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Bayesian Belief Networks are a powerful tool for combining different knowledge 
sources with various degrees of uncertainty in a mathematically sound and 

computationally efficient way. A Bayesian network is a graphical model that encodes 
probabilistic relationships among variables of interest. When used in conjunction with 

statistical techniques, the graphical model has several advantages for data modeling. 
First, because the model encodes dependencies among all variables, it readily handles 

situations where some data entries are missing. Second, a Bayesian network can be 
used to learn causal relationships, and hence can be used to gain an understanding 

about a problem domain and to predict the consequences of intervention. Third, 
because the model has both causal and probabilistic semantics, it is an ideal 

representation for combining prior knowledge (which often comes in a causal form) 
and data. Fourth, Bayesian statistical methods in conjunction with Bayesian networks 

offer an efficient and principled approach to avoid the over fitting of data.
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Preface 

Over the last decade, a Bayesian network has become a popular representation for 
encoding uncertain expert knowledge in expert systems. A Bayesian network is a 
graphical model for probabilistic relationships among a set of variables. It is a 
graphical model that encodes probabilistic relationships among variables of interest. 
When used in conjunction with statistical techniques, the graphical model has several
advantages for data modeling. So what do Bayesian networks and Bayesian methods
have to offer? There are at least four benefits described in the following. 

One, Bayesian networks can readily handle incomplete data sets. For example, 
consider a classification or regression problem where two of the explanatory or input
variables are strongly anti-correlated. This correlation is not a problem for standard
supervised learning techniques, provided all inputs are measured in every case. When 
one of the inputs is not observed, however, many models will produce an inaccurate 
prediction, because they do not encode the correlation between the input variables. 
Bayesian networks offer a natural way to encode such dependencies.

Two, Bayesian networks allow one to learn about causal relationships. Learning about
causal relationships is important for at least two reasons. The process is useful when 
we are trying to gain an understanding about a problem domain, for example, during 
exploratory data analysis. In addition, knowledge of causal relationships allows us to
make predictions in the presence of interventions. For example, a marketing analyst 
may want to know whether or not it is worthwhile to increase exposure of a particular 
advertisement in order to increase the sales of a product. To answer this question, the
analyst can determine whether or not the advertisement is a cause for increased sales, 
and to what degree. The use of Bayesian networks helps to answer such questions 
even when no experimental data about the effects of increased exposure is available.

Three, Bayesian networks, in conjunction with Bayesian statistical techniques, facilitate
the combination of domain knowledge and data. Anyone who has performed a real-
world modeling task knows the importance of prior or domain knowledge, especially 
when data is scarce or expensive to obtain. The fact that some commercial systems 
(i.e., expert systems) can be built from prior knowledge alone is a testament to the 
power of prior knowledge. Bayesian networks have a causal semantics that makes the 
encoding of causal prior knowledge particularly straightforward. In addition, 
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XII Preface

Bayesian networks encode the strength of causal relationships with probabilities. 
Consequently, prior knowledge and data can be combined with well-studied 
techniques from Bayesian statistics. 

Four, Bayesian methods in conjunction with Bayesian networks and other types of 
models offer an efficient and principled approach for avoiding the over fitting of data. 

This book deals with the theory and algorithms for learning and probabilistic inference 
in Bayesian networks. This book also provides selected applications of Bayesian 
networks in several fields, including adaptive risk management, operational risk 
analysis, rangeland management and resiliency and interdependency of critical urban 
infrastructure. The book chapters are original manuscripts written by experienced 
researchers that have made significant contributions to the field of Bayesian networks. 
Although all chapters are self- contained, the reader should be familiar with texts 
using mathematical and statistical language to gain full benefit from the book. I am 
convinced that this book will be a very useful tool for anyone who is concerned with 
modelling systems containing causality with inherent uncertainty. I believe that 
readers will not only find the technical aspects for using and implementing Bayesian 
networks to solve their problem, but will also discover new approaches for how their 
current research and work can benefit from one of the major tools of the 21st century. 

Wichian Premchaiswadi 
Graduate School of Information Technology in Business, Siam University, 

Thailand 
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Making a Predictive Diagnostic Model for 
Rangeland Management by Implementing a 

State and Transition Model Within a Bayesian 
Belief Network (Case Study: Ghom- Iran) 

Hossein Bashari  
Department of Natural Resources, Isfahan University of Technology, Isfahan,  

Iran  

1. Introduction  
Rangelands are landscapes in which the native vegetation (climax or natural potential) is 
predominantly grasses, grass-like plants, forbs, or shrubs. They are defined as land where 
vegetation management is accomplished mainly through the manipulation of grazing and 
include land that is re-vegetated naturally or artificially (SRM, 1989). The world’s 
rangelands are grazed because they do not have the capacity to be cultivated. They are 
globally significant semi-natural landscapes that have been used for many purposes 
including grazing, apiculture, hunting, mining and tourism. The degradation of rangelands, 
which cover more than 47 % of the globe (332 million hectares) (Tueller, 1988), has been 
reported in all parts of the world. For instance, more than 70% of rangelands in Africa, Asia 
and America and about 54% in Australia are to some degree degraded. Better 
understanding of the ecological processes in rangelands and of the products they provide 
are required to effectively maintain and manage this valuable resource. 

Rangelands are highly complex adaptive socio-ecological systems with complicated 
interactions between the rangelands, livestock and humans (Gross et al., 2003; Gross et al., 
2006). Leohle (2004) categorised the sources of ecological complexity, which are notable in 
rangelands, into six groups: spatial, temporal, structural, process, behavioural and 
geometric. Interactions between these components in a broad range of spatial and 
temporal scales are among the main reasons for their complexity. A lack of understanding 
in any part leads to an inability to identify the best policies and strategies for management 
(Walker & Janseen, 2002). Misunderstanding of these interactions by humans is 
responsible for a worldwide deterioration in rangeland ecosystems. The inherent 
complexity of ecological parameters and uncertain social and economic effects 
significantly adds to the difficulties of developing a sound understanding of rangelands. 
In addition, there may also be conflicts in the multiple objectives of rangeland use and 
management (e.g. production and conservation). Anti-degradation programs fail if they 
do not consider the interactions between the ecological, social and economic parameters 
within rangeland ecosystems. 
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The lack of availability of scientific knowledge (research results and experiences) at the time 
of decision-making by the different stakeholders and policy makers is one of the reasons for 
the failure of rangeland management programs. This knowledge is scattered over a wide 
range of resources and is not easily accessible even for scientists. In addition, the lack of 
integrating scientific knowledge, with landholders’ knowledge and the slow response to the 
uptake of new knowledge by land managers hinders the success of management programs 
(Bosch et al., 2003).  

It could be argued that most knowledge is available, but the formats in which rangeland 
managers would require such knowledge is often not accessible in an appropriate form. 
Translation of knowledge into practical applications is a prerequisite if this knowledge is to 
be used in management programs (Provenza, 1991). 

1.1 Decision support tools in range management 

Many simulation models have been developed by researchers for the purpose of predicting 
the outcomes of rangeland management decisions. These models help to: 

 Organise and structure different sources of knowledge about rangeland systems; 
 Identify and focus on the knowledge gaps; 
 Promote a multidisciplinary approach to rangeland management; 
 Provide an efficient means of capturing the complex dynamics of rangeland systems 

(Carlson et al., 1993). 

There are many Decision Support Tools (DSTs) relevant to rangeland management that 
are based on simulation models (Carlson et al., 1993). Some of these DSTs have been 
specified for a single purpose or are appropriate for limited objectives or areas of 
application, while some have wider application. However, most models have been 
developed as research tools which require large data inputs. A good understanding of 
data requirements is needed for all models to assess their application and to evaluate their 
appropriateness and output value (National Land & Water Audit, 2004). This makes them 
inaccessible to most land managers. 

An additional difficulty is the fact that uncertainty in the prediction of management 
outcomes is not accommodated in these DSTs. Uncertainty exists when there is more 
than one outcome, consistent with the expectations (Pielke, 2001, 2003). Decision-makers 
are interested in quantifying and reducing uncertainty. The degree of confidence in 
model predictions is therefore an important aspect to be included in the design of useful 
DSTs. Finally, it is the decision-makers task to understand and use the DSTs. It is 
therefore important that they are involved in developing the tools. Using the end-users’ 
experiential knowledge could play a vital role in ensuring credibility and increasing the 
adoption of a DST.  

1.2 Adaptive management 

Adaptive management has become an important approach to cope with uncertainty, 
imperfect knowledge and complex systems. In this approach, outcomes of management are 
continuously used to modify or adapt management (Sabine et al., 2004; Morghan et al., 
2006). This is particularly important for rangelands where the outcomes of management are 

Making a Predictive Diagnostic Model for Rangeland Management by Implementing a  
State and Transition Model Within a Bayesian Belief Network (Case Study: Ghom- Iran) 

 

3 

often unknown or difficult to predict. Adaptive management “structures a system in which 
monitoring iteratively improves the knowledge base and helps refine management plans” 
(Ringold et al., 1996, P.745). However, a framework is needed that allows for this knowledge 
to be updated and ensures its accessibility for future decision-making. Such a framework 
must be able to predict the probable outcomes of rangeland management decisions based on 
the existing knowledge of vegetation dynamics. Such a framework should also 
accommodate the uncertainty associated with these predictions.  

1.3 Framework for adaptive management 

The State and Transition Model (STM) provides a simple framework for integrating 
knowledge about vegetation dynamics and the possible responses of vegetation to 
management actions and environmental events. Both qualitative and quantitative 
knowledge could be accommodated in an STM, and it has the potential for organising and 
updating new knowledge that becomes available through monitoring (Vayssieres & Plant, 
1998). The STM is also ideal for improving communication between rangeland scientists, 
end users and policy makers. Using this model as a framework enables landholders to focus 
on opportunities (e.g. transition to productive states) and avoid hazards (e.g. transitions to 
degraded states where the reverse transitions are problematical since they will be too costly 
to reverse or not be practical in a normal management time scale) (Westoby et al., 1989; Brisk 
et al., 2005). 

Many scientists have used these concepts for developing STMs for various rangelands 
following their introduction by Westoby et al. (1989), who introduced this model based on 
non-equilibrium ecology (Friedel, 1991; Laycock, 1991; Hall et al., 1994; Allen-Diaz & 
Bartolome, 1998; Phelps & Bosch, 2002; Knapp et al. 2011). Typically most of the STMs 
presented so far are simple flowcharts with a catalogue of states and transitions. These 
models are traditionally descriptive and are unable to be used as predictive models. Also, 
most of the models produced so far are characterised by a lack of practical application and 
simply provide “proof- of concept examples” (Vayssieres & Plant, 1998). However, they 
handle poorly the uncertainty associated with cause and effect.  

Bayesian Belief Networks (BBNs) (Jensen, 1996) provide a tool that can help solve this 
problem. They allow for the construction of cause and effect models, and relate variables 
using conditional probabilities. This allows for uncertainty to be explicitly incorporated into 
models. BBNs can also be used to perform sensitivity and scenario analysis, allowing 
managers to predict the probable outcomes of management actions or identify those 
management actions that are most likely lead to desirable outcomes. An added benefit of 
BBNs is that they can be easily updated using the results of monitoring. These monitoring 
results can be used to update the probability relationships over time, allowing the outcomes 
of previously implemented management decisions to modify model predictions. Therefore, 
BBNs provide a mechanism for supporting adaptive management. 

This chapter aimed to demonstrate how a STM can be converted into a user-friendly 
management decision support tool. This includes several steps including (a) converting the 
State and Transition diagram into a BBN influence diagram, (b) determining probabilities 
for the BBN model through literature studies and the knowledge of scientists that are 
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familiar with the vegetation dynamics of the study area and finally (c) testing model 
behaviour by sensitivity and scenario analysis. A STM for the Steppe zone of Qom- Iran was 
used as an example to demonstrate the process. 

2. Case study in Iran 
2.1 Study area 

The study area is located in Ghom rangelands, 130 km from Tehran, the capital city of the 
Islamic Republic of Iran. This area is surrounded by central Iranian desert and has an arid 
climate. The Steppe zone of Ghom has an annual rainfall of between 100 to 230 mm, which is 
highly variable both within and between seasons. Most precipitation occurs in winter with 
the dry season occurring for 4 to 6 months over summer. A significant portion of the limited 
precipitation is lost as run-off and then evaporation.  

The vegetation in the Steppe zone of Ghom is sparse with evenly distributed individual 
dwarf shrubs and/or bunchgrasses. The perennial cover can vary from 1 to 35%, while the 
spaces between perennials remain bare or briefly covered by Therophytes after rainfall 
events. The most common life-form is shrubby species (browse species) and subshrubs 
(dwarf shrubs). The contribution of the subshrubs is about 40% of the perennial species, 
while about 30% of those are shrubby species. The most frequently occurring species is 
Artemisia sieberi. Woody plants that grow with Artemisia sierberi are Dendrostellera lessertii, 
Ephedra sp, Astragalus sp, Achillea sp, scariola orientalis, Acantholimon sp, Acanthophylum sp, and 
Stachys inflate. Stipa hohenackeriana is the most abundant perennial grass but it has 
disappeared from some areas. Stipagrostis plumose is another dominant perennial grass, 
however, is only found on light soils and never on heavy or saline soils 

The Bureau of Rangelands has developed several strategies to enhance rangeland condition, 
including de-stocking, water harvesting and transplanting of palatable shrubs. The challenge 
is when and where to implement these strategies to obtain the best result. The effect of these 
strategies on the dynamics of the vegetation is also uncertain. The unavailability of an 
appropriate DST hinders the selection of appropriate management strategies. 

2.2 Creating a State and Transition Model (STM) 

The iterative model development process was used to construct an STM for the Steppe zone 
of Ghom Iran. This process utilised multiple information sources to identify possible 
vegetation states and transitions. 

There were no published STMs for this area, so the process utilised multiple information 
sources to identify possible vegetation states and transitions. First, the limited literature 
available was used to draft a catalogue of states and transitions. Then it was refined through 
discussion with scientists familiar with the vegetation dynamics of the Ghom area. 
Vegetation states were defined using vegetation composition and soil erosion status. The 
favourability of each state was explained from an animal productivity and soil stability 
point of view. 

Figure 1 shows the STM developed for the Steppe zone of Ghom. The STM consists of 7 
vegetation states and 15 transitions (see Table 1 & Table 2). 
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Fig. 1. STM for Steppe zone of Ghom, Iran based on the experiential knowledge of Iranian 
researchers. 
 

Number 
of states 

State of vegetation Species 
Composition 

Maximum 
frequency 
(%) 

Some Ecological Information 

 
 
I 

 
Palatable shrubs & 
perennial grasses 
  

Artemisia sieberi 15
 
This state has a high grazing value and 
generally has high litter, and projected 
cover of 30%. Pasture yield in this state is 
high; erosion level is low because it is 
dominated by shrubs and perennial 
grasses; thus, soil stability is high.  

Buffunia
mucrocarpa

10

Pteropyron sp 5
Salsola 
tomentosa

5

Andrachne sp 5
Ajuga sp 5
Kochia sp 5
Stipa 
hohenackeriana

20

Other 30
II Semi shrub, cushion-

like plants & 
perennial 
grasses 
  

Artemisia sieberi 60 Erosion is low to moderate. This state 
represents the overall condition in the 
Steppe zone. 

Cushion-like 
plants

10

Stipa 
hohenackeriana

5

Other 25

Table 1. Continued 
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the dry season occurring for 4 to 6 months over summer. A significant portion of the limited 
precipitation is lost as run-off and then evaporation.  

The vegetation in the Steppe zone of Ghom is sparse with evenly distributed individual 
dwarf shrubs and/or bunchgrasses. The perennial cover can vary from 1 to 35%, while the 
spaces between perennials remain bare or briefly covered by Therophytes after rainfall 
events. The most common life-form is shrubby species (browse species) and subshrubs 
(dwarf shrubs). The contribution of the subshrubs is about 40% of the perennial species, 
while about 30% of those are shrubby species. The most frequently occurring species is 
Artemisia sieberi. Woody plants that grow with Artemisia sierberi are Dendrostellera lessertii, 
Ephedra sp, Astragalus sp, Achillea sp, scariola orientalis, Acantholimon sp, Acanthophylum sp, and 
Stachys inflate. Stipa hohenackeriana is the most abundant perennial grass but it has 
disappeared from some areas. Stipagrostis plumose is another dominant perennial grass, 
however, is only found on light soils and never on heavy or saline soils 

The Bureau of Rangelands has developed several strategies to enhance rangeland condition, 
including de-stocking, water harvesting and transplanting of palatable shrubs. The challenge 
is when and where to implement these strategies to obtain the best result. The effect of these 
strategies on the dynamics of the vegetation is also uncertain. The unavailability of an 
appropriate DST hinders the selection of appropriate management strategies. 

2.2 Creating a State and Transition Model (STM) 

The iterative model development process was used to construct an STM for the Steppe zone 
of Ghom Iran. This process utilised multiple information sources to identify possible 
vegetation states and transitions. 

There were no published STMs for this area, so the process utilised multiple information 
sources to identify possible vegetation states and transitions. First, the limited literature 
available was used to draft a catalogue of states and transitions. Then it was refined through 
discussion with scientists familiar with the vegetation dynamics of the Ghom area. 
Vegetation states were defined using vegetation composition and soil erosion status. The 
favourability of each state was explained from an animal productivity and soil stability 
point of view. 

Figure 1 shows the STM developed for the Steppe zone of Ghom. The STM consists of 7 
vegetation states and 15 transitions (see Table 1 & Table 2). 
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Fig. 1. STM for Steppe zone of Ghom, Iran based on the experiential knowledge of Iranian 
researchers. 
 

Number 
of states 

State of vegetation Species 
Composition 

Maximum 
frequency 
(%) 

Some Ecological Information 

 
 
I 

 
Palatable shrubs & 
perennial grasses 
  

Artemisia sieberi 15
 
This state has a high grazing value and 
generally has high litter, and projected 
cover of 30%. Pasture yield in this state is 
high; erosion level is low because it is 
dominated by shrubs and perennial 
grasses; thus, soil stability is high.  

Buffunia
mucrocarpa

10

Pteropyron sp 5
Salsola 
tomentosa

5

Andrachne sp 5
Ajuga sp 5
Kochia sp 5
Stipa 
hohenackeriana

20

Other 30
II Semi shrub, cushion-

like plants & 
perennial 
grasses 
  

Artemisia sieberi 60 Erosion is low to moderate. This state 
represents the overall condition in the 
Steppe zone. 

Cushion-like 
plants

10

Stipa 
hohenackeriana

5

Other 25

Table 1. Continued 
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Number 
of states 

State of vegetation Species 
Composition 

Maximum 
frequency 
(%) 

Some Ecological Information 

 
III 

 
Semi-shrub, cushion-
like plants and 
annuals 

 
Artemisia sieberi

 
60 

 
Its composition is the same as state II, but 
is highly preferred by sheep and goats 
due to abundant foliage of annuals. It can 
have up to 30% cover of annual grasses 
and forbs. 

Cushion-like 
plants  

10 

Stipa 
hohenackeriana 

5 

Annuals 
 

25 

IV Semi-shrub & 
cushion-like plants  
 

Artemisia sieberi 50 In this state, palatable shrubs such as 
Salsola tomentosa have disappeared and 
frequency of tall grass species such as 
Stipa hohenackeriana decreases 
dramatically. Erosion is high. 

Cushion-like 
plants  

30 

Noaea mucronata 5 
Stipa 
hohenackeriana 

1 

Others 14 
 

V Unpalatable forbs, 
annuals and 
unpalatable shrubs 
 

Peganum 
harmala 

5 This represents the most degraded state, 
there are no perennial grasses in this state 
and also Artemisia sieberi has a low 
frequency. The percentage cover is less 
than 10% and erosion is high. 

Launaea 
acanthodes 

5 

Euphorbia spp 5 
Cushion-like 
plants 

5 

Artemisia sieberi 20 
Noaea mucronata 10 
Scariola 
orientalis 

10 

Annual grass 5 
Annual forbs 5 
Other 30 

 
VI Woody weeds Reseda sp 10 Some species (Reseda sp and Hulthemia 

persica) have infested these areas that 
were formerly cultivated. A highly stable 
state with lowest value for grazing. 
 

Hulthemia 
persica 

90 

VII Introduced species Atriplex spp 50 This state has two stratifications. Atriplex 
spp constitutes the upper while various 
other species are located in the lower 
level of the vegetation structure.  
The total percentage cover is low  
and the frequency of species such as 
Artemisia sieberi declines to the that  
of state V. 

Artemisia sieberi 20 
Cushion-like 
plants  

10 

Stipa 
hohenackeriana 

5 

Others 15 

Table 1. Catalogue of vegetation states for Steppe zone of Ghom. 
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Transition 
number 
& name 

Main causes Probabilit
y 

Time 
frame 
(years) 

 

1       I, II 
 

Grazing pressure (Moderate), Selective grazing (High), 
Early grazing  

 

High 
 

5-10 

2       II, I Destock, Wet season in time period (Frequent), Seed and 
plant of palatable shrub available 

High >10 

3       II, III Wet season in time period (Frequent) High 1-2 
4       II, IV Grazing pressure (High), Drought, Soil compaction (High) High 3-10 
5       II, V Grazing pressure (Very high), Drought (Frequent), Soil 

compaction (High)  
High 5-20 

6       II, VI Ploughing  High 2-5 
7       II, VII Transplanting Seedling of Atriplex spp, Wet season in time 

period (Frequent),Irrigation of seedlings in initial years 
High 3-5 

8       III, I Destock, Wet season in time period (Frequent), Seed and 
plant sources 

Moderate >10 

9       III, II Wet season in time period (Infrequent) High 1-2 
10     IV, II Grazing pressure (low), Wet season in time period 

(Frequent), Seeds and plant sources decrease 
High 5-10 

11     IV, V Grazing pressure (High), Drought (Frequent), Soil 
compaction (High) 

High 5-10 

12     IV, VI Ploughing High 2-5 
13     V, IV Grazing pressure (low), Wet season in time period 

(Frequent), 
Seed and plant sources 

Low 
to 
moderate 

2-5 

14     V, VI Ploughing High 2-5 
15     VI, VII Erasing Woody weeds, Plantation of Atriplex spp, Wet 

season in time period (Frequent)  
Moderate 3-5 

Table 2. Catalogue of transitions for the Steppe zone of Ghom. 

2.3 Creating a BBN for modelling vegetation change 

Figure 2 outlines the main steps used in this study to build a DST for rangeland 
management. The STM for Stepp zone of Ghom (outlined above) was the starting point for 
model development. From the STM, an influence diagram was built to show the possible 
transitions and the factors influencing each transition. Next, the influence diagram was 
populated with probabilities to produce a predictive model, and finally the behaviour of the 
model was tested using scenario and sensitivity analysis. 

2.4 Building an influence diagram 

An influence diagram is simply the graphical component of a BBN. From the STM, an 
influence diagram was constructed to show the possible transitions and the factors 
influencing each. The framework contains a node representing possible starting vegetation 
states, nodes representing possible transitions from each of these states to other states,  
nodes representing the main factors influencing these transitions and their sub-factors , and 
time frame of possible changes. 
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and also Artemisia sieberi has a low 
frequency. The percentage cover is less 
than 10% and erosion is high. 
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Cushion-like 
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Other 30 

 
VI Woody weeds Reseda sp 10 Some species (Reseda sp and Hulthemia 

persica) have infested these areas that 
were formerly cultivated. A highly stable 
state with lowest value for grazing. 
 

Hulthemia 
persica 

90 

VII Introduced species Atriplex spp 50 This state has two stratifications. Atriplex 
spp constitutes the upper while various 
other species are located in the lower 
level of the vegetation structure.  
The total percentage cover is low  
and the frequency of species such as 
Artemisia sieberi declines to the that  
of state V. 

Artemisia sieberi 20 
Cushion-like 
plants  

10 

Stipa 
hohenackeriana 
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Others 15 

Table 1. Catalogue of vegetation states for Steppe zone of Ghom. 
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Transition 
number 
& name 

Main causes Probabilit
y 

Time 
frame 
(years) 

 

1       I, II 
 

Grazing pressure (Moderate), Selective grazing (High), 
Early grazing  

 

High 
 

5-10 

2       II, I Destock, Wet season in time period (Frequent), Seed and 
plant of palatable shrub available 

High >10 

3       II, III Wet season in time period (Frequent) High 1-2 
4       II, IV Grazing pressure (High), Drought, Soil compaction (High) High 3-10 
5       II, V Grazing pressure (Very high), Drought (Frequent), Soil 

compaction (High)  
High 5-20 

6       II, VI Ploughing  High 2-5 
7       II, VII Transplanting Seedling of Atriplex spp, Wet season in time 

period (Frequent),Irrigation of seedlings in initial years 
High 3-5 

8       III, I Destock, Wet season in time period (Frequent), Seed and 
plant sources 

Moderate >10 

9       III, II Wet season in time period (Infrequent) High 1-2 
10     IV, II Grazing pressure (low), Wet season in time period 

(Frequent), Seeds and plant sources decrease 
High 5-10 

11     IV, V Grazing pressure (High), Drought (Frequent), Soil 
compaction (High) 

High 5-10 

12     IV, VI Ploughing High 2-5 
13     V, IV Grazing pressure (low), Wet season in time period 

(Frequent), 
Seed and plant sources 

Low 
to 
moderate 

2-5 

14     V, VI Ploughing High 2-5 
15     VI, VII Erasing Woody weeds, Plantation of Atriplex spp, Wet 

season in time period (Frequent)  
Moderate 3-5 

Table 2. Catalogue of transitions for the Steppe zone of Ghom. 

2.3 Creating a BBN for modelling vegetation change 

Figure 2 outlines the main steps used in this study to build a DST for rangeland 
management. The STM for Stepp zone of Ghom (outlined above) was the starting point for 
model development. From the STM, an influence diagram was built to show the possible 
transitions and the factors influencing each transition. Next, the influence diagram was 
populated with probabilities to produce a predictive model, and finally the behaviour of the 
model was tested using scenario and sensitivity analysis. 

2.4 Building an influence diagram 

An influence diagram is simply the graphical component of a BBN. From the STM, an 
influence diagram was constructed to show the possible transitions and the factors 
influencing each. The framework contains a node representing possible starting vegetation 
states, nodes representing possible transitions from each of these states to other states,  
nodes representing the main factors influencing these transitions and their sub-factors , and 
time frame of possible changes. 
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Fig. 2. Steps used to build a decision support tool. 

 
Fig. 3. This framework was used to construct Bayesian network structure from an STM 
(adapted from Bashari et al., 2009). 
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Next, states were defined for each node in the influence diagram. For the transition nodes, 
their states were the vegetation states in the STM. For the remaining nodes, that is the main 
factor and subfactor nodes, states were defined in consultation with the rangeland scientists 
who participated in building the STM. Figure 4 shows the completed influence diagram for 
the Steppe zone of Ghom and table 3 lists the states and the definitions for each node in the 
influence diagram.  

Monitoring data or simulation models were not available to populate the influence diagram 
with conditional probabilities, so subjective probability estimates were obtained from the 
rangeland scientists who participated in building the STM.  

Time_Frame
Less Than Five Years
More than Five Years

50.0
50.0

Growing Conditions
Good
Average
Poor
Very Poor

25.0
25.0
25.0
25.0

Grazing Impact
None
Low
Moderate
High

25.0
25.0
25.0
25.0

Current State
Palatable shrubs & Perennial g...
Semi shrub  and  Cusion- like  ...
Shrub Cush like- plants& Annu...
Cushion-like  plants 
Unpalatable Forbs, Annuals  a...
Woody Weeds
Introduced Species    

14.3
14.3
14.3
14.3
14.3
14.3
14.3

From Woody Weeds To
Introduced Species
No Changes

50.0
50.0

From Palatable shrubs and Perennial Gra...
No Change
Semi Shrub Cushion Like Per Gr

50.0
50.0

From Introduced Species To
No Changes
Woody Weeds

50.0
50.0

From Unpla Forbs & Shrubs & Annuals
Semi Shrub Cushion like Plants
No Changes
Woody Weeds

33.3
33.3
33.3

From Semi Shrub & Cusion Like Plants
Semi Shrub Cushion Like Per Gr
No Change
Unpla Forbs and Shrubs Annual
Woody Weeds

25.0
25.0
25.0
25.0

From Semi  Shrub & Cusion Like  Plant &...
Pal Shrub and Per Grasses
Semi Shrub Cushion like Annual
No Change
Semi Shrub Cushion like Plants
Unpla Forbs and Shrubs Annual
Woody Weeds
Introduced Species

14.3
14.3
14.3
14.3
14.3
14.3
14.3

From Semi Shrub & Cusion Plants & Ann...
Pal Shrub and Per Grasses
No Change
Semi Shrub Cushion Like Per Gr

33.3
33.3
33.3

Transplanting Seedlings 
Yes
No

50.0
50.0

Ploughing
No
Yes

50.0
50.0

Erasing Woddy Weeds
Yes
No

50.0
50.0

Grazing Pressure
None
Low
Moderate
High

25.0
25.0
25.0
25.0

Temperature
Appropriate
Inappropriate

50.0
50.0

Distance To Village
Far aw ay
Near

50.0
50.0

Soil Water availability
High
Moderate
Low
Very Low

25.0
25.0
25.0
25.0

Rainfall
More Than Average
Average
Less Than Average

33.3
33.3
33.3

Soil Compaction
Low
High

50.0
50.0

Water Harvesting
Yes
No

50.0
50.0

Stocking Rate
None
Low
Moderate
High

25.0
25.0
25.0
25.0

Land Ownership
Yes
No

50.0
50.0

Drought
No
Yes

50.0
50.0

Time of Grazing
Plants > 20cm tall, Soil > FC
Plants > 20cm tall, Soil < FC
Plants < 20cm tall, Soil > FC
Plants < 20cm tall, Soil < FC

25.0
25.0
25.0
25.0

TransitionsStates Main Factors Influencing Transitions Sub-factors Influencing Main Factors

Distance To Watering Point
Far aw ay
Average
Near

33.3
33.3
33.3

 
Fig. 4. Influence diagram of vegetation change for the Steppe zone of Ghom. Pal = Palatable, 
Per = Perennial, Unpla= Unpalatable, Gr = Grass, An = Annual 
 

Node States Definition 
 
 
 
Current 
State 

PSPG 
 
 
SSCPPG
 
 
SCPA 
 
 
SSCP 
 
 
UFAUS 
 
 
 

Palatable shrubs & Perennial grasses (PSPG), Including high frequency of 3P 
grasses (Productive, Palatable, Perennial) and palatable shrubs such as Salsola 
tomentosa and Andrachne sp, it has highest production and stability;  
Semi-shrub and Cushion-like plants & Perennial grasses (SSCPPG). This state 
represents the overall condition in the Steppe zones and contains Artemisia Sieberi 
and Stipa hohenackeriana and some Cushion-like plants as dominant species;  
Shrub, Cushion-like plants and Annuals (SCPA). Its composition is the same as 
SSCPPG but this state is highly preferred by sheep and goats due to of the 
abundant foliage of annuals. It is estimated this state can have up to 30% cover of 
annual grasses and forbs; Semi-shrub & Cushion-like plants (SSCP). In this state, 
palatable shrubs such as Salsola tomentosa have disappeared and frequency of tall 
grass species (e.g. Stipa hohenackeriana) decreases dramatically. Erosion is high;  
Unpalatable forbs, Annuals and Unpalatable shrubs (UFAUS). This state represents 
the most degraded state. There are no perennial grasses and Artmisia sieberi has low 
frequency. The percentage cover is less than 10% and erosion is high;  

Table 3. Continued 
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Fig. 2. Steps used to build a decision support tool. 

 
Fig. 3. This framework was used to construct Bayesian network structure from an STM 
(adapted from Bashari et al., 2009). 
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Next, states were defined for each node in the influence diagram. For the transition nodes, 
their states were the vegetation states in the STM. For the remaining nodes, that is the main 
factor and subfactor nodes, states were defined in consultation with the rangeland scientists 
who participated in building the STM. Figure 4 shows the completed influence diagram for 
the Steppe zone of Ghom and table 3 lists the states and the definitions for each node in the 
influence diagram.  

Monitoring data or simulation models were not available to populate the influence diagram 
with conditional probabilities, so subjective probability estimates were obtained from the 
rangeland scientists who participated in building the STM.  
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Fig. 4. Influence diagram of vegetation change for the Steppe zone of Ghom. Pal = Palatable, 
Per = Perennial, Unpla= Unpalatable, Gr = Grass, An = Annual 
 

Node States Definition 
 
 
 
Current 
State 

PSPG 
 
 
SSCPPG
 
 
SCPA 
 
 
SSCP 
 
 
UFAUS 
 
 
 

Palatable shrubs & Perennial grasses (PSPG), Including high frequency of 3P 
grasses (Productive, Palatable, Perennial) and palatable shrubs such as Salsola 
tomentosa and Andrachne sp, it has highest production and stability;  
Semi-shrub and Cushion-like plants & Perennial grasses (SSCPPG). This state 
represents the overall condition in the Steppe zones and contains Artemisia Sieberi 
and Stipa hohenackeriana and some Cushion-like plants as dominant species;  
Shrub, Cushion-like plants and Annuals (SCPA). Its composition is the same as 
SSCPPG but this state is highly preferred by sheep and goats due to of the 
abundant foliage of annuals. It is estimated this state can have up to 30% cover of 
annual grasses and forbs; Semi-shrub & Cushion-like plants (SSCP). In this state, 
palatable shrubs such as Salsola tomentosa have disappeared and frequency of tall 
grass species (e.g. Stipa hohenackeriana) decreases dramatically. Erosion is high;  
Unpalatable forbs, Annuals and Unpalatable shrubs (UFAUS). This state represents 
the most degraded state. There are no perennial grasses and Artmisia sieberi has low 
frequency. The percentage cover is less than 10% and erosion is high;  

Table 3. Continued 
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Node States Definition 
WW; 
 
 
 
IS 
 

Woody Weeds (WW). Although it is a highly stable state; its species are not edible 
by livestock. In the early years after ploughing, the frequency of Reseda sp is 
higher but later on Hulthemia persica, a native weed of the Steppe zone, becomes 
dominant;  
Introduced Species (IS). This state has two levels in which Atriplex spp constitutes 
the upper level, while various other species form the lower level of the vegetation 
structure. The percentage cover is low and the frequency of species such as 
Artemisia sieberi declines.

Time 
Frame 

< five 
years 
> five 
years 

Represent the likely years of transition under defined scenarios, Less than five 
years represents transitions occurring over short periods and more than five years 
represent transitions over longer periods of times (E.g. up to 10 or 20 years). 

From 
PSPG to 

No 
changes 
SSCPPG

The same as current state definition

From 
SSCPPG 
to 

PSPG 
SCPA 
No change
SSCP 
UFAUS 
WW 
IS 

 
 
The same as current state definition 

From 
SCPA to 

PSPG  
No 
change 
SSCPPG

The same as current state definition

From 
SSCP 
 

SSCPPG
No 
change 
UFAUS 
WW  

The same as current state definition

From 
UFAUS 
to 

SSCP 
IS 
No 
change 
WW 

The same as current state definition

From 
WW to 

IS 
No change

The same as current state definition

From  IS 
to 

No change
WW 

The same as current state definition

Grazing 
Impact 

None 
Low 
 
Moderate
 
 
 
High 

None : when destocked 
Low : when grazing pressure is low and grazing is during a time of range 
readiness 
Moderate : when the plant is affected by grazing but the grazing pressure is in line 
with the carrying capacity and the appropriate time of grazing; if the grazing 
occurs when the range is not in a stage of readiness, even the low grazing pressure 
can have a moderate grazing impact  
High : when the grazing pressure is high and the grazing occurs when the range is 
not in a stage of readiness 

Early 
Grazing 

No 
Yes 

Grazing rangeland prior to range readiness (e.g. grazing before grass plants reach 
the third leaf stage or grazing when soil is not dry enough to prevent damage to 
soil structure and plants)  

Table 3. Continued
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Node States Definition 
Grazing 
pressure 
 
 

None 
Low 
 
Moderate
High 

Represents the balance between how much the animals eat and how fast the 
pasture is growing. Grazing pressure (GP) = rate of removal of pasture / rate of 
supply of pasture. GP=0  None; GP<1, Low 
GP=1, Moderate, GP>1, High  

Growing 
condition 

Good 
 
Average
 
Poor 
Very poor

Good : when Soil Water Availability (SWA) is sufficient for plant growth and the 
temperature is appropriate 
Average : when the SWA is average and temperature does not produce a major 
limitation for plant growth 
Poor : when the SWA is low or temperature causes some limitation for plant growth 
Very Poor :when SWA is very low and/or temperature causes a major limitation 
for plant growth

Soil water 
availabi-
lity 

Hi 
 
Average
Low  
Very Low

Amounts of soil moisture (SM) available to support plant growth; High = when 
the soil water content is above the wilting point for most of the growing season 
Average: SM is available for 50 to 70% of the growing season 
Low : SM is available for 20 to 50%of the growing season 
Very Low : SM is available for less than 20% of the growing season

Transplan 
-ting  
Seedling 

Yes 
No 

Refers to whether seedlings of shrub species such as Atriplex spp are transplanted 
or not 

Ploughing No 
Yes 

Refers to whether a site is ploughed  or expansion of rainfed agriculture or not 

Erasing 
Woody 
weeds 

Yes 
No 

Refers to use of appropriate mechanical or chemical treatment to control and 
eradicate woody weeds 

Stocking 
rate 

De-
stocked 
Low 
Moderate
High 

It describes how many animals a site can support. Destocked : using enclosures to 
keep the livestock out of a site 
Low : the animal consumption is less than the available forage 
Moderate : the animal consumption and available forage is equal 
High : the animal consumption is more than the available forage.

Distance 
to Village 

Far away
Near 

Refers to the distance of the rangeland to the village, the closer the rangeland is to 
the village, the more likely it will be grazed by livestock

Drought No 
Yes 

Severe rainfall deficiencies over a year (there is a significant effect on vegetation 
when the rainfall is below 75% of the long term mean)

Soil 
Compac-
tion 
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High 
 

Refers to the severity of soil compression. Low : good soil structure, only slight 
evidence of hard pans or surface crust.  
High : poor soil structure, evidence of hard pans and surface crust 
 

Distance to 
watering 
point 

Far away
Average
Near 

Accessible area around watering points grazed heavily. Far away : >5 km away 
Average : 1km to 5 km,  
Near: < 1km

Water 
Harves-
ting 

Yes 
No 
 

Determines whether water harvesting techniques such as contour furrow or 
pitting are used or not 

Rainfall High 
Average
Low 

High : > 150mm in areas at 1000 m above sea level and >200 mm in areas above 1300 m  
Average : 150mm at 1000 m & 180mm at above 1300m 
Low : <150 at 1000m & <180mm at above 1300 m 

Tempera-
ture 

Appro-
priate 
Inappro
priate 

Explains the temperature conditions that affect the phenological status of plants; 
Appropriate: no unseasonal temperatures occur;  
Inappropriate : unseasonal temperatures occur and cause some damage to new 
growth.

Land 
ownership 

Yes 
No 

Explains the land tenure status: Yes:privately owned and used
No : publicly used 

Table 3. State definitions for nodes in the Steppe zone influence diagram (Fig. 4). 
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Node States Definition 
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Table 3. Continued
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Accessible area around watering points grazed heavily. Far away : >5 km away 
Average : 1km to 5 km,  
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Yes 
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No : publicly used 

Table 3. State definitions for nodes in the Steppe zone influence diagram (Fig. 4). 
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2.5 Making sense of the BBN model 

Finally, the behaviour of the model was tested using scenario and sensitivity analysis. The 
results of the sensitivity analysis were returned to the Iranian rangeland scientists for review 
and feedback. If the scientists disagreed with the behaviour of the model, the conditional 
probability tables were revisited. 

The sensitivity analysis revealed that grazing impact and growing condition were the two 
most important drivers of almost all transitions except for two (Table 4). “Grazing impact” 
represents the management influence on transitions and “growth condition” represents the 
environmental influence on transitions. These two had similar influences on most 
transitions. This result is supported by other studies in Iran, which suggest that frequent 
droughts coupled with mismanagement (e.g. overgrazing) combine to produce rapid land 
degradation (Nemati, 1986; Badripour, 2005). However, this result does not match the beliefs 
of governors or livestock managers. Most governors believe that grazing is the dominant 
factor responsible for rangeland degradation, while livestock managers believe that it is 
drought and growing conditions.  

Drought and time of grazing had an effect on many transitions but only through their affect 
on grazing impact. High grazing impact allows the establishment of undesirable shrub 
species such as Scariola orientalis and Noaea mucronata, which compete heavily with 
favourable species for limited resources, especially water. Over-utilization with prolonged 
drought can reduce the tussock size of desirable perennial grasses, increasing the risk that 
they will be permanently lost from the rangeland seed bank. Unseasonal temperatures and 
low soil water availability increased the likelihood of poor or very poor growing conditions, 
making transitions to unpalatable forbs and annual states more likely.  

The Steppe zone soil is generally low in organic matter. As a consequence, aggregate 
stability is low and the risk of soil compaction, surface sealing, and crust formation is high 
when overgrazing occurs, especially on silty soils. Hence, it is combination of poor soil 
characteristics and overgrazing that can lead to reduced rainfall effectiveness and soil water 
availability, triggering transitions to degraded states (Whisenant, 1999). In this case, water 
harvesting techniques are often needed to improve soil water availability and bring about 
transitions to palatable shrubs and perennial grasses. 

The planting of seedlings was important in avoiding transition to introduced species states. 
The establishment of sown shrubs can also benefit from water harvesting techniques 
(Schreiber & Frasier, 1978). Nemati (1986) found water harvesting treatments for 5 years led to 
the recovery of Artemisia sieberi, Stipa hohenackeriana, Aristida plumosa , Salsola spp., and 
Astragalus siliquosus in the Steppe zone. Irregular precipitation is the main reason for poor 
natural recruitment in rangelands and the establishment of sown rangelands in the Steppe 
zone (Monsen, 2002). It is therefore advisable to raise seedlings in a nursery and to transplant 
them prior to seasonal rains. Overgrazing, untimely grazing, drought and unseasonable 
temperatures can kill newly planted seedlings and thereby cause undesirable transitions. 

Ploughing was an important driver of transitions to a state of woody weeds. Ploughing is a 
common cause for the establishment of woody weeds, such as Reseda sp and Hulthemia 
persica, in the Steppe zone. Ploughing often occurs near villages, not for cultivation or the 
expansion of rainfed agriculture, but to claim land ownership. Transitions away from 
woody weed are very expensive and require weed control plus the sowing of improved 
rangeland species such as Atriplex spp and Eurotia ceratoides. Spelling of rangeland is also 
required to allow sown rangelands to establish. 
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2.6 The modelling approach 

BBN models have the ability to provide rangeland managers with decision support through 
their analytic capabilities. As mentioned before, two main types of analysis can be 
performed using a BBN, (a) prediction, and (b) diagnosis. Predictive analysis can be used to 
answer “what if” questions and diagnostic analysis can be used to answer “how” questions. 

Figure 5 is an example of the Steppe zone of Ghom BBN used for predictions. Here, the 
selected states of input nodes (outer boxes) represent a scenario for a site. In Figure 5, the 
site is currently in the “Palatable shrubs and perennial grasses” state and the model is being 
used to predict the chance of a transition away from this state within a more than five years 
timeframe (note that the state “More than five years” is selected in the “Timeframe” node). 
The model shows that, under the selected scenario, the chance of transition away from 
“Palatable shrubs and perennial grasses” to “Semi shrub and cushion like plant” is relatively 
high (60.9%). The model also indicates the probable causes for this transition, that is, the 
probable high grazing impact (91.3%) and poor growing condition (62.4%). These causes 
were also highlighted by sensitivity analysis using the model (Table 4), which showed that 
the transition from “Palatable shrubs and perennial grasses” to “Semi shrub and cushion 
like plant” was most sensitive to grazing impact and growing condition. Table 5 shows the 
full conditional probability table “From palatable shrubs & perennial grasses” state. 
 

Transition  
Number 
 

Transition 
Name 

Grazing 
impact 

Growing 
condition 

Ploughing Transplanting  
seedlings 

Erasing 
weeds 

1 I, II   * * * 
2 II, I     * 
3 II, III   * * * 
4 II, IV   * * * 
5 II, V   * * * 
6 II, VI    * * 
7 II, VII   *  * 
8 III, I   * * * 
9 III, II   * * * 

10 IV, II   * * * 
11 IV, V   * * * 
12 IV, VI    * * 
13 V, IV   * * * 
14 V, VI    * * 
15 VI, VII   *   

 

An asterix (*) means that this factor had no 
influence on the transition. 
 

Table 4. Summary of sensitivity analysis performed on the transition nodes in the Steppe 
BBN. The shading indicates the relative influence of factors on each transition, from most 
influential (black) to least influential (white). 
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2.6 The modelling approach 

BBN models have the ability to provide rangeland managers with decision support through 
their analytic capabilities. As mentioned before, two main types of analysis can be 
performed using a BBN, (a) prediction, and (b) diagnosis. Predictive analysis can be used to 
answer “what if” questions and diagnostic analysis can be used to answer “how” questions. 

Figure 5 is an example of the Steppe zone of Ghom BBN used for predictions. Here, the 
selected states of input nodes (outer boxes) represent a scenario for a site. In Figure 5, the 
site is currently in the “Palatable shrubs and perennial grasses” state and the model is being 
used to predict the chance of a transition away from this state within a more than five years 
timeframe (note that the state “More than five years” is selected in the “Timeframe” node). 
The model shows that, under the selected scenario, the chance of transition away from 
“Palatable shrubs and perennial grasses” to “Semi shrub and cushion like plant” is relatively 
high (60.9%). The model also indicates the probable causes for this transition, that is, the 
probable high grazing impact (91.3%) and poor growing condition (62.4%). These causes 
were also highlighted by sensitivity analysis using the model (Table 4), which showed that 
the transition from “Palatable shrubs and perennial grasses” to “Semi shrub and cushion 
like plant” was most sensitive to grazing impact and growing condition. Table 5 shows the 
full conditional probability table “From palatable shrubs & perennial grasses” state. 
 

Transition  
Number 
 

Transition 
Name 

Grazing 
impact 

Growing 
condition 

Ploughing Transplanting  
seedlings 

Erasing 
weeds 

1 I, II   * * * 
2 II, I     * 
3 II, III   * * * 
4 II, IV   * * * 
5 II, V   * * * 
6 II, VI    * * 
7 II, VII   *  * 
8 III, I   * * * 
9 III, II   * * * 

10 IV, II   * * * 
11 IV, V   * * * 
12 IV, VI    * * 
13 V, IV   * * * 
14 V, VI    * * 
15 VI, VII   *   

 

An asterix (*) means that this factor had no 
influence on the transition. 
 

Table 4. Summary of sensitivity analysis performed on the transition nodes in the Steppe 
BBN. The shading indicates the relative influence of factors on each transition, from most 
influential (black) to least influential (white). 
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Time_Frame
Less Than Five Years
More than Five Years

   0
 100

Land Ownership
Yes
No

   0
 100

Time of Grazing
Plants > 20cm tall, Soil > FC
Plants > 20cm tall, Soil < FC
Plants < 20cm tall, Soil > FC
Plants < 20cm tall, Soil < FC

   0
   0
   0

 100

Distance To Village
Far away
Near

   0
 100

Grazing Impact
None
Low
Moderate
High

5.00
0.15
3.60
91.3

Grazing Pressure
None
Low
Moderate
High

5.00
3.00
15.0
77.0

Soil Compaction
Low
High

17.5
82.5

Distance To Watering Point
Far away
Average
Near

   0
   0

 100

Soil Water availability
High
Moderate
Low
Very Low

58.7
41.2

   0
   0

Growing Conditions
Good
Average
Poor
Very Poor

   0
37.6
62.4

   0

Temperature
Appropriate
Inappropriate

   0
 100From Palatable shrubs and Perennial Gras...

No Change
Semi Shrub Cushion Like P...

39.1
60.9

Stocking Rate
None
Low
Moderate
High

5.00
15.0
10.0
70.0

 
Fig. 5. Prediction using the Steppe zone of Ghom BBN. 

 
Table 5. Full conditional probability table for “From palatable shrubs & perennial grasses” 
state relating “Time frame”, “Grazing impact” and “Growing conditions” to possible 
transitions. In this example, probabilities for the first row is read from the table as, when 
current state is “Palatable shrubs and perennial grasses”, “Time frame” is less than five years, 
“Grazing impact” is none and “Growing condition” is good, there is 100 % chance of “No 
changes” and 0% chance of a transition to “Semi shrub cushion-like plant & perennial grasses”.  

Making a Predictive Diagnostic Model for Rangeland Management by Implementing a  
State and Transition Model Within a Bayesian Belief Network (Case Study: Ghom- Iran) 

 

15 

Besides answering the “what if” questions the BBN model can also help to answer “how” 
questions. For example, how might a manager move from an “Semi shrub and cushion like 
plants” to a “Palatable shrubs and perennial grasses”? Figure 6 is an example of the Steppe 
zone of Ghom BBN being used to answer this question using diagnosis. The model shows 
that within a less than five year time frame, this transition is most likely if there is no 
grazing impact and also good growing condition (see the “Grazing impact” and “Growing 
condition” nodes), and this is most likely to be achieved by destocking (see the “Stocking 
rate” node). The model also shows that, more than average rainfall and appropriate 
temperature are important to achieving good growing condition (see the more than average 
in the rainfall and appropriate for temperature nodes).  

Soil Water availability
High
Moderate
Low
Very Low

 100
   0
   0
   0

Soil Compaction
Low
High

96.4
3.59

Grazing Pressure
None
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High
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Introduced Species
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Drought
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   0

Water Harvesting
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Fig. 6. Using the model for diagnostic assessment to determine the most likely causes of a 
transition. 

3. Conclusion 
The methodology used in this chapter (integrating the STM with the BBN) can provide a 
useful approach to accommodate uncertainty in highly uncertain systems (e.g. Iranian 
rangeland). Despite the advantage of STMs, they are traditionally descriptive diagrams and 
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Besides answering the “what if” questions the BBN model can also help to answer “how” 
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that within a less than five year time frame, this transition is most likely if there is no 
grazing impact and also good growing condition (see the “Grazing impact” and “Growing 
condition” nodes), and this is most likely to be achieved by destocking (see the “Stocking 
rate” node). The model also shows that, more than average rainfall and appropriate 
temperature are important to achieving good growing condition (see the more than average 
in the rainfall and appropriate for temperature nodes).  
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Fig. 6. Using the model for diagnostic assessment to determine the most likely causes of a 
transition. 

3. Conclusion 
The methodology used in this chapter (integrating the STM with the BBN) can provide a 
useful approach to accommodate uncertainty in highly uncertain systems (e.g. Iranian 
rangeland). Despite the advantage of STMs, they are traditionally descriptive diagrams and 
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are unable to be used for predictive modelling and scenario analysis. They also handle 
uncertainty associated with causes of vegetation change poorly. Bayesian Belief Network 
(BBN) used in this study assist in the development of a dynamic and predictive STM by 
providing a graphical modelling framework for building a probability-based cause and 
effect model. The results indicated that the BBN approach is a highly useful mechanism for 
adding value to descriptive STMs. First, it allowed the uncertainty in transitions to be 
expressed by using probabilistic relationships. Second, the approach provided a scenario 
and sensitivity analysis tool for both scientists and landholders to assess the probable 
vegetation outcomes of rangeland management decisions, and to identify those 
management options most likely to improve or degrade vegetation condition. Third, it is 
particularly complementary to the adaptive management process, because monitoring 
records can be used to update probability relationships within the BBN model over time. 
Therefore, the modelling approach supported the planning, monitoring and review steps of 
the adaptive management cycle. This is an advantage over current rangeland management 
simulation models that are good at supporting management planning through their 
predictive capabilities, but poor at supporting monitoring and evaluation steps.  

4. Acknowledgment 
I am grateful to Mr Seied Mehdi Adnani and Hossein Bagheri from natural resources and 
animal affairs research centre of Ghom province and Dr. Hossein Barani from Gorgan 
University for their participation in the workshops associated with this study and the 
sharing of their expert knowledge and also to professor Ockie Bosch and Dr. Carl Smith 
from the University of Queensland for their assistance in this study. 

5. References 
Allen-Diaz, B. & Bartolome, J.W. (1998). Sage Brush-Grass Vegetation Dynamics: Comparing 

Classical and State Transition Model. Ecological Application, vol.8, No. 3, pp. 795-804. 
Badripour, H. (2005). Country Pasture,Forage Resource Profiles-Islamic Republic of Iran, 

FAO, Available From  
 http://www.fao.org/ag/AGP/AGPC/doc/Counprof/Iran/Iran.htm 
Bashari, H.; Smith, C. & Bosch, O.j.H. (2009). Developing Decision Support Tools for 

Rangeland management by Combining State and Transition Models and Bayesian 
Belief Networks, Agricultural Systems,  Vol. 99, No.1, pp: 23- 34. 

Bosch, O.J.H., Ross, A.H. & Beeton, R.J.S. (2003). Integrating Science and Management 
through Collaborative Learning and Better Information Management. Systems 
Research and Behavioral Science System, Vol. 20, pp. 107-18. 

Briske, D.D, Fublendorf, S.D & Smeins, F.E (2005).State and Transition Models, Thresholds, 
and Rangeland Health: a Synthesis of Ecological Concepts and Prespectives. 
Rangeland Ecology & Management, Vol. 58, No. 1, pp. 1-10. 

Carlson, D.H., Thurow, T.L. & Jones, C.A. (1993).Biophysical Simulation Support Models as 
a Foundation of Decision Support Systems, In: Decision Support Systems for the 
management of Grazing Lands, J.W. Stuth, & B.G. Lyons (Ed.), , UNESCO and The 
Parthenon Publishing Group, Carnforth, UK. 

Friedel,M. (1991).Range Condition Assessment and the Concept of Thresholds: a Viewpoint. 
Journal of Range management, vol. 44, No. 5, pp. 422-6. 

Making a Predictive Diagnostic Model for Rangeland Management by Implementing a  
State and Transition Model Within a Bayesian Belief Network (Case Study: Ghom- Iran) 

 

17 

Gross, J., & McAllister, R. (2003). Modelling Rangeland as Complex Adaptive Social-
Ecological Systems, proceedings of VIIth International Rangeland Congress, 
Durban,South Africa. 

Gross, J.E., McAllister, R.R.J., Abel, N., Smith, D.M.S., & Maru, Y. (2006).Australian 
Rangelands as Ccomplex Adaptive Systems: A Conceptual Model and Preliminary 
Results. Environmental Modelling & Software, vol. 21, No. 9, pp. 1264-72. 

Hall, T.J., Filet, P.G., Banks, B., & Silcock, R.G. (1994). A State and Transition Model of the 
Aristida-Bothriochloa Pasture Community of Central and Southern Queensland. 
Tropical Grassland, Vol. 28, pp. 270-3. 

Jansen, F.V. (1996). An Introduction to Bayesian Networks, Springer Verlag, New York. 
Knapp, C.N.; Fernandez-Gimenez, M.; Kachergis, E. & Rudeen, A. (2011). Using 

Participatory Workshops to Integrate State-and-Transition Models Created With 
Local Knowledge and Ecological Data. Rangeland Ecology & Management, Vol. 64, 
No. 2, pp. 158-170. 

Laycock, W.A. (1991). Stable States and Thresholds of Range Condition on North American 
Rangeland: A View Point. Journal of Range management, vol. 44, No. 5, pp. 427-33. 

Loehle, C. (2004). Challenges of Ecological Complexity. Ecological complexity, Vol. 1, No. 1, 
pp. 3-6. 

Monsen, S.B. (2002).Ecotypic Variability, Seed Features, and Seedbed Requirements of Big 
Sagebrush., Paper Presented to Restoration and Management of Sagebrush/ Grass 
Communities Workshop, Elko, Nevada. 

Morghan, K.J.R., Sheley, R.L., & Svejcar, T.J. (2006).Successful Adaptive Management-the 
Integration of Research and Management. Rangeland ecology and management, Vol. 
59, No. 2, pp. 216-9. 

National Land & Water Resources Audit (2004). Natural Resources Models in the 
Rangelands, a Review Undertaken for the National Land and Water Resources Audit, 
CSIRO Sustainable Ecosystems, Brisbane. 

Nemati, N. (1977).Range rehabilitation Problems of the Steppic Zone of Iran. Journal of Range 
Management, Vol. 30, No. 5, pp. 339-42. 

Nemati, N. (1986). Pasture Improvement and Management in Arid Zones of Iran. Journal of 
Arid Environments, Vol. 11, No. 1, pp. 27-35. 

Phelps, D.G., & Bosch, O.J.H. (2002). A Quantitative State and Transition Model for the Mitchell 
Grasslands of Central Western Queensland. Rangeland, Vol. 24, No. 2, pp. 242-67. 

Pielke Jr, R.A. (2001). Room for Doubt. Nature, Vol. 410, pp. 151. 
Pielke Jr, R.A.(2003).The Role of Models in Prediction for Decision, In: Model in ecosystem 

science, C.D. Canham; J.J. Cole, & W.K. Lauenroth (Ed.), Princeton University Press, 
New Jersey. 

Provenza, F.D. (1991).View Point: Range Science and Range Management are 
Complementary but Distinct Endeavours. Journal of Range Management, Vol. 44, No. 
2, pp. 181-3. 

Ringold, P.L.; Alegaria, J.; Czaplewski, R.L; Mulder, B.S.; Tolie, T. & Burnett, K. (1996). 
Adaptive monitoring Design for Ecosystem Management, Ecological Application, 
Vol. 6, No. 3, pp. 745-7. 

Sabine, E.; Schreiber, G.; Bearlin, A.R.;Nicol, S.J. & Todd, C.R. (2004). Adaptive 
Management: a Synthesis of Current Understanding and Effective Application. 
Ecological Management & Restoration, Vol. 5, No. 3, pp. 177-82. 



 
Bayesian Networks 

 

16

are unable to be used for predictive modelling and scenario analysis. They also handle 
uncertainty associated with causes of vegetation change poorly. Bayesian Belief Network 
(BBN) used in this study assist in the development of a dynamic and predictive STM by 
providing a graphical modelling framework for building a probability-based cause and 
effect model. The results indicated that the BBN approach is a highly useful mechanism for 
adding value to descriptive STMs. First, it allowed the uncertainty in transitions to be 
expressed by using probabilistic relationships. Second, the approach provided a scenario 
and sensitivity analysis tool for both scientists and landholders to assess the probable 
vegetation outcomes of rangeland management decisions, and to identify those 
management options most likely to improve or degrade vegetation condition. Third, it is 
particularly complementary to the adaptive management process, because monitoring 
records can be used to update probability relationships within the BBN model over time. 
Therefore, the modelling approach supported the planning, monitoring and review steps of 
the adaptive management cycle. This is an advantage over current rangeland management 
simulation models that are good at supporting management planning through their 
predictive capabilities, but poor at supporting monitoring and evaluation steps.  

4. Acknowledgment 
I am grateful to Mr Seied Mehdi Adnani and Hossein Bagheri from natural resources and 
animal affairs research centre of Ghom province and Dr. Hossein Barani from Gorgan 
University for their participation in the workshops associated with this study and the 
sharing of their expert knowledge and also to professor Ockie Bosch and Dr. Carl Smith 
from the University of Queensland for their assistance in this study. 

5. References 
Allen-Diaz, B. & Bartolome, J.W. (1998). Sage Brush-Grass Vegetation Dynamics: Comparing 

Classical and State Transition Model. Ecological Application, vol.8, No. 3, pp. 795-804. 
Badripour, H. (2005). Country Pasture,Forage Resource Profiles-Islamic Republic of Iran, 

FAO, Available From  
 http://www.fao.org/ag/AGP/AGPC/doc/Counprof/Iran/Iran.htm 
Bashari, H.; Smith, C. & Bosch, O.j.H. (2009). Developing Decision Support Tools for 

Rangeland management by Combining State and Transition Models and Bayesian 
Belief Networks, Agricultural Systems,  Vol. 99, No.1, pp: 23- 34. 

Bosch, O.J.H., Ross, A.H. & Beeton, R.J.S. (2003). Integrating Science and Management 
through Collaborative Learning and Better Information Management. Systems 
Research and Behavioral Science System, Vol. 20, pp. 107-18. 

Briske, D.D, Fublendorf, S.D & Smeins, F.E (2005).State and Transition Models, Thresholds, 
and Rangeland Health: a Synthesis of Ecological Concepts and Prespectives. 
Rangeland Ecology & Management, Vol. 58, No. 1, pp. 1-10. 

Carlson, D.H., Thurow, T.L. & Jones, C.A. (1993).Biophysical Simulation Support Models as 
a Foundation of Decision Support Systems, In: Decision Support Systems for the 
management of Grazing Lands, J.W. Stuth, & B.G. Lyons (Ed.), , UNESCO and The 
Parthenon Publishing Group, Carnforth, UK. 

Friedel,M. (1991).Range Condition Assessment and the Concept of Thresholds: a Viewpoint. 
Journal of Range management, vol. 44, No. 5, pp. 422-6. 

Making a Predictive Diagnostic Model for Rangeland Management by Implementing a  
State and Transition Model Within a Bayesian Belief Network (Case Study: Ghom- Iran) 

 

17 

Gross, J., & McAllister, R. (2003). Modelling Rangeland as Complex Adaptive Social-
Ecological Systems, proceedings of VIIth International Rangeland Congress, 
Durban,South Africa. 

Gross, J.E., McAllister, R.R.J., Abel, N., Smith, D.M.S., & Maru, Y. (2006).Australian 
Rangelands as Ccomplex Adaptive Systems: A Conceptual Model and Preliminary 
Results. Environmental Modelling & Software, vol. 21, No. 9, pp. 1264-72. 

Hall, T.J., Filet, P.G., Banks, B., & Silcock, R.G. (1994). A State and Transition Model of the 
Aristida-Bothriochloa Pasture Community of Central and Southern Queensland. 
Tropical Grassland, Vol. 28, pp. 270-3. 

Jansen, F.V. (1996). An Introduction to Bayesian Networks, Springer Verlag, New York. 
Knapp, C.N.; Fernandez-Gimenez, M.; Kachergis, E. & Rudeen, A. (2011). Using 

Participatory Workshops to Integrate State-and-Transition Models Created With 
Local Knowledge and Ecological Data. Rangeland Ecology & Management, Vol. 64, 
No. 2, pp. 158-170. 

Laycock, W.A. (1991). Stable States and Thresholds of Range Condition on North American 
Rangeland: A View Point. Journal of Range management, vol. 44, No. 5, pp. 427-33. 

Loehle, C. (2004). Challenges of Ecological Complexity. Ecological complexity, Vol. 1, No. 1, 
pp. 3-6. 

Monsen, S.B. (2002).Ecotypic Variability, Seed Features, and Seedbed Requirements of Big 
Sagebrush., Paper Presented to Restoration and Management of Sagebrush/ Grass 
Communities Workshop, Elko, Nevada. 

Morghan, K.J.R., Sheley, R.L., & Svejcar, T.J. (2006).Successful Adaptive Management-the 
Integration of Research and Management. Rangeland ecology and management, Vol. 
59, No. 2, pp. 216-9. 

National Land & Water Resources Audit (2004). Natural Resources Models in the 
Rangelands, a Review Undertaken for the National Land and Water Resources Audit, 
CSIRO Sustainable Ecosystems, Brisbane. 

Nemati, N. (1977).Range rehabilitation Problems of the Steppic Zone of Iran. Journal of Range 
Management, Vol. 30, No. 5, pp. 339-42. 

Nemati, N. (1986). Pasture Improvement and Management in Arid Zones of Iran. Journal of 
Arid Environments, Vol. 11, No. 1, pp. 27-35. 

Phelps, D.G., & Bosch, O.J.H. (2002). A Quantitative State and Transition Model for the Mitchell 
Grasslands of Central Western Queensland. Rangeland, Vol. 24, No. 2, pp. 242-67. 

Pielke Jr, R.A. (2001). Room for Doubt. Nature, Vol. 410, pp. 151. 
Pielke Jr, R.A.(2003).The Role of Models in Prediction for Decision, In: Model in ecosystem 

science, C.D. Canham; J.J. Cole, & W.K. Lauenroth (Ed.), Princeton University Press, 
New Jersey. 

Provenza, F.D. (1991).View Point: Range Science and Range Management are 
Complementary but Distinct Endeavours. Journal of Range Management, Vol. 44, No. 
2, pp. 181-3. 

Ringold, P.L.; Alegaria, J.; Czaplewski, R.L; Mulder, B.S.; Tolie, T. & Burnett, K. (1996). 
Adaptive monitoring Design for Ecosystem Management, Ecological Application, 
Vol. 6, No. 3, pp. 745-7. 

Sabine, E.; Schreiber, G.; Bearlin, A.R.;Nicol, S.J. & Todd, C.R. (2004). Adaptive 
Management: a Synthesis of Current Understanding and Effective Application. 
Ecological Management & Restoration, Vol. 5, No. 3, pp. 177-82. 



 
Bayesian Networks 

 

18

Schreiber, H.A. & Frasier, G.W. (1978). Increasing rangeland Forage Production by Water 
Harvesting, Range Management, Vol. 31, No. 1, pp. 37-40. 

SRM, (1989). A Glossary of Terms used in Rrange Management. Third Ed., Soc. Range Manage, 
Denver, Colorado, U.S.A. 

Tueller, P. (1988). Vegetation Science Applications for Rangeland Analysis and Management, 
Kluwer Academic. 

Vayssieres, M.P. & Plant, R.E. (1998). Identification of Vegetation State- and- Transition Domains 
in California's Hardwood Rangelands., California Department of Forestry and Fire 
Protection, California. 

Walker, B.H. & Janseen, M.A. (2002). Rangelands, Pastoralists and Governments: Interlinked 
Systems of People and Nature. Royal society, Vol. 357, pp. 719-25. 

Westoby, M.; Walker, B. & Noy-Meir, I. (1989). Opportunistic Management for Rangelands 
not at Equilibrium', Journal of Range Management, Vol. 42, No. 4, pp. 266-74. 

Whisenant, S.G. (1999). Repairing Damaged Wildlands, Cambridge Universtity Press, 
Cambridge. 

2 

Building a Bayesian Network Model  
Based on the Combination of Structure 

Learning Algorithms and Weighting  
Expert Opinions Scheme  

Wichian Premchaiswadi and Nipat Jongsawat 
Graduate School of Information Technology in Business, Siam University 

Thailand 

1. Introduction  
Bayesian networks (BNs) is probabilistic graphical models that are widely used for building 
expert systems in several application domains. In the context of expert systems, either 
probabilistic or heuristic, the development of explanation facilities is important for three 
main reasons. First, the construction of those systems with the help of human experts is a 
difficult and time consuming task, and prone to errors and omissions. A Bayesian network 
tool can help the knowledge engineers and experts who are taking part in the project to 
debug the system when it does not yield the expected results and even before a malfunction 
occurs. Second, human beings are reluctant to accept the advice that is offered by a machine 
if they are not able to understand how the system arrived at those recommendations. Third, 
an expert system that is used as an intelligent tutor must be able to communicate to the 
apprentice the knowledge it contains, the way in which the knowledge has been applied to 
arrive at a conclusion, and what would have happened if the user had introduced different 
pieces of evidence (what-if reasoning). One of the most difficult obstacles in the practical 
application of probabilistic methods is the effort that is required for model building and, in 
particular, for quantifying graphical models with numerical probabilities. The construction 
of Bayesian Networks (BNs) with the help of human experts is a difficult and time 
consuming task, which is prone to errors and omissions especially when the problems are 
very complicated or there are numerous variables involved. Learning the structure of a BN 
model and causal relations from a dataset or database is important for extensive BNs 
analysis. In general, the causal structure and the numerical parameters of a BN can be 
obtained using two distinct approaches. First, they can be obtained from an expert. Second, 
they can also be learned from a data set. The main drawback of the first approach is that 
sometimes there is not enough causal knowledge to establish the structure of the network 
model with certainty and estimation of probabilities required for a typical application is a 
time-consuming task because of the number of parameters required (typically hundreds or 
even thousands of values). Thus, the second approach can initially help human experts or a 
group of experts build a BN model and they can make it applicable at a later time. In 
practice, some combination of these two approaches is typically used. 
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This article presents a SMILEBN web application for building a Bayesian network model. 
The SMILEBN can build a BN model based on using two techniques: 1) to build a BN model 
by applying the structure learning algorithms to a dataset, and 2) to use group decision 
making technique for weighting the degree of an expert’s opinion in identifying influential 
effects from parent variables to child variables in the model. Finally, the BN model which all 
the experts agree to use is obtained. In case that the BN model which is built from a data set 
is complex, the SMILEBN users can set a threshold value for the model in order to minimize 
the number of relationships among the nodes in the BN model. When the number of 
relationships among the nodes decreases, the complexity of the conditional probability table 
on each child node also decreases. 

This article is organized as follows: Section 2 addresses related work. Section 3 presents the 
tools that are used to build a BN causal structure from a dataset. Section 4 presents the 
method to use group decision making technique for weighting the degree of an expert’s 
opinion in identifying influential effects from parent variables to child variables. Section 5 
presents a SMILEBN web application. Section 6 presents a conclusion and discusses some 
perspectives and ideas for future work. 

2. Related work 
There are various kinds of software applications that can be used to create decision theoretic 
models, learn the causal structure, and perform diagnosis based on BNs. There are both 
commercial and non-commercial software applications available. The commercial software 
applications are widely used in a business environment. Many of them are integrated into 
business analysis software and used particularly for solving difficult business problems. The 
non-commercial software applications are extensively used for the educational purposes. 
This article reviews only the most relevant subset of non-commercial software applications 
based on BNs.    

B-Course is an analysis tool that was developed in the fields of Bayesian and causal 
modelling (Mylltmaki et al., 2002). It is a free web-based online data analysis tool, which 
allows users to analyze data for multivariate probabilistic dependencies. It also offers 
facilities for inferring certain type of causal dependencies from the data. B-Course is used 
via a web-browser, and requires the user’s data to be a text file with data presented in a 
tabular format typical for any statistical package (e.g., SPSS, Excel text format). It offers a 
simple three step procedure (data upload, model search, and analysis of the model) for 
building a BN dependency model. After searching the model, B-Course provides the best 
model to the user via a report. Users can continue to search for the next best model but they 
must make the decision for selecting the best model that fits their needs. Selecting the best 
model is sometimes very difficult for inexperienced users. In B-Course, there are no 
structural learning algorithms provided for the user to aid in selection. The analysis method, 
modelling assumptions, restrictions, model search algorithms, and parameter settings are 
totally transparent to the user.  

Elvira is a tool for building and evaluating graphical probabilistic models (Lacave et al., 
2007). It is a non web-based application. It is implemented in Java, so that it can run on 
different platforms. It contains a graphical interface for editing networks, with specific 
options for canonical models (e.g., OR, AND, MAX, etc.), exact and approximate algorithms 
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for discrete and continuous variables, explanation facilities, learning methods for building 
networks from databases, algorithms for fusing networks, etc. Elvira is structured as four 
main modules: (1) data representation- containing the definition of the data structures that 
are needed for managing BNs and IDs in Java, (2) data acquisition- including the classes that 
are necessary for saving and loading a network from either a file or a database, (3) 
processing - implementing the algorithms for processing and evaluating models, and (4) 
visualization - defining the Elvira graphical user interface (GUI) which obviously makes use 
of the classes that are included in the previous modules. 

GeNIe (Graphical Network Interface) is a versatile and user friendly development 
environment for building graphical decision models (Druzdzel, 1999). The original interface 
was designed for a Structural Modeling, Inference, and Learning Engine (SMILE). GeNIe 
may be seen as an outer shell to SMILE. GeNIe is implemented in Visual C++ and draws 
heavily on the Microsoft foundation classes. GeNIe provides numerous tools for users such 
as an interface to build Bayesian network models or influence diagrams, to learn the causal 
relationships of a model using various algorithms, and to perform model diagnosis. In order 
to use GeNIe efficiently, the GeNIe software must be installed and the user should have 
some background knowledge about probabilistic graphical models and become familiar 
with the tools provided in GeNIe. 

Poompuang, et al presents a development environment for building graphical decision-
theoretic models based on BNs and influence diagrams working on the website by utilizing 
an original engine called “SMILE” (Poompuang, et al., 2007). They propose the idea of 
building and developing graphical decision-theoretic models on a web page in order to 
overcome such the limitation of Bayesian belief network software developed on a windows-
based platform, which makes the models not easily portable and is limited in its graphical 
representation across multiple system platforms. They present a prototype of BN models 
and influence diagrams in a World Wide Web environment, which can be displayed by a 
standard web browser.  

Tungkasthan, et al presents a visualization of BN and influence Diagram models on a 
website (Tungkasthan et al., 2008). They develop an application based on the Macromedia 
Flash and Flash Remoting technologies. The application model on the client side is 
constructed by using the Macromedia Flash and the connection between a client and web 
server is developed by using the Flash Remoting technology. They use the capability of 
Marcomedia Flash and Flash Remoting technology to build richer, more interactive, more 
efficient, and more intuitive user interfaces for their applications than are possible with 
other web technologies such as JSP and Java applets. Their applications also provide a 
powerful, intuitive drag-and-drop graphical authoring tool that is comfortable for the users 
and have quick-loading and dynamic interfaces.  

Jongsawat, et al presents a SMILE web-based interface that permits users to build a BN 
causal structure from a dataset or database and perform Bayesian network diagnosis 
through the web (Jongsawat & Premchaiswadi, 2009). There are several learning algorithms 
such as Greedy Thick Thinning, PC, Essential Graph Search, and Naive Bayes provided for 
the user. The user can just select the desired learning algorithm and adjust its parameter 
settings to learn the model structure. After building the BN structure, the user is able to 
quantify uncertain interactions among random variables by setting observations (evidence) 
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presents a SMILEBN web application. Section 6 presents a conclusion and discusses some 
perspectives and ideas for future work. 

2. Related work 
There are various kinds of software applications that can be used to create decision theoretic 
models, learn the causal structure, and perform diagnosis based on BNs. There are both 
commercial and non-commercial software applications available. The commercial software 
applications are widely used in a business environment. Many of them are integrated into 
business analysis software and used particularly for solving difficult business problems. The 
non-commercial software applications are extensively used for the educational purposes. 
This article reviews only the most relevant subset of non-commercial software applications 
based on BNs.    

B-Course is an analysis tool that was developed in the fields of Bayesian and causal 
modelling (Mylltmaki et al., 2002). It is a free web-based online data analysis tool, which 
allows users to analyze data for multivariate probabilistic dependencies. It also offers 
facilities for inferring certain type of causal dependencies from the data. B-Course is used 
via a web-browser, and requires the user’s data to be a text file with data presented in a 
tabular format typical for any statistical package (e.g., SPSS, Excel text format). It offers a 
simple three step procedure (data upload, model search, and analysis of the model) for 
building a BN dependency model. After searching the model, B-Course provides the best 
model to the user via a report. Users can continue to search for the next best model but they 
must make the decision for selecting the best model that fits their needs. Selecting the best 
model is sometimes very difficult for inexperienced users. In B-Course, there are no 
structural learning algorithms provided for the user to aid in selection. The analysis method, 
modelling assumptions, restrictions, model search algorithms, and parameter settings are 
totally transparent to the user.  

Elvira is a tool for building and evaluating graphical probabilistic models (Lacave et al., 
2007). It is a non web-based application. It is implemented in Java, so that it can run on 
different platforms. It contains a graphical interface for editing networks, with specific 
options for canonical models (e.g., OR, AND, MAX, etc.), exact and approximate algorithms 
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for discrete and continuous variables, explanation facilities, learning methods for building 
networks from databases, algorithms for fusing networks, etc. Elvira is structured as four 
main modules: (1) data representation- containing the definition of the data structures that 
are needed for managing BNs and IDs in Java, (2) data acquisition- including the classes that 
are necessary for saving and loading a network from either a file or a database, (3) 
processing - implementing the algorithms for processing and evaluating models, and (4) 
visualization - defining the Elvira graphical user interface (GUI) which obviously makes use 
of the classes that are included in the previous modules. 

GeNIe (Graphical Network Interface) is a versatile and user friendly development 
environment for building graphical decision models (Druzdzel, 1999). The original interface 
was designed for a Structural Modeling, Inference, and Learning Engine (SMILE). GeNIe 
may be seen as an outer shell to SMILE. GeNIe is implemented in Visual C++ and draws 
heavily on the Microsoft foundation classes. GeNIe provides numerous tools for users such 
as an interface to build Bayesian network models or influence diagrams, to learn the causal 
relationships of a model using various algorithms, and to perform model diagnosis. In order 
to use GeNIe efficiently, the GeNIe software must be installed and the user should have 
some background knowledge about probabilistic graphical models and become familiar 
with the tools provided in GeNIe. 

Poompuang, et al presents a development environment for building graphical decision-
theoretic models based on BNs and influence diagrams working on the website by utilizing 
an original engine called “SMILE” (Poompuang, et al., 2007). They propose the idea of 
building and developing graphical decision-theoretic models on a web page in order to 
overcome such the limitation of Bayesian belief network software developed on a windows-
based platform, which makes the models not easily portable and is limited in its graphical 
representation across multiple system platforms. They present a prototype of BN models 
and influence diagrams in a World Wide Web environment, which can be displayed by a 
standard web browser.  

Tungkasthan, et al presents a visualization of BN and influence Diagram models on a 
website (Tungkasthan et al., 2008). They develop an application based on the Macromedia 
Flash and Flash Remoting technologies. The application model on the client side is 
constructed by using the Macromedia Flash and the connection between a client and web 
server is developed by using the Flash Remoting technology. They use the capability of 
Marcomedia Flash and Flash Remoting technology to build richer, more interactive, more 
efficient, and more intuitive user interfaces for their applications than are possible with 
other web technologies such as JSP and Java applets. Their applications also provide a 
powerful, intuitive drag-and-drop graphical authoring tool that is comfortable for the users 
and have quick-loading and dynamic interfaces.  

Jongsawat, et al presents a SMILE web-based interface that permits users to build a BN 
causal structure from a dataset or database and perform Bayesian network diagnosis 
through the web (Jongsawat & Premchaiswadi, 2009). There are several learning algorithms 
such as Greedy Thick Thinning, PC, Essential Graph Search, and Naive Bayes provided for 
the user. The user can just select the desired learning algorithm and adjust its parameter 
settings to learn the model structure. After building the BN structure, the user is able to 
quantify uncertain interactions among random variables by setting observations (evidence) 



 
Bayesian Networks 

 

22

and use this quantification to determine the impact of the observations. The SMILE web-
based interface was developed based on SMILE, SMILEarn, and SMILE.NET. It uses a novel, 
user-friendly interface which interweaves the steps in the BN analysis with brief support 
instructions on the web page. They also present a technique to dynamically feed data into a 
diagnostic BN model and a web-based user interface for the models (Jongsawat et al., 2010). 
In their work, the BN model (the students’ attitude towards several factors in a college 
enrolment decision) is fixed and the data obtained from an online questionnaire are saved 
into a database and transferred to the model. The user can observe the changes in the 
probability values and the impact the changes have on each node in real-time after clicking 
on a belief update button. Users can also perform Bayesian inference in the model and they 
can compute the impact by observing values of a subset of the model variables on the 
probability distribution over the remaining variables based on real-time data. They also 
present a methodology based on group decision making for weighting expert opinions or 
the degree of an expert’s belief in identifying the causal relationships between variables in a 
BN model (Jongsawat et al., 2010). 

3. Tools to build a bayesian network causal structure from a dataset 
The core reasoning engines of the web-based interface development capability proposed in 
this article consist of SMILE (Structural Modeling, Inference, and Learning Engine), 
SMILEarn, and JSMILE. SMILE is a reasoning engine that is used for graphical probabilistic 
models and provides functionality to perform diagnosis. SMILEarn is used for obtaining 
data from a data source, pre-processing the data, and learning the causal structure of BN 
models. JSMILE is used for accessing the SMILE library from the web-based interface. This 
section provides some more detailed information about SMILE, SMILEarn and JSMILE 
wrapper. 

SMILE is a fully platform independent library of functions implementing graphical 
probabilistic and decision-theoretic models, such as Bayesian networks, influence diagrams 
(IDs), and structural equation models (Druzdzel, 1999). Its individual functions, defined in 
the SMILE Application Programmer Interface (API), allow creating, editing, saving, and 
loading graphical models, and using them for probabilistic reasoning and decision making 
under uncertainty. SMILE can be embedded in programs that use graphical probabilistic 
models as their reasoning engines. Models developed in SMILE can be equipped with a user 
interface that best suits the user of the resulting application. SMILE is written in C++ in a 
platform-independent manner and is fully portable. Model building and the reasoning 
process are under full control of the application program as the SMILE library serves merely 
as a set of tools and structures that facilitates them. 

SMILEarn extends the functionality provided by SMILE. It provides a set of specialized 
classes that implement learning algorithms and other useful tools for automatically building 
graphical models from data. It is a C++ library that contains a set of data structures, classes, 
and functions that implement learning algorithms for graphical models and includes other 
functionality (such as data access, storage and pre-processing) that can be used in a model in 
conjunction with SMILE. Although SMILEarn is a module of SMILE, which means that it 
requires SMILE to be used, but one can use SMILE without the need to install and use 
SMILEarn.  
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JSMILE is a library of java classes for reasoning about graphical probabilistic models, such 
as Bayesian networks and influence diagrams. It can be embedded in programs that use 
graphical probabilistic models as a reasoning engine. It is a wrapper library that enables 
access to the SMILE and SMILEXML C++ libraries from java applications. JSMILE is not 
limited to stand-alone applications. It can also be used on the back-end side of a multi-tiered 
application.  

4. Weighting expert opinions scheme 
We apply the weighting expert opinions scheme to the BN model, which is constructed 
based on the core reasoning engines mentioned in previous section. In this section we 
present the sequence of steps in the decision making procedure using the weighting expert 
opinions scheme. The sequence of decision procedure is described as follows. 

Let V = {v1,…,vm} be a set of decision makers (or experts) who present their opinions on the 
pairs of a set of alternatives X = {x1,…,xn} where m is the number of experts and n is the 
number of alternatives in a set. Both m and n must be greater than or equal to 3; m, n ≥ 3. 
P(V) denotes the power set of V(I ∊ P(V)). Linear orders are binary relations satisfying 
reflexivity, antisymmetry and transitivity, and weak orders (or complete preorders) are 
complete and transitive binary relations. With |I| we denote the cardinality of I. 

We consider that each expert classifies the alternatives within a set of linguistic categories  
L = {l1,…,lq}, with q ≥ 2, linearly ordered l1> l2>…>lq (Herrera, 2000: Yager, 1993). The 
individual assignment of each expert vi is a mapping Ci = X → L which assigns a linguistic 
category Ci(xu) ∊ L to each alternative xu ∊ X. Associated with Ci, we consider the weak 
order Ri defined by xuRixv if Ci(xu) ≥ Ci(xv). It is important to note that experts are not totally 
free in declaring preferences. They have to adjust their opinions to the set of linguistics 
categories, so the associated weak orders depend on the way they sort the alternatives 
within the fixed scheme provided by L = {l1,…,lq}. For instance, for q = 5 expert-1 can 
associate the assignment: C1(x3) = l1, C1(x1) = C1(x2) = C1(x4) = l2, C1(x5) = l3, C1(x6) = C1(x7) = 
l4, C1(x8) = C1(x9) = l5; expert 2 can associate the assignment: C2(x1) = l1, C2(x4) = l2, C2(x5) = l3, 
C2(x7) = C2(x8) = l4, C2(x2) = C2(x3) = C2(x6) =  l5; and so on. A profile is a vector C = (C1,…,Cm) 
of individual assignments. We denote by C the set of profile.  

Every linguistic category lk ∊ L has associated a score sk ∊ R in such a way that s1 ≥ s2 ≥ … ≥ 
sp. For the expert vi, let Si → R be the mapping which assigns the score to each alternative, 
Si(xu) = sk whenever Ci(xu) = lk. The scoring vector of vi is (Si(x1),…,Si(xn)).     

Naturally, if si > sj for all i, j ∊ {1,…,q} such that i > j, then each linguistic category is 
determined by its associated score. Thus, given the scoring vector of an expert we directly 
know the way this individual sorted the alternatives. Although linguistic categories are 
equivalent to decreasing sequences of scores, there exist clear differences from a behavioral 
point of view.  

4.1 Sort the alternatives and assign a score 

Experts {v1,…,vm} sort the alternatives of  X = {x1,…,xn} according to the linguistic categories 
of L = {l1,…,lq}. Then, we obtain individual weak orders R1,…,Rm which ranks the 
alternatives within the fixed set of linguistic categories. Next, taking into account the scores 
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and use this quantification to determine the impact of the observations. The SMILE web-
based interface was developed based on SMILE, SMILEarn, and SMILE.NET. It uses a novel, 
user-friendly interface which interweaves the steps in the BN analysis with brief support 
instructions on the web page. They also present a technique to dynamically feed data into a 
diagnostic BN model and a web-based user interface for the models (Jongsawat et al., 2010). 
In their work, the BN model (the students’ attitude towards several factors in a college 
enrolment decision) is fixed and the data obtained from an online questionnaire are saved 
into a database and transferred to the model. The user can observe the changes in the 
probability values and the impact the changes have on each node in real-time after clicking 
on a belief update button. Users can also perform Bayesian inference in the model and they 
can compute the impact by observing values of a subset of the model variables on the 
probability distribution over the remaining variables based on real-time data. They also 
present a methodology based on group decision making for weighting expert opinions or 
the degree of an expert’s belief in identifying the causal relationships between variables in a 
BN model (Jongsawat et al., 2010). 

3. Tools to build a bayesian network causal structure from a dataset 
The core reasoning engines of the web-based interface development capability proposed in 
this article consist of SMILE (Structural Modeling, Inference, and Learning Engine), 
SMILEarn, and JSMILE. SMILE is a reasoning engine that is used for graphical probabilistic 
models and provides functionality to perform diagnosis. SMILEarn is used for obtaining 
data from a data source, pre-processing the data, and learning the causal structure of BN 
models. JSMILE is used for accessing the SMILE library from the web-based interface. This 
section provides some more detailed information about SMILE, SMILEarn and JSMILE 
wrapper. 

SMILE is a fully platform independent library of functions implementing graphical 
probabilistic and decision-theoretic models, such as Bayesian networks, influence diagrams 
(IDs), and structural equation models (Druzdzel, 1999). Its individual functions, defined in 
the SMILE Application Programmer Interface (API), allow creating, editing, saving, and 
loading graphical models, and using them for probabilistic reasoning and decision making 
under uncertainty. SMILE can be embedded in programs that use graphical probabilistic 
models as their reasoning engines. Models developed in SMILE can be equipped with a user 
interface that best suits the user of the resulting application. SMILE is written in C++ in a 
platform-independent manner and is fully portable. Model building and the reasoning 
process are under full control of the application program as the SMILE library serves merely 
as a set of tools and structures that facilitates them. 

SMILEarn extends the functionality provided by SMILE. It provides a set of specialized 
classes that implement learning algorithms and other useful tools for automatically building 
graphical models from data. It is a C++ library that contains a set of data structures, classes, 
and functions that implement learning algorithms for graphical models and includes other 
functionality (such as data access, storage and pre-processing) that can be used in a model in 
conjunction with SMILE. Although SMILEarn is a module of SMILE, which means that it 
requires SMILE to be used, but one can use SMILE without the need to install and use 
SMILEarn.  
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JSMILE is a library of java classes for reasoning about graphical probabilistic models, such 
as Bayesian networks and influence diagrams. It can be embedded in programs that use 
graphical probabilistic models as a reasoning engine. It is a wrapper library that enables 
access to the SMILE and SMILEXML C++ libraries from java applications. JSMILE is not 
limited to stand-alone applications. It can also be used on the back-end side of a multi-tiered 
application.  

4. Weighting expert opinions scheme 
We apply the weighting expert opinions scheme to the BN model, which is constructed 
based on the core reasoning engines mentioned in previous section. In this section we 
present the sequence of steps in the decision making procedure using the weighting expert 
opinions scheme. The sequence of decision procedure is described as follows. 

Let V = {v1,…,vm} be a set of decision makers (or experts) who present their opinions on the 
pairs of a set of alternatives X = {x1,…,xn} where m is the number of experts and n is the 
number of alternatives in a set. Both m and n must be greater than or equal to 3; m, n ≥ 3. 
P(V) denotes the power set of V(I ∊ P(V)). Linear orders are binary relations satisfying 
reflexivity, antisymmetry and transitivity, and weak orders (or complete preorders) are 
complete and transitive binary relations. With |I| we denote the cardinality of I. 

We consider that each expert classifies the alternatives within a set of linguistic categories  
L = {l1,…,lq}, with q ≥ 2, linearly ordered l1> l2>…>lq (Herrera, 2000: Yager, 1993). The 
individual assignment of each expert vi is a mapping Ci = X → L which assigns a linguistic 
category Ci(xu) ∊ L to each alternative xu ∊ X. Associated with Ci, we consider the weak 
order Ri defined by xuRixv if Ci(xu) ≥ Ci(xv). It is important to note that experts are not totally 
free in declaring preferences. They have to adjust their opinions to the set of linguistics 
categories, so the associated weak orders depend on the way they sort the alternatives 
within the fixed scheme provided by L = {l1,…,lq}. For instance, for q = 5 expert-1 can 
associate the assignment: C1(x3) = l1, C1(x1) = C1(x2) = C1(x4) = l2, C1(x5) = l3, C1(x6) = C1(x7) = 
l4, C1(x8) = C1(x9) = l5; expert 2 can associate the assignment: C2(x1) = l1, C2(x4) = l2, C2(x5) = l3, 
C2(x7) = C2(x8) = l4, C2(x2) = C2(x3) = C2(x6) =  l5; and so on. A profile is a vector C = (C1,…,Cm) 
of individual assignments. We denote by C the set of profile.  

Every linguistic category lk ∊ L has associated a score sk ∊ R in such a way that s1 ≥ s2 ≥ … ≥ 
sp. For the expert vi, let Si → R be the mapping which assigns the score to each alternative, 
Si(xu) = sk whenever Ci(xu) = lk. The scoring vector of vi is (Si(x1),…,Si(xn)).     

Naturally, if si > sj for all i, j ∊ {1,…,q} such that i > j, then each linguistic category is 
determined by its associated score. Thus, given the scoring vector of an expert we directly 
know the way this individual sorted the alternatives. Although linguistic categories are 
equivalent to decreasing sequences of scores, there exist clear differences from a behavioral 
point of view.  

4.1 Sort the alternatives and assign a score 

Experts {v1,…,vm} sort the alternatives of  X = {x1,…,xn} according to the linguistic categories 
of L = {l1,…,lq}. Then, we obtain individual weak orders R1,…,Rm which ranks the 
alternatives within the fixed set of linguistic categories. Next, taking into account the scores 
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s1,…,sp associated with l1,…,lq, a score is assigned to each alternative for every expert: Si(xu),  
I = 1,…m; u = 1,…,n. 

4.2 Calculate the euclidean distance 

In order to have some information about the agreement in each subset of experts, we first 
calculate a distance between pairs of preferences (scoring vector). Since the arithmetic mean 
minimizes the sum of distances to individual values with respect to the Euclidean metric, it 
seems reasonable to use this metric for measuring the distance among scoring vectors. Let 
(S(x1),…,S(xn)) and (S'(x1),…,S'(xn)) be two individual or collective scoring vectors. The 
distance between these vectors by means of the Euclidean metric is derived by (1). 
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4.3 Aggregate the expert opinions 
We aggregate the expert opinions by means of collective scores which are defined as the 
average of the individual scores. There are several steps in this procedure. 

4.3.1 Calculate the overall agreement measure 

We calculate a specific agreement measure which is based on the distances among 
individual and collective scoring vectors in each subset of experts. The overall agreement 
measure is derived by (2). 
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We note that 1S n  is the maximum distance among scoring vectors, clearly between 
(S(x1),…, S(xn)) = (s1,…, s1) and (S'(x1),…, S'(xn)) = (0,…,0); d(S, S') = 1S n .                          
M(C, I) is equal to 0 if I = . Then, M(C, I) ∊ [0, 1], for every (C, I) ∊ C x P(V). It is easy to see 
that the overall agreement measure satisfies the other axioms of (Bosch, 2005), Anonymity 
and Neutrality. 

4.3.2 Calculate the overall contribution to the agreement 

We now calculate an index which measures the overall contribution to agreement by each 
expert with respect to a fixed profile, by adding up the marginal contributions to the 
agreement in all subsets of experts. The overall contribution to the agreement of expert vi 
with respect to a profile is defined by (3). 
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If wi > 0, we can conclude that expert vi positively contributes to the agreement; and if         
wi < 0, we can conclude that that expert vi negatively contributes to the agreement. 
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4.3.3 Calculate the weak order 

We now introduce a new collective preference by weighting the score which experts 
indirectly assign to alternatives with the corresponding overall contribution to the 
agreement indices. The collective weak order associated with the weighting vector w = 
(w1,…,wm), Rw, is defined by (4) and (5). 
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Consequently, we prioritize the experts in order of their contribution to agreement (Cook et 
al., 1996). 

5. SMILEBN web application 
The following steps in this section describe how a SMILEBN web application works for 
creating the BN models based on the combination of structure learning algorithms and 
weighting expert opinions scheme. The structure of the proposed framework is presented in 
Fig. 1. It shows a practical framework for building diagnostic Bayesian networks based on 
both learning algorithms and expert beliefs.  

 
Fig. 1. A Practical framework for building diagnostic Bayesian networks based on both 
learning algorithms and expert beliefs 

The first step is to import the data from a database or the data stored in the text file to the 
SMILEBN web application. Users select the file from the list and then clicks on “OK” button. 



 
Bayesian Networks 

 

24
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(S(x1),…,S(xn)) and (S'(x1),…,S'(xn)) be two individual or collective scoring vectors. The 
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Fig. 1. It shows a practical framework for building diagnostic Bayesian networks based on 
both learning algorithms and expert beliefs.  

 
Fig. 1. A Practical framework for building diagnostic Bayesian networks based on both 
learning algorithms and expert beliefs 

The first step is to import the data from a database or the data stored in the text file to the 
SMILEBN web application. Users select the file from the list and then clicks on “OK” button. 
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SMILEBN uses the data grid view to display the loaded data files and let's users work with 
them much like with spreadsheets. If the data file does not contain any missing values, 
SMILEBN will inform the users about that and “Next” button will be enabled. Otherwise, 
SMILEBN will tell how many rows were selected and the corresponding ones will become 
highlighted in the data grid. Users must solve the missing values manually (See Fig. 2 and 
Fig. 3). Once they have a data set prepared they can proceed to learning the network by 
picking the method and setting it's parameters. Note that if the data set contains continuous 
variables they will need to be discretized for some learning methods to be able to run, e.g. 
Naive (See Fig. 4 and Fig. 5). Fig. 6 shows the structure of a Bayesian network after applying 
the learning process. It shows the probability values over all nodes after performing 
Bayesian updating or belief updating  (by clicking on “Update Belief” button) when the 
users move the mouse cursor over any node (See Fig.7). The user is allowed to perform a 
model diagnosis by entering observations (evidence) for some of the context and evidence 
variables. Fig. 8 shows the screenshot of the BN model diagnosis. The user begins the BN 
model diagnosis by performing a right click on a node and selects the state for setting the 
evidence for the test. 

After setting the evidence, they click on the “Update Belief” button to update the model. Fig. 
2 - Fig. 8 mainly show the methods to build a BN model in the SMILEBN web application 
based on the structure learning algorithms mentioned in section 3. Next the weighting 
expert opinions scheme will be applied to the BN model. 

 
Fig. 2. Importing the data files 

 
Fig. 3. Data grid view to display the loaded data files 
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Fig. 4. Selecting the learning algorithms 

 

 
Fig. 5. Setting learning algorithm's parameter 

 

 
Fig. 6. The structure of a Bayesian network after applying the learning process 
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Fig. 2. Importing the data files 

 
Fig. 3. Data grid view to display the loaded data files 
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Fig. 4. Selecting the learning algorithms 

 

 
Fig. 5. Setting learning algorithm's parameter 

 

 
Fig. 6. The structure of a Bayesian network after applying the learning process 
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Fig. 7. Bayesian network with the probability values over all nodes after performing 
Bayesian updating (belief updating) 

 
Fig. 8. Selecting an evidence corresponding to the node 

 
Fig. 9. Specifying the number of the expert(s) 
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or the degree of an expert’s belief in identifying the causal relationships between variables 
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experts and to minimize the number of relationships among the nodes in the model for 
simplicity by setting a threshold value. The methodology consists of three sequential steps.  

First, in a pre-processing step, all the experts in group must agree with each other for the BN 
model that is built based on the structure learning algorithms.  

Second, we map every pair of causal variables into alternatives. Then, experts sort the 
alternatives by means of a fixed set of linguistic categories; each one has associated a numerical 
score. We average the scores obtained by each alternative and we consider the associated 
preference. Then we obtain a distance between each individual preference and the collective 
one through the Euclidean distance among the individual and collective scoring vectors. 
Taking into account these distances, we measure the agreement in each subset of experts, and 
a weight is assigned to each expert. We calculate the collective scores after we weight the 
opinions of the experts with the overall contributions to agreement. Those experts whose 
overall contribution to the agreement is negative are excluded and we re-calculate the decision 
procedure with only the opinions of the experts which positively contribute to agreement. The 
sequential decision procedure is repeated until it determines a final subset of experts where all 
of them positively contribute to agreement for group decision making. Lastly, we transform 
the alternatives and the collective scores that we obtain from previous step into the BN 
models. The mathematical formulas for this scheme are mentioned in section 4.  

In the application point of view, users select the number of the experts (See Fig.9). In this 
example, we have a group of four experts who participate in identifying the degree of 
influential effects for the causal relationships in a BN model. The level of influential effects 
among the nodes based on each expert’s belief is specified (See Fig.10). Each expert is asked to 
perform this task one by one. When all experts have completed this task, the BN model with 
the degree of expert’s belief among causal relationship variables in the initial step of the 
decision procedure is presented (See Fig.11). Fig.12 shows the BN model and the degree of 
expert’s belief among variables in normalized form (0..1) when users click on the 
“Normalized” button. Fig.13 shows the simplified BN model in the initial step of the decision 
procedure when users set a threshold value and click on “OK” button. They can select the 
other steps of the decision procedure from the list in a combo box below the model window 
and perform the same steps as presented in Fig.12 and Fig.13. The number of steps of the 
decision procedure depends on the number of expert and the ways they identify the degree of 
influential effects for the causal relationships in a BN model. Fig.14 – Fig.16 shows the BN  

 
Fig. 10. Specifying the level of influential effects among the nodes based on expert’s belief 
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model, the model in normalized form, and the model with a threshold value = 0.2 in the first 
step of the decision procedure. Fig.17 – Fig.19 shows the BN model, the model in normalized 
form, and the model with a threshold value = 0.3 in the second step of the decision procedure. 

 
Fig. 11. BN model and the degree of expert’s belief among causal relationship variables 
(initial step of the decision procedure) 

 
Fig. 12. BN model and the degree of expert’s belief among causal relationship variables in 
normalized form (initial step of the decision procedure) 

 
Fig. 13. BN model and the degree of expert’s belief among causal relationship variables after 
applying the threshold value (initial step of the decision procedure) 
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Fig. 14. BN model and the degree of expert’s belief among causal relationship variables (first 
iteration of the decision procedure) 

 
Fig. 15. BN model and the degree of expert’s belief among causal relationship variables in 
normalized form (first iteration of the decision procedure) 

 
Fig. 16. BN model and the degree of expert’s belief among causal relationship variables after 
applying the threshold value = 0.2 (first iteration of the decision procedure) 
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Fig. 15. BN model and the degree of expert’s belief among causal relationship variables in 
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Fig. 17. BN model and the degree of expert’s belief among causal relationship variables 
(second iteration of the decision procedure) 

 
Fig. 18. BN model and the degree of expert’s belief among causal relationship variables in 
normalized form (second iteration of the decision procedure) 

 
Fig. 19. BN model and the degree of expert’s belief among causal relationship variables after 
applying the threshold value = 0.3 (first iteration of the decision procedure) 
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6. Conclusion and future work 
This article presents a SMILEBN web application for building a Bayesian network model. 
The SMILEBN can build a BN model based on using two approaches. First, a BN model is 
built by applying the structure learning algorithms to a dataset. The variables in a dataset 
can be both discrete and continuous variables. The core reasoning engines of the SMILEBN 
web application consist of SMILE, SMILEarn, and JSMILE. SMILE is used for graphical 
probabilistic models and provides functionality to perform diagnosis. SMILEarn is used for 
obtaining data from a data source, pre-processing the data, and learning the causal structure 
of BN models. JSMILE is used for accessing the SMILE library from the web-based interface. 
Second, group decision making technique for weighting expert opinions scheme is applied 
to the BN model. This scheme is used to identify influential effects from parent variables to 
child variables in the BN model based on having information about the agreement and 
overall agreement measure produced by a group of experts. The sequential decision 
procedure is repeated until it determines a final subset of experts where all of them 
positively contribute to agreement for group decision making. Several steps of the decision 
procedure will be generated. The aims of the second approach are that we need to obtain the 
BN model, which all the experts agree to use, and to minimize the number of relationships 
among the nodes in the model for simplicity by setting a threshold value. When the number 
of relationships among the nodes decreases, the complexity of the conditional probability 
table on each child node also decreases. 

Our future work will focus on improving a decision-oriented diagnosis approach. The 
SMILEBN will be extended to cope with influence or relevance diagrams.  
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Fig. 19. BN model and the degree of expert’s belief among causal relationship variables after 
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1. Introduction 
Investigating resiliency and interdependency of critical urban infrastructure has been the 
topic of interest in recent years (see for example, Zhang and Peeta 2011; Oh 2010). This is 
because of a surge in natural and man-made disasters over the last decade and limited 
resources available to cope with the resulting infrastructure failure. With an increased level 
of interdependencies among infrastructures, the potential for cascading failures are of a 
great concern. A cascading failure is one in which a failure in one infrastructure system 
causes the failure in one or more components of a second infrastructure (Rinaldi et al., 2001). 
Much of today’s emergency preparedness research is heavily focused on what is considered 
by many to be the eight “critical” infrastructures: (1) Telecommunications, (2) Electric Power 
Systems, (3) Natural Gas and Oil, (4) Banking and Finance, (5) Transportation, (6) Water 
Supply Systems, (7) Government Services and (8) Emergency Services. Within the United 
States’ transportation infrastructure systems, there exists approximately 5,000 public 
airports; 590,000 highway bridges; 120,000 miles of major railroad tracks; 2,000,000 miles of 
pipelines; 300 inland/coastal ports; 80,000 dams and 500 major urban public transit 
agencies. A large majority of these transportation infrastructure systems are highly 
interdependent with one another. The failure/collapse of one will more than likely cause the 
failure/collapse of another.  

Urban infrastructure systems are vulnerable to a wide range of hazards from nature, 
technological errors, and human activities. Resiliency is connected with the recovery capacity 
of the infrastructure. These systems' interdependence introduce the added layer of uncertainty. 
Measures of resiliency are robustness, redundancy, resourcefulness and rapidity. Various 
classifications are used to define infrastructure interdependencies; however, classifications 
suggested by Rinaldi et al. (2001) are physical, geographic, cyber, and logical.  

In this chapter we apply Dynamic Bayesian Networks (DBNs) for investigating resiliency 
and interdependency of critical urban infrastructure during extreme events. We study the 
decision framework for defining resiliency. We review different categories of modeling and 
performance measures of serviceability of the infrastructure in the face of extreme events.  

2. Literature review 
The word "resilience" is used in a variety of contexts and has been debated significantly 
since 1970. However, in light of terrorism threats and some natural disasters in the recent 
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past, it is being studied in terms of the urban infrastructure. Resilient has also been connected 
with recovery capacity; for example, Primm (1984) suggested that it can be measured at the 
speed at which a system returns to its original state following an interruption.  

Many approaches have been used to model infrastructure interaction including for example, 
agent-based models (Dudenhoeffer 2006), input-output models (Setola 2009), neural 
networks (Min and Duenas-Osorio, 2009) and scalable multi-graph methods (Svendsen and 
Wolthusen, 2007). As well as differing in their general approach, these methods differ 
widely in the type, size and number of networks being considered. The approaches can be 
combined in a collective model where different infrastructure networks are encompassed in 
a single model structure or a distributed type where each network is modeled separately 
and the results are passed between the models according to some mediating mechanism.  

Agent-based models are computer simulations of systems where entities called agents are 
used to represent the behavior of system components. One notable example of agent-based 
modeling applied to the area of interdependent infrastructure is the Critical Infrastructure 
Modeling Software (CIMS) developed by a group at the Idaho National Laboratory 
(Dudenhoeffer et al., 2006). Input-output inoperability models (IIM) are financial models 
that have been used for analyzing the cascading effects in critical infrastructure systems 
(Setola et al., 2009). IIM uses inoperability levels to describe the state of each infrastructure 
network. A neural network is a collection of densely interconnected simple computing units 
called artificial neurons loosely based on the architecture of the human brain. Neural 
networks have been used for reliability analyses on interdependent infrastructures (Min and 
Duenas-Osorio et al., 2009). Scalable multi-graph models (Svendsen and Wolthusen et al., 
2007) have been proposed as a means of representing both services that are consumed 
instantly (e.g., electricity and telecommunications) and those that exhibit buffering (e.g., 
water and gas) in the same model structure. The research group at the Idaho National 
Laboratory (INL) undertook a review of the state of the art in modeling critical 
infrastructure interdependencies in 2006. The group identified 30 modeling systems that 
could be applied to the interdependencies of critical infrastructure (Pederson 2006).  

The Bayesian Network (BN) has recently become a popular method for coding uncertainty 
(see for example, Jha 2009). The use of BNs was proposed as an alternative approach to 
modeling the interdependencies of critical infrastructure (Buxton et al., 2010). Because an 
important feature of a BN model is the bidirectional reasoning that is a natural function of 
this model, it appears that modeling interdependent infrastructures works well with this 
concept. An infrastructure interdependency is a bidirectional relationship between two or 
more infrastructures through which the state of infrastructure A influences or is correlated 
to the state of infrastructure B, and vice versa (Grubesic and Murray, 2006).  

Dynamic Bayesian Networks (DBNs) are extensions of BNs that take the time varying 
natures of various events into consideration (Jha 2009); thereby, allowing the modeling of 
close to real-world scenarios more realistically. This paper explores the use of DBNs for 
modeling transportation infrastructure interdependencies while considering the resiliency 
of impacted infrastructure.  

3. Resiliency and interdependency of critical urban infrastructure during 
extreme events 
The resiliency and interdependency of critical urban transportation infrastructure needs to 
be carefully explored during extreme events. The impacts of a particular hazard may be 
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indirect because of the weaknesses in infrastructure systems. For example, in the event of 
earthquake, few properties are destroyed by the actual shaking but many are destroyed by 
fire. This example illustrates how an independent system of linked relationships connects a 
hazard event with its ultimate outcome (Little 2002). When analyzed separately, the impact 
of one disrupted infrastructure system can be fairly estimated; however, interdependence 
introduces an added layer of uncertainty. The nature of interdependence can be a cascading 
failure, where a disruption of one infrastructure causes disruption of another; escalating 
failure, where a disrupted infrastructure prohibits the recovery of another infrastructure 
that failed earlier; and common cause failure, where a disrupted infrastructure system fails 
as a result of a common cause such as a natural disaster. 

Power systems are perhaps the most important component of critical infrastructure because 
other systems require a continuous flow of energy to operate. Communications and 
information infrastructure includes linkages which move data from point to point. This also 
is critical during emergencies. Transportation is an important component of the urban 
infrastructure which facilitates the flow of goods in and out of an urban area. Water and 
Wastewater systems in the cities are old and their upgrades are essential.  

Within the literature, there are several concepts for measuring resiliency. The resilience 
triangle quantifies the loss of functionality from damage and disruption emerges from 
disaster research (Tierney and Bruneau, 2007). The resilience triangle helps to visualize the 
magnitude of the impacts of a disruption on the infrastructure. The depth of the triangle 
shows the severity of damage and the length of the triangle shows the time to recovery.  

Resiliency of transportation infrastructure needs to be carefully and precisely investigated 
during extreme events. Given the uncertainty surrounding the hazard variables such as 
location, frequency and magnitude, we cannot anticipate and prevent all disasters. However, 
the reliability in the continuity of infrastructure systems can be ensured by countermeasures. 

The R4 framework of resiliency (Bruneau et al., 2003) defined four measures for resiliency: 

 Robustness, which is the ability of systems, system elements and other units of analysis 
to withstand disaster forces without significant degradation or loss of performance; 

 Redundancy, which defines the extent to which systems, system elements, or other 
units are substitutable if significant degradation or loss of functionality occurs; 

 Resourcefulness, which is the ability to diagnose and prioritize problems and to initiate 
solutions by identifying and mobilizing material, monetary, informational, 
technological, and  human resources; and  

 Rapidity, which is the capacity to restore functionality in a timely manner, containing 
losses and avoiding disruptions. 

For transportation infrastructure, resiliency measures the availability of alternate routes, the 
reduction in total delay, the adaptive use of high occupancy vehicle lanes, and the ability to 
transfer passenger travel to other non-single occupancy vehicle modes to free up highway and 
roadway capacity to maintain freight mobility (Giuliano and Golob, 1998). 

4. Bayesian networks as a decision-making tool 
One of the main reasons for lack of coordination and poor decision-making in the face of an 
extreme event is the inability of comprehending the multitude of information, to maximize 
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past, it is being studied in terms of the urban infrastructure. Resilient has also been connected 
with recovery capacity; for example, Primm (1984) suggested that it can be measured at the 
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other systems require a continuous flow of energy to operate. Communications and 
information infrastructure includes linkages which move data from point to point. This also 
is critical during emergencies. Transportation is an important component of the urban 
infrastructure which facilitates the flow of goods in and out of an urban area. Water and 
Wastewater systems in the cities are old and their upgrades are essential.  

Within the literature, there are several concepts for measuring resiliency. The resilience 
triangle quantifies the loss of functionality from damage and disruption emerges from 
disaster research (Tierney and Bruneau, 2007). The resilience triangle helps to visualize the 
magnitude of the impacts of a disruption on the infrastructure. The depth of the triangle 
shows the severity of damage and the length of the triangle shows the time to recovery.  
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during extreme events. Given the uncertainty surrounding the hazard variables such as 
location, frequency and magnitude, we cannot anticipate and prevent all disasters. However, 
the reliability in the continuity of infrastructure systems can be ensured by countermeasures. 

The R4 framework of resiliency (Bruneau et al., 2003) defined four measures for resiliency: 
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to withstand disaster forces without significant degradation or loss of performance; 
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units are substitutable if significant degradation or loss of functionality occurs; 

 Resourcefulness, which is the ability to diagnose and prioritize problems and to initiate 
solutions by identifying and mobilizing material, monetary, informational, 
technological, and  human resources; and  

 Rapidity, which is the capacity to restore functionality in a timely manner, containing 
losses and avoiding disruptions. 

For transportation infrastructure, resiliency measures the availability of alternate routes, the 
reduction in total delay, the adaptive use of high occupancy vehicle lanes, and the ability to 
transfer passenger travel to other non-single occupancy vehicle modes to free up highway and 
roadway capacity to maintain freight mobility (Giuliano and Golob, 1998). 

4. Bayesian networks as a decision-making tool 
One of the main reasons for lack of coordination and poor decision-making in the face of an 
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the utility of the single decision that needs to be made. For example, a quantitative measure 
of the reduced Quality of Life (QOL) due to forced migration in the wake of hurricanes may 
be difficult to estimate. The timing of well thought out decisions also plays a critical role 
since delay in decision-making by a split second may have devastating consequences. This is 
true with any critical situation, such as during a war which can be won or lost with one right 
or wrong decision. Extensive research using game theory has been done in this area. 

Bayesian Networks (BNs) have been extensively applied in problems where causality, 
uncertainty, and interdependence among variables plays a role (Jha 2006 & 2009). Using a 
BN offers many advantages over traditional methods of determining causal relationships. 
Using BN, independence among variables is easy to recognize and isolate while conditional 
relationships are clearly delimited by a directed graph edge: two variables are independent 
if all the paths between them are blocked (given the edges are directional). Not all the joint 
probabilities need to be calculated to make a decision; extraneous branches and 
relationships can be ignored. The BN algorithm can run in linear time (based on the number 
of edges) instead of exponential time (based on the number of parameters). The theory of 
BN is available in standard references and only presented here briefly (Gamez et al., 2004; 
Jasen 2001). 

Consider a domain U of n variables, 1 ,...., nx x . Each variable may be discrete having a finite 
or countable number of states, or continuous. Given a subset X of variables xi where xi  U, 
if one can observe the state of every variable in X, then this observation is called an instance 
of X and is denoted as 1 1( ,..., , ) ( , )i i X i i XX p x x x k p x k   

 
for the observations 

,i i ix k x X  . The "joint space" of U is the set of all instances of U = ( )X Yp X k Y k 
 

, which 

denotes the "generalized probability density" so that 1 1( ,..., , ) ( , )i i X i i XX p x x x k p x k   
 

 

given YY k


. For a person with current state information, ( , )p X Y  then denotes the 

"Generalized Probability Density Function" (gpdf) for X, given all possible observations of Y. 
The joint gpdf over U is the gpdf for U. 

A Bayesian network for domain U represents a joint gpdf over U. This representation 
consists of a set of local conditional gpdfs combined with a set of conditional independence 
assertions that allow the construction of a global gpdf from the local gpdfs. One assumption 
imposed by Bayesian Network theory (and indirectly by the Product Rule of probability 
theory) is that each variable xi,  1 1,....,i ix x   must be a set of variables that renders xi 
and {x1,...xi-1} conditionally independent. In this way: 

 1 1( ,..., , ) ( , )i i i ip x x x p x     (1) 

A Bayesian Network Structure then encodes the assertions of conditional independence in 
Eq. (1) above. Essentially then, a Bayesian Network Structure, Bs, is a directed acyclic graph 
such that: (1) each variable in U corresponds to a node in Bs, and (2) the parents of the node 
corresponding to xi are the nodes corresponding to the variables in [Pi]i. A Bayesian-
network gpdf set Bp is the collection of local gpdfs ( , )i ip x  for each node in the domain. 
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4.1 Handling uncertainty 

Uncertainty is an attribute of information. A review of literature (e.g., see Klir 2002; Higashi 
and Klir, 1983) dealing with uncertainty reveals that a highly original, unorthodox theory of 
human affairs involving uncertainty was conceived and developed by George Shackle, a 
British economist and philosopher in early 1900. Shackle introduced the possibility theory to 
handle uncertainty. 

4.1.1 Possibility theory 

While probability theory has traditionally been used to handle uncertainty, in recent works 
(Klir 2002; Kikuchi and Chakroborty, 2006) use of possibility theory has been advocated, a 
theory originally pioneered by George Shackle. Kikuchi and Chakroborty (2006) note that 
the distinction between the two theories (possibility and probability) is rooted in the type of 
information they handle, and how it is formalized in a functional form, the distribution. The 
probability distribution represents much more specific (rigid) information than the 
possibility distribution. It is characterized by the concept of propensity, or actual occurrence 
of events. The additive property of the probability distribution clearly suggests consistency 
in the evidential support. 

The possibility distribution, on the other hand, is founded on the concept of disposition, 
which implies “judgment” in the feeling of “possibility,” “achievability,” “acceptability,” 
and “capacity of the events to occur.” The possibility distribution covers a set of “possible 
ranges,” less precise information than the probability distribution. Hence, it is natural that 
how to express ignorance and uncertainty is an important part of the possibility theory framework. 

The possibility and necessity measures of possibility theory constitute the upper and lower 
bounds of probability measure. Conceptually, this is because only the possible events can be 
probable (Smets 1998). With a better quality of information, the difference between 
possibility and necessity measures narrows and each converges to the probability measure 
(Kikuchi and Chakroborty, 2006). 

The value of probability is interpreted as propensity of occurrence of an event in an 
objective sense; and hence, it clearly has application to risk and uncertainty associated with 
strategic decision-making to seek countermeasures in the face of a possible attack by an 
adversary or hostile country. The value of possibility and necessity, on the other hand, is 
associated with the sense of force or momentum to support a particular decision alternative. 
Its uses are suited to comparing (ordering) two situations, or understanding the degree of 
uncertainty or degree of support for an alternative. 

Uncertainty plays a key role in understanding the resiliency and interdependency of urban 
infrastructure during extreme events. In order to handle uncertainty, an integrated 
framework can be proposed in which the probability distribution of the Dynamic Bayesian 
Network (DBN) can be represented by a possibility distribution. In seeking decisions to go 
from one stage to the next, randomized decision rules can be implemented, similar to that 
proposed by Berger (1980).  

4.2 Early model development 

A year before the 9/11 attack on the World Trade Center and the Pentagon, a simulation 
model, called Site Profiler, using Bayesian Networks, had predicted that the Pentagon was a 
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BN is available in standard references and only presented here briefly (Gamez et al., 2004; 
Jasen 2001). 
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or countable number of states, or continuous. Given a subset X of variables xi where xi  U, 
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"Generalized Probability Density Function" (gpdf) for X, given all possible observations of Y. 
The joint gpdf over U is the gpdf for U. 

A Bayesian network for domain U represents a joint gpdf over U. This representation 
consists of a set of local conditional gpdfs combined with a set of conditional independence 
assertions that allow the construction of a global gpdf from the local gpdfs. One assumption 
imposed by Bayesian Network theory (and indirectly by the Product Rule of probability 
theory) is that each variable xi,  1 1,....,i ix x   must be a set of variables that renders xi 
and {x1,...xi-1} conditionally independent. In this way: 

 1 1( ,..., , ) ( , )i i i ip x x x p x     (1) 

A Bayesian Network Structure then encodes the assertions of conditional independence in 
Eq. (1) above. Essentially then, a Bayesian Network Structure, Bs, is a directed acyclic graph 
such that: (1) each variable in U corresponds to a node in Bs, and (2) the parents of the node 
corresponding to xi are the nodes corresponding to the variables in [Pi]i. A Bayesian-
network gpdf set Bp is the collection of local gpdfs ( , )i ip x  for each node in the domain. 
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and Klir, 1983) dealing with uncertainty reveals that a highly original, unorthodox theory of 
human affairs involving uncertainty was conceived and developed by George Shackle, a 
British economist and philosopher in early 1900. Shackle introduced the possibility theory to 
handle uncertainty. 
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possibility distribution. It is characterized by the concept of propensity, or actual occurrence 
of events. The additive property of the probability distribution clearly suggests consistency 
in the evidential support. 
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which implies “judgment” in the feeling of “possibility,” “achievability,” “acceptability,” 
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ranges,” less precise information than the probability distribution. Hence, it is natural that 
how to express ignorance and uncertainty is an important part of the possibility theory framework. 

The possibility and necessity measures of possibility theory constitute the upper and lower 
bounds of probability measure. Conceptually, this is because only the possible events can be 
probable (Smets 1998). With a better quality of information, the difference between 
possibility and necessity measures narrows and each converges to the probability measure 
(Kikuchi and Chakroborty, 2006). 

The value of probability is interpreted as propensity of occurrence of an event in an 
objective sense; and hence, it clearly has application to risk and uncertainty associated with 
strategic decision-making to seek countermeasures in the face of a possible attack by an 
adversary or hostile country. The value of possibility and necessity, on the other hand, is 
associated with the sense of force or momentum to support a particular decision alternative. 
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likely terrorist target. On that occasion, no one took the mathematical prediction seriously 
enough to do anything about it. The rest, as you know it, is HIS-TO-RY!  Site Profiler 
(Hudson, Ware, Blackmond-Laskey and Mahoney, 2000), was developed after the bombing 
of U.S. Air Force servicemen in Khobar Towers, Saudi Arabia, in June 1996, in which 20 
persons were killed and 372 were wounded, and the August 1998 bombings of the U.S. 
embassies in Dar es Salaam, Tanzania, and Nairobi, Kenya, where a total of 257 people were 
killed and more than 4,000 wounded. 

The user of this system would enter information concerning a military installation’s assets 
through a question-and-answer interface very similar to that of a tax preparation software 
package (Site Profiler actually modeled its interface on the one used in Turbo Tax). 

Site Profiler was distributed to all U.S. military installations around the globe to assist the 
site commanders by providing the necessary tools to assess terrorist risks, to manage those 
risks, and to develop antiterrorism plans. 

This synopsis should tell us two (2) things. First, is that mathematics can be a very powerful tool 
for assessing terrorist risks. Second, is that we need to think very carefully before discounting 
the results that the math produces, no matter how far-fetched many of them may seem. 

4.3 Software 

Modeling BNs can be a very difficult task. A number of commercial software packages are 
available for developing BBN based models. The more popular ones are (1) Analytica 
(Lumina, 2004); (2) Netica (Norsys, 2005); (3) Hugin (Hugin Expert A/S, 2004) and GeNie 
(DSL, 2005). Each package has its own strengths and weaknesses. 

The Netica software is used to model the real-life examples presented later. Before 
constructing the Bayesian Network, a conceptual model of the scenario should be 
developed. The conceptual model will allow for conditional relationships to be developed 
prior to entering this information into the Netica software. The concept of conditional 
probability is very useful because there are numerous “real-world” examples where the 
probability of one event is conditional on the probability of a previous event. 

5. Characterization of an extreme event 
In the financial world, extreme events are termed “extraordinary items” which are defined 
as unusual in nature AND infrequent in its occurrence (Kieso, Weygandt and Warfield, 
2007). Using this information, let us define an extreme event as an incident, that is; (a) 
unusual in nature AND/OR (b) infrequent in its occurrence. In our definition, both (a) and 
(b) do not have to take place simultaneously for an event to be classified as “extreme.”  Let 
us explore this matter in more depth. 

Unusual in nature can be characterized as an event that possesses a high degree of 
uncertainty, such as a large magnitude earthquake occurring in Washington, D.C. 

Infrequency of its occurrence can be characterized as an event that does not reasonably 
expect to occur in the foreseeable future, using the example above, an earthquake of a 
magnitude of 6.0 or greater occurring in Washington, D.C. 
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While many extreme events have occurred here in the United States, no better incident 
meets this definition than the terrorist attack on the World Trade Center on September 11, 
2001. Many citizens living on the East Coast of the United States view the occurrence of a 
major earthquake as something that is not of an immediate concern. Many do not worry 
about it because the long held belief was that it WILL NEVER happen here! 

Well it did! This extreme event occurred on Tuesday afternoon, August 23, 2011. At 
approximately 1:53 p.m., the strongest earthquake to hit the state of Virginia since May 31, 
1897 took place. With a magnitude of 5.9, this rare earthquake rattled almost the entire East 
Coast, turning a lovely and calm Tuesday afternoon into one of total chaos. Cellular phone 
service was jammed, area buildings were evacuated and police/fire emergency dispatchers 
could not keep up with all of the incoming calls! 

Earthquakes on the East Coast are rare, but they do happen, and these earthquakes are often 
concentrated in certain areas. One such area is the Central Virginia Seismic Zone, where the 
August 23, 2011 earthquake occurred. Unlike the state of California or the continent of 
Japan, Virginia is not located near the edge of a tectonic plate. Although the bedrock in this 
zone has no major faults, it is loaded with smaller faults that occurred when the 
Appalachian Mountains were formed. 

Although it has been 114 years since a major earthquake of this magnitude has occurred, the 
August 23rd quake was a stark reminder that we can no longer assume the Alfred E. 
Neuman attitude of “What, Me Worry?”  So, what can we do?  Is it possible to model such 
events and reduce the inadequacy of our preparations and the great losses associated with 
these extreme events? 

6. Example studies 
In this section, we present several examples to investigate the resiliency and 
interdependency of critical infrastructure in extreme events. The first is the Virginia 
earthquake example whose analysis is presented without examining resiliency and 
interdependency. In the second and third example, a Dynamic Bayesian Network is 
employed to perform the analysis. The second example is from a power failure in a subway 
system operated by the Washington Metropolitan Area Transit Authority (WMATA). The 
third example is related to hurricane planning and preparedness. 

6.1 Virginia’s earthquake example 

Can it happen again!? That was the question asked by many of the residents of the state of 
Virginia. Of course it can!  But let us examine this in more depth. Since February 21, 1774, 
the state of Virginia has had only 20 (see Table 1) recorded earthquakes, ranging in 
magnitude from 1.9 (May 6, 2008) to 5.9 (May 31, 1897 & August 23, 2011). 
 

Time Number of Earthquakes 
1700’s 1 
1800’s 7 
1900’s 6 
2000’s 6 

Table 1. Number of earthquakes in Virginia 
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(DSL, 2005). Each package has its own strengths and weaknesses. 

The Netica software is used to model the real-life examples presented later. Before 
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developed. The conceptual model will allow for conditional relationships to be developed 
prior to entering this information into the Netica software. The concept of conditional 
probability is very useful because there are numerous “real-world” examples where the 
probability of one event is conditional on the probability of a previous event. 

5. Characterization of an extreme event 
In the financial world, extreme events are termed “extraordinary items” which are defined 
as unusual in nature AND infrequent in its occurrence (Kieso, Weygandt and Warfield, 
2007). Using this information, let us define an extreme event as an incident, that is; (a) 
unusual in nature AND/OR (b) infrequent in its occurrence. In our definition, both (a) and 
(b) do not have to take place simultaneously for an event to be classified as “extreme.”  Let 
us explore this matter in more depth. 

Unusual in nature can be characterized as an event that possesses a high degree of 
uncertainty, such as a large magnitude earthquake occurring in Washington, D.C. 

Infrequency of its occurrence can be characterized as an event that does not reasonably 
expect to occur in the foreseeable future, using the example above, an earthquake of a 
magnitude of 6.0 or greater occurring in Washington, D.C. 
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events and reduce the inadequacy of our preparations and the great losses associated with 
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6. Example studies 
In this section, we present several examples to investigate the resiliency and 
interdependency of critical infrastructure in extreme events. The first is the Virginia 
earthquake example whose analysis is presented without examining resiliency and 
interdependency. In the second and third example, a Dynamic Bayesian Network is 
employed to perform the analysis. The second example is from a power failure in a subway 
system operated by the Washington Metropolitan Area Transit Authority (WMATA). The 
third example is related to hurricane planning and preparedness. 

6.1 Virginia’s earthquake example 

Can it happen again!? That was the question asked by many of the residents of the state of 
Virginia. Of course it can!  But let us examine this in more depth. Since February 21, 1774, 
the state of Virginia has had only 20 (see Table 1) recorded earthquakes, ranging in 
magnitude from 1.9 (May 6, 2008) to 5.9 (May 31, 1897 & August 23, 2011). 
 

Time Number of Earthquakes 
1700’s 1 
1800’s 7 
1900’s 6 
2000’s 6 

Table 1. Number of earthquakes in Virginia 
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Not shown in the above table is the fact that from 1774 to 1833 (59 years) there were no 
recorded earthquakes in the state of Virginia. Again, from 1975 to 2003 (28 years) there were 
no recorded earthquakes in the state of Virginia. This interval between earthquakes appears 
to have a rate of decay of 50 percent. It appears that the number of earthquakes in the state 
of Virginia is increasing. How!? Based on the table, it seems that the next earthquake will 
occur in the year of 2025. Using the year of 2011 as the benchmark and dividing 28 years by 
2 and adding that number to the year 2011, we get the year 2025!  But is that truly correct?   

From 1774 to 2011 (237 years), there have only been 20 earthquakes in the state of Virginia. 
Given that information, there is an eight (8) percent [20/237] chance that the state of Virginia 
will experience an earthquake. That means there is a 92 percent chance that an earthquake 
will never occur. What about the earthquake’s magnitude? Of the 20 earthquakes, only three 
(3) have had a magnitude greater than or equal to 5.0. That means there is only a 15 percent 
[3/20] chance of an earthquake having a magnitude of at least 5.0. There is an 85 percent 
chance that the earthquake will have a magnitude of less than 5.0.  

Using the Bayesian method, let us try to answer the following question. What is the 
probability that the state of Virginia will have another earthquake with a magnitude of 5.0 
or greater?  Simple!  Take the probability of Virginia experiencing an earthquake (0.08) 
multiplied by the probability of the earthquake having a magnitude of 5.0 or greater (0.15). 
To answer the question, there is a one (1) percent chance [0.08 x 0.15] that the state of 
Virginia will experience an earthquake having a magnitude of greater than or equal to 5.0. 
On the other hand, there is a 99 percent chance that the state of Virginia will experience an 
earthquake but with a magnitude of less than 5.0.  

6.2 WMATA example 

In order to illustrate this example, an artificial real-life scenario is constructed as follows:  It 
is a clear and sunny Monday morning and you decide to take the WMATA metro subway 
system to work. You have an important 8:00 a.m. meeting and your boss is also attending. It 
is 7:10 a.m. and the train is moving from the Pentagon Station to Downtown Washington, 
D.C. via the “Yellow Line” (see Figure 1). In 10 minutes, you will be in the office. You will 
have enough time to get your coffee and to discuss the Washington Redskins victory over 
the Dallas Cowboys in yesterday’s game. 

Suddenly, the train abruptly stops!  You hear the train operator say, “This train will be 
moving shortly!” Well, 15 minutes later, the train is still in the same position and the train 
operator again says, “This train will be moving shortly!”  Suddenly, off go the lights!  
Everyone is in panic mode and you look at your cell phone and it is now 7:47 a.m.!  You 
realize that you will not be making it to your meeting on time and you also notice that you 
have no cell phone service!  You cannot even call the office and let them know where you 
are!  An hour later you arrive in the office only to be met by the “steely” eyes of your boss 
and you decide it is not worth the trouble in trying to explain what in the heck happened. 

The next morning you pick up the Washington Post and you read, “Snake Cuts Power to 
Thousands of Pepco Customers” (Hedgpeth, 2011). To your chagrin, the article states that 
five (5) circuit feeders were not working at a substation, leaving 6,800 customers without 
electricity and stranding several Metro trains. The article also quoted a Pepco spokesperson 
as saying, “The snake got stuck inside a breaker and was electrocuted!”  Of course, your 
next reaction was, “How in the Sam Hill does something like this happen!?”  “Aren’t these 
people supposed to be prepared for anything!?” 
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Fig. 1. Map of the WMATA Rail System (courtsey of www.wmata.com) 

Although the above story is fictional, the facts concerning the power failure are real. No 
Metro trains were stranded on that day. That information was only included to round out 
the story.  

6.2.1 Constructing the Dynamic Bayesian network 

A conceptual model of the above example is created as shown in Figure 2. Several extreme 
event scenarios are created using the WMATA example. First, if there is no power outage 
(see Figure 2), there is a 92.3% chance that the Metro trains and its passengers will NOT be 
stranded. But, a funny thing happened when the scenario was switched!  If there is a power 
outage (see Figure 3), there is a 96% chance that the power outage is weather-related and 
there is a 92.3% chance that the Metro trains and its passengers will BE stranded. 
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Fig. 2. A conceptual extreme event model for the WMATA example 
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Fig. 3. A Dynamic Bayesian Network (DBN) with NO power outage 
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Fig. 4. A DBN with power outage 

Although many approaches have been used to model infrastructure interdependencies, it 
was demonstrated, in principle, that DBNs can be used for modeling and evaluating 
interdependent infrastructures. In addition, the use of the Netica software allows for the 
modeling and evaluating of complex transportation infrastructure interdependencies. As we 
build newer systems, the complexity of these systems is steadily increasing and becoming 
more and more interdependent. Also, the operation of these systems is so complex that it 
defies the understanding of all but a few experts, and sometimes even they have incomplete 
information about the system’s potential behavior. But, with the use of DBNs, modeling 
these complexities should become much easier in the future.  
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6.3 An example of hurricane planning and preparedness with a DBN 

In the case of an impending hurricane a DBN can be used to plan for evacuation and 
displacements based on a threshold value of the probability of the extent of the disaster. 
Consider the case of hurricane Katrina which had multiple decision-makers with multiple 
perceptions of the impending disaster. Moreover, in the case of Katrina it was not clear who 
had the authority to order evacuations as necessary. Weather prediction centers, such as the 
hurricane center in Miami generally do a very good job in plotting the path of the 
impending hurricane and its severity. We can attach a probability of severity due to an 
impending hurricane using the weather predictions over a planning horizon.  

An application of a Dynamic Bayesian Network for predicting the Quality-of-Life (QOL) of 
displaced citizens due to a hurricane, such as Katrina is shown in Figure 5. It represents a 
Directed Acyclic Graph (DAG). Figure 5 legends are shown in Table 2. If comprehensive  
 

Legend Explanation 
Weather Forecast Time-dependent weather forecast that predicts the category of a 

hurricane and its path 
Contingency Measures Contingency measures in place in the wake of an impending 

hurricane 
Decision Maker’s Action Measure of coordinated response of decision-makers in the face 

of an impending hurricane 
Damage Severity Damage caused by a hurricane, measured in three categories: 

low, medium, high 
Quality-of-Life Measure Extent of degradation in the quality-of-life of displaced 

population 

Table 2. Figure 5 Legend 

t=0 

Weather Forecast Contingency Measures Decision Maker’s Action 

Damage Severity: Low Damage Severity: Medium Damage Severity: High 

Quality-of-Life (QOL) Measure 

Update: t=t+1 

Stop t=T? 
Yes 

No 

 
Fig. 5. A DBN Application for Hurricane Evacuation and Planning 
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data were available the DBN shown in Figure 5 is capable of estimating the QOL of the 
displaced population and also relative effectiveness of contingency measures and decision 
maker’s actions. A sensitive analysis can also be conducted if additionl data were available. 
Having such a tool will allow decision-makers to take timely and coordinated measures in 
the wake of an impending hurricane to minimize the degradation of the QOL of displaced 
population. 

7. Conclusions and future works 
In this Chapter, we discussed the resiliency and interdependency of critical urban 
infrastructure systems in extreme events, and showed the applicability of Dynamic Bayesian 
Networks (DBNs) in examining resiliency and interdependency of such systems through a 
series of examples. The key contribution of our work lies in the critical analysis of extreme 
events and their impact on urban infrastructure systems and recognizing DBN as a valuable 
tool to model resiliency and interdependency. 

In future works, a planning model can be developed using the DBN and a simulation tool, 
for a robust and sustainable community hard hit by catastrophic natural disasters. Such a 
model can: 

 Measure the relative vulnerability of different geographic regions of the world to some 
key natural hazards, such as earthquakes, hurricanes, and floods.  

 Identify development factors that contribute to risk, and show in quantitative terms, 
how the effects of disasters could be either reduced or exacerbated by policy choices.  

 Demonstrate the ways in which development contributes to the configuration of risk 
and vulnerability.  

 Provide quantitative evidence to advocate for the reorientation of development policy 
and planning in a way that contributes to the management and reduction of disaster 
risk. 
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1. Introduction  
In this Chapter we intend to show that Bayesian Networks may act as an excellent Decision 
Support System (DSS), even when very complex risk scenarios must be evaluated in real time.  

The complexity of the specific application described derives not only from risk variability 
depending on spatial and temporal domains, but also from the high number of variables 
involved.  

Forest Fire Management is a tough task for emergency squads, because they are called on to 
take decisions very quickly and control vast territorial areas. In addition, the behaviour of 
fire is strongly dependent on weather and soil conditions, and is hence difficult to predict in 
a short time through the concurrent implementation of consolidated analytical models.  

For this reason the availability of a Bayesian model is the only solution capable of allowing 
emergency squads to exploit the backward propagation of Bayesian networks and perform 
real-time diagnoses. In other words, once the user sets the desired state for the output 
variable(s), the network is able to work out the most likely state values for the 
corresponding input, thereby helping to discern how to act optimally in order to control the 
spread of fire. The same tool may also be used for scenario analyses.  

The main problems tackled in this chapter are connected with the spatio-temporal nature of 
the spread of forest fire and with the complexity caused by the great number of time slices 
involved, which are proportional to the duration of the phenomenon.  

The suggested solution is to model the spatial features through the use of Object Oriented 
Bayesian Networks, where every elementary territorial area is mapped over one of the 
elementary pieces of the whole network. To that end, the evolution of phenomena over time 
was modelled through the approach known as Dynamic Bayesian Networks: the time step 
to complete any passage from one network to another is dictated by the time it takes for the 
fire to burn down any elementary territorial area and to move into any of the others. Due to 
the unknown number of needed time steps (because it is not known a priori how long any 
fire will last), the whole model was developed as a combination of dynamic networks and 
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VBA programmed tools. Programming was mainly needed to cope with the great number of 
variables involved and to find a computationally acceptable approach to spatio-temporal 
simulation, when there is no pre-determined limitation on the timeline. 

The next paragraph will give some insight into the state-of-the-art regarding spatio-temporal 
Bayesian modelling, forest fire risk management and available techniques for CPT learning. 

The third paragraph supplies the basic technical concepts, relative to forest fires (e.g. 
ranking, qualitative behaviour, variables involved in the phenomenon, analytical models 
presently used for their simulation etc..), which are relevant for the development of the 
desired Bayesian model.  

The same paragraph also addresses how to build the graphical model, as well as how to 
estimate the quantitative strength of the connections between variables expressed as 
conditional probability distributions, how to translate the dynamic nature of the physical 
phenomenon into Bayesian formalism and how to overcome the barrier of NP-hard 
complexity for problems of this kind.  

The fourth paragraph implements the quantitative part of the final model, including CPT 
estimation.  

The fifth paragraph of this chapter shows how the Bayesian model developed in the 
previous parts can be translated into Visual Basic programme language and then interfaced 
with a Graphic User Interface (GUI). Finally, a validation of the whole model applied to a 
real case study in the forest of the Esino-Frasassi (Ancona, Italy) mountainous district will 
be proposed.  

2. Scientific background 
Bayesian Networks have been extensively celebrated for their unique capability to provide, 
at the same time, both intuitive and scientifically rigorous representations of complex 
systems. In addition, after validation, they can be used for performing both scenario 
analyses, through inference propogation algorithms, and diagnostic reasoning, through 
backward propagation based on the well known inversion rule (Pearl, 1988). 

These networks also have the advantage of enabling qualitative and explicit representation, 
where nodes represent variables and arcs represent quantitative relationships among the 
same, worked out through parametric probabilistic models. We invite readers to refer to the 
numerous and well written reference texts available on the subject, such as (Korb & 
Nicholson, 2004; Jensen, 1996), for basic rules about how to develop robust models. In the 
rest of this paragraph we prefer to go into detail regarding spatio-temporal Bayesian 
networks and the Conditional Probability Table (CPT) estimation procedures used in the 
application presented here.  

When the domains to be modelled are very complex, Object Oriented Bayesian Networks 
(OOBN) are usually used: they are made up of several elementary networks, sharing some 
of the variables, which constitute the links between the networks (Naticchia et al., 2007). 
Each elementary network is generally developed separately (and models one of the many 
physical phenomena involved) but the inference algorithms are propagated over the whole 
set of elementary networks.  
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A straightforward extension of this approach is given by Dynamic Bayesian Networks 
(DBN): these are based on a discretized time course and are made up of several time slices, 
each representing the state of the system at a particular moment in time. In this case, some 
of the variables have no fixed states, but change over time. Therefore connections hold not 
only between those variables linked by a causal relationship but also between the same 
variables represented in different time slices, because this takes into account their variability 
as time elapses.  

These concepts are better explained in 2.1, which reports the algorithms used to implement 
CPTs in the networks developed for the Bayesian model for forest fire risk management. 

Finally, paragraph 2.2 gives a brief survey of the procedures currently adopted to cope with 
forest fire risk management and the approaches used for operations in the event of emergencies.  

2.1 Spatio-temporal Bayesian modelling 

Spatial Bayesian Networks (SBN) are BNs that represent data regarding spatial domains and 
Spatial Dynamic Bayesian Networks (SDBN) are BNs that represent spatio-temporal data, that 
is spatial status changes over time. The application of BNs to model the evolution of processes 
that have temporal dynamics requires, in its simplest formulation (Neapolitan, 2004): 

- an initial instance of  the Bayesian network that contains the formulation of the problem 
at time t=0, that is the set of random variables Xi,0 and the related conditional 
probability distributions: P(Xi,0|Xi-1,0), P(Xi-1,0|Xi-2,0), etc.; 

- one or more transition networks that correlate the variables of the BN instance at t=0 
with the variables of the BN instance at t=1. 

Fig. 1 shows a graphical representation of three time slices of a DBN. 

 
Fig. 1. Graphical representation of a Dynamic Bayesian Network: it is made up of three 
instances of the same BN. Yellow dashed lines represent the transition network. The 
evidence variables are represented by the nodes placed outside the time plane. 
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Two simplifying assumptions can usually be made about the physical processes at hand: 

- all the information needed to predict the state of the process at time t+1 is contained in 
the description of the process state at time t. No information about earlier time is 
needed. These kinds of processes are called Markov processes of order one; 

- the process is steady, that is, the transition networks remain the same for any ti  ti+1.  

The representation of the spatial evolution of a dynamic process by means of SBNs requires, 
above all, the domain space to be tessellated in such a way that each tessera represents a 
portion of the space with uniform behaviour. We will call this portion of space a cell. If the 
overall domain space is relatively uniform, different instances of the same type of BN can be 
used to represent different cells. In our case for example, the whole territory is covered by 
different types of fuel loading (e.g. grass, conifer trees etc.) which have essentially the same 
fire dynamics. Therefore each cell is represented by means of a different instance of the same 
BN. Each instance is then specialised for its fuel-loading type by means of a set of 
parameters that are modelled as evidence variables. Secondly, in order to grant the spatial 
continuity of the process evolution, the transition network must involve only neighbour 
cells. In our case this means, for example, that a cell cannot be ignited if neither of its 
neigbours is (please refere to Fig. 2). 

 
Fig. 2. Graphical representation of a Spatial Dynamic Bayesian Network, where the DBN is 
made up of three instances of the same BN. Dashed lines represent the transition network.  
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The evidence variables are represented by the nodes placed outside the time plane. Due to 
the space continuity assumption, transitions between different time slices occur only 
through neighbour cells. 

Modelling spatio-temporal processes through SDBNs does not differ in principle from the 
standard methods of BN modelling, therefore it requires the definition of the cell structure, 
of the transition network structure and the implementation of the CPTs. The methodologies 
for direct implementation of network structures (both cells and transition) through domain 
knowledge modelling, using for example techniques like parent divorcing, temporal 
transformations, unidirected dependence relations, etc. (Kjaerulff & Madsen, 2008), are still 
applicable, as well as Data-Driven Modelling, like PC and NPC algorithms.  

The problem arising with SDBN implementation is mostly related to complexity. Data-
driven structure identification of SBDN is usually hindered by the great number of available 
options. Some algorithms are currently being developed to drive the optimal structure 
selection (Tucker & Liu, 2004).  

In the case of a large SBDN, standard procedures suggest a two step approach: first learning 
the structure of the cell network, and then, after constraining the identified cell structure, 
learning the transition network. This usually helps in keeping the complexity to a 
manageable level.  

EM algorithms provide batch CPT parameters for learning capabilities from data. If data are 
not available direct implementation of CPTs from domain data is the other option. In our 
case we found the application of a simple Montecarlo simulation tool very useful; this is 
implemented in many commercial BN packages, that are able, through a Montecarlo 
simulation, to map an analytical equation onto CPT involving random variables with 
numerical interval domains (Hugin Expert, 2008). 

A final remark should be made to highlight the computational complexity of SDBN. 
Probabilistic inference in an SDBN can be performed using standard algorithms. However, 
since the size of an SDBN can become enormous when the simulation continues for a long 
time and when the domain is large, the algorithms may be quite inefficient and/or the 
network footprint in the computer memory may become impractical. There is a special 
subclass of SDBNs in which inference can be carried out more efficiently. This subclass 
includes BN in which the cell networks in different time steps are connected only through 
non-evidence variables. In that case, to update the probability of the current time step, we 
need only the values computed in the previous time step and the evidence at the current 
time step. This means that it is possible to implement an algorithm that keeps only the bare 
minimum network structure needed in order to represent two time steps (Neapolitan, 2004). 
In our case, excluding the cell “woodtype” and the “environmental” and “weather” 
variables from the transition network allowed us to implement an algorithm, as described in 
section 5, that inherited this necessary property. 

2.2 Forest fire risk management 

(Luke & McArthur, 1978) performed a lot of analyses regarding the spread of the fire 
frontline because this is affected by several parameters, such as environmental temperature, 
brush, topography and so on, which will be further detailed in paragraph 3.  
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Forest fires are usually ranked according to their types and are described according to 
evolution phases. (Brown & Davis, 1973) name the three basic types of fires according to the 
vegetation layer in which the fire is burning, that is ground, surface and crown fire: 

 Ground fires: they spread in subsurface organic fuels, such as duff layers under forest 
stands, Arctic tundra or taiga, and the organic soils of swamps or bogs; 

 Surface fires: they spread by flaming combustion through fuels on or near the surface – 
grass, shrubs, dead and downed limbs, forest needle and leaf litter, or debris from 
harvesting or land clearing; 

 Crown fires: they burn through the tree crowns, they are often dependent on surface 
fires and are invariably ignited by surface fires.  

The phenomenon generally evolves according to four burning phases: 

 Initial build-up: when the fire’s intensity, even if capable of keeping itself alive, is not 
capable of raising the  temperature of the fuel, producing weak burning which is faster 
over earth covered with grass and low trees, than in high-tree forests; 

 Transition stage: the fire frontline has increased to such an extent that it is able to dry 
the fuel (e.g. underwood and trees) and favour the spread, of fire also due to the flame 
angle and height which is  affected by winds; 

 Final stage: when the fire reaches its maximum intensity and strength, generating 
spotting phenomena, setting a balance with the external climate; in this phase external 
factors are less liable to influence the spread of fire which goes ahead autonomously; 

 Extinction stage: the intensity of the fire decreases and its behaviour is newly 
determined by external factors (environmental and of the context in general), until 
extinction. 

The measuring of intensity is of basic importance and one of the meaningful ranking 
approaches is known as Byram intensity (I), i.e. the product between the amount of heat 
generated per metre and the fire frontline propagation speed: 

 I = 0.007·H·W·R (1) 

where H is a parameter called heat of ignition (cal/g), W is the fuel weight per unit of 
surface (t/ha) and R is the propagation speed (m/min).  

The greater the energy per unit of surface that is released by the fire, the greater is the 
damage caused to vegetation. However the frontline speed is another factor strongly 
affecting the difficulty involved in fighting the frontline. (Andrews & Rothermel, 1982) have 
worked out the “Fire Behaviour Characteristics Chart”, where propagation speed is 
proposed as a function of the heat released per unit of frontline length and flame intensity 
per unit of surface (Fig. 3-a). 

Of course there are a number of factors to be evaluated in order to determine the best 
counteraction for the spread of fire during emergency operations. Experts’ decisions are 
generally based on a consolidated knowledge of the forest and on the symptoms indicating 
how the fire is behaving. One example is “blow-up”, which is any quick evolution from 
transition to the final stage, suggesting that the fire will be very intense and generally 
caused by a mixture of high speed and intensity, feeding each other. Data about the  
humidity content of the fuel, topography and weather forecast are also of great help in 
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supporting decisions (Scott & Burgan, 2005). A typical phenomenon encountered in high 
intense fire frontlines is known as spotting: organic matter is  thrown into the air and floats 
as a result of the convective movement caused by the fire’s intensity, until the wind scatters 
it and causes other fires to be triggered in the forest. 
 

 

(a) (b) 

Fig. 3. Fire Behaviour Characteristics Chart (a) and one example of preventive action (b) 

All these and many more data must be evaluated when planning defensive action against 
the spread of fire. The general approach is to simulate fire behaviour (speed and intensity 
during propagation) under several boundary conditions, in order to design remedial action. 
The manager of emergency squads then evaluates the available input and decides on the 
best action to take. The availability of accurate simulators is critical during the early phase in 
the spread of fire because emergency action should be taken at this stage, before the fire 
burns up. Some of the most widely used simulators are: FOCUSTM (Fire Operational 
Characteristics Using Simulation), and FIRESCOPETM (Fire-fighting Resources of Southern 
California Organized for Potential Emergencies). They are based on fire spread models like 
the ones described in the next paragraph and they drive the choice for the preventive or 
active response, to be adopted when the fire is burning.  

The most usual preventive action is aimed at diminishing the amount of fuel available for 
feeding the fire (Brown & Davis, 1973): fuel is removed in specific areas, sometimes along 
strips of forest, or roads may be built in order to impede ignition or break the spread of the 
fire in the early phases (Fig. 3-b). However the efficiency of this type of response is limited 
when fires are very intense, hence active means are needed. The same authors  also suggest 
drawing forest maps, where all the parameters are graphically represented and using them 
as reference for fire management.  

Active means are ranked according to direct or indirect action: the former requires water or 
chemical products to throw over the fire, while the latter tries to clean the areas along the 
boundaries of the  fire frontlines so as to hamper spreading.  

It is clear that in any case, for both preventive action and active response, it is necessary to 
forecast how fires will behave.  
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Forest fires are usually ranked according to their types and are described according to 
evolution phases. (Brown & Davis, 1973) name the three basic types of fires according to the 
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The strategy suggested in this paper, and feasible once dedicated spatio-temporal Bayesian 
Networks are available, is to build an expert system containing the knowledge deriving 
from various fire models, which can support decision processes during emergency 
management. 

3. Translating forest fire behaviour into a Bayesian Network 
The Bayesian model was developed in five steps: 

1. preliminary general analysis of the problems and their implications; 
2. break-down of the problems into several elementary models, which have been 

translated into elementary networks, to be connected later; 
3. estimation of the quantitative relationships among the variables of each elementary 

network, starting from the availability of data and equations; 
4. enhancement of the basic model into the final dynamic network made up of several 

time slices and its implementation into a VBA-based software tool;  
5. validation of the final interconnected networks in a real scenario.  

The basic Bayesian network developed for this application was intended as a snapshot, 
modelling what happens at a certain time in a pre-determined spatial cell. It has already 
been represented in Fig. 2, where square cells subdivide all the territory covered by the 
forest. The output variables estimated by the model and useful for forecasting where and 
how the fire will spread are the frontline speed, its direction and  intensity. On the basis of 
these variables, it is possible to make an estimation of the moment in time when the cells 
will be completely burnt down and the fire will propagate towards one of the adjacent cells.  

The input needed by the network may be divided into two categories, the first related to 
climatic variables:  

 air temperature; 
 wind intensity and direction; 
 air humidity level; 

and the second related to territorial features:  

 forest type; 
 forest wood maturity; 
 ground slope; 
 site or cell orientation.  

It should be noticed that some of the input data may be collected directly by sensor 
measurements, because they are unsteady variables; while other  data may be directly 
supplied by a GIS system.  

3.1 Fire spread modelling 

Fig. 4 shows the whole structure of one elementary network resembling the system logic 
underlying the whole phenomena and analysed thanks to the support of Rothermel’s 
surface fire spread models. 
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Starting from the work by (Rothermel, 1972), the surface spread models that he developed 
were simplified by (Scott & Burgan, 2005): the new set was conceived so as to simulate 
only surface fire behaviour at the flame front, but not the residual combustion that takes 
place after the flame front has passed. These sets were drawn up starting from empirical 
observations, fire behaviour simulations over a range of midflame wind speeds and 
several moisture scenarios, hence several environmental conditions were taken into 
consideration. Dotted lines connecting solid filled circles (adjacent to some of the 
variables) in Fig. 4 mark those nodes to be merged at the final release of the whole 
network.  

Among the fuel models proposed by the cited authors, eight have been used in the 
application developed in this Chapter (Fig. 5). Their naming follows a well-known rule: 
NB means non-burnable, GR means grass, GS stands for grass-shrub, SH for shrub, TU is 
timber-understory, TL for timber litter and SB is the abbreviation  for slash-blowdown.  

The following factors are listed for each forest type: the fuel loading available, extinction 
humidity values, relationships between midflame wind speed, rate of spread and flame 
length.  

 

 
Fig. 4. Logic framework of the spatial cell of the Spatio-temporal Bayesian model  
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SH5: High Load, Dry Climate Shrub 

    
Fine fuel load(t/ac)          6.5                                     Extinction moisture content      15 
SH8: High Load, Humid Climate Shrub 

        
Fine fuel load(t/ac)        6.4                                        Extinction moisture content      40 
TU2: Moderate Load, Humid Climate Timber-Shrub 

       
Fine fuel load(t/ac)         1.15                                   Extinction moisture content       30 
TU4: Dwarf Conifer With Understory 

     
Fine fuel load(t/ac)           6.5                                      Extinction moisture content      12 
TU5: Very High Load, Dry Climate Timber-Shrub 

      
Fine fuel load(t/ac)          7.0                                      Extinction moisture content    25 
TL6: Moderate Load Broadleaf Litter 
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Fine fuel load(t/ac)          2.4                                     Extinction moisture content      25
GR6: Moderate Load, Humid Climate Grass 

      
Fine fuel load(t/ac)         3.5                                     Extinction moisture content        40
GR8: High Load, Very Coarse, Humid Climate Grass 

       
Fine fuel load(t/ac)          7.8                                   Extinction moisture content        30

Fig. 5. Rothermel’s models 

Besides the aforedescribed models, other important analytical relations are those regarding 
the heat of ignition: this is the amount of heat which has to be released by the burning 
process so that the fire is not extinguished. It is strongly affected by the water content 
(hampering the process) and other parameters. However water content has been 
demonstrated to be the most important variable (it is tens or hundreds of times more 
important than other variables such as the  initial temperature of the fuel), hence it is usually 
approximated as (Frandsen, 1972; Wilson, 1980):  

 Qig = 119.74 + 5.34 · Mf  (2) 

Where Mf is the percentage of water contained in the fuel loading, and is listed according to 
the type of ground. Such a variable directly affects the heat of ignition per unit of surface 
(measured in kJ/mq), which is the product: 

 Qig,us = Qig · fuel_loading  (3) 

Fuel loading is dependent on Rothermel’s surface fire spread models applicable to the type 
of ground, which are repeated for convenience: SH5, SH8, TU2, TU4, TU5, TL6, GR6, GR8. 
Hence the network will select all the right values, once the users have chosen the forest type 
under analysis.  
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Flame intensity is suggested by the same authors as the following expression:  

 If = 273· (2 + Wind_intensity· Beta)2.17  (4) 

where If is the flame length, which the models always report as dependent on wind 
intensity, “beta” is the slope of the linear model best approximating the average behaviour 
(see right diagrams in Fig. 5).  

Frontline flame speed is given by: 

 Sf = Alfa · Wind_intensity·+ 12 · (Slope/100)2  (5) 

where “alfa” is the slope of the linear relationship best approximating fire behaviour (see 
left diagrams in Fig. 5).  

Given the chance to perform active fighting against fire propagation, in this model the use of 
Canadairs has been considered and modelled with the data available in literature. It is 
supposed that water sprayed over fires increases the heat of ignition by the amount needed 
to completely evaporate the water, computed using the following expression: 

 Qig = 116 · 1.055 · Mr  (6) 

where Mr is the amount of water falling on the ground. In order to give some practical tips, 
the Canadair model CL125 sprays a water strip as large as 20 x 85 = 1700 m2 and ensures 
3.20 l/m2 on the ground. 

3.2 Methodology for the development of the qualitative Bayesian model 

The qualitative interpretation of the equations presented in the previous paragraph 
allowed us to build all the fragments of the network. More information about this will be 
given in 4.1. 
 

 
(a) (b) 

Fig. 6. Bayesian network fragments relative to intensity and speed of the fire surface 
modelling 

The fragments in Fig. 6 derive from equations 4 and 5.  

Fig. 7-a pictures the fragment of the Bayesian network which estimates the fire surface 
spread direction. Empirical studies showed that this is related to wind direction, exposure 
and ground slope. Of course, when the slope and wind speed push the fire in opposite 
directions, spread is hampered. 

The heat of ignition was derived directly from eq. (2), where its dependence on water 
content is clearly expressed (Fig. 7-b).  
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(a) (b) 

Fig. 7. Fragments relative to fire surface spread direction and heat of ignition 

This last variable has repercussions on the heat of ignition per unit of surface, which is also 
dependent on fuel loading, as in eq. (3). By also adding  Rothermel’s fire surface spread 
models mentioned in 3.1 to this fragment, it is possible to obtain the fragment in Fig. 8: 

 
Fig. 8. Fragments relative to heat of ignition per unit of surface 

This part of the model is also able to consider the possibility of active intervention through 
Canadairs, which would be useful to increase the heat of ignition and make the spread of 
fire less likely. 

As a final integration to the proposed Bayesian networks, water content was considered 
dependent on other weather variables, which may be measured in real-time by sensors to 
speed up the process in emergency situations (Fig. 9).  

At this stage, all the variables shared among different fragments were merged into the same 
variable to provide the whole final network properly instantiated (Fig. 4).  

 
Fig. 9. Water content as a function of environmental variables  
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4. Model development 
In this chapter we will first present the implementation of the quantitative relationships 
among the variables of a single cell of the whole Bayesian model. Spatial and temporal 
dynamics will then be introduced to produce the final model.  

4.1 Implementation of quantitative relationships  

The qualitative structure of the Bayesian model relative to a single spatial cell and described 
in paragraph 3 was integrated with the quantitative network through the use of several 
kinds of information. They may be roughly subdivided into two main groups: 

 elementary cell networks whose CPTs have been derived directly from the observations 
of the available models and their translation into probability laws; 

 analytical relationships explicitly available for all the networks, which have been 
translated into CPTs through the approach described in paragraph 2.1 (Hugin Expert, 
2008). 

In both cases a discretization process was carried out in an iterative way: starting from 
variables with a low number of states, their discretization was continuously refined until the 
data they provided were comparable to the numerical results obtained by running the 
FarsiteTM software code, appropriately chosen for validation. All the elementary networks 
were developed in an Agena RiskTM environment. 

In order to explain better, two examples are reported here. Figure 10 shows the fragment of 
cell Bayesian networks, regarding heat of ignition, dependent on water content according to 
equation (2) and resembling the qualitative fragment shown in figure 7-b.  

 

 
(a) (b) (c) 

Fig. 10. Quantitative relationships among the variables 

Once the discretization of the two variables has been accomplished and the analytical 
relationship has been inserted in the CPTs, the software computes the quantitative 
relationships as shown in the picture. Fig. 10-b and 10-c also show the discretization chosen 
for the variables and the analytical relationship inserted between the two in order to 
estimate the CPTs. 

On the contrary, Fig. 11 represents a typical case in which conditional probabilities have 
been inserted directly from the reading of Rothermel’s models. A direct reading of these 
data, as depicted in Fig. 11-a, is capable of estimating dependent variables starting from the 
reading of the independent ones. In this case once the type of soil is known (as in Fig. 8) the 
most fitting Rothermel’s model can be selected and then the flame length or intensity or fuel 
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load can be worked out. These data have been translated into CPTs of the network fragment 
in Fig. 11-b by selecting the state of the dependent variable following from the known state 
of the independent ones. Validation was carried out as in the previous case. 
 

 
(a) (b) 

Fig. 11. CPT evaluation using Rothermel’s models  

4.2 The control of spatial and temporal dynamics 

The interpretation of a complex dynamic process, like fire propagation through woodlands, 
requires careful modelling of the spatio-temporal dynamics. In section 2.1 we have seen that 
the implementation of SDBN entails the discretization of both the spatial and the temporal 
variables. According to Niquist’s theorem, the value of the discretization rates must be 
greater than twice the maximum frequency of variability of the phenomena in the spatial 
and in the temporal dimensions respectively. In the complex transition model shown in Fig. 
2, this means that the time difference ΔT between two time slices must be less than half the 
propagation time of the fire inside a cell. This in turn depends, among other things, on the 
dimension of the cell itself, as we have seen in the previous section. Therefore in our case the 
spatial and the time sampling rates are strictly connected. External influencing factors, like 
the meteorological variables, must also be taken into account. Within each time slice the 
phenomena occurring are considered instantaneous. Therefore the external influencing 
factors are considered as constants in a single time slice, and changes can occur only 
between two different time slices. Hence the maximum frequency of variation in the 
external influencing phenomena must also be considered when defining the time 
discretization. As a general rule the time discretization must be the minimum between the 
fire propagation and the external meteorological dynamics. 

The propagation time of fire inside a cell is worth further comment. As we have seen, the 
simulation of fire propogation must consider the time delay that occurs between the fire 
triggering in one cell and its propagation to the adjacent cells. This depends on many 
factors. For the sake of simplicity we assume that fire triggering heat is instantaneous. In this 
case the flame front reaches the next cells after a time delay that depends only on the cell 
dimensions and the speed of fire propagation. The speed of fire propagation depends, in 
turn, on the forest types which combine the speeds of both the low level grazing flames in 
the underwood and the high foliage flames. Therefore the use of forest type models avoided 
the implementation of layered networks, one for each fire type (please ref. to section 2.2), 
considerably simplifying the model. In conclusion, modelling the fire propagation temporal 
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4. Model development 
In this chapter we will first present the implementation of the quantitative relationships 
among the variables of a single cell of the whole Bayesian model. Spatial and temporal 
dynamics will then be introduced to produce the final model.  
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(a) (b) (c) 

Fig. 10. Quantitative relationships among the variables 
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load can be worked out. These data have been translated into CPTs of the network fragment 
in Fig. 11-b by selecting the state of the dependent variable following from the known state 
of the independent ones. Validation was carried out as in the previous case. 
 

 
(a) (b) 

Fig. 11. CPT evaluation using Rothermel’s models  
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dynamics required the development of a specific subnetwork of the cell network that 
implements fire propagation tracking. This subnetwork is represented in Fig. 12 (the black 
node being inferred from the cell’s network at each time slice as in Fig. 4 ). 

 
Fig. 12. Cell subnetwork implementing fire propagation control. 

The subnetwork includes the following variables: 

- DT_sim: is the simulation frequency, which is an evidence variable observed at the 
beginning of the simulation in seconds; 

- Sim_Steps: is the number of simulation cycles, that is the number of time steps that have 
occurred from the beginning of the simulation step. The product of DT_sim and 
Sim_Steps gives the simulation time elapsed so far; 

- Propagation_Delay: is the average time delay that occurs between the ignition of fire in 
the cells and its propagation to the adjacent cells; 

- Adjacent_Propagation: is a Boolean variable that triggers when DT_sim ×Sim_Steps ≥ 
Propagation_Delay. 

The propagation algorithm uses a stack of active cells, where it pushes in each simulation 
step the cells where the fire ignition process has started. We call these cells active. For each 
simulation cycle and for each active cell the Sim-Steps variable is observed (i.e. the 
simulation step is updated) and the Adjacent_Propagation variable is evaluated. If it is true 
then the adjacent cells are evaluated. For each adjacent cell, if the intensity of the flame front 
of the active cell is greater than the heat of ignition of the adjacent cell, and the adjacent cell 
has not been completely burnt down, then it is activated and pushed into the stack. 

The implementation of this algorithm in the SDBN framework depicted in the previous 
section is straightforward, since the algorithm follows the transition rules mentioned in 
section 2.1. Consequently the simulation can be conducted step-by-step, instantiating the 
time transition frame in Fig. 12 at each step to the active cell under analysis by properly 
observing the evidence variables and by propagating the net. The same algorithm can be 
easily reversed by reversing the transition network links of the time frame in Fig. 12. In this 
way the fire propagation analysis can proceed backwards, in a diagnostic way. As will be 
shown in the next section this allows us to analyse the causes of the occurrence of fire in 
critical cells (e.g. small villages, roads, etc.) and to easily evaluate the effectiveness of action 
to contrast fire propagation, such as the use of Canadairs or fire-breaks in specific cells. 

The complementarity of the SDBN-based simulation algorithm with standard simulation 
ones resides principally in the possibility to reverse the calculation. Backward fire 
propagation entails very well focused scenario analysis, since it goes from the effect to the 
causes. In fact, in order to obtain the same information that can easily be achieved with 
backward analysis many blind “generate and test” simulations are required with a forward 
algorithm. Backward analysis, even if affected by approximations, can give initial insight 
and guide the forward simulation by limiting the scope of the search space. 

A Spatio-Temporal Bayesian Network for Adaptive  
Risk Management in Territorial Emergency Response Operations 

 

65 

5. Model implementation 
The complexity of the temporal model discussed in the previous sections, as well as its 
spatial extension to wide forest regions, usually leads to BN implementations containing 
thousands of nodes, resulting in unmanageable and impractical networks, that easily exceed 
the power of today’s computers. 

 
Fig. 13. Implementation of the single cell model with the Netica software 

To solve such a complex issue we have used the property discussed in section 2, that allows 
for a stepwise implementation of the simulation algorithm. Fig. 13 shows the 
implementation of the single cell network in the NeticaTM Software Programme, 
corresponding to the network discussed in chapter 4. The spatio-temporal transition 
network is shown in Fig. 14. This network contains 100 nodes and is able to represent large 
territories and support simulations for whatever time interval is necessary. 

 
Fig. 14. Spatio-temporal transition network 
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5.1 The software interface  

The simulator interface implemented in the prototype software is shown in Fig. 15. It 
consists of: 

- a map of the territory which is divided into cells that can be selected with a click of the 
mouse;  

- a cell window that allows for the input of the parameters of each cell (e.g. forest type, 
average slope, etc.);  

-  a simulator window that allows for the input of the simulation parameters (e.g. time 
step, time extension, type of simulation, wind direction and intensity, etc.).  

It is worth noting the flag in this window that allows the selection between forward and 
backward simulation, as explained in the previous section. The step button makes the 
simulator proceed stepwise. In this way it is possible to change the meteorological 
conditions for each time slice. In this prototypal release of the software the grid that 
subdivides the map of the territory into cells is made up of a set of cells with a fixed square 
shape. This of course introduces some approximations in the forest type mapping, that, 
however, can be limited by using cells with smaller dimensions, resulting in a finer 
tessellation. This limitation will be overcome in future software releases. 

5.2 Application to a real case study 

The software prototype has been applied to analyse forest fire risk in the Esino-Frasassi 
forest district in the Marche region, in Italy, near Ancona. The forest area analysed extends 
for 3740 ha. It contains 6 main forest types. The area was subdivided into 154 cells of 25 ha 
each. For each cell the orographic and forestal parameters were inserted.  

 
Fig. 15. The simple interface of the software prototype 
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Two kinds of simulations were carried out: forward standard simulations to evaluate both 
the risk of fire occurring when the fire breaks out in zones with a higher likelihood of 
ignition (roadsides, etc.) and the effectiveness of Canadair action; backward simulations to 
analyse the risk of disaster due to fire propagation involving areas with relatively high 
population density. 

As an example Fig. 16 shows the dynamics of fire propagation in a forward simulation, with 
the fire breaking out in a west mountainside cell. The initial conditions in the triggering 
zone are: air temp 35°C,  relative humidity equal to 40%, wind direction towards the south 
and wind speed 7m/s. 

The direction and the extension of fire propagation depend on the forest type, on the 
meteorological conditions (quite severe in this case) and on the orography of the territory. 

The software allows the effectiveness of the use of Canadairs and fire-breaks to be evaluated 
and, consequently, the optimization of their use. The use of Canadairs will increase the 
amount of heat necessary to light the fire in the cell, slowing down or even stopping the 
propagation of the fire. The use of Canadairs can be simulated by simply observing the 
usage rate in the Canadair node. Fig. 17 illustrates some steps in the same simulation shown 
in figure 16, but with the use of a Canadair.  

 
Fig. 16. Forward simulation of fire propagation. Gray = fire lighting phase, Black = final 
phase, the zone is almost burned down. The simulation time step is 30 minutes. 

The example discussed so far has shown simulations that can be carried out, we should say 
even more accurately, with standard fire area simulation software. Having compared the 
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results of the software prototype with the FARSITETM simulator using the same Rothermel's 
models, it shows essentially the same dynamics, providing less accurate results in terms of 
space and time accuracy, due essentially to the discretization of the domains of the BN 
variables. Nevertheless the errors that have been introduced by the discretizations do not 
hinder the support to the scenario analyses that the system is aimed at. 

The complementary role of BN-based fire area simulators, compared with standard 
simulation software packages, lies in their ability to proceed backwards. Proceeding 
backwards means that, once a key area is selected, it is possible to identify, as happens in a 
diagnostic process, all the possible paths that the fire can follow to reach the area, and to 
evaluate the effectiveness of risk mitigating action. Given the great number of possible paths 
once all the surrounding propagation cells are combined with all the possible meteorological 
conditions, the statistical analysis resulting from the adoption of the BN-based simulator 
seems to be the only feasible approach. Once the risk map for the area has been drawn (i.e. 
all the critical fire paths identified and the related risk mitigating policies defined), standard 
simulators can be applied to have more accurate evaluations of each critical path. Fig. 18 
shows a backward simulation concerning the evaluation of fire risk for a cell which contains  
a small village. The initial conditions in the district are: air temp 35°C,  relative humidity 
equal to 40%, wind direction towards the north and wind speed 2m/s. 

 
Fig. 17. Forward simulation of fire propagation with the use of a Canadair (white node). 
Gray = fire lighting phase, Black = final phase, the zone is almost burned down. The 
simulation time step is 30 minutes. 

We can see that in these weather conditions the fire can reach the village essentially from 
one direction. Nevertheless this cell can be burned by all the adjacent cells, triggering a 
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number of possible paths. Of course once the critical paths have been identified the 
simulation can be reversed and the use of Canadairs evaluated, as already illustrated. 

 
Fig. 18. Backward simulation of fire propagation and analysis of the risk concerning a cell which 
contains a small village. The location of the village is shown in the 30min simulation map. 

6. Conclusions 
The analysis provided in this paper was mainly devoted to showing the feasibility of an 
intelligent Decision Support System, capable of performing reliable analyses even in real-
time during emergency situation management.  

The particular case shown in this chapter concerns the development of a spatio-temporal 
Bayesian model, able to model both the spatial dynamics and the temporal evolution of forest 
fires. The former was tackled through the discretization of the forest into spatial cells, each 
corresponding to one elementary network. This discretization was used to create a spatial 
Bayesian network in the form of an Object-Oriented Network linking all the cells together. 
Time dependence was considered through the tool of Dynamic Bayesian Networks, which are 
able to quantify transition models between any one time slice and the next.  

In order to make the models available for use by non-experts, everything was implemented 
into a VBA-based prototypal software tool, where a stepwise implementation of the simulation 
algorithm has been assumed. This means that any cell can influence only its adjacent ones, 
hence a limited number of cell networks must be considered at each simulation step.  
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The successful validation of the whole model has shown not only the reliability of the 
quantitative relationships implemented therein, but also the validity of assumptions regarding 
the stepwise spread of fire and spatial discretization. Bayesian Networks have also been 
proved capable of propagating complex evidence and managing a high number of variables.  

7. Acknowledgment 
The authors wish to warmly thank Eng. Diego Centanni for his operative involvement in the 
development of the Bayesian Networks described in this paper. 

8. References 
Andrews, P. L., Bevins, C. D., Seli, R. C. (2005). BehavePlus fire modeling system, version 3.0 - 

User's Guide, Gen. Tech. Rep. RMRS-GTR-106WWW Revised. Ogden, UT: 
Department of Agriculture, Forest Service, Rocky Mountain Research Station 

Andrews, P.A. & Rothermel, R.C. (1982). Charts for interpreting wildland fire behavior 
characteristics, Gen. Tech. Rep. INT-131. Ogden, UT: U.S. Department of 
Agriculture, Forest Service, Intermountain Forest and Range Experiment Station 

Brown A., Davis K. P. (1973). Forest fire control and use (2nd ed.), McGraw-Hill, ISBN: 0-
908920-64-4, New York, NY 

Hugin Expert (2008) Hugin API – Reference Manual, version 7.0, Hugin Expert A/S 
Frandsen, W.H. (1972). The effective heating of fuel particles ahead of a spreading fire, USDA 

Forest service, Intermountain Forest and Range Exp. Sta., Ogden, Utah 
Jensen, F. V. (1996). An Introduction to Bayesian Networks, UCL Press, ISBN: 1857283225, London  
Kjaerulff, Uffe B., Madsen, Anders L. (2008) Bayesian Networks and Influence Diagrams: A 

Guide to Construction and Analysis, Springer, ISBN 978-0-387-74100-0 
Korb, K. B., Nicholson, A. E. (2004). Bayesian Artificial Intelligence, Chapmann and Hall/CRC 

Press Company, ISBN: 1-58488-387-1, Boca Raton – London – New York – 
Washington DC 

Luke, R.H. & McArthur, A.G. (1978). Bushfires in Australia, Australian Govt. Pub. Service, 
ISBN 0642023417, Canberra 

Naticchia, B., Fernandez-Gonzalez, A., Carbonari A. (2007). Bayesian Network model for the 
design of roofpond equipped buildings. International Journal of Energy and Buildings, 
Vol. 39, No.3, pp. 258-272, ISSN: 0378-7788   

Neapolitan, R.E. (2004). Learning Bayesian Networks, Prentice Hall, ISBN: 9780130125347, NJ  
Pearl, J. (1988). Probabilistic reasoning in intelligent systems : networks of plausible inferences (2nd 

ed.), Morgan Kaufmann, ISBN: 1-55860-479-0, San Mateo, California  
Rothermel, R.C. (1972). A mathematical model for predicting fre spread in wildland fuels, USDA 

Forest Service 
Scott J.H., Burgan R.E. (2005). Standard Fire Behavior Fuel Models: A Comprehensive Set for Use 

with Rothermel’s Surface Fire Spread Model, United States Department of Agriculture, 
Forest Service, Rocky Mountain Research Station 

Tucker, A. & Liu, X. (2004). Learning dynamic Bayesian networks from multivariate time 
series with changing dependencies, Proceedings of the Fifth International Symposium 
on Intelligent Data Analysis (IDA 2003) “Advances in Intelligent Data Analysis V”, 
Lecture Notes in Computer Science 2810, 100–110, Springer 

Wilson, R. (1980). Reformulation of Fire Spread Equations in SI units. USDA Forest Service, 
Research Note INT-292, Ogden, Utah 

1. Introduction

A Bayesian network (BN) Charniak (1991) Pearl (1988) Jensen (1996) Neapolitan (1990) is
a directed acyclic graph (DAG) consisting of nodes and arrows, in which node represents
random variables, and arrow represents dependence relationship between connected nodes
in the sense of the probabilistic, deterministic, or functional. Each node in BN has a specified
conditional probability distribution (CPD), where all CPDs together parameterize the model.
BNs have been used as powerful probabilistic knowledge models for decision support under
uncertainty over a few decades, with numerous applications such as classification, medical
diagnosis, bioinformatics, speech recognition, etc. One of the most important features BN
has is the factorization of the joint probability space, so that conditional independence can be
exploited to simplify modeling and save computations. However, BN model is only useful
when combined with efficient algorithms for inference.

Over decades after the first Bayesian network (BN) was introduced in early 1980s, a number
of inference algorithms have been reported in the literature. However, for hybrid Bayesian
networks with both discrete and continuous variables, which are usually inevitable in
modeling real-life problems, inference task has many difficulties and open issues. This
chapter focuses on introducing the state-of-the-art hybrid inference methods in the literature.
Particularly, we take scalability as a very important aspect and intend to provide the reader
the opportunities to get the efficent inference methods under different circumstances.

The simplest hybrid Bayesian network is called Conditional Linear Gaussian (CLG) and it is a
hybrid model for which exact inference can be performed by the Junction Tree (JT) algorithm
Lauritzen (1992). However, JT and all of other exact inference algorithms have the complexity
of being, in general, exponential to the size of the largest clique of the strongly triangulated
graph. For a hybird BN model, there surely exists hybrid cliques that including all of discrete
parent nodes for a connected continuous subgraph and at least one continuous node from the
subgraph, which is usually the largest clique. Therefore, in most of real applications, exact
inference is intractable.

For a general hybrid Bayesnet, due to the difficult issues such as the heterogeneity of
variables, arbitrary densities involved, and possibly any functional relationships, with
network topologies that may have discrete variables as parents of continuous nodes, we have
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The successful validation of the whole model has shown not only the reliability of the 
quantitative relationships implemented therein, but also the validity of assumptions regarding 
the stepwise spread of fire and spatial discretization. Bayesian Networks have also been 
proved capable of propagating complex evidence and managing a high number of variables.  

7. Acknowledgment 
The authors wish to warmly thank Eng. Diego Centanni for his operative involvement in the 
development of the Bayesian Networks described in this paper. 

8. References 
Andrews, P. L., Bevins, C. D., Seli, R. C. (2005). BehavePlus fire modeling system, version 3.0 - 

User's Guide, Gen. Tech. Rep. RMRS-GTR-106WWW Revised. Ogden, UT: 
Department of Agriculture, Forest Service, Rocky Mountain Research Station 

Andrews, P.A. & Rothermel, R.C. (1982). Charts for interpreting wildland fire behavior 
characteristics, Gen. Tech. Rep. INT-131. Ogden, UT: U.S. Department of 
Agriculture, Forest Service, Intermountain Forest and Range Experiment Station 

Brown A., Davis K. P. (1973). Forest fire control and use (2nd ed.), McGraw-Hill, ISBN: 0-
908920-64-4, New York, NY 

Hugin Expert (2008) Hugin API – Reference Manual, version 7.0, Hugin Expert A/S 
Frandsen, W.H. (1972). The effective heating of fuel particles ahead of a spreading fire, USDA 

Forest service, Intermountain Forest and Range Exp. Sta., Ogden, Utah 
Jensen, F. V. (1996). An Introduction to Bayesian Networks, UCL Press, ISBN: 1857283225, London  
Kjaerulff, Uffe B., Madsen, Anders L. (2008) Bayesian Networks and Influence Diagrams: A 

Guide to Construction and Analysis, Springer, ISBN 978-0-387-74100-0 
Korb, K. B., Nicholson, A. E. (2004). Bayesian Artificial Intelligence, Chapmann and Hall/CRC 

Press Company, ISBN: 1-58488-387-1, Boca Raton – London – New York – 
Washington DC 

Luke, R.H. & McArthur, A.G. (1978). Bushfires in Australia, Australian Govt. Pub. Service, 
ISBN 0642023417, Canberra 

Naticchia, B., Fernandez-Gonzalez, A., Carbonari A. (2007). Bayesian Network model for the 
design of roofpond equipped buildings. International Journal of Energy and Buildings, 
Vol. 39, No.3, pp. 258-272, ISSN: 0378-7788   

Neapolitan, R.E. (2004). Learning Bayesian Networks, Prentice Hall, ISBN: 9780130125347, NJ  
Pearl, J. (1988). Probabilistic reasoning in intelligent systems : networks of plausible inferences (2nd 

ed.), Morgan Kaufmann, ISBN: 1-55860-479-0, San Mateo, California  
Rothermel, R.C. (1972). A mathematical model for predicting fre spread in wildland fuels, USDA 

Forest Service 
Scott J.H., Burgan R.E. (2005). Standard Fire Behavior Fuel Models: A Comprehensive Set for Use 

with Rothermel’s Surface Fire Spread Model, United States Department of Agriculture, 
Forest Service, Rocky Mountain Research Station 

Tucker, A. & Liu, X. (2004). Learning dynamic Bayesian networks from multivariate time 
series with changing dependencies, Proceedings of the Fifth International Symposium 
on Intelligent Data Analysis (IDA 2003) “Advances in Intelligent Data Analysis V”, 
Lecture Notes in Computer Science 2810, 100–110, Springer 

Wilson, R. (1980). Reformulation of Fire Spread Equations in SI units. USDA Forest Service, 
Research Note INT-292, Ogden, Utah 

1. Introduction

A Bayesian network (BN) Charniak (1991) Pearl (1988) Jensen (1996) Neapolitan (1990) is
a directed acyclic graph (DAG) consisting of nodes and arrows, in which node represents
random variables, and arrow represents dependence relationship between connected nodes
in the sense of the probabilistic, deterministic, or functional. Each node in BN has a specified
conditional probability distribution (CPD), where all CPDs together parameterize the model.
BNs have been used as powerful probabilistic knowledge models for decision support under
uncertainty over a few decades, with numerous applications such as classification, medical
diagnosis, bioinformatics, speech recognition, etc. One of the most important features BN
has is the factorization of the joint probability space, so that conditional independence can be
exploited to simplify modeling and save computations. However, BN model is only useful
when combined with efficient algorithms for inference.

Over decades after the first Bayesian network (BN) was introduced in early 1980s, a number
of inference algorithms have been reported in the literature. However, for hybrid Bayesian
networks with both discrete and continuous variables, which are usually inevitable in
modeling real-life problems, inference task has many difficulties and open issues. This
chapter focuses on introducing the state-of-the-art hybrid inference methods in the literature.
Particularly, we take scalability as a very important aspect and intend to provide the reader
the opportunities to get the efficent inference methods under different circumstances.

The simplest hybrid Bayesian network is called Conditional Linear Gaussian (CLG) and it is a
hybrid model for which exact inference can be performed by the Junction Tree (JT) algorithm
Lauritzen (1992). However, JT and all of other exact inference algorithms have the complexity
of being, in general, exponential to the size of the largest clique of the strongly triangulated
graph. For a hybird BN model, there surely exists hybrid cliques that including all of discrete
parent nodes for a connected continuous subgraph and at least one continuous node from the
subgraph, which is usually the largest clique. Therefore, in most of real applications, exact
inference is intractable.

For a general hybrid Bayesnet, due to the difficult issues such as the heterogeneity of
variables, arbitrary densities involved, and possibly any functional relationships, with
network topologies that may have discrete variables as parents of continuous nodes, we have
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to rely on approximate inference with tradeoff in accuracy against complexity. To this end,
there are several main categories of approximate algorithms:

1. Generalized Junction Tree algorithm: when the complexity of a network is beyond the
capability of traditional JT, Koller et al. (1999) proposed a general algorithm under the
framework of Junction Tree, but using approximate clique potentials to do the clique tree
propagation. It involves approximate inference algorithms to estimate the densities in each
clique. Further, for hybrid network with the structure such that continuous variable has
discrete children, Shenoy (2006) introduces a way to convert the model into a network
with CLG structure, and then use Gaussian mixtures to approximate clique potentials for
inference under Junction Tree framework. Another interesting method to approximate
densities is to use truncated exponential Cobb & Shenoy (2006).

2. Hybrid loopy belief propagation: also know as message passing, the first belief
propagation algorithm was proposed by Pearl in 1980s Pearl (1988), to provide exact
inference for discrete polytree BN model. When there is any loop in the network,
it becomes loopy belief propagation and provides accurate approximate solutions
empirically for discrete networks Murphy et al. (1999). In hybrid case, Yuan & Druzdzel
(2006) proposed a computationally extensive approach combining nonparametric belief
propagation Sudderth et al. (2003), numerical integration, and density estimation
techniques to pass messages between any types of variables.

3. Monte Carlo: importance sampling methods, such as Likelihood Weighting Fung & Chang
(1989), Shachter & Peot (1999), are model-free algorithms, but usually have difficulty in
dealing with unlikely evidence. The state-of-the-art importance sampling algorithms are
AIS-BN Cheng & Druzdzel (2000) and EPIS-BN Yuan & Druzdzel (2007). Unfortunately,
both work for discrete networks only. For hybrid BN models, any approximate results
obtained by algorithms in the first two categories can be certainly used as the importance
functions for efficient sampling process. Other sampling methods include Markov Chain
Monte Carlo (MCMC) Gilks et al. (1996), Gamerman & Lopes (2006).

4. Variational methods: by formulating probabilistic inference into an optimization problem,
variational methods provide another perspective for approximation solutions (Wainwright
& Jordan (2008)).

We are particularly interested in the message passing framework because of its simplicity
of implementation and good empirical performance, and more importantly, its distributed
nature of inference. Without the computational burden of numerical integration, we proposed
a partitioned message passing algorithm in Sun & Chang (2009), using interface nodes to
separate the original network into sub-networks. Each sub-network contains only one type
of variables, either discrete or continuous. We then conduct message passing separately
within each sub-network. Finally, messages are fused together through interface nodes and
the posterior distributions are computed based on final messages. The advantage of the
partitioned message passing method is that it is easier to accommodate an efficient algorithm
for inference within homogeneous sub-networks. On the other hand, a disadvantage is that
we have to conduct inference conditioning on all the discrete parent nodes (i.e., interface
nodes), for each connected continuous subgraph. Therefore, the algorithm has an exponential
complexity proportional to the product of sizes of discrete parent nodes.

It is more desirable to have an unified message passing framework that allows direct message
propagation between different types of variables for general hybrid Bayesian networks. We
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achieve this goal by deriving formulae for exchanging messages under all possible scenarios.
Unscented transformation are used to tackle possible nonlinear functional relationships
between continuous variables Julier (2002), Sun & Chang (2007a). For arbitrary densities,
we proposed to use Gaussian mixture as the approximation before passing messages. The
approach does not require any graph transformation, or any numerial integrations. In the
framework, each node in the networks propagates messages to its neighbors. Messages
are computed locally based on the node types under various circumstances without global
knowledge. To maintain scalability, we also propose to use Gaussian mixture reduction
techniques Kuo-Chu Chang & Smith (2010), Chang & Sun (2010), to limit the number of
Gaussian components, while having the approximation error bounded each time. We term
this new scalable and distributed approach Direct Message Passing for Hybrid Bayesian
Network (DMP-HBN). Further, for general hybrid models with topology such that a discrete
node may have continuous parents, one can always use Shenoy (2006) to convert the model
into a network with CLG structure, then apply DMP-HBN for inference. This algorithm
is able to provide an exact solution for polytree CLGs, and approximate solution by loopy
propagation for general hybrid models.

In the rest of this chapter, we focus on describe the details of DMP-HBN. At the end of
this chatper, we will also briefly discuss an up-to-date method to find the most probable
explanations (MPE) for hybrid Bayesian networks.

2. Direct message passing

This section describes DMP-HBN algorithm in detail. We first briefly review Pearl’s original
message passing algorithm. We then extend it for general hybrid models.

2.1 Pearl’s message passing algorithm

Recall that in a polytree network, any node X d–separates evidence into {e+, e−}, where e+

and e− are evidence from the sub-network “above" X and “below" X respectively. Every node
in the network maintains two values called λ and π. The λ value of X is the likelihood, defined
as:

λ(X) = P(e−X |X) (1)

The π value of X, defined as:
π(X) = P(X| e+X ) (2)

is the conditional probability distribution of X given e+X . It is easy to see that the belief of a
node X given all evidence is just the normalized product of its λ and π values:

BEL(X) = P(X|e) = P(X|e+X , e−X )

=
P(e−X |X, e+X )P(X|e+X )P(e+X )

P(e+X , e−X )
= αP(e−X |X)P(X|e+X )
= αλ(X)π(X) (3)

where α is a normalizing constant. In message passing, every node sends λ messages to each
of its parents and π messages to each of its children. Based on its received messages, every
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to rely on approximate inference with tradeoff in accuracy against complexity. To this end,
there are several main categories of approximate algorithms:
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clique. Further, for hybrid network with the structure such that continuous variable has
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with CLG structure, and then use Gaussian mixtures to approximate clique potentials for
inference under Junction Tree framework. Another interesting method to approximate
densities is to use truncated exponential Cobb & Shenoy (2006).

2. Hybrid loopy belief propagation: also know as message passing, the first belief
propagation algorithm was proposed by Pearl in 1980s Pearl (1988), to provide exact
inference for discrete polytree BN model. When there is any loop in the network,
it becomes loopy belief propagation and provides accurate approximate solutions
empirically for discrete networks Murphy et al. (1999). In hybrid case, Yuan & Druzdzel
(2006) proposed a computationally extensive approach combining nonparametric belief
propagation Sudderth et al. (2003), numerical integration, and density estimation
techniques to pass messages between any types of variables.

3. Monte Carlo: importance sampling methods, such as Likelihood Weighting Fung & Chang
(1989), Shachter & Peot (1999), are model-free algorithms, but usually have difficulty in
dealing with unlikely evidence. The state-of-the-art importance sampling algorithms are
AIS-BN Cheng & Druzdzel (2000) and EPIS-BN Yuan & Druzdzel (2007). Unfortunately,
both work for discrete networks only. For hybrid BN models, any approximate results
obtained by algorithms in the first two categories can be certainly used as the importance
functions for efficient sampling process. Other sampling methods include Markov Chain
Monte Carlo (MCMC) Gilks et al. (1996), Gamerman & Lopes (2006).

4. Variational methods: by formulating probabilistic inference into an optimization problem,
variational methods provide another perspective for approximation solutions (Wainwright
& Jordan (2008)).

We are particularly interested in the message passing framework because of its simplicity
of implementation and good empirical performance, and more importantly, its distributed
nature of inference. Without the computational burden of numerical integration, we proposed
a partitioned message passing algorithm in Sun & Chang (2009), using interface nodes to
separate the original network into sub-networks. Each sub-network contains only one type
of variables, either discrete or continuous. We then conduct message passing separately
within each sub-network. Finally, messages are fused together through interface nodes and
the posterior distributions are computed based on final messages. The advantage of the
partitioned message passing method is that it is easier to accommodate an efficient algorithm
for inference within homogeneous sub-networks. On the other hand, a disadvantage is that
we have to conduct inference conditioning on all the discrete parent nodes (i.e., interface
nodes), for each connected continuous subgraph. Therefore, the algorithm has an exponential
complexity proportional to the product of sizes of discrete parent nodes.

It is more desirable to have an unified message passing framework that allows direct message
propagation between different types of variables for general hybrid Bayesian networks. We
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achieve this goal by deriving formulae for exchanging messages under all possible scenarios.
Unscented transformation are used to tackle possible nonlinear functional relationships
between continuous variables Julier (2002), Sun & Chang (2007a). For arbitrary densities,
we proposed to use Gaussian mixture as the approximation before passing messages. The
approach does not require any graph transformation, or any numerial integrations. In the
framework, each node in the networks propagates messages to its neighbors. Messages
are computed locally based on the node types under various circumstances without global
knowledge. To maintain scalability, we also propose to use Gaussian mixture reduction
techniques Kuo-Chu Chang & Smith (2010), Chang & Sun (2010), to limit the number of
Gaussian components, while having the approximation error bounded each time. We term
this new scalable and distributed approach Direct Message Passing for Hybrid Bayesian
Network (DMP-HBN). Further, for general hybrid models with topology such that a discrete
node may have continuous parents, one can always use Shenoy (2006) to convert the model
into a network with CLG structure, then apply DMP-HBN for inference. This algorithm
is able to provide an exact solution for polytree CLGs, and approximate solution by loopy
propagation for general hybrid models.

In the rest of this chapter, we focus on describe the details of DMP-HBN. At the end of
this chatper, we will also briefly discuss an up-to-date method to find the most probable
explanations (MPE) for hybrid Bayesian networks.

2. Direct message passing

This section describes DMP-HBN algorithm in detail. We first briefly review Pearl’s original
message passing algorithm. We then extend it for general hybrid models.

2.1 Pearl’s message passing algorithm

Recall that in a polytree network, any node X d–separates evidence into {e+, e−}, where e+

and e− are evidence from the sub-network “above" X and “below" X respectively. Every node
in the network maintains two values called λ and π. The λ value of X is the likelihood, defined
as:

λ(X) = P(e−X |X) (1)

The π value of X, defined as:
π(X) = P(X| e+X ) (2)

is the conditional probability distribution of X given e+X . It is easy to see that the belief of a
node X given all evidence is just the normalized product of its λ and π values:

BEL(X) = P(X|e) = P(X|e+X , e−X )

=
P(e−X |X, e+X )P(X|e+X )P(e+X )

P(e+X , e−X )
= αP(e−X |X)P(X|e+X )
= αλ(X)π(X) (3)

where α is a normalizing constant. In message passing, every node sends λ messages to each
of its parents and π messages to each of its children. Based on its received messages, every
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node updates its λ and π values correspondingly. The general message propagation equations
of Pearl’s algorithm are the following Pearl (1988):

π(X) = ∑
T

P(X| T)
m

∏
i=1

πX(Ti) (4)

λ(X) =
n

∏
j=1

λYj (X) (5)

πYj (X) = α

⎡
⎣∏

k �=j
λYk (X)

⎤
⎦ π(X) (6)

λX(Ti) = ∑
X

λ(X) ∑
Tk : k �=i

P(X|T)∏
k �=i

πX(Tk) (7)

where T = (T1, T2, ..., Tn) are the parents of node X; Y = (Y1, Y2, ..., Ym) are children of node
X; λYj (X) is the λ message node X receives from its child Yj, λX(Ti) is the λ message X sends
to its parent Ti; πX(Ti) is the π message node X receives from its parent Ti, πYj (X) is the π
message X sends to its child Yj; and α is a normalizing constant.

Equations (4) to (7) are recursive equations, so we need to initialize messages properly to
start the message propagation. Again, Pearl’s algorithm is originally designed for discrete
polytree networks, so these propagation equations are for computing discrete probabilities.
When Pearl’s algorithm is applied to a pure discrete polytree network, the messages
propagated are exact and so are the beliefs of all nodes after receiving all messages. For pure
continuous networks with arbitrary distributions, we proposed a method called Unscented
Message Passing Sun & Chang (2007a) using a similar framework with different message
representations and a new corresponding computation method. However, with both discrete
and continuous variables in the model, passing messages directly between different types of
variables requires additional techniques.

2.2 Direct message passing between discrete and continuous variables

We focus our research in this paper to the type of hybrid Bayesian networks that have the
same network structure as the CLG, named conditional hybrid model (CHM). In a CHM,
a continuous node is not allowed to have any discrete child, while it may have arbitrary
distributions and nonlinear relationships between variables. We believe that it is not difficult
to extend our algorithm to general hybrid models with arbitrary network structure. Therefore
in a CHM, the only case we need to consider when exchanging message between different
types of variables is when a continuous node has discrete parents. Without loss of generality,
suppose that we have a typical hybrid CPD involving a continuous node X with a discrete
parent node D and a continuous parent node U, as shown in 1. Messages sent between these
nodes are: (1) π message from D to X, denoted as πX(D); (2) π message from U to X, denoted
as πX(U); (3) λ message from X to D, denoted as λX(D); and (4) λ message from X to U,
denoted as λX(U). In addition, each node needs to maintain its λ and π values.

Let us look at these messages one by one, and derive their corresponding formula based on
Pearl’s traditional message passing mechanism. First, recall from Equation (6), πX(D) can be
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computed by substitution:

πX(D) = α

[
∏

child �=X
λchild(D)

]
π(D) (8)

where λchild(D) is λ message sent to D from each of its children except X, and π(D) is the
easily computed message sent from the discrete sub-network “above" D. Note that λchild(D)
is always in the form of a discrete vector. After normalizing, πX(D) is a discrete probability
distribution serving as the mixing prior for a Gaussian mixture.

Similarly, but in a different form, πX(U) can be computed as:

πX(U) = α

[
∏

child �=X
λchild(U)

]
π(U) (9)

where λchild(U) are λ messages sent to U from its continuous children other than X. These λ
messages are continuous messages in the form of Gaussian mixtures. π(U) is π value of U,
and its computation depends on the type of parent nodes it has. The generalized computation
of π(X) will be described in the next paragraph. Finally, the resulting πX(U) is a normalized
product of Gaussian mixtures, resulting in another Gaussian mixture with a greater number
of components.

Now for π(X), by applying Equation (4) with integral replacing summation for continuous
variable, we have,

π(X) = ∑
D

∫

U
P(X|D, U)πX(D)πX(U)dU

= ∑
D

[
πX(D)

∫

U
P(X|D, U)πX(U)dU

]
(10)

where πX(D) and πX(U) are π messages sent from D and U respectively. For a given D = d,
P(X|D = d, U) defines a probabilistic functional relationship between X and its continuous
parent U. The integral of P(X|D = d, U)πX(U) over U is equivalent to a functional
transformation of πX(U), which is a continuous message in the form of a Gaussian mixture.
In this functional transformation process, we pass each Gaussian component individually to

UD

X

Fig. 1. A typical node with hybrid CPD — continuous node X has discrete parent D and
continuous parent U.
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node updates its λ and π values correspondingly. The general message propagation equations
of Pearl’s algorithm are the following Pearl (1988):
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πX(Ti) (4)

λ(X) =
n

∏
j=1

λYj (X) (5)

πYj (X) = α

⎡
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λYk (X)
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⎦ π(X) (6)
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X
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where T = (T1, T2, ..., Tn) are the parents of node X; Y = (Y1, Y2, ..., Ym) are children of node
X; λYj (X) is the λ message node X receives from its child Yj, λX(Ti) is the λ message X sends
to its parent Ti; πX(Ti) is the π message node X receives from its parent Ti, πYj (X) is the π
message X sends to its child Yj; and α is a normalizing constant.

Equations (4) to (7) are recursive equations, so we need to initialize messages properly to
start the message propagation. Again, Pearl’s algorithm is originally designed for discrete
polytree networks, so these propagation equations are for computing discrete probabilities.
When Pearl’s algorithm is applied to a pure discrete polytree network, the messages
propagated are exact and so are the beliefs of all nodes after receiving all messages. For pure
continuous networks with arbitrary distributions, we proposed a method called Unscented
Message Passing Sun & Chang (2007a) using a similar framework with different message
representations and a new corresponding computation method. However, with both discrete
and continuous variables in the model, passing messages directly between different types of
variables requires additional techniques.

2.2 Direct message passing between discrete and continuous variables

We focus our research in this paper to the type of hybrid Bayesian networks that have the
same network structure as the CLG, named conditional hybrid model (CHM). In a CHM,
a continuous node is not allowed to have any discrete child, while it may have arbitrary
distributions and nonlinear relationships between variables. We believe that it is not difficult
to extend our algorithm to general hybrid models with arbitrary network structure. Therefore
in a CHM, the only case we need to consider when exchanging message between different
types of variables is when a continuous node has discrete parents. Without loss of generality,
suppose that we have a typical hybrid CPD involving a continuous node X with a discrete
parent node D and a continuous parent node U, as shown in 1. Messages sent between these
nodes are: (1) π message from D to X, denoted as πX(D); (2) π message from U to X, denoted
as πX(U); (3) λ message from X to D, denoted as λX(D); and (4) λ message from X to U,
denoted as λX(U). In addition, each node needs to maintain its λ and π values.

Let us look at these messages one by one, and derive their corresponding formula based on
Pearl’s traditional message passing mechanism. First, recall from Equation (6), πX(D) can be
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computed by substitution:

πX(D) = α
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∏
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where λchild(D) is λ message sent to D from each of its children except X, and π(D) is the
easily computed message sent from the discrete sub-network “above" D. Note that λchild(D)
is always in the form of a discrete vector. After normalizing, πX(D) is a discrete probability
distribution serving as the mixing prior for a Gaussian mixture.

Similarly, but in a different form, πX(U) can be computed as:
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where λchild(U) are λ messages sent to U from its continuous children other than X. These λ
messages are continuous messages in the form of Gaussian mixtures. π(U) is π value of U,
and its computation depends on the type of parent nodes it has. The generalized computation
of π(X) will be described in the next paragraph. Finally, the resulting πX(U) is a normalized
product of Gaussian mixtures, resulting in another Gaussian mixture with a greater number
of components.

Now for π(X), by applying Equation (4) with integral replacing summation for continuous
variable, we have,

π(X) = ∑
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∫
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πX(D)

∫

U
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where πX(D) and πX(U) are π messages sent from D and U respectively. For a given D = d,
P(X|D = d, U) defines a probabilistic functional relationship between X and its continuous
parent U. The integral of P(X|D = d, U)πX(U) over U is equivalent to a functional
transformation of πX(U), which is a continuous message in the form of a Gaussian mixture.
In this functional transformation process, we pass each Gaussian component individually to

UD

X

Fig. 1. A typical node with hybrid CPD — continuous node X has discrete parent D and
continuous parent U.
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form a new Gaussian mixture. Essentially, π(X) is a mixture of continuous distributions
weighted by πX(D). To avoid the potential for growing complexity of the message, it is
possible to approximate the mixture with a single Gaussian density or a Gaussian mixture
with fewer components.

λ(X) is relatively straightforward to compute as it is the product of λ messages from each
of its children, which must be continuous variables due to the network structure restriction.
However, since we represent a continuous message as a Gaussian mixture, the product
of a set of Gaussian mixtures will be another Gaussian mixture with increased number of
components.

Let us now turn to the computation of messages sent from X to its parents D and U. As
shown in Equation (7), λ message sent to its parents is essentially an inverse functional
transformation of the product of the λ value of the node itself and the π messages sent from
all of its other parents via the function defined in the CPD of X. It can be derived as,

λX(D = d) =
∫

X
λ(X)

∫

U
P(X|D = d, U)πX(U)dUdX (11)

where
∫

U P(X|D = d, U)πX(U)dU is a functional transformation of a distribution over U
into a distribution over X. Further, multiplying by λ(X) and integrating over X, results in a
non-negative constant, serving as a likelihood of X given D = d.

Similarly, the λ message sent from X to its continuous parent U can be expressed as:

λX(U) =
∫

X
λ(X)∑

D
P(X|D, U)πX(D)dX

= ∑
D

[
πX(D)

∫

X
λ(X)P(X|D, U)dX

]
(12)

Note that
∫

X λ(X)P(X|D, U)dX is an integral of the product of X’s λ value and its conditional
probability distribution; this integral is over X itself. Therefore it results in a density estimate
of its parent multiplied by a coefficient. This coefficient is very critical in computing mixing
priors with πX(D) when there is more than one component in the mixture distributions.

Equations (8) to (12) form a baseline for computing messages between discrete and continuous
variables. Along with the well-defined formulae for computing messages between the same
types of variables, they together provide an unified message passing framework for hybrid
Bayesian network models. When the network is a polytree, messages propagated between
nodes are exact and so the beliefs. When there are loops in the network, DMP-BN still works
in the same way as so-called loopy propagation but provides approximate solution.

To illustrate the algorithm, next we describe in detail the computing process of message
passing with a concrete 5-node polytree CLG called Poly5CLG. The network structure of
Poly5CLG is shown in Figure 2. It consists of 2 discrete node T, C and 3 continuous nodes
Y, W, Z. We assume binary discrete nodes and scalar Gaussian continuous nodes in the model.
The corresponding CPDs are specified in Figure 3. Suppose leaf nodes C, Z are observable
evidence and they are instaniated as state 1, and 5.5 respectively.
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Fig. 2. Poly5CLG: A demo CLG model consisting of 2 discrete nodes T, C and 3 continuous
nodes Y, W, Z.

T: Pr(T = 1) = 0.5, Pr(T = 2) = 0.5

C:
T T = 1 T = 2

Pr(C = 1|T) 0.8 0.3
Pr(C = 2|T) 0.2 0.7

Y: p(Y) = N (10, 1)

W:
p(W|T = 1) = N (−1 + Y, 1)
p(W|T = 2) = N (1 + Y, 1)

Z: p(Z) = N (0.5W, 1)

Fig. 3. Nodes CPDs for model Poly5CLG.

The algorithm is based on iterative computations. First, every node initializes its own λ, π
values and messages propagated to its parents (λ messages) and children (π messages).
Then, in each iteration, every node updates their λ, π values and messages, utill all of nodes
converge to their steady beliefs. For ease of exposition, here we describe the computing
process starting from evidence nodes towards their neighbors, and then propagating to other
hidden nodes. Further since we only need to know the posterior distributions for hidden
variables, we do not compute the messages back to evidence nodes. Starting with the
messages from nodes C, Z, it is easily understood that,

λ(C) =
[

1
0

]
, λ(Z) =

{
μ = 5.5
σ2 = 0

,

where μ, σ2 are mean and variance representing the continuous message. Then, the λ message
sending from C to its parent T can be obtained as

λC(T) = ∑
C

λ(C)P(C|T) = ∑
C

[
1 1
0 0

]
.
[

0.8 0.3
0.2 0.7

]
= [0.8 0.3],
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where . is the elementwise multiplication of matrices. Please note that computing λ message
sending from Z to its parent W is more complicated and subtle:

λZ(W) =
∫

Z
λ(Z)P(Z|W)dZ.

In general, this is essentially an inverse functional transformation for estimating the original
dependent variable based on the information of independent variable. Generally, let us
assume that the CPD of P(Z|W) is

P(Z|W) = N ( f (W), σ2
0 ),

where f (W) is an arbitrary deterministic function specifying the functional relationship
between Z and W. Suppose that we now know Z is distributed as N (μz, σ2

z ) (serving as
λ(Z)). Then, λZ(W) is actually the estimate of W based on this known information about Z,
computed as:

λZ(W) =
∫

Z
λ(Z)P(Z|W)dZ

=
∫

Z
N (μz, σ2

z )N ( f (W), σ2
0 )dZ

=
∫

Z

1√
2πσz

exp
{
− (Z − μz)2

2σ2
z

}
.

1√
2πσ0

exp

{
− (Z − f (W))2

2σ2
0

}
dZ

=
1

2πσ0σz

∫

Z
exp

{
−σ2

0 (Z − μz)2 + σ2
z (Z − f (W))2

2σ2
0 σ2

z

}
dZ

(13)

Let us denote the part of exponent in Equation (13) as E,

E =
σ2

0 (Z − μz)2 + σ2
z (Z − f (W))2

2σ2
0 σ2

z
.

E can be rearranged to be,

E =
Z2 − 2σ2

0 μz+2σ2
z f (W)

σ2
0+σ2

z
Z +

σ2
0 μ2

z+σ2
z f 2(W)

σ2
0+σ2

z

2σ2
0 σ2

z
σ2

0+σ2
z

=
(Z − U)2

2σ2
0 σ2

z
σ2

0+σ2
z

+
(μz − f (W))2

2(σ2
0 + σ2

z )
, (14)
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where U =
σ2

0 μz+σ2
z f (W)

σ2
0+σ2

z
is a constant relative to variable Z. Substituting (14) back into (13),

λZ(W) =
1

2πσ0σz

�

Z
exp

⎧
⎪⎨
⎪⎩
− (Z − U)2

2σ2
0 σ2

z
σ2

0+σ2
z

⎫
⎪⎬
⎪⎭

exp

�
(μz − f (W))2

2(σ2
0 + σ2

z )

�
dZ

=

�
σ2

0 + σ2
z√

2πσ0σz

�

Z
exp

⎧
⎪⎨
⎪⎩
− (Z − U)2

2σ2
0 σ2

z
σ2

0+σ2
z

⎫
⎪⎬
⎪⎭

dZ

√
2πσ0σz�
σ2

0 + σ2
z

1
2πσ0σz

exp

�
− ( f (W)− μz)2

2(σ2
0 + σ2

z )

�

=
1�

2π(σ2
0 + σ2

z )
exp

�
− ( f (W)− μz)2

2(σ2
0 + σ2

z )

�

(15)

=
1�

2π(σ2
0 + σ2

z )

√
2πσw

1√
2πσw

exp
�
− (W − μw)2

2σ2
w

�

=
σw�

σ2
0 + σ2

z

N (μw, σ2
w), (16)

where μw, σ2
w are the mean and variance estimates for variable W, which always can be

obtained by rearranging the exponent in (15) and they must be functions of μz, σ0, σz. In our
algorithm, we use unscented transformation to estimate the post distributions for variables
undergone nonlinear functions. Note that the constant coefficient σw√

σ2
0+σ2

z
must be part of λ

message. It is very critical to keep the coefficient in place while the λ message is in the form
of mixture distributions so that it can be updated with correct weights of the components.
From (16), it also shows that the λ message is not a distribution. Instead, it is a probabilistic
likelihood function. In a special case such that Z is observed as the value z (μz = z and σ2

z = 0),
then Equation (15) can be simplified to:

λZ(W) =
1√

2πσ2
0

exp

�
− ( f (W)− z)2

2σ2
0

�
=

σw

σ0
N (μw, σ2

w), (17)

where μw is a function of z, and σw is a function of σ0. It is straightforward to extend Equation
(15), (16), and (17) for continuous node with multiple parents, by adding Gaussian terms from
the continuous parents and functions given discrete parents.
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From (16), it also shows that the λ message is not a distribution. Instead, it is a probabilistic
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then Equation (15) can be simplified to:

λZ(W) =
1√

2πσ2
0

exp

�
− ( f (W)− z)2

2σ2
0

�
=

σw

σ0
N (μw, σ2

w), (17)

where μw is a function of z, and σw is a function of σ0. It is straightforward to extend Equation
(15), (16), and (17) for continuous node with multiple parents, by adding Gaussian terms from
the continuous parents and functions given discrete parents.
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Back to the concrete example, substituting actual functions and values into (17),

λZ(W) =
1√

2π × 1
exp

{
− (0.5W − 5.5)2

2 × 1

}

=
1√
2π

exp
{
− (W − 11)2

2 × 4

}

= 2N (μw = 11, σ2
w = 4). (18)

Since Z is the only child of W, from Equation (5), we have,

λ(W) = λZ(W) = 2N (μw = 11, σ2
w = 4).

For hidden root nodes T, Y, their π values are just their prior distributions,

π(T) = [0.5 0.5], π(Y) = N (μy = 10, σ2
y = 1).

Now we can compute π messages sending from T, Y to W respectively, according to Equation
(8) and (9),

πW(T) = αλC(T)π(T) = α[0.8 0.3].[0.5 0.5] = [0.7273 0.2727];

πW(Y) = π(Y) = N (μy = 10, σ2
y = 1).

Then,

π(W) = ∑
T

[
πW(T)

∫

Y
P(W|T, Y)πW(Y)dY

]

= 0.7273N (μw = 9, σ2
w = 2) + 0.2727N (μw = 11, σ2

w = 2),

which is a Gaussian mixture. So far, W has received all of messages from its parents and
children, so,

BEL(W) = α λ(W)π(W)

= α 2N (11, 4) [0.7273N (9, 2) + 0.2727N (11, 2)]

= α [2 ∗ 0.7273 ∗ 0.1167N (9.6667, 1.3333)] +

α [2 ∗ 0.2727 ∗ 0.1629N (11, 1.3333)]

= 0.6564N (9.6667, 1.3333) + 0.3436N (11, 1.3333) .

With (11) and (12), the λ messages sending from W to its parents are,

λW(T = 1) =
∫

W
λ(W)

∫

Y
P(W|T = 1, Y)πW(Y)dYdW

=
∫

W
2N (11, 4)N (9, 2)dW

= 2 ∗ 0.2334

= 0.4668 ,
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similarly,

λW(T = 2) =
∫

W
λ(W)

∫

Y
P(W|T = 2, Y)πW(Y)dYdW

=
∫

W
2N (11, 4)N (11, 2)dW

= 2 ∗ 0.3257

= 0.6514 ,

and from (15), (16),

λW(Y) = ∑
T

[
πW(T)

∫

W
λ(W)P(W|T, Y)dX

]

= 0.7273
∫

W
2N (11, 4)N (−1 + Y, 1)dW +

0.2727
∫

W
2N (11, 4)N (1 + Y, 1)dW

= 1.4546N (12, 5) + 0.5454N (10, 5) .

Therefore,

λ(T) = λC(T)λW(T)

= [0.8 0.3].[0.4668 0.6514]

= [0.37344 0.19542] ,

λ(Y) = λW(Y)

= 1.4546N (12, 5) + 0.5454N (10, 5) .

Finally the beliefs of nodes T, Y can be computed as,

BEL(T) = α λ(T)π(T)

= α [0.37344 0.19542].[0.5 0.5]

= [0.65647 0.34353] ,

BEL(Y) = α λ(Y)π(Y)

= α [1.4546N (12, 5) + 0.5454N (10, 5)]

N (10, 1)

= α [1.4546 ∗ 0.1167N (10.3333, 0.8333)] +

α [0.5454 ∗ 0.1629N (10, 0.8333)]

= 0.6564N (10.3333, 0.8333) +

0.3436N (10, 0.8333) .

Now, the message passing algorithm provides the posterior distributions for all of hidden
nodes T, Y, W. And since this is a poly tree model, the solution is exact.

Note that the presence of discrete parents for continuous variable makes the corresponding
continuous messages necessarily a mixture distribution. Unfortunately, the number of
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mixture components in the message increases exponentially with the size of joint state space
of the discrete parents. In order to scale the algorithm, one alternative is to combine or reduce
the mixture components into smaller ones to trade off complexity against accuracy.

2.3 Complexity and scalability

The complexity of exact inference for a hybrid model is essentially determined by the size of
the joint state space of all discrete parent nodes (i.e., interface nodes). It is easy to prove that,
in a connected CLG, all discrete parents will end up in one clique with at least one continuous
node Lerner (2002). Sometimes, even a CLG with very simple structure can give rise to an
intractable clique tree. For example, the network shown in Figure 4 will have all of its discrete
nodes in one clique, hence making the computations exponential in the size of the joint state
space of all discrete nodes. If each discrete node has 10 states, then the resulting clique will
have size 10n, where n is the number of discrete nodes.

A1 A2 AnA3 …

Y1 Y2 Y3 YnT E

Fig. 4. A simple CLG that has an exponential clique tree: A1, A2, ...An are discrete nodes, and
T, Y1, Y2, ..., Yn, E are continuous nodes.

DMP-HBN has the same problem when exact inference is required. This is because for each
state of a discrete parent node, its continuous child has to compute messages according to the
function defined in the CPD. Therefore, messages sent by a continuous node with a hybrid
CPD will be in the form of a Gaussian mixture in which the components are weighted by
probabilities passed from its discrete parents. In particular, as shown in Equaion (10) and
(12), π(X) and λX(U) are mixtures of Gaussians with the number of Gaussian components
equal to the size of the state space of its discrete parent D. When a mixture message
propagates to another continuous node with discrete parents, the message size will increase
again exponentially. However, while JT has to deal with this intractability, DMP-HBN has the
choice to approximate the original Gaussian mixture with a smaller number of components.
In many cases, a Gaussian mixture with significantly fewer components can approximate
the original density very well. Let us assume that f (x) is the true density, and f̂ (x) is the
approximate Gaussian mixture. We use the following distance measure as the metric, called
Normalized Integrated Square Error (NISE):

d =

∫
( f (x)− f̂ (x))2dx∫

( f (x))2dx +
∫
( f̂ (x))2dx

.

An example shown in Figure 5 demonstrates a reasonable estimate using only 4 components
to approximate a Gaussian mixture with 20 components (

√
d < 3%). With a pre-defined error

bound, Gaussian mixture reduction methods such as the ones proposed in Kuo-Chu Chang
& Smith (2010) Schrempf et al. (2005) can be applied to find a good approximate mixture
with a smaller number of components. It is straightforward to incorporate these methods into
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DMP-HBN to make the algorithm scalable with an acceptable accuracy trade-off. However,
it is non-trivial to estimate the overall inference error after the messages are compressed and
propagated. In the next section, we will provide some performance results with numerical
experiments to evaluate the algorithm under various situations.
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Fig. 5. Using a 4-component GM to approximate a 20-component GM with
√

d < 3%.

3. Numerical experiments

Theoretically, DMP-HBN can provide exact results for a polytree CLG. For verification
purpose, an example model called Poly12CLG as shown in Figure 6, was used for the
experiment. Assume evidence is observed on leaf nodes E, and Z. With random observations,
we conducted more than 30 independent experiments and compared DMP results with the
ones obtained by the Junction Tree algorithm. The latter algorithm is considered to be the
gold standard and the resulting solutions serve as the ground truth. All experiments show
that DMP-HBN provides results identical to the ground truth.

We also conducted scalability tests of DMP algorithm using the same example model
Poly12CLG. For many decision support applications, the variables of interest tend to be
discrete, such as feature identification, entity classifications, or situation hypotheses. In our
experiments, we first show how the assessments of hidden discrete nodes in a CLG are
affected after collapsing the Gaussian mixture into a single Gaussian when passing messages.
We use average absolute probability errors between two discrete distributions as the metric
to evaluate the performance. In general, when a node of interest is relatively far away from
the evidence, its posterior distribution would not deviate much from its prior. In that case, it
is difficult to show the impact of the approximation on the inference error. So we purposely
designed CPDs in Poly12CLG to move the true posterior probabilites away from its prior.
Figure 7 shows the average and maximum errors of the approximate posterior probabilities for
hidden discrete nodes V, A, L, B, H, and C, obtained after collapsing Gaussian mixtures into
a single term over 100 Monte Carlo simulations. Average and maximum difference between
the true posteriors and the priors over these 100 simulations are also shown in the figure for
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ones obtained by the Junction Tree algorithm. The latter algorithm is considered to be the
gold standard and the resulting solutions serve as the ground truth. All experiments show
that DMP-HBN provides results identical to the ground truth.
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Poly12CLG. For many decision support applications, the variables of interest tend to be
discrete, such as feature identification, entity classifications, or situation hypotheses. In our
experiments, we first show how the assessments of hidden discrete nodes in a CLG are
affected after collapsing the Gaussian mixture into a single Gaussian when passing messages.
We use average absolute probability errors between two discrete distributions as the metric
to evaluate the performance. In general, when a node of interest is relatively far away from
the evidence, its posterior distribution would not deviate much from its prior. In that case, it
is difficult to show the impact of the approximation on the inference error. So we purposely
designed CPDs in Poly12CLG to move the true posterior probabilites away from its prior.
Figure 7 shows the average and maximum errors of the approximate posterior probabilities for
hidden discrete nodes V, A, L, B, H, and C, obtained after collapsing Gaussian mixtures into
a single term over 100 Monte Carlo simulations. Average and maximum difference between
the true posteriors and the priors over these 100 simulations are also shown in the figure for

83Probabilistic Inference for Hybrid Bayesian Networks



14 Will-be-set-by-IN-TECH

H

E

L

Z

C W

B Y

X

UA

V

Fig. 6. An example polytree CLG model called Poly12CLG, consisting of 7 discrete nodes
V, A, L, B, H, C, E and 5 continuous nodes U, X, Y, W, Z.

comparison. Figure 7(a) presents the estimate errors when collapsing π values only; Figure
7(b) shows the performance when collapsing λ messages only; and Figure 7 (c) displays
the inference errors when collapsing both π values and λ messages whenever a mixture of
Gaussians is present.

Notice that reducing the π value of a node does not affect the network “above” it because
the π message is being sent downward in the network. Similarly, since a λ message is
being sent upward, reducing a λ message will not affect the network “below” the node. For
example in Figure 7(a), the posterior probabilities of V and A are exact, and in Figure 7(b),
the estimates of L, B, H, and C are also exact without inference error. When reducing both π
values and λ messages, all posterior distributions are not exact any more. Results shown in
Figure 7(c) suggest that the approximation errors diminish when the nodes are farther away
from discrete parents. For example, the approximate errors for nodes L, H, and C are very
small. However, discrete parent nodes such as A, and B, are affected significantly. This is not
surprising due to the relatively large approximation errors when collapsing a multi-modal
Gaussian mixture into a single term. One way to achieve a desired accuracy is to specify a
pre-defined error bound whenever we try to reduce a Gaussian mixture into one with fewer
components. Although it is difficult to perform theoretical analysis of the total inference
error after propagation, it is possible to obtain bounded error if the threshold used is small
enough. Figure 8 demonstrates significantly better performance for the same model but with
the normalized ISE of the reduced Gaussian mixture limited to less than 5% each time. As can
be seen from the figure, the average and maximum errors for all nodes are well less than 1%.

Another example model called Loop13CLG (extended from Poly12CLG), shown in Figure 9,
was used for numerical experimentation on a network with loops. Again, we assume that leaf
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Fig. 7. Scalability test – performance loss after combining Gaussian mixture into one single
Gaussian.

nodes E and Z are observable evidence nodes. With random observations, Figure 10 shows
the average and maximum absolute errors of posterior probabilities for hidden discrete nodes
over 100 Monte Carlo simulations. All simulation runs converge in about 11 iterations. As
can be seen from the figure, average approximation errors caused by loopy propagation range
from less than 1% to about 5% for hidden discrete nodes.

We also tested DMP with some other networks with randomly pre-defined CPDs. All
simulation results suggest that the estimation errors reduce significantly as the node is farther
away from the discrete parent nodes.

4. Most probable explanation for hybrid Bayesian networks

In addition to computing the posterior distributions for hidden variables in Bayesian
networks, one other important inference task is to find the most probable explanation (MPE).
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small. However, discrete parent nodes such as A, and B, are affected significantly. This is not
surprising due to the relatively large approximation errors when collapsing a multi-modal
Gaussian mixture into a single term. One way to achieve a desired accuracy is to specify a
pre-defined error bound whenever we try to reduce a Gaussian mixture into one with fewer
components. Although it is difficult to perform theoretical analysis of the total inference
error after propagation, it is possible to obtain bounded error if the threshold used is small
enough. Figure 8 demonstrates significantly better performance for the same model but with
the normalized ISE of the reduced Gaussian mixture limited to less than 5% each time. As can
be seen from the figure, the average and maximum errors for all nodes are well less than 1%.

Another example model called Loop13CLG (extended from Poly12CLG), shown in Figure 9,
was used for numerical experimentation on a network with loops. Again, we assume that leaf
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nodes E and Z are observable evidence nodes. With random observations, Figure 10 shows
the average and maximum absolute errors of posterior probabilities for hidden discrete nodes
over 100 Monte Carlo simulations. All simulation runs converge in about 11 iterations. As
can be seen from the figure, average approximation errors caused by loopy propagation range
from less than 1% to about 5% for hidden discrete nodes.

We also tested DMP with some other networks with randomly pre-defined CPDs. All
simulation results suggest that the estimation errors reduce significantly as the node is farther
away from the discrete parent nodes.

4. Most probable explanation for hybrid Bayesian networks

In addition to computing the posterior distributions for hidden variables in Bayesian
networks, one other important inference task is to find the most probable explanation (MPE).
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Fig. 8. Accurate estimates of the posterior probabilities resulted by limiting approximation
error (< 5%) each time when reducing message with fewer components Gaussian mixture.
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Fig. 9. Loop13CLG – an example CLG model with multiple loops, consisting of 7 discrete
nodes V, A, L, B, H, C, E and 6 continuous nodes U, X, TY, W, Z.

MPE provides the most likely configurations to explain away the evidence and helps to
manage hypotheses for decision making. In recent years, researchers have proposed a few
methods to find the MPE for discrete Bayesian networks. However, finding the MPE for
hybrid networks remains challenging. In the following sections, we will briefly describe an
up-to-date method to find the MPE in hybrid BNs based on max-product clique tree algorithm.

Let X represents the full set of variables in a Bayesian network, and E as a subset of X
containing variables observed, known as evidence. The MPE is the joint assignment of

86 Bayesian Networks Probabilistic Inference for Hybrid Bayesian Networks 17

V A L B H C
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Average and maximum errors in loopy propagation
(100 simulation runs)

Hidden discrete nodes

A
bs

ol
ut

e 
pr

ob
ab

ili
ty

 e
rr

or
s

Average error
Average diff
Maximum error
Maximum diff

Fig. 10. Performance test with loopy CLG model.

W = X\E(subset of all hidden variables) such that:

MPE P(W|E = e) = arg max
w

P(W = w|E = e) (19)

where arg maxx f (x) represents the value of x for which f (x) is maximal.

Note that we have to look at the joint assignment to maximize the joint probability.
Individually most likely values of variables that maximize their marginal probabilities are
not necessarily part of the MPE. A very simple example is given below to demonstrate this
point. Let us look at the BN model consisting of only 3 nodes (D, E, and, F), shown in Figure
11, where D, E, and F are binary discrete random variables with the CPDs listed in the figure.
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Fig. 11. A simple Bayesian network model consisting of 3 binary discrete nodes (D, E, and, F).

Now let us assume that E is observed as e2. It is easy to show that

P(D|E = e2) =
[

d1 : 0.4
d2 : 0.6

]
, P(F|E = e2) =

[
f 1 : 0.63
f 2 : 0.37

]
,
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up-to-date method to find the MPE in hybrid BNs based on max-product clique tree algorithm.
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where arg maxx f (x) represents the value of x for which f (x) is maximal.
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Now let us assume that E is observed as e2. It is easy to show that

P(D|E = e2) =
[

d1 : 0.4
d2 : 0.6

]
, P(F|E = e2) =
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and

P(F|D, E = e2) = P(F|D) =

⎡
⎣

d1 d2
f1 0.9 0.45
f2 0.1 0.55

⎤
⎦ .

Therefore

P(D, F|E = e2) = P(F|D, E = e2)× P(D|E = e2) =

⎡
⎣

d1 d2
f1 0.36 0.27
f2 0.04 0.33

⎤
⎦ .

From the joint probability distribution, it is clear that the MPE of E = e2 is the configuration
of D = d1, F = f 1. If we choose the MPE by individually picking up the values with maximal
marginal probabilities, one will end up with a wrong answer as D = d2, F = f 1, which is
obviously not the true MPE.

Theoretically, to compute the maximal joint probability, we have

max
w

P(W|E = e) = max
Wi

n

∏
i=1

P(Wi|Pa(Wi), E = e) (20)

where Wi(i = 1, 2, . . . , n) are all of the hidden variables in W (with the total number of
variables in W being n), and Pa(Wi) are the parents of node Wi. Clique Tree algorithm has
been used in computing the MPE Koller & Friedman (2009), where one needs to replace the
marginalization operation with maximization operation for each potential. In this paper, we
call this method the max-product clique tree algorithm. And accordingly, the potentials in the
clique tree are called max-potentials.

4.1 Max-calibration of the clique tree for discrete Bayesian networks

The standard clique tree algorithm is a generalization of the variable elimination method for
Bayesian network inference. It first transforms the original Bayesian network into a clique
tree, which is a undirected poly-tree with cliques serving as nodes in the tree. Each clique is a
joint state space of more than one variables, associating with a function called potential. Once
a root clique is chosen, one needs to conduct a round trip message propagations in order to
have each clique updated by the given evidence. The message propagation from leaf nodes
to the root along the path is called upstreaming, also known as collecting evidence; while the
opposite is called downstreaming, also known as distributing evidence.

In the process of message propagation between two cliques, a standard protocol is applied.
Let us assume that two cliques Ci, Cj are neighbors in a clique tree, and separator Sij is
associated with the edge between Ci, Cj. Potentials for Ci, Cj and Sij are φ(Ci), φ(Cj) and
φ(Sij) respectively. Sending message from Ci to Cj along the separator Sij follows the message
passing protocol presented in Table 1. The sending process is also known as absorption,
namely, clique Cj absorbs information from clique Ci via their separator Sij.

Note that in Table 1, the first step of message propagation is to marginalizing out the variables
in Ci but not in Cj, so only variables in the separator are left. This is why traditional clique
tree algorithm is sometimes called sum-product clique tree method due to this summing out
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1. Let φ(Sij)
� = ∑Ci\Sij

φ(Ci), — marginalizing the potential φ(Ci) onto the domain of separator φ(Sij),
i.e., projecting it to the domain of separator.

2. Let L(Sij) =
φ(Sij)

�
φ(Sij)

, — dividing the new potential of separator φ(Sij) by its old one. The ratio L(Sij)

is served as information ratio, also called "likelihood ratio", to update information by filtering out the
redundant part.

3. Let φ(Sij) = φ(Sij)
�, — storing the new potential of the separator for next round message passing.

4. Let φ(Cj) = φ(Cj) ∗ L(Sij), — multiplying information ratio from the separator to update potential
of φ(Cj) .

Table 1. Message passing protocol in standard clique tree algorithm

operation. In max-calibration of a clique tree, maximizing replaces marginalizing, while all
other operations remain the same in the protocol.

In discrete case, for MPE, it is straightforward to maximize out variables from the joint state
distribution. Suppose that we have a joint probability distribution of two binary discrete
random variables D, T(states of D, T are d1, d2, t1 and t2 respectively), shown as below:

P(D, T) =

⎡
⎣

t1 t2
d1 0.32 0.16
d2 0.39 0.13

⎤
⎦ .

To maximize out T, we have

max
T

P(D, T) = max
T

⎡
⎣

t1 t2
d1 0.32 0.16
d2 0.39 0.13

⎤
⎦ =

�
d1 0.32
d2 0.39

�

Similarly, if we want to maximize out D from the joint distribution of D, T, it will be:

max
D

P(D, T) = max
D

⎡
⎣

t1 t2
d1 0.32 0.16
d2 0.39 0.13

⎤
⎦ =

�
t1 0.39
t2 0.16

�

In principle, maximizing out one variable from a joint discrete space returns the marginal
maximums in the original joint probabilities along the dimension of this particular variable
being maximized over, for all of the configurations of the remaining variables.

With the maximizing substituted in the message propagation protocol, the clique tree will be
max-calibrated after conducting the same upstream and downstream message propagations.
Then each clique will be updated with the max-potential. After the max-calibration, further
maximizations on individual cliques can provide the MPE of all hidden variables. The proofs
are very similar to the proofs of the standard clique tree algorithm Jensen (1996) Dawid (1992).

4.2 Finding the MPE for a hybrid Bayesian network using max-product clique tree algorithm

For a hybrid Bayesian network, its clique tree contains at least one hybrid clique, in which both
discrete and continuous variables are involved. If we can find a way to conduct maximizing
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and

P(F|D, E = e2) = P(F|D) =

⎡
⎣

d1 d2
f1 0.9 0.45
f2 0.1 0.55

⎤
⎦ .

Therefore

P(D, F|E = e2) = P(F|D, E = e2)× P(D|E = e2) =

⎡
⎣

d1 d2
f1 0.36 0.27
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⎤
⎦ .

From the joint probability distribution, it is clear that the MPE of E = e2 is the configuration
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w

P(W|E = e) = max
Wi

n

∏
i=1

P(Wi|Pa(Wi), E = e) (20)
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joint state space of more than one variables, associating with a function called potential. Once
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In principle, maximizing out one variable from a joint discrete space returns the marginal
maximums in the original joint probabilities along the dimension of this particular variable
being maximized over, for all of the configurations of the remaining variables.

With the maximizing substituted in the message propagation protocol, the clique tree will be
max-calibrated after conducting the same upstream and downstream message propagations.
Then each clique will be updated with the max-potential. After the max-calibration, further
maximizations on individual cliques can provide the MPE of all hidden variables. The proofs
are very similar to the proofs of the standard clique tree algorithm Jensen (1996) Dawid (1992).

4.2 Finding the MPE for a hybrid Bayesian network using max-product clique tree algorithm

For a hybrid Bayesian network, its clique tree contains at least one hybrid clique, in which both
discrete and continuous variables are involved. If we can find a way to conduct maximizing
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operations for the hybrid clique, we can then apply the max-calibration process similarly to
find the MPE for hybrid BNs.

Let us first take a close look at the hybrid joint space. Without loss of generality, we assume
that the continuous variables in the hybrid space are Gaussians. For arbitrary density,
theoretically, it is well known that a Gaussian mixture can be used to approximate the original
density in any desirable accuracy with sufficient number of components. A simple example
of the hybrid space, consisting of one binary discrete variable D with states d1, d2, and one
scalar Gaussian variable X, is used for demonstration. Assuming that the hybrid joint density
is

P(D, X) =

⎡
⎣

x
d1 0.2N (x; 1, 0.1)
d2 0.8N (x; 3, 3)

⎤
⎦ ,

where N (x; u, σ2) represents a scalar Gaussian density with mean u, and variance σ2, and
x is a real number. Note that P(D, X) is not a conditional density, nor is a Gaussian
mixture, but a hybrid joint density. For example, the joint density for D = d1, X = 0.5 is
0.2 ∗ N (0.5; 1, 0.1) = 0.325. If we sum out D, we then can obtain the marginal distribution of
X as the linear combination of two Gaussians with weights as 0.2, 0.8 respectively, which is
indeed a Gaussian mixture:

P(X) = 0.2N (x; 1, 0.1) + 0.8N (x; 3, 3).

Next, let us see how to maximize one variable from the hybrid joint space using this example.
The resulting function after maximizing over some variables is mapped onto the space of the
remaining variables. If the variable being maximized out is D from P(D, X), by applying the
maximizing rule, we have

P(X)max = max
D

P(D, X) = max[0.2N (x; 1, 0.1), 0.8N (x; 3, 3)],

where P(X)max is called the marginal maximum function of X. This is basically a function of x
with the values as either 0.2N (x; 1, 0.1), or 0.8N (x; 3, 3), whichever is bigger for a given x. As
shown in Figure 12, the max of two Gaussians is not a Gaussian mixture. However, because
of the closed form of Gaussian density, we can deterministically conclude that the peak of this
function is certainly located at one of the mean values among all Gaussian components. Proof
is omitted due to its obviousness.

Now let us turn to maximizing out the continuous variable X from the hybrid density P(D, X).
Again, by applying the maximizing rule, it is easy to obtain,

P(D)max = max
X

P(D, X) =

�
d1 0.2N (x = 1; 1, 0.1)
d2 0.8N (x = 3; 3, 3)

�
=

�
d1 0.2523
d2 0.1843

�
,

which are the peak points of densities for each weighted Gaussian component given each
state of the discrete variable, respectively. In the case of Gaussian density, the peak point is
obviously located at the mean, namely, max[N (x; u, σ2)] = N (x = u; u, σ2).
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Fig. 12. Maximizing out D from P(D, X) — the resulting function is the max of weighted
Gaussian components. In the figure, the red line represents the density of the Gaussian
mixture, the bolded black line represents the resulting max function, and the dashed black
line shows the original Gaussian components.

Accordingly, the MPE of P(D, X) can be obtained by further examining the value that
maximizes the marginal maximum function for each variable. Then,

MPE P(D, X) = {arg max
D

P(D)max, arg max
X

P(X)max} = {D = d1, x = 1}.

At this point, we know how to maximize out variables from both discrete joint space and
hybrid space. We still need to know how to maximize out variable from continuous joint
space in order to conduct max-calibration for hybrid model. Again, we assume that the
continuous variables are Gaussian. Maximizing out a continuous variable from continuous
joint space is equivalent to having the value of this variable being its marginal mean and then
substituting it into the original joint density function. Let us use a two-dimension Gaussian
density to explain the operation. For the sake of simplicity, we assume the two Gaussians X, Y
in different dimensions are independent of each other. Namely,

P(X, Y) = N
([

x
y

]
;
[

ux
uy

]
,
[

σ2
x 0

0 σ2
y

])
,

where
[

ux
uy

]
is the mean vector, and

[
σ2

x 0
0 σ2

y

]
is the covariance matrix. Maximizing out Y

from P(X, Y) to obtain the marginal maximum function of X is carried out as below,

P(X)max = max
Y

P(X, Y) = arg max
Y

1
2πσxσy

exp

(
−1

2

[
(x − ux)2

σ2
x

+
(y − uy)2

σ2
y

])

=
1√

2πσy
N (x; ux, σ2

x ).
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Next, let us see how to maximize one variable from the hybrid joint space using this example.
The resulting function after maximizing over some variables is mapped onto the space of the
remaining variables. If the variable being maximized out is D from P(D, X), by applying the
maximizing rule, we have

P(X)max = max
D
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where P(X)max is called the marginal maximum function of X. This is basically a function of x
with the values as either 0.2N (x; 1, 0.1), or 0.8N (x; 3, 3), whichever is bigger for a given x. As
shown in Figure 12, the max of two Gaussians is not a Gaussian mixture. However, because
of the closed form of Gaussian density, we can deterministically conclude that the peak of this
function is certainly located at one of the mean values among all Gaussian components. Proof
is omitted due to its obviousness.

Now let us turn to maximizing out the continuous variable X from the hybrid density P(D, X).
Again, by applying the maximizing rule, it is easy to obtain,

P(D)max = max
X

P(D, X) =

�
d1 0.2N (x = 1; 1, 0.1)
d2 0.8N (x = 3; 3, 3)
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=
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d1 0.2523
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,

which are the peak points of densities for each weighted Gaussian component given each
state of the discrete variable, respectively. In the case of Gaussian density, the peak point is
obviously located at the mean, namely, max[N (x; u, σ2)] = N (x = u; u, σ2).

90 Bayesian Networks Probabilistic Inference for Hybrid Bayesian Networks 21

-2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

max_pdf

mixture_pdf

mixture_comp

Fig. 12. Maximizing out D from P(D, X) — the resulting function is the max of weighted
Gaussian components. In the figure, the red line represents the density of the Gaussian
mixture, the bolded black line represents the resulting max function, and the dashed black
line shows the original Gaussian components.

Accordingly, the MPE of P(D, X) can be obtained by further examining the value that
maximizes the marginal maximum function for each variable. Then,

MPE P(D, X) = {arg max
D

P(D)max, arg max
X

P(X)max} = {D = d1, x = 1}.

At this point, we know how to maximize out variables from both discrete joint space and
hybrid space. We still need to know how to maximize out variable from continuous joint
space in order to conduct max-calibration for hybrid model. Again, we assume that the
continuous variables are Gaussian. Maximizing out a continuous variable from continuous
joint space is equivalent to having the value of this variable being its marginal mean and then
substituting it into the original joint density function. Let us use a two-dimension Gaussian
density to explain the operation. For the sake of simplicity, we assume the two Gaussians X, Y
in different dimensions are independent of each other. Namely,

P(X, Y) = N
([
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]
;
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,
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,

where
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is the mean vector, and
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from P(X, Y) to obtain the marginal maximum function of X is carried out as below,

P(X)max = max
Y

P(X, Y) = arg max
Y

1
2πσxσy

exp

(
−1

2

[
(x − ux)2

σ2
x

+
(y − uy)2

σ2
y

])

=
1√

2πσy
N (x; ux, σ2

x ).

91Probabilistic Inference for Hybrid Bayesian Networks



22 Will-be-set-by-IN-TECH

Given a clique tree of the hybrid model, a strong root of the clique tree, and evidence, this algorithm
returns the MPE of the evidence for the original hybrid Bayesian network.

1. Sending messages from leaf cliques to the strong root clique: message passing between cliques follows
the protocol shown in Table 1 except using maximizing to replace marginalizing.

2. After the strong root clique receives all messages, sending back messages to all leaf cliques: message
passing between cliques follows the protocol shown in Table 1 except using maximizing to replace
marginalizing.

3. Conducting further maximizing operation on each clique to obtain the marginal maximum function
for each hidden variable, then choosing the value of variable that maximizes its marginal maximum
function. Those values together compose the MPE.

Table 2. Hybrid max-product clique tree algorithm to find the MPE for hybrid Bayesian
networks

Similar derivation can be done for higher-dimension cases, and/or with dependent variables.

4.3 Division and multiplication between functions

In message passing protocol, shown in Table 1, we also note that division and multiplication
operations need to be defined for hybrid models. In this case, the only difference from the
discrete case is that how to apply continuous functions in these operations. The result of
functional division or multiplication may not have a closed form, but could be computed for
any given value of argument variable numerically. And for Gaussian densities, the peak value
of the resulting function can be obtained deterministically.

4.4 Hybrid max-product clique tree algorithm (HMP-CT)

Now we are ready to present the hybrid max-product cliquet tree algorithm (HMP-CT) for
finding the MPE in hybrid Bayesian networks in Table 2.

4.5 Numerical example - finding Hybird MPE

In this section, we use a simple hybrid model to demonstrate HMP-CT. With the model shown
in Figure 11, we change the node F to be a Gaussian variable and all other parameters and
network structure remain the same. The hybrid model with its new CPD is shown in Figure
13(a), where the ellipse is used to represent continuous variable.

There are only two cliques in the corresponding clique tree of the model, shown in Figure
13(b), in which the clique {D, F} is the strong root. Assuming that the observed evidence
E = e2, let us follow the algorithm described in Table 2 to find the MPE configuration of the
hidden nodes D, F.

First, the initial potentials of these two cliques are

φ(D, E) =

⎡
⎣

E=e2
d1 0.4
d2 0.6

⎤
⎦ , φ(D, F) =

⎡
⎣

f
d1 0.5N ( f ; 1, 0.5)
d2 0.5N ( f ; 3, 2)

⎤
⎦ .

92 Bayesian Networks Probabilistic Inference for Hybrid Bayesian Networks 23

D

P(D)

d1
d2

0.5

0 5 Dd2 0.5

P(F|D) f

E

P(E|D) d1 d2

( | ) f
N(f;1,0.5)d1

d2F N(f;3,2)

P(E|D) d1 d2

0.6

0.4

e1

e2
0.4

0.6

D, E

D

D FD, F

(a) network structure and its CPDs (b) The corresponding clique tree

Fig. 13. A simple hybird Bayesian network model consisting of 2 binary discrete nodes (D, E)
and one Gaussian variable (F).

And the potential of the only separator D is uniformly initialized as φ(D) =

�
1
1

�
. Since

the strong root is {D, F}, the upstreaming message passing is then from the clique {D, E} to
{D, F}. We have

φ(D)� = P(D)max = max
E

φ(D, E) =
�

d1 0.4
d2 0.6

�
.

The updated potential of D, F is,

φ(D, F) ← φ(D, F)× φ(D)�
φ(D)

=

⎡
⎣

f
d1 0.2N ( f ; 1, 0.5)
d2 0.3N ( f ; 3, 2)

⎤
⎦ .

Also we need to update the potential of the separator D to be φ(D) = φ(D)� =
�

d1 0.4
d2 0.6

�
.

Now sending back the message from the root {D, F} to the leaf {D, E}, we have

φ(D)� = max
F

φ(D, F) =
�

d1 0.2N ( f = 1; 1, 0.5)
d2 0.3N ( f = 3; 3, 2)

�
=

�
d1 0.1128
d2 0.0846

�
.

Again, the potential of D, E is updated as,

φ(D, E) ← φ(D, E)× φ(D)�
φ(D)

=

⎡
⎣

E=e2
d1 0.1128
d2 0.0846

⎤
⎦ .
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Given a clique tree of the hybrid model, a strong root of the clique tree, and evidence, this algorithm
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Table 2. Hybrid max-product clique tree algorithm to find the MPE for hybrid Bayesian
networks
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functional division or multiplication may not have a closed form, but could be computed for
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Now we are ready to present the hybrid max-product cliquet tree algorithm (HMP-CT) for
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There are only two cliques in the corresponding clique tree of the model, shown in Figure
13(b), in which the clique {D, F} is the strong root. Assuming that the observed evidence
E = e2, let us follow the algorithm described in Table 2 to find the MPE configuration of the
hidden nodes D, F.
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Now the max-calibration of the clique tree is complete. By further maximizing the potentials
onto each hidden variable, we have

φ(D)max = max
E

φ(D, E) =
[

d1 0.1128
d2 0.0846

]
,

and

φ(F)max = max
D

φ(D, F) = max(0.2N ( f ; 1, 0.5), 0.3N ( f ; 3, 2)) = max(0.1596, 0.0598) = 0.1596,

located at f = 1. Therefore, the MPE of E = e2 is {D = d1, F = 1}. From the joint posterior
distribution P(D, F|E = e2), the peak value of joint density associated with the MPE is 0.2257.

5. Summary

In this chapter, we presented a new inference algorithm called DMP-HBN to represent
probabilistic messages in the form of Gaussian mixture when continuous variables are
involved and allow exchanging messages between discrete and continuous variables directly.
This new algorithm provides an alternative for probabilistic inference in hybrid Bayesian
networks. It provides full density estimates for continuous variables and can be extended with
unscented transformation Sun & Chang (2007a) for the general hybrid models with nonlinear
and/or non-Gaussian distributions. Since DMP-HBN is a distributed algorithm utilizing only
local information, there is no need to transform the network structure as required by the
Junction Tree algorithm. Compared to our previous works in Sun & Chang (2007b), Sun
& Chang (2009), that need to partition the hybrid model into different network segments,
and then conduct message passing separately, DMP-BN can exchange messages directly
between discrete and continuous variables within an unified framework. In addition, the
algorithm does not require prior knowledge of the global network topology which could
be changing dynamically. This is a major advantage of the algorithm and is particularly
important to ensure scalable and reliable message exchanges in a large information network
where computations are done locally.

As shown in the empirical simulation results, DMP-HBN is scalable with a performance
tradeoff of losing some accuracy. For many decision support applications, we are mainly
interested in hidden discrete variables such as entity classifications or high level situation
hypotheses. The experimental results show that the estimation errors of the hidden discrete
variables depend on the network topology and are relatively modest, especially when the
variables of interest are far away from the discrete parent nodes. Theoretically, it is non-trivial
to estimate the overall performance bounds quantitatively due to message compressing and
propagation. Even though we can have the error bounded each time when we approximate
the original Gaussian mixture with less number of components, it is theoretically difficult to
estimate the total error after we propagate the approximate messages multiple times. Similar
problem exists in filtering for stochastic dynamic systems. This points to an important and
very interesting topic for future research.

In addition to the inference task of calculating posterior distributions, finding the MPE is
another important type of inference and it has a number of real-life applications in decision
support. In the chapter, we introduced and descibed in detail a hybrid max-calibration clique
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tree algorithm, called HMP-CT, to find the MPE for hybrid Bayesian networks. We derived
all of required operations in the calibration process. Different from the standard sum-product
clique tree algorithm, HMP-CT maximizes out variables from the clique potentials instead of
marginalizing.

As mentioned in Section 4.3, division and multiplication in message propagation process for
hybrid model require functional operations. Further investigations are needed in order to
find the better representations of the resulting functions to save computations. In the process,
what we need is to obtain the locations (values of variables), where maximize the resulting
functions.

To our best knowledge, little research has been done for finding the MPE in hybrid BN
models. On the other hand, it is almost inevitable to have continuous variables involved when
modeling a real-life problem. It is especially useful to have the MPE for managing multiple
most likely hypotheses in many decision support systems. Also, finding the MPE is essentially
a global searching problem as to find the maximum. For a genearal optimization problem, if
we can decompose the joint state space and model the cost function by a BN-like structure,
we can then apply max-calibration algorithm to solve it.

Similarly and with the obvious proof, min-calibration clique tree algorithm can provide the
least probable explanation (LPE). In some interesting domains, the LPE is very useful. For
example, in prediction market, we always need to know the minimum possible asset of a
trader in case that some random events happen to occur that are against this trader’s bet.
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1. Introduction 
Modern societies, due to their intrinsic complexity, are strongly dependent on critical 
resources and even more vulnerable to uncertain conditions. Despite the ability of 
controlling technical processes has increased over the past century, several different external 
and internal factors continue to affect the overall performance and sustainability of modern 
socio-technical systems. Globalisation, technology innovation and the organisational 
complexity of several actors are some of the major sources of uncertainty alongside the 
political context. 

Emerging risks, also sometimes called global risks, are large-scale events or circumstances 
that arise from global trends; are beyond any particular party’s capacity to control; and may 
have impacts not only on the organisation but also on multiple parties across geographic 
borders, industries, and/or sectors, in ways difficult to imagine today. 

Moreover, modern societies are sustained and shaped by large socio-technical systems, 
where technology is deeply integrated with the human element and the organisational 
dimension. The identification and management of the wide spectrum of risks affecting such 
system of systems require new approaches and methods able to properly model and 
account for the growing complexity and dynamic interconnectedness of the modern world. 

In this perspective, many organisations have deployed risk management programmes to 
identify, assess, and manage risks, using techniques such as risk assessment, scenario 
analysis, and stress testing as a basis for determining response strategies aligned with the 
entity’s objectives, risk appetite and tolerance.  

The recent world economic crisis pointed out two important lessons in the risk 
management field. The first is related to the continuous attempt of academics and 
practitioners to research for new approaches to predicting emerging risks and possible 
disaster scenarios that can irremediably affect operations or business viability. In the 
recent years top management, especially in the financial sector, paid more attention into 
sophisticated techniques, able to assure a limited exposure to specific risks, but that, on 
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the other hand, opened to a wider exposure to correlated or systemic risks. As evidence, 
this approach made companies and the entire global economy more vulnerable than ever 
(Taleb et al., 2009). The second lesson learnt is that industrial organizations are facing 
highly differentiated risks, by types and scale, than the ones faced by the financial sector. 
An example is given by some automotive companies pushed down in the market by the 
same risks they had assumed for twenty years by generating profits only from energy not 
efficient vehicles (Kaplan et al., 2010). Moreover, risks affecting customers, employees and 
long-term viability of the business model are claiming for a wider understanding of risk 
nature and related correlations. Instead of designing more sophisticated tools to anticipate 
such catastrophic events, should be urgent a deeper understanding of the nature of 
operational risks and the development of a more integrated way to address these risks 
among the entire enterprise levels and entities, in order to foster its resilience and 
sustainability (Silvestri, 2010). 

2. Evolutions in operational risk analysis and management 
The category of “operational risk” was conceived as a composite term for a wide variety of 
organizational and behavioural risk factors which were traditionally excluded from formal 
definitions of market and credit risk (Power, 1993). Operational risk is much more than risks 
related to operations; in fact operations risk is a subset of the operational risks, only 
including risks related to the production process and planning (Samad-Khan A., 2008).  

However the growing attention to operational risks is putting into light that new effort is 
needed not to merely re-label or codify a well established set of risk factors, but to develop a 
coherent new body of knowledge for the effective management of a complex phenomenon. 
The challenge calls for a real integration between professional and scientific contributions 
and perspectives (Power, 1993; Abbott, 1988).  

A still widely used definition of operational risk was firstly proposed in the financial sector: 
“the risk of direct or indirect loss resulting from inadequate or failed internal processes, 
people and systems or from external events” (BCBS, 2001). The apparent aim of this 
definition is to give operational risk a clear and actionable focus on losses, although this 
definition still leaves open a range of operational risk attributes. For example, in the 
transportation industry operational risk management was defined by Beroggi and Wallace 
(1994) as “a decision logic to support individual or group-level reasoning processes in risky, 
time constrained situations when the need for plan revision arises”. Here, the authors 
focused on the relevance of operational risk management for decision making, but at the 
same time reduced its scope to real-time or tactical decisions.  

The potential targets exposed to operational risks can be identified by considering which 
company’s entities are affected by uncertain events; indeed, operational risk results from the 
potential disruptions in the core operating, manufacturing or processing capabilities of a 
generic organisation.  

In conclusion, operational risks can be defined as those interactions between an uncertain 
event and internal organisation’s processes and/or resources, with the potential of 
influencing the core capabilities and resulting in a value variation over a time horizon 
(Silvestri et al., 2009; Trucco et al., 2010). 
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2.1 Classification of Operational Risks 

The evolution towards an integrated approach to Operational Risk Management (ORM) 
raised the need of a comprehensive risk classification. To this end a basic classification of 
enterprise risks can be firstly considered, with the aim of grouping risk factors into 
homogeneous clusters as perceived by management and stakeholders (Figure 1). 

 
Fig. 1. Example of Enterprise Risk Classification (source: Clarke C. J. & Varma S., 1999) 

Referring to most frequently adopted risk taxonomies (e.g. Tah & Carr 2001; Chapman, 
2006), the basic operational risk categories can be identified as follows: 

 Technology Risk: potential events in which the risk source is the technology 
implemented (i.e. poor performance of plants/equipments; failure in selecting a new 
technology, etc); 

 Supply chain risk: potential events related to the procurement, expediting, inspection 
and logistic activities; 

 Project risk: potential events affecting time, costs and quality objectives within project 
boundaries; 

 Environmental risk: potential natural events impacting the area where the system/plant 
is located; 

 Occupational risk: potential events affecting the employees health and safety; 
 Information risk: potential events affecting critical requirements of information flows 

within the system/plant; 
 Organizational risk: potential events related to lack of coordination, unclear 

task/objectives assignment, conflict or high turnover rate among the organization; 
 Management risk: potential events caused by inadequate management processes or 

decisions. In these respect the complexity of the organization is the key driver of 
management risks; 

 Facility and asset risks: potential events in which facilities or company assets are 
involved (e.g. fire). 
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is located; 

 Occupational risk: potential events affecting the employees health and safety; 
 Information risk: potential events affecting critical requirements of information flows 

within the system/plant; 
 Organizational risk: potential events related to lack of coordination, unclear 
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2.2 Causal chains and influencing factors in Operational Risk Management 

Despite their practical usefulness in allocating risk management responsibilities and 
simplifying risk reporting, operational risk classifications are largely inadequate to support 
the optimisation of risk control options, mainly in case of complex relationships among risk 
factors (e.g., interdependencies and escalation dynamics) or trade-offs between alternative 
lines of action . Indeed, operational risks are generated or influenced by a large spectrum of 
technology-, human- and organisational-related factors, that may dynamically combine 
together in several different ways, through complex and soft relationships that cannot be 
reduced to simple deterministic cause-effect chains. 

Several examples can be raised to clarify this distinguishing nature of operational risks. 
Globalisation of supply chains and their increasing interconnectedness due to global and 
highly differentiated companies is an issue of increasing relevance that can be properly 
tackled only through more complex risk modelling approaches (Mittnik, S. & Starobinskaya, 
2010). Similar requirements are needed when the relationships between global supply 
networks and critical infrastructures (electricity, gas, transportation, telecommunication, ...) 
are taken into consideration (Ferrari et al. 2011). 

Also in project-based operations - e.g. aviation, power generation or oil & gas industries - 
traditional project risk management techniques (Chapman & Ward, 2003) are no longer 
sufficient to manage all the risks brought by modern large engineering projects. Indeed, 
interactions between project teams, company functions, business units and long term 
programmes create a network of interdependencies where a specific risk raising from a 
single project may create cascading effects climbing up at higher organisational levels, 
causing larger consequences than the one estimated at the project level (Silvestri et al. 2011). 

In the last couple of decades common awareness on the increasing importance of human 
factors and organisational culture in shaping operational risks has also strengthen. 
Examples can be found in the analysis of the influence that safety culture may have on the 
occurrence of at risk behaviours and on injury rate in workplaces (De Ambroggi et al., 2008; 
Zhou et al., 2008), or in the increasing number of models proposed in literature to integrate 
human and organisational risk factors in Quantitative Risk Analysis (QRA) (Mohaghegh, 
Kazemi & Mosleh, 2009; Mohaghegh & Mosleh, 2009, Trucco et al. 2008a). 

For all that, it comes clear that the effectiveness of Operational Risk Management practices 
can be improved only by providing the risk identification and risk analysis phases with 
enhanced risk modelling capabilities, able to take into account all the relevant contributing 
factors and mutual influences, from the root causes to the final effects. These emerging 
needs have to face two different but interrelated issues: 

 the chronic lack of data and information on past events increases the importance of 
identifying and adopting proper methods to elicit experts' judgements and to assess 
epistemic uncertainties; 

 the availability of different advanced risk modelling techniques - such as Bayesian 
Networks, System Dynamics (Sterman, 2000), Stochastic Petri Nets(Marsan et al. 1995), 
Fuzzy Cognitive Maps (Kosko, 1986) - foster the need of identifying clear driving 
criteria in the selection of the most appropriate one, under different risk management 
problems and application domains. 
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In the following sections of the chapter we offer a systematic review of the most interesting 
and relevant applications of Bayesian Networks and Bayesian Belief Networks to different 
problems in the area of Operational Risk Management. This critical overview is then used to 
identify and discuss some methodological issues and requirements for the correct adoption 
of BN in Operational Risk Analysis. 

3. Modelling operational risks with BN: Critical review of the state of the art 
“Probability theory is nothing but common sense reduced to calculation” Laplace, 1819. 

The main issue in modelling operational risks has to do with the understanding of the 
functioning of a complex system. It requires the application of inductive logic for each one of 
the possible way in which a system operates to reach its objectives. Then it is the comparison 
between the hypothesis formulated in the functional analysis and the observations possible on 
the way the system actually function that can lead to an evolution of the knowledge regarding 
the system itself. This knowledge is the only credible base for the understanding and therefore 
a correct modelling of the system under analysis (Galvagni, 2011). 

Therefore, the first feature that should be evaluated in a risk model is the functional analysis 
form which the modelling process stems. 

The use of BBNs in modelling operational risk provides a specific advantage in respect to 
many other modelling approaches since a BBN is to be structured as a knowledge 
representation of the problem domain, explicitly including the probabilistic dependence 
between the main elements of the model and their causal relationship, therefore explicating 
the analyst's understanding of the problem. This is a key feature for validating the 
behaviour of the model and its accuracy in reporting to third parties the reality under 
analysis (Friiis-Hansen, 2000). 

Furthermore, another issue that appears to be in common with all projects regarding the 
assessment of risks embedded in complex systems lays in the lack of consistent data. 
Example of this are for instance risk assessment studies on industrial plants willing to take 
into proper account human and organizational factors, where many analysts lament the lack 
of an adequate dataset for the quantification of the error mechanisms as well as for the 
contextual and organizational conditions affecting human performance (Straeter, 2004 and 
Fragola, 2000). Aside from this specific example in many operational domains the main 
issue regarding the assessment of safety and reliability of a system has to do with the scarce 
availability of data for the main causation factors to be taken into account. When data 
availability is a considerable issue the use of methods such that of Event Trees and Fault 
Trees would not be advisable for helping the analyst in the difficult issue of data gathering, 
especially because some of the data would be collected through the use of experts' 
judgments (Hensen, 2004). A more suitable method for implementing the main structure of 
safety assessment, as far as the causation factors for the accidental scenarios are concerned, 
is represented by the use of Bayesian Belief Networks (BBN). BBN are in fact better suited 
for representing uncertain knowledge. Further, since BBN approach stems from conditional 
independence assumptions and strongly relies on graphical representations, it makes it easy 
to display how the relationship among the variables and therefore the underlying data 
structure works. In addition, the outcome of compiling a model is the marginal probability 
distributions of all variables in the domain. Modelling local dependencies in facts amounts 
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to specification of the probabilistic dependence of one variable on other variables. Therefore, 
even when the marginal distribution of the dependent variable is not known beforehand, it 
will be provided as a result of the assumptions being made on the causal relationships once 
the network has been compiled.  

The main feature in this respect of BBN is that they allow easy inference based on observed 
evidence, even when the evidence to be observed is scarce. In fact, if one of the variables in 
the domain is observed then the probability distributions of the remaining variables in the 
model are easily updated accordingly. So, if the probabilities of a generic BBN are 
updateable, given a set of evidences collected from the field, a BBN model of organisational 
factors involved in accident scenarios might be validated over time, for instance, exploiting 
information contained in accident/incident reporting systems.  

Specific examples where the pros and cons of using BBNs have already been explored are 
the followings: 

 Integration of human and organisational risk factors in system safety engineering; 
 Safety culture analysis and assessment; 
 Project Risk Management; 
 Operational Risk Management (ORM); 
 Integration between Enterprise Risk Management (ERM) and ORM. 

3.1 BBN and Human and Organizational Factors (HOF) in Probabilistic Risk Analysis 
(PRA) 

BBN are becoming more and more widely used in the current generation of Probabilistic 
Risk Analysis (PRA), to try and support an explicit representation of the possible impacts of 
organization and management processes on the safety performance of equipment and 
personnel (Trucco et al. 2008a).  

In the Bayesian statistical framework, a fully quantified BBN represents the prior knowledge 
for the analyst. However, as already pointed out, the model can be updated using 
observations (sets evidence) about certain nodes and verifying the impact on the remaining 
nodes in the network. By setting evidence, an analyst is proving the model with new 
information (e.g., recent incident events) about the state of the system. And this information 
can be propagated through the network to produce updated probabilities for all nodes in 
the model. These resulting probabilities combine both prior information and new evidence. 
BBNs have been recently used in traditional Probabilistic Risk Analysis by linking BBN 
nodes to other risk models using the so called Hybrid Causal Logic methodology (Groth et 
al., 2010; Wang, 2007), which links BBNs to Event Trees and Fault Trees. The use of HCL 
enables to include soft causal factors, such as human error in more deterministic models, 
which were more traditionally used for hardware systems. 

Furthermore, current HRA methods often ignore the interdependencies and causal 
relationships among various Performance Shaping Factors (PSFs). While only recently BBNs 
have been proposed as a way of assessing the interactions among PSFs and the failure 
modes they are suppose to influence (Fig. 2; Leva et al., 2006; Groth, 2009). 

The model used by Leva et al. (2006) for assessing human performance in a solo watch 
situation for a ship on possible collision courses takes into account the main elements 
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affecting human performance considering features of the ship that are also observable 
during a normal training session with the use of a bridge simulator. Thus the time to detect 
a ship, the time used for planning an action, the probability of taking the wrong decision the 
probability of performing the wrong execution of a manoeuvre (even if the right plan has 
been made) and the needed time for manoeuvring the ship have been considered as the 
primary elements of the operator performance in the model. As most of the Human 
Reliability Models also the data used for the current example mostly rely on experts' 
Judgments. However the model was built so as to collect and make use of real observational 
data (collectable from observations, as, for instance, training sessions) this should be the 
final test of any model: the verification coming from experience. 

 
Fig. 2. Example of a BN used for the assessment of an operator not reacting in time in a ship 
collision scenario. The elements in white with a rectangular shape are object (sub-networks) 
while the nodes are input nodes to be inserted by the end-user. (Source: Leva et al. 2006).  

However as pointed out by Mohaghegh and Mosleh (2009) there are a number of technical 
challenges in developing a predictive model of organizational safety performance most of 
which have to do with “the absence of a comprehensive theory, or at least a set of principles 
and modelling guidelines rooted in theory and empirical studies” as the major cause of 
current lacking of an adequate basis to validate these models. Yet as already pointed out if 
the probabilities of a generic BBN are updateable given a set of evidences collected from the 
field, a BBN model of organisational factors involved in accident scenarios for instance 
might be validated over time exploiting information contained in accident/incident 
reporting systems. So why is it that this empirical validation is often missing from the 
literature? 

Looking at the characteristics of several HOF models proposed in literature, it seems to us 
that, in general it is their increasing complexity that mainly impedes to clearly justify 
modelling solutions, to assure consistency, replicability, and eventually the possibility to sue 
observation data for validation purposes. This issue might be particularly critical when 
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multiformalism is adopted: limitations posed by the integration of different sub-models 
often weaken the quality and the detailed specification of single parts of the model  and 
BBNs are therefore often mixed with other modelling formalisms used to model 
interconnected parts of a final PRA contributing model (e.g. operator model, system model, 
etc.) (Trucco & Leva, 2010). So the attempt to incorporate an even broader spectrum of soft 
factors – such as safety culture, climate, management commitment to safety, etc. – requires 
to develop complex but ambiguous HOF models where the main weakness is the measures 
of hardly measureable factors, and results in what Dougherty calls an “often obfuscating 
numerology”(1990). 

3.2 The use of BBN to assess safety culture 

The validity of BBNs in supporting the modelling of safety culture and the evaluation of 
potential strategies for safety improvement has been demonstrate by Zhou et al. (2008) 
when they proposed a Bayesian Network (BN) based model aimed at establishing a 
probabilistic relational network among causal factors, including safety climate factors and 
personal experience that were thought to have an influence on human behaviour pertinent 
to construction safety. Zhou et al. (2008) study used the data coming from a survey 
involving more than 4700 employees at a large construction firm to collect the data to feed 
the network. The BBN was built around the categories used in the survey based on 
theoretical models previously developed about the factors affecting safety climate. The 
results of the study, and consequently the factors to be considered, were revised on the 
bases of the results of the factorial analysis. The scope of the BBN developed was to support 
the diagnosis of the state of a safety climate, the diagnostic of main issues and consequently 
the identification of potential strategies for safety improvement. The use of BBNs for 
representing, analysing and improving the actual anatomy of company’s safety culture and 
its impact on the expected probability of safe behaviours performed by workers was also  

 
Fig. 3. Preliminary socio-technical model predicting safe work behaviour (Source: Brown et 
al., 2000).  
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used in successive studies (e.g., Trucco et al., 2008b), in some of them the results of the 
survey were used to find out the Bayesian structure underlying the relationships among 
socio-technical factors. This is possible through an algorithm called K2 (Cooper & 
Herskovitz, 1992). The BBNs resulting from the use of the algorithm are then often reviewed 
by the experts to direct the arcs in the direction that makes more sense in terms of cause-
effect relationships (e.g. it is apparent, for example, that the “age of the worker” affects the 
safety climate and not the reverse) and an underlying theoretical model can also be used as 
a guiding principle (Figure 3). 

Trucco et al. (2008b) applied the proposed methodology to identify and analyse the 
effectiveness of different organizational and behaviour-based measures for improving 
occupational safety in a leading tractor manufacturer. The BBN representation of the safety 
culture structure in the manufacturing area is reported in Figure 4. 

 
Fig. 4. Example of sensitivity analysis on some safety culture variables in the manufacturing 
area of a large truck manufacturer (Trucco et al., 2008b). 

Considering the current setting of systemic factors as assessed by employees (e.g. 27.2% 
probability of having poor safety climate, 30.8%, for good safety climate and 42% for 
optimal safety climate), the rate of safe work behaviours was estimated about 93.6%. Even 
though this value may seem high (6 unsafe behaviours out of 100), the high value of the 
severity index of incidents occurred at workers operating in manufacturing area suggests 
the need for an improvement of compliance with safe behaviours. Table 1 reports a 
summary of the expected effectiveness of alternative strategies to improve the rate of safe 
work behaviours. 
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Strategy 
Safety 

hazards 
(%) 

Safety 
Climate (%) 

Management 
commitment 

(%) 

Safe Work 
Behaviour 

(%) 

Unsafe 
Work 

Behaviour 
(%) 

Single factor 
optimisation 

(simple strategy)

-27,2   0,8 -11,9 

 16,3  0,0 -0,2 
  13,7 0,2 -3,1 

10%  single factor 
improvement 

(simple strategy)

-10   0,3 -4,4 
 10  0,0 -0,1 
  10 0,2 -2,3 

Multiple factors 
optimisation 

(complex 
strategy) 

-27,2 16,3  1,5 -21,3 
-27,2  13,7 1,0 -14,7 

 16,3 13,7 0,3 -3,9 
27,2 16,3 13,7 1,8 -25,9 

Table 1. Summary of the expected effectiveness of strategies to improve safe work 
behaviours in the manufacturing area (values are in percentage; negative values means 
decreases) (Trucco et al., 2008b). 

3.3 The use of BBN and risk assessment in project management 

BBN have been recently applied to quantify the probability of risks affecting success of 
projects like for instance the probabilities of significant delays (Luu et al., 2008; Wang et al., 
2009). 

BBNs have in fact been usefully deployed in the area of decision support under 
uncertainties (Bouissou et al., 1997; Ziv & Richardson, 1997). There are many uncertainties in 
development processes for products of processes like the uncertainties in estimating project 
completion time, the project needs for supply the quality of the output etc. From experience 
or from the literature it is to identify the main factors related to delays in projects. The 
literature can also be specific about the domain the project risk factors relate to, such as 
construction industry (Assaf et al., 2006), or software development projects (Fan & Yu, 2004) 
and Hi-Tech industry (Raz & Michael, 2001). However some factors are also in common 
across the different domains: delay antecedents for instance can be factors caused by clients, 
contractors, consultants, and designers, or to the main inputs (Materials-, workforce-, and 
equipment-related factors are input factors); environment-related factors (exogenous factors 
such as difficult meteorological conditions, changes in government regulations and laws, 
traffic control etc.); Project-related factors are factors deriving from the project characteristics 
and the way the process is designed to deliver the desired outcome. 

The usefulness of a BBN based approach in assessing the projects associated risks and the 
likely outcomes can be summarised as follow:  

 Help to perform continuous risk management using data collected as the project 
develop to provide a feedback loop to detect and adjust problematic situations , as 
shown in Figure 5 (Lee et al., 2009). 

 As already said, the BBNs model can take into account the main uncertainties and 
provides probabilistic estimates for them. Whenever new evidence is available in the 
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monitoring loop, the new data can be plugged in the related BBNs model to recalculate 
and update previous estimates. 

 Moreover a model developed for one project may help identifying and evaluating the 
relative importance of the significant factors contributing to delay cost overruns in 
general on the basis of the actual collection of statistical evidence (Luu et al., 2009). This 
in turns can also help modifying the model itself as belief networks also allows 
variables to be added or removed without significantly affecting the remainder of the 
network because modifications to the network may be isolated (McCabe et al., 1998) 

 
Fig. 5. Example of A BBN used for predicting project issues in shipbuilding (source: Lee et 
al., 2009). 

3.4 From assessing risks in project management to operations risk management: 
advantages of BBN approaches 

Operational risks have also been defined as risks of human origin that, unlike financial risks 
that can be handled in a financial manner (e.g. insurances, savings, derivatives), require a 
more “managerial approach”(Fragniere et al., 2010). 

The recent developments in the quantification of Operational Risk has, to a significant 
extent, been determined by changes in the supervisory regimes for financial institutions. 
These changes have increased the level of supervisory scrutiny on Operational Risks (OR) 
and how it is managed by relevant firms has been deeply affected by the high-profiled 
corporate failures in recent decades. This has determined the development of Operational 
Risks models as a means to demonstrate good management and financial strength (Cowell 
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et al., 2007). Even in this domain Bayesian Networks offer a way to combine both qualitative 
and quantitative data and also to meet the requirements of the regulators for measuring OR. 
As pointed out by Conalba and Giudici (2004) the use of Bayesian networks for operational 
risk management allows to integrate, via the Bayes' theorem, different sources of 
information coming from loss data collection, self assessment, industry loss data and 
opinion of risk managers, to give a unified knowledge. This capacity in turns facilitate the 
managing of OR (i.e., identification, assessment, monitoring and control/mitigation) and 
justify decision taken on a more transparent ground, combining the use of retrospective 
historical data with prospective expectations and opinions so as to evaluate also the 
Influence of “causal” factors (Cornalba & Giudici, 2004). Summarising, the usage of BNs in 
modelling OR loss distribution, can have significant benefits for supporting decisions, 
particularly in capital allocation. Stress and scenario testing are also possible in BBNs 
allowing  the drafting of an early warning system (Figure 6; Yoon, 2003). 

 
Fig. 6. Example of the prior distribution assigned to  a BBN used for predicting costs derived 
from operational risks (source: Yoon, 2003). 

3.5 The use of BBNs to support Enterprise Risk Management 

Enterprise risk is normally defined as the possibility that something with an impact on the 
company objectives happens, and it can be measured in terms of combination of probability 
of an event (frequency) and of its consequence (impact). 

Enterprise risk assessment is a keystone of Enterprise Risk Management (ERM) therefore it 
is vital for the assessment to be as much as possible grounded on trustworthy assumptions. 

Bonafede and Giudici (2006) have reported that to estimate the frequency and the impact 
distributions historical data as well as expert opinions are typically used. Then such 
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distributions are combined to get the loss distribution. In the case of enterprise risk 
assessment the considered risks can be strategic, operational, legal and political and they are 
normally difficult to quantify. As for many other domains also in this case it is often easier 
to gather data from experts’ opinions. In this context Bayesian Network are a useful tool to 
integrate historical data with qualitative or quantitative estimates coming from experts. 
Example of applications are the use of BBN to examine the risk related to production or 
distribution or certain products (Pai et al., 2003) or the ones associated to specific decisions 
in the management of a business like the risk involved in the choice of a supplier or in 
outsourcing a certain service/activity. The example provided by Lockami and McCormack 
(2010) for instance is a BBN  model that examines the probability of a supplier's revenue 
impact on a company based upon the supplier's associated network, operational, and 
external risks. Network, operational, and external risks were determined based upon the a 
priori probabilities for risk events which directly influence them. 

Figure 7 reports the network they developed in their study. The nodes named with numbers 
represent the set of considered potential influencing factors: misalignment of interest (1); 
supplier financial stress (2); supplier leadership change (3); tier stoppage (4); supplier 
network misalignment (5); quality problems (6); delivery problems (7); service problems (8); 
supplier HR problems (9); supplier locked (10); merger/divestiture (11); disasters (12). The 
model was found useful for supporting outsourcing decisions, develop risk profiles for 
suppliers so as to analyse current and future outsourcing relationships. However, as noted 
by the authors, the most important potential limitation to the use of this methodology to 
assess risks in supply networks is the ability to provide accurate information regarding 
external risks as reflected in the 12 risk events outlined in the model. 

 
Fig. 7. Example of a BBN used for predicting the risk profile associated with each company 
Supplier (source: Lockamy & McCormack 2010). 
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In this domain BBN are often used as influence diagrams. An influence diagram is a 
Bayesian Network used for the scope of solving decision problems and it presents some 
special features. In an influence diagram two additional types of nodes are included in the 
network, namely decision nodes (rectangular shaped) and utility nodes (diamond shaped). 
A decision node defines the action alternatives that the user is considering. Preceding nodes 
on decision nodes define information available at the time of decisions. Decision nodes may 
have multiple children, and thus dependent on the choice of action alternative the decision 
node changes the state of the world. On the other hand utility nodes have no children but 
are conditioned on probabilistic and/or decision nodes. The utility nodes hold tables of 
utility for all possible configurations of the outcomes of the parent nodes. The rational basis 
for decision-making is established by computation of the expected utility (EU) of each of the 
action alternatives. Being an influence diagram a modified Bayesian Network, evidence can 
be inserted into the model. Propagating this evidence can give updated expected utilities for 
all decision variables. Hence as Hensen (2004) points out “the influence diagram serves as a 
dynamic decision model always showing the optimal strategy, possibly conditional on a set 
of observations. The optimal plan initially suggested may therefore be altered, as more data 
becomes available. Moreover, the expected utilities of the non-optimal choices are always 
available allowing a quantitative comparison of the action alternatives. However it should 
be noted, that when a Bayesian Network is combined with decision nodes it is essential that 
the Bayesian Network is modelled as a causal model since in an influence diagram the flow 
of information can only follow the causal link”. However the modelling domains of 
enterprise risk assessment are often so complex that it is intrinsically difficult to establish 
clear causal relationship among all the variables at play. 

4. Methodological issues and requirements for BBN applications in risk 
analysis  
Looking at the BBN applications presented in the previous sections it is clear that compared 
to other analysis tools, they offer several capabilities to a risk analyst that has to face 
different types of risk factors and mechanisms involved in complex socio-technical system. 
Moreover, when needed, BBN risk models can be easily reduced to more traditional risk 
analyses as in the case of  structural reliability problems studied through the so-called max-
propagation (Friis-Hensen, 2004); the algorithm returns the most probable configuration of 
the network given the occurrence of a specified event (hard evidence). When some critical 
failure events are taken into consideration, the max-propagation algorithm can be used to 
identify the most probable configuration of the network (system's risk factors) that leads to 
the occurrence of a specific critical event. If the nodes of the BN are binary variables, the 
max-propagation directly gives the most dominant cut-set as well as the application of the 
Fault Tree Analysis (FTA) of the same system. 

In the previous paragraphs however we have been mainly focusing on the benefits of using 
BBN to model operational risk in various domains. Nevertheless, also BBNs have limitations 
and shortcomings. The adoption of a coherent modelling approach is thus a key element for 
assuring the relevance, the accuracy and the reproducibility of the risk model. In this regard 
some issues are worth to be considered: 

 Before starting to define the topology of the BN model it is very important to fully 
understand the structure and the dynamics of the system first and the scope of the 
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analysis as well. This statement may be perceived as obvious, but nowadays Bayesian 
Networks are often built through very intuitive graphical software and it is therefore 
very easy to get carried away by the graphical modelling, that at the end may be 
incoherent and misleading; 

 The model can get highly complex very quickly with many nodes and relationships to 
be specified – this is especially true when the nodes have many parents. Indeed, the size 
of a CPT grows exponentially with the number of the parents; for example, a node with 
five parent variables, defined with only three states, requires the specification of 243 
entries for each one of its states. In such a case, there can be too many conditional 
probabilities to specify – if the maximum likelihood method of prior elicitation is used, 
significant volume of data might actually be required, thus reducing one of the main 
advantages of using Bayesian methods; 

 BBNs pose the problem of trustworthy exert opinion elicitation. Sometimes this would 
need the deployment of rigorous methodologies in prior elicitation through costly 
methods, such as the Delphi method which involves many rounds of questionnaires. 
Another issue can derive from the fact that sometimes the experts are not comfortable 
in eliciting frequencies (Yoon, 2003); 

 Last but not least, BBNs generally require that the state space of nodes shall be 
countable and discrete; thus their application require the discretisation of random 
variables. Discretisation is not simple and when applied to variables continue in nature, 
sometimes brings to the definition of many categories and therefore many possible 
states. This is a downside of BBN strictly connected to the previous issue, i.e. the 
exponential growth of the number of states and thus of the dimension of CPTs. 
However, as Friis-Hansen (2004) points out, neither Fault Tree Analysis (FTA) nor 
Event Traa Analysis (ETA) offer any better alternatives.  

Cowell et al. (1999) in their book provide useful guidelines on how to deal with these 
methodological issues. 

5. Conclusions 
In the realm of risk assessment of modern complex socio-technical systems, as already 
mentioned, it is of paramount importance the identification and understanding of all the 
causal chains leading to disruptions or even destruction of the system. Several internal and 
external factors of different nature - human, organisational, natural, sociological, political - 
may influence or modulate these cause-effect mechanisms and must be taken into proper 
consideration. It requires the application of inductive logic for each one of the possible way 
a system operates to reach its objectives. This knowledge is the only credible base for the 
understanding and therefore a correct modelling of the system under analysis (Galvagni, 
2011). The main advantage provided by the use of BNs in modelling operational risks is that 
the model itself can be structured as a knowledge representation of the problem, explicitly 
including the probabilistic dependence between the main elements of the risk model and 
their causal relationships, therefore explicating the level of understanding achieved by the 
analyst. This is a key feature for validating the accuracy of the risk model and its reliability 
in reporting to third parties (Friis-Hansen, 2000). 

Furthermore as seen for the case of applications to project risk assessment, BBNs are able to 
provide a way of comparing the cost of the action to its risk mitigating effect. Similarly, in 
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applications regarding OR it is of great importance to carefully evaluate whether the 
expected risk reduction for the considered initiative is worth its estimated cost. In the end, 
being able to provide a more transparent and rational ground to decision makers is really 
key. Moan (2000) clearly illustrates the benefit of rational evaluations in risk management. 

However, as briefly discussed in Section 4, the specification of the structure of a BBN  is 
often subject to debate because based on expert assumptions and/or on theoretical 
modelling of the reality under analysis, that have not been subject to the test of operational 
experience. For this reason the tendency is to deploy the BBNs capability of using real data 
for structural learning – i.e. letting the data speak for itself not just with regards the 
probability distributions of the variables but even the very structure itself (Yoon, 2003). This 
is currently a promising research area. 
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applications regarding OR it is of great importance to carefully evaluate whether the 
expected risk reduction for the considered initiative is worth its estimated cost. In the end, 
being able to provide a more transparent and rational ground to decision makers is really 
key. Moan (2000) clearly illustrates the benefit of rational evaluations in risk management. 

However, as briefly discussed in Section 4, the specification of the structure of a BBN  is 
often subject to debate because based on expert assumptions and/or on theoretical 
modelling of the reality under analysis, that have not been subject to the test of operational 
experience. For this reason the tendency is to deploy the BBNs capability of using real data 
for structural learning – i.e. letting the data speak for itself not just with regards the 
probability distributions of the variables but even the very structure itself (Yoon, 2003). This 
is currently a promising research area. 
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