996].  

3.1 Unit time shifts  
The simplest time-shift operator is the identity matrix, which shifts the time-series signal by 
a zero amount. Using matrices with ones along other diagonals, results in time shifts by a 
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discrete number of time samples. It is worthwhile to consider the unit time-shift operator, 
Δ(1). This may be written in a Toeplitz matrix form as  

 

0 1 0 0
0 0 1 0
0 0 0 1(1)
0 0 0 0

 
 
 
  
 
 
 
 






    

 (22) 

The effect of this operator is to shift vector elements up or backwards in time by one unit. It 
should be noted that this simple operator is quite independent of the shape of the waveform 
it operates on. It is convenient to require these operators to be unitary so that inverses are 
simply complex transposes.  

3.2 Fractional time shifts  
Construction of the fractional time-shift operator, Δ(τ), for an arbitrary time shift, τ, is best 
done in the frequency domain where the fractional time shift can be effected by a phase 
shift. This operation can be accomplished by multiplying three matrices; the Fourier matrix, 
F, the phase shift matrix, Δ(θ), and the inverse Fourier matrix, F -1. The resultant time-shift 
operator can then be functionally written as 

 ( ) ( )   -1F F  (23) 

The Fourier, phase shift, and inverse Fourier matrices are listed below 
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An alternative and popular approach to direction-of-arrival estimation is the signal 
subspace method [Schmidt 1986]. This alternative method depends on the eigenvalue 
structure of the sample covariance matrix. There are a couple of problems with this method. 
Noise in the sample covariance matrix can lead to poor estimation of the true eigenvalues. 
Additionally, coherent signals such as seen in multipath lead to problems in the structure of 
the sample covariance matrix. A number of signal subspace techniques have been developed 
to address these problems [Wang 1985], [Di Claudio 2001]. 

2.5 Number of signals resolvable by an array  
The number of signals resolvable by an array is somewhat dependent on the array 
processing methods used. Signal subspace methods are strictly limited to n−1 signals with 
an array of n sensors [Friedlander 1991]. This limit is imposed since of the n eigenvalues of 
the sample covariance matrix at least one needs to be assigned to the noise subspace. Hence, 
that leaves at most n−1 eigenvalues to be assigned to the signal subspace. It may be possible 
to assign all the eigenvalues to the signal subspace, but then it would technically not be a 
subspace. 
Both the Moore-Penrose inverse and the likelihood function require the inversion of the 
term D†D. This inverse may or may not exist. In order for it to exist, it is necessary for D†D to 
be full rank. This requirement constrains the number of resolvable signals. 
Consider the n by m general steering matrix for n uniformly spaced array elements and m 
signals. If the incident angles for the incoming signals are all different, then D has m 
independent columns. For uniformly spaced sensors and most other geometries there are n 
independent rows. Since the rank of an n by m matrix is less than or equal to min(m,n), D 
has full rank if and only if rank(D) = min(m,n). In this case, rank(D†D) = min(m,n), so that 
when the incident angles for the incoming angles are distinct, the m by m matrix D†D is 
invertible if and only if n ≥ m.  
This result that an n-sensor array can resolve n signals differs from the signal subspace 
result of n−1 signals. Simulation and test pool examples of two signals resolved by two 
sensors are seen in Fig. 2 and 3. These signals are resolved in the sense that they can be fully 
decoupled in beamforming and direction-of-arrival methods. 

3. Time-shift operators 
Proper array processing requires shifting the signals in time. Time-shift operators, Δ, are 
useful to translate a digitized signal by an arbitrary amount of time, τ. These can be 
functionally expressed as  

 Δ(τ) s(t) = s(t + τ) (21) 

Unitary matrix operators can be constructed for this task [Piper 2009]. Although the specific 
time-shift matrices developed in this chapter are very useful for solving the general 
broadband problem, they have numerous applications in other signal processing problems 
[Laakso 1996].  

3.1 Unit time shifts  
The simplest time-shift operator is the identity matrix, which shifts the time-series signal by 
a zero amount. Using matrices with ones along other diagonals, results in time shifts by a 
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discrete number of time samples. It is worthwhile to consider the unit time-shift operator, 
Δ(1). This may be written in a Toeplitz matrix form as  
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The effect of this operator is to shift vector elements up or backwards in time by one unit. It 
should be noted that this simple operator is quite independent of the shape of the waveform 
it operates on. It is convenient to require these operators to be unitary so that inverses are 
simply complex transposes.  

3.2 Fractional time shifts  
Construction of the fractional time-shift operator, Δ(τ), for an arbitrary time shift, τ, is best 
done in the frequency domain where the fractional time shift can be effected by a phase 
shift. This operation can be accomplished by multiplying three matrices; the Fourier matrix, 
F, the phase shift matrix, Δ(θ), and the inverse Fourier matrix, F -1. The resultant time-shift 
operator can then be functionally written as 
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where 2  / 2  /andi N i Nf e p e    .  
Multiplication of these matrices yields the following exact analytical expression for the 
fractional time-shift operator 

 

0 1 2 1

1 0 1 2

2 1 0 3

( 1) ( 2) ( 3) 0

( ) .

N

N

N

N N N





 

  

     

    
     
     
 
 
     





    


 (27) 

This matrix has a Toeplitz structure. The diagonal terms, Δk, are geometric series and are 
easily summed. 
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An example of the fractional time-shift operator advancing a unit impulse signal by 2.2 time 
samples is shown below in Fig. 5.  
 

 
Fig. 5. Example of fractional shift of 2.2 samples applied to unit impulse signal. 

4. Broadband signals 
 Broadband signals are much more useful in sonar systems than narrowband signals. The 
increased bandwidth leads to increased range resolution, and the longer signal duration can 
lead to higher signal-to-noise ratios. This type of signal is important, and considerable 
research effort has gone into array processing of broadband data. The key to solving this 
problem is to use the same functional approach used in the narrowband case but use time-
shift operators to perform the necessary time shifting. 

4.1 One-signal beamformer  
The one-signal model for an n-sensor array can be written in matrix form using the time-
shift operators, Δ, as 
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Inversion of this equation in a least-squares sense can be done with the Moore-Penrose 
inverse. This representation can be interpreted as a simple delay-and-sum approach. 
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It is possible and somewhat popular to solve the above problem in the frequency domain. 
This can be realized by inserting Fourier transforms and their inverses into (30). Performing 
the multiplications reveals that the signal can be constructed in the frequency domain using 
simple phase shift operators, Δ(θ), defined in (25). Since the phase-shift operators only have 
non-zero elements along the main diagonal, some computational simplicity can be obtained 
with this approach. 
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4.2 Two-signal beamformer 
For two signals and n sensors the sonar model can be written as  
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The resultant Moore-Penrose inverse solution for the two-signal broadband problem can be 
functionally written as  
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Using the above equation with time-shift operators developed in the previous section leads 
to the matrix to be inverted in (33) being rank deficient. This is a problem. It is therefore 
necessary to use an approximate inverse. The following equation uses a simple approximate 
inverse that allows the signals to be decoupled or separated. However, this approximate 
inverse is not well normalized. 
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4.2 Two-signal beamformer 
For two signals and n sensors the sonar model can be written as  
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The resultant Moore-Penrose inverse solution for the two-signal broadband problem can be 
functionally written as  
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Using the above equation with time-shift operators developed in the previous section leads 
to the matrix to be inverted in (33) being rank deficient. This is a problem. It is therefore 
necessary to use an approximate inverse. The following equation uses a simple approximate 
inverse that allows the signals to be decoupled or separated. However, this approximate 
inverse is not well normalized. 
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A simulation example of this approach is shown in Fig. 6 for two overlapping +20 dB chirp 
signals arriving on a two-element array at incident angles of ±3º. This example is similar to 
the one seen in Fig. 2 in that it also simulates a direct signal plus a delayed multipath signal. 
The top plot shows the measured signal of sensor 1. The next two plots show the two 
outputs of the Moore-Penrose beamformer directed at +3º and −3º. The two chirp signals 
can be seen to be clearly separated with this approach. 
 

 
Fig. 6. Sensor 1 measured signal and Moore-Penrose beamformer outputs for a two-sensor 
array with two overlapping broadband +20 dB signals at ±3º.  

The two-signal case may be generalized to the multiple-signal case by expanding the signal 
vector and steering matrix to account for more signals. The inner product metric term, D†D, 
will also need to be expanded and an approximate inverse found. For a large number of 
signals this could be challenging.  
It may be computationally advantageous to solve this problem in the frequecy domain 
instead of the time domain. This can be realized by inserting Fourier transforms and their 
inverses into (34) and multiplying to yield the following frequency domain representation. 
The Δ(θ) terms are the diagonal phase shift matrices defined in (25). 
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4.3 Broadband direction-of-arrival estimation 
As in the narrowband case, high resolution direction-of-arrival estimates can be obtained 
using a likelihood function approach. The likelihood function is derived from the least-
squares method and is given as 

 † † 1 †( ) .L y D D D D y  (36) 

It is again necessary to use an approximate inverse in (36). The best estimate of the angles 
can be found by numerically evaluating (36) to find its maximum.  
Two examples are shown in Fig. 7. These correspond to the two chirp signals seen in Fig. 6. 
These signals have incident angles of ±3º on an array with either 4 or 8 sensors. 
 

 
Fig. 7. Example likelihood functions for two broadband signals with incident angles of ±3º 
on arrays with 4 and 8 sensors. 

5. Comments  
Array beamforming has been largely dominated by one-dimensional thinking. One 
dimensional in the sense that one-signal models are applied and expected to work in 
multiple-signal environments. Optimal results can only be expected when the number of 
signals in the model equals the number of signals in the environment. 
The Moore-Penrose inverse has been found to be absolutely ideal for beamforming 
applications in a multiple-signal environment. This inverse is essentially a two-step process. 
The first step, which is a multiplication by the complex transpose of the steering matrix, D†, 
can be thought of as simple beamforming. The second step, which is a multiplication by the 
inner product metric tensor, (D†D)-1, decouples the signals. 
Time-shift operators allow broadband signals to be beamformed nearly as easily as 
narrowband signals. A matrix representation of this operation has been given in this 
chapter. Other approaches are also possible. 
The motivation for this chapter has been the multipath cancellation problem. This is a 
significant problem due to the interference of multipath signals that are often seen in sonar 
data as reflections off the surface and the bottom. Since traditional array processing is 
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inner product metric tensor, (D†D)-1, decouples the signals. 
Time-shift operators allow broadband signals to be beamformed nearly as easily as 
narrowband signals. A matrix representation of this operation has been given in this 
chapter. Other approaches are also possible. 
The motivation for this chapter has been the multipath cancellation problem. This is a 
significant problem due to the interference of multipath signals that are often seen in sonar 
data as reflections off the surface and the bottom. Since traditional array processing is 
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limited in its abilities to mitigate this problem, it has been necessary to look at what other 
approaches can be used for this problem. This chapter is a result of that long-term interest 
and presents a way forward.  

6. Acknowledgment  
I would like to thank Prof. Henry Unruh for his advice to “make matrices do what you want 
them to do.” I would also like to thank Dr. Quyen Huynh for his suggestion to use an 
approximate inverse. I am indebted to Prof. John Bird for pointing out an error in my work. 
In addition, I would like to acknowledge partial support for this work by the In-Laboratory 
Independent Research program funded by the Office of Naval Research.  

7. References 
Stoica, P. & Nehorai, A. (1989). MUSIC, Maximum Likelihood, and the Cramer-Rao Bound, 

IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol.37, No.5, (May 
1989) pp. 720-741, ISSN 0096-3518  

Schmidt, R. (1986). Multiple Emitter Location and Signal Estimation, IEEE Transactions on 
Antennas and Propagation, Vol.34, No.3, (March 1986) pp. 276-280, ISSN 0018-926X 

Wang, H. & Kaveh, M. (1985). Coherent Signal-Subspace Processing for the Detection and 
Estimation of Angles of Arrival of Multiple Wide-band Sources, IEEE Transactions 
on Acoustics, Speech, and Signal Processing, Vol.33, No.5, (August 1985) pp. 823-831, 
ISSN 0096-3518  

Di Cladio, E. & Parisi, R. (2001). WAVES: Weighted Average of Signal Subspaces for Robust 
Wideband Direction Finding, IEEE Transactions on Signal Processing, Vol.49, No.10, 
(October 2001) pp. 2179-2191, ISSN 1053-587X 

Friedlander, B. & Weiss, A. (1991). On the Number of Signals Whose Directions can be 
Estimated by an Array, IEEE Transactions on Signal Processing, Vol.39, No.7, (July 
1991) pp. 1686-1689, ISSN 1053-587X  

Piper, J. (2009). Exact and Approximate Time-Shift Operators, Proceedings of SPIE Algorithms 
for Synthetic Aperture Radar Imagery, ISSN: 0277-786X, Vol.7337, Orlando, Florida, 
USA, April 16-17, 2009 

Laafso, T.; Valimaki, V.; Karjalainen, M. & Laine, U. (1996). Splitting the Unit Delay, IEEE 
Signal Processing Magazine, Vol.13, No.1, (January 1996) pp. 30-60, ISSN 1053-5888 

0

Passive Sonar Signal Detection
and Classication Based on Independent

Component Analysis
N. N. de Moura, J. M. de Seixas and Ricardo Ramos

Federal University of Rio de Janeiro, COPPE/Poli, Signal Processing Laboratory,
Rio de Janeiro

Brazil

1. Introduction
Sonar systems use the sound propagation in underwater environments for detection,
communication and navigation. The main purpose of these systems is to analyse the
underwater acoustic waves received from different directions by a sensor system and identify
the type of target that has been detected in a given direction. Sonar systems may either be
passive or active. Both passive and active sonar systems are mainly employed in military
settings, although they are also used in commercial and scientific applications, e.g. detecting
shoal fishes, performing tomography on sea to exploit a given area, to measure the depth of a
region, and so on (Burdic, 1991).
In order to detect and classify signals against background noise, passive sonar systems
(Waite, 2003) listen to the noise radiated by targets (ships or submarines) using an array
of hydrophones. The background noise may be produced by the sea ambient noise or the
self-noise of the sonar platform. From the acquired signals, the direction of arrival (DOA)
is estimated, in order to inform the eventual presence of a target in a determined direction
(bearing). After DOA estimation, relevant features of the target may be extracted from a given
direction.
There are two types of analysis that can be implemented to obtain the signal relevant
features: DEMON (Detection Envelope Modulation On Noise) (Nielsen, 1991) and LOFAR
(Low Frequency Analysis and Recording) (Di Martino, 1993). The DEMON is a narrowband
analysis that furnishes the propeller characteristic: number of shafts, shaft rotation frequency
and blade rate of the target. On the other hand, LOFAR, which is a broadband analysis,
estimates the noise vibration of the target machinery. Both analysis are based on spectral
estimation and support detection and classification of targets.
Depending on the bearing resolution, signal interference may occur for neighbour directions,
which contaminates the acquired signals and makes even more difficult the target detection
and classification tasks. To minimize these interferences, algorithms using ICA (Independent
Component Analysis) (Hyvarinen, 2001), ( Jutten, 2004) may be applied to recover the original
sources of the resulting signal mixture and obtain optimal target detection and classification
for each direction.
The detection is implemented using the classical signal demodulation to obtain the propeller
characteristics. On the other hand, efficient classification is often obtained through neural
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networks (Soares Filho, 2001). For both DEMON and LOFAR analysis, a signal preprocessing
using ICA may be implemented to reduce the signal interference in neighbour directions.
On the other hand, underwater acoustic signals suffer fluctuations as a function of the sea
features (salinity, temperature, and so on). In addition, noise radiated from targets may
vary according to operational conditions. As a consequence, the stationarity of passive
sonar signals may be affected. Therefore, it is necessary to monitor changes in the statistics
of the passive sonar signals in real time. When changes are detected, the independent
component extraction phase may be reloaded for updating the feature extraction procedure.
An unsupervised clustering method using a modified ART (Adaptive Resonance Theory)
neural network can perform such monitoring task.
The chapter is organised as it follows. In section 2, both DEMON and LOFAR analysis are
detailed. Section 3 addresses signal interference and its removal in frequency-domain using
ICA. Section 4 briefly presents the independent component analysis and the algorithm that
was used to implement the blind source separation scheme. Section 5 gives some signal
detection and classification results from experimental data, which were acquired from a
passive sonar system that has been installed in a submarine. Finally, Section 6 presents
conclusions and the perspectives for passive sonar signal processing.

2. Spectral analysis
In this section, both DEMON and LOFAR analysis are described. Their aim is to detect and
classify the targets from a given DOA.

2.1 DEMON analysis
For signal detection, DEMON analysis is normally applied. DEMON is a narrowband analysis
that operates over the cavitation noise of the target propeller (Nielsen, 1991). As resulting
parameters provide a detailed knowledge of the target propellers (the propeller noise is
characteristic for each target), often efficient detection is achieved. Figure 1 shows the block
diagram of classical DEMON analysis.

Fig. 1. DEMON analysis block diagram.

Given a direction of interest (bearing), a bandpass filter is implemented to limit the cavitation
frequency range (Burdic, 1991). The cavitation frequency goes from hundreds until thousands
of Hz. Therefore, it is important to select the cavitation band and obtain the maximum
information for ship identification. Following, the signal is squared as in traditional
demodulation (Van Trees, 2001), (Yang, 2007). In most cases, the signal sampling rate is
relatively high, so that the band of interest is sampled with coarse resolution with respect
to observation needs. Thus, it is necessary to decimate the signal for better observation in the
range of interest (Rabner, 1983), as shown in Figure 2. The signal is sampled at a frequency

Fig. 2. Signal decimate.

of 31, 250 Hz. When the first decimate by a factor of 25 is applied the down sampling goes
to 1, 250 Hz. In the sequence, a further decimate by a factor of 25 is realized and the range
from DC to 50 Hz is searched for. This range contains the rotations of interest that go from 0
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to 1, 500 (rpm). Finally, a short-time Fast Fourier Transform algorithm (Diniz, 2010) is applied
for performing signal analysis in frequency-domain and the TPSW (Two Pass Split Window)
algorithm is used to reduce the background noise (Nielsen, 1991).

2.2 LOFAR analysis
The LOFAR (Waite, 2003) is a broadband analysis that provides the machinery noise to the
sonar operator and goes from DC to 15,625 Hz. The block diagram of the LOFAR analysis is
shown in Figure 3.

Fig. 3. LOFAR analysis block diagram.

After bearing, the signal is multiplied by a Hanning window to emphasize the frequency
range of interest (Diniz, 2010). Then, the signal is separated in blocks of 1,024 samples, which
are transformed into frequency-domain using a short time Fourier transform. A spectrum
module is implemented and the spectra are normalized using the TPSW algorithm. The
normalization may be implemented estimating the background noise that is present at each
spectrum and computing a normalized frequency bin using this estimation as normalization
factor. This estimation removes the spectrum bias and equalizes the spectrum amplitude
(Soares Filho, 2011).

3. Signal interference
A passive sonar system is typically used by submarines to realize the surveillance in a
determined operation area. The beamforming aims at estimating the direction of arrival
(DOA) from a given target. The Figure 4 shows the beamforming display. The main purpose
of the DOA is to estimate the target energy for a particular direction of interest. The horizontal
axis represents the bearing position (−180o to 180o) and the vertical axis represents time
(waterfall display). In this case, an acquisition window of one second was considered (Krim,
1996).

Fig. 4. Bearing time display of a passive sonar system.

When signal interference from neighbor bins occurs, as it may be the case for bearings 190◦

and 205◦ (see Figure 4), the original target features may be masked and both target detection
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sonar signals may be affected. Therefore, it is necessary to monitor changes in the statistics
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component extraction phase may be reloaded for updating the feature extraction procedure.
An unsupervised clustering method using a modified ART (Adaptive Resonance Theory)
neural network can perform such monitoring task.
The chapter is organised as it follows. In section 2, both DEMON and LOFAR analysis are
detailed. Section 3 addresses signal interference and its removal in frequency-domain using
ICA. Section 4 briefly presents the independent component analysis and the algorithm that
was used to implement the blind source separation scheme. Section 5 gives some signal
detection and classification results from experimental data, which were acquired from a
passive sonar system that has been installed in a submarine. Finally, Section 6 presents
conclusions and the perspectives for passive sonar signal processing.
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2.1 DEMON analysis
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that operates over the cavitation noise of the target propeller (Nielsen, 1991). As resulting
parameters provide a detailed knowledge of the target propellers (the propeller noise is
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of Hz. Therefore, it is important to select the cavitation band and obtain the maximum
information for ship identification. Following, the signal is squared as in traditional
demodulation (Van Trees, 2001), (Yang, 2007). In most cases, the signal sampling rate is
relatively high, so that the band of interest is sampled with coarse resolution with respect
to observation needs. Thus, it is necessary to decimate the signal for better observation in the
range of interest (Rabner, 1983), as shown in Figure 2. The signal is sampled at a frequency

Fig. 2. Signal decimate.

of 31, 250 Hz. When the first decimate by a factor of 25 is applied the down sampling goes
to 1, 250 Hz. In the sequence, a further decimate by a factor of 25 is realized and the range
from DC to 50 Hz is searched for. This range contains the rotations of interest that go from 0
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to 1, 500 (rpm). Finally, a short-time Fast Fourier Transform algorithm (Diniz, 2010) is applied
for performing signal analysis in frequency-domain and the TPSW (Two Pass Split Window)
algorithm is used to reduce the background noise (Nielsen, 1991).

2.2 LOFAR analysis
The LOFAR (Waite, 2003) is a broadband analysis that provides the machinery noise to the
sonar operator and goes from DC to 15,625 Hz. The block diagram of the LOFAR analysis is
shown in Figure 3.
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After bearing, the signal is multiplied by a Hanning window to emphasize the frequency
range of interest (Diniz, 2010). Then, the signal is separated in blocks of 1,024 samples, which
are transformed into frequency-domain using a short time Fourier transform. A spectrum
module is implemented and the spectra are normalized using the TPSW algorithm. The
normalization may be implemented estimating the background noise that is present at each
spectrum and computing a normalized frequency bin using this estimation as normalization
factor. This estimation removes the spectrum bias and equalizes the spectrum amplitude
(Soares Filho, 2011).

3. Signal interference
A passive sonar system is typically used by submarines to realize the surveillance in a
determined operation area. The beamforming aims at estimating the direction of arrival
(DOA) from a given target. The Figure 4 shows the beamforming display. The main purpose
of the DOA is to estimate the target energy for a particular direction of interest. The horizontal
axis represents the bearing position (−180o to 180o) and the vertical axis represents time
(waterfall display). In this case, an acquisition window of one second was considered (Krim,
1996).

Fig. 4. Bearing time display of a passive sonar system.

When signal interference from neighbor bins occurs, as it may be the case for bearings 190◦

and 205◦ (see Figure 4), the original target features may be masked and both target detection

95Passive Sonar Signal Detection and Classification Based on Independent Component Analysis



4 Will-be-set-by-IN-TECH

and classification efficiencies may be affected. Beyond that, the self-noise, bearing 076◦ , may
interfere on the detection of both targets by the sonar operator. Thus, a preprocessing scheme
may be developed aiming at reducing signal interferences, facilitating target identification
and classification. Here, signal preprocessing is addressed by independent component
analysis (Hyvarinen, 2001), which is performed in frequency-domain (see Figure 5). After
beamforming a spectral analysis is implemented at each direction of interest and an algorithm
to extract the independent components is implemented. Then both DEMON and LOFAR
analysis are performed over the independent sources (ICA space).

Fig. 5. Interference removal in frequency-domain.

4. Independent component analysis
The ICA provides a linear representation of nongaussian data, so that components are
statistically independent, or as much independent as possible (Hyvarinen, 2001), (Yan, 2000).
The basic ICA model assumes the existence of n independent signals s1(t), ..., sn(t) and the
observation of as many linear and instantaneous mixtures x1(t), ..., xn(t), as shown in equation
1:

x(t) = As(t) (1)

where s(t) = [s1(t), ..., sn(t)]T is a nx1 column vector corresponding to the source signals, and
x(t) similarly collects the n observed signals. A is the mixing matrix that contains the mixture
coefficients. The ICA problem consists in recovering the source vector s(t) using only the
observed data x(t), with the assumption of independence between the entries of the source
vector s(t). The ICA problem may also formulated as the estimation of a nxn demixing matrix
B, which allows original sources to be recovered:

y(t) = Bx(t) (2)

where y(t) becomes the estimated source vector.
Due to the well known central limit theorem (Barany, 2007), the ICA estimates can be obtained
from the determination of the directions for which the nongaussianity is maximum. Efficient
algorithms are available today (Hyvarinen, 2001), among which Newton-like algorithm has
been claimed to be very efficient (Akuzawa, 2001).

4.1 Multiplicative newton-like algorithm for ICA
This ICA algorithm was proposed by Akuzawa and Murata (Akuzawa, 2000). Using kurtosis
as the cost function, this method applies second order optimization (through a Newton-like
algorithm) in the search for independent components (instead of first-order gradient iterations
used in most ICA algorithms). Kurtosis is a fourth-order cumulant that measures the shape of
the distribution. For a zero-mean random variable x, kurtosis is defined as (Kim, 2004):

K4 = E{x4
} − 3[E{x2

}]2 (3)
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This ICA algorithm does not require pre-whitening and thus operates directly over the data.
Modifications on the method have also been proposed (Akuzawa, 2000) aiming at reducing
the computational cost by substituting the pure-Newton optimization by quasi-Newton
iterations (Akuzawa, 2001).

5. Experimental results
The raw data used here were acquired from a passive sonar system that is installed in a
submarine of the Brazilian Navy. Raw data were processed according to Figure 5, in which
the ICA block was performed by the Newton-like algorithm. Performance is evaluated for
both signal detection using DEMON analysis and signal classification from LOFAR analysis.

5.1 Signal detection
From Figure 4, one may observe that bearings 1900 and 2050 suffer from mutual interference.
Figure 6 displays the DEMON analysis for each of these directions. For bearing 190o the
largest peak is at 146.4 rpm, which corresponds to the target shaft rotation. The next
harmonic represents the target blade rate. But interferences are also observed at 120.1 rpm
and 304.7 rpm, which are relative to the 205o and the self-noise (076o), respectively. Similarly,
interference is seen at 304.7 rpm for 205o , which is the peak of the self-noise.
Figure 7 shows the resulting DEMON analysis from ICA preprocessing. In general it is
noted that the baseline noise is reduced for bearings 190o and 205o , which reflects in a better
signal-to-noise ratio. Additionally, interferences from others bearings and the self-noise are
reduced.
A manner to measure the independence between signals is the mutual information, which
may quantify how much independent are the components that were extracted by the
Newton-like algorithm.

5.1.1 Mutual information
Assuming we have two random variables v and w with marginal distribution p(v), p(w)
and joint distribution p(v, w), the mutual information (Hild, 2001), (Hoffmann, 2006) is a
measure of the amount of information that the variable v has about the variable w, as shown
in Equation 4. The mutual information I(v, w) must be non-negative. When I(v, w) = 0, v
and w are independent.

I(v, w) = ∑
vi∈v

∑
wj∈w

p(vi, wj)
ln p(vi , wj)

p(vi)p(wj)
(4)

As it can be seen from equation 4, it is necessary to compute the probability density
function (pdf) of the variables. To estimate the variable pdf, a non-parametric method
(Kernel estimation) may be applied (Peng, 2005). Suppose v1, . . . , vn independent identically
distributed (i.i.d.) variables, then, the kernel density approximation of its probability density
function may be given by:

p̂h(x) =
1

nh

n

∑
i=1

K

(
v − vi

h

)
(5)

where K is some kernel function and h is a smoothing parameter called the bandwidth. Here,
K is taken to be a standard zero-mean Gaussian function having unitary variance.
For comparison, the mutual information is computed before and after the interference removal
process (see Figure 5). For controlling artificially the amount of signal interference, a
weighting matrix is created:
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Fig. 6. Standard DEMON analysis for: (a) 190o , (b) 205o and (c) 076o directions.

W =

[
p 1
1 p

]
(6)

The p parameter varies from 0 to 1 with steps of 0.01. With such weighting process, it
is possible to control the mixture on signals and components. This allows to calibrate the
measure of the mutual information. Figure 8 shows the mutual information between bearings
190o and 205o as a function of weighting value. Although the components are multiplied
by the weighting matrix, the mutual information is always smaller for extracted components
than for the original mixing signals. Thus, despite increasing the interference through the
weighting matrix, ICA outputs remains less susceptible to interferences.

5.2 Signal classication
For classification tests, data from two bearings 31o and 146o were chosen (see Figure 9). As it
may be observed from Figure 9, during around the first three minutes, signals from these two
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Fig. 7. Preprocessed DEMON analysis for: (a) 190o , (b) 205o and (c) 076o .

bearings are well separated. This will make a good characterization of the contacts in their
bearings for the neural training. In the sequence, the detected target at 31o approaches the one
in 146o , causing mutual interferences.
The signal classification was implemented through spectra acquired from the LOFAR analysis
(see Figure 3). Figure 10 shows the lofargram for both bearings 31o and 146o , which shows
that target characteristics can be extracted through the this analysis.
For evaluating neural classification robustness based on independent component information
signals were combined through a mixture matrix A (Equation 7). The matrix A corresponds
to the beamforming obtained for these bearings.
After the mixture, a Gaussian noise at each bearing that correspond a signal-noise ratio of
about 10 dB . The neural network was tested with these signals to verify the performance of
the classify.

A =

[
0.2 0.8
0.8 0.2

]
(7)
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Fig. 6. Standard DEMON analysis for: (a) 190o , (b) 205o and (c) 076o directions.

W =

[
p 1
1 p

]
(6)

The p parameter varies from 0 to 1 with steps of 0.01. With such weighting process, it
is possible to control the mixture on signals and components. This allows to calibrate the
measure of the mutual information. Figure 8 shows the mutual information between bearings
190o and 205o as a function of weighting value. Although the components are multiplied
by the weighting matrix, the mutual information is always smaller for extracted components
than for the original mixing signals. Thus, despite increasing the interference through the
weighting matrix, ICA outputs remains less susceptible to interferences.

5.2 Signal classication
For classification tests, data from two bearings 31o and 146o were chosen (see Figure 9). As it
may be observed from Figure 9, during around the first three minutes, signals from these two
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bearings are well separated. This will make a good characterization of the contacts in their
bearings for the neural training. In the sequence, the detected target at 31o approaches the one
in 146o , causing mutual interferences.
The signal classification was implemented through spectra acquired from the LOFAR analysis
(see Figure 3). Figure 10 shows the lofargram for both bearings 31o and 146o , which shows
that target characteristics can be extracted through the this analysis.
For evaluating neural classification robustness based on independent component information
signals were combined through a mixture matrix A (Equation 7). The matrix A corresponds
to the beamforming obtained for these bearings.
After the mixture, a Gaussian noise at each bearing that correspond a signal-noise ratio of
about 10 dB . The neural network was tested with these signals to verify the performance of
the classify.

A =

[
0.2 0.8
0.8 0.2

]
(7)
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Fig. 9. Bearing time display of a passive sonar system (classification example).

• First, the classifier was tested with the separated signal;

• Next, noise was added to bearings;

• In sequence, bearing signals were mixed;

• Finally, the bearings were mixed, noise was added and the ICA algorithm, was applied, in
order to recover from mixture.

5.2.1 Neural classier
The neural classifier is based on MLP - Multi-Layer Perceptron topology (Haykin, 2008),
comprising three layers without feedback. This neural network was designed with one input
layer having 256 nodes, a single hidden layer with 4 neurons and an output neuron, which was
trained for assigning +1 for data from bearing 31o and −1 for 146o . The neurons from both
hidden and output layers have hyperbolic tangent as the activation function. The training
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Fig. 10. LOFAR analysis for bearings 31o (top) and 146o (bottom), respectively.

phase has been performed in batch and used half of the spectra data from both targets. The
training algorithm was backpropagation. After training, the classification performance is
evaluated from the testing set (the other half of data that did not participate in the training
step).

Test signal 94.3
Without mixer and with noise 89.0

With mixer 82.7
With ICA 88.0

Table 1. Classification performance (see text).

From original unmixed signals the classification efficiency was 94.3%. Adding noise reduces
efficiency, which reaches 82.7%. Mixing signals provides a further reduction in classification
efficiency and applying ICA, efficiency is recovered, setting back to 88%.

5.3 Stationarity analysis
The passive sonar signals are not stationary due to the ambient noise characteristics and
external conditions. Then, signal stationarity monitoring is required and when the statistics
changes an update of the independent component estimation may be requested for signal
processing. A manner to implement this is through clustering using neural networks.

5.3.1 Clustering
Clustering may be based on non-supervised training. The main idea is to receive spectra from
the DEMON analysis and observe when a change may occur on data statistics. The spectra
information is from the DEMON analysis. The input spectra comprises of 513 frequency bins.
Principal component analysis (PCA) (Chen, 2000), (Soares Filho, 2001) is firstly applied for
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Fig. 9. Bearing time display of a passive sonar system (classification example).

• First, the classifier was tested with the separated signal;

• Next, noise was added to bearings;

• In sequence, bearing signals were mixed;

• Finally, the bearings were mixed, noise was added and the ICA algorithm, was applied, in
order to recover from mixture.

5.2.1 Neural classier
The neural classifier is based on MLP - Multi-Layer Perceptron topology (Haykin, 2008),
comprising three layers without feedback. This neural network was designed with one input
layer having 256 nodes, a single hidden layer with 4 neurons and an output neuron, which was
trained for assigning +1 for data from bearing 31o and −1 for 146o . The neurons from both
hidden and output layers have hyperbolic tangent as the activation function. The training
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data dimensionality reduction. The Figure 11 displays the accumulated energy curve which
shows that the clustering process may be realized projecting data onto only two components.
For clustering, a modified ART (Adaptive Resonance Theory) ( Vassali, 2002). The training is
competitive and based on a Kohonen layer, attaching a neuron at each new input pattern. The
control parameters are the cluster vigilance radius and the learning rate. The vigilance radius
of the cluster is defined by the most probable value obtained from measuring the distance of
all input data patterns.
The conceptual model of the clustering consists in:

• Information obtained from the sonar operator points out that the passive sonar signal must
be evaluated at each 10 seconds to verify a statistical change. How the DEMON analysis
presents each line in 500ms then, it was acquire 20 FFT windows through that corresponds
to these 10 seconds;

• As data dimension is very high, a PCA was applied to reduce data dimension;

• Clusters are formed from these 20 windows;

• Changes on number of clusters are evaluated, in conjunction with possible shifts of the
center of these clusters; and

• The statistical changes are then identified.

A signal of the bearing 190o with 200 seconds was recorded to system development. As
mentioned early the spectra were obtained through the DEMON analysis. Specialists indicate
that the passive sonar signal must be evaluated at each 10 seconds to verify if a statistical
changes have been occurred. Then 20 spectra were chosen as a start point to network
parametrization.
Because of the high dimension of the input data and having the knowledge the clustering
presents better results in reduced dimensions (Duda, 2000), principal components analysis
(Soares Filho, 2001) was implemented. The Figure 11 shows the accumulated energy in
principal components for PCA. It may be noted that only with the first two components were
obtained from 95% of the variance of the process. Therefore, the clustering was implemented
using in the input net the data projections of the two principal components.
Clustering is to give one neuron to each cluster from the similarity between each input pattern,
which represents an FFT window. Figure 12 shows the evolution of the number of clusters.
This information states that there was a new cluster or more than one. May be observed that
there was the forgotten one or more clusters and this is very important to indicate that there
was a statistical change in the process. For example, one can notice that there was a great
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increase in observation 7 to 8, since the number of clusters jumps from 3 to 5. This is a strong
indication that the statistics of the signal changed significantly.

6. Conclusions
The passive sonar system aims at detecting and classifying targets from given directions.
Additional difficulties arise when interferences occur in neighbour directions Therefore, a
preprocessing scheme may be developed for reducing interferences and facilitating detection
and classification tasks for the sonar operator. This preprocessing step may be implemented
using the independent component analysis in frequency-domain and improvements in both
detection and classification efficiencies have been observed from experimental data.
As original sources have to be estimated blindly, the stationarity of the passive sonar signals
should be monitored. When statistics change, the preprocessing data chain may be reloaded
for updating the source estimation.
Other algorithms of blind source separation may be implemented to improve the signal
noise interference removal in passive sonar systems. Among them, the nonnegative
matrix factorization (NMF) (Chichocki, 2009) which uses similarity measures to extract the
original free of interference signals looks attractive. Additionally, algorithms of blind source
separation using nonstationarity and convolutive mixture may be used.
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data dimensionality reduction. The Figure 11 displays the accumulated energy curve which
shows that the clustering process may be realized projecting data onto only two components.
For clustering, a modified ART (Adaptive Resonance Theory) ( Vassali, 2002). The training is
competitive and based on a Kohonen layer, attaching a neuron at each new input pattern. The
control parameters are the cluster vigilance radius and the learning rate. The vigilance radius
of the cluster is defined by the most probable value obtained from measuring the distance of
all input data patterns.
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• Information obtained from the sonar operator points out that the passive sonar signal must
be evaluated at each 10 seconds to verify a statistical change. How the DEMON analysis
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mentioned early the spectra were obtained through the DEMON analysis. Specialists indicate
that the passive sonar signal must be evaluated at each 10 seconds to verify if a statistical
changes have been occurred. Then 20 spectra were chosen as a start point to network
parametrization.
Because of the high dimension of the input data and having the knowledge the clustering
presents better results in reduced dimensions (Duda, 2000), principal components analysis
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principal components for PCA. It may be noted that only with the first two components were
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increase in observation 7 to 8, since the number of clusters jumps from 3 to 5. This is a strong
indication that the statistics of the signal changed significantly.
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1. Introduction 
Passive underwater sonar array systems were subject to development in the past decades for 
accomplishing tasks in naval surveillance and geo-acoustical investigation of the ocean 
bottom. Modern sonar passive array systems are using adaptive matched field signal 
processing techniques. Passive sonar array signal processing based on ocean physical 
propagation model is known as “Matched Field Processing” (MFP). It is a specific 
application of the more general case of space-time adaptive signal processing in the area of 
sonar array signals processing (Klemm, 2002). It is a cross-correlation technique developed 
for matching the values of the computed with a propagation model sound pressure with the 
measured values at the output of a passive sonar vertical array. The maximum in the cross-
correlation or ambiguity surface gives an estimation of the position of the underwater 
source. This technique is first proposed by Clay in 1966 and later on theoretically and 
experimentally developed by Hinich and Bucker in 1972 and 1975 (Sullivan & Middleton, 
1993). In 1980 and 1981 Klemm introduced in the matched field signal processing algorithms 
the Capon’s minimum variance and Burg’s maximum entropy estimators for better 
resolution in shallow water environments (Sullivan & Middleton, 1993). The acoustic field in 
an ocean horizontally stratified waveguide may be presented as a sum of “normal waves” or 
“normal modes”1, each satisfying the boundary conditions and propagating down the layer 
with its own speed, wave constant and attenuation. The coherent modal sum is used in 
matched field signal processing for localization of an underwater source in range and depth. 
It can be used for localization of the source also with a horizontal array because the angular 
modal spread is proportional to the direction of arrival relative to the axis of the array 
(Klemm, 2002). The matched field processing for source position localization is presented in 
most of the investigations as a parameter estimation problem. It is assumed that the 
detection has been carried out and the frequency of the source is known. Some authors 
consider joint detection and localization problem [Booth et al., 2000]. In the beginning MFP 
of narrowband signals was used which was later modified with the more realistic for 
practical applications broadband case where MFP results for several frequencies are 
averaged. The aim of this chapter is to introduce the reader to the principles of matched 
field signal processing and present narrowband MFP experimental results. An available on 
the web normal mode propagation code and vertical sonar array signals data from a 
controlled source localization experiment are used. A comparison is made between MFP 
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Passive underwater sonar array systems were subject to development in the past decades for 
accomplishing tasks in naval surveillance and geo-acoustical investigation of the ocean 
bottom. Modern sonar passive array systems are using adaptive matched field signal 
processing techniques. Passive sonar array signal processing based on ocean physical 
propagation model is known as “Matched Field Processing” (MFP). It is a specific 
application of the more general case of space-time adaptive signal processing in the area of 
sonar array signals processing (Klemm, 2002). It is a cross-correlation technique developed 
for matching the values of the computed with a propagation model sound pressure with the 
measured values at the output of a passive sonar vertical array. The maximum in the cross-
correlation or ambiguity surface gives an estimation of the position of the underwater 
source. This technique is first proposed by Clay in 1966 and later on theoretically and 
experimentally developed by Hinich and Bucker in 1972 and 1975 (Sullivan & Middleton, 
1993). In 1980 and 1981 Klemm introduced in the matched field signal processing algorithms 
the Capon’s minimum variance and Burg’s maximum entropy estimators for better 
resolution in shallow water environments (Sullivan & Middleton, 1993). The acoustic field in 
an ocean horizontally stratified waveguide may be presented as a sum of “normal waves” or 
“normal modes”1, each satisfying the boundary conditions and propagating down the layer 
with its own speed, wave constant and attenuation. The coherent modal sum is used in 
matched field signal processing for localization of an underwater source in range and depth. 
It can be used for localization of the source also with a horizontal array because the angular 
modal spread is proportional to the direction of arrival relative to the axis of the array 
(Klemm, 2002). The matched field processing for source position localization is presented in 
most of the investigations as a parameter estimation problem. It is assumed that the 
detection has been carried out and the frequency of the source is known. Some authors 
consider joint detection and localization problem [Booth et al., 2000]. In the beginning MFP 
of narrowband signals was used which was later modified with the more realistic for 
practical applications broadband case where MFP results for several frequencies are 
averaged. The aim of this chapter is to introduce the reader to the principles of matched 
field signal processing and present narrowband MFP experimental results. An available on 
the web normal mode propagation code and vertical sonar array signals data from a 
controlled source localization experiment are used. A comparison is made between MFP 
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results of three known matched field processors applied to vertical array sonar experimental 
data.  

2. Model based matched field processing of vertical sonar array signals 
In conventional antenna array systems signal processing the usual methods of beamforming 
include phase control of the signals in receive or transmit mode in order to form and steer 
antenna beam pattern in given direction (see Van Trees, 2002). In MFP the steering vector is 
determined by the predicted with a propagation model sound pressure for a range of source 
coordinates in a waveguide with known depth sound speed profile (SSP) and bottom 
acoustical parameters. A flow diagram of MFP is given on fig. 1.  
 

 
Fig. 1. Matched Field Processing Flow Diagram for Source Position Estimation 

From the time domain array sampled signals the cross-spectral density matrix (CSDM) is 
estimated. As a steering vector for the matched filed processor the calculated sound 
pressure level with normal mode propagation model is used. An ambiguity surface is 
formed through matching or cross-correlating of the steering vector with the received sound 
pressure field. The maximum of the ambiguity surface gives the most likely position of the 
sound source in range and depth. There are several general signal processing algorithms 
applicable for MFP.  

2.1 Cross-spectral density matrix estimation 
Cross spectral density matrix2 (CSDM) is formed through estimation of the cross-spectral 
functions of the signal at the output of the sonar array. The cross-spectral function may be 
                                                 
2 The name covariance matrix is also used 
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defined with a Furier transform of the cross-correlation function or directly via finite Furier 
transform of the input time domain signal (Bendat, 2010). If sample records are available 
from a stationary random processes in the time domain3   kx t ,   ky t  for a finite time 
interval 0 t T  the cross-spectal function of the two processes is defined: 

      *1, , , ,xy k kS T k X T Y T
T

           (1) 

where  

    
0

,
T

j t
k kX T x t e dt              (2) 

    
0

,
T

j t
k kY T y t e dt                 (3) 

The functions  ,kX T ,  ,kY T represent finite Furier transforms of the time domain 
samples  kx t   ky t  , (*) is the complex conjugate operator, k is sample index. An estimate 
of the cross spectral density function is  
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                (4) 

In practise the record length is always finite and the expectation operation  E is taken 
from a finite number of ensemple elements. If the signals at the outputs of the M elements 
antenna array are stationary the data can be presented after the finite Furier transforms in 
the frequency domain with the following matrix: 
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results of three known matched field processors applied to vertical array sonar experimental 
data.  

2. Model based matched field processing of vertical sonar array signals 
In conventional antenna array systems signal processing the usual methods of beamforming 
include phase control of the signals in receive or transmit mode in order to form and steer 
antenna beam pattern in given direction (see Van Trees, 2002). In MFP the steering vector is 
determined by the predicted with a propagation model sound pressure for a range of source 
coordinates in a waveguide with known depth sound speed profile (SSP) and bottom 
acoustical parameters. A flow diagram of MFP is given on fig. 1.  
 

 
Fig. 1. Matched Field Processing Flow Diagram for Source Position Estimation 
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defined with a Furier transform of the cross-correlation function or directly via finite Furier 
transform of the input time domain signal (Bendat, 2010). If sample records are available 
from a stationary random processes in the time domain3   kx t ,   ky t  for a finite time 
interval 0 t T  the cross-spectal function of the two processes is defined: 

      *1, , , ,xy k kS T k X T Y T
T

           (1) 

where  
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j t
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samples  kx t   ky t  , (*) is the complex conjugate operator, k is sample index. An estimate 
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Where (*) is the complex conjugate operator. The cross-spectral matrix for an M element 
array is square MxM matrix for a given frequency n . The estimation is defined with the 
following expectation operator for the frequency bin n : 

       *ˆ
X n n nS X X                  (7) 

An estimate of the CSDM  X nS 


is formed through averaging ensemble cross-spectrum 
data. On figure 2 a data cube of CSDM estimates is presented for three frequency bins. 
 
 

 
Fig. 2. Data cube of a real CSDM estimates for different frequency bins. 

2.2 Steering vector calculation 
The frequency range and the parameters of the ocean waveguide determine the sound 
propagation model for the matched field processing steering vector. In the application a low 
frequency source positioned in a shallow water ocean waveguide is considered which 
specifies the normal mode propagation model. For sound propagation numerical 
calculations in a range-independant environment the normal mode representation of the 
acoustical pressure actuated by a harmonic source in a horizontally stratified medium is 
given by the following infinite radical sum (Ferla et al., 1993): 
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Where r is the range, z the depth, ρ the density, zs the source depth, Ψm the mode amplitude, 
1
0H the zero-order Hankel function of the first kind, km is the eigenvalue. In the solution a 

large argument asimptotic approximation of the Hankel function is used. When the number 
of modes is limited to M the final expression for the sound pressure is: 
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where dependence of the pressure – p from distance – r and depth z is obvious.  
Each of the modes has unique wave number, attenuation, phase speed and group speed. 
The sum of the modes for different source positions and distances from the source forms 
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unique vertical distribution of the pressure which is subject to matching with the 
experimentally measured pressure (see fig.7). The calculated sound pressure is used as a 
steering vector in the matched field processor.  
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Fig. 3. Graphics of nine normal modes representing the sound field in a shallow water 
waveguide considered in the examples.  
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Where (*) is the complex conjugate operator. The cross-spectral matrix for an M element 
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following expectation operator for the frequency bin n : 
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unique vertical distribution of the pressure which is subject to matching with the 
experimentally measured pressure (see fig.7). The calculated sound pressure is used as a 
steering vector in the matched field processor.  
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calculated in a 2D region. For every distance from the source 1 2 3 max, , , ,R R R R a depth 
sound pressure vector 1 2 3, , , , mP P P P is formed for the known depth hydrophone receiver 
positions 1 2 3 max, , , ,D D D D . This vector is later used as a steering vector for correlation with 
the estimated CSM and forming the ambiguity surface. A maximum in the ambiguity 
surface gives an estimation of the source position in range and depth. On figure 5 a data 
cube with real pressure fields respectively for sources: S1, S10 and S68 considered in  
chapter 3.  
 

 
Fig. 5. Data cube of the calculated sound pressure fields  

2.3 Matched field signal processors 
Two matched field processors are subject to investigation in the application. The first one is 
the classical or Bartlett matched field processor and the second one is the so called minimum 
variance distortion less processor (MVDR). 

2.3.1 Bartlett (conventional) matched field signal processor 
In conventional beamforming the sonar array pattern is steered through phase control of the 
signals at the output of the antenna array (see fig. 1) through steering vector. In matched 
field processing the steering vector represents the computed pressure in the points of the 
array elements. The processor output or as in our case a matched field filter output is: 

      , ,HY v r z X            (10) 

Where  , ,Hv r z is the pressure vector,  X   is the signal at the input of the procerssor 
and  Y   is the output signal. We want to estimate the power of the signal at the output of 
the filter: 

            *, , , , , , , , , ,H H
XP r z E v r z XX v r z v r z S v r z            (11) 

where  XS   corresponds to CSDM given with (7). This conventional processor is known as 
a Bartlett processor. Bartlett matched field processor forms ambiguity surface as a direct dot 
product of model replica vectors  , ,r z  and the sample CSDM -  XS  . The maximum of 
the power estimate in the ambiguity surface gives the probable position of the source. 
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BART XP v r z S v r z       (12) 
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This processor is a benchmark for the other more sophisticated processors because it has 
much power and low probability of no detection.  

2.3.2 MVDR matched field signal processor 
The MVDR processor is derived with quadratic constraints (Van Trees, 2002). An optimal 
filter is given with the block diagram on fig. 6.  X  and  Y  represent the signals at the 
input and at the output of the filter in the frequency domain.  HW   is the filter frequency 
response. 
 

 
Fig. 6. General optimal filter (processor) structure. 

The signal vector at the input can be written as: 

      , ,SX F v r z   ,    (13) 

where  F   is the frequency-domain snapshot of the source signal and  , ,v r z  is the 
ocean waveguide manifold vector. It is required that in the absence of noise    Y F  . 
The constraint of no distortion4 implies    , , 1HW v r z    in order to receive the input 
signal at the output of the processor without distortion (with unity gain). Minimization of 
the mean square of the output noise leads to MVDR beamformer first derived by Capon. 
Optimal weight of the processor is given (Van Trees, 2002): 
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where  1
NS   is the inverse of noise CSDM for a given angular frequency,  ,H

Sv k  is the 
hermitian transpose operator. When instead of  NS   the signal CSDM  XS  is used in 
(14) the estimator is known as minimum power distortionsless response (MPDR) (Van 
Trees, 2002). Usually it is more difficult to estimate  nS   to form the weight, because it is 
colored with multipath ocean waveguide interference. It is not possible however also to 
estimate a pure signal matrix  XS   beacause it is mixed with noise. The optimum weight 
of MPDR5 has the form: 
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4 Or no gain 
5 In the majority of the literature it is also referred as MVDR (Van Trees, 2002) 
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Later in the text we are using the name MVDR for weights (14), (15) and specify if the CSDM 
of the signal or noise is used. This estimator (beamformer) in the literature is known also as 
Minimum Variance Estimator (MVE) and Maximum Likehood Estimator (Klemm, 2002). 
The power of MFP-MVDR is given with (Van Trees, 2002): 

      H
MVDR XP W S W                (16) 

where  XS   is the signal CSDM and  W   is the optimal weight defined with (14) or (15). 
When we have acceptable for array processing signal to noise ratio (SNR) it is relatively easy 
to estimate  XS   and use (15). Subject to optimization in the described processors is the 
match between the function of the computed sound pressure over the array elements and 
the measured output signal power for a given frequency, given with CSDM. On fig. 7 the 
computed normalized values of the pressure and the measured signal power are 
superimposed at distance and depth of good match . 
 
 

 
 

Fig. 7. Predicted and measured signal power (diagonal values of CSDM) for a frequency bin 
of interrest over the array at distance and depth of good match (red – measured signal 
power, blue – computed squared pressure). 

One way to build robust to some degree of mismatch weight vector and improve the 
numerical stability in matrix inversion is through diagonal loading of the CSDM. This is the 
so called method of “diagonal loading” 6 (Van Trees, 2002). It is also referred in the literature 
as a “white-noise-constraint” (WNC). Adding noise to diagonal elements expands the noise 

                                                 
6 Van Trees shows that imposition of quadratic constrain leads to diagonal loading  
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space and eliminates small eigenvalues in the inverse CSDM. Usually the CSDM is not well 
conditioned matrix7 and the diagonal loading is a way toward more stable matrix inversion 
procedure. The MVDR weight with diagonal loading of the CSDM is (Van Trees, 2002): 
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Another way to overcome problems with CSDM inversion is to apply singular value 
decomposition (Van Trees, 2002). With singular value decomposition the square CSDM is 
presented in the following form: 
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where 1 2 ... M      and U and V* are unitary with size MxM. Choosing the rank “r” of 
the decomposed CSDM directly imposes constraints on the spatial signal subspace and is 
powerful instrument for multipath interference rejection (r is smaller than the number of 
sensors M which in our case is 48). The inverse matrix is formed with the following matrix 
multiplication: 
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The optimal weight for MVDR is formed: 
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where the inverse matrix8 is formed with rank reduction and diagonal loading is applied 
(adding noise to the inverse matrix through diagonal loading) , controlled by the parameter 
ε. A similar form of this processor weight was used in (Kolev & Georgiev, 2007).  

                                                 
7 The analysis of the experimental averaged CSDM showed that the ratio between largest singular value 
to the smallest is more than 1 000 000 

8 Also known in the literature as pseudo-inverse 
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The rank in the application is determined if the corresponding singular value is under 1/100 
from the maximum value. On fig. 8 the singular values of a CSDM are plotted and the rank 
is determined to be r=5. 
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Fig. 8. Typical eigenvalues of CSDM determining the matrix rang – r=5. 

3. Vertical sonar array MFP experimental results 
Passive array sonar data from SACLANTC 1993 North Elba experiment available on 
Internet (Saclant sonar data, 1996) is used for processing. Additional information about the 
experiments and signal processing examples is given in (Gingras & Gerstoft,1995, Gerstoft & 
Gingrass, 1996). The array data was collected in shallow-water off the Italian west coast by 
the NATO SACLANT Center in La Spezia, Italy. SACLANT Center has made this data 
available to the public for the purposes of fostering signal processing research. The original 
SACLANT time series has been converted to a series of MATLAB files each of which 
contains a matrix data file from the 48 sensors. Each file represents about 1 minute of data 
The vertical array consists of 48 hydrophones with spacing 2 m between elements at total 
aperture length 94 m (18.7 m to 112.7 m in depth). On 27-th of October a source was towed 
in the surveillance area at a speed approximately 3.5 kn. The source emitted PRN signal 
with a center frequency of 170 Hz. For this source 10 data files are available. The data for the 
moving source was subject to MFP. The available on the site sound speed profiles were used 
for replica computations with KRAKEN normal mode program (Porter, 2007). Technical 
manual of the software was used from (Porter, 1992). On fig. 9 a datagram of sampled time 
domain array signals and their spectrum is given.  
The CSDM was formed from averaged FFT data. The FFT length was 4096 resulting in 
0.2441 Hz FFT binwidth for 1000 Hz sampling data rate. A Hamming window with 50 % 
overlapping was used for weighting. It was observed from fig. 11 the relatively low level of 
the power of CSDM in the frequency window of interest with center frequency 170 Hz 
compared to the low frequency noise (50 – 100 Hz). For estimation of signal CSDM the 
frequency bin for 169.9 Hz is used.  
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Fig. 9. A datagram of time domain array sampled multichannel signals and their power 
spectrum. 
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Fig. 10. Measured Sound Speed Profile of SCALANTC 1993 North Elba experiment. 
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Fig. 11. CSDM for 1 minute moving source array signal.  

On fig. 12 the ambiguity surfaces of three matched field processors: Bartlet, MVDR with 
diagonal loading and MVDR with reduced rank SVD and pseudoiverse matrix are plotted. 
The position of the source is determined with the maximum in the ambiguity surface. All 
data was equally treated with rank of the reduced matrix r = 5, and diagonal loading 
constant ε2 = σ2 = 10. Comparison of the three processors side lobes for an equal depth cut of 
the ambiguity surfaces is given on fig. 13. The level of the side lobes is lower when 
introducing spatial constraints with rank reduction of the inverse matrix. In the source 
localization results on fig. 12 the Bartlett processor is used as a benchmark. Even it has more 
side lobes in the ambiguity surface there is global maximum corresponding to the source 
position. During the processing of the available array data it was established that the 
accuracy of passive localization with the narrow band MFP is very sensitive to environment 
parameters change. Little inaccuracy of SSP or bottom geo-acoustical parameters leads to 
substantial errors in localization. The images on fig. 12 are for the moving source data 
recorded on the 27-th of October. The available environment file on the web site is used in 
the computations (Saclant Sonar Data, 1996). If in the environment file the SSP is changed 
with the data from another file - “sspprofiles.txt” for the 27-th of October more than one and 
halve thousand meters offset in the source range occurs.  
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Fig. 13. Comparison of the normalized power of the three processors MFP-Bartlet - blue, 
MFP-MVDRDL - green and MFPPINV - red. 

4. Conclusion 
The basics of matched field signal processing were presented. Three matched field 
processors were applied on real experimental vertical array sonar data for source 
localization purposes. The MFP-MVDR processor has a lower side lobe levels especially 
applied with rank reduction and pseudo-inverse matrix diagonal loading (see fig. 13). For 
the investigated ranges and shallow water waveguides however the sound structure in 
range is reverberant and repetitive resulting in multiple ambiguity surface local maximums 
or false alarms. The current state of the technology leads to development of underwater 
sensor networks with application of bistatic and multistatic sonar concepts. Results from 
measurements with a bistatic sonar experimental setup are presented in (Kolev et al. 2009), 
(Kolev et al. 2010). The interest for developing adaptive beamforming methods is as with 
uniform but also with non-uniform and random sparse (ad-hoc) arrays with distance 
between nodes bigger than a half-wavelength (Hodgkiss, 1981, Gerstoft, P & Hodgkiss, 
2011). MFP methods are subject to development for application in these underwater 
networks. 
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1. Introduction

This is a review chapter that surveys past work in, and the recent status of image processing
and other related techniques involved in the detection and classification of man made objects
in side scan sonar images. Side scan sonar is a readily, available and cheap device which
has found increasing applications, specially for military purposes such as Computer Aided
Detection (CAD) and Classification (CAC) of mines. Therefore the main focus of the chapter
is on this topic. The list of references is sufficiently complete to include most past and recent
publications in the open refereed literature.
Although side scan sonar displays many features similar to an optical sensor from a purely
image processing point of view, the basics of the physics and formation of the images are
crucial for understanding the difficulties found when detecting and classifying mine like
objects (MLO’s) in side-scan sonar images. Therefore in the first part of the chapter a brief
review of the principles of the side-scan sonar, image formation process and characteristics of
the images are explained. Different types of sonar images as well as diagrams showing the
the process of generating an image from a single diagram ping will be provided.
The classification and detection of MLO’s is traditionally carried out by a skilled human
operator. This analysis is difficult due to the large variability in the appearance of the side-scan
images as well as the high levels of noise usually present in the images. With the recent
advances of Autonomous Underwater Vehicle (AUV) automatic techniques, CAD/CAC of
mines, are now required to replace a human operator.
In the literature the computer aided detection/classification (CAD/CAC) problem is not well
defined as detection involves an element of classification (mine/not mine), therefore these
terms must be defined. For the purpose of this work, we will consider detection as the process
of identifying a mine and classification will be a further step where the aim is to determine
the shape of such a mine. Therefore the second part of the chapter is divided into two main
sections: 1) detection 2) classification of MLO’s.
In the last part of this chapter a review will be done on the current state of fusion of multiple
algorithms aiming to overcome the limitations and weaknesses of every single CAC/CAD
algorithm reviewed in the previous section.
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2 Will-be-set-by-IN-TECH

2. Principles of the side-scan sonar: image formation process and characteristics

The section starts by introducing the basic principles of sonar. The following sections
present the fundamental side-scan sonar characteristics along with the image construction,
characteristics of the images, frequency and resolution of the images.

2.1 Basic principles
Devices which use underwater sound for communication or observation are generally
referred to as SONAR systems. This term was coined after the Second World War to provide
analogy to the equivalent electromagnetic-echo location system of radar and is an acronym
for “SOund Navigation And Ranging”.
In general the basic principles of a sonar involves the transmission of a pulse energy into the
water medium and the subsequent reception of any returned energy reflected from objects or
seabed.
Basically the sonar generates a short electrical pulse, in the form of an acoustic wave centred
at particular frequency, length and energy, by the transmitter. This electrical signal is
transformed by the transducer, which is normally a piezo-electric ceramic, into mechanical
vibration energy. This vibration is transferred into the water as an oscillating pressure, the
pulse. The pulse travels trough the water until it is reflected back or scattered by the seafloor
or any object. The energy reflected back, which is mechanical energy, is converted by the
transducer into electrical energy. This energy is then detected and amplified by the receiver of
the sonar.
There is a master unit, with a control function, in charge of synchronizing the operations and
control timing for the transmission and reception of the electrical signals. The control unit
normally has a unit to display the received data.
It should be noted that what the sonar is measuring is the time that it takes for the transmitter
sonar pulse to travel from the transducer to the target and return. It is not measuring the
depth or distance.

2.2 Side-scan sonar characteristics
The fundamental purpose of a side-scan survey is to provide images which map a visible
representation (intensity of marking) of the strength of acoustic back scattering, from the sea
floor onto a two-dimensional image medium, by the process illustrated in 1. These sensors are
usually mounted onto a separate body which is towed through the water behind the survey
vessel. Alternatively the transducers may be mounted onto Remote Operated Vehicles (ROV)
or Autonomous Underwater Vehicles (AUV) allowing more accurate positioning and motion
of the vehicle. The characteristic of the side-scan sonar comes from implementing the basic
principles mentioned. The main feature of this sensor, as can be seen in figure 2 is that is a
side-ways looking device. Each pulse of acoustic energy emitted causing echoes from an area
of the sea bottom perpendicular to the direction of travel of the tow fish. The transducers are
normally shaped and controlled to produce a beam for each emitted pulse which is narrow in
the horizontal direction and wide in the vertical direction as illustrated in figure 2. Due to the
narrow horizontal beam, returned energy is received from one strip of the seafloor. The wide
vertical across trace beam permits the ensonification of a large area of the seafloor. Another
of the characteristics of the side-scan sonar is that sometimes two channels are used to gather
information at the same time from the seabed on either side of the tow fish.
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Fig. 1. Three-phase diagram showing the process of generating images from a single
side-scan sonar ping. In the top diagram (a) the outgoing pulse from an individual ping is
reflected back from the seafloor directly under the fish, and the internal side-scan clock (T=0)
is started. (b) The hatched region represents the outgoing pulse, and the low amplitude
returns are the time when the pulse is the two-way travel time in the water-column. After the
return of the first bottom bounce, subsequent returns appear as peaks and valleys in the
transducer voltage. (c) Peaks and valleys are then integrated and translated into pixels
values.

2.3 Beamwidth
It has been pointed out that the side-scan sonar has a beam that is narrow in the horizontal
plane and broad in the vertical plane. For a typical system this must be 1 degree horizontal
and 40 degree vertical beam.
The beamwitdh can give some idea of the resolution which a sonar will achieve. It is also
very important to consider the overall beam pattern of a particular sonar. This will be a truer
representation of the the expected behaviour.
The shape of the beam is the result of the transducer design. A side-scan transducer it
normally consists of a line array of crystal elements. Each point on the faces of the crystals
acts as a sound radiator. It can be though of each infinitesimal point sending out a sound
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transformed by the transducer, which is normally a piezo-electric ceramic, into mechanical
vibration energy. This vibration is transferred into the water as an oscillating pressure, the
pulse. The pulse travels trough the water until it is reflected back or scattered by the seafloor
or any object. The energy reflected back, which is mechanical energy, is converted by the
transducer into electrical energy. This energy is then detected and amplified by the receiver of
the sonar.
There is a master unit, with a control function, in charge of synchronizing the operations and
control timing for the transmission and reception of the electrical signals. The control unit
normally has a unit to display the received data.
It should be noted that what the sonar is measuring is the time that it takes for the transmitter
sonar pulse to travel from the transducer to the target and return. It is not measuring the
depth or distance.

2.2 Side-scan sonar characteristics
The fundamental purpose of a side-scan survey is to provide images which map a visible
representation (intensity of marking) of the strength of acoustic back scattering, from the sea
floor onto a two-dimensional image medium, by the process illustrated in 1. These sensors are
usually mounted onto a separate body which is towed through the water behind the survey
vessel. Alternatively the transducers may be mounted onto Remote Operated Vehicles (ROV)
or Autonomous Underwater Vehicles (AUV) allowing more accurate positioning and motion
of the vehicle. The characteristic of the side-scan sonar comes from implementing the basic
principles mentioned. The main feature of this sensor, as can be seen in figure 2 is that is a
side-ways looking device. Each pulse of acoustic energy emitted causing echoes from an area
of the sea bottom perpendicular to the direction of travel of the tow fish. The transducers are
normally shaped and controlled to produce a beam for each emitted pulse which is narrow in
the horizontal direction and wide in the vertical direction as illustrated in figure 2. Due to the
narrow horizontal beam, returned energy is received from one strip of the seafloor. The wide
vertical across trace beam permits the ensonification of a large area of the seafloor. Another
of the characteristics of the side-scan sonar is that sometimes two channels are used to gather
information at the same time from the seabed on either side of the tow fish.
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Fig. 1. Three-phase diagram showing the process of generating images from a single
side-scan sonar ping. In the top diagram (a) the outgoing pulse from an individual ping is
reflected back from the seafloor directly under the fish, and the internal side-scan clock (T=0)
is started. (b) The hatched region represents the outgoing pulse, and the low amplitude
returns are the time when the pulse is the two-way travel time in the water-column. After the
return of the first bottom bounce, subsequent returns appear as peaks and valleys in the
transducer voltage. (c) Peaks and valleys are then integrated and translated into pixels
values.

2.3 Beamwidth
It has been pointed out that the side-scan sonar has a beam that is narrow in the horizontal
plane and broad in the vertical plane. For a typical system this must be 1 degree horizontal
and 40 degree vertical beam.
The beamwitdh can give some idea of the resolution which a sonar will achieve. It is also
very important to consider the overall beam pattern of a particular sonar. This will be a truer
representation of the the expected behaviour.
The shape of the beam is the result of the transducer design. A side-scan transducer it
normally consists of a line array of crystal elements. Each point on the faces of the crystals
acts as a sound radiator. It can be though of each infinitesimal point sending out a sound
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Fig. 2. Schematic diagram of the acoustic ’footprint’ of a side-scan sonar system. The gray
area represents the swath

pulse that spreads out in all the directions. Looking at just two of these points, as depicted
in 3, it can be seen that some distance from the transducer the pressure disturbances from
each of the points will meet and will either add or substract from each other depending on
the phase. This process is going on for all the points of the transducer face. The net effect of
all additions and substractions is to produce the beam pattern. Along the axis of the beam
the pressure contributions are reinforced, while on the sides they tend to cancel. For a line of
array the beamwidth can be expressed as 50.6λ/L, where λ is the wavelength of the acoustic
pulse(λ = [sound velocity/ f requency])) and L is the array length.

L

λ

Transducer

Fig. 3. Beam formation process

2.4 Image construction
The interpretation of the side-scan sonar image, requires an understanding of the image
formation process. As the transducers are towed along, they gather sequential lines of data
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returned from each pulse, and these lines (’A’ scan) are displayed sequentially down a vertical
trace to generate an image. This systematic sideways scanning is the basic principle of
side-scan sonar. The scanning occurs along track and across track. The data gathered along
track is a function of the beam width, the pulse repetition rate and the tow speed. Across
track the intensity is received with successively increasing two way travel times or time of
flight. The intensity received is dependent on attenuation of sound in water, the direction and
angle from which the target was ensonified and the reflectance properties of the seafloor. With
rock and gravel acting as stronger reflectors than soft sediments such as mud and sand.The
intensity of the return is displayed against the two way travel time, or time of flight.
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Fig. 4. Geometry of side-scan sonar system and corresponding ’A’ scan

Figure 4(a) illustrates the geometry of the side-scan sonar system and figure 4(b) displays the
returned intensity against the two way travel of time in the form of a ’A’ scan. An ’A’ scan is
simply one line of a sonar images corresponding to the returned energy from a narrow strip
of the seabed due to the reflections from one emitted pulse.
At the beginning of the trace there is a blank area, as the pulse propagates through the water
column without returning any echo. The first bottom return is the first echo to return from
the sea bottom closest to the transducer. For a relatively flat seabed the first return is from the
seabed directly below the transducer and it occurs at approximately time 2h/c seconds where
h is the height of the transducer in metres and c is the velocity of sound. The first return
is then followed by successive echos at successively increasing slant range, where the slant
range is the actual distance from the sonar to the point of the seabed from which the sound
was reflected. These points are followed by successive echoes at increasing slant ranges as the
sound wave propagates, as illustrated in figure 4 (b).
Once the ”spike” of the high-amplitude bottom bounce is received, the side-scan processor
begins to divide the transducer voltage time series, which is produced by the subsequent
bottom return signals, into equally spaced ”time” slices. Because of the geometric effect
illustrated in figure 1 and 2, these time slices represent extremely narrow regions of the seabed
for the early returns and much wider regions for the later returns. Within each time slice, the
varying voltage of the transducer represents the acoustic energy from a fairly large area of
the seafloor, and are much larger than that represented by the pixel size of the final image.
The Voltage within each individual time slice is averaged (see figure 1 (b)) and then converted
to a single digital number that is assigned to a specific pixel location as illustrated in figure
1(c). In practice, the conversion from uncorrected transducer voltage to spatially correct pixel
value is more complicated than this description. The signal received from the seabed return
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pulse that spreads out in all the directions. Looking at just two of these points, as depicted
in 3, it can be seen that some distance from the transducer the pressure disturbances from
each of the points will meet and will either add or substract from each other depending on
the phase. This process is going on for all the points of the transducer face. The net effect of
all additions and substractions is to produce the beam pattern. Along the axis of the beam
the pressure contributions are reinforced, while on the sides they tend to cancel. For a line of
array the beamwidth can be expressed as 50.6λ/L, where λ is the wavelength of the acoustic
pulse(λ = [sound velocity/ f requency])) and L is the array length.
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2.4 Image construction
The interpretation of the side-scan sonar image, requires an understanding of the image
formation process. As the transducers are towed along, they gather sequential lines of data
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trace to generate an image. This systematic sideways scanning is the basic principle of
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track is a function of the beam width, the pulse repetition rate and the tow speed. Across
track the intensity is received with successively increasing two way travel times or time of
flight. The intensity received is dependent on attenuation of sound in water, the direction and
angle from which the target was ensonified and the reflectance properties of the seafloor. With
rock and gravel acting as stronger reflectors than soft sediments such as mud and sand.The
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Figure 4(a) illustrates the geometry of the side-scan sonar system and figure 4(b) displays the
returned intensity against the two way travel of time in the form of a ’A’ scan. An ’A’ scan is
simply one line of a sonar images corresponding to the returned energy from a narrow strip
of the seabed due to the reflections from one emitted pulse.
At the beginning of the trace there is a blank area, as the pulse propagates through the water
column without returning any echo. The first bottom return is the first echo to return from
the sea bottom closest to the transducer. For a relatively flat seabed the first return is from the
seabed directly below the transducer and it occurs at approximately time 2h/c seconds where
h is the height of the transducer in metres and c is the velocity of sound. The first return
is then followed by successive echos at successively increasing slant range, where the slant
range is the actual distance from the sonar to the point of the seabed from which the sound
was reflected. These points are followed by successive echoes at increasing slant ranges as the
sound wave propagates, as illustrated in figure 4 (b).
Once the ”spike” of the high-amplitude bottom bounce is received, the side-scan processor
begins to divide the transducer voltage time series, which is produced by the subsequent
bottom return signals, into equally spaced ”time” slices. Because of the geometric effect
illustrated in figure 1 and 2, these time slices represent extremely narrow regions of the seabed
for the early returns and much wider regions for the later returns. Within each time slice, the
varying voltage of the transducer represents the acoustic energy from a fairly large area of
the seafloor, and are much larger than that represented by the pixel size of the final image.
The Voltage within each individual time slice is averaged (see figure 1 (b)) and then converted
to a single digital number that is assigned to a specific pixel location as illustrated in figure
1(c). In practice, the conversion from uncorrected transducer voltage to spatially correct pixel
value is more complicated than this description. The signal received from the seabed return
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is normally passed through an amplifier with a time varying gain (TVG). This compensates
for the effects of absorption of sound by water and the geometric effects of spreading and
scattering.
The process described, varies significantly from system to system, and requires a variety
of corrections to become an intelligible image. For most side-scan systems, there are
approximately 1024 pixels per side, or 2048 total pixels in the full swath. Depending on the
system, each pixel value is usually an 8-bit integer (ranging from 0 to 255, or 256 possible
shades of gray), which represent the value of the received acoustic echo after detection and
the electronic low-pass filtering associated with time slice averaging.

3. Characteristics of side-scan sonar images

As mentioned above the side-scan sonar images are typically displayed as grayscale images,
with dark and bright areas representing features of the seabed and water column.
The orientation of the target relative to the direction of the incoming pulse will influence the
intensity of the reflected signal and consequently the intensity in the image. The closer the
inclination of the surface normal of the target to the direction of the incoming pulse, the greater
the energy. Objects protruding above the seabed will create high intensity returns, highlight
(see figure 5) but will prevent the sound from reaching the seafloor for some distance behind
them. This will produce an acoustic shadow in the images (see figure 5 ) and will appear on
the trace as blank area. Shadows can also be generated by depressions on the seafloor or by
the self shadowing of the seafloor.

HIGHLIGHT 

SHADOW 

Fig. 5. Example of side-scan sonar images containing man-made objects: a mine like object is
identified by a highlight followed by a shadow region

Shadows are one of the primary features which provide three dimensional information and
their position and shape contain valuable information for the accurate interpretation of the
images.
The side-scan sonar images, as it was mentioned, are essentially a ’picture of the seafloor’ but
they are usually distorted. In order to become recognizable, image pixels need to be corrected
for a variety of effects. These include slant range correction (compensating for the equal time
slice interval, which result in unequal distance slice interval), absorption of the sound in sea
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SHADOW 

Fig. 6. Example of side-scan sonar images containing a man-made object: a pipe

water, the geometric effect of spreading (compensated by TVG), noise (potentially associated
with telemetry errors, multipath effect which occurs when signals arriving at the same time
as normal backscatter signals from beyond the target are superimposed resulting in the
elimination of the shadow in the record, and side-lobes returns for both horizontal and vertical
plane. Horizontal side lobes can direct significant energy in other directions which could then
reflect of the seabed/target not perpendicular to the direction of travel and produce reflected
energy. On the other hand in the vertical plane we want the main beam to give uniform
energy only over the are we are interested in. If we have side lobes they may be for instance
be pointing towards seasurface. This can produce backscattered data from sea surface which
can interfere with backscattered signal from seabed. Because sea surface is a good reflector this
produce noise. This is probably a much larger cause of noise than horizontal effects which may
cause more blurring of the image than noise. External interference is caused by other acoustic
devices operated at the same time which are added to the process Cervenka & de Moustier
(1993), and variable ship speed. The final image after the corrections has a 1:1 aspect ratio and
one that has the sonar targets roughly positioned at the same location on the chart as they are
in the seafloor. Further details of these corrections can be obtained from Johnson & Helferty
(1990)Somers & Stubbs (1984)Mazel (1985)Bell (1995)Cervenka & de Moustier (1993)

4. Detection of mines

The general approach for detecting targets is a two-tier process: 1) Detection of possible
MLO’s (regions of interest (ROI)). 2) Classification into mine or not-mine like objects with
a low detection rate of false alarms. Both stages are crucial in order to get a good detection
rate. For the first stage, detection, several approaches based on segmentation techniques and
matched filters are reviewed.
The various techniques used in the literature for the second stage, classification, can be
divided into three categories: unsupervised, semi-supervised and supervised algorithms.
A comprehensive review of these techniques will be done. These techniques require the
extraction of mine features, therefore a review of the most discriminant features used in the
literature will also be explained.
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produce noise. This is probably a much larger cause of noise than horizontal effects which may
cause more blurring of the image than noise. External interference is caused by other acoustic
devices operated at the same time which are added to the process Cervenka & de Moustier
(1993), and variable ship speed. The final image after the corrections has a 1:1 aspect ratio and
one that has the sonar targets roughly positioned at the same location on the chart as they are
in the seafloor. Further details of these corrections can be obtained from Johnson & Helferty
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4. Detection of mines

The general approach for detecting targets is a two-tier process: 1) Detection of possible
MLO’s (regions of interest (ROI)). 2) Classification into mine or not-mine like objects with
a low detection rate of false alarms. Both stages are crucial in order to get a good detection
rate. For the first stage, detection, several approaches based on segmentation techniques and
matched filters are reviewed.
The various techniques used in the literature for the second stage, classification, can be
divided into three categories: unsupervised, semi-supervised and supervised algorithms.
A comprehensive review of these techniques will be done. These techniques require the
extraction of mine features, therefore a review of the most discriminant features used in the
literature will also be explained.
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4.1 Detection of possible MLO’s
As stated before this first step involves identifying regions of interest that may contain a mine.
Two main approaches are used in the literature for this purpose: 1) segmentation and 2)
matched filtering.

4.1.1 Segmentation
Segmentation is the process of classifying pixels as belonging to a certain class. In side-scan
sonar mages the classes of interest normally are: highlight and shadow. Because of the
shadow cast by a side-scan sonar appears more consistent than the highlight, some of the
most successful algorithms rely only on the shadow information. The main techniques used
for segmentation are: 1) thresholding 2) clustering and 3) Markov Random Fields.
Thresholding is the simplest method on image segmentation. During the thresholding process,
individual pixels in a side-scan image are marked as shadow pixels if their value is greater
than some gray pixel value (assuming shadow to be darker than the background) and as
no-shadow pixels otherwise Quidu et al. (2000). Some approaches use two thresholds values
to segment images into shadow, highlight and background regions.
Clustering a procedure to determine the intrinsic grouping in a set of unlabeled data, has also
been used to segment the images into three categories (shadow, highlight and background).
In this technique, a feature vector for each pixel of the image is extracted and then a similarity
metric is used to cluster vectors having similar features Guillaudeux et al. (1996)
Unlike previous methods, Markov Random Fields provides a reliable framework for
incorporating pixel dependencies into the segmentation (i.e a pixel surrounded by a shadow
is most likely to belong to shadow itself). This ability to model inter-spacial dependencies
between pixels has ensured the use of MRF models for a range of applications. In the
context of side-scan sonar images where there is a large variation in the appearance of
the images, more complicated models have been used Mignotte & Collet (1999)Reed et al.
(2003). These models include a priori knowledge: object highlight generally lies close to
shadow regions. One of these studies, Reed et al. (2003), introduced the size and appearance
information as a priori information into the model. In this study, after the MRF segmentation,
a further post-segmentation step that provided an accurate and robust method for extracting
the shadow and highlight was carried out by using a cooperative statistical snake. The
model segments the object-highlight and the shadow region by considering the image as
being composed of three different statistical regions. The main advantage that this method
presented compared to other models, was that using a priori information on the relationship
between the object-highlight and shadow, accurate segmentation was achieved on seabed
types where other models failed. Details of this implementation can be found in Reed et al.
(2003)
An example of MRF segmentation on side-scan images containing mines can be visualized in
figure 7(b).

4.1.2 Matched filtering
It is a technique for finding small parts of an image which match a template. This is done
by convolving a known template with an image to detect the presence of the template in
the image. The identification of mine-size regions in the sonar image has been carried
out, as explained inDobeck (1997), by convolving a template that contains four distinct
regions:(pre-shadow, highligth, dead zone, shadow and post-target) with the image. After
that a threshold is applied to the post-processed images and neighbour pixels over a threshold
are grouped together to identify possible MLO’s. The threshold varies between the different
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(b) Segmentation result using the MRF model
proposed by Mignotte & Collet (1999)

Fig. 7. MRF segmentation

detectors, and is fixed according to the desired sensitivity of each detector. Details of this
implementation and similar approaches can be found in several works Dobeck (1997)Dobeck
(2000)Hasanbelliu et al. (2009)

4.2 Classification into mine or not-mine
By using any of the techniques explained above the regions of interest of the image, that may
contain MLO’s, are identified. Afterwards these regions of interest have to be classified into
mine or not mines. This classification procedure normally requires the extraction of mine
features, therefore a review of the most discriminant features used in the literature will first
be explained in the following section.

4.2.1 Feature extraction
In pattern recognition feature extraction is a special form for reducing dimensionality
of an image. For side-sonar images the aim of feature extraction is to extract some
characteristics that describe a region of interest that may contain a MLO. The main feature
used in the literature Aridgides et al. (2001a)Dura et al. (2005)Dobeck (1995)Zerr & Stage
(1996)Quidu et al. (2000) for extracting features fall into two categories: 1)shape features 2)
gray-level features
Shape features characterize the appearance and geometry of an object. MLO as opposed to
non man-made object cast regular shadows and highlight of anticipated dimensions. The
following features are mainly used in the literature for extracting some features from the
shadow and highlight information:
1)Area: is the surface area of an object , O,(shadow or highlight), defined as:

Area = ∑
i,j

O(i, j)

where O(i,j ) has a value of one for a pixel in the object and zero if not.
2)Elongation represents the ratio of major axis to that of the minor axis. It is computed from
second order central moments as:

Elongation =

√
4μ2

11 + (μ20 − μ02)2

μ20 + μ02
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a further post-segmentation step that provided an accurate and robust method for extracting
the shadow and highlight was carried out by using a cooperative statistical snake. The
model segments the object-highlight and the shadow region by considering the image as
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presented compared to other models, was that using a priori information on the relationship
between the object-highlight and shadow, accurate segmentation was achieved on seabed
types where other models failed. Details of this implementation can be found in Reed et al.
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An example of MRF segmentation on side-scan images containing mines can be visualized in
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4.1.2 Matched filtering
It is a technique for finding small parts of an image which match a template. This is done
by convolving a known template with an image to detect the presence of the template in
the image. The identification of mine-size regions in the sonar image has been carried
out, as explained inDobeck (1997), by convolving a template that contains four distinct
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detectors, and is fixed according to the desired sensitivity of each detector. Details of this
implementation and similar approaches can be found in several works Dobeck (1997)Dobeck
(2000)Hasanbelliu et al. (2009)

4.2 Classification into mine or not-mine
By using any of the techniques explained above the regions of interest of the image, that may
contain MLO’s, are identified. Afterwards these regions of interest have to be classified into
mine or not mines. This classification procedure normally requires the extraction of mine
features, therefore a review of the most discriminant features used in the literature will first
be explained in the following section.

4.2.1 Feature extraction
In pattern recognition feature extraction is a special form for reducing dimensionality
of an image. For side-sonar images the aim of feature extraction is to extract some
characteristics that describe a region of interest that may contain a MLO. The main feature
used in the literature Aridgides et al. (2001a)Dura et al. (2005)Dobeck (1995)Zerr & Stage
(1996)Quidu et al. (2000) for extracting features fall into two categories: 1)shape features 2)
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non man-made object cast regular shadows and highlight of anticipated dimensions. The
following features are mainly used in the literature for extracting some features from the
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1)Area: is the surface area of an object , O,(shadow or highlight), defined as:

Area = ∑
i,j

O(i, j)

where O(i,j ) has a value of one for a pixel in the object and zero if not.
2)Elongation represents the ratio of major axis to that of the minor axis. It is computed from
second order central moments as:

Elongation =

√
4μ2

11 + (μ20 − μ02)2

μ20 + μ02
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where μpq stands for the central moment of order p + q which is computed as:

μpq =
M

∑
i=0

N

∑
j=0

(i − ig)
p(j − jg)q I(i, j)

where (ig, jg) is the position of the center of mass of the shadow or highlight and I(i, j) is the
digital image. This position is calculated as:

ig =
m10
m00

and
ig =

m01
m00

and the two-dimensional moment mpq of order p + q is defined as

mpq =
M

∑
i=0

N

∑
j=0

ip jq I(i, j)

3) Circularity or shape factor: is a measure of circularity or the compactness of a shape and
can be calculated as:

Compactness =
4.π
p2

4)Orientation: the orientation of an object can be defined as:

Orientation =
1
2

tan−1 2μ11
μ20 − μ02

5)Eccentricity: Is the ratio of the length of the longest chord of the shape to the longest chord
perpendicular to it.
6)Rectangularity: This shows how well a region is approximated by a rectangle. The
rectangularity measure frect is the ratio of the area of a region, A, to area of the smallest
rectangle, Arectangle, that encloses it:

frect =
A

Arectangle

7)Number of zero crossing of the curvature at different scales: for a fixed length, a small
number of curvature zero crossing suggests as simple regular contour; a high number,
suggests a tortous, irregular, frequently turning contour. Therefore scanning the curvature
scale space of a given set of contours from fine to coarse scales, regular shapes can be
identified.
The number of zero crossing of an image is obtained by applying the convolution operator
∇2G (which is the Laplacian of a two dimensional Gaussian G(i,j)) over the image I(i, j) as:

I(i, j)� = ∇2G(i, j) ∗ I(i, j)

where

∇2G(i, j) = (
r2 − σ2

2πσ2 )exp
−r2

2σ2
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where
r = (i2 + j2)

1
2

Some individual features and others that relate shadow and highlight information has also
been used such as:
Shadow high profile, ratio of the highlight to shadow area, ratio of highlight to shadow height,
minimum distance between highlight and shadow, horizontal aligment between shadow and
highlight
When the quality and resolution of the images is low, these are not well characterize by the
profile (shape features) of the shadow and highlight. Therefore gray level features extracted
from the shadow and highlight are also used for discriminating targets from clutter. Among
them the most discriminative features used are:
1) Average shadow strength, which is a measure of the object’s shadow darkness
2) Average highlight strength, which is a measure of the object’s highlight brightness
3)The variance of the shadow
4)The variance of the highlight
5)Contrast between shadow and highlight, which is the absolute difference of the average
shadow strength and average highlight strength
6)Contrast between shadow and background, which is the absolute difference of the average
shadow strength and average background strength
7)Contrast between highlight and background, which is the absolute difference of the average
highlight strength and average background strength

4.2.2 Classification
At this step classification is the detection of MLO’s in side-scan images. There various
techniques examined can be broadly divided into three groups: supervised, semi-supervised
and unsupervised.

Supervised

With these techniques, one typically requires an a priori-set of training data consisting of a
set of features and associated binary labels( mine/clutter) and a testing set to validate the
results. A supervised learning algorithm analyzes the training data and produces an inferred
function, which is called a classifier. To constitute a training set, known targets (e.g mines)
must be emplaced in a given environment and side-scan data collected with all nonemplace
scatters are assumed to be clutter. In the context of sonar images, the difficulty of this
supervised classification procedure resides 1) in the very large number of mine types, mine
deployments and orientations, and mines history; 2)the significance dependence on the nature
of the training data, specially the dependence of the imagery on the sea bottom environment.
The variability of 1) and 2) makes it impossible to constitute a training set that is robust to
all type of mines and environments to be encountered. An algorithm trained for one type
of sonar setting may perform poorly when used in another environment. Besides, the point
at which a ′training data set′ becomes sufficiently large is difficult to define. To overcome
this problem some researchers Reed et al. (2004) and Coiras et al. (2007) have generated their
data set of synthetic side scan images with inserted random mines at random locations and
orientations. The mines inserted had realistic shadows and highlights that took into account
the angle of incidence and topography of seabed.
Pioneering research on supervised detection/classification of MLO’s was carried out by
Dobeck (1997).They used a K-nearest neural network (KNN) and an optimal discriminatory
filter classifier (ODFC). The KNN technique involved a two-layer neural network, which
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classifies features according to the proximity of the features to a ’feature vector center’. These
classifiers were then combined to yield the final result. Results and details can be found in
Dobeck (1997)
An adaptive filter has also been used for the detection/classification of mines based
on a bayesian classifier (simple probabilistic classifier based on applying Baye’s
theorem, with strong independence assumptions) known as the log-likehood ratio test
(LLRT)Fernandez et al. (1993). A given feature vector was assigned as belonging to either
of two classes on the basis of the LLRT. This algorithm addressed the main shortcoming of
the bayesian classifiers (the determination of the multidimensional distributions essential for
the computation of the LLRT) by mapping the sets of learning vectors to a space of orthogonal
features in order to yield histograms. These histograms were then used to get the log-likehood
ratio and summed to obtain the final results.
Linear and quadratics classifiers has also been employed for supervised classification by
Fawcett (2001).A linear classifier separates objects or events by a linear function whereas
the quadratic classifier separate objects or events by a quadratic surface. Unlike previous
methods, in the work proposed by Fawcett (2001) instead of extracting features from the
regions of interest the whole image was used as a feature vector. Principal components
technique was used to identify the most discriminant features of the image. Details of the
classifiers, implementation and results can be found in Fawcett (2001)
Recent machine learning techniques based on kernel-based algorithms such as Support Vector
Machines (SVM)Vapnik (1995) and Relevance Vector Machines (RVM)Tipping & Smola (2001)
have been investigated. These kernel-based learning algorithms are based on mapping data
from an original input space to a kernel feature space of higher dimensions to solve a linear
problem in that space. The advantages for relevance vector machines over support vector
machines is the availability of probabilistic predictions, using arbitrary kernel functions and
not requiring to set many parameters. Details of the implementations and results can be found
in Dura et al. (2005)Couillard et al. (2008)
It is important to highlight, that is not always necessary to use all the features; sometimes
using a smaller is better than using a large set of features which are correlated. Therefore
some all the supervised techniques reviewed used some optimisation procedures before the
training process to determine the best combination of features.

Semi-supervised

Semi-supervised is a class of machine learning technique that make use of both labeled and
unlabeled data for training. The amount of labeled data required for training is tipically very
small compare to the amount of unlabeled data. The cost of adquiring data with the associate
label data is expensive and may make a set of data infeasible, whereas the adquisition of
adquiring unlabeled data is inexpensive. Therefore semi-supervised techniques introduce
and important advantage: the cost for mine hunting operations is reduced. In the context
of side-scan sonar this is very important as labeling the data is very expensive, a diver or
unmanned underwater vehicle with a camera has to label it.
An active-learning algorithm based on semi-supervised techniques was first proposed by
Dura et al. (2005). The algorithm, kernel-based, was developed with the goal of enhancing
mine detection/classification of mines without requiring a priori data set. It was assumed
that divers or unmanned underwater vehicles with a camera were used to determine the
binary labels of a small set for a given side-scan collection. This set of data and associated
label were used to train the algorithm. Information-theoric concepts were used to adaptively
construct the kernel classifier and guide which data and associate label were most informative
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in the context of of algorithm training (this information content is computed without a priori
knowledge of the labels itself). In this work authors demonstrated that the number of data
for which the associate label was required was very small relative to the number of potential
targets in a given image.

Unsupervised

Most of the current automated systems, as stated before, require training data and thus
produce poor results when the training data differ from the test set. The success of this
systems depend on the similarity of the training and testing set of data. This has led research
into unsupervised techniques that requires no training data. The main advantage of these
systems is that they are able to cope with the large variability in conditions and seabeds seen in
side-scan sonar images. Also, very important, the cost of mine-hunting operations is reduced.
One of the most complete unsupervised and sucesfull systems implemented so far is the
one implemented by Reed et al. (2003)Reed et al. (2004). The system was composed of two
consecutive and complementary phases: 1) a MRF algorithm was employed to segment
the raw side-scan image into regions of object highlight, shadow and background. A
post-processing procedure was then applied to remove false alarms. Objects that were
too large or small were removed. The height (calculated by using the shadow length and
navigational data) was also taken into account to remove false alarms. 2)In a second phase
a cooperating statistical snake model was use to consider each of the detected MLO’s. The
model assumed the highlight and shadow regions to be statistically separated, therefore it
was enforced a dependency between the two snakes. Also their movement was constrained.
If snakes expanded beyond MLO dimensions the MLO was identified as false alarm and
removed. Good detection rates was obtained with this two-step unsupervised algorithm.
Another approach with tackled this problem was the one proposed by Mignotte et al. (2000).
In this work a set of deformable template model which allow linear transformation were used
to separate natural objects from man made objects in an image. The detection was based on
a objective function measuring how well a given instance of a template fits the contents of
the segmented image (previously the image was segmented using a MRF). If the result of the
objective function was less than a certain threshold then the desired object was assumed to be
present and the final configuration revealed the shape of the object.

5. Classification of MLO’s

Once the mine has been the detected the following step is the classification. As stated before,
classification is the process of recognizing the shape of a mine (type of mine). In sonar
imagery, MLO’s produce a shadow which represents a regular geometry shape. In particular
the shadow cast by spherical mine almost always is an ellipse with different vertical and
horizontal axis lengths. For cylindrical mines the associate shadow may be a rhomboid,
rectangle or ellipse.
The classification problem has not been widely addressed in the literature. The few
approaches that deal with this problem fall into two different groups: mono-view and
multi-view classification depending on whether they make use of a single view or several
views for determining the shape.

5.1 Mono-view classification
In general classical models Castellano & Gray (1990)Quidu et al. (2000)Delvigne (1992)
consisting of feature extraction and classification have widely been used for mono-view
classification purposes. First using a presegmented shadow a mine a set of features are
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extracted from the shadow. Afterwards the set of features are normally presented as input to
the classifier. Althougth feature based are appealing the performance of the classifiers depend
to a significant extent upon the feature extraction.
A totally different approach based on available properties of the shape (as a prior model)
and an observation model (likehood model) was proposed by Mignotte et al. (2000). In
such terms they proposed two prototype templates, square and ellipse, along with a set of
transformations, to take into account the shape variability of different for every type of mines.
The classification of an object was based on an objective function measuring how well an
instance template fitted the content of the segmented image.
Along similar lines, Balasubramania & Stevenson (2001) did some interesting work on model
fitting. In this work it was assumed that the shadows from targets such as cones, cylinders
and rocks were close to an ellipse. Hence the shadow shapes were modelled as ellipses. To
this end the edges of the shadow regions were extracted and the elliptical parameter fitting
was performed using Karhonen-Loeve method. Then the parameters were used as features to
describe the ellipse. Althought this approach is relevant for spherical mine-like shapes, it is
not the best to provide good separation class.
In the work proposed by Dura et al. (2008)they also advocated for a model-fitting approach
by modelling the mine-like shadow with a superllipse. Superellipse provide a compact and
interesting approach for representing a variety of shapes. By simply varying the squarness of
the function shapes such as ellipses, rectangles, parallelograms, ovals and pinched diamonds
can be easily generated. Thus, based on these observations, a classification procedure
was proposed based on the squareness parameter. The procedure extracted the contour of
the shadow given by an Unsupervised Markovian segmentation algorithm. Afterwards a
superellipse was automatically fitted by minimising an appropiate metric with the Nelder
Mead Simplex optimization technique. Some results can visualized in figure 8
Another approach has recently been investigated by Reed et al. (2004) and Coiras et al. (2007).
A synthetic database of side-scan sonar images was generated with a sonar simulation under
different conditions: seabed types, mine orientations and sizes. Then a classifier Coiras et al.
(2007) was trained on the features extracted from the synthetic images generated. Afterwards
real side-scan sonar images were classified. In Reed et al. (2004) instead of using a supervised
classifier, the Hausdorff technique was implemented to measure the resemblance between the
features of the synthetics images generated and the real images.

5.2 Multi-view classification
Sometimes is possible to obtain an accurate classification relying on a single view of an object.
However some uncertainty of the object true class remains. In particular for sonar images if
more than view of an object is provided at different angles this uncertantity can be reduced.
The fusion of multiples images for classifying an object has been investigated by various
authors. One of the most extensive work on multi-view classification was the one undertaken
by Fawcett et al. (2010). In this work they extracted two features sets corresponding to
two different view side-scan images and they investigated two approaches for fussing this
information: 1)fuse-feature and 2)fuse- classification. In the first approach the two feature sets
were combined to form a large feature vector (CF). Then a kernel based classifier was trained
a tested with the resulting extended feature vector. The second approach consisted of fussing
the two individual-aspect classification of the two feature vectors using Dempster-Shafer (DS)
Theory. DS, frequently used as alternative to Bayesian theory and fuzzy logic for data fusion,
allows to combine evidence from different sources and arrive to a degree of belief (represented
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(a) Rectangular shape (b) Romboid shape

(c) Elliptical shape

Fig. 8. Results of the Superellipse fitted algorithm proposed by Dura for different shadows
shapes

by a belief function) that takes into account all the available evidence. The belief function is
derived from a mass function, which is analogous to well known probability density function.
In this work, three different approaches were examined to calculated DS masses for each
of the two looks of the classifier. In the first approach the histogram of the output labels
for a single-aspect kernel regression classifier were used to empirically determine a simple
analytical function which converted the values of the multiclas outputs into a set of masses.
In the second approach they used a confusion matrix obtained from the single aspect classifier
to specify the DS masses for various objects, for each of the looks, given the single aspect
classifications. For the last approach, a nonempirical mass assigment based upon the relative
values of the classifier outputs were considered.
Along similar lines Zerr et al. (2001) Stage & Zerr (1996)andReed et al. (2004) have also
investigated the classification of a target by fusing several views using DS theory. However
in the work investigated by Reed et al. (2004) the mass functions were generated from a fuzzy
functions membership algorithm based on fuzzy logic.

6. Fusion of detection algorithms

The detection algorithms described in section 4.2.2 have their own weakness and strengths.
This is due to the fact that each algorithm is based on different statistical properties and
therefore emphasizes different characteristics of the data. Thus a combination of them may
increase the probability of detection of MLO’s and consequently reduce the number of false
alarms.
Various methods of fusion of algorithms have been studied. In the work presented by
Aridgides et al. (2001b), the results of different detection algorithms developed by three
research teams (Naval Surface Warafe (NSWC), Coastal Systems Station (CSS), Raytheon
and Lockeed Martin ) were fused. Three different strategies were examined: 1)Logic-based
fusion , 2)m-out-of-n fusion. 3) Log-Likehood Radio Test (LLRT)-based fusion algorithm. The
logic-base fusion strategy was based on a set variety of rules including Boolean operators,
AND, OR and their combinations. The m-out-of-n fusion was based of a particular instance
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Mead Simplex optimization technique. Some results can visualized in figure 8
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5.2 Multi-view classification
Sometimes is possible to obtain an accurate classification relying on a single view of an object.
However some uncertainty of the object true class remains. In particular for sonar images if
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The fusion of multiples images for classifying an object has been investigated by various
authors. One of the most extensive work on multi-view classification was the one undertaken
by Fawcett et al. (2010). In this work they extracted two features sets corresponding to
two different view side-scan images and they investigated two approaches for fussing this
information: 1)fuse-feature and 2)fuse- classification. In the first approach the two feature sets
were combined to form a large feature vector (CF). Then a kernel based classifier was trained
a tested with the resulting extended feature vector. The second approach consisted of fussing
the two individual-aspect classification of the two feature vectors using Dempster-Shafer (DS)
Theory. DS, frequently used as alternative to Bayesian theory and fuzzy logic for data fusion,
allows to combine evidence from different sources and arrive to a degree of belief (represented
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Fig. 8. Results of the Superellipse fitted algorithm proposed by Dura for different shadows
shapes

by a belief function) that takes into account all the available evidence. The belief function is
derived from a mass function, which is analogous to well known probability density function.
In this work, three different approaches were examined to calculated DS masses for each
of the two looks of the classifier. In the first approach the histogram of the output labels
for a single-aspect kernel regression classifier were used to empirically determine a simple
analytical function which converted the values of the multiclas outputs into a set of masses.
In the second approach they used a confusion matrix obtained from the single aspect classifier
to specify the DS masses for various objects, for each of the looks, given the single aspect
classifications. For the last approach, a nonempirical mass assigment based upon the relative
values of the classifier outputs were considered.
Along similar lines Zerr et al. (2001) Stage & Zerr (1996)andReed et al. (2004) have also
investigated the classification of a target by fusing several views using DS theory. However
in the work investigated by Reed et al. (2004) the mass functions were generated from a fuzzy
functions membership algorithm based on fuzzy logic.

6. Fusion of detection algorithms

The detection algorithms described in section 4.2.2 have their own weakness and strengths.
This is due to the fact that each algorithm is based on different statistical properties and
therefore emphasizes different characteristics of the data. Thus a combination of them may
increase the probability of detection of MLO’s and consequently reduce the number of false
alarms.
Various methods of fusion of algorithms have been studied. In the work presented by
Aridgides et al. (2001b), the results of different detection algorithms developed by three
research teams (Naval Surface Warafe (NSWC), Coastal Systems Station (CSS), Raytheon
and Lockeed Martin ) were fused. Three different strategies were examined: 1)Logic-based
fusion , 2)m-out-of-n fusion. 3) Log-Likehood Radio Test (LLRT)-based fusion algorithm. The
logic-base fusion strategy was based on a set variety of rules including Boolean operators,
AND, OR and their combinations. The m-out-of-n fusion was based of a particular instance
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of this, ′2-out-of-3′. This means that a target was included in the overall result if at least 2
out of the 3 algorithms tested also detected it. The LLRT-based strategy, originally developed
by Fernandez et al. (1993)to perform perfusion, utilized the three confidence output vectors to
form a three dimensional vector which were then processed through an orthogonalization and
matrix extraction procedure to yield histograms for each orthogonal feature. These histograms
were then used to obtain the log-likehood ratio and sum to obtain the overall result (detection).
Best perfomance was obtained utilizing LLRT-based fusion which resulted in a 3:1 false alarm
reduction improvement over the ′2-out-of-3′ strategy and 4:1 improvement over logic-based
function.
Another different approach which also combined the output of the three detection algorithms
previously mentioned, was the one investigated by Ciany & Huang (2000). The fusion
algorithm received the two dimensional coordinates and confidence value for the detection
mines and a geometrical clustering algorithm was applied. The resulting clusters were then
processed via cluster confidence processing to produce the final fused results , which were the
position of the mines. This procedure was applied as it was assumed that valid mines would
be close by whereas false alarms would appear in random position of the image
Fusion detection algorithms based on score results of each individual algorithm have also
been proposed. This can be performed by a number of ways such as was suggested by
Dobeck (2005) 1) majority voting where the detections can be conditioned on thresholds
applied to scores, 2) computing the sum of the algorithms scores and comparing the sum to a
threshold, 3) computing a linear combination of the scores and comparing the weighted sum
to a threshold. In this work was demonstrated that one can afford to run individual algorithms
with higher probability of detection and higher probability of false alarm that would normally
tolerate, in the knowledge that the fusion process will bring the false alarm rate down.

7. Conclusions

In this chapter the techniques involved in the detection and classification of MLO’s on
side-scan sonar images have been reviewed. The main components of CAD/CAC systems
have been examined. These components are: 1)Image formation and characteristics of the
image 2)Detection 3) Classification and 4) Fusion of different algorithms for detection of
mines. For each component successful image processing techniques as well as related areas
were examined .
However some questions remain: are the current automatic systems reliable enough to detect
and classify mines without the assistance of a human operator?Do they perform well under
different environment conditions?
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1. Introduction  
The proliferation of SONAR images produced by different equipments: multibeam echo 
sounders, side scan sonar, forward looking imaging SONAR…, [Lurton, 2002], and the large 
number of processing methods, created the necessity of expert systems for assisting the 
decision making process. An example is the SonarScope, an IFREMER expert system 
[Ifremer, 2010]. The basic functionality of such an expert system is the representation and 
the analysis of sonar data, organized as a "multilayer" structure defined by its various 
attributes (bathymetry, image, angles, and raw data from auxiliary sensors …). These data 
can be represented and processed using various techniques either classical (signal and/or 
image processing) or specific to SONAR. The goal of an expert system for SONAR images is 
to achieve three main tasks: Quality Control, Data Processing and Data Interpretation. There 
are two classes of signal processing techniques used in an expert system for SONAR images. 
The first one represents the so-called “image conditioning” methods. The first category of 
conditioning methods refers to the echoes acquisition, meaning the acquisition of depth, of 
the across and along-track distance, of the received beam angle, of the numbers of the 
transmitted and received beam, or of the two-way travel time of the acoustic pulse. The echo 
acquisition has some features like for example the bottom detection mode. The second 
category of conditioning method refers to the correction of acquired data. There are 
techniques to complete the missing data (caused by some acquisition imperfections due to 
unexpected displacements of the platform where the acoustical transducers are mounted or 
by the non-uniform movement or deviations from the course of the vessel which tracts the 
platform) and techniques for the correction of the differences between the directivity 
characteristics of the sensors. The third type of conditioning techniques consists in data 
organization and management. SONAR data are arranged as a set of arrows called pings 
(swath), which correspond to all the soundings acquired in a ping cycle. At the beginning of 
the ping cycle, each sensor's value is logged: gyro, pitch, roll, positions, etc.  
The fourth category of conditioning methods refers to the formation of SONAR images. A 
SONAR image is thus linked with the sensor’s time series, pertaining to that given dataset 
and in synchronization with each ping. The time series can be plotted as curves, displayed 
in conjunction with the image. There are few geometric formats used for the SONAR 
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images: PingBeam, LatLong, PingSamples and PingSwat. The fifth category of conditioning 
methods refers to the assembling of few neighboring individual images. This could be a 
technique to produce mosaics or digital terrain models (DTM). Finally the sixth conditioning 
category of methods refers to the angular correction and despecklisation of SONAR images. 
The last category of image processing methods represents the aim of this chapter. The 
second class of signal processing methods applied in SONAR expert systems is represented 
by the so called intelligent image processing techniques: segmentation, textures analysis, 
classification,…The aim of this chapter is the despecklisation of SONAR images. The 
SONAR images are perturbed by speckle. It is of multiplicative nature. The aim of a 
denoising algorithm is to reduce the noise level, while preserving the image features. The 
noisy image is: 

 f s v   (1) 

where s is the noise-free input image and v the speckle noise. We present the most 
frequently used despecklisation techniques starting with the classical ones, Lee, Kuan and 
Frost filters and continuing with the pure statistical despecklisation method proposed in 
[Walessa&Datcu, 2000] to arrive at the most modern ones which act in the wavelet domain. 

2. Denoising methods 
The field of natural images denoising methods is very large. A lot of articles dedicated to 
denoising methods were already written. Most of these articles are focused on the case of 
additive noise.  
There are two ways of reducing the speckle to an additive noise. The first one involves the 
separation into a sum between the signal and a signal-dependent noise: 

  1f s s v     (2) 

while the second one simply takes advantage of the properties of the logarithm: 

 ln ln lnf s v   (3) 

Assuming that usually f  is not stationary, in the first approach the additive noise is not 
stationary as well, [Argenti et al., 2009]. There are two categories of denoising methods for 
the additive noise, the methods acting in the spatial domain and the methods which act in a 
transformed domain. We proceed with the presentation of the first category. 

2.1 Denoising based on differential equations with partial derivatives 
A first category of images denoising methods acting in the spatial domain are based on 
differential equations with partial derivatives. These denoising methods do not take into 
account any a priori information about the image to be processed, being non parametric. 
The aim of those methods is to consider the denoising like a decomposition of the acquired 
image into two components, the noiseless part and the noise. This decomposition can be 
realized by the projection of the acquired image on two very different vector spaces. The 
projection can be done by the minimization of a cost function. The result corresponds to the 
solution of the system of equations which is obtained imposing the zero value to the partial 
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derivatives of the cost function. This is a system of partial differential equations. The 
simplest projection on the noiseless space is realized averaging the acquired image. The 
corresponding denoising method works well for the homogeneous regions of the acquired 
image if the noise is zero mean. Tacking into account the fact that the averager is a low-pass 
filter, this denoising method distorts the edges and some of the textured regions by 
oversmoothing.  

2.2 Denoising by non-local averaging 
Another very modern non parametric denoising method is based on non-local (NL) 
averaging [Buades, 2007]. The NL-means algorithm tries to take advantage of the high 
degree of redundancy of any natural image. Every small area (or window) in a natural 
image has many similar areas in the same image. In a very general sense, one can define as 
„neighborhood of a pixel i" any set of pixels j in the image so that a window around j looks 
like a window around i. All pixels in that neighborhood can be used for predicting the value 
at i. Given a discrete noisy image   x x i i I  , the estimated value  xNL i  is computed as 
a weighted average of all the pixels in the image,      ,x

j I

NL i i j x j


  , where the weights 

  , ji j depend on the similarity between the pixels i and j and satisfy the usual conditions 

 0 , 1i j   and  , 1.
j

i j  The non-locality of the average prevents from 

oversmoothing. 

2.3 Denoising using statistical filters  
Another category of denoising methods are the parametric ones. These methods take into 
account statistical models for the noiseless component of the acquired image and for the 
noise. One of the best parametric denoising methods uses maximum a posteriori (MAP) 
filters. The MAP estimation of w, based on the observation y=w+n, (where n represents the 
additive noise) is given by the MAP filter equation:  

        ˆ argmax ln
w

w y p y w p w n w  (4) 

where pa denotes the probability density function (pdf) of a. 

2.3.1 Classical despecklisation filters 
Kuan [Kuan et al., 1987] considered a multiplicative speckle model and designed a linear 
filter based on the minimum mean square error (MMSE) criterion, optimal when both the 
scene and the detected intensities are Gaussian distributed.  
The Lee filter [Lee, 1981] is a particular case of the Kuan filter due to a linear approximation 
made for the multiplicative noise model.  
The Frost filter [Frost et al., 1982] is a Wiener filter adapted to multiplicative noise. The 
parameters of the Kuan, Lee and Frost filters are: the size of the rectangular windows used 
for the estimation of the local standard deviation of the useful component of the acquired 
image and its number of looks. 

2.4 Denoising in a transform’s domain 
Another excellent denoising method for the case of additive noise makes the object of 
[Katkovnik et al.,2006]. There are a lot of original contributions highlighted in this reference: 
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images: PingBeam, LatLong, PingSamples and PingSwat. The fifth category of conditioning 
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the local polynomial analysis of images, the role of anisotropic analysis windows, etc… 
Some very clever associations of those notions conduct to very efficient local denoising 
methods applied in the spatial domain or in the field of the shape adaptive Digital Cosinus 
Transform (SADCT). 

2.4.1 Denoising into the wavelets domain 
A set of denoising methods for additive noise act in the wavelets domain. These methods 
have three steps: the computation of a wavelet transform (WT); the filtering of the detail 
wavelet coefficients; the computation of the corresponding inverse WT (IWT). The 
usefulness of the filtering in the wavelet domain comes from the sparseness of the WTs. 
There are only few wavelet coefficients with high magnitude, which concentrate the most of 
the energy of the noiseless component of the input image. The other wavelet coefficients 
have small magnitude and can be considered noise. They can be discarded without 
producing high distortions.    
A first category of denoising methods applied in the wavelets domain is based on non-
parametric techniques [Donoho&Johnstone, 1994] and uses the hard or the soft thresholding 
filters. The parent of these methods is Professor David Donoho from Stanford University. 
His goal was to estimate the noiseless component of the acquired image by the minimization 
of the min-max approximation error. He studied the case of the Discrete Wavelet Transform 
(DWT). In the following we will make a general presentation of the wavelet transforms and 
we’ll continue with the denoising techniques based in these transforms. 
2.4.1.1 Wavelet transforms 
There are few wavelet transforms (WT) which were used for images denoising. The first one 
was the DWT. 
2.4.1.1.1 The DWT 
All the WTs are characterized by two features: the mother wavelets, MW and the primary 
resolution, PR (number of iterations). The importance of their selection is highlighted in 
[Nason, 2002]. An appealing particularity of the 2D DWT is the interscale dependency of the 
wavelet coefficients. The main advantage of the implementation of the 2D DWT is its 
flexibility, as it inherits some of the classes of mother wavelets developed in the framework 
of the 1D DWT, like the Daubechies, Symmlet or Coiflet families. The implementation of 1D 
DWT is presented in figure 1. It implements an orthonormal multiresolution analysis 
[Mallat, 99]. Each of the iterations of the algorithm used for the computation of the 2D DWT 
implies several operations. First, the lines of the input image (obtained at the end of the 
previous iteration) are passed trough two different filters (a lowpass filter having the 
impulse response m0 and a high-pass filter m1) resulting two different sub-images. Then the 
lines of the two sub-images obtained at the output of the two filters are decimated with a 
factor of 2. Next, the columns of the two images obtained are low-pass filtered with m0 and 
high-pass filtered with m1. The columns of those four sub-images are also decimated with a 
factor of 2. Four new sub-images, representing the result of the current iteration (which 
corresponds to the current decomposition level (or scale)), are obtained. These sub-images 
are called subbands. The first sub-image, obtained after two lowpass filterings, is called 
approximation sub-image (or LL subband). The other three are named detail sub-images: 
LH, HL and HH. The LL sub-image represents the input for the next iteration. In the 
following, the coefficients of the DWT will be denoted with k

x mD , where x represents the 
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image who’s DWT is computed (considered as a bivariate random signal), m represents the 
current scale and k = 1 - for the subband LH, k = 2 - for HL, k = 3 - for HH and k = 4 - for LL. 
These coefficients are computed using the following relation: 

     
1 11 1 1 2 , , 1 2, , , , ,k k

x m m n pD n p x       

where the wavelets are real functions and can be factorized as: 

     , , 1 2 , 1 , 2, ,k k k
m n p m n m p         

 

 
Fig. 1. (left) 1D DWT implementation. h – lowpass filter, g - highpass filter. They form a pair 
of quadrature mirror filters [Mallat, 99]. The filters are followed by decimators with 
decimation factor equal with 2; (right) UDWT implementation. hk – lowpass filters, gk - 
highpass filters. 

and the two factors can be computed using the scale function     and the mother wavelets 
ψ(τ) with the aid of the following relations: 
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Taking into account the last equations it can be written: 
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m n p n p                  

An iteration of the 2D DWT is presented in figure 2. The main disadvantages of the 2D DWT 
are the poor directional selectivity and the shift sensitivity. Separable filtering along the 
rows and columns of an image produces four images at each level. The LH and HL 
bandpass sub-images can select mainly horizontal or vertical edges respectively, but the HH 
sub-image contains components from diagonal features of either orientation. This means 
that the separable real 2D DWT has ‘poor directional selectivity’. This is illustrated in fig. 3. 
From left to right we can observe the vertical details (HL), the horizontal details (LH) and 
the diagonal details (HH). Prof. Kingsbury, in [Kingsbury, 1999] explains this limitation by 
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image who’s DWT is computed (considered as a bivariate random signal), m represents the 
current scale and k = 1 - for the subband LH, k = 2 - for HL, k = 3 - for HH and k = 4 - for LL. 
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An iteration of the 2D DWT is presented in figure 2. The main disadvantages of the 2D DWT 
are the poor directional selectivity and the shift sensitivity. Separable filtering along the 
rows and columns of an image produces four images at each level. The LH and HL 
bandpass sub-images can select mainly horizontal or vertical edges respectively, but the HH 
sub-image contains components from diagonal features of either orientation. This means 
that the separable real 2D DWT has ‘poor directional selectivity’. This is illustrated in fig. 3. 
From left to right we can observe the vertical details (HL), the horizontal details (LH) and 
the diagonal details (HH). Prof. Kingsbury, in [Kingsbury, 1999] explains this limitation by 
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the fact that real highpass row filters select both positive and negative horizontal high 
frequencies and, consequently, the combined HH filter must have pass-bands in all four 
quadrants of the 2-D frequency plane.  
 

 
Fig. 2. An iteration of the 2D DWT (middle). The structure of the result obtained applying 
three iterations of the 2D DWT to the image in the left part of the figure can be seen in the 
image from the right part of the figure. 

 

 
Fig. 3. Basis functions of 2D Q-shift complex wavelets (a) and 2D real wavelet filters (b), all 
illustrated at level 4 of the transforms. The complex wavelets provide 6 directionally 
selective filters, while real wavelets provide 3 filters, only two of which have a dominant 
orientation. 

On the other hand, a directionally selective filter for diagonal features with positive gradient 
must have pass-bands only in quadrants 2 and 4 of the frequency plane, while a filter for 
diagonals with negative gradient must have pass-bands only in quadrants 1 and 3. The poor 
directional properties of real separable filters make it difficult to generate steerable or 
directionally selective algorithms, based on the separable real DWT. Other WTs which 
overcomes one or both these disadvantages are: the Undecimated Discrete Wavelet 
Transform (UDWT), the Double Tree Complex Wavelet Transform (DTCWT) and the 
Hyperanalytic Wavelet Transform (HWT). 
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2.4.1.1.2 The 2D UDWT 

A particular wavelet transform is the undecimated wavelet transform (UWT), also known as 
the ‘Stationary Wavelet Transform’ and can be implemented using the ‘Algorithme à Trous’. 
The UDWT refers to the discrete implementation of this transform. The ‘Algorithme à 
Trous’, first introduced in [Holschneider et al., 1989] for music synthesis applications, is 
similar to a non orthonormal multiresolution algorithm for which the discrete wavelet 
transform is exact. An implementation of the UDWT is presented in figure 1.  Due to the 
absence of decimators in the UDWT’s implementation, each coefficient sequence from any 
level of decomposition has the same length as the original, in other words, if the original 
signal has N samples, the UDWT L-level representation is of size N(L+1), making from the 
UDWT a highly redundant transform. But eliminating the decimators is obtained a 
translation invariant WT. The 2D UDWT is shift-invariant (due to the absence of decimators) 
but it has a poor directional selectivity and is very redundant. 
2.4.1.1.3 The 2D DTCWT 
In 1998, Kingsbury first introduced the DT CWT [Kingsbury, 1998] that relies on the 
observation that approximate shift invariance can be achieved with a real DWT by doubling 
the sampling rate at each level of the tree. For this to work, the samples must be evenly 
spaced. The sampling rates can be doubled by eliminating the down-sampling by 2 after the 
level 1 filters. This is equivalent to having two parallel fully-decimated trees a and b, like in 
fig. 4, provided that the delays of H0b and H1b are one sample offset from H0a and H1a. 
Kingsbury found that, to get uniform intervals between samples from the two trees below 
level 1, the filters in one tree must provide delays that are half a sample different (at each 
filter input rate) from those in the other tree. This statement is also supported by Selesnick 
who, in [Selesnick, 2001], gives an alternative derivation and explanation of the same result. 
The implementation of such a transform is done using two mother wavelets, one for each 
tree, one of them being (approximately) the Hilbert transform of the other. On one hand, the 
dual-tree DWT can be viewed as an overcomplete wavelet transform with a redundancy 
factor of two. On the other hand, the dual-tree DWT is also a complex DWT, where the first 
and second DWTs represent the real and imaginary parts of a single complex DWT. In order 
to have a visual aspect of the DT CWT, we present in figure 4, the Q-shift version of the DT 
CWT as it is given in [Kingsbury, 2001]. In order to examine the shift invariance properties 
of a transform, Kingsbury [Kingsbury, 2001] proposes a method based on the retention of 
just one type (details or approximations), from just one level of the decomposition tree. For 
example one might choose to retain only the level-3 detail coefficients and set all the others 
to zero. If the signal reconstructed from just these coefficients is free of aliasing then it can be 
said that the transform is shift invariant at that level. The degree of shift invariance of two 
implementation schemes (one for the DT CWT and the other for the classical DWT) is 
compared in fig. 5. In each case the input is given by 16 shifted versions of a unitary step 
signal. Each unitary step is passed through the forward and inverse version of the chosen 
wavelet transform. The figure shows the input steps and the components of the inverse 
transform output signal, reconstructed from the wavelet coefficients at each of levels 1 to 4 
in turn and from the scaling function coefficients at level 4. Summing these components 
reconstructs the input steps perfectly. Good shift invariance is shown when all the 16 output 
components from a given level have the same shape, independent of shift. It is easily 
observed that the DT CWT has outstanding performances in this direction compared to the 
severe shift dependence of the normal DWT. 
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Extension of the DT CWT to two dimensions is achieved by separable filtering along 
columns and then rows. However, if column and row filters both suppress negative 
frequencies, then only the first quadrant of the 2-D signal spectrum is retained. It is well 
known, from 2-D Fourier transform theory, that two adjacent quadrants of the spectrum are 
required to represent fully a real 2-D signal. Therefore in the DT CWT the image is also 
filtered with complex conjugates of the row (or column) filters in order to retain a second (or 
fourth) quadrant of the spectrum. This then gives 4:1 redundancy in the transformed 2-D 
signal. A schematic representation of the 2D DT CWT based on the even-odd 
implementation was given by [Jalobeanu et al., 2003]. At level m = 1, the 2D DT CWT is 
simply a non-decimated wavelet transform (using a pair of odd-length filters ho and go) 
whose coefficients are re-ordered into 4 interleaved images by using their parity. This 
defines the 4 trees T = A, B, C and D. If a and d denotes approximation and detail coefficients 
(a0 = x, the input image), we have: 
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For all other scales (j > 1), the transform involves an additional pair of filters, even-length, 
denoted he and ge. There must be a half-sample shift between the trees to achieve the 
approximate shift invariance. Therefore, different length filters are used for each tree, i.e. it 
is necessary to combine he, ge with ho, go, the 4 possible combinations corresponding to the 4 
trees: 
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The trees are processed separately, as in a real transform. The combination of odd and even 
filters depends on each tree. The transform is achieved by a fast Filter Bank (FB) technique, 
of complexity O(N). The reconstruction is done in each tree independently, by using the 
dual filters. To obtain a0, the results of the 4 trees are averaged. This ensures the symmetry 
between them, thus enabling the desired shift invariance. The complex coefficients are 
obtained by combining the different trees together. If the subbands are indexed by k, the 
detail subbands dj,k of the parallel trees A, B, C and D are combined to form complex 
subbands ,j kz  and ,j kz , by the linear transform: 
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        , , , , , , , ,, ,   j k j k j k j k j k j k j k j kj k j k
D B D BA C A Cz d d i d d z d d i d d          (5) 

Complex filters in multiple dimensions can provide true directional selectivity, despite 
being implemented separately, because they are still able to separate all parts of the m-D 
frequency space. For example the 2D DT CWT produces six bandpass sub-images of 
complex coefficients at each level, which are strongly oriented at angles ±15º, ±45º, ±75º, as 
illustrated by the level 4 impulse responses in fig. 3.  
 

 
Fig. 4. The Q-shift version of the DT CWT as it is given in [Kingsbury, 2001]. 
 

 
           (a)               (b)   (c) 

Fig. 5. A comparison of the shift invariance of three WTs: ADWT (a), DTCWT (b) and DWT (c). 
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Fig. 6. Wavelet and scaling function components at levels 1 to 4 of an image of a light 
circular disc on a dark background, using the HWT (upper row), the 2D DT CWT (middle 
row) and 2D DWT (lower row). Only half of each wavelet image is shown. 

In order to obtain these directional responses, it is necessary to interpret the scaling function 
(lowpass) coefficients from the two trees as complex pairs (rather than as purely real 
coefficients at double rate) so that they can be correctly combined with wavelet (highpass) 
coefficients, which are also complex, to obtain the filters oriented at ±15º and ±75º (see 5). 
The main property of the 2D DT CWT is the quasi shift invariance, as shown by Kingsbury 
in [Kingsbury, 2001] i.e. the magnitudes z  are nearly invariant to shifts of the input 
image. The shift invariance is perfect at level 1, and approximately achieved beyond this 
level: the transform algorithm is designed to optimize this property. In fig. 6, the shift-
dependence properties of the 2D DT CWT were compared with the 2D DWT. The input is 
now an image of a light circular disc on a dark background. This circular form is suited for 
the analysis of the shift dependence in 2D as neighbor pixels from the contour of the disc 
can be interpreted as obtained through 2D shifts. The rows of images, from left to right in 
fig. 6, show the components of the output image, reconstructed from the 2D DT CWT 
wavelet coefficients at levels 1, 2, 3 and 4 and from the scaling function coefficients at level 4. 
The lower row of images show the equivalent components when the fully decimated 2D 
DWT is used instead. In the lower row, we see substantial aliasing artifacts, manifested as 
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irregular edges and stripes that are almost normal to the edge of the disc in places. Contrast 
this with the row of 2D DT CWT images, in which artifacts are virtually absent. The smooth 
and continuous images here demonstrate good shift invariance because all parts of the disc 
edge are treated equivalently; there is no shift dependence.  
2.4.1.1.4 The HWT 
In [Abry, 1994] is demonstrated that approximate shiftability is possible for the DWT with a 
small, fixed amount of transform redundancy. In this reference is designed a pair of real 
mother wavelets such that one is approximately the Hilbert transform of the other. This 
wavelet pair defines an analytic discrete wavelet transform (ADWT) presented in figure 7 a). 
A complex wavelet coefficient is obtained by interpreting the wavelet coefficient from one 
DWT tree as being its real part, whereas the corresponding coefficient from the other tree is 
interpreted as its imaginary part. The implementation of the ADWT is presented in figure 7 
b). We first apply a Hilbert transform to the data. The real wavelet transform is then applied 
to the analytical signal associated to the input data, obtaining complex coefficients. The two 
implementations of the ADWT presented in figure 7 are equivalent because: 
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Fig. 7. Three equivalent implementations of the ADWT. (a) The double tree of real DWTs is 
equivalent with a complex DWT, which can be reduced at the input (b).  

In fact neither the DTCWT nor the proposed implementation of ADWT correspond to 
perfect analytic mother wavelets, because the exact digital implementation of a Hilbert 
transform pair of mother wavelets with good performance is not possible in the case of the 
first transform (due to the fractional delay between the two trees required) and because the 
digital Hilbert transformer is not a realizable system in the case of the second transform. The 
DTCWT requires special mother wavelets (the implementation of the ADWT proposed in 
figure 7 b) can be realized using classical mother wavelets like those conceived by 
Daubechies) but can assure a higher degree of shift invariance. These two transforms have 
in the 1D case a redundancy of 2. In order to evaluate the shift-invariance performance of 
ADWT we make a visual evaluation of the degree of shift invariance by taking the same test 
professor Kingsbury has proposed in [Kingsbury, 2001]. We have used this test to make a 
comparison between ADWT, DT CWT, and the classical DWT. As can be seen, we obtain, 
using Daubechies 10-taps filter, results comparable with those obtained by Kingsbury. From 
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fig. 5 it can be observed that the DWT is not shift-invariant; the lines of coefficients 
corresponding to different shifts are not parallel, while the ADWT and DT CWT are quasi 
shift-invariant.  
All the 1D WTs already mentioned have simpler or more complicated 2D generalizations. 
The generalization of the analyticity concept in 2D is not obvious, because there are multiple 
definitions of the Hilbert transform in this case. In the following we will use the definition of 
the analytic signal associated to a 2D real signal named hypercomplex signal. So, the 
hypercomplex mother wavelets associated to the real mother wavelets  ,x y is defined as: 

              a , , H , H , H H ,x y x yx y x y i x y j x y k x y         (7) 

where 2 2 2 1,  and  i j k ij ji k       , [Davenport, 2010]. The HWT of the image  ,f x y is:  

      , , , , .aHWT f x y f x y x y Tacking into account relation (7) it can be written: 

 
         

        
      

y

, , H ,

H , H H ,

, , , , .

x

y x

a a

HWT f x y DWT f x y iDWT f x y

jDWT f x y kDWT f x y

f x y x y DWT f x y

  

  



 (8) 

So, the HWT of the image  ,f x y  can be computed with the aid of the 2D DWT of its associated 
hyper complex image. Consequently, the HWT of the image  ,f x y  can be computed with the 
aid of the 2D DWT of its associated hyper complex image. The HWT implementation uses four 
trees, each one implementing a 2D DWT. The first tree is applied to the input image. The second 
and the third trees are applied to 1D Hilbert transforms computed across the lines ( Hx ) or 
columns ( Hy ) of the input image. The fourth tree is applied to the result obtained after the 
computation of the two 1D Hilbert transforms of the input image.  
The enhancement of the directional selectivity of the HWT is realized like in the case of the 2D 
DTCWT, by the separation of the real and imaginary parts of the complex coefficients belonging 
to each subband of the WT (eq. 5). The HWT implementation is presented in figure 8.  
 

 

 
Fig. 8. HWT implementation architecture. 
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Let us consider, for example, the case of the diagonal detail subbands, (HH), presented in 
figure 9. We selected a particular input image,    , ,f x y x y , to appreciate the frequency 
responses associated to different transfer functions represented in figure 8. More precisely, 
the example in figure 9 refers to the transfer functions that relate the input f with the 
outputs  and r rz z  . The spectrum of the input image    F , ,x yx y f f  is constant. For the 
subband HH of each 2D DWT we have two preferential orientations, corresponding to the 
two diagonals ( / 4 ). So, the 2D DWT cannot separate these two orientations. But the 
spectra of the coefficients obtained after linear combinations, for example  and r rz z  , 
  F ,HH

r x yz f f  and   F ,HH
r x yz f f , have only one preferential direction, the second diagonal 

respectively the first one.  
 

 
Fig. 9. The strategy of directional selectivity enhancement in the HH subband. The 
frequency responses of the systems that transform the input image f into the output 
diagonal detail coefficient sub-images z-r and z+r represented in figure 12. 

In conclusion, by using the HWT these directions can be separated. The same strategy can 
be used to enhance the directional selectivity in the other two subbands: LH and HL, 
obtaining the preferential orientations:  atan 2  and  atan 1/2 . A comparison of the 
directional selectivity of the 2D DWT and HWT, implemented as proposed in figure 8, is 
presented in figure 10. We have conceived a special input image, in the frequency domain, 
to conduct this simulation. Its spectrum, represented in figure 10, is oriented following the 
directions: 0,  atan 1/2 , / 4 ,  atan 2  and  . Like the 2D DTCWT, the HWT 
implemented as proposed in figure 8, has six preferential orientations:  atan 1/2 , / 4 and 

 atan 2 . The 2D-DWT has only three preferential orientations: 0, / 4  and / 2 , it does not 
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make the difference between the two principal diagonals. The better directional selectivity of 
the proposed implementation of HWT versus the 2D DWT can be easily observed, 
comparing the corresponding detail sub-images in figure 10. For the diagonal detail sub-
images, for example, the imaginary part of the HWT rejects the directions:  -atan 1/2 , 

/ 4 and  -atan 2 , whereas the 2D DWT conserves these directions. Concerning the 2D shift 
invariance, in figure 6 is presented a comparison between the HWT and the 2D DTCWT.  
 

 
Fig. 10. The absolute values of the spectra of horizontal and diagonal detail sub-images 
obtained after the first iterations of 2D DWT and HWT (proposed implementation). In the 
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2.4.1.2.1 The zero order Wiener filter 

We will derive first the joint zero order Wiener filter considering that both pdfs are d-
dimensional zero mean Gaussians: 
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where the covariance matrix of vector a was denoted by Ca and its determinant by aC , for 
d=1. Then, the MAP filter equation (4) becomes: 
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problem which is equivalent with the equation obtained by putting the derivative of the 
argument of the right hand side member equal with zero: 
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So, the multi-variate pdf of the Gaussian random process from (9), for independent 
univariate components can be put in the equivalent form: 
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make the difference between the two principal diagonals. The better directional selectivity of 
the proposed implementation of HWT versus the 2D DWT can be easily observed, 
comparing the corresponding detail sub-images in figure 10. For the diagonal detail sub-
images, for example, the imaginary part of the HWT rejects the directions:  -atan 1/2 , 

/ 4 and  -atan 2 , whereas the 2D DWT conserves these directions. Concerning the 2D shift 
invariance, in figure 6 is presented a comparison between the HWT and the 2D DTCWT.  
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If all the independent random variables ak, k=1,2,…,d , have the same variances 2
a , then 

the last equations became: 
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Substituting (13) into equation (11), the following system of equations is obtained. 
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The solution can be also written in matrix form: 

  -1ˆ    w w nw C C C y  (14) 

This is the expression of the joint zero order Wiener estimator. For d=1, the last equation 
can be written in the particular form: 
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This is the input-output relation of the marginal zero order Wiener filter. Unfortunately, the 
two variances in the last equation are not known a priori. The noise variance can be 
estimated globally, using the diagonal detail sub image obtained at the first decomposition 
level, 3

1D (denoted by HH) of a 2D DWT applied to the acquired image, using the following 
equation: 
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Generally, the variance 2  changes in space. This is the reason why is preferable to estimate 
locally this quantity. Practically the Wiener filtering is realized pixel wise (for each pixel of 
coordinates  ,  ). For this purpose is used a window, for example of rectangular form, 
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centered on the pixel of coordinates  ,   and of size (2P+1) (2P+1) denoted by  ,PF   , 
and the variance is locally estimated inside the window. First is estimated the local 
expectation of the acquired image:  
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and next its local variance : 
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Using these values, the local variance of the noiseless component is computed by: 
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The zero order Wiener filter can be applied in association with the 2D DWT or 2D DT CWT 
or HWT. Its main disadvantage is the fact that the model considered for the noiseless image 
is not adequate because the wavelet coefficients have a heavy tail distribution (due to the 
sparseness of the WTs). Due to the sparseness of the WTs of the noiseless component, its 
distribution is heavy tailed. Indeed, there are only few wavelet coefficients with high 
magnitude; the majority of the wavelet coefficients have small magnitudes producing the 
heavy tails of the distribution. This affirmation is verified with the aid of the following 
experiment.   
The histograms of different subbands obtained applying the HWT to the image Lena are 
computed. The results are represented in figure 11. The linear dependencies of the two 
branches of the logarithms of the histograms prove that the pdfs of the real and imaginary 
parts of the HWT coefficients correspond to exponential laws (which are heavy tailed): 

  1 2log xK e K x    (20) 

where K1 and K2 represent two constants. The Gaussian model supposed for the 
construction of the marginal zero order Wiener filter does not correspond to the linear 
dependencies of the two branches of the histograms: 

  2
2 2

1 3 2 3log K xK e K K x K x      (21) 

So, the hypothesis that the real and imaginary parts of the useful HWT coefficients are 
distributed following Laplace (exponential) laws can be made.  
Taking into consideration the histograms of the noiseless wavelet coefficients it can be 
observed that their repartition is heavy-tailed. The majority of the wavelet coefficients have 
small magnitude (close to zero). So, the repartition of the wavelet coefficients can be 
considered of Laplace type.  
On the basis of this hypothesis, another MAP filter named adaptive soft thresholding can be 
constructed. 
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centered on the pixel of coordinates  ,   and of size (2P+1) (2P+1) denoted by  ,PF   , 
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expectation of the acquired image:  

  
 

 
   

^

2
, ,

1, ,
2 1 P

l
k l F

y k l
P  

  





  (17) 

and next its local variance : 

  
 

   
   

22^ ^

2
, ,

1, , ,
2 1 P

l ly
k l F

y k l
P  

     


 
  

 
  (18) 

Using these values, the local variance of the noiseless component is computed by: 

 
2 2 2^ ^ ^
[ , ] max 0, [ , ] nl l y      

 
   
 

 (19) 

The zero order Wiener filter can be applied in association with the 2D DWT or 2D DT CWT 
or HWT. Its main disadvantage is the fact that the model considered for the noiseless image 
is not adequate because the wavelet coefficients have a heavy tail distribution (due to the 
sparseness of the WTs). Due to the sparseness of the WTs of the noiseless component, its 
distribution is heavy tailed. Indeed, there are only few wavelet coefficients with high 
magnitude; the majority of the wavelet coefficients have small magnitudes producing the 
heavy tails of the distribution. This affirmation is verified with the aid of the following 
experiment.   
The histograms of different subbands obtained applying the HWT to the image Lena are 
computed. The results are represented in figure 11. The linear dependencies of the two 
branches of the logarithms of the histograms prove that the pdfs of the real and imaginary 
parts of the HWT coefficients correspond to exponential laws (which are heavy tailed): 
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where K1 and K2 represent two constants. The Gaussian model supposed for the 
construction of the marginal zero order Wiener filter does not correspond to the linear 
dependencies of the two branches of the histograms: 
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So, the hypothesis that the real and imaginary parts of the useful HWT coefficients are 
distributed following Laplace (exponential) laws can be made.  
Taking into consideration the histograms of the noiseless wavelet coefficients it can be 
observed that their repartition is heavy-tailed. The majority of the wavelet coefficients have 
small magnitude (close to zero). So, the repartition of the wavelet coefficients can be 
considered of Laplace type.  
On the basis of this hypothesis, another MAP filter named adaptive soft thresholding can be 
constructed. 
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Fig. 11. The histograms of some subbands of the HWT of the image Lena computed using 
the mother wavelets Dau_20 are represented semi logarithmically (on the vertical axis are 
represented the logarithms of the values of the histograms) in blue. The corresponding 
linear dependencies are represented in red. 

2.4.1.2.2 The adaptive soft-thresholding filter 
If n is Gaussian distributed and w has a Laplacian distribution then the MAP filter becomes an 
adaptive soft thresholding filter (STF). The hypotheses for this type of marginal MAP filter are: 
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The MAP filter equation (4) becomes: 
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For w>0 it becomes: 
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For w<0 the equation (24) becomes: 

   2 2- / 2 / 0  2 /n ny w w y         (26) 

The condition w>0 implies the condition 22 /ny    and the condition w<0 implies the 
condition 22 /ny    . Taking into account the fact that any real number can be expressed 
as  sgny y y  , the solution of the equation (24) can be put in the following form: 

  2 2

2

sgn 2 / , 2 /
ˆ

0, 2 /

n n

n

y y y
w

y

   

 

   


 (27) 

equivalent with the final form: 

  2ˆ sgn 2 /nw y y  
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where:  
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This MAP filter is a STF with the threshold’s value equal to 22 /n  . Because the quantity 
σ varies from subband to subband, the threshold’s value is variant. In this respect the last 
MAP filter can be considered adaptive. Of course the two variances in equation (28) could 
be estimated using equations (16) and (19). 
2.4.1.2.3 Inter-scale dependence of wavelet coefficients 
The wavelet coefficients are characterized by interscale dependence.  
The cross-correlation of two wavelet coefficients belonging to the 2D DWT of an image f, 
located in the same subband k at the scales m1 and m2= m1+q and having the geometrical 
coordinates ( 1 12 'qn n , 1 12 'qp p ) and (n2, p2) respectively is given by the following 
relation: 
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which represents an inter-scale and intra-band dependency. If the mother wavelet 
k generates by translations and dilations an orthogonal basis of  2 2L R  then its 

autocorrelation has the following property: 

    , ,kR n p n p


  (31) 

and the expression of the inter-scale and intra-band dependency of the coefficients cross-
correlation becomes: 
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Fig. 11. The histograms of some subbands of the HWT of the image Lena computed using 
the mother wavelets Dau_20 are represented semi logarithmically (on the vertical axis are 
represented the logarithms of the values of the histograms) in blue. The corresponding 
linear dependencies are represented in red. 
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This cross-correlation is function of the autocorrelation of the input signal. If we refer to 
pairs of wavelet coefficients located at two consecutive decomposition levels (q=1, m2= 
m1+1) at the same coordinates ( 1 22n n , 1 22p p ) which are named parent coefficient 
(  

1 1 2 2,k
f mD n p ) and child coefficient (  

1 1 1,k
f mD n p ) the expression of their inter-scale 

dependence becomes: 

    12 1
2 2

11 1

, 2 0,0m
k k fD Df m f m

R n p R


  (33) 

which means that the child and the parent coefficient are correlated. So, if the magnitude of 
the parent coefficient is large (small) then the magnitude of the child coefficient is also large 
(small). Taking into consideration that the computation of the HWT reduces at the 
computation of the 2D DWTs of four related images       ,  H ,  H  and  H Hx y y xf f f f , as 
can be seen in figure 8, a similar inter-scale dependence can be observed in the case of the 
pair of parent and child HWT coefficients:    

         12 1
1 1 2 2 H H H H H H, 1, , , 2 0,0 0,0) 0, 0,0) .0)m

z z x x y y x yi i
R m m k n p R R R R

 
      (34) 

The MAP filters which take into account this dependence are multivariate and have better 
performance. Some bivariate probability density functions are constructed starting from the 
Gaussian scale mixture (GSM) statistical model [Selesnick, 2008]. 
2.4.1.2.4 The GSM model 

The construction of the bivariate pdf can be done with the aid of Gaussian Scale Mixtures 
(GSM). This simple statistical model has been used to model natural signals such as speech 
and more recently the wavelet coefficients of natural images. The model is given in equation 
(35). It assumes that each vector of coefficients w is specified by a stationary bivariate zero 
mean Gaussian process x and a spatially fluctuating variance z. 

 ,     R,   Rdz z   w x w, x  (35) 

The multiplier z is usually a function of the surrounding coefficient values (like the local 
variance of the coefficients within the same scale or a more complex function of the 
neighboring coefficients within the same and adjacent scales). The result is always 
leptokurotic (kurtosis ≥ 3), its distribution having long tails. The MMSE estimate with such 
priors takes the form of a locally adaptive Wiener-like estimator. Usually the number of 
elements of the vectors x and w is d=2. To model the self-reinforcing property of the 
coefficients, z must be slowly varying but it does not need to be symmetric in all directions. 
It has been shown that for slowly varying z this model can successfully simulate the high 
kurtosis and longer tails of the marginal distributions. The stationary portion of the model x 
is Gaussian distributed over a small neighborhood of wavelet coefficients. It is generally 
assumed that z varies slowly enough to be considered constant over that neighborhood of 
coefficients. Under this assumption the model is now a particular form of a spherically 
invariant random process called a GSM. For a small neighborhood of coefficients at nearby 
spatial locations and scale, a GSM vector w is the product of two independent random 
variables: a positive scalar z referred to as the hidden multiplier or mixing variable and a 
Gaussian random vector x. The pdf of the Gaussian vector x is given by: 
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(see (12)). Setting a z , we obtain a w x and the pdf of the random vector w is given 
by: 
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Tacking into account the relation of a and z, the pdf of a can be expressed on the basis of the 
pdf of z: 

             2 2/ / / 1 / 2 2a z z zp a p z da dz p a a a p a     (38) 

Substituting (38) into (37), the expression of the pdf of w becomes: 
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It remains to specify the prior probability function pz(z) for the multiplier z. Some 
propositions of prior probability functions are made in [Selesnick, 2008]. One of these 
propositions is the Gamma law: 
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 Substituting (40) into (39), the expression of the pdf of w becomes: 
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Finally: 
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This is a d-dimensional spherically-contoured multivariate pdf [Selesnick, 2008]. For d=2, 
this pdf is bivariate: 
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   (43) 

With the aid of this bivariate distribution the bishrink MAP filter [Sendur&Selesnick, 2002] 
can be constructed. This construction will be explained in the following section. For d=1, the 
pdf in (43) is univariate: 
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This cross-correlation is function of the autocorrelation of the input signal. If we refer to 
pairs of wavelet coefficients located at two consecutive decomposition levels (q=1, m2= 
m1+1) at the same coordinates ( 1 22n n , 1 22p p ) which are named parent coefficient 
(  

1 1 2 2,k
f mD n p ) and child coefficient (  

1 1 1,k
f mD n p ) the expression of their inter-scale 

dependence becomes: 

    12 1
2 2

11 1

, 2 0,0m
k k fD Df m f m

R n p R


  (33) 

which means that the child and the parent coefficient are correlated. So, if the magnitude of 
the parent coefficient is large (small) then the magnitude of the child coefficient is also large 
(small). Taking into consideration that the computation of the HWT reduces at the 
computation of the 2D DWTs of four related images       ,  H ,  H  and  H Hx y y xf f f f , as 
can be seen in figure 8, a similar inter-scale dependence can be observed in the case of the 
pair of parent and child HWT coefficients:    

         12 1
1 1 2 2 H H H H H H, 1, , , 2 0,0 0,0) 0, 0,0) .0)m

z z x x y y x yi i
R m m k n p R R R R

 
      (34) 

The MAP filters which take into account this dependence are multivariate and have better 
performance. Some bivariate probability density functions are constructed starting from the 
Gaussian scale mixture (GSM) statistical model [Selesnick, 2008]. 
2.4.1.2.4 The GSM model 

The construction of the bivariate pdf can be done with the aid of Gaussian Scale Mixtures 
(GSM). This simple statistical model has been used to model natural signals such as speech 
and more recently the wavelet coefficients of natural images. The model is given in equation 
(35). It assumes that each vector of coefficients w is specified by a stationary bivariate zero 
mean Gaussian process x and a spatially fluctuating variance z. 

 ,     R,   Rdz z   w x w, x  (35) 

The multiplier z is usually a function of the surrounding coefficient values (like the local 
variance of the coefficients within the same scale or a more complex function of the 
neighboring coefficients within the same and adjacent scales). The result is always 
leptokurotic (kurtosis ≥ 3), its distribution having long tails. The MMSE estimate with such 
priors takes the form of a locally adaptive Wiener-like estimator. Usually the number of 
elements of the vectors x and w is d=2. To model the self-reinforcing property of the 
coefficients, z must be slowly varying but it does not need to be symmetric in all directions. 
It has been shown that for slowly varying z this model can successfully simulate the high 
kurtosis and longer tails of the marginal distributions. The stationary portion of the model x 
is Gaussian distributed over a small neighborhood of wavelet coefficients. It is generally 
assumed that z varies slowly enough to be considered constant over that neighborhood of 
coefficients. Under this assumption the model is now a particular form of a spherically 
invariant random process called a GSM. For a small neighborhood of coefficients at nearby 
spatial locations and scale, a GSM vector w is the product of two independent random 
variables: a positive scalar z referred to as the hidden multiplier or mixing variable and a 
Gaussian random vector x. The pdf of the Gaussian vector x is given by: 
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 px(x)  
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d
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 (36) 

(see (12)). Setting a z , we obtain a w x and the pdf of the random vector w is given 
by: 

        
0

1 / /d
ap p a a p a da



  w xw w  (37) 

Tacking into account the relation of a and z, the pdf of a can be expressed on the basis of the 
pdf of z: 

             2 2/ / / 1 / 2 2a z z zp a p z da dz p a a a p a     (38) 

Substituting (38) into (37), the expression of the pdf of w becomes: 

 pw(w)=    2

0

2 1 / d
zap a a



  px(w/a)da (39) 

It remains to specify the prior probability function pz(z) for the multiplier z. Some 
propositions of prior probability functions are made in [Selesnick, 2008]. One of these 
propositions is the Gamma law: 
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 Substituting (40) into (39), the expression of the pdf of w becomes: 
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Finally: 
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This is a d-dimensional spherically-contoured multivariate pdf [Selesnick, 2008]. For d=2, 
this pdf is bivariate: 
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With the aid of this bivariate distribution the bishrink MAP filter [Sendur&Selesnick, 2002] 
can be constructed. This construction will be explained in the following section. For d=1, the 
pdf in (43) is univariate: 
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This univariate pdf is of the form of the Laplace law; see the hypotheses of the adaptive STF, 
(22). In consequence the GSM hypothesis, even for the case of a unique scale, is useful for 
modeling the repartition of the wavelet coefficients. Other proposition of prior probability 
function made in [Selesnick, 2008] is the exponential   z

zp z e  for 0z  . The GSM model 
was also used for the conception of one of the best denoising methods [Portilla et al., 2003]. 
The prior probability function proposed in this reference is   1 / ,zp z z  for 0z  . It must 
be remarked that strictly speaking this is not a pdf. Substituting this function in (39) and 
supposing that the pdf of the Gaussian vector is that given in (36) it can be written: 

 4pw(w1,w2)=  

2 2

22
02 2 2 2

1 2

1 1 1 .
t

e
w w



 


   



w

w w
 (45) 

It results a third spherically-contoured bivariate pdf. A last bivariate pdf for the wavelet 
coefficients was proposed in [Achim&Kuruoglu, 2005]: 

 5pw(w1,w2)=
 

3
2 2 2 2
1 2

.
2 w w



  
 (46) 

Using one of these models, in [Selesnick, 2008] is conceived a bivariate MAP filter called 
bishrink. 

2.4.1.2.5 The bishrink filter 
The noise is assumed i.i.d. Gaussian, 
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The model of the noise-free image is given in (43):  

1pw(w)
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2 σ

w w
e



 
   

a heavy tailed distribution. Substituting these two pdfs in the equation of the MAP filter (4) 
this equation becomes: 

      2 2
1 1 2 21 2 2

1 22 2 2 2 2
3 3ˆ argmax ln .

4 2 2n n n

y w y w
w w

    

        
  w

w y  (48) 

The system of equations that gives the maximum of the right hand side of the last 
equation is: 
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or: 
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The system can be put in the following form: 
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 (51) 

Computing the square of each equation it results: 
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 (52) 

By adding the two equations it can be obtained: 
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1 2 1 2 1 2 1 22
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(22). In consequence the GSM hypothesis, even for the case of a unique scale, is useful for 
modeling the repartition of the wavelet coefficients. Other proposition of prior probability 
function made in [Selesnick, 2008] is the exponential   z

zp z e  for 0z  . The GSM model 
was also used for the conception of one of the best denoising methods [Portilla et al., 2003]. 
The prior probability function proposed in this reference is   1 / ,zp z z  for 0z  . It must 
be remarked that strictly speaking this is not a pdf. Substituting this function in (39) and 
supposing that the pdf of the Gaussian vector is that given in (36) it can be written: 
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It results a third spherically-contoured bivariate pdf. A last bivariate pdf for the wavelet 
coefficients was proposed in [Achim&Kuruoglu, 2005]: 
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Using one of these models, in [Selesnick, 2008] is conceived a bivariate MAP filter called 
bishrink. 

2.4.1.2.5 The bishrink filter 
The noise is assumed i.i.d. Gaussian, 
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The model of the noise-free image is given in (43):  
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a heavy tailed distribution. Substituting these two pdfs in the equation of the MAP filter (4) 
this equation becomes: 
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By adding the two equations it can be obtained: 
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Substituting this result in the two equations of the system in (52) it can be written: 
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 (54) 

So the input-output relation of the bishrink filter is:  

 1
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 (55) 

It can be observed that the bishrink filter is an estimator of the adaptive STF type. In this 

case the threshold’s value is 
23 nt 


 . This estimator requires prior knowledge of the noise 

variance and of the marginal variance of the clean image for each wavelet coefficient. These 
quantities can be estimated using the equations (16) and (19). The sensitivity of the bishrink 
filter with the estimation of the noise standard deviation ˆn  can be computed with the 
relation: 
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The input-output relation of the bishrink filter (55) can be put in the following form:  
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 So, it can be written:  
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    (57) 

The absolute value of this sensitivity is inversely proportional to ˆn . When the value of the 
estimation of the noise standard deviation is higher then the performance of the bishrink 
filter is poorer.  
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Another very important parameter of the bishrink filter is the local estimation of the 
marginal variance of the noise-free image ̂ . The sensitivity of the estimation 1ŵ with ̂  is 
given by: 

 1
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ˆ ˆ3 3, if 
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0, otherwise
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 (58) 

This is a decreasing function of ̂ . The precision of the estimation based on the use of the 
bishrink filter decreases with the decreasing of ̂ . Similar sensitivity analyses can be 
accomplished for the zero order Wiener filter or for the adaptive soft-thresholding filter, 
concluding that their worst behavior corresponds to the homogeneous regions of their 
noise-free input image component.  
Secondly, the local variance of a pixel gives some information about the frequency content 
of the region to which the considered pixel belongs. If the pixels of a given region have low 
local variances then the considered region contains low frequencies. If these pixels have 
high local variances then the considered region contains high frequencies.  
The bishrink is a local bivariate MAP filter. Its performance depends on the quality of the 
estimation of a parameter, the local variance of the noiseless component of the acquired 
image. The quality of this estimate depends on the shape and the size of the estimation 
window. These estimation windows have different shapes in subbands with different 
preferential orientations highlighting the better directional selectivity of DTCWT and HWT 
versus the DWT.  
Other MAP filters can also be considered. A MAP filter constructed on the basis of a 
bivariate Cauchy model is described in [Achim&Kuruoglu, 2005]. The Pearson statistical 
model is exploited for the construction of the marginal MAP filter presented in [Foucher et 
al., 2001]. The model of generalized Gaussian (GG) is used in [Argenti et al., 2006]. 

2.5 Despecklisation systems 
We will compare in the following the classical despecklisation systems with some modern 
denoising systems conceived for the reduction of speckle noise in SONAR images based on 
complex WTs, namely the 2D DT CWT and the HWT.  
The modern systems have the architecture presented in figure 12. The block named 
Sensitivity reduction corrects the drawbacks of the additive noise denoising kernel. One of 
the disadvantages of homomorphic denoising methods is the introduction of an undesirable 
bias. The expectations of the result and of the noiseless component of the acquired image are 
different. Their difference is given by the bias already mentioned. The proposed 
despecklisation system corrects this bias with the aid of two mean computation systems. 
The correction is based on the property of the speckle noise to have unitary expectation. The 
first mean computation system in figure 1 estimates the mean of the acquired image which 
is equal with the mean of its noise-free component (because the speckle has unitary mean). 
The second mean computation system in figure 12 computes the mean of the image at the 
output of the Sensitivity reduction block. This value is extracted and the mean of the 
noiseless component of the acquired image is added.  
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Substituting this result in the two equations of the system in (52) it can be written: 
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So the input-output relation of the bishrink filter is:  
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 So, it can be written:  
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The absolute value of this sensitivity is inversely proportional to ˆn . When the value of the 
estimation of the noise standard deviation is higher then the performance of the bishrink 
filter is poorer.  
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Another very important parameter of the bishrink filter is the local estimation of the 
marginal variance of the noise-free image ̂ . The sensitivity of the estimation 1ŵ with ̂  is 
given by: 
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This is a decreasing function of ̂ . The precision of the estimation based on the use of the 
bishrink filter decreases with the decreasing of ̂ . Similar sensitivity analyses can be 
accomplished for the zero order Wiener filter or for the adaptive soft-thresholding filter, 
concluding that their worst behavior corresponds to the homogeneous regions of their 
noise-free input image component.  
Secondly, the local variance of a pixel gives some information about the frequency content 
of the region to which the considered pixel belongs. If the pixels of a given region have low 
local variances then the considered region contains low frequencies. If these pixels have 
high local variances then the considered region contains high frequencies.  
The bishrink is a local bivariate MAP filter. Its performance depends on the quality of the 
estimation of a parameter, the local variance of the noiseless component of the acquired 
image. The quality of this estimate depends on the shape and the size of the estimation 
window. These estimation windows have different shapes in subbands with different 
preferential orientations highlighting the better directional selectivity of DTCWT and HWT 
versus the DWT.  
Other MAP filters can also be considered. A MAP filter constructed on the basis of a 
bivariate Cauchy model is described in [Achim&Kuruoglu, 2005]. The Pearson statistical 
model is exploited for the construction of the marginal MAP filter presented in [Foucher et 
al., 2001]. The model of generalized Gaussian (GG) is used in [Argenti et al., 2006]. 

2.5 Despecklisation systems 
We will compare in the following the classical despecklisation systems with some modern 
denoising systems conceived for the reduction of speckle noise in SONAR images based on 
complex WTs, namely the 2D DT CWT and the HWT.  
The modern systems have the architecture presented in figure 12. The block named 
Sensitivity reduction corrects the drawbacks of the additive noise denoising kernel. One of 
the disadvantages of homomorphic denoising methods is the introduction of an undesirable 
bias. The expectations of the result and of the noiseless component of the acquired image are 
different. Their difference is given by the bias already mentioned. The proposed 
despecklisation system corrects this bias with the aid of two mean computation systems. 
The correction is based on the property of the speckle noise to have unitary expectation. The 
first mean computation system in figure 1 estimates the mean of the acquired image which 
is equal with the mean of its noise-free component (because the speckle has unitary mean). 
The second mean computation system in figure 12 computes the mean of the image at the 
output of the Sensitivity reduction block. This value is extracted and the mean of the 
noiseless component of the acquired image is added.  
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Both additive noise denoising kernels which exploit the 2D DT CWT and the HWT use the 
bishrink filter associated with the corresponding complex WT. The architecture of the 
corresponding Sensitivity reduction blocks is different for the two complex WTs.  
 
 

 
Fig. 12. The architecture of the proposed denoising system. The mean correction mechanism 
and the additive noise denoising kernel are highlighted. 

The bishrink filter can be used for despecklisation in the wavelets domain because its 
statistical model for the noise is appropriate as can be seen from the following experiment. 
The speckle can be modeled using a Rayleigh distribution with unitary mean. It is obtained 
computing the square root of a sum of squares of two white Gaussian noises having the 
same variance. The first image of figure 13 contains a normalized representation of the pdf 
in equation (43) particularized for a given variance of the noise. The second image of figure 
13 represents the normalized bivariate histogram of the HWT coefficients of the logarithm 
of the noise. It was obtained considering the HWT coefficients rz corresponding to 
horizontal details from the first two decomposition levels. The similarity of the surfaces 
from the two images in figure 13 proves the validity of the bivariate noise statistical model 
used for the construction of the bishrink filter and the possibility to use this filter in 
despecklisation applications.  
 

 
Fig. 13. The representation of the pdf in eq. (49) (left) and the corresponding bivariate 
histogram (right). 

2.6 Simulations results 
We present two types of simulation results: for synthesized speckle noise and for real 
SONAR images. The performance of the simulation results reported in this chapter is 
appreciated on the basis of some quality measures. The first one is the peak signal to noise 
ratio (PSNR) which is defined in the following. Let s and ŝ denote the clean and the 
denoised images. The root mean square (rms) of the approximation error is computed by: 

n1 
n2 

n1 
n2 

ln e( ) 

     mean 
computation 

     mean 
computation 

- 

additive 
noise 
denoising      
kernel 

Sensitivity 
reduction

 
SONAR Images Denoising 

 

165 

 21 ˆε q q
p q

s s
N

   

where Np is the number of pixels. The PSNR in dB is given by:  

10
255PSNR 20log
ε

   
 

 

Because its computation requires the knowledge of s the PSNR is computed in the 
experiments associated with synthesized speckle noise. Another quality measure is 
represented by the method’s noise. For multiplicative noise (as the speckle is) the method’s 
noise is defined by the ratio between the acquired image and the denoising result. This noise 
must be as similar as possible with the noise which perturbed the noiseless component of 
the acquired image. As the PSNR, the method noise can be appreciated only in the 
experiments associated with synthesized speckle. A third measure of quality of the 
denoising of a homogeneous region is given by the enhancement of the equivalent number 
of looks (ENL): 

2mean
standard deviation

ENL    
 

. 

The enhancement of ENL is computed as the ratio of the output and input ENLs of the same 
region. This is a quality measure which can be appreciated in the case of real SONAR 
images as well. We have used two types of synthesized speckle. The first type is synthesized 
using a Rayleigh distribution with unitary mean and it is associated with the image Lena. 
The second type is synthesized using the method proposed in [Walessa&Datcu, 2000] and is 
associated with the test image presented in figure 14 [Walessa&Datcu, 2000]. 
 

 
Fig. 14. A test image obtained by the multiplication of a mosaic of real and synthesized 
images with the speckle noise generated in [Walessa&Datcu, 2000]. 

To run these simulations on real SONAR images we have used a database obtained from 
IFREMER Brest France. We are thankful for this opportunity. Besides these three objective 
quality measures, we considered the visual aspect of the results as well. 

2.6.1 Synthesized images 
We have applied first the classical despecklisation methods to the test image in figure 14 
obtaining the results presented in figure 15. The corresponding filters are indexed with two 
indices, the first one specifying the size of the analysis window (for example 7 for a 
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Both additive noise denoising kernels which exploit the 2D DT CWT and the HWT use the 
bishrink filter associated with the corresponding complex WT. The architecture of the 
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horizontal details from the first two decomposition levels. The similarity of the surfaces 
from the two images in figure 13 proves the validity of the bivariate noise statistical model 
used for the construction of the bishrink filter and the possibility to use this filter in 
despecklisation applications.  
 

 
Fig. 13. The representation of the pdf in eq. (49) (left) and the corresponding bivariate 
histogram (right). 

2.6 Simulations results 
We present two types of simulation results: for synthesized speckle noise and for real 
SONAR images. The performance of the simulation results reported in this chapter is 
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where Np is the number of pixels. The PSNR in dB is given by:  
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Because its computation requires the knowledge of s the PSNR is computed in the 
experiments associated with synthesized speckle noise. Another quality measure is 
represented by the method’s noise. For multiplicative noise (as the speckle is) the method’s 
noise is defined by the ratio between the acquired image and the denoising result. This noise 
must be as similar as possible with the noise which perturbed the noiseless component of 
the acquired image. As the PSNR, the method noise can be appreciated only in the 
experiments associated with synthesized speckle. A third measure of quality of the 
denoising of a homogeneous region is given by the enhancement of the equivalent number 
of looks (ENL): 
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The enhancement of ENL is computed as the ratio of the output and input ENLs of the same 
region. This is a quality measure which can be appreciated in the case of real SONAR 
images as well. We have used two types of synthesized speckle. The first type is synthesized 
using a Rayleigh distribution with unitary mean and it is associated with the image Lena. 
The second type is synthesized using the method proposed in [Walessa&Datcu, 2000] and is 
associated with the test image presented in figure 14 [Walessa&Datcu, 2000]. 
 

 
Fig. 14. A test image obtained by the multiplication of a mosaic of real and synthesized 
images with the speckle noise generated in [Walessa&Datcu, 2000]. 

To run these simulations on real SONAR images we have used a database obtained from 
IFREMER Brest France. We are thankful for this opportunity. Besides these three objective 
quality measures, we considered the visual aspect of the results as well. 

2.6.1 Synthesized images 
We have applied first the classical despecklisation methods to the test image in figure 14 
obtaining the results presented in figure 15. The corresponding filters are indexed with two 
indices, the first one specifying the size of the analysis window (for example 7 for a 
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rectangular window with size 77) and the second one the number of looks of the image 
treated (1 in all the three cases).  
 

 
Fig. 15. A comparison of the classical despecklisation filters; from left to right: Kuan 9-1 , Lee 
7-1, Frost 5-1. 

The PSNRs obtained separating the sub-image Lena from the test image and from the results 
in figure 15 are indicated in Table I and compared with the results obtained by applying the 
denoising methods which associates the bishrink filter with the 2D DT CWT (fifth column) 
and with the HWT (sixth column) respectively.  
 

Noisy Lee Frost Kuan 2D DT CWT HWT 
21.4 27.2 27.0 28.1 31.4 31.9 

Table 1. The PSNRs of different speckle denoising methods (in dB). 

The superiority of the denoising methods acting in the wavelet domain is obvious. The 
comparison in figure 16 permits the appreciation of the visual aspect of the results of the 
methods based on 2D DT CWT and HWT for the treatment of the test image in figure 14. 
These results are compared in figure 16 with the result of another despecklisation method 
applied in the spatial domain [Walessa&Datcu, 2000]. The superiority of the directional 
selectivity of the methods based on complex wavelets can be observed comparing the 
interior of the regions highlighted in yellow. Indeed the methods based on wavelets 
conserve better the details of the hat. The result with the best visual aspect in figure 16 
corresponds to the utilization of the HWT. In figure 17 are compared the results of three 
different methods based on wavelets. The first two despecklisation methods are those based 
on 2D DT CWT and HWT and the third one was proposed in [Argenti et al., 2006] and is 
based on the association of the 2D UDWT with a MAP filter. The 2D UDWT is computed 
either with the aid of the Daubechies mother wavelets with eight vanishing moments, db8 
or with the pair of biorthogonal mother wavelets bior9.7. The first denoising algorithm 
proposed in [Argenti et al., 2006] performs a local linear minimum mean square error 
(LLMMSE) filtering in the UDWT domain. The second one uses a MAP filter constructed 
supposing that the noise-free wavelet coefficients and the wavelet coefficients of the noise 
are distributed according to Generalized Gaussian Distributions.  
The parameters of those pdfs are estimated for each pixel of the input image. The 
corresponding MAP filter equation is solved with the aid of numerical methods. All the 
three results in figure 17 have a good visual aspect. The methods based on complex wavelets 
(2D DT CWT and HWT) prove a better output PSNR, a better directional selectivity, a better 
treatment of the contours and textures and a better contrast preservation but the method 
based on 2D UDWT treats better the homogeneous regions. The method’s noise 
corresponding to the use of 2D DT CWT is quite identical with the original noise (compare 
images (b) and (d)) some differences appearing in the dark regions of the image Lena. 
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Fig. 16. A comparison of the visual aspect of the results of three despecklisation methods; 
From up to bottom: noisy sub-images, results obtained applying the method in 
[Walessa&Datcu, 2000], results obtained applying the method in [Ifremer, 2010] and results 
obtained applying the method based on the HWT. 
 

 
Fig. 17. A comparison of three despecklisation methods acting in the wavelets domain; (a) 
noisy image (PSNR=21.4 dB), (b) speckle noise distributed following a Rayleigh law with 
unitary mean, (c) result obtained with the method based on 2D DT CWT (PSNR=31.4 dB), (d) 
2D DT CWT method’s noise, (e) result obtained with the method based on HWT (PSNR=32.5 
dB), (f) result obtained with the method in [Argenti et al., 2006] (PSNR=31.1 dB). 
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Fig. 17. A comparison of three despecklisation methods acting in the wavelets domain; (a) 
noisy image (PSNR=21.4 dB), (b) speckle noise distributed following a Rayleigh law with 
unitary mean, (c) result obtained with the method based on 2D DT CWT (PSNR=31.4 dB), (d) 
2D DT CWT method’s noise, (e) result obtained with the method based on HWT (PSNR=32.5 
dB), (f) result obtained with the method in [Argenti et al., 2006] (PSNR=31.1 dB). 
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Fig. 18. A comparison of the despecklisation methods based on 2D DT CWT and HWT. 
From left to right and up to bottom; acquired SONAR image, result of the despecklisation 
method based on 2D DT CWT, result of the despecklisation method based on HWT, 2D DT 
CWT method’s noise. 

2.6.2 Real images 
In figure 18 is made a comparison of the despecklisation methods based on 2D DT CWT and 
HWT applied to a very difficult SONAR image. The first picture in figure 18 represents the 
acquired SONAR image. It is very difficult because it has small size (200320) and because 
the relief of the sea floor is flat in the region considered. So, all the pixels have intensities of 
similar values. The image was artificially colored, to see better the small intensity 
differences. Even the specular region can be observed with difficulty in this picture.  This 
image is very noisy. It can be observed, analyzing the results of denoising, a demarcation 
line between two regions (the blue one and the green one) with pixels having different 
intensities. The difference between the intensities of the pixels belonging to the two regions 
is smaller than 1 dB. So, the proposed denoising method increases the discrimination 
capability of the analyst. Another consequence of the denoising based on wavelets is the 
better separation of the specular region from the rest of the scene. It can be also observed 
that a great amount of noise was eliminated by the proposed denoising methods. 
Comparing the second and the third pictures in figure 18, it can be noticed that the result of 
the despecklisation method based on the 2D DT CWT is over smoothed. So, the 
despecklisation method based on HWT seems to be the best choice. The comparison of the 
despecklisation methods based on 2D DT CWT and HWT is continued in figure 19, where 
other two SONAR images are considered. On the first column are represented the row 
SONAR images, on the second column are represented the results obtained applying the 
despecklisation method based on 2D DT CWT and on the last column are represented the 
results obtained applying the despecklisation method based on HWT. Analyzing figure 19, 
it can be observed that the two despecklisation methods based on wavelets are equivalent 
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from the visual aspect point of view. Finally, we compare in figure 20 the two denoising 
methods based on 2D DT CWT and HWT respectively using a SONAR image containing a 
higher amount of information. The performance obtained by the two despecklisation 
methods based on wavelets for homogeneous regions is certificated by the important 
enhancements of ENL obtained considering a region of 1201000 pixels. The gain in 
performance of the method based on HWT can be explained by the superiority of HWT 
versus 2D DT CWT in despecklization applications. 
 

 
Fig. 19. A comparison of two despecklisation methods based on wavelets; First column: raw 
images, Second column: results obtained applying the despecklisation method based on 2D 
DT CWT, Third column: results obtained applying the despecklisation method based on 
HWT.  

3. Conclusion 
This book is dedicated to SONAR systems. Despite the actual proliferation of this type of 
images, there are not numerous publications dealing with their denoising. In this chapter 
was presented the particular case of SONAR images starting with an overview of speckle 
removal techniques both in the spatial domain and in the wavelet domain. We have proved 
by simulations the superiority of the methods applied in the wavelet domain. These 
methods were classified according to the type of the wavelet transform used: 2D DWT, 2D 
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Fig. 20. Left: sea-bed sonar Swansea image (we are thankful to GESMA for providing this 
image, ENL=3.4), Middle: result of the method based on 2D DT CWT (ENL=102), Right: 
result of the method based on HWT (ENL=150). 

UDWT, 2D DT CWT and HWT. In the case of the 2D DT CWT and HWT, we have used 
homomorphic filtering techniques and applied the bishrink filter in the ‘additive noise 
denoising kernel’ block, in figure 12. The proposed algorithms use two of the best WTs, the 
2D DT CWT and the HWT and a very good MAP filter which can be associated for 
despecklisation purposes. The undesirable bias introduced by the homomorphic methods is 
corrected using a clever combination of two expectation computation blocks.  
The results obtained were satisfactory, especially those in which HWT with Biorthogonal 
9/7 as mother wavelet was associated with the bishrink filter, followed by a supplementary 
correction applied to homogeneous areas. We have proved by simulation that the HWT is a 
better choice than the DWT, the UWT or the DT CWT for SONAR images despecklisation. 
The denoising method based on HWT outperforms other remote sensing images denoising 
methods from the visual aspect (it preserves better the contrast of the noiseless component 
of the image which must be denoised), the PSNR enhancement and the enhancement of ENL 
points of view. It is faster than the other despecklisation methods as well.  
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1. Introduction 
Although SONAR systems have been in practical use since the turn of the 20th century, the 
Titanic tragedy in Apr. 1912 has become an inflection point for SONAR system and 
development of its derivations in which SONAR system can be considered as one of the 
most developed engineering systems. SONAR systems development during especially 
World War II is undeniable in terms of applications of SONAR systems, SONAR signal 
processing either in active or in passive systems, however, signal processing in the new area 
of underwater wireless networks are mainly based on academic research around the world. 
The main research subjects have concerned with detection/ classification, tracking and 
telecommunication tasks. In this chapter, we discuss research in signal processing for 
SONAR systems and underwater wireless networks including classic and modern 
approaches based on intelligent methods. Each method has been briefly discussed as more 
details can be found through the references at the end.  
Detection/Classification task of SONAR signals, especially in the passive SONAR system, is 
one of the most challenging areas in this field. In passive SONAR system, received noises 
with SNR as low as -15dB are very common at the receiver (Urick 1983). Added 
reverberation and scattering, which are similar to phenomena as clutter in RADAR are 
responsible for complexity in this task of a SONAR system. There are differences between 
RADAR and SONAR signal processing. The challenge of SONAR signal processing is to 
detect/classify targets with very weak noises whereas the challenge of RADAR signal 
processing is to discriminate Target-of-Interest (ToI) among many uninteresting tracks. In 
signal processing literature, SONAR signal can be classified to wide range of applications 
according to the SONAR mode, i.e. active or passive SONAR system, and the nature of 
received signal, i.e. radiated acoustic noise of marine vessels, received active SONAR ping’s 
echo from ships, bats’ echo or marine mammals’ sound, and so on. The passive SONAR 
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plays an important role in the modern naval battles. In addition to the long range detection, 
this mode of SONAR systems works covertly so the underwater surveillance systems utilize 
these two advantages of passive SONAR to stealthily monitor the surface and sub-surface 
marine vessels. The “class” of marine vessels is defined according to the application of 
surveillance system for example surface and sub. For decades, the trained people classified 
and recognized the class of marine vessels by listening to their radiated noise. Substituting 
these people with intelligent systems for classifying marine vessels based on their acoustic 
radiated noise is one of the hot topics in signal processing and artificial intelligence. In this 
chapter, we will present a brief introduction on radiated and background noise in the sea. In 
addition, we present a literature review and some case studies.  
One of the best techniques in the classic era was Matched-Field Processing (MFP), which 
was originally developed for SONAR signal processing but has subsequently been 
transitioned to the RADAR applications. Another method based on Hidden Markov Model 
(HMM), inspired from speech processing (Becchetti 1999) researches, was exploited to 
recognize the noises of desired targets. The main idea was determining similarity among 
detected signals, which were enhanced during processing and recoded noises of desired 
targets as data. Approaches using the classic methods were eligible to cooperate with 
human experts to detect/ classify the targets. The well-known classic methods are explained 
in this chapter. Nevertheless, we show that the classic methods did not have capability of 
consistency especially when the new techniques to silence targets were exploited as used for 
atomic submarines. On the other hand, Artificial Neural Networks (ANN) attracted several 
interests again in academic/industrial areas around the world after landmark article of 
Hopfield (Hopfield 1982), and Rumelhart and McClelland book on Parallel Distributed 
Processing (Rumelhart 1987). In the decade of 90th, research on intelligent processing of 
SONAR signals has been increasingly grown. We will discuss research headlines on 
intelligent processing of SONAR signals in the past two decades, which we named as 
modern methods. We considered two different types of neural networks and their 
expansions for SONAR signal processing. 
Although intelligent methods outperformed classic methods in SONAR signal processing 
using the same data, they need to large amount of real data for learning the artificial neural 
networks, thus a considerable number of research papers are based on simulations of 
SONAR signals and environments. In addition, new trends on mixing classic and modern 
methods have been introduced. In fact, mixed methods strengthen advantages of each 
approach and reduce their disadvantages. For instance, the hybrid method of HMM/ANN 
models has produced significant results in SONAR signal processing in which considerable 
research papers have been published in this area. We will also explain some robust 
similarity measure named Hausdorff Similarity Measure (HSM), which can be exploited in 
both classic and modern methods for detection/ classification task.  
Target tracking as another important part of SONAR systems will be discussed. In a target 
tracking problem, the tracker sequentially estimates the target parameters of interest based 
on the sensor observations. The application of target tracking is in variety of scientific and 
engineering including SONAR, RADAR, biomedical imaging, computer vision, etc. In an 
active SONAR system, a transmitter sends signals, or pings, in the surveillance region, and 
receivers look for the return signals. In a passive SONAR system, the receiver collects the 
incoming signals with power greater than a preset threshold. In both active and passive 
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SONAR systems, the measured signals, known as contacts, are reflected either from targets 
or from other undesired sources. In the latter case, the measured signal is known as a false 
alarm or clutter as mentioned before. In a SONAR target tracking system, the existence of 
clutter measures, nonlinear relation between the observation signal and the target 
parameters, and low detectable target signals add more uncertainty in the tracking system 
and must be addressed by the tracker. 
Finally, in the last section of the chapter, one application of signal processing methods for 
underwater wireless networks including wireless telecommunication networks have been 
explained. Since, enhanced Digital Signal Processor (DSP) hardware modules are needed for 
modems of underwater wireless networks, fast, robust and reliable methods have been 
exploited to implement such hardware. The new area of security in underwater wireless 
networks will be discussed at the end of the chapter. 

1.1 The literature review 
Some studies on this special topic of SONAR systems use real data of passive SONAR to 
evaluate the performance of their suggested system while the SONAR data acquisition is a 
time and money consuming project, so most of works use the simulated data. The selection 
of discriminating features and classifiers are two important issues, as well. Implementation 
issues for HMM can be find in (Becchetti 1999) which implementation issues of Markov 
Chains have been also considered. To develop a sensor-adaptive Autonomous Underwater 
Vehicle (AUV) technology specifically directed toward rapid environmental assessment and 
mine countermeasures in coastal environments a low-frequency SONAR system has been 
introduced in Generic Ocean Array Technology Sonar (GOATS) joint research program at 
MIT (Eickstedt 2003). 
The discriminating features introduced in (Lourens 1988) are the locations of poles of the 
second order Autoregressive (AR) model. These are used for classifying the noises of three 
propulsion systems (High speed diesel, Low speed diesel and Turbine). The authors in 
(Rajagopal 1990) defined four classes of marine vessels. These classes can be recognized by 
the vessels speed, the blade rate of propeller, the location of tonal components of machinery, 
the gear noise, the injector noise and the low frequency radiation from hull of marine 
vessels. All of these features could be extracted from Power Spectral Density (PSD) (Stoica 
2005) of radiated noise.  
The algorithm suggested in (Li 1995) uses six parameters extracted from power spectrum. In 
this method, a standard feature vector is obtained for each category of ships. Then, the 
weighted distance between each standard vector and the extracted feature vector from test 
data is calculated. This distance determines the category to which the test data belongs. 
There are nine unknown parameters in the feature extraction process and the weighted 
distance calculation that their values must be selected. Nothing is suggested about selection 
of these parameters in (Li 1995). So, the implementation of this method is difficult or even 
impossible.  
The discriminating features suggested in (Soares-Filho 2000) are based on power spectral 
density of radiated noise of four different classes of ships. In this paper the background 
noise has been estimated using Two-Pass Split-Window (TPSW) (Nielsen 1991) and the 
tonal components were extracted by subtracting the ambient noise from total power spectral 
density.  
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The neural network is the suggested classifier in this paper. The suggested method in (Ward 
2000) is based on the Short Time Fourier Transform (STFT) as features and Finite Impulse 
Response Neural Network (FIRNN) as classifier. For performance evaluation, the authors 
have utilized the recorded data by Defense Research Establishment Atlantic using 
underwater sonobuoys in the Bedford Basin off Nova Scotia, Canada. The authors of 
(Farrokhrooz 2005) represented the acoustic radiated noise of ships by an AR model with 
appropriate order and coefficients of this model are used for classification of ships. A 
Probabilistic Neural Network (PNN) (Duda 2000) is used as the classifier and the AR model 
coefficients are used as the feature vector to this classifier. The performance of this method 
is examined by using a bank of real data files.  
The authors of (Xi-ying 2010) have analyzed the advantages and disadvantages between 
discriminating features extracted from power spectral density and higher order spectrum, 
and then combined the power spectrum density estimation and higher order spectrum to 
extract the distinguishable characteristics synthetically. The proposed classifier is a kind of 
Back Propagation (BP) neural network (Duda 2000) with some modifications. Two sets of 
discriminating features proposed in (Farrokhrooz 2011). The first set of features is extracted 
from AR model of radiated noise and the other is directly extracted from power spectral 
density of radiated noise. The proposed classifier is the modified probabilistic neural 
network, which is referred to Multi-Spread PNN (MS-PNN) and a method for estimating the 
parameters of classifier.  
Advanced technologies in SONAR systems have been thoroughly presented in (Silva 2009), 
the underwater wireless telecommunication networks challenges, signal processing 
techniques and current studies have been discussed in (Stojanovic 2006, Stojanovic 2008), 
State-of-the-Art in underwater acoustic sensor networks have been studied in (Akyildiz 
2006) and a survey on underwater networks can be found in (Peterson 2006). In addition, 
hardware issues have been considered in (Benson 2008) as pioneer works of underwater 
acoustic networks researches and developments. A secure technique for underwater 
wireless networks has been recently introduced by (Peyvandi 2010). 

2. Classic approaches 
2.1. Basic Concepts 
SONAR systems are divided into two main categories – active and passive. Passive SONAR 
system (figure 1: (a)) provides monitoring the undersea environment without sending 
energy through the water. On the other hand, active SONAR system can act same as 
RADAR using responses from signals sent towards targets.  
Underwater signals obtained from passive SONAR contain valuable clues for source 
identification even in high noisy environments. Attempts on detection/classification of 
acoustic signals based on spectral characteristics have met little success in early era of 
SONAR system development (Urick 1963).  
In addition, finding the rules to classify objects in underwater is more difficult than those for 
surface vessels.  
Understanding the nature and characteristics of ambient noise and the acoustic radiated 
noise of vessels is of great importance in selecting the discriminating features and the 
classification algorithms.  
Therefore, we present a brief explanation about sources of ambient and radiated noises and 
their spectral characteristics. 
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The ambient noise  
The major sources of ambient noise are as follows (Urick 1963, Burdic 1991):  
 Seismic disturbances 
 Biological organisms' activities 
 Oceanic turbulence 
 Distant shipping 
 Wind 
 Thermal noise 
The distant shipping and wind are usually the main sources of ambient noise in the passive 
SONAR system. The level of these two kinds of noise depends on the distance from 
shipping lines and the sea state, respectively. In deep waters the distant shipping noise is 
dominant in frequencies from about 10-20 Hz to about 200-300 Hz, and wind noise is 
dominant in frequencies from about 200-300 Hz to several tens of kHz. The power spectral 
density of ambient noise is relatively smooth in the acoustic region. Some studies show a 
Gaussian distribution for ambient noise but other studies claim that it has a non-Gaussian 
distribution (Wenz 1962).  
 

 
Fig. 1. (a) Passive and (b) Active modes of SONAR system (Physics Online) 

The acoustic radiated noise 
The acoustic radiated noise produced by the vessel's machinery and its motion in sea, 
consists of broadband and narrowband components. The propeller and the hydrodynamic 
turbulence produce a broadband noise. The narrowband components are produced by the 
propeller, propulsion system and auxiliary machinery. Generally, the spectrum of acoustic 
radiated noise varies with the change of speed (Urick 1963).  
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Therefore, we present a brief explanation about sources of ambient and radiated noises and 
their spectral characteristics. 

 
SONAR Systems and Underwater Signal Processing: Classic and Modern Approaches 

 

177 

The ambient noise  
The major sources of ambient noise are as follows (Urick 1963, Burdic 1991):  
 Seismic disturbances 
 Biological organisms' activities 
 Oceanic turbulence 
 Distant shipping 
 Wind 
 Thermal noise 
The distant shipping and wind are usually the main sources of ambient noise in the passive 
SONAR system. The level of these two kinds of noise depends on the distance from 
shipping lines and the sea state, respectively. In deep waters the distant shipping noise is 
dominant in frequencies from about 10-20 Hz to about 200-300 Hz, and wind noise is 
dominant in frequencies from about 200-300 Hz to several tens of kHz. The power spectral 
density of ambient noise is relatively smooth in the acoustic region. Some studies show a 
Gaussian distribution for ambient noise but other studies claim that it has a non-Gaussian 
distribution (Wenz 1962).  
 

 
Fig. 1. (a) Passive and (b) Active modes of SONAR system (Physics Online) 

The acoustic radiated noise 
The acoustic radiated noise produced by the vessel's machinery and its motion in sea, 
consists of broadband and narrowband components. The propeller and the hydrodynamic 
turbulence produce a broadband noise. The narrowband components are produced by the 
propeller, propulsion system and auxiliary machinery. Generally, the spectrum of acoustic 
radiated noise varies with the change of speed (Urick 1963).  
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Indeed, two main reasons for making the research in this area, challenging back to the 
nature of acoustic radiated noises which have: 
 Rapid changes of characteristics over the time in both frequency and time 
 Variations in Signal to Noise ratio (SNR) due to multipath propagation 

2.2 Hidden markov model 
The Hidden Markov Model (HMM) approach to classify the SONAR signals is a promising 
technique, which has proven capability of detection/classification as well as applications in 
speech recognition (Rabiner 1989). 
In fact, the HMM is a stochastic model for speech applications as classifier of spoken words. 
Most current speech recognition algorithms are mainly based on HMM. In these models, 
speech signals are modeled as sequences of states with probabilities assigned to state 
transitions.  
Probability densities are associated with the observation of acoustic parameters. These 
parameters are considered from spectra or cepstra corresponding to the states or state 
transitions. The states are identified with the phonemes. A left-to-right HMM topology is 
mainly used for speech recognition. Nevertheless, a fully connected HMM topology which 
the transition from any state to other states is possible, can be more useful in our application 
of SONAR signal detection/classification. The left-to-right topology of HMM is known as 
Bakis model and the fully connected topology is known as Ergodic, as well.  
Exploiting the HMM approach to classify the signals consists of two main problems:  
 Feature extraction of signals for training the models 
 Preparing each model with training to classify the signals 
Feature extraction 
AR and cepstral coefficients are sensitive to the SNR of signals but the spectra components 
are more robust to variation of signals over time. However, AR model parameters can be 
used in stationery conditions, or even in short period SONAR signal processing. Therefore, 
they are preferred spectral features as input data to train the models. Using the spectra 
features, derived algorithms based on HMM are often robust. For an example, a typical 
spectrum of a diesel submarine noise is illustrated in figure 2.  
 

 
Fig. 2. A typical spectrum of a diesel submarine 

 
SONAR Systems and Underwater Signal Processing: Classic and Modern Approaches 

 

179 

Though the SONAR signal received from such targets may be varied in time with respect to 
their SNR, interferences or even reverberation, but the spectrum features are mainly 
remained unchanged in which they can be used as main input data for training of HMM 
models. However, in severe conditions of ambient noise, detecting the main features is not 
so easy and may produce wrong amplitude or positions of main features. 

HMM Training 
Considering a first order, N-state Markov model (Rabiner 1989) in which state sequence Q is 
a realization of Markov model with probability:  

  
(1)

 
where; 

  

(2)

 
As a property of HMM, states of model cannot be directly observed, but can be  
estimated through a sequence of observations. In our purpose, it should be considered 
observations with continuous probability density. Thereafter, observation density vector 
will be: 

  
(3)

 
where;  

  specifies an HMM, completely. 
By a number of observations of SONAR signals, we are able to train an HMM as optimal 
model. A density function of O is given by: 

  
(4)

 
By using above formula we can compute density function of any observation  
and discriminate among related classes. The procedure of above-mentioned description is:  
 Given a set of acoustic training data that is phonetically labeled (possibly with errors); 

train an estimator to generate the data density for any hypothesized state: i.e. train an 
estimator for the emission probability density. 

 Given a probability estimator for the data likelihood of each state, use the dynamic 
programming to find the most likely sequence through the states in all possible 
sequences. This step is sometimes called forced Viterbi algorithm (Viterbi 1967).  
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The latter procedure can be proved that converges to a local optimum, however, in practice 
the stopping criterion can be modified by a threshold level. Thereafter, when an O of 
unknown class is given, we compute: 

  (5) 
where; 
p* is optimal model and Q* is optimal state sequence and we can classify the source signal as 
belonging to the class p*. 
For instance, we considered simulated data of SONAR and applied previously mentioned 
model to evaluate the capability of HMM in detection/classification of SONAR signals. 
However, lack of real data has prevented to evaluate the different models. We considered 
two classes of submarines and simulated their noises.  
Figure 3 illustrates two examples of related spectra. We used feature vectors extracted from 
spectra for training two HMMs, nevertheless above vectors might be noisy in real SONAR 
systems. As simulation stage, we produced data with different SNR ranged from -20dB to 
20dB in order to check robustness of algorithm. Therefore, we had at least two HMMs with 
optimal number of states.  
 

   
           (a)                              (b) 

Fig. 3. Two spectra of simulated noises in frequency band of [10Hz, 1000Hz]: (a) Spectrum of 
simulated data in class#1, (b) Spectrum of simulated data in class#2 

Now, for evaluation of method we consider another set of simulated data in order to 
provide test data. This procedure is iteratively continued until statistical results are 
provided. These statistical results are shown in figure 4. In this figure, all 24 results of 
classification scores have been graphically illustrated. The scores have been converted to 
grayscales, i.e., bright color means high score of classification. 
As shown in this figure, the class two has higher scores (brighter parts) then, as per majority 
vote to make a decision for received data over time, class #2 will be selected. In the first 
image, we considered simulated data from class #1. After preparing model (both stages of 
training test have been completed), a procedure similar to the test stage (named: evaluation 
stage) is iterated for 12 times. Therefore, we have 24 probability scores, which have been 
finally produced by two HMMs. The argument of the highest score determines class of 
input data.  
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HMM Classification Results: Black: Low Score, Gray: Mediocre, White: High Score 

Fig. 4. The simulation result for classification of SONAR signals based on HMM method: 
{White: High, Grays: Medium, Black: Low} scores as model outputs  

Some promising results: 
 Using HMM as a new method increases robustness of algorithm against fluctuations of 

SNR in received signals.  
 At low and fixed SNR (< 0dB) has a better performance in recognition of sounds; for 

instance, we obtained 5.6% increase in performance at SNR=-12dB. Almost the same 
performance is obtained at high and fixed SNR in compare with the normal 
classifier. 

Meanwhile, new method needs only more computations and therefore faster processors. We 
used a new method based on HMM, moreover implemented it in new area, which may 
increase our insight about underwater signal processing. 

3. Modern approaches 
The neural network method is widely used due to its capability of learning and clustering 
(Gosh 1992, Kundu 1994). Amongst them, Radial Basis Function Neural Network (RBFNN) 
has more advantages such as fast convergence in train mode and low computations in both 
train/ evaluation modes. In regular function of RBFNN kernels, Euclidean measure has 
been used to discriminate membership of an input feature vector. Euclidean measure is 
extremely sensitive to magnitudes of input values and ignores their separations, totally. This 
is why two vectors with the same values but in different locations produce a high Euclidean 
measure score. In contrast, Hausdorff Similarity Measure (HSM) is able to combat with this 
separation and discriminate the similarity, as well.  

3.1 RBF Neural Network (RBFNN) 
As depicted in figure 5, RBFNN has two major layers, the processing layer with arbitrary 
neurons therein and the output layer that weights the outputs of previous layer and 
represent the final approximated value.  
Theoretically, there is no constraint for number of neurons. In normal RBFNN Euclidean 
measure scores the current input vector similarity respect to the central trained vector of 
neurons. The radial basis function may be defined as following:  
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Hausdorff Similarity Measure (HSM) 
HSM is normally used for 2-D features (Basalto 2007). To replace Euclidean, it is needed to 
consider another axis of input features such as frequencies bins separations (in our study) 
that insert information of bins locations to the evaluation process. HSM for two vectors with 
arbitrary lengths is defined as: 

 ( , ) { [ ( ( , ), ( , ))]}i jHSM A B Max Sup Inf Dist a B Dist A b  (7) 

In (7), ( )A ai  and ( )B bj are input vectors and (.)Dist  is Euclidean measure. 
Methodology  
We modified kernel functions of considered RBFNN from Euclidean to Hausdorff. Then we 
trained the modified RBFNN over several SONAR signals, including few real data and other 
simulated ones. While spectral features of mentioned data have been exploited as input 
vectors of networks, we considered three major networks in order to classify three different 
classes of gathered data. The final output score of every network has been evaluated in test 
mode and satisfied scores are considered for classification process.  
 

 
Fig. 5. RBF Neural Network topology with single output 
Feature selection  
The required features for the classifier are extracted from the spectral densities. We noted 
that spectral densities have more robustness rather than cepstral coefficients and statistical 
or parametric models. But using a regular approach to the spectral densities can produce 
incorrect results in front of real data, due to high variations in spectral frequencies within 
each class of data. These variations may cause high values of Euclidean measures and then 
incorrect detection/ classification of SONAR signals. 
Simulation results 
Simulation was based on above methodology for both new approach and normal RBFNN. 
Two separated sets of data as train and test were considered. In train mode, processing was 
continued for three classes until the fluctuations of learning curves were negligible. 
Reported results for train mode are based on the final classification rates. Processing in the 
test mode was done over long term time series including ambient noises and gathered data, 
randomly. All simulation procedures and algorithms have been written in MATLAB. Table I 
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represents a comparison result between two RBFNN classifier with normal and modified 
kernels in both train/ test modes.  
 

Method RBFNN 
(NORMAL) 

RBFNN 
(HSM) 

Class No. TRAIN 
(%) TEST (%) TRAIN 

(%) 
TEST 

(%) 
#1 93 87.4 95 92.5 
#2 90 83.6 93 90.4 
#3 88 74.0 88 83.7 

Table 1. Classification Results 

Although the results in train mode of both normal and modified networks are not 
distinguishable, but there is a reasonable difference in test mode, (The less numeric 
precision is due to the lack of real data in the train mode). Sample spectral used in our 
approach is depicted in figure 6.  
The required diversity of each class samples was produced by changing the frequency bins 
amplitudes, moving them within a random interval and also adding ambient noise ranged 
from SNR=-20dB to SNR=0dB. As a result, the new method produces a better classification 
and target detection rates of simulated SONAR signals even in low SNR. In the next section, 
we present a complimentary study based on PNN and some new results for the 
classification of Persian Gulf data set.  
 
 

 
 

Fig. 6. Spectrum of class #1 in train mode 
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3.2 Probabilistic Neural Network (PNN) 
There are three layers in a PNN structure including: input, hidden and output layers. The 
length of feature vectors determines dimension of input layer. If we use d discriminating 
features for classification, the input layer dimension will be d. The hidden and the output 
layers consist of n patterns and c classes, respectively. Number of patterns n is chosen such 
that the convergence is guaranteed. Each pattern is d-dimensional and the output of the 
PNN is chosen from the set of classes  1 2, ,..., c     . PNN is based on the Bayes decision 
rule, i.e. a trained PNN will decide i if:  

 ( | ) ( ) ( | ) ( ) ;  1,...,           i i j jp P p P j c and j i      x x  (8) 

Where, 1 2{ , ,  ... , }dx x xx  is the 1 d  feature vector, and ( | )ip x  and ( )iP   are the d-
dimensional conditional Probability Density Function (PDF) and prior probability obtained 
from the training data for i-th class, respectively. ( )iP   is estimated by: 

 
      ( )          ; 1,... ,    
     i

number of training data for i'th classP i c
total number of training data

    (9) 

( | )ip x is estimated using Parzen windows. The Parzen (or Kernel) method is a non-
parametric approach for PDF estimation. In this method, a symmetric d-dimensional 
window, which is usually a Gaussian window, is centered on each training sample. The 
windows corresponding to i-th class are superposed and appropriately normalized to 
give (x| )ip  . The normalization is such that: 

 1... (x| ) ...  1     i dp dx dx
 

 

    (10) 

The conventional PNN needs an input parameter which is called the spread parameter. This 
parameter must be chosen by the user. The standard deviation of the Gaussian Parzen 
window is proportional to the spread parameter and it is identical for all samples in all 
classes. The most important disadvantage of the conventional PNN is the difficulty in 
selecting an appropriate spread value. The classification performance depends significantly 
on selecting an appropriate spread value. Too small spread values give very spiky PDF's 
and, too large spread values smooth out the details. To show this disadvantage of 
conventional PNN, consider a distribution of two dimensional feature vectors as shown in 
figure 7.  
The estimated PDF for set of points shown in figure 7 will be different for different values of 
spread parameter (the standard deviation of Gaussian windows). For example, using 1, 0.06 
and 0.02 as values of the spread parameter, the estimated PDFs will be as shown in figures 
8(a)-8(c), respectively.  
Although there are some approaches such as cross-validation for estimating an appropriate 
spread value, but they need a large number of data and high processing time. Thus, we 
determined the spread parameter by the trail and error. Another disadvantage of the 
conventional PNN is using the same spread parameter for all classes, which decreases the 
degree of freedom of the PDF estimator.  
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Fig. 7. The scatter plot of an exemplar set of two dimensional feature vectors. 
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(c) 

Fig. 8. The estimated PDF for feature distribution of figure 7 using a spread value equal to 
(a) 1, (b) 0.06, and (c) 0.02. 
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Fig. 7. The scatter plot of an exemplar set of two dimensional feature vectors. 
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Fig. 8. The estimated PDF for feature distribution of figure 7 using a spread value equal to 
(a) 1, (b) 0.06, and (c) 0.02. 
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To overcome these disadvantages, a multi-spread PNN that uses a different spread 
parameter for each class has been recently introduced (Farrokhrooz 2011). Consider an 
exemplar classification problem with two discriminating features that is illustrated in figure 
9. As it is shown in this figure, the distances between samples of the first class are typically 
more than those of the second class. Obviously, the appropriate spread parameter for the 
first class is different from that of the second class. Therefore, it is better to use two different 
spread values for these two classes of feature vectors. The MSPNN is a Probabilistic Neural 
Network, which can estimate PDF of the training data using Gaussian Parzen windows with 
a different spread parameter for each class. Using a different spread parameter for each class 
causes an increment in degree of freedom of the neural network. Thus, the MSPNN is more 
flexible than the conventional PNN in the current application. 
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Fig. 9. The scatter plot for an exemplar classification problem. 

Data bank 
The conventional PNN and MSPNN have been used for classification of three classes of 
marine vessels, i.e., heavy ships, medium ships, and boats. The data set of heavy ships 
includes 29 radiated noise files from five different merchant ships (supertanker, container 
ship …). The data set of medium ships consists of 26 files from three different medium 
ships, and the data set of boats includes 16 files from four boats. The main criteria for 
dividing vessels into these three categories have been their size and weight. The number of 
data files in each subset is shown in Table II.  
 

Subset 1st 2nd 3rd 4th 5th 

Heavy 7 4 3 3 12 
Medium 13 5 8 - - 

Boat 7 2 1 6 - 

Table 2. The number of data files in each subset of each class of vessels. 
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Each subset of files corresponds to one vessel. All files have been recorded in the Persian 
Gulf at low sea states. The time length of each file is five seconds and the recording 
sampling frequency equals 2560 samples/second. All data files have contents only in the 
125-500Hz frequency band. 
Feature selection 
The set of selected features for classifying the radiated noises of ships can be divided into 
two categories: the features extracted from AR model of signals and the features directly 
extracted from the estimated PSD of signals. The first category contains the coefficients of 
AR model of signals with AR order 15 or 13, and the poles of AR model with order 2. The 
second category of discriminating features includes 6 features directly extracted from PSD of 
signals.  
Performance evaluation  
In this section, we evaluate the classification performance of conventional PNN and 
MSPNN with the method in (Farrokhrooz 2011) for spread estimation by applying them to 
the bank of real acoustic radiated noises of marine vessels. We define the performance of a 
classifier for a class as the probability of correct decision for the data of that class. 
In order to evaluate the performance of the classifiers, we divided the data bank into two 
parts, the training data set and the test data set. After feature extraction, the extracted 
features of training data set are used for classifier training and the features of test data set 
are used for evaluating the performance of the classifier. We used a training data set as 
introduced in Table III. In each of the performance evaluations in this section, this data set of 
Table III is used for training and the rest of data bank files are used as the test data set. In 
each performance evaluation, the performance of conventional PNN will be shown versus 
spread parameter values and the performance of MSPNN will be demonstrated versus the 
multiplier x. 
 

Subset 
used for 
training 

heavy ship file medium ship 
file boat file 

Training 
data set 

7 randomly 
selected files 

from all 
subsets 

6 randomly 
selected files 

from all 
subsets 

4 randomly 
selected files 

from all 
subsets 

Table 3. The number of data files in each subset of each class of vessels 

In this subsection the performance of conventional PNN is evaluated using various sets of 
features. Figure 10 shows the performance evaluation of conventional PNN when the 
discriminating features are spectral features. As shown in this figure, selecting a proper 
spread value causes high probability of correct decision for heavy and medium ships. 
However, the probability of correct decision for boats is not high in these cases. In the next 
performance evaluation, the six spectral features directly extracted from PSD, and the 
coefficients of AR(15) model are used as discriminating features. The evaluated 
performances are shown in figure 11.  
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Gulf at low sea states. The time length of each file is five seconds and the recording 
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The set of selected features for classifying the radiated noises of ships can be divided into 
two categories: the features extracted from AR model of signals and the features directly 
extracted from the estimated PSD of signals. The first category contains the coefficients of 
AR model of signals with AR order 15 or 13, and the poles of AR model with order 2. The 
second category of discriminating features includes 6 features directly extracted from PSD of 
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It can be seen that the performance of the classifier in this case is approximately similar to 
the previous case. In the last performance evaluation, the six spectral features directly 
extracted from PSD, the poles of AR(2) model, and the coefficients of AR(15) model are used 
as discriminating features. The evaluated performances are shown in figure 12. Again, it can 
be seen that the performance of the classifier in this case is approximately similar to the 
previous cases. The performance of Multi-Spread PNN is evaluated using various sets of 
features. figure 13 shows the performance evaluation of MSPNN when the discriminating 
features arespectral features. It can be seen from figure 13 that the performance of MSPNN 
is not so good in this special range.  
In the next performance evaluation, the six spectral features directly extracted from PSD, 
and the coefficients of AR(15) model are used as discriminating features. The evaluated 
performances are shown in figure 14. It can be seen from this figure that, the performance of 
MSPNN is good for all three classes of ships in a special range of multiplier values. In the 
last performance evaluation, the six spectral features directly extracted from PSD, the poles 
of AR(2) model, and the coefficients of AR(15) model are used as discriminating features. 
The evaluated performances are shown in figure 15.  
It can be seen from this figure that, the performance in most cases is good for all three 
classes of ships in a special range of multiplier values. 
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Fig. 10. The performance of conventional PNN in classifying heavy and medium ships and 
boats using the six features directly extracted from PSD as discriminating features. 
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Fig. 11. The performance of conventional PNN in classifying heavy and medium ships and 
boats using the six features directly extracted from PSD and coefficients of AR model as 
discriminating features. 
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Fig. 12. The performance of conventional PNN in classifying heavy and medium ships and 
boats using the six features directly extracted from PSD and poles and coefficients of AR 
model as discriminating features.  
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Fig. 10. The performance of conventional PNN in classifying heavy and medium ships and 
boats using the six features directly extracted from PSD as discriminating features. 
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Fig. 12. The performance of conventional PNN in classifying heavy and medium ships and 
boats using the six features directly extracted from PSD and poles and coefficients of AR 
model as discriminating features.  



 
Sonar Systems 

 

190 

 
 
 

10-2 10-1 100 101 102 103
0

0.2

0.4

0.6

0.8

1

Multiplier value

Th
e 

pr
ob

ab
ili

ty
 o

f c
or

re
ct

 d
ec

is
io

n

Heavy ship
Medium ship
Boat

 
 
 

Fig. 13. The performance of MSPNN in classifying heavy and medium ships and boats using 
the six features directly extracted from PSD as discriminating features. 
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Fig. 14. The performance of MSPNN in classifying heavy and medium ships and boats using 
the six features directly extracted from PSD and AR coefficients as discriminating features. 

 
SONAR Systems and Underwater Signal Processing: Classic and Modern Approaches 

 

191 

10-2 10-1 100 101
0

0.2

0.4

0.6

0.8

1

Multiplier value

Th
e 

pr
ob

ab
ili

ty
 o

f c
or

re
ct

 d
ec

is
io

n

Heavy ship
Medium ship
Boat

 
Fig. 15. The performance of MSPNN in classifying heavy and medium ships and boats using 
the six features directly extracted from PSD and poles and coefficients of AR model as 
discriminating features. 

4. Target tracking 
The goal in target tracking problem is to sequentially estimate the target parameters of 
interest from the sensor observations. The target parameters of interest are modeled by the 
state vector  and the sensor observations are modeled by the observation set 

 where; k denotes the time index (or scan index) and  denotes the 
number of sensor observations at the k-th scan. In SONAR target tracking systems, the 
system state vector may contain information about the location and speed of the target; 
observations are the signal strength, bearing, and arrival time of the returned signal.  

Dynamic state space model 
Dynamic state space model (DSSM) has been widely used for modeling a target tracking 
problem. The dynamic state space model formulates variations of the system state and 
observations using two processes: the system state process and the observation process. In 
the system state process, variations of the target state vector  in different scans k are 
modeled using a first order Markov process (Rabiner 1989) as follows: 

   (11) 
where; 

is the known state transition function and  denotes the state transition noise, which is 
modeled by a random vector with known statistics. The observation model or measurement 
model relates the observed target signal  to the target state vector  by:  

  (12) 
where; 
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Fig. 13. The performance of MSPNN in classifying heavy and medium ships and boats using 
the six features directly extracted from PSD as discriminating features. 
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Fig. 14. The performance of MSPNN in classifying heavy and medium ships and boats using 
the six features directly extracted from PSD and AR coefficients as discriminating features. 
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Fig. 15. The performance of MSPNN in classifying heavy and medium ships and boats using 
the six features directly extracted from PSD and poles and coefficients of AR model as 
discriminating features. 
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represents the observation function and  denotes the observation noise, assumed to 
be independent of the state transition noise . The target observation vector  may appear 
in the observation set  with the probability of . While the target observed signal is 
related to the target state vector by (12), the clutter generated observations are assumed to 
be uniformly distributed in the surveillance region. The number of clutter generated 
contacts is modeled using a Poisson distributed random variable with parameter of CV 
where C denotes the clutter density or the average number of clutter per unit volume and V 
denotes the volume of the surveillance region. 
Bayesian filtering 
To simplify the tracking problem, it can be assumed that there is no clutter contact and the 
target is always detected at the receiver, i.e. . The Bayesian filter (Anderson 1979, 
Stone 1999) provides the optimum solution to the state space model with respect to the 
Maximum A Posteriori (MAP) criterion. The Bayesian filtering technique implements the 
Bayes’ rule and provides a recursive formula for estimating the posterior probability density 
of the target state vector given the sensor observations.  The estimation of the posterior 
probability density function is through two steps; the motion update step and the 
observation update step.  The motion update step implements the target motion model in 
(11) and provides a prediction estimate to the posterior probability density function by: 

  
(13)

 
where; 

 denotes all the observations up to scan k−1. The observation update process uses recent 
sensor observations and the target observation model to refine the predicted posterior 
probability density function in (13) by: 

  
(14)

 
By setting the initial posterior probability distribution of the target state vector 

 and following (13) and (14), the posterior probability density function of 
the target state can be estimated. Equations (13) and (14) do not require the system state 
space models provided in (11) and (12) to be linear. Therefore, the Bayesian filter estimates 
the posterior probability density function in the general case that is known as the general 
non-linear tracking. Kalman filtering technique (Kalman 1960) is one of the most famous 
special cases in which the system state space models are linear and the noise vectors v and w 
are additive and Gaussian. This case is known as the linear-Gaussian state space model and 
is represented using the following equations: 

  
(15)

 

  
(16)

 
where;  is the state transition matrix,   is the state process noise with zero mean and 
covariance matrix of Q, G is a transform matrix,  is the transition matrix from the target 
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state space to the observation space, and  is the Gaussian additive observation noise with 
zero mean and covariance matrix of R. Using the linear-Gaussian model, the target state 
vector is the linear combination of the Gaussian distributed vector v then is Gaussian. This is 
the Key assumption in deriving the Kalman filter equations. The estimation of the target 
state vector, denoted by  is computed as follows: 

  
(17)

 

  
(18)

 

  
(19) 

  
(20)

 
where; 

  
(21)

 
is the covariance matrix of  and, 

  
(22)

 
is known as the Kalman gain. The Kalman filter provides the expected value  and the 
covariance matrix  of the posterior probability density function . In a linear-
Gaussian state space model, Kalman filter is the optimum solution in the senses of the 
Minimum Mean Square Error (MMSE), Maximum Likelihood (ML), and Maximum A 
Posteriori (MAP) criteria (Anderson 1979, Kalman 1960). Because of the efficiency and 
simple implementation of the Kalman filter, many approaches have been developed that 
focus on linearization of state space model and applying Kalman filtering to the linear 
model. The most popular approach in this group is the well known extended Kalman filter 
(EKF) (Bar-Shalom 1988, Kailath 2000) which makes the state space model linear using 
Taylor series expansions of the nonlinear functions. While the EKF performs well under 
mild nonlinearity, it suffers from performance loss under sever nonlinearities. Another 
approach to linearization of state space model, presented in (Norgaard 2000), implements 
the polynomial approximation of a nonlinear function. This technique, known in the 
literatures as the central-difference Kalman filter (CDKF), can replace the EKF in some 
practical applications in which linearization using Taylor series is not so accurate. For both 
EKF and CDKF techniques, there is an implicit Gaussian prior assumption on the posterior 
density function due to applying the Kalman filter. Another group of proposed techniques 
assumes an explicit prior form (normally Gaussian) for the posterior density function.  
Perhaps the most famous approach in this group is the unscented Kalman filter (UKF) 
(Julier 2000, Julier 2004) which uses a novel nonlinear transformation of the mean and 
covariance matrices. In this approach, the mean and covariance matrices of the assumed 
Gaussian posterior density are parameterized by a set of samples, and these samples are 
updated through processing by a nonlinear filter. In the Quadrature Kalman filter (QKF) (Ito 
2000, Arasaratnam 2007) the assumed Gaussian posterior density is parameterized through 
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state space to the observation space, and  is the Gaussian additive observation noise with 
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the polynomial approximation of a nonlinear function. This technique, known in the 
literatures as the central-difference Kalman filter (CDKF), can replace the EKF in some 
practical applications in which linearization using Taylor series is not so accurate. For both 
EKF and CDKF techniques, there is an implicit Gaussian prior assumption on the posterior 
density function due to applying the Kalman filter. Another group of proposed techniques 
assumes an explicit prior form (normally Gaussian) for the posterior density function.  
Perhaps the most famous approach in this group is the unscented Kalman filter (UKF) 
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a set of Gauss-Hermite quadrature points, and the nonlinear process and observation 
functions are linear using statistical linear regression (SLR). The Cubature Kalman Filter 
(CKF) (Cubature 2009) uses a spherical-radial cubature rule for numerical computation of 
the multivariate moment integrals that appear in the Bayesian filter formulation. The 
Gaussian posterior density function is the key assumption in this numerical computation. 
Some existing approaches do not have explicit assumptions on the posterior distribution. 
Instead, they estimated a discrete set of parameters and used them to approximate the 
posterior density function. The Gaussian mixture filter (Alspach 1972), for example, 
estimates a set of discrete weight parameters and implements these weights to approximate 
the posterior density function using a weighted sum of Gaussian density functions. It is 
shown in (Sorenson 1971) that any practical density function can be represented by a 
weighted sum of Gaussian density functions and as the number of Gaussian densities 
increases, the approximation will converge uniformly to the desired density function. 
Recently, particle filtering (PF) (Djuric 2003) has become popular in many applications of 
statistical signal processing.  In particle filtering, a desired posterior density function is 
estimated through a set of particles and associated weights. At each time update, new 
particles are generated via sampling from an importance function, and the weight 
associated with each particle is updated. With fast development of powerful computational 
systems, the numerical approach to solve the Bayesian inference equation that was first 
introduced in (Bucy 1971) has renewed its attraction through the point mass approach 
(Simandl 2006). In the point mass approach, a regular grid discretizes the system state, and 
the Bayesian filter is evaluated numerically on the discrete points. The tree search target 
tracking technique, introduced in (Nelson 2009, Roufarshbaf 2009) approximates the 
Bayesian filtering recursions by generating a tree of possible target state variations and 
finding the solution by navigating the search tree using the Stack algorithm. 

Data association techniques 
Thus far, we assumed that there are no clutter observations at the receiver and the target is 
detected in each scan. When clutter observations appear at the receiver, the above 
techniques cannot be performed directly for tracking the target and the observation contacts 
must be associated to either the target(s) or clutter. In this section, we discuss the most 
famous techniques for data association. We also consider the cases in which the target 
contact is not detected at the receiver. The early work on target tracking that addresses the 
challenge of data association was introduced in (Sittler 1964). The approach splits a track 
whenever more than one measurement is present. Then it calculates the likelihood function 
for each track and the tracks with likelihoods less than a predefined threshold are deleted.  
In the nearest neighbor Kalman filter (NNKF) approach (Singer 1971, Sea 1971, Singer 1973), 
the contact that has the smallest statistical distance to the predicted target track is 
considered as a true target observation and the others are considered as clutter. The 
probabilistic data association filter (PDAF) introduced in (Bar-Shalom 1975), provides a 
suboptimal Bayesian approach for data association in the single target tracking problem.  In 
this approach, the target track is updated using the weighted sum of all possible track 
updates from each data association hypothesis of the current scan. When a single target is 
present, the optimal Bayesian approach for data association considers all possible 
association hypotheses from the target initiation time index to the current time and updates 
the target track using sum of the all possible track updates weighted by evaluated 
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association probabilities (Bar-Shalom 1988). Since the optimal Bayesian method is 
computationally intractable, suboptimal approaches have been suggested. The joint 
probabilistic data association filter (JPDAF) (Fortmann 1983) is an extension to the PDAF 
algorithm for multiple target tracking. In this approach, all possible association hypotheses 
of the current time are evaluated for all targets, and the tracks are updated by a weighted 
sum of all possible track updates from the data association hypotheses. Other data 
association algorithms implements either MAP or ML approaches to find the best sequence 
of measurements that can be associated to each target. The Viterbi algorithm (Viterbi 1967, 
Wolf 1989) and the Expectation Maximization (EM) algorithm (Gauvrit 1997) have been 
widely used for this purposed. Multi-hypothesis tracking (MHT) (Blackman 2004) is a MAP 
estimator in which at each scan, instead of combining the hypotheses like JPDAF or 
selecting the best hypothesis like nearest neighbor (NN), the algorithm makes a tree of 
possible association hypotheses and decides based on the future observations through a 
MAP estimator. All of the data association approaches discussed above is combined with a 
tracking technique such as EKF, to estimate the target track within the clutter observations. 
As an example, we discuss the details of the PDAF algorithm which is one of the most 
common approaches in SONAR target tracking. In the PDAF technique, the data association 
probabilities  and j =  are defined for each scan as the probability that the jth 
observation of the scan is generated by the target and others are related to the clutter. The 
special case  is defined as the probability that all the observations are generated by clutter 
and the target generated observation is not detected. Using the data association probabilities 
in the Kalman filter, it is sufficient to change the equations (19) and (20) as follows: 

  (23) 

  (24) 
where; 

  (25) 

  (26) 

  
(27) 

The association probabilities  have been calculated in literatures and the results are as 
following: 
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where; 

  (30) 

and M denotes the dimension of the observation vector . 

Recent techniques 
Some recent techniques in target tracking including sequential Monte Carlo techniques and 
the tree search techniques combine the data association problem and the target tracking 
problem as a unified problem. Sequential Monte Carlo approaches (Hue 2002) have been 
introduced in target tracking problems for both track estimation and data association.  In the 
approach presented in (Hue 2002), Gibbs sampling is implemented to solve the data 
association problem, and particle filtering is used for target track estimation. The algorithm 
is developed for the cases of single target, multiple targets, single receiver, and multiple 
receiver systems for both fixed and variable number of targets (Hue 2002, Arulampalam 
2002). Recently the stack-based tree search algorithm (Roufarshbaf 2011, Nelson 2009, 
Roufarshbaf 2009), has been developed for tracking the targets in non-linear environments 
with high clutter density.  The approach is classified as a sub-optimum Bayesian approach 
for both track estimation and data association and is implemented for linear/non-linear 
state space models as well as Gaussian/non-Gaussian additive noise. The stack algorithm 
was originally developed as a sequential method for decoding error-correcting 
convolutional codes in digital communications (Jelinek 1969). It has more recently been 
suggested as a lower-complexity alternative to trellis-based techniques, e.g. the Viterbi 
algorithm (Viterbi 1967), for ML sequence detection of data transmitted over a dispersive 
channel (Xiong 1990, Nelson 2006). In target tracking applications, the stack algorithm 
navigates a tree in search of the target path with the largest likelihood, or metric.  A set of 
possible paths and their associated metrics are stored in a list (or stack), and at each 
iteration, the algorithm extends the path with the largest metric. A simple example of the 
stack algorithm for target tracking is given in figure 16. The algorithm starts from an initial 
target estimate and makes a search tree of possible target movements from its currently 
approximated locations. At the end of the observation, the target path that has the highest 
probability among the extended paths of the search tree is selected as the estimated target 
track. 
As a single example, consider a target that follows a linear motion model. The target state 
vector is defined by , where; (x, y) denotes the position of the target in 
Cartesian coordinates, and (x, y) denotes the target velocity in Cartesian coordinates. The 
parameters of the target motion model (15) are set as follows: 

  

(31)

 
where;   is the time between scans.  In this model, the state transition noise vector  
determines the acceleration (in the x and y directions) over the time interval and the 
covariance matrix of   is set to  where I denotes the identity matrix. The 

 
SONAR Systems and Underwater Signal Processing: Classic and Modern Approaches 

 

197 

system is assumed to be an active SONAR and a single transmitter and receiver is placed at 
(0, 0) in Cartesian coordinates. The receiver measures the angle of arrival (bearing angle) 
and the range of reflecting subjects. Therefore, the observation transform function in (12) 
will be: 

  
(32) 

 
 

 
 
Fig. 16. A tree search target tracking structure 

We assume that the measurement noise covariance matrix is given by: 

  
(33)

 
We also assume that the target generated contact is detected at the receiver with the 
probability of . Figure 17 shows an ensemble of the generated target and the 
estimated path using the EKF-PDAF technique and the tree search technique. The target 
initially starts its path from (10, 10) and follows its linear motion model. The clutter 
observations are uniformly distributed in the surveillance region and the average number of 
clutter observations per unit area (C) is set to 1. We can see that both algorithms are able to 
track the target in this special case. In the above example, the target motion model is linear 
and the non-linear transition function in the observation model is well approximated by its 
Taylor series expansion. Therefore, the EKF algorithm performs well in this scenario. 
However, in non-linear target motion models, the performance of the EKF technique 
decreases drastically while the other recent techniques such as tree search technique is able 
to follow the target track (Roufarshbaf 2010, Roufarshbaf 2011). 
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Fig. 17. Example of a target tracking problem. The target starts at initial point and follows 
according to its motion model.  

5. Underwater wireless networks 
Underwater wireless telecommunication, in general, and security and privacy of 
conversations, in particular, are new challenging areas and have recently attracted many 
interests. In spite of the advances in underwater wireless telecommunications (Stojanovic 
2006, Benson 2008), the research on security and privacy of such systems has not been 
conducted. Indeed, despite achievements in navigation, ranging and telecommunication; a 
few researches on security aspects have yet been completed. Nevertheless, continuing study 
on SONAR systems and underwater telecommunication networks, plenty of research 
reports have been published (Peterson 2006, Stojanovic 2008). 

5.1 Security and privacy 
In this section, we concern with security aspect of an underwater telecommunication 
network and a secure scheme. The main idea stems from the fact that all telecommunication 
networks, including underwater networks, have been substantially prepared to transfer 
speech and voice (Kondoz 2005, Peyvandi 2009). As figure 18 depicts, the input voice is 
transformed to the bit stream using a low bit rate encoder. Then, the whole bits are mapped 
to the predefined symbols. Using the secure scheme, the overall bit error rates become 
noticeably low in which there has no any major effect on quality of speech. On the other 
hand, the noises are quite unintelligible for intruders who try to access to the conversations 
through the channel. Produced noises are signals including random scrambled speech-based 
symbols, which make no any sense to the listener. The entire network has been simulated to 
transfer speech to obtain results in an experimental state. 
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Fig. 18. Half-Duplex of underwater telecommunication network 

Methodology 
Figure 18 shows the modular illustration of designed underwater telecommunication 
network including the encryption module, which uses the secure scheme.  
In this figure, at transmitter side, a low bit rate speech encoder is used to produce bit stream 
to the second module. The encryption module encrypts the bit stream in which each frame is 
mapped to a predefined symbol that has been originally designed using hi-fi speech records 
(Peyvandi 2009). In fact, for each frame, 7 bits in this study, a unique symbol is produced. 
Therefore, 128 symbols are needed to be stored in both sides of telecommunication network 
as lookup table. The consequent symbols, produced by encryption module, are windowed, 
filtered and shaped in order to transmit over channel. No more compression or coding is 
used. At receiver, synchronization/ compensation module provides the symbols from 
received samples after preprocessing. Due to severe distortion of signals in underwater 
channels, a Decision-Feedback Equalizer (DFE) at receiver is requisite for compensation. The 
final symbols, with 40 samples in length for 8 KHz, are represented to decryption module, 
which uses pattern recognition (Theodoridis 2006) to measure similarity among final and 
lookup table symbols. Final bit stream are represented to decoding module in order to 
produce speech. 

Simulation results 
All modules of figure 18 have been exploited in simulation of underwater 
telecommunication network and simulated environment for underwater channel as per 
real acoustic data (Shahbazi 2008). In a real system, other modules in order to modulate 
signals, at transmitter, and to demodulate, at receiver, are required; however, they have 
been omitted in the simulation. Using secure scheme over simulated underwater channel 
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Bit Error Rates (BER) has been obtained. The BER results with transmission of three 
different speeches were as low as 1%. In another experiments, the number of bit for each 
underlying frame (BPF) has been changed whilst the number of samples per frame was 
constant.  
Figure 19 shows the BER results, which for 6- and 7-bit are less than 1% and for 8- and 9-bit 
are unacceptable for speech encoding. Thus, 7-bit is considered as optimum BPF.  
 

 
Fig. 19. Bit error rates (BER) for different experiments (BPF) 

Table IV shows the statistical results for several transmission experiments for three different 
speeches with 7-bit BPF. The means and variances are separately shown for three speeches. 
In addition, results of Symbol Error Rates (SER), an important rate in speech 
communication, show that most errors occur non-uniformly.  
Although there are bit errors in transmission of a longtime speech but they have no major 
effect on quality of speeches. Particularly, objective test of quality using NTIMIT dataset 
shows non-meaningful differences in final speeches. TIMIT (Becchetti 1999) dataset are for 
quality test of speeches and NTIMIT data are among the network datasets. Figures 20 and 21 
depict the waveform of two different NTIMIT samples used in quality test. 
The NTIMIT dataset is used for test of speech quality in telecommunication network. 
However, there are differences among original and decrypted samples but these differences 
make no meaningful distortion from auditory point of view. Adding to low bit error rates, 
the other reason is the non-uniform distribution of errors. To evaluate secure scheme under 
real conditions the test bed of figure 22 is considered.  
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Exp. No. 
BER (%) SER (%) 

Mean Variance Mean Variance 

#1 0.96 0.05 0.55 0.09 

#2 1.07 0.07 0.60 0.12 

#3 0.93 0.06 0.52 0.10 

Table 4. Simulation Results 

 
 

 
Fig. 20. NTIMIT dataset sample I (a) Original (b) After decoding 

 
 

 
Fig. 21. NTIMIT dataset sample II (a) Original (b) After decoding 
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In the figure 22, the intruder can access to the underwater telecommunication link, but the 
voices are unintelligible even they are decoded by intruder. As of terrestrial wireless 
telecommunication networks, the public/private keys have been considered in 
coding/decoding modules as a fundamental part of them. Similarly, we should use the 
public/private keys in the security module of underwater wireless networks, as well. The 
private keys can be considered among different underwater networks (Peyvandi 2010). 
 

 
Fig. 22. Schematic diagram of test bed for secure scheme in underwater acoustic network 

6. Conclusion 
In this chapter, we introduced methods for underwater signal processing which are used for 
SONAR systems, either passive or active system, and underwater wireless network as an 
emerging area in the field. Method based on Hidden Markov Model (HMM) has been 
investigated and the simulation results have been released with examples. The capability of 
HMM in modelling different classes of underwater noises is notable even in low SNR, which 
is common in most SONAR systems. Hausdorff Similarity Measure (HSM) as a new 
measure for discriminating different features of classes has been studied in this chapter. 
HSM outperforms the other one-dimentioan measures, i.e, Minkovsky based, in low SNR 
environments when the spectral components are used as features.  
In addition, we explained the necessity of a multi-spread probabilistic neural network. We 
used the method for estimating the spread value for each class in the multi-spread PNN. 
The multi-spread PNN is more flexible than the conventional PNN. This increased flexibility 
is obtained by using a different spread value for each class. Using the proposed method for 
estimating the spread value reduces the need for trial and error approach for spread 
parameter determination. The conventional PNN and the MS-PNN with the proposed 

 
SONAR Systems and Underwater Signal Processing: Classic and Modern Approaches 

 

203 

method for estimating the spread parameter were applied to the radiated ship noise 
classification problem. A bank of real radiated noise data were used to evaluate the 
performance of the conventional and MS-PNN. In all performance evaluations, which is 
used for conventional PNN as the classifier, selecting a proper spread value caused high 
probability of correct decision for heavy and medium ships. In all performance evaluations, 
which is used for the MS-PNN as the classifier, there is a relatively wide range of multipliers 
in which the best performance occurs. 
We also considered target tracking problem in sonar systems. A target tracking problem was 
modeled using the conventional DSSM. Then, we reviewed the classic Bayesian target 
tracking techniques and its closed form Kalman filtering approach that is optimum for 
linear-Gaussian models. Then, we studied tracking of low observable targets through clutter 
contacts and we reviewed the recent approaches in target tracking that are more efficient in 
non-linear scenarios. Through an example, we show how a classic EKF technique and a 
recent tree search technique are able to track a single target through clutter contacts.   
In the last section in this chapter, we have proposed a new scheme for providing secure 
conversation in underwater telecommunication systems. Although, there are bit errors in 
near all communications, low bit errors with non-uniform distribution have unintelligible 
effect on quality of speeches. The quality test has been provided using NTIMIT dataset 
samples. The results showed that the proposed scheme for underwater wireless 
telecommunication systems is reliable in an experimental state. The environmental test of 
proposed scheme is ongoing. 
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1. Introduction

Sonar system operating in gas medium (air) are based on echolocation phenomenon (active
sonar). Many scientist and specialists in the field of air coupled ultrasound localisation
systems have been inspired by echolocation mechanism of bats. Those mammals mastered
echolocation perfectly using ultrasound waves. A resolution of so called real time biosonar is
out of range of human made equivalent due to scientific and technological limitations. The
main aim of the chapter presented below is to introduce book readers with the echolocation
mechanism, evolved in bats, which are an example of animals that have achieved perfection
in biosonar usage. The next problem that authors cover is an evolution of sonar systems from
simple one beam ranging echolocation devices to advanced multibeam array beamformers
operating with digital signal as serviceable form of information representation. Some
properties of ultrasound waves in gas medium and physical phenomena involved with air
coupled ultrasound waves generation, transmission and detection are described in the chapter
as follows: (1) generation of ultrasound wave in gas medium, (2) a short review of air
operating transducers including piezoceramics, sandwich, electrostatic, EMFi and MEMS, (3)
problem of ultrasound wave transmission in gas medium (the influence of temperature and
static pressure on speed of sound, attenuation in air) and range equation, (4) reception and
detection of ultrasound waves, target strength. Considering the fact that the detection of echo
signal does not give us an information about target a review of signal processing methods
is also presented. Taking into account global trend in applying digital signal processing
methods to sonar application authors describe some of DSP solutions which are adaptation
of echo signal processing by bats at higher level of their auditory system. In order to explain
some important issues from bat echo analysis, authors to present some information about
bat auditory system and the role of its particular organs and auditory pathways in spatial
information processing.

2. The bases of echo imaging in echolocating bats

Echolocation plays the most important role in the environment perception in the echolocating
bats and odontocete cetaceans. The sonar system of bats and dolphins evolved however in a
different way, because of differences in animal size, environment, prey and sound propagation
in the air and water Au (2004). Most of the over 1200 bat species echolocate. Echolocation is
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used for spatial orientation and prey pursuing. Bats ordinarily emit echolocation calls when
moving in light and dark, suggesting that echolocation is a very important component of their
sensorimotor system. Nonetheless, echolocation is not the only sensory system of bats, since
they probably make use of all senses (including vision, olfaction and kinesthetic sense) to
integrate them for cognitive processing Masters & Harley (2004).
In the echolocating sensing system of bats, ultrasound vocalisation is actively propagated over
the air and returning echoes are used for determination of the position, size and structure
of sonar target. A bat can determine between its own echo and echoes coming from other
individuals. Sometimes bats can even eavesdrop on emitted sound and its echo of conspecifics
and other species to find good foraging sites and forage with members of social group
Balcombe & Fenton (1988), Dechmann et al. (2009). These findings and other researches show
that echolocation pulses serve as acoustic cues in communication of bats (see review in Jones
(2008)).

2.1 Sound emission
Sound emission in bats is produced in the larynx, a common sound generator in all mammals.
Bats emit calls through the mouth or the nostrils. Nostril emission have advantage when
foraging, because a bat can fly and echolocate with the prey in mouth. Moreover, the emission
of sound through two nostrils results in interference of emitted sound beams. The interference
pattern depends on the distance between nostrils. If it’s half of the wavelength of the emitted
frequency, the sound energy straight ahead will be intensified, and attenuated on either
side, resulting in a narrowing of the sound beam. Experiments with a leaf-nose bat Carollia
perspicillata (family Phyllostomidae) showed that when one of the two nostrils is blocked the
extend of the sound beam doubles in the horizontal plane Fig. (1) Hartley & Suthers (1987).
Bats using the nostrils often have complex noseleaves composed of fold of skin and cartilage.
The noseleaves have varying complexity and shape: e.g. shape of horseshoes in horseshoe
bats Rhinolohphidae or vertical blade-like noseleaf in leaf-nosed bats Phyllostomidae.
Noseleaf acts as acoustic lens, focusing the sound into a narrow beam, which cause increasing
of directionality of emitted calls and enhanced echolocation performance. The experiments
with Carollia perspicillata indicated that if the noseleaf is removed, the vertical beam width
increased from 60 to 120 [deg] Hartley & Suthers (1987).

Fig. 1. The relation between the width of the sound beam and nose-leaf and nostril emission
in Carollia perspicillata (adapted from Hartley & Suthers (1987)).
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2.2 How bats avoid deafening?
The intensity of the emitted echolocation pulses may be up to maximum level above 140
[dB] of sound pressure level (SPL) Surlykke & Kalko (2008). This is loud enough to cause
hard pain and hardly damage the eardrum and cochlea. Bats posses special adaptations
to avoid deafening. Echolocation calls are emitted in short bursts. During the burst, bats
make themselves temporarily deaf. The deafening is caused by the contraction of the muscle
stapedius, which is attached to stapes (a small ossicle in the middle ear, see the chapter
’Auditory adaptations to sound perception’). Just before a bat emits an echolocation pulse, the
stapedius contracts and pulls the stapes away from the oval window Henson JR (1965). The
sound cannot be passed to the cochlea, which prevent the damage of this delicate structure.
In the final stage of pursuing for an insect, a bat’s sonar pulse repetition rate may exceed 200
[Hz], and its stapedius muscle may operate at the same frequency - one of the highest rates
recorded in vertebrate muscle Altringham (1999).

2.3 The diversity of bat echolocation calls
The diversity of echolocating bats and its habitat leads to diversity of acoustic signals used
for echolocation and therefore acoustic information received from echoes. Bats’ sonar pulses
are usually described as narrowband constant frequency calls (CF) and broadband frequency
modulated pulses (FM), however there are many combinations of those two call types Fig. (2)
Neuweiler (2000). FM pulses starts at high frequency and sweeps downward to progressively
lower frequency. They last for a short period of time, usually up to several ms. There is
interspecies and between habitat variation in the slope of the pulse. CF signal is a pure tone
or only slightly modulated in frequency at the beginning. In horseshoe bats (Rhinolophidae),
hipposiderid bats (Hipposideridae) and mormoopid Pteronotus parnellii the CF tone ends
and/or starts with short FM part. CF pulse usually last for 10 − 100 [ms].
Many FM bats used open, semi-open, edges of forest, separating pulse from echo in the time
and discriminating delay in echo when estimating target distance, whereas CF bats usually
forage in clutter environment and emit long-duration calls separating pulse and echo in
frequency Neuweiler (2000).

Fig. 2. The main categories of bat echolocation pulses: broadband FM sweeps, narrowband
quasiconstant frequency pulse with short FM element (FM-QCF) and constant frequency
(CF) call.

An echolocating bat emits pulses with irregular time intervals. During pauses between pulses
no information is available. The time without information varied between species, habitats
and pulse type. The ratio of the time during which a signal is present to the entire duration of
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the time from one call onset to the next is called duty cycle. FM bat echolocate on low-duty
cycle, i.e. most of the echolocation sequence is occupied by interpulse interval (gaps between
pulses), and the pulses covered usually less than 20 [%] of the sequence. CF bat produces
high-duty cycle sequence, where signals occupied more than 50 [%] of the sequence time Jones
(1999).
The echolocation pulse sequence of a flying bat foraging for insects consists usually of three
phases. When a bat is searching for an insect it emits search pulses (search phase). As
soon as the bat detect target, it begins to pursuit it, emitting signals faster, progressively
decreasing intervals between them in order to avoid overlap between the outgoing signal
and the returning echo. This is called approach phase and a bat can emit calls with the signal
repetition rate up to 40-50/s. Just before the bat captures an insect, it emits a final buzz, called
also terminal buzz or feeding buzz Fig. (3). During the final buzz, the duty cycle increases to
about 90 [%].
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Fig. 3. Echolocation sequence of FM (a) and CF (b) bats emitted during prey pursuit. The
pulse repetition rate increases when bats detect a prey reaching the maximum rate just before
a catch.

2.4 How bats detect faint echoes?
The detection of echoes encounter the problems related to the echo strength and the
interference of echoes of different individuals. Echolocation calls of most bats are very loud
at the source but they are very quickly attenuated in the air, because most of the bats use
ultrasound calls of high frequencies. So the returning echo is very weak. Moreover, bat’s
auditory system is exposed to extraneous sounds, e.g. sonar of other bats, which may interfere
with bat’s own echo processing. Bat overcome these problems by opening neural gate of
short duration. The neural gate is triggered by the bat’s own echolocation pulses, when they
are emitted. This process briefly opens time windows enabling the bat’s auditory system
to receive and interpret bat’s own echoes Roverud & Grinnell (1985), Altringham (1999),
Neuweiler (2000). The detection of weak pulses may be additionally enhanced by the process
called forward masking. During forward masking hearing thresholds increase when acoustic
stimuli are presented shortly after a sound of similar spectral composition, i.e. weak echoes
returning shortly after the emission of their own comparatively intense sonar calls Siewert I.
(2004).

2.5 Determination of sonar target features
The echo imagination of an object is affected by the structure of the echolocation pulse and the
physical parameters of an object. FM and CF calls are adapted in a different way to intercept
the objects. CF bats concentrate all or most of the energy into one frequency what carry the call
further. CF signals are adapted to detect wing beats of fluttering insect in clutter environment,
whereas FM pulses are well suited for three dimensional target localization, giving broadband
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echospectra. FM bats spread the energy over a broadband FM pulse with low frequency
components. Some FM bats use also shallow FM pulses with low frequency CF tail. Some of
them, e.g. noctule Nyctalus noctula, also alternate CF with FM pulses. This strategy is used by
bats foraging in the open environments and helps bats to detect prey simply by maintaining
the intensity of the pulse, and hence that of the echo, over greater distance Neuweiler (2000).

2.5.1 Target location in 3-dimensional space
FM bats discriminate an object’s location in horizontal and vertical planes, the distance to the
object and its relative velocity and direction of movement. For an analysis of the distance to
a target an echolocating FM bat uses the time interval (delay) between their emitted sonar
vocalization and a returning echo to obtain target distance information Simmons (1973). An
FM bat appears to determine prey velocity primarily by measuring the changes in distance
between it and its prey from one echo to the next.
The horizontal position of an object in space is determined by differences in the intensity
and/or time of arrival of echoes at the two ears Fig. (4). Tragus plays probably an important
role in the vertical positioning, since it is responsible for generating multiple reflections in the
external ear as echoes travel to the eardrum Lawrence & Simmons (1982). The reflections of
sound waves from tragus and the wall of the pinna create interference patterns, which change
according to the vertical direction of the sound Fig. (4). Therefore the vertical positioning may
be resolved by analyzing secondary echoes which follow different paths through the inner ear
and around the tragus, depending upon their direction of origin. The big brown bat Eptesicus
fuscus can resolve vertical angles down to 3.5 [deg], and horizontal angles of 1.5 [deg]. Bats that
lack tragus (horseshoe bats and hipposiderids) move their pinnae in a pattern correlated with
the emission of their echolocation calls: one ear moves upward and downward, the second
ear moves forward and back. This pinnae movements play a role in sound localization a the
vertical plane Neuweiler (2000).

Fig. 4. The schematic imagination of the vertical and horizontal angles determination by an
echolocating bat.

2.5.2 Target range differences discrimination
FM bats well resolve the discrimination of small differences in the distance to two objects,
utilizing matched-filter and the envelope of autocorrelation function. The bat cross-correlates
the emitted pulses with returning echo. The ACR describes the average period T of the signal
(the reciprocal of the fundamental frequency, which decreases with increasing frequency) and
t, the width of the envelope at the half of its maximum. This is approximately the reciprocal
of the signal’s bandwidth. The introduction of FM higher harmonics decreases the height of
the side peaks, reducing t. Bat neural system can determine unambiguously the timing (i.e.
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2.5.2 Target range differences discrimination
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utilizing matched-filter and the envelope of autocorrelation function. The bat cross-correlates
the emitted pulses with returning echo. The ACR describes the average period T of the signal
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position) of the peak of the ACR. The narrower the central peak, and the lower the side peaks,
the more acute the bat’s target ranging. It is achieved with the FM pulses of large bandwidth
(small t), high fundamental frequency (small T) and with additional harmonics (the side peaks
are of low amplitude). The CF bat (constant frequency call with short, narrow bandwidth FM
tail) can only distinguish between two objects if one is more than 12 [mm] closer from the bat
than the other. The FM bat can distinguish distance of 4 [mm], which means that it is able to
differentiate between echoes arriving as little as 20 [μs] apart Fig. (5) Simmons (1973).
Important role in target ranging plays the neural gate. It acts as a distance filter for bat’s own
sound. In Noctilio albiventris, Eptesicus fuscus and Rhinolophus rouxi the time window is open
for around 30 [ms], allowing the bats to target range over distances up to 5 [m]. The bat can
ignore echoes from more distant objects Altringham (1999).
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2.5.3 Determining object size
Bats determine target size using amplitude modulation, i.e. the intensity of the echo. The
bigger an object reflecting echolocation pulses, the smaller amplitude modulation. By small
objects the amplitude of returning echo is decreasing. Different species of bats can detect and
avoid wires with a diameter of 0.06 − 0.1 [mm].

2.5.4 Determining object structure
Most of the objects perceived by bats is very complex and have many reflective surfaces
that result in a chaotic acoustic image of the target without systematic spectral interference
pattern. The echo perceived by a bat consists of its ultrasonic emission convolved with the
acoustic impulse response (IR) of the ensonified object. The IR is the sum of reflections
from the complex target. Its extraction implies great echolocation capabilities of bats. The
experiment with Phyllostomus discolor (Phyllostomidae) showed that bats can classified echoes
and evaluate IR roughness. Hence bats can evaluate complex texture, such as e.g. foliage type
Grunwald et al. (2004). Thus the structure of more complex objects, ensonified by ultrasounds,
can be probably detected with high precision by echolocating bats. This capability allow bats
to recognize not only environment features but also find and classify prey or food source
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inaccessible for other (bat) species. This ability is especially important in FM bats, that forage
in a clutter environment and detect insects against background or feed on nectar and pollen of
flower. The precision in structure classification and insect detection in a clutter leads to niche
partitioning in FM clutter forager bat species, because prey detection in clutter increases as
the width of the FM call band broadens Siemers & Schnitzler (2004)
Some of the flower-visiting bats (glossophagines from the family Phyllostomidae) can
probably estimate the stage of flower inflorescense using echolocation. Mucuna holtoni, a
bat-pollinated flower attracts bats by conspicuous echoes. The plant open new flowers
successively from dusk to about midnight, so the bat must search for newly open flowers
which serve with pollen. When a bud becomes mature, its vexillum (upper petal) is raised.
The experiments showed that the vexillum indicate the presence of mature flowers to the bats.
Based on this feature, exploded flowers can be distinguished from virgin flowers Helversen
& Helversen (1999). When the flowers of Mucona holtoni are exposed to artificial sounds
(imitating echolocation calls of bats), they give different echoes (amplitude modulations) in
bud and open flower. The raised vexillum strongly reflect sounds so the echo of the whole
flower is strongly dominated by echo of the vexillum Helversen O. von (2003).
The best performance in determining target structure is achieved by FM bats. As opposed
to CF calls, FM signals contain more information about spectral changes (modulation of the
frequency components) and amplitude changes (modulation of the strength of the echo). The
very broadband FM call (100− 20 [kHz]) used by Megaderma lyra enables it to analyse textural
depths in the range 0.9 − 4.2 [mm]. The narrowband FM tail to the call of greater horseshoe
bats is limited to 1.1 − 1.5 [mm] Altringham (1999). Experiments with Megaderma lyra showed
that the bat can detect the difference in depth of only 0.2 [mm] Schmidt (1992). The bat can do
that not only using echolocation but also by passive listening to the virtual echoes.
Bats can perceived sound structure by analyzing the interference patterns of echos. Signals
reflecting from the rough structure contains peaks and nulls at different frequencies,
depending on the depth of the textural surface of the target. The interference between sound
waves of identical frequency and amplitude causes addition or cancellation of the energy. The
addition of the energy is maximal when the waves are in phase, whereas maximal cancellation
occurs when the echo and emitted signal are 180 [deg] out of phase. Such cancellation within
a spectrum is called a notch. A notch occurs when the distance between the high and low
points on a target is λ/4 or an uneven multiple of this relationship. The addition of the
energy occurs when the differences in depth between the target surface is λ/2 or even multiple
thereof Fig. (6). The position of the peaks and nulls within the spectrum provides a measure of
the surface texture of an object. The smoother target the higher the frequency of the maximal
notch Neuweiler (2000).

2.5.5 CF calls and prey detection in CF bats
CF bats intercept the space and prey in a different way as FM bats. The CF pulses has poor
range resolution, although they also need determine the range for interception or avoidance.
The CF bats probably therefore introduce FM component to their signals. These bats detect
moving prey using the Doppler shift (Doppler effect) of the constant frequency or by detecting
the changes in echoes of a flying insect caused by its wing beats Schnitzler et al. (1983),
Schnitzler (1987). The echo reflected from the fluttering insect contains momentary glint-like
energy maxima. Such glints consists of amplitude and frequency modulations. Changes in
wing profile causes variation in the intensity of the echo amplitude modulation. The wing
movement towards or away from the direction of the bat broadens sound spectrum due to
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FM bats) (from Altringham (1999) based on Simmons (1973))
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objects the amplitude of returning echo is decreasing. Different species of bats can detect and
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from the complex target. Its extraction implies great echolocation capabilities of bats. The
experiment with Phyllostomus discolor (Phyllostomidae) showed that bats can classified echoes
and evaluate IR roughness. Hence bats can evaluate complex texture, such as e.g. foliage type
Grunwald et al. (2004). Thus the structure of more complex objects, ensonified by ultrasounds,
can be probably detected with high precision by echolocating bats. This capability allow bats
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(imitating echolocation calls of bats), they give different echoes (amplitude modulations) in
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The best performance in determining target structure is achieved by FM bats. As opposed
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frequency components) and amplitude changes (modulation of the strength of the echo). The
very broadband FM call (100− 20 [kHz]) used by Megaderma lyra enables it to analyse textural
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that the bat can detect the difference in depth of only 0.2 [mm] Schmidt (1992). The bat can do
that not only using echolocation but also by passive listening to the virtual echoes.
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reflecting from the rough structure contains peaks and nulls at different frequencies,
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waves of identical frequency and amplitude causes addition or cancellation of the energy. The
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a spectrum is called a notch. A notch occurs when the distance between the high and low
points on a target is λ/4 or an uneven multiple of this relationship. The addition of the
energy occurs when the differences in depth between the target surface is λ/2 or even multiple
thereof Fig. (6). The position of the peaks and nulls within the spectrum provides a measure of
the surface texture of an object. The smoother target the higher the frequency of the maximal
notch Neuweiler (2000).
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CF bats intercept the space and prey in a different way as FM bats. The CF pulses has poor
range resolution, although they also need determine the range for interception or avoidance.
The CF bats probably therefore introduce FM component to their signals. These bats detect
moving prey using the Doppler shift (Doppler effect) of the constant frequency or by detecting
the changes in echoes of a flying insect caused by its wing beats Schnitzler et al. (1983),
Schnitzler (1987). The echo reflected from the fluttering insect contains momentary glint-like
energy maxima. Such glints consists of amplitude and frequency modulations. Changes in
wing profile causes variation in the intensity of the echo amplitude modulation. The wing
movement towards or away from the direction of the bat broadens sound spectrum due to
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Fig. 6. The interference pattern of sounds reflecting from the object if rough structure.

Doppler effects. Echoes received by a bat approaching a stationary insect will be increased
in frequency, and increased further if the insect is approaching the bat Schnitzler et al. (1983),
Schnitzler (1987). Similarly, echospectra of fluttering insect oriented at three different angles
demonstrates that the echo will be amplitude modulated within a pulse, and there will be
also fluctuations in echoes from pulse to pulse Schnitzler et al. (1983). Insects of different size
and from different species/families can therefore give different amplitude modulation, which
may be an useful information for foraging bats.
The Doppler shift arises from the differences in velocity between bat and insect and the CF bats
can compensate for this effect Schnitzler (1968). FM pulses are Doppler tolerant, so they are
not affected significantly by either their own motion or that of the prey. CF bats compensate
for Doppler shift induced by bat’s flight speed by lowering the frequency of emitted pulses
when flying. Doppler shift compensation causes that emitted pulse and returning echo differ
in frequency, however the frequency of returning echo always falls within the range of the
frequency emitted when resting, which is the frequency of best hearing ’(BF)’. CF bats are very
sensitive to a very narrow frequency band ’(BF)’, actually one frequency of CF signal, which
is called auditory fovea (Neuweiler (2000), see the next chapter). Therefore the bat alters
its emission frequency to keep an echo at a strictly defined frequency. The shift in emitted
frequency tells the bat how fast it is moving, and in what direction, relative to the object. As a
target moves and the echo frequency changes, the bat shifts its emitted frequency to keep the
echo frequency constant Neuweiler (2000).

2.6 Auditory adaptations to sound perception
Bats auditory system is adapted to special tasks of the spatial orientation using sound (pulse
and its echo) to perceive the environment, but it is built and operate in the similar manner
as in other mammals, i.e. pinna with tragus, external ear, middle ear and inner ear, auditory
nerve and auditory centers in brain Neuweiler (2000).

2.6.1 Functional anatomy of the ear
Echolocating bats have relatively large pinnae. The pinna acts as movable directional antenna.
The directional hearing and sound picking by the pinna depends on the size and geometry of
the pinna as well as the wavelength of sound. The pinna functions as a directional antenna
when ka > 1.25, that is, when the wavelength is smaller than 4-5 times the radius of the
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pinna opening where a - radius of the pinna opening. The larger the pinna, the better low
frequencies will be transmitted to the eardrum. In Plecotus auritus, a bat with relatively big
pinnae, the cut-off frequency is 6 − 8 [kHz]. The pinna can not exert its directionality when
the wavelength of sound exeeds the dimensions of the pinna. The higher the frequency, the
more pronounced the directional characteristic of the pinna Neuweiler (2000).
The highly variable pinna form and size in different families of bats affect their acoustic
properties. The pinna in most echolocating bats is rather small, because it is tuned to
ultrasound frequencies with short wavelengths between 2 and 16 mm. In contrast, in gleaning
bats (taking prey from the surface) which listen to the low frequency rustling noise made by
prey, the pinna is extraordinarly large. The greatest pinna amplification is in the range of
6 − 10 [kHz].
Unique to most echolocating bats is the tragus, cartilaginous projection at the base of the
pinna. Tragus enhances discrimination of the elevation of the target Lawrence & Simmons
(1982). Bats that do not posses tragus have antitragus, a horizontal fold of the skin along the
opening of the ear canal, and frequently move their pinnae.
Sound perceived by pinna passes to middle ear and causes vibration of eardrum (tympanic
membrane), which is only 2 − 11 [μm] thick in echolocating bats. The vibrations are passed
to the oval window along 3 ears ossicles: malleus, incus and stapes. Those media acts as
filters, because of the vibration capabilities. The higher frequencies bats produce and perceive
the thinner the eardrum is and smaller and lighter middle ear ossicles, because they vibrate
more rapidly. Vibrations of the oval window are transmitted along the spiral canal of the
cochlea. Cochlea is a bone with three canals spiral in parallel with the organ of Corti between
them. It is highly complicated sound receiver and frequency analyzer, which categorizes the
sound by frequency. Echolocating bats have 2.5 − 3.5 complete turns, relative to the 1.75 of
non-echolocating bats and primates Altringham (1999).
The inner canal of the cochlea is a tube, scala media, filled with fluid. It is covered by a second
tube, which upper part is called scala vestibuli and the lower part scala tympani. Both of
those tubes are separated from middle ear by membranes of the oval and round windows
Fig. (7). The floor of the scala media is formed by the basilar membrane with sensory hair
cells. Each hair cell posses bundle of stereocilia. The sterocilia tips are covered by the tectorial
membrane. Vibration of the basilar membrane against the tectorial membrane causes shearing
of the hair cell sterocilia and consequently, oscillations in the receptor potential that follow
the rhythm of basilar membrane movement. This movement is caused by the momentary
pressure differences between the scala vestibuli and scala tympani, which arises when the
stapes moves and press against the oval window. The basilar membrane moves up and down
at the same frequency as the stimulus. The oscillation progresses along the length of the basilar
membrane, decreasing its speed. When the stimulus is a high frequency sound, the travelling
wave moves only a short distance along the basilar membrane. The lower the frequency, the
farther the traveling wave moves within the cochlea. Thus, high frequencies activate only the
most basal hair cells, and lower frequencies activate the apical hair cells most strongly Fig. (7)
Neuweiler (2000). Each hair cells is activated by specific frequency, its best frequency (BF).
The frequency map of the basilar membrane varied between CF and FM bats. The CF bats
have ’personal’ constant frequency which show small variation in a resting specimen (±50
[Hz], Schnitzler (1968)). Therefore there is a mechanical filter in cochlea tuned to very narrow
frequency band of about several kHz. The cochlea of CF bats has the expanded representation
of a narrow frequency band of only 6 [kHz] around the individual’s pure-tone echo frequency
Fig. (8). The hair cells sensitive to that narrow band occupy the entire second turn of the
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Fig. 6. The interference pattern of sounds reflecting from the object if rough structure.

Doppler effects. Echoes received by a bat approaching a stationary insect will be increased
in frequency, and increased further if the insect is approaching the bat Schnitzler et al. (1983),
Schnitzler (1987). Similarly, echospectra of fluttering insect oriented at three different angles
demonstrates that the echo will be amplitude modulated within a pulse, and there will be
also fluctuations in echoes from pulse to pulse Schnitzler et al. (1983). Insects of different size
and from different species/families can therefore give different amplitude modulation, which
may be an useful information for foraging bats.
The Doppler shift arises from the differences in velocity between bat and insect and the CF bats
can compensate for this effect Schnitzler (1968). FM pulses are Doppler tolerant, so they are
not affected significantly by either their own motion or that of the prey. CF bats compensate
for Doppler shift induced by bat’s flight speed by lowering the frequency of emitted pulses
when flying. Doppler shift compensation causes that emitted pulse and returning echo differ
in frequency, however the frequency of returning echo always falls within the range of the
frequency emitted when resting, which is the frequency of best hearing ’(BF)’. CF bats are very
sensitive to a very narrow frequency band ’(BF)’, actually one frequency of CF signal, which
is called auditory fovea (Neuweiler (2000), see the next chapter). Therefore the bat alters
its emission frequency to keep an echo at a strictly defined frequency. The shift in emitted
frequency tells the bat how fast it is moving, and in what direction, relative to the object. As a
target moves and the echo frequency changes, the bat shifts its emitted frequency to keep the
echo frequency constant Neuweiler (2000).

2.6 Auditory adaptations to sound perception
Bats auditory system is adapted to special tasks of the spatial orientation using sound (pulse
and its echo) to perceive the environment, but it is built and operate in the similar manner
as in other mammals, i.e. pinna with tragus, external ear, middle ear and inner ear, auditory
nerve and auditory centers in brain Neuweiler (2000).

2.6.1 Functional anatomy of the ear
Echolocating bats have relatively large pinnae. The pinna acts as movable directional antenna.
The directional hearing and sound picking by the pinna depends on the size and geometry of
the pinna as well as the wavelength of sound. The pinna functions as a directional antenna
when ka > 1.25, that is, when the wavelength is smaller than 4-5 times the radius of the
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pinna opening where a - radius of the pinna opening. The larger the pinna, the better low
frequencies will be transmitted to the eardrum. In Plecotus auritus, a bat with relatively big
pinnae, the cut-off frequency is 6 − 8 [kHz]. The pinna can not exert its directionality when
the wavelength of sound exeeds the dimensions of the pinna. The higher the frequency, the
more pronounced the directional characteristic of the pinna Neuweiler (2000).
The highly variable pinna form and size in different families of bats affect their acoustic
properties. The pinna in most echolocating bats is rather small, because it is tuned to
ultrasound frequencies with short wavelengths between 2 and 16 mm. In contrast, in gleaning
bats (taking prey from the surface) which listen to the low frequency rustling noise made by
prey, the pinna is extraordinarly large. The greatest pinna amplification is in the range of
6 − 10 [kHz].
Unique to most echolocating bats is the tragus, cartilaginous projection at the base of the
pinna. Tragus enhances discrimination of the elevation of the target Lawrence & Simmons
(1982). Bats that do not posses tragus have antitragus, a horizontal fold of the skin along the
opening of the ear canal, and frequently move their pinnae.
Sound perceived by pinna passes to middle ear and causes vibration of eardrum (tympanic
membrane), which is only 2 − 11 [μm] thick in echolocating bats. The vibrations are passed
to the oval window along 3 ears ossicles: malleus, incus and stapes. Those media acts as
filters, because of the vibration capabilities. The higher frequencies bats produce and perceive
the thinner the eardrum is and smaller and lighter middle ear ossicles, because they vibrate
more rapidly. Vibrations of the oval window are transmitted along the spiral canal of the
cochlea. Cochlea is a bone with three canals spiral in parallel with the organ of Corti between
them. It is highly complicated sound receiver and frequency analyzer, which categorizes the
sound by frequency. Echolocating bats have 2.5 − 3.5 complete turns, relative to the 1.75 of
non-echolocating bats and primates Altringham (1999).
The inner canal of the cochlea is a tube, scala media, filled with fluid. It is covered by a second
tube, which upper part is called scala vestibuli and the lower part scala tympani. Both of
those tubes are separated from middle ear by membranes of the oval and round windows
Fig. (7). The floor of the scala media is formed by the basilar membrane with sensory hair
cells. Each hair cell posses bundle of stereocilia. The sterocilia tips are covered by the tectorial
membrane. Vibration of the basilar membrane against the tectorial membrane causes shearing
of the hair cell sterocilia and consequently, oscillations in the receptor potential that follow
the rhythm of basilar membrane movement. This movement is caused by the momentary
pressure differences between the scala vestibuli and scala tympani, which arises when the
stapes moves and press against the oval window. The basilar membrane moves up and down
at the same frequency as the stimulus. The oscillation progresses along the length of the basilar
membrane, decreasing its speed. When the stimulus is a high frequency sound, the travelling
wave moves only a short distance along the basilar membrane. The lower the frequency, the
farther the traveling wave moves within the cochlea. Thus, high frequencies activate only the
most basal hair cells, and lower frequencies activate the apical hair cells most strongly Fig. (7)
Neuweiler (2000). Each hair cells is activated by specific frequency, its best frequency (BF).
The frequency map of the basilar membrane varied between CF and FM bats. The CF bats
have ’personal’ constant frequency which show small variation in a resting specimen (±50
[Hz], Schnitzler (1968)). Therefore there is a mechanical filter in cochlea tuned to very narrow
frequency band of about several kHz. The cochlea of CF bats has the expanded representation
of a narrow frequency band of only 6 [kHz] around the individual’s pure-tone echo frequency
Fig. (8). The hair cells sensitive to that narrow band occupy the entire second turn of the
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cochlea, what correspond to one-fourth of the length of the basilar membrane. In FM bats this
region contains the representation of about one octave and the frequency progression of the
hair cells id approximately logarithmic Vater et al. (1985), Neuweiler (2000). This very narrow
filter in CF bats is called auditory fovea. The auditory fovea of each individual bat is precisely
tuned to its own emitted frequency Vater et al. (1985). The corresponding fitter exists in the in
consecutive stages of sound processing in the brain (see next subchapter).

Fig. 7. The schematic plan of the mammalian ear and sound wave flow from the pinna to the
inner ear (adapted from Neuweiler (2000)).

Fig. 8. Frequency representation on the basilar membrane in the inner ear of FM (Tadarida
brasiliensis) and CF bats (Rhinolophus rouxi). CF bat show specific auditory fovea (adapted
from Vater et al. (1985) and Neuweiler (2000).

2.6.2 Auditory pathways in the central nervous system
The central auditory system of bats consists of the same nuclei as in other mammals, however
some of these nuclei are relatively larger than they are in other mammals. The impulses from
the hair cells in the inner ear are transfer to the auditory nerve fibers, which further transmit

218 Sonar Systems Bats Sonar Calls and its Application
in Sonar Systems 11

the impulse to the midbrain auditory centre, called inferior colliculus. In echolocating bats
the inferior colliculus is large. It gather all pathways together and transmits information to
the medial geniculate body of the thalamus. From thalamus the information is proceeds to
auditory cortex in forebrain where the final processing of the sound is happened and sound
is translated into images of the environment Neuweiler (2000). The output of the bank of

Fig. 9. Tonotopic frequency representation in the inferior colliculus in FM bat (Eptesicus
fuscus) and CF bat (Hipposideros speoris) (from Ostwald (1984))

Fig. 10. Tonotopic frequency representation in the auditory cortex of CF bat (Rhinolophus
ferrumequinum) with narrow frequency band of auditory fovea (from Neuweiler (2000).

Fig. 11. Audiograms of FM (Tadarida brasiliensis) and CF bats (Rhinolophus rouxi) obtained
from the measurements of the neurons in the inferior colliculus. CF bat shows fine tuning to
a narrow frequency band (at about 73 [kHz]) of the auditory fovea (adapted from Vater et al.
(1985), Neuweiler (2000).

spectral filters in the inner ear is organized into a tonotopic (cochlear) map with a laminar
arrangement of neurons of the inferior colliculus. The cells within a given lamina all have a
similar best frequency Fig. (9). Thus, each lamina is responsible for processing information
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from one specific frequency band. In FM bat frequency bands are distributed less or more
evenly, whereas in CF bat, the lamina responsible for one narrow frequency band is relatively
large. The auditory cortex of CF bat has adequate an overrepresentation of the neurons
sensitive to the frequencies of only 1.5 [kHz] band Fig. (10). These narrow filters correspond
to the auditory fovea and is seen in the auditory tuning curves of CF bats, as a region of very
low threshold for the frequencies of CF portion of the echolocation pulse Schuller & Pollak
(1979) Fig. (11). In FM bats the neurons are almost always either broadly tuned or only fairly
sharp Neuweiler (2000) Fig. (11).

3. Ultrasound waves in gas medium

The nature of a gas medium, which is determined by its parameters, is extremely ultrasound
unfriendly in relation to ultarasound waves generation transmission and detection. The main
parameter of the gas medium is sound velocity c. It varies depending on such parameters as
static pressure and temperature of gas. A theoretical dependence between sound velocity and
gas properties is given by Eq. (1)

c =

√
κ (T) · p0 · T

ρ0 · T0
(1)

where κ (T) – ratio of specific heats cp
/
cv, p0 – static pressure in normal conditions, ρ0 – gas

density in normal conditions, T0 – 293 K. The main problems in case of an air coupled sonar
system based on TOF are temperature and pressure changes, which have to be compensated
using external sensors or reference channels. The second important parameter which is critical
in sonar systems is sound attenuation in a given medium. In gases sound attenuation is
described by clasicall Stokes-Kirchhoff Eq. (2)

αcl = αη + ασ =
ω2

2ρc3

[
4
3

η� + σ

(
1
cv

− 1
cp

)]
(2)

where ω – circular frequency, η� – shear viscosity, cv – specific heat at a constant volume, cp
– specific heat at a constant pressure, σ – heat conductivity. The most significant information
contained in Eq. (2) is that the attenuation factor is proportional to the square of circular
frequency α ≈ ω2. As a result of the above the range of air operating sonar system is
significantly limited to a few centimeters for frequencies above 100 [kHz]. Additionally,
echolocating bats use band limited signals from the range of 20 − 200 [kHz]. This varies
between species, but in some cases also depends on hunting strategy and the type of
surrounding obstacles. A precise expression of attenuation in air Eq. (3) was formulated
by Evans et al. (1972).
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The model of sound absorbtion in air takes into account both the classical processes (viscous
losses, heat conduction) and relaxation. The two new variables ad and D12 stand for
molecular diffusion constant, and diffusion coefficient for the mixture of oxygen and nitrogen
repectievly. The relation between attenuation and frequency for different humidity is shown
in Fig. (12)
Considering the simplest case of an acoustic TRX (Transmitting - Receiving) system made of
a coaxially situated single transmitter and receiver shown in Fig. (13) it is possible to define
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Fig. 12. Attenuation coefficient as a function of frequency with various parameters: humidity
in a range of 0 − 90 [%] with 10 percent resolution (left), temperature in a range of 213 − 303
[K] with 10 [K] resolution (right). According to Evans et al. (1972) and Bass et al. (1995).

Fig. 13. An illustration of a simple acoustic link

acoustic link range equation (4), widely described by Gudra & Opielinski (2006).
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The equation defines a relation between both transmitted and received acoustic power as
a function of distance d, directivity of the transmitter Ω = π2 f 2D2

T
/

2c2 for π f DT
/

2c��1,
receiver’s surface SR and attenuation factor α.
The third important limitation, especially important in air coupled sonar systems, is acoustic
impedance mismatch. According to transmission line theory the energy transmission
coefficient equals to Eq. (5)

T = 2
√

Z1Z2
Z1 + Z2

(5)

In most ultrasonic applications the acoustic impedance of the transmitter or receiver is a few
order higher than the impedance of the medium. As a result of this phenomena most acoustic
energy is reflected from impedance discontinuity. Some methods of reducing the impedance
mismatch will be described in section (4).
Target strength TS is another very important parameter in the context of object detection using
a sonar system. This parameter characterises the reflecting properties of an object and is
defined by Eq. 6)

TS = 10 log10
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)
(6)
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where Ir and It indicate intensities of reflected and incident waves respectively Because of
the fact that target strength depends on objects’ geometry and their reflecting capabilities it
can be calculated for simple solids like sphere, cylinder etc. More information about target
strength measurements for different objects can be found in the papers Gudra et al. (2010) and
Norman & Jones (2000). To evaluate the performance of an active sonar operating in air we
include target strength TS Eq. (7)

SL − 2TL + 2TS − NL + DI + PT > RT (7)

where: SL - source level, TL - transmission losses, NL - noise level, DI - directivity index, PG -
processing gain, RT - reception threshold.

4. Air coupled ultrasound transducers

Since air coupled acoustic signal is used in passive and active sonar systems, ultrasound
transducers have to be applied in these solutions. Due to problems related to ultrasound
signals transmission described in section (3) signal transmitters and receivers have to
guarantee some critical parameters in order to achieve eligible results. Efficiency Sn
and sensitivity S0 are very basic parameters of acoustic transmitters/receivers Due to the
transducer dimensions comparable with an acoustic wave length the ultrasonic sensors
are usually highly directional. The directional parameters of transducers are described by
directivity coefficient Ω given by Eq. (8)

Ω =
2

π�
0

K2 (θ) sin (θ) dθ

(8)

The directivity characteristic for a circular piston vibrating in an infinite baffle is described by
Eq. (9)
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c

�

π f DT ·sin(θ)
c

(9)

where DT – piston diameter, J1 – Bessel function of first order. The problem of simplifying
the Eq. (9) is widely described by Gudra & Opielinski (2004). In practice for the directivity
coefficient calculations of ultrasonic transducers working in the air it can be assumed that:
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2
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�
c > 10

(10)

There is a variety of transducers that are used to generate or receive ultrasounds in a gas
medium. Some selected properties of the transducers are presented in a table (1)
A dynamic transducer may be used to produce low frequency ultrasound. The basic limitation
of cut-off frequency is high impedance of vibrating coil and decrease of effective radiating
surface of the loudspeaker membrane. An electro-mechano-acoustical model of dynamic
loudspeaker is shown in Fig. (14). The parameters of analog circuit and it analysis are widely
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Type Frequency range Transmitter Receiver
Dynamic broadband Yes No
Condenser broadband Yes Yes
Piezocermic resonant Yes Yes
PVDF resonant/boadband Yes Yes
EMFi broadband Yes Yes
Electret broadband Yes Yes

Table 1. Comparison of ultrasound transducers’ basic properties.

described in a book Borwick (2001). The most important conclusion is that the SPL produced
by this type of transducer decreases 12 [dB/oct] because of voice coil impedance Lc and air
mass load Mmd.

Fig. 14. Dynamic transmitter model a) in a full range of frequencies, b) at very high
frequencies (above 2-nd resonance).

The next group of transducers associated with ultrasound wave generation are condenser
microphones and transmitters. Most of ultrasound microphones are based on condenser
receiver principle. The common known limitation of such a device is its small membrane
surface in comparison to the wave length, which causes low sensitivity. The microphones
are also very susceptible to humidity and dirt. Condenser transmitters are not as popular as
the receivers due to low effectiveness, but in a range of frequencies above 50 [kHz] condenser
construction is, next to EMFi film, the only broad band alternative. The most common material
in ultrasound transducers technology is piezoceramics. This is due to the resonant character
of generated waves and its highest effectiveness/sensitivity. Since Langevine developed a
sandwich type transducer in 1927, it has been the most known type of transducer, next the
one that uses piezoceramic rings vibrating in radial symmetrical mode. The main advantage
of sandwich type transducer coupled with vibrating plate is its high effectiveness and ability
to work continuously and generate high acoustic power. Additionally, a surface of vibrating
plate improves energy transmission coefficient Eq. (5). A typical construction of a sandwich
transducer is shown in Fig. (15).
Sandwich transducer elements’ dimensions are described by Eq. (11).

tg
(

2πd f0
cp

)
· tg

(
2πb f0

cb

)
=

Zp

Zb
(11)

where:
Zp - impedance of piezoceramics material,
Zb - impedance of loading mass material,
cb - speed of sound in loading mass material,
cb - speed of sound in piezoceramics material,
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microphones and transmitters. Most of ultrasound microphones are based on condenser
receiver principle. The common known limitation of such a device is its small membrane
surface in comparison to the wave length, which causes low sensitivity. The microphones
are also very susceptible to humidity and dirt. Condenser transmitters are not as popular as
the receivers due to low effectiveness, but in a range of frequencies above 50 [kHz] condenser
construction is, next to EMFi film, the only broad band alternative. The most common material
in ultrasound transducers technology is piezoceramics. This is due to the resonant character
of generated waves and its highest effectiveness/sensitivity. Since Langevine developed a
sandwich type transducer in 1927, it has been the most known type of transducer, next the
one that uses piezoceramic rings vibrating in radial symmetrical mode. The main advantage
of sandwich type transducer coupled with vibrating plate is its high effectiveness and ability
to work continuously and generate high acoustic power. Additionally, a surface of vibrating
plate improves energy transmission coefficient Eq. (5). A typical construction of a sandwich
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Fig. 15. Sandwich transducer a) structure of a transducer with vibrating plate, b) acoustic
velocity distribution.

d - thickness of piezoceramic plate,
b - thickness of loading mass,
f0 - resonance frequency.
The length requirements for acoustic velocity transformer is presented in Fig. (15 b) and equals
λ/2. Radiating mass length has to fulfill requirements λ/4. The maximum radiating acoustic
power can be achieved by applying stepped plate, which vibrates flexurally in its axial mode.
The major problem of the presented construction is the high mechanical Q-factor of the plate
and mechanical part of the transducer and electrical Q-factor of piezoceramics.
Radial and thicness vibration of piezoceramic disc are commonly used as a source of acoustic
wave in many sensors. An piezoelectric disc and its electrical model are shown in Fig. (16).
Radial ur and thickness uz displacement of radiating surfaces are given by Eq. (12).

Fig. 16. Coordinate system, force distribution, dimensions of piezoelectric disc and its
electrical equivalent circuit at resonance frequency.

ur = − u1
jω J1(k1a) J1 (k1r)

uz = 1
jω

[
− (u2+u3)

2 sin(k3b) sin (k3z) + (u3−u2)
2 cos(k3b) cos (k3z)

] (12)
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where:

k1 = ω
c1

, c1 =

√
cD

11
ρ , k2 = ω

c3
, c3 =

√
cD

33
ρ

, (13)

The thickness vibrations of disc with matching layer generate quasi-plane wave while the
radial ones are the source of cylindrical wave. To produce a wave with reduced near field
and side lobes it is possible to use radial vibrations of the piezoceramic disc to actuate the
transducer mechanical enclosure and radiate the wave in z direction.
Maximum displacement across x direction in thickness vibration mode occures at r = 0. .
Radial vibration displacement reaches its maximum at r = a across r direction. Normalised
displacement across both directions as a function of radius is shown in Fig. (17)

Fig. 17. Distribution of radial and thickness components of displacements of piezoelectric
disk calculated using analytical method and FEM (according to Gudra (2008))

The acoustic energy in air operating active sonar systems is transmitted from transducer
to a gas medium. The impedance of the piezoceramics PZT equals Zp = 29.6 · 106 while
the air acoustic impedance equals Zair = 427. One of the methods to reduce the adverse
energy transmission coefficient Eq. (5) is to use impedance matching layer as it is shown
in Fig. (18). Using one-quarter of the wave length matching layer made of material the
acoustic impedance of which is Zp = 1.12 · 105 guarantees maximum energy transmission.
The matching layer material is usually made of composite porous materials. Another way
to improve impedance matching is applying multilayered matching structure, where Zk <<
Zk+1. Sound attenuation in particular layers is a limitation of this method.
The problem of impedance mismatch is less significant for EMFi (Electromechanical Film)
based transducers. The physical and acoustics parameters of foil are presented in papers by
Paajanen et al. (2000) and Paajanen et al. (2001). The most important advantages of EMFi
film is high value of longitudinal piezoelectric constant d33, which varies in the range of
130 − 450[pC

/
N] and low value of acoustic impedance, which equals 2.6 × 104kg

/(
m2 · s

)
EMFi film could be used as a broadband transmitter/receiver and can produce bats-like
echolocation pulses. This attribute was used in some robotic applications described in Jiménez
et al. (2008), Steckel et al. (2008) and Schillebeeckx et al. (2008). Since the bats echolocation
mechanism is the most sophisticated biosonar, engeeniers have attempted to use it as a pattern
and inspiration in their echolocation devices. Target position estimation is made on the basis
of echo signal processing. Target position is specified by range d, azimuth φ and elevation θ
angles.
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Zk+1. Sound attenuation in particular layers is a limitation of this method.
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EMFi film could be used as a broadband transmitter/receiver and can produce bats-like
echolocation pulses. This attribute was used in some robotic applications described in Jiménez
et al. (2008), Steckel et al. (2008) and Schillebeeckx et al. (2008). Since the bats echolocation
mechanism is the most sophisticated biosonar, engeeniers have attempted to use it as a pattern
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angles.
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Fig. 18. Impedance matching using one layer and transmission line theory according to
Lynnworth (1965).

5. Signal processing in sonar systems

Nowadays, ultrasound signal processing in air-coupled sonar systems is dominated by
digital technology. Digital signal processing techniques give engineers a whole spectrum of
possibilities and enables them to adapt the equipment to specified solutions. On the other
side, every ultrasound device consists of an analog signal processing block. A generalised
ultrasound localisation system is shown in Fig. (19). Each echolocation system can be
configured using the proposed generalisation. The extreme simplification of presented system
could be realised as one TRX transducer with analog filter, an amplifier and a fullwave
rectifier in the receiving circuit plus an analog switching circuit and a step-in transformer
in the transmitting circuit. The ADC block is based on an analog comparator and DAC block
consists of an analog switching circuit driver. Everything is controlled by microcontroller
which drives DAC and measures the time it takes comparator signal to reach the unit. Much
more interesting echo analyzing could be applied using full analog to digital conversion and
DSP algorithms. One of the most popular examples in ultrasound ranging system is based on
autocorrelation of digitised x(k) echo signal Eq. (14).

Fig. 19. Generalised block scheme of air operating echolocation system.

y (n) =
N−1

∑
k=0

x (k) x (k + n) (14)

A signal processing simulation of an echo from a two different targets using CF (Constant
Frequency) Eq. (15) and LFM (Linear Frequency Modulation) Eq. (16) signals is shown in Fig.
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(20).

sCF (n) = A · sin
(

2π
f0
fs

n
)

(15)

sLFM (n) = A · sin
[

2π

(
f0 +

m
2
· n

fs

)
· n

fs

]
(16)

Analysis of the results obtained using different signals proves that the modulation of the

Fig. 20. Simulation of target ranging capabilities using pulse compression technique.
Echolocation system performance - fs - 400 [kHz], f0 - 40 [kHz] (for CF wave) and f0 - 40
[kHz] and m - 10 (for LFM wave). Signal to noise ratio is set to 6 [dB] and the target
separation distance d equals 8.5 [cm].

transmitted signal ensures better target discrimination and range resolution. This phenomena
is used by bats as it shown in section (2). Bats also reproduce direction of arrival DOA of the
echo signals. The ILD Interaural Level Difference and ITD Interaural Time Difference are a
source of information about DOA. In air coupled ultrasound signal processing systems the
ITD parameter is commonly used due to attenuation changes across parameters described in
section (3) and different target strengths for different objects. Some interesting information
about ILD processing by bats and modeling of the bats’ hearing mechanism using VLSI
elements could be found in the paper by Shi & Horiuchi (2007). Interaural time differences
follows from the spatial grid of receiving sensors and the sound speed in a gas medium. Since
the assumption is that wavefront returning echo signal is plane, we can evaluate horizontal
and elevation angle using sensor arrays and beamforming algorithms. Additionally, there
are methods allowing beam steering in a particular direction. This enables "looking" using
ultrasounds in a selected direction. Using multiple receivers (an array of transducers in
different configurations see. Fig. (21) it is possible to modify the directional characteristics
of the array. This technique is commonly used in underwater hydrolocation systems and
radars. There were some attempts of developing an ultrasonic air-operating beamformers for
echolocation systems described in papers by Strakowski et al. (2006), Kleeman & Kuc (1995),
Medina & Wykes (2001), Harput & Bozkurt (2008) and Webb & Wykes (1996), Wykes et al.
(1993). Most of the solutions cited above are based on a linear array and the signal processing
method used is time-delay beamforming see Johnson & Dudgeon (1993.). Additionally, the
authors developed an ultrasonic array for bats inspired echolocation study presented in Fig.
(22) and described in Herman & Stach (2011). In the proposed solution time-delay algorithm
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Fig. 18. Impedance matching using one layer and transmission line theory according to
Lynnworth (1965).
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rectifier in the receiving circuit plus an analog switching circuit and a step-in transformer
in the transmitting circuit. The ADC block is based on an analog comparator and DAC block
consists of an analog switching circuit driver. Everything is controlled by microcontroller
which drives DAC and measures the time it takes comparator signal to reach the unit. Much
more interesting echo analyzing could be applied using full analog to digital conversion and
DSP algorithms. One of the most popular examples in ultrasound ranging system is based on
autocorrelation of digitised x(k) echo signal Eq. (14).

Fig. 19. Generalised block scheme of air operating echolocation system.

y (n) =
N−1

∑
k=0

x (k) x (k + n) (14)

A signal processing simulation of an echo from a two different targets using CF (Constant
Frequency) Eq. (15) and LFM (Linear Frequency Modulation) Eq. (16) signals is shown in Fig.
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(20).
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n
)

(15)
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[

2π

(
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m
2
· n

fs

)
· n

fs

]
(16)

Analysis of the results obtained using different signals proves that the modulation of the

Fig. 20. Simulation of target ranging capabilities using pulse compression technique.
Echolocation system performance - fs - 400 [kHz], f0 - 40 [kHz] (for CF wave) and f0 - 40
[kHz] and m - 10 (for LFM wave). Signal to noise ratio is set to 6 [dB] and the target
separation distance d equals 8.5 [cm].

transmitted signal ensures better target discrimination and range resolution. This phenomena
is used by bats as it shown in section (2). Bats also reproduce direction of arrival DOA of the
echo signals. The ILD Interaural Level Difference and ITD Interaural Time Difference are a
source of information about DOA. In air coupled ultrasound signal processing systems the
ITD parameter is commonly used due to attenuation changes across parameters described in
section (3) and different target strengths for different objects. Some interesting information
about ILD processing by bats and modeling of the bats’ hearing mechanism using VLSI
elements could be found in the paper by Shi & Horiuchi (2007). Interaural time differences
follows from the spatial grid of receiving sensors and the sound speed in a gas medium. Since
the assumption is that wavefront returning echo signal is plane, we can evaluate horizontal
and elevation angle using sensor arrays and beamforming algorithms. Additionally, there
are methods allowing beam steering in a particular direction. This enables "looking" using
ultrasounds in a selected direction. Using multiple receivers (an array of transducers in
different configurations see. Fig. (21) it is possible to modify the directional characteristics
of the array. This technique is commonly used in underwater hydrolocation systems and
radars. There were some attempts of developing an ultrasonic air-operating beamformers for
echolocation systems described in papers by Strakowski et al. (2006), Kleeman & Kuc (1995),
Medina & Wykes (2001), Harput & Bozkurt (2008) and Webb & Wykes (1996), Wykes et al.
(1993). Most of the solutions cited above are based on a linear array and the signal processing
method used is time-delay beamforming see Johnson & Dudgeon (1993.). Additionally, the
authors developed an ultrasonic array for bats inspired echolocation study presented in Fig.
(22) and described in Herman & Stach (2011). In the proposed solution time-delay algorithm
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Fig. 21. Some regular grids of sensor arrays, based on Johnson & Dudgeon (1993.)

Fig. 22. A MEMS based linear array developed by authors. Horizontal intersensor spacing is
equal to 3.8 [mm] and array size is 32 × 2.

was used for a 32 x 2 MEMS sensor array. Due to the fact that signal from each microphone is
digitized with sampling frequency fs, the minimal phase shift equals sampling interval. When
using digital beamforming algorithms it is critical to delay a beam by a number of samples
that corresponds to a given beam deflection angle. To ensure proper angular resolution, the
sampling frequency is given by modified Eq. (17):

fs =
c
d
· 180

π · Φmin
(17)

where c - velocity of sound, d - intersensor spacing in linear array, Φmin - minimum phase shift
angle. To improve horizontal angle estimation performance, the time series was upsampled
using interpolation algorithm for each channel. The minimum Φmin could be obtained
assuming that it equals half of the parabolic width PW (at 0 steering angle) of the linear array
given by Eq. (18):

PW =
4 · √3

k · d · √M2 − 1
(18)

where: M - number of sensors. Considering the fact that pulse compression method combined
with bats-like downsweept chirps, it is possible to process array signals using pathways
shown in Fig. (23): The proposed solution was simulated using similar methodology as it
is shown in Fig. ( (20), where the difference is that the acoustic echo signal is processed by a
linear array of 32 MEMS sensors. The results of the simulation are presented in the Fig. (24).
Unfortunately, increasing number of channels and sampling frequency takes results in the
system not being able to operate in a real time. The system processing speed may be
increased by paralleling channel information processing, reducing the number of sensors,
applying so called redundant-array solution by Johnson & Dudgeon (1993.) or combining
differences at respective receivers with information determined from evaluation directional
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Fig. 23. Digital interpolation delay-sum beamforming scheme based on correlation of sensor
data with transmitted signal Tx.

Fig. 24. A simulation of a target position estimation: a) multiple target with usage of CF
signal, b) multiple target with usage of LFM signal, c) single target with usage of CF signal,
d) single target with usage of LFM signal.

characteristics of the ultra sound transducers described in Georg Kaniak (2010). Due to the fact
that processing speed of present-day signal technology is not increasing as rapidly as a few
years before, we can observe that signal processing methods are migrating to multi-threaded
calculations on multiprocessor platforms. An excellent illustration of the situation are the
recent news in sonar technology samples Nilsen & Hafizovic (2009), Coiras et al. (2009), where
parallel computing of sensor data are being preformed on GPU targets.

6. Conclusions

The chapter describes selected matters associated with a variety of science fields such as:
acoustics, electronics, signal processing and biology or more precisely chiropterology. It
presents, in a concise manner, the properties of air as a gas milieu in the context of using it as
a medium transmitting information encoded in ultrasonic waves. The performed analyses
suggest that from the point of view of ultrasound technology air is a very unfavourable
medium. This is evidenced by characteristics of gases and the methods of ultrasonic wave
generation and reception. On the other side, this medium is used by bats, which can reproduce
an image of the surrounding space using ultrasounds. Although current technology is far
behind bats in the field of information processing, researchers are relentlessly trying to catch
up and judging by the number of scientific publications interest in bats’ echolocation is still
high. The selected issues related to the bats’ biology and presented in section 2 prove that bats
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years before, we can observe that signal processing methods are migrating to multi-threaded
calculations on multiprocessor platforms. An excellent illustration of the situation are the
recent news in sonar technology samples Nilsen & Hafizovic (2009), Coiras et al. (2009), where
parallel computing of sensor data are being preformed on GPU targets.

6. Conclusions

The chapter describes selected matters associated with a variety of science fields such as:
acoustics, electronics, signal processing and biology or more precisely chiropterology. It
presents, in a concise manner, the properties of air as a gas milieu in the context of using it as
a medium transmitting information encoded in ultrasonic waves. The performed analyses
suggest that from the point of view of ultrasound technology air is a very unfavourable
medium. This is evidenced by characteristics of gases and the methods of ultrasonic wave
generation and reception. On the other side, this medium is used by bats, which can reproduce
an image of the surrounding space using ultrasounds. Although current technology is far
behind bats in the field of information processing, researchers are relentlessly trying to catch
up and judging by the number of scientific publications interest in bats’ echolocation is still
high. The selected issues related to the bats’ biology and presented in section 2 prove that bats
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can reproduce images of its surrounding with resolution exceeding the physical limitations
arising from wave length. It is even possible to formulate a hypothesis stating that a bat
is from a technological viewpoint "an intelligent multisensor", which not only processes
acoustic information but also environmental conditions (temperature, humidity, flight speed).
Some of the bat specific echolocation methods are applied in ultrasonic technology. These
include simple distance (angle) meters based on processing information related to time period
between signal transmission and echo reception but also advanced beamforming systems.
The very structure of the signal used by bats is, however, a much more interesting subject.
It appears that better space imaging is possible when using modulated signals, which, as
was found, compensate Doppler effect and increase both range and angular resolution. As
a direct application of this echolocation strategy, the authors present a solution based on
the use of pulse compression method in digital beamforming. It was shown, by means of
simulation, that such a system is characterised by a higher range resolution and is capable of
more accurate discrimination of targets located at the same angle. As a next step in verifying
simulation results, the developed solution will be tested on a platform specifically constructed
for that purpose. The primary limitation of pulse compression method is the assumption that
acoustic waves with frequency modulation will be generated. With present-day advancement
of ultrasonic technology, the possibilities of broadband signal generation are very limited.
Even if such a signal can be generated, its SPL level is significantly lower than in case of widely
used and well developed resonance transducers. Since space imaging methods and models if
reality prepared for air are often a modified transposition of the models used in hydrolocation,
it is possible to use solutions and development directions from this field in the area of object
localisation in air. Due to required resources and processor capacity it is likely that multibeam
systems will turn to distributed computing on multiprocessor platforms. As mentioned in
the work, one of possible applications, which has already been the subject of research of
several scientific groups, is to construct a device that would help visually handicapped people
to ambulate Abdul et al. (2008), Borenstein & Ulrich (1997), Mihajlik et al. (2001), Shoval
et al. (1994), Ifukabe et al. (1991). Considering the detail of the problem presented in this
chapter and using bat signals and DSP algorithms utilised on an efficient computing platform,
construction of such a device seems possible but will require an effort of an interdisciplinary
research team.
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1. Introduction 
Human use of the Earth’s oceans has steadily increased over the last century resulting in an 
increase in anthropogenically produced noise. This noise stems from a variety of sources 
including commercial shipping, oil drilling and exploration, scientific research and naval 
sonar. Sonar (for sound navigation and ranging) is a technique that uses sound propagation 
(usually underwater) to navigate, communicate or to localize: sonar may be used as a means of 
acoustic location (acoustic location in air was used before the introduction of radar). The term 
sonar is also used for the equipment used to generate and receive the sound. The range of 
frequencies used in sonar systems vary from infrasonic to ultrasonic. Sonar uses frequencies 
which are too much high-pitched (up to 120,000 cycles per second) for human ears to hear.  
Although there is a growing concern among the public that human generated sounds in the 
marine environment could have deleterious impacts on aquatic organisms, only few studies 
address this concern on the effects of these sounds on the human auditory system. The 
effects of sound on the human auditory system have been the subject of several studies, but 
one question needs to be resolved yet: the effects caused by the naval sonar. For these 
reasons this chapter wants to show the effects of active middle frequency sonar on human. 
Published data from humans under water in literature are scarce and sometimes use 
different terminology with regard to sound levels. For example sound pressure levels 
measured in air are normally reported with a reference pressure of 20μPa whereas levels 
measured in water are normally reported with a reference pressure of 1μPa. Therefore, in 
the diving environment it is recommended to use SPL (sound pressure level) threshold with 
reference pressure of one micropascal (1 μPa) for both water and air measurements in order 
to compare values from different sources. 
The non-intuitive nature of decibels and the different reference values of air and water have 
led to a plethora of misconceptions concerning the magnitude and potential effects of noise 
levels in air and water. The magnitude of sound pressure levels in water is normally 
described by sound pressure on a dB scale relative to a reference root-meansquare (rms) 
pressure of 1 μPa (dB re 1 μPa). 
For these misconceptions concerning the measurement of noise in the marine environment, 
studies on cetaceans have highlighted hearing damage and behavioural change at levels of 
sounds exposure lower than those that  would cause physiological damage to the auditory 
system. 
Continued emission of noise can increase the damage, due to the “habituation” to a familiar 
sound to which it is difficult to react more strongly. The “habituation” is known as being 
provoked by continued acoustical stimuli, reducing the hearing sensitivity to high-level 
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studies on cetaceans have highlighted hearing damage and behavioural change at levels of 
sounds exposure lower than those that  would cause physiological damage to the auditory 
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Continued emission of noise can increase the damage, due to the “habituation” to a familiar 
sound to which it is difficult to react more strongly. The “habituation” is known as being 
provoked by continued acoustical stimuli, reducing the hearing sensitivity to high-level 
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sounds; the hearing sensitivity may be regulated at both conductive (stapedial reflex) and 
sensorineural levels (adaptation). For these reasons, the introduction of new types of 
military sonar, such as low-frequency system, should proceed with caution; the low-
frequency sounds produced by the systems will travel much farther than the mid-frequency 
sonar sounds currently causing concern. Studies on marine animals have demonstrated that 
changes in hair bundle density paralleled changes in hair cell nucleus density, indicating 
that entire hair cells disappeared following noise exposure; the inner ear damage is 
characterised by a permanent threshold elevation after an exposure to white noise ranging 
in intensity from 130 to 170 dB re 1 μPa for 24 h. 
Although there are differences among the ears of different species, the basic processes of 
hearing are the same between marine and terrestrial mammals. For this reason, some of the 
previous considerations can be applied on humans. Although the true correlation between 
sonar and hearing damage is difficult to show, (absence of technical information, level of 
sound exposure and other environmental variables) this study wants to show the effects of 
sonar on human auditory system. 

2. Introduction 
Underwater acoustics is the study of the propagation of sound in water and the interaction 
of the mechanical waves that constitute sound with the water and its boundaries. The water 
may be in the ocean, a lake or a tank. The field of underwater acoustics is closely related to a 
number of other fields of acoustic study, including sonar, transduction, acoustic signal 
processing, acoustical oceanography, bioacoustics, and physical acoustics. 
Underwater sound has probably been used by marine animals for millions of years. The 
science of underwater acoustics began in 1490, when Leonardo Da Vinci wrote: (Urick, 1993) 
"if you cause your ship to stop and place the head of a long tube in the water and place the 
outer extremity to your ear, you will hear ships at a great distance from you". 
But only the 20th century, with the start of World War I, provided the impetus for the next 
wave of progress in underwater acoustics: anti-submarine listening systems were 
developed. In particular the development of sonar (Sound Navigation and Ranging) 
proceeded apace during the war, driven by the first large scale deployments of submarines. 
In 1919, the first scientific paper on underwater acoustics was published, theoretically 
describing the refraction of sound waves produced by temperature and salinity gradients in 
the ocean. The range predictions of the paper were experimentally validated by 
transmission loss measurements (Lichte, 1919). 
The next two decades saw the development of several applications of underwater acoustics: 
by the 1930s sonar systems were being used for passive listening systems and for active 
echo-ranging systems; these systems were used to good effect during World War II by both 
submarines and anti-submarine vessels. After World War II, the development of sonar 
systems was driven largely by the Cold War, resulting in advances in the theoretical and 
practical understanding of underwater acoustics, aided by computer-based techniques. 
In the last decades, there is growing concern among the public that human generated 
sounds in the marine environment could have deleterious impacts on aquatic organisms: in 
the last years, much of interest in the effects of the human-generated sound has been 
focused on marine mammals (Parsons et al., 2008; Salami et al., 2010). 
However, only few studies address this concern on the effects of these sounds on the human 
auditory system (Salami et al., 2010). The effects caused of sound on the human auditory 
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system have been the subject of several studies, but one question needs to be resolved yet; 
the effects by the naval sonar. 
Although the true correlation between sonar and hearing damage is difficult to decide 
(absence of technical information; level of sound exposure; and other environmental 
variables), this chapter wants to show the effects of sonar on human hearing. 

3. Fundamental concepts of sound propagation underwater 
All sound, whether produced by a cowbell or a complicated electronic device, behaves in 
much the same manner. Sound originates as a wave motion by a vibrating source and 
requires for its transmission an elastic medium such as air or water. For example, consider a 
piston suspended in one of these mediums. As the piston is forced to move forward and 
backward, the medium is compressed on the forward stroke and decompressed or rarefied 
on the return stroke. Thus, a wave motion or series of compressions and rarefactions is 
caused to move from the source out through the medium. In the fluid medium the 
molecular motion is back and forth, parallel to the direction of the piston's movement. 
Because the fluid is compressible, this motion results in a series of detectable pressure 
changes. This series of compressions and rarefactions, such as is produced by the piston, 
constitutes a compressional wave train. Another way of explaining the phenomenon of 
acoustic wave propagation is to consider the medium of transmission as a loosely packed 
collection of mass elements connected by springy bumpers. A disturbance of the elements at 
some point (e.g., piston motion) moves along in the fluid by the successive extension and 
compression of the springs as the elements swing back and forth, each communicating its 
motion to its neighbor through the connecting bumpers. In this way, the agitation of a 
cluster of elements is propagated through the medium even though the individual elements 
do no more than move about their equilibrium positions without actually migrating. The 
sound wave propagates parallel to the source resulting in a longitudinal wave (Tindle, 
2005). 
A sound wave propagating underwater consists of alternating compressions and 
rarefactions of the water. These compressions and rarefactions are detected by a receiver, 
such as the human ear or a hydrophone, as changes in pressure. These waves may be man-
made or naturally generated (Tindle, 2005). 
Underwater acoustic propagation depends on many factors. The direction of sound 
propagation is determined by the sound speed gradients in the water. In the sea the vertical 
gradients are generally much larger than the horizontal ones (Sabra & Dowling, 2003). These 
facts, combined with a tendency for increasing sound speed with increasing depth due to 
the increasing pressure in the deep sea reverses the sound speed gradient in the thermocline 
creating an efficient waveguide at the depth corresponding to the minimum sound speed 
(Sabra & Dowling, 2003; Frosch, 1964; Snellen et al., 2001). At equatorial and temperate 
latitudes in the ocean the surface temperature is high enough to reverse the pressure effect, 
such that a sound speed minimum occurs at depth of a few hundred metres (Frosch, 1964; 
Snellen et al., 2001).  
The presence of this minimum creates a special channel known as Deep Sound Channel, 
previously known as the SOFAR (sound fixing and ranging) channel, permitting guided 
propagation of underwater sound for thousands of kilometres without interaction with the 
sea surface or the seabed (Jian et al., 2009). 
Another phenomenon in the deep sea is the formation of sound focussing areas known as 
Convergence Zones (Shvachko, 2008): in this case sound is refracted downward from a near-
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sounds; the hearing sensitivity may be regulated at both conductive (stapedial reflex) and 
sensorineural levels (adaptation). For these reasons, the introduction of new types of 
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system have been the subject of several studies, but one question needs to be resolved yet; 
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on the return stroke. Thus, a wave motion or series of compressions and rarefactions is 
caused to move from the source out through the medium. In the fluid medium the 
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Because the fluid is compressible, this motion results in a series of detectable pressure 
changes. This series of compressions and rarefactions, such as is produced by the piston, 
constitutes a compressional wave train. Another way of explaining the phenomenon of 
acoustic wave propagation is to consider the medium of transmission as a loosely packed 
collection of mass elements connected by springy bumpers. A disturbance of the elements at 
some point (e.g., piston motion) moves along in the fluid by the successive extension and 
compression of the springs as the elements swing back and forth, each communicating its 
motion to its neighbor through the connecting bumpers. In this way, the agitation of a 
cluster of elements is propagated through the medium even though the individual elements 
do no more than move about their equilibrium positions without actually migrating. The 
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made or naturally generated (Tindle, 2005). 
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gradients are generally much larger than the horizontal ones (Sabra & Dowling, 2003). These 
facts, combined with a tendency for increasing sound speed with increasing depth due to 
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creating an efficient waveguide at the depth corresponding to the minimum sound speed 
(Sabra & Dowling, 2003; Frosch, 1964; Snellen et al., 2001). At equatorial and temperate 
latitudes in the ocean the surface temperature is high enough to reverse the pressure effect, 
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previously known as the SOFAR (sound fixing and ranging) channel, permitting guided 
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surface source and then back up again. The horizontal distance from the source at which this 
occurs depends on the positive and negative sound speed gradients. A surface duct can also 
occur in both deep and moderately shallow water when there is upward refraction, for 
example due to cold surface temperatures.  
In general, as sound propagates underwater there is a reduction in the sound intensity over 
increasing ranges, though in some circumstances a gain can be obtained due to focussing 
propagation loss (sometimes referred to as transmission loss) is a quantitative measure of 
the reduction in sound intensity between two points, normally the sound source and a 
distant receiver (Studenichnik, 2003). 
The non-intuitive nature of decibels and the different reference values of air and water have 
led to a plethora of misconceptions concerning the magnitude and potential effects of noise 
levels in air and water (Chapman & Ellis, 1998). For this reason a convenient system is 
needed in order to measure and discuss acoustic parameters underwater. 
Pressure is defined as a force per unit area. Although many people are familiar with the 
British units of pounds per square inch (psi), it has long been the convention in acoustics to 
use metric units, namely newtons per square meter (N/m2), or dynes per square centimeter 
(dynes/cm2). Of the two metric units, the dynes/cm2 has been the most commonly used. It 
has an alternate name, microbar (bar), and is equivalent to approximately 1/1,000,000 of a 
standard atmosphere. For underwater sounds, a reference pressure of 1 bar was established 
from which all others were measured. The corresponding reference pressure for airborne 
sounds was 0.0002 bar, because this was the approximate intensity of a 1,000-Hz tone that 
was barely audible to human ears. The previously less commonly used N/m2 also has an 
alternate name, a Pascal (Pa), and the reference standard derived from this was the 
micropascal (Pa), which is equivalent to 10-6N/m2.  
The decibel system was selected by acousticians for a number of logical reasons (Hood et al., 
1991): 
  it is a logarithmic system, which is convenient for dealing with large changes in 

quantities; 
 it simplifies computations since multiplication and division are reduced to addition or 

subtraction, respectively; 
 human senses have an approximate logarithmic response to stimuli such as light, 

sound, and heat: for example, the human ear perceives about the same change in 
loudness between 1 and 10 units of pressure as it perceives between 10 and 100 units of 
pressure; 

  In the area of underwater acoustics, the primary interest is in ratios of power levels and 
signal levels rather than absolute numerical values.  

In the decibel system, the bel is the fundamental division of a logarithmic scale for 
expressing the ratio of two amounts of power. The number of bels to express such a ratio is 
the logarithm to the base 10 of the ratio. Acousticians decided the bel was a unit too large for 
application in their field, and subsequently adopted the decibel (1/10 bel) as their basic 
logarithmic unit. The conversion factors in table 8-1 can in themselves be cumbersome to 
use, but when expressed in dB, only addition or subtraction is required. When converting 
from a pressure referenced to 1 bar to one referenced to 1 Pa, simply add 100dB. When 
converting from 0.0002 bar to 1 Pa, simply add 26dB. If converting from 1 Pa to the others, 
merely subtract the appropriate values. 
With such a profusion of reference standards and measurement systems, there were ample 
opportunities for misunderstandings as an operator or planner consulted different sources 
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of acoustic information. For these reason, is commonly used a measurement in terms of 
pressure instead of intensity: the magnitude of sound pressure levels in water is normally 
described by sound pressure on a dB scale relative to a reference root-meansquare (rms) 
pressure of 1μPa (dB re 1 μPa) (Madesen, 2005). 
About the propagation of sound, approximate values for fresh water and seawater, 
respectively, at atmospheric pressure are 1450 and 1500 m/s for the sound speed, and 1000 
and 1030 kg/m³ for the density (Wolfson & Tomsovic, 2001; Leroy, 2008) 
The ocean is not a homogeneous medium, and the speed of sound varies from point to point 
in the ocean. This variation in sound speed is one of the most important characteristics 
affecting the transmission of sound. The three main environmental factors affecting the 
speed of sound in the ocean are salinity, pressure, and temperature: the speed of sound in 
water increases with increasing pressure, temperature and salinity (Wolfson & Tomsovic, 
2001; Leroy, 2008).  
In particular (Wolfson & Tomsovic, 2001; Leroy, 2008): 
 a change in salinity of one part per thousand will result in a change in sound speed of 

approximately 1.3 meters per second; 
 pressure in most circumstances is more important than salinity, but in the sea its change 

is constant and thus predictable; it also causes a change in bulk modulus and density, 
and the result is an increase in sound speed of 0.017 m/sec for every meter of depth 
increase; 

 temperature, the foremost factor affecting sound speed, usually decreases with depth, 
and this leads to an accompanying decrease in sound speed at the rate of approximately 
3 m/sec per degree Celsius; below a depth of about 1,000 m, however, temperature is 
fairly constant, and the predominant factor affecting sound speed becomes pressure; 

4. Sonar 
Human use of the Earth’s oceans has steadily increased over the last century resulting in an 
increase in anthropogenically produced noise. This noise stems from a variety of sources 
including commercial shipping, oil drilling and exploration, scientific research and naval 
sonar. 
Sonar is an acronym for Sound Navigation and Ranging. There are two broad types of sonar 
(passive and active) in use (Salami et al., 2010): 
 passive sonar is a listening device that can determine the presence, characteristics and 

direction of marine noise sources: these sources may include biological noise (animal 
communication) and human sounds (eg ship or submarine noise); passive sonar 
equipment is essentially an acoustic receiver which emits no sound and therefore has 
no potential to disturb marine life. 

 active sonar is a technique that uses sound to determine relative positions of submerged 
objects (including submarines, fish, mines and wrecks of ships and aircraft) and the sea 
floor, by emitting a sound signal and listening for the echoes from the objects; many 
different types of active sonar are used throughout the world's oceans by private, 
commercial and military vessels; these systems mirror the purpose of sonars used by 
some marine animals (active sonar devices locate objects by the reflection of sound-
waves and remain an important means of underwater detection and navigation). 

The main types of active sonar are commercial, civilian and military sonars. The sonars used 
by military forces are (Gong et al., 2010; Kane et al., 2010): 
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surface source and then back up again. The horizontal distance from the source at which this 
occurs depends on the positive and negative sound speed gradients. A surface duct can also 
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example due to cold surface temperatures.  
In general, as sound propagates underwater there is a reduction in the sound intensity over 
increasing ranges, though in some circumstances a gain can be obtained due to focussing 
propagation loss (sometimes referred to as transmission loss) is a quantitative measure of 
the reduction in sound intensity between two points, normally the sound source and a 
distant receiver (Studenichnik, 2003). 
The non-intuitive nature of decibels and the different reference values of air and water have 
led to a plethora of misconceptions concerning the magnitude and potential effects of noise 
levels in air and water (Chapman & Ellis, 1998). For this reason a convenient system is 
needed in order to measure and discuss acoustic parameters underwater. 
Pressure is defined as a force per unit area. Although many people are familiar with the 
British units of pounds per square inch (psi), it has long been the convention in acoustics to 
use metric units, namely newtons per square meter (N/m2), or dynes per square centimeter 
(dynes/cm2). Of the two metric units, the dynes/cm2 has been the most commonly used. It 
has an alternate name, microbar (bar), and is equivalent to approximately 1/1,000,000 of a 
standard atmosphere. For underwater sounds, a reference pressure of 1 bar was established 
from which all others were measured. The corresponding reference pressure for airborne 
sounds was 0.0002 bar, because this was the approximate intensity of a 1,000-Hz tone that 
was barely audible to human ears. The previously less commonly used N/m2 also has an 
alternate name, a Pascal (Pa), and the reference standard derived from this was the 
micropascal (Pa), which is equivalent to 10-6N/m2.  
The decibel system was selected by acousticians for a number of logical reasons (Hood et al., 
1991): 
  it is a logarithmic system, which is convenient for dealing with large changes in 

quantities; 
 it simplifies computations since multiplication and division are reduced to addition or 

subtraction, respectively; 
 human senses have an approximate logarithmic response to stimuli such as light, 

sound, and heat: for example, the human ear perceives about the same change in 
loudness between 1 and 10 units of pressure as it perceives between 10 and 100 units of 
pressure; 

  In the area of underwater acoustics, the primary interest is in ratios of power levels and 
signal levels rather than absolute numerical values.  

In the decibel system, the bel is the fundamental division of a logarithmic scale for 
expressing the ratio of two amounts of power. The number of bels to express such a ratio is 
the logarithm to the base 10 of the ratio. Acousticians decided the bel was a unit too large for 
application in their field, and subsequently adopted the decibel (1/10 bel) as their basic 
logarithmic unit. The conversion factors in table 8-1 can in themselves be cumbersome to 
use, but when expressed in dB, only addition or subtraction is required. When converting 
from a pressure referenced to 1 bar to one referenced to 1 Pa, simply add 100dB. When 
converting from 0.0002 bar to 1 Pa, simply add 26dB. If converting from 1 Pa to the others, 
merely subtract the appropriate values. 
With such a profusion of reference standards and measurement systems, there were ample 
opportunities for misunderstandings as an operator or planner consulted different sources 
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of acoustic information. For these reason, is commonly used a measurement in terms of 
pressure instead of intensity: the magnitude of sound pressure levels in water is normally 
described by sound pressure on a dB scale relative to a reference root-meansquare (rms) 
pressure of 1μPa (dB re 1 μPa) (Madesen, 2005). 
About the propagation of sound, approximate values for fresh water and seawater, 
respectively, at atmospheric pressure are 1450 and 1500 m/s for the sound speed, and 1000 
and 1030 kg/m³ for the density (Wolfson & Tomsovic, 2001; Leroy, 2008) 
The ocean is not a homogeneous medium, and the speed of sound varies from point to point 
in the ocean. This variation in sound speed is one of the most important characteristics 
affecting the transmission of sound. The three main environmental factors affecting the 
speed of sound in the ocean are salinity, pressure, and temperature: the speed of sound in 
water increases with increasing pressure, temperature and salinity (Wolfson & Tomsovic, 
2001; Leroy, 2008).  
In particular (Wolfson & Tomsovic, 2001; Leroy, 2008): 
 a change in salinity of one part per thousand will result in a change in sound speed of 

approximately 1.3 meters per second; 
 pressure in most circumstances is more important than salinity, but in the sea its change 

is constant and thus predictable; it also causes a change in bulk modulus and density, 
and the result is an increase in sound speed of 0.017 m/sec for every meter of depth 
increase; 

 temperature, the foremost factor affecting sound speed, usually decreases with depth, 
and this leads to an accompanying decrease in sound speed at the rate of approximately 
3 m/sec per degree Celsius; below a depth of about 1,000 m, however, temperature is 
fairly constant, and the predominant factor affecting sound speed becomes pressure; 

4. Sonar 
Human use of the Earth’s oceans has steadily increased over the last century resulting in an 
increase in anthropogenically produced noise. This noise stems from a variety of sources 
including commercial shipping, oil drilling and exploration, scientific research and naval 
sonar. 
Sonar is an acronym for Sound Navigation and Ranging. There are two broad types of sonar 
(passive and active) in use (Salami et al., 2010): 
 passive sonar is a listening device that can determine the presence, characteristics and 

direction of marine noise sources: these sources may include biological noise (animal 
communication) and human sounds (eg ship or submarine noise); passive sonar 
equipment is essentially an acoustic receiver which emits no sound and therefore has 
no potential to disturb marine life. 

 active sonar is a technique that uses sound to determine relative positions of submerged 
objects (including submarines, fish, mines and wrecks of ships and aircraft) and the sea 
floor, by emitting a sound signal and listening for the echoes from the objects; many 
different types of active sonar are used throughout the world's oceans by private, 
commercial and military vessels; these systems mirror the purpose of sonars used by 
some marine animals (active sonar devices locate objects by the reflection of sound-
waves and remain an important means of underwater detection and navigation). 

The main types of active sonar are commercial, civilian and military sonars. The sonars used 
by military forces are (Gong et al., 2010; Kane et al., 2010): 
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 Low-frequency (LF): low frequency sonars have been defined as those that emit sound 
below 1000 Hz. These sonars are designed to provide theatre level protection, such as 
for an Aircraft Carrier Task Group out to many miles (up to 200 miles) from the ships. 
This is possible because of the extended propagation possible at low frequencies. 
Outputs are similar to medium frequency sonars (described below) but the sound 
travels further because of the significantly enhanced seawater propagation.  

 Medium frequency (MF): medium frequency active sonars emit sounds at frequencies 
between (1000 and 10,000 Hz); these sonars represent a sliding scale of compromise 
between possible detection range and size of the transmission array; at the lower end of 
the frequency range (1000- 3000 Hz) the systems are capable of extended detection 
ranges using high output power, but the size of the transducer limits applications to 
large warships. These systems are designed to provide area protection for a small Task 
Group out to a few tens of miles.  

 High frequency (HF): high frequency active sonars operate between approximately 
30,000 and 500,000 Hz (30 kHz and 500 kHz); these systems allow increasingly greater 
resolution as the frequency increases but at the expense of range. The highest 
frequencies are only effective over short distances because of the rapid attenuation of 
high frequency sounds in seawater.  

Typically high power military active sonars are operated infrequently during voyages and 
the sounds are not emitted continuously but as short bursts ('pings') during operation (Gong 
et al., 2010; Kane et al., 2010). 
Commercial and civilian sonars are generally designed to detect the sea floor (echo 
sounders), map the sea floor and search for sunken objects (sidescan sonars) and to locate 
fish (fish finders). Sonars of at least one of these types are fitted to nearly all vessels. Even 
some small boats have fish finding and echo sounders. The characteristics of these sonars 
are broadly similar to the high frequency military sonars described above (Gong et al., 2010; 
Kane et al., 2010). 

5. Underwater hearing 
The lowest audible SPL for a human diver with normal hearing is about 67 dB re 1 μPa, with 
greatest sensitivity occurring at frequencies around 1 kHz (Fothergill et al., 2001). 
Dolphins and other toothed whales are renowned for their acute hearing sensitivity, 
especially in the frequency range 5 to 50 kHz (Mooney et al., 2009). Several species have 
hearing thresholds between 30 and 50 dB re 1 μPa in this frequency range. For example the 
hearing threshold of the killer whale occurs at an rms acoustic pressure of 0.02 mPa (and 
frequency 15 KHz), corresponding to an SPL threshold of 26 dB re 1 μPa (Simon et al., 2005). 
By comparison the most sensitive fish is the soldier fish, whose threshold is 0.32 mPa (50 dB 
re 1 μPa) at 1.3 kHz, whereas the lobster has a hearing threshold of 1.3 Pa at 70 Hz (122 dB re 
1 μPa) (Patek & Oakley 2003). 
It’s evident as high levels of underwater sound create a potential hazard to marine and 
amphibious animals as well as to human divers (Steevens et al., 1999). Recently, for these 
reasons, guidelines for exposure of human divers and marine mammals to underwater 
sound are reported by different organizations: human divers exposed to SPL above 154 dB 
re 1 μPa in the frequency range 0.6 to 2.5 kHz are reported to experience changes in their 
heart rate or breathing frequency, diver aversion to low frequency sound is dependent upon 
sound pressure level and center frequency (Fothergill et al., 2009; Steevens et al., 1999). 
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The potential for active sonar to impact on a species is dependent on the ability of the 
species to hear the sound. Species hear sounds over different frequencies ranges, and the 
efficiency of sound detection varies markedly with frequency. Additionally, species 
behavioural responses to a detected sound may vary according to the sensitivity of the 
species to disturbance and what activities the animals are engaged in at the time. 
Determination of potential impact on a species must therefore include estimation of the 
ability of the species to detect the sound, and the likelihood of disturbance to critical 
activities such as feeding or parental protection of juveniles. 

5.1 Effect of sonar on marine animals 
In terrestrial habitats, increasing sound levels have been shown to induce various effects 
across taxa including behavioural changes, temporary physiological alterations and 
permanent anatomical damage. While it is apparent that anthropogenic noise may affect 
marine animals, we know relatively less about the actual causes or mechanisms of these 
effects. 
We can usually see things that are miles away, but if you have ever snorkelled, you know 
that vision is limited to a few tens of meters underwater. Vision is the best way to sense 
distant objects in air, but sound is the best way to sense objects that are far away under the 
sea. Low frequency sounds can travel hundreds of miles in the right conditions. When 
mammals entered the ocean tens of millions of years ago, they evolved mechanisms to sense 
objects by listening for echoes from their own sounds, and to use sound to communicate 
over long distances. 
Modern ships generate enough noise from their engines and propellers to have reduced the 
range over which whales can communicate. The low frequency noise from ships travels so 
well in the ocean that it has raised the noise levels ten to one hundred times compared to a 
century ago (Stocker, 2004). 
Marine mammals are of particular concern regarding the effects of noise as they typically 
have sensitive underwater hearing and they use sound for important activities such as 
communicating, orienting and finding prey. 
It has been suggested that overexposure to noise could induce permanent physiological 
damage and deleterious behavioural alterations. For these reasons: there has been growing 
concern that the noise humans have introduced into the sea might disrupt the behaviour of 
marine mammals (Salami et al., 2010).  
Some marine animals, such as whales and dolphins, use echolocation systems similar to 
active sonar to locate predators and prey. It is feared that sonar transmitters could confuse 
these animals and cause them to lose their way, perhaps preventing them from feeding and 
mating. Recent articles report findings to the effect that military sonar may be inducing 
some whales to experience decompression sickness (and resultant beachings) (Parsons et al., 
2008). 
These temporally and spatially overlapping events seem to indicate that high-intensity 
sonar may instigate some marine mammal strandings. Recent work has suggested that 
sonar exposure could induce a variety of effects in marine mammals including changes in 
dive profile, acoustically induced bubble formation or decompression sickness (Salami et al., 
2010). 
High-powered sonar transmitters can kill marine animals. In the Bahamas in 2000, a trial by 
the US Navy of a 230 decibel transmitter in the frequency range 3 to 7 kHz resulted in the 
beaching of sixteen whales, seven of which were found dead. The Navy accepted blame in a 
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 Low-frequency (LF): low frequency sonars have been defined as those that emit sound 
below 1000 Hz. These sonars are designed to provide theatre level protection, such as 
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This is possible because of the extended propagation possible at low frequencies. 
Outputs are similar to medium frequency sonars (described below) but the sound 
travels further because of the significantly enhanced seawater propagation.  
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between (1000 and 10,000 Hz); these sonars represent a sliding scale of compromise 
between possible detection range and size of the transmission array; at the lower end of 
the frequency range (1000- 3000 Hz) the systems are capable of extended detection 
ranges using high output power, but the size of the transducer limits applications to 
large warships. These systems are designed to provide area protection for a small Task 
Group out to a few tens of miles.  

 High frequency (HF): high frequency active sonars operate between approximately 
30,000 and 500,000 Hz (30 kHz and 500 kHz); these systems allow increasingly greater 
resolution as the frequency increases but at the expense of range. The highest 
frequencies are only effective over short distances because of the rapid attenuation of 
high frequency sounds in seawater.  

Typically high power military active sonars are operated infrequently during voyages and 
the sounds are not emitted continuously but as short bursts ('pings') during operation (Gong 
et al., 2010; Kane et al., 2010). 
Commercial and civilian sonars are generally designed to detect the sea floor (echo 
sounders), map the sea floor and search for sunken objects (sidescan sonars) and to locate 
fish (fish finders). Sonars of at least one of these types are fitted to nearly all vessels. Even 
some small boats have fish finding and echo sounders. The characteristics of these sonars 
are broadly similar to the high frequency military sonars described above (Gong et al., 2010; 
Kane et al., 2010). 

5. Underwater hearing 
The lowest audible SPL for a human diver with normal hearing is about 67 dB re 1 μPa, with 
greatest sensitivity occurring at frequencies around 1 kHz (Fothergill et al., 2001). 
Dolphins and other toothed whales are renowned for their acute hearing sensitivity, 
especially in the frequency range 5 to 50 kHz (Mooney et al., 2009). Several species have 
hearing thresholds between 30 and 50 dB re 1 μPa in this frequency range. For example the 
hearing threshold of the killer whale occurs at an rms acoustic pressure of 0.02 mPa (and 
frequency 15 KHz), corresponding to an SPL threshold of 26 dB re 1 μPa (Simon et al., 2005). 
By comparison the most sensitive fish is the soldier fish, whose threshold is 0.32 mPa (50 dB 
re 1 μPa) at 1.3 kHz, whereas the lobster has a hearing threshold of 1.3 Pa at 70 Hz (122 dB re 
1 μPa) (Patek & Oakley 2003). 
It’s evident as high levels of underwater sound create a potential hazard to marine and 
amphibious animals as well as to human divers (Steevens et al., 1999). Recently, for these 
reasons, guidelines for exposure of human divers and marine mammals to underwater 
sound are reported by different organizations: human divers exposed to SPL above 154 dB 
re 1 μPa in the frequency range 0.6 to 2.5 kHz are reported to experience changes in their 
heart rate or breathing frequency, diver aversion to low frequency sound is dependent upon 
sound pressure level and center frequency (Fothergill et al., 2009; Steevens et al., 1999). 
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The potential for active sonar to impact on a species is dependent on the ability of the 
species to hear the sound. Species hear sounds over different frequencies ranges, and the 
efficiency of sound detection varies markedly with frequency. Additionally, species 
behavioural responses to a detected sound may vary according to the sensitivity of the 
species to disturbance and what activities the animals are engaged in at the time. 
Determination of potential impact on a species must therefore include estimation of the 
ability of the species to detect the sound, and the likelihood of disturbance to critical 
activities such as feeding or parental protection of juveniles. 

5.1 Effect of sonar on marine animals 
In terrestrial habitats, increasing sound levels have been shown to induce various effects 
across taxa including behavioural changes, temporary physiological alterations and 
permanent anatomical damage. While it is apparent that anthropogenic noise may affect 
marine animals, we know relatively less about the actual causes or mechanisms of these 
effects. 
We can usually see things that are miles away, but if you have ever snorkelled, you know 
that vision is limited to a few tens of meters underwater. Vision is the best way to sense 
distant objects in air, but sound is the best way to sense objects that are far away under the 
sea. Low frequency sounds can travel hundreds of miles in the right conditions. When 
mammals entered the ocean tens of millions of years ago, they evolved mechanisms to sense 
objects by listening for echoes from their own sounds, and to use sound to communicate 
over long distances. 
Modern ships generate enough noise from their engines and propellers to have reduced the 
range over which whales can communicate. The low frequency noise from ships travels so 
well in the ocean that it has raised the noise levels ten to one hundred times compared to a 
century ago (Stocker, 2004). 
Marine mammals are of particular concern regarding the effects of noise as they typically 
have sensitive underwater hearing and they use sound for important activities such as 
communicating, orienting and finding prey. 
It has been suggested that overexposure to noise could induce permanent physiological 
damage and deleterious behavioural alterations. For these reasons: there has been growing 
concern that the noise humans have introduced into the sea might disrupt the behaviour of 
marine mammals (Salami et al., 2010).  
Some marine animals, such as whales and dolphins, use echolocation systems similar to 
active sonar to locate predators and prey. It is feared that sonar transmitters could confuse 
these animals and cause them to lose their way, perhaps preventing them from feeding and 
mating. Recent articles report findings to the effect that military sonar may be inducing 
some whales to experience decompression sickness (and resultant beachings) (Parsons et al., 
2008). 
These temporally and spatially overlapping events seem to indicate that high-intensity 
sonar may instigate some marine mammal strandings. Recent work has suggested that 
sonar exposure could induce a variety of effects in marine mammals including changes in 
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High-powered sonar transmitters can kill marine animals. In the Bahamas in 2000, a trial by 
the US Navy of a 230 decibel transmitter in the frequency range 3 to 7 kHz resulted in the 
beaching of sixteen whales, seven of which were found dead. The Navy accepted blame in a 
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report published in the Boston Globe on 1/1/2002. Continued emission of noise can increase 
the damage, due to the “habituation” to a familiar sound to which it is difficult to react more 
strongly (Sypin, 2008). The “habituation” is known as being provoked by continued 
acoustical stimuli, reducing the hearing sensitivity to high-level sounds; the hearing 
sensitivity may be regulated at both conductive (stapedial reflex) and sensorineural levels 
(adaptation) (Sypin, 2008). 
However, these hypotheses typically lack controlled experimental conditions to best 
evaluate potentially deleterious noise effects. Thus, the actual mechanisms that may be 
initiated by sonar exposure, which could actually result in multi-species strandings, have 
yet to be empirically supported. 
Introduction of new types of military sonar, such as low-frequency system, should proceed 
with caution; the low-frequency sounds produced by the systems will travel much farther 
than the mid-frequency sonar sounds currently causing concern (Salami et al., 2010). 
However, at low powers, sonar can protect marine mammals against collisions with ships. 
Different studies pointed out that the possible effects of the low-frequency sonar on marine 
mammals could include (Simmonds & Lopez-Jurado, 1991): 
 Death from lung hemorrhage or other tissue trauma; 
 Temporary or permanent hearing loss or impairment; 
 Disruption of feeding, breeding, nursing, acoustic communication and sensing, or other 

vital behavior and, if the disruption is severe, frequent, or long lasting, possible 
decreases in individual survival and productivity and corresponding decreases in 
population size and productivity; 

 Psychological and physiological stress, making animals more vulnerable to disease, 
parasites and predation; 

 Changes in the distribution, abundance, or productivity of important marine mammal 
prey species and subsequent decreases in both individual marine mammal survival and 
productivity and in population size and productivity. These changes in prey species 
possibly could be caused both directly and indirectly by the low-frequency sonar 
transmissions: for example, transmissions conceivably could kill or impair development 
of the eggs and larval forms of one or more important marine mammal prey species; 
they might also disrupt feeding, spawning, and other vital functions or cause shifts in 
distribution patterns of certain important prey species and make some prey species 
more vulnerable to disease, parasites, and being eaten by other predators. 

Although these evidences, recent studies showed the absence of side effects on marine 
animals: the sensory tissue of the inner ears did not show morphological damage even 
several days post-sound exposure; similarly, gross- and histopathology observations 
demonstrated no effects on nonauditory tissues (Popper et al., 2007). 
The exposure to high frequency sonar (200-214 dB re 1 μPa) can determinate an hearing 
shifts of the marine animal: in particular recent report show as these data also imply that the 
animal must be very close to the source and/or exposed repeatedly in a short period time 
(Mooney et al., 2009): 
 Assuming a usual sound attenuation rate of 6 dB per doubling of distance, the dB level 

used in high frequency sonar would be the received level approximately 40 m from the 
sonar source, a distance that can be considered ‘close’ with respect to naval ships; 

 The animal would then have to maintain at most that distance for the approximate 2–
2.5 min of operating the sonar to receive a level of exposure of near 214 dB; 
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 The animal could be located closer to the sonar source and receive a more intense 
signal. 

However, the animal would still need to remain within a close range long enough to receive 
al level of exposure that would induce auditory threshold shifts, a potentially unlikely 
situation: all scenarios entail the subject being relatively close to the sonar source for a 
‘prolonged’ duration (Mooney et al., 2009). 
Exceptions may be if the sonar signals are rapidly repeated (which is unlikely due to overlap 
of returning echoes) or if oceanographic conditions are such that sound levels do not 
attenuate regularly over short distances (i.e. less than several 100 m) and thus remain 
intense. Perhaps such a situation could occur with multiple sonar sources over steep 
bathymetric conditions (Mooney et al., 2009). 
These data show as repeated exposures are necessary to generate effects. It’s evident as the 
effects of sound on marine animals could potentially include increased stress, damage to 
organs, the circulatory and nervous systems; long-term effects may alter feeding and 
reproductive patterns in a way that could affect the fish population as a whole. In the 
limited existing research on the effects of sound on marine animals hearing and behavior, 
different scientists have discovered that exposure to some very loud sounds, such as seismic 
air guns, can produce no effect, or result in a range of effects from temporary hearing loss to 
more lasting damage to the haircells of marine animal' inner ears. But it is hard to say that 
effects on one species indicate that another species will be affected in the same way by the 
same signal.  
Furthermore, subtle behavioural changes are also associated with sonar exposure. Animals 
that prolong apnea must optimize the size and use of their oxygen stores, and must deal 
with the accumulation of lactic acid if they rely upon anaerobic metabolism (Popper  
et al. , 2007). 
Pathologies related to effects of pressure are well known among human divers, but marine 
mammals appear to have developed adaptations to avoid most mechanical and 
physiological effect. The hazard of bubble formation during decompression is best known 
for humans breathing compressed gases, but empirical studies and theoretical 
considerations have shown that breath-hold divers can develop supersaturation and 
possible decompression-related problems when they return to the surface. Supersaturation 
has not been measured during normal diving behaviour of wild marine mammals but rather 
in specially designed experiments performed by trained subjects (Tyack, 2006). 
Recent reports show the presence of gas and fat emboli in marine animals during exposure 
to naval sonar (Tyack, 2006).These reports suggest that exposure to sonar sounds may cause 
a decompression-like syndrome in deep-diving whales either by changing their normal 
diving behaviour or by a direct acoustic effect that triggers bubble growth (Tyack, 2006). The 
latter scenario would, however, only seem to happen for animals with 100–223% 
supersaturated tissues within tens of meters from a sonar where the received levels exceed 
210·dB re 1·μPa (Tyack, 2006). Nonetheless, the geographical pattern of strandings suggests 
that animals are impacted at ranges significantly greater than those required for acoustically 
driven bubble growth, implying that the observed pathologies may follow from a 
behavioural response that has adverse physiological consequences (Tyack, 2006). 
In order to further understand these pathophysiological mechanisms, recent experiences 
examined post-mortem and studied histopathologically different marine animals (Ziphius 
cavirostris, Mesoplodon densirostris and Mesoplodon europaeus) after exposure to 
midfrequency sonar activity: no inflammatory or neoplastic processes were noted, and no 
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report published in the Boston Globe on 1/1/2002. Continued emission of noise can increase 
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more vulnerable to disease, parasites, and being eaten by other predators. 

Although these evidences, recent studies showed the absence of side effects on marine 
animals: the sensory tissue of the inner ears did not show morphological damage even 
several days post-sound exposure; similarly, gross- and histopathology observations 
demonstrated no effects on nonauditory tissues (Popper et al., 2007). 
The exposure to high frequency sonar (200-214 dB re 1 μPa) can determinate an hearing 
shifts of the marine animal: in particular recent report show as these data also imply that the 
animal must be very close to the source and/or exposed repeatedly in a short period time 
(Mooney et al., 2009): 
 Assuming a usual sound attenuation rate of 6 dB per doubling of distance, the dB level 

used in high frequency sonar would be the received level approximately 40 m from the 
sonar source, a distance that can be considered ‘close’ with respect to naval ships; 

 The animal would then have to maintain at most that distance for the approximate 2–
2.5 min of operating the sonar to receive a level of exposure of near 214 dB; 
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attenuate regularly over short distances (i.e. less than several 100 m) and thus remain 
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effects of sound on marine animals could potentially include increased stress, damage to 
organs, the circulatory and nervous systems; long-term effects may alter feeding and 
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air guns, can produce no effect, or result in a range of effects from temporary hearing loss to 
more lasting damage to the haircells of marine animal' inner ears. But it is hard to say that 
effects on one species indicate that another species will be affected in the same way by the 
same signal.  
Furthermore, subtle behavioural changes are also associated with sonar exposure. Animals 
that prolong apnea must optimize the size and use of their oxygen stores, and must deal 
with the accumulation of lactic acid if they rely upon anaerobic metabolism (Popper  
et al. , 2007). 
Pathologies related to effects of pressure are well known among human divers, but marine 
mammals appear to have developed adaptations to avoid most mechanical and 
physiological effect. The hazard of bubble formation during decompression is best known 
for humans breathing compressed gases, but empirical studies and theoretical 
considerations have shown that breath-hold divers can develop supersaturation and 
possible decompression-related problems when they return to the surface. Supersaturation 
has not been measured during normal diving behaviour of wild marine mammals but rather 
in specially designed experiments performed by trained subjects (Tyack, 2006). 
Recent reports show the presence of gas and fat emboli in marine animals during exposure 
to naval sonar (Tyack, 2006).These reports suggest that exposure to sonar sounds may cause 
a decompression-like syndrome in deep-diving whales either by changing their normal 
diving behaviour or by a direct acoustic effect that triggers bubble growth (Tyack, 2006). The 
latter scenario would, however, only seem to happen for animals with 100–223% 
supersaturated tissues within tens of meters from a sonar where the received levels exceed 
210·dB re 1·μPa (Tyack, 2006). Nonetheless, the geographical pattern of strandings suggests 
that animals are impacted at ranges significantly greater than those required for acoustically 
driven bubble growth, implying that the observed pathologies may follow from a 
behavioural response that has adverse physiological consequences (Tyack, 2006). 
In order to further understand these pathophysiological mechanisms, recent experiences 
examined post-mortem and studied histopathologically different marine animals (Ziphius 
cavirostris, Mesoplodon densirostris and Mesoplodon europaeus) after exposure to 
midfrequency sonar activity: no inflammatory or neoplastic processes were noted, and no 
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pathogens were identified. Macroscopically, whales had severe, diffuse congestion and 
haemorrhage, especially around the acoustic jaw fat, ears, brain, and kidneys. Gas bubble-
associated lesions and fat embolism were observed in the vessels and parenchyma of vital 
organs. In vivo bubble formation associated with sonar exposure that may have been 
exacerbated by modified diving behaviour caused nitrogen supersaturation above a 
threshold value normally tolerated by the tissues (as occurs in decompression sickness). 
Alternatively, the effect that sonar has on tissues that have been supersaturated with 
nitrogen gas could be such that it lowers the threshold for the expansion of in vivo bubble 
precursors (gas nuclei). Exclusively or in combination, these mechanisms may enhance and 
maintain bubble growth or initiate embolism. Severely injured whales died or became 
stranded and died due to cardiovascular collapse during beaching. These injures are 
apparently induced by exposure to mid-frequency sonar signals and particularly affects 
deep, long-duration, repetitive-diving species like whales (Fernández et al., 2005). 

5.2 Effects of sonar on human hearing 
Relying on one’s hearing it is extremely difficult to orientate oneself under water. Because of 
the high speed of sound under water, it is perceived by both ears virtually simultaneously 
and the orientation error may be possible. Bad orientation under water is also due to the 
prevalent bone conductivity. Sufficient audial orientation is possible to be acquired only 
after systematic training. The diving suit isolates the human ear from the surrounding water 
medium. That is why sound waves penetrate the helmet and the layer of air but reach the 
eardrum partly absorbed and scattered. In this case, sound perception through air 
conductivity is insignificant.  
However, while diving without a helmet, which is possible in warm water, sound is 
perceived just like in the air. If the rubber helmet fits tightly, sound is well perceived 
because of bone conductivity – sound waves are transmitted through the bones of the 
human skull. With no helmet, a diver can hear very well, with a rubber helmet – fairly well, 
and with a metal one – very bad.  
The development of underwater technology commonly results in a noisy working 
environment for commercial divers (Tindle & Deane, 2005). Also, the increasing use of 
active low-frequency sonar by submarines and ships raises the risk of accidental exposure to 
low frequency underwater sounds. While hearing conservation programs based on 
recognized risks from measurable sound pressure levels exist to prevent occupational 
hearing loss for most normal working environments, there are no equivalent guidelines for 
noise exposure underwater.  
The Threshold Limit Values (TLVs) represent conditions under which it is believed that 
nearly all workers may be repeatedly exposed without adverse effect on their ability to hear 
and understand normal speech. For Threshold Limit - Ceiling Values (TLV-C) the 
concentration should not be exceeded during any part of the working day (ACGIH, 1998). 
In particular the “American Conference of Governmental Industrial Hygienists (ACGIH)” 
has established permissible ultrasound exposure levels. These recommended limits (set at 
the middle frequencies of the one-third octave bands from 10 kHz to 50 kHz) are designed 
to prevent possible hearing loss caused by the subharmonics of the set frequencies, rather 
than the ultrasonic sound itself. These TLVs represent conditions under which it is believed 
that nearly all workers may be repeatedly exposed without adverse effect on their ability to 
hear and understand normal speech. Previous TLVs for frequencies in the 10 kHz to 20 kHz 
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range, set to prevent subjective effects, are referenced in a cautionary note below. The 8-hour 
time-weighted average (TWA) values are an extension of the TLVs for noise, which is an 8-
hour TWA of 85 dBA for sound below 10 kHz. The ceiling values may be verified by using 
an integrating sound level meter with slow detection and 1/3 octave bands. All 
instrumentation should have adequate frequency response and should meet the 
specifications of ANSI S1.4-1983 and International Electrotechnical Commission (IEC) 804 
(ACGIH, 1998).  
Measuring any source suspected of producing sound at levels exceeding the ACGIH 
recommended limits requires the use of a precision sound level meter, equipped with a 
suitable microphone of adequate frequency response, and a portable third-octave filter set. 
Consult with the Assistant Regional Administrator for Technical Support for guidance 
(ACGIH, 1998). 
 

TVLs for Ultrasound 
 One-third Octave-Band Level 

Measure in Air in dB 
Re:20 μ Pa; Head in Air

Measure in Water in dB 
Re:20 μ Pa; Head in Water 

Mid-Frequency of 
Third-Octave Band (kHz)

Ceiling
Values 8-hour TWA Ceiling Values 

10 105A 88A 167 
12.5 105A 89A 167 
16 105A 92A 167 
20 105A 94A 167 
25 110B -- 172 

31.5 115B -- 177 
40 115B -- 177 
50 115B -- 177 
63 115B -- 177 
80 115B -- 177 
100 115B -- 177 

ASubjective annoyance and discomfort may occur in some individuals at levels between 75 and 105 dB for the 
frequencies from 10 kHz to 20 kHz especially if they are tonal in nature. Hearing protection or engineering 
controls may be needed to prevent subjective effects. Tonal sounds in frequencies below 10 kHz might also need to 
be reduced to 80 dB.  
BThese values assume that human coupling with water or other substrate exists. These thresholds may be raised by 
30 dB when there is no possibility that the ultrasound can couple with the body by touching water or some other 
medium. [When the ultrasound source directly contacts the body, the values in the table do not apply. The 
vibration level at the mastoid bone must be used.] Acceleration Values 15 dB above the reference of 1g rms should 
be avoided by reduction of exposure or isolation of the body from the coupling source. (g = acceleration due to the 
force of gravity, 9.80665 meters/second; rms = root-mean-square). 

Table 1. (ACGIH, 1998). 

Different studies highlighted as behavioural and memory disturbances, intellectual 
impairment, depression, and other long-term neuropsychiatric changes are well known in 
professional divers: these symptoms are probably caused by repeated focal ischemia due to 
intravascular gas bubbles and hyalinosis of the walls of small blood vessels (Reul et al., 
1995). The lesions were predominantly in the subcortical white matter and basal ganglia, 
suggesting a vascular pathogenesis (Reul et al., 1995).  
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pathogens were identified. Macroscopically, whales had severe, diffuse congestion and 
haemorrhage, especially around the acoustic jaw fat, ears, brain, and kidneys. Gas bubble-
associated lesions and fat embolism were observed in the vessels and parenchyma of vital 
organs. In vivo bubble formation associated with sonar exposure that may have been 
exacerbated by modified diving behaviour caused nitrogen supersaturation above a 
threshold value normally tolerated by the tissues (as occurs in decompression sickness). 
Alternatively, the effect that sonar has on tissues that have been supersaturated with 
nitrogen gas could be such that it lowers the threshold for the expansion of in vivo bubble 
precursors (gas nuclei). Exclusively or in combination, these mechanisms may enhance and 
maintain bubble growth or initiate embolism. Severely injured whales died or became 
stranded and died due to cardiovascular collapse during beaching. These injures are 
apparently induced by exposure to mid-frequency sonar signals and particularly affects 
deep, long-duration, repetitive-diving species like whales (Fernández et al., 2005). 

5.2 Effects of sonar on human hearing 
Relying on one’s hearing it is extremely difficult to orientate oneself under water. Because of 
the high speed of sound under water, it is perceived by both ears virtually simultaneously 
and the orientation error may be possible. Bad orientation under water is also due to the 
prevalent bone conductivity. Sufficient audial orientation is possible to be acquired only 
after systematic training. The diving suit isolates the human ear from the surrounding water 
medium. That is why sound waves penetrate the helmet and the layer of air but reach the 
eardrum partly absorbed and scattered. In this case, sound perception through air 
conductivity is insignificant.  
However, while diving without a helmet, which is possible in warm water, sound is 
perceived just like in the air. If the rubber helmet fits tightly, sound is well perceived 
because of bone conductivity – sound waves are transmitted through the bones of the 
human skull. With no helmet, a diver can hear very well, with a rubber helmet – fairly well, 
and with a metal one – very bad.  
The development of underwater technology commonly results in a noisy working 
environment for commercial divers (Tindle & Deane, 2005). Also, the increasing use of 
active low-frequency sonar by submarines and ships raises the risk of accidental exposure to 
low frequency underwater sounds. While hearing conservation programs based on 
recognized risks from measurable sound pressure levels exist to prevent occupational 
hearing loss for most normal working environments, there are no equivalent guidelines for 
noise exposure underwater.  
The Threshold Limit Values (TLVs) represent conditions under which it is believed that 
nearly all workers may be repeatedly exposed without adverse effect on their ability to hear 
and understand normal speech. For Threshold Limit - Ceiling Values (TLV-C) the 
concentration should not be exceeded during any part of the working day (ACGIH, 1998). 
In particular the “American Conference of Governmental Industrial Hygienists (ACGIH)” 
has established permissible ultrasound exposure levels. These recommended limits (set at 
the middle frequencies of the one-third octave bands from 10 kHz to 50 kHz) are designed 
to prevent possible hearing loss caused by the subharmonics of the set frequencies, rather 
than the ultrasonic sound itself. These TLVs represent conditions under which it is believed 
that nearly all workers may be repeatedly exposed without adverse effect on their ability to 
hear and understand normal speech. Previous TLVs for frequencies in the 10 kHz to 20 kHz 
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range, set to prevent subjective effects, are referenced in a cautionary note below. The 8-hour 
time-weighted average (TWA) values are an extension of the TLVs for noise, which is an 8-
hour TWA of 85 dBA for sound below 10 kHz. The ceiling values may be verified by using 
an integrating sound level meter with slow detection and 1/3 octave bands. All 
instrumentation should have adequate frequency response and should meet the 
specifications of ANSI S1.4-1983 and International Electrotechnical Commission (IEC) 804 
(ACGIH, 1998).  
Measuring any source suspected of producing sound at levels exceeding the ACGIH 
recommended limits requires the use of a precision sound level meter, equipped with a 
suitable microphone of adequate frequency response, and a portable third-octave filter set. 
Consult with the Assistant Regional Administrator for Technical Support for guidance 
(ACGIH, 1998). 
 

TVLs for Ultrasound 
 One-third Octave-Band Level 

Measure in Air in dB 
Re:20 μ Pa; Head in Air

Measure in Water in dB 
Re:20 μ Pa; Head in Water 

Mid-Frequency of 
Third-Octave Band (kHz)

Ceiling
Values 8-hour TWA Ceiling Values 

10 105A 88A 167 
12.5 105A 89A 167 
16 105A 92A 167 
20 105A 94A 167 
25 110B -- 172 

31.5 115B -- 177 
40 115B -- 177 
50 115B -- 177 
63 115B -- 177 
80 115B -- 177 
100 115B -- 177 

ASubjective annoyance and discomfort may occur in some individuals at levels between 75 and 105 dB for the 
frequencies from 10 kHz to 20 kHz especially if they are tonal in nature. Hearing protection or engineering 
controls may be needed to prevent subjective effects. Tonal sounds in frequencies below 10 kHz might also need to 
be reduced to 80 dB.  
BThese values assume that human coupling with water or other substrate exists. These thresholds may be raised by 
30 dB when there is no possibility that the ultrasound can couple with the body by touching water or some other 
medium. [When the ultrasound source directly contacts the body, the values in the table do not apply. The 
vibration level at the mastoid bone must be used.] Acceleration Values 15 dB above the reference of 1g rms should 
be avoided by reduction of exposure or isolation of the body from the coupling source. (g = acceleration due to the 
force of gravity, 9.80665 meters/second; rms = root-mean-square). 

Table 1. (ACGIH, 1998). 

Different studies highlighted as behavioural and memory disturbances, intellectual 
impairment, depression, and other long-term neuropsychiatric changes are well known in 
professional divers: these symptoms are probably caused by repeated focal ischemia due to 
intravascular gas bubbles and hyalinosis of the walls of small blood vessels (Reul et al., 
1995). The lesions were predominantly in the subcortical white matter and basal ganglia, 
suggesting a vascular pathogenesis (Reul et al., 1995).  
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Other studies highlight as diving puts the inner ear at risk. Inner ear barotrauma and inner 
ear decompression can lead to permanent sensorineural hearing loss, tinnitus and vertigo 
(Klingmann et al., 2004). 
Inner ear barotrauma is related to pressure changes in the middle and inner ear. Barotrauma 
refers to tissue damage that occurs when a gas-filled body space (e.g., lungs, middle ear) 
fails to equalize its internal pressure to accommodate changes in ambient pressure. The 
behaviour of gasses at depth is governed by Boyle’s law: the volume of a gas varies 
inversely with pressure. During descent, as ambient pressure increases, the volume of gas-
filled spaces decreases unless internal pressure is equalized. If the pressure is not equalized 
by a larger volume of gas, the space will be filled by tissue engorged with fluid and blood. 
This process underlies the common “squeezes” of descent that affect the middle ear, 
external auditory canal, mask, sinuses and teeth. Barotrauma of the inner ear during descent 
develops when middle ear clearing fails and the eustachian tube is blocked and locked 
(Klingmann et al., 2004). Under these conditions, the raised intracranial pressure brought 
about by forceful efforts to equalize pressure might be transmitted to the inner ear through a 
patent cochlear aqueduct. These pressure forces may cause rupture of Reissner’s or the 
basilar membrane and/or labyrinthine window fistula with consequent impairment of inner 
ear functions (Klingmann et al., 2004). Symptoms often occur during ascent when expanding 
air in the middle ear is forced through a round window membrane fistula into the inner ear. 
The resulting gas bubble in the labyrinth expands during ascent and replaces the perilymph 
fluids. Barotrauma of the inner ear during ascent is a result of a blocked eustachian tube 
with air expanding in the middle ear forcing the tympanic membrane into the auditory 
canal. As a result, the oval window membrane is dislocated into the middle ear and the 
round window membrane is forced into the inner ear with increasing tension on both 
membranes (Klingmann et al., 2004). When there is an abrupt pressure equalization, either 
because of a tympanic membrane rupture or because the blocked eustachian tube releases 
the increased middle ear pressure, the oval and round window membranes snap back to 
their original position causing a pressure wave running through the inner ear. 
Whether uneventful scuba diving in the absence of a decompression incident is a risk factor 
for cochlear disorders is a matter of debate. Most studies of diving associated hearing loss 
reveal an association with occupational noise exposure.  
Different reports showed as divers exposed to high levels of underwater sound can suffer 
from dizziness, hearing damage, somnolence, lightheadedness inability to concentrate or 
other injuries to other sensitive organs, depending on the frequency and intensity of the 
sound. This may include neurological symptoms such as blurred vision, lightheadedness, 
vibratory sensations in hands, arms and legs, and tremors in upper extremities (Fothergill et 
al., 2009; Steevens et al., 1999). 
Most reports of diving injury have concentrated on acute injuries rather than chronic 
disability e.g. deafness. Hence, while many divers reported aural symptoms, few attributed 
them to diving. It is possible that repeated hyperbaric exposure among very experienced 
divers may be responsible for their aural symptoms, despite the lack of an obvious acute 
injury for many. The cause(s) of the aural disorders described above are unknown. Different 
authors have reported that hearing loss in divers may be due to external ear canal 
obstruction, tympanic membrane perforation, middle ear disorders and sensorineural 
hearing damage (Taylor et al., 2006). However, aural barotrauma is the most likely cause (as 
it is a relatively common occurrence). It is known that the strain exerted upon the tympanic 
membrane (TM) and middle ear from minor barotrauma results in reversible impairment of 
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the recoiling capacity of the TM elastic fibrils. It has been postulated that, if this barotrauma 
is repeated over lengthy periods, the TM changes could become irreversible (Taylor et al., 
2006). Hence, hearing loss is a possible outcome (Taylor et al., 2006). 
Sub-clinical brain and inner ear injury may offer an alternative explanation. Different 
authors found that divers had significantly more hyper-intense lesions of the sub-cortical 
cerebral white matter (on MRI) compared to controls (Taylor et al., 2006): these authors 
concluded that long term recreational diving may cause central nervous system 
degeneration even if diving incidents have not occurred. The exact mechanism of this 
degeneration remains unclear although paradoxical gas embolism, through a patent 
foramen ovale, has been postulated (Taylor et al., 2006). 
However, the association between diving and hearing loss, in the absence of clinically 
apparent diving injury, may not be as clear cut. Therefore, the effect of acoustic trauma or 
potential harmful effects of increased pressure and partial pressures of breathing gases 
cannot be differentiated. In fact the following well-recognized factors can affect the inner ear 
in divers: inner ear decompression sickness, noise, and potentially chronic effects of the 
breathing gases. 
A number of studies have compared the hearing threshold in professional divers 
(Klingmann et al., 2004): 
 In 1961 in a group of 62 Royal Navy divers and submarine escape training instructors, a 

high-frequency hearing loss was found in most of the divers. However, these divers 
had been exposed to gunfire and machinery noise during their naval careers, and noise 
could not be excluded as the causative mechanism. 

 An intriguing finding was a prevalence of 60% of hearing impairment in a group of 
abalone divers who had not been exposed to noise. These divers, however, had been 
subjected to an extraordinary compression decompression stress by a mean history of 6 
years of diving with an average diving depth of 15 to 20 m during 4 hours on 100 days 
per year. The divers with recognizable hearing loss in that study remembered having 
barotrauma in the past. Therefore, residual damage after diving accidents may mask 
putative chronic effects of breathing air under hyperbaric conditions. In addition, 
hearing thresholds found in divers were compared with thresholds of controls from a 
different study. 

 One hundred sixty-four professional Norwegian divers were subdivided into different 
age groups and hearing thresholds were compared with a standard population from 
Norway. Young divers were found to have better hearing compared with the reference 
group, and with increasing age this difference decreased. The authors claimed that 
hearing deteriorates faster in professional divers with increasing age. These results were 
confirmed when 116 divers were reexamined 5 years later. Noise at work and 
barotrauma were thought to contribute to the rapid deterioration of hearing in the 
professional divers. 

It is postulated that the human hearing range is reduced from 130 dB in air to 55 to 60 dB in 
water. The reduction causes the diver to be less resistant to noise underwater because 
acoustic energy underwater does not resolve as fast as in air. In addition, sawing, drilling, 
and grinding underwater may give rise to noise levels of 90 to 105 dB, and noise from the air 
stream venting inside underwater helmets can reach average noise levels of 93 to 99.5 dB. 
Most of the studies examined professional divers who had been exposed to gunfire or other 
noise at work. Noise was likely the main cause of the altered pure-tone thresholds (Molvaer 
& Albrektsen, 1990; Molvaer & Lehmann 1985). 
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Other studies highlight as diving puts the inner ear at risk. Inner ear barotrauma and inner 
ear decompression can lead to permanent sensorineural hearing loss, tinnitus and vertigo 
(Klingmann et al., 2004). 
Inner ear barotrauma is related to pressure changes in the middle and inner ear. Barotrauma 
refers to tissue damage that occurs when a gas-filled body space (e.g., lungs, middle ear) 
fails to equalize its internal pressure to accommodate changes in ambient pressure. The 
behaviour of gasses at depth is governed by Boyle’s law: the volume of a gas varies 
inversely with pressure. During descent, as ambient pressure increases, the volume of gas-
filled spaces decreases unless internal pressure is equalized. If the pressure is not equalized 
by a larger volume of gas, the space will be filled by tissue engorged with fluid and blood. 
This process underlies the common “squeezes” of descent that affect the middle ear, 
external auditory canal, mask, sinuses and teeth. Barotrauma of the inner ear during descent 
develops when middle ear clearing fails and the eustachian tube is blocked and locked 
(Klingmann et al., 2004). Under these conditions, the raised intracranial pressure brought 
about by forceful efforts to equalize pressure might be transmitted to the inner ear through a 
patent cochlear aqueduct. These pressure forces may cause rupture of Reissner’s or the 
basilar membrane and/or labyrinthine window fistula with consequent impairment of inner 
ear functions (Klingmann et al., 2004). Symptoms often occur during ascent when expanding 
air in the middle ear is forced through a round window membrane fistula into the inner ear. 
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the recoiling capacity of the TM elastic fibrils. It has been postulated that, if this barotrauma 
is repeated over lengthy periods, the TM changes could become irreversible (Taylor et al., 
2006). Hence, hearing loss is a possible outcome (Taylor et al., 2006). 
Sub-clinical brain and inner ear injury may offer an alternative explanation. Different 
authors found that divers had significantly more hyper-intense lesions of the sub-cortical 
cerebral white matter (on MRI) compared to controls (Taylor et al., 2006): these authors 
concluded that long term recreational diving may cause central nervous system 
degeneration even if diving incidents have not occurred. The exact mechanism of this 
degeneration remains unclear although paradoxical gas embolism, through a patent 
foramen ovale, has been postulated (Taylor et al., 2006). 
However, the association between diving and hearing loss, in the absence of clinically 
apparent diving injury, may not be as clear cut. Therefore, the effect of acoustic trauma or 
potential harmful effects of increased pressure and partial pressures of breathing gases 
cannot be differentiated. In fact the following well-recognized factors can affect the inner ear 
in divers: inner ear decompression sickness, noise, and potentially chronic effects of the 
breathing gases. 
A number of studies have compared the hearing threshold in professional divers 
(Klingmann et al., 2004): 
 In 1961 in a group of 62 Royal Navy divers and submarine escape training instructors, a 

high-frequency hearing loss was found in most of the divers. However, these divers 
had been exposed to gunfire and machinery noise during their naval careers, and noise 
could not be excluded as the causative mechanism. 

 An intriguing finding was a prevalence of 60% of hearing impairment in a group of 
abalone divers who had not been exposed to noise. These divers, however, had been 
subjected to an extraordinary compression decompression stress by a mean history of 6 
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per year. The divers with recognizable hearing loss in that study remembered having 
barotrauma in the past. Therefore, residual damage after diving accidents may mask 
putative chronic effects of breathing air under hyperbaric conditions. In addition, 
hearing thresholds found in divers were compared with thresholds of controls from a 
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 One hundred sixty-four professional Norwegian divers were subdivided into different 
age groups and hearing thresholds were compared with a standard population from 
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and grinding underwater may give rise to noise levels of 90 to 105 dB, and noise from the air 
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noise at work. Noise was likely the main cause of the altered pure-tone thresholds (Molvaer 
& Albrektsen, 1990; Molvaer & Lehmann 1985). 
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This interpretation is supported by the fact that puretone thresholds of divers who had been 
exposed to noise underwater are similar to those obtained from control subjects who had 
been exposed to noise on land. In a cross-sectional study, auditory function was compared 
in Norwegian construction divers and workshop workers. Both groups had been exposed to 
noise, and divers had less hearing impairment at low frequencies (0.25 and 0.5 kHz) 
(Skogstad et al., 1999). 
Another study from Skogstad et al examined 54 occupational divers at the beginning of their 
diving career and 3 years later. That study subdivided the divers into groups of low 
exposure (100 dives in 3 years) and high exposure (100 dives in 3 years). Skogstad and 
coworkers did not find a statistically significant difference for both ears combined between 
both groups (Skogstad et al., 2000).  
One should expect that divers with high exposure to diving should have poorer hearing 
levels because they have more contact with breathing gases under increased ambient 
pressure and work longer underwater and therefore spend more time in a noisy 
environment. However, the low exposure group might have worked in a noisy 
environment, too, when they were not underwater (Klingmann et al., 2004). 
These findings are confirmed by the data of Benton, who examined 281 commercial divers. 
He investigated the audiometric records of a group of United Kingdom professional divers, 
all of whom had been examined by an approved medical examiner. All divers underwent a 
hearing test between 1989 and 1992 and had a minimum of 5 years of diving experience. The 
divers were divided into 7 age groups ranging from 25 to 60 years. The median hearing level 
thresholds were compared with the predicted values for otologically healthy individuals, 
the comparison revealed that the median hearing threshold values of the divers lay between 
the predicted median and predicted upper quartile values (Klingmann et al., 2004). Within 
the older group (40 years), the median and predicted median values of the divers were 
similar. The author postulated that these results show as the divers had no impairment of 
the inner ear function compared with a non diving control group. 
This short revision of the literature highlights that the data on the effect of marine noise on 
diver are few and sometimes in contrast. However it's important to remember that, although 
different injuries (dizziness, hearing damage, etc) have been reported, the single most 
important issue related to diver safety resulting from low frequency sonar is that of 
disorientation due to vestibular stimulation. Whilst exposure to sonar transmissions below a 
level necessary to cause disorientation can give rise to temporary hearing threshold shifts, 
these are considered operationally acceptable for diving operations over limited periods 
(Salami et al., 2010). 
This effect of sonar on diver is related to its duration too: studies on marine animals have 
demonstrated that changes in hair bundle density paralleled changes in hair cell nucleus 
density, indicating that entire hair cells disappeared after noise exposure; the inner ear 
damage is characterized by a permanent threshold elevation after an exposure to white 
noise ranging in intensity from 130 to 170 dB re 1 μPa for 24 h (Salami et al., 2010; Smith et 
al., 2006). 
Although there are differences among the ears of different species, the basic processes of 
hearing are the same between marine and terrestrial mammals. For this reason, some of the 
previous considerations can be applied on humans (Salami et al., 2010; Popper & Fav, 2000). 
In particular we had done a personal experience on ten male divers with normal hearing; 
the divers were exposed to active sonar of the Italian Navy for more than 100 exposures, 
each of at least 1-h duration, in the course of 6 months (Salami et al., 2010): all the subjects 
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have been exposed to active sonar of the Italian Navy (Hull MF), at a frequency of 7.5 kHz 
and an intensity of 230 dB re 1 μ Pa. All the divers have had more than 100 exposures of at 
least 1 h, for six months, in the winter time (from October to April). The diver was exposed 
to the sonar at a constant depth of 3 m and at a distance from the sonar reducing 
progressively from 300 to 30 m. Each subject was instructed to stop the exposure in case of 
pain, tinnitus, vertigo, or hearing loss. 
Before, at the end, and six months after the end of noise exposures, all the divers underwent 
the following instrumental examinations: pure-tone audiometry, Carhart test, Peyser test, 
thresholds of discomfort test (TDT), tympanometry, transient evoked otoacoustic emissions 
(TEOAE) with linear click emission, distortion product otoacoustic emissions (DPOAE), and 
auditory brainstem response (ABR) by MK 12-ABR (Amplifon—Italy) (Chapman & Ellis, 
1998). 
At the end of the exposure, the absence of TEOAE and DPOAE was observed in all the 
divers, the positive Peyser and TDT tests, observed in 7/10 and 10/10 divers, and the 
worsening of the mean air and bone audiometric thresholds, especially at the 4,000 and 
8,000 frequencies, highlights the pathophysiologic features of continued and intense sound 
stimulation of the cochlea (Chapman &Ellis, 2008). 
The injuries occur first in the first row of the outer hair cells, then in the inner hair cells, and 
subsequently in the second and third rows; the temporary threshold shift, at the Peyser test, 
observed in 9/10 of the divers, shows the presence of an auditory adaptation to the noise 
and underlines the risk of increasing the hearing damage: it is well established that a single 
exposure to a severe sound can result in direct mechanical damage to the delicate tissues of 
the peripheral auditory apparatus, including components of the middle ear (tympanic 
membrane, ossicles) and inner ear (organ of Corti); in contrast, regular exposure to less 
intense, but still noisy sounds, involves the insidious destruction of inner-ear components 
that eventually and unavoidably leads to an elevation in hearing levels. 
The results of the TDT test confirm the correlation between the acoustic reflex threshold and 
the loudness discomfort level for people with hearing damage (Olsen, 1999). 
Following a noise exposure, the hearing damage could also be due to the loss of the 
protective effect of the efferent fibres, perhaps mediated by the lateral olivocochlear neurons 
that synapse beneath the inner hair cells (Attanasio et al., 1999). 
The transitory auditory injury observed in our test group may also be related to the 
hyperbaric work environment: oxygen toxicity is a problem in diving and can have fatal 
consequences in the water; past experiences made on divers, highlighted the significant 
presence of hearing disturbances and disorientation, and demonstrated changes of the 
Central Nervous System in hyperbaric conditions (Cakir et al., 2006). 
Experiences done on animals (guinea pig) showed that repeated hyperbaric exposures that 
were considered to be safe did cause damage to the cochlear system (Zheng & Gong, 1992). 
These modifications are characterised by: alterations in the metabolism and in the 
concentration of neurotransmitters; block of intercellular oxidation processes; accumulation 
of carbon dioxide. 
At the last control, the complete recovery observed in all the divers shows the temporary 
negative effects of repeated and lasting exposure to active sonar (Hull MF) and 
demonstrates the absence of permanent noise-induced hearing loss in divers exposed to 
active sonar (Salami et al., 2010). 
The frequencies used in sonar are above the human hearing threshold (Gong et al., 2010; 
Kane et al., 2010): as because the power of ultrasonic sonar rapidly falls off with distance, a 



 
Sonar Systems 

 

248 

This interpretation is supported by the fact that puretone thresholds of divers who had been 
exposed to noise underwater are similar to those obtained from control subjects who had 
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diving career and 3 years later. That study subdivided the divers into groups of low 
exposure (100 dives in 3 years) and high exposure (100 dives in 3 years). Skogstad and 
coworkers did not find a statistically significant difference for both ears combined between 
both groups (Skogstad et al., 2000).  
One should expect that divers with high exposure to diving should have poorer hearing 
levels because they have more contact with breathing gases under increased ambient 
pressure and work longer underwater and therefore spend more time in a noisy 
environment. However, the low exposure group might have worked in a noisy 
environment, too, when they were not underwater (Klingmann et al., 2004). 
These findings are confirmed by the data of Benton, who examined 281 commercial divers. 
He investigated the audiometric records of a group of United Kingdom professional divers, 
all of whom had been examined by an approved medical examiner. All divers underwent a 
hearing test between 1989 and 1992 and had a minimum of 5 years of diving experience. The 
divers were divided into 7 age groups ranging from 25 to 60 years. The median hearing level 
thresholds were compared with the predicted values for otologically healthy individuals, 
the comparison revealed that the median hearing threshold values of the divers lay between 
the predicted median and predicted upper quartile values (Klingmann et al., 2004). Within 
the older group (40 years), the median and predicted median values of the divers were 
similar. The author postulated that these results show as the divers had no impairment of 
the inner ear function compared with a non diving control group. 
This short revision of the literature highlights that the data on the effect of marine noise on 
diver are few and sometimes in contrast. However it's important to remember that, although 
different injuries (dizziness, hearing damage, etc) have been reported, the single most 
important issue related to diver safety resulting from low frequency sonar is that of 
disorientation due to vestibular stimulation. Whilst exposure to sonar transmissions below a 
level necessary to cause disorientation can give rise to temporary hearing threshold shifts, 
these are considered operationally acceptable for diving operations over limited periods 
(Salami et al., 2010). 
This effect of sonar on diver is related to its duration too: studies on marine animals have 
demonstrated that changes in hair bundle density paralleled changes in hair cell nucleus 
density, indicating that entire hair cells disappeared after noise exposure; the inner ear 
damage is characterized by a permanent threshold elevation after an exposure to white 
noise ranging in intensity from 130 to 170 dB re 1 μPa for 24 h (Salami et al., 2010; Smith et 
al., 2006). 
Although there are differences among the ears of different species, the basic processes of 
hearing are the same between marine and terrestrial mammals. For this reason, some of the 
previous considerations can be applied on humans (Salami et al., 2010; Popper & Fav, 2000). 
In particular we had done a personal experience on ten male divers with normal hearing; 
the divers were exposed to active sonar of the Italian Navy for more than 100 exposures, 
each of at least 1-h duration, in the course of 6 months (Salami et al., 2010): all the subjects 
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have been exposed to active sonar of the Italian Navy (Hull MF), at a frequency of 7.5 kHz 
and an intensity of 230 dB re 1 μ Pa. All the divers have had more than 100 exposures of at 
least 1 h, for six months, in the winter time (from October to April). The diver was exposed 
to the sonar at a constant depth of 3 m and at a distance from the sonar reducing 
progressively from 300 to 30 m. Each subject was instructed to stop the exposure in case of 
pain, tinnitus, vertigo, or hearing loss. 
Before, at the end, and six months after the end of noise exposures, all the divers underwent 
the following instrumental examinations: pure-tone audiometry, Carhart test, Peyser test, 
thresholds of discomfort test (TDT), tympanometry, transient evoked otoacoustic emissions 
(TEOAE) with linear click emission, distortion product otoacoustic emissions (DPOAE), and 
auditory brainstem response (ABR) by MK 12-ABR (Amplifon—Italy) (Chapman & Ellis, 
1998). 
At the end of the exposure, the absence of TEOAE and DPOAE was observed in all the 
divers, the positive Peyser and TDT tests, observed in 7/10 and 10/10 divers, and the 
worsening of the mean air and bone audiometric thresholds, especially at the 4,000 and 
8,000 frequencies, highlights the pathophysiologic features of continued and intense sound 
stimulation of the cochlea (Chapman &Ellis, 2008). 
The injuries occur first in the first row of the outer hair cells, then in the inner hair cells, and 
subsequently in the second and third rows; the temporary threshold shift, at the Peyser test, 
observed in 9/10 of the divers, shows the presence of an auditory adaptation to the noise 
and underlines the risk of increasing the hearing damage: it is well established that a single 
exposure to a severe sound can result in direct mechanical damage to the delicate tissues of 
the peripheral auditory apparatus, including components of the middle ear (tympanic 
membrane, ossicles) and inner ear (organ of Corti); in contrast, regular exposure to less 
intense, but still noisy sounds, involves the insidious destruction of inner-ear components 
that eventually and unavoidably leads to an elevation in hearing levels. 
The results of the TDT test confirm the correlation between the acoustic reflex threshold and 
the loudness discomfort level for people with hearing damage (Olsen, 1999). 
Following a noise exposure, the hearing damage could also be due to the loss of the 
protective effect of the efferent fibres, perhaps mediated by the lateral olivocochlear neurons 
that synapse beneath the inner hair cells (Attanasio et al., 1999). 
The transitory auditory injury observed in our test group may also be related to the 
hyperbaric work environment: oxygen toxicity is a problem in diving and can have fatal 
consequences in the water; past experiences made on divers, highlighted the significant 
presence of hearing disturbances and disorientation, and demonstrated changes of the 
Central Nervous System in hyperbaric conditions (Cakir et al., 2006). 
Experiences done on animals (guinea pig) showed that repeated hyperbaric exposures that 
were considered to be safe did cause damage to the cochlear system (Zheng & Gong, 1992). 
These modifications are characterised by: alterations in the metabolism and in the 
concentration of neurotransmitters; block of intercellular oxidation processes; accumulation 
of carbon dioxide. 
At the last control, the complete recovery observed in all the divers shows the temporary 
negative effects of repeated and lasting exposure to active sonar (Hull MF) and 
demonstrates the absence of permanent noise-induced hearing loss in divers exposed to 
active sonar (Salami et al., 2010). 
The frequencies used in sonar are above the human hearing threshold (Gong et al., 2010; 
Kane et al., 2010): as because the power of ultrasonic sonar rapidly falls off with distance, a 
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safe operating distance is 10 meters or greater. Diving may be conducted around this type of 
sonar provided the diver does not stay within the sonar focus beam. None of the above 
avoids the need for positive safety measures to be adopted when divers are working on or 
very close to sonar sources which are inactivated. The possibility of accidental activation 
must be precluded.  
Since physical damage and impairment of the auditory system is caused both by high peak 
pressure and energy flux, safety limits for sound exposure should include both a maximum 
received energy fluid level and a maximum received peak–peak pressure level (impulse 
noise can have very high peak sound levels, but carry very little energy) (Madesen, 2005). 
As different studies give only basic instructions governing hearing conservation and noise 
abatement, while they do not address exposure to waterborne sound, the instructions should 
provide field guidance for determining safe diving distances from transmitting sonar. 
Sonar with an intensity level of about 230 dB re 1 μ Pa may cause on divers: slight visual-
field shifts (probably due to direct stimulation of the semicircular canals), fogging of the face 
plate, spraying of any water within the mask, and other effects. In particular in the presence 
of long sonar pulses (one second or longer), depth gauges may become erratic and 
regulators may tend to free-flow. Different divers experienced these phenomena during 
controlled research report that while these effects are unpleasant, they are tolerable. Similar 
data are not available for un-hooded divers but visual-field shifts may occur for these divers 
at lower levels. If divers need to be exposed to such conditions, they must be carefully 
briefed and, if feasible, given short training exposures under carefully controlled conditions. 
As the probability of physiological damage increases markedly with sound pressurese 
increase, fully protected divers must not be exposed to intensity level superior to 215 dB re 1 
μPa for any reason. 
A distinction is made between in-water hearing and in-gas hearing (Tompkins, 2007): 
 in-water hearing occurs when the skull is directly in contact with the water, as when the 

head is bare or covered with a wet-suit hood. 
 in-gas hearing occurs when the skull is surrounded by gas as in the MK 21 diving 

helmet. 
In-water hearing occurs by bone conduction—sound incident anywhere on the skull is 
transmitted to the inner ear, bypassing the external and middle ear. In gas hearing occurs in 
the normal way—sound enters the external ear canal and stimulates the inner ear through 
the middle ear. 
For these reasons, if the diver is helmeted, it’s necessary to use greater distance from the 
sonar source. 
It’s also important to identify the type of diving equipment: wet-suit un-hooded, wet-suit 
hooded, helmeted; wet-suit hooded diver can safely get closer to a sonar source. If the type 
of sonar is unknown, start diving at 600–3,000 yards, depending on diving equipment (use 
greater distance if helmeted), and move in to limits of diver comfort. 
Helmeted divers experience reduced sensitivity to sound pressure as depth increases. 
The sonar presents different effect on divers, according to the intensity (low, medium, high): 
 low-frequency sonar generates a dense, high-energy pulse of sound that can be harmful 

at higher power levels. As a variety of sensations may result from exposure to low-
frequency sonar, it is necessary to inform divers when exposure is likely and to brief 
them regarding possible effects; specifically, that they can expect to hear and feel it. 
Sensations may include mild dizziness or vertigo, skin tingling, vibratory sensations in 
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the throat and abdominal fullness. Divers should also be briefed that voice 
communications are likely to be affected by the underwater sound to the extent that line 
pulls or other forms of communication may become necessary (Crum & Mao, 1996). 

 Medium and high frequency sonars: some military anti-submarine sonar-equipped 
ships do pulse high intensity pressure waves dangerous to a diver. It is prudent to 
suspend diving operations if a high-powered sonar transponder is being operated in 
the area. When using a diver-held pinger system, it is advisable for the diver to wear 
the standard 1/4 inch (0.64 cm) neoprene hood for ear protection. Experiments have 
shown that such a hood offers adequate protection when the ultrasonic pulses are of 4 
ms duration, are repeated once per second for acoustic source levels up to 100 watts, 
and are at head-to-source distances as short as 4 inches (10 cm).  

6. Conclusion 
The power of the sonar systems, the noise that they produce and the distance they can travel 
can undoubtedly have an effect on marine life. Marine animals may experience gross 
damage to ears, damage to body tissue, masking of communication, interference with ability 
to acoustically interpret their environment and also interference with food finding. Long 
term effects caused by sonar are almost impossible to identify. Many whales that are fatally 
impacted can sink to the bottom of the ocean; therefore the true death toll cannot be 
estimated. There are widespread concerns about the danger of high intensity sonar to 
marine mammals, marine ecosystems and the health of our depleted oceans. Low frequency 
sonar can travel hundreds of miles through our oceans at considerable intensities. 
It is currently difficult to provide an evaluation of the effectiveness and adequacy of the 
measures taken and planned for the protection of the marine environment against effects 
from underwater noise. One of the reasons for this is that there are still gaps in our 
understanding on the effects of underwater noise on marine life. There is evidence that 
certain activities can generate noise levels that have the potential to be harmful to marine 
mammals, fish and human, yet, the exact nature of the effects (temporary threshold shift, 
masking, behavioural response) are not totally understood. The poor understanding of 
effects means that any regulation and mitigation measures are likely to be based on 
precaution. This makes it urgent to gather data on the effects of underwater noise in order to 
apply appropriate regulation and /or mitigation measures. 
Underwater noise has the potential to affect marine life in various ways and in some cases 
over relatively large areas and time scales. It is difficult to assess to what degree the 
introduction of underwater noise affects the overall quality status as there is little data to 
allow us to quantify noise levels across the exposition area. However, most of the intensities 
of anthropogenic sounds exceed by several order of magnitude the ambient sounds in the 
marine environment that occur naturally, such as sounds that are induced by rain, wind and 
waves. Underwater noise can have a range of impacts on marine life such as injury, 
permanent or temporary hearing loss, behavioural responses and masking of biological 
relevant signals. However, there are many uncertainties in assessing effects of noise due to 
the difficulties in observing individual level effects, let alone population level consequences 
of acoustic disturbance. From a conservation perspective, it is important to assess whether 
anthropogenic sound has a significant effect on populations (animals and humans). This is 
also important in assessing the impacts of noise in relation or addition to other stressors 
either to assess cumulative impacts and/or to focus protection efforts. All factors impacting 



 
Sonar Systems 

 

250 

safe operating distance is 10 meters or greater. Diving may be conducted around this type of 
sonar provided the diver does not stay within the sonar focus beam. None of the above 
avoids the need for positive safety measures to be adopted when divers are working on or 
very close to sonar sources which are inactivated. The possibility of accidental activation 
must be precluded.  
Since physical damage and impairment of the auditory system is caused both by high peak 
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noise can have very high peak sound levels, but carry very little energy) (Madesen, 2005). 
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plate, spraying of any water within the mask, and other effects. In particular in the presence 
of long sonar pulses (one second or longer), depth gauges may become erratic and 
regulators may tend to free-flow. Different divers experienced these phenomena during 
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 in-gas hearing occurs when the skull is surrounded by gas as in the MK 21 diving 
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at higher power levels. As a variety of sensations may result from exposure to low-
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the throat and abdominal fullness. Divers should also be briefed that voice 
communications are likely to be affected by the underwater sound to the extent that line 
pulls or other forms of communication may become necessary (Crum & Mao, 1996). 

 Medium and high frequency sonars: some military anti-submarine sonar-equipped 
ships do pulse high intensity pressure waves dangerous to a diver. It is prudent to 
suspend diving operations if a high-powered sonar transponder is being operated in 
the area. When using a diver-held pinger system, it is advisable for the diver to wear 
the standard 1/4 inch (0.64 cm) neoprene hood for ear protection. Experiments have 
shown that such a hood offers adequate protection when the ultrasonic pulses are of 4 
ms duration, are repeated once per second for acoustic source levels up to 100 watts, 
and are at head-to-source distances as short as 4 inches (10 cm).  

6. Conclusion 
The power of the sonar systems, the noise that they produce and the distance they can travel 
can undoubtedly have an effect on marine life. Marine animals may experience gross 
damage to ears, damage to body tissue, masking of communication, interference with ability 
to acoustically interpret their environment and also interference with food finding. Long 
term effects caused by sonar are almost impossible to identify. Many whales that are fatally 
impacted can sink to the bottom of the ocean; therefore the true death toll cannot be 
estimated. There are widespread concerns about the danger of high intensity sonar to 
marine mammals, marine ecosystems and the health of our depleted oceans. Low frequency 
sonar can travel hundreds of miles through our oceans at considerable intensities. 
It is currently difficult to provide an evaluation of the effectiveness and adequacy of the 
measures taken and planned for the protection of the marine environment against effects 
from underwater noise. One of the reasons for this is that there are still gaps in our 
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certain activities can generate noise levels that have the potential to be harmful to marine 
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Underwater noise has the potential to affect marine life in various ways and in some cases 
over relatively large areas and time scales. It is difficult to assess to what degree the 
introduction of underwater noise affects the overall quality status as there is little data to 
allow us to quantify noise levels across the exposition area. However, most of the intensities 
of anthropogenic sounds exceed by several order of magnitude the ambient sounds in the 
marine environment that occur naturally, such as sounds that are induced by rain, wind and 
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on populations are cumulative and must be assessed together by discussing the significance 
of effects. There is currently no information available on the cumulative effects of the factors 
listed above. No agreed assessment framework for cumulative effects of diverse human 
activities exists yet. 
Although these evidences, our results show the temporary negative effects of repeated and 
lasting exposure to active sonar on the divers. In particular our data demonstrate the 
absence of permanent noise-induced hearing loss in divers exposed to active sonar. 
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1. Introduction 
1.1 Background 
Underwater acoustic instruments has been an indispensable tool to study the ocean. Echo 
sounder is one of the acoustic instrument used to remotely classify distributions of 
biological organisms such as fish and plankton (MacLennan and Simmonds, 1992; 
Furusawa, 2000). Knowledge of species, location, and behavior observed by the sounders 
are important for fisheries, fisheries management, and ecological studies. 
Echo sounders have also been used to characterize the sea bottom type such as rocks, sand, 
and mud (Stanton, 1994). The characterization of the sea bottom type are useful in 
applications such as fish habitat study, fishing port construction, geological studies, marine 
exploration, and mining. 
With the end of World War II, studies on underwater acoustics for sea bottom interactions 
began extensively. Urick (1954) defined the measure of backscatter strength as the ratio of 
scattered energy to incident energy per unit area, per unit solid angle and this quantity was 
expressed in decibels. Urick used the frequencies of 10 to 60 kHz to measure the 
backscattering from the harbor bottom. Mackenzie (1961) published the results for lower 
frequency scattering in deep water and introduced empirical Lambertian backscatter 
coefficient which was to be cited often in subsequent studies. McKinney and Anderson 
(1964) investigated potential scattering mechanism based on the interface relief and 
sediment particle.  
One of the methods to measure the bottom backscattering strength is to use the echo 
integration method (Aoyama et al, 1999). This method is used as the main tool for 
quantifying the abundance of marine fish or planktonic organisms. The echo integration 
output can be converted to biomass. For the general situation of arbitrary density, as with a 
school of fish, individual target echoes may not be resolvable. In this case, the echo voltage, 
after detection and application of suitable range compensation, is squared and summed over 
a defined interval. The resulting quantity is proportional to the volume or area 
backscattering coefficient. Division of this by the characteristic backscattering cross section 
for the target fish yields the numerical density. The echo integration technique has been 
originally used for fisheries surveys and at the present study we adopted it to measure 
backscattering strength (SS) of the sea bottom.  
Acoustic scattering by the sea bottom has been studied in order to either predict the 
performance of the echosounder system (Aoyama, et al. 1999) or to quantitatively map the 
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sea bottom. Characterization of sea bottom can be obtained by measuring the bottom 
backscattering strength (SS). From the measured SS we may be able to estimate the fish 
habitat.  

1.2 Research objectives 
The objectives of this researches are development and application of methods to characterize 
or quantify the fish and sea bottom by underwater acoustic instrument originally developed 
for measurements of fish scattering. More specifically, the objective is to extensively use 
multi frequency acoustics (38, 70, and 120 kHz) to measure the bottom backscattering 
strength (SS) and fish quantification in off Southern Jawa Island, Indonesia.  
The SS can be measured by the bottom scattering theory developed by Aoyama et al. (1999). 
As the extension of this theory, a simple but powerful model for bottom scattering, that is a 
ring surface scattering (RSS) model was developed. The RSS model enables to interpret the 
bottom echo and to measure the SS value. The SS values, measured for the first time at the 
sea off Jawa Island, are related to the sounder frequency, beam width, and the bottom type 
and the properties of the SS with respect to the parameters are examined. The bottom 
material sampling were conducted to interpret the bottom echo. An associated objective of 
this study is to measure bottom depth to know the bottom topography.  
The other objective is to identify the bottom material by the SS value and relate it to bottom 
fish habitat. We developed a new and effective method to display fish volume scattering 
and bottom SS simultaneously. To verify the bottom fish echo, the bottom trawling was 
conducted.  

2. Bottom scattering models 
2.1 Preface 
A number of mathematical models have been developed in order to gain a better physical 
understanding of acoustic backscattering from the sea bottom. By observing echo 
fluctuations from sea bottom, Stanton (1985) determined quantitative information of bottom 
relief such as bottom roughness. He extended the Eckart (1953) acoustic scattering theory to 
show the relationship between the probability density function of the echo level and the rms 
roughness. Stanton model is plane wave model. Jackson et al. (1986) developed a bottom 
scattering model using the composite roughness and grazing angle parameters.  
Aoyama et al. (1997) model was extended as ring surface scattering model (RSS model) in 
this Chapter. The extension of this model from Aoyama et al. model is described. The RSS 
model exhibits a raw backscattering strength (without averaging) at the peak of bottom 
echoes and easily convert the bottom scattering strength to the bottom backscattering 
strength (SS). Aoyama et al. used the approximation method for the equivalent beam 
angle, but the RSS model uses a strict instantaneous equivalent beam angle for surface 
scattering.  

2.2 Normal incident bottom scattering theory 
Normal incidence reflection of sound from the sea bottom is relatively easy to detect. It is 
used in depth sounders to give the water depth for ships and boats. There has been, 
however, little research a bottom backscattering strength measurement by normal incidence 
echo sounders. 
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Because the wave is propagating, a certain amount of power flow across a unit area normal 
to the direction of the propagation. This amount of power is called the sound intensity and 
shown as 

 
2PI
c

  (2.1) 

where P is the pressure,  is the water density, and c is the sound speed in water. 
Sound intensity of surface scattering from a small scattering area, dS is shown by 
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scattering area, dS,  is the absorption coefficient, b is the directivity function of the 
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10 log Ss. 
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where  and  are the polar and azimuthal angles, respectively. 
Substitution of Eq. (2.3) into Eq. (2.2) yields 
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Intensity of the surface backscattering strength, I, is the total of dI, therefore 

 I =  dI   (2.5) 

In general, the SS becomes smaller when the incident angle,  become higher. For the 
quantitative echo sounder with the narrow beam, however, the effect of  to the scattering 
should be negligible. Therefore, Eq. (2.5) can be written as 
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and  is called the equivalent beam angle for surface scattering.  
The integration limits 1 and 2 depend on the time or slant range, r, from the transducer to 
elemental scattering area and shown as 

1 1

0 ( / 2)

cos ( / 2)
/ 2

R r R c

R r R c
r c









  


       

 



 
Sonar Systems 

 

256 

sea bottom. Characterization of sea bottom can be obtained by measuring the bottom 
backscattering strength (SS). From the measured SS we may be able to estimate the fish 
habitat.  

1.2 Research objectives 
The objectives of this researches are development and application of methods to characterize 
or quantify the fish and sea bottom by underwater acoustic instrument originally developed 
for measurements of fish scattering. More specifically, the objective is to extensively use 
multi frequency acoustics (38, 70, and 120 kHz) to measure the bottom backscattering 
strength (SS) and fish quantification in off Southern Jawa Island, Indonesia.  
The SS can be measured by the bottom scattering theory developed by Aoyama et al. (1999). 
As the extension of this theory, a simple but powerful model for bottom scattering, that is a 
ring surface scattering (RSS) model was developed. The RSS model enables to interpret the 
bottom echo and to measure the SS value. The SS values, measured for the first time at the 
sea off Jawa Island, are related to the sounder frequency, beam width, and the bottom type 
and the properties of the SS with respect to the parameters are examined. The bottom 
material sampling were conducted to interpret the bottom echo. An associated objective of 
this study is to measure bottom depth to know the bottom topography.  
The other objective is to identify the bottom material by the SS value and relate it to bottom 
fish habitat. We developed a new and effective method to display fish volume scattering 
and bottom SS simultaneously. To verify the bottom fish echo, the bottom trawling was 
conducted.  

2. Bottom scattering models 
2.1 Preface 
A number of mathematical models have been developed in order to gain a better physical 
understanding of acoustic backscattering from the sea bottom. By observing echo 
fluctuations from sea bottom, Stanton (1985) determined quantitative information of bottom 
relief such as bottom roughness. He extended the Eckart (1953) acoustic scattering theory to 
show the relationship between the probability density function of the echo level and the rms 
roughness. Stanton model is plane wave model. Jackson et al. (1986) developed a bottom 
scattering model using the composite roughness and grazing angle parameters.  
Aoyama et al. (1997) model was extended as ring surface scattering model (RSS model) in 
this Chapter. The extension of this model from Aoyama et al. model is described. The RSS 
model exhibits a raw backscattering strength (without averaging) at the peak of bottom 
echoes and easily convert the bottom scattering strength to the bottom backscattering 
strength (SS). Aoyama et al. used the approximation method for the equivalent beam 
angle, but the RSS model uses a strict instantaneous equivalent beam angle for surface 
scattering.  

2.2 Normal incident bottom scattering theory 
Normal incidence reflection of sound from the sea bottom is relatively easy to detect. It is 
used in depth sounders to give the water depth for ships and boats. There has been, 
however, little research a bottom backscattering strength measurement by normal incidence 
echo sounders. 
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and  
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where R is the range from the transducer to the sea bottom, c is the sound speed, and  is the 
pulse width. For a circular piston transducer, the directivity of transducer is given by 
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where J1 is the first order of the first kind Bessel function, 2 /k   , k is the wave number 
and λ is the wave length, and a is the radius of the transducer. 

2.3 Ring surface scattering model 
We derived a new model called ″ ring surface scattering model ″ from the above theory. This 
model enables us to measure the bottom backscattering strength (SS) by using the echo 
sounder (Aoyama, et al., 1999). Figure 2.3 shows a simplified block diagram for bottom 
backscattering measurement by underwater acoustic instrument.  
 

 
Fig. 2.1. Principle of surface scattering. 

Figure 2.2 shows the geometry showing change of scattering plane with time.The surface 
insonified by the pulse changes from a circle (a) toa circular (b) like ring with time.  
The backscattered pressure signal from the bottom received by the transducer (Fig. 2.3), PRB,  

 2 -2
RB o SP =P r exp(-4α r)Φ S   (2.10) 

where Po is the source pressure level. 
The bottom echo signal is amplified by the amplifier to give 

 RB RB RE P M G   (2.11) 
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where ERB is the echo amplitude at the preamplifier output, M is the receiving sensitivity of 
the transducer, and GR is the preamplifier gain.  
The echo amplitude, ERB, is shown from Eqs. (2.10) and (2.11) as 

 2 2 2 exp( 4 )RB TR SE K r r S    (2.12) 

where KTR = Po M GR is the transmitting receiving coefficient. In this reduction we assumed r 
≃ R except for r and R in  (Eq. 2.7). 
The time varied gain (TVG) amplifier output of ERB corrected for an absorption and 
spreading losses, ETB, is 

 exp(2 )TB TM RBE G r r E  (2.13) 
 

 
Fig. 2.2. Geometry showing change of scattering plane with time. The acoustic wave hit the 
bottom at the bold lines.  

where GTM is the coefficient for the 20 log r TVG amplifier gain. From Eqs. (2.12) and (2.13) 
we obtain 
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where KM is the multiple echo coefficient and given by 

  22 ( / 2)M TR TMK K G c    (2.16) 

where 
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The above  is the equivalent beam angle of the volume scattering. 
Substitution of ETB of Eq. (2.14) and KM of Eq. (2.16) into Eq. (2.15) yields 
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This equation is called ″ ring surface scattering model ″.  
The echo wave form simulation is possible by this model. The results of the wave form 
simulation are compared with the wave forms from the actual data obtained by the echo 
sounder to interpret the data. When our purpose is to simulate the wave form and echo 
level, we use the instantaneous equivalent beam angle  , Eq. (2.7), as a function of range.  
 

<SVB>
<SS>

 
Fig. 2.3. The simplified block diagram of underwater acoustic instrument to measure bottom 
backscattering strength (SS). RSS is ring surface scattering and BEI is bottom echo 
integration. 

2.4 Bottom echo integration  
In the bottom echo integration method (Aoyama, et al., 1999) we average the bottom echoes 
for a predefined depth layer (r to r +rw) including the bottom echoes and for a ping sequence 
to obtain the average bottom echo integration strength.  
The average squared voltage of TVG outputs with respect to the ping (index i ) and the 
range is  
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where m is the integration period in ping. The average bottom echo integration strength 
("bottom SV"), < SVB >, is obtained as done in the ordinary echo integration method : 
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Substitution of the Eq. (2.19) into Eq. (2.20) yield 
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When   is independent of i, which is a reasonable assumption for a case of a small 
integration period, we have  
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is the average bottom scattering strength. 
In the case of sharp beam, we have (Aoyama et al. 1997) 
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where o is the asymptotic value of the equivalent beam angle for the surface scattering. We 
find from Eq. (2.24) : 

 o  .  (2.25) 

Introducing Eq.(2.25) into Eq. (2.22), we get 
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where the prime means values which should be given to the underwater acoustic 
instrument as parameters. Finally we have 

 w VBSs r S ,  (2.27)  

if the parameter values have no error. This is the simple relationship between the average SS 
and the bottom SV. 
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where m is the integration period in ping. The average bottom echo integration strength 
("bottom SV"), < SVB >, is obtained as done in the ordinary echo integration method : 
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where o is the asymptotic value of the equivalent beam angle for the surface scattering. We 
find from Eq. (2.24) : 
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where the prime means values which should be given to the underwater acoustic 
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if the parameter values have no error. This is the simple relationship between the average SS 
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2.5 Simultaneous display of fish and bottom scattering 
Using the RSS Model we have a relationship between the raw (or not averaged) SV value of 
the bottom echo, SVB , and the raw bottom backscattering strength, SS, as   

 ( / 2)VB
S

S cS  


   (2.28)  

where  and  are the equivalent beam angle for surface and volume scattering, 
respectively, c is the sound speed, and τ is the pulse width. At the peak of the bottom echo, 
we have 

 0      (2.29)  

where o is the asymptotic value of the equivalent beam angle for surface scattering (Fig. 
2.4). Introducing Eq. (2.29) into Eq. (2.28) gives  

 ( / 2)S VBS c S   (2.30) 

and we can easily convert the raw SV to raw SS. An application of this formula for all SVB 
yields a convenient measure called ″instantaneous″ SS. Figure 2.5 show the raw SV of 
bottom echo (SVB), raw SS (SS), and instantaneous SS. 
In decibel unit,  

 10 log ( / 2) BSS c SV    (2.31) 
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Fig. 2.4. The instantaneous equivalent beam angle  and the asymptotic value of o. 
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Fig. 2.5. The raw SV, raw SS, and instantaneous SS. 

3. Survey methods 
The echo sounder is employed in this survey to explore fish resources, bottom topography, 
and bottom backscattering strength. Additional instrument, such as Global Positioning 
System (GPS) and data storage are included as part of the acoustic system. The raw data of 
echo sounder is processed using Echoview and Matlab program. The sphere calibration was 
conducted to guarantee a high quality of acoustic data (Fig. 3.1). 
Bottom material sampling using an anchor dredge was conducted to interpret the bottom 
echo. The obtained bottom material was saved for further processing in laboratory. The 
acoustic data collection and the bottom material sampling were conducted simultaneously. 
The bottom material was analyzed using the sieving and pipette methods. Then, the analysis 
of particle size was done using Wentworth scale. 
 

 
Fig. 3.1. The sphere echo during calibration. 
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4. Results and discussions 
4.1 Bottom echo characteristics 
It is shown that the underwater acoustic instrument can rather easily measures echoes by 
reflection of sounding pulses from the bottom. The sounder is especially useful when both 
fish and sea bottom should be quantified. The quantitative echogram of the It is shown that 
the underwater acoustic instrument can rather easily measures echoes by reflection of 
sounding pulses from the bottom. The sounder is especially useful when both fish and sea 
bottom should be quantified. The quantitative echogram of the echosounder showing raw SV 
as shown in Fig. 4.1 enables us to interpret the backscattered signal from any object. showing 
raw SV as shown in Fig. 4.1 enables us to interpret the backscattered signal from any object.  
Figure 4.1 shows typical echograms at 38 kHz for sand, silt, and clay seabed. The scale 
shows the raw SV value ranging from -70 to -10 dB. The red belts represent the sea bottom. 
Because of the same range width of the echograms we can easily compare the bottom echoes 
and find that the thickness of the reddish belts for sand is thinner than those of silt and clay 
bottoms; this mainly comes from the difference of the bottom depth rather than of bottom 
material as discussed later. 
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(c) Clay 

Fig. 4.1. Typical echograms in raw SV for sand, silt, and clay. The range width and ping 
number are the same for three figures. 

Figure 4.1 shows the bottom echoes in the same range scale width and easily reveals 
differences or similarity among the three echograms. The first red belts correspond to the 
contribution from the main lobe as can be seen from the simulation results in Fig. 4.2; the 
difference in the thicknesses comes from the depth differences but not from the material 
differences. We also observe two or three more weaker bluish belts beneath the main belt 
and these are contributions from side lobe(s) as also can be seen from Fig. 4.2. 
Figure 4.2 shows several typical wave forms of the bottom echoes, with absolute raw SV 
scale for the three frequencies and the three materials near the points whose echograms 
are shown in Fig. 4.1. Figure 4.2 also shows the simulated wave forms by Eq. (2.18) 
using the SS values of each bottom type shown in each figure : the SS values were 
obtained from the peak raw SV values of bottom echo and giving , , c, and  using 
Eq. (2.28). At the peak of bottom echo, the echo level of sand was higher than silt and 
clay by more than 8 dB.  
As shown in Fig. 4.2, the model calculations and measurements agree rather well in the 
wave form. The width change of the bottom echo was caused by the increasing depth. The 
bottom material is reflected only in the SS value in the present model. It was supported by 
the simulation results that the beam spreading caused the increase of the bottom echo width 
with increasing depth. The present model can well predict the scattering by the side lobes ; 
this figure also shows that the narrow beam and short pulse configuration receives the 
contributions of the bottom echoes separately by the side lobes. Comparing with the more 
thorough model as by Chotiros (Chotiros, 1994), this model can be used easily, sacrificing a 
little bit rigorousness.  

4.2 Examination of bottom echo integration method 
This section describes the examination of the bottom echo integration method. We examined 
the relation of measured bottom backscattering strength (SS) on integration width rw for the 
three bottom materials of sand, silt, and clay (Fig. 4.3).  
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(c) Clay 

Fig. 4.1. Typical echograms in raw SV for sand, silt, and clay. The range width and ping 
number are the same for three figures. 

Figure 4.1 shows the bottom echoes in the same range scale width and easily reveals 
differences or similarity among the three echograms. The first red belts correspond to the 
contribution from the main lobe as can be seen from the simulation results in Fig. 4.2; the 
difference in the thicknesses comes from the depth differences but not from the material 
differences. We also observe two or three more weaker bluish belts beneath the main belt 
and these are contributions from side lobe(s) as also can be seen from Fig. 4.2. 
Figure 4.2 shows several typical wave forms of the bottom echoes, with absolute raw SV 
scale for the three frequencies and the three materials near the points whose echograms 
are shown in Fig. 4.1. Figure 4.2 also shows the simulated wave forms by Eq. (2.18) 
using the SS values of each bottom type shown in each figure : the SS values were 
obtained from the peak raw SV values of bottom echo and giving , , c, and  using 
Eq. (2.28). At the peak of bottom echo, the echo level of sand was higher than silt and 
clay by more than 8 dB.  
As shown in Fig. 4.2, the model calculations and measurements agree rather well in the 
wave form. The width change of the bottom echo was caused by the increasing depth. The 
bottom material is reflected only in the SS value in the present model. It was supported by 
the simulation results that the beam spreading caused the increase of the bottom echo width 
with increasing depth. The present model can well predict the scattering by the side lobes ; 
this figure also shows that the narrow beam and short pulse configuration receives the 
contributions of the bottom echoes separately by the side lobes. Comparing with the more 
thorough model as by Chotiros (Chotiros, 1994), this model can be used easily, sacrificing a 
little bit rigorousness.  

4.2 Examination of bottom echo integration method 
This section describes the examination of the bottom echo integration method. We examined 
the relation of measured bottom backscattering strength (SS) on integration width rw for the 
three bottom materials of sand, silt, and clay (Fig. 4.3).  
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Fig. 4.2. Wave forms of sand (top), silt (middle), and clay (bottom) in raw SV by 
measurements () and simulations (-----) at 38 kHz (left), 70 kHz (middle), and 120 kHz 
(right). 

We find from Fig. 4.3, the average SS values by the bottom echo integration are independent 
from the change of integration layer, rw. 
The concept of SA was originally developed for estimating the fish biomass by acoustic 
method. For the echo integration, the received signal is once converted to through the 
volume backscattering strength, SV. The integration of SV over the range interval [r1, r2] is 
called the area backscattering strength SA  

 SA = 
2

1

r

v
r

S dr    (4.1) 
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Fig. 4.3. The echogram in raw SV scale (a) and the relation of measured SS on rw values (b). 

In decibel scale SA = 10 log SA. 
From Eq. (4.1) we have 

 SA =  rw <SV>   (4.2) 

for the actual processing in which average SV, that is <SV>, are computed for each 
integration cell. 
By Eq. (4.2) and Eq. (2.27 ) yields for one layer 

 SA = rw <SV> = <SS> (4.3) 

We find that the average SS value <SS>, is equivalent to the area backscattering strength of 
the bottom echo (SA). Therefore, we can easily get the value by the normal function of the 
echo integration by selecting a belt like integration layer including the bottom echo.  

4.3 Comparison of ring surface scattering model and the bottom echo integration  
Comparison of the SS values by the ring surface scattering (RSS) model as shown in Fig. 4.2 
and bottom echo integration methods by Eq. (2.27) are shown in Table 4.1 to confirm a good 
agreement. The SS values were obtained from the peak raw SV values of bottom echo and 
giving , , c, and  using Eq. (2.28). The average SS by the bottom echo integration (BEI) 
model used the integration period of 0.1 nmi. 
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4.4 Frequency characteristics of bottom scattering backstrength 
We examine the frequency characteristics of the bottom scattering backstrength by 
underwater acoustic instrument frequencies of 38, 70, and 120 kHz. The multi-frequency 
approach will increase the accuracy of the target (sea bottom) estimation due to different 
response of the target to the frequencies used. 
Figure 4.4 shows the average SS for 100 number of data and standard deviation of the SS as 
a function of frequencies for each bottom type. The standard deviation is obtained by taking 
the root mean square (RMS) deviation of the average SS. There are several same data of 
mean diameter particle. The SS decreases with increasing frequency (Fig. 4.4). The results 
show that the SS for 38 kHz are 2 to 3 dB greater than for 70 and 120 kHz. This is consistent 
with the conclusions of Stanic et al., (1988) who showed that the SS at normal incidence 
decreased with increasing frequency by 1.5 dB.  
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Fig. 4.4. Frequency dependence of measured bottom backscattering strength for sand, silt, 
and clay with  1 standard deviation indicated. 
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Table 4.1. The average SS values obtained by bottom echo integration method (BEI) and ring 
surface scattering (RSS) method and the difference (Δ=BEI-RSS). The number of data for 
each bottom type is 100. 

4.5 Bottom material characteristics 
Ten bottom material samplings were conducted during the survey. The bottom materials of 
sand, silt, and clay were determined observing physical characteristics of the samples and 
mean diameter values. Particle size analysis were conducted by Wentworth scale. The mean 
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diameter of the bottom materials from each 100 data are 223 to 301 m for sand, 58 m for 
silt, 36 to 43 m for sand-silt-clay, and 9 to 10 m for clay.  
To examine the correlation with bottom properties, the measured average (integrated) SS 
values were plotted against the mean diameter of the bottom material (Fig. 4.5). The 
regression line shown is given by 

 SS [dB] = 9.0 log10 (d [μm]) – 45.8  (4.4) 

with a high correlation coefficient of 0.98, where d is mean diameter of particle size in μm. 
The data were merged for frequencies in the regression because of the small frequency 
dependence, but the frequencies are discriminated in Fig. 4.5. The larger the grain size, the 
stronger the bottom backscattering strength. 
 

 
Fig. 4.5. Bottom particle diameter dependence of bottom backscattering strength. The 
regression line and correlation coefficient, rc , are indicated. 

An increase in mean diameter is accompanied by a higher backscattering strength (Fig.4.5). 
The reason for this is related to the bulk density of the sediments. The sand (grain sizes from 
62 to 2000 m, from the smooth sand to coarsest sand) has a bulk density between 1.9 and 
2.1 g/cm3, silt and clay (grain sizes < 62 m) have much lower values of bulk density, 
usually varying between 1.2 and 1.6 g/cm3. The bulk density of the sediment is determined 
principally from porosity. The porosity values of silt and clay are higher than sand; this is 
due to the fact that the silt and clay bind water more than the sand. Therefore, there are 
more water-filled voids per given volume of silt and clay than sand. Bulk density 
determines the acoustic impedance of sediment ; the higher the sediment density, the higher 
the impedance, and the greater the scattering backstrength.  
As shown in Figs. 4.4, and 4.5 the average SS of sand is higher than silt and clay by more 
than 5 dB. To some extent, it was possible to relate SS to mean diameter, suggesting the 
possibility of bottom type classification. We examined our regression to estimate the bottom 
backscattering strength (SS) for rock and gravel. For this purpose, the regression line is 
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extended without disturbing the original data. By our regression, the estimated SS is -1.3 dB 
for rock with diameter 8 mm. Urick (Urick,1954) used frequency of 55 kHz and found the SS 
of rock is -0.8 dB. The estimated SS is -6.7 dB for gravel with diameter 2 mm. The measured 
SS for gravel is -7.8 dB (Applied Physics Laboratory, UW, 1994). 
Although the present data lack particle sizes from 70μm to 220μm, further investigation is 
necessary to clarify the particle size dependence of SS, Fig. 4.5 or Eq. (4.4) gives a guide to 
relate the SS and the bottom material. 

5. Bottom survey off java island 
5.1 Sea bottom depth measurement 
The echo sounder measured sea bottom depths and the result of the quantitative echogram 
in instantaneous SS scale is shown in Fig. 5.1 as examples.  
The maps show that most of the floors have irregular topography and that the surveyed 
areas were steeply sloping bottom. According to the depth, the survey area is the 
continental shelf and the other survey areas are the continental slopes. These are due to that 
the bottom morphology of this areas are mostly consists of troughs.  
 

 
Fig. 5.1. The acoustic track, the bathymetry map (a) and SS distribution (b). 

5.2 Bottom backscattering strength by bottom echo integration 
The measurement of bottom backscattering strength (SS) using the bottom echo integration 
method along the acoustic track were conducted. The bottom echo integration (BEI) method 
measures the average bottom SS by averaging the bottom echoes for a predefined depth 
layer including the bottom echoes and ping sequence. We found that this process is 
theoretically same to the ordinary process of the echo integration to get the area 
backscattering strength (SA) and that the average bottom SS can be easily obtained by a 
commercial software such as Echoview. The SS map results for the integration period of 0.1 
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nmi of bottom echo are shown in Fig. 5.1. together with depth contour. The general 
correlation between SS and depth contour for the present survey was the increasing depth 
followed by decreasing SS. Figure 5.2 show the bottom trawling, SS distribution, and 
detected fish school (●) of the survey area. 
 

 
Fig. 5.2. The bottom trawling (—), SS distribution, and detected fish school (●) of survey area  

5.3 Identifying bottom material by the SS value and relate it to fish habitat 
This section shows an investigation of the relationship between sea bottom material and fish 
close to sea bottom information obtained by using echo sounder. From the bottom surface to 
upper depth is SV value and to the lower depth is instantaneous SS.  

 
Fig. 5.3. Measured scattering strength of fish (SV) close to the sea bottom and the SS sea 
bottom. 
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Figure 5.3 shows simultaneously the scattering from fish school (SV) close to the sea bottom 
and the SS values by RSS model (Eq. (2.30)) as the fixed and expanded bottom at trawl 
survey area. The example of echograms is shown in Fig. 5.3. The increasing of fish density is 
followed by the increasing receiving voltage of acoustic instrument (Fig. 5.4). 
The estimated bottom material is conducted by the SS value.In our results,, the SS value 
higher than -14.0 dB we categorized as a sand. The SS lied between – 20.0 to -15.0 dB is the 
silt and the SS less than -22.0 dB is as clay.  
 

 
Fig. 5.4. The relationship between received acoustic voltage and fish density. 

5.4 Consideration 
The bottom material is estimated by the SS value. The measured SS is about -12.0 to -5.0 dB 
when the bottom fish schools were existences. By this value, the bottom material is 
estimated as sand. The measured SS is about -28.0 to -16.0 dB when the bottom fish schools 
were absent. The bottom material is estimated as silt and clay, respectively. From this 
results, the bottom fish schools tend to be associated with the main areas of sand. This 
interpretation is also supported by the trawl data showing the fish caught in this sand area. 
The scattering from fish (SV) and bottom (SS) are simultaneously display in echogram. 
Among the total 98 fish schools examined 95 schools were on the sand bottom. The SV 
values of fish close to the sea bottom are ranging from -70.0 to -35.0 dB.  
The distribution of fish reflect variability in the surrounding environment, and those area 
normally occupied by a species constitute its habitat. Generally, individual species are not 
ubiquitous, suggesting that habitat is restrictive. 
Bottom type has a major influence on the fish distribution patterns (Gibson and Robb, 
1992;). Bottom type preference related to the distribution of suitable prey and the ability of 
fish to effectively bury themselves, which means they are protected from predation and 
achieve a strategic advantage in feeding (Gibson and Robb, 1992). 
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There may also be important differences in the availability and quality of bottom fish 
associated with different bottom (Gray, 1974). He reported that fish are abundant in sand 
and decreases in abundance in the silt and clay. The highest densities of fish in sand, since 
sand are stable from water currents. The other fish is abundant in silt and clay in which they 
feed. Our case fish is abundant in sand, may be for their living and burying to protect from 
predation, but further investigation is necessary. 

6. Conclusions 
The quantification technique of echoes using underwater acoustic instrument can rather 
easily measure echoes by reflection of sounding pulses from fish and sea bottom.  
The conclusions from the results of the experiments, assessment, and analysis performed in 
this study are described below : 
1. Underwater acoustic instrument is a reliable tool to measure bottom backscattering 

strength and useful when to observe both fish and sea bottom ;  
2. The ring surface scattering (RSS) model expressed by the instantaneous equivalent 

beam angle can well predict echo shapes of the actual bottom echo ; 
3. Higher bottom backscattering strength is followed by the higher mean diameter of 

particle as shown by Eq. (4.4) ; 
4. The bottom backscattering strength a little bit decreases with increasing frequency ;  
5. The SS is independent with the integration width, rw ; 
6. The area backscattering strength (SA) is equivalent to the bottom backscattering 

strength (SS); 
7. The RSS model is able to measure the SS and the result is nearly equal with the bottom 

echo integration model ; 
8. The bottom material sampling in the study area show that bottom type is sand, silt, 

sand-silt-clay, and clay.  
9. The bottom fish were existence with the sand bottom material ; 
10. The bottom echo integration (BEI) model enables us to study bottom material in the 

synoptic area while the RSS model for bottom material in detail beneath the specified 
fish. 
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1. Introduction 
Acoustic methods have been widely used in fisheries research for pelagic fish biomass 
estimation, lately including very sophisticated techniques, such us multi-frequency, wide 
band, multibeam, vertical and horizontal echosounding. Moreover, in the new era of 
ecosystem-based management, developments in acoustic technology could extend our 
knowledge from the stock to the ecosystem (Bertrand, 2003) and enhance our understanding 
of the ecosystem structure (Koslow, 2009). Until now, biologists utilised acoustic technology 
mainly for fish biomass estimation. Normally, acoustics are superior to other methods for 
pelagic fish stock assessment (Simmonds, 2003); acoustic surveys are therefore often used to 
tune the VPA or other classical biomass estimation methods. The main advantage of 
fisheries acoustics is its ability to estimate most measurements errors and provide a level of 
the total accuracy of the abundance, which only crudely can be asserted by the other 
methods. This error analysis and de-biasing approach is not easy to design and less easier to 
implement in a real situation. However, it is worth to investigate each error factor affecting 
the measurement, estimate its nature (random or systematic) or its magnitude and try to 
minimise its impact if possible. Finally, a procedure known as intrinsic error analysis takes 
into account all errors sources and estimates the total error, hence revealing the quality of 
the final results. Detail studies of error analysis are recently published for krill (Demer, 2004) 
and Norwegian spring-spawning herring assessment (Løland et al., 2007). 
The chapter will review some of the most important sources of errors and their impact on 
acoustic biomass estimation, with emphasis on the assessment of pelagic species and the 
development of methods aiming at relevant de-biasing approaches. Simmonds & 
MacLennan (2005) reviewed this problem and provided some indicators of how much error 
might be expected in a typical acoustic survey, with optimum sampling design and proper 
instrument preparation. The expected error magnitudes are reproduced in Table 1 slightly 
modified. The errors are divided in two groups, those generated due to the instrumentation 
uncertainty and others caused by the living resource complexity of behaviour. Absolute 
biomass estimations expressed in weight per unit area have a higher uncertainty compared 
to the estimates of relative indices, namely acoustic integration values per unit area. 
According to Table 1, large systematic errors such as these generated by bubble attenuation, 
hydrographic conditions and vessel avoidance can underestimate the biomass up to 10% of 
its original value. However, if the same research vessel is used under similar speed, weather 
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conditions and instrumentation, particularly the same frequency and beam angle, it can be 
assumed that the relative biomass estimates are less affected by these error sources. In any 
case, the decision for using relative or absolute estimates should carefully be made, taking 
into account both the survey conditions, as well as the requirements of the stock assessment 
and its management. 
 
A. Errors affecting both relative and absolute biomass estimation 
SOURCE OF ERROR Random Bias Comment 
Instrument platform    
Instrument calibration ± 2 to 5% ± 2 to 5% Worse at higher frequencies  
Vessel motion  0 to 25% Narrow beams are more biased 

Bubble attenuation  0 to 90% Keel mounted and deep towed systems 
are less sensitive 

Hydrographic  
conditions ± 2 to 5% 0 to 25% High frequencies and deep targets are 

more biased  
Fish behaviour    

Target Strength ± 5 to 25%  Uncertainty in fish size and fish 
orientation 

Species identification ± 0 to 50%  Depends on species and level of species 
mix 

Random sampling ± 5 to 20%  Depends on spatial distribution and 
school size distribution  

Migration  0 to 30% Depends on timing between survey and 
fish movement 

Vertical movements ± 0 to 50%  Depends on TS change due to pressure 
variations 

Vessel avoidance  0 to 50% Stronger in shallow areas and noisy 
vessels 

B. Additional errors affecting only the absolute biomass estimation 

Source of error 

 

Bias Comment 

Instrument calibration ± 3 to 
10% 

Worse at higher frequency and narrow 
beam 

Hydrographic conditions ±2 to 25% High frequencies and deep targets are 
more biased  

Target Strength 0 to 50% Best for well investigated swimbladdered 
species. 

Table 1. Expected errors in well designed and properly calibrated acoustic surveys 
(modified from Simmonds & MacLennan, 2005) 

The sampling error caused by the acoustic measurements being stochastic samples of the 
true mean density is affected by the survey design, the spatial structure of fish and the 
encountered intrinsic variability among samples. It is worth noticing, that depending on 
bathymetry, acoustic sampling volume and ping interval, the insonified water volume is 
often 10 000 – 20 000 smaller than the volume of interest in a typical survey, and therefore a  
high uncertainty should be expected due to this small sampling portion.   
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In this chapter, we focus on the three most important sources of errors which affect the 
assessment accuracy, namely: target strength (TS) estimation, species identification - 
biomass allocation per species and fish avoidance reactions to survey vessels. 

2. Target strength estimation  
The unbiased target strength (TS) estimation is a prerequisite for any approach of fish stock 
abundance monitoring. It is a key parameter that transforms backscattering into biomass.  
The TS of an individual fish depends on the sound frequency, as well as on some fish 
characteristics such as size, anatomy, physiology and swimming behaviour. It is suggested 
that environmental factors cause different morphological adaptations within species (Fässler 
et al., 2008) and consequentially backscattering properties. For that reason it is necessary to 
elaborate on multivariate relationships between TS and its possible regressors, concurrently 
to the biomass estimation surveys. Certain detailed investigations have been recently 
published on herring (Ona, 2003), anchovy (Zhao et al., 2008) and squid (Soule et al., 2010). 
Modern echosounders perform a direct compensation of the directivity pattern effect  to 
determine beam angles and size of single targets. The method is based on some “single 
target detector” algorithms, which filter out multiple echoes from the total echo population. 
The performance of these algorithms is acceptable only in very low fish density conditions 
(Ehrenberg & Torkelson, 1996; Simmonds & MacLennan, 2005), contrary to the biological 
sampling efficiency, which is higher by well defined fish layers. The resulting bias in target 
strength estimation due to failure to reject multiple echoes can be very high, especially in the 
case of small pelagic fish species, where the signal to noise ratio is lower and the expected 
packing densities prevent the successful operation of the single target detectors (Soule et al., 
1997). Fish biomass is mixed with plankton, particularly in the tropics, and thresholding is 
used for reducing plankton echoes. Unfortunately, thresholding biases the target strength 
distribution, because a high proportion of small targets are compensated. For relative large 
fishes (L ~50 cm) this bias is negligible, however for small fish, such as the small pelagic 
species (10 cm <L<30 cm) the bias can be increased to a TS overestimation of 50% 
(Simmonds & MacLennan, 2005).  
The in situ TS measurements of wild fish, despite their practical difficulties, are superior to 
other methods where fish is immobilised or confined within a case, since swimming 
behaviour affects considerably the fish body tilt angle and the backscattering echo. The goal 
of in situ measurements is to estimate an average swimming pattern, as this can be 
expressed in backscattering. Either implemented in software (Ona & Hansen, 1991; Schell et 
al., 2004) or hardware (Hedgepeth et al., 2002), single fish tracking algorithms isolate single 
fish echoes and provide TS point estimates as well as further information concerning the 
swimming pattern  (Furusawa & Amakusu, 2010).  

2.1 Target strength experiments 
The acoustic data were recorded in Thermaikos Gulf during the “FISHCAL” research 
project, aiming at the TS estimation of the three most commercially important species, 
namely sardine (Sardina pilchardus), anchovy (Engraulis encrasicolus) and horse mackerel 
(Trachurus trachurus). A modified French pelagic trawl was employed for species 
identification and fish length measurements. The trawl was monitored by a FURUNO Net 
Data Recorder to increase catch performance.  
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The hydroacoustic measurements were carried out by use of a calibrated SIMRAD EK-500 
echo-sounder (Foote & MacLennan, 1984; Bodholt et al., 1989), with mounted circular 38 and 
120 kHz split beam transducers. The pulse duration was 1.0 and 0.5 ms respectively for the 
two frequencies. Data were collected using a -60 dB noise threshold, from standard EK-500 
telegrams. Since the internal single-echo-detection (SED) algorithms are unable to reject all 
multiple targets within the sample (Sawada et al., 1993; Soule et al., 1995), some post 
processing is required, implementing tracking filters (Ona & Hansen, 1991; Handegard et al., 
2005). The detection volume for tracking was calculated by applying the maximum angle (± 5 
degrees) of the split beam angle detectors. However, in order to reduce the impact of the noise 
threshold, only beam corrections less than 1 dB were included in the final TS estimation 
statistics. Before tracking, all data were scrutinised and multiple targets were identified by 
plotting the TS [dB] measurements against the integration values sA [m2 n.mi-2].  
Echo tracking algorithms were developed (initially in standard C and later in R), which 
scrutinise the raw data and extract the echoes with the highest possibility to belong to the 
same fish. User defined threshold criteria are:  instantaneous and average depth angle, 
horizontal angle, deviations of mean depth angle and mean horizontal angle. Finally, the 
following parameters are calculated: 
 Fish identification code and number of echoes belonging to the same fish body 
 Compensated and non-compensated TS values of each single echo 
 Compensated less than 1 dB and their mean acoustic cross section <σ>  
 Variability of the sampled σ, within the same target 
 Angles of the fish track in relation to the transducer position 
The algorithm is applied off-line on the 3-dimensional information provided by the split 
beam concerning each encountered echo. For each echo, the fish position relative to the ship 
is represented in a 3 dimensional coordinate system by the vector P as:  

    cos sinR   ,    sin sinR   ,  cosR   (1) 

where R is the range between transducer and fish, (φ) and (θ) define the target direction 
relative to the acoustic axis and the vessel speed vector respectively.  
The mean Target Strength <TS> is usually expressed in a linear relation to the fish length: 

   10 0* cmTS a Log L TS   (2) 

where TS0 is the intercept of the regression and represents the TS of a hypothetical fish of 
length L=1 cm. The scope in the following experimental design was the identification and 
quantification of the parameters that affect the unbiased estimation of mean TS and finally 
the estimation of parameters defining the linear regression in (2).  
Target echoes plotted according to their beam angles (a and b) show a uniformly spatial 
distribution (Fig. 1a), whilst the filtered by tracking echoes reveal a longitudinal 
distribution, due to the ship’s movement (Fig. 1b).   

2.2 Fish tracking results 
Following the tracking procedure, echoes could be identified as belonging to the same fish, 
once, twice or more times inside the beam. By isolating targets which occurred more than 3 
times inside the lobe, it is possible to study the variation of back-scattering energy per 
individual fish. Mostly, increasing the sample (n) of insonifications per fish, the statistics 
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Fig. 1. Filtering echoes using tracking algorithms. 1a, left: The same dataset before filtering 
and 1b, right: After filtering by tracking, where each point on the angle scatterplot reveals 
that fish was encountered 6 times inside the beam. 

remain relative stable (Fig. 2). Both mean and maximum values converge to their maximum 
values, where the mean difference between maximum and mean TS per fish stays stable 
around the 3 dB.  Certain factors are responsible for the gradual change of TS values. There 
is a preference in the sampling procedure for bigger targets, due to their higher signal to 
noise ratio and increased sampling volume, especially in deeper waters. Furthermore, it is 
known that the fish has a specific angle which is responsible for the maximum back 
scattering energy and that this value is an upper limitation for the recorded TS maxima. 
 

 
Fig. 2. Echoes encountered more times inside the beam belong to fish with higher 
backscattering cross sections, measured as average or as maximum observed value. 
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By increasing the echo samples per fish (n>3) the possibility of including multiple echoes is 
minimised. Unfortunately, as mentioned above, the lower voltage echoes that belong to 
smaller targets have fewer chances to be detected in successive pings and therefore are 
underestimated by tracking. This is a limitation of the tracking procedure and we next 
describe a de-biasing technique based on a simulation approach.   
Simulated fish tracking 
In order to study the tracking-induced bias a simulated procedure was performed, using 
targets with TS obeying a normal distribution (mean= -39.0 dB and sd = 10.0 dB). 
After fish tracking the mode of the observed echoes, corrected for the beam effect (on-axis) is 
increased by 2 dB (Fig. 3), whilst the calculated TS mean: 

 10
ˆ log bsTS   (3) 

is overestimated by 1.5 dB. The standard deviation in the logarithmic form was reduced to 8 
dB, namely adjusted to the same average dispersion level observed in the in-situ data. 
 

 
Fig. 3. Histograms of TS data: Original values before tracking (above) and “observed” values 
after fish tracking and beam angle correction (below).  

Specifically, small pelagic species backscatter echoes with low signal-to-noise ratio (SNR). 
Experimental (Reynisson & Sigurdsson, 1996) as well as simulation studies (Ehrenberg & 
Torkelson, 1996; Kieser et al., 2005) predict that a decrease in SNR tends to increase the bias 
in TS estimates. Additionally to the mentioned loss of small fish near the beam border, the 
additive noise increases the average TS level and affects the single fish detectors of the split 
or dual beam techniques. The expected additional bias is about 0.2 to 0.5 dB, for a standard 
70 beam-width transducer, with 38 kHz pulses on targets of -30 dB size (on-axis values), 
insonified at 150-200 m depth (Kieser et al., 2005). For smaller targets this bias can be higher. 
Therefore, all TS estimations based on tracking should be finally corrected for the total error 
by reducing their TS values by 1.0 – 2.0 dB.   
It is recommended to quantify the working limits of the fish density in order to avoid 
overlapping echoes (Ona, 1999; Ona & Barange, 1999). The probability to encounter multiple 
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echoes inside the acoustic beam is expected to be 5%, assuming a fish Poisson distribution 
with mean number of targets about 0.10 individuals. This relationship between integrated 
values sA and TS has been calculated for targets in 50 and 100 m depths (Fig. 4).  
It can be seen that for a given average observed TS different maximum sA limits are allowed, 
according to the accepted probability to have multiple echoes (2% and 5%).  
 

 
Fig. 4. Observed average TS [dB] vs. maximum allowable nautical area back scattering 
coefficient sA [m2 nmi-2]. Solid lines represent 5% and dashed lines 2% probability to have 
multiple echoes.    

Further analysis including both frequencies of the isolated post-tracking single fish echoes 
brings out a significant relationship between the two frequencies (Fig. 5).  
 

 
Fig. 5. Comparison of fish TS measured by two frequencies 38 and 120 kHz (detail in text).    

The TS difference between 38 and 120 kHz  expressed in dB is related to the echo level itself, 
which indicates different resonance and fish beam characteristics for different fish sizes 
(correlation coefficient r=0.67, p<5% ). Each point on the scatterplot represents data sets with 
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By increasing the echo samples per fish (n>3) the possibility of including multiple echoes is 
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smaller targets have fewer chances to be detected in successive pings and therefore are 
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In order to study the tracking-induced bias a simulated procedure was performed, using 
targets with TS obeying a normal distribution (mean= -39.0 dB and sd = 10.0 dB). 
After fish tracking the mode of the observed echoes, corrected for the beam effect (on-axis) is 
increased by 2 dB (Fig. 3), whilst the calculated TS mean: 

 10
ˆ log bsTS   (3) 

is overestimated by 1.5 dB. The standard deviation in the logarithmic form was reduced to 8 
dB, namely adjusted to the same average dispersion level observed in the in-situ data. 
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echo tracks encountered simultaneously by 38 and 120 kHz and regarding each time the 
same fish. The estimated correlation coefficients among different data sets varied between 
r=0.38 and r=0.7.  

2.3 TS estimations relative to the fish body length 
According to common practice, especially valid for the pelagic fish species, we forced the 
slope of the regression between the average TS and the body length L, in equation (2), to be 
20 (Simmonds & MacLennan, 2005). The resulted intercepts TS0 have been summarised by 
categories and are displayed in the box plots of the figure 6.  
 

 
Fig. 6. Box plots of tracked echoes during in-situ measurements of free-swimming fish by 38 
kHz (left) and 120 kHz (right) split beam transducers.    

The box plots of tracked echoes (3-5 times per fish) display values not yet corrected for the 
bias mentioned in 2.1.1. According to these results significant TS differences exist among 
species, periods of the day and insonification frequency. Another important outcome of the 
study is that daytime acoustic data display systematically higher values compare to night 
time. In most cases the amount of data groups was sufficient to prove the significance of this 
hypothesis at the 5% level. Unfortunately anchovy was not always present, because the 
collected data very often showed a higher fish density and therefore were extremely biased.  

2.4 Target strength conclusions 
As is well known, the backscattering energy from the swimming fish is a dynamic quantity, 
highly dependent on fish behaviour, particularly the swim tilt angle (Huse & Ona, 1996). 
The different behaviour is also responsible for the measured systematic differences in 
estimated mean TS values between day and night. The validity of this finding was proved 
for all three target species. This phenomenon was well known from cage experiments 
(Simmonds & MacLennan, 2005), but for the in-situ measurements it is relative new 
(Axenrot et al., 2004) and should be taken into account during the fish stock assessment 
estimation. 
Detailed TS estimations of sardine, anchovy and horse mackerel  echoes are very rare and 
biomass estimations especially in Mediterranean Sea are based on a general equation 
established for Clupeoids (Simmonds & MacLennan, 2005) or on closely related species from 
other regions (Bonanno et al., 2005). Given that biomass estimation is carried out mainly 
applying 38 kHz, the final TS0 estimations of different species are summarised in Table 2 for 
this frequency only.   
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Intercepts (b20) of target strength estimations relative to fish body length 

SPECIES b20 kHz REFERENCES 
Anchovy (Engraulis encrasicolus) 
Anchovy (Engraulis capensis) 
Anchovy (Engraulis japonicus) 
Anchovy (Engraulis encrasicolus) 

- 71.2 
- 76.1 
- 71.6 
- 74.8 

38 
38 
38 
38 

ICES (1983) 
Barange et al. (1996) 
Zhao et al. (2008) 
This study (night) 

Sardine (Sardina pilchardus) 
Sardine (Sardina pilchardus) 
Sardine (Sardina pilchardus) 
Sardine (Sardina pilchardus) 
Sardine (Sardina pilchardus) 
Sardine (Sardina pilchardus) 

- 72.6 
- 71.2 
- 70.4 
- 74.0 
- 72.5 
- 74.0 

38 
38 
38 
38 
38 
38 

Ben Abdallah et al. (2000) 
ICES (1983) 
Patti et al. (2000) 
Hannachi et al. (2005) 
This study (day) 
This study (night) 

H. mackerel (Trachurus trachurus 
capensis) 
H. mackerel (Trachurus trachurus) 
H. mackerel (Trachurus trachurus) 

 
- 66.8 
- 66.5 
- 67.0 

 
38 
38 
38 

 
Barange et al. (1996) 
This study (day) 
This study (night) 

Table 2. Comparisons of the estimated target strength values with available references for 
European anchovy, European pilchard and Atlantic horse mackerel or closely related 
species. 

The b20 intercepts for anchovy were estimated only from night time data, since day time 
data were biased from high fish density. The estimated value in this study (-74.8) is lower 
than the ICES recommendation (-71.2), however it is very likely that the day intercepts are 
higher, like those observed in sardine echoes.  The median of night-TS of sardine is similar 
to the recently measured average value by Hannachi et al. (2005), whilst the day estimation 
is in generally lower than the rest of the published values. Regarding horse mackerel, the 
results are consistent with the published data of the closely related sub-species (Trachurus 
trachurus capensis).  
As demonstrated by the historical cage experiments of Edwards & Armstrong (1983), the TS 
of a fish with swimbladder is depth dependent, following Boyle’s law. Consequently, 
comparisons between echoes from different depths should be carefully interpreted. 
Unfortunately, TS is affected by the cross-section of the fish swimbladder, which does not 
follow its volumetric change. Furthermore, it is not clear if the swimbladder compression 
alone is responsible for TS reduction or additional the fish swimming behaviour changes 
with depth. Recently, detailed studies on the compression mechanism of the swimbladder of 
herring (Ona, 2003) and anchovy (Zhao, 2008; Sawada et al., 2009) demonstrated the 
importance and complexity of the TS variability by increasing depth.   

3. Species identification 
Traditionally, in biomass estimation surveys, acoustic backscattering is allocated to different 
fish species by taking into account the species composition of trawl samples. Obviously, this 
procedure is time consuming, subjective and not testable for bias. 
The basic idea for a more objective approach derived in the early 90s, with the development 
of specific software for automatic extraction of school parameters and by further testing the 
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echo tracks encountered simultaneously by 38 and 120 kHz and regarding each time the 
same fish. The estimated correlation coefficients among different data sets varied between 
r=0.38 and r=0.7.  

2.3 TS estimations relative to the fish body length 
According to common practice, especially valid for the pelagic fish species, we forced the 
slope of the regression between the average TS and the body length L, in equation (2), to be 
20 (Simmonds & MacLennan, 2005). The resulted intercepts TS0 have been summarised by 
categories and are displayed in the box plots of the figure 6.  
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kHz (left) and 120 kHz (right) split beam transducers.    
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study is that daytime acoustic data display systematically higher values compare to night 
time. In most cases the amount of data groups was sufficient to prove the significance of this 
hypothesis at the 5% level. Unfortunately anchovy was not always present, because the 
collected data very often showed a higher fish density and therefore were extremely biased.  

2.4 Target strength conclusions 
As is well known, the backscattering energy from the swimming fish is a dynamic quantity, 
highly dependent on fish behaviour, particularly the swim tilt angle (Huse & Ona, 1996). 
The different behaviour is also responsible for the measured systematic differences in 
estimated mean TS values between day and night. The validity of this finding was proved 
for all three target species. This phenomenon was well known from cage experiments 
(Simmonds & MacLennan, 2005), but for the in-situ measurements it is relative new 
(Axenrot et al., 2004) and should be taken into account during the fish stock assessment 
estimation. 
Detailed TS estimations of sardine, anchovy and horse mackerel  echoes are very rare and 
biomass estimations especially in Mediterranean Sea are based on a general equation 
established for Clupeoids (Simmonds & MacLennan, 2005) or on closely related species from 
other regions (Bonanno et al., 2005). Given that biomass estimation is carried out mainly 
applying 38 kHz, the final TS0 estimations of different species are summarised in Table 2 for 
this frequency only.   
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Table 2. Comparisons of the estimated target strength values with available references for 
European anchovy, European pilchard and Atlantic horse mackerel or closely related 
species. 

The b20 intercepts for anchovy were estimated only from night time data, since day time 
data were biased from high fish density. The estimated value in this study (-74.8) is lower 
than the ICES recommendation (-71.2), however it is very likely that the day intercepts are 
higher, like those observed in sardine echoes.  The median of night-TS of sardine is similar 
to the recently measured average value by Hannachi et al. (2005), whilst the day estimation 
is in generally lower than the rest of the published values. Regarding horse mackerel, the 
results are consistent with the published data of the closely related sub-species (Trachurus 
trachurus capensis).  
As demonstrated by the historical cage experiments of Edwards & Armstrong (1983), the TS 
of a fish with swimbladder is depth dependent, following Boyle’s law. Consequently, 
comparisons between echoes from different depths should be carefully interpreted. 
Unfortunately, TS is affected by the cross-section of the fish swimbladder, which does not 
follow its volumetric change. Furthermore, it is not clear if the swimbladder compression 
alone is responsible for TS reduction or additional the fish swimming behaviour changes 
with depth. Recently, detailed studies on the compression mechanism of the swimbladder of 
herring (Ona, 2003) and anchovy (Zhao, 2008; Sawada et al., 2009) demonstrated the 
importance and complexity of the TS variability by increasing depth.   

3. Species identification 
Traditionally, in biomass estimation surveys, acoustic backscattering is allocated to different 
fish species by taking into account the species composition of trawl samples. Obviously, this 
procedure is time consuming, subjective and not testable for bias. 
The basic idea for a more objective approach derived in the early 90s, with the development 
of specific software for automatic extraction of school parameters and by further testing the 
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hypothesis that school features can be used for school species identification (Scalabrin et al., 
1992, 1996; Reid & Simmonds 1993; Georgakarakos & Paterakis 1993). This approach 
triggered the development of sophisticated expert systems for species identification, where 
the artificial neural networks (ANNs) provided a promising solution (Ramani & Patrick, 
1992; Dunne, 2007). The first approach of fish school species identification applying ANNs 
was implemented in early 90s (Haralabous & Georgakarakos 1993, 1996). There were feed-
forward neural networks (also called Multi-Layered Perceptrons, MLPs), using as species 
predictors morphometric, energetic and bathymetric school descriptors.  
Meanwhile, modern systems were developed, utilising faster school scrutinisation 
algorithms (Reid et al., 2000, Fernandes et al., 2002), multi-frequency (Korneliussen & Ona, 
2002, Korneliussen et al., 2009), multi-dimensional school descriptors (Paramo et al., 2007; 
Trygonis et al., 2009) and advanced artificial neural networks (Cabreira et al., 2009). In the 
following we describe an advanced species classification system based, among other tools, 
on Bayesian Neural Network techniques. 

3.1 Data collection and pre-processing 
Data were acquired in two different geographic areas, namely in Thermaikos Gulf 
(Northern Aegean Sea) and in North Sea (Shetland Island and Norway). Emphasis was 
given on cross-validating school echograms with trawl samples. Schools’ images matched 
one by one the respective trawl samples were characterised with a species identification 
attribute (species id).  
Greek data were obtained during three surveys (October 1996a and b, May 1997) carried out 
in Thermaikos Gulf, utilising a SIMRAD EK-500 echosounder with two mounted split-beam 
transducers (38 and 120 kHz). The surveys were mainly devoted to the selection of acoustic 
information related to the schools of the target species: sardine, anchovy and horse 
mackerel. 
The second data set was obtained from two different surveys in the North Sea (Shetland 
Islands, July 1996) and Norway (November 1997), operating the same instrumentation and 
software. The school species identity has been supplied by the Marine Laboratory of 
Aberdeen and the Institute of Marine Research Bergen by means of trawling. Target species 
were herring (Clupea harengus), sprat (Sprattus sprattus), blue whiting (Micromesistius 
poutassou), Norwegian pout and 0-group pout (Trisopterus esmarkii). 

3.1.1 Software development 
The developed in-house software implemented in C the following three software modules: 
an echo data pre-processing system, as an interface to the standard Bergen Integration 
System (Korneliussen, 2004), a SCHOOL algorithm for school isolation and parameterisation 
and certain ANNs implementations, mostly based on the Bayesian approach. The interface 
module allows data extraction from the echograms, using windows that cover certain school 
traces of interest. The interface outputs the echogram volume backscattering values together 
with ping and depth information to the second software module (SCHOOL), which is 
responsible for school isolation, parameterisation and quantification of school descriptors. 
Finally, these school parameters compose the input data for the Artificial Neural Networks 
during training or application processes. The SCHOOL module is a set of algorithms written 
in standard C, that are responsible for detection of school aggregations inside a given 
echogram or window in an echogram.  
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Table 3. Data output of the SCHOOL module 

The main routine of the algorithm “scrutinises” the values of the pixels and filters out all 
pixels with values lower than a basic threshold (default –60 dB). The filtered pixels are then 
tested for vertical and horizontal continuity, according to the minimum allowed vertical and 
horizontal gap between neighbourly pixels inside an isolated single school. Finally, a second 
threshold is applied filtering out low-density aggregations (such as plankton) with very low 
mean integration level. A procedure similar to the SCHOOL algorithm is used for bottom 
detection in combination to the nominal bottom depth provided by the EK-500.  

3.1.2 The applied neural network simulators 
Certain ANNs simulators have been tested in order to assess their performance. Most of the 
non-Bayesian ANN implementations were based on the commercial 32-bit neural network 
simulator “NeuroShell 2” (Ward Systems Group©). All Bayesian ANNs presented here are 
developed under the UNIX environment using the SFBM simulator (Neal, 2006). 

General design of Neural Networks 
The SCHOOL module generates a set of school descriptors (Table 3), which are used as a 
whole or as a subset in the neural network module. Three examples of descriptor patterns of 
sardine schools are displayed in Figure 7.  
The input layer is always a subset (13-20) of the descriptors extracted from the “known” fish 
schools. The amount of the available “known” schools limits the number of the concurrently 
in use descriptors. Bayesian Neural networks are less sensitive to this limitation. Non-
Bayesian ANNs have been developed using a complex hidden layer, containing 3 sublayers. 
Different activation functions were applied to the 3 sublayers in order to detect different 
features in a pattern processed. In addition to the classical sigmoid function, a Gaussian 
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function was used on the second sublayer in order to detect features in the mid-range of the 
data. In the third sublayer, a Gaussian complement was used for detecting features from the 
upper and lower extremes of the data set. In the output layer, each unit corresponds to a 
certain species, taking the value of 1 if the school belonged to this category and 0 otherwise. 
To measure the classification efficiency of the ANNs we compare the actual output of the 
network to the correct output over a number of testing trials. The most widely used method 
to obtain this test set is to reserve a separate representative subset of the available examples. 
We experimented with testing subsets ranging from 5% to 30% of the available data. 
 

 
Fig. 7. Three example-patterns from sardine schools, in Thermaikos Gulf: each pattern is the 
vector of input values (16 descriptors) extracted using the SCHOOL module. Values are 
rescaled into a common range of 0-100.  

For the evaluation of the accuracy of a trained ANN we calculated certain statistics, the most 
interesting of which is the R2: the coefficient of multiple determination. R2 was not the 
ultimate measure of whether a net produced good results, especially for classification nets 
such as those used. For example, if the ANN generated output values of 0.5, 0.6 and 0.4 in 
the three outputs, the R2 value would not be very high, but the classification would be 
correct if the second output was the answer. In addition, a confusion matrix was established 
counting the number of correct classifications. 

3.2 Results 
The target species were predicted applying ANNs and Discriminant Function Analysis 
(DFA) methods. The results of this comparative study are summarised in Tables 4 (Greek 
data) and 5 (Shetland data).  
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COUNTS  DFA predictions NN predictions 
 Species TRUE AN SA HM AN SA HM 
Train Anchovy 313 284 23 6 313 0 0 
 Sardine 159 41 109 9 0 159 0 
 H. mackerel 44 9 17 18 0 0 44 
 Total  516 334 149 33 313 159 44 
 Total correctly  411 (79.65%) 516 (100%) 
Test Anchovy 170 144 19 7 165 4 1 
 Sardine 93 22 66 5 3 89 1 
 H. mackerel 25 11 8 6 2 0 23 
 Total 288 177 93 18 170 93 25 
 Total correctly  216 (75.00%) 277 (96.18%) 

Table 4. Classification results of 804 known-species “Greek” schools using both DFA and 
NN predictions. A total of 516 schools are used for training (~ 64%) and 288 for testing (~ 
36%). Abbreviations used: AN=anchovy, SA=sardine, HM=horse mackerel. 

 
COUNTS DFA predictions NN predictions 
Species TRUE 0-P NP BW HR SP 0-P NP BW HR SP 
Train 
0-P 31 22 2 0 7 0 31 0 0 0 0 
NP 83 1 65 3 12 2 0 83 0 0 0 
BW 14 0 4 8 2 0 0 0 14 0 0 
HR 111 6 10 0 95 0 0 0 0 111 0 
SP 3 0 2 0 1 0 0 0 0 0 3 
Total 242           
Total correctly  190 (78.51%) 242 (100.00%) 
Test 
0-P 4 3 0 0 1 0 3 0 0 1 0 
NP 12 0 11 1 0 0 0 12 0 0 0 
BW 3 0 0 2 1 0 0 0 3 0 0 
HR 19 1 0 0 18 0 0 0 0 19 0 
SP 0 0 0 0 0 0 0 0 0 0 0 
Total 38           
Total correctly 34 (89.47%) 37 (97.37%) 

Table 5. Classification results of 280 known-species “Shetland Islands” schools using both 
DFA and NN predictions. A total of 242 schools are used for training and 38 for testing. 
Abbreviations used: 0-P= 0-group pout, NP= Norwegian pout, BW= blue whiting, HR= 
herring, SP=sprat. 

In the Greek data set, the neural network was very adaptive to the data during the training 
procedure, providing a higher classification rate (100%) than the DFA (79.65%). The 
classification of horse mackerel schools by DFA was the worst (40.91%). Testing the two 
models (ANN vs. DFA), the ANN achieved scores between 92% (horse mackerel) and 97.06 
% (anchovy), whilst the DFA varied between 24% (horse mackerel) and 84.71% (anchovy). 
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function was used on the second sublayer in order to detect features in the mid-range of the 
data. In the third sublayer, a Gaussian complement was used for detecting features from the 
upper and lower extremes of the data set. In the output layer, each unit corresponds to a 
certain species, taking the value of 1 if the school belonged to this category and 0 otherwise. 
To measure the classification efficiency of the ANNs we compare the actual output of the 
network to the correct output over a number of testing trials. The most widely used method 
to obtain this test set is to reserve a separate representative subset of the available examples. 
We experimented with testing subsets ranging from 5% to 30% of the available data. 
 

 
Fig. 7. Three example-patterns from sardine schools, in Thermaikos Gulf: each pattern is the 
vector of input values (16 descriptors) extracted using the SCHOOL module. Values are 
rescaled into a common range of 0-100.  

For the evaluation of the accuracy of a trained ANN we calculated certain statistics, the most 
interesting of which is the R2: the coefficient of multiple determination. R2 was not the 
ultimate measure of whether a net produced good results, especially for classification nets 
such as those used. For example, if the ANN generated output values of 0.5, 0.6 and 0.4 in 
the three outputs, the R2 value would not be very high, but the classification would be 
correct if the second output was the answer. In addition, a confusion matrix was established 
counting the number of correct classifications. 

3.2 Results 
The target species were predicted applying ANNs and Discriminant Function Analysis 
(DFA) methods. The results of this comparative study are summarised in Tables 4 (Greek 
data) and 5 (Shetland data).  
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COUNTS  DFA predictions NN predictions 
 Species TRUE AN SA HM AN SA HM 
Train Anchovy 313 284 23 6 313 0 0 
 Sardine 159 41 109 9 0 159 0 
 H. mackerel 44 9 17 18 0 0 44 
 Total  516 334 149 33 313 159 44 
 Total correctly  411 (79.65%) 516 (100%) 
Test Anchovy 170 144 19 7 165 4 1 
 Sardine 93 22 66 5 3 89 1 
 H. mackerel 25 11 8 6 2 0 23 
 Total 288 177 93 18 170 93 25 
 Total correctly  216 (75.00%) 277 (96.18%) 

Table 4. Classification results of 804 known-species “Greek” schools using both DFA and 
NN predictions. A total of 516 schools are used for training (~ 64%) and 288 for testing (~ 
36%). Abbreviations used: AN=anchovy, SA=sardine, HM=horse mackerel. 

 
COUNTS DFA predictions NN predictions 
Species TRUE 0-P NP BW HR SP 0-P NP BW HR SP 
Train 
0-P 31 22 2 0 7 0 31 0 0 0 0 
NP 83 1 65 3 12 2 0 83 0 0 0 
BW 14 0 4 8 2 0 0 0 14 0 0 
HR 111 6 10 0 95 0 0 0 0 111 0 
SP 3 0 2 0 1 0 0 0 0 0 3 
Total 242           
Total correctly  190 (78.51%) 242 (100.00%) 
Test 
0-P 4 3 0 0 1 0 3 0 0 1 0 
NP 12 0 11 1 0 0 0 12 0 0 0 
BW 3 0 0 2 1 0 0 0 3 0 0 
HR 19 1 0 0 18 0 0 0 0 19 0 
SP 0 0 0 0 0 0 0 0 0 0 0 
Total 38           
Total correctly 34 (89.47%) 37 (97.37%) 

Table 5. Classification results of 280 known-species “Shetland Islands” schools using both 
DFA and NN predictions. A total of 242 schools are used for training and 38 for testing. 
Abbreviations used: 0-P= 0-group pout, NP= Norwegian pout, BW= blue whiting, HR= 
herring, SP=sprat. 

In the Greek data set, the neural network was very adaptive to the data during the training 
procedure, providing a higher classification rate (100%) than the DFA (79.65%). The 
classification of horse mackerel schools by DFA was the worst (40.91%). Testing the two 
models (ANN vs. DFA), the ANN achieved scores between 92% (horse mackerel) and 97.06 
% (anchovy), whilst the DFA varied between 24% (horse mackerel) and 84.71% (anchovy). 
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Both models provided lower prediction scores for the classification of horse mackerel. Note 
however that the total amount of schools of this species is relative low (69 schools). 
In the Shetland data set, some species had very few examples to satisfy both training and 
testing requirements, as for example no data for testing sprat schools were available. During 
training, the neural network achieved very high classification (100%) in all species while the 
DFA varied from 85.59% (herring) to 57.14% (blue whiting). The score provided for sprat 
was not taken into account due to its limited presence in the data set. Testing the two 
models, the ANN achieved 100% scores for three species but only 75% for the 0-group pout, 
whilst the DFA varied between 94.74% (herring) and 66.67% (blue whiting). Both models 
provided lower scores (75%) for the 0-group pout, which could be explained by the limited 
amount of available data.  

3.2.1 Prediction probability 
The application of Bayesian ANNs also provided each prediction with the probability of the 
inference. This allowed a decision with different confidence limits on the probability 
threshold of accepting or not the network prediction. An example of box plots displaying 
the distribution of the school-species prediction probabilities is shown in Fig. 8. The median 
of the provided predictions varied from 0.975 (horse mackerel) to 1 (anchovy). In all species, 
the distribution was skewed to the high values (close to 1).  
The evaluation of the discrimination power of each descriptor was achieved by means of 
two coefficients, namely the “contribution factors” and the distribution of the “sigma” 
values (Fig. 9). The first was specific for each species and represented the weights used by 
the ANN after a successful application. The weights were based on the neural 
implementation run during the training procedure as generated from a standard ANN. 
 

 
Fig. 8. Prediction probabilities given by the Bayesian NN for the “Greek” schools 

The second coefficient was based on the automatic relevance determination (ARD) method 
and is complementary to the first one. The hybrid Markov Chain Monte Carlo (MCMC) 
simulation algorithm produced a sample of several network implementations, which 
showed the distribution of the variance of the synaptic weights (MacKay, 1992a, 1992b; 
Neal, 2006). It should be mentioned that, for ease of different trials comparison, the school 
descriptors were logarithmically transformed and standardised and that the relative 
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importance of input descriptors increased by higher sigma values. The results showed that 
the two data sets contained some common and highly discriminating descriptors: mean 
bottom depth, mean school depth, mean and variance of school energy. In particular, the 
Crowding and Index of dispersion in the case of the Greek data, as well as other depth 
descriptors for the Shetland data could be of importance. For both data sets, the bathymetric 
descriptors seemed to be more important than the energetic ones while the latter were more 
important than the morphometric descriptors.  

3.2.2 The generalisation problem 
Bayesian networks had an increased performance in recognising schools of the same species, 
but encountered in different survey areas. This is important, taking into account that schools 
have been insonified in different depths and their morphological and energetic descriptors 
were distorted, due to the increased beam effect in deeper waters. This generalisation 
performance of the Bayesian networks has been tested during the joint project ACOUSTICS 
(Ona et al., 1998), applying school data collected in two different environments, namely 
training the network with schools from Shetland Islands (UK) and predicting schools in 
Norway.  
 

 
Fig. 9. Contribution factors of school descriptors extracted by the standard ANNs and sigma 
values extracted by the Bayesian ANNs, for the Greek (GS) and the Shetland Islands (SS) 
schools. The higher the contribution factor and the sigma value the higher the relevance of 
the descriptor. The error bars on sigma values represent the standard deviation of a 
distribution from 100 hybrid Markov-chain Monte-Carlo samples (* descriptor Ln 
transformed, ** Ln+1 transformed). 
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Both models provided lower prediction scores for the classification of horse mackerel. Note 
however that the total amount of schools of this species is relative low (69 schools). 
In the Shetland data set, some species had very few examples to satisfy both training and 
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training, the neural network achieved very high classification (100%) in all species while the 
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of the provided predictions varied from 0.975 (horse mackerel) to 1 (anchovy). In all species, 
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The evaluation of the discrimination power of each descriptor was achieved by means of 
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the ANN after a successful application. The weights were based on the neural 
implementation run during the training procedure as generated from a standard ANN. 
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importance of input descriptors increased by higher sigma values. The results showed that 
the two data sets contained some common and highly discriminating descriptors: mean 
bottom depth, mean school depth, mean and variance of school energy. In particular, the 
Crowding and Index of dispersion in the case of the Greek data, as well as other depth 
descriptors for the Shetland data could be of importance. For both data sets, the bathymetric 
descriptors seemed to be more important than the energetic ones while the latter were more 
important than the morphometric descriptors.  

3.2.2 The generalisation problem 
Bayesian networks had an increased performance in recognising schools of the same species, 
but encountered in different survey areas. This is important, taking into account that schools 
have been insonified in different depths and their morphological and energetic descriptors 
were distorted, due to the increased beam effect in deeper waters. This generalisation 
performance of the Bayesian networks has been tested during the joint project ACOUSTICS 
(Ona et al., 1998), applying school data collected in two different environments, namely 
training the network with schools from Shetland Islands (UK) and predicting schools in 
Norway.  
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schools. The higher the contribution factor and the sigma value the higher the relevance of 
the descriptor. The error bars on sigma values represent the standard deviation of a 
distribution from 100 hybrid Markov-chain Monte-Carlo samples (* descriptor Ln 
transformed, ** Ln+1 transformed). 
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As example, the test output of a Bayesian Neural Network is summarised in Table 6a. The 
used network was trained and tested with data collected from the same area at Shetland in 
1996. The overall correct classifications on the test set were above 97%. The performance was 
perfect (100%) for the classification of herring and Norwegian pout, i.e. the two species that 
had enough representatives in the training set (45.8% and 34.3% of cases respectively).  
 
Shetland Predicted species 
True species 0 Pout N. Pout B. whiting Herring Total correct predicted 
0 Pout 4 10.5% 3 0 0 1 3 75% 
N. Pout 12 31.6% 0 12 0 0 12 100% 
B. whiting 3 7.9% 0 0 3 0 3 100% 
Herring 19 50.0% 0 0 0 19 19 100% 
TOTAL 38 100.0% 3 12 3 20 37 97.4% 

Table 6a. Summary results of the species prediction of 38 test schools (14%) out of 280 total 
schools from the Shetland 1996 survey, using a Bayesian Neural Network 

In a second experimental step, this already trained and validated network with data 
collected from Shetland Islands was applied on the “different” school data set collected in 
Norway. Therefore, this test functioned as measure of the “generalisation power” of the 
Bayesian Network, namely to predict the unknown Norwegian herring schools. The 
resulted predictions of this network on the Norway data are given in Table 6b. 
 
Norway Predicted species 
True species N. Pout B. whiting Herring Total correct predicted 
B. 
whiting 36 12.29% 1 13 22 13 36.1% 

Herring 257 87.71% 20 10 227 227 88.3% 
TOTAL 293 100.0% 21 23 249 240 81.9% 

Table 6b. Summary results of the species predictions of 293 Norway schools using the 
Bayesian Neural Network that had been trained with 5 species of Shetland schools. 

When a non-Bayesian ANN was used, the percent of correct predicted herring schools was 
about 60%. The high prediction rate (88.3%) of the Bayesian Neural Network concerning 
herring schools of another survey area (Norway) emphasises its good generalisation 
properties. One important difference between the collected school data from the two areas 
was the average school depth. Taking Norwegian schools only from depths similar to those 
from Shetlands, the prediction score of herring has been improved from 88.3% to 97.8%, 
indicating that deeper encountered schools can be hard recognised by the neural networks. 
These results suggested that if we want to mix data from schools insonified in different 
depth ranges, any attempt to reduce the beam effect on school parameters is a promising 
way to overcome this problem (Diner, 2001; Georgakarakos, 2005). 

3.2.3 Species identification conclusions 
The presented methodology demonstrated how school species identification is feasible by 
extracting specific descriptors from echograms, generated from single-beam and narrow-
band transducers. The identification efficiency was related to the ability of non-linear 
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modelling; a fact that explains the higher predictive ability of the ANNs compared to the 
classic discrimination procedures (DFA).  
The proper application of both methods required a dataset containing the details of schools 
of well-defined species composition, obtained by means of aimed trawling in the target area. 
The problem of selecting the appropriate size of the training and the testing data sets was 
more crucial for the classical (DFA) and the standard ANN analysis. The Bayesian neural 
networks appeared to be less sensitive, which theoretical considerations lead us to expect. 
However, predictions based on a small number of cases (for instance horse mackerel), 
independent of the applied methodology, carry the risk of emphasising non-homogeneous 
cases relative to the rest of the statistical population. This is expressed by the larger 
deviation between the medians of the probability distributions. Bayesian networks due to 
their probabilistic approach tend to “generalise” the sampled features of schools working on 
wider distributions than that empirically observed. This capability can also be used to 
confront the problem of applying a neural network to a different spatio-temporal domain.  

4. Fish avoidance reaction to survey vessels 
Acoustic fish stock assessment methods are based on the assumption that survey vessels do 
not affect the behaviour and distribution of fish, and that de-biasing techniques can be 
alternatively applied to correct the respective errors. This is emphasised and reviewed in the 
earlier literature by Olsen (1990), followed by a series of studies (Aglen, 1994; Misund, 1997; 
Mitson & Knudsen, 2003). After the investigations of Olsen (1971) however, several 
researchers have reported the avoidance reaction of fish due to vessel or fishing-gear 
induced noise (Ona & Godø, 1990; Gerlotto & Fréon, 1992), and noted its complex 
dependency on species, feeding behaviour, migration, visual and auditory stimuli, 
hydrographic conditions, or water surface and bottom boundary interactions (Fréon et al., 
1993; Levenez et al., 1990; Misund, 1990). 
This behavioural pattern is known in fisheries acoustics as “fish avoidance effect”, and 
involves an initial vertical fish movement towards the sea bottom, followed by a lateral 
displacement perpendicular to the approaching vessel’s course. Thorough experiments with 
split-beam sounder buoys (Handegard et al., 2003) and direct comparisons between 
conventional and low-noise vessels (Ona et al., 2007) revealed several aspects of this 
behaviour. The process alters fish target strength via compression of the swimbladder 
(Boyle’s law) and changes in tilt angle, reduces density in the acoustic beam compared to its 
undisturbed value, and further biases the acoustic observation through disposition, shape, 
and density distortion of fish schools near the surveying vessel. It is generally accepted that 
vertical echosounders are inherently prone to avoidance reaction bias due to their 
insonification geometry, and that vessel-induced noise is an important underlying factor, 
particularly at lower frequency noise bands (Vabø et al., 2002; Skaret et al., 2005). Following 
the ICES recommendations (Mitson, 1995), modern research vessels exhibit substantial 
reductions in noise levels compared to previous constructions (Mitson & Knudsen, 2003). 
Nonetheless, the question whether fish do or “do not avoid survey vessels” (Fernandes et 
al., 2000) can not yet be decisively addressed, nor its magnitude be quantitatively estimated 
under all possible sampling conditions. 
In this context, multibeam sonars are powerful tools for studying fish school reactions to 
research vessels, fishing gears or predators, due to their large sampling volume and ability 
for long-range concurrent insonification of multiple schools. Diner & Masse (1987) used 
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As example, the test output of a Bayesian Neural Network is summarised in Table 6a. The 
used network was trained and tested with data collected from the same area at Shetland in 
1996. The overall correct classifications on the test set were above 97%. The performance was 
perfect (100%) for the classification of herring and Norwegian pout, i.e. the two species that 
had enough representatives in the training set (45.8% and 34.3% of cases respectively).  
 
Shetland Predicted species 
True species 0 Pout N. Pout B. whiting Herring Total correct predicted 
0 Pout 4 10.5% 3 0 0 1 3 75% 
N. Pout 12 31.6% 0 12 0 0 12 100% 
B. whiting 3 7.9% 0 0 3 0 3 100% 
Herring 19 50.0% 0 0 0 19 19 100% 
TOTAL 38 100.0% 3 12 3 20 37 97.4% 

Table 6a. Summary results of the species prediction of 38 test schools (14%) out of 280 total 
schools from the Shetland 1996 survey, using a Bayesian Neural Network 

In a second experimental step, this already trained and validated network with data 
collected from Shetland Islands was applied on the “different” school data set collected in 
Norway. Therefore, this test functioned as measure of the “generalisation power” of the 
Bayesian Network, namely to predict the unknown Norwegian herring schools. The 
resulted predictions of this network on the Norway data are given in Table 6b. 
 
Norway Predicted species 
True species N. Pout B. whiting Herring Total correct predicted 
B. 
whiting 36 12.29% 1 13 22 13 36.1% 

Herring 257 87.71% 20 10 227 227 88.3% 
TOTAL 293 100.0% 21 23 249 240 81.9% 

Table 6b. Summary results of the species predictions of 293 Norway schools using the 
Bayesian Neural Network that had been trained with 5 species of Shetland schools. 

When a non-Bayesian ANN was used, the percent of correct predicted herring schools was 
about 60%. The high prediction rate (88.3%) of the Bayesian Neural Network concerning 
herring schools of another survey area (Norway) emphasises its good generalisation 
properties. One important difference between the collected school data from the two areas 
was the average school depth. Taking Norwegian schools only from depths similar to those 
from Shetlands, the prediction score of herring has been improved from 88.3% to 97.8%, 
indicating that deeper encountered schools can be hard recognised by the neural networks. 
These results suggested that if we want to mix data from schools insonified in different 
depth ranges, any attempt to reduce the beam effect on school parameters is a promising 
way to overcome this problem (Diner, 2001; Georgakarakos, 2005). 

3.2.3 Species identification conclusions 
The presented methodology demonstrated how school species identification is feasible by 
extracting specific descriptors from echograms, generated from single-beam and narrow-
band transducers. The identification efficiency was related to the ability of non-linear 
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modelling; a fact that explains the higher predictive ability of the ANNs compared to the 
classic discrimination procedures (DFA).  
The proper application of both methods required a dataset containing the details of schools 
of well-defined species composition, obtained by means of aimed trawling in the target area. 
The problem of selecting the appropriate size of the training and the testing data sets was 
more crucial for the classical (DFA) and the standard ANN analysis. The Bayesian neural 
networks appeared to be less sensitive, which theoretical considerations lead us to expect. 
However, predictions based on a small number of cases (for instance horse mackerel), 
independent of the applied methodology, carry the risk of emphasising non-homogeneous 
cases relative to the rest of the statistical population. This is expressed by the larger 
deviation between the medians of the probability distributions. Bayesian networks due to 
their probabilistic approach tend to “generalise” the sampled features of schools working on 
wider distributions than that empirically observed. This capability can also be used to 
confront the problem of applying a neural network to a different spatio-temporal domain.  

4. Fish avoidance reaction to survey vessels 
Acoustic fish stock assessment methods are based on the assumption that survey vessels do 
not affect the behaviour and distribution of fish, and that de-biasing techniques can be 
alternatively applied to correct the respective errors. This is emphasised and reviewed in the 
earlier literature by Olsen (1990), followed by a series of studies (Aglen, 1994; Misund, 1997; 
Mitson & Knudsen, 2003). After the investigations of Olsen (1971) however, several 
researchers have reported the avoidance reaction of fish due to vessel or fishing-gear 
induced noise (Ona & Godø, 1990; Gerlotto & Fréon, 1992), and noted its complex 
dependency on species, feeding behaviour, migration, visual and auditory stimuli, 
hydrographic conditions, or water surface and bottom boundary interactions (Fréon et al., 
1993; Levenez et al., 1990; Misund, 1990). 
This behavioural pattern is known in fisheries acoustics as “fish avoidance effect”, and 
involves an initial vertical fish movement towards the sea bottom, followed by a lateral 
displacement perpendicular to the approaching vessel’s course. Thorough experiments with 
split-beam sounder buoys (Handegard et al., 2003) and direct comparisons between 
conventional and low-noise vessels (Ona et al., 2007) revealed several aspects of this 
behaviour. The process alters fish target strength via compression of the swimbladder 
(Boyle’s law) and changes in tilt angle, reduces density in the acoustic beam compared to its 
undisturbed value, and further biases the acoustic observation through disposition, shape, 
and density distortion of fish schools near the surveying vessel. It is generally accepted that 
vertical echosounders are inherently prone to avoidance reaction bias due to their 
insonification geometry, and that vessel-induced noise is an important underlying factor, 
particularly at lower frequency noise bands (Vabø et al., 2002; Skaret et al., 2005). Following 
the ICES recommendations (Mitson, 1995), modern research vessels exhibit substantial 
reductions in noise levels compared to previous constructions (Mitson & Knudsen, 2003). 
Nonetheless, the question whether fish do or “do not avoid survey vessels” (Fernandes et 
al., 2000) can not yet be decisively addressed, nor its magnitude be quantitatively estimated 
under all possible sampling conditions. 
In this context, multibeam sonars are powerful tools for studying fish school reactions to 
research vessels, fishing gears or predators, due to their large sampling volume and ability 
for long-range concurrent insonification of multiple schools. Diner & Masse (1987) used 
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sonar systems to record complex reactions of clupeoid schools relative to a research vessel, 
and Hafsteinsson & Misund (1995) reported species-specific differences: almost 20% of 
encountered North Sea herring schools exhibited some degree of reaction to the 
approaching vessel, but this behaviour was not observed in Barents Sea migrating capelin. 
Further scientific modification of commercial sonars provided quantitative measurements of 
fish school internal structure (Gerlotto et al., 2000), typology (Paramo et al., 2007) and spatial 
behaviour (Soria et al., 1996).  

4.1 Multibeam experiments 
The acoustic data were recorded during the AVITIS-98 survey in Greece (Thermaikos Gulf, 
April-May 1998) by utilising a 450 kHz RESON SEABAT 6012 multibeam sonar (60 beams 
over a 900 swathe). The transducer was mounted on a pole on the starboard side of the 
research vessel with the first beam of the sonar vertical and the 60th beam horizontal by 00 
roll ship movements.  
 

             
Fig. 10. Changes of mean school area (solid line, left axis) and school distance to the 
transducer (dotted line, right axis) as this school pass starboard side the vessel. Distance 
between frames about 30 cm. The straight line represents the slope of the increasing distance 
(see text for detail). 

In this position the encountered schools were scanned in successive vertical 2D cross-
sections and the acquired volume backscattering coefficients were recorded and analysed 
off-line. In-house software was used to estimate morphological and energetic 2D and 3D 
school descriptors. Most of the observed schools showed the earlier first edge (Fig.10 first 
frame) closer to the ship than their later and final edge (frame 80). This increasing distance 
indicated a mean school movement of 0.2 ms-1 perpendicular to the vessel. A similar 
increasing in depth is also observed. Using joint echosounder and sonar observations, Soria 
et al. (2003) formulated a behavioural model for sardine and anchovy Mediterranean 
schools, and argued that school length variations in echosounder data are initially related to 
the avoidance reaction in front of the research vessel, while environmental factors like the 
thermocline or halocline depth may also have a subsequent effect.  
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4.2 Fish avoidance conclusions 
Recent technological developments such as high resolution sonar hardware with calibrated 
output (Trenkel et al., 2008) or operational software systems that can quantitatively process 
large amounts of multibeam raw data (Balabanian et al., 2007; Trygonis et al. 2009) promise 
further insights into the fish avoidance effect, and the provision of in situ measurements of 
pelagic fish aggregative dynamics. Such a case is illustrated in Fig. 11, where the pelagic 
aggregation associated to a drifting Fish Aggregating Device (dFAD) was observed in situ 
with a vessel-mounted long range multibeam SP90 sonar; the research vessel drifted 
alongside the dFAD at a relatively constant distance of 400 to 500 m. Acoustic data were 
processed using the Multibeam Sonar Tracer system (Trygonis et al., 2009), which can detect, 
measure, and track pelagic fish schools and the dFAD echotraces, subsequently transform 
fish school echotrace coordinates to the Cartesian system centred on the dFAD position per 
ping, and reveal the spatiotemporal distribution of the aggregation in its natural, 
undisturbed state. 
 

 
Fig. 11. Distribution of large pelagic echotraces around a dFAD in the Indian ocean, pooling 
all tracked acoustic observations within a sampling period of approx. two hours. Colour in 
Fig.11a denotes the number of tracked echotraces per 15m×15m bin (Νechotraces/15m2), and 
Fig. 11b is coloured by the respective average area (aveA/15m2); the drifting FAD resides at 
the centre of the Cartesian system. 
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school descriptors. Most of the observed schools showed the earlier first edge (Fig.10 first 
frame) closer to the ship than their later and final edge (frame 80). This increasing distance 
indicated a mean school movement of 0.2 ms-1 perpendicular to the vessel. A similar 
increasing in depth is also observed. Using joint echosounder and sonar observations, Soria 
et al. (2003) formulated a behavioural model for sardine and anchovy Mediterranean 
schools, and argued that school length variations in echosounder data are initially related to 
the avoidance reaction in front of the research vessel, while environmental factors like the 
thermocline or halocline depth may also have a subsequent effect.  
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4.2 Fish avoidance conclusions 
Recent technological developments such as high resolution sonar hardware with calibrated 
output (Trenkel et al., 2008) or operational software systems that can quantitatively process 
large amounts of multibeam raw data (Balabanian et al., 2007; Trygonis et al. 2009) promise 
further insights into the fish avoidance effect, and the provision of in situ measurements of 
pelagic fish aggregative dynamics. Such a case is illustrated in Fig. 11, where the pelagic 
aggregation associated to a drifting Fish Aggregating Device (dFAD) was observed in situ 
with a vessel-mounted long range multibeam SP90 sonar; the research vessel drifted 
alongside the dFAD at a relatively constant distance of 400 to 500 m. Acoustic data were 
processed using the Multibeam Sonar Tracer system (Trygonis et al., 2009), which can detect, 
measure, and track pelagic fish schools and the dFAD echotraces, subsequently transform 
fish school echotrace coordinates to the Cartesian system centred on the dFAD position per 
ping, and reveal the spatiotemporal distribution of the aggregation in its natural, 
undisturbed state. 
 

 
Fig. 11. Distribution of large pelagic echotraces around a dFAD in the Indian ocean, pooling 
all tracked acoustic observations within a sampling period of approx. two hours. Colour in 
Fig.11a denotes the number of tracked echotraces per 15m×15m bin (Νechotraces/15m2), and 
Fig. 11b is coloured by the respective average area (aveA/15m2); the drifting FAD resides at 
the centre of the Cartesian system. 
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1. Introduction 
The majority of the ocean world’s features are being discovered, identified, characterized 
and imaged by their interactions with sound (Medwin and Blue, 2005). Often a specifically 
designed sound source is used to learn about the sea and its boundaries (Medwin and Clay, 
1998), as in the case of the use of acoustical geophysical devices that provide information 
about the seafloor and the strata below, transforming the things that we cannot see into 
numerical data and pictures which give us a model that is able to visually represent the 
seabed and to outline its physical proprieties and processes (Morang et al., 1997). Such a 
model, based on the behaviour of the sound pulses and their interaction with water, 
sediment, rocks and the whole marine environment in which they are emitted, reveals 
diverse seascapes from shallow water to deep sea and allows us to determine the nature and 
characteristics of the seabed and additionally, to promote a wide range of practical 
applications. The research in the marine environment (from oceanography to marine 
geology, benthic ecology, marine archaeology etc.) now depend heavily on such tools, that 
provide, as the first step in obtaining the information, the geological framework that can 
further promote focussed scientific investigations and also better drive seabed utilization for 
social and economical purposes.  
The indirect techniques of investigation used for exploration and study of the submerged 
environment are different and change according to particular research purposes (Jones, 
1999). Generally, acoustical geophysical devices are sound sources that work by 
transmitting and receiving the sound waves that are reflected, diffracted or scattered off the 
bottom. They differentiate themselves from each other by the different frequencies 
employed and thereby the different information that are able to provide about the seabed’s 
proprieties (table 1, Morang et al., 1997). Echo-sounders, side-scan sonar and sub-bottom 
profilers are the three principal acoustic devices, used to map the seabed in sea exploration 
programmes, collecting geophysical data that in turn produce morphological and 
sedimentary models which became instrumental in determining and understanding the 
geomorphology and the present-day (Holocene) sedimentary processes of the investigated 
areas. Echo-sounders with a single-beam (Single-Beam Echo-Sounder – SBES) are used for 
hydrographic (bathymetric) surveys. The Multi-Beam Echo-Sounders (MBES) represent an 
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improvement upon the traditional SBES and allow the reconstruction of high resolution 3D 
views of submarine structures and of topography. The side-scan sonar provides an image 
(sonograph) from which an understanding of the nature of materials on the seafloor can be 
drawn (Fish and Carr, 1990; Blondel and Murton, 1997; Blondel, 2009). The sub-bottom 
profilers are used for examining the high resolution sismo-stratigraphy of the seabed for 
better interpreting sedimentary processes acting upon the seafloor (Damuth, 1980; Flood 
1980). 
Imaging of the seabed started in the 1940s, when the first side-scan sonar (SSS) sonograph 
(hard copy output of sonar data) was recorded (Fish and Carr, 1990). The first sonographs 
had low resolution and were only able to detect and to image large physical targets on the 
seafloor, such as big shipwrecks. Then, the rapid developments in acoustic electronics of the 
1970s and 1980s led to the production of high-resolution images of the seabed. The SSS 
system is considered the most relevant acoustic device able to produce images of the 
seafloor: pursuant to its emission of a pulse of acoustic energy, it amplifies and records the 
intensity of backscattering from the seafloor, generating the sonograph, that may be 
considered analogous to a continuous aerial photograph (see Fish and Carr, 1990; Blondel 
and Murton, 1997 and Blondel, 2009 for details in generating a sonograph).  
We can distinguish between high frequency SSS systems, that work roughly between 100 
and 1000 kHz (Table 1), and low frequency systems that operate with lower frequencies, 
down to less than 10 kHz (see Table 1 from Blondel 2009 for the technical specifications of 
the most common low frequency SSSs).  
High frequency SSSs generally work between 25 and 600m of operated range and 
sonograph resolution is range dependent. The choice of the operated range depends on the 
purposes of the survey and on the environment conditions. A number of sonographs, 
recorded by high frequency SSS systems during different national and international research 
programmes, have been recovered and examined in order to produce a representative 
collection of sonographs collected within the Mediterranean setting. The dataset presented 
in this chapter was ground-truthed with sediment samples and/or video data acquired by 
means of Remotely Operated Vehicles (ROVs). This chapter does not pretend to be an 
exhaustive list of everything from the Mediterranean seascape, although the sonographs 
here presented will attempt to outline the most significant features that characterise the 
Mediterranean continental shelves. A brief description of the side-scan sonar performance 
and its technical specifications is given in the following paragraph, to help in the 
understanding of the organization of the data presented, although it is recommended to 
refer to authoritative books (such as Fish and Carr, 1990; Blondel and Murton, 1997 and 
Blondel, 2009) for more detailed and precise explanations on the technical aspects related to 
the acquisition and processing of sonar imagery.  

2. The side-scan sonar as a tool to image the seafloor 
SSS has been defined as an acoustic imaging device used to provide wide-area, high-
resolution pictures of the seabed (Kenny et al., 2003). This technique was developed by 
Professor Harold Edgerton and others in the 1960s and is based on the Anti-Submarine 
Detection Investigation Committee (ASDIC) system built during World War II to detect 
submarines (Fish and Carr, 1990; Jones, 1999). Its first applications mainly pertained to the 
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Table 1. Examples of some of the most common models of high frequency SSS systems and 
their different technical specifications (data are from a survey of products carried out by 
Hydro International Journal and available at http://www.hydro-
international.com/productsurvey). 

search for objects on the seabed, subsequent works have led to far-reaching advances in the 
use of sonar in marine geophysics and geology (see Belderson et al., 1972; McQuillin and 
Ardus 1977; Blondel and Murton, 1997; Jones 1999 and Blondel, 2009 to get an historical 
perspective on the evolution of side-scan sonar systems applied to the exploration of the 
seafloor). 
Due to its capacity to provide seabed images, SSS has become an instrumental tool in 
seafloor mapping, with a number of applications, such as:  
- Investigation of seafloor morphology and sediment characteristics (i.e. occurrence of 

reliefs, depressions, sedimentary structures etc.) 
- Map the distribution of marine sediments and even peculiar biocenosis like seagrass 

meadows, coral banks etc.  
- Detect specific targets on the seafloor such as shipwrecks, mines, sunken objects, etc. 
- Identify the proper placement of infrastructures (oil drilling, platforms, cables etc.) 
- Monitoring the seafloor for environmental applications, such as coastal and deep 

environment management. 
The system typically consists of an underwater transducer connected via a cable to a 
shipboard recording device. The emitting lobe of sonar energy (narrow in azimuth from the 
transducer) has a beam geometry that insonifies a wide swath of the seabed, particularly 
when operated at low frequencies (<100 kHz). The returning echoes from the seafloor are 
received by the transducers over a short period of time (from a few milliseconds to 1 s), 
amplified on a time-varied gain curve and then transmitted to the recording unit. Most 
technological advances relate to the control of the phase and amplitude of the emitting sonar 
signal, and in the precise control of the time-varied gain applied to the return signals. In the 
case of a non-digital transducer, the analogue signal is converted into a digital format, the 
proper position for each signal in the final record (pixel by pixel) is calculated and then 
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these echoes are printed on electro-sensitive or thermal paper, one scan or line at a time. 
Modern high (dual) frequency digital SSS devices offer high-resolution images of the seabed 
on which objects in the order of few centimetres may be detected at a variable range, from a 
few tens of metres up to 600 m either side of the tow fish (in this latter case the total swath 
width is 1200 m and horizontal resolution can reach less then 100cm).  
The sonographs present as grey level (or optionally as colour scale) the local backscattering 
coefficients. The different backscattering intensities received by the sonar depend on a 
number of physical (the frequency of the system  - which significantly varies from 100 up to 
1000 kHz - and other technical configurations), geometric (angle at which the acoustic wave 
reaches the seafloor) and geological parameters (porosity and roughness of the seafloor that 
define the acoustic proprieties of the surface sediments in accordance to their physical and 
chemical nature). A copious literature (see, among others, Jackson and Briggs, 1992; Boyle 
and Chatiros, 1995; Blondel et al., 1998; Goff et al., 2000; Holland et al., 2000) has been 
developed to define the dependence of the acoustic backscattering on the different factors 
mentioned before, providing backscattering models. Nevertheless, no consensus exists on 
which model is the better one for side-scan sonar backscattering and research is still very 
active (Blondel and Murton, 1997; Blondel, 2009). Besides, different seabed types can be seen 
on the sonographs as different textures of the various parts of the image. In an effort to 
make side-scan sonar interpretation a function of quantitative analysis, a lot of authors 
(among others see Blondel et al., 1998; Huvenne et al., 2002;  Cochrane and Lafferty, 2002) 
have reported the use of some image texture processing algorithms (i.e. co-occurrence 
matrix) to discriminate the regions of different seabed types. 
Since different seabed types can be seen on the sonographs as different textures on the 
various parts of the image; the first step of sonograph interpretation consists of the 
discrimination of the different textures that compose the sonographs that in turn produce 
the identification of different acoustic facies. This process can be carried out through 
supervised or unsupervised automatic classification (of image textures) operated by proper 
software or by human discrimination of different textures, which is often the case, although 
qualitative interpretations of acoustic imagery are increasingly supported by quantitative 
analyses of backscatter and by the study of the role that the seafloor plays in its variations 
(Loiacono et al., 2009). The association of ground-truth information (sediment samples 
and/or video recording and still images) to the acoustic facies that have been picked out with 
both the analysis, provide then aid classification of the seabed.  

2.1 The side-scan sonar performance 
Precision and accuracy of sonographs depend on a number of factors and they are 
determined according to SSS performance. Defining the SSS performance is thus necessary 
to understand what SSS can image from the seafloor environments and how. For instance, 
the resolution is an important feature in sonographs, because it provides the measure of the 
detail that is possible to detect on the sonograph. The resolution of SSS can be meant in a 
different way:  
- The system resolution: governed by the shape of the acoustic beam and the length of the 

transmitted pulse (Jones, 1999). So it depends on the three-dimensional distribution of 
the acoustic energy of the system that affects the size of the footprint. If the side-scan 
sonar has low frequency sources (10-30 kHz), the sound pulse will be transmitted and 
received at long range (covering a large area in a short time), but this configuration 
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coefficients. The different backscattering intensities received by the sonar depend on a 
number of physical (the frequency of the system  - which significantly varies from 100 up to 
1000 kHz - and other technical configurations), geometric (angle at which the acoustic wave 
reaches the seafloor) and geological parameters (porosity and roughness of the seafloor that 
define the acoustic proprieties of the surface sediments in accordance to their physical and 
chemical nature). A copious literature (see, among others, Jackson and Briggs, 1992; Boyle 
and Chatiros, 1995; Blondel et al., 1998; Goff et al., 2000; Holland et al., 2000) has been 
developed to define the dependence of the acoustic backscattering on the different factors 
mentioned before, providing backscattering models. Nevertheless, no consensus exists on 
which model is the better one for side-scan sonar backscattering and research is still very 
active (Blondel and Murton, 1997; Blondel, 2009). Besides, different seabed types can be seen 
on the sonographs as different textures of the various parts of the image. In an effort to 
make side-scan sonar interpretation a function of quantitative analysis, a lot of authors 
(among others see Blondel et al., 1998; Huvenne et al., 2002;  Cochrane and Lafferty, 2002) 
have reported the use of some image texture processing algorithms (i.e. co-occurrence 
matrix) to discriminate the regions of different seabed types. 
Since different seabed types can be seen on the sonographs as different textures on the 
various parts of the image; the first step of sonograph interpretation consists of the 
discrimination of the different textures that compose the sonographs that in turn produce 
the identification of different acoustic facies. This process can be carried out through 
supervised or unsupervised automatic classification (of image textures) operated by proper 
software or by human discrimination of different textures, which is often the case, although 
qualitative interpretations of acoustic imagery are increasingly supported by quantitative 
analyses of backscatter and by the study of the role that the seafloor plays in its variations 
(Loiacono et al., 2009). The association of ground-truth information (sediment samples 
and/or video recording and still images) to the acoustic facies that have been picked out with 
both the analysis, provide then aid classification of the seabed.  

2.1 The side-scan sonar performance 
Precision and accuracy of sonographs depend on a number of factors and they are 
determined according to SSS performance. Defining the SSS performance is thus necessary 
to understand what SSS can image from the seafloor environments and how. For instance, 
the resolution is an important feature in sonographs, because it provides the measure of the 
detail that is possible to detect on the sonograph. The resolution of SSS can be meant in a 
different way:  
- The system resolution: governed by the shape of the acoustic beam and the length of the 

transmitted pulse (Jones, 1999). So it depends on the three-dimensional distribution of 
the acoustic energy of the system that affects the size of the footprint. If the side-scan 
sonar has low frequency sources (10-30 kHz), the sound pulse will be transmitted and 
received at long range (covering a large area in a short time), but this configuration 
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provides lower resolution in the sonographs. If the needs of the survey are for accurate, 
fine image details, then it is better to use a higher frequency sonar (100 – 500 kHz), even 
if the short wavelengths generated cannot be transmitted long distance and thereby 
limit the usable range. For this reason these kinds of systems are employed mainly on 
continental shelves. Flemming et al. (1976) well described the characteristic transverse 
resolution and range resolution of the side-scan sonar systems; they can be meant as 
across-track footprint and along-track footprint respectively (Blondel and Murton, 
1997). Obviously each transducer capability can offer different resolution, depending on 
the technical specification of each sonar (Table 1) and also the speed of the transducer in 
the water influences the along-track resolution. Lastly, for each system, the across-track 
resolution strictly depends on the range setting employed (nowadays, for new models, 
the along-track resolution can be independent of range). 

- The sonograph resolution: governed by the pixel size. Indeed the successive across-track 
profiles are ‘plotted’ into sonographs by computation of square picture elements 
(pixels).  

The resolution is not the only parameter that affects the system performance and data 
quality. The underwater environment (current, density, salinity etc.) can considerably 
impact the data, and even more importantly, so too can the operator management of the 
system. Survey vessel course, transducers speed, tow fish altitude above the seabed and the 
range setting will determine the quality of the sonar data, according to the aim of the 
survey.  

3. Data and methods 
The data presented here were collected at different sites located on the continental shelf of 
the Mediterranean sea. Different range settings are presented, illustrating the different 
resolution capacity of the employed high frequency (100 – 500 kHz) sonar systems. The 
sonographs are arranged in three paragraphs, according to their range, for a total of three 
sections (wide-, medium-, small-range). An additional paragraph discusses some peculiar 
situations that can occur during a side-scan sonar survey, as noise comes from the 
underwater environment (e.g. signal generated from other ship propellers and/or from 
interference with other acoustic sources, artefacts created by objects or fishes in the water 
column). In each sonograph, where it is not specified, high levels of backscatter are shown 
as dark tones. Each section is introduced with an overview on the different types and spatial 
scale of seafloor features that can be investigated, according to the employed range setting. 
It is worth noting that the range setting also determines the operational conditions of the 
survey, because the tow fish must be located at a precise distance above the bottom, 
approximately equivalent to between 10% and 20% of the range. So, the geomorphological 
setting and the survey environment do not always allow a free choice of the range setting. 
With complex topography and in a deep environment it is not possible to use narrow range 
that requires to have the tow fish at a short distance from the bottom (this situation indeed 
does not guarantee the safety condition of towed equipment), to operate in a deep 
environment, high frequency SSS must be integrated within AUV or specific ROV. In 
shallow water we cannot use a wide range, because it is recommended to have more than 
10% of the range setting as a distance above the bottom. Therefore, the range setting not 
only influences the aim of the survey (because of the associated sonograph resolution), but 
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also the depth range in which the survey can be performed, according to the environment 
condition (Table 2). 
 

Range 
setting (m) 

Optimum
two fish 
distance 
from the 
bottom 

Resolution
(m x pixel) Geomorphological setting Main aims of the survey 

From few 
metres to 

150 
5-50m <1 

Continental shelf in shallow 
water, between –10 and –30 
m up to –50 m if the 
topographic features are 
known and without reliefs.  

Research of specific target, 
such as small shipwrecks,  
Monitoring of underwater 
infrastructures, such as 
pipelines or other small 
structures.  

150-300 15-30m Ca. 1 From 30 m of water depth 
down to the shelfbreak. 

Meso-scale maps of the 
seafloor to represent a 
number of environment 
features (geological, 
sedimentological, 
geomorphological, habitat 
maps, etc.).  

300-600 30-60 m >1 From -40 m up to the inner 
slope (600 m). 

Meso-scale maps of the 
seafloor. 

Table 2. Summary of the three main classes of high frequency SSS range settings (from top 
to bottom: small-, medium and wide-) with indication of the associated sonograph 
resolution, optimum geomorphological setting and aim of surveys (from Savini, 2004). 

3.1 High frequency SSS imagery through wide-range setting 
SSS surveys through wide-range setting aim to cover wide areas of the seafloor on the outer 
continental shelf and the upper slope. Range from 300 up to 600 m are considered, so an 
operating frequency not higher than 100kHz should be employed with the sonograph’s 
resolution reaching roughly 1 m per pixel. Wide-range settings, through high frequency SSS 
systems, are adopted when medium to small-scale maps of the seafloor must be produced 
and water depth is more than a minimum of 40 m (because the distance of the tow fish from 
the bottom should not be less than the 10% of the operating range). The outer continental 
shelf and the upper continental slope are candidate areas to be investigated by wide-range 
setting, where the roughness of the seafloor can vary a lot, outlining homogeneous seafloors, 
with a gently sloping shelf-break and muddy bottom, or various types of articulated seabeds 
with reliefs and/or depressions of different sizes, rocky outcrops and abrupt changes in 
slope gradient. If the seafloor morphology is very rough (especially in an active geodynamic 
context), huge shadows and repeated echoes can characterize the associated sonographs. 
Geological attributes that can be relevant to map with wide-range setting can be: 
- Canyon heads and scarps of different origin and sizes (Fig. 1). 
- Rocky outcrops where typical small scale faults and other structural features can be 

detected. 
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also the depth range in which the survey can be performed, according to the environment 
condition (Table 2). 
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Research of specific target, 
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Table 2. Summary of the three main classes of high frequency SSS range settings (from top 
to bottom: small-, medium and wide-) with indication of the associated sonograph 
resolution, optimum geomorphological setting and aim of surveys (from Savini, 2004). 

3.1 High frequency SSS imagery through wide-range setting 
SSS surveys through wide-range setting aim to cover wide areas of the seafloor on the outer 
continental shelf and the upper slope. Range from 300 up to 600 m are considered, so an 
operating frequency not higher than 100kHz should be employed with the sonograph’s 
resolution reaching roughly 1 m per pixel. Wide-range settings, through high frequency SSS 
systems, are adopted when medium to small-scale maps of the seafloor must be produced 
and water depth is more than a minimum of 40 m (because the distance of the tow fish from 
the bottom should not be less than the 10% of the operating range). The outer continental 
shelf and the upper continental slope are candidate areas to be investigated by wide-range 
setting, where the roughness of the seafloor can vary a lot, outlining homogeneous seafloors, 
with a gently sloping shelf-break and muddy bottom, or various types of articulated seabeds 
with reliefs and/or depressions of different sizes, rocky outcrops and abrupt changes in 
slope gradient. If the seafloor morphology is very rough (especially in an active geodynamic 
context), huge shadows and repeated echoes can characterize the associated sonographs. 
Geological attributes that can be relevant to map with wide-range setting can be: 
- Canyon heads and scarps of different origin and sizes (Fig. 1). 
- Rocky outcrops where typical small scale faults and other structural features can be 

detected. 
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- Boulders and/or masses of different sizes, often associated with failure deposits on the 
upper slope. 

 

 
Fig. 1. Edge of canyons on the shelf break (Thyrrenian Sea). The left side of the sonographs 
has very low levels of backscatter due to the high steepness of the bottom. The sonographs 
follows the shelf break, the continental shelf is toward the right. 

- Confined seafloor morphologies, such as gullies and channels (i.e. gateways and 
channels – Fig. 2). 

 

 
Fig. 2. Confined erosional bedforms on the shelf break (Thyrrenian Sea). The continental 
shelf is toward the right. 
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- Erosive seafloor features related to bottom current e.g. scours, furrows etc. (Fig. 3). 
 

 
Fig. 3. Furrows (highlighted by straight black lines) and patches of coarse grained sediment 
(rounded areas with high levels of quite homogeneous backscatter). Thyrrenian Sea,  
continental shelf, 40m of water depth. 

- Positive reliefs of biogenic origin (carbonate mounds, carbonate build-ups  etc. Fig. 4). 
 

 
Fig. 4. Positive reliefs on the seafloor (Thyrrenian Sea – 80m of water depth). 
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- Erosive seafloor features related to bottom current e.g. scours, furrows etc. (Fig. 3). 
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- Mud volcanoes and pockmarks, methane-derived carbonate heterogeneous crusts and 
slabs, carbonate build-ups associated with seepage (Fig. 5). 

 

 
Fig. 5. Small mud volcanoes and seepage-related seafloor features (Sicily channel - 160m of 
water depth). 

- Sedimentary structures: from small to large dunes in their different morphologies 
(barchan dunes, lunate dunes etc. Fig. 6), sediment waves of metric scales, gravel/sand 
bars, irregular gravel/sand patches (Fig. 3), sand/gravel ribbons, obstacles and scours 
(comet marks) etc. 

 

 
Fig. 6. Depositional bedforms on the outer continental shelf (Thyrrenian Sea - 80m of water 
depth).  

- Failure-related seafloor features, such as blocks of detached sediment, pressure ridges, 
tension cracks (Fig. 7) etc.  
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Fig. 7. Depositional bedforms on the outer continental shelf (Thyrrenian Sea - 60m of water 
depth). 

 

 
Fig. 8. Fractures on the seafloor (Thyrrenian Sea - 180m of water depth). The sonographs run 
parallel to the shelf break, the orientation of the fractures suggests a possible inception of 
mass-wasting, probably due to seabed creeping. 



 
Sonar Systems 

 

308 

- Mud volcanoes and pockmarks, methane-derived carbonate heterogeneous crusts and 
slabs, carbonate build-ups associated with seepage (Fig. 5). 

 

 
Fig. 5. Small mud volcanoes and seepage-related seafloor features (Sicily channel - 160m of 
water depth). 

- Sedimentary structures: from small to large dunes in their different morphologies 
(barchan dunes, lunate dunes etc. Fig. 6), sediment waves of metric scales, gravel/sand 
bars, irregular gravel/sand patches (Fig. 3), sand/gravel ribbons, obstacles and scours 
(comet marks) etc. 

 

 
Fig. 6. Depositional bedforms on the outer continental shelf (Thyrrenian Sea - 80m of water 
depth).  

- Failure-related seafloor features, such as blocks of detached sediment, pressure ridges, 
tension cracks (Fig. 7) etc.  

Side-Scan Sonar as a Tool for Seafloor Imagery:  
Examples from the Mediterranean Continental Margin 

 

309 

 
Fig. 7. Depositional bedforms on the outer continental shelf (Thyrrenian Sea - 60m of water 
depth). 

 

 
Fig. 8. Fractures on the seafloor (Thyrrenian Sea - 180m of water depth). The sonographs run 
parallel to the shelf break, the orientation of the fractures suggests a possible inception of 
mass-wasting, probably due to seabed creeping. 



 
Sonar Systems 

 

310 

3.2 High frequency SSS imagery through medium-range setting 
SSS surveys through a medium-range setting aim to cover relatively wide areas of the 
seafloor on the continental shelf. Range between 150 and 300 m are considered. The 
sonograph’s resolution can be less than 1 m per pixel. SSS sonographs of medium-range 
setting produce medium-scale maps of the seafloor to image the local 
geological/geomorphological attributes of the investigated areas. Indeed the medium-range 
setting is relevant for mapping seafloor morphologies and sediment characteristics of the 
whole continental shelf, from roughly 20 m of water depth down to the shelf break. It is 
worth considering that seafloor mapping at meso-scales is important because many of the 
solutions to environmental problems (from geo-hazards to offshore resources management)  
require changes in management strategies at this ‘seascape scale’. In addition, backscattering 
data along with bathymetry at meso-scale provide a basis for integrating seabed samples 
and biological information from which habitat may be interpreted (Kenny et al., 2003). 
Standards and protocols for habitat mapping are starting to emerge at international level 
(see MESH EU-project - http://www.searchmesh.net) and they strongly consider that 
backscattering information from multibeam data or SSS sonographs provide the crucial 
spatial and structural context for more detailed investigation which can reveal the benthic 
ecology. Therefore, marine habitat maps are usually based on a combination of wide-area 
data sets (e.g. side-scan sonar data), able to illustrate the abiotic environment, and point- or 
line-based information (e.g. photo and video data, seabed samples) providing ‘ground-
truthing’ of the substrate and biological information.  
On the Mediterranean continental shelves, the phanerogam biocenosis are well detectable 
on medium-range SSS sonographs, along with most of their physiographic attributes, that 
can be relevant to assess their health state (Figs. 9, 10, 11 and 12). 
 
 

 
 

Fig. 9. Posidonia oceanica on rocky substrate. See at the centre of the sonograph the short 
distance recorded between the tow fish and the bottom and the prominent shadows that the 
rocky outcrops create on the left channel. 
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Fig. 10. Passage from Posidonia oceanica on rocky substrate (upper part of the sonograph, 
where prominent shadows occur on both the channels) to Posidonia oceanica on matte 
(middle part of the sonograph) and to degraded matte of Posidonia oceanica with marked 
intramattes and erosive features (lower part of the sonograph, especially on the left 
channel). 

Geological attributes that can be imaged with medium-range SSS sonographs are:  
- Rocky outcrops where sub-metric fractures and other structural features can also be 

detected (Figs. 12, 13 and 14). 
 

 
 

Fig. 11. Dead and degraded matte of Posidonia oceanica, that appears nearly compact on the 
left channel and highly affected by strong erosion on the right. 
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Fig. 12. Upper limit of degraded matte of Posidonia oceanica where erosional features are 
dominant. 

 
 
 
 

 
 

Fig. 13. Rocky outcrops where the orientation of structural lineaments, which consist of 
perpendicular fractures, are clearly imaged. 
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Fig. 14. Rocky outcrops and sediment. Arrows indicate well defined areas made by coarse 
sediment with ripples.   

- Erosive features of sub-metric scales: scours, furrows etc.  
- Positive reliefs of biogenic origin (e.g. biogenic formations made by coralline algae). 
- Small scale mud volcanoes and pockmarks, methane-derived carbonate heterogeneous 

crusts and slabs, carbonate build-ups associated with seepage (Figs. 15 and 16). 
- Sedimentary structures:  small dunes in their different morphologies (barchan dunes, 

lunate dunes etc.), sediment waves, ripples, gravel/sand bars, irregular gravel/sand 
patches, sand/gravel ribbons, surface lineations, obstacles and scours (comet marks) 
etc. (Fig. 13). 

 

 
Fig. 15. Small sub-circular mud volcanoes (Savini et al., 2009). See at the top the backscatter 
associated to the occurrence of methane-derived carbonate crusts.  



 
Sonar Systems 

 

312 

 
 
 
 
 

 
 

Fig. 12. Upper limit of degraded matte of Posidonia oceanica where erosional features are 
dominant. 

 
 
 
 

 
 

Fig. 13. Rocky outcrops where the orientation of structural lineaments, which consist of 
perpendicular fractures, are clearly imaged. 

Side-Scan Sonar as a Tool for Seafloor Imagery:  
Examples from the Mediterranean Continental Margin 

 

313 

 
Fig. 14. Rocky outcrops and sediment. Arrows indicate well defined areas made by coarse 
sediment with ripples.   

- Erosive features of sub-metric scales: scours, furrows etc.  
- Positive reliefs of biogenic origin (e.g. biogenic formations made by coralline algae). 
- Small scale mud volcanoes and pockmarks, methane-derived carbonate heterogeneous 

crusts and slabs, carbonate build-ups associated with seepage (Figs. 15 and 16). 
- Sedimentary structures:  small dunes in their different morphologies (barchan dunes, 

lunate dunes etc.), sediment waves, ripples, gravel/sand bars, irregular gravel/sand 
patches, sand/gravel ribbons, surface lineations, obstacles and scours (comet marks) 
etc. (Fig. 13). 

 

 
Fig. 15. Small sub-circular mud volcanoes (Savini et al., 2009). See at the top the backscatter 
associated to the occurrence of methane-derived carbonate crusts.  



 
Sonar Systems 

 

314 

 
 

 
 
 

Fig. 16. Hard substrata made by methane-derived carbonate build-ups. 

3.3 High frequency SSS imagery through small-range setting 
Range between a few metres and 100 m are considered.  SSS surveys conducted using a 
small-range setting are used in shallow water and provide high resolution sonographs. 
Often a high resolution setting of the SSS system is needed in a survey which aims to search 
for specific targets, such as small shipwrecks and other small-scale objects, or to monitor 
underwater pipelines. In optimal conditions, sonograph resolution can be less than 10 cm 
per pixel.  
Operating with small-scale range, the transducer has to keep a short distance from the 
seafloor (a few metres), so that its safety is not compromised by articulated topography with 
pinnacles and/or local rocky outcrops, even if a fast recovery of the tow fish is allowed by 
the shallow water (because of the few metres of cable out).  
While habitat mapping is mainly performed through medium-range SSS surveys, a small-
range setting in a SSS survey can provide remote data useful for further habitat 
characterization. For instance, within the Mediterranean setting, meadows of Posidonia 
oceanica (which represent benthic habitat of conservation value, listed in the EC Habitats 
Directive due to its high level of biological diversity) can be imaged in detail by small-range 
sonographs, since most of their physiographic attributes and ecological descriptors (i.e. 
upper and lower depth limit of the meadow, density, bottom cover, structure of the matte, 
occurrence of intramattes and other erosive features, characterization of the substrate, 
identification of dead or highly degraded matte, human impact due to anchoring and 
fishery) are at metric and sub-metric scale and are well imaged through SSS sonographs 
acquired with small-range settings (Figs. 17, 18, 19, 20 and 21).  
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Fig. 18. Passage from Posidonia oceanica on matte (on the right channel) to dead/degraded 
matte of Posidonia oceanica. 
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Fig. 16. Hard substrata made by methane-derived carbonate build-ups. 
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Fig. 19. Meadows of Cymodocea nodosa (high backscatter). 

 
 
 
 

 
 
 

Fig. 20. Prominent track left on the matte of Posidonia oceanica by anchoring operations. 
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Fig. 21. Posidonia oceanica on sediment (on the left channel, lower part), Cymodocea nodosa 
(right channel lower part) and sediment. 

 

 
Fig. 22. Amphora on the seafloor (Savini and Petrillo, 2009). Each one is 1,3m in length. 

Geological attributes that can be well imaged on small-range SSS sonographs are mostly 
related to small scale sedimentary structures (such as ripples and surface lineations at the 
centimetric scale, small comet marks etc.) and erosional bottom current related bedforms 
(e.g. small scours and furrows). However, as stated above, small-range SSS surveys are 
generally carried out to investigate/image small targets on the seafloor (Fig. 22). 
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Fig. 22. Multiple (black arrows) on the left channel. 

3.4 Peculiar SSS images 
Here after are some peculiar situations that can occur during a side-scan sonar survey. Such 
situations occur in sonographs affected by noise that comes from the underwater 
environment (e.g. signals generated from other ships’ propellers and/or from interference 
with other acoustic sources, artefacts created by objects or fishes in the water column) and 
particular objects/infrastructures mapped on the seafloor. 
 

 
 
 

 

 
 
 

Fig. 23. Noise on the sonograph (black arrows) produced by interference with other acoustic 
source (in this case a single beam echosounder). 
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Fig. 24. A shoal of fish and its associated shadows, which appear separated on the 
sonograph because of the position of the shoal in the water column. 

 
 
 
 
 
 

 
 

 

Fig. 25. Noise on the sonograph that is produced by the engine of another ship. The wake of 
the ship also leaves a typical noise in the water column (central part of the sonograph). 
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Fig. 26. Meadow of Posidonia oceanica interrupted by sediment where some parts of two 
pipelines are visible.  

 

 
Fig. 27. Fish aquaculture. 
 

 
Fig. 28. Fishing net ‘at work’ on the seafloor. Note the two gears which keep open the net 
and the noise of the engine of the fishing boat (lower part on the right). 
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4. Conclusion 
This chapter aimed to provide a useful reference document representing important seafloor 
features and sediment characteristics on continental shelf in the Mediterranean setting. 
Indeed there is an exhaustive literature dealing with theoretical issues concerning SSS 
functioning and data processing (Fish and Carr, 1999; Blondel and Murton, 1997) and there 
are also some published books that can support sonograph interpretation within the oceanic 
environment (e.g. Blondel, 2009). Nevertheless a number of peculiar seafloor features of the 
Mediterranean continental shelf, often monitored in many surveys, are not so well known 
from literature, in terms of their peculiar acoustic backscattering. This chapter aimed to offer 
a reference that can help in recognising the most significant seafloor features that 
characterise the Mediterranean continental shelves on SSS sonographs. 
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