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Preface 
 

Beginner or advanced learner, young or old, student or experienced scientist, we hope 
that after reading this introduction you will find a topic which will raise your interest 
and engage your thought to further investigate a problem and to build on the 
presented work. 

Finite Volume Method (FVM) is among the most powerful means for solving different 
engineering problems. It is used in fluid mechanics, meteorology, electromagnetics, 
semi-conductor device simulation, models of biological processes and many more 
engineering applications. 

This book addresses a wide variety of concepts in FVM. Therefore, it is almost 
impossible to classify precisely or to outline the boundaries of all presented works. 
They are result of the efforts of scientists from all over the world. However, without 
having any pretense, just in order to help you, all book chapters are systemized in the 
following three general groups: 

Works studying different aspects of FVM and suggesting new techniques and 
algorithms, all validated through already proven examples.  

In the first chapter a study of the application of FVM in computational fluid dynamics 
and inverse design based optimization can be found. The authors describe and 
validate their ideas through test examples. 

Another chapter focusses on the applications of numerical schemes for hyperbolic 
balance laws in fluid flow problems. Its authors do not aim to make a detailed 
comparison of all presented methods; their intention is the chapter be accepted as a 
partial guide on choosing the most appropriate numerical approach for solving 
nonhomogeneous hyperbolic partial differential equations through FVM. To illustrate 
the properties of some of the described methods several numerical examples for 
urethra flow and for shallow water flow are provided. 

The complete flux scheme for conservation laws in curvilinear coordinates is also 
discussed in the book. The equations of numerical flux for Cartesian, for spherical and 
for cylindrical coordinates are given. The authors investigate the aspects of time 
integration considering the derivation to time-dependent conservation laws. 



XII Preface

According to the author of “An Alternative Finite Volume Discretization of Body 
Force Field on Collocated Grid”, collocated grids are more suitable for implementation 
on general geometries than the staggered counterparts.  He proposes discretization on 
collocated grids, which does not change the solution substantially and could generally 
be used. The following aspects of the problem are discussed: weak pressure-velocity 
coupling, staggered versus collocated grids, corrections of convecting velocity. The 
proposed alternative body force discretization against the standard discretization for 
moving fluid is tested in two cases: raise of a bubble in a rectangular cavity and 
natural convection in a square cavity. 

In chapter “Alternative Methods for Generating Elliptic Grids in Finite Volume 
Applications” classical elliptic grid generation (EGG methods) is reviewed and a 
classification is made. The authors propose unified view, providing a framework for 
the development of new grid generation methods, which are introduced here for the 
first time. Some of the presented methods are computationally cheaper than the 
existing ones and provide grids with comparable qualities. All grid generation 
examples are limited to two dimensional solution domains, but the underlying ideas 
are clearly applicable in three-dimensional problems as well.  

A new scheme, Method of Proper Closure Equations (MPCE), for successful solution 
to incompressible and compressible flow problems is proposed in the next chapter. 
Discussion on different available schemes and on the building blocks of MPCE is 
presented through one-dimensional test cases, but MPCE are also applicable on 2D 
structured or unstructured grids.  

The answer of the question why the FVM should be as successful as finite element 
method in computational rheology is given in “The Finite Volume Method in 
Computational Rheology”. The authors summarize contributions and methodologies 
related to the description of different flows (creeping, viscoelastic), stating that 
stability, convergence and accuracy have always been intimately related to the 
development of FVM in CR. They focus on FVM, applied to viscoelastic fluids using 
collocated meshes. In addition, some high-resolution schemes, formulation of the mass 
fluxes at cell faces and formulation of the cell-face stresses are discussed. The solution 
is provided through time-marching version of SIMPLEC algorithm, including few new 
steps related to the stress calculation.  

Works studying particular problems through FVM and establishing new ways for 
their solution 

In chapter “Rayleigh–Bénard Convection in a Near-critical Fluid Using 3D Direct 
Numerical Simulation”, the author considers a cell containing supercritical fluid (SCF) 
in a cube-shaped cavity, subjected to the earth gravity. His investigation relies on a 
mathematical model, based on equations governing near-critical fluid buoyant flows 
and implementing acoustic filtering. Several aspects of Rayleigh-Bénard convection in 
a near-critical fluid are given. A comparison between the Rayleigh-Bénard convection 

Preface XI 

in a SCF and that in a PG is carried out for a given Rayleigh number in the 3D case. It
shows two major interesting differences between the two applicable approaches. 

The idea of formulating an innovate framework for exploring parameters or for
defining an indicator helping in analysis of uncertainty and accuracy of the spatial
discretization error, is based on the fact of existence of few effective routines for 
indicator’s evaluation and is explored in “A Concept of Discretization Error Indicator 
for Simulating Thermal Radiation by Finite Volume Method Based on an Entropy 
Generation Approach”. The studied mathematical model is presented through 
theoretically derived equations and the reasons for numerical scattering are explained. 
The accuracy of the innovative framework is proved through presented simulation 
results and their analysis, including verification of the computation code, simulation of
the numerical scattering, assessment of the distribution error indicator and discussion 
on the effect of absorption coefficients’ deviation as a step of obtaining a solution with 
good accuracy. 

“Volume-of-Fluid (VOF) Simulations of Marangoni Bubbles Motion in Zero Gravity”
points Marangoni convection as one of the important flows under low-gravity 
conditions. The authors’ aim is to better understand the physical processes behind 
many of the observed phenomena in zero gravity environment under the simulation of 
thermocapillary (Marangoni) fluid flow. The research is realized through the ANSYS-
Fluent software. The authors provide a description of some test cases to verify the 
numerical simulation and to study the effect of different parameters upon bubble
migration. They state that this is the first numerical study that presents method for
simulating the influence of both, rotation and thermocapillary, on single and multi
bubbles located off centre. It is the first numerical study case in that field and no
comparable investigation has been published yet.

The topic of “Mass Conservative Domain Decomposition (MCDD) for Porous Media 
Flow” is of great importance for society, due to applications such as energy extraction
and waste disposal. The transformation of the construction of multi-scale control 
volume methods in arbitrary dimensions, from an algebraic perspective, allows a 
completely decoupled implementation of the fine-level (control volume) discretization
and the multi-scale framework. The chapter investigates the advantages of MCDD to
standard preconditioners.  The cited numerical benchmarks illustrate the quality of the
multi-scale approximation to a primary variable and the role of the multi-scale 
approximation in the setting of a coupled system of equations.  The presentation of 2D
and 3D examples makes the solution transfer to multi-scale spaces easier. 

An interesting example of the vivid interaction between mathematical modelling and
simulation, and practice is presented in chapter “On FVM Transport Phenomena
Prediction in Porous Media with Chemical/Biological Reactions or Solid-Liquid Phase 
Change”. The authors aim to show the FVM capabilities in an accurate and efficient
prediction of transport phenomena in porous media, including either
biological/chemical reactions or liquid-solid phase transformations. They prove their 
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in a SCF and that in a PG is carried out for a given Rayleigh number in the 3D case. It 
shows two major interesting differences between the two applicable approaches. 

The idea of formulating an innovate framework for exploring parameters or for 
defining an indicator helping in analysis of uncertainty and accuracy of the spatial 
discretization error, is based on the fact of existence of few effective routines for 
indicator’s evaluation and is explored in “A Concept of Discretization Error Indicator 
for Simulating Thermal Radiation by Finite Volume Method Based on an Entropy 
Generation Approach”. The studied mathematical model is presented through 
theoretically derived equations and the reasons for numerical scattering are explained. 
The accuracy of the innovative framework is proved through presented simulation 
results and their analysis, including verification of the computation code, simulation of 
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“Volume-of-Fluid (VOF) Simulations of Marangoni Bubbles Motion in Zero Gravity” 
points Marangoni convection as one of the important flows under low-gravity 
conditions. The authors’ aim is to better understand the physical processes behind 
many of the observed phenomena in zero gravity environment under the simulation of 
thermocapillary (Marangoni) fluid flow. The research is realized through the ANSYS-
Fluent software. The authors provide a description of some test cases to verify the 
numerical simulation and to study the effect of different parameters upon bubble 
migration. They state that this is the first numerical study that presents method for 
simulating the influence of both, rotation and thermocapillary, on single and multi 
bubbles located off centre. It is the first numerical study case in that field and no 
comparable investigation has been published yet. 

The topic of “Mass Conservative Domain Decomposition (MCDD) for Porous Media 
Flow” is of great importance for society, due to applications such as energy extraction 
and waste disposal. The transformation of the construction of multi-scale control 
volume methods in arbitrary dimensions, from an algebraic perspective, allows a 
completely decoupled implementation of the fine-level (control volume) discretization 
and the multi-scale framework. The chapter investigates the advantages of MCDD to 
standard preconditioners.  The cited numerical benchmarks illustrate the quality of the 
multi-scale approximation to a primary variable and the role of the multi-scale 
approximation in the setting of a coupled system of equations.  The presentation of 2D 
and 3D examples makes the solution transfer to multi-scale spaces easier. 

An interesting example of the vivid interaction between mathematical modelling and 
simulation, and practice is presented in chapter “On FVM Transport Phenomena 
Prediction in Porous Media with Chemical/Biological Reactions or Solid-Liquid Phase 
Change”. The authors aim to show the FVM capabilities in an accurate and efficient 
prediction of transport phenomena in porous media, including either 
biological/chemical reactions or liquid-solid phase transformations. They prove their 
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ideas through practical examples. Numerical data is compared to an experimental one. 
The study of these processes has an additional added value to the ecological and user-
friendly environment of our planet. 

The last, but not the least, work  I’d like to tell you about, is dedicated to the use for 
FVM through the streamer discharge simulation and the gas dynamics simulation. 
Starting with an overview of streamer and gas dynamics modelling followed by 
developing a model and numerical algorithms, the authors explicitly discuss the 
model equations’ discretisation with the help of FVM. 

The last group of papers includes works, focused on direct application of FVM in 
medicine and engineering. 

One of the book chapters discusses “Conjugate Gradient Method Applied to Cortical 
Imaging in EEG/ERP”. In fact, electroencephalography (EEG) and/or Event Related 
Potentials (ERP) are powerful non-invasive techniques which have broad clinical 
applications for epilepsy, for psychiatric and developmental disorders, for dyslexia, 
for visual treatment in face recognition, etc. Techniques, based on EEG/ERP, are 
known to be incontestably inoffensive and cheap. In EEG/ERP, knowledge of the intra-
cerebral sources can be obtained by solving of the so-called “inverse” problem, 
consisting in finding the localization of the spatio-temporal intra-cerebral activity from 
scalp potential recordings. Various methods have been proposed in the EEG/ERP 
literature for computing this inverse problem, but still, there is a lack of studies on the 
application of CGM to solving of inverse problems in EEG/ERP. The authors’ 
investigate the dependence of the reconstruction quality on the number of electrodes 
and on the noise level using CGM in numerical simulation. The main goal of the work 
is to evaluate the quality of intra-cerebral source reconstruction using CGM and to 
compare the obtained results to the ones obtained through Central Imaging Technique 
(CIT).  

Another, not very popular, feature of FVM is its use for stress analysis of isotropic 
linear or non-linear materials. For the purpose of stress analysis in wood, the method 
is modified to take into account the anisotropic nature of the wood and the influence 
of moisture content and temperature on the deformation and stress. The presented 
numerical example is guided through generic transport equation, finite volume 
discretization and solution algorithm. The authors try to make numerical prediction of 
the wood drying process, which is treated as an unsteady process of heat, mass and 
momentum transfer in an orthotropic continuum with variable physical properties. 
The suggested method is applicable to a number of linear and non-linear solid body 
deformation problems. The solution algorithm shows efficiency, as well as, robustness 
in solving nonlinear system of equations. 

The last chapter discusses the use of FVM as a part of CAE techniques for solving a 
typical problem of engineering design. The provided example is a part of product 
database of a company for hydraulic cylinders’ design and production. Three different 
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modulus of a widely spread applicable software products are used. The authors show 
the vivid interaction between CAD modeling and CAE analysis and how under the
use of new products and techniques efficiency of design and competitiveness of
companies can be increased.

After this brief summary of the FVM book’s content and the introduction to the
following pages, we hope that you have already found a reading which has provoked
your interest and has got your attention. This book addresses everyone, who wants to
learn more on numerical methods as means of solving different problems and
particularly on FVM. It could serve either as a textbook or as a practical guide. This is
a book for everyone who wants to grow, to improve and to investigate.

Dr. Radostina Petrova
Technical Univeristy of Sofia,

Bulgaria 
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Application of Finite Volume Method in  
Fluid Dynamics and Inverse Design  

Based Optimization 
Árpád Veress and József Rohács 

Budapest University of Technology and Economics 
Hungary 

1. Introduction 
The Euler and Navier-Stokes (NS) equations are derived by applying Newton's second law 
to an infinitely small inviscid and viscous control volume respectively, and with the 
extension of the mass and energy conservation laws, they provide the highest level of 
approximations for the flow physics within approaching of continuum-mechanics based 
flow regime. The mentioned governing equations1 are the system of the nonlinear partial 
differential equations and they do not have general closed form solution as yet. However, in 
consideration of increasing expectations arisen from the industry and the high level 
evolution of the computer technology, the different numerical and optimization methods 
are developed and implemented in the complex framework of CFD (Computational Fluid 
Dynamics) programs. These software are widely spread in the engineering practice and they 
provide efficient solutions for different industrial problems. Beside the advantages of the 
virtual prototyping, the wide range of visualization tools and optimization, significant 
number of measurements can be replaced by the validated numerical analyses, which 
reduce time, capacity, cost and strongly contribute to the benefit of the company. Hence, 
followed by the short overview of different numerical methods generally used in CFD, a 
complete physical and mathematical interpretation is presented for a compressible NS and 
Euler solvers with validation and extension for coupling of inviscid flow solver with inverse 
design based optimization algorithm in a framework of the finite volume method. 

1.1 Numerical methods for fluid flow 

The continuum mechanics based NS equations describe flow physics in continuum and slip 
flow regime defined by Knudsen number as Kn<0.01 and 0.01<Kn<0.1 respectively (Zucrow 
& Hoffman, 1976). In case of Euler equations, in which the viscous (diffusion) effects are not 
considered, Re→∞ and Kn→0. The continuum approach does not count the individual 
molecules and instead, considers the substance of interest as being continuously distributed 
in space (Wassgren, 2010). The continuum based method requires that the smallest length 
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scale to be much larger than the microscopic length scale, typically the mean free path of a 
molecule (for gases). The Knudsen number for a generic engineering flow, in which the 
mean free path (λ) is around 1*10E-5 cm and the macroscopic length of interest (L) is 1 mm, 
is Kn=λ/L=0.0001 (Wassgren, 2010). The other expectation is that the highest length scale of 
the spatial resolution must be small enough to accurately capture the parameters (e.g. 
density) to be approximately constant in the control volume and do not be affected by the 
physics or geometry. The continuum assumption is valid in the vast majority of the 
industrial applications and so the NS (and Euler) equations can be used in the most of the 
industrial applications. However, in general, they do not have closed form solution till now. 
Hence, different discretization methods were developed from the second part of the last 
century till now to have approximate results for the nonlinear partial differential system of 
the equations in each point of the temporal (in case of transient problem) and spatial 
discretization. Beside fulfilling consistency, stability and convergence characteristics as a 
measure of the mathematical correctness of the discretization methods, the final results of 
the numerical analyses are evoluted as a function of the applied governing equations, 
boundary conditions and the geometry. 

The three most frequent discretization methods (in the percent of the available commercial 
CFD codes) are the finite difference (FDM) (~ 2 %), finite element (FEM) (~ 15 %) and finite 
volume (FVM) (~ 80 %) methods. The rest 3 % are consist mostly of Spectral, Boundary 
element, Vorticity type and Lattice gas or Lattice Boltzmann methods. 

The most traditional and oldest methods applied for numerical solution of partial 
differential equations are the FDM. They are essentially based upon the properties of the 
Taylor series expansion and the method is only applicable to structured grids in practice 
(Manna, 1992). The accuracy of FDM method strongly depends upon the mesh size and its 
properties as stretch ratio, aspect ratio and skewness for example. Although the increasing 
number of mesh point improves the accuracy, it can lead to difficulties in solution 
procedures due to the matrix inversion at the algebraic system of the equations (Manna, 
1992). 

The FEM historically originated from structural mechanics. The physical domain is divided 
by cells or elements, they form the numerical mesh, which can be structured or unstructured 
providing higher flexibility for handling complex geometry than FDM (Manna, 1992). The 
field variables are approximated by linear combinations of known basis functions, which 
can be quite general with varying degrees of continuity at the inter-element boundaries 
(Hirsch, 2007). Its mathematical rigor and elegance makes the FEM algorithms very 
attractive and widely researched area in the CFD community (Manna, 1992). 

The FVM is originally introduced by McDonald 1971 and they are based on the observation 
that the conservation laws have to be interpreted in integral form to preserve discontinuous 
solution as vortex sheets, contact discontinuities or shock waves. Similarly to the FEM, the 
physical domain is subdivided by cells. The flow field variables are evaluated in some 
discrete points on each cell and they are interpreted as average value over the finite 
volumes. The finite volumes are constructed as parts of one or more cells, which can, 
moreover, be either overlapped or non-overlapped. The conservation laws are then applied 
to the finite volumes to obtain the discrete equations. The possibility of modifying the shape 
and location of the control volumes associated to a given mesh allows large freedom in the 
choice of the function representation of the flow field. This property is not shared by either 
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the FDM or FEM and it is mostly the reason of higher popularity of the FVM in the 
engineering applications (all paragraph from Manna, 1992).  

Turn back to the physical interpretations of modelling, there are two main approaches can be 
distinguished. The Pressure- and the Density-based classes of methods have evolved distinct 
strategies for the discretization, non-linear relaxation and linear solution aspects underlying 
the computational schemes. Historically, the pressure-based approach was developed for low-
speed incompressible flows, while the density-based approach was mainly used for high-
speed compressible flows. However, recently both methods have been extended and 
reformulated to solve and operate for a wide range of flow conditions beyond their traditional 
or original intent. In the Pressure-based methods the velocity is obtained from the momentum 
equations. The pressure field is extracted by solving a pressure or pressure correction 
equation, which is derived by manipulating continuity and momentum equations. The one of 
the most widespread methods is the SIMPLE (Semi-Implicit Pressure Linked Equations) 
family of schemes. Karki and Patankar developed the SIMPLER method for compressible 
flows, applicable for a wide range of speeds (Karki, Patankar 1989). Munz et al. extended the 
SIMPLE scheme for low Mach number flow employing multiple pressure variables, each being 
associated with different physical response (Munz et al. 2003). The time marching Density-
based methods represent a large class of schemes adopted for compressible flows and applied 
widely in computational fluid dynamics for modelling steady and transient, transonic, 
supersonic and hypersonic flows. The continuity equation is used to determine the density 
field while the pressure distribution is obtained from the equation of state. The velocity field is 
computed also from the momentum equations. Both approaches are now applicable to a broad 
range of flows (from incompressible to highly compressible), but the origins of the density-
based formulation may give it an accuracy (i.e. shock resolution) advantage over the pressure-
based solver for high-speed compressible flows (ANSYS, Inc. 2010). Hence, this method is 
used in followings due to the high speed aeronautical applications.  

1.2 Turbulence modelling 

Concerning the physical level of modelling turbulent flows in CFD, the three most frequent 
approaches are the DNS (Direct Numerical Simulation), LES (Large Eddy Simulation) and 
RANS (Reynolds-averaged Navier-Stokes equations) based simulations, meanwhile for 
modelling laminar flows, there are no special treatment of the original NS equations are 
required. The closest model to the real phenomenon is the DNS, in which the Navier-Stokes 
equations are numerically solved without any turbulence model. It means that the whole 
range of spatial and temporal scales of the turbulence is resolved. The computational cost is 
extremely high, it is proportional to Re3 (Pope, 2000). This method can not be used in the 
most part of the engineering practice due to the economical aspects. In case of LES, the large 
scales of turbulence are resolved directly providing more accurate results compared with 
RANS, meanwhile the geometry-independent, small scales and expensive structures are 
modelled. Although this approach is less computationally expensive compared with DNS, 
the industrial use is confined to low Reynolds number from purely computational 
consideration. The RANS based methods are the highest feasible level of approximation for 
the turbulent flows in general engineering applications. In this case, the parameters in the 
governing equations are averaged over a characteristic time interval in order to eliminate 
the influence of the turbulent fluctuations, meanwhile the unsteadiness of the other physical 
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phenomenon are preserved (Manna, 1992). The resulting equations are formally identical to 
the laminar Navier-Stokes equation, except for some extra terms, so called Reynolds 
stresses, which results from the non linear terms of the governing equations (Manna, 1992). 
The main goal of the different turbulence modelling is to provide functional relations, 
expressions and/or closure equations related with these new terms in order to couple and 
so make definite the governing equations (in discretized form). In the last forty years several 
turbulence models have been developed. Following the Boussinesq approximation (which 
expects the similarity of the mechanism of laminar and turbulent stresses) the Reynolds 
stresses can be expressed in terms of eddy viscosity, which is considered as the turbulent 
counterpart of the laminar molecular viscosity. Opposite to the molecular viscosity, which is 
a fluid property, the eddy viscosity is a function of the flow properties (Manna, 1992). The 
direct aim of the turbulence models is to identify the functional relations between the flow 
properties and the turbulent eddy viscosity. At the lowest level, they are based upon the 
mixing length concept, introduced by Prandtl in 1925, which effectively relates the turbulent 
shear stresses to the mean velocity gradients. These algebraic turbulence models are often 
called zero equation models. A higher degree of approximation is reached by solving 
additional equations written for the turbulence variables, as the transport equations for the 
turbulent kinetic energy and its rate of dissipation. This class of turbulence models is 
usually classified according to the number of additional equations applied for the 
turbulence variables, i.e. one equations models, two equation models or higher order closure 
like the Reynolds stress models (Manna, 1992). The two-equation models, especially the k-ε 
and k-ω based models, are the widest spread applications in the industry due to the best 
compromise of the physical accuracy and computational cost. However, beside the 
advantages, they have disadvantages also.  

The first low Reynolds number k-ε model has been developed by Jones and Launder (1973) 
and suppose that the flow is fully turbulent. It is a computationally cheap and provides 
reasonable accuracy for a wide range of flows. However, the k-ε model performs poorly for 
complex flows involving severe pressure gradient, separation and strong streamline 
curvature. From the standpoint of aerodynamics, the most disturbing problem is the lack of 
sensitivity to adverse pressure-gradients. Under those conditions, the model predicts 
significantly too high shear-stress levels and thereby delays (or completely prevents) 
separation. Furthermore, it requires the application of damping mechanism for stabilization 
when the equations are integrated through the viscous sublayer (Menter, 1994). The 
standard k-ε model has been modified by many authors. 

There are a significant number of alternative models that have been developed to overcome 
the shortcomings of the k-ε model. One of the most successful, with respect to the accuracy 
and the robustness, is the k-ω model of Wilcox (1988). It solves one equation for the 
turbulent kinetic energy k and a second equation for the specific turbulent dissipation rate 
ω. The most prominent advantages is that the equations can be integrated without 
additional terms through the viscous sublayer, which makes them y+ insensitive and 
provides straightforward application of the boundary conditions. This leads to significant 
advantages in numerical stability. The model performs significantly better under adverse 
pressure-gradient conditions and separation than the k-ε model and suitable for the complex 
boundary layer flows (e.g. external aerodynamics and turbomachinery). However, the k-ω 
model also has some shortcomings. The model depends strongly on the free stream values 
of ω that are specified outside the shear-layer. Another point of concern is that the model 
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predicts spreading rates that are too low for free shear-layers, if the correct values are 
specified for ω (Menter, 1994). 

In order to improve both the k-ε and the k-ω models Menter (1994) suggested to combine the 
two models called the SST (Shear Stress Transport) k-ω turbulence model. The use of a k-ω 
formulation in the inner parts of the boundary layer makes the model directly usable all the 
way down to the wall through the viscous sub-layer, hence the SST k-ω model can be used 
as a Low-Re turbulence model without any extra damping functions. The SST formulation 
also switches to the k-ε behaviour in the free-stream and thereby avoids the common k-ω 
problem that the model is too sensitive to the free-stream value of the turbulence variables 
(in particular ω). The further distinct of the SST turbulence model is the modified turbulence 
eddy-viscosity function. The purpose is to improve the accuracy of prediction of flows with 
strong adverse pressure gradients and pressure-induced boundary layer separation. The 
modification accounts for the transport of the turbulent shear stress, which is based on 
Bradshaw's assumption that the principal shear stress is proportional to the turbulent 
kinetic energy (Blazek, 2005). Due to the above mentioned characteristics, the Menter model 
has gained significant popularity in the aeronautical community and can be regarded as one 
of the standard approaches today. Despite of the improvements of the original SST model as 
SST-2003, SST-sust, SST-Vsust variants for example, there are also some complaints. The one 
of them is that the distance to the nearest wall has to be known explicitly. This requires 
special provisions on multiblock structured or on unstructured grids (Blazek, 2005). Also, 
the k-ε to k-ω switch can produce some unrealistic effective viscosity, which may not affect 
the results. Meanwhile the SST turbulence model provides similar benefits as standard k–ω 
(except for the free stream sensitivity), the dependency on wall distance can make it less 
suitable for the free shear flows compared to standard k-ω and it requires mesh resolution 
near to the wall (CFD Online Discussion Forum, 2010).  

The Wilcox’s improved k–ω model (Wilcox, 1998) predicts free shear flow spreading rates 
more accurately than version 1988. The results of the benchmark simulations are in close 
agreement with flow measurements on far wakes, mixing layers, and plane, round, and 
radial jets, and it thus applicable to wall-bounded flows and free shear flows (ANSYS, 2010). 
Hence, this turbulence model has been implemented.  

2. Finite volume method based compressible flow solver 
Nowadays, in spite of disadvantages of turbulence closure models for RANS (Reynolds 
Averaged Navier-Stokes equations), they are at present the only tools available for the 
computation of complex turbulent flows of practical relevance. Their popularity comes from 
high efficiency in terms of accuracy and computational cost, which makes them widely used 
in commercial codes and related multidisciplinary applications. Hence, a detailed 
description of the physical and mathematical aspects of a RANS based compressible flow 
solver is presented in followings.  

The governing equations in conservative form are derived by using density weighted 
averaging coupled with the time averaging of RANS. The code is based on structured, 
density-based cell centered finite volume method, in which the convective terms are 
discretized by Roe approximated Riemann method. The method of Roe is highly non-
dissipative and closely linked to the concept of characteristic transport. It is one of the most 
powerful linear Riemann solvers due to the excellent discontinuity-capturing property 
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including shear waves. However, it is well-known that flux function mentioned above can 
produce non-physical expansion shocks that violate the entropy condition. This can be 
avoided by modifying the modulus of the eigenvalues for the non-linear fields. The method 
of Yee is used and discussed at the present case to cure the problem. Central discretization is 
applied for diffusive terms on a shifted mesh. MUSCL (Monotone Upstream Schemes for 
Conservation Laws) approach is implemented for higher order spatial reconstruction with 
Mulder limiter for monotonicity preserving. Wilcox k-ω two equations turbulence model is 
adopted and used (Wilcox, 1998). The explicit system of the equations is solved by the 4th 
order Runge-Kutta method. The numerical boundary conditions are determined by the 
extrapolation technique for the NS solver and by the method of characteristics at the Euler 
solver. The interest is mostly in high speed industrial and aeronautical applications hence, 
the validation is completed for test cases are in the transonic, supersonic and subsonic flow 
regime as circular bump in the transonic channel and compression corner for the NS solver 
and flow over a wing profile and cascade for the Euler solver. The description of the 
benchmarks and the results are presented in Chapter 3. 

2.1 Governing equations 

In absence of external forces, heat addition, mass diffusion and finite rate chemical reaction, 
the unsteady two dimensional Navier-Stokes equations coupled with k-ω turbulence model-
equations (Wilcox, 1998) in conservative, divergence and dimensional form are next: 
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The bar over variables represents the Reynolds averaging over the characteristic time scale 
in order to separate and filter the small sized phenomena as turbulence fluctuation:  
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For a supersonic or hypersonic compressible flow the local density is not constant and in 
case of turbulent flow it fluctuates also due to the pressure diffusion, dilatation, work and 
turbulent transport/molecular diffusion of turbulent energy. Hence, the instantaneous 
density can also be separated by averaging and fluctuating part, which requires the 
introduction of Favre averaging given by (5).  
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in which p  is the static pressure,   is the density, k  is the turbulent kinetic energy, e  is 
the internal energy u  and v  are the Cartesian components of velocity vector, vc  is the 
specific heat at constant volume, T  is the static temperature,   is the dynamic molecular 
viscosity, t  is the dynamic turbulent or eddy viscosity, ij  is the Kronecker’s delta, pc  is 
the specific heat at constant pressure,  720.Pr   and  90.Prt   (for air) are the Prandtl 
number and turbulent Prandtl number respectively, Kkg/m/s/6-10E*1.458C 1  and 

K 110.4C 2  are the constants in the Sutherland’s formula to count the effect of temperature 
on dynamic viscosity and   is the specific turbulent dissipation rate. The terms in the 
expressions, which are related to values of j,i  and k  in indexes, range from 1 to 2. The 
closure expression of the NS equations is the ideal gas law (10).  

 T~Rp   (10) 

The not mentioned parameters and expressions in the turbulence model equations are given 
by (11)-(18) (Wilcox, 1998), 
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in which p  is the static pressure,   is the density, k  is the turbulent kinetic energy, e  is 
the internal energy u  and v  are the Cartesian components of velocity vector, vc  is the 
specific heat at constant volume, T  is the static temperature,   is the dynamic molecular 
viscosity, t  is the dynamic turbulent or eddy viscosity, ij  is the Kronecker’s delta, pc  is 
the specific heat at constant pressure,  720.Pr   and  90.Prt   (for air) are the Prandtl 
number and turbulent Prandtl number respectively, Kkg/m/s/6-10E*1.458C 1  and 

K 110.4C 2  are the constants in the Sutherland’s formula to count the effect of temperature 
on dynamic viscosity and   is the specific turbulent dissipation rate. The terms in the 
expressions, which are related to values of j,i  and k  in indexes, range from 1 to 2. The 
closure expression of the NS equations is the ideal gas law (10).  
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where H is the Heaviside step function and c is the sound speed. The system of the 
nonlinear partial differential equations is already coupled. After discretization the system of 
algebraic equations can easily be solved. 

Assuming a frictionless and isentropic flow, the NS equations – neglecting viscous and heat 
conducting terms – can be reduced to the Euler equations, which are the highest level 
approximation of the inviscid flow. 

2.2 Boundary conditions 

The numerical treatment of the boundary conditions strongly influences not only the 
convergence properties but the accuracy of the results in solving partial differential system 
of the equations. The physical boundary conditions secure the existence and uniqueness of 
the exact solution and numerical boundary conditions are supposed to ensure that various 
perturbations generated in the interior of the computational domain leave it without being 
reflected at the boundaries. Due to the convection dominated problem, the method of 
characteristic is used to determine the number and the exact values of the numerical 
boundary conditions in case of Euler equations, meanwhile extrapolation technique is 
applied for the NS equations. The direction of wave propagation (Vn, Vn, Vn+c and Vn-c) 
depends not only on the sign of the cell face normal velocity Vn but also on the local speed 
of sound c. At the boundary, the number of physical boundary condition to be imposed 
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equals the number of negative eigenvalues, which correspond to the incoming 
characteristics from the outside (boundary) to the computational domain. The need for 
numerical boundary conditions comes from the fact that the actual problem to be solved is 
formulated in terms of the conservative variables rather than Riemann invariants. Therefore, 
it is hard to impose the Dirichlet boundary conditions in the usual way. It is common 
practice to recover the boundary values by switching to the characteristic variables, 
evaluating the incoming Riemann invariants from the physical boundary conditions and 
extrapolating the outgoing ones from the interior of the computational domain (Kuzmin & 
Möller, 2004).  

Concerning the inlet, it is examined whether the flow is supersonic or subsonic. First, 
consider the supersonic case, at which only incoming characteristics are available. Hence, 
total pressure, static pressure, total temperature and flow angle are imposed as physical 
boundary conditions and no numerical boundary conditions are required for the Euler 
equations. If the flow is subsonic, one outgoing characteristic is appeared (Vn-c), so the two 
dimensional local Riemann problem belongs to that characteristic curve is solved by using 
physical and computed (existing) parameters and the total pressure, total temperature and 
flow angle are imposed as physical boundary conditions. The temperature and the 
components of the velocity vector are recovered by using ideal gas law and inlet flow angle, 
while the tangential velocity component is kept to be constant. Concerning the NS 
equations, additionally to the above mentioned specifications, the turbulent kinetic energy 
(k) and specific dissipation rate (ω) are imposed as physical boundary conditions and the 
static pressure is extrapolated from the computational domain in case of subsonic inlet.  

If the outcoming flow is supersonic, there is no incoming characteristic hence, no physical 
boundary conditions are specified. If the flow is subsonic, there is one incoming 
characteristic hence, one parameter (static pressure) is imposed as physical boundary 
condition. The numerical boundary conditions are calculated by using characteristic 
variables (compatibility equations) in case of Euler equations, or they are extrapolated from 
the interior as the NS equations are implemented for viscous flow modelling. The static 
temperature is calculated by ideal gas law. 

Concerning the Euler equations, the solid wall boundary conditions are considered as an 
outlet with the restriction of normal velocity is set to be zero across the wall. Hence, the 
numerical boundary conditions are calculated by using characteristic variables 
(compatibility equations) belongs to characteristic curves Vn, Vn and Vn+c. The static 
temperature is calculated by ideal gas law also. In case of NS equations, the no-slip 
boundary condition is implemented at the solid walls, the velocity vectors are set to be zero. 
Assuming zero pressure gradients, the pressure is set equal to the one at the cell centre 
nearest to the wall. Adiabatic wall condition is used to determine temperature. The 
turbulent kinetic energy is zero at the wall and the specific dissipation rate is computed by 
suggestion of (Wilcox, 1998) assuming a rough wall. 

If the flow field has any kind of periodicity, the calculation time can be reduced significantly 
by using periodic boundary condition, by which the rotationally or translationally shifted 
parameters are used in the cells at the boundaries. Periodic boundary condition is used 
before and after the profile to recover infinite blade number in cascades.  
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where H is the Heaviside step function and c is the sound speed. The system of the 
nonlinear partial differential equations is already coupled. After discretization the system of 
algebraic equations can easily be solved. 

Assuming a frictionless and isentropic flow, the NS equations – neglecting viscous and heat 
conducting terms – can be reduced to the Euler equations, which are the highest level 
approximation of the inviscid flow. 

2.2 Boundary conditions 

The numerical treatment of the boundary conditions strongly influences not only the 
convergence properties but the accuracy of the results in solving partial differential system 
of the equations. The physical boundary conditions secure the existence and uniqueness of 
the exact solution and numerical boundary conditions are supposed to ensure that various 
perturbations generated in the interior of the computational domain leave it without being 
reflected at the boundaries. Due to the convection dominated problem, the method of 
characteristic is used to determine the number and the exact values of the numerical 
boundary conditions in case of Euler equations, meanwhile extrapolation technique is 
applied for the NS equations. The direction of wave propagation (Vn, Vn, Vn+c and Vn-c) 
depends not only on the sign of the cell face normal velocity Vn but also on the local speed 
of sound c. At the boundary, the number of physical boundary condition to be imposed 
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equals the number of negative eigenvalues, which correspond to the incoming 
characteristics from the outside (boundary) to the computational domain. The need for 
numerical boundary conditions comes from the fact that the actual problem to be solved is 
formulated in terms of the conservative variables rather than Riemann invariants. Therefore, 
it is hard to impose the Dirichlet boundary conditions in the usual way. It is common 
practice to recover the boundary values by switching to the characteristic variables, 
evaluating the incoming Riemann invariants from the physical boundary conditions and 
extrapolating the outgoing ones from the interior of the computational domain (Kuzmin & 
Möller, 2004).  

Concerning the inlet, it is examined whether the flow is supersonic or subsonic. First, 
consider the supersonic case, at which only incoming characteristics are available. Hence, 
total pressure, static pressure, total temperature and flow angle are imposed as physical 
boundary conditions and no numerical boundary conditions are required for the Euler 
equations. If the flow is subsonic, one outgoing characteristic is appeared (Vn-c), so the two 
dimensional local Riemann problem belongs to that characteristic curve is solved by using 
physical and computed (existing) parameters and the total pressure, total temperature and 
flow angle are imposed as physical boundary conditions. The temperature and the 
components of the velocity vector are recovered by using ideal gas law and inlet flow angle, 
while the tangential velocity component is kept to be constant. Concerning the NS 
equations, additionally to the above mentioned specifications, the turbulent kinetic energy 
(k) and specific dissipation rate (ω) are imposed as physical boundary conditions and the 
static pressure is extrapolated from the computational domain in case of subsonic inlet.  

If the outcoming flow is supersonic, there is no incoming characteristic hence, no physical 
boundary conditions are specified. If the flow is subsonic, there is one incoming 
characteristic hence, one parameter (static pressure) is imposed as physical boundary 
condition. The numerical boundary conditions are calculated by using characteristic 
variables (compatibility equations) in case of Euler equations, or they are extrapolated from 
the interior as the NS equations are implemented for viscous flow modelling. The static 
temperature is calculated by ideal gas law. 

Concerning the Euler equations, the solid wall boundary conditions are considered as an 
outlet with the restriction of normal velocity is set to be zero across the wall. Hence, the 
numerical boundary conditions are calculated by using characteristic variables 
(compatibility equations) belongs to characteristic curves Vn, Vn and Vn+c. The static 
temperature is calculated by ideal gas law also. In case of NS equations, the no-slip 
boundary condition is implemented at the solid walls, the velocity vectors are set to be zero. 
Assuming zero pressure gradients, the pressure is set equal to the one at the cell centre 
nearest to the wall. Adiabatic wall condition is used to determine temperature. The 
turbulent kinetic energy is zero at the wall and the specific dissipation rate is computed by 
suggestion of (Wilcox, 1998) assuming a rough wall. 

If the flow field has any kind of periodicity, the calculation time can be reduced significantly 
by using periodic boundary condition, by which the rotationally or translationally shifted 
parameters are used in the cells at the boundaries. Periodic boundary condition is used 
before and after the profile to recover infinite blade number in cascades.  



 
Finite Volume Method – Powerful Means of Engineering Design 

 

12

Meanwhile the expected pressure distribution is imposed at the solid wall boundary in the 
inverse mode of the inviscid solver, the opening boundary is used instead of solid wall to 
allocate the local flow direction – determined by the pressure difference between the boundary 
and computational domain – and its velocity Vn (see Fig. 11.). The main outcome of the present 
mode is to have velocity profile over the geometry, which will be used for modifying mesh 
points in the wall modification module of the inverse design method (see Chapter 4.).  

The detailed description of the presented boundary conditions for the Euler equations is 
found in (Veress et al., 2011). 

2.3 Finite volume discretization 

The finite volume method is a technique to handle the spatial derivatives that are appeared 
in the governing equations. The method is based on the integration of the equations over a 
finite volume. Then the integrals are transformed using the Gauss’ divergence theorem 
where applicable. The physical meaning of the method is that fluxes flow through the faces 
of the finite volume while flux balance over the volume is satisfied. In the finite volume 
approach the first issue consists in evaluating the contour integral of the inviscid and 
viscous flux vectors in (1), hence the numerical flux functions are written in vector form 
given by (19). The xe  and ye  are the unit vectors in x and y directions. 

       yx eUGeUFUH 
  and       yvxvv eUGeUFUH 

  (19) 

It is convenient to define total fluxes normal to the boundary of elementary control volumes 
rather than making use of the individual Cartesians components, using the rotational 
invariance of the governing equations. Integrating system eq. (1) over a control volume  , 
which is bounded by interface   and applying the Gauss’ divergence theorem gives (20) 
and (21) (Manna, 1992), 
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where  yx n,nn   is the local outward pointing unit normal vector of the cell interface. The 
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where 

     yxyyxxyxn vnuneneneveunVV   . (24) 

By means of finite volume discretization, in order to pass from a continuous to a discrete 
form, the unknown in a general finite volume of the partitioned computational domain is 
defined by (25), 
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mean value over the control volume. The fluxes are computed across quadrilateral cells in a 
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allocate the local flow direction – determined by the pressure difference between the boundary 
and computational domain – and its velocity Vn (see Fig. 11.). The main outcome of the present 
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where 

     yxyyxxyxn vnuneneneveunVV   . (24) 

By means of finite volume discretization, in order to pass from a continuous to a discrete 
form, the unknown in a general finite volume of the partitioned computational domain is 
defined by (25), 
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which corresponds to cell centre discretization. The vector j,iU  has been interpreted as a 
mean value over the control volume. The fluxes are computed across quadrilateral cells in a 
structured grid, which can be seen in Fig. 1. The computational domain is divided by finite 
number of non overlapping finite surfaces or cells and the (21) is applied for each cell 
separately. It means that the second integral in (21) is replaced by summation over the all 
boundaries bN  of the cell j,i  and so eq. (21) can be written in the general form of the semi-
discrete expression over cell j,i  as it is shown in (26). 
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  k,ijnH  is the inviscid and   k,ijvnH  is the viscous flux function normal to the cell boundary of 

cell interface k and j,iU  is the vector of conservative variables (2). In present case, in 2D, j,i  
is the area of the cell surface and k,ij  is the length of a cell boundary k of j,i . 

The one of the key point in the convergence and the accuracy point of view is the correct 
determination of numerical flux function. It is especially true for the convective flux 
function, as it is expressed in the function of the left (L) and the right (R) side parameters of 
the cell interface (see Fig. 1.). In case of upstream differencing (or upwind) schemes, the 
quantity   k,ijnH  are characterized by a flux function  RL

n U,UH , which takes into account 
the sign of the Jacobian matrices, or in other words the relevant propagation directions 
between the L and R states (Manna, 1992). The  RL

n U,UĤ  can be evaluated by linear wave 
decomposition where an unique average state (which is denoted by a hat) of the left and 
right states exist (Roe, 1981): 

         LRRL
n

R
n

L
n

RL
n UUU,UD̂UHUHU,UĤ 

2
1 . (27) 

For the ideal gas, Roe has shown that the matrix nD̂  is equal to the Jacobian nD  when it is 
expressed as a function of the variables ̂ , û , v̂ , and 0ĥ , which are weighted variables of 
the square root of density. 0h  is the total enthalpy. Detailed information about the Roe’s 
method of the approximate Riemann solver is found in (Roe, 1981). The method of Roe is 
highly non-dissipative and closely linked to the concept of characteristic transport. It is one 
of the most powerful linear Riemann solvers due to the excellent discontinuity-capturing 
property including shear waves. However, it is well-known that flux function mentioned 
above can produce non-physical expansion shocks that violate the entropy condition. This 
can be avoided, by modifying the modulus of the eigenvalues for the non-linear fields. The 
method of Yee (1989) is used at the present case.  

MUSCL (Monotone Upstream Schemes for Conservation Laws) approach is implemented 
for higher order spatial extension, by which the piece-wise constant distribution of the initial 
variables over the cell can be replaced by a piecewise linear or quadratic one. The 
mathematical deduction starts with the introduction of Taylor series expansion around 
point i. The results are found at (28) after discretization and integration. 
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UU  and the new left and right states next to the 

cell boundary 21i  (between points i and i+1) are denoted by LU  and RU . The 31  in 

equation (28) corresponds to a third order accurate space discretization in one dimensional 
problem (Manna, 1992). The spurious oscillations (wiggles) can occur with high order 
spatial discretization schemes due to shocks, discontinuities or sharp changes in the solution 
domain. Hence, in this case, Mulder limiter is implemented in the high resolution schemes 
for monotonicity preserving (Manna, 1992): 
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The same method was used for NS and for the turbulence model equations, however they 
were handled separately. 

A simple central scheme is applied for the space discretization of the diffusive terms in (26) 
as follows: 

     R
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L
vnvn UHUHH 

2
1  (31) 

LU  and RU  are the conservative variables at the cell centres. The derivatives in the diffusive 
terms are determined at the centre of the cell interface. Hence, two new types of cells are 
formed, which are shifted by 21i  and 21j  directions respectively. The centres of the 
boundary of such cells are coincident with the centres and vertices of the original cells. In 
case of former situation, the parameters are known, because they are stored at the cell centre 
of the original cells. If the centres of the boundaries of the new cells are coincident with cell 
vertex of the original cells, the flow variables at the new cell boundary centre are the simple 
averages of the four neighbouring cell centre values of the original cells in case of 
quadrilateral mesh. Then, the derivatives into the x and y directions of the viscous flux 
function (23) can be obtained by using Green-Gauss theorem: 
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 , (33) 

where   is an arbitrary flow variable, 'j,i  is the area of the shifted cell i,j, k runs through 
the number of the boundaries of the shifted cell till the bN , which is the number of maximal 
boundary, kx'n  and ky'n  is the x and y components of the cell boundary normal unit vector 
of the interface k, k,ij  is the value of the flow variable at the given interface centre of the 
shifted cell i,j and k,ij'  is the length of the face k. At the boundaries of the computational 
domain, a series of the ghost cells are applied and filled with values, so no special treatment 
is necessary to determine the derivatives. The geometry of the ghost cells are extrapolated 
from the last two cells. 

The integral of the source term in (21) are approximated as follows: 

       j,ij,i "USdUS 


  (34) 
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the square root of density. 0h  is the total enthalpy. Detailed information about the Roe’s 
method of the approximate Riemann solver is found in (Roe, 1981). The method of Roe is 
highly non-dissipative and closely linked to the concept of characteristic transport. It is one 
of the most powerful linear Riemann solvers due to the excellent discontinuity-capturing 
property including shear waves. However, it is well-known that flux function mentioned 
above can produce non-physical expansion shocks that violate the entropy condition. This 
can be avoided, by modifying the modulus of the eigenvalues for the non-linear fields. The 
method of Yee (1989) is used at the present case.  

MUSCL (Monotone Upstream Schemes for Conservation Laws) approach is implemented 
for higher order spatial extension, by which the piece-wise constant distribution of the initial 
variables over the cell can be replaced by a piecewise linear or quadratic one. The 
mathematical deduction starts with the introduction of Taylor series expansion around 
point i. The results are found at (28) after discretization and integration. 

     













2
1

2
31

2
1 11

4
1

iii
R

i
UU  ,         














2
1

2
31

2
1 11

4
1

iii
R

i
UU   (28) 

1
2
1 


 iii

UU , iii
UU  


1

2
1 , 12

2
3 


 iii

UU  and the new left and right states next to the 

cell boundary 21i  (between points i and i+1) are denoted by LU  and RU . The 31  in 

equation (28) corresponds to a third order accurate space discretization in one dimensional 
problem (Manna, 1992). The spurious oscillations (wiggles) can occur with high order 
spatial discretization schemes due to shocks, discontinuities or sharp changes in the solution 
domain. Hence, in this case, Mulder limiter is implemented in the high resolution schemes 
for monotonicity preserving (Manna, 1992): 

 
Application of Finite Volume Method in Fluid Dynamics and Inverse Design Based Optimization 

 

15 

    













2
1

2
31

2
1 11

4
1

i

R

i

RR
i

R

i
UU  ,     











2
1

2
1

2
1 11

4
1

i

L

i

LL
i

L

i
UU   (29) 

where 

 














2

2
3

2

2
1

2
3

2
12

jj

jjR ,     














2

2
1

2

2
1

2
1

2
12

jj

jj
L     and    57 1010    . (30) 

The same method was used for NS and for the turbulence model equations, however they 
were handled separately. 

A simple central scheme is applied for the space discretization of the diffusive terms in (26) 
as follows: 
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case of former situation, the parameters are known, because they are stored at the cell centre 
of the original cells. If the centres of the boundaries of the new cells are coincident with cell 
vertex of the original cells, the flow variables at the new cell boundary centre are the simple 
averages of the four neighbouring cell centre values of the original cells in case of 
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where   is an arbitrary flow variable, 'j,i  is the area of the shifted cell i,j, k runs through 
the number of the boundaries of the shifted cell till the bN , which is the number of maximal 
boundary, kx'n  and ky'n  is the x and y components of the cell boundary normal unit vector 
of the interface k, k,ij  is the value of the flow variable at the given interface centre of the 
shifted cell i,j and k,ij'  is the length of the face k. At the boundaries of the computational 
domain, a series of the ghost cells are applied and filled with values, so no special treatment 
is necessary to determine the derivatives. The geometry of the ghost cells are extrapolated 
from the last two cells. 

The integral of the source term in (21) are approximated as follows: 
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where    j,iUS  is an average value over the cell j,i" . Derivatives in the expressions are 
determined at the cell centres by using similar treatment as in case of diffusive term 
discretization.  

A widely used class of non linear multi-stage time integration techniques is given by the 
Runge-Kutta (RK) schemes. They are usually designed to obtain higher order temporal 
accuracy with minimum computational storage and the large stability range with the 
specific coefficients, even though it has been often used for steady state calculations as 
herein. The 4 stages RK method (RK4) is used to solve the time derivatives of the 
conservative variables in (26) with j,iUU   and j,i  for simplicity in each cell given  
by: 
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where 411  , 312  , 213  , 14   for the NS equations and 811  , 30602 . , 
58703 .  and 14   for the Euler equations are the coefficients of RK4, n represents the 

parameters at previous time step and n+1 at the next time step over a cell. The RK4 index is 
denoted by k and it runs from 1 to m with its maximum value of 4 in step 2 (35). Due to the 
steady state assumption, the time accuracy is not required hence, the RK4 coefficients are 
applied to have high stability and smoothing properties of the upwind scheme with MUSCL 
reconstruction. In order to optimize the time step behind the stability criterion, the local time 
stepping has been used for every cells j,i  as follows (Lefebvre, Arts, 1997): 
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where j,i  is the area of the cell i,j,   is the Courant number, k,ij  is the length of the cell 
boundary k  of j,i , nV  is the cell face normal velocity, bN  is the number of cell boundaries 
and c is the sound speed. 

3. Validation of the flow solver 
The goal of the validation – in case of any calculation methods – is to provide information 
about the correct mathematical and physical operation of the simulation by means of 
comparing the results with real tests or other benchmarks especially referring to the 
application of flow physics under investigation. 

3.1 Validation of the viscous flow solver 

In the following sections, the numerical results are presented for transonic channel over 
circular bump and compression corner for validating frictional and heat conducted flow 
simulations. 
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The first test case is transonic channel over circular bump, in which the flow enters into the 
channel with Mach number 0.85 and a shockwave develops over the circular bump. The bump 
has 4.2 % maximum thickness. At the inlet, the total pressure, total temperature, and flow 
angles are specified as physical boundary conditions. The static pressure corresponds to the 
isentropic flow at Mach=0.85 is imposed at the outlet. Under these conditions the flow 
expands in the rear part of the bump up to a Mach number 1.2 and ends up into a week shock 
wave to allow the recovery of the free stream conditions. The results of FLUENT and own 
code are compared to each other at the same solver settings however, the k-ε turbulence model 
was used in the commercial program. The Mach number iso-lines show reasonable deflections 
(see Fig. 2.), the present method predicts the shockwave earlier. 

 
Fig. 2. Mach number distribution in transonic channel over circular bump test case (dotted 
line: FLUENT, continuous line: recent solver) 

The shape of the geometry and the thickness of the boundary layer have a dominant effect 
on the shock wave evolution. Different numerical methods and turbulence models have 
different inherent mechanism to model boundary layer and shock wave–boundary layer 
interaction. The one of the criticisms against the k-ε turbulence is the lack of sensitivity to 
adverse pressure-gradients (see Subchapter 1.2.). The boundary layer seems to be thinner at 
the downstream of the circular bump in case of the commercial code compared to the own 
one. Hence, the shockwave triggered earlier in case of the present model. However, the 
differences between the two approaches in the entire computational domain are less than   

 
Fig. 3. Configuration and Schlieren photograph about compression corner at inlet Mach 
number 3 and with slope 18 ° (left side) (Settles, 1975) and Mach number distribution by the 
recent solver at inlet Mach number 2.85 and with slope 20 ° (right side) 
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where j,i  is the area of the cell i,j,   is the Courant number, k,ij  is the length of the cell 
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simulations. 
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5 % hence, based on the strongly validated commercial code, the accuracy of the in-house 
software can be accepted for this benchmark. 

In the second test case a ramp with 20 degrees slope angle is located in a flow channel. The 
air enters into a channel with Mach number 2.85. Before the ramp an oblique shockwave 
develops. The geometry and Mach number distribution can be found in Fig. 3. The 
comparison of the measured and simulated results shows similar shock wave pattern, 
however they can not be compared with each other directly due to slight difference between 
the inlet conditions and slope values. The reason why the presented condition is used in the 
simulation is the available measured quantitative parameters found in the Gerolymos’ 
publication (Gerolymos et al., 2003). The locations and directions of the coordinate systems, 
along which velocity distributions are measured is shown in Fig. 4.  

 
Fig. 4. Locations and directions of the coordinate systems, along which the velocity 
distributions of the measurements are compared with the results of simulation 

yEXP is the distance from the wall. The velocity profiles of the recent viscous flow solver with 
k-ω model and the experiments are found in Figs. 5-7. for comparison. The velocity profiles 
in Fig. 5 and 6. are even quantitatively agreed with each other, but the results shown in Fig. 
7. are slightly far from the experiments. The reason of that can be caused by the fact, that the 
error, which is generated by the velocity profile at the beginning of the computational 
domain is growing along with the flow and so the small difference becomes larger at 
downstream. The other problem can be the free-stream sensitivity of the k-ω model 
described in Subchapter 1.2. The solution could be improved by further adjusting boundary 
layer at upstream and the ω.  
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Fig. 5. Validation of the viscous flow solver. Velocity profiles at s = -0.0508 m (see Fig. 4.) 
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Fig. 6. Validation of the viscous flow solver. Velocity profiles at s = 0 m (see Fig. 4.) 
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Fig. 7. Validation of the viscous flow solver. Velocity profiles at s = 0.09525 m (see Fig. 4.) 

3.2 Validation of the inviscid flow solver 

The compressible viscous flow solver presented in Chapter 2. requires relative high 
computational time due to the significant number of equations and fine mesh especially in 
the boundary layer. Hence, this approach can not be used economically for coupling with 
optimization methods in the explicit time marching manner. However, assuming a 
frictionless and convection dominated problems, the NS equations can be reduced to the 
Euler equations, which are the highest level approximation of inviscid flows. The Euler 
equations are valid for modelling compressible high speed flows outside of the boundary 
layer without separation. As most of the industrial process under the interest, as well as 
significant number of flow situations encountered in nature, are dominated by convective 
effects, and therefore, they are well approximated by the Euler equations as it will be seen in 
the validation also (Manna, 1992). Furthermore, the number of equations and the desired 
cell number are significantly reduced compared with NS based solver, hence it is more 
suitable for applying them in the optimization methods. 

Although the mathematical characteristics of the presented numerical method for the Euler 
equations are investigated in many articles (e.g. Barth et al., 2004), a measurement of the 
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Fig. 5. Validation of the viscous flow solver. Velocity profiles at s = -0.0508 m (see Fig. 4.) 
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Fig. 7. Validation of the viscous flow solver. Velocity profiles at s = 0.09525 m (see Fig. 4.) 

3.2 Validation of the inviscid flow solver 

The compressible viscous flow solver presented in Chapter 2. requires relative high 
computational time due to the significant number of equations and fine mesh especially in 
the boundary layer. Hence, this approach can not be used economically for coupling with 
optimization methods in the explicit time marching manner. However, assuming a 
frictionless and convection dominated problems, the NS equations can be reduced to the 
Euler equations, which are the highest level approximation of inviscid flows. The Euler 
equations are valid for modelling compressible high speed flows outside of the boundary 
layer without separation. As most of the industrial process under the interest, as well as 
significant number of flow situations encountered in nature, are dominated by convective 
effects, and therefore, they are well approximated by the Euler equations as it will be seen in 
the validation also (Manna, 1992). Furthermore, the number of equations and the desired 
cell number are significantly reduced compared with NS based solver, hence it is more 
suitable for applying them in the optimization methods. 

Although the mathematical characteristics of the presented numerical method for the Euler 
equations are investigated in many articles (e.g. Barth et al., 2004), a measurement of the 
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wing profile NACA 65-410 has been used in the first case to check the accuracy of the 
calculation. The measurements are performed by Abbott et al. in 1945 and they include the 
experimental analysis of the lift, drag, pitching moment, etc. of the NACA 6 series airfoils. 

 

            
 

Fig. 8. Mach number and pressure distribution over the profile NACA 65-410 at α=4 degrees 
angle of attack 

Most of the data on airfoil section characteristics were obtained in the Langley two-
dimensional low-turbulence pressure tunnel with a rectangular test section (0.9144 meters 
wide and 2.286 meters high), in which usually 0.6 meters chord models were tested. The test 
models completely span the width of the tunnel has a maximum speed of about 70 m/s. 
More information about the experiments is found in (Abbott, 1945). The Mach number and 
pressure distribution around the profile is found in Fig. 8. as a result of the computation at 
α=4 degrees angle of attack (angle between the up stream flow and chord). The boundary 
conditions are the following: inlet total pressure: ptot,in=112800 [Pa]; inlet total temperature: 
Ttot,in=293.15 [K]; outlet static pressure: pstat,out=101325 [Pa]. The mesh size is 87×120. The 
result of the analysis and measurements are compared with each other and they are shown 
in Fig. 9. in the plot of the lift coefficient in the function of angle of attack. The results of the 
analysis are accepted in engineering point of view, the overall deviation is less then 5 % at 
the investigated range. However, it must be considered that the results depend on the mesh 
resolution and the mesh sensitivity analyses are indispensable to have. 

The second test case for the validation is a compressor cascade analysis2 based on the 
technical report by (Emery et al., 1958). The cascade has been constructed by using NACA 
65-410 profile also with: 

 
g
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  (37) 

                                                 
2 The original and full version of the present investigation is found in (Veress et al., 2010) 
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Fig. 9. Lift coefficient in the function of angle of attack at the profile NACA 65-410 

where 5.1  is the solidity, cmc 7.12  is the chord and the g  is the tangential spacing. The 
1  and   represents the angle between flow direction and the rotation of axis and the flow 

direction and chord (angle of attack) respectively in following. The boundary conditions are 
set to provide the same Reynolds number as in the experiment. The total inlet pressure is 
ptot,in=101750 [Pa], the total inlet temperature is Ttot,in=293.15 [K] and the static outlet pressure is 
pstat,out=101325 [Pa] over the H-type mesh (110×60). The pressure coefficients (38) along the 
profile are considered in the validation, where totp  is the upstream total pressure, 1q  and 

,1statp  are the dynamic and static pressure respectively at wall surface position 1. 
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  (38) 

The measured parameters and the results of the simulation are compared with each other 
and the quantitative parameters of the pressure coefficients are shown in Fig. 10. The 
investigated variables of the calculation, at different angle of attack, are in a good correlation 
with the measurements (Emery et al., 1958). The difference between them is under the limit 
of the acceptance, the overall deviation is less then 8 %. The Cp values show higher 
dispersions near to the leading edge due to the geometrical inaccuracy (sharp edge). 

Although the mathematical aspects of the applied methods as consistency, stability and 
convergence characteristics are strongly investigated and published in many articles (e.g. 
Barth et al., 2004), the validation of the Euler based CFD solver was completed in the present 
subchapter. The results of the analysis and measurements are compared with each other, for 
a 2D NACA 65-410 wing profile and its low speed cascade. The resembling shows 
acceptable agreement in engineering point of view. The average deviation between the real 
tests and the analyses is less then 8 % in both investigated cases, the accuracy of the 
numerical tool is reasonable, it can be used for further applications.  



 
Finite Volume Method – Powerful Means of Engineering Design 

 

20

wing profile NACA 65-410 has been used in the first case to check the accuracy of the 
calculation. The measurements are performed by Abbott et al. in 1945 and they include the 
experimental analysis of the lift, drag, pitching moment, etc. of the NACA 6 series airfoils. 

 

            
 

Fig. 8. Mach number and pressure distribution over the profile NACA 65-410 at α=4 degrees 
angle of attack 

Most of the data on airfoil section characteristics were obtained in the Langley two-
dimensional low-turbulence pressure tunnel with a rectangular test section (0.9144 meters 
wide and 2.286 meters high), in which usually 0.6 meters chord models were tested. The test 
models completely span the width of the tunnel has a maximum speed of about 70 m/s. 
More information about the experiments is found in (Abbott, 1945). The Mach number and 
pressure distribution around the profile is found in Fig. 8. as a result of the computation at 
α=4 degrees angle of attack (angle between the up stream flow and chord). The boundary 
conditions are the following: inlet total pressure: ptot,in=112800 [Pa]; inlet total temperature: 
Ttot,in=293.15 [K]; outlet static pressure: pstat,out=101325 [Pa]. The mesh size is 87×120. The 
result of the analysis and measurements are compared with each other and they are shown 
in Fig. 9. in the plot of the lift coefficient in the function of angle of attack. The results of the 
analysis are accepted in engineering point of view, the overall deviation is less then 5 % at 
the investigated range. However, it must be considered that the results depend on the mesh 
resolution and the mesh sensitivity analyses are indispensable to have. 

The second test case for the validation is a compressor cascade analysis2 based on the 
technical report by (Emery et al., 1958). The cascade has been constructed by using NACA 
65-410 profile also with: 

 
g
c

  (37) 

                                                 
2 The original and full version of the present investigation is found in (Veress et al., 2010) 

 
Application of Finite Volume Method in Fluid Dynamics and Inverse Design Based Optimization 

 

21 

 

 
 

Fig. 9. Lift coefficient in the function of angle of attack at the profile NACA 65-410 

where 5.1  is the solidity, cmc 7.12  is the chord and the g  is the tangential spacing. The 
1  and   represents the angle between flow direction and the rotation of axis and the flow 

direction and chord (angle of attack) respectively in following. The boundary conditions are 
set to provide the same Reynolds number as in the experiment. The total inlet pressure is 
ptot,in=101750 [Pa], the total inlet temperature is Ttot,in=293.15 [K] and the static outlet pressure is 
pstat,out=101325 [Pa] over the H-type mesh (110×60). The pressure coefficients (38) along the 
profile are considered in the validation, where totp  is the upstream total pressure, 1q  and 

,1statp  are the dynamic and static pressure respectively at wall surface position 1. 

 ,1

1
C tot stat

P
p p

q


  (38) 

The measured parameters and the results of the simulation are compared with each other 
and the quantitative parameters of the pressure coefficients are shown in Fig. 10. The 
investigated variables of the calculation, at different angle of attack, are in a good correlation 
with the measurements (Emery et al., 1958). The difference between them is under the limit 
of the acceptance, the overall deviation is less then 8 %. The Cp values show higher 
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convergence characteristics are strongly investigated and published in many articles (e.g. 
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subchapter. The results of the analysis and measurements are compared with each other, for 
a 2D NACA 65-410 wing profile and its low speed cascade. The resembling shows 
acceptable agreement in engineering point of view. The average deviation between the real 
tests and the analyses is less then 8 % in both investigated cases, the accuracy of the 
numerical tool is reasonable, it can be used for further applications.  
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Fig. 10. Pressure coefficient distribution over the NACA 65-410 compressor cascade profile 
at different  (angle of attack) =30o, Re=2.45E5, and vinf, inlet=29 m/s The experimental 
data are from (Emery et al., 1958) 
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4. Finite volume method based optimization and inverse design for 
aeronautical applications 
Today, beside the developments of the central core of the fluid dynamics solvers, the 
different optimization techniques, related with CFD, are also under intensive research. In 
case of direct optimization techniques, an attempt has been made to find the optimal 
solution. They typically utilize some sort of search technique (e.g. gradient-based 
optimizer), stochastic based algorithms (e.g. evolutionary strategies, genetic algorithms), 
artificial neural networks or some other optimization methods. These procedures can be 
computationally expensive because several flow solutions must be calculated to specify the 
direction of deepest descent, fitness of individuals in the population, etc. in order to 
determine the shape changes (Lane, 2010). Furthermore, the required number of flow 
solutions increases dramatically with the number of design variables. 

In case of a specific set of the inverse design-type methods, the geometry modification is based 
on the prescribed set of the pre-defined variables at the wall by simple, fast and robust 
algorithms, which makes them especially attractive amongst other optimization techniques 
(Lane, 2010). The wall modification can be completed within much less flow solutions for 
inverse design techniques than for direct optimization methods. Hence, the inverse design 
methods typically being much more computationally efficient and they are very innovative to 
be used in practice. The main drawback of inverse design methods is that the designer should 
create target (optimum in a specific sense) pressure or velocity distributions that should 
correspond to the design goals and meet the required aerodynamic characteristics. However, it 
can be difficult to specify the expected pressure or velocity distribution that satisfies all design 
goals. Also, one cannot guarantee that an arbitrarily prescribed pressure/velocity distribution 
will provide mechanically correct surfaces or bodies (airfoils without trailing edge open or 
cross over for example). Hence, the one of the main goals of the following subchapters is to 
provide solutions for the above mention complaints. 

The calculation process of the developed iterative type inverse design method is shown in 
Fig. 11. The procedure, first of all, requires an initial geometry and a required pressure 
distribution (preq) along the wall to be modified. The prescribed distribution can be the goal 
function of an optimization method or it can come from the industrial experiences and/or 
theory. The iterative cycle starts with the direct solution of the inviscid Euler solver. 
Completing the convergence criteria, if the target conditions are not reached, a new 
(opening) boundary condition is applied at the solid boundary to be redesigned or 
optimized. The required pressure distribution (preq) is imposed at the solid wall boundary, 
which is become locally opening as inlet or outlet, depends upon the evolved pressure 
differences between the boundary and computational domain. The outcome of this analysis 
is a velocity distribution along the wall, which is not necessarily parallel with it. The final 
step of the cycle is the wall modification. The wall becomes parallel with the local velocity 
vector corresponds to a new streamline of the flow field. The mentioned steps are repeated 
until the target distribution is reached by the direct analysis and so the new geometry is 
available (Leonard & Van den Braembussche, 1990).  

All the contributions of the above presented procedure has been described in Chapter 2. 
except for the wall modification algorithm and the determination of the required pressure 
distribution (preq in Fig. 11.), which are the topic of the following paragraph and subchapter 
respectively. 
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Fig. 10. Pressure coefficient distribution over the NACA 65-410 compressor cascade profile 
at different  (angle of attack) =30o, Re=2.45E5, and vinf, inlet=29 m/s The experimental 
data are from (Emery et al., 1958) 
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determine the shape changes (Lane, 2010). Furthermore, the required number of flow 
solutions increases dramatically with the number of design variables. 
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cross over for example). Hence, the one of the main goals of the following subchapters is to 
provide solutions for the above mention complaints. 

The calculation process of the developed iterative type inverse design method is shown in 
Fig. 11. The procedure, first of all, requires an initial geometry and a required pressure 
distribution (preq) along the wall to be modified. The prescribed distribution can be the goal 
function of an optimization method or it can come from the industrial experiences and/or 
theory. The iterative cycle starts with the direct solution of the inviscid Euler solver. 
Completing the convergence criteria, if the target conditions are not reached, a new 
(opening) boundary condition is applied at the solid boundary to be redesigned or 
optimized. The required pressure distribution (preq) is imposed at the solid wall boundary, 
which is become locally opening as inlet or outlet, depends upon the evolved pressure 
differences between the boundary and computational domain. The outcome of this analysis 
is a velocity distribution along the wall, which is not necessarily parallel with it. The final 
step of the cycle is the wall modification. The wall becomes parallel with the local velocity 
vector corresponds to a new streamline of the flow field. The mentioned steps are repeated 
until the target distribution is reached by the direct analysis and so the new geometry is 
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All the contributions of the above presented procedure has been described in Chapter 2. 
except for the wall modification algorithm and the determination of the required pressure 
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Fig. 11. Flowchart of the computational procedure of the iterative inverse design calculation 

While the incoming and out coming velocity distribution (see Vn in Fig. 11.) is given at the 
solid wall, based on the inverse mode of the inviscid solver (see Subchapter 2.2 at opening 
wall boundary), the last step of the iterative design cycle is the modification of the geometry. 
The new position of the solid boundary coordinates is calculated by setting the wall to be 
parallel with the local velocity vector of the cell centre: 
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where u  and v  are the Cartesian component of the velocity vector at the wall. The 
geometry modification starts from the leading edge or inlet stagnation point till the trailing 
edge or the outlet stagnation point and completed in vertical directions (see Fig. 12.). 

 
Fig. 12. Schematic view of the wall modification process based on the local velocity vector  
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In the following two subchapters, two case studies of the application of the inverse design 
method have been presented. In the first one, the lift force is a goal function of an 
optimization procedure over the NACA 65-410 profile in external flow, meanwhile the 
increased static pressure ratio is the target condition of redesigning NACA 65-410 cascade 
geometry in the second case. The pressure distribution should be as low as possible over the 
solid surface of the suction side at given operational conditions for maximal profile loading. 
However, in order to reach the downstream conditions, the pressure must increase after the 
location of the maximum velocity. Stratford’s limiting flow theory is used and coupled with 
the SQP (Sequential Quadratic Programming) nonlinear constraint optimization to provide 
the target pressure distribution represents the maximum lift force close but certain distance 
far from the separation in case of external flow. Stratford’s limiting flow theory is 
implemented also in case of redesigning cascade geometry. The presented inverse design 
method is used to complete wall surface modification till the previously defined target 
pressure distributions are reached by means of the corresponding sequence of the inverse, 
wall modification and direct algorithms. The Euler equations are used for modelling basic 
physics for both cases. The standard cell centred finite volume method has been applied 
with Roe’s approximated Riemann solver, MUSCL approach and Mulder limiter, which are 
described in Chapter 2. The validation of the Euler solver is found in Subchapter 3.2.  

4.1 Airfoil optimization for maximal lift force by means of inviscid inverse design 
method3 

It has been pointed out in the introduction of the Chapter 4. that the inverse design methods 
require optimal pressure or velocity distributions to determine the adherent geometry. In 
order to maximise the lift force of the suction side of a profile at given and constant 
operational (boundary) conditions, the pressure distribution should be minimized. 
However, the adverse pressure gradient is appeared after the location of the maximum 
velocity (and minimum pressure) in order to recover downstream conditions. The adverse 
pressure gradient till the trailing edge should have limited in each discretized points to be 
just below the condition of causing separation. The maximum area bounded by the suction 
and the pressure side distributions in conjunction with the mentioned limited values of 
pressure gradients will provide the optimum solution as a target distribution to be specified 
for the inverse design method. 

There are several existing methods for predicting separation as Goldschmied, Stratford, 
Head, and Cebeci-Smith for example (Smith, 1975). The accuracy these methods were 
examined several times. One of the output of these investigation shows that the operation of 
Goldschmied's method is unreliable. The other three are in reasonable agreement and 
Stratford's method tended to predict separation slightly early. The Cebeci-Smith method is 
appeared to be best and the Head method is a strong second one (Smith, 1975). Due to the 
good accuracy, simple expressions and conservative characteristics for predicting 
separation, Stratford’s method has been used in followings (Veress et al., 2011). 

Stratford has derived an empirical formula for predicting the point of separation in an 
arbitrary decelerating flow at the order of Re=10E6 (Stratford, 1959), 
                                                 
3 The original and full version of the subchapter is found in (Veress et al., 2011). 
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appeared to be best and the Head method is a strong second one (Smith, 1975). Due to the 
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3 The original and full version of the subchapter is found in (Veress et al., 2011). 
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where the canonical pressure distribution is 
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and if 022 dxpd  then S = 0.39 or if 022 dxpd  then S =0.35. Additionally, 7/4pC . The 
flows under investigations consist first of a flat-plate flow. Hence, x is distance measured 
from the leading edge of the plate and xu0Re  . If the flows begin the pressure rise at a 
point 0x  (it is the position of minimum pressure, 0p  and maximum velocity, 0u ), left-hand 
side of eq. (40) starts from a zero value. The left-hand side then grows. When it reaches the 
limiting value of S, separation is said to occur. If S is held at its limiting value of 0.39 for 

022 dxpd  eq. (40) amounts to an ordinary differential equation for )(xCp . It is evident 
from eq. (40) that the equation describes a flow that is ready everywhere to separate. 
Stratford presents the following solutions (Stratford, 1959),  

        121Re435.0645.0 251
0

51
0  nnCforxxC p

n
p  (42) 

and 

       121 21
0




 nnCfor
bxx

aC pp  (43) 

 

 
Fig. 13. Stratford limiting flows at two values of unit Reynolds number (Smith, 1975) 

 

eq. (42) 

eq. (43) 

 
Application of Finite Volume Method in Fluid Dynamics and Inverse Design Based Optimization 

 

27 

In that two-part solution, 0x  is the start of pressure rise, 000Re xu , x is the distance 
measured from the very start of the flow, which begins as flat-plate, turbulent flow. The 
number n is a constant that Stratford finds to be about 6. The quantities a and b are arbitrary 
constants used in matching values and slopes in the two equations at the joining point, 

   12  nnCp . Of course, eq. (42) describes the beginning of the flow and eq. (43) the 
final part. The flow is an equilibrium flow that always has the same margin, if any, against 
separation. Two families of such flows have been computed; they are shown in Fig. 13. The 
features of the presented diagram, together with eq. (42) and (43) are found in (Smith, 1975). 

The method presented above is included in determining the pressure distribution at 
maximum lift force and at the limit of separation on the suction side for given far field 
conditions: 
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where p is the static pressure at the given wall location and the other primitive variables 
correspond to free stream condition denoted by ∞ (downstream conditions are used in case of 
cascade design). The connection between  xCp  and  xCp  (pressure coefficient) is given by: 
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The objective function is to 

 minimize 
  xCp

1  (46) 

 subject to 0 TE
init

TE
opt pp  (47) 

The reason of the constraint to be specified at the presented way is to fix trailing edge (TE) 
condition of Stratford’s method and to minimize the disturbances of the optimal pressure 
distribution of the computational domain respect to the initial flow field. The posterior 
numerical test shows that the latter condition is not required, it can differ from zero. 

The optimization procedure is divided by two sub steps. In the first sub step the physical 
connections between different parameters are described by Stratford’s criteria to evaluate 
limiting pressure distribution. The pressure coefficient at the minimum pressure (p0) is given 
by: 
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where the canonical pressure distribution is 
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and if 022 dxpd  then S = 0.39 or if 022 dxpd  then S =0.35. Additionally, 7/4pC . The 
flows under investigations consist first of a flat-plate flow. Hence, x is distance measured 
from the leading edge of the plate and xu0Re  . If the flows begin the pressure rise at a 
point 0x  (it is the position of minimum pressure, 0p  and maximum velocity, 0u ), left-hand 
side of eq. (40) starts from a zero value. The left-hand side then grows. When it reaches the 
limiting value of S, separation is said to occur. If S is held at its limiting value of 0.39 for 

022 dxpd  eq. (40) amounts to an ordinary differential equation for )(xCp . It is evident 
from eq. (40) that the equation describes a flow that is ready everywhere to separate. 
Stratford presents the following solutions (Stratford, 1959),  
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Fig. 13. Stratford limiting flows at two values of unit Reynolds number (Smith, 1975) 
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In that two-part solution, 0x  is the start of pressure rise, 000Re xu , x is the distance 
measured from the very start of the flow, which begins as flat-plate, turbulent flow. The 
number n is a constant that Stratford finds to be about 6. The quantities a and b are arbitrary 
constants used in matching values and slopes in the two equations at the joining point, 
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The objective function is to 
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distribution of the computational domain respect to the initial flow field. The posterior 
numerical test shows that the latter condition is not required, it can differ from zero. 

The optimization procedure is divided by two sub steps. In the first sub step the physical 
connections between different parameters are described by Stratford’s criteria to evaluate 
limiting pressure distribution. The pressure coefficient at the minimum pressure (p0) is given 
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where 0p  and maximum velocity 0u  is supposed to be constant starting from the leading 
edge of the suction side till the starting of the positive pressure gradient ( 0x ). The Mach 
numbers 0M  at these points are calculated by: 
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The 0T , 0u  and 0  are obtained by the energy equation of the isentropic flow and ideal gas 
law: 
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The total quantities correspond to the given operational (flight) or inlet boundary conditions. 

A general way of determining pressure distribution starts with specifying a possible 0p . All 
parameter belongs to 0p  can be calculated by eqs. (48)-(52). The next step is to find location 

0x , which gives back the required trailing edge static pressure by using Stratford’s equations 
(42) and (43) over x. Hence, the location of starting flow deceleration ( 0x ) and the Stratford’s 
limiting pressure distribution till the required trailing edge pressure is the output of the first 
sub step of the optimization procedure. There are infinite possible pressure distribution 
existing of the presented method hence, the second sub step of the optimization procedure is 
the constraint optimization in order to determine the corresponding flow parameters and 
location belongs to the minimum pressure and maximum velocity point on the suction 
surface, which provides the maximum area bounded by the pressure distribution of the 
suction and pressure side of the profile. 0p , 0T , 0u , 0 , 0x  and )(xp  (by Stratford’s criteria) 
parameters will be modified in the second sub step to satisfy (46) and (47).  

The pressure side distribution is also modified by means of constraint optimization to 
maximize the area under the function restricted to less than or equal to the maximum 
pressure gradient or higher than or equal to the minimum pressure gradient respect to the 
original distribution. 

NACA 65-410 profile has been used to provide initial geometry and flow field for the 
optimization. The boundary conditions are the followings: inlet total pressure: ptot,in=112800 
[Pa]; inlet total temperature: Ttot,in=293.15 [K]; outlet static pressure: pstat,out=101325 [Pa] over 
the mesh size of 87×120. The pressure distributions of the given geometry are shown in Fig. 
14. and they are noted as init (initial). The inverse design program modifies initial geometry 
till the result pressure distribution over the geometry gives back exactly the target 
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(optimum) one. The optimum pressure distribution belongs to the maximum area of the closed 
distribution of the pressure and suction side at the limit of separation in case of adverse 
pressure gradient flow conditions on the suction side. However, several points near to the 
leading edge of the suction side are modified to make the extremely high pressure gradient 
smoother. Moreover, an arbitrary (optimal) target pressure distribution often causes non-
realistic geometry as negative thickness, trailing edge opening or cross over. Based on several 
theoretical investigation and computational tests, it can be noticed, that the expected pressure 
distribution can not be arbitrary in case of subsonic flow due to the information propagation 
into the upstream (leading edge) direction along the streamline bounded by the wall. If the 
required pressure is differ from the initial one at the certain representative part of the near wall 
region, the flow can be retarded or sucked depends on the local conditions. This effect has an 
influence on the flow evolution starting from the leading edge and the pressure should be 
redistributed by considering higher or lower local kinetic energy along the stream line 
especially at the first couple mesh points of the leading edge. 

 
Fig. 14. Pressure distribution of the initial (init), optimum (target) and result (of the inverse 
design based optimization procedure) cases (ps: pressure side and ss: suction side) 

The modified distributions have been imposed in the inverse design procedure to determine 
the geometry, which provides the optimal conditions. The inverse design method was 
converged after 10 iteration cycles of the inverse, wall modification and direct modes. The 
normal velocity distribution across the solid wall becomes near to zero at the last inverse 
subroutine, which represents that there is no need for any further steps, the pressure 
gradient is infinitesimally small (no flow) across the solid boundary. The corresponding 
results of the optimization procedure are found in Fig. 14. The target and optimized (result) 
pressure distribution are compared with each other and the deviation between them is 
negligible. The optimized geometry with Mach number and pressure distribution is shown 
in Fig. 15. The improvements are straightforward; the lower pressures at the suction side 
provide higher lift force in case of the optimum geometry. Further quantitative results are 
found in Fig. 16. The optimization was completed at zero angle of attack. However, the off-
design conditions show also the same order of improvements as the optimization at design 
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where 0p  and maximum velocity 0u  is supposed to be constant starting from the leading 
edge of the suction side till the starting of the positive pressure gradient ( 0x ). The Mach 
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point. The lift force coefficient is increased significantly around by 100 % in the investigated 
range of the angle of attack. The effect of drag force should be analyzed and considered with 
the aim of including it in the optimization process. 

         
Fig. 15. Mach number and pressure distribution [Pa] of the result case (result of the inverse 
design based optimization procedure) 

 
Fig. 16. Lift coefficient distribution in the function of angle of attack (the optimization has 
been completed at angle of attack 0) 

4.2 Application of the inverse design based semi-optimization in cascade flows 

Compressors and turbines are widely used in the vehicle engines as gas turbines for shaft 
power and jet engines. The axial compressors and turbines can be simplified to cascade 
geometry by extracting a cylindrical cut surface from them and laying out in 2D. The basic 
characteristics of the elementary flow field can be analysed and studied by this way.  

NACA 65-410 profile has been used also in followings. The validation of the Euler solver for 
the cascade geometry is found in Subchapter 3.2. 
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The main goal of the first part of the subchapter is to show the outcome of the profile with 
maximum blade loading developed by the inverse design method coupling with SQP and 
Stratford’s limiting flow theory (see Subchapter 4.1.). The result of the optimization was 
analyzed by the present Euler solver and ANSYS CFX. The same computational procedure 
has been used in both software except for the mesh at viscous mode of the CFX. y+ 
determines the first cell size next to the wall and has an influence on the cell number, which 
results 71X23 2D volumes. Concerning the boundary conditions, the following physical 
parameters were used: the inlet total pressure is ptot,in= 107853 [Pa], the inlet total 
temperature is Ttot,in= 298.42 [K], the inlet flow angle is 30° and the outlet static pressure is 
pstat,out=101325 [Pa]. 

The CFX was convergent after 110 iterations. The quantitative results of the analyses are 
shown in Fig. 17. The target and the result pressure distributions of the inviscid inverse 
design based optimization are presented over the final geometry beside the inviscid (Ansys-
ss and Ansys-ps) and viscous (Ansys-ss-viscous and Ansys-ps-viscous) results of the CFX 
(ss: suction side and ps: pressure side). The average difference between the three approaches 
is less than 8 %, which is acceptable in engineering point of view. The main deviation is at 
the leading edge stagnation point; the static pressure in the Euler solver is higher compared 
with CFX. This unphysical feature is caused by the linear extrapolation of determining static 
pressure at the ghost cell of the solid wall boundaries without averaging procedure. 
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Fig. 17. Pressure distribution of the redesigned blade in case of recent Euler solver and the 
inviscid and viscous analysis of ANSYS CFX (ss: suction side and ps: pressure side) 

It can be observed in Fig. 17 that the outlet static pressure is higher than the inlet one, so the 
cascade is working in a compressor mode, however, the static pressure ratio is negligible 
due to the unexpected thick profile, which causes chocking.  
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cascade is working in a compressor mode, however, the static pressure ratio is negligible 
due to the unexpected thick profile, which causes chocking.  
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Of course, the lower outlet static pressure – or higher mass flow – can improve design 
specification by means of increasing static pressure rise over the cascade due to the energy 
conversion. Moreover, the higher blade loading can also increase the static pressure ratio, 
which is shown in the second part of the present subchapter. The blade geometry variants in 
the function of the blade loading at the same mesh, solver settings, initial and boundary 
conditions are found in Fig. 18. with the corresponding pressure coefficients and 
distributions, which are based on the Stratford’s limiting flow theory. The pressure side 
pressure distribution was the same at the three investigated cases. The physical boundary 
conditions are the followings: the inlet total pressure is ptot,in= 107853.4 [Pa], the inlet total 
temperature is Ttot,in= 298.4267 [K], the inlet flow angle is 30° and the outlet static pressure is 
pstat,out= 83325 [Pa]. Although the static pressure ratio is increased from 1.034 to 1.14 
proportionally with blade loading and the absolute value of the pressure coefficient, further 
numerical and experimental investigations are indispensable to have for well established 
conclusions in the field of cascade optimization.  

 

   

Fig. 18. Blade geometries (left side) at different Stratford’s based pressure distributions 
(blade loadings) (right side) with the corresponding minimum pressure coefficients (ss: 
suction side and ps: pressure side) 
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1. Introduction

Balance laws arise from many areas of engineering practice specifically from the fluid
mechanics. Many numerical methods for the solution of these balanced laws were
developed in recent decades. The numerical methods are based on two views: solving
hyperbolic PDE with a nonzero source term (the obvious description of the central and
central-upwind schemes; (Kurganov & Levy, 2002; LeVeque, 2004)) or solving the augmented
quasilinear nonconservative formulation (Gosse, 2001; Le Floch & Tzavaras, 1999; Parès, 2006).
Furthermore, the methods can be interpreted using flux-difference splitting (or flux-vector
splitting), or by selecting adaptive intervals and the transformation to the semidiscrete
form (for example (Kurganov & Petrova, 2000)). We prefer the augmented quasilinear
nonconservative formulation solved by the flux-difference splitting in our text. We try to
formulate the methods in the most general form. The range of this text does not give the
complete overview of currently used methods.

2. Mathematical models

In this section we describe the specific mathematical models based on hyperbolic balanced
laws. There are many models that describe fluid flow phenomena but we are interested in the
two type of them: models described open channel flow and urethra flow.

2.1 Shallow water equations

We are interested in solving the problem related to the fluid flow through the channel with the
general cross-section area described by

at + qx = 0, (1)

qt +

(
q2

a
+ gI1

)

x
= −gabx + gI2,

where a = a(x, t) is the unknown cross-section area, q = q(x, t) is the unknown discharge,
b = b(x) is given function of elevation of the bottom, g is the gravitational constant and

I1 =
∫ h(x,t)

0
[h(x, t)− η]σ(x, η)dη, (2)

  

Numerical Schemes for Hyperbolic Balance 
Laws – Applications to Fluid Flow Problems 

Marek Brandner, Ji í Egermaier and Hana Kopincová 
The University of West Bohemia 

Czech Republic 

2



 
Finite Volume Method – Powerful Means of Engineering Design 

 

34

Munz, C.-D.; Roller, S.; Klein, R. & Geratz, K. J. (2003). The extension of incompressible flow 
solvers to the weakly compressible regime, Computers & Fluids, Vol. 32, No 2, pp. 173-
196 

Pope, S. B. (2000). Turbulent Flows, Cambridge University Press, ISBN 978-0521598866, 
United Kingdom 

Roe, P. L. (1981). Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes, 
Journal of Computational Physics, Vol. 43 pp. 357-372 

Settles, G. (1975). The shadowgram of Mach 3 airflow over an 18 degree compression corner, 
http://www.efluids.com/efluids/gallery/gallery_pages/18degramp.htm, Gas 
Dynamics Lab, Penn State University (PHD Thesis, Princeton, 1975), USA 

Smith, A. M. O. (1975), High-Lift Aerodynamics, Journal of Aircraft, Vol. 12 No. 6, pp. 501-530, 
USA 

Stein, E.; Borst, R. & Hughes, T. (2004). Finite volume methods: foundation and analysis, 
http://weberknecht.uni-muenster.de/num/publications/2004/BO04a/finvol_ 
script.pdf, Edited by John Wiley & Sons, Ltd., USA 

Stratford, B. S. (1959), The Prediction of Separation of the Turbulent Boundary Layer, Journal of 
Fluid Mechanics, Vol. 5. pp 1-16, USA 

Veress, Á.; Gallina, T. & Rohács, J. (2010). Fast and Robust Inverse Design Method for Internal 
and Cascade Flows, International Review of Aerospace Engineering (IREASE), ISSN 
1973-7459 Vol. 3 N. 1. pp. 41-50. 

Veress, Á.; Felföldi, A.; Gausz, T. & Palkovics, L. (2011). Coupled Problem of the Inverse Design 
and Constraint Optimization, Applied Mathematics and Computation, DOI: 
10.1016/j.amc.2011.08.110, Paper In Press, Corrected Proof. 

Wassgren, C. (2010). Notes on Fluid Mechanics and Gas Dynamics, lecture note, School of 
Mechanical Engineering, Purdue University, USA 

Wilcox, D. C. (1998, (1988)). Turbulence Modelling for CFD, DCW Industries Inc. Second 
edition, ISBN-10: 0963605151, ISBN-13: 978-0963605153, USA 

Yee, H. C. (1989). A class of high-resolution explicit and implicit shock-capturing methods, VKI 
lecture series 1989-04, March 6-10, 1989; NASA TM-101088, Feb. 1989, Belgium 

Zucrow, M. J. & Hoffman, J. D. (1976). Gas Dynamics Vol. 1, Wiley, ISBN 0-471-98440-X, USA 

1. Introduction

Balance laws arise from many areas of engineering practice specifically from the fluid
mechanics. Many numerical methods for the solution of these balanced laws were
developed in recent decades. The numerical methods are based on two views: solving
hyperbolic PDE with a nonzero source term (the obvious description of the central and
central-upwind schemes; (Kurganov & Levy, 2002; LeVeque, 2004)) or solving the augmented
quasilinear nonconservative formulation (Gosse, 2001; Le Floch & Tzavaras, 1999; Parès, 2006).
Furthermore, the methods can be interpreted using flux-difference splitting (or flux-vector
splitting), or by selecting adaptive intervals and the transformation to the semidiscrete
form (for example (Kurganov & Petrova, 2000)). We prefer the augmented quasilinear
nonconservative formulation solved by the flux-difference splitting in our text. We try to
formulate the methods in the most general form. The range of this text does not give the
complete overview of currently used methods.

2. Mathematical models

In this section we describe the specific mathematical models based on hyperbolic balanced
laws. There are many models that describe fluid flow phenomena but we are interested in the
two type of them: models described open channel flow and urethra flow.

2.1 Shallow water equations

We are interested in solving the problem related to the fluid flow through the channel with the
general cross-section area described by

at + qx = 0, (1)

qt +

(
q2

a
+ gI1

)

x
= −gabx + gI2,

where a = a(x, t) is the unknown cross-section area, q = q(x, t) is the unknown discharge,
b = b(x) is given function of elevation of the bottom, g is the gravitational constant and

I1 =
∫ h(x,t)

0
[h(x, t)− η]σ(x, η)dη, (2)

  

Numerical Schemes for Hyperbolic Balance 
Laws – Applications to Fluid Flow Problems 

Marek Brandner, Ji í Egermaier and Hana Kopincová 
The University of West Bohemia 

Czech Republic 

2



2 Will-be-set-by-IN-TECH

I2 =
� h(x,t)

0
(h(x, t)− η)

�
∂σ(x, η)

∂x

�
dη, (3)

here η is the depth integration variable, h(x, t) is the water depth and σ(x, η) is the width of
the cross-section at the depth η. The derivation can be found in e.g. (Cunge at al., 1980).

The first special case are the equations reflecting the fluid flow through the spatially varying
rectangular channel

at + qx = 0, (4)

qt +

�
q2

a
+

ga2

2l

�

x
=

ga2

2l2 lx − gabx,

with l = l(x) being the function describing the width of the channel, and second one the
system for the constant rectangular channel

ht + (hu)x = 0, (5)

(hu)t +

�
hu2 +

1
2

gh2
�

x
= −ghbx.

In the above equation, h(x, t) is the water depth and u(x, t) is the horizontal velocity. It also
possible to add some friction term to the system described above. For example, we can write

ht + (hv)x = 0,

(hv)t +

�
hv2 +

1
2

gh2
�

x
= −ghBx − gM2 hv|hv|

h7/3 , (6)

where M is Manning’s coefficient.

All of the presented systems can be written in the compact matrix form

qt + [f(q, x)]x = ψ(q, x), (7)

with q(x, t) being the vector of conserved quantities, f(q, x) the flux function and ψ(q, x) the
source term. This relation represents the balance laws.

It is possible to use any augmented formulation, which is suitable for rewriting the system to
the quasilinear homogeneous one. For example, we can obtain

ht + (hu)x = 0, (8)

(hu)t +

�
hu2 +

1
2

gh2
�

x
= −ghbx,

bt = 0,

i.e. ⎡
⎣

h
hv
b

⎤
⎦

t

+

⎡
⎣

0 1 0
−v2 + gh 2v −gh

0 0 0

⎤
⎦
⎡
⎣

h
hv
b

⎤
⎦

x

=

⎡
⎣

0
0
0

⎤
⎦ . (9)
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2.2 Urethra flow

We now briefly introduce a problem describing fluid flow through the elastic tube represented
by hyperbolic partial differential equations with the source term. In the case of the male
urethra, the system based on model in (Stergiopulos at al., 1993) has the following form

at + qx = 0,

qt +
(

q2

a + a2

2ρβ

)
x
= a

ρ

(
a0
β

)
x
+ a2

2ρβ2 βx − q2

4a2

√
π
a λ(Re), (10)

where a = a(x, t) is the unknown cross-section area, q = q(x, t) is the unknown flow rate
(we also denote v = v(x, t) as the fluid velocity, v =

q
a ), ρ is the fluid density, a0 = a0(x) is

the cross-section of the tube under no pressure, β = β(x, t) is the coefficient describing tube
compliance and λ(Re) is the Mooney-Darcy friction factor (λ(Re) = 64/Re for laminar flow).
Re is the Reynolds number defined by

Re =
ρq
μa

√
4a
π

, (11)

where μ is fluid viscosity. This model contains constitutive relation between the pressure and
the cross section of the tube

p =
a − a0

β
+ pe, (12)

where pe is surrounding pressure.

3. Conservative and nonconservative problems and numerical schemes

3.1 Conservative problems and numerical schemes

We consider the conservation law in the conservative form

qt + [f(q)]x = 0, x ∈ R, t ∈ (0, T), (13)

q(x, 0) = q0(x), x ∈ R,

The numerical scheme based on finite volume discretization in the conservation form can be
written as follows,

Qn+1
j = Qn

j −
Δt
Δx

(Fn
j+1/2 − Fn

j−1/2). (14)

We use also the semidiscrete version of (14)

∂Qj

∂t
= − 1

Δx
(Fj+1/2 − Fj−1/2). (15)

The relation (14) can be derived as the approximation of the integral conservation law at the

interval
〈

xj−1/2, xj+1/2

〉
from time level tn to tn+1

1
Δx

xj+1/2∫
xj−1/2

q(x, tn+1)dx = 1
Δx

xj+1/2∫
xj−1/2

q(x, tn)dx−

− 1
Δt

[
tn+1∫
tn

f(q(xj+1/2, t))dt −
tn+1∫
tn

f(q(xj−1/2, t))dt

]
.

(16)
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The previous relations lead to the following approximations of integral averages

Qn
j ≈ 1

Δx

∫ xj+1/2

xj−1/2

q(x, tn)dx,

Fn
j+1/2 ≈ 1

Δt

∫ tn+1

tn

f(q(xj+1/2, t))dt. (17)

Numerical fluxes Fn
j+1/2 are usually defined by the approximate solution of the Riemann

problem between states Qn
j+1 and Qn

j (this technique is called the flux difference splitting;
it will be described in the following parts) or by the Boltzmann approach (flux vector
splitting; it will be described later). In what follows, we use the notation Q+

j+1/2 and

Q−
j+1/2 for the reconstructed values of unknown function. Reconstructed values represent

the approximations of limit values at the points xj+1/2. The most common reconstructions
are based on the minmod function (see for example (Kurganov & Tadmor, 2000)) or ENO and
WENO techniques (Črnjarič-Zič at al., 2004).

If the exact solution of the problem has a compact support in the interval �0, T� then it is
possible to show, that the scheme (15) is conservative, i.e.

∞

∑
j=−∞

Qn+1
j =

∞

∑
j=−∞

Qn
j . (18)

The uniqueness of discontinuous solutions to the conservation laws is not guaranteed.
Therefore the additional conditions, based on physical considerations, are required to isolate
the physically relevant solution. The most common condition is called entropy condition. The
unique entropy satisfying weak solution q holds

[η(q)]t + [ϕ(q)]x ≤ 0, (19)

for the convex entropy functions η(q) and corresponding entropy fluxes ϕ(q) (for example see
(LeVeque, 2004)).

If the conservation law (13) is solved by the consistent method in conservation form (15) the
Lax-Wendroff theorem is valid (LeVeque, 2004): if the approximate function Q(x, t) converged
to the function q(x, t) for the Δx, Δt → 0, the function q(x, t) is the weak solution of the problem
(13).

Many theoretical results in the field of hyperbolic PDEs can be found in the literature. For
example, for scalar problems with the convex flux function, the convergence of the some
method to the entropy-satisfying weak solutions, is proven. It means that if the solution q� of
the problem

qt + [ f (q)]x = �qxx, x ∈ R, 0 < t < T, � > 0,
q(x, 0) = q0(x), x ∈ R. (20)

exists and the limit q∗ = lim
�→0+

q� exists too than q∗ is the entropy-satisfying weak solutions of

the problem (20).

It is possible to define the appropriate properties of the methods. For example, in the case
of scalar problem, TVD (Total Variation Diminishing) property, which ensures that the total
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variation of the solution is non-increasing, i.e.

∞

∑
j=−∞

|Qn+1
j+1 − Qn+1

j | ≤
∞

∑
j=−∞

|Qn
j+1 − Qn

j | (21)

for all time layers tn. This property is important for limitation of the oscillations in the solution.

3.2 Nonconservative problems

We consider the nonlinear hyperbolic problem in nonconservative form

qt + A(q)qx = 0, x ∈ R, t ∈ (0, T), (22)

q(x, 0) = q0(x), x ∈ R.

The numerical schemes for solving problems (22) can be written in fluctuation form

∂Qj

∂t
= − 1

Δx
[A−(Q−

j+1/2, Q+
j+1/2) + A(Q−

j+1/2, Q+
j−1/2) + A+(Q−

j−1/2, Q+
j−1/2)], (23)

where A±(Q−
j+1/2, Q+

j+1/2) are so called fluctuations. They can be defined by the sum of waves
moving to the right or to the left. The directions are dependent on the signs of the speeds of
these waves, which are related to the eigenvalues of matrix A(q).

When the problem (22) is derived from the conservation form (13), i.e. f�(q) = A(q) is the
Jacobi matrix of the system, fluctuations can be defined as follows

A(Q−
j+1/2, Q+

j−1/2) = f(Q−
j+1/2)− f(Q+

j−1/2),
A−(Q−

j+1/2, Q+
j+1/2) = F−

j+1/2 − f(Q−
j+1/2),

A+(Q−
j−1/2, Q+

j−1/2) = f(Q+
j−1/2)− F+

j−1/2.
(24)

4. Riemann problem

4.1 Riemann problem for conservative systems

The Riemann problem is the special problem based on finite volume discretization with the
discontinuous initial condition. In the nonlinear case it has the form

qt + [f(q)]x = 0, x ∈ R, t ∈ (0, T),

q(x, 0) =

{
Qn

j , x < xj+1/2,
Qn

j+1, x > xj+1/2.
(25)

We solve the transitions between two states, but this solution could not exists in general. These
transitions can be rarefaction waves, shock waves or contact discontinuities. Rarefaction wave
is case of a continuous solution when the following equality holds

q(x, t) = q̃(ξ(x, t)), (26)

where
q̃�(ξ) = α(ξ)rp(ξ) (27)
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The previous relations lead to the following approximations of integral averages

Qn
j ≈ 1

Δx

∫ xj+1/2

xj−1/2

q(x, tn)dx,

Fn
j+1/2 ≈ 1

Δt

∫ tn+1

tn

f(q(xj+1/2, t))dt. (17)

Numerical fluxes Fn
j+1/2 are usually defined by the approximate solution of the Riemann

problem between states Qn
j+1 and Qn

j (this technique is called the flux difference splitting;
it will be described in the following parts) or by the Boltzmann approach (flux vector
splitting; it will be described later). In what follows, we use the notation Q+

j+1/2 and

Q−
j+1/2 for the reconstructed values of unknown function. Reconstructed values represent
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are based on the minmod function (see for example (Kurganov & Tadmor, 2000)) or ENO and
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∞

∑
j=−∞

Qn+1
j =

∞

∑
j=−∞

Qn
j . (18)

The uniqueness of discontinuous solutions to the conservation laws is not guaranteed.
Therefore the additional conditions, based on physical considerations, are required to isolate
the physically relevant solution. The most common condition is called entropy condition. The
unique entropy satisfying weak solution q holds

[η(q)]t + [ϕ(q)]x ≤ 0, (19)

for the convex entropy functions η(q) and corresponding entropy fluxes ϕ(q) (for example see
(LeVeque, 2004)).
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qt + [ f (q)]x = �qxx, x ∈ R, 0 < t < T, � > 0,
q(x, 0) = q0(x), x ∈ R. (20)

exists and the limit q∗ = lim
�→0+

q� exists too than q∗ is the entropy-satisfying weak solutions of

the problem (20).

It is possible to define the appropriate properties of the methods. For example, in the case
of scalar problem, TVD (Total Variation Diminishing) property, which ensures that the total
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variation of the solution is non-increasing, i.e.

∞

∑
j=−∞

|Qn+1
j+1 − Qn+1

j | ≤
∞

∑
j=−∞

|Qn
j+1 − Qn

j | (21)

for all time layers tn. This property is important for limitation of the oscillations in the solution.

3.2 Nonconservative problems
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∂Qj

∂t
= − 1

Δx
[A−(Q−

j+1/2, Q+
j+1/2) + A(Q−

j+1/2, Q+
j−1/2) + A+(Q−

j−1/2, Q+
j−1/2)], (23)
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j+1/2, Q+
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A(Q−
j+1/2, Q+

j−1/2) = f(Q−
j+1/2)− f(Q+

j−1/2),
A−(Q−

j+1/2, Q+
j+1/2) = F−

j+1/2 − f(Q−
j+1/2),

A+(Q−
j−1/2, Q+

j−1/2) = f(Q+
j−1/2)− F+

j−1/2.
(24)

4. Riemann problem

4.1 Riemann problem for conservative systems

The Riemann problem is the special problem based on finite volume discretization with the
discontinuous initial condition. In the nonlinear case it has the form

qt + [f(q)]x = 0, x ∈ R, t ∈ (0, T),

q(x, 0) =

{
Qn

j , x < xj+1/2,
Qn

j+1, x > xj+1/2.
(25)

We solve the transitions between two states, but this solution could not exists in general. These
transitions can be rarefaction waves, shock waves or contact discontinuities. Rarefaction wave
is case of a continuous solution when the following equality holds

q(x, t) = q̃(ξ(x, t)), (26)

where
q̃�(ξ) = α(ξ)rp(ξ) (27)
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for any function ξ(x, t), where α(ξ) is a coefficient dependent on the function ξ and Rp(ξ) is
the corresponding p-th eigenvector of the Jacobi matrix f�(u).

Shock waves and contact discontinuities are special cases of discontinuous solutions. The
requirement that this solution should be (see (LeVeque, 2004)) a weak solution of the problem
(25) leads to the following relation

s(q+ − q−) = f(q+)− f(q−), (28)

where s is the speed of the propagation of the discontinuities. The relation (28) is known as
the Rankine-Hugoniot jump condition. In some cases it is possible to construct the solution of
Riemann problem as the sequence of the transitions between the discontinuous states (in the
case of strong nonlinearity the discontinuous solution consists of the shock waves, in the case
of linear degeneration solution consists of the contact discontinuities).

In the case of a linear problem f(q) = Aq it is known that the initial state of each characteristic
variable wp is moving at a speed that corresponds to the eigenvalue λp of the matrix A.
The solution is a system of constant states separated by discontinuities that move at speeds
correspondent to eigenvalues. Therefore, the jump Qj+1 − Qj over p-th discontinuity can be
expressed as,

(wp
j+1 − wp

j )r
p = αprp, (29)

where rp is the p-th eigenvector of matrix A. The relation (29) represents the initial jump in
the characteristic variable wp and at the same time q = Rw. Therefore, the solution of linear
Riemann problem can be defined by the decomposition of the initial jump of the unknown
function to the eigenvectors rp of the Jacobi matrix A = f�(q)

Qj+1 − Qj =
m

∑
p=1

αprp. (30)

The discontinuities Wp = αprp are called waves and they are propagated by the speeds λp.
For details see (LeVeque, 2004).

4.2 Riemann problem for nonconservative systems

In this section we are interested in nonlinear systems in nonconservative form

qt + A(q)qx = 0, x ∈ R, t > 0, (31)

q0 ∈ [BV(R)]m,

where q ∈ Rm, q → A(q) is smooth locally bounded matrix-valued map, matrix A(q)
is strictly hyperbolic (diagonalizable, with real and different eigenvalues). We suppose that
A(q) is not Jacobi matrix so it is not possible to rewrite nonconservative system in conservative
form (13). Here, BV[(R)]m is function space contains functions with bounded total variation.

Above mentioned system makes sense only if q is differentiable. In the case when q admits
discontinuities at a point, A(q) may admits discontinuities as well and qx contains delta
function with singularity at this point. Then A(q)qx is product of Heaviside function with
delta function and in general is not unique. There is possibility to smooth out” of this function
over width �, for example by adding viscosity or diffusion. Then we get well defined product
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of continuous functions. The limiting behavior for � → 0 is strongly depend on “smoothing
out.”

Under a special assumption, the nonconservative product A(q)qx can be understood as a
Borel measure. In the following we introduce basic theorems and definitions, for details see
(Gosse, 2001; Le Floch, 1989; Le Floch & Tzavaras, 1999; Parès, 2006).

Definition 4.1. A path φ in Ω ∈ Rm is a family of smooth maps �0, 1� × Ω × Ω → Ω satisfying:

• φ(0; ql , qr) = ql and φ(1; ql , qr) = qr, ∀ql , qr ∈ Ω, ∀s ∈ �0, 1�,
• for each bounded set O ∈ Ω, there exists a constant k > 0 such that

∣∣∣∣
∂φ

∂s
(s; ql , qr)

∣∣∣∣ ≤ k |qr − ql |

for any ql , qr ∈ O and almost all s ∈ �0, 1�,
• for each bounded set O ∈ Ω, there exists a constant K > 0 such that

∣∣∣∣
∂φ

∂s
(s; q1

l , q1
r )−

∂φ

∂s
(s; q2

l , q2
r )

∣∣∣∣ ≤ K
(∣∣∣q1

l − q2
l

∣∣∣+
∣∣∣q1

r − q2
r

∣∣∣
)

for any q1
l , q1

r , q2
l , q2

r ∈ O and almost all s ∈ �0, 1�.
Theorem 4.1 (Dal Maso, Le Floch, Murat). Let q : (a, b) → Rm be a function with bounded
variation and A : Rm → Rm×m a locally bounded function. There exists a unique signed Borel
measure μ on (a, b) characterized by following properties:

1. if x → q(x) is continuous on an open set o ∈ (a, b) then

μ(o) =
∫

o

A(q)
∂q
∂x

dx,

2. if x0 ∈ (a, b) is a discontinuity point of x → q(x), then

μ(x0) =

1∫

0

A
(
φ(s; q(x−0 ), q(x+0 ))

) ∂φ

∂s
(s; q(x−0 ), q(x+0 )) ds,

where we denote q(x−0 ) = lim
x→x−

0

q(x) and q(x+0 ) = lim
x→x+

0

q(x).

Remark 4.1. Borel measure μ is called nonconservative product and is usually written [A(q)qx]φ.

Remark 4.2. In the case where A(q) = f�(q) then Borel measure, [A(q)qx]φ = f(q)x is independent
of the path φ.

Definition 4.2 (Weak solution). Let φ be a family of paths in the sense of definition 4.1. A function
q ∈ [L∞(R×R+) ∩BVloc(R×R+)]m is a weak solution of system (31), if it satisfies

qt + [A(q)qx]φ = 0, (32)

as a bounded Borel measure on R×R+.
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for any function ξ(x, t), where α(ξ) is a coefficient dependent on the function ξ and Rp(ξ) is
the corresponding p-th eigenvector of the Jacobi matrix f�(u).

Shock waves and contact discontinuities are special cases of discontinuous solutions. The
requirement that this solution should be (see (LeVeque, 2004)) a weak solution of the problem
(25) leads to the following relation

s(q+ − q−) = f(q+)− f(q−), (28)

where s is the speed of the propagation of the discontinuities. The relation (28) is known as
the Rankine-Hugoniot jump condition. In some cases it is possible to construct the solution of
Riemann problem as the sequence of the transitions between the discontinuous states (in the
case of strong nonlinearity the discontinuous solution consists of the shock waves, in the case
of linear degeneration solution consists of the contact discontinuities).

In the case of a linear problem f(q) = Aq it is known that the initial state of each characteristic
variable wp is moving at a speed that corresponds to the eigenvalue λp of the matrix A.
The solution is a system of constant states separated by discontinuities that move at speeds
correspondent to eigenvalues. Therefore, the jump Qj+1 − Qj over p-th discontinuity can be
expressed as,

(wp
j+1 − wp

j )r
p = αprp, (29)

where rp is the p-th eigenvector of matrix A. The relation (29) represents the initial jump in
the characteristic variable wp and at the same time q = Rw. Therefore, the solution of linear
Riemann problem can be defined by the decomposition of the initial jump of the unknown
function to the eigenvectors rp of the Jacobi matrix A = f�(q)

Qj+1 − Qj =
m

∑
p=1

αprp. (30)

The discontinuities Wp = αprp are called waves and they are propagated by the speeds λp.
For details see (LeVeque, 2004).

4.2 Riemann problem for nonconservative systems

In this section we are interested in nonlinear systems in nonconservative form

qt + A(q)qx = 0, x ∈ R, t > 0, (31)

q0 ∈ [BV(R)]m,

where q ∈ Rm, q → A(q) is smooth locally bounded matrix-valued map, matrix A(q)
is strictly hyperbolic (diagonalizable, with real and different eigenvalues). We suppose that
A(q) is not Jacobi matrix so it is not possible to rewrite nonconservative system in conservative
form (13). Here, BV[(R)]m is function space contains functions with bounded total variation.

Above mentioned system makes sense only if q is differentiable. In the case when q admits
discontinuities at a point, A(q) may admits discontinuities as well and qx contains delta
function with singularity at this point. Then A(q)qx is product of Heaviside function with
delta function and in general is not unique. There is possibility to smooth out” of this function
over width �, for example by adding viscosity or diffusion. Then we get well defined product
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of continuous functions. The limiting behavior for � → 0 is strongly depend on “smoothing
out.”

Under a special assumption, the nonconservative product A(q)qx can be understood as a
Borel measure. In the following we introduce basic theorems and definitions, for details see
(Gosse, 2001; Le Floch, 1989; Le Floch & Tzavaras, 1999; Parès, 2006).

Definition 4.1. A path φ in Ω ∈ Rm is a family of smooth maps �0, 1� × Ω × Ω → Ω satisfying:

• φ(0; ql , qr) = ql and φ(1; ql , qr) = qr, ∀ql , qr ∈ Ω, ∀s ∈ �0, 1�,
• for each bounded set O ∈ Ω, there exists a constant k > 0 such that

∣∣∣∣
∂φ

∂s
(s; ql , qr)

∣∣∣∣ ≤ k |qr − ql |

for any ql , qr ∈ O and almost all s ∈ �0, 1�,
• for each bounded set O ∈ Ω, there exists a constant K > 0 such that

∣∣∣∣
∂φ

∂s
(s; q1

l , q1
r )−

∂φ

∂s
(s; q2

l , q2
r )

∣∣∣∣ ≤ K
(∣∣∣q1

l − q2
l

∣∣∣+
∣∣∣q1

r − q2
r

∣∣∣
)

for any q1
l , q1

r , q2
l , q2

r ∈ O and almost all s ∈ �0, 1�.
Theorem 4.1 (Dal Maso, Le Floch, Murat). Let q : (a, b) → Rm be a function with bounded
variation and A : Rm → Rm×m a locally bounded function. There exists a unique signed Borel
measure μ on (a, b) characterized by following properties:

1. if x → q(x) is continuous on an open set o ∈ (a, b) then

μ(o) =
∫

o

A(q)
∂q
∂x

dx,

2. if x0 ∈ (a, b) is a discontinuity point of x → q(x), then

μ(x0) =

1∫

0

A
(
φ(s; q(x−0 ), q(x+0 ))

) ∂φ

∂s
(s; q(x−0 ), q(x+0 )) ds,

where we denote q(x−0 ) = lim
x→x−

0

q(x) and q(x+0 ) = lim
x→x+

0

q(x).

Remark 4.1. Borel measure μ is called nonconservative product and is usually written [A(q)qx]φ.

Remark 4.2. In the case where A(q) = f�(q) then Borel measure, [A(q)qx]φ = f(q)x is independent
of the path φ.

Definition 4.2 (Weak solution). Let φ be a family of paths in the sense of definition 4.1. A function
q ∈ [L∞(R×R+) ∩BVloc(R×R+)]m is a weak solution of system (31), if it satisfies

qt + [A(q)qx]φ = 0, (32)

as a bounded Borel measure on R×R+.
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Definition 4.3 (Entropy solution). Given an entropy pair (η, ϕ)(entropy, entropy flux) for (31), i.e.
a pair of regular functions Ω → R, such that

∇ϕ(q) = ∇η(q) · A(q), ∀q ∈ Ω. (33)

A weak solution is said to be entropic if it satisfies the inequality

∂η(q)
∂t

+
∂ϕ(q)

∂x
≤ 0 (34)

in the sense of distribution.

Function q(x, t) is weak solution if and only if, across a discontinuity with speed ζ, it satisfies
generalized Rankine-Hugoniot condition,

− ζ(qr − ql) +

1∫

0

A (φ(s; ql , qr))
∂φ

∂s
(s; ql , qr) ds = 0. (35)

Now we define the Riemann problem for nonconservative strictly hyperbolic system:

qt + A(q)qx = 0, x ∈ R, t > 0 (36)

with an initial condition

q(x, 0) = q0(x) =

{
ql pro x < 0,

qr pro x > 0,
(37)

where ql , qr ∈ Rm are vectors of constants.

Theorem 4.2. Let φ be a family of path in the sense of definition 4.1. Assume that system (36) is
strictly hyperbolic with genuinely nonlinear or linearly degenerate characteristic field and the family of
path φ satisfies

∂φ

∂q1
(1; q0, q0)− ∂φ

∂q1
(0; q0, q0) = I, ∀q0 ∈ Rm. (38)

Then, for |qr − ql | small enough, the Riemann problem (36) and (37) has a solution q(x, t) with
bounded variation, which depends only on x

t and has Lax’s structure. That is q(x, t) consist of m + 1
constant states separated by shock waves, rarefaction waves or contact discontinuities.

The solution of the Riemann problem for nonconservative system is related to the solution
of the Riemann problem for conservative system. The only difference is in the case of shock
wave, precisely in Rankine-Hugoniot condition formulation.

Before we define a class of useful numerical methods, we introduce a brief motivation, which
can be in details found in (Gosse, 2001). Suppose nonconservative system

qt + A(q)qx = 0, x ∈ R, t > 0 (39)

42 Finite Volume Method – Powerful Means of Engineering Design Numerical Schemes for Hyperbolic Balance Laws. Applications to Fluid Flow Problems 9

and suppose family of path in the sense of definition 4.1. If q(x, t) is piecewice regular weak
solution then for given time t, the Borel measure can be written in following form

μφ(o) = μ
φ
a (o) + μ

φ
s =

�

o

A(q)qx dx + ∑
k

⎡
⎣

1�

0

A(φ(s; q−
k , q+

k ))
∂φ

∂s
(s; q−

k , q+
k ) ds

⎤
⎦δx=xk(t), (40)

where index k represents number of discontinuities in solution, xk(t) are discontinuity points
in the time t > 0 and q−

k = lim
x→xk(t)−

q(x, t), q+
k = lim

x→xk(t)+
q(x, t), δx=xk(t) is Dirac measure at

the point x = xk(t). Then we can get

Q̄n+1
j = Q̄n

j −
1

Δx

tn+1�

tn

μφ(Ij) dt. (41)

The amount of the quantity on the cell boundaries xj+1/2 can be splitted into contribution to
cell Ij+1 and the contribution to the cell Ij. In other words, we split it into two terms A±

j+1/2.

So the sum of this terms can be understood as a discrete representation of the
tn+1�
tn

μ
φ
s dt and

Aj ≈
tn+1�
tn

μ
φ
a (Ij)dt. By this way we get generalisation of classical conservative finite volume

methods, see (Parès, 2006), i.e.

Q̄n+1
j = Q̄n

j −
Δt
Δx

[A+
j−1/2 + Aj + A−

j+1/2]. (42)

Definition 4.4. Given a family of path φ, a numerical scheme is said to be path-conservation if it can
be written in form (42), where

A±
j+1/2 = A±(q̄j−p, . . . , q̄j+q),

Aj = A(q̄j−p, . . . , q̄j+q),

A±, A : Ωp+q+1 → Ω being continuous functions satisfying

1.
A±(q, . . . , q) = 0, ∀q ∈ Ω, (43)

2.

A−(q−p, . . . , qq) + A+(q−p, . . . , qq) =
1�

0
A(φ(s; ql , qr))

∂φ
∂s (s; ql , qr) ds

∀qj ∈ Ω, j = −p, . . . , q.
(44)

3.

A(q, . . . , q) =

xj+1/2�

xj−1/2

A(q)qx dx. (45)

Remark 4.3. If A(q) = f�(q) then path-conservation scheme is consistent and conservative (that
is if the nonconservative system can be written as conservative one, path-conservative method become
classical conservative and consistent). Notice here that A± are fluctuations, see 3.2.
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Definition 4.3 (Entropy solution). Given an entropy pair (η, ϕ)(entropy, entropy flux) for (31), i.e.
a pair of regular functions Ω → R, such that

∇ϕ(q) = ∇η(q) · A(q), ∀q ∈ Ω. (33)

A weak solution is said to be entropic if it satisfies the inequality

∂η(q)
∂t

+
∂ϕ(q)

∂x
≤ 0 (34)

in the sense of distribution.

Function q(x, t) is weak solution if and only if, across a discontinuity with speed ζ, it satisfies
generalized Rankine-Hugoniot condition,

− ζ(qr − ql) +

1∫

0

A (φ(s; ql , qr))
∂φ

∂s
(s; ql , qr) ds = 0. (35)

Now we define the Riemann problem for nonconservative strictly hyperbolic system:

qt + A(q)qx = 0, x ∈ R, t > 0 (36)

with an initial condition

q(x, 0) = q0(x) =

{
ql pro x < 0,

qr pro x > 0,
(37)

where ql , qr ∈ Rm are vectors of constants.

Theorem 4.2. Let φ be a family of path in the sense of definition 4.1. Assume that system (36) is
strictly hyperbolic with genuinely nonlinear or linearly degenerate characteristic field and the family of
path φ satisfies

∂φ

∂q1
(1; q0, q0)− ∂φ

∂q1
(0; q0, q0) = I, ∀q0 ∈ Rm. (38)

Then, for |qr − ql | small enough, the Riemann problem (36) and (37) has a solution q(x, t) with
bounded variation, which depends only on x

t and has Lax’s structure. That is q(x, t) consist of m + 1
constant states separated by shock waves, rarefaction waves or contact discontinuities.

The solution of the Riemann problem for nonconservative system is related to the solution
of the Riemann problem for conservative system. The only difference is in the case of shock
wave, precisely in Rankine-Hugoniot condition formulation.

Before we define a class of useful numerical methods, we introduce a brief motivation, which
can be in details found in (Gosse, 2001). Suppose nonconservative system

qt + A(q)qx = 0, x ∈ R, t > 0 (39)
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and suppose family of path in the sense of definition 4.1. If q(x, t) is piecewice regular weak
solution then for given time t, the Borel measure can be written in following form
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⎣
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k ))
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k ) ds

⎤
⎦δx=xk(t), (40)

where index k represents number of discontinuities in solution, xk(t) are discontinuity points
in the time t > 0 and q−

k = lim
x→xk(t)−

q(x, t), q+
k = lim

x→xk(t)+
q(x, t), δx=xk(t) is Dirac measure at

the point x = xk(t). Then we can get

Q̄n+1
j = Q̄n

j −
1

Δx

tn+1�

tn

μφ(Ij) dt. (41)

The amount of the quantity on the cell boundaries xj+1/2 can be splitted into contribution to
cell Ij+1 and the contribution to the cell Ij. In other words, we split it into two terms A±

j+1/2.

So the sum of this terms can be understood as a discrete representation of the
tn+1�
tn

μ
φ
s dt and

Aj ≈
tn+1�
tn

μ
φ
a (Ij)dt. By this way we get generalisation of classical conservative finite volume

methods, see (Parès, 2006), i.e.

Q̄n+1
j = Q̄n

j −
Δt
Δx

[A+
j−1/2 + Aj + A−

j+1/2]. (42)

Definition 4.4. Given a family of path φ, a numerical scheme is said to be path-conservation if it can
be written in form (42), where

A±
j+1/2 = A±(q̄j−p, . . . , q̄j+q),

Aj = A(q̄j−p, . . . , q̄j+q),

A±, A : Ωp+q+1 → Ω being continuous functions satisfying

1.
A±(q, . . . , q) = 0, ∀q ∈ Ω, (43)

2.

A−(q−p, . . . , qq) + A+(q−p, . . . , qq) =
1�

0
A(φ(s; ql , qr))

∂φ
∂s (s; ql , qr) ds

∀qj ∈ Ω, j = −p, . . . , q.
(44)

3.

A(q, . . . , q) =

xj+1/2�

xj−1/2

A(q)qx dx. (45)

Remark 4.3. If A(q) = f�(q) then path-conservation scheme is consistent and conservative (that
is if the nonconservative system can be written as conservative one, path-conservative method become
classical conservative and consistent). Notice here that A± are fluctuations, see 3.2.
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4.3 The properties of exact solution

Consider a system in conservative form with special right hand side (this system agrees with
shallow water system (5))

qt + f(q)x = S(q)σx. (46)
This system can be rewritten in a following homogeneous nonconservative form

ut + A(u)ux = 0, (47)

where

u =

[
q
σ

]
and A(u) =

[
∂f
∂u (u) −S(u)

0 0

]
,

where ∂f
∂u (w) denotes Jacobian matrix of flux f. In order to define weak solutions of the system

(47) we have to choose family of paths (see definition 4.1 and theorem 4.2). And following
requirement become natural: if u = [q, σ]T is a weak solution of the nonconservative system
(47) and σ is constant, then q must be weak solution of the homogeneous system of conservation
laws, i.e. (46) with zero right hand side. By this requirement we impose addition condition of
family of paths:

if ul and ur are such that σl = σr = σ̄, then

Φ(s; ul , ur) = σ̄, s ∈ �0, 1� . (48)

For these systems, there are no difficulties with convergence. Moreover, the shock waves
propagating in regions where σ is continuous are correctly captured independently of the
choice of path. For details see (Le Floch at al., 2008).

5. Approximate Riemann solvers

There are many numerical schemes for solving (7) with different properties and possibilities
of failing. The main types of the finite volume schemes are the central, upwind and
central-upwind schemes. All these schemes relate together in variety of ways. We can
interpret them as schemes with different deep knowledge about structure of the solution of
Riemann problem. For example, the same scheme can be interpreted as the HLL solver (an
approximate Riemann solver) or as the central–upwind scheme.

The main requirements on the numerical schemes are the consistency (in the finite volume
sense, i.e. consistency with the flux function), the conservativity (if there is possibility to
rewrite the problem to the conservative form it is required to have conservative numerical
scheme), positive semidefiniteness (the scheme preserves nonnegativity of some quantities,
which are essentially nonnegative from their physical fundamental) and the well-balancing
(the schemes maintain some or all steady states which can occur). The next properties are
the order of the schemes and stability. From the computational point of view there are other
properties such as robustness, simplicity and computational efficiency. The second and third
of these properties are typical for the central methods, but they are not common for scheme
based on Roe’s solver.

The steady states mean that the unknown quantities do not change in the time, i.e. qt = 0
in (7), and the flux function must balance the right hand side, i.e. [f(q)]x = ψ(q, x). Some
schemes are constructed to preserve some special steady states for example called “lake at
rest” in open channel flow problems, where there is no motion and the free surface is constant.
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5.1 Central schemes, local Lax-Friedrichs method

These schemes use estimate of upper bound of maximal local speed of the propagating
discontinuities (for example see (Kurganov & Petrova, 2000)). They are based on the following
decomposition

f(Q+
j+1/2)− f(Q−

j+1/2)−Ψ±
j+1/2 = sj+1/2(Q

+
j+1/2 −Q∗

j+1/2)− sj+1/2(Q
∗
j+1/2 −Q−

j+1/2), (49)

where the approximation of local speed is defined by

sj+1/2 = max
p

{max{|λp(Q−
j+1/2)|, |λp(Q+

j+1/2)|}}. (50)

The local waves can be based on the decomposition (49). It means

Z1
j+1/2 = −sj+1/2(Q

∗
j+1/2 − Q−

j+1/2), Z2
j+1/2 = sj+1/2(Q

+
j+1/2 − Q∗

j+1/2). (51)

We can use the scheme in conservation form based on numerical fluxes (15) or in
nonconservative form based on the fluctuations (23). It can be used the scheme in the form

∂Qj

∂t
= − 1

Δx
(Fj+1/2 − Fj−1/2) + Ψj (52)

for the nonhomogeneous problems, where Ψj is a suitable approximation of the source term.
The numerical fluxes can be defined by the following relation as

Fj+1/2 =
1
2
[f(Q−

j+1/2 + f(Q+
j+1/2)]−

1
2

sj+1/2(Q
+
j+1/2 − Q−

j+1/2) (53)

and the fluctuations as

A−(Q−
j+1/2, Q+

j+1/2) = Z1
j+1/2,

A(Q−
j+1/2, Q+

j−1/2) = f(Q−
j+1/2)− f(Q+

j−1/2)− Ψ∓
j ,

A+(Q−
j+1/2, Q+

j+1/2) = Z2
j+1/2.

(54)

The advantage of central schemes is the fact, that it is not necessary to solve a full Riemann
problem.

5.1.1 Steady states

These schemes do not preserve general steady states for the problems with source terms, but
only special one for shallow water equations. The steady state called “lake at rest”, where
v = 0, h + b = const. If we use the scheme in fluctuation form, we need the equalities
A−

j+1/2 = A+
j+1/2 = Aj = 0. Here we present only the equality A+

j+1/2 = 0, the A−
j+1/2 = 0

can be derived by the similar way. The first component of decomposition (49) is

(HV)+j+1/2 − (HV)−j+1/2︸ ︷︷ ︸
0

= sj+1/2(H+
j+1/2 − H∗

j+1/2)︸ ︷︷ ︸
A+,1

j+1/2

−sj+1/2(H∗
j+1/2 − H−

j+1/2)︸ ︷︷ ︸
A−,1

j+1/2

. (55)

Because there is no motion of the fluid, we have

(HV)+j+1/2 = (HV)−j+1/2 = 0 ⇒ H∗
j+1/2 =

1
2
(H+

j+1/2 + H−
j+1/2). (56)
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,

where ∂f
∂u (w) denotes Jacobian matrix of flux f. In order to define weak solutions of the system

(47) we have to choose family of paths (see definition 4.1 and theorem 4.2). And following
requirement become natural: if u = [q, σ]T is a weak solution of the nonconservative system
(47) and σ is constant, then q must be weak solution of the homogeneous system of conservation
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if ul and ur are such that σl = σr = σ̄, then
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For these systems, there are no difficulties with convergence. Moreover, the shock waves
propagating in regions where σ is continuous are correctly captured independently of the
choice of path. For details see (Le Floch at al., 2008).

5. Approximate Riemann solvers

There are many numerical schemes for solving (7) with different properties and possibilities
of failing. The main types of the finite volume schemes are the central, upwind and
central-upwind schemes. All these schemes relate together in variety of ways. We can
interpret them as schemes with different deep knowledge about structure of the solution of
Riemann problem. For example, the same scheme can be interpreted as the HLL solver (an
approximate Riemann solver) or as the central–upwind scheme.

The main requirements on the numerical schemes are the consistency (in the finite volume
sense, i.e. consistency with the flux function), the conservativity (if there is possibility to
rewrite the problem to the conservative form it is required to have conservative numerical
scheme), positive semidefiniteness (the scheme preserves nonnegativity of some quantities,
which are essentially nonnegative from their physical fundamental) and the well-balancing
(the schemes maintain some or all steady states which can occur). The next properties are
the order of the schemes and stability. From the computational point of view there are other
properties such as robustness, simplicity and computational efficiency. The second and third
of these properties are typical for the central methods, but they are not common for scheme
based on Roe’s solver.

The steady states mean that the unknown quantities do not change in the time, i.e. qt = 0
in (7), and the flux function must balance the right hand side, i.e. [f(q)]x = ψ(q, x). Some
schemes are constructed to preserve some special steady states for example called “lake at
rest” in open channel flow problems, where there is no motion and the free surface is constant.
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5.1 Central schemes, local Lax-Friedrichs method

These schemes use estimate of upper bound of maximal local speed of the propagating
discontinuities (for example see (Kurganov & Petrova, 2000)). They are based on the following
decomposition

f(Q+
j+1/2)− f(Q−

j+1/2)−Ψ±
j+1/2 = sj+1/2(Q

+
j+1/2 −Q∗

j+1/2)− sj+1/2(Q
∗
j+1/2 −Q−

j+1/2), (49)

where the approximation of local speed is defined by

sj+1/2 = max
p

{max{|λp(Q−
j+1/2)|, |λp(Q+

j+1/2)|}}. (50)

The local waves can be based on the decomposition (49). It means

Z1
j+1/2 = −sj+1/2(Q

∗
j+1/2 − Q−

j+1/2), Z2
j+1/2 = sj+1/2(Q

+
j+1/2 − Q∗

j+1/2). (51)

We can use the scheme in conservation form based on numerical fluxes (15) or in
nonconservative form based on the fluctuations (23). It can be used the scheme in the form

∂Qj

∂t
= − 1

Δx
(Fj+1/2 − Fj−1/2) + Ψj (52)

for the nonhomogeneous problems, where Ψj is a suitable approximation of the source term.
The numerical fluxes can be defined by the following relation as

Fj+1/2 =
1
2
[f(Q−

j+1/2 + f(Q+
j+1/2)]−

1
2

sj+1/2(Q
+
j+1/2 − Q−

j+1/2) (53)

and the fluctuations as

A−(Q−
j+1/2, Q+

j+1/2) = Z1
j+1/2,

A(Q−
j+1/2, Q+

j−1/2) = f(Q−
j+1/2)− f(Q+

j−1/2)− Ψ∓
j ,

A+(Q−
j+1/2, Q+

j+1/2) = Z2
j+1/2.

(54)

The advantage of central schemes is the fact, that it is not necessary to solve a full Riemann
problem.

5.1.1 Steady states

These schemes do not preserve general steady states for the problems with source terms, but
only special one for shallow water equations. The steady state called “lake at rest”, where
v = 0, h + b = const. If we use the scheme in fluctuation form, we need the equalities
A−

j+1/2 = A+
j+1/2 = Aj = 0. Here we present only the equality A+

j+1/2 = 0, the A−
j+1/2 = 0

can be derived by the similar way. The first component of decomposition (49) is

(HV)+j+1/2 − (HV)−j+1/2︸ ︷︷ ︸
0

= sj+1/2(H+
j+1/2 − H∗

j+1/2)︸ ︷︷ ︸
A+,1

j+1/2

−sj+1/2(H∗
j+1/2 − H−

j+1/2)︸ ︷︷ ︸
A−,1

j+1/2

. (55)

Because there is no motion of the fluid, we have

(HV)+j+1/2 = (HV)−j+1/2 = 0 ⇒ H∗
j+1/2 =

1
2
(H+

j+1/2 + H−
j+1/2). (56)
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Fig. 1. The central methods construct only one middle state.

We consider nonhomogeneous problem, it means, that the bx �= 0. The constant water level
then includes hx �= 0. Therefore the fluctuation are not equal to zero in general.

H+
j+1/2 �= H−

j+1/2 ⇒ H+
j+1/2 − H∗

j+1/2 �= 0 ⇒ A+,1
j+1/2 �= 0. (57)

This situation is illustrated at the Fig.1. It can be seen that one middle state is in contradiction
with physical model with source terms. This method could preserve only steady states that
the reconstruction of unknown function is constant. This leads to the following modification
of the system (5). We define new unknown function representing water level y = h + b. The
shallow water equation can be modified to the following form

[
y

(y − B)v

]

t
+

[
(y − B)v

(y − B)v2 + 1
2 g(y − B)2

]

x
=

[
0

−g(y − B)Bx

]
. (58)

Then the first component of decomposition (49) is

((Y − B)V)+j+1/2 − ((Y − B)V)−j+1/2︸ ︷︷ ︸
0

= sj+1/2(Y
+
j+1/2 − Y∗

j+1/2)︸ ︷︷ ︸
A+,1

j+1/2

−sj+1/2(Y
∗
j+1/2 − Y−

j+1/2)︸ ︷︷ ︸
A−,1

j+1/2

.

(59)
Again, no motion of the water ensures

((Y − B)V)+j+1/2 = ((Y − B)V)−j+1/2 = 0 ⇒ Y∗
j+1/2 =

1
2
(Y+

j+1/2 + Y−
j+1/2). (60)

Constant water level means yx = 0 and then

Y+
j+1/2 = Y−

j+1/2 ⇒ Y+
j+1/2 − Y∗

j+1/2 = 0 ⇒ A+,1
j+1/2 = 0. (61)

The second component of decomposition (49) is

f 2(Q+
j+1/2)− f 2(Q−

j+1/2)− Ψ2,±
j+1/2︸ ︷︷ ︸

0 (for suitable approximation)

=

= sj+1/2(Q
+,2
j+1/2 − Q∗,2

j+1/2)︸ ︷︷ ︸
A+,2

j+1/2

−sj+1/2(Q
∗,2
j+1/2 − Q−,2

j+1/2)︸ ︷︷ ︸
A−,2

j+1/2

. (62)
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The second component of this middle state is defined by

Q∗,2
j+1/2 =

f 2(Q−
j+1/2)− f 2(Q+

j+1/2)− Ψ2,±
j+1/2

2sj+1/2
+

1
2
(Q−,2

j+1/2 + Q+,2
j+1/2), (63)

therefore
Q∗,2

j+1/2 = Q−,2
j+1/2 = Q+,2

j+1/2 ⇒ A+,2
j+1/2 = 0. (64)

The term Aj = 0 for suitable approximation Ψ∓
j so that

f(Q−
j+1/2)− f(Q+

j−1/2) = Ψ∓
j . (65)

We have seen that this method preserves steady state “lake at rest” for the modificate system
(58) when the suitable approximation of the source terms is used. The common way how to
construct this approximation is based on the equality with the flux difference.

Now we turn to general steady state. It means hv = const. We need again the equalities
A−

j+1/2 = A+
j+1/2 = Aj = 0. First component of the flux decomposition is

((Y − B)V)+j+1/2 − ((Y − B)V)−j+1/2︸ ︷︷ ︸
0

= sj+1/2(Y
+
j+1/2 − Y∗

j+1/2)︸ ︷︷ ︸
A+,1

j+1/2

−sj+1/2(Y
∗
j+1/2 − Y−

j+1/2)︸ ︷︷ ︸
A−,1

j+1/2

.

(66)
The left and right values of the flux discharge are still equal

((Y − B)V)+j+1/2 = ((Y − B)V)−j+1/2 = 0 ⇒ Y∗
j+1/2 =

1
2
(Y+

j+1/2 + Y−
j+1/2), (67)

but the reconstructed values of the water level are not equal in general

Y+
j+1/2 �= Y−

j+1/2 ⇒ Y+
j+1/2 − Y∗

j+1/2 �= 0 ⇒ A+,1
j+1/2 �= 0. (68)

Therefore, the general steady state is not preserved.

5.1.2 Positive semidefiniteness

We recall that positive semidefiniteness is a property that consists in preserving nonnegativity
of some unknown functions. In the cases of shallow water equations (water height h) and
urethra flow modelling (cross-section of the tube a), the central scheme preserves this property.
We illustrate this by the preserving the nonnegativity of the water level. The middle state is
defined

H∗
j+1/2 =

sj+1/2H+
j+1/2 + sj+1/2H−

j+1/2 − H+
j+1/2V+

j+1/2 + H−
j+1/2V−

j+1/2

2sj+1/2
. (69)

Because the speed s is defined by (50), we can use the following inequality (for better display
lower indexes j + 1/2 are neglected),

H∗ ≥ (V+ +
√

gH+)H+ − (V− −√
gH−)H− − H+V+ + H−V−

2s
= (70)

=

√
gH+H+ +

√
gH−

j+1/2H−

2s
≥ 0. (71)
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Fig. 1. The central methods construct only one middle state.

We consider nonhomogeneous problem, it means, that the bx �= 0. The constant water level
then includes hx �= 0. Therefore the fluctuation are not equal to zero in general.
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j+1/2 �= 0 ⇒ A+,1
j+1/2 �= 0. (57)

This situation is illustrated at the Fig.1. It can be seen that one middle state is in contradiction
with physical model with source terms. This method could preserve only steady states that
the reconstruction of unknown function is constant. This leads to the following modification
of the system (5). We define new unknown function representing water level y = h + b. The
shallow water equation can be modified to the following form

[
y

(y − B)v

]

t
+

[
(y − B)v

(y − B)v2 + 1
2 g(y − B)2

]

x
=

[
0

−g(y − B)Bx

]
. (58)

Then the first component of decomposition (49) is
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Again, no motion of the water ensures

((Y − B)V)+j+1/2 = ((Y − B)V)−j+1/2 = 0 ⇒ Y∗
j+1/2 =

1
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(Y+
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Constant water level means yx = 0 and then

Y+
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therefore
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j+1/2 = 0. (64)

The term Aj = 0 for suitable approximation Ψ∓
j so that
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The left and right values of the flux discharge are still equal
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j+1/2 =
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2
(Y+

j+1/2 + Y−
j+1/2), (67)

but the reconstructed values of the water level are not equal in general

Y+
j+1/2 �= Y−
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j+1/2 �= 0 ⇒ A+,1
j+1/2 �= 0. (68)

Therefore, the general steady state is not preserved.

5.1.2 Positive semidefiniteness

We recall that positive semidefiniteness is a property that consists in preserving nonnegativity
of some unknown functions. In the cases of shallow water equations (water height h) and
urethra flow modelling (cross-section of the tube a), the central scheme preserves this property.
We illustrate this by the preserving the nonnegativity of the water level. The middle state is
defined

H∗
j+1/2 =

sj+1/2H+
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. (69)

Because the speed s is defined by (50), we can use the following inequality (for better display
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H∗ ≥ (V+ +
√

gH+)H+ − (V− −√
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= (70)

=
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5.2 Central-upwind schemes, HLL scheme

We will see that central-upwind scheme and HLL scheme can be understood as equivalent.
The central-upwind scheme is based on the decomposition in the form

f(Q+
j+1/2)− f(Q−

j+1/2)−Ψ±
j+1/2 = s2

j+1/2(Q
+
j+1/2 −Q∗

j+1/2)− s1
j+1/2(Q

∗
j+1/2 −Q−

j+1/2), (72)

where s1
j+1/2 and s1

j+1/2 are the approximations of maximal and minimal speeds of the local
waves. Furthemore

Z1
j+1/2 = −s1

j+1/2(Q
∗
j+1/2 − Q−

j+1/2), Z2
j+1/2 = s2

j+1/2(Q
+
j+1/2 − Q∗

j+1/2). (73)

For the scheme in conservative form (13) (or in the form with approximation of the source
term (52)), we can define the following numerical fluxes

Fj+1/2 =
s1

j+1/2f(Q+
j+1/2)− s2

j+1/2f(Q−
j+1/2)

s1
j+1/2 − s2

j+1/2
+

s1
j+1/2s2

j+1/2

s1
j+1/2 − s2

j+1/2
(Q−

j+1/2 − Q+
j+1/2). (74)

If we use the scheme in fluctuation form (23), the fluctuations can be defined as follows

A−(Q−
j+1/2, Q+

j+1/2) =
2
∑

p=1,sp
j+1/2<0

Zp
j+1/2,

A(Q−
j+1/2, Q+

j−1/2) = f(Q−
j+1/2)− f(Q+

j−1/2)− Ψ±
j+1/2,

A+(Q−
j+1/2, Q+

j+1/2) =
2
∑

p=1,sp
j+1/2>0

Zp
j+1/2.

(75)

As we mentioned before, the HLL solver can be identified with the central-upwind scheme.
This solver depends on the choice of wave speeds. This solver does not use an explicit
linearization of the Jacobi matrix, but the solution is constructed by consideration of two
discontinuities (independent on the system dimension) propagating at speeds s1

j+1/2 and

s2
j+1/2. These speeds approximate minimal and maximal local speeds of the system. The

middle state Q∗
j+1/2 between states Qj+1 and Qj is determined by conservation law

s1
j+1/2(Q

∗
j+1/2 − Qj) + s2

j+1/2(Qj+1 − Q∗
j+1/2) = f(Qj+1)− f(Qj). (76)

Properties of this solver are strongly tied to the choice of the speeds s1
j+1/2 and s2

j+1/2. Speeds
are determined by initial conditions and properties of the exact Riemann solver. Furthermore,
it can be proved that in the case of the system of two equations when the wave speeds s1

j+1/2

and s2
j+1/2 are equal to Roe’s speeds λ1

j+1/2 and λ2
j+1/2, the HLL solver is equal to Roe’s solver

(described in the following part).

5.2.1 Steady states

These methods preserve steady states by the similar way like the central schemes. It is
important to use the suitable approximation of the source term function based on the flux
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diference. For example in (Kurganov & Levy, 2002) is presented approximation for preserving
steady state “lake at rest” in the form

Ψ
(2)
j (t) ≈ −g

B(xj+1/2)− B(xj−1/2)

Δx
·
(

Y−
j+1/2 − B(xj+1/2)

)
+

(
Y+

j−1/2 − B(xj−1/2)
)

2
. (77)

This approximation (77) supposes continuous approximation of function b describing bottom
topography i.e. B+

j+1/2 = B−
j+1/2 = Bj+1/2.

5.2.2 Positive semidefiniteness

The nonnegativity of the unknown function can be shown by a similar way as in the part 5.1.2.
But if we use the scheme (Kurganov & Levy, 2002) and solve the system (58), the unknown
function is the water level y = h + B rather that the water height h. The nonnegativity of water
height can be ensured for the system (5).

The scheme that ensures both properties at the same time is presented for example in (Audusse
at al., 2004). It is based on special reconstruction of functions h and b

H−
j+1/2 = max(0, Hj + Bj − Bj+1/2), H+

j+1/2 = max{0, Hj+1 + Bj+1 − Bj+1/2}, (78)

where
Bj+1/2 = max{Bj, Bj+1}. (79)

Again, as in previous cases, the source term approximation is equal to the flux difference.

5.3 Roe’s solver

First, we assume the homogeneous system. Roe’s solver is the approximate Riemann solver
based on the local approximation of the nonlinear system qt + [f(q)]x ≡ qt + A(q)qx = 0,
where A(q) is the Jacobi matrix, by the linear system qt + Aj+1/2qx = 0, where Aj+1/2 is the
Roe-averaged Jacobi matrix, which is defined by suitable combination of A(Qj) and A(Qj+1).
For details see (LeVeque, 2004).

For the conservation form (13) of the scheme we can define numerical fluxes

Fj+1/2 =
1
2
[f(Q−

j+1/2) + f(Q+
j+1/2)]−

1
2
|Aj+1/2|(Q+

j+1/2 − Q−
j+1/2). (80)

Fluctuation form is based on the following fluctuations

A−(Q−
j+1/2, Q+

j+1/2) =
m
∑

p=1
λ
−,p
j+1/2rp

j+1/2Δγ
p
j+1/2,

A(Q−
j+1/2, Q+

j−1/2) = f(Q−
j+1/2)− f(Q+

j−1/2),

A+(Q−
j+1/2, Q+

j+1/2) =
m
∑

p=1
λ
+,p
j+1/2rp

j+1/2Δγ
p
j+1/2,

(81)

where rp
j+1/2 are eigenvectors of the Roe matrix Aj+1/2, λ

p
j+1/2 are eigenvalues called Roe’s

speeds and Δγj+1/2 = R−1
j+1/2(Q

+
j+1/2 − Q−

j+1/2).
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5.3.1 Steady states

Roe’s solver is based on upwind technique. For preserving steady states, it is possible to
upwind the source terms too. See (Bermudez & Vasquez, 1994) for details. It is based on
approximate Jacobi matrix constructed by the following relation (for simplicity the lower
indexes are neglected)

f(Q+)− f(Q−)− Ψ(Q+, Q−) =
m

∑
p=1

Zp =
m

∑
p=1

λpαprp, (82)

where λp and rp are the eigenvalues and eigenvectors of matrix A. Since the matrix A is
diagonalizable we have

A = RΛR−1, (83)

where Λ is the diagonal matrix of the eigenvalues of A and the columns of matrix R are the
corresponding eigenvectors of A. Then we can derive the decomposition of the source term

Ψ+ = RΛ+Λ−1σ =
1
2
(I + |A|A−1)Ψ, (84)

Ψ− = RΛ−Λ−1σ =
1
2
(I − |A|A−1)Ψ, (85)

where Λ+ and Λ− are the positive and negative parts of Λ so that Λ+ + Λ− = Λ. The jump
of unknown function is decomposed to the eigenvectors of matrix A

Q+ − Q− = Rγ. (86)

Because
A = R(Λ+ + Λ−)R−1 = A+ + A− (87)

and
γ = R−1(Q+ − Q−) (88)

we get

A+(Q+ − Q−) + A−(Q+ − Q−) + RΛ+Λ−1σ + RΛ−Λ−1σ = (89)

= RΛ+γ + RΛ−γ + RΛ+Λ−1σ + RΛ−Λ−1σ =

= R
[
Λ−(γ + Λ−1σ) + Λ−(γ + Λ−1σ)

]
=

m

∑
p=1

λ+,pαprp +
m

∑
p=1

λ−,pαprp.

The decomposition (89) is used for construction of fluctuation by the same way as in the
following part 5.4 in the case of flux-difference splitting method. It can be shown (Bermudez
& Vasquez, 1994), that such approximation preserves steady state “lake at rest” for the
appropriate approximation of the source terms.

5.3.2 Positive semidefiniteness

Roe’s solver is not positive semidefinite in general. The main reason is in using the linearization
to construct the approximate Jacobi matrix.
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5.4 Flux-difference splitting scheme

The main idea of this method is to decompose the flux difference into the combination of
linearly independent vectors - in fact, this approach is a generalization of the decomposition
used in Roe’s solver. The suitable choice of these vectors are required because of consistency
with the model. Such a suitable choice can be approximation of the eigenvectors of the Jacobi
matrix of solved system. Sometimes it is preferable to add the approximation of the source
term Ψj+1/2 to this decomposition

f(Q+
j+1/2)− f(Q−

j+1/2)− Ψj+1/2 =
m

∑
p=1

γ
p
j+1/2rp

j+1/2. (90)

The fluctuation are defined based on this decomposition as

A−(Q−
j+1/2, Q+

j+1/2) =
m

∑
p=1,sp

j+1/2<0

γ
p
j+1/2rp

j+1/2,

A(Q+
j−1/2, Q−

j+1/2) = f(Q−
j+1/2)− f(Q+

j−1/2)− Ψj,

A+(Q−
j+1/2, Q+

j+1/2) =
m

∑
p=1,sp

j+1/2>0

γ
p
j+1/2rp

j+1/2.

(91)

This idea will be used in decompositions based on augmented system, which will be described
later. In fact, the idea is very similar to the approach in (Bermudez & Vasquez, 1994)

5.4.1 Steady states

The preserving of steady states can be described very easily. If the left side of the relation
(90) is equal to zero (it is condition for steady state) then all coefficients γ

p
j+1/2 = 0 because of

linearly independence of the vectors rp
j+1/2. Therefore the fluctuations are equal to zero too.

5.5 HLLE scheme

When the special choice of the characteristic speeds called the Einfeldt speeds is used, the HLL
solver is called HLLE. The Einfeldt speeds are defined by

s1
j+1/2 = min

p
{min{λ

p
jl , λ

p
j+1/2, 0}},

s2
j+1/2 = max

p
{max{λ

p
jr, λ

p
j+1/2, 0}},

(92)

where λ
p
jl are eigenvalues of the matrix Ajl = f�(Q−

j+1/2) and λ
p
jr are eigenvalues of the matrix

Ajr = f�(Q+
j+1/2). λ

p
j+1/2 are the Roe’s speeds. This choice of the speeds leads to smaller

amount of numerical diffusion, for details see (Einfeldt, 1988).

5.6 Decompositions based on augmented system

This procedure is based on the extension of the system (10) by other equations (for simplicity
we omit viscous term). This was derived in (George, 2008) for the shallow water flow. The
advantage of this step is in the conversion of the nonhomogeneous system to the homogeneous

51Numerical Schemes for Hyperbolic Balance Laws – Applications to Fluid Flow Problems



16 Will-be-set-by-IN-TECH

5.3.1 Steady states

Roe’s solver is based on upwind technique. For preserving steady states, it is possible to
upwind the source terms too. See (Bermudez & Vasquez, 1994) for details. It is based on
approximate Jacobi matrix constructed by the following relation (for simplicity the lower
indexes are neglected)

f(Q+)− f(Q−)− Ψ(Q+, Q−) =
m

∑
p=1

Zp =
m

∑
p=1

λpαprp, (82)

where λp and rp are the eigenvalues and eigenvectors of matrix A. Since the matrix A is
diagonalizable we have

A = RΛR−1, (83)

where Λ is the diagonal matrix of the eigenvalues of A and the columns of matrix R are the
corresponding eigenvectors of A. Then we can derive the decomposition of the source term

Ψ+ = RΛ+Λ−1σ =
1
2
(I + |A|A−1)Ψ, (84)

Ψ− = RΛ−Λ−1σ =
1
2
(I − |A|A−1)Ψ, (85)

where Λ+ and Λ− are the positive and negative parts of Λ so that Λ+ + Λ− = Λ. The jump
of unknown function is decomposed to the eigenvectors of matrix A

Q+ − Q− = Rγ. (86)

Because
A = R(Λ+ + Λ−)R−1 = A+ + A− (87)

and
γ = R−1(Q+ − Q−) (88)

we get

A+(Q+ − Q−) + A−(Q+ − Q−) + RΛ+Λ−1σ + RΛ−Λ−1σ = (89)

= RΛ+γ + RΛ−γ + RΛ+Λ−1σ + RΛ−Λ−1σ =

= R
[
Λ−(γ + Λ−1σ) + Λ−(γ + Λ−1σ)

]
=

m

∑
p=1

λ+,pαprp +
m

∑
p=1

λ−,pαprp.

The decomposition (89) is used for construction of fluctuation by the same way as in the
following part 5.4 in the case of flux-difference splitting method. It can be shown (Bermudez
& Vasquez, 1994), that such approximation preserves steady state “lake at rest” for the
appropriate approximation of the source terms.

5.3.2 Positive semidefiniteness

Roe’s solver is not positive semidefinite in general. The main reason is in using the linearization
to construct the approximate Jacobi matrix.

50 Finite Volume Method – Powerful Means of Engineering Design Numerical Schemes for Hyperbolic Balance Laws. Applications to Fluid Flow Problems 17

5.4 Flux-difference splitting scheme

The main idea of this method is to decompose the flux difference into the combination of
linearly independent vectors - in fact, this approach is a generalization of the decomposition
used in Roe’s solver. The suitable choice of these vectors are required because of consistency
with the model. Such a suitable choice can be approximation of the eigenvectors of the Jacobi
matrix of solved system. Sometimes it is preferable to add the approximation of the source
term Ψj+1/2 to this decomposition

f(Q+
j+1/2)− f(Q−

j+1/2)− Ψj+1/2 =
m

∑
p=1

γ
p
j+1/2rp

j+1/2. (90)

The fluctuation are defined based on this decomposition as

A−(Q−
j+1/2, Q+

j+1/2) =
m

∑
p=1,sp

j+1/2<0

γ
p
j+1/2rp

j+1/2,

A(Q+
j−1/2, Q−

j+1/2) = f(Q−
j+1/2)− f(Q+

j−1/2)− Ψj,

A+(Q−
j+1/2, Q+

j+1/2) =
m

∑
p=1,sp

j+1/2>0

γ
p
j+1/2rp

j+1/2.

(91)

This idea will be used in decompositions based on augmented system, which will be described
later. In fact, the idea is very similar to the approach in (Bermudez & Vasquez, 1994)

5.4.1 Steady states

The preserving of steady states can be described very easily. If the left side of the relation
(90) is equal to zero (it is condition for steady state) then all coefficients γ

p
j+1/2 = 0 because of

linearly independence of the vectors rp
j+1/2. Therefore the fluctuations are equal to zero too.

5.5 HLLE scheme

When the special choice of the characteristic speeds called the Einfeldt speeds is used, the HLL
solver is called HLLE. The Einfeldt speeds are defined by

s1
j+1/2 = min

p
{min{λ

p
jl , λ

p
j+1/2, 0}},

s2
j+1/2 = max

p
{max{λ

p
jr, λ

p
j+1/2, 0}},

(92)

where λ
p
jl are eigenvalues of the matrix Ajl = f�(Q−

j+1/2) and λ
p
jr are eigenvalues of the matrix

Ajr = f�(Q+
j+1/2). λ

p
j+1/2 are the Roe’s speeds. This choice of the speeds leads to smaller

amount of numerical diffusion, for details see (Einfeldt, 1988).

5.6 Decompositions based on augmented system

This procedure is based on the extension of the system (10) by other equations (for simplicity
we omit viscous term). This was derived in (George, 2008) for the shallow water flow. The
advantage of this step is in the conversion of the nonhomogeneous system to the homogeneous

51Numerical Schemes for Hyperbolic Balance Laws – Applications to Fluid Flow Problems



18 Will-be-set-by-IN-TECH

one. In the case of urethra flow we obtain the system of four equations, where the augmented
vector of unknown functions is w = [a, q, a0

β , β]T . Furthermore we formally augment this
system by adding components of the flux function f(u) to the vector of the unknown functions.
We multiply balance law (7) by Jacobian matrix f�(u) and obtain following relation

f�(q)qt + f�(q)[f(q)]x = f�(q)ψ(q, x). (93)

Because of f�(q)qt = [f(q)]t we obtain hyperbolic system for the flux function

[f(q)]t + f�(q)[f(q)]x = f�(q)ψ(q, x). (94)

In the case of the urethra fluid flow modelling we add only one equation for the second
component of the flux function i.e. φ = av2 + a2

2ρβ (the first component q is unknown function
of the original balance law), which has the form

φt + (−v2 +
a

2ρβ
)(av)x + 2vφx − 2av

ρ

�
a0
β

�

x
− a2v

ρβ2 βx = 0. (95)

Finally augmented system can be written in the nonconservative form

⎡
⎢⎢⎢⎢⎣

a
q
φ
a0
β

β

⎤
⎥⎥⎥⎥⎦

t

+

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0

− q2

a2 +
a

ρβ 2 q
a 0 − a

ρ − a2

ρβ2

0 − q2

a2 +
a

ρβ 2 q
a 2 q

ρ − aq
ρβ2

0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

a
q
φ
a0
β

β

⎤
⎥⎥⎥⎥⎦

x

= 0, (96)

briefly wt + B(w)wx = 0, where matrix B(w) has following eigenvalues

λ1 = v −
�

a
ρβ

, λ2 = v +

�
a

ρβ
, λ3 = 2v, λ4 = λ5 = 0 (97)

and corresponding eigenvectors

r1 =

⎡
⎢⎢⎢⎢⎣

1
λ1

(λ1)2

0
0

⎤
⎥⎥⎥⎥⎦

, r2 =

⎡
⎢⎢⎢⎢⎣

1
λ2
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We have five linearly independent eigenvectors. The approximation is chosen to be able to
prove the consistency and provide the stability of the algorithm. In some special cases this
scheme is conservative and we can guarantee the positive semidefiniteness, but only under
the additional assumptions (see (Brandner at al., 2009)).

The fluctuations are then defined by
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j+1/2, Q+

j−1/2),

(99)
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where Ψ(Q−
j+1/2, Q+

j−1/2) is a suitable approximation of the source term and rp
j+1/2 are suitable

approximations of the eigenvectors (98).

5.6.1 Steady states

The steady state for the augmented system means B(w)wx = 0, therefore wx is a linear
combination of the eigenvectors corresponding to the zero eigenvalues. The discrete form of
the vector Δw corresponds to the certain approximation of these eigenvectors. It can be shown
(Brandner at al., 2009) that
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Therefore we use vectors on the RHS of (100) as approximations of the fourth and fifth
eigenvectors of the matrix B(w) to preserves general steady state.

5.6.2 Positive semidefiniteness

Positive semidefiniteness of this scheme is shown in (George, 2008) for the case of shallow
water equation. It is based on a special choice of approximations of the eigenvectors (98). This,
in the case of urethra flow, is more complicated because of structure of the eigenvectors. Some
necessary conditions for approximation of these eigenvectors are presented in (Brandner at
al., 2009).

5.7 The other methods

Many other methods exist that are suitable for solving nonhomogeneous hyperbolic PDEs.
These methods are often derived from the ideas described above. Some approaches are very
different. However, we describe at least briefly the two of them.

5.7.1 ADER schemes

ADER scheme is an approach for constructing conservative nonlinear finite volume type
methods of arbitrary accuracy in space and time. The first step in ADER algorithm
is the reconstruction of point-wise values of solution from cell averages at time tn via
high-order polynomials. To design non-oscillatory schemes we can use for example WENO
reconstruction. After this step we solve High-order Riemann problem (Derivative or
Generalized Riemann problem). This problem is defined as a clasical Riemann problem with
polynomial-wise initial condition (polynomials arise in reconstruction step). The solution of
High-order Riemann problem is used for numerical fluxes evaluation. For details see for
example (Toro & Titarev, 2006) and (Toro & Titarev, 2002).

5.7.2 Flux-vector splitting

This approach is based on solving Riemann problem for the augmented formulation of the
system (for example (8)) and nonconservative reformulation of the zero-order terms of the
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one. In the case of urethra flow we obtain the system of four equations, where the augmented
vector of unknown functions is w = [a, q, a0

β , β]T . Furthermore we formally augment this
system by adding components of the flux function f(u) to the vector of the unknown functions.
We multiply balance law (7) by Jacobian matrix f�(u) and obtain following relation

f�(q)qt + f�(q)[f(q)]x = f�(q)ψ(q, x). (93)

Because of f�(q)qt = [f(q)]t we obtain hyperbolic system for the flux function

[f(q)]t + f�(q)[f(q)]x = f�(q)ψ(q, x). (94)

In the case of the urethra fluid flow modelling we add only one equation for the second
component of the flux function i.e. φ = av2 + a2

2ρβ (the first component q is unknown function
of the original balance law), which has the form

φt + (−v2 +
a

2ρβ
)(av)x + 2vφx − 2av

ρ

�
a0
β

�

x
− a2v

ρβ2 βx = 0. (95)

Finally augmented system can be written in the nonconservative form

⎡
⎢⎢⎢⎢⎣

a
q
φ
a0
β

β

⎤
⎥⎥⎥⎥⎦

t

+

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0

− q2

a2 +
a

ρβ 2 q
a 0 − a

ρ − a2

ρβ2

0 − q2

a2 +
a

ρβ 2 q
a 2 q

ρ − aq
ρβ2

0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

a
q
φ
a0
β

β

⎤
⎥⎥⎥⎥⎦

x

= 0, (96)
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The fluctuations are then defined by

A−(Q−
j+1/2, Q+

j+1/2) =

�
0 1 0 0 1
0 1 0 0 1

�
·

m

∑
p=1,sp,n

j+1/2<0

γ
p
j+1/2rp

j+1/2,

A+(Q−
j+1/2, Q+

j+1/2) =

�
0 1 0 0 1
0 1 0 0 1

�
·

m

∑
p=1,sp,n

j+1/2>0

γ
p
j+1/2rp

j+1/2,

A(Q+
j−1/2, Q−

j+1/2) = f(Q−
j+1/2)− f(Q+

j−1/2)− Ψ(Q−
j+1/2, Q+

j−1/2),

(99)

52 Finite Volume Method – Powerful Means of Engineering Design Numerical Schemes for Hyperbolic Balance Laws. Applications to Fluid Flow Problems 19

where Ψ(Q−
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Therefore we use vectors on the RHS of (100) as approximations of the fourth and fifth
eigenvectors of the matrix B(w) to preserves general steady state.

5.6.2 Positive semidefiniteness

Positive semidefiniteness of this scheme is shown in (George, 2008) for the case of shallow
water equation. It is based on a special choice of approximations of the eigenvectors (98). This,
in the case of urethra flow, is more complicated because of structure of the eigenvectors. Some
necessary conditions for approximation of these eigenvectors are presented in (Brandner at
al., 2009).

5.7 The other methods

Many other methods exist that are suitable for solving nonhomogeneous hyperbolic PDEs.
These methods are often derived from the ideas described above. Some approaches are very
different. However, we describe at least briefly the two of them.

5.7.1 ADER schemes

ADER scheme is an approach for constructing conservative nonlinear finite volume type
methods of arbitrary accuracy in space and time. The first step in ADER algorithm
is the reconstruction of point-wise values of solution from cell averages at time tn via
high-order polynomials. To design non-oscillatory schemes we can use for example WENO
reconstruction. After this step we solve High-order Riemann problem (Derivative or
Generalized Riemann problem). This problem is defined as a clasical Riemann problem with
polynomial-wise initial condition (polynomials arise in reconstruction step). The solution of
High-order Riemann problem is used for numerical fluxes evaluation. For details see for
example (Toro & Titarev, 2006) and (Toro & Titarev, 2002).

5.7.2 Flux-vector splitting

This approach is based on solving Riemann problem for the augmented formulation of the
system (for example (8)) and nonconservative reformulation of the zero-order terms of the

53Numerical Schemes for Hyperbolic Balance Laws – Applications to Fluid Flow Problems



20 Will-be-set-by-IN-TECH

right-hand-side of the equations in the form (46). This solution is decomposed to the stationary
contact discontinuity described by the suitable Rankine-Hogoniot condition and the remaining
part of the solution solved by the flux splitting for conservation systems. For details see for
example (Gosse, 2001).

6. Numerical experiments

Now we present several numerical experiments of the urethra flow based on mathematical
model (10) and shallow water flow based on model (5). The experiments are presented only
for illustration of properties of some described methods. Detailed comparison of all presented
methods can be found in using literature.

6.1 Steady urethra flow

This experiment simulates the urethra flow with no viscosity. The parameter pe = 1200 and
parameter β is illustrated at the figure 2. The initial condition is defined by the following

p(x, 0) =
{

3000 Pa, for x = 0
500 Pa, else, , v(x, 0) =

{
1 m/s, for x = 0
0 m/s, else. (101)

It is used the constant input discharge at the point x = 0 during the whole simulation. The
functions described discharge and cross section of the tube are extrapolated from the boundary
st the outflow (x = 0.19). At the last figures 2 and 3 we can see the difference between the
methods. While the method based on decomposition of augmented system (Sec.5.6) preserve
steady state (q ≡ const.) the central-upwind method (Sec.5.2) do not preserve such general
steady state.

6.2 Shallow water flow

These experiments compare solution computed by the method based on decomposition
of augmented system (see section 5.6) using piecewise constant reconstruction (first order
method) and the piecewise linear reconstruction (second order method). The preservation of
general steady state and positive semidefiniteness of the scheme is shown.

In all experiments we used 200 grid points and the following bottom topography

b(x) =

{
1
4

(
1 + cos π(x−0.5)

0.1

)
if x ∈ �0.4, 0.6�,

0 otherwise.
(102)

6.2.1 Small perturbations from the steady state

This experiment simulates propagation of the small perturbation from the steady state “lake
at rest”. The initial condition is given by

h + b =

{
1 + 10−5, x ∈ �0.1, 0.2�,
1, otherwise.

(103)

Water height and discharge are extrapolated at the boundaries. The propagation of the
perturbation is illustrated at the Fig. 4
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Fig. 2. Urethra flow simulation solved by the augmented system decomposition

6.2.2 Drainage of the reservoir

Here the initial condition is defined by

h + b = 0.8, q = 0. (104)

This simulates reservoir initially at rest, draining onto a dry bed through its boundaries. So
we use open boundary conditions at the right boundary, and reflecting boundary conditions
at the left boundary. More specifically it is implemented by zero discharge Q(0, t) = 0
during the whole simulation, while the water height is extrapolated from the domain. At the
outflow (right boundary), the boundary conditions are implemented as follows: if the flow is
supercritical, H + B and Q are extrapolated from the interior of the domain, while if the flow
is subcritical, the water height H is prescribed H(1, t) = 10−16 and Q is extrapolated. Solution
is depicted in Fig. 5.

This flow demonstrates also the positive semidefinitness of the scheme which insures the water
depth remains non-negative.
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Fig. 2. Urethra flow simulation solved by the augmented system decomposition
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This simulates reservoir initially at rest, draining onto a dry bed through its boundaries. So
we use open boundary conditions at the right boundary, and reflecting boundary conditions
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during the whole simulation, while the water height is extrapolated from the domain. At the
outflow (right boundary), the boundary conditions are implemented as follows: if the flow is
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Fig. 3. Urethra flow simulation solved by the central-upwind scheme
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First order method Second order method

Fig. 4. Propagation of small perturbation of the water height from the steady state solution
through the centered contracted channel.
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Fig. 3. Urethra flow simulation solved by the central-upwind scheme
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First order method Second order method

Fig. 4. Propagation of small perturbation of the water height from the steady state solution
through the centered contracted channel.
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First order method Second order method

Fig. 5. Time evolution of the water height through the centered contracted channel from the
initial condition to the general steady state solution.
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7. Conclusion

In this chapter we have tried to summarize the basic approaches for solving hyperbolic
equations with non-zero right hand side. We described all methods using the flux-difference or
flux-vector splitting. We paid special attention to approximations that maintain steady states.
Other desired property of the proposed schemes is positive semidefiniteness. It should be
noted that it is very difficult to construct schemes that meet multiple properties simultaneously.
For example, the central and central-upwind schemes are positive semidefinite, but maintain
only the special steady state lake at rest. Similarly, we can explore the links between the just
mentioned two properties and the order of schemes, the amount of numerical diffusion, etc.
It can not be unambiguously decided which method is the best one. Before we choose the
method that we have to decide which properties are essential for the concrete simulation. We
hope that our overview provides to readers at least partial guidance on how to choose the
most appropriate numerical approach to solve nonhomogeneous hyperbolic partial differential
equations by finite volume methods.
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Fig. 5. Time evolution of the water height through the centered contracted channel from the
initial condition to the general steady state solution.
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Brandner, M.; Egermaier, J. & Kopincová, H. (2009). Augmented Riemann solver for urethra
flow modelling. Mathematics and Computers in Simulations, Vol. 80, No. 6, pp. 1222-1231
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1. Introduction 
Finite Volume Method (FVM) is a popular field discretization approach for the numerical 
simulation of physical processes described by conservation laws. This article presents some 
advances in finite volume discretization of heat and fluid flow problems. 

In the case of thermo-fluid problems, decision regarding the choice of unknown variables 
needs to be taken at the continuous level of formulation. A popular choice, among many 
available options, is the pressure-based primitive variable formulation (Acharya, 2007), in 
which the flow continuity equation is considered as a constraint on fluid pressure. 
Pressure-based finite volume methods, in turn, can be categorized based on the 
computational grid arrangement used for the discretization of solution domain. In a 
staggered grid arrangement, velocity components and other unknown scalars are defined 
at different nodal points (Patankar, 1980). On the contrary, all unknown variables are 
defined at the same nodal locations in a co-located grid arrangement. The discussion of 
finite volume discretization schemes in this article is limited to pressure-based 
formulations on co-located grids.  

At the continuous level of formulation in a finite volume method, an intensive variable   is 
constrained by an integral balance equation for a control volume CV  bounded by the 
control surface CS  as follows: 
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In Eq. (1) J


 represents the flux of   across the control surface, S  stands for the rate of 
generation of   within the control volume and n  is the outward unit normal vector to the 
control surface. In most of the engineering problems of interest, there are two mechanisms 
for the transport of  , i.e. advection and diffusion, and the flux function is mathematically 
described as follows: 
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In Eq. (2) V


 is the advective mass flux and   is the diffusion coefficient associated with 
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mathematically describe the transport of mass, momentum and energy in fluid flow 
problems (Patankar, 1980). 

A typical two dimensional discrete domain covered by contiguous control volumes (cells) is 
shown in Fig. 1. Each cell represents a nodal point and is bounded by a number of panels 
which comprise the control surface. Typically, each panel includes one integration point.  
There isn't any limitation on the shape and the number of panels of a cell. Here we use a 
background finite element mesh to define the control volumes. Figure 1 shows structured 
and unstructured two-dimensional grids in an element-based finite volume method 
(EBFVM) context (Ashrafizadeh et al., 2011).  

The objective of any finite volume discretization scheme is to use the CV balance equations, 
similar to Eq. (1), to obtain a set of algebraic equations which constrains the unknown nodal 
values throughout the domain. This objective is achieved by carrying out the discretization 
in two stages.  

At the first stage of discretization, here called level-1 approximation, Eq. (1) is converted to a 
semi-discrete form comprising of both nodal and integration point variables. Level-1 
approximate form of Eq. (1) for an internal finite volume in Fig. 1 can be written as follows: 

 
1 1

( )
( ) ( )

ip ipN N
np

ip ip
ip ip

V V ndA A S V
t n

   
 

 
    

  
    (3) 

In Eq. (3), subscripts np  and ip  stand for nodal and integration point variables respectively. 
Closure equations are now needed to relate ip  variables to np  variables. 

At the second stage of discretization, here called level-2 approximation, Eq. (3) is converted 
to a fully-discrete form, i.e. an algebraic equation which constrains the variable   at nodal 
point P . The computational molecule obtained at this stage of discretization is written in 
the following convenient form: 

 
1

nbN

P P nb nb P
nb

a a S 


   (4) 

Here, subscript nb  stands for the neighbor nodes and superscript nbN  refers to the number 
of influential neighbor nodes. Influence coefficients Pa  and nba  and the source term S  
contain terms and parameters which model all physical effects relevant to the value of   at 
the nodal point P . 

If Eq. (1) is a nonlinear equation, linearization also becomes necessary and should be carried 
out during the discretization. In principle, the equation can be linearized before or after each 
of the approximation levels and this might affect the properties of the final discrete model. 

In most engineering problems, including heat and fluid flow ones, a coupled set of 
nonlinear partial differential equations needs to be discretized and solved. In such cases, the 
inter-equation couplings should also be numerically modeled. Two-dimensional, 
incompressible Navier-Stokes equations, for example, can be written in a form similar to Eq. 
(1) in which   is equal to 1 in the mass balance equation, u  in the x-momentum balance 
equation, v  in the y-momentum balance equation and e  (specific energy) in the energy  
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Fig. 1. Structured and unstructured element-based finite volume grids. 

balance equation. In general, the computational molecule associated with each equation of a 
coupled set includes more than one variable to reflect the fact that the equations and the 
variables are inter-related. Therefore, in the case of a set of equations with two coupled 
variables   and  , the following modified form of Eq. (4) is used to constrain   at the 
nodal point P :  

 
1 1

nb nbN N

P P nb P P nb Pnb nb
nb nb

a a a a S       
 

      (5) 

In this article, we focus on level-2 approximation of Navier-Stokes equations in the context of 
co-located, pressure-based finite volume method. This level of approximation is particularly 
important because it deals with the modeling of physical influences such as upwind and 
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downwind effects and the couplings between variables. A number of famous level-2 
approximations are reviewed and the method of proper closure equations (MPCE), proposed 
by the first author, is introduced. To avoid the complexities associated with multi-dimensional 
problems and to focus on the nature of the approximations in a simple setting, one 
dimensional equations and test cases are discussed in details. Two-dimensional results are 
only briefly presented to show the applicability of the MPCE in multi-dimensional problems. 

2. The semi-discrete form of equations in a 1D context 
A one-dimensional variable-area duct is shown in Fig. 2. The complete set of governing 
equations for unsteady 1D-inviscid compressible flow in this duct, using the momentum 
variable formulation, is as follows (Chterental, 1999): 
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Where   is time, f u  is the momentum variable, u  is velocity, p  is pressure and a  is the 
cross sectional area. Note that no artificial energy source term is used in the energy equation. 

In order to close the above set of equations, an auxiliary equation is needed. Here, the ideal 
gas equation of state is used: 

 p Rt  (7) 

Where t  is temperature and R  is the gas constant. Neglecting the potential energy term, the 
total energy per unit mass ( e ) of an ideal gas can be written as follows: 

 21
2ve c t u   (8) 

Where vc is the specific heat at constant volume. 

By integrating Eq. (6) over the P control volume in Fig. 2 and after using divergence 
theorem, the semi-discrete forms of the governing equations are obtained as follows: 
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 (9) 

Note that capital letters (like F  and P ) are used for the nodal values and small letters (like 
f  and p ) are used for integration point variables. Here, PV  stands for the volume of cell P. 

Closure equations for the integration point variables are discussed next. 
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Fig. 2. Grid arrangement in a one-dimensional variable area duct. 

3. Closure equations for integration point variables 
After obtaining the semi-discrete form of governing equations and linearizing them, closure 
equations are needed to approximate integration point (ip) quantities in terms of the nodal 
values. By employing these closure equations, the semi-discrete equations are converted to 
fully-discrete equations. These ip-equations play a critical role in the robustness and 
accuracy of a collocated scheme. Therefore, different solution strategies for defining ip-
equation are briefly described in this section. Here, we only discuss the closure equations for 
“east” integration point of a typical cell around node P. The closure equations at the “west” 
ip are obtained similarly. 

3.1 Methods based on geometrical interpolation 

Simple symmetric interpolation is the most trivial choice for an ip-value in a uniform grid:  

 
2

P E
e

  
   (10) 

On non-uniform grids, weighted interpolation is used as follows: 

 (1 )e e E e P        (11) 

Where e  is the weight factor for “east” ip, calculated by the following formula: 
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This scheme is 2nd-order accurate, but is unbounded so that non-physical oscillations 
may appear in regions with high gradients. To show the problem associated with this 
scheme, consider the 1-D inviscid incompressible flow in a constant area duct shown in 
Fig. 3. The semi-discrete form of continuity and momentum equations in this case are as 
follows: 

   0e wA u u    (13) 

     0e w e wm u u A p p     (14) 

Where A  is the cross sectional area of the duct and m  is the mass flow rate based on the 
most recent available value of velocity. 

 
Fig. 3. A 1-D Co-located grid in a constant cross sectional area duct. 

Using simple symmetric interpolation, Eqs. (13) and (14) are converted to the following 
fully-discrete forms: 

   0
2 E W
A U U

   (15) 

     0
2 2E W E W
m AU U P P   


 (16) 

Combining the above equations, one obtains the following constraint on the pressure at 
nodal point P: 

 E WP P  (17) 

Note that pressure at node P is absent in this equation and this constraint cannot distinguish 
between a uniform pressure field and the wiggly pressure field shown in Fig. 4.  

3.2 Methods based on taylor-series expansion 

It is logical to assume that convected quantities in a thermo-fluid problem are influenced by 
the upstream condition. Therefore, assuming the flow direction from P to E, the following 
truncated Taylor series expansions are both valid approximations for e : 
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Fig. 4. A typical wiggly pressure filed. 

Equation (18) is called the simple or Fist Order Upwinding (FOU) and provides highly 
stable and unconditionally bounded numerical schemes. However, it is only first order 
accurate. Equation (19) provides a Second Order Upwinding (SOU) strategy. One can show 
that a numerical scheme which employs Eq. (10) for integration point pressures and Eqs. 
(18) or (19) for integration point velocities in Eqs. (13) and (14), would not be able to detect 
the checkerboard pressure fields. Such numerical schemes are prone to unphysical pressure-
velocity decoupling symptom. 

3.3 Methods based on momentum interpolation 

Rhie and Chow (Rhie, 1983) employed a co-located grid to solve the flow field around an 
airfoil. To avoid nonphysical, wiggly numerical solutions, they came to the conclusion that 
different closure equations had to be used for the convecting or mass-carrying ( û ) and 
convected or transported ( u ) velocity components at the integration points. The convecting 
velocity, used in the semi-discrete continuity equation, is linked to the pressure through a 
momentum interpolation procedure. Hence, this discretization scheme is called the 
Momentum Interpolation Method (MIM). As compared to the classical schemes on 
staggered grids, one may assume that nodal momentum balances are conceptually 
staggered to obtain closure equations for convecting velocity at integration points. The 
discrete momentum balance for node P can be written as follows: 
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  (20) 

The convecting velocity at “e” is obtained by staggering the stencil of the “P” computational 
molecule to the “e” integration point:  
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Where 
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The closure for the convected velocity, and any other transported variable, comes from an 
upwind scheme. The simplest option at the integration point e would be the FOU: 

   if    0e P eu U m 

  (24) 

The interpolation formula, Eq. (22), is not unique as explained in (Acharya, 2007) and one 
might successfully implement the idea using modified forms of this approach. The key 
point, however, is to use different closure equations for the convected and convecting 
velocity components. The convecting velocity should be properly related to the pressure 
field.  

The closure equation for ep  has not been a matter of concern, at least for incompressible 
flows. Taking into account the elliptic behavior of the pressure, the following closure 
equation is used in the MIM: 

 
 
2

E P
e

P PP 
  (25) 

This technique guarantees the required physical pressure-velocity coupling in the numerical 
model and prevents any wiggly solutions (Ashrafizadeh et al., 2009). 

3.4 Methods based on physical influences 

The pleasure of working with all variables on a single nodal position, as opposed to the pain 
of working with staggered grids limited to simple geometries, has made the MIM very 
popular. Therefore, attempts have been made to employ and improve the MIM for the 
solution of flows at all speeds. Schneider and Raw (Schneider & Raw, 1987a, 1987b) 
proposed the physical influence scheme to unify the integration point velocity interpolation 
formulas in co-located grids. They retained a unified definition for the integration-point 
velocity components, but argued that the closure for eu  should not be obtained solely by 
purely mathematical upwind schemes. They suggested the non-conservative form of the 
momentum equation to provide a closure for eu : 
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The method, called the physical influence scheme, provides the following closure equation 
in the context of the 1-D test case: 

 ˆ
2

P E
e e p

e

x P Pu u U
u x

 
  


 (27) 

 
Use of Proper Closure Equations in Finite Volume Discretization Schemes 

 

69 

Where the over bar refers to the most recent available value in the nonlinear iterations. 
Equation (25) is used as the closure for ep  in this scheme.  

While successfully implemented in a number of multidimensional viscous problems, the 
physical influence scheme fails to prevent pressure checkerboard problem in inviscid 
incompressible flows (Bakhtiari, 2008). This failure reinforces the belief that two definitions 
for convected and convecting velocities at integration points are necessary when the 
calculations are carried out on a co-located grid. 

3.5 Methods based on modified physical influences 

To fix the problem associated with the physical influence scheme, Karimian and Schneider 
(Karimian, 1994a) accept the notion of dual velocities at the integration points and employ a 
combination of momentum and continuity equations to provide a closure for the convecting 
velocity ( û ): 
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They also use Eq. (27) for convected velocity ( eu ) and Eq. (25) as the closure for ep . 
Numerical experiments with the 1-D test case show that this method works well and 
successfully suppresses any oscillatory numerical solution even in time-depended all speed 
flows (Karimian, 1994b). This method has also been extended to 2D flows on structured 
(Alisadeghi et al., 2011a) and unstructured (Alisadeghi et al., 2011b) grids.  

Darbandi (Darbandi et al., 1997) proposed a pressure-based all speed method similar to the 
Karimian's method, in which the momentum components ( f u ) are used as the flow 
dependent variables instead of the velocity components ( u ). They used the following form of 
the momentum equation as the physical constraint on the integration point convected velocity: 
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Where f u  is the momentum variable. Appropriate discretization of Eq.(30) leads to: 
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In this method, a combination of momentum and continuity equations is used to constrain 
the integration point convecting velocity: 
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Karimian's method, in which the momentum components ( f u ) are used as the flow 
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In this method, a combination of momentum and continuity equations is used to constrain 
the integration point convecting velocity: 
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Where   is a user-defined weight factor. This equation can be discretized to obtain the 
following formula: 
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In this method, like all other methods discussed so far, Eq. (25) is used as the closure for ep . 
Numerical results have shown that this set of closure equations removes the possibility of a 
checkerboard solution and provides strong coupling between pressure and velocity fields. 
Another analysis has shown that the use of momentum-variable formulation, instead of 
primitive variable formulation, improves the stability and accuracy of the solution especially 
in the solution of compressible flows with shock waves (Darbandi, 2004). 

3.6 Method of proper closure equations (MPCE) 

3.6.1 One-dimensional incompressible flow 

Ashrafizadeh et al. (Ashrafizadeh et al., 2009) have shown that it is possible to develop a co-
located numerical scheme without resorting to the convecting and convected velocity 
concepts, originally proposed by Rhie and Chow. The proposed method, called the method of 
proper closure equations (MPCE), employs a proper set of physically relevant equations to 
constrain the velocity and pressure at integration points. It has already been successfully 
implemented and used in the solution of steady 1-D inviscid incompressible and compressible 
flow problems (Ashrafizadeh et al., 2008, 2009) and steady 2-D viscous incompressible flow 
problems on both structured and unstructured grids (Alinia, 2011; Bakhtiari, 2008). 

In this method, following the physical-based approach proposed by Schneider and Raw 
(Schneider et al., 1987) and modifications proposed by Karimian and Darbandi (Darbandi, 
1997; Karimian, 1994a), a combination of non-conservative form of momentum and 
continuity equations is used to obtain an interpolation formula for the ip-velocity:  

     0u ee emomentum Eq. u continuity Eq.   (34) 

which results in: 
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Here uS and mS are artificial momentum and mass source terms, and a  and u  are the ip-
cross sectional area and a scheme control parameter respectively. There are options available 
to the user at this stage. Using UDS or CDS Schemes for terms 1 and 2 and 0,  1,  2u  , as 
discussed in (Rezvani, 2008), different formulas for eu  can be obtained. The most common 
formula is as follows: 
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As mentioned earlier, the classical closure choice for the integration point pressure has 
been the linear approximation, i.e.  Eq.(25). However, the MPCE employs relevant 
governing equations to obtain the required closures for all integration point quantities, 
including the pressure. The momentum equation is a natural choice for obtaining a proper 
closure equation for ep . However, only the pressure gradient appears in the momentum 
equation and CDS-based discretization, physically proper for the pressure, results in 
wiggly solutions. As discussed in (Rezvani, 2010), by taking the divergence of the 
momentum equation, a pressure poisson equation for the pressure is obtained. The 
pressure Poisson equation is an appropriate constraint equation for the pressure 
discretization. Therefore, as compared to Eq. (34), the following closure equation is 
proposed for the integration point pressure: 
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Which results in: 
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Where 0P   is a scheme control parameter. Numerical test results have shown that the 
method works well with any nonzero positive value for P (Rezvani-2010). 

3.6.2 One-dimensional compressible flow 

Extension of the MPCE to compressible flow problems requires two additional tasks. First, 
the energy equation should also be solved in order to find the temperature filed. Second, 
depending on the chosen unknown variables, proper linearization is crucially important. 
Following approaches presented in (Darbandi et al., 2007; Karimian, 1994a), the Newton-
Raphson linearization strategy is employed to linearize the nonlinear terms in the balance 
equations. For example, term pu  in the energy equation is linearized as follows: 

        pu Rt u u Rt R ft R ft tf ft        (39) 

Closure equation for ef  can be easily obtained using the unsteady-compressible form of Eq. 
(34). First order upwind difference scheme is used for the discretization of momentum 
variable gradient terms. Use of 1u   in the general form of the closure for the momentum 
variable at the east face of the cell, results in the following formula for ef : 
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Where, C is the Courant number defined as C u x   and superscript   stands for the 
values from previous time step. 
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Where 0P   is a scheme control parameter. Numerical test results have shown that the 
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Where, C is the Courant number defined as C u x   and superscript   stands for the 
values from previous time step. 
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Similarly, Closure equation for ep  can be obtained using the unsteady-compressible form of 
Eq. (37) as follow: 
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The non-conservative form of the continuity equation in Eq. (6), in the absence of its source 
term, is proposed as a proper closure equation for the density (Darbandi et al., 1997; 
Karimian, 1994a). Here, in order to control the stability and accuracy of the code in both 
subsonic and supersonic regimes, a smart blending factor (  ) is used which makes the 
equation hyperbolic in supersonic flow regions [Karimian, 1994a]: 
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where eM  is local Mach number at the “east” integration point and m=2 is suggested for 
the superscript m. 

The final required closure equation is an interpolation formula for the integration point 
temperature. Here, the non-conservative form of the energy equation in the absence of the 
source term is a natural candidate (Darbandi et al., 1997) and one obtains the following 
expression: 
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The final discrete computational molecules for solving velocity, pressure and temperature 
fields are obtained after closure equations are substituted in Eq. (9): 

 pp pp pf pf pt pt p
P nb P nb P nbP P P Pnb nb nba P a P a F a F a T a T b         (45) 

 ff ff fp fp ft ft f
P nb P nb P nbP P P Pnb nb nba F a F a P a P a T a T b         (46) 

 tf tf tp tptt tt t
P P nb nb P nb P nb PP Pnb nba T a T a F a F a P a P b         (47) 

In this linear algebraic set, , ,...ff fp
P Pa a  are the influence coefficients and , ,...p f

P Pb b  are right 
hand side constant terms.  Subscript nb  stands for the immediate neighbors of node P  (i.e. 
W and E ). The first superscript refers to the relevant equation and the second superscript 
points to the relevant physical variable.  The assembled linear equations can be solved using 
any direct or iterative solver. Here, the Gauss elimination method is used to solve the set of 
simultaneous equations. The coupled set of the algebraic equations might also be solved 
using a semi-implicit (segregated) solution strategy.  
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3.6.3 Two-dimensional incompressible flow 

The MPCE has also been used to solve 2D, incompressible laminar flows on both structured 
and unstructured grids (Bakhtiari, 2008; Alinia, 2011). The implementation follows the basic 
philosophy already described in a 1D context. However, more complex interpolation 
formulas are required to take into account the effect of cell shape and orientation on balance 
equations. Implementation details are not discussed here for the sake of brevity.   

4. One-dimensional test cases 
4.1 Incompressible flow 

Performance of the MPCE for solving incompressible and compressible flows is examined 
here through two different test cases. Steady incompressible flow in a constant area duct is 
the first test case which is used to examine the pressure-velocity coupling in MPCE. Quasi 
1D flow in a convergent-divergent nozzle is another test case used to check the accuracy of 
the proposed method in inviscid incompressible flow problems. 

4.1.1 Steady incompressible flow in a constant area duct 

The 1D incompressible flow in a constant area duct is used to see if oscillatory solutions appear 
when the MPCE equations govern the discrete flow field. For this purpose, artificial element 
and volume sources/sinks are used in continuity and momentum equations. In a domain with 
30 nodes, the artificial element source terms are located at the 10th and 20th cell-faces and 
control volume source terms are activated at the 10th and 20th nodal positions.  

Numerical results show that the effects of sharp variations in velocity and pressure due to the 
artificial source terms are quickly damped out and MPCE works well even with 0p  . 
Figures 5 and 6 show the effects of control-volume artificial sources on the numerical solution. 
These results show that numerical oscillations are developed in both velocity and pressure 
fields for 0p  . However, oscillations are strongly damped for any non-zero value of p . 
Note that the notation “N-D” in these figures stands for “Non-Dimensional” and velocity is 
normalized with the inlet velocity and pressure is normalized using the exit pressure. 

  
Fig. 5. Velocity and pressure fields in a constant area duct with control-volume mass 
source/sink. 
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Fig. 6. Velocity and pressure fields in a constant area duct with control-volume momentum 
source/sink. 

4.1.2 The quasi-1-D test case 

Ideal flow in a converging-diverging nozzle is another test case to examine the performance 
of MPCE. Figure 7 compares the non-dimensional velocity and pressure distributions along 
the nozzle with the analytical solutions. Excellent agreement is observed. 

Fig. 7. Velocity and pressure field in a 1D converging-diverging nozzle ( 1p  ). 

4.2 Compressible flow 

For compressible flow, performance of MPCE is examined in three different test problems. 
Steady subsonic compressible flow in convergent-divergent nozzle, steady compressible 
flow with normal shock in convergent-divergent nozzle and unsteady compressible flow 
with normal shock and expansion waves in a shock tube.  

4.2.1 Steady subsonic compressible flow in a convergent-divergent nozzle 

Results of solving subsonic compressible flow in a symmetric convergent-divergent nozzle 
with aspect ratio 2 using 51 nodes is shown in this section. For the boundary condition 
implementation, mass flow rate and the static temperature are specified at the inlet and the 
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static pressure is provided at the outlet. In order to assess the accuracy of the proposed 
method, numerical solutions corresponding to inlet Mach numbers of 0.05, 0.1, 0.15, 0.2, and 
0.25 are presented in Fig. 8. Flow with the inlet Mach number of 0.3059, for which the nozzle 
is choked, is also considered. In this test case, 1p   is used and pressure, temperature, and 
density are nondimensionalized with the outlet pressure, inlet temperature, and inlet 
density, respectively. 

4.2.2 Steady flow with shock waves 

In the divergent section of the previous test case, normal shock waves appear for certain 
inlet boundary conditions while the position and the strength of the shock can be controlled 
by regulating the back pressure. Figure 9 presents the Mach number, non-dimensional 
pressure, temperature and density distributions along the nozzle for the pressure ratios 
( outlet inletP P ) of 0.65, 0.75 and 0.85 using 81 nodes. It is seen that the normal shock is well 
captured using a few nodes in all cases and no numerical oscillation is developed along the 
nozzle. Note that this results are computed using 2m   in Eq.(43) and p  takes values 
lower than 1 in the supersonic parts of the solution domain and values higher than 1 in the 
subsonic regions.  

 

 
Fig. 8. Steady subsonic compressible flow in a convergent-divergent nozzle. 
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4.2.3 Unsteady compressible flow in a shock tube 

As the final unsteady 1D test case with both compression and expansion waves, shock tube 
problem is discussed. The geometry shown in Fig.10 is a constant area duct divided into two 
regions separated by a diaphragm at the middle of the duct. At 0   the gas temperature is 
298 K, the pressure at the right side of the membrane is 100 KPa and the pressure at the left 
side of the membrane is 1000 KPa.  The time step for the marching numerical solution is 
equal to 64 10     seconds. Figure 11 shows the numerically calculated distributions of 
Mach number, non-dimensional pressure, temperature, and density after 

30.42 10 seconds. Here, the Courant number is 0.229 which is computed using the 
maximum magnitude of velocity in the domain. The pressure, temperature and density are 
non-dimensionalized using the low pressure side values. Good agreement with the exact 
solution is observed.  

 

 
Fig. 9. Steady flow with shock waves in a convergent-divergent nozzle. 

5. Two-dimensional incompressible flow test cases 
The MPCE has also been used to solve many 2D benchmark test problems. Here, only the 
results for two standard test cases are presented. 
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Fig. 10. Geometry and the flow pattern for the shock tube problem. 

 

 
Fig. 11. Results of unsteady compressible flow in shock tube 
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5.1 Flow in a 2D lid-driven cavity 

Flow in a lid-driven cavity, shown in Fig. 12, is a widely used test case for 2D steady 
incompressible flows governed by Navier-Stokes equations. Numerical solution via MPCE 
on an unstructured grid with 12656 triangular elements, shown in Fig. 13, is compared to the 
numerical results of Erturk (Erturk, 2005). Flow patterns at different Reynolds numbers are 
shown in Fig. 14. Excellent agreement between the calculated velocities at cavity centerlines 
and the benchmark results in Fig. 14 is also observed.  

 
Fig. 12. Lid-driven cavity boundary conditions with an schematic of flow features. 

 
Fig. 13. Generated unstructured mesh for lid-driven cavity test case. 

5.2 Flow over a backward facing-step 

The backward step flow is another commonly used test case for numerical solution 
algorithms. The geometry of this test case is shown in Fig. 15. Forty nodes are used across 
the channel, 300 nodes are used from the step to 30h and 50 nodes are used from 30h to 50h 
along the channel. Nodes are distributed uniformly. Figure 16 shows the calculated 
streamlines at Re=800, in which a recirculation zone appears at the upper wall.  Normalized 
locations of the re-attachment point at the lower wall (X1), the separation point at the upper 
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wall (X2), and the re-attachment point at the upper wall (X3) are compared with the results 
obtained by Gartling (Gartling, 1990) for flow at Re = 800. Comparison results are shown in 
Table 1 and excellent agreement is obvious (Erturk, 2008). A comparison has also been made 
between numerical results via MPCE and the benchmark results in (Gartling, 1990) and 
shown in Fig. 18. Again, excellent agreement is observed. Similar calculations and 
comparisons have also been made for a backward-step flow model with an inlet channel. 
Excellent results, not shown here, are also obtained in this test case. 

 
(a) Streamlines at Re = 1000.  (b) Velocity Profiles at Re = 1000. 

 
(c) Streamlines at Re = 5000.  (d) Velocity Profiles at Re = 5000. 
 

 
Fig. 14. Schematic view of the backward facing-step flow problem. 
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Fig. 15. Calculated streamlines in the backward-step flow problem at Re = 800. 

X3 – X2 X3 X2 X1  
11.2565 20.80939.552812.0419MPCE 
11.26 20.969.7012.20Erturk 

Table 1. Comparison of normalized X1, X2 and X3 locations and length of the first 
recirculating region on the upper wall (X3 – X2) for Re = 800 

 
Fig. 16. Horizontal velocity profiles across the channel at X/h = 14 and 30 for Re = 800. 

6. Conclusion 
Different pressure-based finite volume discretization schemes for the solution of fluid flow 
problems are explained and compared in the context of co-located grid arrangements and a 
new scheme, called the Method of Proper Closure Equations (MPCE), is proposed. The 
proposed method is the only discretization scheme on co-located grids which employs only 
one definition for the integration point velocity and successfully solves incompressible as 
well as compressible flow problems. Simple one-dimensional test cases are presented to 
discuss different available schemes and the building blocks of MPCE. Implementation of the 
MPCE on 2D structured and unstructured grids has also been carried out but the details are 
not reported here for the sake of brevity. Numerical solutions via MPCE, however, are 
presented for both 1D and 2D problems which clearly show the satisfactory performance of 
the MPCE in the numerical solution of fluid flow problems.    
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1. Introduction

Conservation laws are ubiquitous in continuum physics, they occur in disciplines like fluid
mechanics, combustion theory, plasma physics, etc. These conservation laws are often
of advection-diffusion-reaction type, describing the interplay between different processes
such as advection or drift, diffusion or conduction and chemical reactions or ionization.
Examples are the conservation equations for reacting flow [8] or plasmas [9]. Sometimes,
these conservation laws hold in spherical or cylindrical geometries, and in such cases it is
convenient to reformulate the conservation laws in the corresponding coordinate system. In
combustion theory, for example, the study of spherical and cylindrical flames is useful for
finding parameters such as burning velocity or flame curvature [1].

For space discretization of these conservation laws we consider the finite volume method in
combination with the complete flux scheme to approximate the fluxes at the cell interfaces.
The complete flux scheme for Cartesian coordinates is introduced in [13]. The purpose of this
contribution is to generalize the complete flux scheme to conservation laws in spherical or
cylindrical coordinates.

The development of the complete flux scheme is inspired by papers by Thiart [10, 11]. The
basic idea of the complete flux scheme is to compute the numerical flux at a cell interface
from a local (one-dimensional) boundary value problem for the entire equation, including
the source term. As such, the scheme is a generalization of the exponential scheme, where
the flux is determined from a local, constant coefficient, homogeneous equation [4, 6]. Our
approach is to first derive an integral representation for the flux, and subsequently apply
suitable quadrature rules to obtain the numerical flux. As a consequence, the numerical
flux is the superposition of a homogeneous and inhomogeneous flux, corresponding to the
advection-diffusion operator and the source term, respectively. The resulting discretization
has a three-point coupling in each spatial direction, shows uniform second order convergence
and virtually never generates spurious oscillations [13]. The purpose of this chapter is
to extend this approach to conservation laws, where the advection-diffusion operation is
formulated in spherical or cylindrical coordinates. Another important issue is the extension
to time-dependent problems. The key idea is then to consider the time derivative as a source
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approach is to first derive an integral representation for the flux, and subsequently apply
suitable quadrature rules to obtain the numerical flux. As a consequence, the numerical
flux is the superposition of a homogeneous and inhomogeneous flux, corresponding to the
advection-diffusion operator and the source term, respectively. The resulting discretization
has a three-point coupling in each spatial direction, shows uniform second order convergence
and virtually never generates spurious oscillations [13]. The purpose of this chapter is
to extend this approach to conservation laws, where the advection-diffusion operation is
formulated in spherical or cylindrical coordinates. Another important issue is the extension
to time-dependent problems. The key idea is then to consider the time derivative as a source
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term, and to include it in the inhomogeneous flux. The resulting implicit ODE system often
has small dissipation and dispersion errors [15].

We have organised our paper as follows. The finite volume method for conservation laws in
spherical and cylindrical coordinates is outlined in Section 2. In Section 3 we briefly repeat
the complete flux scheme for stationary, one-dimensional conservation laws in Cartesian
coordinates. The extension to spherical coordinates is presented in Section 4, and the next
logical extension to cylindrical coordinates, is discussed in Section 5. How to deal with time
dependent conservation laws is demonstrated in Section 6 for spherical coordinates. As an
example, we present in Section 7 the numerical solution of a premixed, spherical flame, and
finally in Section 8, we give a summary and formulate conclusions.

2. Finite volume discretization

In this section we outline the finite volume method (FVM) for a generic conservation law of
advection-diffusion-reaction type, defined on a domain in Rd (d = 1, 2, 3). Therefore, consider
the following model equation

∂ϕ

∂t
+∇·(uϕ − ε∇ϕ) = s, (2.1)

where u is a mass flux or (drift) velocity, ε ≥ εmin > 0 a diffusion coefficient, and s a
source term describing, e.g., chemical reactions or ionization. The unknown ϕ is then the
mass fraction of one of the constituent species in a chemically reacting flow or a plasma.
The parameters ε and s are usually (complicated) functions of ϕ whereas the vector field u

has to be computed from (flow) equations corresponding to (2.1). However, for the sake of
discretization, we will consider these parameters as given functions of the spatial coordinates
x and the time t. Moreover, in the derivation of the numerical flux, we assume that the vector
field u is incompressible, i.e.,

∇·u = 0. (2.2)

Equation (2.1) is a prototype of a conservation law for a mixture, defining the mass balance
for ϕ, and equation (2.2) is a simplified version of the corresponding continuity equation,
describing conservation of mass or charge in the mixture.

Associated with equation (2.1) we introduce the flux vector f , defined by

f := uϕ − ε∇ϕ. (2.3)

Consequently, equation (2.1) can be concisely written as ∂ϕ/∂t +∇·f = s. Integrating this
equation over a fixed domain Ω ⊂ Rd and applying Gauss’ theorem we obtain the integral
form of the conservation law, i.e.,

d
dt

∫

Ω
ϕ dV +

∮

Γ
f ·ndS =

∫

Ω
s dV, (2.4)

where n is the outward unit normal on the boundary Γ = ∂Ω. This equation is the basic
conservation law, which reduces to (2.1) provided ϕ is smooth enough.
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In the FVM we cover the domain with a finite number of disjunct control volumes or cells
Ωj and impose the integral form (2.4) for each of these cells. The index j is an index vector
for multi-dimensional problems. We restrict ourselves to uniform tensor product grids for
an orthogonal, curvilinear coordinate system ξ =

(
ξ1, ξ2, ξ3) and adopt the vertex-centred

approach [16], i.e., we first choose the grid points ξj =
(
ξ1

j , ξ2
k , ξ3

l
)

with j = (j, k, l),
where the unknown ϕ has to be approximated and subsequently choose the control volume
Ωj =

[
ξ1

j−1/2, ξ1
j+1/2

] × [
ξ2

k−1/2, ξ2
k+1/2

] × [
ξ3

l−1/2, ξ3
l+1/2

]
with ξ1

j±1/2 := 1
2
(
ξ1

j + ξ1
j±1

)
etc.

The boundary Γj = ∂Ωj is then the union of six interface surfaces Γj,j±ei (i = 1, 2, 3)
where, e.g., Γj,j+e1 := {ξ1

j+1/2} ×
[
ξ2

k−1/2, ξ2
k+1/2

]× [
ξ3

l−1/2, ξ3
l+1/2

]
is the interface through(

ξ1
j+1/2, ξ2

k , ξ3
l
)

and perpendicular to the line segment connecting ξj and ξj+e1 . The (integral)
conservation law for such a control volume reads

d
dt

∫

Ωj

ϕ dV + ∑
k∈N (j)

∫

Γj,k

f ·ndS =
∫

Ωj

s dV, (2.5)

where N (j) = {j± ei | i = 1, 2, 3} is the index set of neighbouring grid points of ξj and
where Γj,k is the face of the boundary Γj connecting the adjacent cells Ωj and Ωk. The unit
normal n on Γj,k is directed from ξj to ξk. Obviously, the volume element dV and the surface
elements dS have to be expressed in terms of the curvilinear coordinates ξ. Approximating
the volume and surface integrals in (2.5) by the midpoint rule, we obtain the following
semi-discrete conservation law for ϕj(t) ≈ ϕ(ξj, t), i.e.,

ϕ̇j(t)Vj + ∑
k∈N (j)

(F ·n)j,k Aj,k = sj(t)Vj, (2.6)

where Vj is the volume of Ωj, Aj,k the area of Γj,k, ϕ̇j(t) ≈ ∂ϕ/∂t(ξj, t) and sj(t) = s(ξj, t).
Furthermore, (F ·n)j,k is the normal component on Γj,k, at the interface point ξj,k := 1

2
(
ξj +

ξk
)

of the numerical flux vector F , approximating (f ·n)(ξj,k, t
)
. Obviously, for stationary

problems the time derivatives in (2.5) and (2.6) can be discarded.

In this paper we consider the formulation of the conservation law (2.1) in terms of the
spherical coordinates (r, φ, θ) and the cylindrical coordinates (r, θ, z). In the first case, we
assume spherical symmetry, i.e., ϕ = ϕ(r, t) and f = f (r, t)er. As a typical example we
mention a spherical flame; see Section 7. A control volume is then given by the spherical shell
Ωj = [rj−1/2, rj+1/2]× [0, π]× [0, 2π) and the surface integral over Γj = ∂Ωj can be written as

∮

Γj

f ·ndS =
∫

r=rj+1/2

f ·er dS −
∫

r=rj−1/2

f ·er dS

= 4π
(
r2

j+1/2 f (rj+1/2, t)− r2
j−1/2 f (rj−1/2, t)

)
,

(2.7)

where we used the shorthand notation r = rj+1/2 to denote the sphere {rj+1/2} ×
[
0, π

] ×[
0, 2π

)
. Note that this expression for the surface integral of the flux is exact and replaces the

second term in (2.5). For the approximation of the volume integrals in (2.5) we apply the
midpoint rule, so we find

∫

Ωj

s dV .
= 4

3 π
(
r3

j+1/2 − r3
j−1/2

)
sj(t). (2.8)
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term, and to include it in the inhomogeneous flux. The resulting implicit ODE system often
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where u is a mass flux or (drift) velocity, ε ≥ εmin > 0 a diffusion coefficient, and s a
source term describing, e.g., chemical reactions or ionization. The unknown ϕ is then the
mass fraction of one of the constituent species in a chemically reacting flow or a plasma.
The parameters ε and s are usually (complicated) functions of ϕ whereas the vector field u

has to be computed from (flow) equations corresponding to (2.1). However, for the sake of
discretization, we will consider these parameters as given functions of the spatial coordinates
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∇·u = 0. (2.2)
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describing conservation of mass or charge in the mixture.

Associated with equation (2.1) we introduce the flux vector f , defined by
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Consequently, equation (2.1) can be concisely written as ∂ϕ/∂t +∇·f = s. Integrating this
equation over a fixed domain Ω ⊂ Rd and applying Gauss’ theorem we obtain the integral
form of the conservation law, i.e.,

d
dt
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Ω
ϕ dV +
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Γ
f ·ndS =

∫

Ω
s dV, (2.4)

where n is the outward unit normal on the boundary Γ = ∂Ω. This equation is the basic
conservation law, which reduces to (2.1) provided ϕ is smooth enough.
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Combining (2.5), (2.7) and (2.8) and using the relation x3 − y3 = (x − y)(x2 + xy + y2) we
obtain the semidiscrete conservation law

Δr
(
r2

j +
1

12 Δr2) ϕ̇j(t) + r2
j+1/2Fj+1/2(t)− r2

j−1/2Fj−1/2(t) = Δr
(
r2

j +
1
12 Δr2) sj(t), (2.9)

where Fj+1/2(t) denotes the numerical flux approximating f (rj+1/2, t) etc..

Next, for cylindrical coordinates, we assume cylindrical symmetry, i.e., ϕ = ϕ(r, z, t) and
f = fr(r, z, t)er + fz(r, z, t)ez. In this case a control volume is the cylindrical shell Ωj,l =
[rj−1/2, rj+1/2]× [0, 2π)× [zl−1/2, zl+1/2]. The surface integral of the flux over the boundary
Γj,l = ∂Ωj,l contains four terms and is given by

∮

Γj,l

f ·ndS =
∫

r=rj+1/2

fr dS −
∫

r=rj−1/2

fr dS +
∫

z=zl+1/2

fz dS −
∫

z=zl−1/2

fz dS

.
= 2πΔz

(
rj+1/2 fr,j+1/2,l(t)− rj−1/2 fr,j−1/2,l(t)

)
+

2πΔr rj
(

fz,j,l+1/2(t)− fz,j,l−1/2(t)
)
,

(2.10)

where for example r = rj+1/2 denotes the interface {rj+1/2} ×
[
0, 2π

)× [
zl−1/2, zl+1/2

]
, and

likewise for all other interfaces. For the approximation of the volume integrals in (2.5) we use
once more the midpoint rule, giving the approximation

∫

Ωj,l

s dV .
= 2πΔrΔz rjsj,l(t). (2.11)

Analogous to the previous case, combining (2.5), (2.10) and (2.11) we obtain the semidiscrete
conservation law

ΔrΔz rj ϕ̇j,l(t) + Δz
(
rj+1/2Fr,j+1/2,l(t)− rj−1/2Fr,j−1/2,l(t)

)
+

Δr rj
(

Fz,j,l+1/2(t)− Fz,j,l−1/2(t)
)
= ΔrΔz rj sj,l(t),

(2.12)

where Fr,j+1/2,l(t) is the numerical flux approximating fr(rj+1/2, zl , t) and likewise for
Fz,j,l+1/2(t). In the following we suppress the explicit dependence on t.

The FVM has to be completed with expressions for the numerical flux. We require that (F ·
n)j,k depends on ϕ and a modified source term s̃ in the neighbouring grid points xj and xk,
i.e., we are looking for an expression of the form

(F ·n)j,k = αj,kϕj − βj,kϕk + dj,k
(
γj,k s̃j + δj,k s̃k

)
, (2.13)

where dj,k := |xj − xk|. The variable s̃ includes the source term and an additional terms
like the cross flux or time derivative, when appropriate. The derivation of expressions for the
numerical flux is detailed in the next sections.

3. Numerical flux for Cartesian coordinates

In this section we outline the derivation of the complete flux scheme for the steady,
one-dimensional conservation laws in Cartesian coordinates, which is based on the integral
representation of the flux. The derivation is a summary of the theory in [3, 13].

86 Finite Volume Method – Powerful Means of Engineering Design The Complete Flux Scheme for Conservation Laws in Curvilinear Coordinates 5

−10 −8 −6 −4 −2 0 2 4 6 8 10

2

4

6

8

10

−10 −8 −6 −4 −2 0 2 4 6 8 10
 

 

0.2

 

0.4

 

0.6

 

0.8

 

1

Fig. 1. The Bernoulli function B (left) and the function W (right).

The conservation law can be written as d f /dx = s with f = uϕ − ε dϕ/dx. The integral
representation of the flux f j+1/2 := f (xj+1/2) at the cell edge xj+1/2 located between the grid
points xj and xj+1 is based on the following model boundary value problem (BVP) for the
variable ϕ:

d
dx

(
uϕ − ε

dϕ

dx

)
= s, xj < x < xj+1, (3.1a)

ϕ(xj) = ϕj, ϕ(xj+1) = ϕj+1. (3.1b)

In accordance with (2.13), we derive an expression for the flux f j+1/2 corresponding to the
solution of the inhomogeneous BVP (3.1), implying that f j+1/2 not only depends on u and ε,
but also on the source term s. It is convenient to introduce the variables a, P, A and S for
x ∈ (xj, xj+1) by

a :=
u
ε

, P := aΔx, A(x) :=
∫ x

xj+1/2

a(ξ)dξ, S(x) :=
∫ x

xj+1/2

s(ξ) dξ. (3.2)

Here, P and A are the Peclet function and Peclet integral, respectively, generalizing the
well-known (numerical) Peclet number. Integrating the differential equation d f /dx = s from
xj+1/2 to x ∈ (xj, xj+1) we get the integral balance f (x)− f j+1/2 = S(x). Using the definition
of A in (3.2), it is clear that the flux can be rewritten as f = −ε eA d

(
e−A ϕ

)
/dx. Substituting

this into the integral balance, isolating the derivative d
(
e−A ϕ

)
/dx, and integrating from xj to

xj+1 we obtain the following expressions for the flux:

fj+1/2 = f h
j+1/2 + f i

j+1/2, (3.3a)

f h
j+1/2 =

(
e−Aj ϕj − e−Aj+1 ϕj+1

) /∫ xj+1

xj

ε−1e−A dx, (3.3b)

f i
j+1/2 = −

∫ xj+1

xj

ε−1e−AS dx
/∫ xj+1

xj

ε−1e−A dx, (3.3c)

where f h
j+1/2 and f i

j+1/2 are the homogeneous and inhomogeneous part, corresponding to the
homogeneous and particular solution of (3.1), respectively.

In the following we assume that u and ε are constant; extension to variable coefficients
is discussed in [3, 13]. In this case we can determine all integrals involved. Moreover,
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Combining (2.5), (2.7) and (2.8) and using the relation x3 − y3 = (x − y)(x2 + xy + y2) we
obtain the semidiscrete conservation law

Δr
(
r2

j +
1

12 Δr2) ϕ̇j(t) + r2
j+1/2Fj+1/2(t)− r2

j−1/2Fj−1/2(t) = Δr
(
r2

j +
1
12 Δr2) sj(t), (2.9)

where Fj+1/2(t) denotes the numerical flux approximating f (rj+1/2, t) etc..

Next, for cylindrical coordinates, we assume cylindrical symmetry, i.e., ϕ = ϕ(r, z, t) and
f = fr(r, z, t)er + fz(r, z, t)ez. In this case a control volume is the cylindrical shell Ωj,l =
[rj−1/2, rj+1/2]× [0, 2π)× [zl−1/2, zl+1/2]. The surface integral of the flux over the boundary
Γj,l = ∂Ωj,l contains four terms and is given by

∮

Γj,l

f ·ndS =
∫

r=rj+1/2

fr dS −
∫

r=rj−1/2

fr dS +
∫

z=zl+1/2

fz dS −
∫

z=zl−1/2

fz dS

.
= 2πΔz

(
rj+1/2 fr,j+1/2,l(t)− rj−1/2 fr,j−1/2,l(t)

)
+

2πΔr rj
(

fz,j,l+1/2(t)− fz,j,l−1/2(t)
)
,

(2.10)

where for example r = rj+1/2 denotes the interface {rj+1/2} ×
[
0, 2π

)× [
zl−1/2, zl+1/2

]
, and

likewise for all other interfaces. For the approximation of the volume integrals in (2.5) we use
once more the midpoint rule, giving the approximation

∫

Ωj,l

s dV .
= 2πΔrΔz rjsj,l(t). (2.11)

Analogous to the previous case, combining (2.5), (2.10) and (2.11) we obtain the semidiscrete
conservation law

ΔrΔz rj ϕ̇j,l(t) + Δz
(
rj+1/2Fr,j+1/2,l(t)− rj−1/2Fr,j−1/2,l(t)

)
+

Δr rj
(

Fz,j,l+1/2(t)− Fz,j,l−1/2(t)
)
= ΔrΔz rj sj,l(t),

(2.12)

where Fr,j+1/2,l(t) is the numerical flux approximating fr(rj+1/2, zl , t) and likewise for
Fz,j,l+1/2(t). In the following we suppress the explicit dependence on t.

The FVM has to be completed with expressions for the numerical flux. We require that (F ·
n)j,k depends on ϕ and a modified source term s̃ in the neighbouring grid points xj and xk,
i.e., we are looking for an expression of the form

(F ·n)j,k = αj,kϕj − βj,kϕk + dj,k
(
γj,k s̃j + δj,k s̃k

)
, (2.13)

where dj,k := |xj − xk|. The variable s̃ includes the source term and an additional terms
like the cross flux or time derivative, when appropriate. The derivation of expressions for the
numerical flux is detailed in the next sections.

3. Numerical flux for Cartesian coordinates

In this section we outline the derivation of the complete flux scheme for the steady,
one-dimensional conservation laws in Cartesian coordinates, which is based on the integral
representation of the flux. The derivation is a summary of the theory in [3, 13].

86 Finite Volume Method – Powerful Means of Engineering Design The Complete Flux Scheme for Conservation Laws in Curvilinear Coordinates 5

−10 −8 −6 −4 −2 0 2 4 6 8 10

2

4

6

8

10

−10 −8 −6 −4 −2 0 2 4 6 8 10
 

 

0.2

 

0.4

 

0.6

 

0.8

 

1

Fig. 1. The Bernoulli function B (left) and the function W (right).

The conservation law can be written as d f /dx = s with f = uϕ − ε dϕ/dx. The integral
representation of the flux f j+1/2 := f (xj+1/2) at the cell edge xj+1/2 located between the grid
points xj and xj+1 is based on the following model boundary value problem (BVP) for the
variable ϕ:
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)
= s, xj < x < xj+1, (3.1a)

ϕ(xj) = ϕj, ϕ(xj+1) = ϕj+1. (3.1b)

In accordance with (2.13), we derive an expression for the flux f j+1/2 corresponding to the
solution of the inhomogeneous BVP (3.1), implying that f j+1/2 not only depends on u and ε,
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x ∈ (xj, xj+1) by

a :=
u
ε

, P := aΔx, A(x) :=
∫ x

xj+1/2

a(ξ)dξ, S(x) :=
∫ x

xj+1/2

s(ξ) dξ. (3.2)
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(
e−A ϕ

)
/dx. Substituting

this into the integral balance, isolating the derivative d
(
e−A ϕ

)
/dx, and integrating from xj to

xj+1 we obtain the following expressions for the flux:

fj+1/2 = f h
j+1/2 + f i

j+1/2, (3.3a)

f h
j+1/2 =

(
e−Aj ϕj − e−Aj+1 ϕj+1

) /∫ xj+1

xj
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xj

ε−1e−AS dx
/∫ xj+1

xj
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where f h
j+1/2 and f i

j+1/2 are the homogeneous and inhomogeneous part, corresponding to the
homogeneous and particular solution of (3.1), respectively.

In the following we assume that u and ε are constant; extension to variable coefficients
is discussed in [3, 13]. In this case we can determine all integrals involved. Moreover,
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substituting the expression for S(x) in (3.3c) and changing the order of integration, we can
derive an alternative expression for the inhomogeneous flux. This way we obtain

f h
j+1/2 =

ε

Δx
�

B(−P)ϕj − B(P)ϕj+1
�
, (3.4a)

f i
j+1/2 = Δx

� 1

0
G(σ; P, σj+1/2)s(x(σ))dσ, x(σ) = xj + σΔx. (3.4b)

Here B(z) := z/
�
ez − 1

�
is the generating function of the Bernoulli numbers, in short Bernoulli

function, see Figure 1, P := uΔx/ε is the Peclet number, and G = G(σ; P, σb) is the Green’s
function for the flux, given by

G(σ; P, σb) :=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 − e−Pσ

1 − e−P for 0 ≤ σ ≤ σb,

−1 − eP(1−σ)

1 − eP for σb < σ ≤ 1,

(3.5)

see Figure 2. Note that G relates the flux to the source term and is different from the
usual Green’s function, which relates the solution to the source term. G is a function of the
normalized coordinate σ = (x − xj)/Δx (0 ≤ σ ≤ 1) between xj and xj+1 and depends on the
parameters P and σb, the σ-coordinate of the cell boundary. Obviously, σj+1/2 = σ

�
xj+1/2

�
=

1
2 . For the constant coefficient homogeneous flux we introduce the function

f h
j+1/2 = Fh�ε/Δx, P; ϕj, ϕj+1

�
:=

ε

Δx
�

B(−P)ϕj − B(P)ϕj+1
�
, (3.6)

to denote the dependence of f h
j+1/2 on the parameter values ε/Δx and P and on the function

values ϕj and ϕj+1; cf. (2.13). The homogeneous flux (3.6) is the well-known exponential flux
[7].

Next, we give the numerical flux Fj+1/2. For the homogeneous component Fh
j+1/2 we

obviously take (3.6), i.e., Fh
j+1/2 = Fh�ε/Δx, P; ϕj, ϕj+1

�
. The approximation of the

inhomogeneous component f i
j+1/2 depends on P. For dominant diffusion (|P| � 1) the

average value of G(σ; P) is small, which implies that the inhomogeneous flux is of little
importance. On the contrary, for dominant advection (|P| � 1), the average value of G(σ; P)
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on the half interval upwind of σ = 1
2 , i.e., the interval [0, 1

2 ] for u > 0 and [ 1
2 , 1] for u < 0,

is much larger than the average value on the downwind half. This means that for dominant
advection the upwind value of s is the relevant one, and therefore we replace s(x(σ)) in (3.4b)
by its upwind value su,j+1/2, i.e., su,j+1/2 = sj if u ≥ 0 and su,j+1/2 = sj+1 if u < 0, and
evaluate the resulting integral exactly. This way we obtain

Fj+1/2 = Fh(ε/Δx, P; ϕj, ϕj+1
)
+ Δx

( 1
2 − W(P)

)
su,j+1/2, (3.7)

where W(z) :=
(
ez − 1 − z

)
/
(
z
(
ez − 1

))
; see Figure 1. From this expression it is once more

clear that the inhomogeneous component is only of importance for dominant advection. We
refer to (3.7) as the complete flux (CF) scheme, as opposed to the homogeneous flux (HF)
scheme for which we omit the inhomogeneous component.

4. Numerical flux for spherical coordinates

Our objective in this section is to extend the derivation in the previous section to spherical
coordinates, assuming spherical symmetry.

The stationary conservation law can be written as d
(
r2 f

)
/dr = r2s with f = uϕ − εdϕ/dr.

The expression for the flux f j+1/2 := f (rj+1/2) at the cell boundary rj+1/2 is based on the
following model BVP for the unknown ϕ:

1
r2

d
dr

(
r2
(

uϕ − ε
dϕ

dr

))
= s, rj < r < rj+1, (4.1a)

ϕ(rj) = ϕj, ϕ(rj+1) = ϕj+1, (4.1b)

where ε and s are sufficiently smooth functions of r. Moreover, we assume that u > 0 and, in
view of (2.2), u satisfies the relation

U := r2u = Const for r ∈ (rj, rj+1). (4.2)

Analogous to the flux in Cartesian coordinates, we derive an integral relation for the flux
that is the superposition of the homogeneous flux, depending on the advection-diffusion
operator, and the inhomogeneous flux, taking into account the effect of the source term s.
Approximating all integrals involved gives us the expression for the numerical flux Fj+1/2.

Analogous to (3.2) we introduce the variables D, a, P, A and S, defined by

D := r2 ε, a :=
U
D

, P := aΔr,

A(r) :=
∫ r

rj+1/2

a(η)dη, S(r) :=
∫ r

rj+1/2

η2s(η)dη.
(4.3)

We refer to P and A as the Peclet function and Peclet integral, respectively. Integrating the
conservation law from rj+1/2 to r ∈ (rj, rj+1), we obtain the relation

r2 f (r)− (
r2 f

)
(rj+1/2) = S(r). (4.4)
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on the half interval upwind of σ = 1
2 , i.e., the interval [0, 1

2 ] for u > 0 and [ 1
2 , 1] for u < 0,

is much larger than the average value on the downwind half. This means that for dominant
advection the upwind value of s is the relevant one, and therefore we replace s(x(σ)) in (3.4b)
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+ Δx

( 1
2 − W(P)

)
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where W(z) :=
(
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)
/
(
z
(
ez − 1

))
; see Figure 1. From this expression it is once more

clear that the inhomogeneous component is only of importance for dominant advection. We
refer to (3.7) as the complete flux (CF) scheme, as opposed to the homogeneous flux (HF)
scheme for which we omit the inhomogeneous component.

4. Numerical flux for spherical coordinates

Our objective in this section is to extend the derivation in the previous section to spherical
coordinates, assuming spherical symmetry.

The stationary conservation law can be written as d
(
r2 f

)
/dr = r2s with f = uϕ − εdϕ/dr.

The expression for the flux f j+1/2 := f (rj+1/2) at the cell boundary rj+1/2 is based on the
following model BVP for the unknown ϕ:
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where ε and s are sufficiently smooth functions of r. Moreover, we assume that u > 0 and, in
view of (2.2), u satisfies the relation

U := r2u = Const for r ∈ (rj, rj+1). (4.2)

Analogous to the flux in Cartesian coordinates, we derive an integral relation for the flux
that is the superposition of the homogeneous flux, depending on the advection-diffusion
operator, and the inhomogeneous flux, taking into account the effect of the source term s.
Approximating all integrals involved gives us the expression for the numerical flux Fj+1/2.

Analogous to (3.2) we introduce the variables D, a, P, A and S, defined by

D := r2 ε, a :=
U
D

, P := aΔr,

A(r) :=
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rj+1/2

a(η)dη, S(r) :=
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η2s(η)dη.
(4.3)

We refer to P and A as the Peclet function and Peclet integral, respectively. Integrating the
conservation law from rj+1/2 to r ∈ (rj, rj+1), we obtain the relation

r2 f (r)− (
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)
(rj+1/2) = S(r). (4.4)
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Using the definitions of D and A in (4.3), it is clear that the expression for the flux can be
rewritten as

r2 f = Uϕ − D
dϕ

dr
= −D eA d

dr
(

ϕ e−A). (4.5)

Inserting this expression in (4.4), isolating the derivative d
(

ϕ e−A)/dr, and integrating the
resulting equation from rj to rj+1 we obtain the following expressions for the flux:

(
r2 f

)
j+1/2 =

(
r2 f h)

j+1/2 +
(
r2 f i)

j+1/2, (4.6a)

(
r2 f h)

j+1/2 =
(
e−Aj ϕj − e−Aj+1 ϕj+1

) / ∫ rj+1

rj

D−1e−A dr, (4.6b)

(
r2 f i)

j+1/2 = −
∫ rj+1

rj

D−1e−A S dr
/ ∫ rj+1

rj

D−1e−A dr, (4.6c)

where
(
r2 f h)

j+1/2 and
(
r2 f i)

j+1/2 are the homogeneous and inhomogeneous part of(
r2 f

)
j+1/2, corresponding to the homogeneous and particular solution of (4.1), respectively;

cf. (3.3).

To elaborate the expressions in (4.6) we introduce some notation. 〈a, b〉 denotes the usual inner
product of two functions a and b defined on (rj, rj+1), i.e.,

〈a, b〉 :=
∫ rj+1

rj

a(r)b(r)dr. (4.7)

For a generic variable v > 0 defined on (rj, rj+1) we indicate the average, geometric average
(of vj and vj+1) and the harmonic average by v̄j+1/2, ṽj+1/2 and v̂j+1/2, respectively, i.e.,

v̄j+1/2 := 1
2
(
vj + vj+1

)
,

ṽj+1/2 :=
√

vjvj+1,

1
v̂j+1/2

:=
〈v−1, 1〉

Δr
.

(4.8)

Consider the expression for the homogeneous flux. Assume first that ε(r) = Const on
(rj, rj+1). In this case expression (4.6b) can be evaluated as

(r2 f h)j+1/2 = Fh(D̃j+1/2/Δr, P̃j+1/2; ϕj, ϕj+1
)
, P̃j+1/2 :=

UΔr
D̃j+1/2

, (4.9)

with Fh defined in (3.6) and P̃j+1/2 the geometric average of P, which we refer to as the
constant coefficient homogeneous flux, i.e., U = r2u = Const and ε = Const. In general,
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when ε is an arbitrary function of r, we can derive the following expression

(
r2 f h)

j+1/2 = Fh(D̂j+1/2/Δr, 〈a, 1〉; ϕj, ϕj+1
)
. (4.10)

In the derivation we used that D−1 = A�/U to evaluate the integral in (4.6b). Thus, the flux
can be written as the constant coefficient flux (4.9) with D̃j+1/2 and P̃j+1/2 replaced by D̂j+1/2
and 〈a, 1〉, respectively. Note that �a, 1� can be interpreted as the average value of the Peclet
function P over (rj, rj+1).

We consider next the expression for the inhomogeneous flux, and first take ε(r) = Const on
(rj, rj+1). Substituting the expression for S(r) in (4.6c) and changing the order of integration,
we can derive the representation

(
r2 f i)

j+1/2 = Δr
∫ 1

0
G(σ; P̃j+1/2, σj+1/2) r2(σ)s(r(σ))

( r(σ)
r̃j+1/2

)2
dσ, (4.11a)

with P̃j+1/2 defined in (4.9) and with G the Green’s function for the flux defined in (3.5),
provided the normalized coordinate σ(r) and the coordinate of the cell boundary σj+1/2 are
chosen as

σ(r) =
r − rj

Δr
rj+1

r
, σj+1/2 = σ(rj+1/2). (4.11b)

For arbitrary ε we can generalize (4.11) as follows

(
r2 f i)

j+1/2 = Δr
∫ 1

0
G(σ; �a, 1�, σj+1/2) r2(σ)s(r(σ))

D(r(σ))
D̂j+1/2

dσ, (4.12a)

σ(r) =
∫ r

rj

a(η)dη/�a, 1�, (4.12b)

where the correction factor D(r(σ))/D̂j+1/2 in (4.12a) is a consequence of the relation
D̂j+1/2dr = Δr D(r(σ))dσ. Note that a(r) > 0 implies that σ(r) defined in (4.12b) is
monotonically increasing from 0 to 1 on the interval (rj, rj+1). Summarizing, the flux f j+1/2 is
the superposition of the homogeneous and inhomogeneous flux, defined in (4.10) and (4.12),
respectively.

To derive expressions for the numerical flux, we need approximations for D̂j+1/2, �a, 1�, and
σj+1/2 = σ(rj+1/2) with σ(r) defined in (4.12b). Moreover, we need to evaluate the integral in
(4.12a). A straightforward evaluation gives �a, 1� = UΔr/D̂j+1/2. To determine the harmonic
average D̂j+1/2 from (4.8) we replace ε in the integrand by its average ε̄ j+1/2 and evaluate
the resulting integral exactly. This way we obtain the approximation D̂j+1/2 ≈ �̄j+1/2 r̃2

j+1/2.
Using the same approximation for ε in the evaluation of the integral in (4.12b) we obtain
σj+1/2 = rj+1/(2rj+1/2). Since D(r(σ))/D̂j+1/2 = 1 +O(

Δr
)
, we omit the term altogether

in (4.12a), resulting in an O(Δr2) error for the inhomogeneous flux. Moreover, since for
dominant advection G has a distinct bias toward the upwind end of (rj, rj+1), we replace
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To derive expressions for the numerical flux, we need approximations for D̂j+1/2, �a, 1�, and
σj+1/2 = σ(rj+1/2) with σ(r) defined in (4.12b). Moreover, we need to evaluate the integral in
(4.12a). A straightforward evaluation gives �a, 1� = UΔr/D̂j+1/2. To determine the harmonic
average D̂j+1/2 from (4.8) we replace ε in the integrand by its average ε̄ j+1/2 and evaluate
the resulting integral exactly. This way we obtain the approximation D̂j+1/2 ≈ �̄j+1/2 r̃2

j+1/2.
Using the same approximation for ε in the evaluation of the integral in (4.12b) we obtain
σj+1/2 = rj+1/(2rj+1/2). Since D(r(σ))/D̂j+1/2 = 1 +O(

Δr
)
, we omit the term altogether

in (4.12a), resulting in an O(Δr2) error for the inhomogeneous flux. Moreover, since for
dominant advection G has a distinct bias toward the upwind end of (rj, rj+1), we replace
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r2(σ)s(r(σ)) by its upwind value r2
j sj. The resulting integral can be evaluated as

∫ 1

0
G(σ; �a, 1�, σj+1/2)dσ = σj+1/2 − W(�a, 1�).

Then, applying all approximations mentioned above, we obtain the numerical flux

(
r2F

)
j+1/2 =

(
r2Fh)

j+1/2 +
(
r2Fi)

j+1/2, (4.13a)
(
r2Fh)

j+1/2 = Fh(Dj+1/2/Δr, Pj+1/2; ϕj, ϕj+1
)
, (4.13b)

(
r2Fi)

j+1/2 = Δr
(
σj+1/2 − W

(
Pj+1/2

))
r2

j sj, (4.13c)

with coefficients Dj+1/2, Pj+1/2 and σj+1/2 given by

Dj+1/2 := r̃2
j+1/2 ε̄ j+1/2,

Pj+1/2 :=
UΔr

Dj+1/2
,

σj+1/2 =
rj+1

2rj+1/2
.

(4.13d)

We refer to (4.13) as the complete flux (CF) scheme for spherical coordinates, with as special
case the homogeneous flux (HF) scheme (4.13b).

5. Numerical flux for cylindrical coordinates

In this section we present the complete flux scheme for conservation laws in cylindrical
coordinates, assuming rotational symmetry about the z-axis. Consequently, the problem does
not depend on the azimuthal coordinate θ. We proceed in two steps. First, we derive the
r-component of the flux in polar coordinates, so we solve an essentially one-dimensional
problem, and second, we extend the scheme by including the z-component, to derive the
full two-dimensional scheme.

The stationary, rotationally symmetric conservation law in polar coordinates reads
d(r f )/dr = rs with f = uϕ − εdϕ/dr. We give a very concise derivation of the CF scheme,
since it is quite similar to the CF scheme in spherical coordinates. To determine the integral
relation for the flux f j+1/2 := f (rj+1/2), we consider the one-dimensional model BVP:

1
r

d
dr

(
r
(

uϕ − ε
dϕ

dr

))
= s, rj < r < rj+1, (5.1a)

ϕ(rj) = ϕj, ϕ(rj+1) = ϕj+1, (5.1b)

where ε and s are sufficiently smooth functions of r and where, because of (2.2), u satisfies
the relation U := ru = Const. The definitions of the variables a, P and A in (4.3) still hold,
whereas the definitions of D and S change to

D := εr, S(r) :=
∫ r

rj+1/2

ηs(η)dη. (5.2)
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We can essentially repeat the derivation in the previous section: integrate the conservation
law from the cell boundary rj+1/2 to r ∈ (rj, rj+1), rewrite the flux in terms of its integrating
factor, substitute the flux in the integral relation and subsequently integrate over the interval
(rj, rj+1), to arrive at the following expressions:

(
r f
)

j+1/2 =
(
r f h)

j+1/2 +
(
r f i)

j+1/2, (5.3a)

(
r f h)

j+1/2 =
(
e−Aj ϕj − e−Aj+1 ϕj+1

) / ∫ rj+1

rj

D−1e−A dr, (5.3b)

(
r f i)

j+1/2 = −
∫ rj+1

rj

D−1e−A S dr
/ ∫ rj+1

rj

D−1e−A dr, (5.3c)

thus, as anticipated, the flux fj+1/2 is the superposition of the homogeneous flux f h
j+1/2 and

the inhomogeneous flux f i
j+1/2; cf. (4.6).

Next, we have to elaborate (5.3b) and (5.3c). Evaluating all integrals involved, we recover
relation (4.10) for the homogeneous flux. Substituting the expression for S in (5.3c) and
changing the order of integration, we obtain the expression

(
r f i)

j+1/2 = Δr
∫ 1

0
G(σ; 〈a, 1〉, σj+1/2) r(σ)s(r(σ))

D(r(σ))
D̂j+1/2

dσ, (5.4)

where the normalized coordinate σ is defined in (4.12b). Finally, to derive expressions for the
numerical flux, we need approximations for D̂j+1/2, �a, 1�, σj+1/2 and for the integral in the
right hand side of (5.4). For the latter, we replace the term r s(r) in the integrand by its upwind
value

(
r s(r)

)
u,j+1/2, i.e.,

(
r s(r)

)
u,j+1/2 = rj sj if ūj+1/2 ≥ 0 and

(
r s(r)

)
u,j+1/2 = rj+1 sj+1 if

ūj+1/2 < 0. Approximating ε by its average ε̄ j+1/2, we obtain similar results as in Section 4,
except that the harmonic average D̂j+1/2 is now approximated as

D̂j+1/2 ≈ ε̄ j+1/2 r̂j+1/2, r̂j+1/2 =
rj+1 − rj

ln
(
rj+1/rj

) .

From straightforward Taylor expansions we conclude that r̂j+1/2 = rj+1/2 +O(
Δr2). Putting

everything together, we obtain the following version of the complete flux scheme:

(
rF

)
j+1/2 =

(
rFh)

j+1/2 +
(
rFi)

j+1/2, (5.5a)
(
rFh)

j+1/2 = Fh(Dj+1/2/Δr, Pj+1/2; ϕj, ϕj+1
)
, (5.5b)

(
rFi)

j+1/2 = Δr
(
σj+1/2 − W

(
Pj+1/2

))(
r s

)
u,j+1/2, (5.5c)

where the coefficients Dj+1/2, Pj+1/2 and σj+1/2 are given by

Dj+1/2 := rj+1/2 ε̄ j+1/2, Pj+1/2 :=
UΔr

Dj+1/2
, σj+1/2 =

ln
(
rj+1/2/rj

)

ln
(
rj+1/rj

) ; (5.5d)

cf. (4.13). Note that Pj+1/2 is the average of the Peclet function P over the interval (rj, rj+1).
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d(r f )/dr = rs with f = uϕ − εdϕ/dr. We give a very concise derivation of the CF scheme,
since it is quite similar to the CF scheme in spherical coordinates. To determine the integral
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where ε and s are sufficiently smooth functions of r and where, because of (2.2), u satisfies
the relation U := ru = Const. The definitions of the variables a, P and A in (4.3) still hold,
whereas the definitions of D and S change to

D := εr, S(r) :=
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We can essentially repeat the derivation in the previous section: integrate the conservation
law from the cell boundary rj+1/2 to r ∈ (rj, rj+1), rewrite the flux in terms of its integrating
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(rj, rj+1), to arrive at the following expressions:
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numerical flux, we need approximations for D̂j+1/2, �a, 1�, σj+1/2 and for the integral in the
right hand side of (5.4). For the latter, we replace the term r s(r) in the integrand by its upwind
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ūj+1/2 < 0. Approximating ε by its average ε̄ j+1/2, we obtain similar results as in Section 4,
except that the harmonic average D̂j+1/2 is now approximated as

D̂j+1/2 ≈ ε̄ j+1/2 r̂j+1/2, r̂j+1/2 =
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) .

From straightforward Taylor expansions we conclude that r̂j+1/2 = rj+1/2 +O(
Δr2). Putting

everything together, we obtain the following version of the complete flux scheme:
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cf. (4.13). Note that Pj+1/2 is the average of the Peclet function P over the interval (rj, rj+1).
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Fig. 3. Control volume ΩC and corresponding stencil.

Next, we extend the derivation to two-dimensional conservation laws, including the
z-component of the flux. In particular, we derive the expression for the r-component of the
numerical flux. For ease of notation, we use both index notation and the compass notation;
see Figure 3. Thus, ϕC should be undersood as ϕj,l and fr,e as fr,j+1/2,l etc.

The flux corresponding to equation (2.1) is given by

f = frer + fzez =
(

ur ϕ − ε
∂ϕ

∂r

)
er +

(
uz ϕ − ε

∂ϕ

∂z

)
ez. (5.6)

We outline the derivation of the r-component of the numerical flux Fr,j+1/2,l at the eastern
edge of the control volume Ωj,l ; see Figure 3. The derivation of the z-component Fz,j,l+1/2 of
the numerical flux at the northern edge is completely analogous and is therefore omitted. The
key idea is to include the cross flux term ∂ fz/∂z in the evaluation of the flux. Therefore we
determine the numerical flux Fr,j+1/2,l from the quasi-one-dimensional BVP:

1
r

∂

∂r

(
r
(

ur ϕ − ε
∂ϕ

∂r

))
= sr, rj < r < rj+1, z = zl , (5.7a)

ϕ(xj,l) = ϕj,l , ϕ(xj+1,l) = ϕj+1,l , (5.7b)

where the modified source term sr is defined by

sr := s − ∂ fz

∂z
. (5.7c)

The derivation of the expression for the numerical flux is essentially the same as for (5.5),
the main difference being the inclusion of the cross flux term ∂ fz/∂z in the source term. In the

94 Finite Volume Method – Powerful Means of Engineering Design The Complete Flux Scheme for Conservation Laws in Curvilinear Coordinates 13

computation of sr we replace ∂ fz/∂z by its central difference approximation and for fz we take
the homogeneous numerical flux. A similar procedure applies to the z-component of the flux,
which is actually the Cartesian flux from Section 3, albeit with nonconstant coefficients, [13].
Putting everything together, we obtain the following two-dimensional complete flux scheme.

two-dimensional CF scheme

Peclet function

Pr := UrΔr/D Pz := uzΔz/ε

Ur = rur, D := rε

(weighted) average

v̄e := 1
2 (vC + vE) v̄n := 1

2 (vC + vN)

v∗n := W(−P̄z,n)vC + W(P̄z,n)vN

homogeneous flux
(
rFh

r
)

e = Fh(De/Δr, Pr,e; ϕC, ϕE
)

Fh
z,n = Fh(En/Δz, P̄z,n; ϕC, ϕN

)

De = re ε̄e, Pr,e = Ūr,eΔr/De En = P∗
z,nε∗n/P̄z,n

source term with cross wind diffusion

sr,C = sC − 1
Δz

(
Fh

z,n − Fh
z,s
)

sz,C = sC − 1
rC

1
Δr

((
rFh

r
)

e −
(
rFh

r
)

w

)

upwinded source term

sr,u,e =

{
sr,C if ūr,e ≥ 0
sr,E if ūr,e < 0

sz,u,n =

{
sz,C if ūz,n ≥ 0
sz,N if ūz,n < 0

inhomogeneous flux
(
rFi

r
)

e = Δr
(
σe − W(Pr,e)

)(
rsr

)
u,e Fi

z,n = Δz
( 1

2 − W(P̄z,n)
)

sz,u,n

σe =
ln

(
re/rC

)

ln
(
rE/rC

)

complete flux
(
rFr

)
e =

(
rFh

r
)

e +
(
rFi

r
)

e Fz,n = Fh
z,n + Fi

z,n.

The stencil of the flux approximation for Fr,e is depicted in Figure 3. Assume first that ūr,e > 0.
Then Fr,e depends on ϕ in the grid points xC and xE, on s in the central point xC and on
the homogeneous fluxes Fh

z,n and Fh
z,s and through these fluxes again on ϕ in xN and xS.

For ūr,e < 0, Fr,e again depends on ϕC and ϕE, but this time on the source term sE and the
homogeneous fluxes Fh

z,En and Fh
z,Es, inducing a further dependency on ϕNS and ϕSE. Thus, in
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We outline the derivation of the r-component of the numerical flux Fr,j+1/2,l at the eastern
edge of the control volume Ωj,l ; see Figure 3. The derivation of the z-component Fz,j,l+1/2 of
the numerical flux at the northern edge is completely analogous and is therefore omitted. The
key idea is to include the cross flux term ∂ fz/∂z in the evaluation of the flux. Therefore we
determine the numerical flux Fr,j+1/2,l from the quasi-one-dimensional BVP:

1
r

∂

∂r

(
r
(

ur ϕ − ε
∂ϕ

∂r

))
= sr, rj < r < rj+1, z = zl , (5.7a)
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where the modified source term sr is defined by
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. (5.7c)

The derivation of the expression for the numerical flux is essentially the same as for (5.5),
the main difference being the inclusion of the cross flux term ∂ fz/∂z in the source term. In the
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computation of sr we replace ∂ fz/∂z by its central difference approximation and for fz we take
the homogeneous numerical flux. A similar procedure applies to the z-component of the flux,
which is actually the Cartesian flux from Section 3, albeit with nonconstant coefficients, [13].
Putting everything together, we obtain the following two-dimensional complete flux scheme.
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Peclet function
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2 (vC + vE) v̄n := 1
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v∗n := W(−P̄z,n)vC + W(P̄z,n)vN
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(
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)
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Fh
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)
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sr,E if ūr,e < 0

sz,u,n =

{
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complete flux
(
rFr

)
e =
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The stencil of the flux approximation for Fr,e is depicted in Figure 3. Assume first that ūr,e > 0.
Then Fr,e depends on ϕ in the grid points xC and xE, on s in the central point xC and on
the homogeneous fluxes Fh

z,n and Fh
z,s and through these fluxes again on ϕ in xN and xS.

For ūr,e < 0, Fr,e again depends on ϕC and ϕE, but this time on the source term sE and the
homogeneous fluxes Fh

z,En and Fh
z,Es, inducing a further dependency on ϕNS and ϕSE. Thus, in
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addition to the direct neighbours, Fr,e depends on a few other values of ϕ, determined by the
local upwind direction.

6. Aspects of time integration

Next, we extend the derivation to time-dependent conservation laws, restricting ourselves to
spherically symmetric conservation laws; for Cartesian coordinates see [13, 15].

The semidiscrete conservation law for ϕj(t) ≈ ϕ(rj, t) can be written as

(
r2F

)
j+1/2(t)−

(
r2F

)
j−1/2(t) = Δr

(
r2

j +
1
12 Δr2)(sj(t)− ϕ̇j(t)

)
, (6.1)

where ϕ̇j(t) ≈ ∂ϕ/∂t(rj, t) and sj(t) = s(rj, t). In the following we shall omit the explicit
dependence on the variable t.

For the numerical flux Fj+1/2 in (6.1) we have two options. We can simply take the flux
(4.13) derived from the corresponding BVP (4.1), and henceforth referred to as the stationary
complete flux (SCF) scheme. Alternatively, we can include ∂ϕ/∂t in the numerical flux, if we
determine

(
r2F

)
j+1/2 from the quasi-stationary BVP:

1
r2

∂

∂r

(
r2
(

uϕ − ε
∂ϕ

∂r

))
= s − ∂ϕ

∂t
, rj < r < rj+1, (6.2a)

ϕ(rj) = ϕj, ϕ(rj+1) = ϕj+1, (6.2b)

thus subtracting the time derivative from the source term. We can repeat the derivation in
Section 4, to arrive at the following expression for the numerical flux

(
r2F

)
j+1/2 =

Dj+1/2

Δr
(

B
(− Pj+1/2

)
ϕj − B

(
Pj+1/2

)
ϕj+1

)
+Δr

(
σj+1/2 −W

(
Pj+1/2

))
r2

j (sj − ϕ̇j),
(6.3)

referred to as the transient complete flux (TCF) scheme; cf. (4.13). This numerical flux can be
written in the desired form (2.13) as

(
r2F

)
j+1/2 = αj+1/2 ϕj − β j+1/2 ϕj+1 + Δr

(
γj+1/2 s̃j + δj+1/2 s̃j+1

)
, (6.4a)

with s̃ := s − ∂ϕ/∂t and where the coefficient αj+1/2 etc. are defined by

αj+1/2 :=
Dj+1/2

Δr
B−

j+1/2,

β j+1/2 :=
Dj+1/2

Δr
B+

j+1/2,

B±
j+1/2 := B(±Pj+1/2), (6.4b)

γj+1/2 := σj+1/2 − W
(

Pj+1/2
)
,

δj+1/2 := 0.
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A similar expression holds for the numerical flux Fj−1/2. Substituting the TCF approximations
in (6.1) we obtain the finite volume TCF semidiscretisation, given by

bW,j ϕ̇j−1 + bC,j ϕ̇j − aW,j ϕj−1 + aC,j ϕj − aE,j ϕj+1 = bW,jsj−1 + bC,jsj, (6.5a)

where the coefficients aW,j etc. are defined by

aW,j := αj−1/2, aE,j := β j+1/2, aC,j := αj+1/2 + β j−1/2,

bW,j := Δr γj−1/2, bC,j := Δr
(
r2

j +
1

12 Δr2 − γj+1/2
)
. (6.5b)

The semidiscretization in (6.5) defines an implicit ODE system, for which we require an
A-stable, one-step time integrator. Our choise is the trapezoidal rule. In [15] we have shown
that the Cartesian TCF scheme has usually much smaller dissipation and dispersion errors
than the corresponding SCF scheme, provided the solution is smooth.

7. Numerical example

In this section we apply the complete flux scheme to a model problem, describing a premixed
spherical flame stabilized by a point source of combustible mixture.

A point source at the origin issues a mass flux of 4πU of combustible mixture. After ignition, a
stable spherical flame is formed, provided the value of U is in the proper range. The governing
equations for this system are given by [2, 12]:

∂C
∂t

+
1
r2

∂

∂r

(
UC − r2 1

Le
∂C
∂r

)
= ω, r > 0, t > 0, (7.1a)

∂T
∂t

+
1
r2

∂

∂r

(
UT − r2 ∂T

∂r

)
= ω, (7.1b)

where C and T are the dimensionless concentration of combustion product and temperature,
respectively, and where ω is the (dimensionless) reaction rate. The radial coordinate r and the
time t are dimensionless as well. Parameters in (7.1) are the mass flux (per solid angle) U and
the Lewis number Le. The reaction rate ω depends on C and T as follows

ω =
1

2Le
β2(1 − Y)eβ(T−1), (7.2)

with β the dimensionless activation energy. In the unburnt gas mixture, far ahead of the
flame front, there is no combustion product and the temperature equals the temperature of
the unburnt gas. In the burnt gas, beyond the flame, we assume that the reaction is completed,
and consequently the combustion product is the only species and the temperature is equal to
the adiabatic temperature of the burnt gas mixture. These conditions lead to the following
boundary conditions

C(0, t) = T(0, t) = 0, C(∞, t) = T(∞, t) = 1, t > 0. (7.3)

As initial conditions, we take the linear profiles C(r, 0) = r/rmax and T(r, 0) = r/rmax on the
truncated domain (0, rmax) and let the solution evolve to its steady state. We take rmax = 120.
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addition to the direct neighbours, Fr,e depends on a few other values of ϕ, determined by the
local upwind direction.

6. Aspects of time integration
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where C and T are the dimensionless concentration of combustion product and temperature,
respectively, and where ω is the (dimensionless) reaction rate. The radial coordinate r and the
time t are dimensionless as well. Parameters in (7.1) are the mass flux (per solid angle) U and
the Lewis number Le. The reaction rate ω depends on C and T as follows

ω =
1
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β2(1 − Y)eβ(T−1), (7.2)

with β the dimensionless activation energy. In the unburnt gas mixture, far ahead of the
flame front, there is no combustion product and the temperature equals the temperature of
the unburnt gas. In the burnt gas, beyond the flame, we assume that the reaction is completed,
and consequently the combustion product is the only species and the temperature is equal to
the adiabatic temperature of the burnt gas mixture. These conditions lead to the following
boundary conditions

C(0, t) = T(0, t) = 0, C(∞, t) = T(∞, t) = 1, t > 0. (7.3)

As initial conditions, we take the linear profiles C(r, 0) = r/rmax and T(r, 0) = r/rmax on the
truncated domain (0, rmax) and let the solution evolve to its steady state. We take rmax = 120.
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Fig. 4. Numerical solutions of the thermo-diffusive model (7.1) for β = 10 (left) and β = 8
(right). Other parameters are: U = 1.0475 × 104 and Le = 1.

For space discretisation of (7.1) we employ the TCF scheme (6.4a) in combination with the
θ-method for time integration [5]. The resulting nonlinear system at each time step is solved
applying one Newton iteration step. Moreover, to enhance the robustness of the method, we
bound the numerical solutions according to 0 ≤ Cj, Tj ≤ 1, followed by a smoothing step as
follows: Cj := 1

4
�
Cj−1 + 2Cj + Cj+1), and likewise for Tj.

As an example, the numerical solutions at t = 100 for U = 1.0475 × 104, Le = 1 and β = 10, 8
are shown in Figure 4, computed with grid size Δr = 0.4 and time step Δt = 0.25. The
solutions exhibit a steep interior layer, the so-called flame front, connecting the (virtually)
constant unburnt and burnt states. Since Le = 1, the numerical solutions for C and T are
identical. The solution for β = 10 is very close to the asymptotic solution [12]

C(r, 0) =

⎧⎨
⎩

exp
�

LeU
�

1
rf
− 1

r

��
if r ≤ rf,

1 if r ≥ rf

,

T(r, 0) =

⎧⎨
⎩

exp
�

U
�

1
rf
− 1

r

��
if r ≤ rf,

1 if r ≥ rf,
,

with rf = 93.4 the radius of the flame. For decreasing β the reaction slows down, resulting
in a slightly wider flame front and a location of the flame front closer to the source. We
define eC :=

�����Cn+1 −Cn�/Δt
����

1/N with Cn =
�
Cn

j
�T and N the number of grid points,

and likewise eT . The time histories of eC and eT corresponding to the numerical solutions in
Figure 4 are shown in Figure 5. We observe a regular convergence to the steady state. Finally,
in order to study the effect of preferential diffusion, the numerical simulations are repeated
for Le = 0.3, and the results are shown in Figure 6. As expected, the interior layer for C is
slightly wider than for T.

8. Conclusions and future research

In this paper we have derived complete flux schemes for spherically or cylindrically
symmetric conservation laws of advection-diffusion-reaction type. An integral relation for
the flux is derived from a local one-dimensional BVP for the entire equation, including
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Fig. 5. Time history of the (discrete) time derivatives. Parameter values are: β = 10 (left),
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Fig. 6. Numerical solutions of the thermo-diffusive model (7.1) for β = 10 (left) and β = 8
(right). Other parameters are: U = 1.0475 × 104 and Le = 0.3.

the source term. Applying suitable quadrature rules, we derived expressions for the
numerical flux. As a result of this procedure, we obtained a numerical flux that is the
superposition of a homogeneous flux, corresponding to the advection-diffusion operator, and
an inhomogeneous flux, corresponding to the reaction term. For time-dependent conservation
laws, we included the time derivative in the inhomogeneous flux, resulting in an implicit ODE
system. The CF-scheme has been applied to a thermo-diffusive model for a spherical flame.

Possible directions of future research are the following: first, a rigourous convergence analysis
of the (stationary) CF-schemes for spherical and cylindrical coordinates, and second, a
dispersion analysis of time-dependent CF scheme; cf. [15] where such analysis is presented
for Cartesian coordinates. Finally, from a more fundamental point of view, it would
be very interesting to base the derivation of the time-dependent CF scheme on a local
initial-boundary-value problem for a truly time-dependent equation, rather than computing
the flux from a quasi-stationary BVP.
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For space discretisation of (7.1) we employ the TCF scheme (6.4a) in combination with the
θ-method for time integration [5]. The resulting nonlinear system at each time step is solved
applying one Newton iteration step. Moreover, to enhance the robustness of the method, we
bound the numerical solutions according to 0 ≤ Cj, Tj ≤ 1, followed by a smoothing step as
follows: Cj := 1
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Cj−1 + 2Cj + Cj+1), and likewise for Tj.

As an example, the numerical solutions at t = 100 for U = 1.0475 × 104, Le = 1 and β = 10, 8
are shown in Figure 4, computed with grid size Δr = 0.4 and time step Δt = 0.25. The
solutions exhibit a steep interior layer, the so-called flame front, connecting the (virtually)
constant unburnt and burnt states. Since Le = 1, the numerical solutions for C and T are
identical. The solution for β = 10 is very close to the asymptotic solution [12]
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in a slightly wider flame front and a location of the flame front closer to the source. We
define eC :=
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and likewise eT . The time histories of eC and eT corresponding to the numerical solutions in
Figure 4 are shown in Figure 5. We observe a regular convergence to the steady state. Finally,
in order to study the effect of preferential diffusion, the numerical simulations are repeated
for Le = 0.3, and the results are shown in Figure 6. As expected, the interior layer for C is
slightly wider than for T.
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Body Force Field on Collocated Grid
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1. Introduction

Collocated grids are more suitable for the implementation on general geometries than the
staggered counterparts, but their use requires the enhancement of the pressure-velocity
(p − �v) field coupling. This is achieved by thoughtful interpolation of the velocities on
finite volume faces. However, employing standard interpolation schemes, such as the well
known Rhie-Chow scheme, can cause unphysical spikes in the velocity field when an abruptly
changing body force field is present; an example is shown in Fig. 1. To understand the problem
and find the remedy, proposed originally in (Mencinger & Žun, 2007), we should analyze the
connection between p and�v fields. This connection is highlighted in the following subsections.

1.1 The Navier-Stokes equation

The conservation of momentum, expressed with the Newton’s second law, is in fluid
dynamics represented through equation

ρ

(
∂�v
∂t

+�v · ∇�v
)
≡ ρ

D�v
Dt

= �f +∇ ·σ (1)

where ρ is the density of an infinitesimal fluid particle and D�v/Dt is its acceleration due to the
presence of body force field �f and stress σ in the considered fluid. The stress tensor σ contains
both the pressure p and the viscous stress which is (for Newtonian fluid) proportional to the
rate of strain. For incompressible fluids (∇ ·�v = 0), considered in this text, it is written as

σ = −pI + η
(∇�v + (∇�v)t) (2)

where η denotes the viscosity and I the identity tensor. If η does not change substantially in
the fluid, then (1) becomes the Navier-Stokes equation (Landau & Lifshitz, 1987)

ρ
D�v
Dt

= −∇p +∇ · (η∇�v) + �f . (3)

The components of (3), i.e. the x-component in the Cartesian system (where �v = (u, v, w)t)

ρ
Du
Dt

= − ∂p
∂x

+∇ · (η∇u) + f x (4)
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1. Introduction

Collocated grids are more suitable for the implementation on general geometries than the
staggered counterparts, but their use requires the enhancement of the pressure-velocity
(p − �v) field coupling. This is achieved by thoughtful interpolation of the velocities on
finite volume faces. However, employing standard interpolation schemes, such as the well
known Rhie-Chow scheme, can cause unphysical spikes in the velocity field when an abruptly
changing body force field is present; an example is shown in Fig. 1. To understand the problem
and find the remedy, proposed originally in (Mencinger & Žun, 2007), we should analyze the
connection between p and�v fields. This connection is highlighted in the following subsections.

1.1 The Navier-Stokes equation

The conservation of momentum, expressed with the Newton’s second law, is in fluid
dynamics represented through equation

ρ

(
∂�v
∂t

+�v · ∇�v
)
≡ ρ

D�v
Dt

= �f +∇ ·σ (1)

where ρ is the density of an infinitesimal fluid particle and D�v/Dt is its acceleration due to the
presence of body force field �f and stress σ in the considered fluid. The stress tensor σ contains
both the pressure p and the viscous stress which is (for Newtonian fluid) proportional to the
rate of strain. For incompressible fluids (∇ ·�v = 0), considered in this text, it is written as

σ = −pI + η
(∇�v + (∇�v)t) (2)

where η denotes the viscosity and I the identity tensor. If η does not change substantially in
the fluid, then (1) becomes the Navier-Stokes equation (Landau & Lifshitz, 1987)

ρ
D�v
Dt

= −∇p +∇ · (η∇�v) + �f . (3)

The components of (3), i.e. the x-component in the Cartesian system (where �v = (u, v, w)t)

ρ
Du
Dt

= − ∂p
∂x

+∇ · (η∇u) + f x (4)
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can be written in the form of the general transport equation for a specific scalar quantity φ

ρ
Dφ

Dt
= ∇ · (Γ∇φ) + Sφ (5)

by setting φ = u, Γ = η, Sφ = −∂p/∂x + f x and can thus be straightforwardly discretized
with the finite volume (FV) method. However, finding the solution of the obtained discretized
momentum equations is not straightforward. Firstly, the unknown pressure field needs to
be found. Secondly, the uninformed discretization of the terms in (4) leads to obtaining
nonphysical numerical artifacts which can overwhelm the solution. One such typical artifact is
the appearance of checkerboarding pressure field which originates from weak p −�v coupling,
explained in the next subsection.

Fig. 1. Example of calculation of a rising bubble with VOF model; the unphysical velocity
spikes appear in the vicinity of the interface indicated by the contour.

1.2 Origin of weak p −�v coupling

The finite volume (FV) discretization of (4), obtained by its integration1 over control volume
P sized VP (e.g., see Ferziger & Perić (2002)) and time interval Δt results in

ρP uP − ρ0
P u0

P

Δt
VP + ∑

f

Ff uf = −
(

∂p
∂x

)

P

VP + ∑
f

ηf (∇u)
f
· �Sf + f x

P VP (6)

1 Actually, the so-called conservative form of (4) is considered, where ρDu/Dt is replaced by
∂(ρu)

∂t
+

∇ · (ρ�vu) on the left hand side.
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where the values at the beginning and at the end of the time step are denoted as ()0 and written
without the superscript, respectively. Fully implicit time integration is used for simplicity,
although the following discussion is not limited to this choice of temporal scheme. The
subscripts ()P and ()f in (6) denote the average values in FV and on FV face, respectively, and
the summation ∑f comprises all FV faces. Each face is represented by surface vector �Sf = Sf

�̂nf ,
where Sf is the face area and �̂n the normal vector pointing out of the FV. The velocity has two
roles in (6). First, it appears in the mass flux through f-th face Ff = ρf �vf · �Sf as convecting
velocity �uf which should comply with the relation

∑
f

�vf · �Sf = 0 (7)

following from the assumed incompressibility. Second, the x-component of the velocity, uf

in (6), is also convected velocity i.e. the formal unknown of the transport equation (by setting
φ = u). To obtain a solvable form of (6), it is written as

aPuP = ∑
Nb(P)

aNbuNb + t0
Pu0

P +

(
∂p
∂x

)

P

VP + f x
P VP, (8)

so all the FV face–averaged values should be expressed in terms of FV-averaged values
belonging to neighboring cells. The summation ∑Nb(P) in (8) then comprises all the neighboring
cells; the actual number of cells depends on the type of the approximation used.

WW EEP EW ew

ΔxeΔxw

Fig. 2. Schematic example of 1D grid

To concretize and simplify the discussion, we consider a 1-dimensional uniform grid, shown
schematically in Fig. 2, so that Sf = 1, Fe = ρeue, Fw = −ρwuw, and Δxe = Δxw ≡ Δx. If linear
interpolation and central differencing are used to approximate values and derivatives on FV
faces, then (8) can be written as

aPuP = aEuE + aEuE + t0
Pu0

P −
pE − pW

2Δx
Vp + f x

P VP (9)

with the coefficients

aE =
ηe

Δx
+

1
2

Fe, aW =
ηw

Δx
+

1
2

Fw, tP =
ρP VP

Δt
, aP = aE + aW + tP. (10)

The solution of (9), written formally as

uP = αu

[
aEuE + aWuW

aP

+
t0
P

aP

u0
P −

pE − pW

2Δx
Vp

aP

+ f x
P

VP

aP

]
+ (1 − αu)u∗

P , (11)

is obtained throughout an iterative process which usually requires under-relaxation of
the calculated solution with the one from previous iteration u∗

P , weighted with the
under-relaxation factor αu. We can also notify that uP, as written above, depends only on
pE and pW and not on pP.
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To obtain the solution of (9), we need convecting velocities (appearing in the coefficients as
factors in FV-mass fluxes) and the values of pressure. The first, ue for example, can be obtained
simply as 1

2 (uP + uE); using (11) for uP and a matching relation for uE then yields

ue = ũe − 1
2

[
VP

aα
P

pE − pW

2Δx
+

VE

(aα
P )E

pEE − pP

2Δx

]
+

1
2

[
VP

aα
P

f x
P +

VE

(aα
P )E

f x
E

]
(12)

where the superscript ()α is used as aα
P ≡ aP/αu and

ũe =
1
2

[
∑Nb(E) aNbuNb

(aP)E
+

∑Nb(P) aNbuNb

aP

]
+

1
2

[
tP
aα
P

u0
P +

tE
(aα

P )E
u0

E

]
+

1
2
(1 − αu)[u∗

P + u∗
E ]. (13)

A corresponding equation can be obtained for uw.

The pressure field, on the other hand, is calculated from the equation which is obtained from
the discrete incompressibility condition (7). On the considered 1D grid it simplifies to

ue − uw = 0 (14)

or, using the above interpolation, to uE − uW = 0. This means that the conservativeness of
mass in cell P, expressed through (7), does not depend on uP. Furthermore, the pressure field
equation

VE

(aα
P )E

pEE − pP

4Δx
− VW

(aα
P )W

pP − pWW

4Δx
= ũe − ũw +

1
2

VE

(aα
P )E

f x
E − 1

2
VW

(aα
P )W

f x
W (15)

connects the values of p in cells P, EE, and WW. So, the discretized pressure field disintegrates
in two mutually independent parts (the other part contains cells E and W), which in practice
often results in an unphysical zigzagging pressure pattern. An analogous difficulty appears
also on three- and two-dimensional grids. It is manifested in a checkerboarding pattern of
the pressure field. One might expect that the problem would disappear on nonuniform grids;
unfortunately, this does not happen in practical calculations because the connection between
the values of p in neighboring cells remains too weak.

1.3 Staggered versus collocated grids

The origin of the problem described above lies in the mentioned fact that uP depends on
(∂p/∂x)P which is calculated using the values at grid points at two alternate cells (E and W).
As the two cells are 2Δx apart, this means that the gradient is actually obtained from the grid
that is twice the coarse than the one actually set. A well known solution to circumvent this
unwanted situation is to move the grid belonging to u component for a distance 1

2 Δx, so the
grids belonging to p and u are staggered to one another.

Staggering the grids belonging to the velocity field components in the direction of the
corresponding component first appeared in the paper of Harlow & Welch (1965). It enables
more accurate representation of the continuity equation and of the pressure gradient in the
Navier-Stokes equation. More importantly, it insures strong pressure–velocity coupling,
required to obtain realistic solution of the equation. On the other hand, collocated (i.e.
nonstaggered) grids have some obvious advantages over the staggered ones; Perić et al. (1988)
describe them as follows:

“(i) all variables share the same location; hence there is only one set of control volumes,
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(ii) the convection contribution to the coefficients in the discretized equations is the same for
all variables,

(iii) for complex geometries Cartesian velocity components can be used in conjunction with
nonorthogonal coordinates, yielding simpler equations than when coordinate oriented
velocity components are employed, and

(iv) there are fewer constraints on the numerical grid, since there is no need to evaluate the
so-called curvature terms.”

In short, the collocated grids offer much simpler CFD code implementation than the staggered
counterparts when the domain geometry is complex. This seems to be the main reason why
the majority of the popular commercial codes use collocated grids. As the collocated grid
arrangement does not inherently insure strong p −�v coupling which prevents the appearance
of a nonphysical checkerboard pressure field, the coupling has to be insured by other means
than the grid staggering. The established method for the coupling enhancement is the
employment of the momentum interpolation scheme of Rhie & Chow (1983). This scheme
together with additional important corrections (Choi, 1999; Gu, 1991; Majumdar, 1988) is
described below.

1.4 Corrections of convecting velocity

The interpolated convecting velocity ue in (12) contains weighted interpolation of the pressure
gradient, which leads to the disintegration of pressure field. The idea of the interpolation
scheme of Rhie and Chow is to replace the interpolated derivative with the one calculated
directly. However, the latter is multiplied with the corresponding interpolated coefficient so
that (12) is corrected as

ue := ue +
1
2

[
VP

aα
P

pE − pW

Δx
+

VE

(aα
P )E

pEE − pP

Δx

]
− Ve

(aα
P )e

pE − pP

Δx
(16)

where Ve/(aα
P )e ≡ 1

2 (VE/(aα
P )E + VP/aα

P ) and a := b is read as “a becomes b.” Inserting (16)
and an equivalent relation for uw in (14) changes the pressure field equation to

Ve

(aα
P )e

pE − pP

Δx
− Vw

(aα
P )w

pP − pW

Δx
= ũe − ũw +

1
2

VE

(aα
P )E

f x
E − 1

2
VW

(aα
P )W

f x
W (17)

which defines more compact computational molecules than (15) and prevents the previously
described breakup of the pressure field.

The equation (17) connects the value of pP with the values in adjacent cells pE and pW. Yet, pP

is not directly related with f x
P , but only with f x

E and f x
W. This situation can be resolved with an

another important correction, proposed by Gu (1991)

ue := ue − 1
2

[
VP

aα
P

f x
P +

VE

(aα
P )E

f x
E

]
+

Ve

(aα
P )e

f x
e (18)

so that (17) becomes

Ve

(aα
P )e

pE − pP

Δx
− Vw

(aα
P )w

pP − pW

Δx
= ũe − ũw +

Ve

(aα
P )e

f x
e − Vw

(aα
P )w

f x
w (19)

where f x
e and f x

w are the body forces on the corresponding FV faces.
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VE
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pEE − pP
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1
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1
2

VE

(aα
P )E

f x
E − 1

2
VW

(aα
P )W

f x
W (17)

which defines more compact computational molecules than (15) and prevents the previously
described breakup of the pressure field.

The equation (17) connects the value of pP with the values in adjacent cells pE and pW. Yet, pP

is not directly related with f x
P , but only with f x

E and f x
W. This situation can be resolved with an

another important correction, proposed by Gu (1991)

ue := ue − 1
2

[
VP

aα
P

f x
P +

VE

(aα
P )E

f x
E

]
+

Ve

(aα
P )e

f x
e (18)

so that (17) becomes

Ve

(aα
P )e

pE − pP

Δx
− Vw

(aα
P )w

pP − pW

Δx
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where f x
e and f x

w are the body forces on the corresponding FV faces.
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Additional corrections

ue := ue − 1
2
(1 − αu)[u∗

P + u∗
E ] + (1 − αu)u∗

e (20)

and

ue := ue − 1
2

[
tP
aα
P

u0
P +

tE
(aα

P )E
u0

E

]
+

1
2

[
tP
aα
P

+
tE

(aα
P )E

]
u0

e (21)

proposed by Majumdar (1988) and Choi (1999), respectively, are obtained in the same spirit.
The first one prevents the dependence of ue on the under-relaxation factor αu in the converged
solution, while the second one diminishes the dependence of ue on the time-step size. The
dependence on Δt is not completely removed because Δt is still contained in aα

P . The complete
removal the dependence on Δt was proposed, for example, by Yu et al. (2002) and recently by
Pascau (2011). The latter work shows that this topic is still actual.

2. The problem of nonphysical spikes in velocity field

It turns out that the Rhie-Chow interpolation scheme works well as long as the pressure field
is sufficiently smooth, i.e. without any abrupt variations. As explained below, it produces
nonphysical spikes in the velocity field such as shown in Fig. 1; the spikes appear near the
abrupt variations of the pressure field. The latter are generally a consequence of the abrupt
changes in the body force field as can also be understood from the Navier-Stokes equation.
Namely, the abrupt variation of �f in (3) is counter-balanced by such a variation in ∇p. This is
more obvious when the fluid is quiescent (�v = 0) so that (3) becomes

∇p = �f (22)

and the equation for the pressure field is obtained by calculating the divergence of (22)

∇2 p = ∇ · �f . (23)

2.1 Example of abrupt body force variation: multiphase flow

In most cases dealing with fluids, the body force field originates from gravity: �f = ρ�g where
�g is the gravitational acceleration. Thus, an abrupt variation in ρ results in such a variation
in �f and the former appears often when dealing with multiphase system such as gas-liquid.
Multiphase systems present an added difficulty in the flow simulations and require additional
modeling. The most widespread approach is the employment of an Eulerian model, which
make (3) valid throughout the whole flow domain regardless of the phase; this is typically
achieved by using a phase identifying scalar field C, defined as

C(�x, t) =

{
1, �x occupied by fluid 1 (e.g. gas),

0, �x occupied by fluid 2 (e.g. liquid).
(24)

The finite volume discretization transforms C(�x, t) to volume averaged CP which represents
the volume fraction of fluid 1 in volume P; thus, the cells where 0 < CP < 1 contain the
interface.
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A characteristic representative of Eulerian models is the Volume-of-Fluid (VOF) model (Hirt &
Nichols, 1981) in which a two-phase system is treated as a single fluid with material properties
defined as a linear combination of the phase specific properties ρ1, ρ2, η1, and η2

ρ = Cρ1 + (1 − C)ρ2 and η = Cη1 + (1 − C)η2 (25)

where C is advected (passively) through the considered domain. This is described by

DC
Dt

= 0. (26)

The solution of (26) is far from trivial and requires special discretization methods which
surpass the scope of this chapter; a comprehensive overview of such methods is written, for
example, by Scardovelli & Zaleski (1999).

Returning back to the body force, using (25) �f becomes

�f = (Cρ1 + (1 − C)ρ2)�g (27)

so that the abrupt changes in �f , proportional to the density difference, are present at the phase
interface. An another example of the sudden change in the body force field, when employing
VOF, is due to the surface tension. The latter is modeled by the continuum surface force (CSF)
model (Brackbill et al., 1992) which ‘converts’ the surface tension to a body force acting in the
vicinity of the interface

�f = σκ∇C (28)
where σ and κ are the surface tension coefficient and the curvature of the interface,
respectively.

2.2 Examination of the problem in 1D

Clearly, the obtained pressure field equation depends on the interpolation of the velocities
on CV boundaries. To investigate the influence of different interpolations in the situations
with the presence of the abrupt body force field, we setup a one-dimensional case with 0 <
x < 0.1 m and discretize the defined domain with the uniform grid containing 40 elements.
The body force field is defined as f x = (Cρ1 + (1 − C)ρ2) g where g = 10.0 m2/s. In the
considered case, f x is determined with the phase discrimination function

C(�x) =
{

1, x1 < x < x2,
0, otherwise (29)

where x1 and x2 are set to 0.030 m and 0.062 m, respectively. Material properties of air
(ρ1 = 1.29 kg/m3, η1 = 1.8 × 10−5 N s/m2) and water (ρ2 = 1.0 × 103 kg/m3, η2 =
1.0 × 10−3 N s/m2) are used.

By setting the velocity at the boundary to zero we expect uniform zero velocity field all over
the domain. Also, linear (by parts) pressure field is expected since ∂p/∂x is counterbalancing
the body force field. The resulting pressure field is shown in Fig. 3(a): the pressure field
obtained without the Rhie-Chow interpolation scheme (16) exhibits a zigzagging pattern
which in this case does not overwhelm the solution. Expectedly, this pattern disappears with
the employment of (16). However, Fig. 3(b) shows that this scheme produces unwanted spikes
near the discontinuity. Adding Gu’s correction does not appear to have a notable effect on the
pressure field (Fig. 3(a)) whereas the spikes (Fig. 3(b)) appear even larger in the presented
case.
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proposed by Majumdar (1988) and Choi (1999), respectively, are obtained in the same spirit.
The first one prevents the dependence of ue on the under-relaxation factor αu in the converged
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0, �x occupied by fluid 2 (e.g. liquid).
(24)

The finite volume discretization transforms C(�x, t) to volume averaged CP which represents
the volume fraction of fluid 1 in volume P; thus, the cells where 0 < CP < 1 contain the
interface.
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Fig. 3. The calculated pressure (a) and velocity (b) fields using different interpolations;
results are obtained using uniform grid with 40 CVs. Values inside CVs are shown.

2.3 The remedy in 1D

The velocity field in Fig. 3(b) is represented by the values of u inside CVs; the values on CV
boundaries are, on the other hand, equal to zero (numerically) as required by (14). To obtain
the zero velocity field also inside CVs

pE − pW

2Δx
= f x

P (30)

must hold. This follows from (9) by setting the velocities to zero. It simply means that
the discretized body force and the pressure gradient should be counterbalanced to obtain
zero velocity inside FV. At the same time, when both the Rhie-Chow and Gu’s scheme are
employed, the pressure field is obtained from

Ve

(aα
P )e

pE − pP

Δx
− Vw

(aα
P )w

pP − pW

Δx
=

Ve

(aα
P )e

f x
e − Vw

(aα
P )w

f x
w (31)

which follows from (19) for quiescent fluid. The solution of the above equation can be
constructed in a rather simple manner: by setting p in a selected starting cell to an arbitrary
value and then using the relations, following obviously from (31),

pE = pP + f x
e Δx and pW = pP − f x

w Δx (32)

to calculate the values in the neighboring cells. Inserting (32) into (30) results in

f x
P =

1
2

f x
e +

1
2

f x
w (33)

which is the condition to obtain zero velocity field inside FV when the pressure field is
calculated from (31). However, the above equation could also be interpreted as a rule how to
discretize the body force field. It instructs to construct the body force field inside CVs as a linear
combination of the corresponding average values on CV boundaries. The rule eliminates
completely (i.e. to round-off error) the unwanted spikes as demonstrated in Fig. 3(b).
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The proposed body force discretization rule (33) is obtained for a uniform 1D grid. For a
nonuniform grid it becomes

f x
P =

IeΔxe

VP

f x
e +

IwΔxw

VP

f x
w (34)

where Ie = (xe − xP)/Δxe and Ie = (xP − xw)/Δxe denote the interpolation factors (with
reference to Fig. 2). The above equation is obtained by using

(
∂p
∂x

)

P

=
pe − pw

VP

=
IepE + (1 − Ie)pP − IwpW − (1 − Iw)pP

VP

(35)

which follows from the Gauss’s theorem (39).

2.4 The generalization of the remedy

Using the same procedure, let us obtain the body force discretization rules for general (i.e.
nonorthogonal and/or nonstructured) 2- and 3-dimensional grids. Again, we assume that the
solution of the pressure field equation for the quiescent fluid on all CV faces satisfies

(∇p)
f
= �ff (36)

when both Rhie-Chow and Gu’s corrections are used. The dot product of (36) with vector �Δf

results in
pNb(f) − pP = �ff ·�Δf (37)

where subscript ()Nb(f) denotes the value at neighboring cell Nb(f), sharing face f with cell P,
and vector �Δf points from point P to neighboring point Nb(f) as shown in Fig. 4.

P Nb(f)�Δf

�Sf

Fig. 4. Schematic example of general two-dimensional FV grid.

When dealing with a 1-dimensional grid, (37) can simply be used to construct the pressure
field starting from an arbitrary grid point. On 2- and 3-dimensional grids, however, it has to be
noted that condition (36) can be satisfied on all FV faces simultaneously only if the body force
field is conservative on the discrete level (Mencinger & Žun, 2007). This is generally not true,
and the pressure field can not be constructed simply by using (37). Furthermore, the quiescent
solution can not be obtained, i.e. the so-called spurious currents appear. Nevertheless, relation
(37) can be considered as a reasonably good approximation and the described methodology
still valid.

As the rule is obtained from the requirement for the zero velocity field

(∇p)
P
= �fP (38)
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results are obtained using uniform grid with 40 CVs. Values inside CVs are shown.
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When dealing with a 1-dimensional grid, (37) can simply be used to construct the pressure
field starting from an arbitrary grid point. On 2- and 3-dimensional grids, however, it has to be
noted that condition (36) can be satisfied on all FV faces simultaneously only if the body force
field is conservative on the discrete level (Mencinger & Žun, 2007). This is generally not true,
and the pressure field can not be constructed simply by using (37). Furthermore, the quiescent
solution can not be obtained, i.e. the so-called spurious currents appear. Nevertheless, relation
(37) can be considered as a reasonably good approximation and the described methodology
still valid.

As the rule is obtained from the requirement for the zero velocity field

(∇p)
P
= �fP (38)
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following from the discretized Navier-Stokes equation, its form depends on the discretization
of ∇p used in the equation. For example, (∇p)P can be obtained by employing the Gauss’s
theorem

(∇p)P =
1

VP
∑
f

pf
�Sf . (39)

If pf is written in terms of the neighboring cells using the interpolation coefficient If as

pf = If pNb(f) + (1 − If)pP, (40)

then it can be written using (36) as

pf = pP + If�ff ·�Δf . (41)

Inserting (41) and (39) in (38) results in

�fP =
1

VP
∑
f

[
pp + If�ff ·�Δf

]
�Sf =

pP

VP
∑
f

�Sf +
1

VP
∑
f

If
(
�ff ·�Δf

)
�Sf (42)

where the first summation term on the right hand side equals zero as ∑f
�Sf = 0 must hold for

any closed surface. Finally,
�fP =

1
VP

∑
f

If
(
�ff ·�Δf

)
�Sf (43)

is obtained.

The rule can be generalized even further; if (∇p)P is written in terms of pP and the values of
p in the neighboring cells as

(∇p)P = �γPpP + ∑
Nb(f)

�γNb(f)pNb(f) (44)

where �γP and �γNb are geometrical vector coefficients. The latter can be obtained, for example,
with the least squares method. Inserting (44) and (37) in (38) now results in

�fP = �γPpP + ∑
Nb(f)

�γNb(f)

(
pP + �ff ·�Δf

)
=

[
�γP + ∑

Nb(f)

�γNb(f)

]
pP + ∑

Nb(f)

�γNb(f)

(
�ff ·�Δf

)
. (45)

The term in square brackets in (45) should be zero from the definition (44): the effect of adding
a constant field p0 to p should vanish. Therefore, (45) simplifies to

�fP = ∑
Nb(f)

�γNb(f)

(
�ff ·�Δf

)
(46)

and presents the discretization rule when (44) is used to obtain (∇p)P in the discretized
Navier-Stokes equation. As rule (43), it contains the surface averaged body forces and the
geometrical factors.
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Fig. 5. The velocity field near the rising bubble indicated by the contour; the same calculation
as in Fig.1 but with the alternative body force discretization.

3. Testing the alternative discretization

The proposed alternative body force discretization is obtained considering a quiescent fluid
which is seldom of research interest. To compare its performance against the standard
discretization for a moving fluid we consider two cases: (i) raise of a bubble in a rectangular
cavity and (ii) natural convection in a square cavity. The first case demonstrates that the
unwanted velocity field spikes are removed or at least largely diminished by using the
alternative body force discretization. Whereas an abrupt change of body force field is dealt
with in the first case, the body force field is smooth in the second case. Namely, we also want
to check the effect of the new discretization in such cases.

3.1 Rising bubble

The case considers a two-dimensional cavity with no-slip boundary condition at all walls.
The cavity is rectangular (width w, height h). Initially, it is filled with water and an air
bubble of radius R, centered at (x0, y0); both the water and the air are quiescent. To follow
the rise of the bubble using the VOF model, (26) needs to be solved besides the Navier-Stokes
equation. In the latter, both the buoyancy (27) and the surface force (28) are taken into account.
Whereas standard central differencing is used to calculate advection and diffusion terms in
the momentum equation, the discretization of (26) requires nonstandard differencing scheme
in order to reduce numerical diffusion which results in undesirable interface smearing. The
low-diffusive CICSAM scheme (Ubbink & Issa, 1999) is used in the presented case. The
curvature κ, needed to obtain the forces due to the surface tension by using the CSF model are
calculated as suggested by Williams et al. (1998).
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Fig. 5. The velocity field near the rising bubble indicated by the contour; the same calculation
as in Fig.1 but with the alternative body force discretization.

3. Testing the alternative discretization

The proposed alternative body force discretization is obtained considering a quiescent fluid
which is seldom of research interest. To compare its performance against the standard
discretization for a moving fluid we consider two cases: (i) raise of a bubble in a rectangular
cavity and (ii) natural convection in a square cavity. The first case demonstrates that the
unwanted velocity field spikes are removed or at least largely diminished by using the
alternative body force discretization. Whereas an abrupt change of body force field is dealt
with in the first case, the body force field is smooth in the second case. Namely, we also want
to check the effect of the new discretization in such cases.

3.1 Rising bubble

The case considers a two-dimensional cavity with no-slip boundary condition at all walls.
The cavity is rectangular (width w, height h). Initially, it is filled with water and an air
bubble of radius R, centered at (x0, y0); both the water and the air are quiescent. To follow
the rise of the bubble using the VOF model, (26) needs to be solved besides the Navier-Stokes
equation. In the latter, both the buoyancy (27) and the surface force (28) are taken into account.
Whereas standard central differencing is used to calculate advection and diffusion terms in
the momentum equation, the discretization of (26) requires nonstandard differencing scheme
in order to reduce numerical diffusion which results in undesirable interface smearing. The
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curvature κ, needed to obtain the forces due to the surface tension by using the CSF model are
calculated as suggested by Williams et al. (1998).
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(a) (b)

Fig. 6. Calculated contours of a rising bubble at t=0.0(0.025)0.2 s: standard (a) versus
alternative (b) body force field discretization.
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In the presented case we set w = 0.02 m, h = 0.04 m, x0 = w/2, y0 = h/4, and R = 0.002 m.
Uniform grid with 40x80 CVs was used. Fig. 5 shows the calculated velocity field around
bubble at t = 0.115 s when using the alternative discretization; this figure can be compared
directly with Fig. 1 which presents the same calculation except for using the standard
discretization. Obviously, more realistic results are obtained with the proposed discretization.
Interestingly, despite large spikes in the first (i.e. standard) calculation, the bubble contours
of the two calculations indicated in Fig. 6 does not differ as much as one would expect. This
is perhaps due to the fact that CV face velocities, which appear in the advection terms, are
corrected so that they satisfy the continuity equation.

3.2 Natural convection in a square cavity

(a) (b)

Fig. 7. Streamlines (a) and isotherms (b) in the stationary state in the natural convection test
case with Pr = 0.71 and Ra = 106.

The second case deals with a buoyancy driven flow in a two-dimensional square cavity and
presents a classical CFD code benchmark problem (De Vahl Davis, 1983) with well known
solutions. The left and the right wall are set to fixed temperatures Th and Tl (Th > Tl),
respectively. Both horizontal walls are thermally insulated. The velocity components vanish
at the walls. The velocity field is obtained by solving (3) with Boussinesq approximation

�f = ρ0 (1 − β(T − T0))�g (47)

where β is the thermal expansion coefficient and ρ0 is the density at reference temperature T0.
The temperature field is determined with the enthalpy transport equation

ρcp
DT
Dt

= ∇ · (λ∇T) (48)

where cp and λ are the thermal conductivity and the specific heat at constant pressure,
respectively. Actually, both (3) and (48) are solved in nondimensional form which read

D�v
Dt

= −∇p + Pr∇2�v + Pr Ra T, (49)
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Fig. 6. Calculated contours of a rising bubble at t=0.0(0.025)0.2 s: standard (a) versus
alternative (b) body force field discretization.
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DT
Dt

= ∇2T (50)

where, for brevity, the same notation is used for nondimensional and dimensional quantities.
Obviously, the problem is determined with the two dimensionless parameters Pr and Ra
denoting Prandtl and Rayleigh number, respectively. They are defined as

Pr =
cpη

λ
, Ra =

β(Th − Tl)L3ρ2cp

ηλ
(51)

where L is the size of the cavity. Following the work of de Vahl Davis, we set Pr = 0.71 and
consider only the highest value of Ra used in their test: Ra = 106.

The calculation is performed using relatively coarse uniform grids containing 10x10, 20x20,
40x40, and 80x80 cells. The central discretization scheme is implemented for the interpolation
of the values on CV-faces for both (49) and (50). The obtained streamlines and isotherms are
shown in Fig. 7.

Fig. 8 shows the variation of the calculated velocity components and the temperature along
the horizontal and the vertical centerline of the cavity. Obviously, the difference between
the results obtained with the standard (dashed line) and the proposed (solid line) body force
discretization vanishes with the increased grid density. The difference on the 80x80 grid is not
noticeable on the presented scale and is therefore not drawn in Fig. 8. Both the new and the
standard discretization converge to the same solution, thus we can assume that the proposed
discretization is consistent.

4. Conclusions

Although it was obtained for a quiescent fluid, the proposed discretization works well also
for moving fluid as demonstrated in the considered cases. One should keep in mind that the
obtained rules are valid when both the Rhie-Chow and Gu’s correction are used. Together
with the corrections of Choi (1999) and Yu et al. (2002), they approach the calculations on
collocated grids to those on staggered grids. It is shown that the proposed discretization of
the body force field is more appropriate than the standard one when dealing with abruptly
variable body force fields. In fact, it can be used generally as it does not significantly change
the calculated solutions when the body force field is smooth.

The proposed discretization does not exactly follow the spirit of the FV method where simply
the average body force within a FV is considered. Even so, it is consistent since it converges to
the same solution as obtained with the standard discretization. Its form depends on the chosen
discretization of ∇p in the Navier-Stokes equation; in the presented calculations, Gauss’s
divergence theorem was used. Other possibilities such as using the least squares method are
also possible, so that the discretization rule changes its form. Nevertheless, the idea remains
that FV average value of �f is to be replaced with the linear combination of the average FV face
values.

5. Acknowledgments

The author is grateful to the Slovenian Research Agency (ARRS) for its financial support
throughout the P2-0162 project.

114 Finite Volume Method – Powerful Means of Engineering Design
An Alternative Finite Volume Discretization of

Body Force Field on Collocated Grid 15

-15

-10

-5

 0

 5

 10

 15

 0  0.2  0.4  0.6  0.8  1

u

x

10x10

20x20

40x40

(a)

-80

-60

-40

-20

 0

 20

 40

 60

 80

 0  0.2  0.4  0.6  0.8  1

u

y

10x10

20x20

40x40

(b)

-250

-200

-150

-100

-50

 0

 50

 100

 150

 200

 250

 0  0.2  0.4  0.6  0.8  1

v

x

10x10

20x20

40x40

(c)

-25

-20

-15

-10

-5

 0

 5

 10

 15

 20

 25

 0  0.2  0.4  0.6  0.8  1

v

y

10x10

20x20

40x40

(d)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

T

x

10x10

20x20

40x40

(e)

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  0.2  0.4  0.6  0.8  1

T

y

10x10

20x20

40x40

(f)

Fig. 8. The variation of u, v and T (first, second and bottom row) along the horizontal (left
column) and the vertical (right column) centerline of the cavity, calculated with standard
(dashed lines) and proposed (solid lines) discretization of �f .
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1. Introduction 
Numerical solution of an engineering problem via finite volume method (FVM) requires the 
discretization of the solution domain and computational grid generation. While both 
structured and unstructured grids can be used, elliptic structured grid generation methods, 
when applicable, have favorable features in terms of both accuracy and computational cost. 

Among the elliptic grid generation (EGG) methods, the most well known and widely used 
are the algebraic transfinite interpolation and differential methods which employ Poisson 
equations. In this chapter classical EGG methods are reviewed. It is then proposed that these 
methods can be classified based on the parameters being interpolated (i.e. interpolants), the 
interpolation method used and the grid generation equations being employed. The 
proposed unified view provides a framework for the development of new grid generation 
methods; some of which are introduced here for the first time.  

Another major task in this chapter is to show that finite volume method, which employs the 
computational grid, can itself be used in the numerical grid generation process. In other 
words, FVM can be used for two different tasks; discretization of the differential equations 
which govern the coordinates of the computational grid points and discretization of the 
differential equations which govern the physical process of interest. 

A typical 2D structured grid in the physical domain is shown in Fig. 1a and the 
corresponding logical or computational grid is shown in Fig. 1b. The classical structured 
grid generation methods provide equations which define, directly or indirectly, the 
mapping functions which describe the curvilinear coordinate lines in the physical domain, 
i.e. ( , ) x y  and ( , ) x y  curves. The grid point ( , )i j  in the physical domain is defined at the 
intersection of the curvilinear coordinate lines i  and j  as shown in Fig. 1a. 

The so called algebraic grid generation methods directly specify the formulas used to 
calculate the physical coordinates ( , )x y  in terms of the logical coordinates ( , )   (Eiseman, 
1979; Eiseman et al., 1992; Lehitmaki, 2000; Zhou, 1998). For example, in the Trans-Finite 
Interpolation (TFI) method (Eiseman et al., 1992), the generating equations employ the 
boundary nodal coordinates and some derivative terms to calculate the nodal coordinates 
throughout the solution domain. This method is often described as a Boolean sum of one 
dimensional interpolation functions U  and V  as follows: 
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computational grid, can itself be used in the numerical grid generation process. In other 
words, FVM can be used for two different tasks; discretization of the differential equations 
which govern the coordinates of the computational grid points and discretization of the 
differential equations which govern the physical process of interest. 

A typical 2D structured grid in the physical domain is shown in Fig. 1a and the 
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boundary nodal coordinates and some derivative terms to calculate the nodal coordinates 
throughout the solution domain. This method is often described as a Boolean sum of one 
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Fig. 1. (a) A physical grid, (b) the corresponding logical grid. 

The highest orders of one-dimensional interpolation formulas in Eqs. (2) and (3) are 
specified by P  and Q  respectively, and L  and M  specify the number of auxiliary nodes 
used in these interpolations. For example, a zero order TFI computational molecule for 
generating a (M×N) grid is as follows: 

 , , , ,1 ,1 1, 1, , ,

1, 1, , , 1,1 1,1 ,1 ,1

    

  

    

   
i j i N i N i i j j M j M j

N N M N M N M M

R C R C R C R C R

C R C R C R C R
 (4) 

Coefficients ,i NC , ,1iC , …… in this nine-point computational molecule for the calculation of 
the coordinates of the nodal point ( , )i j  can be linear or nonlinear functions of the logical 
coordinates of this point, i.e. , i j .  

In contrast to the TFI, the mapping functions are not explicitly provided in the so called 
differential grid generators. For example, the following differential constraints on the 
unknown mapping functions ( , ) x y  and ( , ) x y  are proposed by Thompson, Thames and 
Mastin (TTM) (Thompson, et al., 1974): 

 ( , )    xx yy P  (5) 

 ( , )    xx yy Q  (6)  
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Equations (5) and (6) are often analytically inverted and the calculations are carried out in 
the logical domain. The non-linear inverted equations are as follows: 

 - - 2
11 12 222 ( )      g x g x g x J P x Qx  (7) 

 - - 2
11 12 222 ( )      g y g y g y J P y Q y  (8) 

In Eqs. (7) and (8), 2 2
11   g x y , 2 2

22   g x y , 12     g x x y y  and J is the Jacobian of the 
transformation ( -   J x y y x ). 

Ashrafizadeh and Raithby (Ashrafizadeh & Raithby, 2006) have shown that the TTM grid 
generation equations, i.e. Eqs. (5) and (6), can be discretized and solved in the physical 
domain. To apply the finite volume method to the solution of Eqs. (5) and (6) in the physical 
domain, an initial algebraic grid is generated first. Then, a control volume is associated with 
each node of the initial grid. Defining  

 ;   
  q q  (9) 

the integral of Eq. (5) over a control volume associated with node i, with volume iV  and 
surface iS , is 

       
 

i i iV S V

q dV dS P dV  (10) 

The surface iS  consists of a number of panels, with an integration point ip located at the 
centre of each panel. The panel containing ip has area 


ipS . The integrals in Eq. (10) are 

approximated as follows 

 ( )    


ip iip ip
ip ip

q S F PV  (11) 

where 
ipF  can be thought of as a generalized “flow” across the panel ip driven by 


. 

The final algebraic equation is obtained by approximating each term in Eq. (11) by an 
equation that involves nodal values of , , and  x y . This provides one constraint for 

, , and i i ix y . Applying a similar procedure, Eq. (6) leads to another algebraic equation 
relating , , and i i ix y  for each interior node. But the values of i and i are known for all 
interior nodes, so that these two algebraic equations provide the necessary constraints for 
computing ( ,i ix y ). The nodal values of , , and  i i i ix y  are all prescribed for boundary 
nodes, so the set of equations is closed throughout the solution domain and its boundary. 
This is called the Direct Design Method for solving the elliptic grid generation problem 
because no inversion of equations is required and the unknown nodal values of ( ,i ix y ) 
appear explicitly (i.e. “directly”) as dependent variables in the finite volume equations in the 
physical domain.  

Calculation of the source or control functions at the right hand sides of Eqs. (5) and (6) is an 
important part of any method which uses this set of equations to generate the grid. In 
addition to the elementary method, proposed in (Thompson, et al., 1974), many researchers 
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Fig. 1. (a) A physical grid, (b) the corresponding logical grid. 
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generating a (M×N) grid is as follows: 
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Coefficients ,i NC , ,1iC , …… in this nine-point computational molecule for the calculation of 
the coordinates of the nodal point ( , )i j  can be linear or nonlinear functions of the logical 
coordinates of this point, i.e. , i j .  

In contrast to the TFI, the mapping functions are not explicitly provided in the so called 
differential grid generators. For example, the following differential constraints on the 
unknown mapping functions ( , ) x y  and ( , ) x y  are proposed by Thompson, Thames and 
Mastin (TTM) (Thompson, et al., 1974): 

 ( , )    xx yy P  (5) 

 ( , )    xx yy Q  (6)  
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Equations (5) and (6) are often analytically inverted and the calculations are carried out in 
the logical domain. The non-linear inverted equations are as follows: 

 - - 2
11 12 222 ( )      g x g x g x J P x Qx  (7) 

 - - 2
11 12 222 ( )      g y g y g y J P y Q y  (8) 

In Eqs. (7) and (8), 2 2
11   g x y , 2 2

22   g x y , 12     g x x y y  and J is the Jacobian of the 
transformation ( -   J x y y x ). 

Ashrafizadeh and Raithby (Ashrafizadeh & Raithby, 2006) have shown that the TTM grid 
generation equations, i.e. Eqs. (5) and (6), can be discretized and solved in the physical 
domain. To apply the finite volume method to the solution of Eqs. (5) and (6) in the physical 
domain, an initial algebraic grid is generated first. Then, a control volume is associated with 
each node of the initial grid. Defining  

 ;   
  q q  (9) 

the integral of Eq. (5) over a control volume associated with node i, with volume iV  and 
surface iS , is 
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The surface iS  consists of a number of panels, with an integration point ip located at the 
centre of each panel. The panel containing ip has area 


ipS . The integrals in Eq. (10) are 

approximated as follows 
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where 
ipF  can be thought of as a generalized “flow” across the panel ip driven by 


. 

The final algebraic equation is obtained by approximating each term in Eq. (11) by an 
equation that involves nodal values of , , and  x y . This provides one constraint for 

, , and i i ix y . Applying a similar procedure, Eq. (6) leads to another algebraic equation 
relating , , and i i ix y  for each interior node. But the values of i and i are known for all 
interior nodes, so that these two algebraic equations provide the necessary constraints for 
computing ( ,i ix y ). The nodal values of , , and  i i i ix y  are all prescribed for boundary 
nodes, so the set of equations is closed throughout the solution domain and its boundary. 
This is called the Direct Design Method for solving the elliptic grid generation problem 
because no inversion of equations is required and the unknown nodal values of ( ,i ix y ) 
appear explicitly (i.e. “directly”) as dependent variables in the finite volume equations in the 
physical domain.  

Calculation of the source or control functions at the right hand sides of Eqs. (5) and (6) is an 
important part of any method which uses this set of equations to generate the grid. In 
addition to the elementary method, proposed in (Thompson, et al., 1974), many researchers 



 
Finite Volume Method – Powerful Means of Engineering Design 

 

120 

have proposed methods for the automatic calculation of the boundary values of control 
functions (Thomas & Middlecoff, 1980; Spekreijse, 1995; Steger & Sorenson, 1997; Kaul, 2003; 
Lee & Soni, 2004; Ashrafizadeh & Raithby, 2006; Kaul, 2010). Assuming that the P  values 
are known at ( , 1)  i  and ( , 0)  i  boundaries in Fig. 1a, the P  values at internal nodes 
can be obtained through the following one dimensional interpolation formula (Thomas & 
Middlecoff, 1980): 

         -( , ) ,0 1 ,1      P C P C P  (12) 

The Q  values at internal nodes can also be calculated similarly: 

         -( , ) 0, 1 1,      Q C Q C Q  (13) 

Coefficients ( )C  and ( )C  in Eqs. (12) and (13) can be linear or non-linear functions of the 
corresponding logical coordinates. 

Another noticeable classical Grid Generation method, which is known as the Orthogonal 
Grid Generation (OGG) method and is elliptic in certain situations, is based on the 
assumptions of continuity and orthogonality of the coordinate lines. The final forms of the 
grid generation equations in the OGG method are as follows (Ryskin & Leal, 1983): 

 1( ) ( ) 0
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y yf

f
 (15) 

The orthogonality condition, 12 0     g x x y y , is implied in Eqs. (14) and (15). The scale 
factor, f , is defined based on the transformation metrics relevant to the magnification 
effects of the mapping in different logical directions as follows: 
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Calculation of the scale factor near the boundaries and throughout the solution domain is a 
major step in the orthogonal grid generation and is discussed in a number of publications 
(Ryskin & Leal, 1983; Kang & Leal, 1992; Eca, 1996; A. Bourchetin & L. Bourchetin, 2006). 
Most commonly, boundary values of f  are calculated first and then linear or non-linear 
interpolation techniques are used to obtain the internal values. 

Imposition of the orthogonality constraint in some problems may be difficult or even 
impossible. Therefore, modifications on the OGG have also been proposed to generate 
nearly orthogonal grids (Akcelik et al., 2001; Zhang et al., 2004, Zhang et. Al, 2006a, Zhang 
et. Al, 2006b).  

Based on the above brief review of some of the classical EGG methods, it can be argued that 
in each one of these methods a set of grid generation equations is developed to calculate the 
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physical coordinates of the nodal points. The set of equations may directly introduce the 
mapping functions which transform the logical grid to the physical grid, e. g. the TFI, or 
they may provide differential constraints on the mapping functions and indirectly 
describe them, e. g. the TTM and the OGG methods. However, it is important to note that 
the governing equations in grid generation are radically different from equations which 
govern physical processes. While experimental observations provide a basis for the 
development of the physical governing equations, the grid generation equations are not 
expressions of natural phenomena and are developed based on analogy or mathematical 
considerations. An example of the use of physical analogy in determining the control 
functions in Eq. (5) and (6) is provided by Kaul (Kaul, 2003). Considering the arbitrariness 
in the development of elliptic grid generation equations, it is very desirable to have a 
clear, simple and systematic approach for proposing the governing equations in the 
context of structured grid generation.  

In this paper, we propose a unifying rationale for the development of elliptic grid 
generation methods. Based on the proposed unifying view point, all existing EGG methods 
can be viewed as multi-dimensional geometrical interpolation techniques which employ 
different interpolants, interpolation methods and grid generation equations. Once the grid 
generation equations, the interpolants and interpolation techniques are chosen, there are 
various numerical solution methods to solve the algebraic equations and to calculate the 
nodal coordinates.  

To explain the proposed framework, a number of applicable interpolants in structured grid 
generation are first introduced in the next section. Then, different applicable interpolation 
techniques are presented. Afterwards, the rationale behind the development of grid 
generation equations is discussed. Finally, a number of alternative EGG methods are 
introduced and examples of elliptic grid generation via the classical and proposed 
alternative methods are presented.  

For the sake of simplicity and brevity, the grid generation examples in this chapter are 
limited to two dimensional solution domains, but the underlying ideas are clearly applicable 
in three-dimensional problems as well.  

2. Interpolants 
The logical grid, shown in Fig. 1b, is the simplest possible two-dimensional grid. The 
boundaries are straight lines and the nodes are distributed uniformly. This simplicity 
makes the logical grid generation trivial. In contrast, boundaries of the physical grid may 
be complex curves and the boundary nodes in this case can be distributed non-uniformly. 
For example, the N, S, W and E boundaries shown in Fig. 1a are different curves with 
different non-uniform distributions of nodes. It is exactly this complexity that makes the 
grid generation in the physical domain a rather difficult task as compared to the logical 
domain. The shape of the boundary of the domain and the distribution of the nodes along 
the boundary are the most important information which needs to be taken into 
consideration in the elliptic grid generation process. Quantities which provide 
information regarding the shape of the boundary coordinate lines, expected shape of the 
crossing coordinate lines near the boundaries and the distribution of nodes along the 
boundaries are here called the boundary data. Some or all of these data are the inputs 
required in an elliptic grid generation method. 
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For the sake of simplicity and brevity, the grid generation examples in this chapter are 
limited to two dimensional solution domains, but the underlying ideas are clearly applicable 
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The logical grid, shown in Fig. 1b, is the simplest possible two-dimensional grid. The 
boundaries are straight lines and the nodes are distributed uniformly. This simplicity 
makes the logical grid generation trivial. In contrast, boundaries of the physical grid may 
be complex curves and the boundary nodes in this case can be distributed non-uniformly. 
For example, the N, S, W and E boundaries shown in Fig. 1a are different curves with 
different non-uniform distributions of nodes. It is exactly this complexity that makes the 
grid generation in the physical domain a rather difficult task as compared to the logical 
domain. The shape of the boundary of the domain and the distribution of the nodes along 
the boundary are the most important information which needs to be taken into 
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crossing coordinate lines near the boundaries and the distribution of nodes along the 
boundaries are here called the boundary data. Some or all of these data are the inputs 
required in an elliptic grid generation method. 
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The interpolants in an EGG problem are quantities related to the boundary data. The 
simplest, and most obvious, quantities which describe the boundary coordinate lines are the 
x and y coordinates of boundary nodal points. These are the interpolants used in many 
simple algebraic grid generators and we call them here the zero order boundary data.  

It is possible to use higher order boundary data as interpolants as well. Quantities such as 
nodal values of x  and y  along the north boundary in Fig. 1a are tangential slope-related 
first order data. Similarly, x  and y  along the south boundary are tangential curvature-
related second order data. These data provide information regarding the stretching of nodes 
along a boundary coordinate line.  

By generating paving layers near boundaries or by making assumptions regarding the 
coordinate lines which cross the boundaries, it is also possible to generate normal first, 
second,……, and nth order boundary data. For example, using the shaded paving layer 
near the north boundary in Fig. 1a, it is possible to generate x  and y  data at the north 
boundary. Similarly, x  and y  can be generated near the south boundary using the 
data obtained from the two shaded paving layers near the south boundary in Fig. 1a. 
Therefore, using the paving layers, it is possible to generate boundary data which actually 
describe the boundary cell geometries or the shape of coordinate lines crossing the 
boundary. A simple algebraic method for generating high quality paving layers is 
introduced in (Ashrafizadeh & Raithby, 2006).  

The first and second order boundary data can also be defined with the physical coordinates 
as the independent variables. For example quantities such as x , xx , y  and yy  fall in this 
category. However, in contrast to the logical coordinates, the physical coordinates of nodes 
are not univariate variables and the denominator in the discrete form of a quantity such as 
x  can be zero, resulting in computational difficulties.  

Boundary data of different orders, just described, can also be combined to provide more 
information regarding the boundary nodes and cells. Such combinations of the boundary 
data can be employed as the interpolants in the formulation of EGG problems. For example, 
in the TTM method, boundary values of ( ) xx yy , called P , and ( ) xx yy , called Q , are 
used as the interpolants. Figure 2 shows how the source term P  provides information 
regarding the shape of the cells and the distribution of the nodes along the boundary 
coordinate line ( , ) i N . In Fig. 2a, the boundary is a straight line and the nodes are 
distributed uniformly. The source term P  is identically zero everywhere along the 
boundary in this case. Figure 2b shows a straight boundary with non-uniform distribution 
of nodes. It is seen that the source term P  is not zero anymore at locations with contraction 
or expansion of the grid. Figures 2c and 2d show curved boundaries with uniform and non-
uniform distribution of nodes respectively. It is clear that the source term P  varies along the 
N  coordinate line and carries some information regarding the boundary geometry in the 
latter two cases as well. Therefore, the source terms P  and Q  can be used as interpolants in 
an elliptic grid generation problem. The source values in these examples, which are 
Laplacians of the logical coordinates, have been calculated using the finite volume method 
as described in (Ashrafizadeh et al., 2002; Ashrafizadeh et al., 2003). 

The scale factor f  is used as the interpolant in the classical OGG method. The shape of the 
boundary and the distribution of nodes in Figs. 3a to 3d have been chosen similar to Figs. 2a 
to 2d respectively to study the effect of the boundary geometry on the boundary values of 
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f .For the straight uniform paving layer shown in Fig. 3a, 1f  everywhere along the 
boundary. In all other cases in Fig. 3, the curved boundary and/or non-uniform distribution 
of nodes result in a corresponding change in the nodal f  values. Therefore, the scale factor 
f  can also be used as the interpolant in an elliptic grid generation problem. 

Other combinations of the boundary data can also be used as the interpolants in an EGG 
problem and one can check the sensitivity of a chosen interpolant to the boundary 
specifications before actually using them in an elliptic grid generation algorithm as just 
explained. Since these computations are done on distorted and/or non-uniform grids in 
the physical domain, finite volume method is a suitable numerical solution choice as 
explained before.  

 
Fig. 2. Sensitivity of the source term, P, with respect to the boundary geometry and nodal 
distribution. 

 
Fig. 3. Sensitivity of the scale factor, f, with respect to the boundary geometry and nodal 
distribution. 
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3. Interpolation techniques 
Having chosen the interpolants, an interpolation technique is required to find the 
corresponding values at internal nodes. The idea is that the boundary data should be used 
to determine the geometrical properties of the internal cells and coordinate lines via 
interpolation techniques. There are three geometrical interpolation techniques that can be 
used in a multi-dimensional problem as follows. 

3.1 One-dimensional interpolation 

Univariate stretching functions provide the relations for the one dimensional interpolation. 
Equations (12) and (13) are examples of one dimensional interpolation formulas used in a 
2D problem.  

3.2 Quasi multi-dimensional interpolation 

Quasi multi-dimensional interpolation techniques such as TFI, which employs the Boolean 
sum of 1D interpolations, can also be used to interpolate the chosen interpolants in an 
elliptic grid generation process. The interpolation coefficients in these algebraic methods can 
be constant, linear or non-linear functions of the logical or physical coordinates. Use of the 
physical coordinates as the independent variables in the interpolation coefficients worsens 
the nonlinearity of the interpolation and, therefore, this option has not gained any 
popularity. As an example, it will be shown later that the boundary values of the control 
functions in the TTM method can also be interpolated via the TFI. 

3.3 Multi-dimensional interpolation 

The interpolants in the EGG methods can also be interpolated by truly multi-dimensional 
methods, i.e. by the solution of boundary value problems. For example, it will be shown that 
the boundary values of the control functions in the TTM method can also be interpolated 
through the solution of Dirichlet boundary value problems to obtain the corresponding 
values for the internal nodes. 

4. Grid generation equations 
By viewing the elliptic grid generation problem as a multi-dimensional interpolation 
problem, the focus is obviously on the selection of interpolants and the interpolation 
techniques. However, depending on the chosen interpolants, it may also be necessary to 
develop grid generation equations, i.e. equations which ultimately provide the nodal 
coordinates throughout the domain.  

The process of interpolation may actually play the role of the grid generation equations. In 
an algebraic grid generation method such as the zero order TFI, the interpolants are the 
nodal coordinates. By carrying out the interpolation, nodal coordinates are obtained 
throughout the domain and no additional grid generation equation is required. In other 
words, the interpolation equations in this case are themselves the grid generation equations.  

The expressions used to define the interpolants may also be used to develop the grid 
generation equations. For example, in the classical TTM method, in which Eqs. (5) and (6) 
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are used to define the interpolants, the same equations are also inverted to obtain the grid 
generation equations in the logical domain. In the method proposed by Ashrafizadeh and 
Raithby (Ashrafizdeh & Raithby, 2006), Eqs. (5) and (6) are used to obtain the grid 
generation equations in the physical domain.  

The classical orthogonal grid generation method is a good representative example of the 
cases in which neither the interpolation formulas nor the definition of the interpolants can 
be used for the grid generation. In contrast to the TTM, the interpolated values of the scale 
factor are not directly used to calculate the coordinates of internal nodes in the OGG. First 
order differential interpolants, such as the scale factor f , are not appropriate for the 
calculation of the nodal coordinates. Therefore, second order differential equations are 
developed by imposing the continuity constraints on the mapping functions. Consequently, 
Eqs. (14) and (15) are obtained and used as the grid generation equations.  

Now that the commonly used grid generation methods are explained in the framework of 
the proposed unifying view, a number of alternative elliptic grid generation methods are 
introduced in the next section. The objective is to show that how new elliptic grid generation 
methods can be developed in the context of the suggested vantage point.  

5. Alternative grid generation methods 
Based on the proposed view point, there are many possible alternatives for the development 
of elliptic grid generation methods. By focusing on the interpolants and the interpolation 
techniques, EGG methods can be divided into the following four categories: 

 Algebraic interpolation of Algebraic interpolants (AA methods). 
 Algebraic interpolation of Differential interpolants (AD methods). 
 Differential interpolation of Algebraic interpolants (DA methods). 
 Differential interpolation of Differential interpolants (DD methods). 

As mentioned before, the selection of appropriate grid generation equations provides 
another degree of freedom in the development of elliptic grid generation methods. Here we 
present two alternative grid generation methods in each category. It is clear that there are 
other possibilities and one may develop new grid generation methods in the proposed 
context. 

5.1 AA methods  

5.1.1 The AA1 method 

This method works with algebraic boundary data and employs an algebraic interpolation 
formula with constant coefficients. Grid generation equations here are algebraic 
interpolation formulas similar to Eq. (4) applied to a sub-domain close to the nodal point, 
shown in Fig. 4, as follows: 

    -0.5 0.25      P W E S N NW NE SW SEx x x x x x x x x  (17) 

    -0.5 0.25      P W E S N NW NE SW SEy y y y y y y y y  (18) 
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are used to define the interpolants, the same equations are also inverted to obtain the grid 
generation equations in the logical domain. In the method proposed by Ashrafizadeh and 
Raithby (Ashrafizdeh & Raithby, 2006), Eqs. (5) and (6) are used to obtain the grid 
generation equations in the physical domain.  

The classical orthogonal grid generation method is a good representative example of the 
cases in which neither the interpolation formulas nor the definition of the interpolants can 
be used for the grid generation. In contrast to the TTM, the interpolated values of the scale 
factor are not directly used to calculate the coordinates of internal nodes in the OGG. First 
order differential interpolants, such as the scale factor f , are not appropriate for the 
calculation of the nodal coordinates. Therefore, second order differential equations are 
developed by imposing the continuity constraints on the mapping functions. Consequently, 
Eqs. (14) and (15) are obtained and used as the grid generation equations.  

Now that the commonly used grid generation methods are explained in the framework of 
the proposed unifying view, a number of alternative elliptic grid generation methods are 
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5. Alternative grid generation methods 
Based on the proposed view point, there are many possible alternatives for the development 
of elliptic grid generation methods. By focusing on the interpolants and the interpolation 
techniques, EGG methods can be divided into the following four categories: 

 Algebraic interpolation of Algebraic interpolants (AA methods). 
 Algebraic interpolation of Differential interpolants (AD methods). 
 Differential interpolation of Algebraic interpolants (DA methods). 
 Differential interpolation of Differential interpolants (DD methods). 

As mentioned before, the selection of appropriate grid generation equations provides 
another degree of freedom in the development of elliptic grid generation methods. Here we 
present two alternative grid generation methods in each category. It is clear that there are 
other possibilities and one may develop new grid generation methods in the proposed 
context. 

5.1 AA methods  

5.1.1 The AA1 method 

This method works with algebraic boundary data and employs an algebraic interpolation 
formula with constant coefficients. Grid generation equations here are algebraic 
interpolation formulas similar to Eq. (4) applied to a sub-domain close to the nodal point, 
shown in Fig. 4, as follows: 

    -0.5 0.25      P W E S N NW NE SW SEx x x x x x x x x  (17) 

    -0.5 0.25      P W E S N NW NE SW SEy y y y y y y y y  (18) 
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Note that here algebraic formulas are used to ultimately interpolate the coordinates of 
boundary nodes (the interpolants). The nine-point computational molecules provide two 
sets of simultaneous equations which have to be solved to obtain the coordinates of grid 
points. In the context of the classical EGG methods it is hard to call this method an algebraic 
grid generator. We prefer to avoid the confusion by simply associate the method to the 
selected interpolants and the mathematical nature of the interpolation technique.  

 
Fig. 4. Contributing nodes in the AA1, DA1 and DD1 methods. 

5.1.2 The AA2 method 

This method provides a combined local/global interpolation formula. Coordinates of some 
adjacent and neighbor boundary nodes are interpolated in a TFI-like interpolation 
procedure. To obtain the nodal coordinates, the following procedure is carried out: 

 Coordinates of node P
 
are calculated using zero order TFI in the shaded area in Fig. 5a. 

The contributing nodes are shown by solid dots in Fig. 5a. The calculated coordinates at 
this stage are called  1 1, Px y . 

 A similar procedure is carried out using the TFI in shaded areas shown in Figs 5b, 5c 
and 5d to obtain new coordinates  2 2, Px y ,  3 3, Px y  and  4 4, Px y .  

 The final coordinates of node P , i. e.  , Px y , are obtained as follows: 

          1 1 1 2 2 2 3 3 3 4 4 4, , , , ,   P P P P Px y C x y C x y C x y C x y  (19) 

The simplest choice for the weight factors would be 1 2 3 4 0.25   C C C C . The weight 
factors may also be chosen taking into consideration the logical coordinates of point P. 

Note that formula for  1 1, Px y  includes coordinates of some boundary points as well as 
points P  and 1P . Similarly, the  2 2, Px y ,  3 3, Px y  and  4 4, Px y  terms bring the 
coordinates of points 2P , 3P  and 4P  in the mix. Therefore, as compared to the traditional 
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zero order TFI method, which takes the coordinates of 8 boundary nodes to calculate the 
coordinates of an internal node P , this method employs the information at 16 boundary 
nodes as well as 4 neighbor nodes to construct a computational molecule for nodal point P . 
Considering the fact that the coordinates of boundary nodes are known, Eq. (14) can be re-
written as 5-point computational molecule for the coordinates of node P  as follows: 

          
1 2 3 41 2 3 4

, , , , ,    P P P P PP P P P Px y C x y C x y C x y C x y C  (20) 

Coefficient PC  in Eq. (20) includes the effects of the above mentioned 16 boundary nodes. In 
contrast to the classical TFI, a simultaneous set of equations needs to be solved to obtain the 
coordinates of internal nodes. If only two shaded areas shown in Figs. 5a and 5b are used to 
develop the interpolation formulas, the coordinates of internal nodes can be obtained in a 
marching calculation process starting from the south east corner of the domain. 

 

 

 

Fig. 5. Four sub-domains used to develop the computational molecule in the AA2 method. 

5.2 AD methods  

5.2.1 The AD1 method  

In this method the interpolants are some differential boundary data interpolated by 
algebraic interpolation formulas. The contributing boundary nodes in each computational 
molecule are shown in Fig. 6 by   signs. Second order derivatives of boundary coordinates 
are interpolated by the algebraic TFI method:  
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Fig. 6. Contributing nodes in the AD1 method. 
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Discrete forms of Eqs (21) and (22) result in the following formulas for the coordinates of 
node P: 

      1 1 1 1 11 1, , ,  S N PP S Nx y C x y C x y C  (23) 

      2 2 2 2 22 2, , ,  E W PP E Wx y C x y C x y C  (24) 

Coefficients 1PC  and 2PC  include the contribution of boundary nodes corresponding to the 
nodal point P  as shown in Fig. 6. The final computational molecule is obtained as follows: 

      1 1 1 2 2 2, , ,  P PP P Px y x y x y  (25) 

Again the simplest choice for the weight factors would be 1 2 0.5  P P , however, these 
factors may also be chosen taking into consideration the logical coordinates of point P. 
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Therefore, in this method the coordinates of each node are constrained directly by the 
coordinates of 4 neighbor nodes and indirectly by 32 boundary nodes. Once again all 
boundary nodes contribute to the calculation of the coordinates of node P  through the 
solution of a set of algebraic equations similar to Eq. (25). 

5.2.2 The AD2 method  

In this method the interpolants are the source functions P  and Q , defined in Eqs. (5) and 
(6). The zero-order TFI is used for the interpolation of the interpolants as follows:  
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Equations (5) and (6) are used as the grid generation equations. 

5.3 DA methods  

5.3.1 The DA1 method 

In this case Dirichlet boundary value problems are solved to interpolate algebraic boundary 
data, i.e. coordinates of boundary nodes. All boundary nodes, shown by   signs in Fig. 4, 
indirectly contribute to the calculation of coordinates of each internal node. The 
interpolation formulas, which are actually the grid generation equations, are mathematical 
expressions which imply the smoothness of functions ( , ) x  and ( , ) y  as follows: 

 0  x x  (28) 

 0  y y  (29) 

Nodal points which contribute to the computational molecule for the calculation of the 
coordinates of node P  are shown by   signs in Fig. 4. It is interesting to note that Eqs. (28) 
and (29) correspond also to the conformal mapping. These equations are also obtained by 
setting 1f  in Eqs. (14) and (15). 

5.3.2 The DA2 method  

In this case an initial grid in a simple domain,  0 0,x y , is used to generate the grid in the 
physical domain. The interpolants are algebraic quantities - 0 x x x  and - 0 y y y , in 
which ( , )x y  are the corresponding boundary nodes of the target geometry. The target 
domain and the initial grid are both shown in Fig. 7. The interpolation formulas, which are 
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which ( , )x y  are the corresponding boundary nodes of the target geometry. The target 
domain and the initial grid are both shown in Fig. 7. The interpolation formulas, which are 



 
Finite Volume Method – Powerful Means of Engineering Design 

 

130 

actually the grid generation equations, are mathematical expressions for a two-dimensional 
interpolation of the boundary values of x  and  y  as follows: 
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Fig. 7. Grid generation by interpolating the nodal boundary displacements (the DA2 
method). 

Both finite difference and finite volume methods can be used to numerically solve these 
equations. This method can also be used to re-mesh the computational domain in a 
moving boundary problem. More discussion on this method can be found in 
(Ashrafizadeh et al., 2009). 

5.4 The DD methods 

5.4.1 The DD1 method 

In this example of a DD method, two differential quantities,   P x x  and 
  Q y y , are calculated at all nodes adjacent to the boundary using the paving layers 

as explained in (Ashrafizadeh & Raithby, 2006). These boundary data are then 
interpolated differentially as follows: 
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 0  P P  (32) 

 0  Q Q  (33) 

With the P  and Q  terms available at all internal nodes, the following grid generation 
equations are solved to obtain the internal nodal coordinates: 

   x x P  (34) 

   y y Q  (35) 

Here again all boundary nodes, depicted by   signs in Fig. 4, contribute through the 
implementation of boundary conditions in the interpolation procedure for each internal node.  

5.4.2 The DD2 method 

Another alternative for the description of the boundary information is to use   xx yyP  
and   xx yyQ  interpolants. Boundary values of these source functions are interpolated 
by a multi-dimensional interpolation technique, i.e. Eqs. (32) and (33), and the coordinates 
are generated by solving Eqs. (5) and (6). This method is similar to the TTM as employed in 
(Thomas & Middlecoff, 1980) except that a multi-dimensional interpolation method is used 
to calculate internal values of the source functions. 

6. A brief discussion 
It is worthwhile to mention few points here for further clarification: 

1. The grid generation methods, just introduced, are few examples of many methods that 
can be developed based on the three main choices in the proposed unifying view, i. e. 
the choice of the interpolants, the choice of the interpolation technique and the choice of 
the grid generation equations. For example, a family of new methods, not discussed 
here, have also been developed by the authors which employ the transformation 
metrics at or near the boundary as interpolants. Such methods may be viewed as a 
continuation, and generalization, of the orthogonal grid generation method. 

2. The smooth distribution of the source terms in the TTM method is a sign of grid 
smoothness. By properly choosing the interpolants, the interpolation technique and the 
grid generation equations, boundary coordinate lines are smoothly interpolated into the 
domain and a smooth distribution of source terms is obtained.  

3. The possibility of folding exists in nearly all of the commonly used elliptic grid 
generation methods except for the TTM with P Q 0   on sufficiently fine grids. 
Therefore, the above new grid generation methods may result in folded grids for some 
geometrically complex domains. However, the objective in the development of new 
elliptic grid generation techniques is to obtain methods which generate high quality 
grids and are more resilient to folding as compared to the classical methods. 

4. Many of the alternative grid generation methods presented here are executed much 
faster than the classical methods. They may also be used to generate the background or 
initial grids for other more expensive grid generators. 
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Fig. 7. Grid generation by interpolating the nodal boundary displacements (the DA2 
method). 
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domain and a smooth distribution of source terms is obtained.  
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generation methods except for the TTM with P Q 0   on sufficiently fine grids. 
Therefore, the above new grid generation methods may result in folded grids for some 
geometrically complex domains. However, the objective in the development of new 
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grids and are more resilient to folding as compared to the classical methods. 

4. Many of the alternative grid generation methods presented here are executed much 
faster than the classical methods. They may also be used to generate the background or 
initial grids for other more expensive grid generators. 
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7. Grid generation examples 

The performances of the proposed grid generation methods are now studied by solving 
various grid generation problems. In this section two geometries, often used to test the 
elliptic grid generators and here called the test cases, are chosen to examine some of the 
proposed methods and to also compare them with the classical elliptic and algebraic grid 
generation methods. The first test case is a quadrilateral domain, for which all four 
boundaries are distorted. The second test case is also a quadrilateral domain for which only 
two of the neighboring boundaries are distorted. A (11 11)  grid is generated in all test 
cases. Finer, and nicer, grids can obviously be generated but we have chosen a rather coarse 
grid to be able to visualize the details of the performance of the methods.  

The EGG methods can be compared in terms of the computational cost and the grid 
quality measures. Considering the fact that the grid generation cost depends mostly on 
the cost of the solution of the grid generation equations, the comparison in terms of the 
computational cost seems a trivial task in nearly all cases. As a general guideline, the 
solution of a nonlinear set of equations is computationally more expensive than the 
solution of a linear set. Regarding the grid quality, two parameters, i.e. the skewness and 
the aspect ratio, are chosen as the quality measures in this study. Skewness of a cell varies 
between 0 and 1 and measures the deviation from the orthogonality of the coordinate 
lines. Aspect ratio of a cell is defined as the ratio of the longest edge length to the shortest 
one and measures the deviation from a square cell. Cells in the logical space have zero 
skewness and aspect ratio equal to one. 

Figure 8 shows the grids generated by the classical methods in the test domains. The 
generated grids by the zero-order TFI are shown in Figs. 8a and 8b. Figures 8c and 8d show 
the grids obtained from the TTM and Figs. 8e and 8f are orthogonal grids generated by the 
OGG. It is seen that the OGG method results in folded grids in both test cases. The 
corresponding grid quality measures are shown in Figs. 9a and 9b, 9c and 9d, and 9e and 9f 
respectively. Note that there are 10 cells along each coordinate line in the test grids. Each 
quality measure diagram shows the relevant quality measures for all 100 cells on a three-
dimensional plot containing 10 10  data points. 

Figures 10, 11, 12 and 13 show the grids in the test geometries obtained via the proposed 
new methods. It can be seen that all of the methods provide unfolded grids comparable to 
the grids obtained by the classical methods. Furthermore, and as expected, it is obvious that 
methods which employ differential interpolation techniques result in smoother grids. 

The spatial distribution of the source functions   xx yyP  and   xx yyQ  using three 
different interpolation techniques are shown in Fig. 14. One dimensional interpolation is 
used to interpolate the control functions shown in Figs. 14a and 14b. The grids 
corresponding to these control functions are shown in Figs. 8c and 8d. Figures 14c and 14d 
show the distributions of control functions, which are obtained through a quasi-two 
dimensional method, i.e. the TFI. The grids corresponding to these control functions are 
shown in Figs. 11c and 11d. Finally, Figs. 14e and 14f show the interpolated control 
functions via a truly two-dimensional interpolation method, i.e. the solution of Dirichlet 
boundary value problems. The grids corresponding to these control functions are shown in 
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Figs. 13c and 13d. As expected, it is seen that the grids corresponding to the control 
functions shown in Figs. 14e and 14f are smoother than the other grids. A stretched grid 
with higher number of nodes is shown in Fig. 15 to show the applicability of AD1 in more 
complex domains. Similar results can be obtained via other proposed methods. 

 

 

 

Fig. 8. Generated grids by TFI (a,b), TTM (c,d) and OGG (e,f). 
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various grid generation problems. In this section two geometries, often used to test the 
elliptic grid generators and here called the test cases, are chosen to examine some of the 
proposed methods and to also compare them with the classical elliptic and algebraic grid 
generation methods. The first test case is a quadrilateral domain, for which all four 
boundaries are distorted. The second test case is also a quadrilateral domain for which only 
two of the neighboring boundaries are distorted. A (11 11)  grid is generated in all test 
cases. Finer, and nicer, grids can obviously be generated but we have chosen a rather coarse 
grid to be able to visualize the details of the performance of the methods.  
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functions via a truly two-dimensional interpolation method, i.e. the solution of Dirichlet 
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Figs. 13c and 13d. As expected, it is seen that the grids corresponding to the control 
functions shown in Figs. 14e and 14f are smoother than the other grids. A stretched grid 
with higher number of nodes is shown in Fig. 15 to show the applicability of AD1 in more 
complex domains. Similar results can be obtained via other proposed methods. 

 

 

 

Fig. 8. Generated grids by TFI (a,b), TTM (c,d) and OGG (e,f). 
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Fig. 9. Quality measures for the grids generated by TFI (a,b), TTM (c,d) and OGG (e,f). 
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Fig. 10. Generated grids by AA1 (a, b), AA2 (c, d). 

 
Fig. 11. Generated grids by AD1 (a, b) and AD2 (c, d). 
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Fig. 9. Quality measures for the grids generated by TFI (a,b), TTM (c,d) and OGG (e,f). 
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Fig. 10. Generated grids by AA1 (a, b), AA2 (c, d). 

 
Fig. 11. Generated grids by AD1 (a, b) and AD2 (c, d). 
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Fig. 12. Generated grids by DA1 (a, b) and DA2 (c, d). 

 
Fig. 13. Generated grids by DD1 (a, b) and DD2 (c, d). 
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Fig. 14. Calculated P and Q by 1D interpolation (a, b), AD2 (c, d) and DD2 (e, f). 
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Fig. 12. Generated grids by DA1 (a, b) and DA2 (c, d). 

 
Fig. 13. Generated grids by DD1 (a, b) and DD2 (c, d). 
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Fig. 14. Calculated P and Q by 1D interpolation (a, b), AD2 (c, d) and DD2 (e, f). 
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Fig. 15. A sample grid generated by AD1 (a), and a larger view of sections of the grid (b, c 
and d). 
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8. Conclusion 
A unified view of the elliptic grid generation is proposed in this Chapter. It is argued that 
elliptic grid generation techniques are actually methods for multi-dimensional geometrical 
interpolation and can be described in terms of the interpolants, interpolation technique, and 
grid generation equations. Interpolants are used to describe the boundary shape and nodal 
distribution, interpolation technique is used to bring the boundary data into the domain, 
and grid generation equations are used to calculate the internal nodal coordinates. The most 
commonly used classical elliptic grid generation methods are explained in the context of the 
proposed unified view and new grid generation methods are also presented in the same 
context. A number of grid generation examples are chosen to show the applicability of the 
proposed methods. Authors believe that the proposed unified view provides a systematic 
and comprehensible approach to explain and develop a large class of elliptic grid generation 
methods. Some of these methods are computationally cheaper than the existing methods, 
yet provide grids with comparable qualities. 
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1. Introduction 
The finite volume method (FVM) is widely used in traditional computational fluid 
dynamics (CFD), and many commercial CFD codes are based on this technique which is 
typically less demanding in computational resources than finite element methods (FEM). 
However, for historical reasons, a large number of Computational Rheology codes are 
based on FEM. 

There is no clear reason why the FVM should not be as successful as finite element based 
techniques in Computational Rheology and its applications, such as polymer processing or, 
more recently, microfluidic systems using complex fluids. This chapter describes the major 
advances on this topic since its inception in the early 1990’s, and is organized as follows. In 
the next section, a review of the major contributions to computational rheology using finite 
volume techniques is carried out, followed by a detailed explanation of the methodology 
developed by the authors. This section includes recent developments and methodologies 
related to the description of the viscoelastic constitutive equations used to alleviate the high-
Weissenberg number problem, such as the log-conformation formulation and the recent 
kernel-conformation technique. At the end, results of numerical calculations are presented 
for the well-known benchmark flow in a 4:1 planar contraction to ascertain the quality of the 
predictions by this method. 

2. Main contributions 
The first contributions to computational rheology in the late nineteen sixties were based on 
finite difference methods (FDM, Perera and Walters, 1977). In the first major book on 
computational rheology (Crochet et al, 1984) works using FEM predominate, but the 
number of contributions using FDM was also significant. 

Among the first numerical works to make use of FVM to investigate viscoelastic fluid flows 
was the study of the benchmark flow around a confined cylinder of Hu and Joseph (1990), 
who used the simplest differential constitutive equation embodying elastic effects, the upper-
convected Maxwell (UCM) model. Velocities were calculated in cylindrical/orthogonal grids 
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finite difference methods (FDM, Perera and Walters, 1977). In the first major book on 
computational rheology (Crochet et al, 1984) works using FEM predominate, but the 
number of contributions using FDM was also significant. 

Among the first numerical works to make use of FVM to investigate viscoelastic fluid flows 
was the study of the benchmark flow around a confined cylinder of Hu and Joseph (1990), 
who used the simplest differential constitutive equation embodying elastic effects, the upper-
convected Maxwell (UCM) model. Velocities were calculated in cylindrical/orthogonal grids 
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staggered relative to the basic mesh for pressure and stresses. The SIMPLER algorithm 
(Patankar, 1980) was adapted and extended to the calculation of stress tensor components. The 
inertial terms in the momentum equation were neglected in these low Reynolds number 
simulations conducted on rather coarse meshes, and convergence was obtained up to 
Weissenberg numbers of 10. 

For creeping flow, the advective terms in the momentum equation can be discarded but the 
same does not hold for the advective terms in the constitutive equation, which typically 
originate convergence and accuracy problems. The development of stable and accurate 
schemes to deal with advection-dominated equations is a fundamental issue which was not 
addressed in the initial works using FVM. For example, in their sudden contraction 
calculations Yoo and Na (1991) kept all advective terms, but considered only first order 
discretization schemes, which are known from classical CFD (Leschziner, 1980) to introduce 
excessive numerical diffusion, especially when the flow is not aligned with the 
computational grid (Patankar, 1980). 

Staggered meshes, in which different variables are evaluated in different points of the 
computational mesh (some at the cell centers, others at the cell faces), were used by Yoo and 
Na (1990), as well as in subsequent works (eg. Gervang and Larsen, 1991; Sasmal, 1995; Xue 
et al, 1995, 1998 a,b; Mompeam and Deville, 1997; Bevis et al, 1992). Staggered meshes 
provide an easy way to couple velocities, pressure and stresses, but calculations involving 
complex geometries become rather difficult and in some cases do not allow for the 
determination of the shear stress at singular points, such as re-entrant corners. Alternatively, 
the use of non-orthogonal, or even non-structured meshes, are to be preferred in such cases. 

Non-orthogonal meshes have been used in FVM for Newtonian fluids since the mid-
nineteen eighties, but its application to finite volume viscoelastic methods happened only in 
1995. Initially, the adaptation to computational rheology of some of the techniques 
previously developed for Newtonian fluids to has been slow, namely on issues like 
pressure-velocity coupling for collocated meshes (in which all variables are evaluated at the 
cell centres), time marching algorithms or the use of non-orthogonal meshes. Lately, 
progress has been quicker on issues of stability for convection dominated flows, as in 
viscoelastic flows at high Weissenberg numbers and in high speed flows of inviscid 
Newtonian fluids involving shock waves (Morton and Paisley, 1989; Mackenzie et al, 1993). 

Regarding other mesh arrangements, Huang et al (1996) used non-structured methods in a 
mixed finite element/finite volume formulation by extending the control volume finite 
element method (CVFEM) of Baliga and Patankar (1983) for the prediction of the journal 
bearing flow of Phan-Thien and Tanner (PTT) fluids. Nevertheless, the formulation lacked the 
generality of modern methods in Newtonian fluid calculations on collocated grids (Ferziger 
and Perić, 2002) and was problematic to extend to higher-order shape functions (usually the 
convective terms are discretized with some form of upwind). Later, Oliveira et al (1998) 
developed a general method for solving the full momentum and constitutive equations on 
collocated non-orthogonal meshes, enabling calculations of complex three-dimensional flows. 
Their scheme for coupling velocity, pressure and stresses was later improved by Oliveira and 
Pinho (1999a) and Matos et al (2009). This issue was also addressed in a parallel effort by 
Missirlis et al (1998), but only for staggered, orthogonal meshes. 

As mentioned above, there are hybrid methods, aimed at combining the advantage of finite 
elements in representing complex geometries and the advantage of finite volumes to ensure 
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conservation of physical quantities; they follow the CVFEM ideas initially proposed by 
Baliga and Patankar (1983). Within the scope of computational rheology, hybrid methods 
have been developed especially by Webster and co-workers (Aboubacar and Webster 2001, 
Aboubacar et al 2002, Wapperom and Webster 1998, 1999), and Sato and Richardson (1994) 
within the finite-element methodology; and by Phan-Thien and Dou (1999) and Dou and 
Phan-Thien (1999), within the CVFEM formulation referred to above. 

Stability, convergence and accuracy are intimately related, but the early efforts were more 
concerned with stability and convergence, due to the mixed elliptic/hyperbolic nature of the 
motion and constitutive equations, than with accuracy. Thus, early developments on the 
algorithmic side were usually based on first-order discretization methods, such as the 
classical upwind differencing scheme, leading to lower accuracy (Ferziger and Perić, 2002). 
Due to computer limitations early works also used rather coarse meshes, but the topic of 
accuracy started to gain momentum by the mid-nineties, and Sato and Richardson (1994) 
were among the first to show this concern. Although their approach can be classified as 
FEM, the constitutive equations were integrated over finite volumes with the advective flux 
stress terms discretized and stabilized by means of a bounded scheme obeying total 
variation diminishing (TVD) criteria. 

For the pure FVM in computational rheology, there has been a significant effort at 
developing accurate and stable methods by the authors of this chapter: Oliveira and Pinho 
(1999b), Alves et al (2000, 2001a, 2003a, 2003b) and Afonso et al (2009, 2012). Oliveira and 
Pinho (1999b) used second-order interpolation schemes for the advective stress fluxes 
(either a linear upwind scheme or central differences), but difficulties associated with the 
intrinsic unboundedness of those schemes led them to the implementation of so-called 
high-resolution methods, often used in high-speed aerodynamics. These represent 
important landmark developments, where there was a remarkable improvement both in 
terms of stability and accuracy (Alves et al, 2000). In fact, high-resolution methods led to 
solutions having similar accuracy as those obtained with the most advanced FEM (Alves 
et al, 2001a, 2003b), and also to comparable levels of convergence (measured by the 
maximum Weissenberg (Wi) or Deborah (De) numbers above which the methods 
diverged). For reasons discussed in Fan et al (1999), the lower De results showed less 
discrepancies and FVM could achieve the same accuracy as FEM. Comparisons for the 
flow in a 4:1 sudden planar contraction are also available in Alves et al (2003b), where the 
CUBISTA high-resolution scheme especially designed for the treatment of advection in 
viscoelastic flows is employed (Alves et al, 2003a). Some of the difficulties in iterative 
convergence of viscoelastic flow calculations of the mid-2000’s were solved by such high-
resolution schemes for interpolating convective terms in the stress equation as the 
CUBISTA scheme, which obeys total variation diminishing criteria. These are more 
restrictive than convection boundedness criteria and the universal limiter of Leonard 
(1991), as was demonstrated by Alves et al (2003a). 

Subsequently, a very relevant development in computational rheology overcame, or at 
least significantly mitigated, the so-called High-Weissenberg Number Problem, in which 
calculations breakdown at some critical problem-dependent Weissenberg numbers. In 
2004, Fattal and Kupferman proposed a reformulation of the viscoelastic constitutive 
equations in terms of the matrix logarithm of the conformation tensor to alleviate this 
problem (Fattal and Kupferman, 2004). This technique, now known as the log-
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conformation, has been implemented within the framework of FEM (eg. Hulsen et al, 
2005) and more recently in the framework of FVM (Afonso et al, 2009, 2011), who 
maintained the use of the CUBISTA scheme to describe the advection of log-conformation 
terms for improved accuracy. This technique has been applied to various different flows, 
including the flow around a cylinder, in which Wi on the order of 10 were achieved for 
the Oldroyd-B model in comparison with previous Wi ≈ 1.2 attained with the standard 
version. This approach has been generalized by Afonso et al (2012) considering different 
functions for the transformation of the tensor evolution equation. This technique, known 
as kernel-conformation, encompasses the log-conformation approach and assumes 
particular importance as new phenomena are observed in viscoelastic fluid flows in the 
context of microfluidics, where elastic effects are enhanced and inertia effects reduced as 
compared to classical macro-scale fluid flows. 

Today it is an undisputable fact that FVM are mature in computational rheology, as 
indicated by a wide range of computations exhibiting similar or even better performance in 
terms of accuracy and robustness as other methods (Owens and Phillips, 2002) and 
presumably at a lower cost, especially in light of the recent developments allowing 
computations at high Wi number. 

3. The finite-volume method applied to viscoelastic fluids using collocated 
meshes 
3.1 General methodology 

The general finite-volume methodology here described for viscoelastic flow computations 
is closely patterned along the lines of that previously presented in Oliveira (1992). 
Numerical calculation of any flow requires solution of two governing equations, for mass 
conservation and momentum. For a non-Newtonian fluid an additional rheological 
equation of state is needed. To calculate the pressure it is necessary to solve a 
thermodynamic equation of state, but since here we are considering incompressible fluid 
flows only, such equation is used to calculate the fluid density and becomes decoupled 
from the above mentioned governing equations. Then the flow becomes independent of 
absolute pressure, and the pressure variations are determined indirectly from the mass 
conservation equation as discussed later. If temperature variations are important, the 
energy equation needs also to be considered. 

In FVM, described in detail in several textbooks (eg. Patankar, 1980; Ferziger and Perić, 
2002; Versteeg and Malalasekera, 2007), the computational domain is divided into 
contiguous computational cells and within each of these the differential governing 
equations are volume integrated. Gauss theorem is then invoked to transform the 
divergence of quantities into surface integral of fluxes in order to guarantee the conservation 
of the quantities. Next, these surface integrals are represented by summation of fluxes 
whereas the non-transformed volume integrals are approximated by products of an average 
value of the integrand and the volume of the computational cells. Finally, the fluxes at the 
cell faces must be equated as a function of the unknown quantities at the neighbour cell 
centers. This is achieved differently depending on whether staggered or collocated meshes 
are used. For the former see Patankar (1980) and for the latter details are given in Ferziger 
and Perić (2002). The present chapter deals with collocated meshes only. 
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3.2 Coordinate system 

The equations to be solved are written for non-orthogonal coordinate systems aligned with 
the computational grid for generality in the treatment of complex geometries. This can also 
be achieved with non-structured meshes (for viscoelastic fluids, see e.g. Huang et al, 1996), 
but our developments are based on block-structured grids. The equations must obey general 
principles of invariance, but their discretization in a global mesh composed of six-faced 
computational cells requires their previous transformation to a non-orthogonal coordinate 
system (1, 2, 3), as in Figure 1. It is important to notice that only the coordinates are 
represented in the non-orthogonal system, whereas velocity and stress components are 
referred to the original Cartesian system. This means that in the transformation of the 
conservation equations only the derivatives need to be converted.  

 
Fig. 1. Schematic representation of the transformation of Cartesian rectangular coordinates 
to a non-orthogonal system defined by the local orientation of the computational grid.  

From the numerical point of view it is advantageous to write the resulting equations in their 
strong conservative form to help conserve the physical quantities in the final algebraic 
equations. This is indeed one of the main advantages of FVM: it is essential to maintain 
conservation of quantities that physically should be conserved, such as mass. The well 
known transformation rules (see Vinokur, 1989) are given by: 
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where J is the Jacobian of the transformation  i i lx x  , i.e.  det i lJ x     and li are the 
metric coefficients defined as the cofactor of terms i lx    in the Jacobian. These equations are 
written in terms of indicial notation and the summation convention for repeated indices applies. 

3.3 Governing equations 

The continuity equation for incompressible fluid flow is 
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where ui represents the velocity vector in the Cartesian system and   is the density of the 
fluid, which is retained in Eq. (2) for later convenience. The momentum equation for a 
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where t represents the time, p the pressure, gi is the acceleration of gravity, S  is the solvent 
viscosity and ik  is the symmetric extra-stress tensor, which is described by an appropriate 
rheological constitutive equation. To describe the numerical method, we will adopt the PTT 
model, which is adequate to explain the variations relative to the method used for Newtonian 
fluids. Whenever needed the use of a different model will be conveniently mentioned. The 
extra-stress of the PTT model is given as function of the conformation tensor Aij as 

  P
ij ij ijA 


   (4) 

where P is the polymer viscosity parameter,   is the relaxation time and ij is the unitary 
tensor. The conformation tensor is then described by an evolution equation, which for the 
PTT fluid takes the form 
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In its general form function Y[ kkA ] for the PTT model is exponential, 
 [ ] exp[ 3kk kkY A A   (Phan-Thien, 1978), but in this work we will mostly use its linear 

form,  [ ] 1 3kk kkY A A    (Phan-Thien and Tanner, 1977). When   1kkY A   (i.e. for 
0  ) the Oldroyd-B model is recovered. Additionally, if in the momentum equation we set 
0S   then the UCM model is obtained. The non-unitary form of Y[Akk]  for the PTT model 

imparts shear-thinning behaviour to the shear viscosity of the fluid and bounds its steady-
state extensional viscosity.  

The tensor Aij is a variance–covariance, symmetric positive definite tensor, therefore it can 
always be diagonalized as Aij=OikLkl(OT)lj, where Oij is an orthogonal matrix generated with 
the eigenvectors of matrix Aij and Lij is a diagonal matrix created with the corresponding 
three distinct eigenvalues of Aij. This fact provides the possibility of using the log-
conformation technique, introduced by Fattal and Kupferman (2004), which has been shown 
to lead to a significant increase of numerical stability. In this technique a simple tensor-
logarithmic transformation is performed on the conformation tensor for differential 
viscoelastic constitutive equations. This technique can be applied to a wide variety of 
constitutive laws and in the log-conformation representation the evolution Eq. (5) is 
replaced by an equivalent evolution equation for the log-conformation tensor,  log=Θ A . 
The transformation from Eq. (5) to an equation for ij is described by Fattal and Kupferman 
(2004), and leads to  
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In Eq. (6) Rij and Eij are a pure rotational tensor and a traceless extensional tensor, 
respectively, which combine to form the velocity gradient tensor.  To recover Aij from ij the 
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inverse transformation, e ΘA , is used when necessary. The log-conformation approach is 
a relevant particular case of the recently proposed general kernel-conformation tensor 
transformation (Afonso et al 2012), in which several matrix transformations can be applied 
to the conformation tensor evolution equation. 

After application of the transformation rules introduced above, the conservation equations 
of mass and momentum become (Oliveira, 1992): 
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with l’ = l, and no summation over index l’. Note that although the diffusive term of the 
momentum equation (the term proportional to S ) involves only normal second 
derivatives, its transformation to the non-orthogonal system originates mixed second-order 
derivatives. The artificial diffusion term added in both sides of Eq. (8) has a viscosity 
coefficient S P     and is especially necessary when 0S  . 

The rheological constitutive equation becomes  
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together with Eq. (4) and the inverse transformation e ΘA . 

3.4 Discretization of the equations 

The objective of the discretization is to obtain a set of algebraic equations relating centre-of-
cell values of the unknown variables to their values at nearby cells. These equations are 
linearized and the large sets of linear equations are solved sequentially for each variable 
using well-established iterative methods. 

The integration of the governing equations in generalized coordinates is straightforward 
after an acquaintance with the nomenclature, which is summarized in Figure 2. In the 
discretization, the usual approximations regarding average unknowns at cell-faces and 
control volumes apply (for details, see Ferziger and Perić, 2002). For the discretization of the 
equations in the generalized coordinate system, it suffices to replace the coefficients li by 
area components of the surface along direction l, denoted Bli, the Jacobian J by the cell 
volume V, and the derivatives ∂/∂l by differences between values along direction l,  
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The integration of the governing equations in generalized coordinates is straightforward 
after an acquaintance with the nomenclature, which is summarized in Figure 2. In the 
discretization, the usual approximations regarding average unknowns at cell-faces and 
control volumes apply (for details, see Ferziger and Perić, 2002). For the discretization of the 
equations in the generalized coordinate system, it suffices to replace the coefficients li by 
area components of the surface along direction l, denoted Bli, the Jacobian J by the cell 
volume V, and the derivatives ∂/∂l by differences between values along direction l,  
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These differences and the area components can be evaluated at two different locations:  

1. at cell centres, here denoted with the superscript P, 

 
 P f ff           and     P

fiB  (11) 

2. at cell-faces, with  superscript  f,  

 
 f F Pf             and    f

fiB  (12) 

In this notation, index F denotes the centre of the neighbour cell to the generic cell P sharing 
the same face f (see Figure 2), therefore these two indices, f and F are associated; double 
characters (FF and ff) refer to the second neighbour and cell face, respectively, along the 
same direction.  

In the discretized equations, variables at a general cell P and at its six neighbours (F = 1 to 6, 
for W, E, S, N, B and T with compass notation: west, east, south, north, bottom and top, i.e. 
for l =  1,  2 and  3, respectively) are treated implicitly and form the main stencil in the 
discretization. The six far-away neighbours (FF=1 to 6, for WW, EE, SS, NN, BB and TT) 
appearing in high order schemes, give rise to contributions which are incorporated into the 
so-called source term and are treated explicitly being evaluated from known values from the 
previous iteration/time-step. Thus, the linearized sets of equations for each dependent 
variable, which need to be solved at every time step, have a well defined block-structured 
matrix with 7 non-zero diagonals. This is one important difference with the finite-element 
method, which gives rise to banded matrices with no particular structure inside the band.  

 
Fig. 2. Nomenclature: (a) general and neighbouring cells; (b) area vectors and components. 

3.4.1 Continuity equation 

The continuity equation is volume integrated and discretized as follows (sums are explicitly 
indicated in the discretized equations): 

  
P

P
3 6 6

f
,f f

1 f 1 f 1
d 0 0lj j lj j fj j

l l j jV l

u V B u B u F  
   

              
         

       (13) 

In this equation, the sum of differences centred at cell centre P has been transformed into a 
sum of contributions arising from the six cell faces, f. The tilde in ,fju , referring to the cell face 
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velocity component uj, means that this cannot be computed from simple linear interpolation, 
in which case no special symbol would be required according to our nomenclature, but need 
to be evaluated via a kind of Rhie and Chow (1983) interpolation technique, to be explained in 
Section 3.6. It is this special interpolation that ensures coupling between the pressure and 
velocity fields in a collocated mesh arrangement. Considering the definition of outgoing mass 
flow rates ( fF ), the discretized continuity equation expresses the fact that the sum of in-
coming mass flow rates (negative) equals the sum of out-going flow rates (positive).  

3.4.2 Momentum equation 

The integration of each term in Eq. (8), starting from left to right, results in the following 
algebraic expressions. 

Inertial term: This term does not benefit from the application of Gauss’ theorem; hence its 
discretization results in  

    
P

( )P
,P ,Pd n

i i i
V

VJ u V u u
t t





 


 (14) 

where  
,P
n

iu  is the velocity at cell P at the previous time level and PV  represents the volume 
of cell P. The present method is fully implicit meaning that all variables without a time-level 
superscript are assumed to pertain to the new time-level (n + 1). The superscript (n) denotes 
a previous time step value. More accurate discretization procedures can be introduced for 
time-dependent calculations, but at this stage we use the implicit first-order Euler method 
for simplicity.  

Convection term: As in Eq. (13), this term benefits from Gauss’ theorem, 
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with the cell face mass fluxes defined as in Eq. (13) and the convected velocity at face f, ,fiu , 
being given according to the discretization scheme adopted for the convective terms. For the 
upwind differencing scheme, ,fiu  is simply the velocity at the centre of the cell in the 
upstream direction, which can be written generally by expressing the convection fluxes of 
momentum as 

 f ,f f ,P f ,Fi i iF u F u F u        where  f fMax( ,0)F F   and f fMin( ,0)F F   (16) 

Diffusion term: A normal diffusion term is added to both sides of the momentum equation, Eq. 
(8), in order to obtain a standard convection-diffusion equation when there is no solvent 
viscosity contribution, 0S  . This choice is akin to the Elastic Viscous Stress Splitting 
approach (Perera and Walters, 1977; Rajagopalan et al, 1990). The term added to the left hand 
side of the equation is given by the following expression, and discretized as shown: 
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velocity component uj, means that this cannot be computed from simple linear interpolation, 
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to be evaluated via a kind of Rhie and Chow (1983) interpolation technique, to be explained in 
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velocity fields in a collocated mesh arrangement. Considering the definition of outgoing mass 
flow rates ( fF ), the discretized continuity equation expresses the fact that the sum of in-
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3.4.2 Momentum equation 
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where the surface area of the cell face is f f
f fj fj

j
B B B  , the volume of a pseudo-cell centred 

at the face is 
3 ff

f
1

fj j fj
V B x



    , and 2
f f f f/D B V  is a diffusion conductance. An identical 

term is added to the right hand side of the momentum equation, where it is treated 
explicitly and added to the source term. When iterative convergence is achieved, these two 
terms cancel out exactly. The solvent viscosity contribution is discretised using a similar 
approach. 

Pressure gradient term: The pressure gradient is centred at P, thus leading to pressure 
differences across cell-widths. In representing it as 

iuS , it is implied that it will become a 
contribution to the source term of the algebraic equation, and therefore will be calculated 
explicitly as:  
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3 PP

1
d

ili li u pressurel
l lV

p V B p S
 




    

   (18) 

Stress-divergence term: Another term benefiting from Gauss’ theorem, it becomes 
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d
ilj ij fj ij u stress
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where, like with the face velocity in the continuity equation beforehand, the cell-face stress 
(denoted with tilde) requires a special interpolation method due to the use of the collocated 
mesh arrangement. The way to do this constitutes one of the contributions of our work and 
is essential for the applicability of this method described in Section 3.7. This term is also 
treated explicitly in the context of the momentum equation, i.e. it becomes part of the 
momentum source term. 

Gravity or body-force term: As with the pressure gradient term, this contribution is calculated 
at the cell centre and is included in the source term of momentum equation, 
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Pd
ii i u gravity

V

J g V V g S     (20) 

The final discretized form of the momentum equation is obtained at after re-grouping the 
various terms discussed above, to give: 
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where the coefficients Fa  consist of convection ( F
Ca , here based on the upwind differencing 

scheme (UDS)) and diffusion contributions ( F
Da ): 

 F F F
D Ca a a  , with  F f

Da D  and  
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  (for a negative face,  f )

  (for a positive face,  f )
C F

a
F

 

 

 


 (22) 

The central coefficient is: 

 P
P F

F

Va a
t




   (23) 

and the total source term is given by the sum 

 i i i i iu u pressure u gravity u stress u diffusionS S S S S        (24) 

The source term 
iuS  may contain additional contributions, such as those resulting from 

the application of boundary conditions, the use of high-resolution schemes for convection, 
or previous time step values for higher-order time-discretization schemes, amongst 
others. 

3.4.3 Rheological constitutive equation 

The two terms on the left hand side of Eq. (9) are discretized as the inertia (Eq. 14) and the 
convection terms above (Eq. 15), respectively, and do not present any additional difficulty. It 
should be noted that in all terms the velocity component ui is replaced by ij, and the mass 
flow rates in the convective fluxes, defined in Eq. (13), should be multiplied by  (compare 
the convective fluxes in Eqs. 8 and 9). Following the same approach as above, the source 
term in the stress conformation tensor constitutive equation becomes: 

  ,P
,P ,PP

2 Y( ) ij

ij P ik kj ik kj P ij kk P ijS V R R V E A V e  
          (25) 

The final form of the linearized equation is therefore 
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t

 (26) 

with the coefficients 
Fa consisting of the convective coefficients in Eq. (22) multiplied by, 

for the reasons just explained, and the central coefficient is: 

 P P
P P F P 0 PF

V Va V a V a
t t

 
 

         (27)  

Whenever the extra-stress tensor is used in the code, it can be recovered from the 
conformation tensor using Eq. (4). 

3.5 High-resolution schemes 

The convective terms of the momentum and constitutive equations contain first derivatives 
of transported quantities, therefore an interpolation formula for their determination at cell 
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faces is required ( ,fiu in Eq. 15 and ,fij


 in the convection term of the constitutive equation). 
In the previous section the UDS was used for such purpose, in particular for the 
determination of the convected velocities at cell-faces in Eq. (16). The upwind scheme is the 
most stable of all the schemes for convection, but has only first order accuracy and therefore 
gives rise to excessive numerical diffusion. Such problem is aggravated for the hyperbolic-
type conformation equations.  

Higher order methods for improved calculations have been widely used in CFD, such as 
second- and third-order upwind schemes (e.g. the QUICK scheme developed by Leonard, 
1991). However, these schemes suffer from stability or iterative convergence problems, and 
are often not limited. To address these difficulties various differencing schemes have been 
combined in what are called high-resolution schemes (HRS). These methods ensure better 
convergence and stability properties and are generally bounded to avoid the appearance of 
spurious oscillations in regions with high gradients of the transported quantity. 

The calculation of viscoelastic fluid flows has its own specificities, which are well described 
in specialized works (e.g. Owens and Phillips, 2002). For instance, HRS with good 
performance for Newtonian fluids often have problems of convergence and stability with 
viscoelastic fluids, as discussed by Alves et al (2003a), who developed an HRS particularly 
adequate for computational rheology, the CUBISTA scheme (Convergent and Universally 
Bounded Interpolation Scheme for the Treatment of Advection). This HRS is described 
below as implemented in our viscoelastic flow solver. 

In what regards implementation of the HRS we use the so-called deferred correction 
approach of Khosla and Rubin (1974), where the convective contributions to the coefficients 

Fa  and Pa  are based on the upwind scheme UDS, to ensure positive coefficients for 
enhanced stability. The difference between the convective fluxes calculated by the HRS and 
UDS are handled explicitly and are included in the source term. Therefore, the deferred 
correction provides stability, simplicity of implementation (avoids increasing the 
computational stencil) and savings in computer memory, since the coefficients Pa  and Fa  
are the same in the three momentum equations, and 

Pa  and 
Fa  are also the same in the six 

stress equations for 3D problems. For time-dependent flows, the use of the deferred 
correction leads to problems similar to those created by the added diffusive terms of the 
momentum equation, and the solution is the same: it is necessary to ensure that the added 
terms cancel each other at each time step by using an iterative procedure within the time-step. 

Taking into account the use of the HRS in the scope of the deferred correction, the 
discretized momentum and constitutive equations can be rewritten as 

 
* *
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In both equations the new terms are evaluated at the previous iteration level (indicated by *) 
and are included in the source term ( u HRSS   and HRSS ). 
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Fig. 3. Definition of local variables and coordinates in the vicinity of face f. (a) Positive 
velocity along direction 

l
x ; (b) negative velocity along direction 

l
x .  

The high-resolution schemes are usually written in compact form, using the normalized 
variable and space formulation of Darwish and Moukalled (1994). In this formulation the 
transported quantity   ( iu  or ij ) and the system of general coordinates  , shown 
schematically in Figure 3, are normalized as 
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where subscripts U and D refer to upwind and downwind cells relative to C, which is 
immediately upstream of face f. The objective is the calculation of   at cell-face f, via a 
special interpolation scheme for convection ( f


). 

In order to satisfy the convection boundedness criterion (CBC) of Gaskell and Lau (1988) the 
functional relationship of an interpolation scheme applied to a cell face f,  f Cfn 
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be continuous and bounded from below by f C 
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. However, the CBC is not sufficient to guarantee that a limited 

scheme has good iterative convergence properties and therefore Alves et al (2003a) also used 
the “Universal Limiter” of Leonard (1991), which is valid for explicit transient calculations 
and reduces to Gaskell and Lau’s criterion for steady flows, when the Courant number 
tends to zero. On the other hand, the conditions for an explicit time-dependent method to be 
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faces is required ( ,fiu in Eq. 15 and ,fij
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In both equations the new terms are evaluated at the previous iteration level (indicated by *) 
and are included in the source term ( u HRSS   and HRSS ). 
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Fig. 3. Definition of local variables and coordinates in the vicinity of face f. (a) Positive 
velocity along direction 
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x ; (b) negative velocity along direction 
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The high-resolution schemes are usually written in compact form, using the normalized 
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transported quantity   ( iu  or ij ) and the system of general coordinates  , shown 
schematically in Figure 3, are normalized as 
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where subscripts U and D refer to upwind and downwind cells relative to C, which is 
immediately upstream of face f. The objective is the calculation of   at cell-face f, via a 
special interpolation scheme for convection ( f
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based upon these more restrictive conditions that the CUBISTA scheme was formulated to 
guarantee stability and good iterative convergence properties. The CUBISTA HRS is based 
on the third-order discretization QUICK scheme, it avoids sudden changes in slope of the 
functions and ensures limitation of   on the downwind side to preclude   being higher 
than D  in its proximity. All these details are extensively discussed in Alves et al (2003a), 
and give rise to the following function for CUBISTA in non-uniform meshes, 
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where C


, C


 and f


 are defined in Eqs. (30) and (31).  

3.6 Formulation of the mass fluxes at cell faces 

The mass flow rates ( fF ) in coefficients F
Ca  and P

Ca  have to be calculated with velocities at 
cell faces ( ,fiu ), which must be related to velocities at cell centres. The need to calculate ,fiu  
at a cell face is a consequence of the use of collocated meshes and would not occur if 
staggered meshes were used. The continuity equation is needed to solve for the pressure 
field, after a velocity field is calculated from the momentum equation as in the SIMPLE 
procedure initially developed by Patankar and Spalding (1972) using staggered meshes for 
the calculation of the velocity and pressure fields. Here, each velocity component data are 
stored in meshes staggered by half a cell width relative to the original mesh where the scalar 
quantities are stored and in this way the coupling between velocity and pressure is naturally 
ensured while momentum and mass is conserved.  

By using a single non-orthogonal mesh with the collocated variable arrangement, coupling 
between the velocity and pressure fields needs a special interpolation scheme to calculate 
velocities at cell-faces otherwise even-odd oscillations in the pressure or velocity fields may 
occur. The key idea to solve this decoupling problem was proposed by Rhie and Chow 
(1983). Oliveira (1992) and Issa and Oliveira (1994) adapted that idea for their time-marching 
algorithm under a slightly modified form explained hereafter. 

The momentum equation (Eq. 21) at node P can be rewritten as  
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where the pressure term was extracted from the source term and is written explicitly with a 
pressure difference evaluated at a cell centre (i.e.  P l l

lp p p    , cf. Figure 2). 
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According to Rhie and Chow’s special interpolation method, the cell face velocity fu  is 
calculated by linear interpolation of the momentum equation, with exception of the pressure 
gradient which is evaluated as in the original method of Patankar and Spalding for 
staggered meshes. This idea is applied as described in Issa and Oliveira (1994), by writing 
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where the overbar denotes here an arithmetic mean of quantities pertaining to cells P and F. 
Notice that the pressure difference along direction l = f is now evaluated at cell-face (i.e. 
 f F Pfp p p   ), whereas the pressure at cell faces pertaining to directions l ≠ f are 
calculated by linear interpolation of the nodal values of pressure. With this approach the 
velocity at face f is directly linked to pressures calculated at neighbour cell centres, as in the 
staggered arrangement, and pressure-velocity decoupling is prevented. 

By subtracting Eq. (34) from the averaged momentum equation resulting from averaging all 
terms of Eq. (33) the following face-velocity equation used to compute fF  is obtained: 
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3.7 Formulation of the cell-face stresses 

In the momentum equation it is necessary to compute the stresses at cell faces ( ,fij  in Eq. 
19) from stress values at neighbouring cell centres and there is a stress-velocity coupling 
problem, akin to the pressure-velocity coupling of the previous subsection. If a linear 
interpolation of cell centred values of stress is used to compute those face values, a possible 
lack of connectivity between the stress and velocity fields may result, even with Newtonian 
fluids, as shown by Oliveira et al (1998). The methodology described here is based on the 
works of Oliveira et al (1998), Oliveira and Pinho (1999a) and more recently by Matos et al 
(2009) and constitutes a key ingredient for the success of viscoelastic flow computations 
with the finite-volume method on general, non-orthogonal, collocated meshes. Following 
the ideas of Matos et al (2009), the extra-stress at face f is computed as 
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where the denotes a linear interpolation rather than an arithmetic mean. It is obvious from 
Eq. (36) that the extra-stress at face f ( ,fik ) is now directly coupled to the nearby cell-centre 
velocities, through the term in  f ,F ,Pi i ifu u u   , inhibiting the undesirable decoupling 
between the stress and velocity fields. In Matos et al (2009) the standard formulation for the 
constitutive equation was used, based on the extra-stress tensor, and Eq. (36) results directly 
from the discretization of the extra-stress tensor equation. Here we use the log-conformation 
methodology, but since the central coefficients of the discretized equations for the extra-
stress and for the log-conformation tensors are the same, then Eq. (36) is still applicable.  
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where C


, C


 and f


 are defined in Eqs. (30) and (31).  

3.6 Formulation of the mass fluxes at cell faces 

The mass flow rates ( fF ) in coefficients F
Ca  and P

Ca  have to be calculated with velocities at 
cell faces ( ,fiu ), which must be related to velocities at cell centres. The need to calculate ,fiu  
at a cell face is a consequence of the use of collocated meshes and would not occur if 
staggered meshes were used. The continuity equation is needed to solve for the pressure 
field, after a velocity field is calculated from the momentum equation as in the SIMPLE 
procedure initially developed by Patankar and Spalding (1972) using staggered meshes for 
the calculation of the velocity and pressure fields. Here, each velocity component data are 
stored in meshes staggered by half a cell width relative to the original mesh where the scalar 
quantities are stored and in this way the coupling between velocity and pressure is naturally 
ensured while momentum and mass is conserved.  

By using a single non-orthogonal mesh with the collocated variable arrangement, coupling 
between the velocity and pressure fields needs a special interpolation scheme to calculate 
velocities at cell-faces otherwise even-odd oscillations in the pressure or velocity fields may 
occur. The key idea to solve this decoupling problem was proposed by Rhie and Chow 
(1983). Oliveira (1992) and Issa and Oliveira (1994) adapted that idea for their time-marching 
algorithm under a slightly modified form explained hereafter. 

The momentum equation (Eq. 21) at node P can be rewritten as  
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where the pressure term was extracted from the source term and is written explicitly with a 
pressure difference evaluated at a cell centre (i.e.  P l l

lp p p    , cf. Figure 2). 
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According to Rhie and Chow’s special interpolation method, the cell face velocity fu  is 
calculated by linear interpolation of the momentum equation, with exception of the pressure 
gradient which is evaluated as in the original method of Patankar and Spalding for 
staggered meshes. This idea is applied as described in Issa and Oliveira (1994), by writing 
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where the overbar denotes here an arithmetic mean of quantities pertaining to cells P and F. 
Notice that the pressure difference along direction l = f is now evaluated at cell-face (i.e. 
 f F Pfp p p   ), whereas the pressure at cell faces pertaining to directions l ≠ f are 
calculated by linear interpolation of the nodal values of pressure. With this approach the 
velocity at face f is directly linked to pressures calculated at neighbour cell centres, as in the 
staggered arrangement, and pressure-velocity decoupling is prevented. 

By subtracting Eq. (34) from the averaged momentum equation resulting from averaging all 
terms of Eq. (33) the following face-velocity equation used to compute fF  is obtained: 
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3.7 Formulation of the cell-face stresses 

In the momentum equation it is necessary to compute the stresses at cell faces ( ,fij  in Eq. 
19) from stress values at neighbouring cell centres and there is a stress-velocity coupling 
problem, akin to the pressure-velocity coupling of the previous subsection. If a linear 
interpolation of cell centred values of stress is used to compute those face values, a possible 
lack of connectivity between the stress and velocity fields may result, even with Newtonian 
fluids, as shown by Oliveira et al (1998). The methodology described here is based on the 
works of Oliveira et al (1998), Oliveira and Pinho (1999a) and more recently by Matos et al 
(2009) and constitutes a key ingredient for the success of viscoelastic flow computations 
with the finite-volume method on general, non-orthogonal, collocated meshes. Following 
the ideas of Matos et al (2009), the extra-stress at face f is computed as 
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where the denotes a linear interpolation rather than an arithmetic mean. It is obvious from 
Eq. (36) that the extra-stress at face f ( ,fik ) is now directly coupled to the nearby cell-centre 
velocities, through the term in  f ,F ,Pi i ifu u u   , inhibiting the undesirable decoupling 
between the stress and velocity fields. In Matos et al (2009) the standard formulation for the 
constitutive equation was used, based on the extra-stress tensor, and Eq. (36) results directly 
from the discretization of the extra-stress tensor equation. Here we use the log-conformation 
methodology, but since the central coefficients of the discretized equations for the extra-
stress and for the log-conformation tensors are the same, then Eq. (36) is still applicable.  
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3.8 Solution algorithm 

As in any pressure correction procedure (e.g. Patankar and Spalding, 1972), pressure is 
calculated indirectly from the restriction imposed by continuity, since the momentum 
equation, which explicitly contains a pressure gradient term, is used to compute the velocity 
vector components. The SIMPLEC algorithm of Van Doormal and Raithby (1984) is followed 
here under a modified form. The original SIMPLEC algorithm was developed for iterative 
steady flow calculations, but the time-marching version described in Issa and Oliveira (1994) 
offers some advantages and is used here instead. Time marching allows for the solution of 
transient flows provided the time step is sufficiently small, with the added advantage that it 
can be used for steady flows as an alternative to implement under-relaxation. 

The incorporation of a rheological constitutive equation produces little changes on the 
original SIMPLEC method developed for Newtonian fluids, which is mainly concerned with 
the calculation of pressure from the continuity equation. An overview of the solution 
algorithm is now given, including the new steps related to the stress calculation: 

1. Initially, the conformation tensor Aij, calculated from the extra-stress components ij  
via Eq. (4). At each point the eigenvalues and eigenvectors of Aij are computed and the 
conformation tensor is diagonalized to calculate ij . 

2. The tensors Rij and Eij are calculated, following the procedure described in Fattal and 
Kupeferman (2004). 

3. The discretized form of the evolution equation for ij  in Eq. (37) is solved to obtain 
ij at the new time level, 

 * *
P ,P F ,F

F
ijij ija a S 


     (37) 

where the coefficients and source term of these linear equations are based on the 
previous iteration level variables, and *

ij  denotes the new time-level of ij . 
4. The conformation tensor Aij is recovered and the extra-stress tensor is calculated from 

the newly computed conformation field using Eq. (4).  
5. The momentum equation (38) is solved implicitly for each velocity component, ui:  
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where the pressure gradient term is based on previous iteration level pressure field and 
has been singled out of the remaining source term for later convenience. The stress-
related source term (Eq. 19) is based on newly obtained cell-face stress *f

ij , calculated 
from Eq. (36), which requires the central coefficient of the log-conformation tensor 
equation ( Pa ). This is the main reason for solving the constitutive equation before the 
momentum equation. 

6. Starred velocity components ( *
iu ) do not generally satisfy the continuity equation. The 

next step of the algorithm involves a correction to *
iu , so that an updated velocity field 

**
iu  will satisfy both the continuity equation and the following split form of the 

momentum equation: 
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It is noted that in Eq. (39) only the time-dependent term is updated to the new iteration 
level **

iu , a feature of the SIMPLEC algorithm (Issa and Oliveira, 1994). Subtraction of  
this equation from Eq. (38) and forcing the **

iu  field to satisfy continuity ( **
f

f
0F  , cf. 

Eq. 13) leads to the pressure correction and velocity correction equations (Eqs. 40 and 
41, respectively, where p' = p** — p*): 
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7. Steps 1–6 are repeated until overall convergence is reached (steady-state calculations), 
or convergence within a time step (unsteady calculations) followed by advancement 
until the desired final time is reached. 

The various sets of algebraic equations are solved with either a symmetric or a bi-conjugate 
gradient method for the pressure and the remaining variables, respectively (Meijerink and 
Van der Vorst, 1977). In both cases the matrices are pre-conditioned by an incomplete LU 
decomposition. 

3.9 Boundary conditions 

Appropriate boundary conditions are required for the dependent variables ( iu , p and ij ) at 
the external boundary faces of the flow domain. Four types of boundaries are typically 
encountered in the applications considered in this work, namely inlets, outlets, symmetry 
planes and walls. Each one is dealt with briefly below and the interested reader is referred to 
specific literature for more details.  

Inlet:  Velocity and stress components are given according to some pre-specified profiles 
(from theory or measured data), and ij  is calculated accordingly. Sometimes the 
streamwise velocity at inlet is set equal to a uniform value and a null stress field is 
considered, but most often fully developed flow conditions are assumed for velocity and 
stress fields. Progress on work dealing with derivation of analytical solutions for 
viscoelastic models has been made during the past years, and velocity and stress 
distributions in fully developed duct flows can be found in Oliveira and Pinho (1999c) for 
the PTT model, Alves et al (2001b) for the full PTT model and Oliveira (2002) for the 
FENE-P model, amongst other solutions. These are useful not only to prescribe inlet 
conditions but also to obtain the wall boundary conditions where the convective terms in 
the equations are null, as for fully developed flow. 

Outlet: The outlet planes are located far away from the main region of interest, where the flow 
can be assumed fully developed. Thus, zero streamwise gradients are prescribed for the 
velocity, the ij components and the pressure gradient. The latter is equivalent to a linear 
extrapolation of pressure values from the two internal cells to the outlet boundary face. An 
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ij , calculated 
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It is noted that in Eq. (39) only the time-dependent term is updated to the new iteration 
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planes and walls. Each one is dealt with briefly below and the interested reader is referred to 
specific literature for more details.  

Inlet:  Velocity and stress components are given according to some pre-specified profiles 
(from theory or measured data), and ij  is calculated accordingly. Sometimes the 
streamwise velocity at inlet is set equal to a uniform value and a null stress field is 
considered, but most often fully developed flow conditions are assumed for velocity and 
stress fields. Progress on work dealing with derivation of analytical solutions for 
viscoelastic models has been made during the past years, and velocity and stress 
distributions in fully developed duct flows can be found in Oliveira and Pinho (1999c) for 
the PTT model, Alves et al (2001b) for the full PTT model and Oliveira (2002) for the 
FENE-P model, amongst other solutions. These are useful not only to prescribe inlet 
conditions but also to obtain the wall boundary conditions where the convective terms in 
the equations are null, as for fully developed flow. 

Outlet: The outlet planes are located far away from the main region of interest, where the flow 
can be assumed fully developed. Thus, zero streamwise gradients are prescribed for the 
velocity, the ij components and the pressure gradient. The latter is equivalent to a linear 
extrapolation of pressure values from the two internal cells to the outlet boundary face. An 
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additional condition required by the pressure correction equation in incompressible flow is to 
adjust the velocities at the boundary faces so that overall mass conservation is satisfied. 

Symmetry planes: Across a symmetry plane the convective and diffusive fluxes must 
vanish. These two conditions are applied to all variables using reflection rules in fictitious 
symmetric cells (Figure 4a) and result in the following procedure to implement these 
boundary conditions (see Oliveira and Pinho, 1996b for details). At the symmetry plane 
there is only tangential velocity, i.e. the normal velocity is null. So, at the face coincident 
with the symmetry plane ,f 0n

iu   and ,f ,f
t
i iu u  (superscripts n and t denote normal and 

tangential components, respectively).  Since the fictitious cell P’ is symmetric to cell P, the 
calculation of the components of the velocity vector  iu  at the cell face f ( ,fiu ) is obtained by 
linear interpolation from the velocities at the adjacent cell nodes leading to 

 ,f ,f ,P P.t n
i i i iu u u u n   and P ,P

n
j j

j
u u n  (42) 

where P
nu  is the component of the velocity vector normal to the symmetry plane and ni is 

the i-component of the unit vector normal to the symmetry plane. 

For scalar quantities, such as the pressure, the reflexion rule at symmetry planes leads to 

 pf = pP (43) 

Imposition of boundary conditions for the stress is facilitated by recognizing that not all 
individual stress components are required at the cell face f coincident with the symmetry 
plane, since the tangential stress vector is zero. Therefore, as seen from Eq. (19), the 
contribution from face f to the total stress source at cell P is just: 

 
  f

,f f ,ffi fj ij ij jstress
j j

S B B nu     
 
leading to   ,P ,P ffiu stress n fi n iS T B T B n     (44) 

where the unit normal vector is computed as fj fjn B B . Thus, the boundary condition at 
the symmetry plane represents only the traction vector normal to face f. 
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Fig. 4. Cells at boundaries: (a) The fictitious cell adjacent to a symmetry plane; (b) Schematic 
representation of an internal cell adjoining a wall. 
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Walls: At walls additional problems in imposing boundary conditions arise, especially for 
pressure and the stresses. Those problems are more severe when the constitutive equation 
predicts non null stresses normal to walls, as in the Giesekus or full PTT models. Boundary 
conditions for the velocity field are easy to impose. For a wall moving at velocity wu , the no 
slip condition for the components ui of the velocity vector are simply 

 ,f ,i i wu u  (45) 

More generally, for a non-porous wall this is mathematically expressed as ,f 0n
iu   and 

,f ,f
t
i iu u  which are numerically obtained by linear interpolation from velocities at cells 

adjacent to the wall.  

Boundary conditions for stresses are based on the assumption that the flow in the vicinity of 
a wall is parallel to this boundary, i.e. it is locally a Couette flow. This assumption allows a 
relatively easy implementation of boundary conditions provided the rheometric material 
functions of the fluid model are known. A complete explanation of the procedure can be 
found in Oliveira (2001) and the main points are given here. 

Consider Figure 4b which shows the inner cell next to a wall plane. The stress vector near 

the wall i ij j
j

T n   has tangential and normal components to the wall ( t n
i i iT T T  ). Since 

the near wall flow is assumed to be a Couette flow, the tangential component of the traction 
vector is calculated as 
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where n is the vector normal to the wall and    is the shear viscosity material function of 
the constitutive model (not to be confused with the parameter   of the constitutive 
equation), which depends on the invariant   of the rate of deformation tensor. This wall 
shear rate is equal to ,f /t

iu n   and is calculated as in Eq. (46), where f  is the distance from 
f to the cell centre P along the normal to the wall (see Figure 4b).  

Note that in the finite volume method the discretization of the traction vector is indeed 
carried out as a component of the momentum equation and appears as the result of the 
integration and subsequent discretization of the term (19), now applied to a wall. Here 
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has two contributions: one associated to the tangential stress, given by Eq. (46), and the 
other due to normal stress at the face which is null for constitutive models with N2 = 0 as 
those used for the computations in Section 4. For constitutive models with 2 0N  , such as 
the Giesekus or the full PTT, the interested reader is referred to Oliveira (2001) for the 
determination of n

iT . 
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additional condition required by the pressure correction equation in incompressible flow is to 
adjust the velocities at the boundary faces so that overall mass conservation is satisfied. 
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i iu u  (superscripts n and t denote normal and 

tangential components, respectively).  Since the fictitious cell P’ is symmetric to cell P, the 
calculation of the components of the velocity vector  iu  at the cell face f ( ,fiu ) is obtained by 
linear interpolation from the velocities at the adjacent cell nodes leading to 

 ,f ,f ,P P.t n
i i i iu u u u n   and P ,P

n
j j

j
u u n  (42) 

where P
nu  is the component of the velocity vector normal to the symmetry plane and ni is 

the i-component of the unit vector normal to the symmetry plane. 

For scalar quantities, such as the pressure, the reflexion rule at symmetry planes leads to 

 pf = pP (43) 

Imposition of boundary conditions for the stress is facilitated by recognizing that not all 
individual stress components are required at the cell face f coincident with the symmetry 
plane, since the tangential stress vector is zero. Therefore, as seen from Eq. (19), the 
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where the unit normal vector is computed as fj fjn B B . Thus, the boundary condition at 
the symmetry plane represents only the traction vector normal to face f. 
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Fig. 4. Cells at boundaries: (a) The fictitious cell adjacent to a symmetry plane; (b) Schematic 
representation of an internal cell adjoining a wall. 
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Walls: At walls additional problems in imposing boundary conditions arise, especially for 
pressure and the stresses. Those problems are more severe when the constitutive equation 
predicts non null stresses normal to walls, as in the Giesekus or full PTT models. Boundary 
conditions for the velocity field are easy to impose. For a wall moving at velocity wu , the no 
slip condition for the components ui of the velocity vector are simply 

 ,f ,i i wu u  (45) 

More generally, for a non-porous wall this is mathematically expressed as ,f 0n
iu   and 

,f ,f
t
i iu u  which are numerically obtained by linear interpolation from velocities at cells 

adjacent to the wall.  
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Finally, we must consider the wall boundary condition for pressure. It is usual practice in 
CFD to extrapolate linearly the pressure to the wall from the two nearest neighbour cells 
(Ferziger and Perić, 2002) and this practice also works well for some viscoelastic fluids. 
However, in viscoelastic flow with fluids exhibiting strong normal stresses perpendicular to 
the wall ( 2 0N  ), pressure extrapolation is not satisfactory and a better formulation can be 
derived from the momentum equation normal to the wall at the interior point P, as 
explained in detail in Oliveira (2001), leading to the following corrected extrapolation 
formula ( Pa  is the central coefficient in the momentum equation) 

 P ,P
f P f

f
2 na u

p p p
B

    (48) 

The two first terms on the right-hand-side of this equation do correspond to linear 
extrapolation from the two nearest neighbour cells and the last term is a correction which 
decreases as the mesh is refined close to a wall.  

4. Benchmark results in 4:1 planar sudden contraction flows 
In this section we assess the capabilities of the finite-volume method described previously 
by presenting results of simulations for the benchmark flow through a 4:1 planar sudden 
contraction shown in Figure 5 under conditions of negligible inertia. This is a long standing 
classic benchmark in computational rheology (Hassager, 1988), where the difficulty lies at 
the correct prediction of the large stresses and stress gradients in the vicinity of the re-
entrant corner (generally all models show the stresses to grow to infinity as the corner is 
approached) making this flow very sensitive to highly elastic flows. In particular, it is 
important to know the upstream vortex growth mechanisms due to flow elasticity, and the 
corresponding large pressure drops and overshoot of the axial velocity along the centreline. 

 
Fig. 5. Schematic representation of a sudden contraction. 

4.1 Experimental results 

Experiments on sudden contraction flows have been carried out since the 19th century and 
their characteristics for Newtonian and purely viscous non-Newtonian fluids are well 
known, especially for the axisymmetric case (cf. the review of Boger, 1987). Contraction 
flows are very sensitive to fluid properties as well as to geometric characteristics, especially 
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the contraction ratio (CR). Therefore, we must distinguish the flow in either planar or 
axisymmetric contractions, and between elastic fluids having constant viscosity (Boger 
fluids) and shear-thinning viscosity, as well as fluids having different behaviour in 
extensional flow (Boger, 1987). 

In the circular contraction arrangement, whereas for some fluids there is corner vortex 
enhancement with fluid elasticity, for some Boger fluids a lip vortex appears first and grows 
with elasticity while the corner vortex decreases. Then, as elasticity further increases, the lip 
vortex engulfs the corner vortex, becomes convex and it continues to grow with fluid 
elasticity until the onset of flow instabilities (Boger et al, 1986). For better understanding, 
these flow features are illustrated in the sketch of Figure 5. 

For the 4:1 planar contraction, the early investigations with Boger fluids by Walters and 
Webster (1982) did not find any peculiar flow feature, in contrast to their behaviour in a 
circular 4.4:1 contraction. To help clarify this issue, Evans and Walters (1986, 1989) 
visualized the flow of shear-thinning elastic fluids in 4:1, 16:1 and 80:1 contractions, and 
reported elastic vortex growth, even in the smaller CR, showing also that an increased CR 
intensified the phenomenon. They also found a lip vortex for the two larger CR. 

To conclude, for shear-thinning fluids there was elastic vortex growth for both the 4:1 planar 
and circular contractions whereas for Boger fluids the vortex growth was reported only to 
occur for the axisymmetric geometry. This was confirmed experimentally by Nigen and 
Walters (2002), who looked at the behaviour of Boger and Newtonian fluids having the 
same shear viscosity, in 4:1 and 32:1 sudden contractions: whereas in axisymmetric 
contractions, elastic vortex growth and increased pressure drop co-existed, the planar 
contraction flow was Newtonian-like. Lip vortices were reported only for the planar 
contraction for supercritical flow rates, when the flow was unsteady. 

The inexistence of lip vortices in the planar contraction for Boger fluids, and its presence for 
circular contractions remains to be explained, in spite of existing theoretical work (Binding, 
1988; Xue et al, 1998a). Additionally, the experiments and numerical simulations of White 
and Baird (1986,1988a, 1988b) have established the relevance of extensional stress growth 
near the contraction plane upon the vortex dynamics for the plane 4:1 and 8:1 contractions. 
For large circular contractions Rothstein and McKinley (2001) related the dominance of the 
lip or corner vortices to the competition between shear-induced and extension-induced 
normal stresses, later confirmed by the simulations of Oliveira et al (2007). 

Regardless of the contraction, the growth of elasticity under conditions of negligible inertia 
inevitably leads to an instability, which may be chaotic at very large De or be preceded by 
periodic unsteady flow. This sequence of events has been seen as early as the late seventies 
by Cable and Boger (1978a, 1978b, 1979) and Nguyen and Boger (1979) and has been studied 
in detail by Lawler et al (1986), McKinley et al (1991) and Yesilata et al (1999). 

The flows through abrupt contractions have recently been revisited in the context of 
microfluidics, in which high De can be easily attained due to the small characteristic 
dimensions, even with weakly elastic and viscous fluids as in the experiments of Rodd et 
al (2005) using dilute and semi-dilute aqueous solutions of poly(ethylene oxide). They 
observed the onset of divergent streamlines upstream of the recirculation at high De in 
addition to the elastic vortex growth. However, notice that in microfluidics, the flow is 
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extensional flow (Boger, 1987). 

In the circular contraction arrangement, whereas for some fluids there is corner vortex 
enhancement with fluid elasticity, for some Boger fluids a lip vortex appears first and grows 
with elasticity while the corner vortex decreases. Then, as elasticity further increases, the lip 
vortex engulfs the corner vortex, becomes convex and it continues to grow with fluid 
elasticity until the onset of flow instabilities (Boger et al, 1986). For better understanding, 
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often not truly planar (2D) due to the effects of the bounding walls (typically, aspect ratios 
are of the order of unity in the contraction region), which confer a 3D character to the 
flow. 

4.2 Numerical simulations 

Numerical investigations in contraction flows were also initiated in the late seventies, but 
soon problems of convergence arose leading to the development of robust and accurate 
numerical methods for predicting steady flows and in particular the elastic vortex growth 
seen in experiments. These extensive developments are well documented by Owens and 
Phillips (2002). Here, some of the most accurate and recent results in the 4:1 planar 
contraction flow for Oldroyd-B and PTT fluids are presented. The PTT fluid used here is the 
simplified version with N2=0. 

4.2.1 Oldroyd-B fluid 

The flow geometry and the notation are shown in Figure 5. The Reynolds number 
( 2 2Re U H  ) is set to zero by dropping out the convective term in the momentum 
equation. The Deborah number ( 2 2De U H ) is varied to investigate the effect of elasticity 
on the flow characteristics, and the solvent viscosity ratio considered was / 1 /9S    , 
the typical benchmark case. 

Results for the Oldroyd-B fluid through the 4:1 sudden contraction were presented by Alves 
et al (2003b) who used the standard stress formulation and the HRS CUBISTA scheme 
together with very refined meshes with up to 169 392 computational cells, corresponding to 
more than one million degrees of freedom. The high accuracy of the results for De ≤ 2.5, 
most of which have an uncertainty below 0.3%, indicates these values may be used as 
benchmark data (Alves et al, 2003b). The new predictions of Afonso et al (2011) for much 
higher Deborah numbers (up to De = 100), made possible by the log-conformation 
formulation, are also discussed here. 

 
Fig. 6. Streamline plots for the flow of an Oldroyd-B fluid in a 4:1 plane sudden contraction 
for De ≤ 2.5. Adapted from Alves et al (2003b). 

The evolution of flow patterns with elasticity is shown in the streamline plots of Figure 6. 
The reduction of the corner vortex length with De for the Oldroyd-B fluid is clear as well as 
the appearance of a small lip vortex in the re-entrant corner as also happens with the UCM 
fluid (Alves et al, 2000). At De = 2.5 the lip vortex is still small, but stronger than at lower 
values of De. Although minute, this lip vortex is not a numerical artefact and has a finite 
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strength. Extrapolation of its size and strength to a zero mesh size from consecutively 
refined meshes confirms that assertion (see Alves et al, 2003b).  

At approximately De = 2.5, local flow unsteadiness is detected near the re-entrant corner. 
For higher De, a different trend is found, as can be observed in Figure 7. Initially, as the De is 
increased further, the lip and corner vortex structures merge, as shown for De = 5. 
Simultaneously, the periodic unsteadiness grows with De leading to a loss of symmetry and 
eventually, alternate back-shedding of vorticity is observed from the upstream pulsating 
eddies at higher De. These features are accompanied by a frequency doubling mechanism 
deteriorating to a complex pattern and eventually to a chaotic regime as shown by the 
frequency spectra in Afonso et al (2011). 

 
 

Fig. 7. Streamline plots for the flow of an Oldroyd-B fluid in a 4:1 plane sudden contraction 
for De ≥ 5. Adapted from Afonso et al (2011). 

The corresponding dimensionless corner vortex length ( 2R RX x H ) is presented in Figure 
8a, showing a non-monotonic variation with De. At low De the vortex size asymptotes to the 
Newtonian limit, as imposed by continuum mechanics. A semi-analytical investigation of 
creeping flow of Newtonian fluids by Rogerson and Yeow (1999) estimated the value 

1.5RX   for a 4:1 planar contraction, which coincides with the numerical data of Alves et al 
(2003b) and Afonso et al (2011) in Figure 8a. Increasing De decreases the vortex size, in 
agreement with Aboubacar and Webster (2001). For De ≈ 4.5, a minimum vortex length is 
attained and for larger values of De the vortex size increases significantly as well as its 
oscillation amplitude (as indicated by the error bars in Figure 8a). 
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 (a)     (b) 

Fig. 8. Variation with De of the dimensionless vortex size (a) and Couette correction (b) for 
the flow of an Oldroyd-B fluid in a 4:1 planar sudden contraction. The error bars represent 
the amplitude of the oscillations. Adapted from Alves et al (2003b) and Afonso et al (2011). 

Figure 8b plots the variation of the Couette correction (C) with De. C represents the 
dimensionless localized pressure loss across the contraction, and is defined as 
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where  1 FDp  and  2 FDp  are the pressure drops associated with fully-developed flows 
in the inlet and outlet channels, respectively, and w  is the wall stress in the downstream 
channel under fully-developed conditions.  

For low De, the Couette correction decreases with De and becomes negative (elastic pressure 
recovery), a behaviour which is contrary to the experimental evidence. Only for De > 20, an 
increase in C is observed, as seen in numerical studies with the PTT fluid (Alves et al 2003b). 
Once again, the error bars represent the oscillation amplitude, which is seen to increase 
significantly with De above the minimum C value attained. 

4.2.2 PTT fluid 

Numerical simulations with the PTT fluid model allow us to investigate the combined 
effects of shear-thinning of the viscometric viscosity and fluid elasticity via the first 
normal stress difference N1. From experimental data for contraction flow we know that 
the behaviour of such fluids is very different from the behaviour of Boger fluids. The 
results presented here are based on Alves et al (2003b), and were also obtained for 
creeping flow conditions, as in the previous section for the Oldroyd-B fluid. The PTT 
model corresponds to the simplified version ( 0  ) with a zero second-normal stress 
difference (N2 = 0).  

Since the PTT fluids have a bounded steady-state extensional viscosity, contrasting with the 
Oldroyd-B fluid, it was possible to obtain converged solutions up to De in excess of 100, 
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even using the standard stress formulation. This PTT model was also combined with a 
Newtonian solvent to define the same solvent viscosity ratio in the limit of very small rates 
of shear deformation, corresponding to 1 /9  . The PTT fluid is shear-thinning both in the 
shear viscosity as well as in the first-normal stress coefficient. The results presented here 
correspond to 0.25  , a typical value for both concentrated polymer solutions and 
polymer melts.  

 
Fig. 9. Influence of elasticity on the recirculation length for the flow of PTT fluids in a 4:1 
plane sudden contraction. LPTT: linear PTT; XPTT: exponential PTT. Adapted from Alves et 
al (2003b). 

First, it is noted that the sensitivity of the PTT results to mesh fineness is lower than for the 
Oldroyd-B model and, in contrast to what happened with the Oldroyd-B fluid, the 
recirculation length (Figure 9) increases with De. This behaviour was expected given the 
experimental data available, where an intense vortex growth was seen for shear-thinning 
fluids. The recirculation length tends to stabilize at high De, and these predictions do not 
capture the elastic instabilities observed in experiments, but to assess whether this model is 
adequate to predict real flow conditions, where the vortex grows and then becomes 
unstable, simulations must be carried out using 3D meshes and time-dependent approaches 
with very small time-steps. 

The evolution of the streamlines and the growth of the vortex with elasticity can be 
observed in Figure 10. The comparison with Figures 6-7 emphasises the differences between 
the behaviour of a shear-thinning fluid and a constant viscosity Boger fluid. At low De, the 
corner vortex grows towards the re-entrant corner while its size increases, but no lip vortex 
is observed. When the corner vortex occupies the whole contraction plane (De = 2) its shape 
changes from concave to convex and, as elasticity is further increased from De ≈ 2 to De ≈ 10, 
the vortex grows upstream even further. Simultaneously the eddy centre moves towards the 
re-entrant corner with the growth of elasticity. At high Deborah numbers the increase in RX  
and R  becomes progressively less intense.  
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dimensionless localized pressure loss across the contraction, and is defined as 

 
   1 2

2
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w

p p p
C


    

  (49) 

where  1 FDp  and  2 FDp  are the pressure drops associated with fully-developed flows 
in the inlet and outlet channels, respectively, and w  is the wall stress in the downstream 
channel under fully-developed conditions.  

For low De, the Couette correction decreases with De and becomes negative (elastic pressure 
recovery), a behaviour which is contrary to the experimental evidence. Only for De > 20, an 
increase in C is observed, as seen in numerical studies with the PTT fluid (Alves et al 2003b). 
Once again, the error bars represent the oscillation amplitude, which is seen to increase 
significantly with De above the minimum C value attained. 

4.2.2 PTT fluid 

Numerical simulations with the PTT fluid model allow us to investigate the combined 
effects of shear-thinning of the viscometric viscosity and fluid elasticity via the first 
normal stress difference N1. From experimental data for contraction flow we know that 
the behaviour of such fluids is very different from the behaviour of Boger fluids. The 
results presented here are based on Alves et al (2003b), and were also obtained for 
creeping flow conditions, as in the previous section for the Oldroyd-B fluid. The PTT 
model corresponds to the simplified version ( 0  ) with a zero second-normal stress 
difference (N2 = 0).  

Since the PTT fluids have a bounded steady-state extensional viscosity, contrasting with the 
Oldroyd-B fluid, it was possible to obtain converged solutions up to De in excess of 100, 
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even using the standard stress formulation. This PTT model was also combined with a 
Newtonian solvent to define the same solvent viscosity ratio in the limit of very small rates 
of shear deformation, corresponding to 1 /9  . The PTT fluid is shear-thinning both in the 
shear viscosity as well as in the first-normal stress coefficient. The results presented here 
correspond to 0.25  , a typical value for both concentrated polymer solutions and 
polymer melts.  

 
Fig. 9. Influence of elasticity on the recirculation length for the flow of PTT fluids in a 4:1 
plane sudden contraction. LPTT: linear PTT; XPTT: exponential PTT. Adapted from Alves et 
al (2003b). 

First, it is noted that the sensitivity of the PTT results to mesh fineness is lower than for the 
Oldroyd-B model and, in contrast to what happened with the Oldroyd-B fluid, the 
recirculation length (Figure 9) increases with De. This behaviour was expected given the 
experimental data available, where an intense vortex growth was seen for shear-thinning 
fluids. The recirculation length tends to stabilize at high De, and these predictions do not 
capture the elastic instabilities observed in experiments, but to assess whether this model is 
adequate to predict real flow conditions, where the vortex grows and then becomes 
unstable, simulations must be carried out using 3D meshes and time-dependent approaches 
with very small time-steps. 

The evolution of the streamlines and the growth of the vortex with elasticity can be 
observed in Figure 10. The comparison with Figures 6-7 emphasises the differences between 
the behaviour of a shear-thinning fluid and a constant viscosity Boger fluid. At low De, the 
corner vortex grows towards the re-entrant corner while its size increases, but no lip vortex 
is observed. When the corner vortex occupies the whole contraction plane (De = 2) its shape 
changes from concave to convex and, as elasticity is further increased from De ≈ 2 to De ≈ 10, 
the vortex grows upstream even further. Simultaneously the eddy centre moves towards the 
re-entrant corner with the growth of elasticity. At high Deborah numbers the increase in RX  
and R  becomes progressively less intense.  
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Fig. 10. Evolution of the flow patterns with De for a linear PTT fluid (   = 0.25) in a 4:1 plane 
sudden contraction. Adapted from Alves et al (2003b). 

The variation of the Couette correction for the linear PTT fluid is shown in Figure 11. 
C decreases with De until a minimum negative value is reached at De ≈ 20, and then 
increases. Hence, the growth of C takes place only for De > 20 and therefore it is possible 
again to question the usefulness of this model to predict the enhanced pressure losses 
observed experimentally in sudden contraction flows. However, we should note the 
measurements of Nigen and Walters (2002) in a plane sudden contraction, which are not 
fully conclusive: in their Figure 13 there are negative values of C (C = -1.37) for a flow rate 
of 40 g/s with their Boger fluid 2 and shear-thinning syrup 2. It is possible that such 
negative values are due to the large experimental uncertainty, since their measurements 
in an axisymmetric sudden contraction with a short outlet pipe have shown a continuous 
drop in excess pressure drop (C > 0). More details of the predictions can be found in Alves 
et al (2003b). 

 
Fig. 11. Variation of the Couette correction with De for PTT fluids (   = 0.25) in a 4:1 plane 
contraction flow. LPTT: linear PTT; XPTT: exponential PTT. Adapted from Alves et al 
(2003b). 

The exponential stress coefficient in the PTT model (XPTT) substitutes the high strain 
plateau of the extensional viscosity by strain-thinning after the peak extensional viscosity. 
This affects the fluid dynamical behaviour of the PTT model since the fluid rheology tends 
to Newtonian-like at high shear and extensional deformation rates, as shown in Figures 9 
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and 11 which include results of predictions for the XPTT model. Our results for this fluid 
agree with the literature for RX , R  and C, tending to the Newtonian values at very high 
De, as expected. For this model we could obtain iterative convergence at extremely high De 
≈ 10 000, even using the standard stress formulation. Although more in line with 
experimental observations in terms of the variation of C with De, the computed values of C 
are still quite lower than those measured. 

As a final comment, we remark that although part of the increase in C does correspond to a 
real increase in pressure drop, the major effect here is related to the normalization employed 
to define C where the pressure drop is scaled with the wall shear stress under fully-
developed conditions in the downstream channel. Since this wall stress decreases 
significantly because of the shear-thinning behaviour of the PTT fluid (see Oliveira and 
Pinho, 1999c), the coefficient increases. This, and previous comments, pinpoint a crucial 
issue associated with constitutive equation modelling, as the current models are unable to 
predict correctly the enhanced entry pressure loss measured when elastic liquids flow 
through contractions. Most likely, models with increased internal energy dissipation are 
required for such purpose. 
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1. Introduction  
Convection in a fluid close to its gas-liquid critical point (CP) has been a subject of 
growing interest since the exhibition of the piston-effect (PE), this thermo-acoustic effect 
responsible for the fast thermal equilibrium observed in such a fluid in the absence of 
convection. In 1987, under microgravity conditions, Nitsche and Straub observed a fast 
and homogeneous increase of the temperature inside a spherical cell containing SF6 
slightly above the CP when it was subjected to a heating impulse. This phenomenon was 
then explained theoretically (Zappoli et al., 1990; Onuki et al., 1990; Boukari et al., 1990) 
by the well-known critical anomalies, more precisely by the divergence of the thermal 
expansion coefficient and the vanishing of its thermal diffusivity when approaching the 
CP. Indeed, the heating of a cell containing a supercritical fluid (SCF) induces along the 
heated wall a thin thermal boundary layer in which density shows large variations 
because of the divergence of the thermal expansion coefficient; this thermal layer expands 
compressing adiabatically the rest of the fluid leading by thermo-acoustic effects (the so-
called PE) to a fast and homogeneous heating of the bulk of the cell. Several experiments 
were carried out subsequently, mainly in microgravity (Guenoun et al., 1993; Straub et al., 
1995; Garrabos et al., 1998) but also on Earth (Kogan & Meyer, 1998), and confirmed the 
existence of the PE. 

Since 1996, many experimental and numerical studies were devoted to the interaction 
between the PE and natural convection. The Rayleigh-Bénard configuration (bottom 
heating) received a particular attention (Kogan et al., 1999; Amiroudine et al., 2001; 
Furukawa & Onuki, 2002) because the hydrodynamic stability of the SCF in that case is 
governed by an interesting and non-common criterion. Owing to the PE, the thermal field 
exhibits a very specific structure in the vertical direction. A very thin hot thermal 
boundary layer is formed at the bottom, then a homogeneously heated bulk settles in the 
core at a lower temperature, and at the top, a cooler boundary layer is formed in order to 
continuously match the bulk temperature with the colder temperature of the upper wall. 
The linear analysis, carried out by Gitterman and Steinberg in 1970, showed that the 
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hydrodynamic stability of these thermal boundary layers, when subjected to a gravity 
field, depends on the interaction between two stability criteria which, for a normally 
compressible fluid, are separately available at very different space scales: on one hand, the 
classical Rayleigh criterion, derived from the Boussinesq approximation, hence available 
at small space scales, and on the other hand, the Schwarzschild criterion, usually 
encountered in atmospheric science, where the stabilizing effect of the hydrostatic 
pressure becomes appreciable. Indeed, because of the divergence of the isothermal 
compressibility of a SCF, the Schwarzschild criterion becomes available at small space 
scales; this was proven theoretically (Gitterman & Steinberg, 1970b; Carlès & Ugurtas, 
1999), experimentally (Kogan & Meyer, 2001), and numerically (Amiroudine et al., 2001). 
Taking advantage of the interaction between those two stability criteria, a numerical 
study (Accary et al., 2005a) showed that, in spite of convection onset in the thermal 
boundary layers according to the classical Rayleigh criterion, a reverse transition to 
stability through the Schwarzschild line is possible without any external intervention. The 
hydrodynamic stability of the thermal boundary layers developed in this configuration 
has been exhaustively investigated (Accary et al., 2005b), and recently a numerical study 
(Accary et al., 2009) focused on the convective regime of the flow. Because of the 
particular physical properties of the fluid in the vicinity of the CP, the convective regime 
of the Rayleigh-Bénard problem is turbulent for unusually low intensities of heating 
(~mK). In this last study, 3D direct numerical simulations are carried out for Rayleigh 
numbers varying from 2.68×106 up to 160×106. For a perfect gas (PG), this range of 
Rayleigh numbers corresponds to the transition between the soft and the hard turbulence; 
however, this is not always the case for the SCF because of its strong stratification induced 
by its high isothermal compressibility. 

In § 2, the problem under consideration is presented. In § 3, the mathematical model is 
described together with the acoustic filtering of the Navier-Stokes equations. The details of 
the numerical method are presented in § 4 and the simulation conditions are mentioned. In § 
5, several aspects of the Rayleigh-Bénard convection in a near-critical fluid are reported: the 
hydrodynamic stability of the thermal boundary layers, the convection onset and the 
beginning of the convective regime, the steady-state turbulent regime, details of the 
temperature and the dynamic fields, and the global thermal balance of the cavity. In § 6, a 
comparison with the case of the PG is presented at equal Rayleigh number. Finally, the 
chapter is concluded in § 7. 

2. The problem under consideration 
We consider a SCF in a cube-shaped cavity (of height H' = 10 mm) subjected to the earth 
gravity field g' = 9.81 m.s-2 (Fig. 1). The horizontal walls are isothermal while the sidewalls 
are insulated, and no-slip conditions are applied to all the walls. Initially the fluid is at rest, 
in thermodynamic equilibrium at a constant temperature T'i slightly above the critical 
temperature T'c, such that T'i = (1+)T'c, where  << 1 defines the non-dimensional 
proximity to the CP. Under the effect of its own weight, the fluid is stratified in density and 
in pressure, with a mean density equal to its critical value 'c. While maintaining the top 
wall at its initial temperature T'i, the temperature of the bottom wall is gradually increased 
(during one second) by T' (a few mK). 
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Fig. 1. Geometry of the cube-shaped cavity and the velocity and temperature conditions 
applied to the boundaries. The vertical axis z' is co-linear with the acceleration due to the 
earth gravity g'. Since the first seconds of heating, the temperature field is vertically 
stratified, divided in three distinct zones: two thermal boundary layers and the bulk of the 
cavity. 

3. The mathematical model 
3.1 Equations governing near-critical fluid buoyant flows 

The mathematical model for a SCF flow (Zappoli, 1992) is described by the Navier-Stokes 
and energy equations written for a Newtonian and highly conducting van der Waals fluid. 
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Where P' is the pressure, T' is the temperature, and ' is the density. v'(u',v',w') is the 
velocity, g' = (0,0,-g'), e' is the internal energy, and ' is the viscous energy dissipation. ’ is 
the dynamic viscosity, ’ is the thermal conductivity, r’ is the PG constant, a' and b' are 
respectively the energy parameter and the co-volume related to the critical coordinates T'c 
and 'c by: b' = 1/(3'c) and a' = 9r'T'c /(8'c). 
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In spite of its simplicity, the van der Waals’ equation of state gathers the required conditions 
for the existence of the CP and yields to a critical divergence1 as (T'/T'c -1)-1 of the thermal 
expansion coefficient 'P, of the isothermal compressibility 'T, and of the heat capacity at 
constant pressure C'P. The critical divergence of the thermal conductivity is described by: 
‘ = ‘0(1+Λ -½) where  = 0.75 and '0 is the thermal conductivity for a PG. The heat 
capacity at constant volume C'V and the dynamic viscosity are supposed to be constant and 
equal to those of a PG, C'V0 and '0 respectively. With the van der Waals’ equation of state, 
the expression of the internal energy is given by: δe’ = C'V δT’ - a’.δ’. 

In order to make the variables dimensionless, T'c, 'c, and r''cT'c are used respectively as 
representative scales of the thermodynamic variables T', ', and P'. The independent 
variables of length x'(x',y',z') and time t' are scaled respectively by the height of the cavity 
H' and the PE time-scale2 given by t'PE =  -1'c H' 2/'0 with  =  -1(-1+ -0.5) (Zappoli, 1992; 
Zappoli et al., 1999). Hence, the representative scale of velocity is V'PE = H'/t'PE. This scaling 
introduces the Reynolds numbers Re =, the Froude number Fr = (V'PE) 2/(g'H'), the Prandtl 
number based on the properties of the PG assumption (Pr0 = '0C'P0 /'0), and the Mach 
number Ma = V'PE/c'0 where c‘0 = (0 r’T‘c)½ is the speed of sound for a PG (with 
0 = C'P0 / C'V0). Note that the PE time-scale obtained by (Onuki et al., 1990) is given by 
t‘1 = H‘2/D’T( -1)2, where D'T is the thermal diffusivity and  = C'P /C'V is the specific-heat 
ratio. Adapted for a van der Waals’ gas 3 and in the assumption that  <<1, the PE time-scale 
t‘1 ≈ Pr/Λ0 (-1)×t'PE. 

3.2 The acoustic filtering of the governing equations 

Despite its high isothermal compressibility, the sound speed c' in a SCF, defined by 
c' 2 = C'P/ C'V'T-1, does not vanish at the CP according to the van der Waals’ equation of 
state, indeed C'P /C'V and 'T diverge with the same critical exponent of -1, which allows the 
acoustic filtering of the equations. In the basic assumption that Ma<< 1, all the primary 
dimensionless variables of the problem  = t(v, T, P, ) can be expanded in series of Ma2 
(Paolucci, 1982) as follows:  = (0) + 0 Ma2(1) +o(Ma2) where (0) and (1) are O(1). The O(1) 
and O(Ma2) parts of the governing equations resulting from this expansion that need to be 
solved are given by: 
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1 The real critical exponents (which are the same for all fluids) differ from those obtained from the van 
der Waals’ equation of state that remains a good approximation to carry out qualitative studies. 
2 The PE time-scale is the time necessary the PE to homogenize the temperature in the core of the cavity, 
this time-scale is between the acoustic time scale (H'/c') and the thermal diffusion one (H'2/D'T) where c’ 
is the sound velocity in the SCF and D'T is the thermal diffusivity. 
3 For a van der Waals’ gas,  /0 =CP /CP0 = 1+(1-1/0 ) -1. 
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In these equations, v(u,v,w), T, P, and  refer to the O(1) of the dimensionless variables, the 
superscript (0) has been omitted for conciseness. Pth and Phyd are respectively the 
thermodynamic pressure (homogeneous in space but time varying according to the O(1) 
momentum equation) and the time independent hydrostatic pressure (P(0) = Pth+ Phyd). 
a = 9/8 and b = 1/3 are the dimensionless parameters of the van der Waals’ equation of state, 
eg = (0,0,-1). Before the heating begins, the initial dimensionless density distribution i, the 
initial thermodynamic pressure Pthi, and the hydrostatic pressure Phyd are obtained from the 
initial thermodynamic and static equilibrium with the constraint of a dimensionless mean 
density equal to 1. This results in: 
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This low Mach number approximation (adapted to SCF buoyant flows) differs from the 
classical one where i = 1 and consequently Phyd = 0. Indeed, owing to the divergence of the 
isothermal compressibility of the SCF, the hydrostatic pressure induces density variations 
(i - 1) comparable to those resulting from a weak heating. This has been done by keeping 
the buoyancy term (0Ma2/Fr)(0)eg in the leading order O(Ma2) of the momentum equation 
(Eq. 7) while in the classical low Mach number approximation, this term is shifted to the 
O(Ma4) order. It has been shown (see § 5.2) that this modification is essential for a correct 
prediction of the convection onset in the thermal boundary layers (Accary et al., 2005c). 

We consider the carbon dioxide critical coordinates (T'c= 304.13 K, 'c = 467.8 Kg.m-3) and 
physical properties (r' = 188 J.Kg-1.K -1, '0 = 3.4410-5 Pa.s, C'V0 = 658 J.Kg-1.K-1, Pr0 = 2.274, 
'0 = 0.01 W.m-1.K-1,). The simulations were carried out for T'i - T'c = 1K ( = 3.2910-3); in this 
case, t'PE = 0.256 s, V'PE = 3.9 cm.s-1, Re = 5710, Fr = 1.5510-2, K = (4/9)(0Ma2/(Fr) = 
2.3210-4, and the effective Prandtl number Pr = Pr0.-½ = 39.6. 

4. Numerical method 
In describing the numerical method used in this analysis, it is assumed that the reader is 
familiar with the basis of the standard finite volume method and with the velocity-pressure 
coupling algorithms extensively reported in (Patankar, 1980). In this section, we will draw 
the outlines of the method the space and the time accuracies, the velocity-pressure coupling, 
the linear systems solvers, and the solver performance. 

4.1 Space and time discretization 

The computational domain is subdivided into a number of cells using a wall refined mesh 
for a better description of the solution in the boundary layers, the mesh is refined in the 



 
Finite Volume Method – Powerful Means of Engineering Design 

 

176 

In spite of its simplicity, the van der Waals’ equation of state gathers the required conditions 
for the existence of the CP and yields to a critical divergence1 as (T'/T'c -1)-1 of the thermal 
expansion coefficient 'P, of the isothermal compressibility 'T, and of the heat capacity at 
constant pressure C'P. The critical divergence of the thermal conductivity is described by: 
‘ = ‘0(1+Λ -½) where  = 0.75 and '0 is the thermal conductivity for a PG. The heat 
capacity at constant volume C'V and the dynamic viscosity are supposed to be constant and 
equal to those of a PG, C'V0 and '0 respectively. With the van der Waals’ equation of state, 
the expression of the internal energy is given by: δe’ = C'V δT’ - a’.δ’. 

In order to make the variables dimensionless, T'c, 'c, and r''cT'c are used respectively as 
representative scales of the thermodynamic variables T', ', and P'. The independent 
variables of length x'(x',y',z') and time t' are scaled respectively by the height of the cavity 
H' and the PE time-scale2 given by t'PE =  -1'c H' 2/'0 with  =  -1(-1+ -0.5) (Zappoli, 1992; 
Zappoli et al., 1999). Hence, the representative scale of velocity is V'PE = H'/t'PE. This scaling 
introduces the Reynolds numbers Re =, the Froude number Fr = (V'PE) 2/(g'H'), the Prandtl 
number based on the properties of the PG assumption (Pr0 = '0C'P0 /'0), and the Mach 
number Ma = V'PE/c'0 where c‘0 = (0 r’T‘c)½ is the speed of sound for a PG (with 
0 = C'P0 / C'V0). Note that the PE time-scale obtained by (Onuki et al., 1990) is given by 
t‘1 = H‘2/D’T( -1)2, where D'T is the thermal diffusivity and  = C'P /C'V is the specific-heat 
ratio. Adapted for a van der Waals’ gas 3 and in the assumption that  <<1, the PE time-scale 
t‘1 ≈ Pr/Λ0 (-1)×t'PE. 

3.2 The acoustic filtering of the governing equations 

Despite its high isothermal compressibility, the sound speed c' in a SCF, defined by 
c' 2 = C'P/ C'V'T-1, does not vanish at the CP according to the van der Waals’ equation of 
state, indeed C'P /C'V and 'T diverge with the same critical exponent of -1, which allows the 
acoustic filtering of the equations. In the basic assumption that Ma<< 1, all the primary 
dimensionless variables of the problem  = t(v, T, P, ) can be expanded in series of Ma2 
(Paolucci, 1982) as follows:  = (0) + 0 Ma2(1) +o(Ma2) where (0) and (1) are O(1). The O(1) 
and O(Ma2) parts of the governing equations resulting from this expansion that need to be 
solved are given by: 

 O(1) continuity:   0.. 

 v

t
 (5) 

 O(1) momentum: 0 thP  (6) 

 O(Ma2) momentum:        ig

Fr
P

t







 


 e

vvvvv .
3
1

Re
1. 2)1(  (7) 

                                                 
1 The real critical exponents (which are the same for all fluids) differ from those obtained from the van 
der Waals’ equation of state that remains a good approximation to carry out qualitative studies. 
2 The PE time-scale is the time necessary the PE to homogenize the temperature in the core of the cavity, 
this time-scale is between the acoustic time scale (H'/c') and the thermal diffusion one (H'2/D'T) where c’ 
is the sound velocity in the SCF and D'T is the thermal diffusivity. 
3 For a van der Waals’ gas,  /0 =CP /CP0 = 1+(1-1/0 ) -1. 
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In these equations, v(u,v,w), T, P, and  refer to the O(1) of the dimensionless variables, the 
superscript (0) has been omitted for conciseness. Pth and Phyd are respectively the 
thermodynamic pressure (homogeneous in space but time varying according to the O(1) 
momentum equation) and the time independent hydrostatic pressure (P(0) = Pth+ Phyd). 
a = 9/8 and b = 1/3 are the dimensionless parameters of the van der Waals’ equation of state, 
eg = (0,0,-1). Before the heating begins, the initial dimensionless density distribution i, the 
initial thermodynamic pressure Pthi, and the hydrostatic pressure Phyd are obtained from the 
initial thermodynamic and static equilibrium with the constraint of a dimensionless mean 
density equal to 1. This results in: 
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This low Mach number approximation (adapted to SCF buoyant flows) differs from the 
classical one where i = 1 and consequently Phyd = 0. Indeed, owing to the divergence of the 
isothermal compressibility of the SCF, the hydrostatic pressure induces density variations 
(i - 1) comparable to those resulting from a weak heating. This has been done by keeping 
the buoyancy term (0Ma2/Fr)(0)eg in the leading order O(Ma2) of the momentum equation 
(Eq. 7) while in the classical low Mach number approximation, this term is shifted to the 
O(Ma4) order. It has been shown (see § 5.2) that this modification is essential for a correct 
prediction of the convection onset in the thermal boundary layers (Accary et al., 2005c). 

We consider the carbon dioxide critical coordinates (T'c= 304.13 K, 'c = 467.8 Kg.m-3) and 
physical properties (r' = 188 J.Kg-1.K -1, '0 = 3.4410-5 Pa.s, C'V0 = 658 J.Kg-1.K-1, Pr0 = 2.274, 
'0 = 0.01 W.m-1.K-1,). The simulations were carried out for T'i - T'c = 1K ( = 3.2910-3); in this 
case, t'PE = 0.256 s, V'PE = 3.9 cm.s-1, Re = 5710, Fr = 1.5510-2, K = (4/9)(0Ma2/(Fr) = 
2.3210-4, and the effective Prandtl number Pr = Pr0.-½ = 39.6. 

4. Numerical method 
In describing the numerical method used in this analysis, it is assumed that the reader is 
familiar with the basis of the standard finite volume method and with the velocity-pressure 
coupling algorithms extensively reported in (Patankar, 1980). In this section, we will draw 
the outlines of the method the space and the time accuracies, the velocity-pressure coupling, 
the linear systems solvers, and the solver performance. 

4.1 Space and time discretization 

The computational domain is subdivided into a number of cells using a wall refined mesh 
for a better description of the solution in the boundary layers, the mesh is refined in the 
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vicinity of the walls; as one moves away from the wall, the control volume size increases 
according to a geometric progression. If N is the number of cells in a direction (x for 
example), the dimensionless positions of the cells interfaces between the wall and the center 
of the computation domain (i.e. for 0 < x(i) ≤ 0.5) would be: 
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  for i = 1,...,N/2 (11) 

For 0.5 ≤ x(i) < 1, cells interfaces position are obtained by symmetry with respect to x = 
0.5. Depending on the value of q (q≥1), this mesh refinement is termed ‘power q law’ type; 
q=1 provides a uniform mesh, the simulations were carried out with q = 2. The variables 
location is staggered: the scalar variables are stored at the cells centers while the velocity 
components are defined at the midpoints of the cells faces perpendicular to the velocity 
direction. This staggering practice avoids the high-frequency noise in the solution 
resulting from the well-known problem of the zigzag pressure filed which would be made 
up of arbitrary values of pressure arranged in a checkerboard pattern (Patankar, 1980). In 
return, this staggering has no adverse consequences in the simple rectilinear domain 
considered here. 

The convection-diffusion transport equation of a variable  to be solved in computational 
fluid dynamics can be written as: 

       S
t
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Where Γ is the diffusion coefficient and S is a source term. While integrating Eq. 12 over 
the control volume (CV) of a discrete variable p and over a time step, the value of a 
variable  and its gradients are assumed to be constant on its CV faces; therefore the space 
accuracy of the method is already limited to the second order, depending on the 
interpolation scheme in the direction perpendicular to the considered face used to 
approach the value of  and its derivative. 

The time integration is fully implicit providing the method a non-conditional stability as far 
as the time step is concerned; and to allow large time scale simulations, the unsteady terms 
are approached by a standard Euler time scheme with four time levels, leading to a third 
order truncation error in time. The time integration of Eq. 12 at the instant tn and for a 
uniform time step t is done as follows: 
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Careful space discretization and integration of the transport equation is needed to reach the 
second order space accuracy ceiling of the method particularly for a non-uniform mesh. This 
concerns the integration of the source and the unsteady terms, and the evaluation of the 
variable  and its gradients at the faces of a CV. A linear interpolation is used to evaluate the 
density at the faces of a CV, while a harmonic mean is considered for the thermal 
conductivity as recommended in (Patankar, 1980). Figure 2 shows the grid structure and the 
notations in one dimension. 
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Fig. 2. Mesh structure and notations in one-direction. 

For a second order space integration, the integrand should be localized in the centre of the CV; 
it is the case for the scalar variables (see Fig. 2), while for the velocity components a neighbor 
contribution must be considered when the grid is not uniform. For example, if  refers to a 
velocity component, its value *w at the centre of the velocity CV (Fig. 2) can be written as: 
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*w =  w if δ3p = 2 δ2p (uniform mesh) 

A central difference (CD) scheme approaches the diffusion terms. For the velocity 
components, since CV faces are localized at midway between two consecutive velocity 
nodes (see Fig. 2), the standard two-point formulation provides a second order 
approximation of the velocity gradients at the faces of a CV. It is not the case for a scalar 
variable on non-uniform mesh, where a three-point scheme is necessary to reach the second 
order accuracy. For example, the gradient of a scalar  at the face p can be written as: 
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In this scheme, a correction is added to the standard CD formulation, a correction 
depending on (δ2p – δ1p), hence that vanishes for a uniform mesh. 

A second order hybrid scheme (SHYBRID) is used for the convection terms (Li & Rudman, 
1995). It uses a four-point formulation to interpolate the values of a variable at the faces of 
its CV, and combines the QUICK, the second order upwind (SOU), and the CD schemes 
whose respective weights in the formulation depend on the local Peclet number which is the 
ratio of the convection flux to the diffusion one. The value p of a variable  at a face p is 
determined as follows: 
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The CD, SOU, and QUICK schemes fall into this formulation for appropriate choices of q -p 
and q +p; for the CD scheme q +p = q –p = 0, for the SOU scheme q –p =  and q +p = 1-, and for 
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Careful space discretization and integration of the transport equation is needed to reach the 
second order space accuracy ceiling of the method particularly for a non-uniform mesh. This 
concerns the integration of the source and the unsteady terms, and the evaluation of the 
variable  and its gradients at the faces of a CV. A linear interpolation is used to evaluate the 
density at the faces of a CV, while a harmonic mean is considered for the thermal 
conductivity as recommended in (Patankar, 1980). Figure 2 shows the grid structure and the 
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In this scheme, a correction is added to the standard CD formulation, a correction 
depending on (δ2p – δ1p), hence that vanishes for a uniform mesh. 

A second order hybrid scheme (SHYBRID) is used for the convection terms (Li & Rudman, 
1995). It uses a four-point formulation to interpolate the values of a variable at the faces of 
its CV, and combines the QUICK, the second order upwind (SOU), and the CD schemes 
whose respective weights in the formulation depend on the local Peclet number which is the 
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The CD, SOU, and QUICK schemes fall into this formulation for appropriate choices of q -p 
and q +p; for the CD scheme q +p = q –p = 0, for the SOU scheme q –p =  and q +p = 1-, and for 



 
Finite Volume Method – Powerful Means of Engineering Design 

 

180 

the QUICK one q –p = δ1p /(δ1p+δ2p+δ3p) and q +p = (1-)δ2p /(δ1p+δ2p+δ4p). The values of q -p and 
q +p are automatically adjusted during the simulation according to the local Peclet number 
(Pep) in order to minimize the potential oscillations by minimizing the remote-nodes 
contributions while maintaining positive neighbor-nodes coefficients (see Patankar, 1980, 2nd 
basic rule). This minimization (Li & Rudman, 1995) results in,  
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A quick inspection of these choices shows that when the transport is diffusion-dominated 
(Pep very small) SHYBRID scheme becomes the CD, when the transport is convection-
dominated (Pep very large or infinity) SHYBRID approaches the SOU scheme, and between 
these two limits it may go through the QUICK scheme for certain values of Pep. Thus, 
SHYBRID is a stable second order accurate scheme for a wide range of the Peclet number. In 
order to suppress non-physical oscillations when predicting solutions with sharp gradients 
(Li & Rudman, 1995), a flux-correction transport was necessary; it was however useless for 
the gradient magnitudes encountered in our study. 

Integrating Eq. 12 for p, the discrete transport equation may be written after some 
manipulation (Patankar, 1980), as:  

 c
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where aP and anb are discretization coefficients, Sc is the discrete source term, and the 
subscript nb designates the six direct neighbors of the node P, any remote-node contribution 
resulting from second order space discretization is included in Sc. The linear system (Eq. 18) 
is solved using iterative methods (Barrett et al., 1994); the pressure symmetric equation is 
solved using the Conjugate Gradient method with Jacobi preconditioning, while the Bi-
Conjugate Gradient Stabilized with the same preconditioner is used for the other non-
symmetric transport equations. In addition, the pressure equation is preconditioned using a 
SCF equivalent of the artificial compressibility method proposed by (Chorin, 1997). In spite 
of the computational optimization of these solvers, most of the computation effort was spent 
on solving the linear systems and especially the pressure one. 

4.2 The coupling algorithm 

The pressure splitting in the low Mach number results into two more variables in the 
governing equations, the hydrostatic pressure Phyd and Pth the thermodynamic one. Phyd is 
time-independent and is given by the initial stratification (Eq. 10), while Pth (constant in 
space) can be determined at any moment using the conservation of the total mass whose 
dimensionless value is equal to 1.  
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In order to determine Pth, one must provide the function  =  (Pth,T); thus at each time step 
and at each iteration k of the velocity-pressure coupling algorithm, after computing the 
temperature field, the density is linearized using the van der Waals’ equation as follows:  
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The thermodynamic pressure at iteration k is computed from the conservation of the total 
mass of the fluid, since:  
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Thus for each time step, a global iterative process (Fig. 3) consists first in solving the 
energy equation (since the flow is temperature driven), updating the thermodynamic 
pressure (Eq. 21) and the density (Eq. 20) using the linearized equation of state, and then 
solving the dynamic field. The global convergence is assumed obtained when the L-norm 
of all governing equations residuals (momentum, energy, and state) reach an imposed 
stopping criterion. The velocity-pressure coupling is treated by a PISO algorithm (Jang et 
al., 1986); at each sweep, a velocity prediction, a pressure prediction, and a velocity 
correction are performed; at this stage, a second correction of the dynamic field is useless 
since the density will be severely perturbed in the next iteration. PISO algorithm 
determines the pressure field using a pressure equation and requires no pressure 
correction that introduces instability into the convergence process of unsteady solutions. 
More details about the numerical method can be found in (Accary et al., 2006) where the 
code has been thoroughly validated using an artificial analytical solution and on several 
benchmark problems of natural convection. 

 
Fig. 3. Global iterative procedure at each time step. 

The dimensionless computational domain is a cube of unit length,  = [0,1]3. For the 
momentum equation, Dirichlet conditions (v = 0) are applied on all boundaries. For the 
energy equation, homogeneous Neumann conditions are applied on the vertical 
boundaries and Dirichlet conditions on the horizontal ones: T(z=1) = Ti and after one 
second of simulation T(z=0) = Ti+T, T = T'/T'c being the dimensionless intensity of 
heating. The mesh size and time step depend on the heating applied to the bottom plate; 
the mesh size varies between 1003 and 2003 computation points and the dimensionless 
time step varies between 0.01 and 0.1. At each time step, the converged solution is 
supposed to be obtained when the residuals of all transport equations reach 10-9 in non-
dimensional form. 
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The thermodynamic pressure at iteration k is computed from the conservation of the total 
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5. Rayleigh-Bénard convection in a near critical fluid 
5.1 Hydrodynamic stability of the thermal boundary layers 

As mentioned earlier, because of the PE, the temperature field is stratified vertically with 
three distinct zones since the first seconds of heating: the hot boundary layer, the cold 
boundary layer and the bulk of the cavity. Regardless the considered heating, as long as the 
flow is dominated by the diffusion and by the PE, the thermal boundary layers grow as 
(D'T.t‘)½ with D'T = 5.1810-5 cm2.s-1. For T' = 1 mK, figure 4(a) shows the fast and 
homogeneous increase of the temperature in the bulk of the cavity by the PE and the growth 
of the thermal boundary layers. Figure 4(b) shows the corresponding density profiles; we 
notice that the density variations induced by the heating are comparable to those resulting 
from the hydrostatic pressure, which justifies the adaptation of the low Mach number 
approximation by including the fluid stratification in the model. 

 
Fig. 4. (a) Temperature profiles for T' = 1 mK showing the action of the PE and the growth 
of the thermal boundary layers before the convection onset. (b) The corresponding density 
profiles scaled by the density variation due to stratification in the dimensionless form 
s = K = (4/9)(0Ma2/(Fr). 

The thickness h' of the hot boundary layer was defined as the average distance from bottom 
wall where the local vertical temperature gradient becomes equal to the global one between 
the horizontal plates, T'/H'. The total temperature variation inside the hot boundary layer 
is denoted T'. The normalized variables h = h'/H' and T = T'/T'c are also defined. For 
T' = 1 mK, figure 5(a) shows the time evolution of h and of T until the beginning of the 
convective regime. T increases to reach a maximum after one second of heating, and then it 
decreases progressively according to the function et×erfc(t½) (Zappoli & Durand-Daubin, 
1994) as a result of the PE action that increases the temperature of the core. For a SCF 
diffusing-layer, the local Rayleigh number based on h and T is given by (Gitterman & 
Steinberg, 1970b; Carlès & Ugurtas, 1999):  

 
Rayleigh–Bénard Convection in a Near-Critical Fluid Using 3D Direct Numerical Simulation 

 

183 

 


















H
T

h
ThCg

)T,h(Ra a
4

PP
2

ccorr 



  (22) 

To account for the high compressibility of the SCF, the classical expression of the Rayleigh 
number is modified in Eq. 22 by the adiabatic temperature gradient (T'a /H' = g''PT'i /C'P) 
obtained by moving a fluid particle along the hydrostatic pressure gradient. This term, that 
can be neglected for a normally compressible fluid, represents the stabilizing contribution of 
the Schwarzschild criterion commonly encountered for large air columns, and according to 
which the fluid layer is stable if:  
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In the considered model, the adiabatic temperature gradient T'a /H' = 0.34 mK/cm and 
does not depend on the proximity  to the CP since 'P and C'P have the same critical 
exponent of -1. To better estimate the interaction between natural convection and 
stratification, the normalized intensity of heating of the bottom wall T is henceforth 
expressed in terms of Ta = T'a/T'c. 

Figure 5(b) shows the time evolution of Racorr(h,T) for T = 3Ta. According to Eq. 22, 
Racorr(h,T) behaves as h3T ~ t3/2×et×erfc(t½); in fact, Racorr(h,T) can be very well fitted in 
Fig. 5(b) by the curve 180×t3/2×et×erfc(t½), and we can easily prove at long time scales that 
erfc(t½) ~ e-tt-½, which explains the linear time evolution of Racorr(h,T). When the local 
Rayleigh number exceeds the critical value of about 1100 (Chandrasekar, 1961), the hot 
boundary layer becomes unstable4. Convective cells start to get organized along the bottom 
plate; figure 6(b) enables the visualization of these vortical structures using the Q-criterion5 
(Dubief & Delcayre, 2000) along the bottom plate. Then, the intensity of these vortices rises 
exponentially with time; this can be easily seen on the time evolution of the mean enstrophy 
in the hot boundary layer shown in Fig. 5(b) and defined by:  
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The intensity of these convective cells keeps rising until producing enough amount of 
convective transport to deform the isotherms causing the collapse of the thermal boundary 
layers. For T = 3Ta, the collapse of the hot boundary layer occurs around t = 120 and 
corresponds to the symbol (□) in Figs. 5(a) and 5(b), afterwards the convective regime starts 
and the definition of the hot boundary layer holds no more. The cold boundary layer 
developed along the top plate is governed by the same mechanisms and its hydrodynamic 
                                                 
4 The considered critical Rayleigh number is that of fluid layer with mixed (solid-free) boundary 
conditions. However, because the hot boundary layer is connected to the bulk of the cavity, its upper 
boundary is not sharply defined, the real critical Rayleigh number should slightly defer from 1100; 
but this value, even though not very precise, remains the most suitable theoretical value for the 
considered configuration. 
5 Q = ½(Ωij Ωji - Sij Sji) where Sij and ij denote respectively the symmetric and anti-symmetric parts of v . 
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5. Rayleigh-Bénard convection in a near critical fluid 
5.1 Hydrodynamic stability of the thermal boundary layers 

As mentioned earlier, because of the PE, the temperature field is stratified vertically with 
three distinct zones since the first seconds of heating: the hot boundary layer, the cold 
boundary layer and the bulk of the cavity. Regardless the considered heating, as long as the 
flow is dominated by the diffusion and by the PE, the thermal boundary layers grow as 
(D'T.t‘)½ with D'T = 5.1810-5 cm2.s-1. For T' = 1 mK, figure 4(a) shows the fast and 
homogeneous increase of the temperature in the bulk of the cavity by the PE and the growth 
of the thermal boundary layers. Figure 4(b) shows the corresponding density profiles; we 
notice that the density variations induced by the heating are comparable to those resulting 
from the hydrostatic pressure, which justifies the adaptation of the low Mach number 
approximation by including the fluid stratification in the model. 

 
Fig. 4. (a) Temperature profiles for T' = 1 mK showing the action of the PE and the growth 
of the thermal boundary layers before the convection onset. (b) The corresponding density 
profiles scaled by the density variation due to stratification in the dimensionless form 
s = K = (4/9)(0Ma2/(Fr). 

The thickness h' of the hot boundary layer was defined as the average distance from bottom 
wall where the local vertical temperature gradient becomes equal to the global one between 
the horizontal plates, T'/H'. The total temperature variation inside the hot boundary layer 
is denoted T'. The normalized variables h = h'/H' and T = T'/T'c are also defined. For 
T' = 1 mK, figure 5(a) shows the time evolution of h and of T until the beginning of the 
convective regime. T increases to reach a maximum after one second of heating, and then it 
decreases progressively according to the function et×erfc(t½) (Zappoli & Durand-Daubin, 
1994) as a result of the PE action that increases the temperature of the core. For a SCF 
diffusing-layer, the local Rayleigh number based on h and T is given by (Gitterman & 
Steinberg, 1970b; Carlès & Ugurtas, 1999):  
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To account for the high compressibility of the SCF, the classical expression of the Rayleigh 
number is modified in Eq. 22 by the adiabatic temperature gradient (T'a /H' = g''PT'i /C'P) 
obtained by moving a fluid particle along the hydrostatic pressure gradient. This term, that 
can be neglected for a normally compressible fluid, represents the stabilizing contribution of 
the Schwarzschild criterion commonly encountered for large air columns, and according to 
which the fluid layer is stable if:  
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In the considered model, the adiabatic temperature gradient T'a /H' = 0.34 mK/cm and 
does not depend on the proximity  to the CP since 'P and C'P have the same critical 
exponent of -1. To better estimate the interaction between natural convection and 
stratification, the normalized intensity of heating of the bottom wall T is henceforth 
expressed in terms of Ta = T'a/T'c. 

Figure 5(b) shows the time evolution of Racorr(h,T) for T = 3Ta. According to Eq. 22, 
Racorr(h,T) behaves as h3T ~ t3/2×et×erfc(t½); in fact, Racorr(h,T) can be very well fitted in 
Fig. 5(b) by the curve 180×t3/2×et×erfc(t½), and we can easily prove at long time scales that 
erfc(t½) ~ e-tt-½, which explains the linear time evolution of Racorr(h,T). When the local 
Rayleigh number exceeds the critical value of about 1100 (Chandrasekar, 1961), the hot 
boundary layer becomes unstable4. Convective cells start to get organized along the bottom 
plate; figure 6(b) enables the visualization of these vortical structures using the Q-criterion5 
(Dubief & Delcayre, 2000) along the bottom plate. Then, the intensity of these vortices rises 
exponentially with time; this can be easily seen on the time evolution of the mean enstrophy 
in the hot boundary layer shown in Fig. 5(b) and defined by:  
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The intensity of these convective cells keeps rising until producing enough amount of 
convective transport to deform the isotherms causing the collapse of the thermal boundary 
layers. For T = 3Ta, the collapse of the hot boundary layer occurs around t = 120 and 
corresponds to the symbol (□) in Figs. 5(a) and 5(b), afterwards the convective regime starts 
and the definition of the hot boundary layer holds no more. The cold boundary layer 
developed along the top plate is governed by the same mechanisms and its hydrodynamic 
                                                 
4 The considered critical Rayleigh number is that of fluid layer with mixed (solid-free) boundary 
conditions. However, because the hot boundary layer is connected to the bulk of the cavity, its upper 
boundary is not sharply defined, the real critical Rayleigh number should slightly defer from 1100; 
but this value, even though not very precise, remains the most suitable theoretical value for the 
considered configuration. 
5 Q = ½(Ωij Ωji - Sij Sji) where Sij and ij denote respectively the symmetric and anti-symmetric parts of v . 
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stability depends on the same criterion (Accary et al., 2005b); the same scenario occurs for 
the cold boundary layer. 

 
Fig. 5. (a) Time evolution of the hot boundary layer thickness h and of the temperature 
difference inside it T for T' = 1mK. The symbol (□) indicates the beginning of the 
convective regime. (b) Time evolution of the local Rayleigh number Racorr(h,T) related to the 
hot boundary layer by Eq. 22 and of the mean enstrophy in the hot boundary layer (Eq. 24) 
showing the exponential increase of the intensity of convection. 

 
           (a)         (b)   

Fig. 6. (a) A cut of the temperature field for T = 3Ta; the lower and upper shaded 
isotherms correspond respectively to T−Ti /T = 0.33 and 0.66. (b) A cut of the iso-surface 
Q = 210-8 (Qmin = -1.410-5, Qmax = 2.810-5) showing the vortical structures in the thermal 
boundary layers shown in subfigure (a). 

In Fig. 7, the critical value of T for the convection onset in the hot boundary layer is derived 
from Eq. 22 and plotted versus h (the thick solid line) defining the unstable zone. This 
neutral stability curve consists of two lines representing the limits of the convection-onset 
criterion depending on h. For small values of h, the fluid compressibility can be neglected 
and the stability of the hot boundary layer is governed by the classical Rayleigh criterion, 
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obtained from Eq. 22 by dropping the term g''PT'i /C'P, while for larger values of h, 
viscosity and thermal diffusion are neglected, and the stability depends on the 
Schwarzschild criterion obtained from Eq. 23. For several intensities of heating T, figure 7 
shows the evolution curves T(h) for the hot boundary layer (the solid blue lines) until the 
beginning of the convective regime, which corresponds to the symbol (□). Figure 7 shows 
also results obtained in a 2D approximation with periodic vertical boundaries (the dashed red 
lines) (Accary et al., 2005b). The boundary effects induced by the presence of the lateral walls 
in the 3D case accelerates the development of convection and, at equal intensity of heating, the 
convective regime is reached earlier in comparison with the 2D approximation with periodic 
vertical boundaries. For low intensities of heating, practically for T  0.72Ta, once the hot 
boundary layer has become unstable, the intensity of the convective cells rises exponentially 
with time until deforming the isotherms. However, this deformation is not large enough to 
induce the collapse of the hot boundary layer that keeps growing and the curve T(h) crosses 
the Schwarzschild line back into the stable zone again and a reverse transition to stability 
obtained without any external intervention (Accary et al., 2005a). This phenomenon requires 
that the thermal boundary layers grow enough without reaching the centre of the cavity (in 
order to avoid their interaction); a height of 1.5H' at least is needed in this case. 

 
Fig. 7. Evolution of the temperature difference T across the hot boundary layer as a function 
of its thickness h. Time evolves in the arrows’ direction and the symbols (□) correspond to the 
beginning of the convective regime. The neutral stability line was derived from Eq. 20. The 2D 
results were obtained using a cavity of height 1.5H' with periodic vertical boundaries; for 
T  0.72Ta, a reverse transition to stability is obtained though the Schwarzschild line. 
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5.2 Effect of the adapted low Mach number approximation on convection onset 

Figure 8 shows a comparison for the evolution curves T(h) between the low Mach number 
approximation adapted to the SCF flow (ALMN) described in § 3.2 and the classical one 
(CLMN) obtained from the model by setting i = 1 in Eq. 10. The simulations are carried-out 
in a 2D approximation but with periodic vertical boundaries in order to suppress the 
disturbance resulting from the side walls. The straight dashed line with a slop of (-3) 
represents the classical Rayleigh criterion obtained from Eq. 22 by removing the adiabatic 
temperature gradient term. We notice that for a relatively strong heating (T > 3Ta) the 
flows predicted with both models are similar but not identical and the collapse of the 
thermal boundary layers occur at about the same time; this is due to the fact that a strong 
heating covers the effects of stratification, but the weight of this latter becomes more 
significant as the heating decreases. 

 
Fig. 8. Comparison between the adapted low Mach number model (ALMN) and the classical 
one (CLMN) for the evolution of the temperature difference T across the hot boundary 
layer as a function of its thickness h. The symbols (□) and () correspond to the beginning of 
the convective regime and the neutral stability line was derived from Eq. 22. The 
simulations are carried-out in a 2D approximation with periodic vertical boundaries. 

If we consider for example the case T=0.9Ta, the collapse of the hot boundary layer is 
observed with about 90t'PE of time gap between the two models. For T=0.9Ta, figure 9 
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shows the temperature fields obtained 100t'PE after the collapse of the hot boundary layer. 
Compared to Fig. 9(a) (ALMN), the thermal plumes are much more developed in Fig. 9(b) 
(CLMN) since their motion is not hindered by the stratification which, when taken into 
account, prevents the free growth of the plumes. However for the considered heating 
intensity (T=0.9Ta), the thermal plumes manage to deform the temperature field giving 
rise the slowly moving structures. As the heating gets weaker (T < 0.6Ta for example), the 
buoyant force being not strong enough for pulling the fluid particles through the hydrostatic 
pressure gradient, the hot boundary layer predicted with the ALMN approximation remains 
stable. In return, not including the stratification, the CLMN model is unable to take account 
of this stabilizing effect and persists in predicting a convective instability (according to the 
classical Rayleigh criterion) provided that the height H’ of the cavity allows enough growth 
of the thermal boundary layers. 

  
 (a)    (b) 

Fig. 9. Comparison of the temperature fields obtained in a 2D approximation (with periodic 
vertical boundaries) for T=0.9Ta, 100t'PE after the collapse of the hot boundary layer. (a) 
Adapted low Mach number model (ALMN), (b) Classical low Mach number model (CLMN). 

5.3 The beginning of the convective regime 

The convective regime starts with several plumes rising from within the thermal boundary 
layers as shown in Fig. 10(a). These plumes are encircled by donut-shaped structures shown 
by the Q-criterion in Fig. 10(b). Convection improves the heat transfer between the 
isothermal walls and the bulk of the cavity, resulting into a faster thermal balance in the 
whole fluid volume. For all the heating cases that we considered, the hot boundary layer has 
always become unstable before the cold one. As the heating increases, convection is 
triggered earlier since the instability criterion (Racorr(h,T) > 1100) is satisfied earlier; 
consequently, the thickness of the thermal boundary layer is smaller when the convection 
arises and the size of the convective structures decreases as shown in Fig. 11. A detailed 
study of the size of the convective structures has been done in a 2D approximation in 
(Accary et al., 2005b). 
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whole fluid volume. For all the heating cases that we considered, the hot boundary layer has 
always become unstable before the cold one. As the heating increases, convection is 
triggered earlier since the instability criterion (Racorr(h,T) > 1100) is satisfied earlier; 
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arises and the size of the convective structures decreases as shown in Fig. 11. A detailed 
study of the size of the convective structures has been done in a 2D approximation in 
(Accary et al., 2005b). 
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(a)         (b)  

Fig. 10. (a) A cut of the temperature field for T = 3Ta showing the beginning of the 
convective regime; the lower and upper shaded isotherms correspond respectively to 
T−Ti /T = 0.33 and 0.66. (b) A cut of the corresponding iso-surface Q = 0.015 (Qmin = -0.15, 
Qmax = 0.15). 

 
(a)         (b)  

Fig. 11. Cuts of temperature fields for (a) T = 15Ta and (b) T = 30Ta showing the effect of 
the intensity of heating on the temperature field at the beginning of the convective regime. The 
lower and upper shaded isotherms correspond respectively to T−Ti /T = 0.33 and 0.66. 

5.4 Transition to turbulence 

In the convective regime of the flow that follows the convection onset, the Rayleigh number, 
based on the total height H' of the cavity and on the temperature difference T' between the 
isothermal walls (Eq. 25), becomes a better indicator of the regime of the flow. 
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For T < Ta, the Rayleigh number obtained from Eq. 25 is negative; this, however, does not 
prevent convection to arise in the thermal boundary layers when the local Rayleigh number 
(Eq. 22) exceeds 1100. But for T > Ta, for example for T = 1.5Ta, the term in front of the 
parentheses in Eq. 25, which diverges as -1.5, is very large and results in a Rayleigh number 
of 2.68×106, while for a PG, the Rayleigh number is directly proportional to T. 

The turbulent Rayleigh-Bénard convection is characterized by a statistically steady state of 
heat transfer. In the considered configuration, the settlement of the turbulent regime may 
be identified on the time evolution of the mean Nusselt numbers on the isothermal walls 
given by: 
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For T = 7.5Ta which corresponds to Racorr = 80×106 (Eq. 25), figure 12 shows the time 
evolution of the mean Nusselt numbers on the bottom wall and of the top one. The 
convection onset is easily identified by the improvement of the heat transfer 
corresponding to the increase in the mean Nusselt numbers that stabilize afterwards 
around almost the same value, which indicates the settlement of the turbulent flow. 
Figure 13(a) shows the temperature field obtained in the turbulent regime. We notice 
first the appearance of crest-like patterns defining on the isothermal walls flat regions 
where the temperature is almost homogeneous in the (x,y) plan, we notice also the 
spreading of the isotherms along the adiabatic walls. Figure 13(b) shows the chaotic flow 
that takes place in the turbulent regime. The vortical structures have no particular shape; 
the tubular and toroïdal structures obtained at the beginning of the convective flow have 
completely disappeared. 

 
Fig. 12. Time evolution of the mean Nusselt numbers (Eq. 26) on the bottom wall (Nuh, h 
for hot) and the top one (Nuc, c for cold) for T = 7.5Ta (Racorr = 80×106). 
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(a)         (b)  

Fig. 13. (a) A cut of the temperature field for T = 7.5Ta; the lower and upper shaded 
isotherms correspond respectively to T−Ti /T = 0.33 and 0.66. (b) A cut of the corresponding 
iso-surface Q = 0.015 (Qmin = -0.37, Qmax = 0.67). 

In order to better estimate the size of the vortical structures and its time evolution, a discrete 
Fourier transformation6 of the vertical velocity component w has been carried out in both x 
and y directions. Along the line (y = y0, z = z0) and for a wavelength H’/k associated to the 
mode k, the Fourier coefficient of w(x,y0,z0) is given by: 
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Once the coefficients Wx(k, y0, z0) are computed for all (y0, z0), the mean contribution of the 
mode k to the field of w is determined by: 
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Figure 14 shows the contribution of the different modes to the spectrum of the component w 
in the x and y directions at the beginning of the convective regime and in the turbulent one. 
We notice an important contribution of small wavelengths ranging between H'/11 and H'/4 
at the beginning of convection (at t = 89.25, see Fig. 12). But as time goes by, the spectra of w 
show a much higher contribution of large wavelengths exceeding sometimes half the of the 
cavity width. Similar results were obtained for the horizontal velocity components, u and v. 
Thus, the turbulent flow consists mainly of large vortical structures. 

Figure 15 shows cuts of the temperature field in the vertical median plans of the cavity with 
the corresponding velocity fields that confirm the presence of large convective structures in the 
steady-state turbulent regime. We notice that the temperature field consists mainly of two 
unstable thermal boundary layers exchanging heat and mass with the bulk of the cavity in  
                                                 
6 The operation required the fictive assumption of a periodic and odd distribution of w in the horizontal 
directions with a period of 2H'. 
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Fig. 14. The weights of the different wave-vectors k in the spectrum of the vertical velocity 
component w obtained in the directions x (a) and y (b) for T = 7.5Ta. In average, the 
convective structures are clearly larger in the steady-state turbulent regime (t = 290.6 and 
325.6) than at the beginning of convection (t = 89.25). 

 
Fig. 15. Vertical cuts at x = 0.5 and y = 0.5 of the normalized temperature field T−Ti /T 
shown in Fig. 13(a) (T = 7.5Ta, t = 290.6), with the corresponding velocity fields. 

which the convective activity induces a quasi-homogeneous temperature. Figure 16 shows the 
time evolution, along the vertical axis of the cavity (x = y = 0.5), of the velocity magnitude and 
of the temperature at the free boundaries of the thermal layers (z = 0.05 and z = 0.95)7 and at 
the centre of the cavity; the velocity components have the same order of magnitude. Figure 
                                                 
7 Despite convection, the thickness of the thermal boundary layers may be computed at each point of 
the horizontal walls using the same definition of section 5.1; the normalized values of the thermal 
boundary layers’ thicknesses (that were averaged in space and in time) are around 0.05. 
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Fig. 13. (a) A cut of the temperature field for T = 7.5Ta; the lower and upper shaded 
isotherms correspond respectively to T−Ti /T = 0.33 and 0.66. (b) A cut of the corresponding 
iso-surface Q = 0.015 (Qmin = -0.37, Qmax = 0.67). 

In order to better estimate the size of the vortical structures and its time evolution, a discrete 
Fourier transformation6 of the vertical velocity component w has been carried out in both x 
and y directions. Along the line (y = y0, z = z0) and for a wavelength H’/k associated to the 
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Once the coefficients Wx(k, y0, z0) are computed for all (y0, z0), the mean contribution of the 
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Figure 14 shows the contribution of the different modes to the spectrum of the component w 
in the x and y directions at the beginning of the convective regime and in the turbulent one. 
We notice an important contribution of small wavelengths ranging between H'/11 and H'/4 
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unstable thermal boundary layers exchanging heat and mass with the bulk of the cavity in  
                                                 
6 The operation required the fictive assumption of a periodic and odd distribution of w in the horizontal 
directions with a period of 2H'. 
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16(a) underlines the chaotic convection that takes place in the whole fluid volume; the velocity 
has been monitored at 25 different points of the cavity and confirms that chaotic behavior. In 
the steady-state turbulent regime, figure 16(b) shows a slight difference of the time-averaged 
temperature between positions z = 0.05 et z = 0.95, which reveals the existence of a temperature 
gradient in the bulk of the cavity that will be investigated in § 5.5. 

 
Fig. 16. Time evolution of the local velocity magnitude (scaled by V'PE = H'/t'PE = 3.9 cm.s-1) 
(a) and the local normalized temperature (b) at three positions (z = 0.05, 0.5, and 0.95) along 
the line x = y = 0.5, for T = 7.5Ta. 

5.5 The global thermal balance of the cavity 

The steadiness of the mean Nusselt numbers on the isothermal walls (Fig. 12, turbulent 
regime) reflects the settlement of a statistically steady-state heat transfer across the cavity. 
However, figure 17 reveals the strong non-uniformity of the Nusselt numbers distributions 
on the isothermal walls. These patterns are directly related to those of the temperature field: 
the Nusselt number’s minima are reached under the crest-like patterns shown in Fig. 13(a), 
while the maxima are obtained inside the cells determined by those patterns. These cells are 
thus characterized by very thin thermal boundary layers; for the temperature field shown in 
Fig. 13(a), the minimal normalized thicknesses of the thermal boundary layer were about 
0.014 for the hot boundary layer and 0.012 for the cold one and were obtained where the 
distributions of the Nusselt numbers reach their maxima. Despite the strong non-uniform 
distributions of the Nusselt numbers, in the steady-state turbulent regime, the mean Nusselt 
numbers on both isothermal walls fluctuate around the same value. 

For different intensities of heating and hence Rayleigh numbers, figure 18(a) reports the 
mean Nusselt numbers (the filled circles). For a PG, the experimental results (Poche et al., 
2004) and those issued from a scaling theory (Siggia, 1994) show that Nusselt number 
behaves as Ra2/7. This behavior can be observed for the of the Nusselt number corrected by 
the adiabatic temperature gradient (Kogan & Meyer, 2001), given by: 
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For T >> Ta, Nucorr  Nu; but as the intensity of heating decreases, the corrected 
expression of the Nusselt number (the filled squares in Fig. 18(a)) enables the retrieval of the 
Ra2/7 law. However, it should be reminded that the effective heat transfer is described by the 
classical expression of the Nusselt number given by Eq. 26, not by the corrected one. 

 
Fig. 17. Distributions of the Nusselt number on the bottom (Nuh) and the top (Nuc) 
isothermal walls, corresponding to temperature field shown in Fig. 13(a) (T = 7.5Ta, 
t = 290.6). 

 
Fig. 18. In the steady state regime of the turbulent flow: (a) the classical (Eq. 26) and the 
corrected (Eq. 29) mean Nusselt numbers versus the corrected Rayleigh number (Eq. 25);  
(b) temperature profiles (averaged in the xy-plan) for different intensities of heating 
( T varies between 0 and 1), ATG stands for ‘adiabatic temperature gradient’. 
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At the global thermal balance of the cavity and for all intensities of heating, figure 18(b) 
reveals the existence of a mean temperature gradient in the bulk of the cavity equal to the 
adiabatic temperature one. This is a natural structure of the mean temperature field that 
ensures the minimal temperature gradients in the thermal boundary layers with the 
constraint of a globally stable bulk of the cavity. Indeed, if the mean temperature gradient in 
the bulk of the cavity were larger than the adiabatic temperature one, the bulk of the cavity 
would lose its hydrodynamic stability. In return, if the mean temperature gradient in the 
bulk of the cavity were smaller than the adiabatic temperature one, the bulk of the cavity 
would be ‘too’ stable, but this would increase the temperature gradients in the thermal 
boundary layers. 

6. Comparison between a SCF and a PG, effects of stratification 
The comparison between the Rayleigh-Bénard convection in a SCF and that in a PG is 
carried out here in the 3D case for a Rayleigh number of 2.68106 for which the density 
stratification of the SCF affects clearly the development of convection (T = 1.5Ta). The 
mathematical model described in § 3 was adapted to the PG case, mainly by setting a = b = 0, 
 = 0, and  = 0 in Eqs. 5 to 9, and by choosing reference values of temperature and density 
compatible with the PG assumption, these were set to 300 K and 1.8 Kg.m-3 respectively. An 
intensity of heating T' = 5 K was applied to bottom wall in the PG case and the height H' of 
the cavity, deduced from the classical expression of the Rayleigh number, is equal to 13.8 cm. 
A mesh of 1003 and a time step of 0.125s have been used. 

 
Fig. 19. Time evolution of the mean Nusselt numbers on the isothermal walls obtained in the 
3D case for a Rayleigh number of 2.68106 for a SCF (T = 1.5Ta) and for a PG. The curves 
were shifted by 2s for the PG to show prominently the first peak. For the SCF, the first peak 
of the mean Nusselt number on the bottom wall reaches the value of 370, and the beginning 
of convection at about 60 s is consistent with the result shown in Fig. 7, where the convective 
regime starts at t' = 120tPE = 58.9 s. 

 
Rayleigh–Bénard Convection in a Near-Critical Fluid Using 3D Direct Numerical Simulation 

 

195 

Figure 19 shows the time 8 evolution of the mean Nusselt numbers for the SCF and for the 
PG 9. The large temperature gradients obtained at the very first seconds of heating in the 
case of the SCF are responsible for the very high peak of the Nusselt number. For the SCF, 
figure 19 reports very similar evolutions of the mean Nusselt numbers on both isothermal 
walls. By contrast for the PG, while the mean Nusselt number on the bottom wall shows a 
similar behavior to that of the SCF during the diffusive regime, no heat transfer is detected 
on the top wall (Nuc = 0) until the beginning of convection. Because the PE is practically 
inexistent for the PG, the heat transfer is only activated on the top wall when the thermal 
plumes rising from the hot boundary layer reach it. Even though the Prandtl number is 
about 18 times smaller 10 (Verzicco & Camussi, 1999), convection in the PG is much more 
developed than in the SCF at the same Rayleigh number, as shown by Fig. 20. The 
fluctuating time evolution of the mean Nusselt numbers for the PG results from this intense 
convective activity. By contrast, the trace of the diffusion-dominated temperature field (Fig. 
20(a)) obtained for SCF due to its strong stratification is visible on the time evolution of the 
mean Nusselt numbers after the convection onset. Under these conditions, the global 
thermal balance of the cavity is mainly achieved by diffusion at long time scales because of 
the critical vanishing (as  ½) of the thermal diffusivity of the SCF. We notice finally that even 
though the temperature field of the SCF is diffusion dominated while it is convection-
dominated for the PG, the corrected mean Nusselt number at the global thermal balance of 
the cavity is the same in both cases. 

 
  (a)     (b)    

Fig. 20. Cuts of temperature fields for a Rayleigh number of 2.68106 (a) for a SCF 
(T = 1.5Ta) and (b) for a PG, showing how the strong stratification of the SCF holds back 
the development of convection. The lower and upper shaded isotherms correspond 
respectively to T−Ti /T = 0.33 and 0.66. 
                                                 
8 Time is not scaled in this case because the PE does not exist for the PG. 
9 The PG adiabatic temperature gradient is very small compared to T'/H', hence: Nucorr  Nu. 
10 According to the model, the PG Prandtl number is about 2.27 against 39.6 for the SCF. 
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7. Conclusions 
In this chapter, the mathematical model for SCF buoyant flows with the appropriate acoustic 
filtering has been recalled, then a description of the different stages of the SCF flow in a cube-
shaped cavity heated from below were reported from the first seconds of heating until the 
settlement of a statistically steady-state of heat transfer, and this for Rayleigh numbers ranged 
from 2.68×106 up to 160×106. While the scenarios of the convection onset and disappearance 
(reverse transition to stability) can be observed in a 2D approximation, the convective regime 
and the transition to turbulence requires 3D simulations. At the beginning of convection, 
tubular convective structures appear inside the thermal boundary layers while the thermal 
plumes are encircled by toroïdal vortical structures; the size of these structures decreases as the 
intensity of heating increases. In the turbulent regime, the convective structures grow until 
their size exceeds half of the cavity, and create on the isothermal walls several cells where an 
intense heat transfer takes place. Despite the non-homogeneous heat transfer on the isothermal 
walls, the steadiness of the mean Nusselt numbers around the same value reflects the global 
thermal balance of the cavity. The relation between that equilibrium Nusselt number and the 
Rayleigh number obtained for a PG (Nu ~ Ra2/7) is applicable to the SCF, provided that the 
adiabatic temperature gradient is taken into account in the expressions of both numbers. In the 
turbulent regime, the temperature field consists mainly of two unstable thermal boundary 
layers and a bulk characterized by a mean temperature gradient equal to the adiabatic 
temperature one. For relatively high intensities of heating (T >> Ta), the global thermal 
balance of the cavity is achieved by a chaotic convection invading in the whole fluid volume. 
By contrast for weak intensities of heating (T ~ Ta), the strong density stratification, due to 
the high isothermal compressibility of the fluid, prevents the free development of convection 
whose penetrability is dramatically reduced; in this case, the thermal balance of the cavity is 
mainly achieved by diffusion and therefore on long time scales. Finally, the comparison 
between the SCF and the PG for the same Rayleigh number showed two major differences. 
The first, related to the PE, is the absence of heat transfer on the top wall for the PG until the 
beginning of convection; while for the SCF, the time evolutions of the mean Nusselt numbers 
on both isothermal walls are similar. The second, related to the stratification of the SCF and 
thus only encountered for T ~ Ta, is the diffusion-dominated thermal balance of the cavity 
for the SCF, while it is convection-dominated for PG. 
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on both isothermal walls are similar. The second, related to the stratification of the SCF and 
thus only encountered for T ~ Ta, is the diffusion-dominated thermal balance of the cavity 
for the SCF, while it is convection-dominated for PG. 
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1. Introduction 
Heat transfer is frequently dominated by Thermal Radiation (TR) in many scientific and 
engineering applications, especially at high temperature (Howell et al., 2010). Usually, three 
main fundamental approaches are supplemented to investigate TR problem, including 
analytical, experimental and numerical methods (Modest, 2003), however, among those TR 
problems, only quite a few of them can be analytically or experimentally solved. Recently, 
because of a rapid growth of computer and information techniques, numerical 
approximation has been eventually become the major simulating tool towards TR problems. 
The general equation to describe TR transport is the Radiative Transfer Equation (RTE), and 
several computational algorithms were proposed for solution of the RTE, which have 
achieved great advancement (Howell et al., 2010; Modest, 2003; Shih et al., 2010). 

The Finite Volume Method (FVM) has validated to be an efficient algorithm with satisfactory 
precision (Raithby & Chui, 1990), which has been applied to various problems. Besides, much 
innovation to improve its performance is also proposed. FTn method is used to predict TR 
characteristics for a 3D complex industrial boiler with non-gray media (Borjini et al., 2007). 
FVM is applied with Lattice Boltzmann method in a transient 2D coupled conduction-
radiation problem by an inverse analysis (Das et al., 2008). Combined mixed convection-
radiation heat transfer is dealt with by a FVM (Farzad & Shahini, 2009). Transient radiative 
heating characteristics of slabs in a walking beam type reheating furnace is predicted by FVM 
(Han et al., 2009). A complex axisymmetric enclosure with participating medium is 
investigated by using FVM with an implementation of the unstructured polygonal meshes 
(Kim et al., 2010). A particular procedure as a first-order skew, positive coefficient, upwind 
scheme was presented (Daniel & Fatmir, 2011), which is incorporated in FVM.  

Essentially, FVM can be categorized as a numerical method applied to investigate radiative 
heat transfer problems. Because algebraic equations for the FVM are determined through 
discretization of the RTE over user-selected control volumes and specific control solid 
angles, it will inevitably encounter various errors, which is an important and integral part in 
connection with the solution procedures. The most common discretization errors occurring 
in the FVM are called the ray effect and the false scattering, which were initially identified 
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connection with the solution procedures. The most common discretization errors occurring 
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by Chai et al. (Chai et al., 1993). Only the error caused by spatial discretization is discussed 
in this paper, and it is also referred to as numerical scattering or numerical smearing (Zhang 
& Tan, 2009), which is analogous to false diffusion in the context of computational fluid 
dynamics caused by discretization of spatial coordinates (Patankar, 1980). It has been shown 
that many factors can cause false scattering (Tan et al., 2004) influencing solution accuracy, 
including grid quality (Kallinderis & Kontzialis, 2009), spatial discretization schemes 
(Coelho, 2008), radiative properties and volumetric heat sources (Kamel et al., 2006). 
However, there are few effective routines for evaluating the spatial discretization error, and 
it is necessary to formulate an innovative framework to explore parameters or define 
indicator to analyze its uncertainty and accuracy.  

The concept and theory of entropy, based on the second law of thermodynamics, has been 
an innovative and effective approach to study computational errors within the fields of fluid 
flow and heat transfer (Naterer & Camberos, 2003). The entropy production is used to 
predict numerical errors for viscous compressible flow (Camberos, 2000). The concept of 
information entropy (Cover & Thomas, 2003) has been shown to be an appropriate method 
and has been widely applied to error analysis for Euler’s equations and the stability of 
numerical solution (Camberos, 2007). Although some work has been done based on 
radiation entropy generation (Caldas & Semiao, 2005; Liu & Chu, 2007), much work has 
been focused on error analysis in computational fluid dynamics, heat conduction and heat 
convection, instead of error analysis for TR. In the previous work, an entropy formula based 
on information theory is proposed to investigate uncertainty in FVM towards artificial 
benchmarks (Zhang et al. 2011), which show its adaptability in field of TR.  

In this chapter, an artificial benchmark model of central laser incidence on a two-
dimensional (2D) rectangle containing a semi-transparent medium is used as a framework 
to investigate the numerical scattering, using reference data from the Monte Carlo method 
(MCM), which has been proven to generate no false scattering (Tan et al., 2004). Based on 
the local entropy generation approach (Herwig & Kock, 2004) derived from the second law 
of thermodynamics, which is considered a very effective method to analyze the process of 
energy transfer, a discretization error indicator is defined. Within the framework of the 
current model, grid independence is first validated. The effects of the spatial differential 
scheme, the spatial grid number and the absorption coefficient deviation of the medium on 
numerical scattering in the FVM are presented.  

2. Mathematical model and artificial benchmark 
In an emitting, absorption and scattering medium, the RTE can be written as: 
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When FVM is used to solve the RTE, hemispherical space of 4π steradians is divided to a 
solid angular grid, i.e., a limited number of directions. Along a specific angular direction 

l , a relationship is necessary to correlate the radiative intensities at the face of the control 
volume to the intensity at the centre of control volume. This yields a spatial differential 
scheme, which in general can be represented as: 

 
l l

pI f I 
    (3) 

where fα denotes different values for fx , fy and fz corresponding different types of differential 
schemes, and Iβ means radiative intensities at different interfaces of a control volume, 
including Ie, Iw, In, Is, It and Ib. 

Frequently, the following three kinds of differencing schemes are selected, namely, the step 
scheme with fα = 1.0, the diamond scheme with fα = 0.5 and the exponential scheme with: 
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where τ is the optical thickness.  

2.1 Numerical scattering 

It is generally considered that numerical scattering is a multi-dimensional problem caused 
by spatial coordinates discretization. When the first term of the truncation error is the 
second-order space derivative, its error is dissipative. The derivative term of radiative 
intensity is used as the first-order difference scheme in the solution of RTE and truncation 
error is the second-order space derivative. As a result, numerical scattering is caused. Its 
premise is that: intensity at certain grids is related to other grids by space deferential 
schemes, and these grids are not in the transfer direction. In a multi-dimensional problem, if 
a derivative is substituted by first-order difference, if the profile of radiative intensity is 
assumed by spatial differencing schemes and if the direction of transfer is intersected with 
grid and non-negative intensity gratitude exists in the direction perpendicular with 
transportation direction, numerical scattering is still generated (Tan et al., 2004).  

Because numerical scattering is a multi-dimensional problem, a 2D case is taken into 
account in the current study, without considering the scattering in the medium. 

The accurate solution for the spectral radiative intensity in a specific angular direction l  of 
the FVM is denoted by (s)

l
I , and the symbol  s, lL I 

  is defined as an operator for the 
differential process of (s)
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 , where vector s  denotes the spatial 
coordinates of the point, as shown in Eq. (5): 
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In Eq. (6),  
l

s sL I 
 
  
   denotes the step scheme for a 2D differential equation. In this way, 

the cut-off for the discrete differential equations denotes the difference between the 
difference operators and the corresponding differential operators, which can be expressed 
using TE, i.e. 
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Eq. (7) can be deduced using the Taylor expansion of the difference equation. For the case 
above, the Taylor expansions of (s)

l
I  and (s+ds)

l
I   in the space position  ,s s i j

   can be 
substituted into the difference equation and reorganized, and we then obtain the correlation 
function shown in Eq. (8): 
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For a 2D problem, if the derivative is substituted for a first-order difference, if the radiative 
intensity profile is assumed by the space differential schemes, and if the transfer direction 
intersects with the grid and a non-negative radiative intensity gradient exists in the direction 
perpendicular to the transportation direction, numerical scattering is still generated. 

Generally, a relationship should be derived to correlate the radiative intensities in the face of 
the control volume and the intensities at the centre of the control volume, which constitute a 
kind of spatial differential scheme. In view of this, the numerical scattering is also related to 
the spatial differential factor, which is shown in Eq. (9): 
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In a multi-dimensional problem, the numerical scattering acts in a similar manner to the 
way it acted in one dimension. 

Also, the fact that the spatial discretization error can be reduced only by increasing the grid 
numbers is not a simple problem. From Eq. (5) to Eq. (9), the radiative intensity I varies with 
the wavelength λ, based on the assumption of spectral band consistency, which affects the 
radiative property, i.e.,   . Therefore, errors caused by the radiative property are also 
included in the numerical scattering within the scope. For the approximation complexity of 
the spectral absorption coefficient, a ratio Χ is applied to denote its deviation, which is 
shown in Eq. (10): 

 *
       (10) 

To summarize, the factors that affect TE can be implemented in a correlation, which is 
shown in Eq. (11), which can be similarly extended to a three-dimensional problem. 
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For brevity, the detailed explanation of the reason towards its generation can be referred in 
the previous works (Zhang & Tan, 2009; Tan et al., 2004; Zhang et al. 2011).  

2.2 Artificial benchmark model 

Consider a 2D rectangle containing an absorbing-emitting grey medium without scattering; 
its refractive index is uniform, and is equal to that of the surroundings. In real cases, the 
medium may be gaseous, solid or liquid; however, in the current work, a generalized 
version of the participating medium is used.  

 
Fig. 1. Artificial benchmark model for central laser incidence to a two-dimensional rectangle 

The four interfaces of the medium are all diffusely reflective, opaque and grey. Its east and 
west interfaces are coated with a sheet of thin film, individually. At certain wavelength, the 
west interface shows to be a semitransparent and specularly reflective surface. While, at 
other wavelengths, it is shown to be a diffusely reflective, opaque and grey surface. The thin 
film in its east interface is opaque, which is a diffusely reflective surface, except for the 
wavelength 10.6 μm. A laser beam of wavelength 10.6 μm is projected to the centre the west 
interface (the shadowed area), which is shown in Figure 1.  

Detailed information on the current model selected can be referred in the previous works [12].  

2.3 Discretization error indicator by local entropy generation rate 
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In Eq. (6),  
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   denotes the step scheme for a 2D differential equation. In this way, 

the cut-off for the discrete differential equations denotes the difference between the 
difference operators and the corresponding differential operators, which can be expressed 
using TE, i.e. 
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Eq. (7) can be deduced using the Taylor expansion of the difference equation. For the case 
above, the Taylor expansions of (s)

l
I  and (s+ds)

l
I   in the space position  ,s s i j

   can be 
substituted into the difference equation and reorganized, and we then obtain the correlation 
function shown in Eq. (8): 

  2 2
,

,
l

ls s
TE O x y S S



      
 

  (8) 

For a 2D problem, if the derivative is substituted for a first-order difference, if the radiative 
intensity profile is assumed by the space differential schemes, and if the transfer direction 
intersects with the grid and a non-negative radiative intensity gradient exists in the direction 
perpendicular to the transportation direction, numerical scattering is still generated. 

Generally, a relationship should be derived to correlate the radiative intensities in the face of 
the control volume and the intensities at the centre of the control volume, which constitute a 
kind of spatial differential scheme. In view of this, the numerical scattering is also related to 
the spatial differential factor, which is shown in Eq. (9): 
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In a multi-dimensional problem, the numerical scattering acts in a similar manner to the 
way it acted in one dimension. 

Also, the fact that the spatial discretization error can be reduced only by increasing the grid 
numbers is not a simple problem. From Eq. (5) to Eq. (9), the radiative intensity I varies with 
the wavelength λ, based on the assumption of spectral band consistency, which affects the 
radiative property, i.e.,   . Therefore, errors caused by the radiative property are also 
included in the numerical scattering within the scope. For the approximation complexity of 
the spectral absorption coefficient, a ratio Χ is applied to denote its deviation, which is 
shown in Eq. (10): 

 *
       (10) 

To summarize, the factors that affect TE can be implemented in a correlation, which is 
shown in Eq. (11), which can be similarly extended to a three-dimensional problem. 
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For brevity, the detailed explanation of the reason towards its generation can be referred in 
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According to the expression of the local radiative entropy generation rate in a participating 
medium (Caldas & Semiao, 2005; Liu & Chu, 2007), an error indicator can be defined as:  
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Since there is no scattering in the medium, and the refractive index is uniform, there is no 
refraction of the laser beam. Laser is projected from the normal direction of the west 
interface and when it arrives at the east interface, it is then specularly reflected to the inverse 
direction without angle variation. In other words, there is no scattering in the process of 
laser propagation through the semi-transparent in view of actual physical process; within 
finite time, temperature will increase only in the region where laser irradiated. When this 
process is simulated by numerical method and if scattering phenomenon happens, i.e., the 
entropy generation increasing in non-central region where the region is not irradiated by 
laser, numerical scattering is deemed to appear, and vise versa.  

In addition, to obtain local entropy generation rate, the RTE is first solved by FVM, then it can 
be derived. The radiative heat transfer process in the artificial model above and the detailed 
derivation of the governing equation can be found in the reference (Zhang & Tan, 2009). 

3. Simulation result and analysis 
Radiative properties and computing parameters are: geometry of the computing domain 

0.25mx yL L  ; refractive index of medium 1n  , spectral absorption coefficient 
11 ma  , spectral scattering coefficient 0s  , and therefore, optical thickness along x 

and y coordinates are 0.25x y   . Emissaries of the four interfaces ,k e , ,k w , ,k s  and 
,k n  are uniformly specified as 0.8 and reflectivity of the four interfaces ,k e , ,k w , ,k s  

and ,k s  are uniformly specified as 0.2；when 10.6 m  , , 0k w   and , 0.8k w  . 
Surrounding temperatures Te, Tw, Ts and Tn are uniformly specified as 1000 K; initial 
temperature of the rectangle medium is set as T0 = 1000 K. Moreover, the incident 
wavelength of the laser is set as la 10.6 m  , and the power flux density of the incident 
laser is specified as qla = 2 MW. Also, the thermal conductivity of this medium is specified to 
be extremely small to ensure that thermal radiation is the dominant heat transfer method. 

3.1 Verification of computation code 

To validate reliability and compare result of the algorithm, the following expression for 
temperature increment is defined as: 

     0, , , ,i j or m n i j or m nT T T     (14) 

An error indicator EILa,T is defined as the following, which is the maximum temperature 
increment where node is without laser incidence region to minimum temperature increment 
where node is within laser incidence region, i.e., 
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Based on local entropy generation rate expression, as in shown Eq. (8), an error indicator 
EILa,Sgen can be accordingly defined as: 
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Both EILa,T and EILa,Sgen are used to evaluate numerical scattering for different situations. Since 
EILa,Sgen is an absolute value for every control volume, it supplies the information of energy 
dissipation of the solution process, i.e., numerical dissipation, not a physically real process.  

Although statistical error exists in MCM, the numerical scattering does not exist in the 
MCM, and its results can be used as benchmark solution to test accuracy. In MCM, the most 
important factor which affects its simulation accuracy is the random bundle number NM, 
and sensitivity of MCM with different random bundle numbers is tested, the result is shown 
in Tab.1, in which spatial grid number is set to 10 10NX NY   .  

NM EILa,T (％) EILa,Sgen (％)
102 2.13 0.11
103 1.78 0.08
104 0.17 0.01
105 0.16 0.0
106 0.14 0.0

Table 1. Sensitivity of MCM with different random bundle numbers 

From Tab.1, it can be seen that when NM is larger than 104, the results of MCM is stable and 
less accurate, so in the following calculation, NM = 106 is used in all simulations. Because 
numerical scattering does not exist in the MCM, the results of MCM can be used as a 
benchmark solution to test FVM accuracy. Furthermore, the advantage of EILa,Sgen over EILa,T 

is that, as error indicators, the value of EILa,T is affected by statistical error in MCM. 
Meanwhile, the value of EILa,Sgen is independent from the statistical error in MCM. 
Therefore, it is shown to be a better error indicator in the current framework.  

The next step is to validate the effect of solid angle discretization in FVM with several 
angular schemes presented, and the results are shown in Tab.2, in which spatial grid 
number is specified as 10 10NX NY   .  

In Tab.2, it can be seen that, when 16 20N N    , both results of EILa,T and EILa,Sgen is 
shown to be stable, and it denotes that the results of error indicator is independent from 
numbers of solid angle discretization grids. Therefore, in the following calculation, solid 
angle discretization number is set to =24 36N N   , which is also used in all the 
following simulations. 

Finally, it is necessary to test the grid independence of spatial discretization number in FVM 
to show the uncertainty of two categories of error indicator free from spatial grid numbers. 
The step scheme for FVM is used, and the results are shown in Tab. 3. 
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Since there is no scattering in the medium, and the refractive index is uniform, there is no 
refraction of the laser beam. Laser is projected from the normal direction of the west 
interface and when it arrives at the east interface, it is then specularly reflected to the inverse 
direction without angle variation. In other words, there is no scattering in the process of 
laser propagation through the semi-transparent in view of actual physical process; within 
finite time, temperature will increase only in the region where laser irradiated. When this 
process is simulated by numerical method and if scattering phenomenon happens, i.e., the 
entropy generation increasing in non-central region where the region is not irradiated by 
laser, numerical scattering is deemed to appear, and vise versa.  

In addition, to obtain local entropy generation rate, the RTE is first solved by FVM, then it can 
be derived. The radiative heat transfer process in the artificial model above and the detailed 
derivation of the governing equation can be found in the reference (Zhang & Tan, 2009). 

3. Simulation result and analysis 
Radiative properties and computing parameters are: geometry of the computing domain 

0.25mx yL L  ; refractive index of medium 1n  , spectral absorption coefficient 
11 ma  , spectral scattering coefficient 0s  , and therefore, optical thickness along x 

and y coordinates are 0.25x y   . Emissaries of the four interfaces ,k e , ,k w , ,k s  and 
,k n  are uniformly specified as 0.8 and reflectivity of the four interfaces ,k e , ,k w , ,k s  

and ,k s  are uniformly specified as 0.2；when 10.6 m  , , 0k w   and , 0.8k w  . 
Surrounding temperatures Te, Tw, Ts and Tn are uniformly specified as 1000 K; initial 
temperature of the rectangle medium is set as T0 = 1000 K. Moreover, the incident 
wavelength of the laser is set as la 10.6 m  , and the power flux density of the incident 
laser is specified as qla = 2 MW. Also, the thermal conductivity of this medium is specified to 
be extremely small to ensure that thermal radiation is the dominant heat transfer method. 

3.1 Verification of computation code 

To validate reliability and compare result of the algorithm, the following expression for 
temperature increment is defined as: 

     0, , , ,i j or m n i j or m nT T T     (14) 

An error indicator EILa,T is defined as the following, which is the maximum temperature 
increment where node is without laser incidence region to minimum temperature increment 
where node is within laser incidence region, i.e., 
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Based on local entropy generation rate expression, as in shown Eq. (8), an error indicator 
EILa,Sgen can be accordingly defined as: 

 La, Sgen
max[ ( , )] [( , ) Laser Incidence]

min[ ( , )][( , ) Laser Incidence]
gen

gen

S i j i j
EI

S m n m n
 


 


  (16) 

Both EILa,T and EILa,Sgen are used to evaluate numerical scattering for different situations. Since 
EILa,Sgen is an absolute value for every control volume, it supplies the information of energy 
dissipation of the solution process, i.e., numerical dissipation, not a physically real process.  

Although statistical error exists in MCM, the numerical scattering does not exist in the 
MCM, and its results can be used as benchmark solution to test accuracy. In MCM, the most 
important factor which affects its simulation accuracy is the random bundle number NM, 
and sensitivity of MCM with different random bundle numbers is tested, the result is shown 
in Tab.1, in which spatial grid number is set to 10 10NX NY   .  

NM EILa,T (％) EILa,Sgen (％)
102 2.13 0.11
103 1.78 0.08
104 0.17 0.01
105 0.16 0.0
106 0.14 0.0

Table 1. Sensitivity of MCM with different random bundle numbers 

From Tab.1, it can be seen that when NM is larger than 104, the results of MCM is stable and 
less accurate, so in the following calculation, NM = 106 is used in all simulations. Because 
numerical scattering does not exist in the MCM, the results of MCM can be used as a 
benchmark solution to test FVM accuracy. Furthermore, the advantage of EILa,Sgen over EILa,T 

is that, as error indicators, the value of EILa,T is affected by statistical error in MCM. 
Meanwhile, the value of EILa,Sgen is independent from the statistical error in MCM. 
Therefore, it is shown to be a better error indicator in the current framework.  

The next step is to validate the effect of solid angle discretization in FVM with several 
angular schemes presented, and the results are shown in Tab.2, in which spatial grid 
number is specified as 10 10NX NY   .  

In Tab.2, it can be seen that, when 16 20N N    , both results of EILa,T and EILa,Sgen is 
shown to be stable, and it denotes that the results of error indicator is independent from 
numbers of solid angle discretization grids. Therefore, in the following calculation, solid 
angle discretization number is set to =24 36N N   , which is also used in all the 
following simulations. 

Finally, it is necessary to test the grid independence of spatial discretization number in FVM 
to show the uncertainty of two categories of error indicator free from spatial grid numbers. 
The step scheme for FVM is used, and the results are shown in Tab. 3. 
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N N   EILa,T (％) EILa,Sgen (％) 
4 8  23.54 15.69 

10 12  8.96 7.94 
12 16  6.24 5.27 
16 20  5.72 2.73 
20 28  5.17 2.75 
24 36  5.18 2.76 

Table 2. Independence of solid angle discretization number’s test 

NX NY  EILa,T (％) EILa,Sgen (％) 
5 5  5.19 2.79 

10 10  5.18 2.76 
20 20  5.14 2.75 

Table 3. Independence of spatial discretization numbers for FVM (step scheme) 

In Tab.3, it can be seen that, when 5 5NX NY   , both results of EILa,T and EILa,Sgen is 
shown to be stable, which denotes that the results of error indicator is independent from 
numbers of spatial grids. 

3.2 Numerical scattering simulation and error indicator distribution 

For the case shown in Fig.1, to make the effect of numerical scattering more clear, the 
contours of temperature profile computed by MCM, FVM by step scheme (FVM1), FVM by 
diamond scheme (FVM2) and FVM by exponential scheme (FVM3) are shown in Fig.2-Fig.4.  
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Fig. 3. Temperature contour by FVM1 with grid number 20 20NX NY    
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Fig. 4. Temperature contour by FVM2 with grid number 20 20NX NY    

In those cases, grid number 20 20NX NY    is adopted, in which grid number of unit 
optical thickness is 80  .  

The temperature distribution of each scheme in the region of laser incidence is shown in Fig.6.  
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In those cases, grid number 20 20NX NY    is adopted, in which grid number of unit 
optical thickness is 80  .  

The temperature distribution of each scheme in the region of laser incidence is shown in Fig.6.  
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It can be seen that: among them, the accuracy of the diamond scheme is the highest, and the 
exponential scheme is a bit lower, the lowest accuracy of the three schemes is the step 
scheme. 

EILa,T for central laser incidence by MCM and FVM with different spatial differential 
schemes and different gird numbers is tabulated in Tab.4 .  

 FVM1 (%) FVM2 (%) FVM3 (%) MCM(%) 
La,T5 5NX NY Er    5.19 9.76 5.82 0.15 

La,T10 10NX NY Er   5.18 11.21 8.09 0.06 

La,T20 20NX NY Er   5.14 8.75 5.67 0.00 

Table 4. EILa,T for central laser incidence by MCM and FVM with different spatial differential 
schemes and different gird numbers 

EILa,Sgen for central laser incidence by MCM and FVM with different spatial differential 
schemes and different gird numbers is tabulated in Tab.5. 

 FVM1 (%) FVM2 (%) FVM3 (%) MCM(%) 
La,Sgen5 5NX NY Er    2.79 5.25 3.08 0.00 

La,Sgen10 10NX NY Er  

 
2.76 5.24 3.07 0.00 

La,Sgen20 20NX NY Er  

 
2.75 5.22 3.05 0.00 

Table 5. EILa,Sgen for central laser incidence by MCM and FVM with different spatial 
differential schemes and different gird numbers 

It is also interesting to see the distribution of numerical scattering. Choosing the x-axis 
position where the maximum temperature increment without laser incidence happens, in 
different height, the distribution of numerical scattering of different spatial differential 
schemes with grid numbers is shown in Fig. 7.  

From the Fig. 7, it is shown that, if we set the direction of laser incidence as central axis, it 
can be seen that numerical scattering distributed symmetry along the axis, which can be 
called as symmetrical cross-scattering. All of the three schemes show symmetrical cross-
scattering. 

It can be seen from the above tables and figures that, for grid number, when its number is 
increasing, numerical scattering will be reduced. This is the same tendency as in all other 
fields. However, on one aspect, the accuracy of FVM will also be affected by the spatial 
differential scheme and among them, the diamond scheme has the highest, and exponential 
scheme has less accuracy, while step scheme has the least accuracy of the three schemes. On 
the other aspect, the degree of numerical scattering is reverse, i.e., the step scheme produces 
minimum numerical scattering, and exponential scheme produces more, while the diamond 
scheme produces maximum among three methods. 
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increasing, numerical scattering will be reduced. This is the same tendency as in all other 
fields. However, on one aspect, the accuracy of FVM will also be affected by the spatial 
differential scheme and among them, the diamond scheme has the highest, and exponential 
scheme has less accuracy, while step scheme has the least accuracy of the three schemes. On 
the other aspect, the degree of numerical scattering is reverse, i.e., the step scheme produces 
minimum numerical scattering, and exponential scheme produces more, while the diamond 
scheme produces maximum among three methods. 
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Fig. 7. Distribution of numerical scattering of FVM with different spatial differential 
schemes, x=0.1063, 20 20NX NY    

3.3 Effect of absorption coefficients deviation 

The purpose to discuss numerical scattering is to examine how to constitute better 
differential scheme of the intensity to obtain solution with good accuracy without less 
oscillation. For this reason, the hypothesis of uniform property is also included in the false 
scattering. By considering the individual absorption coefficients *

   of 0.1, 1.0, 2.0 and 10.0, 
and the corresponding optical thicknesses τ = 0.025, 0.25, 0.5, and 2.5 individually. The 
numerical test results towards EILa,T and EILa,Sgen of grid numbers 5 5NX NY    and 

20 20NX NY    for the MCMs and FVM1s are shown in Tab. 6 and Tab. 7.  

NX NY    La, T /MCMEr (%) La, T /FVM1Er (%) 

5 5  

0.1 0.0 0.50 
1.0 0.15 5.17 
2.0 0.58 10.73 
10.0 23.37 65.56 

10 10  

0.1 0.0 0.35 
1.0 0.11 4.41 
2.0 0.49 9.51 
10.0 41.38 67.33 

Table 6. EILa,T for MCM and FVM of different absorption coefficients in central laser 
incidence 
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NX NY    La, Sgen /MCMEr (%) La, Sgen /FVM1Er (%) 

5 5  

0.1 0.0 0.02 
1.0 0.05 0.03 
2.0 0.26 9.63 
10.0 12.37 40.34 

10 10  

0.1 0.0 0.04 
1.0 0.03 0.12 
2.0 0.19 12.51 
10.0 9.27 59.52 

Table 7. EILa,Sgen for MCM and FVM of different absorption coefficients in central laser 
incidence 

It can be seen that when the absorption coefficient deviation is high, the numerical scattering 
cannot be eliminated, even with higher grid numbers.  

4. Conclusion 
Based on the theory of local entropy generation rate used in fluid flow and heat transfer, an 
error indicator is defined to evaluate and compare discretization errors caused by different 
factors in FVM for solving the RTE, which is proven to be an effective approach. In addition, 
since the discretization error is a quality generated in the solution process, while the theory 
of local entropy generation is focused on process evaluation, therefore, it is shown to be 
better, comparing with the former error indicator defined by temperature increasing. 

An artificial benchmark model of central laser incidence on a 2D rectangle containing a 
semi-transparent medium is proposed to investigate the numerical scattering in the FVM, 
along with the use of reference data from the MCM, which has been proven to generate no 
false scattering. Meanwhile, the value of new error indicator is independent from the 
statistical error in MCM. 

Within the framework of the current model, it is shown that numerical scattering for the 
FVM is affected by the spatial grid numbers and is also affected by the different spatial 
discretization schemes to a large degree, with the diamond scheme being best, then the 
exponential scheme and finally the step scheme, in ranked order. Numerical scattering also 
varies with the amount of absorption coefficient deviation. When the absorption deviation is 
large, the numerical scattering cannot be eliminated solely by increasing the grid number. 
Also, numerical scattering is distributed symmetrically along the laser incidence direction, 
and all of the schemes show symmetrical cross-scattering.  
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6. Nomenclature 
f  = spatial differencing factor [-] 

H = information entropy indicator [bit] 

I  = spectral radiative intensity  2W m -sr- m 
   

bI   = blackbody spectral radiative intensity,  2W m -sr- m 
   

i, j = index of nodal point in the region without laser incidence [-] 
NX  = spatial discretization grid number along x axis [-] 
NY  = spatial discretization grid number along y axis [-] 
N  = angular discretization grid number along θ direction [-] 
N  = angular discretization grid number along φ direction [-] 

bn  = normal vector of the boundary [-] 
p  = probability of temperature increasing due to numerical scattering [-] 
s  = spatial position vector [m] 
T = temperature [K] 

Greek 

  = transmittance [-] 
  = emissivity [-] 

a  = spectral absorption coefficient of medium [m-1] 

s  = spectral scattering coefficient of medium [m-1] 
  = wavelength [ m ] 
  = optical thickness [-] 
  = scattering-phase function [-] 
Ω


 = solid angle ordinate direction [-] 
Ω


 = solid angle ordinate for scattering direction [-] 

Subscripts 

b = bottom boundary of control volume p 
e = east boundary of control volume p 
i, j = index of nodal point in the region without laser incidence 
n = north boundary of control volume p 
p = control volume p 
s = south boundary of control volume p 
t = top boundary of control volume p 
w = west boundary of control volume p 
x, y, z = coordinates directions 
  = spectrum (wavelength) 
0 = initial value 

Superscripts 
l  = a certain selected angular direction 
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1. Introduction  
This chapter deals with two-phase flows, i.e. systems of different fluid phases such as gas 
and liquid. A typical example of a two-phase flow is a motion of a particle (bubble or 
droplet) in a stagnant fluid (liquid or gas). In many branches of engineering it is important 
to be able to describe the motion of gas bubbles in a liquid (Krishna & Baten, 1999). In 
multiphase flow, the simultaneous flow strongly depends on the gravity force. However, in 
zero gravity conditions, buoyancy effects are negligible and as an alternative, three different 
methods were found to make the bubbles or drops move in zero gravity. They are 
electrocapillary, solutalcapillary and thermocapillary motion. 

When a temperature gradient exists on the interface, the surface tension varies along the 
interface, resulting in bulk fluid motion, called thermocapillary (Marangoni) flow. In normal 
gravity this thermocapillary flow tends to be weighed down by buoyancy driven flow. 
However, for small geometry and/or zero gravity environments, this is not the case and 
thermocapillary is dominant and it could become an important driving force.  

Bubbles suspended in a fluid with a temperature gradient will move toward the hot region 
due to thermocapillary forces. Surface tension generally decreases with increasing 
temperature and the non-uniform surface tension at the fluid interface leads to shear 
stresses that act on the outer fluid by viscous forces, thus inducing a motion of the fluid 
particle (a bubble or a drop) in the direction of the thermal gradient. In space, where 
buoyancy forces are negligible, thermocapillary forces can be dominant and can lead to both 
desirable and undesirable motion of fluid particles.  

Particle dynamics has become a very important study area for fundamental research and 
applications in a zero gravity environment, such as space material science, chemical 
engineering, space-based containerless processing of materials e.g., glass is believed to have 
the potential of producing very pure materials, (Uhlmann, 1982), and thermocapillary 
migration may provide mechanisms to remove bubbles from the melt. Control of vapor 
bubbles forming in both the fuel systems of liquid-rockets (Ostrach, 1982) and the cooling 
system of space habitats may be achievable using thermocapillary migration. 
Thermocapillary migration may also lead to accumulation of gas bubbles on the hot surface 
of heat exchangers and reducing their efficiency. Ostrach (1982) studied various types of 
fluid flows that could occur under low-gravity conditions and pointed out that Marangoni 
convection is one of the important flows. In practical applications, it is frequently necessary 
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particle (a bubble or a drop) in the direction of the thermal gradient. In space, where 
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to deal with a large number of bubbles or drops and their collective behavior may differ 
from what one might expect based on results for a single particle. 

1.1 The need for CFD in zero gravity investigation 

An understanding of the behaviour of two phase fluids flow in zero gravity conditions is 
important for designing useful experiments for the space shuttle and the international space 
station. In addition, such understanding is important for the future design of thermo-fluid 
systems and machinery that might be employed in comparable environments. However, it is 
quite expensive and time-consuming to design and fabricate a space experiment and very 
little is known of the microgravity behavior of fluids due to the relative difficulty of 
obtaining experimental data under such conditions.  

The available experimental results are usually supposed to be the major source of 
information on the behaviour of the physical process of two phase flow at zero gravity. 
However, because of the difficulties in obtaining experimental results, the numerical 
methods modelling turns out to be the ideal tool allowing to investigate the behaviour of 
two phase flow and capture the flow physics in plenty of time and of course less cost. The 
available literature of the zero gravity particle behavior is limited to low Re and Ma because 
of the difficulties in obtaining experimental results in microgravity (Kang et. al., 2008), and 
computer simulation can help understand the basic fluid physics, as well as help design the 
experiments or systems for the microgravity condition. Experiments under normal and 
microgravity conditions are too costly as well as being complicated, (Bozzano, 2009), and 
hence, numerical simulations become an important tool in research studies of two-phase 
flows under a microgravity environment. wolk et al, (2000) referred to the important of 
prediction of the flow pattern in a gas/liquid flow in two phase flow and especially 
concerning the particle dynamics in zero gravity and the need to predict accurately the 
existing flow patterns. A number of experiments have been conducted in drop towers, 
sounding rockets and aboard space shuttles; see the extensive review of (Subramanian et al., 
2002). These experiments have noted complicated transients and time-dependent behavior in 
regimes where the flow has finite viscous and thermal inertia (Treuner et al., 1996; Hadland et 
al., 1999; Wozniak et al., 2001). Those experimental studies noted that there are no theoretical 
or numerical results with which to compare their experiments. It is also uneasy to get complete 
information about the behavior of bubble in space and a CFD study has been undertaken by 
many researchers to compare and analyse their experimental results, (Treuner et al., 1996). The 
shape and the area of the varying interface are very complex and a simulation study is 
required, (Subramanian et al., 2009). Two phase flow experiments generally require 
continuous observation of moving fluid during a test, which makes the experiment 
complicated. It is also a challenge for space researchers to design a space experiment to 
accommodate most of their objectives. For the above reasons and more it is necessary to carry 
out appropriate numerical simulations for the behavior of bubble/drop in microgravity and 
numerical simulation can help understand the basic fluid physics, as well as assist design the 
experiments or systems for the zero gravity environment. 

In this chapter, we are specifically targeting the use of computation in order to simulate 
thermocapillary (Marangoni) fluid flow in a zero gravity condition to better understand the 
physical processes behind many of the observed physical phenomena of zero gravity 
environments. It also allows sensitivity and feasible studies to be carried out for different 
parameters and design.  
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1.2 Description of the chapter and objectives 

In this chapter we will use the ANSYS-Fluent (Release13.0, 2011) code to analyze and design 
bubble flow system in a zero gravity environment and investigate sensitivity studies to 
various parameters.  

The literature review of this chapter examines the challenges facing fluid experiments 
aboard orbiting spacecraft. This illustrates the importance of the CFD simulations and 
examines the effect of several external and internal forces on the bubble flow in zero gravity. 
The finite volume method (FVM) with a fixed non uniform spatial grid was used to 
computationally model 2-D axis-symmetric and 3-D domains. The model's solution 
algorithms, boundary conditions, source terms, and fluid properties used in the simulation 
are described in details in this chapter with sample calculation. 

This chapter provides an interesting opportunity to test the capability of finite volume 
method (FVM) simulation and the Volume of fluid (VOF) method to accurately represent 
thermocapillary flow of single and multi bubbles. In addition, several published articles 
concerning the use of the Volume of Fluid (VOF) method in bubble/drops simulation are 
reviewed. Lastly, the simulation was able to examine scenarios not covered experimentally 
in order to verify the theoretical prediction of the effect of temperature different, column-
particle aspect ratio, and effect of rotational on the coalescence of multi bubbles under the 
effect of both fluid rotation and surface tension. Though a huge amount of publications 
(textbooks, conference proceedings and journal articles) concern two-phase, publications on 
two phase flow in microgravity is a very little studied field and information about bubble 
behavior in a rotating column in particular is not so complete comparing with other physical 
phenomena in normal gravity. These are the main reasons for carrying out simulation 
research in microgravity. 

2. Fluid dynamics 
In order to study two-phase fluids in microgravity we should understand concepts and 
notions of fluid dynamics used in later sections and to remind the reader of some 
fundamental dimensionless quantities which will be frequently encountered. 

2.1 Compressible and incompressible fluid 

Fluids are compressible if changes in pressure or temperature will result in changes in 
density. However, in many situations the changes in pressure and temperature are 
sufficiently small that the changes in density are negligible. In this case the flow can be 
modeled as an incompressible flow.  

2.2 Newtonian flow 

Sir Isaac Newton showed how stress and the rate of strain are related for many common 
fluids. The so-called Newtonian fluids are described by a coefficient called viscosity, which 
depends on the specific fluid.  

2.3 Viscosity  

Viscosity describes fluids resistance to flow and may be thought as a measure of fluid friction. 
In viscous problems fluid friction has significant effects on the fluid motion. Real fluids are 
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or numerical results with which to compare their experiments. It is also uneasy to get complete 
information about the behavior of bubble in space and a CFD study has been undertaken by 
many researchers to compare and analyse their experimental results, (Treuner et al., 1996). The 
shape and the area of the varying interface are very complex and a simulation study is 
required, (Subramanian et al., 2009). Two phase flow experiments generally require 
continuous observation of moving fluid during a test, which makes the experiment 
complicated. It is also a challenge for space researchers to design a space experiment to 
accommodate most of their objectives. For the above reasons and more it is necessary to carry 
out appropriate numerical simulations for the behavior of bubble/drop in microgravity and 
numerical simulation can help understand the basic fluid physics, as well as assist design the 
experiments or systems for the zero gravity environment. 

In this chapter, we are specifically targeting the use of computation in order to simulate 
thermocapillary (Marangoni) fluid flow in a zero gravity condition to better understand the 
physical processes behind many of the observed physical phenomena of zero gravity 
environments. It also allows sensitivity and feasible studies to be carried out for different 
parameters and design.  
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The literature review of this chapter examines the challenges facing fluid experiments 
aboard orbiting spacecraft. This illustrates the importance of the CFD simulations and 
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The finite volume method (FVM) with a fixed non uniform spatial grid was used to 
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are described in details in this chapter with sample calculation. 
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reviewed. Lastly, the simulation was able to examine scenarios not covered experimentally 
in order to verify the theoretical prediction of the effect of temperature different, column-
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behavior in a rotating column in particular is not so complete comparing with other physical 
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2. Fluid dynamics 
In order to study two-phase fluids in microgravity we should understand concepts and 
notions of fluid dynamics used in later sections and to remind the reader of some 
fundamental dimensionless quantities which will be frequently encountered. 

2.1 Compressible and incompressible fluid 

Fluids are compressible if changes in pressure or temperature will result in changes in 
density. However, in many situations the changes in pressure and temperature are 
sufficiently small that the changes in density are negligible. In this case the flow can be 
modeled as an incompressible flow.  

2.2 Newtonian flow 

Sir Isaac Newton showed how stress and the rate of strain are related for many common 
fluids. The so-called Newtonian fluids are described by a coefficient called viscosity, which 
depends on the specific fluid.  

2.3 Viscosity  

Viscosity describes fluids resistance to flow and may be thought as a measure of fluid friction. 
In viscous problems fluid friction has significant effects on the fluid motion. Real fluids are 
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fluids which have a resistance to shear stress. Fluids which do not have any resistance are 
called ideal fluid. Viscosity is divided in two types: dynamic (or absolute) and kinematic 
viscosity. Dynamic viscosity is the ratio between the pressure exerted on the surface of a fluid 
and the velocity gradient. The SI physical unit of dynamic viscosity is Pa.s. In many situations, 
we are concerned with the ratio of the viscous force to the inertial force, the latter characterized 
by the fluid density ρ. This ratio is characterized by the kinematic viscosity, defined as follows: 

 


  (1) 

Where ν is the kinematic viscosity in m²/s, ρ is the density and μ is the dynamic viscosity. 

2.4 Reynolds number  

The Reynolds number is a measure of the ratio of inertial to viscous forces and quantifies the 
importance of these two types of forces for given flow conditions. It is the most important 
dimensionless number in fluid dynamics and it is commonly used to provide a criterion for 
determining dynamic similitude. Reynolds number is defined as follows: 

 Re
ν

Vo R
  (2) 

Where R is the particle radius in m, Vo is the velocity in m/s.  

The velocity V�derived from the tangential stress balance at the free surface is used for 
scaling the migration velocity in Eq. (2) and (4): 

 

dσ dT
dt dxV0 μ
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Where, the constant 	����	(or σT) is the rate of change of interfacial tension and		���� , the 
temperature gradient imposed in the continuous phase fluid. 

2.5 Marangoni number 

In zero gravity a bubble or a drop in an immiscible fluid will move toward the warmer side 
when subjected to a temperature gradient. Such a phenomenon is known as Marangoni flow 
or the thermocapillary migration. Marangoni flow is induced by surface tension gradients 
asa result of temperature and/or concentration gradients. 

 0RVMa


  = Re.Pr (4) 

Here, α is the temperature diffusivity 

2.6 Prandtl number (Pr) 

Pr is the ratio of kinematic viscosity to thermal diffusivity. Very high Pr (Pr >> 1) fluids are 
usually very viscous, while highly thermally conducting fluids, usually liquid metals, have 
low Pr (Pr << 1). 
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In 1959, Young et al. (1959) first investigated the thermocapillary migration of bubbles and 
drops with their linear model, which is suitable for small Reynolds number (Re) and small 
Marangoni number (Ma). This model is now called the YGB model. The Reynolds number is 
the ratio of inertial forces to viscous forces. Small Re means that inertial effects are 
negligible. The Marangoni number is the ratio of convective transport of energy to heat 
conduction. Small Ma means that convective heat transfer is negligible compared to heat 
conduction. YGB model velocity VYGB (Young et al. 1959) is expressed as follows:  

 
2

(2 3 )(2 )
T

YGB
R T

V
k k

 
 




  
 (6) 

where R is the radius of the bubble; ΔT∞ is the temperature gradient; μ and μ΄ , k and k΄ are 
the dynamic viscosity, thermal conductivity of gas and continuous phase, respectively. 

2.7 Microgravity   

Gravity is a force that governs motion throughout the Universe. It holds us to the ground, 
keeps the Moon in orbit around the Earth, and the Earth in orbit around the Sun. The nature 
of gravity was first described more than 300 years ago. Gravity is the attraction between two 
masses. Bigger the mass, most apparent the attraction is. The acceleration of an object caused 
only by gravity, near the surface of the Earth, is called normal gravity, or 1g. The condition 
of microgravity comes about whenever an object is in "free fall": that is, it falls faster and 
faster, accelerating with exactly the acceleration due to gravity (1g). Objects in a state of free-
fall or orbit are said to be "weightless." 

3. Computational procedure 
3.1 VOF model 

The CFD software offer several models to incorporate multiphase flows; every model is 
developed for its own specific flow type. The governing continuum conservation equations for 
two phase flow were solved using the commercial software package (ANSYS, 2011), and the 
Volume of Fluid (VOF) method (Hirt et al. 1981) was used to track the liquid/gas interface.  

Volume of Fluid (VOF) model is designed for two or more immiscible fluids, where the 
position of the interface between the fluids is of interest (ANSYS, 2011). Applications of the 
VOF model include the prediction of jet break-up, the motion of large bubbles in a liquid, 
the motion of liquid after a dam break, or the steady or transient tracking of any liquid-gas 
interface and If the bubble is so large that it extends across several control volumes, the VOF 
formulation is appropriate to track its boundary. Most ANSYS-FLUENT models are 
available in combination with the VOF model. For example, the sliding-mesh model can be 
used to predict the shape of the surface of a liquid in a mixing tank. The deforming mesh 
capability is also compatible with the VOF model. The porous media model can be used to 
track the motion of the interface between two fluids through a packed bed or other porous 
region. The effects of surface tension may be included (for one specified phase only), and in 
combination with this model, you can specify the wall adhesion angle. Heat transfer from 
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fluids which have a resistance to shear stress. Fluids which do not have any resistance are 
called ideal fluid. Viscosity is divided in two types: dynamic (or absolute) and kinematic 
viscosity. Dynamic viscosity is the ratio between the pressure exerted on the surface of a fluid 
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where R is the radius of the bubble; ΔT∞ is the temperature gradient; μ and μ΄ , k and k΄ are 
the dynamic viscosity, thermal conductivity of gas and continuous phase, respectively. 

2.7 Microgravity   

Gravity is a force that governs motion throughout the Universe. It holds us to the ground, 
keeps the Moon in orbit around the Earth, and the Earth in orbit around the Sun. The nature 
of gravity was first described more than 300 years ago. Gravity is the attraction between two 
masses. Bigger the mass, most apparent the attraction is. The acceleration of an object caused 
only by gravity, near the surface of the Earth, is called normal gravity, or 1g. The condition 
of microgravity comes about whenever an object is in "free fall": that is, it falls faster and 
faster, accelerating with exactly the acceleration due to gravity (1g). Objects in a state of free-
fall or orbit are said to be "weightless." 

3. Computational procedure 
3.1 VOF model 

The CFD software offer several models to incorporate multiphase flows; every model is 
developed for its own specific flow type. The governing continuum conservation equations for 
two phase flow were solved using the commercial software package (ANSYS, 2011), and the 
Volume of Fluid (VOF) method (Hirt et al. 1981) was used to track the liquid/gas interface.  

Volume of Fluid (VOF) model is designed for two or more immiscible fluids, where the 
position of the interface between the fluids is of interest (ANSYS, 2011). Applications of the 
VOF model include the prediction of jet break-up, the motion of large bubbles in a liquid, 
the motion of liquid after a dam break, or the steady or transient tracking of any liquid-gas 
interface and If the bubble is so large that it extends across several control volumes, the VOF 
formulation is appropriate to track its boundary. Most ANSYS-FLUENT models are 
available in combination with the VOF model. For example, the sliding-mesh model can be 
used to predict the shape of the surface of a liquid in a mixing tank. The deforming mesh 
capability is also compatible with the VOF model. The porous media model can be used to 
track the motion of the interface between two fluids through a packed bed or other porous 
region. The effects of surface tension may be included (for one specified phase only), and in 
combination with this model, you can specify the wall adhesion angle. Heat transfer from 



 
Finite Volume Method – Powerful Means of Engineering Design 220 

walls to each of the phases can be modeled, as can heat transfer between phases. The basic 
idea of the volume of fluid (VOF) method is to consider a colour function, defined as the 
volume fraction of one of the fluids within each cell, to capture the interface. This function 
will be one if the cell is filled with the gas phase, zero if the cell is filled with the liquid 
phase, and between zero and one in the cells where there is an interface. The VOF method 
belongs to the so called “one” fluid method, where a single set of conservation equations is 
solved for the whole domain. The VOF method codes have been used extensively to 
calculate the hydrodynamics of bubbles rising in liquid by Kawaji et al.,( 1997). They noted a 
new result which was not observed experimentally when they compared the numerical 
simulation results from a two dimensional simulation of a Taylor bubble rising in a stagnant 
liquid filled tube to experimental analysis. The work of Tomiyama et al., (1993) illustrated 
the capability of VOF to accurately simulate bubble shape, and the simulated shapes were 
shown to agree with experimental published data. The researchers showed their results of 
predicted bubble shapes were in good agreement with those of Bhaga & Weber (1981). The 
VOF simulations with gas-liquid systems could be used as an investigative tool for studying 
bubble rise and bubble-bubble interactions in gas-liquid bubble columns, (Alhendal et 
al.,2010). The Volume of Fluid (VOF) method is made for flows with completely separated 
phases; the phases do not diffuse into each other (ANSYS, 2011). “geo-reconstructed-VOF” 
method in Fluent is chosen for this investigation. Geo-reconstruction is added to the VOF 
scheme to define the free surface more accurately, (Hirt et al., 1981). Applications of the VOF 
model include stratified flows, free-surface flows, the steady or transient tracking of any 
liquid gas interface (ANSYS, 2011). 

3.2 Formulation of the problem and the solution strategy 

The movement of the gas–liquid interface is tracked based on the distribution of αG, the 
volume fraction of gas in a computational cell, where αG = 0 in the liquid phase and αG=1 in 
the gas phase. Therefore, the gas–liquid interface exists in the cell where αG lies between 0 
and 1. The geometric reconstruction scheme that is based on the piece linear interface 
calculation (PLIC) method of Youngs (1982) is applied to reconstruct the bubble free surface. 
A single momentum equation, which is solved throughout the domain and shared by all the 
phases, is given by:  
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where v is treated as the mass-averaged variable. 
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In this bubble simulation, F


 represents the volumetric forces at the interface resulting from 
the surface tension force per unit volume. The CSF model of Brackbill et al., (1992) was used 
to compute the surface tension force for the cells containing the gas–liquid interface: 
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Where σ is the coefficient of surface tension, n is the surface normal which is estimated from 
the gradient of volume fraction, κ is the local surface curvature calculated as follows: 
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The tracking of the interface between the gas and liquid is accomplished by the solution of a 
continuity equation for the volume fraction of gas, which is:  
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The volume fraction equation is not solved for the liquid; the liquid volume fraction is 
computed based on the following constraint:  

 1G L    (12) 

where αG and αL is the volume fraction of gas and liquid phase respectively.  

The properties appearing in the transport equations are determined by the presence of the 
component phases in each control volume and are calculated as volume-averaged values. 
The density and viscosity in each cell at interface were computed by the application of 
following equations: 
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where ρG, ρL, µG and µL is density and viscosity of gas and liquid phase respectively, while 
αG is the volume fraction of gas. The energy equation is also shared among the phases: 
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The VOF model treats energy, E, and temperature, T, as mass-averaged variables: 
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where Eq for each phase is based on the specific heat of that phase and the shared 
temperature. The effective thermal conductivity keff is also shared by the phases.  

3.3 Using Fluent - Grid generation and independence 

The bubble was initially placed at the centre of the cylindrical domain by using the region 
adaptation option of ANSYS-Fluent. To do that, a spherical patch or domain was selected at  
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liquid filled tube to experimental analysis. The work of Tomiyama et al., (1993) illustrated 
the capability of VOF to accurately simulate bubble shape, and the simulated shapes were 
shown to agree with experimental published data. The researchers showed their results of 
predicted bubble shapes were in good agreement with those of Bhaga & Weber (1981). The 
VOF simulations with gas-liquid systems could be used as an investigative tool for studying 
bubble rise and bubble-bubble interactions in gas-liquid bubble columns, (Alhendal et 
al.,2010). The Volume of Fluid (VOF) method is made for flows with completely separated 
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the gas phase. Therefore, the gas–liquid interface exists in the cell where αG lies between 0 
and 1. The geometric reconstruction scheme that is based on the piece linear interface 
calculation (PLIC) method of Youngs (1982) is applied to reconstruct the bubble free surface. 
A single momentum equation, which is solved throughout the domain and shared by all the 
phases, is given by:  
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where v is treated as the mass-averaged variable. 
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In this bubble simulation, F


 represents the volumetric forces at the interface resulting from 
the surface tension force per unit volume. The CSF model of Brackbill et al., (1992) was used 
to compute the surface tension force for the cells containing the gas–liquid interface: 
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Where σ is the coefficient of surface tension, n is the surface normal which is estimated from 
the gradient of volume fraction, κ is the local surface curvature calculated as follows: 

 1ˆ( ) ( . )nk n n n
n n
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The tracking of the interface between the gas and liquid is accomplished by the solution of a 
continuity equation for the volume fraction of gas, which is:  

 ( ) ( ) 0G G G G Gv
t
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The volume fraction equation is not solved for the liquid; the liquid volume fraction is 
computed based on the following constraint:  

 1G L    (12) 

where αG and αL is the volume fraction of gas and liquid phase respectively.  

The properties appearing in the transport equations are determined by the presence of the 
component phases in each control volume and are calculated as volume-averaged values. 
The density and viscosity in each cell at interface were computed by the application of 
following equations: 

 (1 )G G G L        (13) 

 (1 )G G G L        (14) 

where ρG, ρL, µG and µL is density and viscosity of gas and liquid phase respectively, while 
αG is the volume fraction of gas. The energy equation is also shared among the phases: 
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The VOF model treats energy, E, and temperature, T, as mass-averaged variables: 
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where Eq for each phase is based on the specific heat of that phase and the shared 
temperature. The effective thermal conductivity keff is also shared by the phases.  

3.3 Using Fluent - Grid generation and independence 

The bubble was initially placed at the centre of the cylindrical domain by using the region 
adaptation option of ANSYS-Fluent. To do that, a spherical patch or domain was selected at  
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the cylinder with void fraction of 1. The rest of the cylindrical domain was specified as 
liquid, i.e., with a void fraction of zero. Figure 4 depicts the bubble inside the computational 
domain at the initiation of a simulation. The geometry of the two-dimensional model is 
somewhat similar to the one used by Thompson et al. (1980), and extension to fully 3-
dimensional model is followed by the 2-dimensional study. The initial rise velocity for the 
bubble was zero. The upper surface of the fluid is a hooter than the bottom surface 
boundary, which is assumed to be flat with no-slip walls. The grid details are shown in fig. 
2. After doing the required sensitivity grid tests, a non-uniform grid of 7200 cells was used 
throughout the 2-D axis simulations with the grid lines clustered towards the centre, and 
uniform grid of 372000 cells for the 3-D cases.  
 

 
 

Fig. 4. Initial condition for the bubble inside the 2-D axis. 

3.3.1 Grid independence 

For the 2-d axis, the domain was split into two areas to create non-uniform mesh clustered 
in the area of interest (centre), see fig. 2 for domain mesh technique. Another important 
point is that, when using the axisymmetric solver, you create a mesh only for the half of 
your domain, thus reducing drastically the number of cells you use, and consequently the 
time of calculation. Fluent will accept the axis in the direction of the positive X-axis only. 
The model was verified for grid independence and geometry-related such as 2-d axis and 
rotational periodic flow as shown in figs. 5 & 6. Grid independence was examined by 
using three grid systems with 20x20x80 (96000 cells), 30x30x120 (324000 cells) and 
40x40x160 (768000 cells). The three simulations showed nearly bubble migration for the 
simulations with the maximum difference of less than 1% between the cases. For 
calculation efficiency, it was found that the 30x30x120 mesh produces a grid-independent 
solution and was used in this calculation with 0.001 time step. For some cases when using 
the periodic flow solver, you create a mesh only for the quarter, half, three quarters of the 
domain, thus reducing the number of cells you use, and consequently the time of 
calculation. Periodic boundary condition is recommended for the bubble located at the 
centre of the domain. 
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Fig. 5. Grid independence shows identical bubble migration for 2-d axis & 3-D simulations 

 

 

Fig. 6. Rotational periodic/full geometry used to calculate bubbles/drops migration 

4. Numerical procedure and simulation 
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wall (cold). Hence, the size of the computational wall bounded domain was chosen as 120 
x60 mm with no “inflow or overflow” from the sides. For the purposes of these simulations, 
ethanol properties were taken to be same as the properties given in table (1) from Thompson 
et al. (1980). The unsteady 2-D axisymmetric and 3-D models were formulated using the 
commercial software package (ANSYS-FLUENT® v.13, 2011) in modeling the rise of a 
bubble in a column of liquid in zero gravity (Marangoni flow). Surface tension and its 
temperature coefficient used in the simulations for the ethanol and N2 are (σ =27.5 
dynes/cm and σT =-0.09 dynes/cm°C), (Kuhlmann, 1999). A numerical prescription for the 
surface tension vs. temperature behavior is provided via a user defined function (UDF) 
which can be dynamically linked with the FLUENT solver. 
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 Unit Ethanol Nitrogen (N2) 

Density (ρ) kg/m3 790 1.138 

Specific Heat (Cp) j/kg-k 2470 1040.7 

Thermal Conductivity (k) w/m-k 0.182 0.0242 

Viscosity (μ) kg/m-s 0.0012 1.66e-5 

Surface tension coefficient (σT) w/m.k 0.00009 ---- 

Velocity VO Eq. (3) (m/s) 0.075  

Velocity VYGB Eq. (6) (m/s) 0.034  

Velocity –V (CFD) (m/s) 0.014  

Scaled velocity V/ VYGB - 0.41  

Prandtl Number (Pr) Eq. (5) 16.28  

Reynolds Number(Re) Eq. (2) 197.5  

Marangoni Number(Ma) Eq. (4) 3216.4  

Table 1. Physical properties of the liquids employed in the simulation at 300K and sample 
results for bubble diameter= 9 mm for (Pr=16.28). 

4.1 Description of test cases and results 

Predicted simulations have been compared with the experimental work of Thompson et al., 
(1980) as shown in fig. 8 and agreement obtained. In a non-uniform temperature gradient, the 
fluid on the bottom is cold, and therefore has greater surface tension. The fluid on the top is 
hot, therefore possesses weaker surface tension. The tendency of the fluid with greater surface 
tension is going to pull the fluid with less surface tension towards it. This motion would be 
from top to bottom. “Whenever surface is created, heat is absorbed, and whenever surface is 
destroyed heat is given off. Therefore a swimming bubble absorbs heat at its hot end and 
rejects heat at its cold end” (Nas & Tryggvason, 1993) as seen in temperature contour of fig 9.  

 
Fig. 7. Schematic of bubble migration in a uniform temperature gradient. 
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The ANSYS-FLUENT code allows for the use of different gravity values. With this option, 
we ran several cases for different geometry conditions. The cases that are presented in this 
chapter were conducted in a zero gravity environment so that the flow would be driven by 
surface tension instead of buoyancy. On earth-based, where gravity presents, the flow is 
mainly driven by buoyancy, and most of its effects have already been studied. On the other 
hand, surface tension driven flows have not been studied to such a high level and this was 
an opportunity to do so. 

 
Fig. 8. Result validation of present-CFD calculation with (Thompson et al., 1980) for N2 = 
6mm diameter 

4.2 Effect of liquid temperature upon bubble migration 

The second test case in this chapter is the most representative and interesting case. For 
this test case the linear temperature distribution was used between the walls. As we ran 
and visualized these cases we interpreted how they affected the bubble migration speed 
toward the hotter side. Fig. (9) shows that the different temperature differences between 
the walls made the bubble move faster for greater temperature differences, or slower for 
small temperature differences. For the design fluid, Ethanol in this case, hotter side 
temperature above 330K will not have significant effect on the bubble speed and less than 
320K possibly will not move the bubble. With these concepts in mind we selected a 
temperature range vary from (320-335) K for the top wall and 300K was fixed for the 
bottom wall. With these design concepts we started to set boundary conditions and to 
slightly change some initial conditions. All these cases gave us insight on the behavior of 
such a temperature differences. In these test cases simulations of bubble thermocapillary 
migration, Re and Ma range from 228.6 to 274.3 and from 3722.7 to 4467.3, respectively. 
Sensitivity tests results for different bulk liquid temperatures in figures 9 and 10 show the 
capability of ANSYS-Fluent to simulate two phase flow in microgravity environment 
using VOF model.  
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T top=325K T top=337.5K T top=330K 

  
 

 

 
 

Fig. 9. Temperature contours (bottom) and streamlines (top) for the single bubble (d=10 mm) 
at t=5 s. 
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Fig. 10. Sensitivity tests results for different bulk liquid temperatures (Pr=16.3) at time (t)=5 
second, and bubble diameter (d) for N2 =10 mm 

4.3 Effect of aspect ratio upon bubble migration 

We report the results of an extensive numerical investigation on the speed of rise of gas 
bubbles diameters in the size range of 4-10 mm in stagnant Ethanol liquid in a column with 
diameters of 20, 40, 60, 80 mm. The column diameter was found to have a significant effect 
on the rise velocity of the bubbles as shown in fig. 11 below.  
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Fig. 11. Compares the x-coordinates of the nose of 10 mm bubbles rising in columns of 20, 
40, 60, and 80 mm diameters 
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Figure 11 shows the effect of the column width on the raise speed of the bubble. The liquid 
phase stream lines profiles for three simulations is illustrated in figure 12. Figure 13 shows 
when the Aspect Ratio (AR) of the bubble diameter to the column diameter, is smaller than 
0.355 the influence of the column diameter on the rise velocity is negligible. With increasing 
AR there is a significant reduction of the rise velocity.  

   
Fig. 12. CFD simulation for studies on rise velocity of single bubble in side a column 
AR=(0.5, 0.25, 0.1667) from the left to the right.  
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Fig. 13. Shows the effect of (AR) on the rise speed of single bubble 
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4.4 Effect of rotating cylinder upon bubble coalescence 

In a rotating field, fluid particles which are less dense than the surrounding media 
migrate inward toward the axis of rotation (Annamalai et al. 1982). The results of three 
dimension rotating cylinder can complement the previous study in providing techniques 
for causing small bubble to move or bringing several unmovable small bubbles within a 
cylinder to coalesce into a large bubble which might subsequently be extracted or 
otherwise manipulated within the cylinder. The same technique can be used in glass melts 
processing. Under such conditions, rotation of the melt, followed by thermocapillary 
migration of the coalesced bubbles results in a “centrifugal fining” operation for bubble 
removal (Annamalai et al. 1982).  

The effect of both cylindrical rotation and surface tension on the trajectory of the single 
bubble is illustrated in figure 12. In this figures, it can be seen that the angular velocity (ω) 
pulled the bubble towards the centre of rotation, and at the same time Marangoni force 
moved the bubble towards the hotter side.  

As the cylinder begins to rotate from (5-50 rpm), the linear movement of the bubble changes 
and the bubble starts moving further towards the axis of rotation (centre). Results show that by 
adjusting the rotational speed, it is possible to change the gas bubble behavior in a 
thermocapillary flow. The results can help determine the new migration time and speed in the 
rotating cylinder. Figs 15-16 show that the transient development of the radial migration of the 
three bubbles will move from the rest towards the centre of the cylinder and towards the top 
side (hotter side). This movement depends on the angular speed (ω) and thermocapillary flow. 
These figures illustrate that bubble breakage and agglomeration can be controlled 

 
Fig. 14. Bubble displacement (cm) from the releasing position (3 cm from the axis of 
rotation) toward the axis of rotation and the hotter side (Marangoni) 
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Fig. 15. Shows the coalescence sequence of 10 mm diameter bubbles 
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5. Conclusions and future work 
In This chapter, it was shown by figures the conclusive existence of Marangoni bubble flow 
phenomena in a zero gravity environment. We discovered the effect of temperature, wall 
aspect ratio, and rotating cylinder on the bubble behavior at zero gravity using ANSYS 13. It 
has been proven that VOF is a robust numerical method for the simulation of gas-liquid 
two-phase flows, and the ability to simulate surface tension as a function of temperature 
(thermocapillary flow) using a UDF is possible for routine design and development 
engineering activities 

A constant angular speed (ω) was applied to the walls of the cylinder which imparts an 
extra radial forced vortex motion to the adjacent fluid layer, the effect of which translates as 
a velocity towards the axis. The 3D simulation was complemented to the previous 
axissymmetry cases in providing techniques for bringing several unmovable small bubbles 
within a cylinder to coalesce into a large bubble or to its centre which might subsequently be 
extracted or otherwise manipulated within the cylinder. These results can help in determine 
the new migration speed and behavior of gas bubbles by adjusting the angular speed. 

Most experimental in microgravity are limited to the case of shortage in time and some other 
space limitations. Computer simulations, on the other hand, are not restricted to such 
circumstance, and any arbitrary geometry can be simulated in addition to rotating system. 
Thanks to the increasing computer power, it is nowadays possible to solve more complex 
multiphase models. With that the computer solution proves to be a valuable tool to study the 
complex problem under the conditions of zero and reduced gravity, and from the results of 
this chapter we can see the ability of ANSYS-Fluent code to simulate Marangoni 3-d cases. 

The behavior of the compound rotational and surface tension driven motion, shapes, and 
trajectories of bubbles is a new area of study, and it is planned to help support research area 
based on space applications. According to our knowledge, the present study 3-D-VOF-based 
method for simulating the influence of both rotational and thermocapillary on single and 
multi bubbles located off centre is first numerical study case in this field and no comparable 
investigation has been published in the open literature due to difficulty for researchers to 
access to microgravity facilities. In the future, more detail discussions for different breakage 
and coalescence times for a group of bubbles will be investigated and used to make kernels 
function which can be used in population balance equations. 
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1. Introduction 
Understanding flow in subsurface porous media is of great importance for society due to 
applications such as energy extraction and waste disposal. The governing equations for 
subsurface flow are a set of non-linear partial differential equations of mixed elliptic-
hyperbolic type, and the parameter fields are highly heterogeneous with characteristic 
features on a continuum of length scales. This calls for robust discretization methods that 
balance the challenges in designing efficient and accurate methods. In this chapter we focus 
on a class of linear solvers for elliptic systems that aims at providing fast approximate 
solutions, preferably in one iteration, but fall back to being iterative methods with good 
convergence properties if higher accuracy is needed. 

We consider flow of flow of a single fluid in a porous media, transporting a passive particle. 
This can for instance represent flow of a pollutant as a result of groundwater contamination. 
Governing equations for the flow will be presented in the next section. Analytical solutions 
to the flow problem can only be found in very special cases, and in general, numerical 
approximations must be sought. The primary numerical schemes for commercial 
simulations are control volume methods. These methods are formulated such that 
conservation of mass is ensured, which is considered crucial in applications. After 
discretizing, an elliptic equation needs be solved for the pressure. This process is 
computationally expensive and may constitute the majority of the simulation time. 

The permeability (fluid conductivity of the rock) in subsurface porous media has a truly 
multiscale nature, with highly permeable pathways with significant correlation lengths. Hence 
the elliptic pressure equation will experience strong non-local effects, posing a challenge for 
linear solvers.  Moreover, the permeability field constructed by geologists is highly detailed; 
the number of cells in the geo-model can easily be several orders of magnitude higher than 
what is feasible to handle in a flow simulation. The traditional approach to this problem has 
been to upscale the permeability, e.g. to compute a representative permeability on a coarser 
grid. For the pressure equation this gives a linear system that is much smaller and 
computationally cheaper to solve. The drawback is of course that details in the geological 
characterization may be lost during upscaling, and these details are known to have significant 
impact on transport. An alternative approach is offered by the so-called multiscale methods, 
which have been a highly popular research field in the last decade (Tchelepi & Juanes, 2008). 
Like upscaling, multiscale methods perform a coarsening to end up with a relatively small 
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linear system to solve. However, a multiscale method also provides a mapping from the coarse 
solution onto the fine grid. This projected solution will not be equal to a direct solution on the 
fine grid, but the two solutions will share many properties; in particular, many multiscale 
methods provide a velocity field that is mass conservative on the fine scale. Hence it can be 
used to solve fine scale transport equations. Numerical experiments have shown that this 
strategy can be extremely effective and highly accurate when measured in metrics that are 
important for applications (Kippe, et al., 2008; Efendiev & Hou, 2009). 

Despite the success of multiscale methods in porous media flow, the strategy has certain 
weaknesses. In this chapter we highlight the quality of the coarse operator: If this does not 
represent essential features of the flow field, the quality of the fine scale velocity field may 
be poor. In particular, long and high permeable pathways are difficult to capture in the 
coarse scale operator. A natural approach would therefore be to introduce a scheme that 
allows for iterations on the multiscale solution. The idea of a multi-level iterative method 
resembles domain decomposition, and in Nordbotten & Bjørstad, 2008, the equivalence 
between the multiscale finite volume method (Jenny, et al., 2003) and a special domain 
decomposition strategy was shown. The resulting iterative scheme was termed mass 
conservative domain decomposition (MCDD), and it can be classified as an additive 
Schwarz preconditioner with minimal overlap. Contrary to classical domain decomposition 
methods, MCDD will produce solutions that are mass conservative at any iteration step, 
thus it is not necessary to reduce the pressure residual to a very low value before solving 
transport equations. Various aspects of MCDD have been tested for two-dimensional 
problems (Kippe, et al., 2008; Sandvin, et al., 2011; Lunati, et al., 2011). However, to 
formulate multiscale methods for three-dimensional problems has turned out to be 
considerably more difficult in general, and to our knowledge, no applications of MCDD-
type methods within an iterative setting have been reported in three dimensions. 

In this chapter, we consider multiscale methods and preconditioners defined for arbitrary 
number of spatial dimensions. We show how the multiscale method can be formulated both 
as a top-down and as a bottom-up method, and that these formulations give rise to different 
interpretations of the resulting approximations and preconditioners. Numerical examples 
illustrate the main strengths and weaknesses of the approach. Moreover, the numerical 
examples highlight the capabilities of the framework in terms of producing quick 
calculations when possible, but also producing more accurate results when needed. 

2. Governing equations and discretization 
The primary focus of the current chapter is linear solvers. The particular linear solvers we 
discuss are designed to preserve certain properties from the physical problem. Therefore, 
the linear solvers cannot be discussed without first specifying both the governing equations 
and the particular discretizations we are concerned with.   

2.1 Governing equations 

We consider flow of an incompressible fluid in a porous medium. For an introduction to 
flows in porous media, see e.g. (Bear 1972); for a reference focusing on appropriate 
numerical methods for this problem, confer (Chen, et al., 2006). Here we will only provide a 
brief review of the main ideas of importance to this chapter. Conservation of mass (volume) 
for each phase can be modeled by the equation: 
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∇ ⋅ � = �. 
Here the flux of each phase is represented by �, and � denotes the volumetric source / sink 
terms. The flux is usually assumed to be given by Darcy’s law, which reads 

� = �−��∇�� 
where the permeability is denoted �, and � is the fluid potential. Additionally, we consider 
a dissolved concentration � which is passively advected with the velocity field,  

 � ��
�� + ∇ ⋅ (��) = �� (1) 

where � is the fraction of the void space available for fluid flow, referred to as porosity, and 
the material source term is given by �. We note that by introducing the particle velocity 
� = ���� the advection of the dissolved concentration can be written in terms of the 
material derivative on Lagrangian form 

��
�� =

�
� − � ∇ ⋅ �� . 

By eliminating the fluid flux from the statement of volume conservation we obtain an 
elliptic equation for pressure  

 −∇ ⋅ (�∇�) = �. (2) 

In the sequel, we will study numerical solution techniques for Eq. (2), while keeping in mind 
that the methods must also be applicable for complex situations. Specifically, by integrating 
the Lagrangian version of the transport equation, we see that volume balance errors lead to 
exponential growth of errors in the dissolved concentration. Thus, it is of importance for the 
problems we consider that the velocity field must always be mass conservative in order to 
be suitable for use with most transport schemes. 

2.2 Discretization 

To discretize Eq. (1), we consider scalar discretizations, and in particular control volume 
schemes as they are particularly well suited for an exact representation of the conservation 
equation. Introducing the usual �� inner product, we can write the elliptic equation on a 
weak form as: Find � � ��� such that  

 (�∇�� ∇�) = (�� �)     for all � � �. (3) 

Here, � represents a suitably chosen space, and we have for simplicity assumed zero 
Dirichlet boundary conditions to simplify the exposition. From this equation, we obtain 
control volume methods by choosing the finite subset of �� � � to be the piece-wise 
constants forming a partition of unity on a cell-based grid, from which we obtain 

� � ⋅ �
��

��� = �� �����
�

 

for each (primal) cell �. Note that � is the unit normal vector pointing out from the cell, and 
the product � ⋅ � is the normal flux over the boundary. Various control volume methods can 
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2.2 Discretization 
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��� = �� �����
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for each (primal) cell �. Note that � is the unit normal vector pointing out from the cell, and 
the product � ⋅ � is the normal flux over the boundary. Various control volume methods can 
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now be defined by their approximation to the (flux) boundary integrals, most of which can 
be interpreted as particular choices of the finite space for . We will in the following 
assume that such a choice has been made (for concreteness, one may consider the control-
volume finite element method which is defined by  lying in the space spanned by piece-
wise linears with nodes forming a dual grid to the partition induced by ). Furthermore, 
we assume for simplicity that the choice of flux approximation leads to a local 
approximation of the flux, in the sense that fluxes can be explicitly represented as a 
combination of fluid potentials in near-by cells.  

We have now described a general setting for discrete representations of volume balance and 
Darcy’s law which lead to a sparse linear system for the scalar variable , which can be 
given on vector-matrix form as 

  (4) 

Remark 1: The control-volume finite element method, while attractive for educational 
purposes, is not very accurate in practice. Therefore, in reservoir simulation, the flux over a 
face has traditionally been approximated as driven by the pressure difference in the two 
adjacent cells only, giving rice to two-point schemes for the flux (Aziz & Settari, 1979). For 
logically Cartesian grids, this gives a classical 5- or 7-point cell stencil in 2 and 3 dimensions, 
respectively. However, in situations when the principal axis of the permeability tensor 
deviates considerably from the orientation of the grid, two-point schemes are known to 
produce inaccurate results. As a remedy, so-called multi-point schemes have been 
introduced (Edwards & Rodgers, 1998; Aavatsmark, 2002). These produce more accurate 
results to the price of a larger computational stencil, for Cartesian grids, the resulting linear 
system will have 9 and 27 bands in 2 and 3 dimensions, respectively. As we will see, the 
reduced accuracy of two-point schemes for rough grids is not only important for discretizing 
Eq. (2); similar considerations are also important when constructing fast linear solvers.  

Remark 2: If a method is defined by choosing both  and  to lie in the same finite-
dimensional space, the classical finite element method is recovered. In particular, the 
simplest choice, the piece-wise (multi)-linear functions give a system of equations that have 
a similar algebraic structure to the control-volume methods discussed above, but do not 
explicitly represent conservation. 

3. Mass conservative domain decomposition 
Here we describe the ingredients for the mass conservative domain decomposition (MCDD). 
We will start our presentation with describing the development of Schur-complement systems 
for -dimensional problems. Readers may of course chose to disregard this generality, and 
consider only the special cases . From this, we will see how we can form classical 
domain decomposition methods as well as multiscale control-volume methods. Note that due 
to the large number of matrices and vectors involved in the presentation, these will no longer 
be marked as bold as long as there is no room for confusion. 

3.1 Schur complement systems 

Being consistent with the discretization outlined above, we assume that computational 
domain is partitioned into a fine scale grid, and that control volume discretization enforces 

 
Mass Conservative Domain Decomposition for Porous Media Flow 239 

conservation of mass on the fine grid cells. In order to proceed in the construction of a two-
level method, we need to introduce the notion of coarse grids.  

Consider a continuous collection of cells, referred to as internal boundary cells, which partition 
the domain into isolated subdomains. By isolated, we mean in the sense of the discretization of 
the elliptic operator, such that no cell in one subdomain is dependent on any cells of any other 
subdomains. We interpret the subdomains as cells of the coarse dual grid, and the internal 
boundary cells thus form the nodes, edges, faces etc. of the dual coarse grid. We will identify 
cells and variables with a numerical subscript dependent on what part of the dual coarse grid 
they form part of: 0 indicates dual coarse nodes, 1 indicates dual coarse edges, 2 indicates 
faces, and so on, until  denotes cells that lie in the subdomains (where  is the dimension of 
the problem). Confer Fig. 1 for an illustration. When considering only the internal boundary 
cells, we will refer with subscript  to all subscripts less than . Note that we have not yet 
introduced a coarse primal grid; this will not be needed before a later section. 

   
(a) Level 0    (b) Level 1 

  
(c) Level 2    (d) Level 3 

Fig. 1. Illustration of cells on different levels in a three-dimensional Cartesian grid. For 
clarity of visualization, only some of the cells on level 2 are indicated. 
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conservation of mass on the fine grid cells. In order to proceed in the construction of a two-
level method, we need to introduce the notion of coarse grids.  

Consider a continuous collection of cells, referred to as internal boundary cells, which partition 
the domain into isolated subdomains. By isolated, we mean in the sense of the discretization of 
the elliptic operator, such that no cell in one subdomain is dependent on any cells of any other 
subdomains. We interpret the subdomains as cells of the coarse dual grid, and the internal 
boundary cells thus form the nodes, edges, faces etc. of the dual coarse grid. We will identify 
cells and variables with a numerical subscript dependent on what part of the dual coarse grid 
they form part of: 0 indicates dual coarse nodes, 1 indicates dual coarse edges, 2 indicates 
faces, and so on, until  denotes cells that lie in the subdomains (where  is the dimension of 
the problem). Confer Fig. 1 for an illustration. When considering only the internal boundary 
cells, we will refer with subscript  to all subscripts less than . Note that we have not yet 
introduced a coarse primal grid; this will not be needed before a later section. 

   
(a) Level 0    (b) Level 1 

  
(c) Level 2    (d) Level 3 

Fig. 1. Illustration of cells on different levels in a three-dimensional Cartesian grid. For 
clarity of visualization, only some of the cells on level 2 are indicated. 
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We now start to manipulate the linear system of equations (4), with the ultimate goal of 
obtaining a coarse linear system that captures non-local structures. By a reordering of the 
unknowns based on the dual coarse grid, Eq. (4) can then be written as 

 �
��� � ���
⋮ ⋱ ⋮

��� � ���
��

��
⋮
��
� � �

��
⋮
��
�. (5) 

In the last row, by construction, ��� is a sparse block diagonal matrix, with each block 
representing the interactions within each isolated subdomain. This implies that we can find 
the values �� by a local calculation given the variables on the internal boundary cells. We 
write these local calculations as 

�� � ����� (�� � �����). 
We use this expression to formally eliminate internal cells from our system of equations. 
Thus, by substitution into Eq. (5) we have the Schur Complement system 

�
��� � ��(���)
⋮ ⋱ ⋮

�(���)� � �(���)(���)
��

��
⋮

�(���)
� � �

���
⋮

��(���)
�, 

where the Schur complement matrices ���  are defined as 

��� � ���� � �������� ���, 
and the right hand side has been updated to reflect the elimination of the internal nodes by  

��� � �� � �������� ��. 
We make a few comments about the Schur complement system.  

Remark 3: By the Schur complement formulaiton the number of unknowns has been 
reduced, from what was essentially an � dimensional problem to an (� � �) dimensional 
problem. This significant reduction in model complexity comes at the cost of the Schur 
complement system being in general much denser than the original system. Furthermore, 
the computational cost of calculating the full Schur complement matrices is frequently 
prohibitive. As such, the Schur complement formulation by itself is seldom used.   

Remark 4: For local discretizations the direct coupling between variables �� and ��, where � 
and � are more than one integer apart, is usually small (and indeed there is no coupling for 
the two-point flux approximation methods). This implies that the matrices ��� and thus also 
���  are for many practical problems essentially zero for |� � �| ≥ 2, and the full Schur 
complement system is therefore essentially block tri-diagonal. Furthermore, we see that ���  
only differs significantly from ��� in the case where � � � � � � �. 

In the particular case of two spatial dimensions, the matrix � describes interaction between 
edge and vertex nodes only. In the case of three dimensions, it describes the interaction 
between faces, edges and vertexes, where we expect that the interactions between vertexes 
and faces are weak.  
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While the Schur complement system itself may be prohibitive to form and solve, it provides 
the framework for developing approximate solvers. Classically, these fall in the category of 
domain decomposition preconditioners (Smith, et al., 1996; Quateroni & Valli, 1999; Toselli 
& Widlund, 2005). In this chapter, we see how this framework also gives us both multiscale 
methods and preconditioners based on them.  

Recall that the Schur complement system is (essentially) tridiagonal. The main 
approximation strategies to this system fall in two categories: The top down strategy gives 
a low-rank approximation to � based on only the degrees of freedom associated with 
vertexes of the coarse dual grid, which are then identified as the coarse degrees of 
freedom. This essentially forms a multiscale subspace based on the lower-diagonal 
component of �, and is the approach we will emphasize in the following.  The bottom-up 
strategy goes the other way, successively applying Schur complement strategies to 
eliminate all variables until only a system for �� remains. Since the Schur complement 
matrices themselves are too expensive to calculate, the bottom-up approach requires 
introducing low-rank approximations to the Schur complement (e.g. probing based 
techniques (Chan & Mathew, 1992)) at every stage in the succession. The class of domain 
decomposition methods known as substructuring methods is often formulated in terms of 
the bottom-up framework. 

3.2 Multiscale basis approximations  

The multiscale basis approximations to the Schur complement system use the (block) lower 
diagonal component of �.  Retaining the dependence on ��, which we hereafter identify as 
the coarse variable, we then see that we obtain an explicit expression for the remaining 
degrees of freedom. In the block tri-diagonal case, this can be written compactly as: 

�� � ������������(���)
�

���
��� ��� � ����������(���)

�

�����
� ���

�

���
. 

In this expression, the matrix products are ordered right to left, and we have marked the 
Schur complement matrices with a hat, indicating that approximate choices of these 
matrices can be used in order to define different multiscale bases. In the general case, where 
a block tri-diagonal system is not assumed, the above expression is defined recursively. 
Either way, for conciseness, we denote the linear operator associated with the reconstruction 
of the full approximation � by its homogeneous and heterogeneous parts,  

� � Ψ�� � ���. 
At this point we make the following remarks.  

Remark 5: The space spanned by the projection of �� to the full set of variables defined by Ψ 
is termed the multiscale space ����. It can be characterized by the basis functions obtained by 
setting �� � ��, where �� is the elementary vectors. The resulting product allows us to define 
the multiscale basis function ���� as columns of Ψ,  

���� � Ψ��. 
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We now start to manipulate the linear system of equations (4), with the ultimate goal of 
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where the Schur complement matrices ���  are defined as 
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edge and vertex nodes only. In the case of three dimensions, it describes the interaction 
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While the Schur complement system itself may be prohibitive to form and solve, it provides 
the framework for developing approximate solvers. Classically, these fall in the category of 
domain decomposition preconditioners (Smith, et al., 1996; Quateroni & Valli, 1999; Toselli 
& Widlund, 2005). In this chapter, we see how this framework also gives us both multiscale 
methods and preconditioners based on them.  
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approximation strategies to this system fall in two categories: The top down strategy gives 
a low-rank approximation to � based on only the degrees of freedom associated with 
vertexes of the coarse dual grid, which are then identified as the coarse degrees of 
freedom. This essentially forms a multiscale subspace based on the lower-diagonal 
component of �, and is the approach we will emphasize in the following.  The bottom-up 
strategy goes the other way, successively applying Schur complement strategies to 
eliminate all variables until only a system for �� remains. Since the Schur complement 
matrices themselves are too expensive to calculate, the bottom-up approach requires 
introducing low-rank approximations to the Schur complement (e.g. probing based 
techniques (Chan & Mathew, 1992)) at every stage in the succession. The class of domain 
decomposition methods known as substructuring methods is often formulated in terms of 
the bottom-up framework. 
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The multiscale basis approximations to the Schur complement system use the (block) lower 
diagonal component of �.  Retaining the dependence on ��, which we hereafter identify as 
the coarse variable, we then see that we obtain an explicit expression for the remaining 
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Given suitable choices of ����, this gives various multiscale basis functions from literature, as 
seen in the following remarks. In the terminology of domain decomposition, these basis 
functions are often referred to as prolongation operators. 

Remark 6: The natural interpretation of ���������(���) is to solve local problems at the level � 
using level � − � as boundary conditions. This motivates the usual approximations to these 
Schur complements. Three important alternatives exist.  

1. ���� can be chosen as a discretization of the original differential operator restricted to the 
part of the internal boundary associated with �. This is the original multiscale basis 
functions of Hou & Wu 1997, and this is also the strategy we will apply in our 
numerical experiments. 

2. For arbitrary operators, the differential operator restricted to a lower dimension may 
not be a good approximation to the problem, and this approximation is unstable. For 
such cases, a simple linear interpolation on internal boundaries can be suggested 
(Lunati & Jenny, 2007), and  ���� is then chosen as any matrix which admits the relevant 
(multi-)linear solutions.  

3. Both the preceding operators require knowledge about the original geometry of the 
problem, and can thus be seen as geometric methods. If it is desired to implement 
multiscale methods strictly algebraically, then it is possible to construct algebraic 
approximations ���� based on the information in ���, as was explored in Sandvin, et al., 2011. 

Remark 7: It is common to not approximate the last Schur complement ���. Note that this 
does not imply that this Schur complement matrix needs to be computed, as we only need to 
know its action on the elements of the multiscale basis and on the right hand side.  If this 
component is retained exactly, then the method becomes residual-free on the subdomains, 
which is an important aspect that can be exploited at later stages.  

Keeping in mind that we now have an explicit representation of the solution covering the 
domain given the knowledge of the coarse nodes, we can use this representation to obtain a 
coarse system of equations.  

3.3 Coarse scale equations retaining conservation form 

From the last section, we see that we can use the Schur complement system to obtain a 
multi-scale basis. This is essentially a low-dimensional approximation of the solution space 
for the homogeneous part of the discrete differential operator. What remains in order to get 
an approximate solution is to consider coarse equations that constrain the remaining 
degrees of freedom in the multiscale space.  

The original system of equations provides us with the first option for a set of coarse 
equations, since the equations associated with the coarse variables are simply our fine-scale 
discretization. Recalling the notation Ψ that indicates the linear operator that reconstructs 
the homogeneous part of the solution from the coarse basis we see that our original system 
of equations is simply  

(��� � ���)Ψ��� � �� − (��� � ���)���� 
This is however a poor choice of constraint for our coarse variables, as it physically 
represents only the differential operators locally around the coarse node. From the 
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perspective of the variational derivation of the control volume method, this solution thus 
satisfies Eq. (3) with � � ���� and � in the space of piecewise constants with support 
around the local cells associated with ��.  From this understanding, we are motivated to think 
of reformulating the system such that the test functions for the coarse equations have a 
larger support, and in particular also form a partition of unity.  

To be precise, consider a coarse partition of the domain, referred to as the primal coarse 
grid, which has the following properties: Each cell in the primal coarse grid consists of a set 
of cells from the fine grid, and contains exactly one vertex (cell on level 0) of the dual coarse 
grid, see Fig. 2. Since the primal coarse grid is a subset of the fine-scale grid, we know that 
the space of piecewise constant functions �� on the primal coarse grid is a sub-space of the 
space of piecewise constant functions �� on the fine grid. Therefore, by a change of 
representation, we could write the original discretization such that the discrete equations for 
the coarse variables satisfied Eq. (3) for all piecewise constant functions of the primal coarse 
grid. This leads to our desired coarse equations. 

 
Fig. 2. A two-dimensional fine scale grid with a primal coarse grid imposed on it (bold lines). 
Black cells denotes center cells in the primal cell, these are on level 0 in the dual topology. 

More practically, let the �, as before, represent a standard control volume discretization. 
Then let �� be the restriction matrix to primal coarse cell �, and let �� � ���. If furthermore � 
is an integration matrix that sums all rows in �� into the row of the center cell, that is 

 �� � � � ���(� � ���)�, (6) 

where � is an identity matrix, ��� is a unit vector identifying the center of the coarse cell, and 
� is a vector of ones. Multiplication with �� for all primal coarse cells, and mapping the 
result back to the whole domain gives a linear system 

 �� � �, (7) 

where � � ∑ ���������� , and � ��∑ ��������� . The linear system (7) is the original 
conservation of mass on the fine scale for all variables �� where � � �, however it represents 
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degrees of freedom in the multiscale space.  
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perspective of the variational derivation of the control volume method, this solution thus 
satisfies Eq. (3) with � � ���� and � in the space of piecewise constants with support 
around the local cells associated with ��.  From this understanding, we are motivated to think 
of reformulating the system such that the test functions for the coarse equations have a 
larger support, and in particular also form a partition of unity.  

To be precise, consider a coarse partition of the domain, referred to as the primal coarse 
grid, which has the following properties: Each cell in the primal coarse grid consists of a set 
of cells from the fine grid, and contains exactly one vertex (cell on level 0) of the dual coarse 
grid, see Fig. 2. Since the primal coarse grid is a subset of the fine-scale grid, we know that 
the space of piecewise constant functions �� on the primal coarse grid is a sub-space of the 
space of piecewise constant functions �� on the fine grid. Therefore, by a change of 
representation, we could write the original discretization such that the discrete equations for 
the coarse variables satisfied Eq. (3) for all piecewise constant functions of the primal coarse 
grid. This leads to our desired coarse equations. 

 
Fig. 2. A two-dimensional fine scale grid with a primal coarse grid imposed on it (bold lines). 
Black cells denotes center cells in the primal cell, these are on level 0 in the dual topology. 

More practically, let the �, as before, represent a standard control volume discretization. 
Then let �� be the restriction matrix to primal coarse cell �, and let �� � ���. If furthermore � 
is an integration matrix that sums all rows in �� into the row of the center cell, that is 

 �� � � � ���(� � ���)�, (6) 

where � is an identity matrix, ��� is a unit vector identifying the center of the coarse cell, and 
� is a vector of ones. Multiplication with �� for all primal coarse cells, and mapping the 
result back to the whole domain gives a linear system 

 �� � �, (7) 

where � � ∑ ���������� , and � ��∑ ��������� . The linear system (7) is the original 
conservation of mass on the fine scale for all variables �� where � � �, however it represents 
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conservation on the coarse scale for variables ��. Note in particular that this means that 
��� = ��� for � � �, and that this linear transformation does not change the solution �. 

We now see that the coarse equations, as given by  

(��� � ���)���� = �� − (��� � ���)���� 
solve the problem given by Eq. (3) for with � � �������� and � � ��, the space of 
piecewise constant functions on the dual coarse grid. We have thus derived a coarse 
control volume discretization, utilizing exactly a multiscale basis function to represent the 
solution. As a direct method, this is the so-called Multiscale Control Volume (Finite 
Element) Method as was first discussed (assuming �� = 0 for � � �) in Jenny, et al., 2003. 
The multiscale control volume methods described in the context of linear preconditioners 
are the Mass Conservative Domain Decomposition preconditioners derived in Nordbotten 
& Bjørstad, 2008.   

Remark 8: In  Remark 1 at the end of the discretization section we saw that the standard finite 
element method is obtained by choosing test functions that are in the same multiscale space 
���� as the solution space. One may ask if the same is the case for multiscale methods. The 
answer is that yes, in the sense that if the integration on the primal grid defined in Eq. (7) is 
replaced by a weighted sum, using the multiscale basis itself as weights, the classical 
Multiscale Finite Element method of Hou & Wu, 1997 is recovered.  

3.4 Recovering a conservative fine-scale flux field 

The method as outlined so far constructs a two-level set of control volume methods. This 
can be seen from several perspectives: Either as the basis for a multi-level method, as the 
basis for a preconditioner in an iterative method, but also from the perspective of deriving a 
new, (coarse) single-scale control-volume method. We will consider the third perspective in 
this section. 

When discussing the coupled set of equations outlined in Section 2.1, we pointed out the 
importance of retaining local mass conservation. This property is often necessary to consider 
(almost) point-wise, while by construction, the control-volume methods consider this only 
on the primal cells of the grid. It is therefore natural to consider whether a post-processing 
can be performed to extend this cell-wise property to a more local property, and whether 
this operation can be conducted locally. 

For a local post-processing, it is natural to use the (cell-wise conservative) fluxes over 
boundaries of the primal grid as the basis of solving Neumann boundary problems inside 
each cell. The Neumann problem for the elliptic problems we consider is well-known to 
only admit solutions if the compatibility condition is satisfied, which is to say that the 
boundary conditions exactly integrate to the sum of all internal sources or sinks. The 
control-volume methods satisfy the compatibility condition by construction. Note that after 
post-processing, we will obtain a flux field that is everywhere conservative, but as a 
consequence will not everywhere satisfy Darcy’s law.  

In the case of single-scale control-volume methods, the permeability coefficient � is usually 
considered constant inside each primal cell, and locally post-processed fluxes can be 
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calculated analytically for some cell shapes. While this is not used much from the 
perspective of practical simulation, it is an invaluable tool in the derivation of error 
estimates.  

For the multiscale control-volume method, the permeability is of course possibly 
heterogeneous inside each coarse primal cell, and a numerical calculation must be 
performed as a post-processing step. This can be achieved using the same grid and 
discretization as used when obtaining the multi-scale basis functions, and leads to an 
approximation with the following important properties: A post-processed flux which is 
conservative on the fine-scale primal grid. This post-processed flux allows for transport 
simulations to be performed on a significantly finer grid than the coarse control-volume 
scheme that was derived.  

It is important to note that the possibility of post-processing the fluxes is the most important 
property of the multiscale control-volume method. Moreover, the construction of the MCDD 
preconditioner explicitly preserves this property, such that at any iteration of an iterative 
approach, the approximate solution to the fine-scale problem can also be post-processed in 
an identical manner.   

3.5 Multiscale methods as iterative solvers 

The domain decomposition method formulated in Section 3.3 can be applied as a stand-
alone solver for the pressure system (4). This was the approach advocated in the early 
multiscale papers (Hou & Wu, 1997; Jenny, et al., 2003; Aarnes, 2004). Since the action of 
the method on a vector can be evaluated solving local systems related to the Schur 
complements, as well as a (relatively small) coarse linear system, we understand that the 
method offers an efficient way to obtain a pressure approximation and a mass 
conservative fine scale velocity field. Indeed, simulations of petroleum recovery indicate 
that in some cases, this strategy provides a fairly accurate and very cheap alternative to 
traditional approaches. 

However, the above strategy is insufficient for more challenging problems. A particular 
weakness of the multiscale methods is the reliance on somewhat arbitrary approximations 
to the Schur complements ����. Indeed, since the approximate Schur complements determine 
the subspace ����, we understand that for any approximate Schur complement, cases exist 
where the solution to the fine-scale problem lies in a space orthogonal to the multiscale 
space. Thus multiscale methods as direct solvers will always have problems with 
robustness.  The practical performance of multiscale methods unfortunately deteriorates 
with the number of spatial dimensions; to be specific, multiscale methods have turned out to 
perform significantly worse in three spatial dimensions than in 2D.  

When faced with these issues, there are a few techniques that can be applied to improve the 
solution. One is to consider sophisticated ways to construct ����, using in particular non-local 
information and information about the right hand side. Another approach, to be described 
next, is to apply the MCDD preconditioners in an iterative setting to improve the 
approximation. The simplest such strategy is a Richardson scheme, where we, equipped 
with an initial guess ��, define the iterative scheme  

���� � �� � ����(� � ���), 
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conservation on the coarse scale for variables ��. Note in particular that this means that 
��� = ��� for � � �, and that this linear transformation does not change the solution �. 

We now see that the coarse equations, as given by  

(��� � ���)���� = �� − (��� � ���)���� 
solve the problem given by Eq. (3) for with � � �������� and � � ��, the space of 
piecewise constant functions on the dual coarse grid. We have thus derived a coarse 
control volume discretization, utilizing exactly a multiscale basis function to represent the 
solution. As a direct method, this is the so-called Multiscale Control Volume (Finite 
Element) Method as was first discussed (assuming �� = 0 for � � �) in Jenny, et al., 2003. 
The multiscale control volume methods described in the context of linear preconditioners 
are the Mass Conservative Domain Decomposition preconditioners derived in Nordbotten 
& Bjørstad, 2008.   

Remark 8: In  Remark 1 at the end of the discretization section we saw that the standard finite 
element method is obtained by choosing test functions that are in the same multiscale space 
���� as the solution space. One may ask if the same is the case for multiscale methods. The 
answer is that yes, in the sense that if the integration on the primal grid defined in Eq. (7) is 
replaced by a weighted sum, using the multiscale basis itself as weights, the classical 
Multiscale Finite Element method of Hou & Wu, 1997 is recovered.  

3.4 Recovering a conservative fine-scale flux field 

The method as outlined so far constructs a two-level set of control volume methods. This 
can be seen from several perspectives: Either as the basis for a multi-level method, as the 
basis for a preconditioner in an iterative method, but also from the perspective of deriving a 
new, (coarse) single-scale control-volume method. We will consider the third perspective in 
this section. 

When discussing the coupled set of equations outlined in Section 2.1, we pointed out the 
importance of retaining local mass conservation. This property is often necessary to consider 
(almost) point-wise, while by construction, the control-volume methods consider this only 
on the primal cells of the grid. It is therefore natural to consider whether a post-processing 
can be performed to extend this cell-wise property to a more local property, and whether 
this operation can be conducted locally. 

For a local post-processing, it is natural to use the (cell-wise conservative) fluxes over 
boundaries of the primal grid as the basis of solving Neumann boundary problems inside 
each cell. The Neumann problem for the elliptic problems we consider is well-known to 
only admit solutions if the compatibility condition is satisfied, which is to say that the 
boundary conditions exactly integrate to the sum of all internal sources or sinks. The 
control-volume methods satisfy the compatibility condition by construction. Note that after 
post-processing, we will obtain a flux field that is everywhere conservative, but as a 
consequence will not everywhere satisfy Darcy’s law.  

In the case of single-scale control-volume methods, the permeability coefficient � is usually 
considered constant inside each primal cell, and locally post-processed fluxes can be 
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calculated analytically for some cell shapes. While this is not used much from the 
perspective of practical simulation, it is an invaluable tool in the derivation of error 
estimates.  

For the multiscale control-volume method, the permeability is of course possibly 
heterogeneous inside each coarse primal cell, and a numerical calculation must be 
performed as a post-processing step. This can be achieved using the same grid and 
discretization as used when obtaining the multi-scale basis functions, and leads to an 
approximation with the following important properties: A post-processed flux which is 
conservative on the fine-scale primal grid. This post-processed flux allows for transport 
simulations to be performed on a significantly finer grid than the coarse control-volume 
scheme that was derived.  

It is important to note that the possibility of post-processing the fluxes is the most important 
property of the multiscale control-volume method. Moreover, the construction of the MCDD 
preconditioner explicitly preserves this property, such that at any iteration of an iterative 
approach, the approximate solution to the fine-scale problem can also be post-processed in 
an identical manner.   

3.5 Multiscale methods as iterative solvers 

The domain decomposition method formulated in Section 3.3 can be applied as a stand-
alone solver for the pressure system (4). This was the approach advocated in the early 
multiscale papers (Hou & Wu, 1997; Jenny, et al., 2003; Aarnes, 2004). Since the action of 
the method on a vector can be evaluated solving local systems related to the Schur 
complements, as well as a (relatively small) coarse linear system, we understand that the 
method offers an efficient way to obtain a pressure approximation and a mass 
conservative fine scale velocity field. Indeed, simulations of petroleum recovery indicate 
that in some cases, this strategy provides a fairly accurate and very cheap alternative to 
traditional approaches. 

However, the above strategy is insufficient for more challenging problems. A particular 
weakness of the multiscale methods is the reliance on somewhat arbitrary approximations 
to the Schur complements ����. Indeed, since the approximate Schur complements determine 
the subspace ����, we understand that for any approximate Schur complement, cases exist 
where the solution to the fine-scale problem lies in a space orthogonal to the multiscale 
space. Thus multiscale methods as direct solvers will always have problems with 
robustness.  The practical performance of multiscale methods unfortunately deteriorates 
with the number of spatial dimensions; to be specific, multiscale methods have turned out to 
perform significantly worse in three spatial dimensions than in 2D.  

When faced with these issues, there are a few techniques that can be applied to improve the 
solution. One is to consider sophisticated ways to construct ����, using in particular non-local 
information and information about the right hand side. Another approach, to be described 
next, is to apply the MCDD preconditioners in an iterative setting to improve the 
approximation. The simplest such strategy is a Richardson scheme, where we, equipped 
with an initial guess ��, define the iterative scheme  

���� � �� � ����(� � ���), 
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where  represent one application of the multiscale method and  is a damping factor. We 
observe that when the multiscale method is applied as a stand-alone solver, this 
corresponds to applying a single Richardson iteration with the MCDD preconditioner and  

. The Richardson scheme will in general exhibit poor convergence for our problem. A 
better utilization of the multiscale method is as a preconditioner inside an iterative solver 
such as GMRES (Saad & Schultz, 1986). Since the problem is likely to be more difficult in 
some parts of the domain, the application of the preconditioner can be restrained to those 
parts, if they can be identified by error estimates.  

An important and often time consuming ingredient of GMRES is to ensure orthogonality of 
the basis vectors for the Krylov subspace in which the approximated solution lies. When 
GMRES is preconditioned with the multiscale method, this computational cost can be 
reduced considerably by exploiting a special feature of the solution: If the internal nodes  
are eliminated using an exact solver, e.g. introducing no approximation to , the residual 
in the interior will be zero after one application of the preconditioner as discussed in Remark 
7. This does not mean the pressure is exact for those cells, but rather that the influence of 
nodes on level  on the residual is lumped into the higher levels. This also means that 
GMRES does not need to minimize the residual for cells on level , the orthogonalization 
needs only consider levels , leading to an often significant reduction of the 
computational cost. Note that level  cannot be totally ignored, since some nodes there are a 
part of the flux expression for level  

We now realize that the MCDD applied as a preconditioner in an iterative setting possess 
several advantageous features in comparison to standard preconditioners:  

1. For relatively simple problems, where standard multiscale methods are applicable, the 
iterative procedure can be terminated after a single iteration.  

2. For moderately complex problems, the iterative method can be terminated at any point 
where the solution is deemed accurate enough, and a locally conservative flux field can 
be recovered.  

3. For truly challenging problems, the MCDD preconditioner is comparable to standard 
non-overlapping domain decomposition based preconditioners for these problems.  

Thus we see, for applications where the exact solution to the linear system is not 
necessary, the current methodology allows for a substantial savings in number of 
iterations. This is of great practical importance, since the error introduced by a discrete 
approximation to (2) can frequently be orders of magnitude larger than the tolerance used 
in traditional linear solvers.  

3.6 Computational cost 

While a full assessment of the computational cost is beyond the scope of the chapter, we will 
make some brief comments that allow the reader to get a general impression of the cost of 
both the multiscale methods as well as their application as preconditioners. 

The computational cost of the MCDD preconditioner is composed of three components. 
First, the approximate Schur complement system involves approximating the action of  
on a (small) set of vectors. Physically, this corresponds to solving the local problems inside 
the internal subdomains for given boundary conditions. Denoting the number of internal 
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subdomains as ���, a naïve estimate of cost would be ��� ⋅ �����. However, by 
construction, most approximate Schur complements will be local, such that each subdomain 
typically only has non-zero boundary conditions associated with the variables in �� that are 
associated with cells on the boundary of the subdomain. For Cartesian coarse subdomain, 
this is identified as the corners, such that the computational cost is proportional to ��� ⋅ 2� ⋅
��. Here �� is defined as the coarsening factor, which is the ratio of degrees of freedom in 
the fine and coarse spaces, �� ≡ ����

�����. The multiscale basis is only calculated once.  

Secondly, there is a cost associated with the right-hand side, which needs to evaluated at 
every iteration. As seen in Section 3.2, the right hand side is also associated with local 
calculations, forced by source terms in contrast to the multiscale basis functions. The cost is 
thus proportional to  ��� ⋅ �� ⋅ ��, where �� is the number of iterations.  

Finally, there is the cost associated with solving the coarse set of equations. Here, there are 
two contrasting strategies. The domain-decomposition strategies argue for aggressive 
coarsening, where the coarse problem has (almost) negligible size and cost. This has the 
advantage that the cost of the coarse solve can be neglected, at the expense of more costly 
construction of the multiscale basis. However, as the multiscale basis calculation is trivially 
parallel, this may be a good strategy on some computational architectures, and in particular 
if the selection of coarse grids is hard to automate. A contrasting strategy is in the multi-grid 
flavor, where a much less aggressive coarsening is applied, which leads to a non-negligible 
cost in the coarse problem. However, since the coarse problem has the same control-volume 
structure as the fine-scale discretization, the multiscale method can be called recursively. 
The resulting algorithm has a better performance from the perspective of computational 
cost, but may be more difficult to implement as the problem is no longer trivially parallel. 
Note that for a conservative approximation to be obtained, the reconstruction of the flux 
field must also be conducted recursively. 

In general, the multiscale methods are designed for problems where there is a coupling 
between the permeability � and the concentration field �. As � evolves locally, the 
multiscale basis functions may only need to be updated locally in space, allowing for 
further computational savings compared to a generic linear solver that is not adapted to 
these features. These aspects have been carefully highlighted in a suite of 2D test cases 
(Kippe, et al., 2008). 

4. Numerical examples 
In this section, we show numerical examples illustrating the properties of the domain 
decomposition method. For these examples, we have chosen the permeability field defined 
according to the SPE 10th comparative benchmark study much used to study upscaling and 
multiscale methods (Christie & Blunt, 2001). This test case involves a Cartesian 60 x 220 x 85 
grid. The permeability in the upper 35 layers have a somewhat smooth distribution 
(consistent with a shallow marine depositional system), whereas the 50 lower layers are 
characterized by sharp permeability contrasts and highly permeable channels with long 
correlation length (consistent with a fluvial depositional system). The lower layers are 
expected to pose challenges for linear solvers. Representative layers from the upper and 
lower parts of the formation are shown in Fig. 3. The permeability field spans more than 10 
orders of magnitude, rendering a challenging test problem for our methods. 
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where  represent one application of the multiscale method and  is a damping factor. We 
observe that when the multiscale method is applied as a stand-alone solver, this 
corresponds to applying a single Richardson iteration with the MCDD preconditioner and  

. The Richardson scheme will in general exhibit poor convergence for our problem. A 
better utilization of the multiscale method is as a preconditioner inside an iterative solver 
such as GMRES (Saad & Schultz, 1986). Since the problem is likely to be more difficult in 
some parts of the domain, the application of the preconditioner can be restrained to those 
parts, if they can be identified by error estimates.  

An important and often time consuming ingredient of GMRES is to ensure orthogonality of 
the basis vectors for the Krylov subspace in which the approximated solution lies. When 
GMRES is preconditioned with the multiscale method, this computational cost can be 
reduced considerably by exploiting a special feature of the solution: If the internal nodes  
are eliminated using an exact solver, e.g. introducing no approximation to , the residual 
in the interior will be zero after one application of the preconditioner as discussed in Remark 
7. This does not mean the pressure is exact for those cells, but rather that the influence of 
nodes on level  on the residual is lumped into the higher levels. This also means that 
GMRES does not need to minimize the residual for cells on level , the orthogonalization 
needs only consider levels , leading to an often significant reduction of the 
computational cost. Note that level  cannot be totally ignored, since some nodes there are a 
part of the flux expression for level  

We now realize that the MCDD applied as a preconditioner in an iterative setting possess 
several advantageous features in comparison to standard preconditioners:  

1. For relatively simple problems, where standard multiscale methods are applicable, the 
iterative procedure can be terminated after a single iteration.  

2. For moderately complex problems, the iterative method can be terminated at any point 
where the solution is deemed accurate enough, and a locally conservative flux field can 
be recovered.  

3. For truly challenging problems, the MCDD preconditioner is comparable to standard 
non-overlapping domain decomposition based preconditioners for these problems.  

Thus we see, for applications where the exact solution to the linear system is not 
necessary, the current methodology allows for a substantial savings in number of 
iterations. This is of great practical importance, since the error introduced by a discrete 
approximation to (2) can frequently be orders of magnitude larger than the tolerance used 
in traditional linear solvers.  

3.6 Computational cost 

While a full assessment of the computational cost is beyond the scope of the chapter, we will 
make some brief comments that allow the reader to get a general impression of the cost of 
both the multiscale methods as well as their application as preconditioners. 

The computational cost of the MCDD preconditioner is composed of three components. 
First, the approximate Schur complement system involves approximating the action of  
on a (small) set of vectors. Physically, this corresponds to solving the local problems inside 
the internal subdomains for given boundary conditions. Denoting the number of internal 
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subdomains as ���, a naïve estimate of cost would be ��� ⋅ �����. However, by 
construction, most approximate Schur complements will be local, such that each subdomain 
typically only has non-zero boundary conditions associated with the variables in �� that are 
associated with cells on the boundary of the subdomain. For Cartesian coarse subdomain, 
this is identified as the corners, such that the computational cost is proportional to ��� ⋅ 2� ⋅
��. Here �� is defined as the coarsening factor, which is the ratio of degrees of freedom in 
the fine and coarse spaces, �� ≡ ����

�����. The multiscale basis is only calculated once.  

Secondly, there is a cost associated with the right-hand side, which needs to evaluated at 
every iteration. As seen in Section 3.2, the right hand side is also associated with local 
calculations, forced by source terms in contrast to the multiscale basis functions. The cost is 
thus proportional to  ��� ⋅ �� ⋅ ��, where �� is the number of iterations.  

Finally, there is the cost associated with solving the coarse set of equations. Here, there are 
two contrasting strategies. The domain-decomposition strategies argue for aggressive 
coarsening, where the coarse problem has (almost) negligible size and cost. This has the 
advantage that the cost of the coarse solve can be neglected, at the expense of more costly 
construction of the multiscale basis. However, as the multiscale basis calculation is trivially 
parallel, this may be a good strategy on some computational architectures, and in particular 
if the selection of coarse grids is hard to automate. A contrasting strategy is in the multi-grid 
flavor, where a much less aggressive coarsening is applied, which leads to a non-negligible 
cost in the coarse problem. However, since the coarse problem has the same control-volume 
structure as the fine-scale discretization, the multiscale method can be called recursively. 
The resulting algorithm has a better performance from the perspective of computational 
cost, but may be more difficult to implement as the problem is no longer trivially parallel. 
Note that for a conservative approximation to be obtained, the reconstruction of the flux 
field must also be conducted recursively. 

In general, the multiscale methods are designed for problems where there is a coupling 
between the permeability � and the concentration field �. As � evolves locally, the 
multiscale basis functions may only need to be updated locally in space, allowing for 
further computational savings compared to a generic linear solver that is not adapted to 
these features. These aspects have been carefully highlighted in a suite of 2D test cases 
(Kippe, et al., 2008). 

4. Numerical examples 
In this section, we show numerical examples illustrating the properties of the domain 
decomposition method. For these examples, we have chosen the permeability field defined 
according to the SPE 10th comparative benchmark study much used to study upscaling and 
multiscale methods (Christie & Blunt, 2001). This test case involves a Cartesian 60 x 220 x 85 
grid. The permeability in the upper 35 layers have a somewhat smooth distribution 
(consistent with a shallow marine depositional system), whereas the 50 lower layers are 
characterized by sharp permeability contrasts and highly permeable channels with long 
correlation length (consistent with a fluvial depositional system). The lower layers are 
expected to pose challenges for linear solvers. Representative layers from the upper and 
lower parts of the formation are shown in Fig. 3. The permeability field spans more than 10 
orders of magnitude, rendering a challenging test problem for our methods. 
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(a) Uppermost layer 

 
(b) Lowermost layer 

Fig. 3. The base-10 logarithm of the permeability from the uppermost (a) and lowermost 
(b) layers in the SPE 10 test case. These are used in the 2D tests, and they are 
representative for the upper and lower part of the 3D formation, respectively. Blue and 
red corresponds to high and low-permeable regions, respectively. For convenience, the 
figures are rotated . 

On this grid, we will consider simple setups, with one injection well and one producer. Both 
for 2D and 3D tests the injector is located along the boundary (the position differs somewhat 
between the tests, as we avoid injecting into low-permeable cells), and the producer is 
located in the middle of the domain. The pressure equation (2) is discretized using a two-
point scheme, and for simplicity, periodic boundary conditions are assumed. For all test 
cases, post-processing of the flux field as discussed in Section 3.4 will be applied to ensure 
mass conservation on the fine scale. 

4.1 2D examples 

We start with two instructive examples in 2D, using permeability from the uppermost and 
lowermost layer of the SPE10 dataset, as pictured in Fig. 3. Thus the fine scale grid has 60 
x 220 cells, and we use a coarse grid with 4x20 cells, rendering a coarsening factor of 165. 
Fig. 4 shows the pressure profiles obtained by a fine scale solution and the multiscale 
solver. For the upper layer, the multiscale solution is similar to that of the true solution; 
and has a quality that is as good as can be expected keeping in mind that the multiscale 
method is essentially a coarse discretization. In both solutions the pressure contours clearly 
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indicate flow from injector to the producer, although again, the resolution of the local flow 
around the producer is better refined on the fine-scale grid.  For the lower layer, the 
multiscale solution is highly oscillatory with false local minima in the solution. This can be 
interpreted as a case where the approximation to the Schur complement   is not good 
enough, where a better approximation, or iterations, are needed to produce a pressure 
profile that resembles that of the fine scale solution. 

  
(a) Fine scale, upper layer  (b) Multiscale, upper layer 

 
(c) Fine scale, lower layer  (d) Multiscale, lower layer 

Fig. 4. Pressure solutions obtained by a fine scale and a multiscale solution for the 
uppermost and lowermost permeability layers. The injection well is located along the left 
boundary for all plots, while the producer is associated with the downward spike visible in 
the middle of the domain visible in all figures except (d). 

For the uppermost layer of SPE10, the relatively good MS approximation to pressure is 
reflected in the post-processed fluxes. We illustrate this by the solution to the transport 
equation (1), as displayed in Fig. 5 (a) and (b). Note that despite the relatively coarse grid 
used for the multiscale control-volume approximation, the reconstruction of the fine-scale 
fluxes leads to a flow field with no visible artifacts. From the perspective of practical 
simulation, the solutions are indistinguishable.  

Surprisingly, despite the relatively poor approximation to the pressure field, quite 
satisfactory fluxes can be obtained also for the lowermost layer as shown in Fig. 5 (c-d). 
This illustrates that the coarse scale conservation of mass combined with post-processing 
of the velocity field, leads to a multiscale approximation that is applicable to transport 
problems also for highly challenging problems. Note however that in these lower layers, 
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for 2D and 3D tests the injector is located along the boundary (the position differs somewhat 
between the tests, as we avoid injecting into low-permeable cells), and the producer is 
located in the middle of the domain. The pressure equation (2) is discretized using a two-
point scheme, and for simplicity, periodic boundary conditions are assumed. For all test 
cases, post-processing of the flux field as discussed in Section 3.4 will be applied to ensure 
mass conservation on the fine scale. 

4.1 2D examples 

We start with two instructive examples in 2D, using permeability from the uppermost and 
lowermost layer of the SPE10 dataset, as pictured in Fig. 3. Thus the fine scale grid has 60 
x 220 cells, and we use a coarse grid with 4x20 cells, rendering a coarsening factor of 165. 
Fig. 4 shows the pressure profiles obtained by a fine scale solution and the multiscale 
solver. For the upper layer, the multiscale solution is similar to that of the true solution; 
and has a quality that is as good as can be expected keeping in mind that the multiscale 
method is essentially a coarse discretization. In both solutions the pressure contours clearly 
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indicate flow from injector to the producer, although again, the resolution of the local flow 
around the producer is better refined on the fine-scale grid.  For the lower layer, the 
multiscale solution is highly oscillatory with false local minima in the solution. This can be 
interpreted as a case where the approximation to the Schur complement   is not good 
enough, where a better approximation, or iterations, are needed to produce a pressure 
profile that resembles that of the fine scale solution. 

  
(a) Fine scale, upper layer  (b) Multiscale, upper layer 

 
(c) Fine scale, lower layer  (d) Multiscale, lower layer 

Fig. 4. Pressure solutions obtained by a fine scale and a multiscale solution for the 
uppermost and lowermost permeability layers. The injection well is located along the left 
boundary for all plots, while the producer is associated with the downward spike visible in 
the middle of the domain visible in all figures except (d). 

For the uppermost layer of SPE10, the relatively good MS approximation to pressure is 
reflected in the post-processed fluxes. We illustrate this by the solution to the transport 
equation (1), as displayed in Fig. 5 (a) and (b). Note that despite the relatively coarse grid 
used for the multiscale control-volume approximation, the reconstruction of the fine-scale 
fluxes leads to a flow field with no visible artifacts. From the perspective of practical 
simulation, the solutions are indistinguishable.  

Surprisingly, despite the relatively poor approximation to the pressure field, quite 
satisfactory fluxes can be obtained also for the lowermost layer as shown in Fig. 5 (c-d). 
This illustrates that the coarse scale conservation of mass combined with post-processing 
of the velocity field, leads to a multiscale approximation that is applicable to transport 
problems also for highly challenging problems. Note however that in these lower layers, 
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the multiscale approximation leads to some cases where flow-channels are either 
suppressed or exaggerated.  

The results from the concentration maps in Fig 5 are further confirmed by considering time 
series of the concentration in the production well, as shown in Fig. 6. For the upper layer, 
the curves corresponding to the fine scale and multiscale solutions are almost identical, and 
the differences are relatively small also for the lower layer. 

 
(a) Fine scale, upper layer  (b) Multiscale, upper layer 

  
(c) Fine scale, lower layer  (d) Multiscale, lower layer 

Fig. 5. Concentration profiles obtained by solving the transport equation based on the post-
processed pressure solutions. High concentration of the injected species is indicated with 
blue. We emphasis that for the multiscale solution, the velocity field is post processed to 
achieve local conservation of mass. 

Remark 9: The appearance of oscillatory behavior in the multiscale solution is not 
unexptected. Again, we can analyze the multiscale control-volume method as simply being 
a single-scale control volume method on the coarse primal grid. It is known that for 
problems where the anisotropy in  is not aligned with the grid, local control-volume 
methods (and indeed this also holds for some other discretization families) in general cannot 
be constructed that are both consistent, as well as oscillation-free (Nordbotten, et al., 2007; 
Keilegavlen, et al., 2009). The channelized features that are shown in Fig. 3b are clearly not 
aligned with the general directions of the domain, and therefore they will lead to an 
effective permeability on the coarse grid that is also not aligned with the grid. The argument 
from the single-scale methods can thus be lifted to the multi-scale setting, which then 
informally may be states as: No approximation  can be defined that leads to a local coarse-level 
control-volume method that is monotone for general channelized media. 
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(a) Upper layer   (b) Lower layer 

Fig. 6. Time series of the concentration in the production well in the upper and lower layer. 

4.2 3D examples 

The 2D examples showed that the multiscale method can provide reliable solutions for 
challenging permeability fields and relatively high coarsening ratios. As previously 
mentioned, the performance of the multiscale method deteriorates significantly when going 
from 2D to 3D. As we will see, the multiscale solution may be insufficient for transport 
purposes, and the application as a MCDD preconditioner inside an iterative solver is 
essential in order to recover accuracy. For all 3D simulations, we consider coarse grid cells 
composed of 15 x 11 x 5 fine cells, rendering a coarsening ratio of 825. 

4.2.1 Multiscale method as preconditioner 

We first consider simulations in the 10 uppermost and lowermost layers of the SPE10 
formation, extending the two cases considered in the 2D case. Again there is an injection 
well in a corner of the domain, and a producer in the middle of the domain. We consider 
transport solutions based on a fine scale solution, a pure multiscale solution, and from 
MCDD preconditioned GMRES iterations. Since visualization is more difficult in 3D than in 
2D, we will in 3D only give the time-series type plots similar to Figs. 6. The time series of 
concentration in the production cells are shown in Fig. 7 both for the upper and lower 
layers. For the upper layers, we observe that in contrast with the 2D examples, the 
multiscale solution now deviates significantly from the fine scale solution. Applying some 
GMRES iterations improves the quality of the solution somewhat, until after a sufficient 
number of iterations renders a curve that is indistinguishable from the fine scale. For the lower 
layers, the stand-alone multiscale solver produce a time series that is vastly different from the 
fine scale solution, and it is therefore not shown in the figure. For this difficult problem, it 
takes more iterations to produce a time series that resembles that of the fine scale solve. 

The above test shows that in 3D the multiscale method does not reproduce concentration 
curves that are comparable to the fine-scale curves even when for relatively easy case of the 
upper layers of SPE10. Thus the present test shows the utility of having a framework that, 
when the fast multiscale solution is insufficient, can fall back to an iterative scheme, and 
fairly quickly recover a velocity field that is good enough for transport purposes. The 
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the multiscale approximation leads to some cases where flow-channels are either 
suppressed or exaggerated.  

The results from the concentration maps in Fig 5 are further confirmed by considering time 
series of the concentration in the production well, as shown in Fig. 6. For the upper layer, 
the curves corresponding to the fine scale and multiscale solutions are almost identical, and 
the differences are relatively small also for the lower layer. 

 
(a) Fine scale, upper layer  (b) Multiscale, upper layer 

  
(c) Fine scale, lower layer  (d) Multiscale, lower layer 

Fig. 5. Concentration profiles obtained by solving the transport equation based on the post-
processed pressure solutions. High concentration of the injected species is indicated with 
blue. We emphasis that for the multiscale solution, the velocity field is post processed to 
achieve local conservation of mass. 

Remark 9: The appearance of oscillatory behavior in the multiscale solution is not 
unexptected. Again, we can analyze the multiscale control-volume method as simply being 
a single-scale control volume method on the coarse primal grid. It is known that for 
problems where the anisotropy in  is not aligned with the grid, local control-volume 
methods (and indeed this also holds for some other discretization families) in general cannot 
be constructed that are both consistent, as well as oscillation-free (Nordbotten, et al., 2007; 
Keilegavlen, et al., 2009). The channelized features that are shown in Fig. 3b are clearly not 
aligned with the general directions of the domain, and therefore they will lead to an 
effective permeability on the coarse grid that is also not aligned with the grid. The argument 
from the single-scale methods can thus be lifted to the multi-scale setting, which then 
informally may be states as: No approximation  can be defined that leads to a local coarse-level 
control-volume method that is monotone for general channelized media. 
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(a) Upper layer   (b) Lower layer 

Fig. 6. Time series of the concentration in the production well in the upper and lower layer. 

4.2 3D examples 

The 2D examples showed that the multiscale method can provide reliable solutions for 
challenging permeability fields and relatively high coarsening ratios. As previously 
mentioned, the performance of the multiscale method deteriorates significantly when going 
from 2D to 3D. As we will see, the multiscale solution may be insufficient for transport 
purposes, and the application as a MCDD preconditioner inside an iterative solver is 
essential in order to recover accuracy. For all 3D simulations, we consider coarse grid cells 
composed of 15 x 11 x 5 fine cells, rendering a coarsening ratio of 825. 

4.2.1 Multiscale method as preconditioner 

We first consider simulations in the 10 uppermost and lowermost layers of the SPE10 
formation, extending the two cases considered in the 2D case. Again there is an injection 
well in a corner of the domain, and a producer in the middle of the domain. We consider 
transport solutions based on a fine scale solution, a pure multiscale solution, and from 
MCDD preconditioned GMRES iterations. Since visualization is more difficult in 3D than in 
2D, we will in 3D only give the time-series type plots similar to Figs. 6. The time series of 
concentration in the production cells are shown in Fig. 7 both for the upper and lower 
layers. For the upper layers, we observe that in contrast with the 2D examples, the 
multiscale solution now deviates significantly from the fine scale solution. Applying some 
GMRES iterations improves the quality of the solution somewhat, until after a sufficient 
number of iterations renders a curve that is indistinguishable from the fine scale. For the lower 
layers, the stand-alone multiscale solver produce a time series that is vastly different from the 
fine scale solution, and it is therefore not shown in the figure. For this difficult problem, it 
takes more iterations to produce a time series that resembles that of the fine scale solve. 

The above test shows that in 3D the multiscale method does not reproduce concentration 
curves that are comparable to the fine-scale curves even when for relatively easy case of the 
upper layers of SPE10. Thus the present test shows the utility of having a framework that, 
when the fast multiscale solution is insufficient, can fall back to an iterative scheme, and 
fairly quickly recover a velocity field that is good enough for transport purposes. The 
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increased difficulty in approximating the solution is also shown in the development of the 
residual during the corresponding GMRES iterations, see Fig. 8. In the lower layers the 
residual decreases slower and more iterations are needed to obtained what might be 
deemed a satisfactory solution. Based on these two simple tests, we observe that the relative 
residual error in the linear solver of 10�� to 10�� is needed in order to reproduce a good 
transport solution. This value is many orders of magnitude higher than the typical residual 
errors used in iterative solvers for the linear system. Indeed, the residual error as a function 
of iterations is shown in Fig. 8, where we see that more than 600 iterations are needed to 
obtain a converged iteration for the upper layers. The ability to truncate the iterations early 
when using MCDD as a preconditioner will therefore in this case represent a savings of 
about 90% in terms of number of iterations in the iterative solver. Also for the lower layers, 
an early truncation saves a majority of the computational effort. 

   
(a) Upper layers   (b)  Lower layers 

Fig. 7. Time series of the concentration in the production well for simulations in the upper 
and lower part of the SPE10 formation. The solutions obtained from the fine scale are 
located on top of those from 60 and 420 GMRES iterations for the upper and lower parts, 
respectively. A multiscale solution is not shown for the lower part, due to the low quality of 
the results produced. 

 
Fig. 8. The residual as a function of GMRES iterations for parts of the upper and lower part of 
the formation. The iterations terminates when the relative residual is reduced to a factor �����.  

 
Mass Conservative Domain Decomposition for Porous Media Flow 253 

At this point, it is appropriate to mention a third option to improve the multiscale solution, 
in addition to advanced approximations of the Schur complements  ���� and increasing the 
number of iterations: By increasing the number of coarse variables (in essence moving 
variables to level 0), the range of the multiscale basis functions ��� can be increased to 
capture more of the solution. These ideas are exploited in (Sandvin, et al., Submitted), and 
show promising results in that the number of iterations needed can be reduced significantly 
with only a minor increase in the computational cost. 

4.2.2 Quality control of MCDD solution  

Returning to the original formulation of the system, we realize that an MCDD-based 
solution can be interpreted as the exact solution of Equations (2), for a modified permeability 
�∗. Using the pressure solution from the iterative solver together with the post-processed 
fluxes, we can calculate �∗. As the permeability is typically a value associated with great 
uncertainty for geological applications, we can compare the difference between � and �∗ as a 
metric on the quality of the MCDD-based approximation. The most basic version of this 
comparison is to recall that from the physical motivation of the problem, the original 
permeability � is symmetric positive definite, and we can thus assess the quality of the 
approximate solution based on whether the modified permeability �∗ also satisfies this 
physical constraint.  

In Table 1, iteration counts and the number of sign changes are shown for a series of 
residual tolerances for GMRES. The grid consists of 60x220x10 cells, and the permeability is 
found from the channelized part of the SPE10 formation. Note that for the SPE10 dataset, the 
permeability tensor is diagonal, so positive definiteness is equivalent to positive diagonal 
elements. The table shows that for a high residual tolerance, more than a third of the fluxes 
change sign during post processing. Moreover, even for high accuracy of the GMRES 
solution there are some sign changes during flux post-processing. 

log��(Tolerance) -2 -4 -6 -8 -10 

Iterations 224 429 717 915 1079 

Negative elements in �∗ 37% 9.4% 1.8% .17% .0018% 

Table 1. The relative residual in GMRES, together with numbers for iterations and 
percentage of negative elements in the modified permeability. 

The deviation of the flux and potential from a physical flow field, as measured by �∗, 
represents one attractive metric for assessing the approximation quality. However, more 
classical a posteriori error bounds and estimates are also applicable in this setting, and may 
be of equal importance for practical applications. 

5. Concluding remarks  
The present chapter has reviewed the construction of multiscale control volume methods in 
arbitrary dimensions from an algebraic perspective, allowing for a completely decoupled 
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increased difficulty in approximating the solution is also shown in the development of the 
residual during the corresponding GMRES iterations, see Fig. 8. In the lower layers the 
residual decreases slower and more iterations are needed to obtained what might be 
deemed a satisfactory solution. Based on these two simple tests, we observe that the relative 
residual error in the linear solver of 10�� to 10�� is needed in order to reproduce a good 
transport solution. This value is many orders of magnitude higher than the typical residual 
errors used in iterative solvers for the linear system. Indeed, the residual error as a function 
of iterations is shown in Fig. 8, where we see that more than 600 iterations are needed to 
obtain a converged iteration for the upper layers. The ability to truncate the iterations early 
when using MCDD as a preconditioner will therefore in this case represent a savings of 
about 90% in terms of number of iterations in the iterative solver. Also for the lower layers, 
an early truncation saves a majority of the computational effort. 
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Fig. 7. Time series of the concentration in the production well for simulations in the upper 
and lower part of the SPE10 formation. The solutions obtained from the fine scale are 
located on top of those from 60 and 420 GMRES iterations for the upper and lower parts, 
respectively. A multiscale solution is not shown for the lower part, due to the low quality of 
the results produced. 

 
Fig. 8. The residual as a function of GMRES iterations for parts of the upper and lower part of 
the formation. The iterations terminates when the relative residual is reduced to a factor �����.  
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At this point, it is appropriate to mention a third option to improve the multiscale solution, 
in addition to advanced approximations of the Schur complements  ���� and increasing the 
number of iterations: By increasing the number of coarse variables (in essence moving 
variables to level 0), the range of the multiscale basis functions ��� can be increased to 
capture more of the solution. These ideas are exploited in (Sandvin, et al., Submitted), and 
show promising results in that the number of iterations needed can be reduced significantly 
with only a minor increase in the computational cost. 

4.2.2 Quality control of MCDD solution  

Returning to the original formulation of the system, we realize that an MCDD-based 
solution can be interpreted as the exact solution of Equations (2), for a modified permeability 
�∗. Using the pressure solution from the iterative solver together with the post-processed 
fluxes, we can calculate �∗. As the permeability is typically a value associated with great 
uncertainty for geological applications, we can compare the difference between � and �∗ as a 
metric on the quality of the MCDD-based approximation. The most basic version of this 
comparison is to recall that from the physical motivation of the problem, the original 
permeability � is symmetric positive definite, and we can thus assess the quality of the 
approximate solution based on whether the modified permeability �∗ also satisfies this 
physical constraint.  

In Table 1, iteration counts and the number of sign changes are shown for a series of 
residual tolerances for GMRES. The grid consists of 60x220x10 cells, and the permeability is 
found from the channelized part of the SPE10 formation. Note that for the SPE10 dataset, the 
permeability tensor is diagonal, so positive definiteness is equivalent to positive diagonal 
elements. The table shows that for a high residual tolerance, more than a third of the fluxes 
change sign during post processing. Moreover, even for high accuracy of the GMRES 
solution there are some sign changes during flux post-processing. 

log��(Tolerance) -2 -4 -6 -8 -10 

Iterations 224 429 717 915 1079 

Negative elements in �∗ 37% 9.4% 1.8% .17% .0018% 

Table 1. The relative residual in GMRES, together with numbers for iterations and 
percentage of negative elements in the modified permeability. 

The deviation of the flux and potential from a physical flow field, as measured by �∗, 
represents one attractive metric for assessing the approximation quality. However, more 
classical a posteriori error bounds and estimates are also applicable in this setting, and may 
be of equal importance for practical applications. 

5. Concluding remarks  
The present chapter has reviewed the construction of multiscale control volume methods in 
arbitrary dimensions from an algebraic perspective, allowing for a completely decoupled 
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implementation of the fine-level (control volume) discretization and the multi-scale 
framework. We have emphasized several important aspects, including the points where key 
approximations are made, together with both their algebraic and physical interpretations. 
By bringing attention to the formulation of multiscale methods in this general setting, we 
have been able to highlight aspects of how multiscale control volume methods relate to 
classical single-scale discretizations, iterative preconditioners, and multi-level 
approximations. Through carefully chosen numerical examples, we have sought to illustrate 
both the quality of the multiscale approximation to the primary variable (pressure), but 
more importantly the role of the multiscale approximation in the setting of a coupled system 
of equations. These examples clearly illustrate the increasing complexity faced with 
problems in 3D over 2D, and the care with which one needs to deal with notions of 
approximate solvers and multiscale numerics.  

In closing this chapter we wish to take the opportunity to discuss some of the main obstacles 
and benefits of multiscale methods as one considers more challenging problems.  

As a stand-alone solver for a single elliptic problem, it is difficult for multiscale methods and 
preconditioners to compete with multigrid methods. The advantage of the methodology lies 
therefore in different aspects.  

 A coarse discretization is obtained directly, with explicit coarse flux expressions, 
leading to an understanding of the nature of the effective coarse-scale operator for the 
system.  

 For time-dependent, where multiple (similar) problems need to be solved in succession, 
a large amount of calculations can be re-used from previous time-steps.  

 For (locally) spatially periodic problems, sub-domain problems may be identical and 
computational savings can be obtained through re-use again. 

 For problems with scale-separation (where homogenization is applicable), the 
multiscale method gives a good approximation to both the homogenized and true 
solutions after a single iteration.  

Despite the initial promise, and the evidence that the advantages can be realized for model 
problems, several challenges remain before multiscale methods attain the robustness 
required for practical applications. Some of the major limitations, together with their 
potential remedies are:  

 For irregular grids (both on the fine and coarse scale) and for anisotropic media, the 
multiscale approximation is again less robust, especially when local Schur 
approximations are applied. To some extent, this can be overcome by oversampling, 
through enriching the coarse space, or by bottom-up approaches such as matrix 
probing, although as noted in Remark 9, a local and consistent coarse operator can in 
general never be designed. 

 For non-linear elliptic equations (e.g. if the permeability coefficient is a function of the 
pressure or its gradients), the method is no longer residual-free in the interior if the 
multiscale basis functions are re-used. Recalculating multiscale basis functions in an 
iterative setting is prohibitively expensive, and it remains unclear if good multiscale 
approximations can be constructed.  

 For higher-dimensional problems (more than 3), the quality of multiscale 
approximations has yet to be addressed at all.  
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With these perspectives in mind, it is clear that multiscale methods and preconditioners are 
still a topic of very active research. As such, there will most certainly be aspects of the 
current chapter that later research will both clarify and improve upon. Nevertheless, we 
hope that the present text succeeds in giving a current perspective on multiscale methods 
that will have value for both the general and specialized reader.  
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implementation of the fine-level (control volume) discretization and the multi-scale 
framework. We have emphasized several important aspects, including the points where key 
approximations are made, together with both their algebraic and physical interpretations. 
By bringing attention to the formulation of multiscale methods in this general setting, we 
have been able to highlight aspects of how multiscale control volume methods relate to 
classical single-scale discretizations, iterative preconditioners, and multi-level 
approximations. Through carefully chosen numerical examples, we have sought to illustrate 
both the quality of the multiscale approximation to the primary variable (pressure), but 
more importantly the role of the multiscale approximation in the setting of a coupled system 
of equations. These examples clearly illustrate the increasing complexity faced with 
problems in 3D over 2D, and the care with which one needs to deal with notions of 
approximate solvers and multiscale numerics.  

In closing this chapter we wish to take the opportunity to discuss some of the main obstacles 
and benefits of multiscale methods as one considers more challenging problems.  

As a stand-alone solver for a single elliptic problem, it is difficult for multiscale methods and 
preconditioners to compete with multigrid methods. The advantage of the methodology lies 
therefore in different aspects.  

 A coarse discretization is obtained directly, with explicit coarse flux expressions, 
leading to an understanding of the nature of the effective coarse-scale operator for the 
system.  

 For time-dependent, where multiple (similar) problems need to be solved in succession, 
a large amount of calculations can be re-used from previous time-steps.  

 For (locally) spatially periodic problems, sub-domain problems may be identical and 
computational savings can be obtained through re-use again. 

 For problems with scale-separation (where homogenization is applicable), the 
multiscale method gives a good approximation to both the homogenized and true 
solutions after a single iteration.  

Despite the initial promise, and the evidence that the advantages can be realized for model 
problems, several challenges remain before multiscale methods attain the robustness 
required for practical applications. Some of the major limitations, together with their 
potential remedies are:  

 For irregular grids (both on the fine and coarse scale) and for anisotropic media, the 
multiscale approximation is again less robust, especially when local Schur 
approximations are applied. To some extent, this can be overcome by oversampling, 
through enriching the coarse space, or by bottom-up approaches such as matrix 
probing, although as noted in Remark 9, a local and consistent coarse operator can in 
general never be designed. 

 For non-linear elliptic equations (e.g. if the permeability coefficient is a function of the 
pressure or its gradients), the method is no longer residual-free in the interior if the 
multiscale basis functions are re-used. Recalculating multiscale basis functions in an 
iterative setting is prohibitively expensive, and it remains unclear if good multiscale 
approximations can be constructed.  

 For higher-dimensional problems (more than 3), the quality of multiscale 
approximations has yet to be addressed at all.  
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With these perspectives in mind, it is clear that multiscale methods and preconditioners are 
still a topic of very active research. As such, there will most certainly be aspects of the 
current chapter that later research will both clarify and improve upon. Nevertheless, we 
hope that the present text succeeds in giving a current perspective on multiscale methods 
that will have value for both the general and specialized reader.  
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1. Introduction 
The aim of the chapter is to show the FVM capabilities in the accurate and efficient prediction 
of transport phenomena in porous media including either biological, chemical reactions or 
liquid-solid phase transformations. Four applied technological problems are solved with the 
FVM. Problem 1 is related to heat and mass diffusion in a saturated porous media where 
chemical and biological reactions occur. Such a situation can be found in compost piles 
resulting from contaminated water treatments.  Field experimental data are used to assess the 
quality of FVM calculations for temperature and oxygen concentration distribution time 
variations along the prediction of thermal explosions (Moraga, 2009) and effect of the moisture 
in compost piles self-heating (Zambra, 2011). Problem 2 deals with the improvement of 
thermal energy efficiency and pollution reduction in hydrocarbons combustion. Methane 
combustion with air in a cylindrical porous burner is investigated by solving 2D unsteady 
continuity, linear momentum, energy, and chemical species governing equations with the 
FVM. Sensibility studies performed via numerical tests allowed to obtain numerical results for 
unsteady velocity and temperature distributions, along to the displacement of the combustion 
zone. The effects of inlet reactants velocity (methane and air) in the range 0.3-0.6 m/s; excess 
air ratios between 3 and 6 and porosities of 0.3 up to 0.6 in the fluid dynamics, forced 
convection heat transfer and combustion process are described (Moraga, 2008). Problem 3 is 
devoted to characterize 3D natural convection and heat conduction with solidification inside a 
cavity filled with a porous media, in which a Darcy-Brinkman-Forchheimer flow model is 
used. This infiltration technique can be applied to produce new materials with enhanced 
physical properties. A fixed grid method is used along the FVM to solve, with a temperature 
dependent liquid fraction, the moving boundary problem by using a power law model for 
binary non Newtonian alloys (Moraga, 2010; Moraga, 2010). Problem 4 describes 3D turbulent 
convective heat transfer in a bioreactor, including the self-heating of the porous material due 
to chemical and biological reactions. FVM simulation based on a coupled heat mass transfer 
external forced convection model is used to assess the effects of reactor geometry, self- heating 
parameters, air flow and temperature in the bioreactor performance. The mathematical model 
includes the convective turbulent flow of momentum, energy and oxygen concentration, with 
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the κ-ε turbulence model, and the diffusion of energy and oxygen concentration in the 
saturated porous medium. Numerical results for the dependent variables are successfully 
validated with experimental data. Issues such as the use of dynamic time steps, under-relation 
of dependent variables and local refined meshes are discussed in each one of the problems 
solved.  The pressure-velocity-temperature-chemical species coupling is discussed and a novel 
PSIMPLER method for the FVM is presented (Moraga, 2010). The stability, rate of convergence 
and efficiency of the PSIMPLER method is determined by solving natural, forced and mixed 
heat convection inside cavities by comparison with the solution obtained by using the 
standard SIMPLE algorithm. Improvements achieved in convergence rates by modifying the 
predictor-corrector schemes used to solve the discretized fluid mechanics, heat and mass 
transfer equations are discussed in some of the numerical experiments presented. 

2. General scheme for the classic Finite Volume Method (Patankar, 1980) 
Convective fluid dynamics/heat and mass transfer, for either laminar or turbulent flows of 
Newtonian or non-Newtonian fluids, with phase change in porous media is described by 
partial differential equations. Systems of nonlinear second order partial differential 
equations can be efficiently solved numerically using the finite volume method. Each 
governing equation is treated in the generalized form for a transport equation, with 
unsteady, convection, diffusion and linearized source terms: 

       p cdiv u div grad S S
t


   


    


  (1) 

where  is the dependent variable,  density, t time, u velocity vector,  diffusion coefficient, 
Scindependent source term and Spdependent source term. No convection is considered inside 
the volume occupied by the MWM, since the flow velocities are zero in that region, and 
diffusion becomes the only transport mechanism inside this porous medium. This “blocked” 
region is implemented by setting a very large numerical viscosity (1030) for the control volumes 
enclosed in such region, which renders the velocity essentially zero (~10-30) inside the material. 

The time integration is performed with an explicit Euler scheme: 

 
t t t
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At each time step, the system of discretized nodal equations for each main dependent 
variable (velocity components, temperature and mass fraction) is solved iteratively by 
internal iterations, with a combination of the alternating tri-diagonal matrix algorithm 
(TDMA) and Gauss-Seidel method. The sequential coupling of these main variables is 
accomplished by the SIMPLE method in the external iterations. Under-relaxation is always 
applied to the dependent variables during these external iterations. 

3. Self-heating in compost pile solved with FVM 
3.1 General mathematical models for porous media applied to compost pile 

Richard equation (RE) (Richards, 1931) is a standard, frequently used approach for 
modeling and describing flow in variably saturated porous media. When do not consider 
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gravitational and the source term effects, and is introduced a new term
 D 

, the follow 
equation can be used: 

  D
t 
 
  


 (3) 

The volumetric water content   is the quotient between water volume and the total sample 
volume, so it is has not unit and its values are between 0 and 1. 

The effects of the porosity and type of soil should be introduced by the  D   parameter. A 
non-linear equation for this parameter is reported for Serrano (Serrano, 2004). 
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The constants 1 2, ,    and  , may be obtained by experimental field test. The Eqs. (3) and 
(4) are used when the specific hydraulic properties of the compost pile are not available. 
Oxidation and microorganism activity inside the pile are incorporated in the model by 
volumetric heat generation. For simplicity, local thermal equilibrium is assumed, which is a 
common assumption for porous medium and packed particle beds (Nield & Bejan, 1992). 
The equations for the temperature and the oxygen concentration are (Zambra et al., 2011): 
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In Eqs. (5) and (6) *
1 1 1*A A   and * *c c cA A  , where 1A  and cA  are the pre-exponential 

factor for the oxidation of the cellulose and bio-mass growth, respectively. The coefficients 
1 and c  are parameters that allows relations between the variables T and oxC  which are 

function of the moisture and oxygen concentration at time t. The constants cE , 1E , 2E , are 
the activation energy for the cellulose, bio-mass growth and inhibition of biomass growth, 
respectively. The effects of the vaporization of water in the internal energyare calculated 
with the third term of the right hand side of Eq. (5), where vL  is the vaporization enthalpy, 

va  is the water vapor density,  ( )q   is the mass water flux and vX  is the vapor quality. The 
total porosity ( fl ) is calculated in terms of the apparent density and real density, w  and 

air  are the fraction of water and air into the pore respectively. 
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Thermodynamics equilibrium and ideal mixture between oxygen and water are assumed in 
the porous medium, 
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 eff air air w w s cK k k k      (8) 

  , , , ,p T air air p air w w p w s c p ceff
C C C C          (9) 

 ,eff air air cD D  (10) 

where effK  and effD  are the effective properties which are considered dependent of 
temperature, and ,p airC , ,p wC  and ,p cC  are specific heat capacity of the air, water and 
cellulose. Oxygen concentrations variations are affected by cellulosic oxidation. This 
assumption is incorporated in the second term of right hand side Eq. (6). 

3.2 Diffusion of temperature and oxygen concentration 

3.2.1 Mathematical model 

Cellulosic oxidation and micro-organism activity inside the compost pile are taken into 
account by the model in the form of a volumetric heat generation source. When is 
considered one fluid phase (air), the heat transfer eq. (5) take the form. 
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while the oxygen concentration within the pile is described by 
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In equations (3) and (4), cA  is the pre-exponential factor for the oxidation rate of the 
cellulose, and. Heat and mass transfer properties in the porous medium are defined in terms 
of the pile porosity   as   

 (1 )eff fl air fl cK k k    ;   , , ,(1 )p T fl air p air fl c p ceff
C C C       ;  ,eff fl air cD D  (13) 

where effK  and effD  are respectively the effective thermal conductivity and diffusion 

coefficient, which are considered independent of the temperature and concentration. In 
these expressions the subscript c refers to the cellulose. Details for the formulation of the 
term representing the heat generated by the biomass have been given by Chen and Mitchell 
(Chen & Mitchell, 1996). The parameter values used in the mathematical model for the 
processes that take place inside the porous block of waste material were obtained from 
reference (Sidhu et al., 2007) and are presented in Table 1. 

On FVM Transport Phenomena Prediction in 
Porous Media with Chemical/Biological Reactions or Solid-Liquid Phase Change 

 

261 

Parameter Value Parameter Value 
AC 1.8x104 Cox,0 0.272
A1 2x106 Qb 7.66x106 
A2 6.86x1032 QC 5.5x109 
Cair 1005 kair 0.026 
CC 3320 kC 0.18 

,o airD  2.4x10-7 fl  0.3
EC 1.1x105   air 1.17
E1 1x105 b 575
E2 2x105  c 1150

Table 1.Constant values used in the mathematical model for the internal processes in the 
compost pile. 

3.2.2 Numerical results of temperature time evolution and grid study 

A 2D case of self-heating in a rectangular porous pile, with 2.5 m height (H) and 5 m length 
(L), was investigated using three grids, with 100x100, 200x200 and 300x300 nodes, and three 
time steps: 300s, 600s and 3600s.The temperature time evolution was calculated in the three 
positions: f) H/4, L/4; g) H/2, L/2 and h) 3H/4, 3L/4.Results of the time needed to cause 
auto-ignition, in days, are shown in Table 2, for the three positions. The use of a time step of 
600s and a grid with 300x300 nodes allows to calculate a time for auto-ignition: 247, 246 and 
250 days, at the three vertical positions, respectively, independently of the time a space 
discretizations, as  is showed in the table 2. 
 

Grids t (s) f) H/4,L/4 g) H/2,L/2 h) 3H/4, 3L/4 

100x100 3600 247 245 249 

 
600 248 248 250 
300 244 241 246 

200x200 3600 248 246 251 

 
600 250 249 253 
300 246 244 249 

300x300 3600 248 247 252 

 
600 247 246 250 
300 247 246 250 

Table 2.Days before the self-ignition in positions f), g) and h) within the compost pile. 

Fig. 1 shows the time evolution results of temperature in the f) position: H/4, L/4, 
calculated with a grid of 300x300 nodes using two time steps: 300s and 3600s. A typical 
heating curve for the temperature is observed in the Figure 1a.  Auto-ignition at H/4, L/4 
occurs after 247 days. The temperature increased suddenly in one day from 370 to 515K. A 
complex system of solid, liquid and gaseous fuels as a final result of the cellulosic oxidation 
originated a volumetric heat generation causing the self-ignition process. Temperature 
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600 247 246 250 
300 247 246 250 

Table 2.Days before the self-ignition in positions f), g) and h) within the compost pile. 

Fig. 1 shows the time evolution results of temperature in the f) position: H/4, L/4, 
calculated with a grid of 300x300 nodes using two time steps: 300s and 3600s. A typical 
heating curve for the temperature is observed in the Figure 1a.  Auto-ignition at H/4, L/4 
occurs after 247 days. The temperature increased suddenly in one day from 370 to 515K. A 
complex system of solid, liquid and gaseous fuels as a final result of the cellulosic oxidation 
originated a volumetric heat generation causing the self-ignition process. Temperature 
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decreasing in time, characterized the last stage, in which the fuel reserves in the location are 
exhausting. Figure 1b, a zoom view of Fig. 3a for the time interval between days 240 and 
255, shows that a time step reduction from 3600s to 300s allows to determine a more 
accurate prediction (within 1 day) for the time needed to insatiate the self-ignition in a 2.5m 
height compost pile. Due to the previous analysis, a mesh with 300x300 nodes and a 
dynamic time step with 300s during the auto-ignition and 3600s in other states may be used 
in the calculation of the processes of self-heating with thermal explosion. 

. 

Fig. 1. Temperature evolution calculated with two time steps, 300x300 mesh, at position 
H/4, L/4, for a 2.5 m high pile, a) full time scale, b) during thermal explosion. 

3.2.3 Comparison between experimental and numerical results. 

The experimental data and numerical results in 2D obtained with the FVM for a 2.5 m high 
pile and trapezoidal form, are compared in Figure 2. Data obtained from numerical 
calculations were plotted considering daily output at 12:00 AM. The experimental and 
predicted data follow the same general trends. Near the surface (0.35 m depth) during the 
third week the main differences found are not larger than 3 ºC. The best description of the 
experimental data was obtained at a depth of 2.1 m. 
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Fig. 2. Comparison between experimental and numerical temperature values during six 
weeks. 

3.3 Inhibition of the self-ignition in the sewage sludge waste water treatment 

The coupled heat and mass diffusion equations system of partial differential equation (11)-
(15), is solved in 3D by the finite volume method. In previous works Moraga et al. (Moraga 
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et al., 2009) established that statics compost pile with high less than 1.5 m do not have self-
ignition. Other statics compost pile higher than 1.5 m may have self-ignition. This restriction 
decreases the possibilities of the storage in field of this material. Moraga and Zambra 
(Moraga and Zambra, 2008) proposed a novel method for the inhibition of the self-ignition 
in large piles. A uniform mesh with 94x32x62 nodes in x, y and z directions was found to be 
adequate by comparison of results between plane 2D and the central plane 3D (x and y 
directions) in a trapezoidal pile. Figure 3 compares the numerical results 2D and 3D in three 
positions inside the pile. The small differences of the values are produced for the third 
dimension incorporated in the simulations. The main differences in the temperature values 
occur when the self-ignition reached the tested position.  

 
Fig. 3. Comparison of numerical results of temperature for a trapezoidal plane 2D and 
central plane 3D. 

In figure 4 the physical situation used for the inhibition of the ignition is shown. 

 
Fig. 4. Three-dimensional physical situation used for a large pile. 

A parallelepiped of 9.2 m, 3 m and 6 m in x, y and z directions respectively, was used. 
Insulation and impermeable walls was introduced to regular interval in vertical and 
horizontal directions within the pile. The pile base is adiabatic and impermeable to the 
oxygen diffusion. A temperature of 298 K, was imposed at the border. Initially, the 
temperature and oxygen concentration inside the pile is constant. Perpendicular steel walls 
with thick 0.1 m and each 2.225 m to separate the pile in 8 sections to the long of the x 
coordinate were used. The table 1 shows the parameters used in the mathematical model. 
Numerical results of maximum values for the temperatures and oxygen concentrations are 
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presented in figure 5. Clearly the self-ignition not occurs. The steel walls allow the inhibition 
of the thermal explosion because the oxygen diffusion within the pile is restricted. The 
maximum temperatures and minimum oxygen concentration reaches the 355 K and 0.262 
kg/m3 , respectively. 

 
Fig. 5. Maximum values of the temperatures and oxygen concentrations for the sectioned 
pile. 

Distribution of the temperature and the oxygen concentrations in a central plane of the 
sectioned pile are presented in figure 6. The walls do not allows the oxygen diffusion and 
the below sections have similar behavior to the 1.5 m high single pile. The temperature 
isconduced trough the walls but do not have influence in the self-ignition of the neighbor 
section. 

   
Fig. 6. Temperature and oxygen distribution within of the sectioned pile. 

4. Combustion and convective heat transfer in porous medium combustors 
4.1 Numerical simulation of a cylindrical porous medium burner 

A porous media combustor, built on base of alumina spheres placed inside of an axi-
symmetric cylindrical quartz tube of 0.52 m in length and 0.076 m in diameter, is shown in 
Fig. 7. Methane and air mixture enter to the combustor at ambient temperature with 
uniform velocity. To start the combustion a temperature profile of one step type, with a 
maximum temperature of 1150 K and a thickness of 4 cm is assumed to simulate the ignition 
by means of an external energy source. In the combustion zone, the products: CO2, H2O, O2 
and N2 are generated. Air, gas and products are assumed to behave as ideal gases and hence 
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density is calculated in terms of temperature from the ideal gas state equation. Burners 
based on this technology has been investigated and tested for many industrial applications 
(Foutko et al., 1996, Zhdanok et al., 1995). 

 
Fig. 7. Porous media combustor. 

The assumptions used to build the mathematical model include: single-step chemical 
reaction, laminar 2D flow of Newtonian fluid of ideal gases. The mathematical model 
includes the porosity terms in both the energy equations for the solid as well as for the gas; 
similarly, also the continuity, linear momentum and fuel mass fraction equations are 
included. All physical properties are variable with temperature, and it is postulated that 
density varies according to the ideal gases state equation. The chemical reaction for methane 
is considered to be in a single step, with excess air included. 
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where the chemical reaction speed and the effective conductivity of the solid including 
radiation are: 

 exp        
f i G

Ear w K
Ro T

   
3321

9 1
   


   

  
 

S
eff S

dp T  (21) 

The coefficient of convective heat transfer between solid and gas is calculated as follows 
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Conjugate boundary conditions between the porous burner section and the annular one are 
used in the internal and external areas of the inner tube: 
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The parameters used in the simulation included the Stephan–Boltzmann constant ( ), 
combustion enthalpy ( COMBh ), frequency factor (K), activation energy (Ea), and the universal 
gas constant (Ro), whose respective values are: 8 2 45.67 10 /W m K   ; 650.15 10 /COMBh J kg   ; 

82.6 10 (1 / )K s   and / 15643.8Ea Ro K .The mass diffusion coefficient was found by assuming 
that the Lewis number was equal to 1, 
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Inlet and outlet boundary conditions of the heat exchanger are: 
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4.1.1 Solution procedure 

The coupled, strongly non-linear system of partial differential equations was solved 
numerically using the FVM, with the SIMPLE algorithm (Patankar, 1980). A fifth power law 
was used to calculate the convective terms while the diffusion terms were determinated by 
linear interpolation functions for the dependent variables between the nodes. Each one of 
the governing equations was written in the general form of the transport equation, with 
unsteady, convective, diffusion and linearized source terms: 
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The convergence criteria used for gas and solid temperature, fuel mass fraction and for the 
two velocity components were 

 1 3
, , 10k k

i j i j     , for GT , ST , iw ;   and  1 4
, , 10k k

i j i j     , for u and v (27) 

A non-uniform grid with 622 x 15 nodes, in axial and radial directions, respectively, was 
found by a trial and error procedure to be efficient to solve the discretized model with 
accuracy and a reasonable computation time (Moraga et al., 2008). The iterative solution 
procedure was based on the use of the line by line method,that combines the TDMA 
algorithm with the under-relaxed Gauss-Seidel algorithm. The under-relaxation coefficients 
used were equal to 0.1, for velocity components, and 0.5, for gas and solid temperatures and 
for the fuel ratio. A strategy based on a dynamic time step was implemented to calculate the 
unsteady terms. The initial time step used in the calculation procedure was equal to 0.00001s 
until t = 0.001s, and then was increased by and order of magnitude as time increased one 
order of magnitude, to end up with a time step equal to 0.1s when time was over 0.1s.  

4.1.2 Results and discussion 

Numerical experiments were performed to assess the effect of porosity, inlet gas velocity 
and excess air coefficient on the fluid dynamics and heat transfer in the porous media 
burner. The effect of increasing porosity from 0.3 to 0.6 on the axial velocity at four axial 
locations is shown in figure 8a, while the influence of the inlet velocity is depicted in figure 
8b. The increments of porosity causes a reduction in axial velocity and in the velocity 
gradients near the walls. Axial velocity increases with time and a maximum value is reached 
for ε = 0.3, when t = 600s, at 0.15m from the inlet. Secondary flows are observed near the 
wall (z = 0.21m) when ε = 0.3. The axial velocity profile increases with time, when the initial 
velocity Uo = 0.3m/s, reaching a maximum at 900s, at z= 0.15m and up to 1500s for z = 
0.21m. 

Superadiabatic combustion in the porous media combustor causes temperature 
increaments from 300 K, near the inlet and close to the oulet, to 1600 K in the flame region, 
as depicted in figure 9. A displacement of the combustion front toward the middle of the 
combuster is achieved by increasing the air excess ratio ψ from 3.0 to 6.0. Similar effects in 
the temperature distribution can be noticed when porosity increased from ε = 0.3 to ε = 0.6 
and when the inlet velocity increased from Uo = 0.3 m/s to Uo = 0.3 m/s. The 
displacement of the combustion zone, typical for porous combustor with uniform porosity 
and cross section, in the direction of the burner exit has been shown to be strongly 
influenced by increments in the values of: excess air ratio, porosity and inlet reactants 
velocity. The porous combustor design requires a reduced combustion front 
displacement. The results obtained (table 2) show that the displacement velocity of the 
combustion front decreases when the porosity and inlet reactants are reduced, and when 
the excess air ratio increases.Table 3 shows that a change in the mathematical model, from 
1D to 2D, caused increments of about 5% in the gas temperature, 7% in the solid 
temperature and up to 3% in the combustion front velocity. 

Figure 10 shows that main changes caused by the radial diffision of heat, captured with the 
2D model, are larger after the combustion zone, where higher temperature are obtained. 
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The convergence criteria used for gas and solid temperature, fuel mass fraction and for the 
two velocity components were 
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A non-uniform grid with 622 x 15 nodes, in axial and radial directions, respectively, was 
found by a trial and error procedure to be efficient to solve the discretized model with 
accuracy and a reasonable computation time (Moraga et al., 2008). The iterative solution 
procedure was based on the use of the line by line method,that combines the TDMA 
algorithm with the under-relaxed Gauss-Seidel algorithm. The under-relaxation coefficients 
used were equal to 0.1, for velocity components, and 0.5, for gas and solid temperatures and 
for the fuel ratio. A strategy based on a dynamic time step was implemented to calculate the 
unsteady terms. The initial time step used in the calculation procedure was equal to 0.00001s 
until t = 0.001s, and then was increased by and order of magnitude as time increased one 
order of magnitude, to end up with a time step equal to 0.1s when time was over 0.1s.  

4.1.2 Results and discussion 

Numerical experiments were performed to assess the effect of porosity, inlet gas velocity 
and excess air coefficient on the fluid dynamics and heat transfer in the porous media 
burner. The effect of increasing porosity from 0.3 to 0.6 on the axial velocity at four axial 
locations is shown in figure 8a, while the influence of the inlet velocity is depicted in figure 
8b. The increments of porosity causes a reduction in axial velocity and in the velocity 
gradients near the walls. Axial velocity increases with time and a maximum value is reached 
for ε = 0.3, when t = 600s, at 0.15m from the inlet. Secondary flows are observed near the 
wall (z = 0.21m) when ε = 0.3. The axial velocity profile increases with time, when the initial 
velocity Uo = 0.3m/s, reaching a maximum at 900s, at z= 0.15m and up to 1500s for z = 
0.21m. 

Superadiabatic combustion in the porous media combustor causes temperature 
increaments from 300 K, near the inlet and close to the oulet, to 1600 K in the flame region, 
as depicted in figure 9. A displacement of the combustion front toward the middle of the 
combuster is achieved by increasing the air excess ratio ψ from 3.0 to 6.0. Similar effects in 
the temperature distribution can be noticed when porosity increased from ε = 0.3 to ε = 0.6 
and when the inlet velocity increased from Uo = 0.3 m/s to Uo = 0.3 m/s. The 
displacement of the combustion zone, typical for porous combustor with uniform porosity 
and cross section, in the direction of the burner exit has been shown to be strongly 
influenced by increments in the values of: excess air ratio, porosity and inlet reactants 
velocity. The porous combustor design requires a reduced combustion front 
displacement. The results obtained (table 2) show that the displacement velocity of the 
combustion front decreases when the porosity and inlet reactants are reduced, and when 
the excess air ratio increases.Table 3 shows that a change in the mathematical model, from 
1D to 2D, caused increments of about 5% in the gas temperature, 7% in the solid 
temperature and up to 3% in the combustion front velocity. 

Figure 10 shows that main changes caused by the radial diffision of heat, captured with the 
2D model, are larger after the combustion zone, where higher temperature are obtained. 
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     a) Effects of porosity. Uo= 0.43 m/s,ψ= 4.88       b) Effects of inlet velocity. ψ= 4.88,   ε= 0.4 

Fig. 8. Effects of porosity and inlet velocity on axial velocity along the burner. Axial 
locations (from top to bottom): 0.05m, 0.10m, 0.15m and 0.21m. 

 
Fig. 9. Effects of excess air (left), porosity (center) and inlet velocity wright) on gas 
temperature at time t = 15 min. 
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Excess of air  Porosity  vin(m/s)   Model  Gas Tmax (K)   Solid Tmax (K)    Combustion front velocity (m/s) 

3.00                 0.4           0.43          1D        1569.87(4.50%) 1417.39(7.06%) 9.538E-05(1.74%)

                                                          2D       1640.45              1517.47              9.417E-05

4.88                 0.4          0.43         1D       1404.44(4.99%) 1323.31(6.85%)  1.250E-04(0.67%)

                                                          2D       1474.57              1413.95               1.258E-04

4.88                0.3           0.43          1D       1424.87(4.99%) 1354.25(6.98%) 1.108E-04(1.50%)

                                                          2D       1496.03             1448.81             1.092E-04

 4.88               0.6            0.43          1D       1368.515.03%)  1258.09(6.29%)  1.858E-04(2.69%) 

                                                          2D      1437.38             1337.18           1.908E-04

4.88               0.4            0.30          1D       1333.79(5.82%) 1246.03(7.32%) 9.167E-05(2.73%)

                                                       2D        1411.39              1337.21            8.917E-05

4.88              0.4              0.60          1D       1465.13(3.53%)  1394.07(1.98%)  1.750E-04(0.48%)

                                                        2D       1513.48              1421.52               1.758E-04

Table 3. Comparison between results of 1D and 2D models for porous media burner. 
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     a) Effects of porosity. Uo= 0.43 m/s,ψ= 4.88       b) Effects of inlet velocity. ψ= 4.88,   ε= 0.4 

Fig. 8. Effects of porosity and inlet velocity on axial velocity along the burner. Axial 
locations (from top to bottom): 0.05m, 0.10m, 0.15m and 0.21m. 

 
Fig. 9. Effects of excess air (left), porosity (center) and inlet velocity wright) on gas 
temperature at time t = 15 min. 
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Excess of air  Porosity  vin(m/s)   Model  Gas Tmax (K)   Solid Tmax (K)    Combustion front velocity (m/s) 
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                                                          2D       1474.57              1413.95               1.258E-04

4.88                0.3           0.43          1D       1424.87(4.99%) 1354.25(6.98%) 1.108E-04(1.50%)

                                                          2D       1496.03             1448.81             1.092E-04
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Fig. 11. Wood stove with a porous post combustor and mesh used in the FVM simulation. 
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designed with two sections with different porous diameter of 1.52mm  (length equal to 
100mm) and 5.6 mm (with a length of 200mmm). An ignition temperature of 1150K was 
assumed in the simulations. 
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e model was used to describe, with ANSYS/Fluent, the fluid mechanics and the convective 
heat transfer in the stove. Temperature and velocity distributions at the entrance of the 
exhaust stove pipe were found from the 3D model. Then, in the second stage, a secondary 
combustion process was described from a 2D laminar forced convection model in the 
porous post-combustor.  
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The values for the five constants used in the k-e turbulence model are those suggested 
by Launder and Spalding, 1974. 

 
1 2 31.44; 1.92; 1.0; 0.09; 1.0; 1.3       kC C C C  (35) 

b. 2D Darcy-Brikman-Forcheimer model for the laminar gas flow in the porous media 
post-combustor: Continuity, ideal gas, linear momentum, energy and species transport 
equations 

  
0





j

j

v
x

    ;    0 0
 

T
T

 (36) 

   ; 0.55  
 

                      


i

j i i i
j i j j

C Vvpv v g v C
x x x x

 

(37)  

   
   

      
j ef

j j j

Tv T
x x x

        ;     1     ef f s
 (38) 

   '
' ' 

  
      

M m
P j m m

j j j

YC v Y D
x x x

 (39) 

The air flow for the three operational modes inside the stove combustion chamber is shown 
in figure 12. 

Inyector primary air 

Reductor secondary air 

Tempering secondary air 

Combustion gas  
Fig. 12. Air flow inside the primary combustor chamber for the three operacional modes.  

The 3D model for the combustion zone of the stove was discretised with 736,767 
tethahedral, 18,032 wedge and 280 pyramidal elements. Under-relaxation coefficients for 
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The 3D model for the combustion zone of the stove was discretised with 736,767 
tethahedral, 18,032 wedge and 280 pyramidal elements. Under-relaxation coefficients for 
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pressure were: 0.2 for pressure, 0.3 for the three velocity components, 0.7 for the kinetic 
energy and for the dissipation rate of the kinetic energy and 0.9 for temperature. Axial 
discretization for the 2D porous postcombustor included 40 nodes in the pre-heating 
section, from z = 0 to z = 2cm, 450 nodes in the flame region, up to z= 24cm, 100 nodes in the 
post-secondary combustion zone (from z=24 to z=30cm) and 30 nodes in the last zone (from 
z= 30cm to z= 60cm in z direction). The convergence was assumed when the maximum 
deviation for each dependent variable, at each control volume and for all time steps, Φki,j- 
Φk-1i,j was smaller than 0.0001 for the velocity components and smaller than 0.001 for solid 
and gas temperature. Under-relaxation factors were equal to 0.1 for the velocity 
components, 0.5 for gas and solid temperature and equal to 0.3 for pressure. 

4.2.3 Results and discussion 

Velocity and temperature distributions in the central plane of the wood stove are described 
in Figure 13, for three air operation modes. Higher velocities, in the order of 2m/s are found 
in the left lower section and in the central part of the stove. A 30% velocity increment is 
obtained in the low mode. Temperature in the primary combustor is the range between 
800K and 1365K, with higher temperature reached in the low mode.  

 

  
Fig. 13. Velocity and temperature distributions inside the wood stove. 

 

  
Fig. 14. Air trajectories inside the stove (at left side) and time evolution of temperature 
inside the porous post-combustor. 
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Figure 14, in the left side, depicts the air and gas trajectories in the primary combustor, 
where higher velocities in the range of 2.3m/s are found for the three operation modes. 
Time evolution for the temperature distribution in the porous post-combustor, is shown in 
the right hand side of Figure 13. A hot region, with temperatures in the range between 800K 
and 1150K can be observed to last for 5 minutes and a zone with temperatures higher than 
850K can be noticed during the first 50 minutes of operation.   

5. Alloy solidification and natural non-Newtonian convection predicted with a 
porous model 
Liquid to solid phase change is a relevant process in many industrial applications, such as: 
polymer casting moulding, pure metals and alloys solidification, solar energy storage and 
food freezing and thawing. The pourpose of this section is to describe numerical solutions 
obtained with a porous media model and the FVM that have been applied to solidification 
of pure metals and alloys. The sequential solution of the discretized system of fluid 
mechanics and convective heat transfer is accomplished by the PSIMPLER algorithm 
(Moraga et al., 2010). 

5.1 Physical situation and mathematical model 

The physical situation related to each one of the three cases studied is shown schematically 
in Figure 15. The first case corresponds to the solidification of pure aluminum, and the 
second is the solidification of aluminum alloys with 1.7% Si. In all cases the liquid to solid 
phase change occurs inside a square cavity with the right vertical wall and the horizontal 
ones being adiabatic. The left-side wall is subjected to a convective condition, of the Robin 
type, for case 1, while in case 2 an imposed temperature condition is assumed, of the 
Dirichlet type. The fluid mechanics in the mushy zone and in the liquid phase is based on 
laminar flow, with a power law non-Newtonian model (n=0.5). Density is assumed to vary 
linearly with temperature, according to the approximation of Boussinesq. A porous medium 
model, with a Darcy numberDa=1.37×10-5[26], for an average pore diameter dm = 1.2x10-5 is 
proposed to describe the fluid motion in the mushy zone, along with the general Darcy-
Brinkman-Forchheimer porous flow model.  

 

 
Fig. 15. Solidification of a pure metal, a binary and a terniary alloy in a square cavity. 

The mathematical model includes continuity, linear momentum and energy equations in 
porous media 
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where the liquid phase change fraction, being equal to 0 when  T<TS  and equal to 1 when T 
> TL  is calculated from  

 fpc= [(T- TS)/(TL – TS)]m   for  TS < T < TL (44) 

The dynamic apparent viscosity is η = ηl /fpc, for Newtonian and non-Newtonian fluids, 
with ηl and the deformation rate for the power law model defined as follows 
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5.2 Computational implementation 

The mathematical models presented in the previous equations were solved with the finite 
volume method and the PSIMPLER algorithm developed and programmed in FORTRAN. 
The PSIMPLER algorithm is a mixture of two algorithms, SIMPLER and PISO (Moraga et al., 
2010). In all the cases, the grid used was of the overlapping type, and 40x40, 60x60 and 80x80 
grid sizes were evaluated. The results are presented for a 60x60 grid, which was efficient in 
time and accurate enough. The values for the under-relaxation factors used for the two 
velocity components, temperature and pressure were different for pure metals and for 
binary and ternary alloys 

αu = αv = 0.2 ; αT=0.1 ; αP= 0.7  (pure metal)  and αu= αv = 0.5 ; αT = 0.3 ; αP= 0.9 (alloys) (46) 

The iterative procedure was finished when the difference between Φki,j – Φki,j at two 
successive iterations was smaller or equal to , for all control volumes and at each time step, 
with=10-6 for velocity and =10-3 for temperature. 

5.3 Results and discussion 

The first case describes the solidification of pure aluminum metal, with Ra = 105, by using 
the proposed Darcy-Brinkman-Forchheimer porous model for the mushy zone and three 
alternative temperature dependent liquid phase fractions, defined by changing the exponent 
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m in Eq. (44). Figure  16 shows that the time evolution for the temperature distributions 
obtained with the FVM, for m = 0.5, 1.0 and 2.0, in dashed lines is in agreement with the 
values calculated by the finite element method and the classical mathematical model, shown 
in continuos lines (Cruchaga et al., 2000).  

 

 

 

 

Fig. 16. Isotherms time evolution for Al solidification with Ra=105, present porous model 
and Cruchaga et al., 2000 results.   

The time evolution of the solidification front for the aluminum, calculated with the general 
porous media model is shown in   figure 17 to be in agreement with the results obtained 
with the classical model.  

 
Fig. 17. Time evolution of the Al solidification front. 
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m in Eq. (44). Figure  16 shows that the time evolution for the temperature distributions 
obtained with the FVM, for m = 0.5, 1.0 and 2.0, in dashed lines is in agreement with the 
values calculated by the finite element method and the classical mathematical model, shown 
in continuos lines (Cruchaga et al., 2000).  

 

 

 

 

Fig. 16. Isotherms time evolution for Al solidification with Ra=105, present porous model 
and Cruchaga et al., 2000 results.   

The time evolution of the solidification front for the aluminum, calculated with the general 
porous media model is shown in   figure 17 to be in agreement with the results obtained 
with the classical model.  

 
Fig. 17. Time evolution of the Al solidification front. 



 
Finite Volume Method – Powerful Means of Engineering Design 

 

276 

In case 2, the melt characterization by a non-Newtonian power law model, with a power 
index n = 0.5, is investigated along the use of the DBF porous model for the mushy zone, to 
describe the solidification of the binary Al-1.7wt%Si, when Ra=2.5x105. Figure 18 describes 
the evolution in time of the isotherms (at the left side) and of the steamlines in the liquid 
phase and in the mushy zone (at the rigth side), calculated with FVM by assuming either a 
Newtonian or a non-Newtonian power law fluid models. The pseudoplastic fluid 
assumption (n=0.5) originates a slighty faster convection, requiring lower time to complete 
the solid to liquid phase transformation. 

 

t Newtonian Non-Newtonian 
(n=0.5) Newtonian Non-Newtonian 

(n=0.5) 

10s 

  

40s 

  

80s 

  
Fig. 18. Isotherms and stream function for Al-1.7%Si solidification calculated for Ra = 2.5 x 105. 

6. Mixed turbulent convection and diffusion in a bioreactor 
In the last decades, the municipal waste materials (MWM) outputs in many countries have 
increased significantly due to the large increase in population and industries. These wastes 
contain organic matter that can be recovered, and through recycling, MWM can be returned 
to the environment. One option in that direction, for example, is to use them as fertilizers. 
Another interesting possibility is to use them as fuels. In this way, in addition to solving the 
problem of MWM disposal, the recycling of these materials becomes a useful source of 
energy. For this, the MWM require usually a pre-treatment to eliminate water, in order to 
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have good combustion. This process is essentially a method for humidity control of the 
waste, which has a great impact in combustion efficiency. 

The numerical modeling of heat and mass transfer involved in the drying process without 
self-heating has motivated several studies using finite difference methods (Kaya et al., 2006; 
Kaya et al., 2008, Chandra & Talukdar, 2010; Sheng et al., 2009). These studies have 
provided useful insight into the phenomenon, but the air flow regime in a typical drying 
bioreactor is nevertheless turbulent. Therefore there is interest in the analysis and 
characterization of this process in the fully turbulent flow regime. In this case also the self-
heating of the material due to chemical and biological reactions is described.  

6.1 Physical situation of an experimental bioreactor 

In order to compare the model results with experimental data, we perform the computations 
for a case with the dimensions of the experimental bioreactor:  1 m × 1 m × 1 m, in the x, y 
and z coordinate directions respectively (see Fig. 19). The walls are assumed adiabatic and 
impermeable. Air at ambient temperature is forced into the reactor through an inflow in the 
plane z = 0. This inflow has a section of 0.05 m × 0.05 m and is located at the center of the 
lower wall. The air entering through this opening flows past the block of MWM inside the 
reactor fulfilling the drying of this material. The air outflow is located at the center of the top 
wall (z = 1 m) and has the same dimensions of the inflow located below.  

 
Fig. 19. 3D physical situation used for an experimental bioreactor. 
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In case 2, the melt characterization by a non-Newtonian power law model, with a power 
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Fig. 18. Isotherms and stream function for Al-1.7%Si solidification calculated for Ra = 2.5 x 105. 

6. Mixed turbulent convection and diffusion in a bioreactor 
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have good combustion. This process is essentially a method for humidity control of the 
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  , ,0, 0inu x y t  ;  , ,0, 0inv x y t  ;  , ,0, 1 /inw x y t m s  (47) 

At the outlet, zero-gradient outflow boundary conditions are applied. The walls are 
considered adiabatic and impermeable. The temperature of the air at the inlet is constant 
and an initial linear distribution in the domain was assumed:  

  , ,0, 283T x y t K ;       , , ,0 283
0.2
zT x y z    (48) 

Inside the MWM the process is considered essentially as diffusion in porous medium, and 
therefore the velocities are zero in the region occupied by the block of material. Constant 
oxygen concentration is imposed around the MWM volume, 

    , , , 0.272 / 3 ( , , )oxC x y z t kg m for x y z outside the MWM  (49) 

The initial temperature and oxygen concentration within the MWM are considered 
homogeneous, 

  , , ,0 283wm wm wmT x y z K ;   3, , ,0 0.272 /ox wm wm wmC x y z kg m  (50) 

6.3 Numerical simulation with finite volume method 

The sequential coupling of these main variables (external iterations) is done with the 
SIMPLE method. Under-relaxation is applied during these external iterations, with a 
relaxation coefficient of 0.5 for all the variables, except for the pressure correction for which 
a value of 0.8 was used instead. 

The bioreactor was discretized with a non-uniform mesh of 32×62×82 finite volumes in x, y 
and z directions, respectively. Additionally, a buffer zone extending for 1 m beyond the exit 
of the reactor is considered, in order to ensure a zero-gradient condition at the outlet of the 
computational domain. The waste material occupies a volume inside the reactor equivalent 
to a parallelepiped with dimensions of 0.5×0.5×0.6 m3. The discretization of this sub-region 
of the domain comprises 16×40×40 finite volumes in the x, y and z directions, respectively. 
The simulation was carried out for a total time of 696 hr. The time step was 3600 s for most 
of this period. During the first hour a dynamic time step was used (starting with a step of 
0.001 s) in order to achieve convergence at each time step during the initial fast transient 
period starting from the prescribed initial condition. 

6.4 Comparison with experimental data 

In the experimental bio-drying reactor analyzed in reference (Rada et al, 2007), three 
thermocouples were installed inside the MWM, along the z direction, at equal intervals of 
0.2 m in z direction inside of MWM, to measure the internal temperature in the material. 
Figure 20 presents the numerical results of temperature evolution obtained with the 
mathematical model and the numerical simulation described in previous sections. The 
numerical results in Fig. 20 were obtained in the following three (x, y, z) positions: 
P1(0.49,0.44,0.19), P2(0.49,0.44,0.39) and P3(0.49,0.44,0.59). The values for all coordinates are 
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in meters. The results for the time evolution of the temperature in Fig. 20 are consistent with 
the behavior showed by Rada et al. (2007). The self-heating, product of the biological and 
chemical heat generation is clearly observable. Initially, a sudden increase of temperature 
occurs in the three sampled positions until 90 h. For all times, the temperature at point P2 is 
greater than the others. This can be attributed to its more inner position, making more 
difficult for the locally generated heat to diffuse to the surface, where is removed by the 
flowing air. Points P1 and P3, being located nearer to the surface, can release more easily the 
generated heat to the surrounding air. The asymmetry in the temperature at P1 and P3 is 
due to the location of P1 on the side subjected directly to the impinging flow of cold air.  

After about 96 h, the temperatures at the three points moderate their rate of increase, and 
the maximum temperatures occur at about t = 168 h for all these positions. The maximum 
temperature reached inside the MWM is close to 340 K, at the central position P2. The 
existence of these maxima can be associated with an intrinsic self-moderation of the rate of 
heat generation, given by the last term in Eq. (11). That term, describing the heat released by 
the biological activity of micro-organisms initially increases with the temperature, as their 
population grows, but after exceeding 318 K approximately this source of heat starts to 
decrease, because of the progressive inhibition in micro-organism growth as the 
temperature continues to increase. After  168 h, the temperature decreases in all positions as 
the internal heat source has become weaker and at the same time a heat diffusion pattern 
inside the material has established, allowing and effective removal of the generated heat 
towards the surrounding air. 

The table 4 shows a comparison between computed temperatures at the sampled points and 
experimental data from Ref. (Rada et al., 2007) at corresponding positions. The temperatures 
calculated in the present study approximate very well the experimental values in the three 
compared positions. A maximum difference of 5 K can be observed at 360 h in the position 
P3. 

 

 
 Temperature, K 

Time, h 
Thermocouple 

2, Ref. [3]. P1 
Thermocouple 

3, Ref. [3]. P2 
Thermocouple 

4, Ref. [3]. P3 

96 317 315 335 337 330 329 

168 323 325 335 338 335 334 

360 307 307 331 329 312 317 

696 290 291 298 299 292 293 

 
Table 4. Comparison of temperatures between experimental data and calculated values. 
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Fig. 20. Temperature evolution in three positions of the MWM. 

7. Conclusions 
The FVM capabilities to produce efficient and accurate prediction of fluid mechanics, heat and 
mass transfer in porous media, including biological and chemical reactions or liquid to solid 
phase transformations, have been shown by solving four practical examples. In the first case, 
auto-ignition of compost piles was studied and field experimental data were used to assess the 
quality of FVM results for the evolution of temperature and oxygen concentration 
distributions.  The conclusion found for this case was that a pile heigth equal to 1.7m is a 
critical value to produce self-ignition. Combustion in porous media, predicted by FVM, allows 
to conclude in the second case, that improvements on thermal energy efficiency and pollution 
reduction in a methane porous combustor and in a wood stove, can be achieved. The use of the 
FVM and a generalized DBF flow porous media model for the mushy zone was found to 
describe convective cooling during solidification of non-Newtonian melted binary alloys in the 
third case. A conclusion found for this type of phase change processes was that the CPU time 
requiered for the numerical simulation can be reduced one order of magnitude by using a new 
improved predictor-corrector sequential algorithm, PSIMPLER, for the pressure-velocity-
temperature-concentration calculation procedure. In the fourth case, the FVM along the k-ε 
turbulence model, were used to describe 3D turbulent convective heat transfer, with self 
heating of the porous media due to chemical and biological reactions, in a bioreactor. The 
conclusions found in this case were that the FVM simulations for the dependent variables were 
successfully validated with experimental values and that the effects of reactor geometry, self-
heating parameters, air flow and temperature in the bioreactor perfomance can be evaluated. 
Finally, it is concluded that the use of FVM and adequate mathematical models along to 
experimental physical results can be used to investigate physical, biological and chemical 
coupled problems in order to achieve improved thermal efficiency, adequate use of energy 
resources and pollution reduction in these processes.  
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Fig. 20. Temperature evolution in three positions of the MWM. 
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It is very important to well known the electro-dynamics characteristics of these atmospheric 
pressure non thermal plasma generated by streamer or micro-discharge dynamics for an 
efficient use in the associated applications such as the pollution control of flue gases (Kim, 
2004; Marotta et al., 2007), the combustion and ignition improvement (Starikovskaia, 2006), 
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understand the electro-dynamics processes and phenomena induced by the micro-
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transport and field equations and the steep gradients of the charged particles evolution in a 
sharp and very fast ionizing wave (Soria-Hoyo et al., 2008). Therefore, the streamer dynamics 
modelling does not only depend on the selected physical model but also on the accuracy and 
the stability of the numerical algorithm. Furthermore, the parametric analysis of non thermal 
plasma discharge requires less time consuming and optimized numerical algorithms. 

The present work is dedicated to the use for Finite Volume Method through the streamer 
discharge simulation and the gas dynamics simulation. We start with an overview on 
streamer and gas dynamics modelling followed by the model and numerical algorithms for 
streamers and gas dynamics; in this main part, we explicitly discuss how the model 
equations are discretized with the help of FVM. Finally, some results about both the 
streamer discharge and the gas dynamics simulations are shown; in the case of the streamer 
discharge we also discuss the validation of the present models from comparison between 
the experiment and the simulation. 

2. Bibliographic overview on streamer discharge and gas dynamics 
modelling 
Initials attempts at the numerical treatment of the electro-hydrodynamic model, in the case 
of gas discharges at atmospheric pressure, began in the 1960’s with Davies et al. (Davies et 
al., 1964) and Ward (Ward, 1971). They used a first order method of characteristics in the 
context of the Finite Difference (FD) method. However, poor spatial resolution restricted 
their study to qualitative results. Towards the late 1970’s, Davies improved the method of 
characteristics by introducing an iterative counterpart that increased the overall accuracy of 
the algorithm to second order (Davies et al., 1971, 1975, 1977). This method was adopted by 
several research teams (Kline, 1974), (Yoshida & Tagashira, 1976) and (Abbas & Bayle, 1980) 
and, as a result, it became the dominant method until the early 1980’s. In 1981, Morrow and 
Lowke (Morrow & Lowke, 1981) presented a work that numerically integrated the system of 
continuity equations with the two-step Lax-Wendroff method of Roach (Roach, 1972). 
However, due to numerical dispersion and numerical instability, calculations were 
restricted to low density plasmas. Such restrictions were overcame by the introduction of 
the Finite Difference (FD) - Flux Corrected Transport (FCT) technique, originally developed 
by Boris and Book (Boris & Book, 1973) and extended to two dimensions by Zalezak 
(Zalesak, 1979). The FCT technique adds an optimal amount of diffusion and is remarkably 
stable in presence of sharp density gradients. In this context, FCT has become the most 
frequently used numerical method in streamer discharge modelling since Morrow 
introduced it for the first time to the gas discharge community in the 1980’s (Morrow, 1981, 
1982). Thus, Morrow was the first to offer an analysis (Morrow, 1982) for high density 
plasmas (up to electron density of 1013 cm-3) and particular attention was paid to the 
selection of the Courant–Friedrichs–Lewy condition (CFL) (Courant et al., 1928). According 
to Morrow (Morrow, 1982) the CFL has to take values lower than 0.1 in order to quickly 
damp out any numerical oscillations resulting from steep density gradients. However, until 
the early 1980’s, the FD based models did not exceed 1.5D description (1D for the continuity 
equations, and 2D for the electric field calculation in order to take into account the 
filamentary structure of the streamer: radial extension). By the middle of the 1980’s, Dhali 
and Williams (Dhali & Williams, 1985) had launched the first fully two-dimensional 
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simulation, using the FCT technique to solve the continuity equations. Thus, they elucidated 
several aspects of both positive and negative streamer phenomena. Subsequently, Kunhardt 
and Wu (Kunhardt & Wu, 1987) improved the FCT method and described a self-consistent 
numerical simulation of the formation and propagation of streamers in electropositive (N2) 
and electronegative (N2-SF6) gases. Finally, an implicit version of FCT for gas discharge 
problems was presented by Steinle and Morrow (Steinle & Morrow, 1989). This new algorithm 
gave a threefold increase in the overall simulation speed because it was able to use a CFL ~ 1 
while maintaining the scheme accuracy. However, this new method never became popular 
among the scientific community. In the mid-1990’s, using the same model as Dhali and 
Williams (Dhali & Williams, 1985), Vittelo et al (Vittelo et al., 1993, 1994) reported a more 
accurate analysis of the negative streamer in N2 with a quite small spatial resolution (2.5µm - 
10µm). They also made the first simulations for streamer propagation in non-uniform gaps 
(point-to-plane electrode configuration) using a fully two-dimensional model. More systematic 
work on non-uniform gaps was also performed by Babaeva and Naidis (Babaeva & Naidis, 
1996) (using the FCT technique), Kulikovsky (Kulikovsky, 1995a, 1995b) (using an optimized 
second-order Shurfetter-Gummel scheme) or Pancheshnyi and Starikovskii (Pancheshnyi & 
Starikovskii, 2003) (using a first-order upwind scheme). Another efficient second-order 
numerical scheme was introduced by Van Leer (Van Leer, 1979) and named the second order 
Monotonic Upwind-Centered Scheme For Conservation Laws (MUSCL) scheme. This 
algorithm was used through the Finite Volume Method (FVM) in the 3D modelling of high 
pressure micro-discharges in micro-cavities (Eichwald et al., 1998) in the 1.5D (Eichwald et al., 
2006) and the 2D (Ducasse et al., 2007) modelling of the positive streamer propagation. At the 
beginning of the century (2000) a new approach to gas discharge modelling was presented in 
the works of Georghiou et al. (Georghiou et al., 1999, 2000) and Min et al. (Min et al., 2000, 
2001) in which they used the Finite Element Method (FEM) to solve the electro-hydrodynamic 
model for parallel plate and wire-plate gaps. Based on a Finite Element Flux Corrected 
Transport algorithm (FEM-FCT) the simulations maintain the ability to handle steep gradients 
through the use of FCT, but also allow for the use of unstructured triangular cells. This method 
significantly reduces the number of unknowns, consequently reducing the computing time. 
Fine resolution is used only where it is necessary, enabling the model to be extended to a fully 
two-dimensional form and thereby making it possible to model complex geometries. 
Moreover, the first works that adapted the FEM to the charged carrier conservation equations 
were the papers of Yousfi et al. (Yousfi et al., 1994) and Novak and Bartnikas (Novak & 
Bartnikas, 1987) but the former restricted its application to 1.5D problems. Finally, a few works 
on 3D streamer discharge modeling using either FVM or FEM numerical schemes have been 
performed by Kulikovsky (Kulikovsky, 1998), Park et al. (Park et al., 2002), Akyuz et al. 
(Akyuz et al., 2003) Georghiou et al. (Georghiou et al., 2005) Pancheshnyi (Pancheshnyi, 2005) 
and Papageorghiou et al. (Papageorghiou et al., 2011). 

3. Model and numerical algorithms for streamer discharge and gas dynamics 
3.1 Model and equation discretisations with finite volume method (FVM) for streamer 
discharge and gas dynamics 

In this work, streamer formation and propagation (streamer dynamics) is modelled using 
the first order electro-hydrodynamic model in the framework of the drift-diffusion 
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approximation (Eichwald, 2006). Moreover, neutral dynamics is not taken into account; only 
the charged particle dynamics is considered. Thus, the equations involved in this model are 
the following: 
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In (1) (Maxwell-Gauss) E


 is the total electric field (due to geometry and space charge) e 
the absolute value of the electronic charge, ne, np and nn the electron, positive and 
negative ion densities, c the space charge density and 0 and r the free space and relative 
permittivities; here, the relative permittivity is equal to 1. With regard to the continuity 
equations (3) of the density, subscript “s” stands for the electrons (e) or the positive (p) or 
negative (n) ions. Moreover, sv  is the velocity and s  the source term; both are functions 
of the reduced electric field E/ng (ng is the gas density) according to the local electric field 
approximation. The electron velocity is calculated using the classical drift-diffusion 
approximation (4), where µs and Ds are the mobility and the diffusion coefficients 
respectively.  

The Maxwell-Gauss equation (1) is discretised with finite volume method (FVM). Thus, the 
equation is integrated on an elementary volume ijV  (cell) of the three-dimensional (3D) 
space. In addition, the Gauss-Ostrogradsky theorem (or divergence theorem) is used to 
transform the volume integration in surface integration. The Gauss-Ostrogradsky theorem 
is a mathematical statement of the physical fact that, in the absence of the creation or 
destruction of matter, the density within a region of space can change only by having it 
flow into or away from the region through its boundary. After resolution, the following 
equation is obtained: 
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In the case of a z-axis of symmetry (Fig. 1), the elementary volume and surfaces in 
cylindrical coordinates are: 
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Fig. 1. Schematic representation of an elementary cell in the three-dimensional space. Due to 
the z-axial symmetry, the calculation on the half space is sufficient; thus computing time 
and memory size are saved. 

In equation (5), the electric field components are expressed in function of the potential (7) to 
obtain equation (8) (FVM discretised Poisson equation); (7) is determined by first order finite 
difference of equation (2). Finally, (8) is ordered to generate the linear equation (9) for the 
(i,j) cell. 
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For the whole elementary volumes of the 3D space, the equations rearrange in a matrix way 
as Ax=b, with A, x and b, respectively of dimension nr2×nz2, nr×nz and nr×nz; x is the 
solution of the linear equation system. As regards the boundary conditions, we applied a 
Dirichlet or Neumann condition, following an electrode or an open space is considered. 

The continuity equation for density of each charge species (3) is also discretised with FVM 
(like Poisson equation) and an explicit scheme. The explicit scheme calculates the state of a 
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In (1) (Maxwell-Gauss) E


 is the total electric field (due to geometry and space charge) e 
the absolute value of the electronic charge, ne, np and nn the electron, positive and 
negative ion densities, c the space charge density and 0 and r the free space and relative 
permittivities; here, the relative permittivity is equal to 1. With regard to the continuity 
equations (3) of the density, subscript “s” stands for the electrons (e) or the positive (p) or 
negative (n) ions. Moreover, sv  is the velocity and s  the source term; both are functions 
of the reduced electric field E/ng (ng is the gas density) according to the local electric field 
approximation. The electron velocity is calculated using the classical drift-diffusion 
approximation (4), where µs and Ds are the mobility and the diffusion coefficients 
respectively.  

The Maxwell-Gauss equation (1) is discretised with finite volume method (FVM). Thus, the 
equation is integrated on an elementary volume ijV  (cell) of the three-dimensional (3D) 
space. In addition, the Gauss-Ostrogradsky theorem (or divergence theorem) is used to 
transform the volume integration in surface integration. The Gauss-Ostrogradsky theorem 
is a mathematical statement of the physical fact that, in the absence of the creation or 
destruction of matter, the density within a region of space can change only by having it 
flow into or away from the region through its boundary. After resolution, the following 
equation is obtained: 
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In the case of a z-axis of symmetry (Fig. 1), the elementary volume and surfaces in 
cylindrical coordinates are: 
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Fig. 1. Schematic representation of an elementary cell in the three-dimensional space. Due to 
the z-axial symmetry, the calculation on the half space is sufficient; thus computing time 
and memory size are saved. 
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For the whole elementary volumes of the 3D space, the equations rearrange in a matrix way 
as Ax=b, with A, x and b, respectively of dimension nr2×nz2, nr×nz and nr×nz; x is the 
solution of the linear equation system. As regards the boundary conditions, we applied a 
Dirichlet or Neumann condition, following an electrode or an open space is considered. 
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system at a later time from the state of the system at the current time. Thus, the discretised 
equation is the following: 

 
   

 
 

 



   

   

  

   

i 1/2 , j i 1/2 , j

i, j 1/2 i, j 1/2

t tt Δt t
i, j i, j  ij r ri 1/2, j i 1/2 i 1 /2, j i 1 /2

t t t
z z iji, j 1/2 j 1/2 i, j 1/2 j 1/2

n n n v S n v S  Δt

 n v S n v S  Δt   Δt

V
 (10) 

The above continuity equations (10) and Poisson equation (9) are coupled through the 
source terms and the reduced electric field, which depends on the space charge density. 
Thus, the algorithms used have to be robust in order to prevent the development of non-
physical oscillations or diffusion phenomena within the electro-hydrodynamic model. 

The streamer development is described in a two-dimensional cylindrical (Orz) geometry, 
where (Oz) is associated with the streamer propagation axis, and (Or) with its radial 
extension. The next section is devoted to validating and comparing the efficiency of the 
algorithms to solve the continuity equations (10) and Poisson equation (9). 

As regards the gas dynamic model, the system of equation bellow is used. The energy (11), 
momentum (12) and mass (13) continuity equations compose the model. The energy 
(thermal and kinetic), momentum and mass densities are respectively E, v  , and ; 
moreover, P, v , thj


 and disch arg e E  are the pressure, velocity, thermal flux density, and the 

mean energy source term. 
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The mean energy source term      
   1t

 Tdisch arg e 0
1

1r f E/n j (r, t) E(r, t)dt
tE  is obtained via 

the streamer discharge simulation (previous model); f(E/n) is the distribution function of  

translation processes (depending on the reduced electric field) and 
 

 Tj (r , t)  the current 
density vector within the streamer discharge simulation. The mean energy is evaluated (for 
each cell of the calculation domain) on 150ns; the duration is negligible compared with the 
neutral gas dynamic duration process >1µs (shock wave). The thermal flux density 

 thj grad T 


 is expressed in function of the thermal conductivity coefficient and 
temperature gradient of the gas (air). The gas viscosity is not taking into account, there is no 
reactivity of the gas, the electrodes are at ambient temperature, and gliding conditions are 
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applied to the electrodes. Finally, if the thermal transfer is not taking into account, the 
simulation diverges and there is no propagation wave. 

One can notice the three equations (11) to (13) are based on the same structure as (3), the 
transport term in one side (left term) and source term on the other side (right term). Thus, 
the algorithm used to solve the equations is the same as (10). 

3.2 Algorithm tests to solve the energy, momentum, density continuity and poisson 
equations 

Several kinds of algorithms are presented to solve the two equation types of the model: 
continuity and Poisson equations. The algorithms have been tested in accuracy and 
computing time on special tests. For the continuity equations (or transport equations) we 
used the Davies’ test (Davies & Niessen, 1990; Davies, 1992; Yousfi et al., 1994; Ducasse et 
al., 2010) in two directions of a cylindrical coordinate system (r, z). Six algorithms are tested: 
Upwind, Superbee Monotonic Upstream-centred Scheme for Conservation Law (MUSCL 
Superbee), Piecewise Parabolic Method PPM, ETBFCT, and Zalesak Peak Preserver (Ducasse 
et al., 2010). For the Poisson equation we compare the analytic solution to the numeric ones 
given by MUMPS (Direct method; not iterative) and SOR (Iterative method) (Amestoy, 2001, 
2006; Fournié, 2010; Press, 2nd edition). 

The Davies’ test was first introduced by Davies and Niessen in order to compare the 
algorithm efficiency to solve one-dimensional continuity equations (14) ((15) is the FVM 
discretised form) without source term; what we write here is valid for energy, momentum 
and density continuity equations. The test is interesting for streamer modelling since it 
reproduces mathematically the behaviour of the streamer head propagation which is a fast 
ionizing wave that propagates steep density gradients in a sharp velocity field. Thus, the 
test is performed along a normalized z-axis [0, 1] divided into N=100 regular cells, and 
consists in propagating a square density profile (wave) n(z, t)  in a stationary oscillating 
velocity field, as shown in Fig. 2. Equations (16) and (17) give respectively the mathematical 
expressions for the density and the velocity profiles: This gives a velocity peak value at 
z 0.5 au (arbitrary unit) which is ten times greater than the values at the beginning and the 
end of the domain. The initial density of the square wave distribution n(z, t 0)  is enclosed 
between z 0.05  and z 0.25  with a constant value of 10au. In addition, the time step is 
chosen equal to 10-5au which corresponds to a Courant-Friedrich-Levy number (CFL) equal  

to 10-2 ( maxv tCFL
z
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system at a later time from the state of the system at the current time. Thus, the discretised 
equation is the following: 
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The above continuity equations (10) and Poisson equation (9) are coupled through the 
source terms and the reduced electric field, which depends on the space charge density. 
Thus, the algorithms used have to be robust in order to prevent the development of non-
physical oscillations or diffusion phenomena within the electro-hydrodynamic model. 

The streamer development is described in a two-dimensional cylindrical (Orz) geometry, 
where (Oz) is associated with the streamer propagation axis, and (Or) with its radial 
extension. The next section is devoted to validating and comparing the efficiency of the 
algorithms to solve the continuity equations (10) and Poisson equation (9). 

As regards the gas dynamic model, the system of equation bellow is used. The energy (11), 
momentum (12) and mass (13) continuity equations compose the model. The energy 
(thermal and kinetic), momentum and mass densities are respectively E, v  , and ; 
moreover, P, v , thj
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 Tj (r , t)  the current 
density vector within the streamer discharge simulation. The mean energy is evaluated (for 
each cell of the calculation domain) on 150ns; the duration is negligible compared with the 
neutral gas dynamic duration process >1µs (shock wave). The thermal flux density 

 thj grad T 


 is expressed in function of the thermal conductivity coefficient and 
temperature gradient of the gas (air). The gas viscosity is not taking into account, there is no 
reactivity of the gas, the electrodes are at ambient temperature, and gliding conditions are 

Finite Volume Method for Streamer and Gas  
Dynamics Modelling in Air Discharges at Atmospheric Pressure 

 

289 

applied to the electrodes. Finally, if the thermal transfer is not taking into account, the 
simulation diverges and there is no propagation wave. 

One can notice the three equations (11) to (13) are based on the same structure as (3), the 
transport term in one side (left term) and source term on the other side (right term). Thus, 
the algorithm used to solve the equations is the same as (10). 

3.2 Algorithm tests to solve the energy, momentum, density continuity and poisson 
equations 

Several kinds of algorithms are presented to solve the two equation types of the model: 
continuity and Poisson equations. The algorithms have been tested in accuracy and 
computing time on special tests. For the continuity equations (or transport equations) we 
used the Davies’ test (Davies & Niessen, 1990; Davies, 1992; Yousfi et al., 1994; Ducasse et 
al., 2010) in two directions of a cylindrical coordinate system (r, z). Six algorithms are tested: 
Upwind, Superbee Monotonic Upstream-centred Scheme for Conservation Law (MUSCL 
Superbee), Piecewise Parabolic Method PPM, ETBFCT, and Zalesak Peak Preserver (Ducasse 
et al., 2010). For the Poisson equation we compare the analytic solution to the numeric ones 
given by MUMPS (Direct method; not iterative) and SOR (Iterative method) (Amestoy, 2001, 
2006; Fournié, 2010; Press, 2nd edition). 

The Davies’ test was first introduced by Davies and Niessen in order to compare the 
algorithm efficiency to solve one-dimensional continuity equations (14) ((15) is the FVM 
discretised form) without source term; what we write here is valid for energy, momentum 
and density continuity equations. The test is interesting for streamer modelling since it 
reproduces mathematically the behaviour of the streamer head propagation which is a fast 
ionizing wave that propagates steep density gradients in a sharp velocity field. Thus, the 
test is performed along a normalized z-axis [0, 1] divided into N=100 regular cells, and 
consists in propagating a square density profile (wave) n(z, t)  in a stationary oscillating 
velocity field, as shown in Fig. 2. Equations (16) and (17) give respectively the mathematical 
expressions for the density and the velocity profiles: This gives a velocity peak value at 
z 0.5 au (arbitrary unit) which is ten times greater than the values at the beginning and the 
end of the domain. The initial density of the square wave distribution n(z, t 0)  is enclosed 
between z 0.05  and z 0.25  with a constant value of 10au. In addition, the time step is 
chosen equal to 10-5au which corresponds to a Courant-Friedrich-Levy number (CFL) equal  

to 10-2 ( maxv tCFL
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  8
zv (z) 1 9sin πz   (17) 

Finally, the boundaries at z=0 and z=1 are periodic in the sense that any particle leaving the 

right side boundary enters at the left side; so that, after the period 
1

z0

dzT 0.59
v (z)

  , the 

transport density profile solution should be identical to the initial distribution n(z, t 0) . 
The comparison of the transported density profile with the exact solution at time t=T will 
determine the accuracy of the algorithms in handling discontinuities and steep gradients 
(for t grater than T see (Ducasse, 2010)). In order to quantify the algorithm accuracy, the 
mean absolute error (18) is calculated. 
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Fig. 2. Initial conditions in the Davies-test case for the density and the velocity field with the 
densities at times t=T. 

Fig. 3 shows the numerical results obtained after one period, whereas Table 1 quantifies the 
performances of the algorithms in term of accuracy and time consumption. Moreover, with 
a CFL number equal to 10-2, one period T of the square wave evolution corresponds to 59 
070 iterations or time steps, which means that the flux correction is applied 59 070 times at 
the edges of each cells. 

MUSCL Superbee, PPM, ETBFCT, Zalesak without Peak Preserver (ZNOPP) and Zalesak 
Peak Preserver (ZPP) algorithms generate similar results and nearly preserve the solutions 
from numerical diffusion and dispersion (Fig. 3). Nevertheless, after one period, the results 
clearly indicate that the PPM algorithm generates the most accurate solution since both the  
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Fig. 3. Solutions obtained after one period (59 070 iterations) in the case of (a) Godunov-type 
schemes and (b) FCT technique. PPM is the most efficient. 

steep gradients and the floor of the square wave are better reproduced (Fig. 3a). 
Furthermore, the PPM-AE is roughly two times lower in comparison with the other tested 
algorithms (Table 1); this is in accordance with the previous observations. For Upwind, we 
observe on Fig. 3a it introduces a large amount of numerical diffusion (comparable to 
physical diffusion) and its AE is ten times higher than PPM-AE. 
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Fig. 3 shows the numerical results obtained after one period, whereas Table 1 quantifies the 
performances of the algorithms in term of accuracy and time consumption. Moreover, with 
a CFL number equal to 10-2, one period T of the square wave evolution corresponds to 59 
070 iterations or time steps, which means that the flux correction is applied 59 070 times at 
the edges of each cells. 

MUSCL Superbee, PPM, ETBFCT, Zalesak without Peak Preserver (ZNOPP) and Zalesak 
Peak Preserver (ZPP) algorithms generate similar results and nearly preserve the solutions 
from numerical diffusion and dispersion (Fig. 3). Nevertheless, after one period, the results 
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steep gradients and the floor of the square wave are better reproduced (Fig. 3a). 
Furthermore, the PPM-AE is roughly two times lower in comparison with the other tested 
algorithms (Table 1); this is in accordance with the previous observations. For Upwind, we 
observe on Fig. 3a it introduces a large amount of numerical diffusion (comparable to 
physical diffusion) and its AE is ten times higher than PPM-AE. 
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The conservation criterion of the algorithms has been tested too. We observed that the particle 
conservation is verified for all the algorithms except for ZPP. Indeed, the particle number 
associated with ZPP increases of 1.1% as it was already emphasized by Morrow (Morrow, 
1981). 

The last two columns of Table 1, specify the absolute and relative computation time of the 
six algorithms. The processors used for this comparison are a 3GHz Intel® Pentium® IV 
with 512Ko of cache memory (768Mo of RAM) and a 2.8GHz Intel® quad-core Nehalem® 
EX with 8 Mo of cache memory for each processor (18Go of RAM). The results indicate 
ETBFCT is the fastest but also the less accurate (if Upwind is omitted). Therefore, by taken 
the ETBFCT values as the reference, it becomes possible to compare the gain of precision 
relatively to the computing time rise. For example, PPM is 2.32 times more accurate than 
ETBFCT but the computing time is multiplied by a factor 2.6 (2.5 with Nehalem®). In 
addition, ZPP is the less efficient since the precision increases by a factor 1.05 only, while the 
computation time increases by a factor 3.6 (4.3 with Nehalem®). MUSCL and ETBFCT show 
similar behaviours in term of computing time and accuracy. Moreover, we notice an 
important computing time fall from Pentium® IV to Nehalem® with a factor 5 for ETBFCT 
and about 3.5 to 4 for the others. In the particular case of Upwind we see a time 
consumption divided by 4 compared to ETBFCT, but more than 4 times less accurate than 
ETBFCT; some author still use the Upwind algorithm with a high space resolution to 
compensate the numerical diffusion (Pancheshnyi & Starikovskii, 2003; Urquijo et al., 2007). 

Algorithm 
AE after one 

period T (59070 
iterations) 

Computing time 
Intel-PentiumIV® 3GHz, 512Ko 

cache memory 

Computing time 
Intel-Nehalem® 

2.8GHz, 8Mo cache 
memory 

Per iteration 
(µs) 

Relative CPU 
time 

Per 
iteration 

(µs)

Relative 
CPU 
time 

Upwind 1.23 1.9 0.25 0.54 0.36 

MUSCL 0.265 9.0 1.2 2.1 1.4 

PPM 0.124 13 2.6 3.7 2.5 

ETBFCT 0.288 7.5 1 1.5 1 

ZNOPP 0.274 19 2.5 4.2 2.8 

ZPP 0.275 22 3.6 6.5 4.3 

Table 1. Absolute Error after one period (59 070 iterations) and mean computing time per 
iteration (no compilation option) for six numerical schemes. 

Afterwards, the MUSCL Superbee algorithm is selected to be tested on the Kreyszig radial 
test (Kreyszig, 1999). Indeed, MUSCL with ETBFCT is the most interesting in terms of 
computing time and accuracy, with boundaries conditions simpler to implement than 
ETBFCT. 
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The Kreyszig radial test (Kreyszig, 1999) was used to observe the behaviour of the 
MUSCL Superbee algorithm for a physical quantity movement along the r-axis, both 
towards and away from the z-axis (symmetry axis). The test consists of the advection of a 
normalized square profile along the normalized radial direction, with a constant speed of 
108cm.s-1, a mesh of 100 uniform cells, and a time step fixed at 10-11s, which corresponds 
to a CFL equal to 0.1. In these conditions, Fig. 4 compares the numerical and analytical  
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Fig. 4. Radial density solution given by the FVM-MUSCL algorithm, (a) for a positive radial 
velocity, and (b) for a negative radial velocity. 
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The conservation criterion of the algorithms has been tested too. We observed that the particle 
conservation is verified for all the algorithms except for ZPP. Indeed, the particle number 
associated with ZPP increases of 1.1% as it was already emphasized by Morrow (Morrow, 
1981). 

The last two columns of Table 1, specify the absolute and relative computation time of the 
six algorithms. The processors used for this comparison are a 3GHz Intel® Pentium® IV 
with 512Ko of cache memory (768Mo of RAM) and a 2.8GHz Intel® quad-core Nehalem® 
EX with 8 Mo of cache memory for each processor (18Go of RAM). The results indicate 
ETBFCT is the fastest but also the less accurate (if Upwind is omitted). Therefore, by taken 
the ETBFCT values as the reference, it becomes possible to compare the gain of precision 
relatively to the computing time rise. For example, PPM is 2.32 times more accurate than 
ETBFCT but the computing time is multiplied by a factor 2.6 (2.5 with Nehalem®). In 
addition, ZPP is the less efficient since the precision increases by a factor 1.05 only, while the 
computation time increases by a factor 3.6 (4.3 with Nehalem®). MUSCL and ETBFCT show 
similar behaviours in term of computing time and accuracy. Moreover, we notice an 
important computing time fall from Pentium® IV to Nehalem® with a factor 5 for ETBFCT 
and about 3.5 to 4 for the others. In the particular case of Upwind we see a time 
consumption divided by 4 compared to ETBFCT, but more than 4 times less accurate than 
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Algorithm 
AE after one 

period T (59070 
iterations) 

Computing time 
Intel-PentiumIV® 3GHz, 512Ko 

cache memory 

Computing time 
Intel-Nehalem® 

2.8GHz, 8Mo cache 
memory 

Per iteration 
(µs) 

Relative CPU 
time 

Per 
iteration 

(µs)

Relative 
CPU 
time 
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Table 1. Absolute Error after one period (59 070 iterations) and mean computing time per 
iteration (no compilation option) for six numerical schemes. 
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The Kreyszig radial test (Kreyszig, 1999) was used to observe the behaviour of the 
MUSCL Superbee algorithm for a physical quantity movement along the r-axis, both 
towards and away from the z-axis (symmetry axis). The test consists of the advection of a 
normalized square profile along the normalized radial direction, with a constant speed of 
108cm.s-1, a mesh of 100 uniform cells, and a time step fixed at 10-11s, which corresponds 
to a CFL equal to 0.1. In these conditions, Fig. 4 compares the numerical and analytical  
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Fig. 4. Radial density solution given by the FVM-MUSCL algorithm, (a) for a positive radial 
velocity, and (b) for a negative radial velocity. 



 
Finite Volume Method – Powerful Means of Engineering Design 

 

294 

solutions, in a positive constant velocity field and a negative constant velocity field 
respectively. We note the correct behaviour of the algorithm, which introduce relatively 
small amounts of diffusion. The sharp corners are determined quite well despite the low 
spatial resolution. Thus, the solutions can be considered as satisfactory, all the more 
satisfactory the numerical solution tend to the analytic one with 1000 points and more 
accurate if a CFL=10-2 is added. 

We conclude the MUSCL algorithm gives interesting results for both the absolute error of 
the solution and computing time. Moreover, we noted that the numerical solutions of the 
continuity equation tend to the analytic solutions in both axial and radial directions when 
the mesh step and (or) the time step are decreased (CFL). 

At this stage we examine the numerical behaviour of SOR and MUMPS algorithms 
(Amestoy et al., 2001, 2006; Fournié et al., 2010; Press, 2nd edition) used to solve the Poisson 
equation (elliptic partial differential equation) without charge (i.e. Laplace’s equation). We 
adopted a hyperbolic point-to-plane configuration for which the analytical potential field is 
known; the analytical solution was initially proposed by Eyring and first used by Morrow 
for streamers simulation (Eyring et al., 1928; Morrow & Lowke, 1997). Thus, the analytical 
solution is compared to the numerical one and the algorithm efficiency is quantified thanks 
to the relative error. 

The curvature radius of the tip is 20µm and the inter-electrode space is 10mm; the applied 
voltage on the tip is equal to 9kV. The computational domain consists of a structured grid 
with none constant space cells in each direction. The limits of the domain are 19×19mm in z 
and r directions (cylinder of 19mm height and 19mm radius) and the number of nodal 
points in this domain is r zn n 307 1186 364102     (rmin=1µm and zmin=1µm). The 
spatial resolution along the z-axis is z=10µm from the plan until 200µm of the point, 
decrease down to z=1µm on the point, and increase again until the upper boundary; the 
radial step is progressively increased from r=1µm at the centre until the lateral boundary. 
Because of the symmetrical axis (Oz), the radial derivatives along the z-axis are set equal to 
zero. To perform the potential field comparisons, we set at each nodal point of the open 
boundaries (r=19mm and z=19mm) the analytical solution (Dirichlet conditions); we also 
performed the comparisons with a zero Neumann condition, since the simulation use this 
boundary condition. 

The isopotential maps in Fig. 5 compare the analytic field with the MUMPS and SOR 
solutions. Very good agreements are observed between all results, as well as around the tip 
than in the whole domain; it can be quantitatively discussed using Fig. 6 for the solution 
along the z-axis. Thus, the relative error shows the direct method MUMPS gives the closest 
solution to the analytical one with a value less than 0.1%. For SOR, the error depends on the 
tolerance chosen for the convergence and the spectral radius (sr influence the speed 
convergence and solution accuracy); the convergence tolerance is defined as the maximum 
of the relative difference between the solution at iteration k and k-1. Indeed, with a 10-5 
tolerance and an optimised convergence for the same tolerance (specific sr), we observe an 
error distribution lower than 0.5%, totally different from the MUMPS one, whereas with a 
10-5 tolerance and an optimised convergence at 10-10 tolerance (other sr) the error tends to 
error distribution is constant on a large part of the inter-electrode space and decreases  the 
MUMPS one; the result with a 10-10 tolerance and an optimised convergence for the same  
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Fig. 5. Isopotentials given by the analytic solution (left side) and the numerical solutions 
(right side) which are identical for the two methods (SOR and MUMPS). NB: Zoom with a 
size of 5mm×18mm centred over the symmetry axis. The tip isopotential is 9000V and the 
interval between each isopotential is 900V 
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solutions, in a positive constant velocity field and a negative constant velocity field 
respectively. We note the correct behaviour of the algorithm, which introduce relatively 
small amounts of diffusion. The sharp corners are determined quite well despite the low 
spatial resolution. Thus, the solutions can be considered as satisfactory, all the more 
satisfactory the numerical solution tend to the analytic one with 1000 points and more 
accurate if a CFL=10-2 is added. 

We conclude the MUSCL algorithm gives interesting results for both the absolute error of 
the solution and computing time. Moreover, we noted that the numerical solutions of the 
continuity equation tend to the analytic solutions in both axial and radial directions when 
the mesh step and (or) the time step are decreased (CFL). 

At this stage we examine the numerical behaviour of SOR and MUMPS algorithms 
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equation (elliptic partial differential equation) without charge (i.e. Laplace’s equation). We 
adopted a hyperbolic point-to-plane configuration for which the analytical potential field is 
known; the analytical solution was initially proposed by Eyring and first used by Morrow 
for streamers simulation (Eyring et al., 1928; Morrow & Lowke, 1997). Thus, the analytical 
solution is compared to the numerical one and the algorithm efficiency is quantified thanks 
to the relative error. 

The curvature radius of the tip is 20µm and the inter-electrode space is 10mm; the applied 
voltage on the tip is equal to 9kV. The computational domain consists of a structured grid 
with none constant space cells in each direction. The limits of the domain are 19×19mm in z 
and r directions (cylinder of 19mm height and 19mm radius) and the number of nodal 
points in this domain is r zn n 307 1186 364102     (rmin=1µm and zmin=1µm). The 
spatial resolution along the z-axis is z=10µm from the plan until 200µm of the point, 
decrease down to z=1µm on the point, and increase again until the upper boundary; the 
radial step is progressively increased from r=1µm at the centre until the lateral boundary. 
Because of the symmetrical axis (Oz), the radial derivatives along the z-axis are set equal to 
zero. To perform the potential field comparisons, we set at each nodal point of the open 
boundaries (r=19mm and z=19mm) the analytical solution (Dirichlet conditions); we also 
performed the comparisons with a zero Neumann condition, since the simulation use this 
boundary condition. 

The isopotential maps in Fig. 5 compare the analytic field with the MUMPS and SOR 
solutions. Very good agreements are observed between all results, as well as around the tip 
than in the whole domain; it can be quantitatively discussed using Fig. 6 for the solution 
along the z-axis. Thus, the relative error shows the direct method MUMPS gives the closest 
solution to the analytical one with a value less than 0.1%. For SOR, the error depends on the 
tolerance chosen for the convergence and the spectral radius (sr influence the speed 
convergence and solution accuracy); the convergence tolerance is defined as the maximum 
of the relative difference between the solution at iteration k and k-1. Indeed, with a 10-5 
tolerance and an optimised convergence for the same tolerance (specific sr), we observe an 
error distribution lower than 0.5%, totally different from the MUMPS one, whereas with a 
10-5 tolerance and an optimised convergence at 10-10 tolerance (other sr) the error tends to 
error distribution is constant on a large part of the inter-electrode space and decreases  the 
MUMPS one; the result with a 10-10 tolerance and an optimised convergence for the same  
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tolerance is superimposed to the MUMPS one. In addition, for the three accurate results the 
reaching the point; it is due to the mesh, constant at the beginning and that starts to decrease 
close to the point. The contrary is observed if a constant step mesh is used: the error 
increases from the plan to the point (Kacem et al., 2011). 

Table 2 gives the mean relative error calculated in the whole domain, the computing time 
and the number of iterations performed to satisfy the convergence tolerance fixed at 10-5; 
these quantities are given for each method, several domain dimensions, several tolerance 
conditions, Dirichlet and Neumann conditions. Thus, SOR shows the highest mean relative 
error (0.30%) even if the value is acceptable. Moreover, one can notice MUMPS has the 
smallest mean relative error (4.2 10-2 %) since this direct method gives the nearest solution 
compared to the analytic one; SOR generate the same solution accuracy with both a 10-10 
tolerance, or a 10-5 tolerance with an optimised spectral radius (convergence speed 
optimised for a 10-10 tolerance). Concerning the computing time, the SOR method needs 
between 17 and 34s to reach the specific tolerance criterion. MUMPS needs 830s to perform 
the direct calculation; thus, 830s are needed to construct the main matrix, analyse and 
performed the LU decomposition (Kacem et al., 2011), whereas only 0.23s are necessary to 
calculate the final product of matrices (if the LU decomposition is known, than only 0.23s is 
necessary to know the potential field). As regards the iteration number, SOR needs between 
2400 and 5900 iterations in order to converge; the number depending on the tolerance.  
 

Methods Tolerance 
Domain 

size 
(mm²) 

Iterations Mean Relative 
Error (%) 

Computing 
Time (s) 

Intel-Nehalem® 
2.8GHz, 8Mo 

cache memory 
Dirichlet condition

MUMPS - 

20×20 

- 24.2 10  

28.3 10 first 
time 

0.23 (if a next 
time step) 

SOR 

10-5 2438 0.30 (sr optimised 
at tolerance 10-5) 17 

10-5 3510 
24.4 10   

(sr optimised at 
tolerance 10-10)

20 

10-10 5902 
24.2 10   

(sr optimised at 
tolerance 10-10)

34 

Neumann condition

SOR 10-10 

10×20 10830 40 62 
20×20 13894 11 85 
30×30 10937 3.9 72 
40×40 14353 2.6 21.0 10  

Table 2. Quantitative criteria to compare the method efficiency for Dirichlet and Neumann 
conditions on the open boundaries (r=rmax and z=zmax). 

Finite Volume Method for Streamer and Gas  
Dynamics Modelling in Air Discharges at Atmospheric Pressure 

 

297 

Afterwards, the point used is not hyperbolic anymore, so the potential at the boundaries of 
the domain is unknown (a Dirichlet condition is not possible) that is why we impose 
Neumann conditions. Thus, it is important to check the impact of a Neumann condition on 
the previous hyperbolic point and compare the numerical solution to the analytic one; the 
test is performed with the SOR method. Table 2 shows the boundary position in the 
previous tests (Dirichlet) is 2x2mm². If we choose a 1x2mm² domain, than we observe the 
mean relative error is too high (40%). But with a 2x2mm² domain, the error decreases down 
to 11%; the value is acceptable. With a 3x3mm² domain the error is still improved (3.9%) but 
at 4x4mm² the improvement starts to slow down (2.6%). 

For the boundary positions of the next simulation we use the 2x2mm² domain with a 
tolerance of 10-5 and a spectral radius obtain for an optimised convergence at a tolerance of 
10-10; it is a compromise between the solution accuracy and the computing time. 

To finish, the code was compared to another one developed with finite element method. We 
found a very good agreement with less than 10% of difference (Ducasse et al., 2007). 

4. Simulation results 
The first part presents the results obtain with the streamer discharge simulation and the 
second the results obtained with the gas dynamic simulation. The streamer ionizing wave 
and the shock wave involved by the streamer discharge are simulated via a PRHE MPI 
parallelised streamer code; the simulator is able to reproduce both phenomena thanks to 
efficient algorithms we previously studied (no commercial software is able to do it). Both the 
streamer and gas dynamics simulations are 3D simulations with axial symmetry; cylindrical 
coordinates are used. Thus, only half space of a 2D domain (plane) is solved.  

The electric discharge is obtained with a point-to-plane electrode system (see the algorithm 
test part above). The tip curvature radius is 20µm, the gap is 10mm, and the discharge 
occurs in air at atmospheric pressure; a time varying positive potential (reaches a 9kV 
maximum on 60ns about) is applied to the point (Fig. 9). The transport of charged particles, 
their reactivity, their influence on the electric field and the photoionisation phenomenon are 
taken into account; the air neutral particles are fixed. Moreover, the reaction scheme is 
composed of 28 reactions the reader can find in (Bekstein et al., 2010) plus 10 ionic 
recombination reactions and 15 reactions with metastables (Table 3); so the reaction scheme 
is composed of 53 reactions. Finally, the reaction scheme is composed of electrons, two 
negative ions (O- and O2-) seven positive ions (N2+, O2+, N+, O+, N4+, O4+ and N2O2+) two 
radical atoms (O, N) and three metastables (N2(A), N2(a’) and O2(a)). 

Electronic density and electric field are shown; the simulation results are compared with 
experimental ones for several inter-electrode space values. The simulation code has been 
parallelised and the computing time is given varying several parameters. 

Fig. 7 and Fig. 8 show the electric field and electronic density evolutions from 20ns up to 
200ns. We observe the primary streamer starts its propagation at 20ns about, i.e. when the 
applied voltage reaches 3.8kV (Fig. 9). At this time, the space charge formation near the 
positive point is responsible for the little current peak which appears in the current curve in 
Fig. 9. The streamer arrives at the plane at 87.5ns about, and corresponds to the maximum 
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tolerance is superimposed to the MUMPS one. In addition, for the three accurate results the 
reaching the point; it is due to the mesh, constant at the beginning and that starts to decrease 
close to the point. The contrary is observed if a constant step mesh is used: the error 
increases from the plan to the point (Kacem et al., 2011). 

Table 2 gives the mean relative error calculated in the whole domain, the computing time 
and the number of iterations performed to satisfy the convergence tolerance fixed at 10-5; 
these quantities are given for each method, several domain dimensions, several tolerance 
conditions, Dirichlet and Neumann conditions. Thus, SOR shows the highest mean relative 
error (0.30%) even if the value is acceptable. Moreover, one can notice MUMPS has the 
smallest mean relative error (4.2 10-2 %) since this direct method gives the nearest solution 
compared to the analytic one; SOR generate the same solution accuracy with both a 10-10 
tolerance, or a 10-5 tolerance with an optimised spectral radius (convergence speed 
optimised for a 10-10 tolerance). Concerning the computing time, the SOR method needs 
between 17 and 34s to reach the specific tolerance criterion. MUMPS needs 830s to perform 
the direct calculation; thus, 830s are needed to construct the main matrix, analyse and 
performed the LU decomposition (Kacem et al., 2011), whereas only 0.23s are necessary to 
calculate the final product of matrices (if the LU decomposition is known, than only 0.23s is 
necessary to know the potential field). As regards the iteration number, SOR needs between 
2400 and 5900 iterations in order to converge; the number depending on the tolerance.  
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Afterwards, the point used is not hyperbolic anymore, so the potential at the boundaries of 
the domain is unknown (a Dirichlet condition is not possible) that is why we impose 
Neumann conditions. Thus, it is important to check the impact of a Neumann condition on 
the previous hyperbolic point and compare the numerical solution to the analytic one; the 
test is performed with the SOR method. Table 2 shows the boundary position in the 
previous tests (Dirichlet) is 2x2mm². If we choose a 1x2mm² domain, than we observe the 
mean relative error is too high (40%). But with a 2x2mm² domain, the error decreases down 
to 11%; the value is acceptable. With a 3x3mm² domain the error is still improved (3.9%) but 
at 4x4mm² the improvement starts to slow down (2.6%). 

For the boundary positions of the next simulation we use the 2x2mm² domain with a 
tolerance of 10-5 and a spectral radius obtain for an optimised convergence at a tolerance of 
10-10; it is a compromise between the solution accuracy and the computing time. 

To finish, the code was compared to another one developed with finite element method. We 
found a very good agreement with less than 10% of difference (Ducasse et al., 2007). 

4. Simulation results 
The first part presents the results obtain with the streamer discharge simulation and the 
second the results obtained with the gas dynamic simulation. The streamer ionizing wave 
and the shock wave involved by the streamer discharge are simulated via a PRHE MPI 
parallelised streamer code; the simulator is able to reproduce both phenomena thanks to 
efficient algorithms we previously studied (no commercial software is able to do it). Both the 
streamer and gas dynamics simulations are 3D simulations with axial symmetry; cylindrical 
coordinates are used. Thus, only half space of a 2D domain (plane) is solved.  

The electric discharge is obtained with a point-to-plane electrode system (see the algorithm 
test part above). The tip curvature radius is 20µm, the gap is 10mm, and the discharge 
occurs in air at atmospheric pressure; a time varying positive potential (reaches a 9kV 
maximum on 60ns about) is applied to the point (Fig. 9). The transport of charged particles, 
their reactivity, their influence on the electric field and the photoionisation phenomenon are 
taken into account; the air neutral particles are fixed. Moreover, the reaction scheme is 
composed of 28 reactions the reader can find in (Bekstein et al., 2010) plus 10 ionic 
recombination reactions and 15 reactions with metastables (Table 3); so the reaction scheme 
is composed of 53 reactions. Finally, the reaction scheme is composed of electrons, two 
negative ions (O- and O2-) seven positive ions (N2+, O2+, N+, O+, N4+, O4+ and N2O2+) two 
radical atoms (O, N) and three metastables (N2(A), N2(a’) and O2(a)). 

Electronic density and electric field are shown; the simulation results are compared with 
experimental ones for several inter-electrode space values. The simulation code has been 
parallelised and the computing time is given varying several parameters. 

Fig. 7 and Fig. 8 show the electric field and electronic density evolutions from 20ns up to 
200ns. We observe the primary streamer starts its propagation at 20ns about, i.e. when the 
applied voltage reaches 3.8kV (Fig. 9). At this time, the space charge formation near the 
positive point is responsible for the little current peak which appears in the current curve in 
Fig. 9. The streamer arrives at the plane at 87.5ns about, and corresponds to the maximum 
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calculated current peak. Moreover, a secondary front propagates from the point (the 
mechanism is different from an ionising wave) in the same time than the streamer 
propagation and after, during the relaxation phase (beyond 87.5ns); but the speed of this 
second front is definitely slower. More details about the streamer mechanism, the radical 
production are available in (Eichwald et al., 2008, 2011). 

Ion-Ion recombination (Kossyi et al., 1992)

   N2+ + O-  N2 + O 
   N2+ + O2

-  N2 + O2 
   O2++ O-  O2 + O 
   O2++ O2

-  2 O2 
   N4+ + O-  2 N2 + O 
   N4+ + O2

-  2 N2 + O2 
   O4+ + O-  2 O2 + O 
   O4+ + O2

-  3 O2 
   N2O2+ + O-  N2 + O2 + O 
        N2O2+ + O2

-  N2 + 2 O2

Metastable reactions (Yousfi & Benabdessadok, 1996; Kossyi et al., 1992)

   e- + N2  e- + N2(A) 
   e- + N2  e- + N2(a’) 
   e-+ O2  e-+ O2(a) 
   N2(A) + N2  2N2 
   N2(A) + O2  N2 + O2 
   N2(A) + O2  O2(a) + N2 
   N2(A) + O2  2 O + N2 
   N2(A) + N  N + N2 
   2 N2(a’)  N4+ + e- 
   N2(a’) + N2(A)  N4+ + e- 
   N2(a’) + O2  2 O + N2 
   O2(a) + N2  N2 + O2 
        O2(a) + O2  2O2

Table 3. Ion-Ion recombinaison and metastable reactions taken into account in the streamer 
reaction scheme. 

A first comparison between simulation and experiment (through the current) was done at 
one specific potential and inter-electrode space (Eichwald at al., 2008). Here, the simulated 
currents are compared with the experimental ones at 9, 10, 11mm inter-electrode space and a 
9kV DC applied voltage (the power is increased by hand to reach 9kV, afterward we 
observe a streamer discharge quite periodically). Thus the experimental applied potential 
shape is different, but the streamer channel is filiform in both cases (simulation and 
experiment; no branching phenomenon is observed). 
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Fig. 7. Reduced electric field (Td) distribution as a function of time. 

     

 
Fig. 8. Electron density distribution (log10 scale; m-3) as a function of time. 
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calculated current peak. Moreover, a secondary front propagates from the point (the 
mechanism is different from an ionising wave) in the same time than the streamer 
propagation and after, during the relaxation phase (beyond 87.5ns); but the speed of this 
second front is definitely slower. More details about the streamer mechanism, the radical 
production are available in (Eichwald et al., 2008, 2011). 
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Table 3. Ion-Ion recombinaison and metastable reactions taken into account in the streamer 
reaction scheme. 

A first comparison between simulation and experiment (through the current) was done at 
one specific potential and inter-electrode space (Eichwald at al., 2008). Here, the simulated 
currents are compared with the experimental ones at 9, 10, 11mm inter-electrode space and a 
9kV DC applied voltage (the power is increased by hand to reach 9kV, afterward we 
observe a streamer discharge quite periodically). Thus the experimental applied potential 
shape is different, but the streamer channel is filiform in both cases (simulation and 
experiment; no branching phenomenon is observed). 
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Fig. 8. Electron density distribution (log10 scale; m-3) as a function of time. 
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Fig. 9. Current and applied potential as a function of time; the streamer propagation starts at 
20ns with a 2.8kV applied potential. 

Fig. 10 shows there is a difference on the main peak of 10mA about at 9mm, and increases 
with the inter-electrode space; nevertheless the orders of magnitude are the same. Moreover, 
the bump observed on the experimental curve at 9mm (due to the secondary streamer) is not 
visible at 10 and 11mm; it seems the phenomenon is of the same amplitude as the primary 
streamer, but not at all visible on the simulated curves (even at 9mm); it could explain the  
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important current gap observed between 10 and 9mm we do not see on the simulated 
current. In addition, at 10 and 11mm we observe an important bump during the streamer 
propagation phase not present at 9mm; whereas the simulation always shows the same light 
bump (not depends on the gap size). Concerning the phenomenon duration, the 
configurations at 11mm are closer. Nevertheless, the fact the applied potential conditions are 
different for both the simulation and the experiment are responsible (may be in part) for the 
differences we observe. 

The simulation results are generated via a MPI parallelised streamer code developed by the 
PRHE group (Laplace laboratory). Table 3 shows the calculation performances obtained on a 
Altix cluster ICE 8200 of 352 nodes named Hyperion (Toulouse University); each node is 
composed of two Nehalem EX quad-core processors at 2.8 GHz with 8 Mo of cache memory 
per processor, and 36 Go of RAM. Thus, the computing time increases from 9 to 11mm, but 
not linearly. Indeed, from 9 to 10, 10 hours more are necessary whereas from 10 to 11mm 
less than 2 hours are necessary; this has to be correlated with the time iteration numbers. 
Indeed, when the inter-electrode gap increases it is like the applied potential decreases; 
consequently the physical quantity gradients are lower and the iterative parts of the code 
converge faster. We do the same observation with SOR: SOR is faster than MUMPS for one 
iteration; if the gradients are lower enough to make SOR converge at one iteration than the 
calculation time will be certainly lower.  

Inter-
electrode 
Size (mm) 

Mesh 
Definition 

r zn n & 
Point 

Applied 
Potential 

(kV)

Potential 
Solver 

Processor 
Number 

Time 
Iteration 
Number 

Computing Time to 
Generate the Result 

Intel-Nehalem® 2.8GHz, 
8Mo cache memory 

Total 
(h:min:s) 

Per time 
iteration 

(s) 
9 307×1190; 9 MUMPS

16 

742174 69:20:29 0.33 
10 307×1186; 9 MUMPS 726190 79:31:58 0.39 
10 307×1186; 9 SOR 726771 41:53:55 0.21 
11 307×1298; 9 MUMPS 728497 81:17:39 0.40 

Table 4. Computing time necessary to generate the result with a PRHE MPI parallelised 
Streamer code at 16 Processors, for three inter-electrode dimensions, and MUMPS and SOR 
potential solvers. The calculations were made on the Hyperion supercomputer. The 
simulation generates a faster result when SOR solver is implemented.  

The streamer discharge effect on the air gas dynamics is shown through the pressure Fig. 11; 
complementary information can be found in (Eichwald et al., 2011). The local air heated 
locally on the point by the electric discharge reaches a temperature of thousands of Kelvin. 
Thus, the thermal shock generates pressure gradients (Fig. 11) that induces wave 
propagations by a successive local compression – expansion mechanism. The gas expansion 
is characterised by a spherical and cylindrical shock wave. Indeed, the streamer discharge 
start to heat locally the air on the tip, forming afterwards a spherical wave, superimpose to 
the heat in the channel, forming a cylinder wave. Such spherical waves were already 
experimentally observed using the laser Schlieren technique (Ono & Oda, 2004). In addition, 
the simulation shows the spherical shock wave propagates at the air sound speed: between 
1µs and 4µs the wave front propagates on 1200µm so a velocity of 400m/s. 
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important current gap observed between 10 and 9mm we do not see on the simulated 
current. In addition, at 10 and 11mm we observe an important bump during the streamer 
propagation phase not present at 9mm; whereas the simulation always shows the same light 
bump (not depends on the gap size). Concerning the phenomenon duration, the 
configurations at 11mm are closer. Nevertheless, the fact the applied potential conditions are 
different for both the simulation and the experiment are responsible (may be in part) for the 
differences we observe. 

The simulation results are generated via a MPI parallelised streamer code developed by the 
PRHE group (Laplace laboratory). Table 3 shows the calculation performances obtained on a 
Altix cluster ICE 8200 of 352 nodes named Hyperion (Toulouse University); each node is 
composed of two Nehalem EX quad-core processors at 2.8 GHz with 8 Mo of cache memory 
per processor, and 36 Go of RAM. Thus, the computing time increases from 9 to 11mm, but 
not linearly. Indeed, from 9 to 10, 10 hours more are necessary whereas from 10 to 11mm 
less than 2 hours are necessary; this has to be correlated with the time iteration numbers. 
Indeed, when the inter-electrode gap increases it is like the applied potential decreases; 
consequently the physical quantity gradients are lower and the iterative parts of the code 
converge faster. We do the same observation with SOR: SOR is faster than MUMPS for one 
iteration; if the gradients are lower enough to make SOR converge at one iteration than the 
calculation time will be certainly lower.  
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Streamer code at 16 Processors, for three inter-electrode dimensions, and MUMPS and SOR 
potential solvers. The calculations were made on the Hyperion supercomputer. The 
simulation generates a faster result when SOR solver is implemented.  

The streamer discharge effect on the air gas dynamics is shown through the pressure Fig. 11; 
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locally on the point by the electric discharge reaches a temperature of thousands of Kelvin. 
Thus, the thermal shock generates pressure gradients (Fig. 11) that induces wave 
propagations by a successive local compression – expansion mechanism. The gas expansion 
is characterised by a spherical and cylindrical shock wave. Indeed, the streamer discharge 
start to heat locally the air on the tip, forming afterwards a spherical wave, superimpose to 
the heat in the channel, forming a cylinder wave. Such spherical waves were already 
experimentally observed using the laser Schlieren technique (Ono & Oda, 2004). In addition, 
the simulation shows the spherical shock wave propagates at the air sound speed: between 
1µs and 4µs the wave front propagates on 1200µm so a velocity of 400m/s. 
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Fig. 11. Shock wave pressure distribution (×105 Pa) as a function of time. 

5. Conclusion 
In this chapter we have shown how the Finite Volume Method can be used for the 
discretisation of the transport and Poisson equations, allowing the simulations of streamer 
discharge development and the associated gas dynamics. It is clear that FVM is attractive 
since we work directly on elementary volumes that make sense from a physical point of 
view. Moreover, through a very carefully study, we showed important results as regards the 
algorithm accuracy, the algorithm convergence (SOR iterative method) the boundary 
conditions, and the computing time. In the case of the algorithms tested in our research 
group we have shown first that MUSCL Superbee is the most efficient to treat the 
conservation laws (Energy, momentum and density); we have also shown that SOR and 
MUMPS are both interesting in term of computing time. In fact SOR is efficient from a time 
step to another when the space charge varies slowly (it is the case at relatively low applied 
potential); MUMPS is efficient if the space charge varies rapidly (the computing time 
remaining practically the same). In addition, the PRHE-MPI-parallelised code is efficient 
with 16 processors on the Hyperion HPC system (2.8GHz Intel-Nehalem®; 8Mo cache 
memory). At this stage, it is possible to do parametric studies since the calculation is fast 
enough (around three days at 10mm inter-electrode distance and 200ns for the duration). 
Nevertheless, some improvements on the discharge model still have to be performed from a 
physical point of view. Indeed, we have shown the experimental current behaves differently 
when varying the inter-electrode space, whereas the simulation always showed the same 
shape. May be one of the improvement would be to take into account the local modifications 
of the air gas properties due to the streamer discharge by the direct coupling of gas 
dynamics and streamer discharge dynamics. 
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1. Introduction 
Electroencephalography (EEG) and/or Event Related Potentials (ERP) are powerful non-
invasive techniques which have broad clinical applications for epilepsy (Gloor et al., 1977; 
Hughes, 1989; Jaseja, 2009; Myatchin et al., 2009). It is also the case for psychiatric and 
developmental disorders (Pae et al., 2003; Ruchsow et al., 2003; Youn et al., 2003). There are 
developments in brain cognition research as for dyslexia (Horowitz-Kraus&Breznitz, 2008; 
Nuwer, 1998; Russeler et al., 2007), for visual treatment in face recognition (Chaby et al., 
2003; George et al., 1996). In all these situations, specific brain areas are activated, and 
inverse techniques based on ERP treatment can help to estimate them. Techniques based on 
EEG/ERP are known to be incontestably inoffensive and cheap. This explains why they are 
often used and are still of great interest in medicine. The optimization of such medical tools, 
in research on brain cognition and/or as clinical tools, often requires knowledge of the intra-
cerebral current sources. In EEG/ERP, this information can be obtained by solving of the so-
called “inverse” problem consisting in finding the localization of the spatio-temporal intra-
cerebral activity from scalp potential recordings. Various methods have been proposed in 
the EEG/ERP literature for computing this inverse problem. 

Although scalp potentials were first recorded by Hans Berger in 1929 (Berger, 1929), the 
first inverse problem approach was introduced by Cuffin et al. (Cuffin&Cohen, 1979) in 
both MEG and EEG, followed by Hämäläinen et al. in 1984 (Hämäläinen&Ilmoniemi, 
1984) in MEG. They later extended and increased the performance of the inverse approach 
applied to MEG (Hämäläinen&Ilmoniemi, 1994). The method was based on the Euclidean 
norm, which estimates the shortest vector solution in the source-current space 
(Hämäläinen&Ilmoniemi, 1994). This so-called Minimum Norm Estimate (MNE) is close 
to Tikhonov regularization (Tikhonov&Arsenin, 1977). However, the MNE solution is 
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known to misreport actual deep sources as being in the outermost cortex (Pascual-Marqui, 
1999; Pascual-Marqui et al., 2002). In order to compensate for the tendency of MNE to 
favour weak and surface sources, some authors have introduced a “weighting” matrix, 
calling this inverse method the Weighted Minimum Norm Estimate (WMNE) (Ding, 
2009). Then, derived from this reasoning, many inverse methods have been used and/or 
improved specifically for EEG/ERP, modifying and/or reducing the solution space. 
Baillet introduced a priori to the solution which can be seen as a weighting matrix using a 
Bayesian probability, based on anatomical or functional knowledge (Baillet&Garnero, 
1997). A Weighted Resolution Optimization (WROP), extending the Backus-Gilbert 
inverse method (Backus&Gilbert, 1968), has been developed (Grave de Peralta Menendez 
et al., 1997). The same technique has been modified, using biophysical and psychological a 
priori to the method called “Local Auto Regressive Average” (LAURA) (De Peralta-
Menendez&Gonzales-Andino, 1998). Other authors have considered that restricting the 
potential solution to the cortical surface is sufficient to make the brain localization, and 
that the potential maps on the cortex surface must be significantly smooth, which has 
given rise to the inverse methods called “LOw Resolution brain Electromagnetic 
Tomography” (LORETA) (Pascual-Marqui et al., 1994), sLORETA (Pascual-Marqui, 2002) 
which is close to the “Variable Resolution Electrical Tomography” (VARETA) method 
(Bosch-Bayard et al., 2001). The above list of inverse methods is not exhaustive; a wide 
range of techniques exist for deriving inverse methods for use in EEG/ERP and new 
developments continue to be relevant today. 

It should be noted that another type of inverse method has been developed at the same time. 
The main assumption is that the number of intra-cerebral current sources is limited (<10) and 
each source is punctual. Examples of such inverse methods are implemented in Brain Electric 
Source Analysis (BESA) (Scherg&Berg, 1991), using the so-called “simplex method” developed 
by Nelder and Mead (Nelder&Mead, 1965) and the Multiple Signal Classification (MUSIC) 
algorithm (Mosher et al., 1999). This type of method will not be discussed in our study, which 
only takes all cortex surfaces into account as possible locations of brain activity. 

Inverse methods are numerous and cover many domains, especially in physics and 
medicine. Recent research can be found that uses the CGM for problems such as the 
determination of local boiling heat fluxes (Egger et al., 2009), the spatial distribution of 
Young’s modulus (Fehrenbach et al., 2006), 3D elastic full-waveform seismic inversion 
(Epanomeritakis et al., 2008). Other applications can be found in other journals e.g., thermal 
diffusivity in plasma (Perez et al., 2008; Yang et al., 2008) and conductivity changes in 
impedance tomography (Zhao et al., 2007), proving, if it were necessary, the wide use of 
CGM in many different fields of application. Nevertheless, despite some attempts to use 
inverse methods such as the CGM in EEG/ERP, there is a lack of studies on the application 
of CGM to inverse problems in electroencephalography and/or event related potentials. 
Our contribution is to study the interest of applying CGM in EEG or ERP inverse problems. 

In this article, the dependence of the reconstruction quality on the number of electrodes and 
the noise level are studied using CGM in numerical simulation. The main goal of this work 
is to evaluate the quality of intra-cerebral source reconstruction using CGM and to compare 
these results to the Cortical Imaging Technique (CIT). The model parameters and the CGM 
are described in Sec. 2. Then, in Sec. 3, the theoretical reconstruction of cortical potentials, as 
if they had been solved from experimentally recorded scalp potentials, are presented and 
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discussed, considering various numbers of electrodes and noise levels. In Sec. 4, previous 
results are compared to those obtained by CIT, using the comparison tools MAG and RDM 
factors. The conclusions of this work are given in Sec. 5. 

2. Material and method  
2.1 Head model 

To localize brain activity from recorded scalp potentials in EEG/ERP, mathematical/ 
physical models that describe the geometrical and electrical properties of the head and the 
intra-cerebral current sources are needed. Generally, the head is described as a conductive 
volume with piecewise constant conductivity to represent the conductivity of each of its 
different parts. (Chauveau et al., 2004; He et al., 2002; Zhang et al., 2003). In our study 
(Figure 1), five compartments were used to construct the head model for the simulation, 
using the ICBM-152 (http://packages.bic.mni.mcgill.ca/tgz/) T1 template from Montreal 
Neurological Institute.  

Resolution was 2 mm. Conductivities were those used in our previous study on CIT 
(Chauveau et al., 2008). 

 
(Chauveau et al., 2005) 

Fig. 1. The five tissues (white and grey matter, cerebrospinal fluid, skull and scalp), after 
segmentation of a realistic head geometry (e.g. The T1 Montreal head template). 
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Neurological Institute.  

Resolution was 2 mm. Conductivities were those used in our previous study on CIT 
(Chauveau et al., 2008). 

 
(Chauveau et al., 2005) 

Fig. 1. The five tissues (white and grey matter, cerebrospinal fluid, skull and scalp), after 
segmentation of a realistic head geometry (e.g. The T1 Montreal head template). 
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2.2 Method 

Determining scalp potentials from the simulation of intra-cerebral sources, called the 
forward problem, was an initial step towards the solution of the inverse problem, which 
aimed to find the sources at the origin of scalp potentials. Various numerical methods 
(Chauveau et al., 2005; 2005; Darvas et al., 2006; Franceries et al., 2003) have been proposed 
in the literature for computing the forward problem, including finite difference (FDM) 
((Mattout, 2002; Vanrumste, 2001), boundary element (BEM) (Crouzeix, 2001; Kybic et al., 
2005; Yvert et al., 1995) and finite element (FEM) (Darvas et al., 2006; Thevenet et al., 1991) 
methods, the last two being the most widely used. FEM with inclusion anisotropic 
conductivities have also been developed (Wolters et al., 2007). Although the simulations are 
usually time consuming, all give rise to numerical solutions and most of them are adequate 
to simulate brain activation. The Resistor Mesh Model (RMM) (Chauveau et al., 2005; 2005; 
Franceries et al., 2003), close to Finite Volume Method (FVM) first proposed by Patankar 
(Patankar, 1980), gives very stable results and is easy to set up. The RMM is made of 2 mm 
size voxel elements. A sparse square symmetric admittance matrix Y describes the model. 
Each element represents a resistor, completely determined by its geometry and its 
conductivity (Franceries et al., 2003). The elements are assembled at the nodes of the model. 
The forward solution for a vector of currents I is a vector of potentials V so that I = Y x V. 
The resolution is obtained by using a numerical technique as Newton Raphson algorithm. It 
should be noted that, in some very special and simple cases (e.g. spherical models), an 
analytical solution is available but this is not the case for realistic head geometry (de 
Munck&Peters, 1993; Yvert et al., 1997; Zhou&van Oosterom, 1992)  

2.3 Source configuration 

In EEG/ERP, brain activation was first simulated by one or several dipolar current sources. 
The brain activation of each source was modelled by a current dipole, as introduced in 1953 
by Plonsey (Plonsey&Barr, 1988). Other types of extended brain activity model have been 
proposed, e.g. ring extended sources to mimic the gamma frequency range EEG (Tallon-
Baudry et al., 1999) . 

In our study, we chose the current dipole model, which is widely used and well suited to 
the RMM. The intra-cerebral activation was simulated by four current dipoles, as used in a 
previous study on CIT (Chauveau et al., 2008), in order to make the comparison between 
CGM and CIT. A complex source configuration was used with 2 radial (RR = Radial Right, 
RL = Radial Left ) and 2 tangential ( TR = Tangential Right ant TL = Tangential Left) dipoles, 
placed on or close to the cortex surface. We chose these four dipoles because we wanted to 
test the inverse technique on two major points: radial or tangential dipoles (EEG being 
known to be most sensitive to radial), and symmetric dipoles (is the technique able to 
separate right and left activity?). 

2.4 Forward solution 

The RMM was applied to solve the forward problem with the previously described source 
configuration and a sample head model of five tissue compartments, using 2 mm voxels. 
The method computes potentials at all nodes (the RMN model contains 486,850 nodes and 
1,413,720 elements) inside the head model and at the head surface where the electrodes are 

 
Conjugate Gradient Method Applied to Cortical Imaging in EEG/ERP 

 

313 

placed (i.e. on the patient’s scalp surface). The use of a large matrix made solving this 
complete forward problem time consuming. In EEG/ERP, in order to reduce time of 
resolution and to minimize hard disk space, a lead field (LF) matrix, linking the electrode 
potentials and the currents at the cortex surface is constructed, using the Helmholtz 
reciprocity principle (Helmholtz, 1853). This new matrix is smaller, reducing calculation 
time, but the potentials are computed only at the electrode nodes of the scalp surface. The 
forward problem of computing scalp potential at electrode position (Ve) from a source 
configuration (I) thus becomes a reduced linear system as follows:  

 
.Ve LF I

 (1) 

2.5 Inverse problem 

Generally, the inverse problem is solved by using the same matrix as the one for the 
numerical forward method (i.e. LF ), but using inversion. The LF  matrix is not square and 
so cannot be inverted directly. Many methods exist to solve this ill-posed inverse problem, 
detailed mathematically by Tikhonov (Tikhonov&Arsenin, 1977). Depending on the 
physical problem, the matrix conditioning and the optimal inverse method have to be 
adapted. Up to now, CGM have not been applied to EEG/ERP and the most widely used 
inverse method is the pseudo-inverse matrix, e.g. the Moore-Penrose technique:  

 1. ( . ) . .T TI LF Ve LF LF LF Ve    (2) 

where LF  and TLF  are respectively the pseudo-inverse matrix of LF  by Moore-Penrose 
and the transpose matrix of LF . 

In real measurements, data are corrupted by noise and a regularization technique has to be 
used in the inversion procedure. Zero-order Tikhonov regularization permits this problem 
to be solved: 

 
1( . . ) . .T TI LF LF I LF Ve  

 (3) 

  is a regularization factor depending on noise level, the optimal value of which is obtained 
at the angle of the associated L-curve (Carthy, 2003; Hansen, 2000; Tikhonov, 1963). 

In EEG/ERP, the Cortical Imaging Technique (CIT) is one of the possible inverse methods, 
which limits the space of solutions for current dipoles to the cortex surface. This method has 
been described and evaluated (Chauveau et al., 2008; He et al., 2002) and it provided the 
comparison technique used in our study.  

2.6 Conjugate gradient method (CGM) 

CGM is an iterative technique. Other iterative techniques have been proposed (Gorodnitsky 
et al., 1995; Hansen, 1994; Ioannides et al., 1990). Ioannides proposes continuous 
probabilistic solutions to the biomagnetic inverse problem, very efficient for deep sources. 
Gorodnitsky describes a recursive weighted minimum norm algorithm (FOCUSS). Hansen 
has developed regularization tools for Matlab: he describes the iterative regularization 
methods, and presents CGM as a process which has some inherent regularization effect 
where the number of iterations plays the role of regularization parameter. 
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placed (i.e. on the patient’s scalp surface). The use of a large matrix made solving this 
complete forward problem time consuming. In EEG/ERP, in order to reduce time of 
resolution and to minimize hard disk space, a lead field (LF) matrix, linking the electrode 
potentials and the currents at the cortex surface is constructed, using the Helmholtz 
reciprocity principle (Helmholtz, 1853). This new matrix is smaller, reducing calculation 
time, but the potentials are computed only at the electrode nodes of the scalp surface. The 
forward problem of computing scalp potential at electrode position (Ve) from a source 
configuration (I) thus becomes a reduced linear system as follows:  

 
.Ve LF I
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2.5 Inverse problem 

Generally, the inverse problem is solved by using the same matrix as the one for the 
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In real measurements, data are corrupted by noise and a regularization technique has to be 
used in the inversion procedure. Zero-order Tikhonov regularization permits this problem 
to be solved: 
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  is a regularization factor depending on noise level, the optimal value of which is obtained 
at the angle of the associated L-curve (Carthy, 2003; Hansen, 2000; Tikhonov, 1963). 

In EEG/ERP, the Cortical Imaging Technique (CIT) is one of the possible inverse methods, 
which limits the space of solutions for current dipoles to the cortex surface. This method has 
been described and evaluated (Chauveau et al., 2008; He et al., 2002) and it provided the 
comparison technique used in our study.  

2.6 Conjugate gradient method (CGM) 

CGM is an iterative technique. Other iterative techniques have been proposed (Gorodnitsky 
et al., 1995; Hansen, 1994; Ioannides et al., 1990). Ioannides proposes continuous 
probabilistic solutions to the biomagnetic inverse problem, very efficient for deep sources. 
Gorodnitsky describes a recursive weighted minimum norm algorithm (FOCUSS). Hansen 
has developed regularization tools for Matlab: he describes the iterative regularization 
methods, and presents CGM as a process which has some inherent regularization effect 
where the number of iterations plays the role of regularization parameter. 
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CGM was first designed for solving linear equations thanks to a square symmetric matrix. 
The application of CGM can be extended to rectangular non symmetric matrix as lead fields 
are, for the inverse solution. That is this way we use CGM in this study. The following 
equations do not need specific hypothesis on the properties of the linear matrix. 

When using a gradient method (GM) in EEG/ERP, the inverse problem is replaced by an 
estimation problem in which the unknown source configuration kI is varied iteratively until 
the difference between the measured and calculated scalp potentials is as small as possible: 

 .k k kR Ve Ve Ve LF I     (4) 

kR  is the residual of the measured scalp potentials, Ve , minus the computed ones, kVe , at 
the kth iteration and LF the lead field matrix. 

 1 . .k k kR R LF P    (5) 

The simple gradient method (Amari, 1977) is based on a local derivative function, in order to 
minimize the error. At each step of a gradient method, a trial set of values for the variable is 
used to generate a new set corresponding to a lower value of the error function.This was 
improved in the steepest gradient method (Curry, 1944), where the descent method takes 
the direction of the maximum gradient of the error function, which reduces the number of 
iterations. A further improvement is CGM, in which the previous (k) and the next (k+1) 
search directions are defined to be orthogonal in the residual associated error space, so that 
CGM explores a maximum of kR  space. The CGM (Press et al., 1992) is an iterative method 
which computes: 

 1 .k k kI I P    (6) 

        . . . . .TTT
k k k k k k k kF R R Ve Ve Ve Ve F Ve LF I Ve LF I         (7) 

where kP  is a vector of search direction at the kth iteration and   is a scalar of optimal step 
of descent obtained by finding the minimal argument of the objective function kF , defined 
by the norm of residual kR : 

1 1( ( ))k kArgMin F I    
This is equivalent to looking for the  value which cancels the derivative. 
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Replacing 1kI   by its value in equation 6 and developing equation 9 gives: 

 . .
. . .

T T
k k

T T
k k

P LF R
P LF LF P

   (10) 

The new iterative direction 1kP  is computed from the previous one kP  using: 

 1 1. .T
k k kP LF R P  

 (11) 

and by imposing that the previous kP  and the next 1kP   search direction are orthogonal 

 1 . . 0T T
k kP LF LF P   (12) 

Replacing the value of 1kP  of equation 11 in equation 12 gives the new conjugation factor 
 given by: 

 1. . . .
. . .

T T
k k

T T
k k

R LF LF LF P
P LF LF P

   (13) 

The solution kI  is obtained at the kth iteration when the value of the chosen stopping 
criterion C of CGM is reached: 

 .
.

T
k k
T
e e

R R C
V V

  (14) 

C corresponds to a value, chosen by the user: it must be higher or equal to 0.01, from our 
experience and with our model. The root mean square of the relative error is compared to 
that value to stop the iterations. 

In real conditions, data are corrupted by noise. In ERP/EEG protocols, noise vector No can 
be simply estimated on the pre-triggering time interval before events. Then the smaller 
criterion to reach becomes: 

 .
.

T
noise T

e e

No NoC
V V

  (15) 

Then we stop the iterations when  

 .
.

T
k k

noiseT
e e

R R C
V V

  (16)  

CGM does not need a priori conditions for solving the inverse problem in EEG/ERP, 
especially on the number of possible current sources in the cerebral volume. Moreover, 
CGM is faster than the classical Gradient Method because it needs less iteration to converge. 

The main particularity of CGM is that the variation of the vector current obtained at each 
program loop is made orthogonal to the previous one. This permits to explore more quickly 
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the space of solutions. In our application, CGM uses a lead field matrix, which is never 
inverted. The minimization is achieved on the square difference between measured and 
estimated electrode potentials. To stop the process, two methods are reported: 

- A precision criterion chosen by the user (equation 14) which can generate oscillations. 
- A precision criterion estimated from noise and signal (equation 15) avoiding 

oscillations, stopping the iterations when equation 16 is validated. 

3. Results 
3.1 CGM results without noise 

3.1.1 Single dipoles 

Figure 2 shows cortical potentials obtained by direct simulation in comparison with cortical 
potentials computed at all nodes in the RMM by CGM (with 107 electrodes). All the cortical 
potentials reconstructed show a good localization for each single dipole, even though 
individual dipoles are smoother at the cortex cerebral surface. In order to quantify the 
results, we used the accuracy measures described in the appendix: magnification factors 
(MAG) and relative difference measure (RDM). 

 
Fig. 2. Forward solution and CGM left part: forward solution of cortical potentials in 2 mm 
voxels for each dipole (RL, radial left ,RR, radial right, TL tangential left, TR tangential 
right), right part: CGM without noise for each dipole (right part) [-5e-5 +5e-5 volts] from 107 
electrode potentials. 

CGM performance is given for single and multiple dipoles in Table 1. It appears that the 
cortical potentials obtained by CGM underestimate the dipole amplitudes in comparison 
with potentials obtained by the forward solution. The worst result is observed for the 
dipole RR, which is correctly located on the cortex, but with a spread cortex area (Fig. 2) 
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and with a local maximum much lower than for the forward solution, which explains the 
low value of MAG. 

 Cortex Scalp Electrodes 
107 

electrodes MAG RDM MAG RDM MAG RDM 

1 dipole       
RR 0.31 1.21 1.23 0.28 1.08 0.06 
RL 1.57 0.98 1.06 0.16 1.05 0.03 
TR 0.92 0.47 1.09 0.14 1.04 0.03 
TL 0.72 0.77 1.03 0.06 1.01 0.01 

4 dipoles 0.48 1.15 1.05 0.20 1.02 0.07 

Table 1. MAG and RDM of cortical potentials, scalp potentials and electrode potentials 
obtained by CGM for simulation of single dipole and the 4 dipoles with 107 electrodes in 2 
mm voxel, without noise 

3.1.2 Effect of number of electrodes on CGM with the 4 dipoles 

As EEG is only recorded at a limited number of electrodes, it is important to estimate the 
role of this number on the quality of the inverse solution. 

Figure 3 shows the cortical potentials obtained by CGM for 60 and 107 electrodes without 
noise. CGM was used to compute cortical potentials from the electrode potentials of the 
forward solution. As we can see on the figure, the CGM solution with 107 electrodes is more 
accurate than the solution obtained with 60 electrodes (tangential dipoles are better defined: 
red and blue areas are closer). We also observe, taking the potentials of the forward solution 
as a reference, that CGM with 60 and 107 electrodes underestimates the potentials at the 
cortical surface, especially for tangential dipoles. MAG reported in Table 1, and Table 2 and 
3 (for noise 0%) confirms lower potential estimation at the cortex, whereas high RDM 
indicates mismatch on the shape or position.  

 
            Forward solution  CGM (60 electrodes)      CGM (107 electrodes) 

Fig. 3. Forward solution of cortical potentials in 2 mm voxels (left part) for 4 dipoles, CGM 
with 60 electrodes (central part) and CGM with 107 electrodes without noise for 4 dipoles  
[-5e-5 +5e-5 volts] 



 
Finite Volume Method – Powerful Means of Engineering Design 

 

316 

the space of solutions. In our application, CGM uses a lead field matrix, which is never 
inverted. The minimization is achieved on the square difference between measured and 
estimated electrode potentials. To stop the process, two methods are reported: 

- A precision criterion chosen by the user (equation 14) which can generate oscillations. 
- A precision criterion estimated from noise and signal (equation 15) avoiding 

oscillations, stopping the iterations when equation 16 is validated. 

3. Results 
3.1 CGM results without noise 

3.1.1 Single dipoles 

Figure 2 shows cortical potentials obtained by direct simulation in comparison with cortical 
potentials computed at all nodes in the RMM by CGM (with 107 electrodes). All the cortical 
potentials reconstructed show a good localization for each single dipole, even though 
individual dipoles are smoother at the cortex cerebral surface. In order to quantify the 
results, we used the accuracy measures described in the appendix: magnification factors 
(MAG) and relative difference measure (RDM). 

 
Fig. 2. Forward solution and CGM left part: forward solution of cortical potentials in 2 mm 
voxels for each dipole (RL, radial left ,RR, radial right, TL tangential left, TR tangential 
right), right part: CGM without noise for each dipole (right part) [-5e-5 +5e-5 volts] from 107 
electrode potentials. 

CGM performance is given for single and multiple dipoles in Table 1. It appears that the 
cortical potentials obtained by CGM underestimate the dipole amplitudes in comparison 
with potentials obtained by the forward solution. The worst result is observed for the 
dipole RR, which is correctly located on the cortex, but with a spread cortex area (Fig. 2) 

 

 

 
Conjugate Gradient Method Applied to Cortical Imaging in EEG/ERP 

 

317 

and with a local maximum much lower than for the forward solution, which explains the 
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as a reference, that CGM with 60 and 107 electrodes underestimates the potentials at the 
cortical surface, especially for tangential dipoles. MAG reported in Table 1, and Table 2 and 
3 (for noise 0%) confirms lower potential estimation at the cortex, whereas high RDM 
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            Forward solution  CGM (60 electrodes)      CGM (107 electrodes) 

Fig. 3. Forward solution of cortical potentials in 2 mm voxels (left part) for 4 dipoles, CGM 
with 60 electrodes (central part) and CGM with 107 electrodes without noise for 4 dipoles  
[-5e-5 +5e-5 volts] 
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MAG  criterion  MAG  criterion  MAG  criterion  
60 elec. 0.02 0.05 0.10 scalp 0.02 0.05 0.10 cortex 0.02 0.05 0.10 

0% 0.99 0.98 0.98 0% 1.11 1.14 1.14 0% 0.42 0.40 0.36 
2% 1.00 1.00 0.99 2% 1.08 1.06 1.14 2% 0.45 0.43 0.39 
5% 1.08 1.08 1.07 5% 1.18 1.17 1.20 5% 0.67 0.60 0.50 
10% 1.13 1.10 1.07 10% 1.23 1.26 1.28 10% 0.98 0.92 0.79 

            
RDM  criterion  RDM  criterion  RDM  criterion  

60 elec 0.02 0.05 0.10 scalp 0.02 0.05 0.10 cortex 0.02 0.05 0.10 
0% 0.07 0.08 0.13 0% 0.31 0.37 0.39 0% 1.18 1.18 1.19 
2% 0.13 0.13 0.14 2% 0.29 0.28 0.39 2% 1.19 1.19 1.19 
5% 0.25 0.24 0.23 5% 0.40 0.37 0.39 5% 1.25 1.23 1.21 
10% 0.50 0.50 0.50 10% 0.68 0.62 0.61 10% 1.32 1.32 1.30 

Table 2. Results of MAG and RDM of electrode, scalp and cortical potentials, obtained by 
CGM for different values of stopping criterion for simulation of 4 dipoles with 60 electrodes 
in 2 mm voxel and noise level varying from 0% to 10%. Values in grey indicate cases where 
criterion is lower than noise, which is not valuable. 

MAG  criterion MAG criterion MAG criterion  
107 
elec 0.02 0.05 0.10 scalp 0.02 0.05 0.10 cortex 0.02 0.05 0.10 

0% 1.02 1.04 1.04 0% 1.05 1.12 1.20 0% 0.48 0.43 0.38 
2% 1.03 1.02 1.02 2% 1.03 1.11 1.17 2% 0.62 0.49 0.40 
5% 1.06 1.05 1.01 5% 1.12 1.14 1.02 5% 1.14 0.97 0.72 
10% 1.06 1.05 1.05 10% 1.71 1.48 1.27 10% 3.03 2.86 2.49 

    
RDM  criterion RDM criterion RDM criterion  
107 
elec 0.02 0.05 0.10 scalp 0.02 0.05 0.10 cortex 0.02 0.05 0.10 

0% 0.07 0.09 0.13 0% 0.20 0.26 0.38 0% 1.15 1.17 1.19 
2% 0.10 0.09 0.11 2% 0.25 0.27 0.36 2% 1.21 1.17 1.19 
5% 0.24 0.23 0.22 5% 0.54 0.45 0.36 5% 1.29 1.27 1.23 
10% 0.56 0.57 0.58 10% 0.92 0.90 0.92 10% 1.35 1.34 1.34 

Table 3. Results of MAG and RDM of electrode, scalp and cortical potentials, obtained by 
CGM for different values of stopping criterion C for simulation of 4 dipoles with 107 
electrodes in 2 mm voxel and noise level varying from 0% to 10%. 

3.2 CGM results with noise 

A recent review on solving the inverse problem in EEG (Grech et al., 2008) presents the 
techniques in non-parametric and parametric methods, depending on the fixed number of 
dipoles (assumed a priori or not). No specific technique appears to give much better results 
than the others, and research in this field is continuing. For simulation studies, EEG noise 
must be taken into account, and Gaussian White Noise (GWN) is often used (Chauveau et 
al., 2008; He et al., 2002). We tested the CGM with 3 different GWN levels: 2%, 5% and 10% 
of the maximum electrode potential. 
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Figure 4 shows the cortical potential distribution obtained by CGM with 60 and 107 
electrodes for noise levels varying from 0% to 10% (criterion defined in equation 14). 
Oscillations increase with the level of noise with 60 and 107 electrodes. So, the higher the 
noise level, the less correctly the cortical potential cartography is reconstructed. These 
results also show that oscillations in cortical potential distributions increase relatively 
faster when the noise level is higher than 5% with 107 electrodes, and 10% with 60 
electrodes. 

3.3 CGM versus CIT 

Figure 5 shows the cortical potential distributions obtained with CGM, for different 
values of relative noise level and with 107 electrodes (criterion defined in equation 14), in 
comparison with the results of CIT. A Tikhonov regularization was used in CIT, but there 
are anyway some oscillations for high noise level. CGM presents oscillations when the 
criterion is too small compared to noise, but for each noise level it a correct estimation can 
be obtained. 

In real conditions, the noise level can be easily estimated on the pre-stimuli interval before 
the triggers used for ERP. Taking into account the noise level, the criterion is then limited 
to Cnoise (equation 15). Iterations are stopped when Cnoise is reached. Results are reported 
in figure 6. 

Qualitative factors have been calculated by means of MAG and RDM (see appendix) at the 
electrodes, at the scalp surface and at the cortex surface for 60 electrodes (Table 2) and for 
107 electrodes (Table 3). 

 
Fig. 4. CGM for 60 and 107 electrodes (criterion set to 0.01) 
Cortical potentials in 2 mm voxels for 4 dipoles and different noise levels for CGM with 60 
electrodes (top) and CGM with 107 electrodes (bottom) [-5e-5 +5e-5 volts] 
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5% 1.08 1.08 1.07 5% 1.18 1.17 1.20 5% 0.67 0.60 0.50 
10% 1.13 1.10 1.07 10% 1.23 1.26 1.28 10% 0.98 0.92 0.79 
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in 2 mm voxel and noise level varying from 0% to 10%. Values in grey indicate cases where 
criterion is lower than noise, which is not valuable. 
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Table 3. Results of MAG and RDM of electrode, scalp and cortical potentials, obtained by 
CGM for different values of stopping criterion C for simulation of 4 dipoles with 107 
electrodes in 2 mm voxel and noise level varying from 0% to 10%. 

3.2 CGM results with noise 

A recent review on solving the inverse problem in EEG (Grech et al., 2008) presents the 
techniques in non-parametric and parametric methods, depending on the fixed number of 
dipoles (assumed a priori or not). No specific technique appears to give much better results 
than the others, and research in this field is continuing. For simulation studies, EEG noise 
must be taken into account, and Gaussian White Noise (GWN) is often used (Chauveau et 
al., 2008; He et al., 2002). We tested the CGM with 3 different GWN levels: 2%, 5% and 10% 
of the maximum electrode potential. 
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Figure 4 shows the cortical potential distribution obtained by CGM with 60 and 107 
electrodes for noise levels varying from 0% to 10% (criterion defined in equation 14). 
Oscillations increase with the level of noise with 60 and 107 electrodes. So, the higher the 
noise level, the less correctly the cortical potential cartography is reconstructed. These 
results also show that oscillations in cortical potential distributions increase relatively 
faster when the noise level is higher than 5% with 107 electrodes, and 10% with 60 
electrodes. 

3.3 CGM versus CIT 

Figure 5 shows the cortical potential distributions obtained with CGM, for different 
values of relative noise level and with 107 electrodes (criterion defined in equation 14), in 
comparison with the results of CIT. A Tikhonov regularization was used in CIT, but there 
are anyway some oscillations for high noise level. CGM presents oscillations when the 
criterion is too small compared to noise, but for each noise level it a correct estimation can 
be obtained. 

In real conditions, the noise level can be easily estimated on the pre-stimuli interval before 
the triggers used for ERP. Taking into account the noise level, the criterion is then limited 
to Cnoise (equation 15). Iterations are stopped when Cnoise is reached. Results are reported 
in figure 6. 

Qualitative factors have been calculated by means of MAG and RDM (see appendix) at the 
electrodes, at the scalp surface and at the cortex surface for 60 electrodes (Table 2) and for 
107 electrodes (Table 3). 

 
Fig. 4. CGM for 60 and 107 electrodes (criterion set to 0.01) 
Cortical potentials in 2 mm voxels for 4 dipoles and different noise levels for CGM with 60 
electrodes (top) and CGM with 107 electrodes (bottom) [-5e-5 +5e-5 volts] 
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Fig. 5. CIT and CGM 107 electrodes (equation 14) 
Cortical potentials in 2mm voxels for 4 dipoles with noise varying from 0% to 10% and 107 
electrodes, CIT solutions (first line) and CGM (all other lines) for different criterion value c 
(equation 14), from 2% to 40%. For each CGM solution, the number of iterations is reported. 
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Fig. 6. CIT and CGM 107 electrodes (criterion depending on noise level) 
Cortical potentials estimated from 107 electrodes in 2mm voxels for 4 dipoles with noise 
varying from 0% to 10% (criterion of equation 15): CIT solutions (first line) and CGM (last 
line). For each CGM solution, the number of iterations is reported. 

4. Conclusion 
This study by simulation has shown that CGM gives coherent results in the detection of 
simultaneous multiple dipoles (4 in our case). CGM solutions give satisfactory localization 
and estimation of cortical potentials even though the area of each dipole is increased. 
Symmetrical dipoles are well detected while tangential dipoles are more difficult to observe, 
as for any inverse technique in EEG/ERP.  

We have shown that, without noise, CGM correctly localizes individual and simultaneous 
dipoles, with an underestimation of the cortical potentials. Moreover, the number of 
electrodes strongly conditions the quality of the solution obtained by CGM. So, without 
noise in the data, the higher the number of electrodes, the more accurate the dipole 
localization and the more correctly reconstructed the corresponding cortex potentials. So 
increasing the number of electrodes reduces the number of unknowns in the inverse 
problem in EEG/ERP. In consequence, cortical potentials are better evaluated.  

With the addition of white Gaussian noise (WGN), this observation becomes partially true, 
because solutions obtained with high numbers of electrodes are less stable than those 
obtained with a smaller number when noise level increases. There is then an optimal 
number of electrodes for each simulated noise level. Solutions obtained by CIT and by CGM 
present oscillations which increase with the noise level. Cortical potential solutions of CGM 
are quite similar to the ones of CIT for a low noise level. When this level increases, CIT 
presents oscillation, still gives quite correct position for the sources but added potentials 
corrupt the result, while CGM presents solutions with less oscillation, but may be with less 
precision. The combination of CIT and CGM results permits to validate the source positions: 
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Fig. 6. CIT and CGM 107 electrodes (criterion depending on noise level) 
Cortical potentials estimated from 107 electrodes in 2mm voxels for 4 dipoles with noise 
varying from 0% to 10% (criterion of equation 15): CIT solutions (first line) and CGM (last 
line). For each CGM solution, the number of iterations is reported. 

4. Conclusion 
This study by simulation has shown that CGM gives coherent results in the detection of 
simultaneous multiple dipoles (4 in our case). CGM solutions give satisfactory localization 
and estimation of cortical potentials even though the area of each dipole is increased. 
Symmetrical dipoles are well detected while tangential dipoles are more difficult to observe, 
as for any inverse technique in EEG/ERP.  

We have shown that, without noise, CGM correctly localizes individual and simultaneous 
dipoles, with an underestimation of the cortical potentials. Moreover, the number of 
electrodes strongly conditions the quality of the solution obtained by CGM. So, without 
noise in the data, the higher the number of electrodes, the more accurate the dipole 
localization and the more correctly reconstructed the corresponding cortex potentials. So 
increasing the number of electrodes reduces the number of unknowns in the inverse 
problem in EEG/ERP. In consequence, cortical potentials are better evaluated.  

With the addition of white Gaussian noise (WGN), this observation becomes partially true, 
because solutions obtained with high numbers of electrodes are less stable than those 
obtained with a smaller number when noise level increases. There is then an optimal 
number of electrodes for each simulated noise level. Solutions obtained by CIT and by CGM 
present oscillations which increase with the noise level. Cortical potential solutions of CGM 
are quite similar to the ones of CIT for a low noise level. When this level increases, CIT 
presents oscillation, still gives quite correct position for the sources but added potentials 
corrupt the result, while CGM presents solutions with less oscillation, but may be with less 
precision. The combination of CIT and CGM results permits to validate the source positions: 
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CGM permit to clearly identify there are 4 sources in our case (2 radial dipoles and 2 
tangential dipoles), and CIT permits to point out where they are.  

It is then possible to use CGM as a complementary tool to solve inverse problems in 
EEG/ERP. The advantage of CGM is that there is no need for matrix inversion and there 
is not a prior in the number of current sources or in their propagation direction in the 
cerebral volume. This iterative method avoids having to invert huge rectangular matrices 
which are time and memory consuming when the spatial resolution of the model is 
ambitious. The estimation of noise permits to calculate a realistic stopping criterion to use, 
avoiding oscillations. 

5. Appendix: Comparison tools MAG and RDM 
MAG is an index for potential magnitude comparison between two series of equivalent data, 
and RDM estimates the variation of spatial distribution between the two series. 

MAG and RDM are given by: 
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where CiV  is a series of computed potential data points obtained with a specific technique 
from electrode potentials ( CIT or CGM), FiV  is the forward solution for the same points and 
n is the number of chosen points. 
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1. Introduction  
The FV method was originally developed for fluid flow, heat and mass transfer calculations 
(Patankar, 1980), and later generalized for stress analysis in isotropic linear and non-linear 
bodies (Demirdžić & Muzaferija, 1994; Demirdžić et al., 1997; Demirdžić & Martinović, 
1993). For the purpose of the stress analysis in the wood, the method is modified to take into 
account the anisotropic nature of the wood and influence of the moisture content and the 
temperature on the deformation and stresses (Horman, 1999). Also, performance of the 
wood is found to be very sensitive to the moisture content and the temperature. Thus, it is of 
a great importance to be able to predict behavior of such materials under different hygro-
thermo-mechanical loads. In order to demonstrate the methods capabilities, a transient 
analysis of fields of temperature, moisture, and stresses and displacement in the wood 
subjected to hygro-thermal or mechanical loads is performed. 

2. Theory 
2.1 Governing equations 

The behaviour of an arbitrary part of a solid, porous body at any instant of time can be 
described by the following energy, mass and momentum balance equations which, when 
written in a Cartesian tensor notation, read: 
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In these equation, t  is time, ix  is the Cartesian coordinate,   is the mass density, qc  and 
mc  are the specific heat and the specific moisture, T  is the temperature, M  is the 
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moisture potential and iu  is the displacement, qs  and ms are the heat and mass source, ib  
is the body force, and jq , jm  and ij are the heat and mass flux vector, and stress tensor 
components, respectively. 

2.2 Constitutive relations 

In order to close the system of Eqs. (1)-(3) the constitutive relations for heat and mass flux 
based on the theory of Luikov (1966) which takes into account both the Soret and Duffort 
effect, together with the constitutive relation for a solid body are used: 

 for Eqs. (1) and (2) heat and mass flux vector are 
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 for an elastic, porous, orthotropic material for Eqs. (3) is 

 1
2

k l
ij ijkl kl ij ij ijkl ij ij

l k

u uC T M C T M
x x

     
  

              
  

 (6) 

Here q
ijk  and m

ijk  are the heat and mass conduction coefficient tensor components, 
respectively,   is the ratio of the vapour diffusion coefficient to the coefficient of total 
diffusion of moisture, r  is the heat of the phase change,   is the temperature-gradient 
coefficient, ij  are the strain tensor components, ijklC  are the elstic constant tensor 
components, ij  are the coefficients of thermal expansion, ij  are the shrinkage 
(contraction) coefficients, uT T T   , hM M M    and uT  is the temperature at an 
udeformed state and hM  is the moisture potential at the fiber saturation point. For an 
orthotropic material and the coordinate axes aligned with the symmetry axes, Eqs. (4)-(6) 
can be written in the following matrix form: 
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where the terms in  brackets are „active“ only for hM M , while the nine non-zero 
orthotropic elastic constants ijA  are related to the Young's moduli iE , the Poisson's 
coefficients ij  and the shear moduli ijG  by the following relations: 
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Note that the pair of constitutive Equations (4) and (5) can be extended to take into account 
the effect of the pressure gradient on the heat and mass transfer. 

 for a thermo-elasto-plastic isotropic material for Eqs (3) and (1) are 
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is the effective stress (in the case of Von Mises yield criterion), G  and   are Lame's 
constants,   is the thermal expansion coeffifient, G  is the shear modulus, H is the plastic 
modulus, and ij  is the Kronecker delta. 

Lame's constants are related to the more commonly used elastic modulus E  and Poisson's 
coefficient   by the following relationships: 
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In the case of elastic conditions, the expression within the brackets  vanishes, and the 
constitutive realtion (11) reduces to the Duhamel-Neumann form of Hooke's law. 

2.3 Initial and boundary conditions 

In order to complete the mathematical model, initial and boundary conditions have to be 
specified. As initial conditions, the temperature, the moisture potential, and the displacement 
and velocity components have to be specified at all points of the solution domain. 

For a wood heat treatment process, boundary conditions can be either of Dirichlet or Von 
Neuman type, i.e. temperature and/or heat flux and displacements and/or forces (surface 
tractions) have to be specified at all boundaries. 

For a convective wood drying process, the following boundary conditions are normally 
appropriate: 
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where qh  and mh  are the (convective) heat and mass transfer coefficients, respectively, sif  
is the surface traction, and all quantities are calculated at the solution domain boundary, 
except for those with subscript a  which correspond to the ambient air. 
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3. Numerical method 
3.1 Generic transport equation 

Before the construction of a numerical algorithm is started, it is important to notice that 
the governing Eqs. (1)-(3) or Eqs. (1) and (3) when combined with constitutive Eqs. (7)-(9), 
or Eqs. (4) ( 0jm  ) and (11) can be written in the form of the following generic transport 
equation: 
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which can be integrated over an arbitrary solution domain V  bounded by the surface A , 
with unit outer normal vector jn  to yield: 
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The generic variable   stands for T , M  or iu .  

The maeaning of the coefficients B , jj
  and S  for the wood drying process is given in 

Table 1. 
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Table 1. The meaning of , j jB 
   and S  in Eqs. (16) and (17) 
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where qh  and mh  are the (convective) heat and mass transfer coefficients, respectively, sif  
is the surface traction, and all quantities are calculated at the solution domain boundary, 
except for those with subscript a  which correspond to the ambient air. 
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3.2 Finite volume discretisation 

As all numerical methods, the present one consists of time, space and equations 
discretisation. The time interval of interest is subdivided into a number of subintervals 

t , not necessarily of the the same length. The space is discretised by a number of 
contiguous, non-overlapping hexahedral control volumes ( CV ), with the computational 
points at their centres (Fig.1). Then the integrals in generic Equation (17) are calculated by 
employing the midpint rule, the gradients are evaluated by assuming a linear variation of 
the dependent variable   between the computational points, and a fully implicit 
temporal scheme is employed. As a result a non-linear algebraic equation of the following 
form for each CV  is obtained: 

 P P K K
K

a a b             , , , , ,K W E S N B T  (18) 

where the coefficients Ka  and b  are defined as: 
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where the subscripts P  and e  denote values at the centre of the CV  and at the centre of 
the east cell-face, respectively, eA  is the area of the east cell face, V  is the volume of the 
CV , ex  is the distance between points P  and E , and all quantities refer to the current 
time level, except for those with the superscript o  which refer to the previous, „old“ time 
level. 

3.3 Solution algorithm 

After assembling Eqs. (18) for all CVs and for all transport equations, five (four in 2D case) 
sets of N mutually coupled non-linear algebraic equations are obtained, where N  is the 
number of CVs. Those equations are solved by employing the following segregated iterative 
procedure. 

First, all dependent variables are given their initial values. Then the boundary conditions 
which correspond to the first time step are applied, and the sets of equations for each 
individual dependent variable ( T , M , iu ) are linearised and temporarily decoupled by 
assuming that coefficient Ka  and source terms b  are known (calculated by using depedent 
variable values from the previous iteration or the previous time step), resulting in a system 
of linear algbraic equations of the form: 

 A ψ b  (20) 

for each dependent variable, where A  is an N x N  matrix, vector ψ  contains values of 
depedent variable   at N  nodal points and b  is the source vector. 
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 Computational points 
o Cell-face centres 

Fig. 1. A typical control volume and the compass labelling scheme 

Systems Eqs. (20) are then solved sequentially in turn until a converged solution is obtained. 
The procedure is assumed converged when the following conditions are satisfied for all five 
(four in 2D case) sets of equations: 
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P P K K
i K

a a b pR 


     (21) 

 1 ,         1,2,....,m m m
i i iq i N      

where p  and q  are typically of the order 310 , R  is a suitable normalisation factor and 
superscripts m  and 1m   denote values at two successive iterations. 

In the next time step the whole procedure is repeated, except that the initial values are 
replaced by the values from the previous time step. 

The present discretisation procedure ensures that the matrix A  has the folowing desirable 
properties: it is seven (five in 2D case) – diagonal, symmetric, positive definite and 
diagonally dominant, which makes Eq. (20) easily solvable by a number of iterative methods 
which retain the sparsity of the matrix A . Note that it does not make sense to solve Eq. (20) 
to a tight tolerance since its coefficients and sources are only approximate (based on the 
values from the previous iteration/time step). Normally, reduction of the absolute residuals 
for one order of magnitude suffices. 

The segregated solution strategy employed enables re-use of the same storage for the matrix 
A  and vestor b for all depedent variables , thus requiring only 8N  storage locations ( 6N  

in a 2D case). It is also important to mention that the fully implicit time differencing used, 
avoids stability-related time step restrictions. In principle, it allows any magnitude of the 
time step to be used, and in practice it is limited only by the required temporal accuracy. 

When constitutive Eqs. (11) for a thermo-elasto-plastic isotropic material are applied, an 
elastic deformation is assumed at the beginning of iterations of each (load increment) time 
step  (the expression within the brackets in Eqs. (11) is omitted).  In the next iteration 
step in CVs in which the effective stress has reached the yield stress an elasto-plastic 
deformation is assumed and the expression within the brackets in Eqs. (11) is activated. 
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After each time step (load increment) displacements and stresses are updated adding 
displacement and stress increments in the current time step to the total displacements and 
total stresses from the previous time step. This procedure is repeated until the prescribed 
number of time steps (or load increments) is completed.  

4. Application of the method 
The method described in the previous sections has been applied to a number of both linear 
and non linear solid body deformation problems, few of which will be presented. 

4.1 Numerical predictions of the wood drying process 

The wood drying process is an important step in the manufacturing of wood products. 
During that process a non-uniform distribution of moisture content and temperature 
causes deformation and stresses in the wood and may result in a deformed and/or 
cracked end-product.  

A wood drying process can be described as an unsteady process of heat, mass and 
momentum transfer in an orthotropic continuum with variable physical properties. The 
method solves a coupled set consisting of energy, moisture potential and momentum 
equations (1-3) with the constitutive relations (4-6). 

Beech-wood beams (600x50x50 mm3) are exposed to the uniform, unsteady flow of hot air in 
a laboratory dryer with an automatic control of the ambient air parameters (Horman, 1999). 

The temperature and/or moisture dependent physical properties of the wood, obtained by 
fitting available experimental data, are given in Table 2. The others are considered constant 
and are given in Table 3. The timber is known to be cylindrically orthotropic. However, the 
wood samples used in this study are taken from the outer region of a cylindrical timber log 
and the rectilinear isotropy of samples is a reasonable assumption. 

 PaE  C < 30 % C  30 % 

11E  (Pa)   
7 6 ,31,1 10 86,69 4,66 1,8 0,02 10Ce T

      82,05 1,8 0,02 10T  

22E  (Pa)   
6 5 ,752,5 10 813,22 9,3 1,8 0,02 10Ce T

      84,04 1,8 0,02 10T  

33E  (Pa)   
6 5 ,752 ,5 10 881,11 57,03 1,8 0,02 10Ce T

      824,79 1,8 0,02 10T  

 (kg/m3) 559(100 )
100 0,47(30 )

C
C


 

 559 1
100
C  

 
 

qc (J/kg K)    2,0100467 TC   
qk11 (W/m K) )00181,0000709,0088,0(36,1 CT   
qk22 (W/m K) qk1115,1  

Table 2. Temperature and/or moisture dependent physical properties of wood ( McC m  
(%) is the moisture content) 

At the beginning of the drying process the wood samples had a uniform distribution of 
temperature, moisture, displacement and velocity: 
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 21T  °C, 75M  M, 0i iu u   for 0t  .  

Property Value Property Value Property Value 
r  (J/kg) 2,3  106 12 0,36 11 (1/K) 37,6  10-6 

mc  (kgm/kgM) 0,01 21 0,71 22 (1/K) 28,4  10-6 
mk11  (kgm/msM) 4,5  10-9 13  0,043 33  (1/K) 4,16  10-6 
mk22  (kgm/msM) 1,15 mk11  31  0,52 11  (1/M) 36,8  10-4 

12G  (Pa) 3  108 23 0.073 22 (1/M) 18,0  10-4 
  (M/K) 2 32 0,45 33 (1/M) 1,8  10-4 

Table 3. Constant physical properties of wood 

The coefficients of convective heat and mass transfer, based on the ambient air velocity of 
2av  m/s and moisture of 10,5aM  M, were taken as: 

 40qh  W/m2K,      61,8 10mh   kg/ m2 sM,  

while the ambient air temperature and the ratio of the vapour diffusion coefficient to the 
coefficient of total diffusion of moisture were assumed to vary during the drying process 
according to the following schedules: 
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Zero surface tractions are assumed and boundary conditions Eqs. (15) are applied. 

For the purpose of the numerical calculations the problem is considered to be a 2D plane 
strain problem. Due to the double symmetry, only one quarter of the cross-section is taken 
as the solution domain. For all calculations presented in this study, a uniform numerical 
mesh consisting of 20 x 20 CV was employed, while the time step was varied from 10 to 100 
min (first seven time steps of 10 min, 31 time steps of 30 min, and finally 140 time steps of 
100 min). These results are found to be grid and time independent by performing a 
systematic grid and time-step refinement (difference between the results on the 20 x 20 CV 
mesh differ from ones obtained on a 40 x 40 CV mesh for less than 1%, while the results 
obtained with 3t  h practically coincide with results obtained with 1,5t  h). 

During the initial phase of drying ( 0 2t  h) the moisture content is above the fiber 
saturation point and the deformation is a consequence of the thermal stress only. Figure 2 
shows the calculated fields at 70t  min. One can see that an increase in temperature (Fig. 2a) 
causes the expansion of wood sample (Fig. 2b) and that the outer region is subjected to 
compressive and the inner region to extensive stresses (Fig. 2c, d). 
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Zero surface tractions are assumed and boundary conditions Eqs. (15) are applied. 

For the purpose of the numerical calculations the problem is considered to be a 2D plane 
strain problem. Due to the double symmetry, only one quarter of the cross-section is taken 
as the solution domain. For all calculations presented in this study, a uniform numerical 
mesh consisting of 20 x 20 CV was employed, while the time step was varied from 10 to 100 
min (first seven time steps of 10 min, 31 time steps of 30 min, and finally 140 time steps of 
100 min). These results are found to be grid and time independent by performing a 
systematic grid and time-step refinement (difference between the results on the 20 x 20 CV 
mesh differ from ones obtained on a 40 x 40 CV mesh for less than 1%, while the results 
obtained with 3t  h practically coincide with results obtained with 1,5t  h). 
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Fig. 2. Temperature (a), displacement (b), and normal stresses (c) and (d) at 70t  min 

During the period of intensive drying ( 60 190t  h) the deformation and stresses due to 
hygroscopic loads dominate. Figure 3 shows that at 108t  h the moisture content has fallen 
below the fiber saturation point (Fig. 3a) and that this causes the shrinking of the wood 
sample (Fig. 3b). Around 100t  h the stresses reach their maximum values and are 
extensive in the outer region and compressive in the interior of the sample (Fig. 3c, d). By 
comparing the values of stresses at 70t  min and 108t  h, it can be seen that the thermal 
stresses are around 200 times smaller than the stresses caused by the drop in the moisture 
content below the fiber saturation point. 

If one plots the contours of the effective stress at 108t  h, when it is at its maximum (Fig. 
4), one can see that the effective stress is greater than the yield stress ( 10y  MPa at 10% 
moisture; 6y  MPa at 30%) only in a very narrow surface region (1mm deep), which 
indicates that the plastic defomation did not take place in the interior of the sample, and that 
the drying schedule is well designed. 

At the end of the drying process ( 246t  h), the moisture content in the sample varies 
from 11,1 to 14,4 % (Fig. 5a), while Fig. 5b and 5c illustrate the anisotropy of the wood 
sample, the contraction is 1,3 mm in the x and 0,6 mm in the y direction, or 6,5% and 
3,3% (axis x  and y ). 
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In order to confirm the validity of the FV predictions, the calculated temperature, 
moisture and displacements are compared with experimental data (Horman, 1995., 
Institut für Holzphysik und mechanische Technologie des Holzes, Hamburg) at reference 
points (Fig. 6). Figures 7 and 8 show temperature and moisture content histories at two 
reference points. It can be seen a good agreement between calculations and experiment: 
maximum difference for both temperature and moisture was 8%, and the average 
difference was less than 2% (Martinović et al., 2001). 

       
a)     b) 

     
c)     d) 

Fig. 3. Moisture (a), displacement (b), and normal stresses (c) and (d) at 108t  h 

 
Fig. 4. Effective stress at 108t  h 
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a)     b) 

 
c) 

Fig. 5. Moisture (a), displacement (b), and cross section shape of deformed wood sample 
(one quarter of the cross section) contours at the end of drying schedule ( 246t  h) 

 
Fig. 6. Solution domain and reference points  

Figure 9 shows how the displacements at two points on the surface of the sample vary 
during the drying process. One can see very little deformation during the initial phase 
( 1000t min) and a considerable shrinking of the sample afterwards, and that predictions 
closely follow experimental data (maximum difference 15%, average difference 5%). 
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Fig. 7. Temperature history at reference points A and B  
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Fig. 9. u displacement at reference point E and v displacement at reference point F 
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4.2 Numerical predictions of the wood heat treatment process 

The prediction of temperature, stresses and displacements in logs during their thermal 
preparation in the veneers production (wood steaming) is an important step for designing 
satisfying heating regime of logs preparation, without damaging in wood. The equations 
governing heat and momentum balance (Eqs. (1) and (3)) with corresponding constitutive 
relations (Eq. 11) in thermo-elasto-plastic material are solved.  

For a mathematical description of a thermo-elasto-plastic deformation of the body the 
incremental plasticity theory is applied. The problem is considered to be a 2D plane strain 
problem (Horman et al., 2003). 

A beech log with a diameter of 0,42 m and length of 5,1 m was exposed to steam, which 
temperature history during the phases of heating up, through-heating and cooling down is in 
Fig. 10 depicted. For numerical calculations the heat transfer coefficient 7840qh  W/m2K, and 
thermal and mechanical properties of the wood given in Table 4 are used.  

 c k E G   σy 

kg/m3 J/kgK W/mK Pa Pa – 1/K Pa 

950 2950 0,54 4,3·108 1,6108 0,35 3,210-5 1,2106 

Table 4. Thermal and mechanical properties of wood ( %70c , CT o80 ) 

 
Fig. 10. Temperature history of the steam during the phases of heating up, through-heating 
and cooling down  

Temporal temperature, radial displacement, and stress distributions at three points of the 
log cross section which is used for veneer production ( 0,08 0,21m r m  ) are shown in Figs. 
11a-11d. In Figs. 12a and 12b effective stress distributions at three cross sections, and at four 
time values are depicted. 
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  c)           d)  

Fig. 11. Temporal a) temperature, b) radial displacement, c) circular stress, d) radial stress at 
three points of the log cross section  1 0,1r  m, 0,18r  m i 0,206r  m ( const  ) which is 
used for veneer production 

 
 a)     b) 

Fig. 12. Eeffective stress distributions a) at three cross sections, and b) at four time values 
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4.3 Numerical analysis of stress and strain conditions of a three-dimensional furniture 
skeleton construction and its joints 

At the design stage of some pieces of furniture, their complex skeleton construction is 
subjected to stress and strain analysis. That allows them to satisfy all the functional 
demands (comfort), aesthetic demands, but also the strength and stiffness both by their 
shape and their dimensions. To achieve that, it is necessary to carry out a numerical 
simulation of the stress of a complex construction. 

The finite volume method is used in the calculation. Orthotropy of the wood material is 
accounted for by approximating it with an isotropic material whose elastic modulus E and 
Poisson's ratio ν are calculated by employing the least-square method. The functional Q is 
minimized by E and ν (Martinović et al., 2008) 
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and the obtained expressions are  
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The coefficients of the stiffness matrix ijA  are given in Eqs. (10). 

The physical model is angle 3D joint and skeleton construction chair (Fig. 13.) 

      
 a)            b) 

Fig. 13. a) The angle joint, b) the model of an examined chair 
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Mechanical properties of wood, spruce, for temperature 20°C and moisture content 9,8 %, 
are given in Table 5. Mass density is 0,44 g/cm3. 

Et Er El Grt Glr Glt tr rt rl lr tl lt 

GPa GPa GPa GPa GPa GPa - - - - - - 
0,392 0,686 15,916 0,0392 0,618 0,765 0,24 0,42 0,019 0,43 0,013 0,53 

Table 5. Mechanical properties of wood, spruce 

Elastic modulus and Poisson's ratio for the simulated isotropic material for 3D model (Eqs. 
(23) and (24)) are 3,98E   GPa, and 0,192  . The following assumptions and boundary 
conditions are used: 

 angle joint is simplified; the glue line is neglected in a space, 
 the force on the angle joint is exchanged with a uniform load. 

Stress xx  and effective stress eff  contours are presented in Fig. 14. 

 
a)     b) 

Fig. 14. a) Normal stress xx contours in the angle joint, b) effective stress eff  contours in 
the angle joint 

          
a)     b) 

Fig. 15. a) Tangential stress at the plane xy , at the distance of 4,6 mm from the symmetry 
plane b) tangential stress at the plane xy and resulting stress at the planes xz (the place of 
osculation of the planes of the tenon) 



 
Finite Volume Method – Powerful Means of Engineering Design 

 

342 

4.3 Numerical analysis of stress and strain conditions of a three-dimensional furniture 
skeleton construction and its joints 

At the design stage of some pieces of furniture, their complex skeleton construction is 
subjected to stress and strain analysis. That allows them to satisfy all the functional 
demands (comfort), aesthetic demands, but also the strength and stiffness both by their 
shape and their dimensions. To achieve that, it is necessary to carry out a numerical 
simulation of the stress of a complex construction. 

The finite volume method is used in the calculation. Orthotropy of the wood material is 
accounted for by approximating it with an isotropic material whose elastic modulus E and 
Poisson's ratio ν are calculated by employing the least-square method. The functional Q is 
minimized by E and ν (Martinović et al., 2008) 

 
         

 

2 2 2 2 2 2

0

2
       

ort izo ort izo ort izo ort izo ort izo
xx xx yy yy zz zz xy xy xz xz

sphere

ort izo
yz yz x sphere

Q

d dA



         

  

         

  

 
 (22) 

and the obtained expressions are  

 (1 )(1 2 ) 3( ) 2( ) 4( )
15(1 ) xx yy zz xy xz yz kk ll mmE A A A A A A A A A 


            

 (23) 

 
4( ) 2( )

2 2( ) 3( ) ( )
xx yy zz xy xz yz kk ll mm

xx yy zz xy xz yz kk ll mm

A A A A A A A A A

A A A A A A A A A


       


         
.       (24) 

The coefficients of the stiffness matrix ijA  are given in Eqs. (10). 

The physical model is angle 3D joint and skeleton construction chair (Fig. 13.) 

      
 a)            b) 

Fig. 13. a) The angle joint, b) the model of an examined chair 

 
Wood Subjected to Hygro-Thermal and/or Mechanical Loads 

 

343 

Mechanical properties of wood, spruce, for temperature 20°C and moisture content 9,8 %, 
are given in Table 5. Mass density is 0,44 g/cm3. 

Et Er El Grt Glr Glt tr rt rl lr tl lt 

GPa GPa GPa GPa GPa GPa - - - - - - 
0,392 0,686 15,916 0,0392 0,618 0,765 0,24 0,42 0,019 0,43 0,013 0,53 

Table 5. Mechanical properties of wood, spruce 

Elastic modulus and Poisson's ratio for the simulated isotropic material for 3D model (Eqs. 
(23) and (24)) are 3,98E   GPa, and 0,192  . The following assumptions and boundary 
conditions are used: 

 angle joint is simplified; the glue line is neglected in a space, 
 the force on the angle joint is exchanged with a uniform load. 

Stress xx  and effective stress eff  contours are presented in Fig. 14. 

 
a)     b) 

Fig. 14. a) Normal stress xx contours in the angle joint, b) effective stress eff  contours in 
the angle joint 

          
a)     b) 

Fig. 15. a) Tangential stress at the plane xy , at the distance of 4,6 mm from the symmetry 
plane b) tangential stress at the plane xy and resulting stress at the planes xz (the place of 
osculation of the planes of the tenon) 



 
Finite Volume Method – Powerful Means of Engineering Design 

 

344 

The highest value of the compressive stress xx  is in the symmetry plane, at undermost point 
of the tenon (~15,9 MPa), and the highest value of the tensile stress is at upper point of the 
tenon (~11,9 MPa). The place of the highest value of the effective stress is at the place of the 
highest compressive stress ( max 13,5eff  MPa). Tangential stress is presented on the plane 
xy  at the distance of 4,6 mm from the symmetry plane. Figure 15a shows that the places of 
maximal stress ( max ~5 MPa) are at 35x  mm. At the same plane xy  and the plane xz , in 
the place of osculation of the planes of the tenon, tangential stress and resulting stress (normal 

yy  and tangential stress yx ) are calculated, respectively and it are presented in Figure 15b. 
The maximal stress is ~ 10 MPa and it can be seen at the under part of the tenon. 

In the end, the stress – strain analysis is done for the symmetrical half of the loaded chair 
(Horman et al., 2010). Mass load of the horizontal underframe of the whole chair is 100 kg 
and of the vertical frame is 22 kg. Effective stress contours at the elements of the chair frame 
and at the joints of the highest stresses ( maxeff ~14 MPa) are presented in Figure 16. 

        
a)     b) 

Fig. 16. a) Distribution of effective stress at the skeleton chair,  b) the joints of the highest 
stresses 

Deformation of the chair is presented in Figure 17. The highest displacement is 13,3 mm. 

                    
a)     b) 

Fig. 17. a) Distribution of displacements at the skeleton chair, b) deformed skeleton chair 
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5. Conclusion 
The presented finite volume method for solution of the problems of energy, mass and 
momentum balance in conjugation with heat and mass transfer in an anisotropic, elasto-
plastic, porous body is successful applied. Predictions of temperature, moisture content, 
strain and stress field in the wood drying as well as wood heat treatment process show high 
accurate results for course numerical grids due the second order accurate fully conservative 
spatial differencing scheme. The fully implicit unconditionally stable temporal differencing 
scheme enable large time steps during heat treatment processes. The applied finite volume 
discretisation procedure results in the diagonal dominant system of algebraic equations 
which are suitable for an iterative solution algorithm. The segregated iterative solution 
algorithm comprising the linearization and temporary decoupling of the system of 
equations for each dependent variable shows efficiency as well robustness solving highly 
nonlinear system of equations. 
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1. Introduction 
Usually solution of different engineering problems requires design of various objects or 
systems. Basically, there are three general approaches to solving engineering problems: an 
experimental approach, a computational approach and a computational-experimental 
approach, which combines both of the formentioned. Each of the first two approaches has 
advantages and disadvantages, while the last one joins the advantages and avoids the 
disadvantages of the other two. Complex engineering problems, including the presented 
one, are solved mainly in this way. 

When selecting the most suitable computational code for solving a problem, it is obligatory 
to mind that each computational code is based on a mathematical model of the governing 
physical processes, expressed in the form of a set of equations derived from physical laws, 
including semi-empirical and empirical constants or relationships. Consequently, an 
appropriate method for solving these equations is also required.  

For problems which solution is based on Finite Volume Method (FVM) (Versteeg & 
Malalasekera, 2007; Wendt & Anderson, 2009) the equations of the mathematical model are 
solved in a discrete form on a computational mesh. The solution of the mathematical 
problem is obtained with a certain degree of accuracy, depending on the method of 
discretising the differential and/or integral equations and on the method of solving the 
obtained discrete equations. Of course, the solution also depends on the introduced initial 
data. It is known that higher accurate solution requires finer computational mesh, provided 
through rather substantial computer memory and CPU time. 

2. Theoretical background of the problem  
The authors of this chapter provide and discuss an example of modeling and simulation of 
an engineering problem realized through SolidWorks+SW Flow Simulation+SW Motion 
software correctly and adequately from a physical viewpoint. The solution of this design 
challenge is a result of the cooperation between industry and science. Coperating company 
"HES" PLC, Yambol is among the best producers of hydraulic cylinders in Bulgaria. Most of 
its products are produced in limited series and are result of an individual design work. The 
idea of the study is to develop user-frendly and adaptable applicable environment, suitable 
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for investingation on different firm designer products. It has been decided that the study 
should contain the following modules: 

 Technological design of a hydraulic cylinder, specified by its structural scheme. This scheme is 
a part of the production plan of "HES" PLC, Yambol and describes manufacturing of 
each of the cylinder's components. The module is implemented through 3D 
CAD system – in our case SolidWorks (SW) (Lombard, 2011). 

 Numerical simulation investigating the fluid flow inside the hydraulic cylinder. The 
investigation aims to calculate the active force that pushes the Piston Rod Kit (PRK) 
precisely (see fig. 1 and 2), to visualize the flow trajectories and consequently, to outline 
the vulnerable domains in cylinder structure. This module uses SolidWorks Flow 
Simulation (SW Flow …, 2011; Solving …, 2011). 

 Dynamic numerical simulation on Piston Rod Kit motion. The aim is to calculate the friction 
force between the Double Acting Seal (DAS) and Cylinder Tube (CT) (see fig. 1), which 
influences strongly on maintenance, reliability and life of parts. This module is realized 
through SolidWorks Motion (SW Motion) software package (SW Motion ..., 2011). 

2.1 Governing equations in investigating the flow work, (SW Flow..2011; 
Solving..,2011) 

The Navier-Stokes equations, which formulate mass, momentum and energy conservation 
laws for fluid flows are used. They are supplemented by fluid state equations defining the 
nature of the fluid, including its density, viscosity and thermal conductivity of temperature. 
The particular problem is specified by the necessity of defining flow’s geometry, boundary 
and initial conditions. The authors rely entirely on software capacity of predicting laminar 
and turbulent flows. 

Generally, the state equation of a fluid has the following form:  

 Ρ=f(p,T,y) (1) 

where y =(y1, ... yM) is the concentration vector of the fluid mixture components. In our case 
the gas is treated as an ideal one. The mass transfer is calculated under the following specific 
equation: 
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wherein mnD  and t
mnD  are molecular and turbulent matrices of diffusion and mS  is the rate 

of production or consumption of the m-th component. 

In simulating the flow’s motion we use calculating of local mean age (LMA). This is the 
average time   for fluid to travel from the selected inlet opening to the pointed outlet, 
considering both the velocity and diffusion. It is determined by solving the following equation:  
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where xi is the i-th coordinate, ρ is the density, ui is the i-th velocity component, μ is the 
dynamic viscosity coefficient, μt is the turbulent eddy viscosity coefficient, σ and σt are the 
laminar and turbulent Schmidt numbers. The equation is solved under the τ = 0 boundary 
condition on the inlet opening. Dimensionless LMA is chosen in the provided example. This 
is LMA divided by the V/Q ratio, where V is the volume of the computational fluid domain 
and Q is the volume flow rate of the fluid entering the fluid volume. 

The employed in this example numerical solution technique is standart, robust and reliable. 
Hence, it does not require any user knowledge about the computational mesh and the 
numerical methods employed. The used software package solves the governing equations 
through the finite volume (FV) method on a spatially rectangular computational mesh, 
designed in Cartesian coordinate system with the planes orthogonal to its axes and refined 
locally at the solid/fluid interface and, if necessary, additionally in specified fluid regions, at 
the solid/solid surfaces, and in the fluid region during calculation. Values of all the physical 
variables are stored at the mesh cell centers. Due to the FV method, the governing equations 
are discretized in a conservative form. The spatial derivatives are approximated with 
implicit difference operators of second-order accuracy. The time derivatives are 
approximated with an implicit first-order Euler scheme. The viscosity of the numerical 
scheme with respect to the fluid viscosity is negligible. 

2.2 Theoretical background of dynamic simulation of RPK motion, (SW Motion.., 2011) 

Static studies assume that loads are constant or applied very slowly until they reach their 
full values. Thus, the velocity and acceleration of each particle of the model are assumed to 
be zero. As a result, static studies neglect inertial and damping forces. For many practical 
cases, loads are not applied slowly or they change in time. Generally, if the frequency of a 
load is larger than 1/3 of the lowest (fundamental) modal frequency, a dynamic study 
should be used. Objectives of the dynamic analysis include: design of structural and 
mechanical systems that ought to operate without failure in dynamic environments and 
modifying system's characteristics (i.e. geometry, damping mechanisms, material properties, 
etc.) in order to reduce vibration effects. A dynamic simulation is also known as a kinetic 
simulation. 

Many of the engineering products contain moving assemblies of components. For their 
analysis and correct design, it is necessary to perform a dynamic simulation of the 
mechanism. This is a time-history solution of all displacements, velocities, accelerations 
and internal reaction forces in the model driven by a set of external forces and excitations. 
Unlike kinematic and static simulations which involve the solution of only algebraic 
equations, dynamic simulations are more complex because they involve the solution of 
differential and algebraic equations (DAEs). It is the most complex and computationally 
demanding type of simulation and is meant to be used with models that have one or more 
degrees of freedom. 

The basic algorithm available in SW Motion solver performs the numerical integration 
required for dynamic analyses based on stiff solution methods that use implicit, backward 
difference formulations (BDF) to solve the DAEs. It sets coupled differential and algebraic 
equations to define the functions of motion of the model. A numerical solution to these 
equations is obtained by integrating the differential equations while satisfying algebraic 
constraint equations at each time step. The set of differential equations is numerically stiff 
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where xi is the i-th coordinate, ρ is the density, ui is the i-th velocity component, μ is the 
dynamic viscosity coefficient, μt is the turbulent eddy viscosity coefficient, σ and σt are the 
laminar and turbulent Schmidt numbers. The equation is solved under the τ = 0 boundary 
condition on the inlet opening. Dimensionless LMA is chosen in the provided example. This 
is LMA divided by the V/Q ratio, where V is the volume of the computational fluid domain 
and Q is the volume flow rate of the fluid entering the fluid volume. 

The employed in this example numerical solution technique is standart, robust and reliable. 
Hence, it does not require any user knowledge about the computational mesh and the 
numerical methods employed. The used software package solves the governing equations 
through the finite volume (FV) method on a spatially rectangular computational mesh, 
designed in Cartesian coordinate system with the planes orthogonal to its axes and refined 
locally at the solid/fluid interface and, if necessary, additionally in specified fluid regions, at 
the solid/solid surfaces, and in the fluid region during calculation. Values of all the physical 
variables are stored at the mesh cell centers. Due to the FV method, the governing equations 
are discretized in a conservative form. The spatial derivatives are approximated with 
implicit difference operators of second-order accuracy. The time derivatives are 
approximated with an implicit first-order Euler scheme. The viscosity of the numerical 
scheme with respect to the fluid viscosity is negligible. 

2.2 Theoretical background of dynamic simulation of RPK motion, (SW Motion.., 2011) 

Static studies assume that loads are constant or applied very slowly until they reach their 
full values. Thus, the velocity and acceleration of each particle of the model are assumed to 
be zero. As a result, static studies neglect inertial and damping forces. For many practical 
cases, loads are not applied slowly or they change in time. Generally, if the frequency of a 
load is larger than 1/3 of the lowest (fundamental) modal frequency, a dynamic study 
should be used. Objectives of the dynamic analysis include: design of structural and 
mechanical systems that ought to operate without failure in dynamic environments and 
modifying system's characteristics (i.e. geometry, damping mechanisms, material properties, 
etc.) in order to reduce vibration effects. A dynamic simulation is also known as a kinetic 
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Many of the engineering products contain moving assemblies of components. For their 
analysis and correct design, it is necessary to perform a dynamic simulation of the 
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and internal reaction forces in the model driven by a set of external forces and excitations. 
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equations, dynamic simulations are more complex because they involve the solution of 
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equations to define the functions of motion of the model. A numerical solution to these 
equations is obtained by integrating the differential equations while satisfying algebraic 
constraint equations at each time step. The set of differential equations is numerically stiff 
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when there is a wide interval between high and low frequency eigenvalues. The possible 
solution of the equations of motion depends on the numerical stiffness of the equations - the 
stiffer the equations are, the slower the solution is. Numerically stiff differential equations 
require stiff integration methods to compute the solution’s efficiency because other types of 
methods for solving differential equations perform poorly and are too slow.  

There are three stiff integration methods for computing motion by SW Motion solver: 

 Gear (GSTIFF) 
 Modified Gear (WSTIFF) 
 Stabilized Index-2 method (SI2_GSTIFF), which is a modification of the GSTIFF method. 

GSTIFF integration method, developed by C. W. Gear (Gear, 1971a; 1971b), is the most 
widely-used and tested integrator. It is a variable-order, variable-step and multi-step 
integrator with a maximum integration order of six. Among benefits of GSTIFF are high 
speed, high accuracy of the system displacements and robust in handling a variety of 
analysis problems. A limitation of the procedure is that velocities and especially 
accelerations can have errors. An easy way to minimize these errors is to control the 
maximum time step that the integrator is allowed to take, so that the integrator runs at a 
constant step size and runs consistently at a high order (three or more). Additionally, 
corrector failures can be encountered at small step sizes. These failures occur because the 
Jacobian matrix is a function of the inverse of the step size and becomes ill-conditioned at 
small steps. However, GSTIFF method is a fast and accurate method for computing 
displacements for a wide range of motion analysis problems. It ensures that the solution 
satisfies all constraints, although it does not ensure that the velocities and accelerations 
calculated satisfy all first- and second-time derivatives. The solver monitors an integration 
error only in system displacements, not in velocities. 

WSTIFF (Brenan, 1996) is another variable order, variable step size stiff integrator. GSTIFF 
and WSTIFF are similar in formulation and behavior. Both use BDF. They differ in that 
GSTIFF coefficients are mostly calculated assuming a constant step size, whereas WSTIFF 
coefficients are a function of the step size. If the step size changes suddenly during 
integration, GSTIFF introduces a small error, while WSTIFF can handle step size changes 
without loss of accuracy. Sudden step size changes occur whenever there are discontinuous 
forces, discontinuous motions etc. 

SI2_GSTIFF, a Stabilized Index-2 method, is a modification of the GSTIFF method. This 
integration method provides better error control over the velocity and acceleration terms in 
the equations of motion. Provided the motion is sufficiently smooth, SI2_GSTIFF velocity 
and acceleration results are more accurate than those computed with GSTIFF or WSTIFF 
and that is true even for motions with high frequency oscillations. SI2_GSTIFF is also more 
accurate with smaller step sizes, but is still significantly slower.  

All of the three integrators (GSTIFF, WSTIFF, and SI2_GSTIFF) use Newton-Raphson 
iterations to solve the DAEs of motion. This iteration process is referred to as correcting the 
solution. The adaptivity value modifies the corrector error tolerance to include a term that is 
inversely proportional to the integration step size. This is intended to loosen the corrector 
tolerance when the step size gets small. If the integration step size is equal to h, Adaptivity/h 
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is added to the corrector tolerance. The Adaptivity value affects the GSTIFF, WSTIFF and 
SI2_GSTIFF integrators. 

The control over the convergence of the calculations can be done by adjusting the values of 
several dynamic parametres, such as: accuracy, number of iterations, maximum step size, 
recalculation the Jacobian matrix. 

3. Basic description of the used software technics 
3.1 Detailed description of the used by Flow Simulation technics, (SW Flow..2011; 
Solving..,2011) 

Since Flow Simulation is based on solving time-dependent Navier-Stokes equations, 
steady-state problems are solved through a steady-state approach. To obtain the steady-
state solution quicklier a method of local (over the computational domain) time steps is 
employed. A multigrid method is used for accelerating the solution convergence and 
suppressing parasitic oscillations. The computational mesh is built by dividing the 
computational domain into parallelepiped cells whose sides are orthogonal to the Global 
coordinate system axes. Procedures of the computational mesh refinement are used to 
better resolve the model features, such as high-curvature surfaces in contact with fluid, 
narrow flow passages (gaps) and the specified insulators' boundaries. During the 
subsequent calculations while solving the problem the computational mesh can be refined 
additionally to better resolve the high-gradient flow and solid regions revealed in the 
calculations. 

Most of the fluid flows encountered in engineering practice are turbulent, so Flow 
Simulation was mainly developed to simulate and study turbulent flows. To predict 
turbulent flows, the Favre-averaged Navier-Stokes equations are used where time-averaged 
effects of the flow turbulence on the flow parameters are considered. Through this 
procedure the Reynolds stresses appear in the equations for which additional information 
must be provided. To close the system of equations, Flow Simulation employs transport 
equations for the turbulent kinetic energy and its dissipation rate. Flow Simulation employs 
one system of equations to describe both laminar and turbulent flows. Moreover, transition 
from a laminar state to turbulent one and vice versa is possible. Flows in models with 
moving walls are computed by specifying the corresponding boundary conditions. Thus, for 
choosing model’s characteristics it is necessary to remember how important the right choice 
of boundary conditions is. For internal flows, i.e., flows inside models, Flow Simulation 
offers the following two options of specifying the flow boundary conditions: manually at the 
model inlets and outlets (i.e. model openings), or to specify them by transferring the results 
obtained in another Flow Simulation calculation in the same coordinate system. With the 
first option, all the model openings are classified into "pressure" openings, "flow" openings 
and "fans", depending on the flow boundary conditions, which are intended to be specified 
on them. A "flow" opening boundary condition is imposed when dynamic flow properties 
(i.e., the flow direction and mass, volume flow rate or velocity) are known at the opening. 
The pressure at the opening is determined as a part of the solution. In Flow Simulation the 
default velocity boundary condition at solid walls corresponds to the no-slip condition and 
the solid walls are also considered to be impermeable. In addition to this, the wall surface's 
translation and/or rotation can be specified. 
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3.2 Detailed description of the used by SW Motion integration technics, (SW Motion.., 
2011) 

SW Motion uses complete kinematic modeling to compute component motion and dynamic 
calculations to analyze forces, excited in mechanisms by springs, dampers, motors, gravity, 
friction, etc. The large and diverse number of kinematic connections in the program's 
libraries enables the creation of mechanisms with varying degrees of complexity. They can 
be designed through setting one or more drives or through defining a trajectory or a set of 
trajectories of a particular point from the mechanism's parts. Tracking the motion 
parameters (linear and angular speeds and accelerations, etc.) as a function of time or of 
another chosen by the user parameter is also enabled.  

For obtaining the final results SW Motion solver provides three types of integration 
methods: GSTIFF (default), SI2_GSTIFF and WSTIFF. 

The user directly controls the following integration options: 

 Maximum Iterations - Default value is 25. It specifies the maximum number of times the 
numeric integrator iterates in the search of a solution for a given time step. If the 
program exceeds this limit, a convergence failure is recorded. 

 Initial Integrator Step Size – The command enters the first integration step size used by 
the variable step integrator. The initial integrator step size controls the speed at which 
the integration method starts and its initial accuracy. The user can run the simulation 
quicklier in subsequent runs by increasing  this value.  

 Minimum Integrator Step Size - This is the value of the lower bound of the integration 
time step. The simulation time can be decreased by increasing this value.  

 Maximum Integrator Step Size – This enters the upper bound of the integration time step. 
This is important if the integration method does not detect short-lived events such as 
impacts. Otherwise, it is recommended this value be of the same order as the short-lived 
events. If the user sets this value too large, some events can be ignored by the simulation.  

 Jacobian Re-evaluation – It enables the frequency of matrix re-evaluation to be controlled. 
More frequent re-evaluation gives better simulation accuracy at the cost of simulation 
time. If the model does not change significantly over time, a smaller Jacobian re-
evaluation option can be used. 

3.3 Friction phenomenon in SW Motion, (SW Motion…, 2011) 

Friction is a resistive force that occurs in joints and between parts in contact. When parts are 
in contact, friction is calculated based on the static and dynamic coefficients of friction and 
the normal force acting on the part. The static and dynamic friction properties applied to the 
contact calculation are basically derived from the material properties. SW Motion 
incorporates dynamic friction into the contact calculation. Contact friction is the friction that 
occurs between bodies in contact. The following friction parametres can be monitored:  

 Dynamic Friction Velocity - Specifies the velocity at which dynamic friction becomes 
constant. 

 Dynamic Friction Coefficient - Specifies the constant used to calculate forces due to 
dynamic friction. 

 Static Friction - Includes static friction in the contact calculation.  
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 Static Friction Velocity - Specifies the velocity at which the static frictional force is 
overcomed so that a stationary component begins to move. 

 Static Friction Coefficient - Specifies the constant used to calculate the force necessary to 
overcome forces between two touching bodies at rest. 

In the presented example the contact friction force is calculated. The velocities and 
coefficients of friction used are assigned automatically based on the predefined for each 
contact set materials. However, they may not be the most appropriate parameters based on 
the dynamics of the model. Then, if necessary, these coefficients can be set manually. SW 
Motion uses the Coulomb friction method and fits a smooth curve to the friction parameters 
to solve the friction force.  

4. Basic description of the used SolidWorks software  
4.1 CAD/CAE systems 

The integration of CAD/CAE systems in developed manufacture gives experts the 
opportunity to put fewer resources and less energy into technical activities supporting the 
process of design. Thus they focus their effort and intellectual capability on creating innovative 
and optimal solutions or on generating new ideas for solving known or new problems and 
challenges. CAD (Computer Aided Design) by definition means a combination of hardware 
and software used for optimal solution of the geometric problems in product design. CAD 
systems solve mainly tasks related to describing the geometry of components, the assemblies 
and products as a whole. In recent years the capabilities of CAD systems have been expanded. 
Today they have been successfully integrated to other subsystems (CAE, CAM, etc.), aiming to 
avoid manual reformulation of data and to connect individual work environments. While the 
term CAD includes all the geometry-oriented tasks, CAE (Computer Aided Engineering) 
covers all the computing tasks that take place within the designing process. This involves both 
all calculations during the designing and all optimising procedures in achievement of 
constructive solutions. There is a steady interaction between CAD and CAE, since the 
geometry generated by the CAD system is often the basis for CAE and vice versa (Янакиев & 
Николов, 2010; Топалова & Бакърджиев, 2006).  

The creation and processing of the product’s digital model is the basis of the engineering 
design methodology using CAD/CAE systems. It includes geometric characteristics, data 
about the material and the properties of the product, some additional specific information 
for the designed product whereas the main component is the geometrical model. It is 
created and displayed as a graphic image on the screen display. The principles of operation 
in geometric modeling are independant from the software environment. The impact of CAE 
technologies on engineering has been increasing since the second half of the previous 
century so that it could encounter the enforced requirements for higher precision and 
suitability of the model and environment. Modern development of computing devices and 
software allows the users to model the process of deformation of complex-shaped 
components and structures made of different materials.  

4.2 SolidWorks (SW) CAD environment 

SolidWorks is also used as a software platform for many other programs. SolidWorks is an 
integrated CAD/CAE system, providing a unified and interconnected environment for 
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3.2 Detailed description of the used by SW Motion integration technics, (SW Motion.., 
2011) 
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design, for structural and dynamic analyses, for data management of engineered products. 
It was developed in 1993 and since 1997 has been a trade brand of French company Dassault 
Systèmes. SolidWorks is known to be among the most widely used standard softwares for 
3D designing. The system incorporates modules for preparing technical documentation, 
kinematic, dynamic, thermal and strength analysis of structures, flow simulation technics, 
design of specific product (sheet metal products, mold products, etc.) and so on. 

Based on a multifunctional interface, SW has a parametric, 100% associative and hybrid 
modeler. The large software libraries provide a lot of parametric 3D parts, ready to be 
implemented in the model. SolidWorks enables joining of various parts together and 
developing different structures and mechanisms. It enables establishement of complex 
mechanical relations, checking the assemblies for interference, collisions and alignment of 
the parts. SolidWorks imports/exports files to AutoCAD, DraftSight (a free product 
developed by Dassault Systèmes) and some other well-known software products. 

4.3 CAD modeling of a hydraulic cylinder in SW environment 

For the establisment of a CAD model, design drawings of all parts, constituting the 
hydraulic cylinder as a part of the production program of "HES" PLC, Yambol are used. The 
developed hydraulic cylinder is a double acting cylinder of a piston type. Both piston 
courses (forward and backward) are carried out under the influence of a working fluid 
(hydraulic oil). The components of the hydraulic cylinder are shown in fig.1. 

 

 
 

 

 
1. Piston Rod (PR) 

2. Cylinder Front Head (CFH) 

3. Nut Port (NP) 

4. Cylinder Body/Tube (CT) 

5. Double Acting Seal (DAS) 

6. Piston (Pst) 

7. Cap End Head (CEH) 

8. Plate Bearing (PB) 

9. Wiper (Wpr) 

10. Rod Seal (RS) 

11. Back-Up Ring (BR) 

12. O-Ring (OR) 

 

 

Fig. 1. Components of a hydraulic cylinder 
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The parts of the hydraulic cylinder are constructed in a precise manner. Fig. 2 shows the 
structural block diagram of hydraulic cylinder’s manufacturing. Each block of the 
structure incorporates the abbreviations of the parts and the digital identification 
numbers, by which they are classified in the product management system. These numbers 
are unique for each object. The given block diagram shows that the PTHC (Hydraulic 
Cylinder of Piston Type) is located at the highest organizational level. It represents the 
final product which incorporates all components of the hydraulic cylinder structure. In 
the production management system PTHC exists under the digital identification number 
311113597, which specifies its particular classification. Through it, the cylinder is 
controlled by the design and operation systems. 

 
 

DAS – Double Acting Seal 
CT – Cylinder Tube 
PR – Piston Rod 
Pst – Piston 
CFH – Cylinder Front Head 
CEH – Cap End Head 
PB – Plate Bearing 
NP – Nut Port 
OR – O-Ring 
BR – Back-Up Ring 

RS – Rod Seal 
Wpr – Wiper 
GTC – General Type Cylinder 
GTPR – General Type Piston Rod 
GTCFH – General Type Cylinder Front 
Head 
GTCEH – General Type Cap End Head 
CK – Cylinder Kit 
PRK – Piston Rod Kit 
PTHC –Hydraulic Cylinder of a Piston Type 

 

Fig. 2. Structural block diagram constituting a hydraulic cylinder 
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 The studied PTHC is assembled through the following few steps: 

 

Step 1 –setting the mates between 
the axes of the Piston Rod Kit and of 
the cylinder. Thus, the relative 
degrees of freedom of the PRK to 
cylinder body are set to 2: 
longitudinal translation and rotation 
around its axis.
Step 2 – setting mates between the 
axis of the cylinder front head and 
the axis of the cylinder. The axis of 
the cylinder front head is 
automatically alined towards the 
cylinder axis.

 Step 3 – setting „Face to Face“the 
front surface of the cylinder front 
head and the front surface of the 
cylinder. The cylinder front head 
automatically touches the front of the 
cylinder.
Step 4 – orientating the cylinder 
front head towards the nut port 
opening and establishing the final 
PTHC appearance. 

Fig. 3. Assembling of a hydraulic cylinder of a piston type (PTHC) 

4.4 SolidWorks (SW) Flow Simulation environment 

SW Flow Simulation package is designed for simulation of fluid and gas phenomena. It 
enables development of various scenarios for modeling different fluids and simulating their 
floating, including calculating of speed, acceleration, turbulence, etc. of fluid particles, of the 
forces on the surrounding walls, of the heat exchange effects, etc. The library set of 
examined fluids varies starting from air and water through gas and liquid chemicals to ice 
cream paste, honey, plastic melts, blood, etc. The user can also create user-defined fluids. 
Some of the main features of SW Flow Simulation enable modeling of: heat exchange effects 
with conduction or convection; heat exchange through radiation, including calculations on 
solar radiation; fluid simulation of gas and fluid flows in valves, regulators and pipes; 
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simulation of complex rotating flows in mechanisms. Additional SW Flow Simulation 
options enable: investition on externally wrapped moving objects; analysis of turbulent 
flows and illustration of trajectories of turbulating particles; simulation of real gasses for 
more precise analysis of high pressure or low temperature problems for example 
identification of domains where cavitation is possible and so on. 

4.5 SW Flow Simulation analysis of the modeled hydraulic cylinder 

Through this simulation the design of the real working environment of the hydraulic 
cylinder under a specified variety of boundary conditions, real time monitoring the motion 
of the fluid inside the cylinder, examination of the magnitude of the force between the 
plunger and the cylinder walls for different working volumes of the two cylinder chambers 
and systematizing the numerical and graphical results of all performed numerical 
experiments are done. 

Depending on a predefined scenario of hydraulic cylinder work SW Flow Simulation 
software tracks the fluid flow trajectories inside the volumes of the hydraulic cylinder, 
regarding their development with time. All mathematical procedures are influenced by the 
boundary conditions and the scenario goals and are described below.  

Through the first stage a mathematical definition of the investigated volume is done. The 
local coordinate systems inside each examined chamber volume are introduced and the 
computing domain is outlined. The disposition of the fluid, particularly its location, form 
and type (viscosity, density, operating temperature, etc.) is also input. 

The boundary conditions and the type of mathematical calculation, including choosing the 
solver, are adjusted at the second stage. Thus, working environment is described. 

The numerical and visual presentations (graphical or as a movie) are the focus of the third 
stage. All obtained data is systematized by the software and can be analized by the user. 

To enable SW Flow Simulation to run the simulation and to set goals correctly, it is 
necessary to specify the material of each part of the model. Since the provided hydraulic 
cylinder is a product system of “HES” PLC, Jambol, all material characteristics correspond 
to the technical data given in its technical documentation. The structured parts are made of 
carbon steel. The materials of all non-structural parts are also defined. 

To perform the research a new project is started. The SI measuring system is chosen. 

After that the following characteristics of the “internal” fluid are specified: location in a 
bounded space; no cavities; positive gravity direction - along +Y axis; axis of motion - Y. 
Other applicable options like heat conduction, radiation, etc are not considered in this case. 

Next, the type of the fluid is chosen. It is oil of type ISO-L-HL, according to standart 
system ISO 6743/4, also known as MH-L32. It posesses the following characteristics: 
viscosity class - 32; density at 20C - 0,874 g/ml; kinetic viscosity at 40C - 32 mm2/s; 
viscosity index - 96; liquefaction temperature - -21C. As there is no such type of fluid in 
SW database, a new one is assigned. 

The next few steps implement computational domain function (fig 4-left), fluid 
subdomains (fig. 4-right), boundary conditions (fig. 5) and computational goals. The 
precise introduction of computational domain is of significant importance for its 
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insufficient volume may cause inaccurate results, while its unreasonable increase 
“aggravates” the model and extends the necessary CPU time. The surrounding surfaces of 
inside chambers are highlighten to outline the fluid subdomains. The two volumes should 
be totally separate, should have no common overlap and should be completely bounded. 
Among the defined goals are the factors, which influence the system operation, such as 
the pressure magnitude, including its dynamic and static components. „Flow 
Trajectories“command is used to track the motion of the fluid particles. Obtained data can 
be exported to files of the following types avi, excell or pictures (*.jpg or others).  

 
Computational domain   Fluid sub-domain 

Fig. 4. Introducing the of the examined fluid domains 

 

   
„Pipe“ domain    „Chamber“ domain 

Fig. 5. Defining the  boundary conditions of the incoming fluid 

During the first stage of the simulation the piston rod kit (PRK) moves forward. 

To define the boundary conditions of the incoming fluid the following steps are passed 
through:  

 For the the „pipe“ domain (fig. 5 - left): 
1. Specifying the opening (area, surface) through which the fluid fills the pipe.  
2. The direction of fluid motion is selected. 
3. “Flow Openings” function is introduced by specifying properties (weight, 

volume or speed) of the fluid filling the pipe. In our case this is the specific flow 
rate. The required flow rate for the designed hydraulic cylinder is 35 l/min or 
0,00058 m3/s. 

 For the the „chamber“ domain (fig. 5 - right): 
4. Highlightening all the inside walls which outline the first volume and which are 

exposed to pressure. 
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5. Highlightening the direction of the rod motion - Y. 
6. Selecting “Pressure Openings” function and specifying surfaces, exposed to pressure. 

For this project “Total Pressure” option is chosen and the pressure value is 30MPa. 
This is the test pressure, according to hydrauluc cylinder’s technical documentation.  

7. The temperature of the fluid is set at 50C. 

                     
                „Chamber“ domain              „Pipe“ domain 

Fig. 6. Defining of boundary conditions for the outgoing fluid 

Boundary conditions of the outgoing fluid (fig. 6) are set, depending on following requirements: 

1. To visualize the simulation of the fluid going out of the right chamber, it is obligatory to 
define the boundary conditions. While moving, the piston pushes the fluid out of the 
right chamber. The pressure resulting from the fluid expulsion is introduced throught 
highlightening the affected surfaces. All these actions are similar to the ones described 
above. 

2. The boundary conditions at the fluid exit are input about the inner surface of the pipe. 
The procedure “Outlet Volume Flow” is used. 

Thus all boundary conditions are precisely defined. 

The next step is to define the “Goals” of the output, i.e. the results that are going to be 
analysied by the user later. The aim of the study is to find the value of the force, raised by 
fluid and moving the piston.  

5. Numerical data and results obtained through SW Flow Simulation for the 
modeling hydraulic cylinder  
5.1 Moving forward of the piston rod kit 

5.1.1 Basic assumptions 

The course of the piston of the hydraulic cylinder is 310 mm (in both directions). This means 
that the distance L varies from 0 ÷ 310mm (fig. 7). As the used software is unable to solve the 
system for the three processes (filling the left chamber, moving the piston and empting the 
right chamber) going on simultatiously the following assumption is made: The system is 
solved for some close chain steady-state situations while the initial boundary conditions for 
each situation coincide with the final boundary conditions of the previous situation.  

To enable calculation of the magnitude of force F


 (fig.7) depending on the piston's position, 
the operating volume of the left chamber of the hydraulic cylinder increases as distance L 
increases and the simulation is run for each particular position of the piston.  



 
Finite Volume Method – Powerful Means of Engineering Design 358 

insufficient volume may cause inaccurate results, while its unreasonable increase 
“aggravates” the model and extends the necessary CPU time. The surrounding surfaces of 
inside chambers are highlighten to outline the fluid subdomains. The two volumes should 
be totally separate, should have no common overlap and should be completely bounded. 
Among the defined goals are the factors, which influence the system operation, such as 
the pressure magnitude, including its dynamic and static components. „Flow 
Trajectories“command is used to track the motion of the fluid particles. Obtained data can 
be exported to files of the following types avi, excell or pictures (*.jpg or others).  

 
Computational domain   Fluid sub-domain 

Fig. 4. Introducing the of the examined fluid domains 

 

   
„Pipe“ domain    „Chamber“ domain 

Fig. 5. Defining the  boundary conditions of the incoming fluid 

During the first stage of the simulation the piston rod kit (PRK) moves forward. 

To define the boundary conditions of the incoming fluid the following steps are passed 
through:  

 For the the „pipe“ domain (fig. 5 - left): 
1. Specifying the opening (area, surface) through which the fluid fills the pipe.  
2. The direction of fluid motion is selected. 
3. “Flow Openings” function is introduced by specifying properties (weight, 

volume or speed) of the fluid filling the pipe. In our case this is the specific flow 
rate. The required flow rate for the designed hydraulic cylinder is 35 l/min or 
0,00058 m3/s. 

 For the the „chamber“ domain (fig. 5 - right): 
4. Highlightening all the inside walls which outline the first volume and which are 

exposed to pressure. 
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5. Highlightening the direction of the rod motion - Y. 
6. Selecting “Pressure Openings” function and specifying surfaces, exposed to pressure. 

For this project “Total Pressure” option is chosen and the pressure value is 30MPa. 
This is the test pressure, according to hydrauluc cylinder’s technical documentation.  

7. The temperature of the fluid is set at 50C. 

                     
                „Chamber“ domain              „Pipe“ domain 

Fig. 6. Defining of boundary conditions for the outgoing fluid 

Boundary conditions of the outgoing fluid (fig. 6) are set, depending on following requirements: 

1. To visualize the simulation of the fluid going out of the right chamber, it is obligatory to 
define the boundary conditions. While moving, the piston pushes the fluid out of the 
right chamber. The pressure resulting from the fluid expulsion is introduced throught 
highlightening the affected surfaces. All these actions are similar to the ones described 
above. 

2. The boundary conditions at the fluid exit are input about the inner surface of the pipe. 
The procedure “Outlet Volume Flow” is used. 

Thus all boundary conditions are precisely defined. 

The next step is to define the “Goals” of the output, i.e. the results that are going to be 
analysied by the user later. The aim of the study is to find the value of the force, raised by 
fluid and moving the piston.  

5. Numerical data and results obtained through SW Flow Simulation for the 
modeling hydraulic cylinder  
5.1 Moving forward of the piston rod kit 

5.1.1 Basic assumptions 

The course of the piston of the hydraulic cylinder is 310 mm (in both directions). This means 
that the distance L varies from 0 ÷ 310mm (fig. 7). As the used software is unable to solve the 
system for the three processes (filling the left chamber, moving the piston and empting the 
right chamber) going on simultatiously the following assumption is made: The system is 
solved for some close chain steady-state situations while the initial boundary conditions for 
each situation coincide with the final boundary conditions of the previous situation.  

To enable calculation of the magnitude of force F


 (fig.7) depending on the piston's position, 
the operating volume of the left chamber of the hydraulic cylinder increases as distance L 
increases and the simulation is run for each particular position of the piston.  
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Fig. 7. Operating volume of the hydraulic cylinder 

As the formulation and the goals of the problem are defined the calculation should be run. 

5.1.2 Visualizing the results and comments on the simulation process 

A preview of operating hydraulic cylinder during forward piston course is shown in fig. 8. 
The PRK tries to move forward in Vrod direction, while squeezing forward the outgoing 
fluid. Consequently the volume of the right chamber shrinks.  

Visualized as separate vectors flow trajectories enable easier tracking of the motion of fluid 
particles (fig. 8 and 9). 

 
Boundary conditions   Flow trajectories 

Fig. 8. A preview of an operating hydraulic cylinder – PRK moving forward 

  

 

 
  Fluid filling the chamber   Fluid empting the right chamber                                Legend 

Fig. 9. Flow trajectories of fluid particles inside the hydraulic cylinder for L= 65mm. 

 Position 1 – The working fluid fills the volume through a pipe of a diameter of 8 mm 
with a flow rate Q = 35 l/min. 

 Position 2 – The fluid particles form a small vortex at the bottom and track forward 
through an opening of 6mm diameter. For the presented situation the volume of the left 
cylinder chamber is 30,000413V m  and is filled for t=0,71s. 

 Position 3 – The velocity of the fluid filling the left cylinder chamber as a strongly 
directed stream, is about 20,6 m/s.  
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 Position 4 – Some of the fluid particles re-bounce off the piston and vortex around. 
According to software calculation, their speed is approximaely 10m/s. 

 Position 5 – PRK separating the two volumes.  
 Position 6 – Moving forward the piston initiates the fluid expulsion from the right 

chamber. The pressure of the fluid is about 29,95 MPa. The fluid particles try to squeeze 
the piston head and press the DAS. 

 Position 7 –The fluid particles slide throught the chamfer of the cylinder front head and 
float up the pipe with a velocity of about 11,6 m/s and pressure of about 29,7MPa. 

 Position 8 – The fluid leaves the computational domain through the pipe, which 
diameter is 8 mm. The pressure inside this domain decreases slightly to about 29,4 MPa. 

 Position 9 – Some of the fluid particles have passed through the joint between the 
cylinder front head and the cylinder and have disposed around the ring. 

 Position 10 – Some other particles of the fluid have disposed in the volume surrounded 
by the rod surface and the screw channel of the cylinder front head, re-bouncing off the 
rod seal. 

   
Fig. 10. Dangerous domains in the hydraulic cylinder chambers 

To define the dangerous domains during hydraulic cylinder operation, i.e. the domains 
where the flows pressure is high, “Isolines” function is used - fig. 10. This figure enables 
user to find the potential crack originators in the cylinder structure. 

 Position 1 – The fluid fills the pipe with high velocity. It is possible for cracks to be 
originated at the corner of the pipe. 

 Position 2 – The fluid floats through a zone chamfering pipes with different diametres. 
 Position 3 – The high pressure squeezing the fluid inside the hydraulic left cylinder 

chamber can cause vulnerability around this zone.   
 Position 4 – The fluid particles re-bounce off the piston of the highest velocity. The 

chamfered piston profile is exposed to random time-varying pressure.  
 Position 5 – The fluid is released at a high speed, cracks are possible to occur in the joint 

between the cylinder tube and the pipe. 

5.1.3 Numerical data and verification of the results 

All numerical results of any importance to the study are exported to MS Excel file. Some of 
them are systematized in table 1 and graphically presented in fig. 11. During the second half 
of the piston’s forward course the magnitude at first decreases slightly and then remains 
constant. 
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As the formulation and the goals of the problem are defined the calculation should be run. 

5.1.2 Visualizing the results and comments on the simulation process 

A preview of operating hydraulic cylinder during forward piston course is shown in fig. 8. 
The PRK tries to move forward in Vrod direction, while squeezing forward the outgoing 
fluid. Consequently the volume of the right chamber shrinks.  
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Fig. 9. Flow trajectories of fluid particles inside the hydraulic cylinder for L= 65mm. 

 Position 1 – The working fluid fills the volume through a pipe of a diameter of 8 mm 
with a flow rate Q = 35 l/min. 

 Position 2 – The fluid particles form a small vortex at the bottom and track forward 
through an opening of 6mm diameter. For the presented situation the volume of the left 
cylinder chamber is 30,000413V m  and is filled for t=0,71s. 

 Position 3 – The velocity of the fluid filling the left cylinder chamber as a strongly 
directed stream, is about 20,6 m/s.  
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According to software calculation, their speed is approximaely 10m/s. 

 Position 5 – PRK separating the two volumes.  
 Position 6 – Moving forward the piston initiates the fluid expulsion from the right 

chamber. The pressure of the fluid is about 29,95 MPa. The fluid particles try to squeeze 
the piston head and press the DAS. 

 Position 7 –The fluid particles slide throught the chamfer of the cylinder front head and 
float up the pipe with a velocity of about 11,6 m/s and pressure of about 29,7MPa. 

 Position 8 – The fluid leaves the computational domain through the pipe, which 
diameter is 8 mm. The pressure inside this domain decreases slightly to about 29,4 MPa. 

 Position 9 – Some of the fluid particles have passed through the joint between the 
cylinder front head and the cylinder and have disposed around the ring. 

 Position 10 – Some other particles of the fluid have disposed in the volume surrounded 
by the rod surface and the screw channel of the cylinder front head, re-bouncing off the 
rod seal. 

   
Fig. 10. Dangerous domains in the hydraulic cylinder chambers 

To define the dangerous domains during hydraulic cylinder operation, i.e. the domains 
where the flows pressure is high, “Isolines” function is used - fig. 10. This figure enables 
user to find the potential crack originators in the cylinder structure. 

 Position 1 – The fluid fills the pipe with high velocity. It is possible for cracks to be 
originated at the corner of the pipe. 

 Position 2 – The fluid floats through a zone chamfering pipes with different diametres. 
 Position 3 – The high pressure squeezing the fluid inside the hydraulic left cylinder 

chamber can cause vulnerability around this zone.   
 Position 4 – The fluid particles re-bounce off the piston of the highest velocity. The 

chamfered piston profile is exposed to random time-varying pressure.  
 Position 5 – The fluid is released at a high speed, cracks are possible to occur in the joint 

between the cylinder tube and the pipe. 

5.1.3 Numerical data and verification of the results 

All numerical results of any importance to the study are exported to MS Excel file. Some of 
them are systematized in table 1 and graphically presented in fig. 11. During the second half 
of the piston’s forward course the magnitude at first decreases slightly and then remains 
constant. 
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№ L, [mm] V, [m3] t, [s] Vr, [mm] F, [kN] Legend 
1 5 3,179E-05 0,055 5,13 190,7552       

L - the distance defining PRK 
position inside the cylinder; 
 
V - the volume of the left 
cylinder chamber; 
 
t - the time for filling the 
chamber of the hydraulic 
cylinder with fluid; 
 
Vr - the displacement of PRK 
in forward direction during 
its motion; 
 
F - the calculated by the SW 
Flow Simulation magnitude 
of the tracked force during 
the forward motion of PRK; 

2 20 1,272E-04 0,218 20,32 190,7474
3 35 2,225E-04 0,382 35,62 190,7397
4 50 3,179E-04 0,545 50,81 190,7321
5 65 4,133E-04 0,709 66,10 190,7245
6 80 5,087E-04 0,872 81,30 190,7181
7 95 6,041E-04 1,036 96,59 190,7111
8 110 6,994E-04 1,199 111,79 190,7067
9 125 7,948E-04 1,363 127,08 190,7048

10 140 8,902E-04 1,526 142,27 190,7041
11 155 9,856E-04 1,690 157,56 190,7039
12 170 1,081E-03 1,853 172,76 190,7037
13 185 1,176E-03 2,017 188,05 190,7038
14 200 1,272E-03 2,180 203,25 190,7036
15 215 1,367E-03 2,344 218,54 190,7041
16 230 1,462E-03 2,507 233,74 190,7038
17 245 1,558E-03 2,671 249,03 190,7036
18 260 1,653E-03 2,834 264,22 190,7041
19 275 1,749E-03 2,998 279,51 190,7039
20 290 1,844E-03 3,161 294,71 190,7036
21 305 1,939E-03 3,325 310,00 190,7038

Table 1. 

 
Fig. 11. Graph of the magnitude of force F


 versus forward displacement of the piston Vr 
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The calculated magnitude of the force F


 is verified through the basic methods of Fluid 
Mechanics, as follows: 

 test pressure of the hydraulic cylinder - 30P MPa ; 

 the area at “face” surface of the piston - 
2 2

2. 3,14.90 6358,5
4 4
DA mm

    

 calculated force - 30.6358,5 190755 190,755F N kN    

 error - 190,755 190,713% 100% 0,022%
190,755


    

The error is under 0,025%, where the value 190,755 is the theoretically calculated force 
magnitude and the value 190,713 is the average value of the results run by the software. 

5.2 Moving backwards of the piston 

5.2.1 Basic assumptions and boundary conditions 

The method and the stages of simulating the backward motion of PRK are the same as 
they are during its forward movement simulation but the set boundary conditions are 
different. 

Fig. 12 shows the sequence of setting the input boundary conditions. 

 
Step 1 – The opening where the 
operating fluid enters the computational 
domain is specified. This is the pipe 
through which the fluid fills the right 
chamber of hydraulic cylinder.  

  
Step 2 – All walls surrounding the right 
cylinder chamber are exposed to 
pressure of 30 MPa. 

 

 
 
Steps 3 and 4 – Defines the boundary 
conditions of the fluid expulsed out of 
the left cylinder chamber. 

  
 
Step 5 – Setting the boundary conditions 
at the fluid outlet. 

Fig. 12. Setting the boundary conditions during PRK backward motion 
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№ L, [mm] V, [m3] t, [s] Vr, [mm] F, [kN] Legend 
1 5 3,179E-05 0,055 5,13 190,7552       

L - the distance defining PRK 
position inside the cylinder; 
 
V - the volume of the left 
cylinder chamber; 
 
t - the time for filling the 
chamber of the hydraulic 
cylinder with fluid; 
 
Vr - the displacement of PRK 
in forward direction during 
its motion; 
 
F - the calculated by the SW 
Flow Simulation magnitude 
of the tracked force during 
the forward motion of PRK; 

2 20 1,272E-04 0,218 20,32 190,7474
3 35 2,225E-04 0,382 35,62 190,7397
4 50 3,179E-04 0,545 50,81 190,7321
5 65 4,133E-04 0,709 66,10 190,7245
6 80 5,087E-04 0,872 81,30 190,7181
7 95 6,041E-04 1,036 96,59 190,7111
8 110 6,994E-04 1,199 111,79 190,7067
9 125 7,948E-04 1,363 127,08 190,7048

10 140 8,902E-04 1,526 142,27 190,7041
11 155 9,856E-04 1,690 157,56 190,7039
12 170 1,081E-03 1,853 172,76 190,7037
13 185 1,176E-03 2,017 188,05 190,7038
14 200 1,272E-03 2,180 203,25 190,7036
15 215 1,367E-03 2,344 218,54 190,7041
16 230 1,462E-03 2,507 233,74 190,7038
17 245 1,558E-03 2,671 249,03 190,7036
18 260 1,653E-03 2,834 264,22 190,7041
19 275 1,749E-03 2,998 279,51 190,7039
20 290 1,844E-03 3,161 294,71 190,7036
21 305 1,939E-03 3,325 310,00 190,7038

Table 1. 

 
Fig. 11. Graph of the magnitude of force F


 versus forward displacement of the piston Vr 
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The calculated magnitude of the force F


 is verified through the basic methods of Fluid 
Mechanics, as follows: 

 test pressure of the hydraulic cylinder - 30P MPa ; 

 the area at “face” surface of the piston - 
2 2

2. 3,14.90 6358,5
4 4
DA mm

    

 calculated force - 30.6358,5 190755 190,755F N kN    

 error - 190,755 190,713% 100% 0,022%
190,755


    

The error is under 0,025%, where the value 190,755 is the theoretically calculated force 
magnitude and the value 190,713 is the average value of the results run by the software. 

5.2 Moving backwards of the piston 

5.2.1 Basic assumptions and boundary conditions 

The method and the stages of simulating the backward motion of PRK are the same as 
they are during its forward movement simulation but the set boundary conditions are 
different. 

Fig. 12 shows the sequence of setting the input boundary conditions. 

 
Step 1 – The opening where the 
operating fluid enters the computational 
domain is specified. This is the pipe 
through which the fluid fills the right 
chamber of hydraulic cylinder.  

  
Step 2 – All walls surrounding the right 
cylinder chamber are exposed to 
pressure of 30 MPa. 

 

 
 
Steps 3 and 4 – Defines the boundary 
conditions of the fluid expulsed out of 
the left cylinder chamber. 

  
 
Step 5 – Setting the boundary conditions 
at the fluid outlet. 

Fig. 12. Setting the boundary conditions during PRK backward motion 
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Fig. 13. Scheme of the operating cylinder during piston’s backward course 

Scheme of the operating cylinder during piston’s backward course is given in fig. 13. 

 Position 1 – The fluid fills the right chamber of the hydraulic cylinder throught the pipe 
opening at a flow rate of 0.00058m3/s 

 Position 2 – The inside pressure of 30 MPa is established. 
 Position 3 – PRK moves backwards in Vrod direction, the volume of the left chamber 

shrinks while the piston expulses the fluid. 
 Position 4 – The inside pressure of the left cylinder chamber is 30 MPa. 
 Position 5 – The fluid inside the left cylinder chamber is expulsed. 

5.2.2 Flow trajectory and isoline results of the run simulation 

Fig. 14-right shows the flow trajectories in the right chamber of the hydraulic cylinder at L = 
185 mm (see table 2). 

 Position 1 – The operating fluid fills the domain through an 8mm pipe at a flow rate of 
Q= 35l/min ( 30,0005833 /m s ). 

 Position 2 – The fluid fills the cylinder chamber as a highly concentrated stream. Some 
of its particles rebounce off the chamber of the cylinder front head and the piston rod. 
The velocity of the fluid at that domain is about 11,6 m/s. 

 Position 3 – The fluid fills the chamber, while some of its particles rebouce off the 
surface of the piston. The right cylinder chamber is filled for about t = 1,39s. 

 Position 4 – The fluid flows around the piston rod and fills the entire right chamber. 

The motion of the fluid particles inside the left chamber of the hydraulic cylinder is shown 
in fig. 14-left. 

 Position 1 – The back side of the piston pushes the fluid forward with a pressure of 
about 29,94MPa. The fluid is attempting to drain through the DAS to the right cylinder 
chamber. 

 Position 2 – Some of the fluid rebounce off the caped head. 
 Position 3 –The fluid empties the chamber of the hydraulic cylinder through a 6mm 

opening. The pressure in this domain is about 29,5MPa and the velocity is around 
20,6m/s. 

 Position 4 –The fluid goes out through the hole at the bottom. 
 Position 5 – The fluid leaves the computational domain.  

The general view of the flow trajectories inside the hydraulic cylinder is given in fig. 15. 
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             Left chamber of the cylinder          Right chamber of the cylinder               Legend 
Fig. 14. Flow trajectories inside the hydraulic cylinder at L = 185 mm (see table 2). 

 
Fig. 15. General view of the flow trajectories inside the hydraulic cylinder 

“Isolines” function helps the designers to study in details the vulnerable zones of the 
hydraulic cylinder structure (fig. 16).  

 Position 1 – The fluid fills the right chamber of the hydraulic cylinder at the highest 
velocity and occurrence of cracks in the pipe corner is possible. 

 Position 2 – The fluid empties the cylinder through the left chamber pipe.  
 Position 3 – The joint between the cylinder chamber and the pipe is among the 

vulnerable cylinder zones too. Because of the high pressure inside this domain and the 
chamfered joints crack occurence is possible. 

 
Fig. 16. Vulnerable domains of the hydraulic cylinder structure during PRK backward motion 

5.2.3 Numerical data and verification of the results 

The numerical and graphical presentations of the magnitude of the studied force F


 during 
piston’s backward motion are given below (table 2 and fig. 17) 

The calculated magnitude of the force F


 is verified through the methods of Fluid 
Mechanicsm, once more: 

 test pressure of the hydraulic cylinder - 30P MPa ; 

 the area of the piston’s “face” surface - 
2 2

2. 3,14.90 6358,5
4 4piston
DA mm
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Scheme of the operating cylinder during piston’s backward course is given in fig. 13. 
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opening at a flow rate of 0.00058m3/s 
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shrinks while the piston expulses the fluid. 
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5.2.2 Flow trajectory and isoline results of the run simulation 

Fig. 14-right shows the flow trajectories in the right chamber of the hydraulic cylinder at L = 
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Q= 35l/min ( 30,0005833 /m s ). 
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             Left chamber of the cylinder          Right chamber of the cylinder               Legend 
Fig. 14. Flow trajectories inside the hydraulic cylinder at L = 185 mm (see table 2). 
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Fig. 16. Vulnerable domains of the hydraulic cylinder structure during PRK backward motion 

5.2.3 Numerical data and verification of the results 

The numerical and graphical presentations of the magnitude of the studied force F


 during 
piston’s backward motion are given below (table 2 and fig. 17) 

The calculated magnitude of the force F


 is verified through the methods of Fluid 
Mechanicsm, once more: 

 test pressure of the hydraulic cylinder - 30P MPa ; 

 the area of the piston’s “face” surface - 
2 2

2. 3,14.90 6358,5
4 4piston
DA mm
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№ L, [mm] V, [m3] t, [s] Vr, [mm] F, [kN] Legend 
1 5 2,198E-05 0,038 5,13 131,8805       

L - the distance defining PRK 
position inside the cylinder; 
 
V - the volume of the right 
cylinder chamber; 
 
t - the time for filling the 
chamber of the hydraulic 
cylinder with fluid; 
 
Vr - the displacement of PRK 
in backward  direction 
during its motion; 
 
F - the calculated by the SW 
Flow Simulation magnitude 
of the tracked force during 
the backward motion of 
PRK; 

2 20 8,792E-05 0,151 20,37 131,8668
3 35 1,539E-04 0,264 35,61 131,8576
4 50 2,198E-04 0,377 50,86 131,8505
5 65 2,857E-04 0,490 66,10 131,8466
6 80 3,517E-04 0,603 81,34 131,8453
7 95 4,176E-04 0,716 96,59 131,8448
8 110 4,836E-04 0,829 111,83 131,8445
9 125 5,495E-04 0,942 127,08 131,8447
10 140 6,154E-04 1,055 142,32 131,8448
11 155 6,814E-04 1,168 157,56 131,8446
12 170 7,473E-04 1,281 172,81 131,8447
13 185 8,133E-04 1,394 188,05 131,8446
14 200 8,792E-04 1,507 203,29 131,8448
15 215 9,451E-04 1,620 218,54 131,8445
16 230 1,011E-03 1,733 233,78 131,8447
17 245 1,077E-03 1,846 249,03 131,8445
18 260 1,143E-03 1,959 264,27 131,8446
19 275 1,209E-03 2,072 279,51 131,8448
20 290 1,275E-03 2,185 294,76 131,8447
21 305 1,341E-03 2,298 310,00 131,8445

Table 2. 

 
Fig. 17. Graph of the magnitude of force F


 versus backward displacement of the piston Vr 
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 the area of the rod - 
2 2

2. 3,14.50 1962,5
4 4rod
DA mm

   . 

 the “working” area of the piston - 26358,5 1962,5 4396piston rodA А А mm      

 calculated force - 30.4396 131880 131,880F N kN    

 error - 131,88 131,85% 100% 0,023%
131,88


    

The error is under 0,025%. It is calculated as the theoretical force magnitude is equal to 
131,88 kN and 131,85 is the average value of the results run by the software. 

Based on the given in fig. 17 graph it can be concluded that the magnitude of the force F


decreases slightly in the second half of the course motion. The tendency in madnitude 
decrease corresponds to the one observed during the pistons course forward. The 
difference in magnitude values is due to gravity impact and to the difference in the 
“working” area of the piston. 

6. CAE simulation of the operational movement of a hydraulic cylinder using 
the SW Motion environment 
6.1 Developing a SW motion scenario 

The SW Motion software enables performing a real time dynamic investigation on the 
phonomena in the hydraulic cylinder. The input data is predefined in our CAD model and 
SW Flow Simulation research. 

The objectives of this part of the research are: 

 to simulate the dynamic effects of the piston motion under predefined input data and 
various boundary conditions; 

 to calculate through a numerical experiment and to analyse the friction force arising 
between the inner surface of hydraulic cylinder and the double acting seal (DAS).  

At first a design scenario, including all facts, which influence the cylinder operation and the 
calculating steps is defined. The direction and the motion velocity are introduced. All 
necessary data is taken from performed SW Flow Simulation research. The intermediate 
values are calculated automatically through cubic interpolation.  

The second step is to define the contact conditions between the inner surface of the cylinder 
and the outer surface of the DAS. Here the characteristics of the materials are input. A 
greasy environment is chosen. Based on user’s choice, the program itself calculates 
coefficients of static and kinetic friction between the materials.  

During the third step a time dependent calculating intervals are input. After starting the 
“Solve” procedure, all kinematic and dynamic parameters of the motion are automatically 
calculated. During this last step all results selected by the user are systematized to enable 
easier analysis. 

It is necessary to add some additional explanations about the second and the third steps of 
the model development. 
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№ L, [mm] V, [m3] t, [s] Vr, [mm] F, [kN] Legend 
1 5 2,198E-05 0,038 5,13 131,8805       

L - the distance defining PRK 
position inside the cylinder; 
 
V - the volume of the right 
cylinder chamber; 
 
t - the time for filling the 
chamber of the hydraulic 
cylinder with fluid; 
 
Vr - the displacement of PRK 
in backward  direction 
during its motion; 
 
F - the calculated by the SW 
Flow Simulation magnitude 
of the tracked force during 
the backward motion of 
PRK; 

2 20 8,792E-05 0,151 20,37 131,8668
3 35 1,539E-04 0,264 35,61 131,8576
4 50 2,198E-04 0,377 50,86 131,8505
5 65 2,857E-04 0,490 66,10 131,8466
6 80 3,517E-04 0,603 81,34 131,8453
7 95 4,176E-04 0,716 96,59 131,8448
8 110 4,836E-04 0,829 111,83 131,8445
9 125 5,495E-04 0,942 127,08 131,8447
10 140 6,154E-04 1,055 142,32 131,8448
11 155 6,814E-04 1,168 157,56 131,8446
12 170 7,473E-04 1,281 172,81 131,8447
13 185 8,133E-04 1,394 188,05 131,8446
14 200 8,792E-04 1,507 203,29 131,8448
15 215 9,451E-04 1,620 218,54 131,8445
16 230 1,011E-03 1,733 233,78 131,8447
17 245 1,077E-03 1,846 249,03 131,8445
18 260 1,143E-03 1,959 264,27 131,8446
19 275 1,209E-03 2,072 279,51 131,8448
20 290 1,275E-03 2,185 294,76 131,8447
21 305 1,341E-03 2,298 310,00 131,8445

Table 2. 

 
Fig. 17. Graph of the magnitude of force F


 versus backward displacement of the piston Vr 
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 the area of the rod - 
2 2

2. 3,14.50 1962,5
4 4rod
DA mm

   . 

 the “working” area of the piston - 26358,5 1962,5 4396piston rodA А А mm      

 calculated force - 30.4396 131880 131,880F N kN    

 error - 131,88 131,85% 100% 0,023%
131,88


    

The error is under 0,025%. It is calculated as the theoretical force magnitude is equal to 
131,88 kN and 131,85 is the average value of the results run by the software. 

Based on the given in fig. 17 graph it can be concluded that the magnitude of the force F


decreases slightly in the second half of the course motion. The tendency in madnitude 
decrease corresponds to the one observed during the pistons course forward. The 
difference in magnitude values is due to gravity impact and to the difference in the 
“working” area of the piston. 

6. CAE simulation of the operational movement of a hydraulic cylinder using 
the SW Motion environment 
6.1 Developing a SW motion scenario 

The SW Motion software enables performing a real time dynamic investigation on the 
phonomena in the hydraulic cylinder. The input data is predefined in our CAD model and 
SW Flow Simulation research. 

The objectives of this part of the research are: 

 to simulate the dynamic effects of the piston motion under predefined input data and 
various boundary conditions; 

 to calculate through a numerical experiment and to analyse the friction force arising 
between the inner surface of hydraulic cylinder and the double acting seal (DAS).  

At first a design scenario, including all facts, which influence the cylinder operation and the 
calculating steps is defined. The direction and the motion velocity are introduced. All 
necessary data is taken from performed SW Flow Simulation research. The intermediate 
values are calculated automatically through cubic interpolation.  

The second step is to define the contact conditions between the inner surface of the cylinder 
and the outer surface of the DAS. Here the characteristics of the materials are input. A 
greasy environment is chosen. Based on user’s choice, the program itself calculates 
coefficients of static and kinetic friction between the materials.  

During the third step a time dependent calculating intervals are input. After starting the 
“Solve” procedure, all kinematic and dynamic parameters of the motion are automatically 
calculated. During this last step all results selected by the user are systematized to enable 
easier analysis. 

It is necessary to add some additional explanations about the second and the third steps of 
the model development. 
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The materials which form the seal (fig. 18) are different, but they all belong to polyester 
elastomers’group. Elastomers are polymeric materials that can be subjected to reversible 
high-elasticity deformations in extreme operating conditions. They possess an extreme 
abrasion and extrusion resistance. Most often the piston seals are made of Turcon materials 
or Zurcon polyurethane. In our case, the material of the whole seal is defined as “Greasy”, 
i.e. working in viscous environment. Thus, the coefficients of static and kinetic friction ( s  

and k ) are automatically found by the software. 

 
                     position 1                   position 2                             legend 
Fig. 18. Double acting seal 

Real time interval of the simulation for forward motion of PRK is equal to 3,325s (see the 
previous item). The backward motion scenario developes analogically, but the process 
lasts 2,298s.  

6.2 Analysis of the results obtained through the developed SW Motion Scenario 

The motion of the piston is stored in visual file of the type *. avi, which is easily transferred 
from one working environment to another. Some snapshots of the forward and backward 
motion of PRK are given in fig. 19. 

In the final simulation stage the graphs of some studied parameter versus time are 
displayed. The software offers a lot of types of results, such as “Force”, “Displacement”, 
“Velocity”, “Acceleration”, “Momentum”, “Energy”, “Power”, etc. The most important for 
the investigation function is classified in “Force” group. It includes “Applied Force”, 
“Reaction Force”, “Reaction Momentum”, etc. The authors are interested in “Contact Force”, 
which tracks the magnitude of the friction force between the cylinder and the DAS (fig. 20) 
during the simulation. The friction force graph versus time is given in fig. 21. 

As the authors could not find any research on the topic of how the contact force between the 
cylinder and the DAS can be calculated, they have decided to verify the proposed 
methodology of calculating the friction force as follows: there are some measurements made 
by the producer “HES” PLC, Jambol of the pulling/pushing force on the piston in hydraulic 
cylinder of that size and construction. The contact force, arisen during PRK motion due to its 
dead weight, varied in-between 20-30N. The simulated force varied in the range of 22-28N 
(see fig. 21). The time duration of rod piston course has been chosen to be the same as if the 
hydraulic cylinder is filling with a fluid of a pressure of 30MPa. 
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PRK forward motion   PRK backward motion 

Fig. 19. Some snapshots of the motion of the piston rod kit 

 
Fig. 20. The surfaces between which the friction force is tracked 

   
Friction force during forward PRK motion      Friction force during backward PRK motion 
Fig. 21. Graph of the friction force during the motion of the piston rod kit 

7. Conclusions 
The developed integrated technology of CAD modeling and CAE analysis of a basic 
hydraulic cylinder is a part of the long-lasting strategy of company “HES” PLC, Jambol for 
increase of quality and production control, for bettering of the working environment, etc. 
Among the basic objectives of this strategy are: 

 Improvement of the productivity of three-dimensional modeling of hydraulic cylinders 
as a result of the established structural scheme and easier and quicker design of 
hydraulic cylinders’ particular elements. 

 Development of reliability and overall structural and technological optimizing 
procedures of the designed hydraulic cylinders, supported by integrated technology for 
CAE analysis of the fluid flows through FVM. 
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CAE analysis of the fluid flows through FVM. 



 
Finite Volume Method – Powerful Means of Engineering Design 370 

 Increase of quality and control of the produced products, throughout the use of 
competitive technology targeting stronger integration of CAD/CAE/CAM systems for 
product design. 

All these stages result in a new working environment, which provokes designers’ creativity, 
optimises technology, increases the competitiveness of the company and finally, strengthens 
its positions on the market of hydraulic cylinders. 
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