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Preface

Optical fiber refers to technology associated with the transmission of information as
light pulses along a glass or plastic strand or fiber. Optical fiber carries much more
information than conventional copper wire. It's immune to electromagnetic
interference and is cheaper. From the early experiments by John Tyndall in the guided
transmission light, through the development of light-emitting diodes and lasers and
the emergence of dense wavelength-division multiplexing (DWDM), the applications
for optical fiber have increased. Today, optical fiber technologies permeate a variety of
industries. For instance, delivering high-definition broadcast (HDTV) at high
resolutions has become possible through the deployment of fiber-to-the-home (FTTH)
networks. This new book reviews current researches on optical fiber including
nonlinear effects and polarization related issues in optical fibers, photonic crystal
fibers (PCFs) as well as other characteristics.

This book is divided into four sections. The first section (chapters 1 to 5) discusses the
nonlinear effects in optical fibers which has become an area of academic research and
of great importance in the optical fiber based systems. In optical communication
systems, the term nonlinearity refers to the dependence of the system on the power of
the optical beams being launched into the fiber cable. The nonlinearities in optical
fibers are due to the third order susceptibility (X°) according to the Schrodinger
equation. The real part of the equation describes self-phase modulation (SPM), cross-
phase modulation (XPM) and four-wave mixing (FWM) while the imaginary part of
the equation describes stimulated Brillouin scattering (SBS) and stimulated Raman
scattering (SRS). Chapter 1 discusses the modeling tools based on a multimode
generalized nonlinear Schrodinger equation, its simplification to experimentally
relevant situations and a few selected applications. Chapter 2 reviews the physics of
spontaneous nonlinear scattering processes in optical fibers. The variable-coefficient
higher order nonlinear Schrodinger equation is investigated in Chapter 3. This
equation describes the wave propagation in a nonlinear fiber medium with higher
order effects such as third order dispersion, self-steepening and SRS. Chapter 4
describes the nonlinear effect applications in supercontinuum generation using a
continuous wave (CW) pump source. Compared to the pulsed source, average powers
available for the CW pump are stronger and thus increase the spectral power of the
supercontinuum source. The dynamic of the supercontinuum generation is
considerably different in this case and, thus, intensive numerical studies to optimize
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the fiber parameters are presented in this chapter. Recently, on the other hand,
researchers found ways to realize slow light operating in room temperature, and solid-
state materials via various techniques such as SBS, coherent population oscillations
(CPO), and tunable time delays based on group velocity dispersion or
conversion/dispersion. In Chapter 5 we describe some of the physical mechanisms that
can be used to induce slow and fast light effects in room-temperature solids and some
of the exotic propagation effects that can be observed.

The second section comprises three chapters discussing polarization losses in optical
fibers, optical fiber birefringence effects and spun fibers. Chapter 6 provides details of
polarization mode dispersion (PMD), chromatic dispersion and polarization
dependent loss. Chapter 7 presents the basic effects, which lead to the occurrence of
linear and circular birefringence in single-mode fibers. Chapter 8 discusses the theory
and characterization of spun fibers which are used for compensation of PMD.

The third section consists of 5 chapters which cover some selected topics on PCF
researches. The use of PCF is associated with their unique chromatic dispersion
properties and nonlinear behavior, making them suitable for dispersion compensation
or zero-dispersion propagation. A systematic study of dispersion properties in PCFs is
presented in Chapter 9. Chapter 10 elaborates on PCF loop mirrors and their
applications in several optical devices and sensors. Chapter 11 reports on a broadband
super-continuum light generated using a highly nonlinear PCF in conjunction with
high power picoseconds pulses for applications in ultrahigh-resolution optical
coherence tomography (OCT) system for ophthalmology, dermatology and dental
imaging. Chapter 12 explains the behavior of optical fiber on the basis of photonic
crystal. Chapter 13 proposes and demonstrates a new design concept for
microstructured fiber taper that can be produced on a traditional optical fiber draw
tower with multi-pressure control.

The final section presents current research on new applications for optical fibers. This
section consists of seven chapters. Chapter 14 discusses the fabrication of long period
gratings (LPGs) in new generation fibers such as D-shaped fibers and PCFs as well as
the novel application fields offered by the hosting fiber. Chapter 15 discusses the
propagation of vortex multimode laser beams in an optical fiber for applications in
mode division multiplexing and multimode self-imaging. Chapter 16 explains the use
of optical fibers and some limitations in two exoplanet detection methods: nulling
interferometry and the radial velocity method. Chapter 17 reviews the published
work, covering the transfer of low frequency and time, and the necessary techniques
for accurate optical frequency transmission. Chapter 18 presents the current
applications of the fiber-optic chip platform including spectro-electro-chemical
measurements, fluorescence detection of a bioassay, a broadband fiber optic light
source, and Raman interrogation of molecular adsorbates. Chapter 19 discusses a
theoretical framework of optical fibers in phase space. This chapter is intended to give
a brief review of the phase-space analysis applied to fiber optics, stressing the use of
the Wigner distribution function (WDF). Chapter 20 discusses the effect of y-ray
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radiation on commercial optical fibers. Two different dose and dose rate y-ray pulses
are employed to irradiate four kinds of optical fibers and radiation-induced losses are
measured by using five lasers with different wavelengths as carriers.
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Nonlinear Effects in Optical Fibers






Multimode Nonlinear Fibre Optics:
Theory and Applications

Peter Horak and Francesco Poletti
University of Southampton
United Kingdom

1. Introduction

Optical fibres have been developed as an ideal medium for the delivery of optical pulses
ever since their inception (Kao & Hockham, 1966). Much of that development has been
focused on the transmission of low-energy pulses for communication purposes and thus
fibres have been optimised for singlemode guidance with minimum propagation losses only
limited by the intrinsic material absorption of silica glass of about 0.2dB/km in the near
infrared part of the spectrum (Miya et al., 1979). The corresponding increase in accessible
transmission length simultaneously started the interest in nonlinear fibre optics, for example
with early work on the stimulated Raman effect (Stolen et al., 1972) and on optical solitons
(Hasegawa & Tappert, 1973). Since the advent of fibre amplifiers (Mears et al., 1987), available
fibre-coupled laser powers have been increasing dramatically and, in particular, fibre lasers
now exceed kW levels in continuous wave (cw) operation (Jeong et al., 2004) and MW peak
powers for pulses (Galvanauskas et al., 2007) in all-fibre systems. These developments are
pushing the limits of current fibre technology, demanding fibres with larger mode areas and
higher damage threshold. However, it is increasingly difficult to meet these requirements with
fibres supporting one single optical mode and therefore often multiple modes are guided.
Non-fibre-based laser systems are capable of delivering even larger peak powers, for example
commercial Ti:sapphire fs lasers now reach the GW regime. Such extreme powers cannot
be transmitted in conventional glass fibres at all without destroying them (Gaeta, 2000), but
there is a range of applications for such pulses coupled into hollow-core capillaries, such
as pulse compression (Sartania et al., 1997) and high-harmonic generation (Rundquist et al.,
1998). For typical experimental parameters, these capillaries act as optical waveguides for a
large number of spatial modes and modal interactions contribute significantly to the system
dynamics.

In order to design ever more efficient fibre lasers, to optimise pulse delivery and to
control nonlinear applications in the high power regime, a thorough understanding of pulse
propagation and nonlinear interactions in multimode fibres and waveguides is required.
The conventional tools for modelling and investigating such systems are based on beam
propagation methods (Okamoto, 2006). However, these are numerically expensive and
provide little insight into the dependence of fundamental nonlinear processes on specific fibre
properties, e.g., on transverse mode functions, dispersion and nonlinear mode coupling. For
such an interpretation a multimode equivalent of the nonlinear Schrédinger equation, the
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standard and highly accurate method for describing singlemode nonlinear pulse propagation
(Agrawal, 2001; Blow & Wood, 1989), is desirable.

In this chapter, we discuss the basics of such a multimode generalised nonlinear Schrédinger
equation (Poletti & Horak, 2008), its simplification to experimentally relevant situations and
a few select applications. We start by introducing and discussing the theoretical framework
for fibres with x(3) nonlinearity in Sec. 2. The following sections are devoted to multimode
nonlinear applications, presented in the order of increasing laser peak powers. A sample
application in the multi-kW regime is supercontinuum generation, discussed in Sec. 3. Here
we demonstrate how fibre mode symmetries and launching conditions affect intermodal
power transfer and spectral broadening. For peak powers in the MW regime, self-focusing
effects become significant and lead to strong mode coupling. The spatio-temporal evolution
of pulses in this limit is the topic of Sec. 4. Finally, at GW peak power levels, optical pulses
can only be delivered by propagation in gases. Still, intensities become so high that nonlinear
effects related to ionisation must be taken into account. An extension of the multimode theory
to include these extreme high power effects is presented in Sec. 5 and the significance of mode
interaction is demonstrated by numerical examples pertaining to a recent experiment. Finally,
we end this chapter with conclusions in Sec. 6.

2. The multimode generalised nonlinear Schrédinger equation

Pulse propagation in singlemode fibres is frequently modelled by a generalised nonlinear
Schrodinger equation (NLSE) which describes the evolution of the electric field amplitude
envelope of an optical pulse as it propagates along the fibre (Agrawal, 2001; Blow & Wood,
1989). This framework has been extremely successful in incorporating all linear and nonlinear
effects usually encountered in fibres, such as second and higher order dispersion, Kerr and
Raman nonlinearities and self-steepening, and its predictions have been corroborated by
numerous experiments using conventional fibres, photonic crystal fibres and fibre tapers of
different materials, as well as laser sources from the continuous wave regime down to few
cycle pulses. Perhaps the most prominent application of the NLSE is in the description
of supercontinuum generation where all the linear and nonlinear dispersion effects come
together to induce spectacular spectral broadening of light, often over very short propagation
distances (Dudley et al., 2006).

For very high power applications, as motivated above, a further extension of the NLSE is
required to deal with the multimode aspects of large-mode area fibres. A very general
multimode framework has been presented recently allowing for arbitrary mode numbers,
polarisations, tight mode confinements and ultrashort pulses (Poletti & Horak, 2008). Here
we describe a slightly simplified version that is more easily tractable and still is applicable to
many realistic situations, e.g., for the description of high power applications as discussed in
the later sections.

We start by considering a laser pulse propagating in a multimode fibre. The pulse can be

written as the product of a carrier wave exp]i( ,B(()O)z — wot)], where wy is the carrier angular

frequency and /3(()0) is its propagation constant in the fundamental fibre mode, and an envelope
function E(x, t) in space and time. Note that throughout this chapter we adopt the notation
that vectorial quantities are written in bold face and x = (x, y, z). For convenience, we assume
E(x, t) to be complex-valued, so that it includes the envelope phase as well as the amplitude,
and we consider the pulse evolution in a reference frame moving with the group velocity of
the fundamental mode, so that in the absence of dispersion a pulse would stay centred at time
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t = 0 throughout its propagation. Finally, we use units such that |E(x, t)|? is the field intensity
in W/m?. The envelope function can then be expanded into a superposition of individual
modes p = 0,1,2, ..., each represented by a discrete transverse fibre mode profile F,(x,y) and
amodal envelope Ay(z,t), as

Fy(x,y)
Ap(z,1). (1)
; [[ dxdy|F,|? ]1/2 :

Note that |Ap(z,t)|? gives the instantaneous power propagating in mode p in units of W,
and that a simplified normalisation has been used compared to a more rigorous previous
formulation (Poletti & Horak, 2008). The accuracy of this approximation improves as the fibre
core size is increased and the core-cladding index contrast is decreased, leading to guided
modes with an increasingly negligible longitudinal component of polarisation.

The multimode generalised nonlinear Schrodinger equation (MM-NLSE) is then given by the
following set of coupled equations to describe the dynamics of the mode envelopes,

0Ap
—F =D{A
0z {p}

Mow d . *
+i 2(: - <1+ w_ﬁ) lz {(1 = fR)S i AtAm Ay, + fRS iy Al * (AmA")]}' ®
mn

The following approximations have been applied here: (i) we have assumed that the Raman
response and the pulse envelope functions vary slowly on the time scale of a single cycle of
the carrier wave, so that we can neglect a rapidly oscillating term, and (ii) an additional term
related to the frequency dependence of the mode functions has been omitted, assuming the

variation of SII;Z’E . i slow compared to the 1/wy self-steepening term. In Eq. (2),

JdA
D{Ay) = (A — RBP4y — (B — RO AT 41 5 B (i) 4 ©

n>2

yields the effects of dispersion of mode p with coefficients /3,(1’7 Y BP) /ow". Here we
allow for complex values of the modal propagation constants () where the imaginary part
describes mode and wavelength dependent losses; R[..] denotes the real part only. The second
line of (2) represents the effects of optical nonlinearity with a nonlinear refractive index n,.
The term « d/9t describes self-steepening and the two terms within the sum describe Kerr
and Raman nonlinearities. The Raman term contributes with a fraction fr to the overall
nonlinearity (fg = 0.18 for silica glass fibres) and contains the Raman mode overlap factors

J dxdy [F, - F][F, - F;]
dedy|Fp\2fdxdy|Fl|2fdxdy|Fm|2fclxdy|Fn|2]l/2

R —
Splmn -

)

as well as a convolution of the time dependent Raman response function /(t) with two mode
amplitudes

[hx (AmA)](z,t) = /dTh(T)Am(z,t —T)A(z,t —T). (5)
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The mode overlap factors responsible for the instantaneous Kerr effect are given by

o 2 1 Jdxy [F; 53] [F )
plmn 3 plmn 3 [ded]/|Fp|2 fdxdy|Fl|2fdxdy|Fm|2dedy|F”|2}1/2

Numerically, the mode functions of all the modes involved in the nonlinear effects under
consideration are first evaluated at wy and a table of overlap integrals is calculated. The
number of modes and overlap integrals can be greatly reduced based on mode symmetry
arguments (Poletti & Horak, 2008); all the applications discussed in the following will employ
such reduced sets of modes. Next, the dispersion curves for these modes are calculated.
Finally, the system of equations (2) is integrated numerically using a standard symmetrised
split-step Fourier method (Agrawal, 2001), where adaptive step size control is implemented by
propagating the nonlinear operator using a Runge-Kutta-Fehlberg method (Press et al., 2006).
In order to avoid numerical artifacts, we also found it necessary to further limit the maximum
step size to a fraction of the shortest beat length between all the modes considered. The
accuracy and convergence of the results is further checked by running multiple simulations
with increasingly small longitudinal step sizes.

The framework presented above still allows for modes of arbitrary polarisation. In most
practical situations, however, one is interested in a subset of modes representing only a
specific polarisation state which is determined by the pump laser. The two most common
cases are briefly discussed in the following.

2.1 Circular polarisation

Under the weak guiding condition, modes fall into groups of LPy;, modes containing either
two (m = 0) or four (m > 0) degenerate modes. Within each group, the modes can be
combined into modes that are either ¢y or ¢ circularly polarised at every point in the fibre. If
the light launched into the fibre is, for example, o polarised, the form of the overlap integrals
(4) and (6) guarantees that no light is coupled into the ¢_ polarised modes during propagation
and those modes can therefore be eliminated entirely from the model. It is worth emphasising
that this is an exact result within the weak guiding limit. Using the properties of circular
polarisation vectors, the overlap integrals are then simplified to

SRI _ [ dxdy F,FF,Fy
P [fdxdyF%fdxdyPlzfdxdyF,%fdxdyF,%]l/z
oK _ 26r @)

plmn 3 “plmns

where the mode functions have been written as F, = e F, for ¢} polarised modes with
real-valued scalar mode functions F,.

2.2 Linear polarisation

The situation is slightly more complicated in the case of linearly polarised pump light. In
this case, nonlinear coupling between orthogonal polarisation modes is in principle allowed,
leading to, for example, birefringent phase matching and vector modulation instability
(Agrawal, 2001; Dupriez et al., 2007). However, for many practical situations where modes
can be described as LPy;;; modes, if linearly polarised light is launched into the fibre, nonlinear
coupling to orthogonal polarisation states is effectively so small that most of the pulse energy
remains in its original polarisation throughout the entire pulse propagation. This allows
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halving the number of modes to be considered in the model with significant computational
advantage, and a simpler definition of the overlap factors (4) and (6). There are several
important practical situations where this approximation can be acceptable:

(i) For degenerate modes (no birefringence), the overlap factor (6) for four-wave mixing
(FWM) between modes of parallel polarisation is three times larger than that for orthogonal
polarisation. Since the dispersion properties, and therefore the phase matching conditions,
are the same, nonlinear gain is much higher for the same polarisation and thus will dominate
the dynamics.

(if) For few-moded fibres power transfer to orthogonal modes by FWM can be negligible
if either the phase matching condition cannot be fulfilled at all, or if the phase matching
condition is achieved only for widely separated wavelength bands where the difference in
group velocities limits the effective interaction length due to walk-off effects.

In these situations one can therefore use an approximate theoretical description of pulse
propagation by restricting the MM-NLSE to the LPy;;; modes of the fibre with the same linear
polarisation everywhere. Assuming real-valued x-polarised mode functions F, = eyF, the
overlap integrals then reduce to

J dxdy FyFFyFy
[[dxdy F} [dxdy F? [dxdy Fj [ dxdy F3

SNmn = Shimm =

plmn plmn

7 ®

A further simplification is also sometimes possible. If linearly polarised light is predominantly
launched in an LPy, mode, power transfer into LP;;; modes with m > 0 can only be initiated
by spontaneous FWM processes. By contrast, other LPy,, modes of the same polarisation can
be excited by stimulated processes, see Sec. 3.1. Thus, if the dominant processes within the
pulse propagation are stimulated ones, e.g., in the regime of high powers and relatively short
propagation distances, the study can be effectively restricted to LPy, modes with the same
polarisation.

3. Supercontinuum generation in multimode fibres

One of the first applications where the MM-NLSE presented in the previous section can
provide deep insights is that of supercontinuum (SC) generation in multimode fibres. As
already mentioned, the complex dynamic underlying SC generation in singlemode fibres is by
now well understood. Octave spanning SC in suitably designed fibres arises as a combination
of various nonlinear phenomena, including soliton compression and fission, modulation
instability, parametric processes, intrapulse Raman scattering, self phase modulation (SPM)
and cross phase modulation (XPM) (Dudley et al., 2006). As the fibre diameter is increased
though, as required for example to increase the SC power spectral density without destroying
the fibre, the fibre starts to support multiple modes. Previous theoretical models were
usually restricted to two polarisation modes of a birefringent fibre (Agrawal, 2001; Coen et al.,
2002; Lehtonen et al., 2003; Martins et al., 2007) or included a maximum of two spatially
distinct modes (Dudley et al., 2002; Lesvigne et al., 2007; Tonello et al., 2006). Using the full
MM-NLSE, however, fibres with arbitrary modal contents can be studied, for which a rich
new list of intermodal nonlinear phenomena emerges, causing the transfer of nonlinear phase
and/or power between selected combinations of modes (Poletti & Horak, 2009).

In this section, using simulations of a specific few-moded fibre as an illustrative example, we
will discuss how modal symmetries and launch conditions can have a drastic influence on
intermodal power transfer dynamics. For pump peak powers in the range of tens to hundreds
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of kW, if the nonlinear length of the pump pulses is shorter than the walk-off length between
the modes involved, significant power transfer into high-order modes with the appropriate
symmetry can occur, which can be beneficial, for example, to further extend the SC spectrum
to shorter wavelengths. Even if conditions for significant intermodal power transfer are not
met, it is found that intermodal XPM can still play a significant role in the SC dynamics by
broadening the spectrum of modes which would not otherwise present a significant spectral
broadening if pumped on their own.

600
M7 M5
400 M3
200 M2
M1

D (ps/nm/km)

/2 "Jéiii 777777

N
o
o

200 800 1200 1600 2000
Wavelength (nm)

Fig. 1. GVD curves and transverse mode functions, calculated at 850nm, of the 7 circularly
polarised modes guided in a HF with A =2.7um and d = 2.5um .

To discuss the intermodal nonlinear dynamics leading to SC generation we focus on a
moderately multimoded holey fibre (HF) consisting of two rings of large circular air holes with
pitch A = 2.7um and relative hole size d/A = 0.93, surrounding a solid core with a diameter
of a few optical wavelengths (D = 2A —d = 2.9um ), see Fig. 1. From 400nm to 2000nm the
fibre supports 14 modes with effective areas ranging between 3.6 and 6.1um?. To reduce the
computational time it is possible to combine these modes into 7 pairs of circularly polarised
modes and to exploit the forbidden power exchange between modes with opposite circular
polarisation (see Sec. 2.1), only to focus on the 7 right-handed circularly polarised modes M1,
M2,..., M7 shown in Fig. 1. The group velocity dispersion (GVD) curves of these modes are
significantly different from each other, with a first zero dispersion wavelength (ZDW) ranging
from Ay = 550nm for M7 to Ay = 860nm for M1.

3.1 Effect of modal symmetries and launch conditions on intermodal power transfer

Equation (2) shows that the transfer of power between modes is mediated by FWM terms of
the form S 51 i 1A Ay, with [, m # n. If only a single mode [ is initially excited with a narrow
spectral line, the strongest power transfer to mode p and therefore the first to be observed in
the nonlinear process is the one controlled by degenerate FWM terms of the form SI;I mAI1AIA
If both modes p and #n are initially empty, power transfer starts with a spontaneous FWM
process and is therefore slow. If one of the generated photons is however returned into
the pump [ by stimulated emission, the process becomes much faster and tends to dominate
the nonlinear dynamics in the limit of high-power pulse propagation over short distances.
Interestingly, these SI;” 1A1A1 AT processes produce automatic phase-locking of mode p to the
pump mode /, similarly to what happens in non-phase matched second and third harmonic
generation processes (Roppo et al., 2007). However, processes SI;”I require (i) that modes p

and / belong to the same symmetry class, and (ii) that they present a large overlap. For the HF
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under investigation these conditions are only fulfilled for the two LPg,, modes M1 and M6,
and therefore one would expect significant power transfer only between them.
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Fig. 2. Simulations of multimode nonlinear propagation in the HF of Fig. 1 after 7.5mm (top
row) and 30mm (bottom row), for a 100fs sech-shaped pump centred at 850nm. (a) Only M1
is excited and (b) both M1 and M2 are excited with a 50kW peak power pulse.

This expected behaviour is indeed confirmed by the numerical simulation shown in Fig. 2(a),
where a hyperbolic secant pump pulse with temporal profile A, (0,t) = /Py sech(t/Ty) with
To = 100fs (full width at half maximum 176fs) and centred at A, = 850nm is launched into
M1 only and propagated through 30mm of the HF. Here the pulse peak power P is set to
50kW, corresponding to a 10n] pulse and, for mode M1, to a soliton of order N = 166. As
one would expect from single mode SC theory (Dudley et al., 2006), besides SPM-induced
spectral broadening, such a high-N pulse develops sidebands which grow spontaneously
from noise, through an initial modulation instability (MI) process. The characteristic distance
of this phenomenon Lys; ~ 16Lyg = 16A/ (37‘[1125{(111P0) = 6.9mm correlates well with the
simulation results. As expected, of all the other 6 modes only M6 is significantly amplified
at wavelengths around Ap, and subsequently develops a wide spectral expansion and an
isolated peak at 360nm. Further analysis of spectrograms and phase matching conditions
indicates that this peak is a dispersive wave in M6, phase matched to a soliton in M1 and
slowly shifting to shorter wavelengths as the soliton red-shifts due to the effect of intrapulse
Raman nonlinearity. Under these launching conditions the study can thus be restricted to the
LPy,, modes of the fibre without loss of accuracy. Simulations also show that if either M2, M3,
M4, M5 or M7 are selectively launched, no power is transferred to any of the other modes,
and each of them evolves as in the single mode case.

When two or more modes contain a significant amount of power, they can all act as pumps
for weaker modes. Moreover, if these modes belong to different symmetry classes, additional
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FWM terms come into play, giving rise to a much richer phenomenology. As an example,
Fig. 2(b) shows what happens when both M1 and M2 are simultaneously excited with a
Py = 50kW sech pulse. This pulse corresponds to an N = 27 soliton for M2, due to its

much larger value of ‘Bg) at the pump wavelength. As a result, the SC generated in M2
has a more temporally coherent nature, as it originates from soliton compression and fission
mechanisms (the fission length Lgss = N - Ly is around 16mm). Due to a shorter ZDW than
M1, the final SC in M2 also extends to much shorter wavelengths than the one in M1 (400nm
versus 550nm, respectively), which can be one of the benefits of using multimode fibres for SC
generation. Moreover, in addition to M6, also M3 and M4 are amplified from noise, generating
a complex output spectrum, where the final relative magnitude of different modes is a strong
function of wavelength. This is reminiscent of early experimental results (Delmonte et al.,
2006; Price et al., 2003).

3.2 Non-phase matched permanent intermodal power transfer

To understand the complex dynamics of intermodal power transfer it is useful to refer to the
approximate analytical theory of cw pumped parametric processes, which neglects the effects
of GVD and pulse walk-off but still provides a valid reference (Stolen & Bjorkholm, 1982).
Within this framework, parametric gain leading to exponential signal amplification requires
the propagation constant mismatch AB 1, = B (w;) + B (wp) — ,B(”)(wp) — B (wy) to
be smaller than a few times the average inverse nonlinear length 1/Ln1. = 7Pp.
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Fig. 3. (a) Dynamic gain evolution for each individual mode when M1 and M2 are
simultaneously excited at launch as in Fig. 2(b), showing the oscillatory behaviour typical of
non-phase matched parametric processes. (b) Permanent power transfer to M4 despite the
lack of parametric phase matching due to walk-off between the pumps in M1 and M2 and
the signal in M4.

For multimode processes, an estimate of 7y can be obtained by averaging all the intermodal

nonlinearities ¥y, = %ngn which contribute to SPM and XPM between the relevant

modes. However, in most practical situations involving SC generation in highly nonlinear
multimode fibres, Ay, > 7P for all the relevant FWM processes considered. Thus,
no parametric gain is typically observed and each FWM term leads to an oscillatory power
exchange between modes, as shown by the dynamic gain curves of high order modes when
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only M1 and M2 are initially pumped, reported in Fig. 3(a). The oscillation periods are given
by the beat lengths L, ~ 27/|AB|. For example, for the process leading to amplification of
M6, ABg111 = 4.1-10° m~1, corresponding to a value of L, = 15.3um in agreement with the
simulation. For modes amplified by a cascade of intermodal FWM processes, such as M5 and
M7 in the example, the signature of multiple beating frequencies can be clearly observed.
Despite the non-phase matched nature of most FWM processes, simulations show that after
long enough propagation some power is permanently transferred into the weaker modes. This
is shown, for example, in Fig. 3(b) extending the propagation distance of M4 from 0.4mm to
4mm. A more detailed analysis excluding XPM and Raman effects found this behaviour to
be uniquely caused by the temporal walk-off between the pulses involved. The typical length
scale of this permanent power transfer is therefore of the order of the walk-off length of all the
pulses involved, given by L% = T0/|1/v£,p) - 1/7);‘7)\ = T0/|/3§p) - ﬁgq)| for modes p and g.
For the example in Fig. 3(b), L%Az, = 3mm, L%é, = 2.4mm and L% = 1.3mm, which correlate
well with the simulation.

In conclusion, nonlinear intermodal power transfer is governed by two length scales, a beat
length leading to fast initial power oscillations and a walk-off length leading to permanent
power transfer. In order to observe in practice intermodal nonlinear effects, the nonlinear
length of the pump pulses must be shorter than the walk-off length, i.e., high peak powers are
required. Otherwise, nominally multimode fibres can exhibit the same nonlinear behaviour
as singlemode ones. Scaling a fixed fibre structure to larger core sizes allows for larger power
throughput, but at the same time longer beat and walk-off lengths lead to much stronger mode
coupling, and significant amounts of power can be transferred into higher order modes. In
this case, as shown in Fig. 2, higher order modes may also serve to extend the SC spectral
extension to much shorter wavelengths.

3.3 Effect of intermodal cross phase modulation

Intermodal power transfer mediated by FWM terms, which can permanently exchange power
between modes even in the absence of proper phase matching, is not the only intermodal
nonlinear effect which can occur in a multimode fibre. Intermodal XPM can also play a role
in significantly broadening the spectrum of a mode which would not undergo a significant
spectral expansion if propagated on its own (Chaipiboonwong et al., 2007; Schreiber et al.,
2005).

To illustrate this phenomenon, we simulate the propagation of a pulse launched in M1 and /or
M2 at 725nm, where M1 is in the normal dispersion region and M2 is in the anomalous region.
In order to observe significant spectral expansion and intermodal effects within the distance
where the pulses are temporally overlapped, we increase the input power up to a value of
Py = 500kW, close to the estimated fibre damage threshold.

Figs. 4(a) and (b) show that when M1 is individually launched, only some SPM-based spectral
expansion is visible, whereas if only M2 is launched, a wide MI-based SC develops. On the
other hand, if the same input pulse is launched simultaneously in both modes as in Fig. 4(c),
a much wider output spectrum is developed also in M1. Under these operating conditions
the intermodal power transfer is negligible, as confirmed by nearly identical spectral results

obtained when all SI;Z mn and Sﬁ,mn coefficients responsible for intermodal FWM are set to

zero. Therefore, the increased spectral expansion in M1 must be generated by intermodal
XPM effects alone. This is indeed confirmed by the simulation in Fig. 4(d), showing that when
all intermodal XPM effects are artificially switched off, M1 and M2 produce a very similar
spectrum to that of their individual propagation.
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Fig. 4. Spectral output after 2mm propagation in the HF of Fig. 1 of a Ty = 100fs and

Py = 500kW sech pulse centred at 725nm and launched in: (a) M1 only (blue, solid line); (b)
M2 only (green, dashed-dot line); (c) both M1 and M2, and (d) both M1 and M2 when all
intermodal XPM coefficients are artificially set to zero. The input pulse is shown as a black
dotted line.

4. Self-focusing in optical fibres in a modal picture

For laser powers larger than discussed in the previous section and into the MW regime, the
nonlinear refractive index induced in the glass by the laser may become strong enough to
introduce significant spatial reshaping of the beam in the transverse direction. The refractive
index of a material is given by ng + 1,1, including both the linear, 1y, and nonlinear term,
ny, and where I is the position-dependent intensity of the laser. Thus, if the beam has a
Gaussian-like transverse profile and the optical Kerr nonlinearity #; is positive, as is the case
in most of the commonly used transparent materials, the induced nonlinear refractive index
is maximum at the centre of the beam and decreases towards the pulse edges. Therefore,
the induced index profile forms a focusing lens, acting back on the laser beam itself. This
effect is known as self-focusing and has been studied extensively in bulk materials for nearly
50 years (Askaryan, 1962; Chiao et al., 1964). For input powers P below a critical power P,
self-focusing is finally overcome by the beam divergence. In the case of P > P,,;;, however, the
pulse undergoes catastrophic collapse leading to permanent damage of the material (Gaeta,
2000). The critical power is given by

)LZ
7
47tngny

Pt =1.86 )
where the numerical factor slightly depends on the beam profile in a bulk material
(Fibich & Gaeta, 2000). Numerically, self-focusing in bulk media is most commonly modelled
by slowly-varying envelope models or, more accurately, by a nonlinear envelope equation
(NEE) describing the dynamics of the transverse beam profile ®(x, ) (Brabec & Krausz, 1997;
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Ranka & Gaeta, 1999),

. . -1 .
%cp = Duat{®} + 21% (1 + w%)%) vi¢+i% (1 + w%)%) ©20,  (10)
where Dy, {®} is a dispersion term similar to (3) describing the effect of material dispersion
and V2 is the transverse Laplace operator. The NEE incorporates many features similar
to the MM-NLSE (2), e.g., higher order dispersion, Kerr nonlinearity and self-steepening
terms. However, even in the presence of rotational symmetry, the envelope function @ is a
two-dimensional object (radial and temporal coordinate), in contrast to the MM-NLSE which
only uses a finite number of one-dimensional (temporal) envelope functions to describe the
same situation. If the number of modes is small, the MM-NLSE is thus computationally
significantly more efficient, both in terms of reduced memory requirements and faster
dynamics simulation.

It is now well established that the same process of self-focusing occurs in optical waveguides
and fibres and that the same power threshold for catastrophic collapse applies (Farrow et al.,
2006; Gaeta, 2000). However, for powers below P,,;; the observed light propagation behaviour
is qualitatively different from that observed in bulk media, since here the light is additionally
bound by total internal reflection at the core-cladding interface, which can lead to additional
spatial and temporal interference and dispersion effects, such as periodic oscillations of the
beam profile or catastrophic pulse collapse even when the launched peak power is below
the critical value. In this section we will discuss these effects within the framework of the
MM-NLSE, which leads to an easy understanding of fibre-based self-focusing within a modal
picture (Horak & Poletti, 2009; Milosevic et al., 2000). Such an interpretation is particularly
useful in the context of high-power fibre lasers, which now achieve peak powers close to the
critical power with pulse lengths approaching the nanosecond regime (Galvanauskas et al.,
2007).

4.1 Continuous wave limit
We start our discussion with the case of cw propagation, which in practice is also a good
approximation to the behaviour of long pulses (ps to ns regime) near the pulse peak, and use
the MM-NLSE restricted to the linearly polarised LPy, modes, as discussed in Sec. 2.2. The
MM-NLSE thus reduces to

oAy _
9z

. Ny,
i(By" — B)Ap +i"E0

Y. SpmnArAnA; (11)

I,m,n

with SI;l nn Siven by (8). Specifically, we assume propagation in a short piece of a step-index

fibre with a pure silica core of 40ym diameter and a refractive index step of 0.02 between
core and cladding. This fibre is similar to photonic crystal large-mode area fibres which
are commercially available, where the index step has been increased such that the fibre
supports eight LPy, modes. The zero-dispersion wavelength of this fibre is at 1.26um, and
we assume a pump laser operating at 1300nm wavelength. The critical power (9) for silica at
this wavelength is P.,;; = 5.9MW. Note that at this power level pulses up to approximately
100ps length can be transmitted through the fibre without fibre damage (Stuart et al., 1996).

Figure 5 shows the dynamics of light propagation along this fibre when cw light is launched
into the fundamental LPy; mode with a power of 0.7P.,;;=4.84MW. The curves in Fig. 5(a)
show the power |Ap|2 in the lowest order modes obtained by solving Eq. (11). Power
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Fig. 5. Propagation of cw laser light at 1.3um wavelength through a multimode silica
step-index fibre with 40um core diameter and core-cladding index difference of 0.02. The
launched power is 0.7P,,;;=4.84MW in the fundamental LPy; mode. (a) Power in the lowest
four fibre modes versus propagation distance. (b) 2D (transverse and longitudinal) spatial
intensity profile of the beam. (c) Dynamics of the transverse beam width (FWHM),
normalised to the width of the fundamental fibre mode.

from the fundamental mode is quickly transferred over sub-mm propagation distances into
higher order modes by FWM processes, most prominently by induced FWM involving three
pump photons as described by terms of the form aA,,/ 0z & iA%Ag, see Sec. 3.1. However,

because of the phase mismatch /Bép - '8(()0) between the fundamental mode and the higher
order modes the initial FWM gain is reversed after a certain propagation distance (about 1mm
for the chosen parameters) and power is coherently transferred back into the pump from the
higher order modes. This process is repeated subsequently leading to a periodic exchange of
power between modes. The phase mismatch increases for increasing mode order and thus the
maximum transferred power decreases.

In Fig. 5(b) we depict the corresponding 2D beam intensity |E(x,z)|* calculated by summing
the modal contributions (1), normalised to the maximum field |E(0,0)|? at the fibre input. The
field experiences significant periodic enhancement on the beam axis at positions where large
fractions of the total power propagate inside higher order LPy, modes. At these positions of
enhanced intensity, the full width at half maximum (FWHM) of the beam profile is strongly
reduced, as shown in Fig. 5(c). The intermodal FWM processes together with the modal
phase mismatch are therefore responsible for periodic beam self-focusing and defocusing
in a fibre. This complements the standard interpretation of self-focusing in a bulk medium
using Gaussian beam propagation, which describes the same phenomenon as focusing by
a Kerr-induced lensing effect, followed by beam divergence and subsequent total internal
reflection at the core-cladding interface. We finally note that a stationary solution can be
obtained for the cw MM-NLSE in which the modal amplitudes and phases are locked in
such a way that no oscillations occur. In the bulk interpretation this corresponds to the
situation where nonlinear focusing and diffraction are perfectly balanced, thereby generating
a stationary spatial soliton.

It may seem that this modal description of self-focusing is only possible in multimode fibres
but breaks down in singlemode fibres, for example in large-mode area photonic crystal fibres

| 2
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designed for endlessly single mode operation (Mortensen et al., 2003). However, in this case
the role of the higher order bound modes of a multimode fibre is taken over by the cladding
modes, and it is the FWM-induced power exchange between the guided mode of a singlemode
fibre and its cladding modes which provides a modal interpretation of self-focusing.
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Fig. 6. Minimum beam diameter during the first period of self-focusing oscillation under cw
pumping vs pump power for the same fibre parameters as in Fig. 5. The curves correspond
to MM-NLSE simulations involving the lowest 2, 3, 6 modes only, and all 8 LP;,, modes (from
top to bottom). The crosses indicate simulation results using the nonlinear envelope
equation.

Using only a finite number of modes in the simulation of the MM-NLSE necessarily limits
the transverse spatial resolution that can be achieved by this method. For example, the LPy,
mode function exhibits # maxima and # — 1 zeros along the radial direction within the fibre
core region. With simulations using n different modes one can therefore expect a maximum
resolution of the order of R/n where R is the core radius. Simulations with pump powers
approaching the critical power P, ;; will thus require a larger number of modes in order
to correctly describe the increasingly small minimum beam diameter. We investigate this
behaviour in Fig. 6. Here we show the minimum beam diameter achieved during the first
period of self-focusing and diffraction, i.e., at approximately Imm of propagation for the
parameters of Fig. 5, when the MM-NLSE is restricted to different numbers of modes. For
clarity, the beam diameter is normalised to the diameter of the launched beam (LPy; mode).
We observe that simulations with 2, 3, and 6 modes are accurate up to pump powers of
approximately 0.2P,;;, 0.4P,;;, and 0.8P.,;, respectively, compared to simulations involving
all 8 bound fibre modes of this sample fibre. For comparison, we also show the results of
the NEE beam propagation method (10). This confirms the accuracy of the MM-NLSE with 8
modes up to 0.95P,,;; corresponding to a nearly five-fold spatial compression of the beam.
For the simulations shown in Fig. 6 we used the same 4th-5th order Runge-Kutta integration
method with adaptive step size control (MATLAB R2010b by MathWorks, Inc.) for both
the MM-NLSE and the NEE. Each data point required approximately 0.9s of CPU time on a
standard desktop computer with the 8-mode MM-NLSE and <0.2s with 6 modes. In contrast,
the corresponding NEE simulations with 1024 radial grid points required 101s, that is, two to
three orders of magnitude slower than the MM-NLSE.
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4.2 Short pulse propagation

Next, we consider the propagation of short pulses in the regime of peak powers close to the
critical power, where in addition to transverse spatial effects the pulse may exhibit complex
temporal dynamics related to intermodal and intramodal dispersion, self-steepening and
nonlinear effects. As an example we consider sech-shaped pulses with a temporal FWHM of
100fs launched with a peak power of 0.8P.,;; into the fundamental mode of the multimode
fibre considered above. The pump wavelength is again set to 1.3ym. The simulations
discussed in the following used a 6-mode MM-NLSE with 2048 temporal grid points solved
with a split-step Fourier method (Poletti & Horak, 2008; 2009).
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Fig. 7. Propagation of a 100fs sech-shaped pulse with 0.8P,,;; peak power at 1.3ym
wavelength with the same fibre parameters as in Fig. 5 after (a) Imm and (b) 2mm of
propagation. The bottom part of the figure shows the overall temporal pulse profile (thick
solid line) as well as its contributions from the fundamental mode (thin solid), first (dashed)
and second (dash-dotted) higher order modes. The top part of the figure shows the spatial
FWHM beam diameter along the pulse, normalised to the FWHM of the fundamental mode.

The initial dynamics of the pulse propagation are shown in Fig. 7. After Imm of propagation,
Fig. 7(a), a significant amount of power has been transferred from the fundamental mode into
the higher order modes, leading to a transverse beam focusing to approximately 40% of the
input beam width. The transverse beam size depends on the pulse power and thus varies
along the pulse shape: the beam diameter is smallest near the temporal peak of the pulse, but
remains unchanged in the trailing and leading edges where the power is low. Propagating
further to 2mm, Fig. 7(b), most of the power has been converted back into the fundamental
mode, similar to the cw case of Fig. 5. However, the transfer is not complete and is not
uniform along the pulse. This is related to the walk-off of the higher order modes because of
intermodal dispersion as well as a slight dependence of the beam oscillation period on power.
Therefore, the spatial FWHM of the beam at 2mm propagation length is below that of the
fundamental mode in some parts of the pulse while it exceeds it in other parts.

Continuing the propagation of Fig. 7, the spatial beam variations persist, but the deviations
from a simple oscillation become more prominent. This is shown clearly in Fig. 8(a) in the
beam properties after 7mm of propagation. At this point the initial sech-shaped temporal
profile has steepened on the trailing edge and an ultrashort pulse peak is forming due to the
interference of the modal contributions. In particular, the first high order mode exhibits a
similar power level as the fundamental mode. Simultaneously, the beam diameter is strongly
reduced. At 7.4mm of propagation, Fig. 8(b), this peak has narrowed further and reaches
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Fig. 8. Continuation of the pulse propagation of Fig. 7 to (a) 7mm and (b) 7.4mm of fibre
length exhibiting simultaneous spatial and temporal collapse.

the critical power for catastrophic collapse while the beam diameter has reduced to 20%
of the fundamental mode. For even longer propagation lengths the simulations show the
pulse breaking up into many ultrashort high-intensity parts around this initial instability,
however the MM-NLSE with 6 modes becomes invalid at this point due to its limited spatial
and temporal resolution. Simulations with the MM-NLSE restricted to the fundamental
mode reveal only a very small amount of pulse reshaping due to self-steepening over this
propagation distance (a shift of the pulse peak by about 10fs) and exhibit none of the complex
dynamics seen in Fig. 8. We therefore conclude that the simultaneous spatial and temporal
collapse of the pulse observed here is a pure multimode effect, driven by FWM-based
power exchange together with modal dispersion and self-steepening, in agreement with
investigations based on beam propagation methods (Zharova et al., 2006).

5. Multimode effects in gas-filled waveguides

As discussed above, the peak power that can be transmitted in optical fibres is limited by the
critical power for self-focusing and catastrophic collapse to levels of a few MW. According to
Eq. (9), for a fixed laser wavelength P.,;; only depends on the material linear and nonlinear
refractive index. In general, the linear refractive index does not vary much across transparent
media, between 1 for vacuum and ~4 for some non-silica glasses (Price et al., 2007) and
semiconductors, whereas the nonlinear index 7, can span many orders of magnitude. A
common method for guiding extremely high power pulses is thus in hollow-core capillaries
or fibres, where most of the light propagates in a gas. For example, ny ~ 5 x 1072> m?/W in
air, compared to 2.5 x 1072 m? /W in silica glass, thus pushing P,,;; into the GW regime.
In contrast to solid-core fibres, gas-filled capillaries do not support strictly bound modes,
but all modes are intrinsically leaky with losses scaling proportional to A2/R3 where A is
the light wavelength and R is the radius of the capillary hole (Marcatili & Schmeltzer, 1964).
Hence, the capillary hole must be sufficiently large in order to allow for transmission of light
over long distances. For example, 800nm wavelength light propagating in the fundamental
LPy; mode of a silica glass capillary with a 75um radius hole experiences losses of ~3dB/m.
For such a large hole compared to the laser wavelength, the capillary is multimoded, and
this is the situation we will consider in the following. It should be noted, however, that
single-mode guidance in hollow-core fibres is in principle possible using bandgap effects in
photonic crystal fibres (Knight et al., 1998; Petrovich et al., 2008).
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Using fs pulses at 800nm wavelength from commercial Ti:sapphire laser systems it is possible
to reach peak powers large enough to observe nonlinear effects, and even self-focusing,
in gases. Capillary guidance is used in this context for several high-power applications.
One of these is pulse compression, where the nonlinearity of the gas in the capillary is
exploited to spectrally broaden a pulse by self-phase modulation, which allows the pulse to
be compressed after the capillary by purely dispersive means such as gratings or dispersive
mirrors (Sartania et al., 1997). For intensities above ~103W/cm?, the electric field of the
laser is large enough to start ionising the gaseous medium. The generated plasma exhibits
a negative refractive index, which can counteract the self-focusing effect of the neutral gas
and lead to pulse filamentation (Couairon & Mysyrowicz, 2007). In another application,
ionisation and recombination effects are used for high harmonic generation of XUV and soft
X-ray radiation, processes whose efficiencies can be enhanced significantly by phase matching
techniques in capillaries (Rundquist et al., 1998).

In the following we will therefore discuss how the MM-NLSE can be extended to include
these important effects and demonstrate a few sample effects related to the multimode nature
of hollow capillaries typically used for such high-power applications.

5.1 lonisation and plasma effects in the multimode nonlinear Schrédinger equation

The starting point for this derivation is the capability of high-intensity light to ionise the gas
inside the capillary. Two effects contribute to the ionisation: (i) direct multiphoton ionisation,
where several photons are absorbed simultaneously to eject one electron from its orbit, and
(ii) tunneling ionisation, where the electric field of the laser is so strong that it deforms the
electric potential of the nucleus and allows an electron to tunnel through the potential barrier.
Tunneling ionisation occurs at higher field strengths than multiphoton ionisation, and is the
dominant process for the effects we want to discuss here. The rate of tunneling ionisation W
can be calculated using Keldysh theory (Popov, 2004) as

3 * * 2
w2 |3 ~2 a2 15-2n _
W(x, t) = Wpk nCKIZ F(x,t) exp ( 3F(x,t)) , (12)

where x? = I,/ Iy is the ratio of the ionisation potential I, of the gas species over the ionisation
potential for hydrogen Iy; = 13.6eV, Wy = mee* /i = 413 x 10'0s~1, F(x, t) = E'(x, 1)/ (K°E,)
is the reduced electric field of the laser with E, = 5.14 x 1011V /m the atomic unit of field
intensity and E’(x, t) the real-valued electric field in units of V/m corresponding to E(x, t),
Eq. (1). The dimensionless parameters C,; and n* are specific for the gas and can be looked
up in tables (Popov, 2004). For the case of argon, which we will use as our example here, we
have I, = 15.76eV, C,; = 0.95, and n* = 0.929.

Given the modal amplitudes A,(z,t) we can calculate the electric field E(x,t) and thus the
ionisation rate W(x, t) at every point and time in the capillary. From this we obtain the fraction
of neutral atoms ry(x, t) and the fraction of ionised atoms 71 (x,t) = 1 — ro(x, ) by solving

aro (X, t)
ot

= —W(x, t)ro(x,t). (13)
The generated plasma modifies the refractive index of the gas to

n(xt) = 1/1— wpx b (14)

w?
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where the plasma frequency is given by

or1(x, t)e?

: 1
v (15)

wpr(x,t) =

Here p is the gas density and e and m, are the electron charge and mass, respectively. The
MM-NLSE thus aquires a new nonlinear term dA,(z,t)/9z « N, {Ap} with

(16)

L e

T wpar) 2 7

No{AY = — <1
Pl{ P} [fdxdy|Fp|2}l/2 wO

which includes a self-steepening correction term and the projection of the modified laser field
onto mode p via a spatial overlap integral.

In addition to the effect of the plasma induced refractive index, we also have to consider
the loss of energy from the propagating laser pulse due the ionisation process itself
(Courtois et al., 2001). In the modal decomposition, this leads to a nonlinear loss term in the
propagation of the mode envelope A, of the form

Fy(x,y)" - E(x,t) pro(x, t)W(x,t)I,
[f dxdy|F,l,|2]l/2 [E(x )2

Lo Ap} = —5 [ drdy 2

The full MM-NLSE in the presence of gas ionisation by tunneling in the strong-field limit thus
becomes (Chapman et al., 2010)

FE D{Ap} + N{Ap} + Np{Ap} + Lion{ Ap} (18)

where the individual terms are given by (2), (3), (16) and (17).

5.2 Ultrashort pulse propagation in capillaries

In the following we present simulation results of the extended MM-NLSE (18) for a specific
experimental situation (Froud et al., 2009). In particular, we consider a 7cm long capillary with
a 75um radius hole filled with argon at a pressure of 80mbar in the central 3cm of the capillary;
the Ar pressure tapers down over 2cm to Ombar at the input and output. Laser pulses of 40fs
length at 780nm wavelength are launched with a Gaussian waist of 40ym centred into the
capillary. For the simulations, 20 linearly polarised LPy, modes are considered, as discussed
in Sec. 2.2.

Results from two sets of simulations with different launched pulse energies, 0.5m] and 0.7m],
respectively, are presented in Fig. 9. The distribution of Ar™ ions in the capillary is shown
in Figs. 9(a) and (b). As expected, ionisation mainly occurs on axis where the laser intensity
is maximum. Moreover, because the transverse beam size of the launched laser pulses is not
ideally matched to the fundamental mode of the capillary, power is also coupled into the first
higher order mode, which leads to mode beating and thus to the periodic ionisation pattern
along the capillary length with a periodicity of ~2cm, observed most clearly at lower powers,
Fig. 9(a). At higher powers, the nonlinear ionisation processes become much stronger and a
spate of additional radial and longitudinal structures are found in the ionisation pattern, Fig.
9(b). In Fig. 9(c) the partial Ar" pressures of (a) and (b) are averaged over the transverse
cross section of the capillary. The distribution shown in this figure can be easily verified
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Fig. 9. Propagation of 40fs pulses at 780nm wavelength in a hollow-core capillary (length
7cm, hole radius 75um) filled with argon with partial ionisation. (a), (b) Partial pressure of
Ar™ ions (in dB of mbar) vs position z and radius r inside the capillary for launched pulse
energies of 0.5mJ and 0.7m], respectively. (c) Ar™ pressure averaged over the capillary cross
section vs z. (d) Corresponding integrated pulse energy vs z. The total gas pressure in the

capillary centre is 80mbar.

experimentally as it is proportional to the intensity of the Ar™ ion fluorescence observed at
488nm (Chapman et al., 2010; Froud et al., 2009). Finally, in Fig. 9(d) the pulse energy summed
over all modes is presented versus the propagation distance for these two simulations. The
effect of propagation losses due to ionisation, described by the term L;,,{Ap} in Eq. (17),
is clearly visible with strong losses associated with the peaks of large ionisation in Fig. 9(c).
Because of the highly nonlinear nature of tunneling ionisation, losses at slightly higher input
energies (0.7m] instead of 0.5m]) are several times larger.
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Fig. 10. Pulse spectra and modal contributions at the capillary output for launched pulse
energies in the range 0.3m] to 0.7m]. Other parameters as in Fig. 9.
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The spatial and temporal distribution of ions generated by the propagating laser pulse acts
back on the pulse through its (negative) refractive index, according to the term Np,{A,}
given in Eq. (16). Because of the strong localisation of the regions with high ionisation,
different capillary modes are affected differently resulting in strong intermodal scattering
and mode-specific spectral broadening, as is demonstrated in Fig. 10. At a relatively low
pulse energy of 0.3m] where ionisation is weak, a slight blue-shift of the spectral contribution
of the excited LPy mode is observed, but no higher order mode excitation. Increasing
the pulse energy to 0.5-0.7m], more and more light is scattered into higher order modes.
Moreover, the spectrum first develops a small peak at the long-wavelength side of the pump
(790-800nm) and then a very broad and high-intensity shoulder at short wavelengths. It is
interesting to note that these short wavelength parts of the spectrum are more pronounced in
the higher order modes LPy, and LPy3 of the capillary, in fact they contain more power than
the fundamental mode at these wavelengths for launched pulse energies above 0.6m]. This
finding has again been confirmed by experiments, where a strong position-dependence of the
spectrum was observed in the far field beyond the capillary (Chapman et al., 2010).

These selected results demonstrate clearly that mode interference and mode coupling, i.e.,
transverse spatial effects, play a significant role in the propagation of high-intensity laser
pulses in regimes where ionisation becomes important. This also impacts other applications
of such systems, for example the angular dependence of high harmonic generation as recently
observed in a capillary-based XUV source (Praeger et al., 2007).

6. Conclusions and outlook

To summarise, we presented an analysis of nonlinear effects of short laser pulses propagating
in multimode optical fibres. We developed a general theoretical framework which is based
on the modal decomposition of the propagating light and takes the form of a multimode
generalised nonlinear Schrédinger equation. This approach provides new insights into the
significance of fibre properties, e.g., modal dispersion and mode overlaps, for nonlinear
pulse propagation, and for moderately multimode fibres and waveguides it has been
shown to be numerically significantly more efficient than beam propagation methods. We
subsequently discussed several applications of the model covering laser peak powers in the
kW (supercontinuum generation), MW (self-focusing effects) and GW regime (ionisation and
plasma nonlinearities) highlighting the importance of multimode effects throughout.

While we focused our discussion here on the high-power regime, we emphasise that
there is also rapidly growing interest in the application of multimode fibres at low,
W-level peak powers. A fast emerging area of interest comes, for example, from optical
telecommunications, where in an attempt to increase the fibre capacity researchers are
now considering the use of several fibre modes, or several cores within a single fibre, as
independent channels. Intermodal nonlinear effects are expected to pose an ultimate limit
to the maximum information capacity of the link, which we believe could be estimated by
simulations using our model. Various sensing and imaging applications can also benefit
from multimode fibres. Moreover, new sources in the mid-IR spectral region are currently
being developed for spectroscopy and sensing applications that require novel waveguides
such as soft glass fibres or semiconductor-based waveguides and fibres, some of which
are intrinsically multimoded at near-IR pump wavelengths. We therefore expect that the
multimode nonlinear Schrédinger equation discussed in this work will provide a valuable
tool in the analysis and investigation of many future photonics applications.
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1. Introduction

When light travels in a optical fiber, a fraction of its total power is always scattered to other
wavelengths (or polarization) due to material non linearity. Whether that scattering is weak or
strong, desirable or not, depends on the situation. One distinguishes (i) scattering stimulated
by the presence of a seed wave (at another wavelength or polarization), (ii) spontaneous
scattering, and (iii) amplified spontaneous scattering. Stimulated Raman scattering (SRS),
stimulated Brillouin scattering (SBS) and four-wave mixing (FWM) are examples of stimulated
scatterings. Those have been thoroughly studied in the past thirty years and are well
summarized in classic nonlinear fiber optics textbooks, e.g. (Agrawal, 2007). Several chapters
of this book also deal with specific aspects and applications of stimulated scattering. The
present chapter focuses on spontaneous scattering processes, cases (ii) and (iii).

The chapter also concentrates on nonlinear scattering in silica fibers because nowadays those
are the most common and widely used types of fibers. Gas-filled hollow core fibers (Benabid
et al., 2005) and ion doped fibers (Digonnet, 2001) are not considered here, and it is assumed
that the fiber has not been subjected to poling (Bonfrate et al., 1999; Huy et al., 2007; Kazansky
et al., 1997), so that the main non linearity is of third order. In this context the most important
spontaneous nonlinear scattering processes are

1. the spontaneous Raman scattering (RS),
2. the spontaneous Brillouin scattering (BS), and
3. the spontaneous four-photon scattering (FPS).

These phenomena play an important role in many applications of optical fibers. This role can
be positive as in remote optical sensing (Alahbabi et al., 2005a;b; Dakin et al., 1985; Farahani &
Gogolla, 1999; Wait et al., 1997). It can also be detrimental as in fiber optics telecommunication,
where spontaneous nonlinear scattering processes contribute to decrease the signal-to-noise
ratio (SNR) or in supercontinuum generation, where it limits the coherence and stability of the
supercontinuum (Corwin et al., 2003; Dudley et al., 2006). In the emerging field of quantum
photonics, fiber optical photon-pair sources are intrinsically based on the physics of the FPS
(Amans et al., 2005; Brainis, 2009; Brainis et al., 2005), while at the same time RS is the main
factor that limits the SNR (Brainis et al., 2007; Dyer et al., 2008; Fan & Migdall, 2007; Lee et al.,
2006; Li et al., 2004; Lin et al., 2006; 2007; Rarity et al., 2005; Takesue, 2006).

This chapter reviews the physics of spontaneous nonlinear scattering processes in optical
fibers. In Sec. 2, the physical origin of RS, BS and FPS in explained. Because those are pure
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quantum mechanical effects, they cannot be properly described in the framework of classical
nonlinear optics. A quantum mechanical treatment is presented in Sec. 3. Finally, in Sec. 4, the
coupling between different scattering processes in considered.

2. Physics of nonlinear scattering processes in optical fibers

2.1 Raman scattering

Light at frequency w) traveling in an optical fiber, can excite the fiber molecules from ground
to excited vibrational states. In amorphous silica fiber, vibrational states have energy 7|Q)|
with |Q)]/(277) in the 0-40 THz range.These energies (about 0.05 eV) being much smaller than
the photon energy 7iw), no direct excitation of the vibrational states is possible. However, the
states can be excited through a second order Raman transition involving a second photon at
frequency ws and a virtual state as shown in Fig. 1. The spontaneous inelastic scattering that
converts a wp photon into a ws = w), — |Q}] photon and a vibrational excitation at frequency
| is call a spontaneous Stokes process. If a vibrational state at frequency |Q}| is initially
populated, the complementary process in which a w, photon is converted into a w, = wp +
|Q)| photon is also allowed and called a spontaneous anti-Stokes process, see Fig. 1.

A
Stokes anti-Stokes

Vibrational
continuum

Ground State

Fig. 1. Spontaneous Stokes and anti-Stokes processes in amorphous silica fibers

Molecular vibrations behave like waves (phonons). The momentum of these vibrational
waves corresponds to the momentum mismatch of the pump and (anti-)Stoke waves and
does not depend on |Q2|. For this reason, Raman scattering has no preferential direction. It
happens in the forward but also in the backward direction. The damping of a phonon wave
depends on the wave number and is stronger for shorter wavelength. In fibers the damping is
very strong because of the amorphous nature of silica. Therefore the molecular vibration can
to a good approximation be considered as local. Yet the small difference in the forward and
backward damping explains that the strengths of Raman scattering in forward and backward
directions is slightly different (Bloembergen & Shen, 1964).

In addition to the Stokes and anti-Stokes processes that convert pump photons to other
wavelengths, Raman scattering can also convert the Stokes and anti-Stokes photons at w; and
w, back to the pump mode through reverse Stokes and anti-Stokes scattering. In Sec. 3.1, both
direct and reverse scattering processes are taken into account to derive the basic equations
governing the net energy transfer from the pump to Stokes and anti-Stokes waves. For a
single monochromatic pump wave at w), the scattered spectral power density S(z, w) obeys
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the following propagation equation

& 5(ew) = [S(z.@)g(wp 0,0) + 52 [y 10]) +v(O)] [(wp, 00| Polz) ()

where () = w), — w (positive for a Stokes process and negative for an anti-Stokes ones), v(2)
is the Heaviside step function, and

(100 = Jexp (g ) 1] B e

is the thermal equilibrium expectation value of the number of vibrational excitations at
angular frequency |Q)|. The function g(wp,(),6) in Eq. (1) is the Raman gain. The Raman
gain measures the scattering strength and is polarization dependent. For a linearly polarized
pump field, the Raman gain is maximal for photon scattered with polarization parallel to the
pump and minimal for photons scattered with polarization orthogonal to the pump (Stolen,
1979):

g(wp, Q,0) = g (wp, Q) cos?(0) + g1 (wp, Q) sin®(9), (3)

where 6 is the angle between the linear polarization vectors of pump and scattered photons.
The parallel and orthogonal gains are g| (wp, Q2) and g (wp, Q2) are material properties that
can be measured experimentally. It can be shown (see Sec. 3.1) that the ratio of the Stokes to
anti-Stokes gain corresponding to the same vibrational mode |Q)] is

g(wp,0,0)  n(wp+|Q) (wp_|o|>3.

glwp, —0,0)  n(wp—[Q \wpy+]Q

)

Stokes and anti-Stokes gain have opposite signs: Stokes gain is positive while anti-Stokes gain
is negative.

2.1.1 Spontaneous scattering

With initial condition §(0,w) = 0, Vw # wp, Eq. (1) describes both spontaneous Raman
scattering and its subsequent amplification. In the initial propagation stage, the first term in
the square bracket can be neglected. This regime corresponds to pure spontaneous Raman
scattering. The solution of Eq. (1) is

S(L,w) = fieo

o [ (10]) +v(0)] [g(wp, 0,6)| Py L, 6

where L is the propagation length. The strength of the spontaneous Raman parallel and
orthogonal scattering is often measured by the parallel and orthogonal spontaneous Raman
coefficients
fiw

Ry, (@5, 0,T) = 52 min(0]) +v(0)] Ig) 1 (p, Q)] ©)
Spontaneous Raman scattering has been observed and measured in bulk glass (Hellwarth
et al., 1975; Stolen & Ippen, 1973) and in optical fibers (Stolen et al., 1984; Wardle, 1999).
In optical fiber, the polarization properties are usually more difficult to measure because
standard fibers do not preserve and even scramble polarization. For this reason, the effective
spontaneous Raman coefficient is often taken to be R = (R + R )/2.
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It is interesting to note that the ratio of Stoke to anti-Stokes spectral components only depend
on temperature:

)

S(Lwp—1Q)  n(w,+1Q]) [wp—Q\* Q|
S(L,wp + 1) n(wp—|0|< ) ( )

- wp + Q) kpT

This is the reason why spontaneous Raman scattering is used for temperature sensing
(Alahbabi et al., 2005a;b; Dakin et al., 1985; Farahani & Gogolla, 1999; Wait et al., 1997).

2.1.2 Amplified spontaneous scattering
According to Eq. (1), the spontaneous scattering regime ends as soon as S(z,w) becomes
significant compared to %‘T’ [mn(]Q]) +v(Q)]. At that point, the scattering becomes
stimulated and the system enters the amplification regime. From Eq. (5), one sees that the
amplification regime is reached when g(wp, 0,0) P, L =~ 1. For 8(0,w) = 0, the solution of
Eq. (1)is

S(L,0) = 52 [ (102) + (@) [e8er O P 1. ®)
Stokes radiation (3 > 0, ¢ > 0) is grows exponentially while anti-Stokes (0 > 0, ¢ < 0)
radiation saturates at S(L,w) = Z—‘;r’mth(|0|) When losses are taken into account, the gain
must overcome a threshold value to enter the amplification regime. Since the Raman gain is
frequency dependent, the amplification bandwidth depends on the input power. The effective
amplification threshold is usually considered to be reached when Stokes and pump intensity
have the same value at the output of the fiber (Agrawal, 2007; Smith, 1972).
By measuring the grows of the Stokes wave, one can deduced the Raman gain as a function of
frequency (Mahgerefteh et al., 1996; Stolen et al., 1984). Amplified spontaneous Stokes wave
plays an important role in Raman fiber amplifiers (Aoki, 1988; Mochizuki et al., 1986; Olsson
& Hegarty, 1986).
Fig. 2 shows the typical (forward) Raman gain g|(wp,(2) and the spontaneous Raman
coefficient R)|(wp,Q, T) in a silica fiber at A, = 1.5 pm. The parallel Raman gain has a
peak at Qr = 13.2 THz and a width of about 5 THz. The peak value varies for fiber to
fiber. A typical value is gg = 1.6 W~! km~!. The orthogonal gain g (wp, Q) is about 30
times smaller (Agrawal, 2007; Dougherty et al., 1995; Stolen, 1979). The parallel gain can
be fit using a 10-Lorentzian model, each Lorentzian having three independent parameters :
strength, central frequency, and width (Drummond & Corney, 2001). Note that spontaneous
anti-Stokes scattering can be eliminated by lowering the temperature, while the spontaneous
Stokes coefficient R is at least fiwp, / (277) x g

2.2 Brillouin scattering

Brillouin scattering is very similar to Raman scattering in the sense it couples two light modes
to material vibrations. However, in the contrast with Raman scattering which couples light to
molecular vibrations, Brillouin scattering couples light to vibration modes of the fiber itself,
that is sound waves. Therefore the vibrational frequencies involved in Brillouin scattering are
much lower: |Q)|/(27) is usually in the 10 GHz range. BS is also polarization dependent: as
long as the fiber can be considered as mechanically isotropic, their is no orthogonal BS, that is
g1 = 0 (Benedek & Fritsch, 1966; McElhenny et al., 2008; Stolen, 1979). The major difference
between Raman and Brillouin scattering lies in the dispersion relation of acoustics vibrations:

Q| =04 [kal, 9
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Fig. 2. (a) Raman gain g| in a silica fiber for A, = 1.5 pm and forward propagation. Peak

value: ggr = 1.6 W-1km™1. Peak position: Qg = 13.2 THz. (b) Spontaneous Raman
coefficient R for A, = 1.5 pm and forward propagation at T = 295 K and 77 K.

where v4 = 5.96 km/s in silica fibers and k 4 is the wave vector of the acoustic wave. Because
of momentum conservation, k4 is equal to the wave vector mismatch between pump and
(anti-)Stokes waves: k4 = kp — ks 4. Since the energy difference between pump, Stokes
and anti-Stokes waves is very small, [k,| ~ |ksq| and [ka[* ~ 2[k,|* [1 — cos(¢)] =
4|kp|?sin?(¢/2), where ¢ is the angle between ky, and ks 4. Eq. (9) yields

”(wp)
Ap

Q] =20, |ky sin(¢p/2) = 4w vy sin(¢/2). (10)
The maximum value of |Q)| occurs for backward propagation (¢ = 7), while for forward
propagation of (anti-)Stokes waves (¢ = 0), || = 0. Therefore, forward Brillouin scattering
is not observed. In the backward direction the Brillouin gain as a peak is at Qg /(27) = 11.1
GHz when A, = 1.55 um. The Brillouin gain has a Lorentzian spectrum

g8(I'5/2)?
(10| —Qp)? + (T'p/2)?

8| (wp, Q) = sign(Q) (11)
and its spectral width I'g/(27) is in the 10-100 MHz range. 1/I'p is the decay time of the
sound waves. The peak value gp is usually of the order of 1000 W~! km~!, one thousand
times higher than the Raman gain peak gr.

The Brillouin gain spectrum discussed so far corresponds to a plane acoustic wave
propagating along the fiber axis. Other smaller peaks may occur due to other acoustic modes,
the presence of dopants and their spatial distribution (Lee et al., 2005; Yeniay et al., 2002).
Guided acoustic wave can also produce narrow and very low frequency Brillouin shifts (50
kHz to 1 GHz) and can be even observed in the forward direction (Shelby et al., 1985a;b).
Despite the differences in the Raman and Brillouin gain functions, the underlying scattering
mechanism is the same. Therefore, the principle explained in Sec. 3.1 in the context of RS
also apply to BS. In particular spontaneous BS exhibits the same temperature dependence
as spontaneous RS. Spontaneous Brillouin scattering can be used for temperature sensing
(Alahbabi et al., 2005a;b; Pi et al., 2008; Wait et al., 1997).
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2.3 Four-photon scattering

The four-photon scattering process differs from the previous scattering processes in that it
involves four photons and no material vibration. Since a silica fiber is centro-symmetric,
it is the lowest order nonlinear scattering phenomenon that involves only photons in the
input and output channels. As shown in Fig. 3, a FPS process consists in the conversion

E Ordinary Degenerated

A FPS FPS R
Virtual state

Ground State

Fig. 3. Spontaneous four-photon scattering processes in silica fibers: ordinary and
degenerated case.

of two pump photons at frequencies wy; and w); into two other photons at frequencies ws
and w,. The photon of lower energy is called “Stokes”, the one of higher energy in called
“anti-Stokes” as in the RS and BS processes. The conversion process satisfies the energy and
moment conservation laws

Wyl + Wpp = Ws + Wy, (12)
kpl + kpZ = ks + kg. (13)

When w,1 = wpy the FPS process is said to degenerated and is by far the most studied
case, both experimentally and theoretically. FPS is a non resonant process. Therefore many
different resonances can contribute to it. In silica, the main contribution comes from electronic
resonances. Molecular vibrations contribute to a fraction fg = 18% of the FPS strength.

The spectrum of a spontaneous FPS process is usually very broadband. It is not limited by
resonance conditions (as RS) or losses (as BS), but merely by the phase matching conditions
(13). If a single mode fiber, the wave number of a optical wave has a linear part ky (w) =
n(w)w/c that depends on the effective index n(w) of the mode, and a nonlinear part kyp
that depends on the power carried by the wave itself (self-phase modulation) and the power
of the other waves propagation in the fiber (cross-phase modulation) (Agrawal, 2007). In a
spontaneous FPS problem, Stokes and anti-Stokes waves are so faint that their contribution to
self or cross-phase modulation is negligible. On the other hand, the pump wave modulates
its own phase as well as the phases of the Stokes and anti-Stokes waves. If a wave carries a
power P, self-phase modulation changes its own wave number by kyx; = P, where 7 is the
nonlinear coefficient of the fiber. At the same time, that wave modifies the wave number of
any other co-polarized wave by ky;, = 27P and any other orthogonally polarized wave by
knp = (2/3)9P, through the cross-phase modulation effect. For instance, for a degenerate
co-polarized FPS, the wave number mismatch is Ak = ks +k, — 2k, = (kps +29Pp) +
(kLo +2vPp) — 2(kLp + vPp) = Akp + 27Pp, where Py is the pump power. Using quantum
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perturbation theory (Brainis, 2009), it can be shown that the spectral density of power at Stokes
and anti-Stokes wavelengths is

hw y 2 . 2 Ak
S(L,ws) = S(L,wy) = T;T” (vPyL)” sinc <2L> (14)

in the case of degenerate co-polarized FPS. Equivalent formulas for non co-polarized
degenerate FPS processes can be found in (Brainis, 2009). Whatever the FPS process
(degenerated or not, co-polarized or not, ...), Stokes and anti-Stokes powers are always equal
because those photons are created in pairs and the spectrum always depends on the wave
number mismatch through the same sinc-function factor, see also Sec. 4.2.

It is important to note that the strength of a spontaneous FPS process scales as (PpL)z, while
the strength of spontaneous RS and BS scales as P,L. The spontaneous FPS spectrum is also
independent on temperature. Increasing the propagation length L not only increases the
amount of scattered photons, but also narrows the spectrum. In contrast, raising the pump
power increases scattering, but as little impact of the spectrum. Therefore, adjusting both
parameters, it is possible to set the spectral width of the Stokes and anti-Stokes waves as well
as their intensities. Because Stokes and anti-Stokes photons are created in pair, FPS as been
extensively studied in the context of photon-pair generation for quantum optics and quantum
information applications (Amans et al., 2005; Brainis, 2009; Brainis et al., 2005; 2007; Dyer et al.,
2008; Fan & Migdall, 2007; Lee et al., 2006; Li et al., 2004; Lin et al., 2006; 2007; Rarity et al.,
2005; Takesue, 2006).

When the scattered intensity becomes high enough (yP, 2 1), spontaneous scattering gets
amplified. In the case of the degenerate co-polarized FPS, the growth of Stokes and anti-Stokes
waves in the amplification regime in described by (Brainis, 2009; Dyer et al., 2008)

2

fvsa , (15)

sinh (g(ws,q)L)

2
P,L
T ) g(ws,a)L

S(L,ws) = S(L,w,) =

where g(wsq) = \/ (YPp)? — (Ak/2)? is the parametric gain function that appears in the

classical theory of four-wave mixing (Agrawal, 2007). Amplification only occurs at those
frequencies for which g(ws,) € R. Because such a condition is never satisfied in the

spontaneous regime (g(ws,q) B0 / Ak yPp), it strongly modifies the FPS spectrum when
amplification begins. It the amplified regime, the spectral width is determined by g(ws4)
rather by the propagation length. The peak value of the parametric gain gp is larger by 70%
that the Raman peak gain gg.

3. Quantum mechanical description of nonlinear scattering

Spontaneous scattering of light cannot be understood in the framework of classical nonlinear
optics. A proper description requires the quantum theory. There are two possible approaches.
The most elementary one consists in (i) applying quantum perturbation theory to calculate
the scattering of light by a single molecule in the first place, then (ii) extending the result
to continuous media. The drawback of this method is that it gives access the scattered power
density, but not to the field amplitudes. The second approach consists in using a quantum field
theory of propagation of light in the fiber that is based on an effective matter/light interaction
Hamiltonian.
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The “perturbation theory” approach is used in Sec. 3.1 to derive, from first principles, the
main formula of Sec. 2.1 for RS. Having identified the limitations of that method, the “field
theory method” will be presented in Sec. 3.2.

3.1 Perturbation theory of Raman scattering

The simplest way to model Stokes and anti-Stokes Raman scattering from a coherent pump
wave at wp consists in applying second order perturbation theory (Crosignani et al., 1980;
Wardle, 1999) to matter/light coupling described by the interaction Hamiltonian H = —d - E,
where

flx, hw . _ hw ; _
E(r,t) = 1f( y) [ 260112(7;;}0) ap elkl@p)z=wpl) o ¢ 4 regn?(@) aelkl@Wz—wh) o _p o
(16)
is the electric field operator associated to the light travelling in the fiber and d is the electronic
dipole moment operator of a scattering fiber molecule at position r. In Eq. (16), the field
as been reduced to a pump mode in a coherent state with amplitude a (treated as a strong
classical field) and a signal mode representing either the Stokes or anti-Stokes wave at
frequency w. The polarization of the pump and signal modes is defined by the unit vectors
ey and e. In Eq. (16), the quantity L is the quantization length, a formal parameter that will
disappear at the end of the calculation and f(x,y) is normalized so that [[ f?(x,y)dA = 1,
where the integration is over the entire fiber cross-section. This normalization is such that

hew (a'a) = P(w) and heop- ¢ Flap? = By, 17)

(wp)
with P, and P(w) the powers in the pump mode and the signal mode, respectively.
The vibration of a molecule can be decomposed in normal modes. Assuming that only one
normal mode is excited, the electronic dipole moment of the molecule can be written to first
order as

n(w)L

d=do+dQ, (18)

where Q is the normal mode coordinate of the vibration, dy the dipole moment around the

molecular equilibrium point and d’ = %

Consider the Stokes process first (w < wp). Assuming that the molecule starts in the electronic
ground state |¢) and the vibrational number state |m) and that the Stokes mode is in the Fock
state |n), the transition probability amplitude to the state |g,m + 1,1 + 1) after an interaction
time f can be calculated using second order perturbation theory (Wardle, 1999):

FAEY) ik(w) k(w2 wpw
QO t) =——= 1 1
c(Q,m,n,t) e P S ()2 () MO Vm+1vn+1a, ,
: ol(Qtw—wp)t _ 1 (19)
[ep]" - R-e Q+w-—w,p

where M and Q) are the effective mass and angular frequency of the molecular normal mode

of vibration, while R ~ 2Y, w%g (eld ® d' 4+ d’ @ d|g), where ® denotes the tensor product of

two vectors and the sum runs over all the electronic excited states of the scattering molecule
having Bohr frequencies w,q with respect to the ground state.
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Around each point r, the material medium is made of many molecules and each molecule has
several normal modes of vibration. Since all the molecules are at thermal equilibrium, their
vibration have no locked phase relationship. The local field is thus simultaneously coupled to
a large thermal reservoir of independent vibration modes and the contribution c(Q, m, 1, t) of
each of them to the overall scattering probability can be added incoherently. Writing p(Q)) the
number of vibration modes in the volume dV centered on r with a frequency in the interval
[, Y+ dO)] and and taking the thermal average of the number of excitations in a vibration
mode (), the Stokes scattering rate from the point r (integrated over all the possible vibration
modes frequencies Q) is found to be

av , TTwpw o(1Qf){(e} - R-e)?) >
S(mr) = — Q) +1 1 20
) = G P gz s A (9D + 1 Dl 0
where () is not an independent variable anymore but is now defined as Q) = w, — w,

and my,(|Q)]) — given by Eq. (2) - is the Bose-Einstein expectation value of the number of
vibrational excitations. The average <(e;§ -R - e)?) is taken over arbitrary molecular orientation

in amorphous silica. Therefore the quantity <(e; -R-e)?) only depends on the angle 0 between
e, and e. As a result, one can write

p(|Q)((ef - R-e)?)
M|Q]

= K| (1Q]) cos?(6) + K (|2]) sin®(6) = K(|2] 6), (21)

where K| (|Q]) and K, (|Q}f) are material characteristics that can be determined
experimentally!. The total scattering rate from w, to w due to the Stokes process in a fiber
segment dz is obtained by integration S(#, r) over the fiber cross-section. As a consequence,
Twpw
z
4nein? (wp)n?(w) AegeL?

Sps(n) =d (1, 8) (ma(1Q) +1) (n+1) lap?,  (22)

where Aeg = 1/ ([ f*(x,y)dA) is the effective area of the fiber (Agrawal, 2007).

The scattering rate for the anti-Stokes process (w > wp) can be computed according to the
same lines: the rate is the same as in Eq. (22) with the exception that (my, (|Q}]) + 1) is replaced
by my, (]Q}]) since an vibrational excitation is destroyed in that process:

nwpw

A =d
pa(n) Z4he§n2(wp)n2(w)AeffL2

K(|02,8) men(1Q) (1 +1) |ap|*. (23)

During propagation, light is not only scattered from the pump to the Stokes and anti-Stokes
modes at w, — |Q)| and wp + |QQf but also from these mode to the pump wave. The rates
associated to these reverse Raman processes are

TTWpyW
A =d 4 K(|Ql,0 Q 2 24
S*)P(n) Z4h€%n2(a)p)n2(W)AeffL2 (| | ) mth( ) n ‘D‘P| ( )
TTWwyWw
Sasp(n) =d . K(1Q,8) (mgn(1Q]) +1) 1 [ap 2. (25)

z
4hedn? (wp)n?(w) AegL?

1 Note that K 1(1Q2) and K (|€2[) are slightly different in the core and in the cladding of the fiber because
of the dopants. Here, we neglect this difference.
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Therefore the net Raman scattering rates from a coherent pump to Stokes and anti-Stokes
modes (containing # photons initially) are

mupwdz

= K(|Ql,6 Q) +1) |ay 2,
41E2n2 (wp)n?(w) Agge L2 (1Q,0) (n+mu([Qf) +1) |ap|

(26)

S(n) = Sps(n) — As—p(n)

nwpwdz

A(n) = Aposa(it) = Sap(n) = 4hedn?(wp)n?(w) AegL?

K(I,6) (=1 +mu(|Q) [ap|*.

(27)

When a pump wave is launched in an optical fiber it scatters photons to many Stokes and
anti-Stokes modes simultaneously. The variation in the power spectral density dS(z, w)
due to the scattering in the fiber slice dz is found by multiplying Eqs. (26) or (27) by the
photon energy fiw and summing over the contribution from all the ¢/(n(w)L)dw modes in
the interval [w, w + dw]. Therefore the following differential equations hold for Stokes and
anti-Stokes radiation, respectively:

%S(Z,w) = {

where

S(z,w) + %’ (my, (1)) + 1)} g(wp, 0, 0)Py(z) if Q= wp —w > 0 (Stokes)
S(z,w) — Z—‘;’T mth(|Q|)} g(wp, 0, 0)Py(z) if O = wp — w<0 (anti-Stokes)
(28)

g(wp, 0, 0) =sign(Q)

n w ;
an2c2e2 n(wp)n(w) Aee <K”(|Q|) cos'(6) + K. (10 sz(@)) (29)

=g (wp, Q) cos?(0) + 81 (wp, Q) sin?(6)

is the Raman gain. Eq. (28) is identical to Eq. (1).

Unfortunately, BS and FPS laws cannot be established in the same manner. For FPS, one can
start the analysis at the molecular scale, but fourth order perturbation theory is required. In
addition, transition amplitudes must be added coherently to get the phase matching right (see
Sec. 2.3). For BS, a molecular approach is not possible since BS couples light to the excitation
of an acoustic wave involving many molecules (see Sec. 2.2).

3.2 Nonlinear quantum field theory

The purpose of the quantum field theory approach is to establish a quantum generalization
of the nonlinear Schrodinger equation (NLSE) that governs the propagation of the optical
field in a fiber, accounting for dispersion and nonlinear interaction with matter, as well as for
spontaneous effects.

3.2.1 Operator equation for nonlinear propagation

Kaértner et al. presented a field theory model of Raman scattering (Kértner et al., 1994). In
this model, a light field A(z, f) is coupled to an harmonic field Q(z), the amplitude of which
depends on the position in the fiber. The light field A(z,t) represents the envelope of the
E-field oscillating at the carrier frequency wy and is assumed to travel in the fiber at group
velocity vg and with no dispersion. Depending on the dispersion relationship of the field
Q(z), it can represent acoustical phonons (if w(q) = v44) or optical photons (if w(q) = Qg
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is independent of q). Coupling to acoustical and optical phonons is responsible for BS and
RS, respectively. In (Kartner et al., 1994) it is assumed that Q(z) is an optical phonon field.
Physically Q(z) represents the coordinate of a molecular normal mode of vibration at position
z in the fiber. Such a field does not propagate but is nevertheless damped. In order to model
the damping (with a rate I'g), it is assumed that Q(z) itself is coupled to a large bath of
harmonic oscillators at many different frequencies that are at thermal equilibrium. These
harmonic oscillators represent other optical and acoustical vibration modes. After eliminating
the field Q(z) and the bath variables from the equations, one founds that A(z,t) obeys the
nonlinear field equation

9

—A(z,t) = Az, t) +i(1 = fr)vAT (2, ) A(z,t) Az, 1)
0z Vg v, Ot
(30)
1fm/ hr(t—t) AT (2, ) A(z,t')dt A(z,t) + i/ frYNr (2, 1) A(z, 1),
and the commutation relationship
[A(z, 1), At(z, t’)} = hewyd(t — 1), (31)
where fr = 0.18 (see Sec. 2.3), 7y is the nonlinear coefficient (see Sec. 2.3),
02
hg(t) = ———R—— sin ( 0% — (Tr/2)2 t> exp (—(Tr/2)t) v(t) (32)
0% — (Tr/2)

is the Raman response function, and Ng(z,t) is the Raman noise field (see Eqs . (35) and 36
below). In Eq. (32), v(t) is the Heaviside step function. The Fourier transform of hg(f) is
called the Raman susceptibility:

xR (Q) = Xr(9) +ixk(Q) = L _hg(t) et (3)
Since hg(t) € R and is normalized such that [ hg(t)dt =1,
Xr(—Q) =xR(Q), Ar(=Q) = —x&(Q), xg(0) =1, xz(0)=0. (34)

The Raman noise operator is such that its Fourier transform
Nk(z,Q) = / N (z,1) e di (35)
J —00

satisfies the following spectral correlations (Boivin et al., 1994; Drummond & Corney, 2001):

xR (Q)]
7T

(N (z, Q)NR (2, Q)) = h(wo — Q) [me(10]) +v(Q)]8(z = 2)s(Q - Q). (36)
The second term at the right-hand side of Eq. (30) does not come out of Kartner’s model
but has been added phenomenologically to account for the (1 — fr) fraction of the total non
linearity that originates in the interaction of light with bound electrons rather than molecular
vibrations.

The last term in Eq. (30) is the one responsible for the spontaneous Raman scattering. In
order to make the connection with the description given in Secs. 2.1 and 3.1, consider the
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propagation of a strong continuous pump field A,(z,t) = /Py together with a weak scattered
field Asc(z, t) that is null at the input of the fiber: A(z,t) = Ay + Asc(z,t). Ignoring all the

terms but the last one in Eq. (30) one easily finds that Asc(z,t) =~ i\/fr7Py fOL Ng(z,t)dz.
Therefore, the total scattered power is

[ S0~ 0)d0 = (AL (e, Ax(z, ) = frrpy [ de [ a2 (NEG=ONe(2,0))

© ) L L
— frYP /_ _do /_ _ao /O dz /O dz/ (N} (z, Q) Ng(, Q)
Using Eq. (36), one finally gets

(L0 0) = ey~ ) ey TR

— [mun(|Qf) +v(Q)] PpL. (37)

Comparing this expression with Eq. (5), the Raman gain is found to be related to the imaginary
part of the Raman susceptibility by the following relationship:

8| (wp, Q) = =2fr xR (Q) (38)
According to the Kértner’s model, the Raman gain would be Lorentzian in shape because

QO%TR
(Of —0?)2 +021?’

Xr(Q) = (39)
according to Eqs. (32) and (33). This would be a rough approximation of the actual Raman
gain in Fig. 2a. As explained in (Drummond & Corney, 2001), the Raman gain is well fitted by
a 10-Lorentzian model. Modifying the quantum field model to couple light to ten Lorentzian
vibration modes is trivial: it only changes the shape of the Raman response function hg(t) in
Eq. (32), which becomes a linear superposition of damped sine functions with appropriate
oscillation frequencies and damping constants.

With this modification, the quantum propagation equation (30) is able to simulate the
spontaneous grow of Stokes and anti-Stokes wave and their amplification. However, Eq. (30)
is unable to simulate FPS despite that all the terms (second and third term of the right-hand
side) responsible for photon-pair generation are included. This is because phase-matching is
of crucial importance for the FPS process and Eq. (30) does not properly deal with the group
velocity dispersion of the traveling waves.

3.2.2 Dispersion

Dispersion plays an important role in the physics of spontaneous and stimulated nonlinear
effects. The exact dispersion of the fiber can be include in the quantum non linear propagation
equation (30) by replacing the first term in the right-hand side

19
- @ gA(z, t) (40)
by the generalized dispersion operator
DA =+ Y ()5 L A 41)
’ alote” "

a=1
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where

da
- dwt
are the derivatives of the propagation constant k; (w). The dispersion operator can also be
written as a convolution integral (Kértner et al., 1994; Lin et al., 2007)

ka

kp(w) (42)

w=wqp

t
DIA(z, )] = i / hi(t— ')Az t)dt, 43)
where | e
hi(t) = E/ (ki (wo — Q) — ki (wp)]edO (44)
is the linear response function of the fiber. Using (43) Eq. (30) reads:
d

EA(z,t) :i[w h(t—t) Az, t)dt +i(1 — fr)vAT (2, 1) A(z,t)A(z, 1)

(45)
+ifry /joo hr(t—t) AT (z,t)) A(z,t')dt A(z,t) + i/ frYNr (2, 1) A(z, 1),

3.2.3 Brillouin and polarization effects

As mentioned in Sec. 3.2.1, the quantum propagation model couples light to non propagative
phonons. Strictly speaking, such a model is unsuitable for describing BS. However, if the
propagation length is long enough to consider that momentum conservation (opto-acoustical
phase matching) is verified, the phonon field has a well defined oscillation frequency Qp =

47T vy n(:;p ) , see Eq. (10). Therefore, the Brillouin Lorentzian gain can be included as an

eleventh Lorentzian (ultra-low frequency) contribution to the nonlinear Raman response hg (t)
(Drummond & Corney, 2001).

Eq. (45) only takes into account nonlinear effects that involve photons with the same
polarization state. One can generalize the model to take polarization into account (Brainis,
2009; Brainis et al., 2005; Lin et al., 2006; 2007).

3.2.4 Solving the quantum propagation equation
There are two main methods to solve the quantum nonlinear propagation equation.
The first one is using numerical integration and consists in converting Eq. 45 into a set of
c-number equations with stochastic terms in order to solve them on a computer (Brainis et al.,
2005; Kennedy & Wright, 1988). These methods have been first introduced to solve the scalar
quantum equation without the Raman effect (fr = 0) to study the squeezing of a quantum
soliton (Carter et al., 1987; Drummond & Carter, 1987) and co-polarized FPS (Brainis et al.,
2005). It has been then generalized to study different types of non co-polarized FPS processes
(Amans et al., 2005; Brainis et al., 2005; Kennedy, 1991) and squeezing in birefringent fibers
(Kennedy & Wabnitz, 1988), as well as Raman scattering noise (Drummond & Corney, 2001).
The second method consists in linearizing the quantum nonlinear equation around a classical
solution such as a continuous pump wave or a soliton in order to derive linear couple mode
operator equations that can be solved analytically (Brainis, 2009; Brainis et al., 2007; Lin et al.,
2006; 2007). Coupled mode equations are easier to establish from the Fourier transform of Eq.
(45). Defining the Fourier components of the wave as

oo

Az,Q) = / Az, H)e 104t (46)

—00
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one finds that they satisfy the following equation:

2 A(z,0) = ifku (w0 — 0) ~ ke (@)l A(z,0) +iv/Firp [ dwrNe(z,0 ~ i) Az, 1)

1 00 ~00 » 5 »
+ ivw /_oo dwy /_00 dwyx(wy — w1)A(z, w1)A(z, wr) Az, A+ wy — wy),
(47)

where
x(Q) = (1= fr) + fr xr(Q) (48)
is the total third order susceptibility which takes into account both electronic and vibrational

non linearity. x(Q) is a complex function that has the same symmetry properties as xz(Q2),
see Eq. (34)

(=) =x(Q), X'(-0)=-x"(Q), X¥0)=1, x"(0)=0. (49)

Using Eq. (31), one finds that the operators A(z, Q) satisfy the following commutation
relations ~ 5
{A(Z,Q), At(z, Q’)} = 27thwyd (Q — Q). (50)

A generalization of Eqs. (47)-(50) that takes into account polarization can be found in (Lin
etal.,, 2007). Linearized coupled mode equations are directly obtained from Eq. (47). Hereafter,
the result is given for one and two pump waves. These coupled-mode equations will be used
in Sec. 4 to analyze the competition between the RS process and the FPS process.

3.2.4.1 Single pump configuration

Let us assume that that a monochromatic pump wave with frequency w, = wy and spectral
amplitude A(z = 0,Q) = 27,/P,6(Q) is launched in the fiber. During the propagation,
the pump remains monochromatic but acquires a nonlinear phase modulation: A(z, Q) =
2 A, (2)0(Q)). The amount of phase modulation can be derived by injecting this ansatz in Eq.
(47). One finds that

d(fz” iy A} (2)Ap(z) Ap(2). (51)

The solution of this equation is
Ap(z) = /Ppe T2, (52)

However, this solution is not a stable solution of Eq. (47). Brillouin, Raman and four-photon
scattering, will spontaneously scattered power from the pump to Stokes and anti-Stokes
frequencies. Nevertheless, for the calculation of the Stokes and anti-Stokes amplitudes, one
can make the assumption that the pump remains undepleted, i.e. (52) is approximately valid.
Injecting the ansatz

A(z,Q) = [2A,(2)5(Q) + A (2, Q)], (53)

and retaining only the terms of highest order in P, one finds that the scattered field Ase (z,Q)
satisfies

Jd - .
&ASC(Z/Q) =1 HkL(wP ) kL(wP +B Q)’)/PP] (54)

+ix(Q)yPe27? Al (2 +1i4/frRYPpe ™ Nr(z,Q),



Spontaneous Nonlinear Scattering Processes in Silica Optical Fibers 39

where

B(Q) = x(0) + () = 1+ x(Q) =2 — fr[1 = xr (Q)]. (55)
The coefficient B(()) measures the relative strength of the cross-phase modulation of the
scattered field by the pump and the self-phase modulation of the pump, see Eq. (52). If
Raman scattering is ignored (fg = 0), it takes the usual value B = 2. At frequencies close to
the pump (QQ — 0), one also finds B ~ 2, because xg ~ 1+ 0i. Very far away from the pump
frequency () — c0), B ~ 1.82 because xr ~ 0+ 0i and fg = 0.18. The third term of the Eq.
(54) represents a FWM process with a complex coupling coefficient x (Q)yP,. In Sec. 4, it will
be shown that this term is responsible for stimulated FWM, stimulated Raman and Brillouin
scattering, as well as spontaneous FPS. One may notice that this term couples each spectral
component at (2 > 0 (Stokes) to the symmetric component at frequency (2 < 0 (anti-Stokes),
as required by the aforementioned processes. The last term in the right-hand side of Eq. (54)
is the source of spontaneous Raman and Brillouin scattering. Since Stokes and anti-Stokes
frequencies are always coupled, the coupled-mode equations

9 - . _
gASC(Z,Q) =i [[kp(wp — Q) —kp(wp)] +B(Q)YPy] Asc(z,Q)
+i x(Q)yPye?"* Al (z,—Q) +i |/ fryPpe"* Nr(z,Q), (56)
o -

&ASC(Z' —Q) =i [[kp(wp + Q) —kp(wp)] + B(—Q)yPy] Asc(z, —Q)
+ix(—Q)yPpe?P® A (2,Q) +1i |/ fryPpe " Ni(z, —Q). (57)

must be solved together to solve the propagation problem. These are linear, but
inhomogeneous equations. Note that

x(-Q)=x"(Q), and B(-Q)=B"(Q). (58)

3.2.4.2 Dual pump configuration

If two pump waves at frequencies w,1 = wp — )y and wpy = wp + (1 are launched
simultaneously in the fiber, the spectral amplitude can be written

A(z,Q) = 271A (2)5(Q — Qp) + 27 A (2)6(Q + Q) (59)

Injecting this ansatz in Eq. 47 shows the the two pumps will interact through nonlinear effects:

dA

d,:l =i [[kL(wo —Qp) —kp(wo)] +7|Ap > + B(zﬂp)ﬂAPZ‘z} Ap(2) (60)
dA

df =i [[kL(womp) — kp(w)] +7\Apz|2+B<f20p)v|Ap1\2} Ap(2) (61)

The third terms on the right-hand side are responsible for both cross-phase modulation and
stimulated Raman scattering: Eq. (38) shows that

iB(£200)y =1 [2 - fr[1 = X' (£20))]] ¥ = fryX" (£2Qp),
8 (£20) 62)

=1 [2 7fR[1 — X’(izﬂp)ﬂ Y + f
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If the propagation distance L and the initial pump powers P,; and Py, are such that
8 (2Qp)(Pp1 + Ppa)L < 1, power transfer due to stimulated Raman scattering is negligible
and the solution of Egs. (60) and (61) is:

Ap1(z) = Pp1 exp [i [[kr(wo — Qp) — ki (wo)] + vPp1 + R[B(2Q)]vPp2] 2], (63)
Ap(z) = Ppp exp [i [[kr(wo + Qp) — kp(wo)] + vPp2 + R[B(—2Q) 7P| 2] . (64)

As in the single pump case, such a solution in unstable and light will be spontaneously
scattered to other wavelength. To analyze that scattering, we introduce the ansatz

A(z,Q) = 2mAp1 (2)6(Q — Qp) + 21 Ap (2)5(Q + Qp) 4 Ase (2, Q) (65)
in Eq. (47) and only keep the terms of highest order in P; and Ppp. It is found that

2ASC(Z,Q) =i [[kp(wo — Q) — kg (wo)] + B(Q = Qp)YPp1 + B(Q+ Q) vPp2] Asc(z,Q)

)
0z
+irx(Q-0Q )Apl(Z)Apl(Z) N;C(ZIZQP )
177((0 + QP)ApZ(Z)ApZ (Z) ~'1ch (Z, _ZQ]ﬂ Q)
+i72R [X(Qp — Q)] 4p1(2)Apa(2) AL (2, —O)

+irx(Qp — Q)AL (2) Apa(2) Asc (2, 2+ 200p)
+Hirx(Q = Qp) Afy(2) Ap (2) Asc (2, Q2 — 200p)
+iv/fRY [Ap (2)NRr(z, Q= Qp) + Ap, (z)Nr(z,Q + Q)] .

+wx<zop>A,, () Aya(2) Aselz,~20) + i (~20) Aty (2) Ay (2) Asel(z,200))
2z
(2

(66)

In striking contrast with Eq. (54), the light scattered at frequency wp — (2 is not only coupled
to the symmetric mode wyp + () but also to six other modes at frequencies: wg —2Q, — ),
wo —2Qp, wo —20p +Q, wo + 20y — Q, wo + 20, wo + 2Q) + Q). As a consequence, there
is no way to write down a closed set of coupled mode equations for that problem. However,
the perturbation theory technique introduced in (Brainis, 2009) can be applied to investigation
the quantum regime of scattering (see Sec. 4.2).

4. Coupling between spontaneous scattering processes

When light propagates in an optical fiber, spontaneous RS, BS and FPS take place
simultaneously. Several processes may scatter light to the same modes so that it may not
be possible the decouple the processes. Hereafter, that point is illustrated in the single and
dual pump configuration.

4.1 Single pump configuration

The field evolution in the single pump configuration is fully described by the coupled-mode
equations (56) and ( 57), the solution of which is

Ase(L, Q) = (L, Q) Asc(0,Q) + a2 (L, Q)AL (0, —)

+iv/ frYP /OL Nr(z,Q) (p1(L —2,Q) — pa(L — 2,Q)) dz (67)
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Ase(L, —Q) = p1(L, Q) Asc(0,Q) + o (L, —Q) AL, (0, Q2)
+iy/fr7P /0 " Ne(z-Q) (m(L—2,-Q) —po(L—2z,—Q))dz. (68

If Q > 0, Asc(L, Q) corresponds to the Stokes part of the spectrum and Asc(L, —Q) to the
anti-Stokes part. The functions p1(z, ) and yp(z, Q)) are defined as

ui(z, Q) = [Cosh(g(Q)L) +1§‘§((8)) sinh(g(Q)L)} exp (ikL(Q)_sz(_Q)L> (69)
2P, L ke (—
e, ) =1 MOV sinng(er exp (1510210 ) 70)
where

BK(QY) = ki (wp — Q) + kg (wp + Q) — 2Kk (wp) +29Py[B(Q) — 1] = Ak () + 24Py ()
1)
is the total phase mismatch and

$(0) = /(@) — (8k(Q)/2)2 = |/~ AkL(Q)1Pox(Q) — (AkL(Q)/2)2 (72)

is the parametric gain. The square-root in Eq. (72) is chosen such that #(g) > 0. Comparing
with the results of Sec. 2.3, both the phase mismatch parameter and the parametric gain have
a modified value due to the simultaneous action of FPS and RS. This modification impacts the
stimulated FWM (Golovchenko et al., 1990; Vanholsbeeck et al., 2003) as well as spontaneous
FPS regime (Brainis et al., 2007; Lin et al., 2006).

The spontaneous regime corresponds to the initial conditions (Af(0,Q)As(0,Q)) = 0, for
any value of Q). The spectral power density S(L, w, — Q) at the fiber output can be calculated
as follows (Brainis et al., 2005; 2007):

S(Lwp—Q) =1

e me/z Al (L, O1)Ase(L, 0))d0;dO
(L, L, . 73
e%ozne/ 6/2/ 6/2 1)Asc(L, Q2))dQ1d D, (73)

Using Egs. (67) and (68), one finds (Brainis et al., 2007)

S(Lwy—Q) 1 sinh(g(Q)L) > [S[x(Q)]|7P
Hloy ) = 2w OB ||+ (L Q) (man(1020) + (),
. (74)
- L . AK(Q) . 2
(L, Q) = /0 cosh(g(Q)z) +1isign(Q) 25(00) sinh(g(Q)z)| dz. (75)

The first and second terms in the right-hand side of Eq. (74) represent the photons scattered
through the four-photon and Raman processes, respectively. Note that [S[x(Q)]|y =
fRYXR ()] = [g) (wp, Q)|/2, see Eq. (38).

In the spontaneous regime (|g(Q))|P, — 0), Eq. (74) reduces to

S(L,wp — Q Q)|PyL)? wp, Q)|P
(Lwp—0) _ (Il 2>r yL) Sincz(NfL)+|fgﬂlg)79

1 (wp — Q) 2 = (m (1Q]) +v(Q)) . (76)
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The Raman contribution to the scattered light is exactly the one given by Eq. 5: this means that
FPS has no impact on RS. The reverse is not true: RS as an influence on FPS since it modifies
the total susceptibility x(Q)) appearing in the first term. In absence of RS (fg = 0), x(Q)) =1
and one recovers the spectral density of power given by Eq. (14). Since —1 < x3(Q) < 1and

—14 < x3(Q) <14, [x(Q)| = \/(1 — fR(1 = x%(Q)))? + (frx}(Q))? is always close to one.
For this reason, spontaneous (not amplified ) FPS and RS can be considered has uncoupled
phenomena.

If the power is high enough (|g(Q)|P,L > 1), amplification of the spontaneous scattering takes
place. The general formula (74) is well approximated by

S(Lwp—Q) 2RO
h(wp — Q) Y

18] (wp, D) [vPy |g(w) +1sign(Q)Ak/2[?
2R[g()] 8(Q)P?

‘X(Q)va 2
[4(9))

(77)
In striking contrast with the analysis of Sec. 2.1, this result shows that the Raman anti-Stokes
wave grows at the same rate as the Raman Stokes wave instead of saturating at the power density
value S(L,wp + Q) = 27T Y, (]Q]). This effect is due to the coupling of the RS with the
FWM. Its detailed explanation can be found in (Brainis et al., 2007; Coen et al., 2002). On
the other hand, the exponential amplification of the Stokes wave is completely quenched at
frequencies satisfying Ak; (Q)) = 0 because the gain g(Q2) vanishes in that case, see Eq. (72)
(Golovchenko et al., 1990; Vanholsbeeck et al., 2003).

4.2 Dual pump configuration

In the dual pump configuration, the coupled-mode equations (66) do not form a closed set.
For this reason, one cannot write an explicit solution as in Sec. 4.1. To study the spontaneous
photon scattering, we apply the first-order perturbation technique introduced in (Brainis,
2009).

We first notice that the first term of the right-hand side of (66) represents the phase evolution
of scattered field, including the cross-phase modulation due to the two pumps. This phase
modulation has no impact on the population of the frequency modes and can be factored out
by writing the total scattered E-field

ESC z, t hWO / z, Q kL (UO Q)+B(Q Q )WPP1+B(Q+Q )’prz}Z —i wg Q tdQ (78)
4regngc

where a(z,Q)) is the annihilation operator of the frequency mode w — Q). Because the exact
phase evolution of the a(z, Q) has been factored out, the z dependence of a(z, Q) is only due
to the FPS effect (Brainis, 2009). On the other hand, the scattered field can be written as

1 . . _ i
ESC(Z/ t) = m elkL<wO)Z—ILUOf /ASC(Z/ Q)elﬂtdﬂl (79)
where we used the fact that E(z, ) Vv 1/(2egnpc) A(z, t)e ik (wo)z—iwot and Eq. (46).

Comparing Egs. (78) and (79), one sees that

A~SC(Z/ Q) — /27'[710.]0 Q(Z, Q) ei[kL(wUfﬂ)7kL(wo)+B(Qfﬂp)’YP,;]‘FB(Q*FQP)’}/PPQ]Z. (80)
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In the following, we make the approximation that B(Q)) ~ 2, see Eq. (55) and x(Q) = 1, see
Eq. (48). This approximation consists in neglecting the dispersion of the non linearity. Using
Eq. (80), one obtains the evolution equation for the annihilation operators:

%a(z,Q) =iy Pn e ik (Q)z gt (5, 20, = Q) +i7y Pp e B2 (Q)z gt (7 -20, - O)

12y /Py Py e Ik2(Q)z gt (7 )

+i7 /PPy 5% a(z,—200) +i7 /Py Py €207 a(z,200,)
+i9 /PPy @057 a(z2,Q+20,) +i7 /PPy e a(z,0 - 20) (81)

=
—_
]

- IRYPp1 ik(w—0)) —k(wo—Q) 1P,
N 2y ellflenOn) =K==l N (2,0 - Q)
. [ fRYPp2 Q) —k(wy—Q)—yP,
T 2oy el Op) ko) =P N (2,0 + Q)
where
Akll(Q) = kL(CUQ - Q) + kL (0.)0 — ZQP + Q) - ZkL(wO - Qp) + 2’7Pp1 (82)
Akzz(Q) = kL((UQ — Q) + kL (0.)() + ZQp + Q) — ZkL(wo + Qp) + 2’7Pp2 (83)

Aku(Q) = kL(wo — Q) + kg, (a)() + Q) — kL(wo — Qp) — kL(wO + Qp) + ')/Ppl + ’)/sz (84)
Aka(Q) = kp(wo +2Qp) + ki (wo + Qp) — kp(wo — Qp) —kp(wo — Q) +7Pp1 — 7Pp2 (85)
Aky(Q) = kp(wo —2Qp) +kp(wo — Qp) — kp(wo + Qp) —kp(wo — Q) —YPp1 + 7Pp2 (86)

Dke(Q) = kp(wo — Q —2Qp) +kp(wo — Qp) — kp(wo + Qp) —kp(wo — Q) +7Pp1 — 1Py

(87)
Akg(Q) = kp(wo — Q +20p) + kp(wo — Qp) —kp(wo + Qp) — kp(wo — Q) — vPp1 + 1Pp2

(88)

Eq. (81) can be written
ih;—za(z,()) = [G(z),a(z, Q)] +ihL(z,Q)), (89)

where
_ .| Ry ilk(wo— Q) —k(wo— Q) — Pz B

Lz Q) =iy 52 [\/Pre b nENg (2, — Q) o

+ /Py ellE(@ot ) ~klwo—0)=1Pule N (7 0 4 Qp)}
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and

G(z) = gva /_o; dQYe 8z g (2, 0Yat (2,20, — Q') + hc.
+ gfprz /j:o dQ/e B2z gt (2, 0)a¥ (2, —200, — Q) + hec.
+ h’ym /:: dQYe k(@2 ot (2 )at (2, —QY) + h.c.
+ h'ym /j:o dQY ez gt (2,0 Ya(z, —2Q0p) + h.c. (91)
+ h’ym /j:o dQY el )z gt (2, 0Ya(2,2Q) + hc.
+ h’ym /:: dQY el (7 gt (2, Va(z, O — 2Q,) + hec.

R . ’
+ 1y, /Py Py /7 dQY el ()2 gt (2, 0Ya(z, QO +200) + h.c.

In Eq. (89), L(z,Q) represents the Raman scattering from both pumps. Raman scattered
photons contribute incoherently,

Sr(L,wp — Q) |8 (wp1, Q2 —Qp)|Pp L

Hlw-0Q) 27
g (wp2, Q@+ Qp)[PpoL

_|_

27
to the total scattered photon flux. The [G(z),a(z, Q)] part of Eq. (89) represents several FPS
processes taking place simultaneously: (i) 2wp1 — (wp1 +Qp — Q) + (wp — Qp +Q), (ii)
2wy — (wpz -0y - Q) + (UJPQ +Qp + Q), (iii) wp1 +wpy — (wg — Q) + (wog + Q). To see
this explicitly, we writing down the evolution of the quantum state of light in the interaction
picture. The interaction picture is chosen such that the phase evolution of the modes is
part of the operator evolution, while energy transfer from mode to mode is part of the state
evolution. In this interaction picture a(!)(z,Q) = a(0,Q) (Brainis, 2009). Therefore the first

order perturbation Dyson expansion gives:

ww) = (145 [ 6W@az) 0y =10+ [ a0

(M (1= Q) +v(Q = Q)
92)

(M (| +Qp]) +v(Q+Qp)),

(93)
(CH(L,Q)UQ, ba,-0) +812(L, Q) |10, 1-q) + ¢ (L, Q) (1, 1720},70>)
where
(L) = i%(’prlL) e k()3 gine (Akn(a’);‘) (94)
. i NL . L
E12(L, Q) = i(7y/Pp PppL) e 4022 )% sinc (Ak12(0/)2) (95)
En(L,0) = iZ (1ByaL) e 4% sinc (Akzzm')é) . 96)

The threefold entanglement is a clear signature of the interference between three independent
FPS processes. The spectral density of power due to these FPS processes can be deduced from
the matrix element (y(L)|a*(0,Q)a(0,Q)|¢(L)) (Brainis, 2009).
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5. Conclusion

In this chapter, the physics of Raman, Brillouin, and four-photon scattering processes in silica
fibers has been reviewed, as well as their theoretical modeling. It has been shown that a
complete quantum field theory is needed to understand the coupling of theses processes in
the stimulated and spontaneous regimes. Two examples of coupling have been discussed.
The first one was the coupling of the Raman and four-photon scattering processes in a single
pump configuration. In that case, it has been shown that the coupling may have spectacular
consequences in the amplified spontaneous regime, where an unexpected exponential growth
of the anti-Stokes wave is seen. In the second example, the interaction of three FPS processes
in a dual pump configuration has been considered. It has been shown that this configuration
leads to the generation of a threefold entangled bi-photon state of light.

Spontaneous scattering processes are of great importance the context of quantum light
generation and quantum information processing. The methods presented in the chapter apply
to the design of quantum source based on optical fibers: engineering the working principle
(usually four-photon scattering processes) and estimating their figure of merit (usually limited
by the Raman process).
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1. Introduction

Nowadays we can see many interesting applications of solitons in different areas of physical
sciences such as plasma physics (1), nonlinear optics (2; 3), Bose-Einstein condensate (4; 5),
fluid mechanics (6), and so on. Solitons are so robust particles that they are unlikely to
breakdown under small perturbations. The most interesting factor about the soliton, however,
is that their interactions with the medium through which it propagates is elastic. Recent
researches on nonlinear optics have shown that dispersion-managed pulse can be more useful
if the pulse is in the form of a power series of a stable localized pulse which is called soliton.
Optical solitons have been the objects of extensive theoretical and experimental studies
during the last four decades, because of their potential applications in long distance
communication. In 1973, the pioneering results of Hasegawa and Tappert (7) proved that
the major constraint in the optical fiber, namely, the group velocity dispersion (GVD) could be
exactly counterbalanced by the self-phase modulation (SPM). SPM is the dominant nonlinear
effect in silica fibers due to the Kerr effect. The theoretical results of Hasegawa and Tappert
were greatly supported by the experimental demonstration of optical solitons by Mollenauer
et al. (8) in 1980. Since then many theoretical and experimental works have been done to
achieve a communication system based on optical solitons.

The solitons, localized-in-time optical pulses, evolve from a nonlinear change in the refractive
index of the material, known as Kerr effect, induced by the light intensity distribution.
When the combined effects of the intensity-dependent refractive index nonlinearity and
the frequency-dependent pulse dispersion exactly compensate for one another, the pulse
propagates without any change in its shape, being self-trapped by the waveguide nonlinearity.
The propagation of optical solitons in a nonlinear dispersive optical fiber is governed by the
well-known completely integrable nonlinear Schrédinger (NLS) equation

2 +e%+\q|2q— €=+, (1)
where g is the complex amplitude of the pulse envelope, T and z represent the spatial and
temporal coordinates, and the 4+ and — sign of € before the dispersive term denote the
anomalous and normal dispersive regimes, respectively. In the anomalous dispersive regime,
this equation possesses a bright soliton solution, and in the normal dispersive regime it
possesses dark solitons. The bright soliton and dark soliton solutions can be derived by
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the inverse-scattering transform method with vanishing (9; 11) and nonvanishing boundary
conditions (10).

However, if optical pulses are shorter, the standard NLS equation becomes inadequate.
Therefore, some higher-order effects such as third-order dispersion, self-steepening, and
stimulated Raman scattering, will play important roles in the propagation of optical pulses.
In such a case, the governing equation is the one known widely as the higher-order NLS
equation, first derived by Kodama and Hasegawa (12). The effect of these effects in uncoupled
and coupled systems for bright solitons is well explained (13; 14). Inelastic Raman scattering
is due to the delayed response of the medium, which forces the pulse to undergo a frequency
shift which is known as a self-frequency shift. The effect of self-steepening is due to the
intensity-dependent group velocity of the optical pulse, which gives the pulse a very narrow
width in the course of propagation. Because of this, the peak of the pulse will travel more
slowly than the wings.

In practice, the refractive index or the core diameter of the optical fiber are fucntions of the
axial coordinate, which means that the fiber is actually axially inhomogeneous. In this case,
the parameters which characterize the dispersive and nonlinear properties of the fiber exhibit
variations and the corresponding nonlinear wave equations are NLS equations with variable
coefficients. Moreover, the problem of ultrashort pulse propagation in nonlinear and axially
inhomogeneous optical fibers near the zero dispersion point is more complicated because
the high order effects have to be taken into account as well. In order to understand such
phenomena, we consider the higher-order NLS (HNLS) equation with variable coefficients

ou %u

FraiC P

Aul?
+ dSM? + d6”/ (2)

3 2
+ d|ul?u) +d3g?1; +d4%
where u is the slowly varying envelope of the pulse, d1, da, d3, d4, d5 and dg are the z-dependent
real parameters related to GVD, SPM, third-order dispersion (TOD), self-steepening, and
stimulated Raman scattering (SRS), and the heat-insulating amplification or loss, respectively.
Though Eq. (2) was first derived in the year 1980s, only for the past few years, it has
attracted much attention among the researchers from both theoretical and experimental points
of view. For example, Porsezian and Nakkeeran (13) derive all parametric conditions for
soliton-type pulse propagation in HNLS equation using the Painlevé analysis, and generalize
the Ablowitz-Kaup-Newell-Segur method to the 3 x 3 eigenvalue problem to construct the
Lax pair for the integrable case. Papaioannou et al. (15) give an analytical treatment of the
effect of axial inhomogeneity on femtosecond solitary waves near the zero dispersion point
which governed by the variable-coefficient HNLS equation. The exact bright and dark soliton
wave solutions of this variable-coefficient equation are derived and their behaviors in the
presence of the inhomogeneity are analyzed. Mahalingam and Porsezian (16) analyze the
propagation of dark solitons with higher-order effects in optical fibers by Painlevé analysis
and Hirota bilinear method. Xu et al. (17) investigate the modulation instability and solitons
on a cw background in an optical fiber with higher-order effects. In addition, there have
recently been several papers giving W-shaped solitary wave solution in the HNLS equation.

However, in recent years the studies of Eq. (2) have not been widespread. In this
chapter, we consider equation (2) again and derive some exact soliton solutions in explicit
form for specified soliton management conditions. We first change the variable-coefficient
HNLS equation into the well-known constant-coefficient HNLS equation through similarity
transformation. Then the Lax pairs for two integrable cases of the constant-coefficient
HNLS equation are constructed explicitly by prolongation technique, and the novel exact
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bright N-soliton solutions for the bright soliton version of HNLS equation are obtained by
Riemann-Hilbert formulation. Finally, we examine the dynamics and present the features
of the optical solitons. It is seen that the bright two-soliton solution of the HNLS equation
behaves in an elastic manner characteristic of all soliton solutions. These results are useful in
the design of transmission lines with spatial parameter variations and soliton management to
future research.

2. Similarity transformation

A direct and efficient method for investigating the variable-coefficient nonlinear wave
equation is to transform them into their constant-coefficient counterparts by similarity
transformation. To do so, we firstly take the similarity transformation (18; 19)

u=pq(T,X) ellmtta) (3)

to reduce Eq. (2) to the constant-coefficient HNLS equation

2] 02 03 d 2 dlq|?
a; (alan2 —I-Déz‘lﬂz )_,'_e((x 7‘7_1_ (‘J|fi| )+015q ‘[ﬂ

39%3 9X ax @)

where g = q(T, X) is the complex amplitude of the pulse envelope, the parameter € (0 < € <
1) denotes the relative width of the spectrum that arises due to the quasi-monochromocity,
aq,p, 03,64 and a5 are the real constant parameters. In Eq. (3), p, T, a1 and a, are functions of
z, and X is a function of T and z.

Substituting Eq. (3) into Eq. (2) and asking q (T, X) to satisfy the constant-coefficient HNLS
equation (4), we have a set of partial differential equations (PDEs)

d1 Xt +3d3Xera; =0, d3X:° = a3y, p2 = dep,

2d1Xcay + Xz +3d3Xca1? = d3Xerr, p*daay +p%dy = i T,
2P2XTd4 + PZXTdS =20yT; + 5Ty, PZXT‘L} + pZerS =0T, + a5T5,
d3a1® + a, T+ ag, +dia?> =0, 3d3X2ay + di X2 = 1Ty, Xor =0,

where the subscript denotes the derivative with respect to z and 7. Solving this set of PDEs,
we have X = k7 + f and

T (kaq — 3 asc) T, (apk — ayc) a3T,

m=c¢ d=———7z ", dZ:T’ 3= 3
g oy T, _ 0¢5TZ fe c(Bazc—2kaq) T I (2azc — kay) 2T
4 p2k 7 k2 7 2 k3 7

where p = py el 457k, po and c are constants, and T and dg are arbitrary functions of z. So the
similarity transformation (3) becomes

3T —2ckoq T +3c2asT\ ;
U= pg efdsdzq (T, T C 0(]12 +3ccas ) elC(PT‘i’ZCZﬂ%T*ClelT)/kS. )

Therefore, if we can get the exact soliton solutions of the constant-coefficient HNLS equation
(4) we can obtain the exact soliton solutions for HNLS equation (2) through Eq. (5). In the next
section, we will investigate the integrable condition of equation (4) by prolongation technique.
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3. Prolongation structures of the constant-coefficient HNLS equation

In this section, we investigate the prolongation structures of the constant-coefficient HNLS
equation (4) by means of the prolongation technique (20-22). Firstly, the complex conjugate
of the dependent variable g in Eq. (4) is denoted as q* = u. Then, Eq. (4) and its conjugate
become

i gxx +inog?u + elazgxxx + (v + as)q’ux + (2ag + as)quqx] —qr =0,  (6a)
—inquxyx — iazuzq + elaguxxx + (ag + oc5)u2qx + (204 + a5)quuy] —ur = 0. (6b)

Next we introduce four new variables p, r,v and w by
qx =p, pPx =1, Ux =0, VX =W, )

and define a set of differential 2-form I = {61,6,,03,04,05,05} on solution manifold M =
{T,X,u,v,w,p,q,r}, where

01 = dq AdT + pdT AdX, 6, =dp AdT +rdT A dX,

03 =du NdT +vdT NdX, 04 =doANdT +wdT NdX,
05 = dg ANdX + agdr NdT + p1dX NdT, 0g = du ANdX + azdw ANdT + ppdX AN dT,
with
p1 = iayr + iaq u + e[ (ag + a5)470 + (24 + as)qup],
02 = —iaw — ingu’q + €[(ag + a5)u’p + (204 + a5)quo].
When these differential 2-forms restricted on the solution manifold M become zero, we
recover the original constant-coefficient HNLS equation (4). It is easy to verify that I is a

differential closed idea, i.e. dI C I.
We further introduce n differential 1-forms

O =4’ — Fldx — GdT, (8)
wherei = 1,2,---,n, F' and G! are functions of u,v,w, p,q.1, éi and are assumed to be both
linearly dependent on { | namely F I = Figi, G' = GI{'. For the sake of simplification, we drop
the indices by rewriting ¢’ as {, F! as F and G' as G. When restricting on solution manifold, the
differential 1-forms Q' are null, i.e. Q' = 0 which is just the linear spectral problem {x = F{
and {7 = G_.

Following the well-known prolongation technique, the extended set of differential form I =

U {Q'} must be a closed ideal under exterior differentiation, i.e. 4 C I. BecausedI C I C I,

we only need to let d {Qi} C I, which denotes that

6
=

where f]’ (j = 1,2,3,4,5,6) are functions of (T, X), and 17i = gi(T, X)dX + hi(T, X)dT are
differential 1-forms.
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When Eq. (9) is written out in detail, after dropping the indices we have the following PDEs
about F and G as
Gr = €“3Fq/ Gw = ea3Fy,

Gyp + Gpr + Gyo+ Gyw — Fy [iler + izxzqzu +e(ag+as) q2v +e(2ay+as) qup} (10)
—F, {—ilew —inpuq 4 € (ag + as) up +€ (2ay + as) quv} —[F,G] =0,
with [F, G] = FG — GF.
Solving Eq. (10), we have the expressions of F and G as
F = xo+ x19 + xu, 11)

G = ea3x 7 + € a3x2W + VJE A3 X5 + VE A3X4 — PUE X3 X5 + PE X3X3 — IGUAX5

2

. 2 1 2
+ipxioq + gxo€ wlay + 3 gxp€ u-ns + 5 € azu’xy3 + qze X1ung + 3 qze XqUs

1 . . .
+queazxg + que azx1g + € a3x7u + 5 qze a3X9 + g€ k3Xg + 1qu X3 — 1] XqU — 10X207 + X715,

where L = {xg,x1,xp,---,x15} is an incomplete Lie algebra which is called prolongation
algebra and it satisfies the following commutation relations

[x2, X5] = X14, Xom5 = 3azx14,2x8 + X109 = X12, X145 +3a3x17 =0,

[X(), xl] = X3, [XO, XZ] = X4, [xOr x3] = X6, [XO, X4] = X7, [xOI x5] = X8,
[x1,%2] = x5, [x1,%3] = x9, [x1,%4] = x00, [x1,%5] = 211, [x2, 3] = X1,
[x2,x4] = x13, €as[xo,x9] +2in1xg +2€a3[x1, %] =0, [x1,x15] + i1 x6 + € a3[x0, X,
a3[x1,x9] =0, azlxp, x13] =0, [x0,x15] =0, 2€as[xy, x7] + € az[xo, x13] = 2iayx13,

[x2, X15] + € az[xo, X7] = inyxy, 6€az([xo, x10] + [x1, X7] + [x2, X6] + [x0, X8]) + 6inyxg =0,
(6€ [x1, x8] + 6 €[x1,x10] + 3 € [x2, X9]) a3 + (4€ a5x3 + 6 € agX3 + 6ix107) a3 4 2iqx a5 = 0,
(6€ [x2, X10] + 3 € [x1, x13] + 6 € [x, xg]) a3 + (4 € a5y + 6 € agxy — 6ix20) a3 — 2in; Xpa5 = 0.
It is known that nontrivial matrix representations of prolongation algebra L correspond to
nontrivial prolongation structures. To find the matrix representation of L, following the
procedure of Fordy (23), we try to embed it into Lie algebra sl(n,C). Starting from the
case of n = 2, we found that sI(2,C) is the whole algebra for some special coefficients
o; (j = 1,2,3,4,5). For the case of n = 3, we can also find that s/(3,C) will be the whole
algebra for some other special coefficients o; (j =1,2,3,4,5). In this paper, we only examine
the case of sl(2,C) algebra.

From the above commutation relations, we have the special relations among elements xq, x»
and x5 as

&5 &5
X0, X5| = ——Xp, |X1,X5| = —=——Xx1, |x1,X2| = x5, 12
[x2, x5] 3a32[1 5] 30(31[1 2] =15 (12)
from which we know that x; and x; are nilpotent elements and x5 is a neutral element. So we

have a5 = +66%a3 and

06 00 +62 0
X1 = , X2 = ; X5 = ’ (13)
00 +60 0 Fo?
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with 6 a nonzero constant. Substituting (13) into the commutation relations of prolongation
algebra L, we finally get the 2 x 2 matrix representations of F and G. Therefore, we obtain two
integrable HNLS equations with 2 x 2 spectral problems.

When ap = 26%nq, 04 = 66%a3 and a5 = —65°a3, Eq. (4) becomes the bright soliton version of
Hirota equation

qr = itqxx + 2in16%(q|2q + € azqxxx + 6 €6%a3 |q*qx, (14)
with linear spectral problem
{x=F, {r=GJ, (15)
and
—iA 6q
F= , (16)
—oq* iA

10 inq 2€ a36
G = 4inze)’ —2A2 I
0-1 —2ew3dq* —inq

—ieazd?|g)? w109 —ieaszdgx
+2A( lql q q

17)
—0q* —ieazdqy  ieazd®|ql?

ea3d2qxq* — e 362y q + i1 0%(g|* e azdgxx +in1dqx +2€8a3 |q%g
+ 7
i10q% — € a30q’yy — 2€0%a3 |q|°q* € az62qq — e a30®qxq* — in16%|q|?
where A is a spectral parameter and (T, X, A) is a vector or matrix function.

When ay = —26%a;, a4 = —66%a3 and a5 = 6 6%a3, Eq. (4) becomes the dark soliton version
of Hirota equation

qr = i‘xquX — 2i§2061|q‘2q + EXZIXXX — 6€(520(3|q‘2b]x, (18)

with linear spectral problem Eq. (15) and

—i\ g
F= , (19)
5q* i)

3 10 ) ing 2ea3zdq
G =4ieN a3 —2A
0-1 2ea30q" —ing

ieazd?|q)>  —ieazdgx +a1dq
+2A

(20)
w8 +ieazdqy  —ieazd?|q|?

. <€0¢35ZQ§<17 —ea38?qxq* — in162|q|? eazdgxx + inydqx —2€63uzlq|?q )

€a30q%y — in10q% —2€83a3]q|?q* e azd?qxq* — e a382q%q + iny6%|q|?
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4. The bright soliton solutions for Eq. (14)

In this section, we propose the N-bright soliton solutions of Eq. (14) using the
Riemann-Hilbert formulation (24-28). Let us consider Eq. (14) for localized solutions, i.e.
assuming that potential function g decay to zero sufficiently fast as X, T — Z£oco. In the
Riemann-Hilbert formulation, we treat { as a fundamental matrix of the two linear equations

in (15). From (15) we note that when X, T — =00, one has { = ¢~ AX+ (A’ =2i A2a1) AT iy
A = diag(1, —1). This motivates us to introduce the variable transformation

[ = Je AKX +H(HinseA ~2i V') AT, 1)
where [ is (X, T)-independent at infinity. Inserting (21) into (15) with (16)-(17), we get
Jx = —iA[AJ] +6Q), (22a)
Jr = —(2imqA? — 4iazeA)[A, J] + V], (22b)
with
—iea3d?|q|> —ieazdgx )

—ieazdqy ieazs|q|?

0
Q:( q), V:(ZAa15—4Azeo¢35)Q+2A(

N (ezx3§2qxq* — ea30%q%q + in16%|q|* eazdqxx +in1oqx +2€8%az|q|%q ) .
i010q% — €300’y — 2€8%3 929" € a30%q%q — e azd®qxq* — ing 6%|q|?
Here [A,]] = A] — JA is the commutator, tr(Q) = tr(V) = 0 and
Q'=-Q Vi=-v, (23)

where t represents the Hermitian of a matrix.

In what folows, we consider the scattering problem of the Eq. (22a). By doing so, the variable
T is fixed and is a dummy variable. We first introduce the matrix Jost solutions J+ (X, A) of
(22a) with the asymptotic condition

J+ — I, when X — +oo, (24)

where [ is a 2 x 2 unit matrix. Here the subscripts in [+ refer to which end of the X-axis the
boundary conditions are set. Then due to tr(Q) = 0 and Abel’s formula we have det(J+) =1
for all X. Next we denote E = ¢~**X_ Since ¥ = ] E and ® = J_E are both solutions of the
first equation in (15), they must be linearly related, i.e.

J_.E=J4ES(A), A€R (25)

where

S(A)=<z“ ?2), A ER
21 522

is the scattering matrix, and R is the set of real numbers. Notice that det(S(A)) = 1 since
det(J+) = 1. If we denote (P, Y) as a collection of columns,

D= [, ], ¥ =[¢1, ¢, (26)
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by using the same formulation as (24; 25; 27), we have the Jost solution
PY = [y, ol X = |_Hy + ]y Hy, 27)

is analyticin A € C, and Jost solution

~

p— — piAAX [gj = HyJ " 4 HyTY, (28)

is analyticin A € C_, with
o-1— 431]’ 1};—1_{%’1},
[4’2 ¥2
and
H; = diag(1,0), Hy = diag(0,1).

In addition, it is easy to see that
PH(X,A) =1, as A €Cy — oo, (29)

and
P (X,A) =1, as A€C_ — oo (30)

In addition, if we express S~ as
g1 _ <5:11 5112> . A€eR,
521 S22
from det(S(A)) = 1 we have
$11 = S22, S22 =511, S12 = —S12, 521 = —Sn1- (31)

Hence we have constructed two matrix functions P* and P~ which are analytic in C; and
C_, respectively. On the real line, using Egs. (25), (27) and (28), it is easily to see that

P™(X,A)PT(X,A) =G(X,A), AER, (32)
with

) 1 41 )
G=E(H;+HyS)(H +S 'Hy))E"' =E ) E-L
521

This determines a matrix Riemann-Hilbert problem with asymptotics
PE(X,A) = I, as A — oo, (33)

which provide the canonical normalization condition for this Riemann-Hilbert problem. If
this problem can be solved, one can readily reconstruct the potential (X, T) as follows. Notice
that P is the solution of the spectral problem (22a). Thus if we expand P at large A as

1
PH(X,A) =1+ XP;(x) +0(A72), M=o, (34)

and inserting this expansion into (22a), then comparing O(1) terms in (34), we find that

. 0 2P
mmmﬁbﬂﬁ%oﬂ. (35)
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Thus, recalling the definition of Q the potentials g is reconstructed immediately as
q=2iP1p/9, (36)

where P|" = (P;j). In addition, from the definitions of P*, P~ and Egq. (25) we have
detPt =38y =517, detP™ =5y = §yq. (37)

The symmetry properties of the potential Q and V in (23) give rise to symmetry properties in
the scattering matrix as well as in the Jost functions. In fact, after some computation we have
J+ satisfies the involution property

JEXAT) = JEH(X,A), (38)
analytic solutions P* satisfy the involution property
(P (1) =P~ (A), (39)
and S satisfies the involution property
st(A*) =s71(). (40)

Let A, and Ay are zero points of detP™ and detP ™, respectively. We see from (37) that (A, Ax)
are zeros of the scattering coefficients 855 (1) and sp; (A). Due to the above involution property,
we have the symmetry relation

A = AL (41)
For simplicity, we assume that all zeros {()\k, A),k=1,2,-,N } are simple zeros of 8,5 (1) and
$22(A), then each kernal of P (A;) and P~ (A;) contains only a single column vector vy and
row vector 0y,

P+()\k)vk =0, 0P (/_\k) =0.

Taking the Hermitian of the above equations and using the involution properties, we have
O = Uz. (42)

To obtain the soliton solutions, we set G = I in (32). In this case, the solutions to this special
Riemann-Hilbert problem have been derived in (25; 26) as

N
P (T, X,\) = Y o (M*l),kﬁk, (43)
jk=1 4
where _
My = Ik (44)
L P

The zeros A, and Ay are T-independent. To find the spatial and temporal evolutions for vectors
v (T, X), we take the X-derivative to equation P v, = 0. By using (22a), one gets

Pt (X, /\k)(% +iAAvy) =0, (45)
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thus we have i
v .
d—)g +iApAvg = 0. (46)

Similarly, taking T-derivative to equation P v, = 0 and using (22b), one has

aUk

PH(T, X, M) (5 + (2 A2 — dinzer o) = 0, 47)
thus we have - . . . .
3T + (i A — diager” o = 0. (48)
Solving (46) and (48) we get
(T, X) :E—iAkAX+(4ia3e/\k3—ZiAkaq)ATUkO’ (49a)
(T, X) =00 PAAXH(—diazed+2i )\kztxl)/ (49b)

where (v, Oyg) are constant vectors.

In summary, the N-bright soliton solutions to Eq. (14) are obtained from the analytical
functions Pfr in (43) together with the potential reconstruction formula (36) as

N
q(T, X) = 2iPp /6 = 2i ( Y o (M—l), 5k) /6, (50)
12

where the vectors v; are given by (49). Without loss of generality, we take vxy = [by, 1] with
by constants. And if we denote

& = —iM X + (diazed® —2i A2y T, (51)

the general N-soliton solution to Eq. (14) can be written out explicitly as

2i N e
q(T,X) = 5 Y bjeb S (M), (52)
k=1
with .
Mjk = 7/\* — /\k (bfcke§k+§f - E_gk_éj) . (53)
j

In what follows, we investigate the dynamics of the one-soliton and two-soliton solutions in
Egs. (14) in detail.

4.1 Examples of single and two bright solitons in Eq. (14)

To get the single bright soliton solution for Eq. (14), we set N = 1 in (52) to have

2i(A} — Ap) bief1=61
1) e 61—C1 o+ |b1|2361+§f ’

q(T, X) = (54)

If setting Ay = Cq + i1, by = e 2nXotiwo the single soliton solution (54) can be rewritten as

2 )
q(T,X) = %sech[Z (X + (4 wzen® +4a10; — 12aze gf) T — Xo)] exp®, (55)
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Fig. 1. (color online). Evolution of single soliton |¢(T, X)| in (55) with parameters (56). It is
similar to single soliton in standard NLS equation.
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Fig. 2. (color online). The shapes of two-soliton solutions |¢(T, X)| in (52) with (53). (a)
soliton collision with parameters (57); (b) bound state with parameters (58).

with § = —207 X + (—4 w1012 +dagm? +8aze{1° — 24 aze 1712) T + wp, and Xp, wy are
constants. This solution is similar to the solitary wave solution in the standard NLS equation
(1). Its amplitude function has the shape of a hyperbolic secant with peak amplitude 27, /4,
and its velocity depends on several parameters, which is 12 aze { 12 —4aze m? —4u1g;. The
phase 8 of this solution depends linearly both on space X and time T. We show this single
soliton solution in Fig. 1 with parameters

gl = 05, nm = 0.1, XO = 1.5,600 = 2,(5 = 1, N = 0.5,063 = 1,6 =1 (56)

The two-soliton solution in Eq. (14) corresponds to N = 2 in the general N-soliton solution
(52) with (53). This solution can also be written out explicitly, however, we prefer to showing
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Fig. 3. (color online). Evolution of single soliton solutions |u(z, T)| in HNLS equation (2) with
controlable coefficients (59) and (62), respectively. (a) Soliton solution (61) with parameter
(56) and pg = 0.5,¢ = 1,k = 2. (b) Soliton solution (64) with parameter (59) and
po=05,c=1k=2.

their behaviors by figures, see Fig. 2(a)-(b). Below we take A; = {1 + i and Ay = (p +inp
and examine this solution with various velocity parameters: one is 12 aze §12 —4daze 1712 —
40101 = 12a3€ §22 —4dazeny® —4a1lp, ie. the collision between two solitons, and the other
is 12 aze glz —4uze 1712 —4a107 # 12a3€ §22 —4aze 1722 — 4040y, i.e. bound state. In Fig. 2(a),
the two soliton parameters in Eq. (52) with (53) are

0 =05 03=08 e=1,0=1, Ay =02+07i, Ay = —01+05i, by =1, bp=1. (57

Under these parameters, the velocity of the two solitons are different. It is observed that
interactions between two soliton don’t change the shape and velocity of the solitons, and there
is no energy radiation emitted to the far field. Thus the interaction of these solitons is elastic,
which is a remarkable property which signals that the HNLS equation (14) is integrable.

Fig. 2(b) displays a bound state in Eq. (14), and the soliton parameters here are

a0y =05 a3 =08 €=16=1, Ay =03i, \y = —0.1+04272i, b; =1, by =1.  (58)

Under these parameters, the two constituent solitons have equal velocities, thus they will stay
together to form a bound state which moves at the common speed. It can be seen that the
width of this solution changes periodically with time, thus this solution is called breather
soliton.

5. Dynamics of solitons in HNLS equation (2)
In what follows, we investigate the dynamic behavior of solitons in the variable-coefficients

HNLS equation (2) with special soliton management parameters dj (j=1,2,3,4,5,6).

5.1 Single soliton solutions

We choose two cases of soliton management parameters d]-(j = 1,2,3,4,5,6) to study
the dynamics of the single solitons in HNLS equation (2). Firstly, if we take the soliton
management parameters to satisfy

dp = 1.6 (kay —3azc) z/k>, dy = 1.6 (aok — ayc) z/ 0ok,
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Fig. 4. (color online). The two-soliton solutions |u(z, T)| in HNLS equation (2) with
coefficients (59). (a) soliton collision with parameter (57) and py = 0.5,c = 1, k = 2; (b) bound
state with parameter (58) and p9 = 0.5,c =1,k = 2.

dy = 1.6a3z/k°, dy = 1.60sz/po’k, ds = 1.6asz/po’k, dg =0, (59)
the variables p, T and X in similarity transformation (3) are
p=po, T=082%, X=kt+ (24c%a3 — 1.6 ckay)z? /K. (60)
So the single soliton solution in HNLS equation (2) with coefficients (59) is
u(z,7) = poq (T, X) (iR THL6 s 2208 ckanz?) /K ©61)

where ¢ (T, X) satisfies Eq. (55) and T, X satisfy Eq. (60).
Secondly, if we take the soliton management parameters to satisfy

d; = 0.8 cos (0.8z) (kay — 3azc) /k>,dy = 0.8 cos (0.82) (aok — ayc) /po*k,dg = 0,

ds = 0.8 a3 cos (0.82) /K3, dy = 0.8y cos (0.8z) /pozk, ds = 0.8 a5 cos (0.82) /pozk, (62)

the variables p, T and X in similarity transformation (3) are
p=po, T=sin(0.8z), X =kt+ (3c2a3 —2ckay)sin (0.8z) /k>. (63)
In this case the single soliton solution in HNLS equation (2) with coefficients (62) is
u(z,7) = poq (T, X) pic(PT+2 %3 5in(0.8z) —ckay sin(O.Sz))/k3, (64)

where g (T, X) satisfies Eq. (55) and T, X satisfy Eq. (63).

In Fig. 3, we show the single soliton solutions (61) and (64) in HNLS equation (2) with
coefficients (59) and (62), respectively. Here the solution parameters are given in (56) and
po = 0.5,¢c = 1,k = 2. It is observered that when the soliton management parameters
dj(j=1,2,3,4,5) are linearly dependent on variable z and ds = 0 (see Eq. (59)), the trajectory
of the optical soliton is a localized parabolic curve, as shown in Fig. 3(a). When the soliton
management parameters d;(j = 1,2,3,4,5) are periodically dependent on variable z and
dg = 0 (see Eq. (62)), the trajectory of the optical soliton is a periodical localized nonlinear
wave, as shown in Fig. 3(b).
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Fig. 5. (color online). The two-soliton solutions |u(z, T)| in HNLS equation (2) with
coefficients (62). (a) soliton collision with parameter (57) and py = 0.5,¢ = 1, k = 2; (b) bound
state with parameter (58) and pg = 0.5,c =1,k = 2.

5.2 Collisions of the two-solitons
We now demonstrate various collision scenarios in HNLS equation (2) with coefficients (59)
and (62), respectively. As in Section 4.1, we consider the two-soliton collisions and bound
states in equation (2).
When the coefficients of equation (2) satisfies (59), its two-soliton solution is

u(z,7) = poq (T, X) eic(k3T+1.6 c*a3z*—0.8 ckoqu)/k3, (65)
where T, X satisfy Eq. (60), and ¢ (T, X) satisfies Eq. (52) with (53) and N = 2.
When the coefficients of equation (2) satisfies (62), its two-soliton solution is

u(z,7) = poq (T, X) ple(RT+2c%as sin(O‘Sz)fcklxlsin(O.Sz))/k3’ (66)

where T, X satisfy Eq. (63), and ¢ (T, X) satisfies Eq. (52) with (53) and N = 2.

In Fig. 4, we display the evolutions of the two-soliton solutions (65) in HNLS equation (2) with
coefficients (59). Fig. 4(a) shows the soliton collision with parameter (57) and pg = 0.5,¢ =
1,k = 2, and Fig. 4(b) shows the bound state with parameter (58) and pg = 0.5,c =1,k = 2. In
Fig. 5, we display the evolutions of the two-soliton solutions (66) in HNLS equation (2) with
coefficients (62). Fig. 5(a) shows the soliton collision with parameter (57) and pg = 0.5,¢ =
1,k = 2, and Fig. 5(b) shows the bound state with parameter (58) and pg = 0.5,c =1,k = 2.

6. Conclusions

In summary, we have studied the variable-coefficient higher order nonlinear Schrodinger
equation which describes the wave propagation in a nonlinear fiber medium with
higher-order effects such as third order dispersion, self-steepening and stimulated Raman
scattering. By means of similarity transformation, we first change this variable-coefficient
equation into the constant-coefficient HNLS equation. Then we investigate the integrability
of the constant-coefficient HNLS equation by prolongation technique and find two Lax
integrable HNLS equations. The exact bright N-soliton solutions for the bright soliton version
of HNLS equation are obtained using Riemann-Hilbert formulation. Finally, the dynamics
of the optical solitons in both constant-coefficient and variable-coefficient HNLS equations is
examined and the effects of higher-order effects on the velocity and shape of the optical soliton
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are observed. In addition, it is seen that the bright two-soliton solution of the HNLS equation
behaves in an elastic manner characteristic of all soliton solutions.
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1. Introduction

Supercontinuum (SC) light sources are nowadays a very common way to access a large span
of wavelengths, usually ranging from the near ultraviolet (around 400 nm) to the infrared
(around 2.4 ym). It corresponds to a range of interest for many applications in optics for
measuring transmission, dispersion, or in biophotonics for achieving fluorescence microscopy,
optical coherence tomography... Indeed these sources are really promising because they
should allow to replace the N laser sources used in these experimental setups to access
to all theses wavelengths by a single broad one and a spectral filtering apparatus. Most
of these results have been obtained by using powerful pump lasers of several kilo-Watts
peak power, operating from the femtosecond (Titane:Saphire) to the nanosecond regimes
(Nd:YAG), launched in the low dispersion region of a microstructured optical fiber. Although
these fibers are short enough (typically from 1 to 10 m) to neglect the linear absorption
during the propagation of the pump, the spectral power density is relatively low (few
hundreds of yw/nm) which could limit the implementation of SC sources in many application
devices. This is related to a technological limitation of the pump source because it is
not easy to combine strong peak power and high average power. One of the simplest
solutions to increase the the spectral power density of SC sources is to replace pulsed sources
with continuous-wave (CW) light sources whose available average powers are much more
important. We will see that the dynamics of SC formation is considerably different in this case,
requiring to perform intensive numerical studies to optimize the fiber parameters. Indeed,
longer fibers are required (from tens to hundreds of meters) which heightens sensitivity to
fiber attenuation, namely of the OH pic absorption, that strongly impacts the soliton evolution.
However extremely powerful SCs have been reported with more than 10 mW /nm of spectral
power density. Furthermore, these pump sources are usually all-fiber that leads to a second
advantage against most of pulsed SC because CW pump can be directly spliced on the PCFE.
It is also important to point out that these SC sources have different temporal properties than
the ones of pulsed SCs.

The first experimental demonstration of CW SC have been realized at the end of the nineties
with a Raman laser launched in a standard telecommunication fiber. The spectral broadening
was relatively restricted (around 200 nm) because it was mainly due to Raman effect
Gonzalez-Herraez et al. (2003); Persephonis et al. (1996); Prabhu et al. (2000). A breakthrough
was reached a few years later when stronger pump lasers (from more than one order of
magnitude) based on Ytterbium doped fibers were combined with photonic crystal fibers
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(PCFs) owing a low group-velocity dispersion (GVD) value around the pump wavelength
Avdokhin et al. (2003). With these setups, SC generation was mainly due to solitonic effects
like in pulsed SC. A renew of interest for these sources started from 2007 where first numerical
demonstrations of very broad CW SC were reportedMussot et al. (2007), just followed by
experimental demonstrationsCumberland et al. (2008a); Kudlinski & Mussot (2008).

As an example, a typical and simple experimental setup used for SC generation is schematized
in Fig. 1. In our experimental configuration used for the experiments hereafter, the PCFs were

CW Yb doped |" e @D Qosn
fipar laser | 1~  PCF

| Pigtail
L L /L

Piezoelectric mount

Fig. 1. Scheme of the experimental setup used for the SC generation experiments. L : lens.

pumped with ytterbium-doped fiber laser delivering either 20 W at 1064 nm with a full width
at half maximum of 0.5 nm, or 50 W or 100 W at 1070 nm with a full width at half maximum of
1 nm. The output beam diameter of the laser was reduced with an afocal setup and the beam
was then launched into the fiber with appropriate aspheric lenses (of a few mm focal length).
All lenses were antireflection coated and a heat dissipater was carefully placed on top of the
V-groove supporting the PCF in order to manage thermal issues caused by the high power
laser. This allowed to greatly improve the temporal stability of the injection setup and no
noticeable change in coupling efficiency was observed for several tens of minutes at full pump
power. The coupling efficiency in these conditions was typically 70%-80%. The output of the
fiber was butt-coupled to a pigtail to reduce the power launched inside the optical spectrum
analyzer (OSA). All-fiber schemes are also used Cumberland et al. (2008a) but splicing issues
are usually more -time-consuming for a lab experiment than free-space coupling.

2. Basic mechanisms of continuous-wave supercontinuum generation

Mechanisms at the origin of SC are now well knownCumberland et al. (2008b); Dudley et al.
(2006); Kobtsev & Smirnov (2005); Mussot et al. (2007); Travers et al. (2008); Vanholsbeeck et al.
(2005). The modulationnal instability (MI) process is at the origin of the formation of CW SC.
It originates from the perfect balance between linear and nonlinear effects experienced by a
strong field, the pump, and a small perturbation, the noise, when working in anomalous GVD
region of an optical fiber. At the beginning of the fiber, this small perturbation is amplified.
The typical signature of this process in the spectral domain is two symmetric side lobes located
around the pump (Figs. 2-(a) and (b)). By further propagating into the fiber, this small periodic
perturbation is amplified to become a train of solitonic pulses (Figs. 2-(c)and (d)). Note that
these pulses have not identical characteristics as they originate from a process that is seeded
by noise. On the other hand, we remind that in the case of a single soliton propagating in
an optical fiber, it is well known that during its propagation, it is disturbed by higher order
dispersion orders effect and as a consequence it shed energy to radiations called dispersive
waves (DWs) which verify a phase matching condition. This leads to the generation of DWs
on the short wavelength side of the soliton and to a red shift of the soliton, called spectral recoil
for momentum conservation (Figs. 3-(a) and (b)). The consequence of the phase matching
condition, is that solitons and DWs do not travel at the same velocity. If no additional effect
is experienced by these waves, they will no longer interact again during their respective
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Fig. 2. Schemes illustrating the first steps of modulationnal instability, (a)-(b) at the beginning
of the process when the small perturbation starts to grow and (c)-(d) when the solitonic train
is created. (a) and (c) correspond to the time domain, and (b) and (d) correspond to the
frequency domain.

propagation. However, during the propagation of solitons, because they are strong waves,
the Raman effect induces an additional and continuous red shift of their central frequencies
. This effect is called soliton self-frequency shift (SSFS)Gordon (1986) and decelerates the
soliton because the group index increases with frequency in usual fibers (Fig. 3-(c)). As a
consequence, as the velocity of DWs has not changed, the solitons can interact again with
them via the cross-phase modulation effectGenty et al. (2004) which shifts DWs toward short
wavelengths. Finally, it is important to understand that this group velocity matching is the
rule that allows to connect lower and upper limits of SCs (Figs. 3-(d))Stone & Knight (2008).

This is different in fibers with two zero dispersion wavelengths (ZDWs). When the soliton
approaches the second ZDW), it still generates DWs but on the long wavelength side of the
SCGenty et al. (2004); Mussot et al. (2007). The spectral recoil tends now to shift it on the
opposite side that the one of the SSFS. An equilibrium is reached and the frequency shift of
the soliton is cancelledSkryabin et al. (2003). In this case solitons and DWs will no interact
together and no trapping mechanism will occur like it is the case in fiber with a single ZDW.

3. Bandwidth-limited near infrared continuous-wave supercontinuum

The interest of limiting the spectral extension of CW SC is to concentrate of the available
power in the desired spectral span. This is achieved in fibers with two ZDWs in which the
SSFS can be cancelled by the spectral recoil effect experienced by solitons located just below
the second zero dispersion wavelength. By this way, increasing the power leads to an increase
of the power spectral density.

3.1 Double zero-dispersion wavelength photonic crystal fibers

It is possible to design PCFs with two ZDWs from part to part of the pump wavelength at
1064 nm, and a low anomalous dispersion region at this wavelength. Such group-velocity
dispersion (GVD) curves can be achieved with a relatively small hole-to-hole spacing A
in the order of 1.7 ym and a d/A value in the range of 0.4-0.5 (d is the hole diameter)
Mussot et al. (2007); Tse et al. (2006). It is well known that a microstructured cladding with
these geometrical properties would lead to relatively high confinement losses at wavelengths
around 1.5 ym which is the reason why 10 periods of holes were necessary between the core
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formation of a CW SC, involving N solitons.

and the external jacket to decrease confinement losses to an acceptable values of a few dB/km
at 1550 nm, at which the SC is expected to be generated. Figure 4(a) displays a scanning
electron microscope (SEM) image of such a PCF (labelled fiber C in what follows, see Table 1).
Another important issue in CW SC generation is the absorption of the water band centered
at 1380 nm Cumberland et al. (2008a). We thus performed a chemical cleaning of the stacked
preform under halogenic atmosphere to reduce surface contamination and to lower the water
content. This allowed to decrease the peak attenuation at 1380 nm from typically 600 dB/km
(without any special treatment) to about 120 dB/km. A typical attenuation spectrum is shown
in Fig. 4(b) for fiber C, which SEM is represented in Fig. 4(a). The background loss being
around 30 dB/km at 1380 nm, the contribution of the water contamination is about 90 dB/km
at 1380 nm.

Three different PCF samples (labeled A, B and C) are investigated here. These fibers are
characterized by slightly differing A and d/A values so that the GVD curve of each fiber
is slightly different. The GVD curves are represented in Fig. 5(a), where the vertical line
represents the pump wavelength. All GVD curves have been calculated with a finite-elements
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Fig. 4. (a) Typical SEM image of PCFs used for infrared CW supercontinuum. (b) Typical
attenuation spectrum.

Parameter Fiber A Fiber B Fiber C
ZDWI1 (nm) 1012 958 903
ZDW?2 (nm) 1236 1346 1570

v at 1064 nm (W~ 1.km™1) 22 24 30
GVD at 1064 nm (ps/nm/km) +4 +12 +30

Table 1. Parameters of the PCFs under investigation in this section.

method (FEM) from high resolution SEM images of the PCFs. Table 1 summarizes the
properties of the three fibers under investigation.

3.2 Control of the supercontinuum long-wavelength edge

The experiments reported in this section were performed in 100 m-long samples of each PCF
described in Table 1. In the launching conditions described in the previous paragraph, the
output power were respectively 7.35 W, 7.25 W and 7.16 W for fibers A to C, with a 20 W CW
fiber laser at 1064 nm. Figure 5(b) shows the spectra obtained in all fibers. The green curve
corresponds to fiber A, with the closest ZDWs. As expected from Ref. Mussot et al. (2007),
the spectral width is limited by the second ZDW. The dispersion value at the 1064 nm pump
wavelength is very low (+4 ps/nm/km). The spectral broadening is thus initially dominated
by MI, with the anti-Stokes MI sideband overlapping with the normal GVD region. The short
wavelength extension just below the first ZDW results from a spectral overlap of MI sidebands
and blue-shifted dispersive wave in the normal GVD region, as analyzed in Cumberland et al.
(2008b). Since the spectral position of the Stokes MI sidebands is just below the second ZDW
of the fiber, the SSFS is very short and the spectrum remains consequently quite symmetric.
The power generated above the second ZDW (depicted by a vertical line) is attributed to the
generation of red-shifted dispersive waves accompanying the cancelation of the SSFS. The
red curve in Fig. 5(b) corresponds to the spectrum measured for fiber B, with both ZDWs
separated by about 400 nm. In this fiber, the long-wavelength ZDW is very close to the center
of the water absorption band (1380 nm). It is well known that the SSFS is canceled if a second
ZDW is present at longer wavelengths Skryabin et al. (2003), which is the case here. This
is seen in the red spectrum of Fig. 5(b) as a peak centered at 1310 nm, which corresponds
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Fig. 5. (a) GVD curves of the three PCFs under investigation in this section. The vertical line
depicts the pump wavelength. (b) Corresponding output spectra recorded for a fiber length
of 100 m and a pump power of 12.5 W launched into the PCFs. Vertical lines represent the
ZDWs.

to an accumulation of all solitons stopped by the second ZDW. Additionally, a large part
of energy is transferred to a dispersive wave centered at 1420 nm, which is phase-matched
with the solitons. In fiber C displayed in Fig. 5(b) in blue, the flatness of the spectrum is
clearly affected by the water absorption at 1380 nm. This can be seen as a spectral decrease
at wavelengths higher than 1380 nm. The higher energy solitons are able to tunnel through
the water attenuation band and are then stopped by the second ZDW located at 1570 nm in
fiber C. The less energetic ones stop just below 1380 nm due to the water absorption peak. As
in fiber B, an accumulation of solitons is seen just before the second ZDW, and a dispersive
wave which is phase-matched with the solitons is generated at 1630 nm. Note that the peak
located around 1120 nm is due to Raman lasing because of Fresnel reflection at both fiber
faces. It is also important to note that, unlike in fiber A, no short wavelength extension is
observed in fibers B and C. Indeed, in these fibers, the amount of energy transferred from
solitons to blue-shifted dispersive waves is negligible because there is no spectral overlap
between solitons and dispersive waves Akhmediev & Karlsson (1995).

3.3 Dynamics of the supercontinuum formation

To go further into the detailed dynamics of SC formation, we performed a cut-back
measurement on fiber C. The spectrum was measured every 5 m for fiber lengths between
0.5 and 100 m. The results are displayed in Fig. 6, where the output spectra are represented
as a function of fiber length. The solitonic waves created by MI are progressively red-shifted
by SSES during the first 30 m of propagation. They are then stopped by the second ZDW
located at 1570 nm (depicted by the white dotted vertical line). The soliton build-up due
to spectral recoil before the second ZDW can be seen as an increase in spectral power. The
red-shifted dispersive wave is also observed from this propagation length of 30 m. For more
important fiber lengths, the spectrum extension remain almost constant. The experimental
results displayed in Figs. 5 and 6 illustrate the possibility of tailoring the spectrum extent in
the context of multi-watt and relatively flat SC generation. The long-wavelength edge of the
spectrum is limited by red-shifted dispersive waves, whose spectral location is imposed by
the second ZDW.
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4, Extension towards visible wavelengths

Another long term issue of CW-pumped SC concerns the lack of short wavelengths generation
when pumping at 1 ym. The generation of visible wavelengths would be of great interest
for a substantial number of applications including high resolution imaging, metrology or
spectroscopy. One possible approach to achieve this is to take advantage of the process
of dispersive wave trapping by solitons Nishizawa & Goto (2002). This process leads to
an extra blue shift of dispersive waves in the spectral domain Genty et al. (2004; 2005);
Gorbach & Skryabin (2007a;b); Gorbach et al. (2006); Travers (2009); Travers & Taylor (2009).
Experimentally, this phenomenon has been proved to be of primary importance to generate
short wavelengths in pulsed pumping regime Stone & Knight (2008). It has also been
combined with dispersion-engineered PCFs to further extend SC to the UV in nanosecond
and picosecond pumping schemes Kudlinski et al. (2006). This idea consists in modifying
the dispersion curve along the fiber so that group-velocity matching conditions for trapped
dispersive waves continuously evolve along propagation. This leads to the generation of new
wavelengths as the ZDW decreases along propagation. The present work is based on this idea
which has been adapted to CW pumping conditions.

4.1 Zero-dispersion wavelength decreasing photonic crystal fibers

The dispersion-engineered PCF firstly used within this framework consists of a 100 m-long
section with a constant dispersion followed by a 100 m-long section with decreasing ZDW, as
illustrated in Fig.7(c). The total attenuation of the 200 m-long PCF is 1.5 dB at 1064 nm. A SEM
image of the input and output faces of the PCF is represented in Figs. 7(a) and (b) respectively,
with the same scale. The input outer diameter is 125 ym, the hole-to-hole spacing A is 4.7 ym
and the hole diameter d is 2.6 ym. The dispersion curves at the PCF input and output have
been computed with a finite elements method from high resolution SEMs and are represented

Dispersive
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Fig. 6. Experimental measurement of the SC dynamics as a function of fiber length, in fiber C.
The white vertical line represent the second ZDW.
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Fig.7. (a),(b) SEMs of the input and output faces of the ZDW decreasing fiber. Respective
outer diameters are 125 and 80 pum. (c) Outer diameter versus fiber length. (d) GVD curves at
the input (red line) and output (blue line) of the ZDW decreasing fiber. (e) ZDW versus fiber
length.

in Fig. 7(d) in red and blue lines, respectively. The input ZDW is located at 1053 nm, just
below the pump wavelength of 1064 nm. To decrease the size of the microstructure along
propagation and consequently shift the ZDW toward shorter wavelengths, the outer diameter
of the fiber has been approximately linearly reduced to a final diameter of 80 ym (see Fig. 7(c)).
This was done by gradually increasing the drawing speed during the fiber fabrication whilst
keeping the preform feed rate constant. The pitch A at the fiber output was reduced to 3.1 ym
and the d/ A ratio was kept constant along the whole PCEF, so that the output ZDW is shifted
down to 950 nm. The longitudinal evolution of the ZDW of the PCF is represented in Fig. 7(e).
In the first 100 m, the ZDW is fixed to 1053 nm, and it drops to 950 nm in a quasi-linear way
along the last 100 m.

4.2 Generation of visible light

The setup used to pump the fabricated PCF is shown in Fig. 1. The beam from a 20 W CW
fiber laser at 1064 nm was collimated and launched into the fiber with a lens of 4.5 mm focal
length. The coupling efficiency was 75%, corresponding to a power of 13.5 W launched into
the PCFs.

The SC spectrum measured at full pump power in the ZDW-decreasing PCF described above
displayed in Fig. 8 in red line. It is ranging from 670 nm to 1350 nm with an output power
of 9.5 W. Additional spectral components are located around 550 nm and the visible part of
the SC was easily observable with naked eye at the PCFs output. The inset of Fig 8 displays
a far-field image of the whole visible spot observable at the PCF output. Since the modal
distribution of the SC does not look single mode, the far-field profile was investigated as a
function of wavelength by using 10 nm bandpass filters. Right insets of Fig. 8 show far-field
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Fig. 8. Output spectra obtained in the uniform PCF (black line) and in the ZDW-decreasing
one (red line). Inset: output beam dispersed by a prism. Right: output far-field without any
filter (top), with a 550 nm filter (center) and with a 700 nm filter (bottom).

images centered at 550 nm and 700 nm . The green spectral components located around
550 nm are clearly generated in higher-order modes. This part of the spectrum was not
expected from our design and is probably due to a phase-matching condition satisfied with
higher-order modes Efimov et al. (2003); Omenetto et al. (2001). The far-field image recorded
at 700 nm shows that the red spectral components are generated in a fundamental mode. We
also checked that the mode was fundamental-like in the whole spectrum above 700 nm for all
fibers.

A uniform PCF with dispersion comparable to the ZDW-decreasing fiber input was used for
comparison. The output spectrum obtained in the same conditions than above is displayed
in Fig. 8, in grey line. It extends up to 1355 nm into the infrared, which is very similar to
the spectrum obtained in the ZDW-decreasing PCF. However, the short-wavelength edge is
located at about 840 nm, which is much less spectacular than in in the ZDW-decreasing PCF
where it reaches 670 nm. This clearly shows that the extra 170 nm bandwidth toward the
visible is generated thanks to the decreasing ZDW.

In order to generate even shorter wavelengths, the ZDW-decreasing PCF has been pumped
with a more powerful Yb fiber laser delivering 50 W at 1070 nm with a full width at half
maximum of 1 nm. With the same setup as described above, we were able to launch a
maximum power of 35 W in the fiber, corresponding to a coupling efficiency of 70 %. The
resulting experimental spectrum is displayed in Fig. 9. For the highest pump power of 35 W,
the SC is ranging from 650 nm to 1380 nm with a 19.5 W output power.

4.3 Discussion and numerical modelling

As claimed above, the basics of using a ZDW decreasing PCF to extend the spectrum towards
short wavelengths was to use progressively red-shifted solitons to trap dispersive waves in
the visible. The results displayed in Fig. 8 indeed suggest that the long- and short-wavelength
edges of the spectra are correlated. In order to have a further insight into the mechanisms of
the visible SC formation, the power dynamics of the spectral broadening has been investigated
in the ZDW-decreasing PCF for launched powers of 8.2 W, 11.3 W and 13.5 W (see Ref. ?).
As expected, a broadening of the output spectrum occurs on both sides with increasing
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Fig. 9. Experimental (red line) and numerical (black line) output spectra obtained in the
ZDW-decreasing PCF for a launched pump power of 35 W. The average power at the fiber
output is 19.5 W. Spectrogram of a single-shot simulation at the output of the 200 m-long
ZDW-decreasing PCF. The vertical line joins a soliton and its corresponding trapped
dispersive wave. The color scale ranges over 30 dB.

launch power inside the fiber. The long and short wavelengths sides were identified by
measuring the wavelength of typical spectral features on both edges of the spectrum. The
spectral broadening on the long-wavelength side stops at 1140, 1160 and 1250 nm for
respective increasing pump powers. The short-wavelength edge is progressively blue-shifted
with increasing pump powers and extends to respectively 763, 751 and 720 nm. These
experimental results have been compared with the computed group-index curve calculated
for the end (small diameter) of the ZDW-decreasing PCF. This is illustrated in Fig. 10, where
the group-index curve is plotted as a function of wavelength. Markers represents the long
and short wavelength edges experimentally measured for launched powers of 8.2 W (green),
11.3 W (blue) and 13.5 W (red) respectively. The corresponding points for a fixed power
are joined by nearly horizontal lines on the plot, which means that these radiations travel at
almost the same group velocity when they go out of the fiber. This provides a strong support
to the process of group-velocity matching between the most blue- and red-shifted spectral
components of each spectrum and this evidences the benefit of the ZDW-decreasing fiber for
the generation of shorter wavelengths.

In order to get a deeper understanding of the nonlinear mechanisms originating the visible
extension, we performed numerical simulations. We integrated the generalized nonlinear
Schrodinger equation including the experimental attenuation curve and all experimental
parameters. The numerical method used to model the pump laser was fully described in
Ref. Mussot et al. (2007). The simulations were very time consuming (1 week on a standard
PC) so we did not perform the usual averaging procedure Mussot et al. (2007) required to
account for the experimental measurements. The output spectra resulting from a single
simulation is plotted in black line in Fig. 9(a). By performing several other simulations
we checked that there was no significant modification from simulation to simulation. The
agreement between numerical simulations and experimental results is excellent in terms of
shape and extension of the spectrum. It is important to note that numerical simulations
have been performed without any free parameters. In both cases, the stop of the spectral
broadening at the long-wavelength is due to a relatively high OH absorption around 1380 nm
(measured to be about 300 dB/km). The slight discrepancy with experiments observed
at short wavelengths (680 nm for the simulations against 650 nm for the experiments) is
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Fig. 10. (a) Output spectra recorded in the ZDW-decreasing PCF for pump powers of 8.2 W
(green), 11.3 W (blue) and 13.5 W (red). Output powers are indicated on the graph. (b)
Group-index curve calculated at the ZDW-decreasing PCF output (black line). Markers
indicate extreme wavelengths of the corresponding SC spectrum experimentally recorded.

probably due to the uncertainty of the calculated GVD curve, leading to a slightly different
group-velocity matching condition between red-shifted solitons and trapped dispersive
waves. To further illustrate the trapping mechanism responsible for the short wavelength
part of the spectrum, the numerical spectrogram of the optical field at the output of the fiber
is represented in Fig. 9(b). It corresponds to the numerical spectrum displayed in black line in
Fig. 9(a). In the spectrogram, one can see a whole spectral region full of solitons (represented
as red dots) originating from the initial MI process. This region extends from the pump
wavelength (1070 nm) to the upper limit of the spectrum. Some of the solitons are close to
the pump wavelength and some other ones exhibit an important red-shift due to SSFS. The
most shifted ones are stopped by the important OH absorption peak at 1380 nm. The region
between 680 nm and the pump wavelength corresponds to dispersive waves generated from
solitons Travers (2009); Travers et al. (2008). For the most red-shifted solitons, a blue-shifted
trapped dispersive wave can be observed just below 700 nm, both travelling at the same
group-velocity. An example of a soliton group-velocity matched with a dispersive wave is
highlighted in Fig. ??, where both are joined by a black line. We can see that the trapped
dispersive wave is exactly at the vertical of the soliton which confirms that both waves
travel at the same velocity inside the fiber. It thus confirms that the extension of the SC
towards short wavelengths is mainly due to the trapping of dispersive waves by red-shifted
solitons Nishizawa & Goto (2002) rather than by the basic dispersive wave generation process
Akhmediev & Karlsson (1995). It should be noted then that the generation of even shorter
wavelengths must be possible with the mechanism of dispersive waves trapping by reducing
the OH absorption peak, which can be achieved by a careful cleaning treatment during the
fiber fabrication process, and/or by enhancing the fiber nonlinearity.

5. White-light continuous-wave supercontinuum

5.1 Benefit of GeO, doping
As explained above, CW SC generation is intimately linked to the propagation of fundamental
solitons generated from ML In order to optimize the SC bandwidth, it is thus necessary to
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optimize the soliton self-frequency shift effect. One of the most natural solitons to do that
is to use GeO;-doped fibers, because this doping is well known to enhance both Kerr and
Raman nonlinearities. However, in order to be usable in CW SC generation experiments, it is
important that the ZDW remains slightly lower than the pump wavelength. By adjusting the
microstructured cladding properties, it is possible to find some designs with greatly enhance
nonlinearity, and still controlled dispersion Barviau et al. (2011). Figure 11 illustrates this. The
blue line in (a) correspond to the GVD curve and nonlinear coefficient of a pure silica PCF
with a 1060 nm ZDW, and the red line corresponds to a GeO,-doped PCF with a parabolic
profile and a maximum refractive index difference of 20 mol.%. The microstructured cladding
parameters have been adjusted so that the doped PCF has the same ZDW of 1060 nm, but
in this case, the nonlinear coefficient is enhanced by a factor of about 4 at 1064 nm. Indeed,
it reached about 38 W~L.km™! in the GeO,-doped PCF, against 10 W~1km™! in the pure
silica one. Moreover, Fig. 11(b) shows the enhancement of the material Raman gain due to
the presence of GeO; as compared to pure silica. A GeO,-doped PCF corresponding to this
design has thus been fabricated, and the pure silica PCF has also been used for comparison.
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Fig. 11. (a) GVD curves (left axis) and nonlinear coefficient (right axis) calculated for a pure
silica PCF (blue) and a PCF doped with a GeO, content of 20 mol.%. (b) Raman gain spectra
gr for pure silica (blue) and 20 mol.% GeO,-doped silica (for a 164 nm pump).

5.2 Spectral extension to the blue

In order to highlight the benefit of using GeO,-doped PCFs in the context of CW SC
generation, both fibers were pumped with a CW fiber laser at 1064 nm in similar conditions.
Figure 12(a) shows output spectra obtained for a pump power of 13 W and a length of 300 m
for the GeO,-doped PCF and 400 m for the pure silica one. The SC spectrum looks much
broader in the GeO,-doped PCF than in the pure silica one, yet longer.

As mentioned above, long and short-wavelength SC edges are fixed by a group-velocity
matching condition between solitons and trapped dispersive waves Genty et al. (2004; 2005);
Gorbach & Skryabin (2007a;b); Gorbach et al. (2006); Travers (2009); Travers & Taylor (2009).
Bottom curves in Fig. 12 show group index curves of both fibers, and blue lines illustrates the
group-index matching between both SC edges in the pure silica fiber. In the GeO,-doped
one, a dip in the spectral power density appears just below 1380 nm because of soliton
accumulation just below the OH absorption band. As a consequence, a dip in the spectral
power density can be observed at the corresponding group-velocity matched wavelength
(around 805 nm) because of trapped dispersive wave accumulation. From the measurement of
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Fig. 12. Top: Supercontinuum generated in the pure silica PCF (blue line) and in the
GeO,-doped one (red line) for a pump power of 13 W. Bottom: corresponding calculated
group index curves.

the short wavelength edge (570 nm for the GeO,-doped PCF) together with the group-index
matching, it is thus possible to estimate the long-wavelength one to 2040 nm (not reachable
with our optical spectrum analyzer). In this case, there is thus a threefold enhancement of the
SC bandwidth (in frequency) as compared to the pure silica PCFE.

Note that comparable results in terms of spectral extent have been reported in pure silica PCFs
Travers et al. (2008), but with a much higher pump power.

5.3 White-light generation

With the aim of still enhancing the SC bandwidth, it is possible to associate the benefits of
GeO, doping and fiber tapering presented above. We have thus fabricated a GeO,-doped
ZDW decreasing PCEF, characterized by a 50 m long uniform section followed by a 130-m long
section over which the outer diameter linearly decreases from 135 to 85 ym. Figure 13(a)
shows the spectrum obtained with this fiber for a 45 W pump power. It spans from 470 nm to
more than 1750 nm, with an output power of 10 W. A picture of this experiment showing
white-light generation is displayed in Fig. 13(b). This is the first demonstration of CW
white-light supercontinuum generation.
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Fig. 13. (a) Supercontinuum generated in a GeO,-doped ZDW decreasing PCF, with a pump
power of 45 W. Top inset: photograph of the output beam far-field. Bottom inset: photograph
of the output beam dispersed by a prism. (b) Photograph of the experiment.

6. Conclusion

It is now possible to generate continuous wave supercontinua ranging from the near
ultraviolet to the near infrared with spectral power densities in the order of tens of mW/nm.
Most of the manipulation of the spectra were carried out by a fine control of the fiber
microstructure. These all-fiber sources are very promising for many applications requiring
stable and extremely powerful sources.
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1. Introduction

The group velocity at which light pulses propagate through a dispersive material system is
very different from the vacuum speed of light ¢, One refers to light as being “slow” for v, <<
¢ (Boyd & Gauthier, 2009) or “fast” for v, > c or v, <0 (Stenner et al, 2003 ). For v, <0, the
pulse envelope appears to travel backward in the material (Gehring et al, 2006), and hence it
is sometimes referred to as “backward light.”

The subject of slow light has caused keen interest in the past decade or more, and it is
possible to control the group velocity of light pulses in the dispersive materials. Interest in
slow and fast light dates back to the early days of the 20th century. Sommerfeld and
Brillouin (Sommerfeld & Brillouin, 1960) were intrigued by the fact that theory predicts that
v, can exceed c, which leads to apparent inconsistencies with Einstein’s special theory of
relativity. Experimental investigations of extreme propagation velocities were performed
soon after the invention of the laser (Faxvog and et al, 1970). In 1999, Harris's group
research work greatly stimulated researchers’ interests, which showed that light could be
slowed down to 17m/s. The result was obtained in ultra cold atom clouds with the use of
electromagnetically induced transparency (EIT), which induces transparency in a material
while allowing it to retain strong linear and nonlinear optical properties (Hau et al, 1999).
Slow light can also be obtained through the use of the optical response of hot atomic vapors
(Philips et al, 2001). These early research works require hard conditions and the slow light
cannot operate in room temperature.

Recently, researchers found ways to realize slow light operating in room temperature and
solid-state materials, which are more suited for many practical applications, namely slow
light via stimulated Brillouin scattering(SBS), slow light via coherent population oscillations
(CPO), tunable time delays based on group velocity dispersion or conversion/
dispersion(C/D), slow light in fiber Bragg gratings and so on. In this chapter, we describe
some of the physical mechanisms that can be used to induce slow and fast light effects in
room-temperature solids (Bigelow et al, 2003) and some of the exotic propagation effects
that can thereby be observed. We also survey some applications of slow and fast light within
the fields of quantum electronics and photonics.

2. Fundamentals of slow and fast light

Slow and fast light refer to the group velocity of a light wave. The group velocity is the
velocity most closely related to the velocity at which the peak of a light pulse moves through
an optical dispersive material (Milonni, 2005), and is given by the standard result
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v, =—o, n :n+a)d— 1)

where 7 is the refractive (phase) index and o is the angular frequency of the carrier wave of
the light field. One refers to light as being slow light for v, << ¢, fast light for for v, > ¢, and
backwards light for v, <0 or v, is negative. Extreme values of the group velocity invariably
rely on the dominance of the second contribution to the group index of Equation (1). This
contribution of course results from the frequency dependence of the refractive index, and for
this reason extreme values of the group velocity are usually associated with the resonant or
near-resonant response of material systems.

According to this theory, slow light is expected in the wings of an absorption line and fast
light is expected near line center, and the spatial dispersion, that is, the non-locality in space
of the medium response, is another mechanism that can lead to slow light, as has been
predicted (Kocharovskaya et al,2001) and observed (Strekalov et al, 2001). We catalogue the
main methods to realize slow light in room temperature solid, namely slow light via
stimulated Brillouin scattering(SBS), slow light via coherent population oscillations (CPO),
tunable time delays based on group velocity dispersion or conversion/ dispersion(C/D),
slow light in fiber Bragg gratings and so on. We will describe CPO and SBS slow light in
more details.

3. Slow light via coherent population oscillations (CPO)

3.1 Introduction of CPO

The technique of coherent population oscillation(CPO) is also exploited to reduce the group
velocity.The process of CPO allows the reduction of absorption and simultaneously
provides a steep spectral variation of the refractive index which leads to a strong reduction
of the optical group velocity,i.e.,slow light propagation.This process is easily achieved in a
two-level system which interacts with a signal whose amplitude is periodically
modulated.The population of the ground state of the medium will be induced to oscillate at
the modulation frequency. This oscillation creates an arrow hole in the absorption spectrum,
whose linewidth is proportional to the inverse of the relaxation lifetime of the excited level.
CPO is highly insensitive to dephasing processes in contrast to what happens in other
schema such as EIT, where the width of the spectral hole burned in the absorption profile is
proportional to the inverse of the dephasing time of the ground state. That makes CPO an
appropriate technique to easily achieve slow light propagation in solid-state materials at
room temperature.

3.2 Theoretical mode

Making use of this technology, we observe optical pulse delay and advancement
propagation in an erbium-doped optical fiber. Compared to other solid material, erbium-
doped optical fiber allows for long interaction lengths, which can be desirable in producing
strong influence(Schwartz& Tan, 1967). We obtain the controllable pulse delay continuously
from positive to negative by using a separate pump laser.

When pumped at 980nm, the erbium-doped fiber acts as a three-level molecular system. The
relaxation time from the metastable state to the ground state is much greater than the one
from the excited state to the metastable state. The energy levels and pumping scheme that
we employed to observe slow and fast light in erbium-doped fiber is shown in Fig 1.
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Fig. 1. The energy levels and pumping scheme we employed to observe slow and fast light
in erbium-doped fiber.

The relaxation time from the excited state associated with the signal frequency to the ground
state is much greater than the one from the excited state associated with the pump
frequency to the excited state associated with the signal frequency. The population of upper
excited level is approximately equal to zero, which indicates n; +n, = p. The population

density of the ground state will accord with the rate equation(Novak & Gieske, 2002)
ony

p—n
— =Ry =Wipny + Wy (p—mp) + L, 2
ot T,

where W denotes transition rates associated with signal and R presents transition rates
associated with pump. T; is the lifetime of the excited state and p is the erbium ion
density. The transition rates are also functions of ¢ and z, as well as being proportional to the
pump and signal powers. According to the equations for the transition rates and neglecting
the losses through the fiber, we have

0 Ny-N
—Ny =L(L,t)=1,(0,t)+ I,(L,#) = I,(0,t) + ——2L. 3
ot 1 p( ) p( ) s( ) s( ) T1 ()
If we modulate the signal(~1550nm) intensity as
1(0,£) = I2(0) (1 + u, cos 5t ). 4)

here, I°(0) is the average input power at the input (Z=0) and I°(0)y, =1,(0)is the
modulation amplitude. A single intensity-modulated beam contains only a carrier wave (to
act as the pump) and two sidebands (to act as probes) on the output spectrum, which induce
population oscillation. The population of the ground state is given by

Ny(t)=N7[1+&-cos(st+4)], (5)

where NV is the mean (un-modulated) steady-state population. We next find the steady-state
solution to Eq. (3). Finally, We can determine the expression of the delay of the optical signal
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At = ! arctan . (6)
Ox2

3.3 Experimental results

The signal optical field from a distributed feedback laser diode operating at 1550nm
through the attenuator is divided into two parts: one part of laser (98%) goes through an
erbium-doped optical fiber and then to an InGaAs photodetector with 10MHz bandwidth.
The other part of laser output signal (2%) is sent directly to an identical photodetector to
be used as reference.Transmitted signals are received by photodetectors, and sent into a
digital oscillograph for recording. Then the comparison between the reference signal and
the EDOF signal is made in a computer (Sargent,1978, Boyd & Gauthier, 2005). The group
velocity in fibers can be inferred. In the experiments, the injection current of the laser is
sinusoidally modulated by a function generator. We use single mode, Al,SiOs-glass-based
erbium-doped optical fibers at several ions density. The experimental setup is shown in
Fig.2.

The absorption coefficient « and the emission coefficient S are related to their cross
sections respectively and shown by the following

a,=Topp a,=T,op3p f=Tonp. ()

Miometre  Gplier  Lolstor ——

[Fiieion Generir]

|l:-:-n:p1.ta' Ceeilleseape

Fig. 2. The experimental setup used to observe slow light in an erbium-doped optical fiber.

Parameters used for the calculation are «,=31.71 dB/m, «,=423dB/m, f,=47.665 dB/m,
T, =10.5ms, L=2m, and p =6.3x10%. Our experimental results are obtained through use of
modulation techniques such that the optical field contains only a carrier wave (to act as the
pump)and two sidebands (to act as probes). Because the decay time is so long (about
10.5ms), this oscillation will only occur if the beat frequency () between the pump and
probe beams is small so that 5T; ~1.When this condition is fulfilled, the pump wave can
efficiently scatter off the temporally modulated ground state population into the probe
wave, resulting in reduced absorption of the probe wave. We consider the Kramers-Kronig
relations, which show that a narrow hole in an absorption spectrum will produce strong
normal dispersion. Fig.3 illustrates the results of our experiments.
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Fig. 3. Observed time delay as a function of the modulation frequency for input power of
1.85mW. The solid line is the theoretical fit to the experimental data. The open circles
represent the measured group velocity. The inset shows the normalized 5Hz input (solid
line) and output (dashed line) signal. The signal is delayed 8.75ms corresponding to a group
velocity as low as 228.57m/s.

In Fig.3, we show the measured delay in an optical fiber with erbium ion density of
6.3x10%°m-3 and compare it with the numerical solution of Eq.(6) for input power of 1.85mW.
We observe the largest delay, 8.75ms, which corresponds in the inset of Fig.3. The inferred
group velocity is as low as 228.57m/s. A maximum fractional delay of 0.129 is observed at
the modulation frequency of 60Hz. Fig.3 shows the delay as a function of modulation
frequency in the low frequency region.

4. Slow light via stimulated Brillouin scattering (SBS)

4.1 Introduction

Slow light based on stimulated Brillouin scattering (SBS) in optical fibers has attracted much
more interests for its potential application in optical buffering, data synchronization, optical
memories and optical signal processing. Compared with previously demonstrated slow-
light techniques (Gehring et al, 2008, Zhu et al, 2007), such as electromagnetically induced
transparency (EIT) (Hau et al, 1999) and coherent population oscillations (CPO) (Bigelow et
al, 2003), it has a lot of advantages, for instance, the simple, flexible and easy-to-handle SBS
can be realized in room temperature; the optical fiber components based on it can easily
integrated with the existing telecommunications infrastructure; the slow-light resonance can
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be tunable within the optical communications wavelength windows; the use of optical fiber
allows for a relaxed pump-power requirement owning to long interaction length, small
effective mode area and so on.

However, the SBS-induced group index change is always so small in standard single mode
fiber and dispersion shift fibers (DSFs) (Song et al, 2005) to delay the time very little. In
order to explore suitable optical fibers served as slow light generation with much efficiency,
some special optical fibers, such as chalcogenide fiber (Abedin,2005, Song et al, 2006),
tellurite fiber (Abedin,2006), bismuth fiber (Jauregui et al, 2006) and so on, have been
extensively studied, these kinds of optical fiber are usually with large gain coefficient and
low loss coefficient. Though long pulse delay can be obtained using cascaded fiber segments
joined by unidirectional optical attenuators to overcome pump depletion (gain saturation)
and amplified spontaneous Brillouin emission (ASBE), it's always accompanied with serious
pulse distortion (Song et al, 2005). So gain tailoring is used in pulse distortion management
to keep a balance between time delay and pulse distortion (Stenner et al, 2007). To overcome
the narrow band spectral resonance of SBS which limits the maximum data rate of the
optical system, a simple and inexpensive pump spectral broadening technique is used in
broadening the SBS slow light bandwidth (Herraez et al, 2006), which paves the way
towards real applications based on SBS slow light.

Numerical studies of SBS slow light focusing on different pulse parameters were also
studied (Kalosha et al, 2006), which provide an insight into the SBS slow light process, but
we can’t learn a lot about how the optical fiber structures and Brillouin gain parameters
influence on the SBS process, the time delay and the pulse shape. In this section, the SBS
model in optical fiber is described and the three coupled SBS equations are solved by the
method of finite difference with prediction-correction, the effects of gain coefficient, gain
bandwidth and effective mode area on time delay and pulse broadening are demonstrated.
Considering the injected stokes pulse shape, the influence of its sharpness, magnitude and
duration on delay time and pulse broadening factor was observed mainly, and its reason
was analyzed. These results provide base for designing optical buffer, time delay line or
other optical components based on the SBS slow light technologies.

4.2 Theory foundation and numerical model
The process of SBS is the interaction of two counter-propagating waves, a strong pump
wave and a weak Stokes wave. If a particular frequency relation is satisfied

vpump = Ustokes T VB~ (8)

Where v, and vg,, are the frequency of pump wave and stocks wave respectively, vy
is the Brillouin frequency. Then an acoustic wave is generated which scatters photons from
the pump to the Stokes wave and the interference of these two optical waves in turn
stimulates the process. From a practical point of view, the process of SBS can be viewed as a
narrowband amplification process, in which a continuous-wave pump produces a
narrowband gain in a spectral region around v,,,,,, — v . In this paper, the Stokes pulse is set
on the SBS gain line center to achieve the maximum delay.

For simply describing the SBS process, assume: (1) Transverse field variations are neglected,
Stokes and pump fields are assumed to vary with time t and space z only. (2) The slowly
varying envelope approximation (SVEA) SBS model is used, i.e., the field amplitudes are
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assumed to vary slowly in time and space as compared with their temporal and spatial
frequencies. (3) The initial (t=0) phonon field is zero and the Stokes output grows from an
injected Stokes field at z=0. (4) The frequency difference between the pump and Stokes wave
is set to the Brillouin shift of the fiber, i.e., the Stokes pulse is on the SBS line center.
Considering a Brillouin amplifier where the pump wave counter-propagates through the
fiber with respect to the Stokes pulse, the SBS process can be described by one-dimensional
coupled wave equations involving a backward pump wave (-z direction), a forward Stokes
wave (+z direction), and a backward acoustic wave. Under the slowly varying envelope
approximation (SVEA) and neglecting the transverse field variations, the equations are
written as follows (Damzen et al,2003)

oA, oA, g
4 4 :
—F P~ A +ig,AQ, 9
0z ¢ ot PR Q ©
0A, 1 0A, a . *
s ZA +ig,AQ, 10
0z ¢ ot p e Ti& & 10
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where AP,AS ,andQ are the amplitudes of the pump wave, the Stokes wave, and the
acoustic wave, respectively; n is the group refractive index when SBS is absent; « is the loss
coefficient of the fiber; T'z /27 is the bandwidth (FWHM) of the Brillouin gain; g; is the
coupled coefficient between the pump wave and the Stokes wave, g, is the coupled
coefficient between the pump (Stokes) wave and the acoustic wave, g,=4g,g, /T’ is the
peak value of the Brillouin gain coefficient.

According to the small signal steady state theory of stimulated Brillouin scattering, the
pump power P, required to reach Brillouin threshold in a single pass scheme is related
to the Brillouin gain coefficient g, by the following equation:

80(Pusiticar / Aegp )Lop =21, (12)

where P, is the power corresponding to the Brillouin threshold, L is the effective
length defined as L,y = a '[1-exp(-aL)], from Eq.(12) we can obtain the threshold pump
intensity

Icritical = Pcritical / Aef =21 / (gOLeﬁ‘) . (13)

Once reaching the threshold pump intensity, a large part of the pump power is transferred
to the Stokes wave, resulting in the generation of Stokes wave at the output depletes the
pump seriously and leads to serious Stokes pulse distortion. In our simulations, we consider
the pump intensity is near the Brillouin threshold and obtain the Stokes gain around 16
using the previous parameters, here the Stokes gain is defined as:

Gain = log{hJ , (14)

mn
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where P, and P, are the output and input of the Stokes power, respectively.
Let us assume that pump wave is continuous wave and stokes field is sufficiently weak. The
group index is the function of frequency described as follow(Zhu et al, 2005)

N gpl, 1-460" /T4
Ty (1+460° /T

n(w;) =ny (15)

where I, is the optical intensity of pump wave; dw is the margin between the angular

frequency of stokes pulse and the center angular frequency of the gain bandwidth;
2

e
’ ngUBC3pOFB
properties, vy is the velocity of acoustic wave.
Delay time T, is defined to describe the difference of the arrival time when the output
stokes pulse reach its maximum between when SBS occurs and doesn’t occurs,
T.;,=T,;/T to describe the relative delay time with T which is the FWHM of the injected
stokes pulse. According to the weak signal theory, delay time and B are given by (Velchev et
al, 1999)

is the line-center gain factor which is associated with the material physical

T,=G /T, (16)
B= [1+ —1621“3 (17)
Tr,

where G=gpl,L is the weak signal gain parameter; L is the fiber length. For the purpose of
indicating how much the pump wave energy contributes to the stokes wave energy, we
define real gain as

Gr = 1Og(Pout / Pm) (18)

where P, and P, are power of the output and input stokes wave, respectively.
We assume that injected stokes pulse is super-Gaussion shaped

2m
u(t)= exp[—%[%}] ] (19)

where t is the time of pulse transmission, U(t) is normalized amplitude, Tj is the half width
of pulse (at 1/e-intensity point). The parameter m controls the degree of edge sharpness (for
m=1, it is Gaussion-shaped; for m>1, it is super-gaussion-shaped, and the degree of edge
sharpness is increased with m). For different m, pulse with same FWHM can be written as

2m
() = exp[—sz(IHZ)[%] J (20)

Furthermore, we define average intensity of normalized super-Gaussion pulse with FWHM
of T as



Slow Light in Optical Fibers 89

172 2o pm Y
T _ = _ = _n2m
L= Tj (u) dt=— | [exp[ 2 (1n2)T2mj] dt (1)
-T/2 -T/2

In our numerical processing, applying the slowly-varying envelope approximation (SVEA)
for both pump and stokes fields, firstly, we obtained the values of p at some time by
solving the Eq.(11) with Fourier transformation and inverse Fourier transformation.
Secondly, we transform the Eqs (9-10) into single variable partial differential equations by
using characteristics. Finally, applying the value of p we obtained to the single variable
partial differential equations, we can calculate the values of E, and E, at next time by
using the fourth-order Runge-Kutta formula. And we set these results as the initialization
value to achieve the value of p at next time. Repeating above steps, we can achieve the
output stokes pulse at anytime.

4.3 Numerical simulation results

In order to study the situation where the pump is depleted, we solve the Egs. (9)-(11)
numerically using the method of implicit finite difference with prediction-correction to
determine how gain coefficient, gain bandwidth and effective mode area influence SBS slow
light.

In our simulation, the parameters are considered from the common single-mode fiber, and
select: fiber length L=25m, pump wavelength 4 =1550nm, group refractive index n=1.45,
effect mode area Aeff =50 ,umz, loss coefficient o =0.2dB/km, gain bandwidth (FWHM)
'y /27 =40MHz, gain coefficient g, =5x10"""m/W. We assume the pump wave is CW
and the Stokes wave is Gaussian shaped with the peak power of 0.1 u/W and the FWHM
pulse width of 120ns (its FWHM bandwidth in frequency domain is around 3.7MHz which
is much smaller than that of SBS gain bandwidth we use).

4.3.1 Influence of gain coefficient on time delay and pulse broadening

The curves of the pulse delay and pulse broadening factor as a function of the gain with
different gain coefficient g,were shown in Fig.4. It can be seen from Fig.4(a) that the time
delay increases linearly with Stokes gain when the gain is small (<10), that’s because the
pump isn't completely affected when the gain is small. For larger gain, pump depletion
becomes more and more seriously, the time delay increases slowly with gain and reaches its
maximum before decreasing with gain. At the same time, for larger gain coefficient, the time
delay decreases with increasing gain more quickly and even leads to pulse advancement
which can be explained by gain saturation. It can also be seen that the smaller gain
coefficient reaches the gain saturation at a larger gain and the maximum time delay is
accordingly larger, the gain saturation limits the maximum time delay for a Stokes pulse at a
given input power.

The pulse broadening factor for different gain coefficients as a function of gain was shown
in Fig.4(b). It shows that the pulse broadening factor is also increasing linearly with gain
when the small signal regime holds. As the gain further increases, the pulse broadening
factor increases slowly with gain and then gradually decreases to less than 1, it means that
the pulse become more and more narrower, the pulse with larger gain coefficient narrows
more seriously than the smaller one. The time delay is always accompanied with pulse
distortion, the Stokes pulse broadens a little in the small signal regime but can narrow
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Fig. 4. (a) Time delay and (b) pulse broadening as a function of gain with different gain

coefficients.

largely in the gain saturation regime. Fig.5 shows the normalized output pulse shapes with
the gain coefficient g, =5x 1071 m/W at gain=0, 12, and 17, respectively. The output Stokes
pulse with a maximum time delay ~45 ns at gain=12 with a little distortion while the output
Stokes pulse is advanced by 42.9 ns at gain=17 but is distorted substantially.
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Next, we consider the time delay and pulse broadening factor varying with the gain
coefficient at a given pump peak power 0.125W shown in Fig.6. From Fig.6(a) we can see
that the time delay increases with the increasing gain coefficient in a linear fashion. Fig.6(b)
shows that the pulse broadening factor also increases with the increasing gain coefficient.
Note that the maximum gain parameter is 6.25 at the gain coefficient g, =1x10""m/W,
which satisfies the small signal condition.
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Fig. 6. (a) Time delay and (b) pulse broadening as a function of gain coefficient at a given
pump power.

4.3.2 Influence of gain bandwidth on time delay and pulse broadening

Fig.7(a) shows the time delay as a function of gain with different gain bandwidths. The time
delay increases with the gain linearly when the gain is small, but for smaller gain
bandwidth, the time delay increases with the gain more quickly and reaches the saturation
at a larger gain, the maximum time delay is accordingly larger. Once reaching the gain
saturation, the time delay also decreases more quickly for smaller gain bandwidth.
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Fig. 7. (a) Time delay and (b) pulse broadening as a function of gain with different gain
bandwidths.
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The pulse broadening factor as a function of gain with different gain bandwidths was
shown in Fig.7(b). It can be seen that the pulse broadening factor increases with the gain
before gain saturation and then it decreases with the increasing gain which is similar with
time delay versus gain in Fig.7(a). The smaller the gain bandwidth is, the more quickly the
broadening factor increases with the gain in the small signal regime and decreases with the
gain in the gain saturation. It indicates that the pulse with smaller gain bandwidth always
obtains the longer time delay but at the cost of much larger pulse broadening.

We also calculated the time delay and pulse broadening factor as a function of gain
bandwidth at a given pump peak power 0.125W. As we can see in Fig.8, both the time delay
and pulse broadening factor decrease with the increasing gain bandwidth and keep an
inverse proportion to it. The maximum gain parameter is 6.25, which is also in the small
signal regime for these different gain bandwidths.
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Fig. 8. (a) Time delay and (b) pulse broadening as a function of gain bandwidth at a given
pump power.

4.3.3 Influence of effective mode area on time delay and pulse broadening

For the pulse with same peak power, it has a larger intensity for the smaller effective mode
area, which increases its intensity in the other way, so it can also influence the gain
saturation obviously. As can be seen from Fig.9(a), in the small signal regime, the time delay
still increases with the gain linearly for different effective mode areas, the pulse with smaller
effective mode area reaches the gain saturation at a smaller gain, and the maximum time
delay is accordingly smaller. Once reaching the gain saturation, the pulse with smaller
effective mode area also decrease more quickly than the others.

Fig.9(b) shows the pulse broadening factor versus gain, the pulse broadening factor
increases linearly with the increasing gain in the small signal regime, which is the same as
the time delay versus gain. As has been said before, the pulse with larger effective mode
area reaches the gain saturation at a larger gain and its maximum pulse broadening factor is
accordingly larger. In the gain saturation regime, the pulse with smaller effective mode area
narrows more seriously than the others at a fixed gain. We can even see that the pulse
broadening factor begins to increase for the gain around 16.
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mode areas.

We also investigate the time delay and pulse broadening factor as a function of effective
mode area at a given pump power 0.125W. It can be seen from Fig.10, both the time delay
and pulse broadening factor decrease with the increasing effective mode area and keep an
inverse proportion to it. As previously mentioned, we also make sure that the
corresponding gain parameter is within the small signal regime for these different effective

mode areas.
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4.3.4 The influence of stokes pulse with different m on SBS slow light

We first consider the pulse time delay and pulse broadening factor as a function of
parameter real gain for super-Gaussion-shaped pulse with different m, which is indicated in
Fig.11. In this case, T=120ns, P, =0.1xW . Fig.11 (a) shows that with the increase of G,,
T, increases accordingly and reaches its maximum. Then it decreases with further
increasing G,, even becomes negative. Comparing with different m, we can see that
maximum G, and the time when maximum G, obtains decrease with m because when m
changes from 0.5 to 3, Is is equal to 0.5410, 0.6805, 0.7559 and 0.8705, respectively, i.e., for
the same duration and apex, the super-Gaussion-shaped pulse with higher m is easier to
reach gain saturation. And T; when T; reaches its maximum will decrease, which leads to
the reducing of maximum T} .
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Fig. 11. Parameters of output stokes pulse versus real gain for different parameter m. a)
Time delay T, versus real gain; b) Pulse broadening factor B versus real gain.

We observe an advantageous phenomenon for practical applications. When m=1.5, pulse
broadening factor B is close to 1. While m=3, B decreases with increasing G, and reaches its
peak value at gain=13. Then it increase with G, and reaches its maximum at G, =15.5, it
decrease with further increasing G, . The reason why B has the rule can be explained well
by Fig.12. Considering SBS process and no SBS process, respectively, for three different m,
the normalized output stokes pulses at G, =5 and G, =13 are shown in Fig.12, where t is the
time axis. It is indicated from Fig.12 (a) that with increasing m the leading edge and the
trailing edge of super-Gaussion-shaped pulse become steeper and steeper in time domain.
So they will become broader and broader in the frequency domain. Considering equation
(2), we can conclude that the difference among the speeds of points at the leading edge will
increase and the leading edge will be compressed more. Moreover, the increasing m leads to
the increasing energy of pulse with same peak value. And most energy of pump wave is
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depleted in the leading edge of stokes pulse, the trailing edge only can get less energy from
pump wave, the broadening of the trailing edge of stokes pulse is limited. All of this can
contribute to decreasing B and result in B is almost close to 1 before stokes pulse is near
saturation. When G, increases to saturation gain step by step, the trailing edge gets more
and more energy, resulting in broadening of the trailing, i.e., B will increase, like shown in
Fig.12(b). When G, go on increasing, it is out of the range of weak signal, the output stokes
pulse is distortion seriously.
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Fig. 12. Output stokes pulse for different real gain. a) G, =5; b) G, =13.

4.3.5 The influence of stokes pulse with different power and FWHM on SBS slow light
Based on the result of above that when m=1.5 B is very close to 1, the next numerical
simulation will select different power and duration of super-Gaussion pulse with m=1.5 as
the injected stokes pulse. Fig.13 shows that delay and B as a function of parameter G, for
super-Gaussion-shaped pulse with different power. It can be seen form Fig.13 (a) that
maximum T; and G, needed for obtaining maximum T increase with injected power. And
before entering gain-saturation regime T,; is equal to each other. The reason is in the
condition of weak signal delay is in direct proportion to gain approximately. As we can see
from Fig.13(b) that when G, is smaller than saturation gain, B is close to 1 and B of the pulse
which has the largest power will reach the peak shown in Fig.11(b) firstly with increasing
G, . The peak value becomes lager and larger, which correspond to high power pulse is easy
to enter saturation regime.

Fig.14 shows that T,; and B as a function of parameter G, for super-Gaussion-shaped pulse
with different T. The power of injected stokes pulse is 0.1 IV and other parameter is the
same like above. It is indicated that smaller duration pulse can obtain lager relative delay.
The G, needed for obtaining maximum T,; becomes lager and larger with the decreasing T.
The reason is for same peak value the smaller duration pulse contains less energy. Then
when it enters gain-saturation regime it need more energy and higher saturation gain results
in higher T, . The changing rule of pulse broadening factor of the pulse which duration is
less than 120ns is different from the one which duration is 120ns, however, it is the same
with the one when injected stokes pulse is Gaussion-shaped. The main reason is the energy
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Fig. 13. Parameters of output stokes pulse versus real gain for different power. a)Time delay
T, versus real gain; b) Pulse broadening factor B versus real gain.

which pulse contains decrease with the decreasing duration for same peak value. The
energy getting from pump wave decreases, too. So the tailing edge of stokes pulse can
obtain more energy than the one when T=120ns, resulting in the tailing edge broaden
widely. This counteracts the compression corresponding to the steep leading edge. It can be
predicted that increasing m can make the leading edge steeper and can decrease B. Our
numerical result proved it. For the pulse with T=60ns, B at maximum T,; decreases from
1.406 to 1.295 when m is changed from 1.5 to 5.
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Fig. 14. Parameters of output stokes pulse versus real gain for different duration. a) Relative
time delay T,; versus real gain; b) Pulse broadening factor B versus real gain.
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5. Conclusion

We make a numerical study of the SBS slow light in optical fibers, and consider the
influences of gain coefficient, gain bandwidth and effective mode area on time delay and
pulse broadening. In the small signal regime, we find that the time delay and the pulse
broadening factor increase with the increasing gain, but for pulse with the smaller gain
bandwidth has a larger slope than the others. In the gain saturation regime, the pulse with
larger gain coefficient, smaller gain bandwidth, smaller effective mode area begins to
decrease more quickly in the gain range of 0~16. For the gain larger than 16, the pulse
advancement becomes more obviously and the distortion also becomes more seriously,
which may render the delay useless. We also investigate the time delay and pulse
broadening factor vary with the increasing gain coefficient, gain bandwidth and effective
mode area at a given pump power whose gain parameter is in the small signal regime,
and find that the time delay and pulse broadening factor are proportional to the gain
coefficient, whereas inversely proportional to the gain bandwidth and the effective mode
area.

According to the above numerical calculation and theory analysis, we find that decreasing
the power and duration of injected stokes pulse induces increasing delay time and pulse
broadening factor; using super-Gaussion-shaped pulse as the injected stokes pulse can
contribute evidently to decreasing pulse broadening factor in low frequency. Selecting
pretty m can get perfect delay time and pulse broadening factor. Though this adjusting
effect will become weaker for a shorter pulse, this reform still takes advantage of decreasing
the error rate of all-optical-buffer.
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1. Introduction

Very long span optical communications are mainly limited by the chromatic dispersion (CD)
or group velocity dispersion (GVD), fiber nonlinearities, and optical amplifier noise
(Agrawal 2005). Different frequencies of a pulse travel with their own velocities, which
involves a pulse spreading. In a fiber-optic communication system, information is
transmitted within a fiber by using a coded sequence of optical pulses whose width is
determined by the bit rate of the system. The CD induced broadening of pulses is
undesirable phenomenon since it interferes with the detection process leading to errors in
the received bit pattern (Kogelnik & Jopson 2002; Mechels et al. 1997). Clearly GVD will
limit the bit rate and the transmission distance of a fiber-optic communication system. GVD
is basically constant over time, and compensation can be set once and forgotten (Karlsson
1994).

When the signal channel bit rates reached beyond 10 Gb/s, polarization mode dispersion
(PMD) becomes interesting to a larger technical community. PMD is now regarded as a
major limitation in optical transmission systems in general, and an ultimate limitation for
ultra-high speed signal channel systems based on standard single mode fibers (Mahgerftech
& Menyuk 1999). PMD arises in optical fibers when the cylindrical symmetry is broken due
to noncircular symmetric stress. The loss of such symmetry destroys the degeneracy of the
two eigen-polarization modes in fiber, which will cause different GVD parameters for these
modes. In standard single mode fibers, PMD is random, i.e. it varies from fiber to fiber.
Moreover, at the same fiber PMD will vary randomly with respect to wavelength and
ambient temperature (Lin & Agrawal 2003b; Sunnerud et al. 2002). The differential group
delay (DGD) between two orthogonal states of polarization called the principal states of
polarization (PSP’s) causes the PMD (Tan et al. 2002; Wang et al. 2001). As a pulse
propagates through a light-wave transmission system with a PMD, the pulse is spilt into a
fast and slow one, and therefore becomes broadened. This kind of PMD is commonly known
as first-order PMD. Under first-order PMD, a pulse at the input of a fiber can be
decomposed into two pulses with orthogonal states of polarization (SOP). Both pulses will
arrive at the output of the fiber undistorted and polarized along different SOP’s, the output
SOP’s being orthogonal (Chertkov et al. 2004; Foshchini & Poole 1991). Both the PSP’s and
the DGD are assumed to be frequency independent when only first-order PMD is being
considered (Lin & Agrawal 2003c; Gordon & Kogelnik 2000).

Second-order PMD effects account for the frequency dependence of the DGD and the PSP’s.
The frequency dependence of the DGD introduces an effective chromatic dispersion of
opposite sign on the signals polarized along the output PSP’s (Elbers et al. 1997; Ibragimv &
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Shtenge 2002). Fiber PMD causes a variety of impairments in optical fiber transmission
systems. First of all there is the inter-symbol interference (ISI) impairment of a single digital
transmission channel. The ISI impairment is caused by the DGD between the two pulses
propagating in the fiber when the input polarization of the signal does not match one of the
PSP’s of the fiber PMD impairments due to inter-channel effects that occur in polarization-
multiplexed transmission systems (Agrawal 2005; Yang et al. 2001).

There are two polarization effects that lead to impairments in the long-haul optical fiber
transmission systems: PMD and polarization dependent loss (PDL) (Chen et al. 2003; Chen
et al. 2007). The WDM systems whose channels are spread over a large bandwidth rapidly
change their state of polarizations (SOP’s) due to PMD so that the overall DOP of the system
is nearly zero (Agrawal 2005; Kogelnik & Jopson 2002). At the same time different channels
expiries different amounts of PDL, and since the amplifiers maintain the total signal power
nearly constant, individual channels undergo a kind of random walk so that it is possible for
some channels to fade (Shtaif & Rosenberg 2005; Menyuk et al. 1997). Calculating the
impairments due to the combination of PMD and PDL in WDM systems is a formidable
theoretical challenge (Phua & Ippen 2005). Physically, light pulses polarized along these
PSP’s propagate without polarization-induced distortion. When there is no PDL, the two
PSP’s are orthogonal and correspond to the fastest and slowest pulses, which can propagate
in the fiber (Yasser 2010; Yaman et al. 2006). They thus constitute a convenient basis for
polarization modes. When the system includes PDL, the Jones formalism is still applicable,
but several of the above facts are not valid anymore. The notion of PSP’s is still correct, but
the two PSP’s are not orthogonal nor do they represent the fastest and slowest pulses (Yoon
& Lee 2004).

In this chapter, the analysis of Jones and Stokes vectors and the relation between them were
discussed in section 2. The statistics of PMD are presented in section 3. The pulse
broadening in presence of PMD and CD were illustrated in section 4. In section 5, the
principal comparison between PMD and birefringence vector will be obtained. The
combined effects of PMD and PDL are presented in section 6. Finally, section 7 will
summarize the effects of nonlinearity on the effective birefringence vector.

2. Polarization dynamics

The representation of polarization in Jones and Stokes spaces and the connection between
the two spaces will be presented in this section. Throughout this chapter, it is assumed that
the usual loss term of the fiber has been factored out so that one can deal with unitary
transmission matrices. Light in optical fibers can be treated as transverse electromagnetic
waves. Considering the two perpendicular and linearly polarized light waves propagating
through the same region of space in the z-direction, the two fields can be represented in
complex notation as (Azzam & Bashara 1989)

E (z,t)=% E, e/t (1a)

= ~ i(kz—wt
Ey(Z, t) = Eyg el( z-wt+, ) (1b)

where @, and ¢, are the phases of the two field components, and k is the propagation
constant. The resultant optical field is the vector sum of these two perpendicular waves, i.e.
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E(z,t)=E (z,t)+E,(2,t) )

The polarization state can be represented in terms of Jones vectors as

.| e
A= ®
ae?
y
where a, =E_, / [E3, + E;O ,a,=Ey /JE2 + E;O ,and |a’ +a§ =1.Here E,, and E, are

the initial amplitude components of the light. The familiar form of Jones vector is denoted as
ket vector as (Gordon & Kogelnik 2000)

s ae'?
'”ZLXH ) } 4)
v] |aye
whereas the bra <s| indicates the corresponding complex conjugate row vector, i.e.
<sl=[s, s;], where * indicates complex conjugation. The bra-ket notation is used to
distinguish Jones vectors from another type of vectors that will be used in this chapter
which is called the Stokes vectors. Partial correlation yields partial polarization and total
correlation gives total polarization (Karlsson 1994; Sunnerud et al. 2002). When the light is
coherent, Jones vectors are all of unit magnitude, i.e. <s|s>=s,s, + sys; =1. Given the Jones

vector, the values of the azimuth angle, y, and the ellipticity angle, 7, can be found by
solving the equations (Rogers 2008)

2Re(s, /s

tan ZWz(—y/xz) (5a)
1_|Sy /Sx |
2Im(s, /s

sin 277:(—y/xz) (5b)
1+[s, /s, |

where Re and Im denote the real and imaginary parts, respectively. Fig.(1 a) illustrates
Jones representation of polarization vector.

The Poincare sphere is a graphical tool in real three dimensional space that allows
convenient description of polarized signals and polarization transformations caused by
propagation through devices. Any SOP can be represented uniquely by a point on or within
a unit sphere centered on a rectangular coordinates system. The coordinates of a point are
the three normalized Stokes parameters describing the state of polarization (Azzam &
Bashara 1989; Rogers 2008). Partially polarized light can be considered as a combination of
purely polarized light and un-polarized light. Orthogonal polarizations are located
diametrically opposite to the sphere. As shown in Fig.(1 b), linear polarizations are located
on the equator. Circular states are located at the poles, with intermediate elliptical states
continuously distributed between the equator and the poles (Karlsson 1994; Kogelnik &
Jopson 2002). There are two angles (or degrees of freedom, i.e. v and 7 ) describing an
arbitrary Jones vector. These angles can be interpreted as coordinates in a spherical
coordinates system, and each polarization state can then correspond to a point, represented
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by a Stokes vector, §=(s;,s,,s;)’ on the Poincare sphere, where t represents the
transpose. The three Cartesian components can be defined as (Gordon & Kogelnik 2000)

s; = E, & —|Ey *= cos 2y cos2n
5y = EXE; + EyE; =sin2y cos2n (6)
s3 =i(E,E, —E,E,) =sin2p
Therefore, the angle 2y is the angle from the direction of s; to the projection of § on the
s, —S, plane, and 27 is the angle from s; —s, plane to the vector §, see Fig. (1 b). Given

Stokes vector, the values of v and 7 are obtained by solving the equations s, /s; =tan2y ,
and s; =sin27.

{3 | Left Circulady Polarized

Fig. 1. Illustration of: a) Jones representation , b) Stokes representation.

Any Stokes vector § is related to another one |s> in Jones space as §=<s|&|s>, where
6 =(0y,0,,03) is the Pauli spin vector whose components are defined as (Levent et al. 2003)

10 0 1 0 i
(R EE I RES ] ”

It is important to note that if the angle between p and § in Stokes vector is €, then the
angle between | p>and |s> in Jones spaceis ¢ /2. That is; if two vectors are perpendicular
in Jones space then the corresponding two vectors in Stokes space are antiparallel. Each of
these two spaces gives certain illustrations according to the case of study. For totally
polarization, the value of polarization vector is unity, elsewhere, the value differs from
unity. In general, the three components of § are not zero for elliptical polarization. The
third component of § equals zero for linear polarization, whereas the first two components
of § are zero for circular polarization. There is a unitary matrix, T, in Jones space which
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relates output to input via [s>=T |t >, where |s> and |t> are the output and input Jones
vectors, respectively. On the other hand, a transformation matrix (Muller), R, in Stokes
space relates output to input via §=R f, where § and { are the output and input Stokes
vectors, respectively. The transmission matrices are related as R6 = TTGT , where + denotes
the transpose of the complex conjugate (Agrawal 2007; Chen et al. 2007).

3. Statistical managements

The effects of PMD are usually treated by means of the three-dimensional PMD vector that
is defined as 7 =7,,,,p, where p is a unit vector pointing in the direction of slow PSP and
Tyma 1S the DGD between the fast and slow components which is defined as (Mahgerftech &

Menyuk 1999)
Tomd =7 = le + 722 + T32 ®)

The PMD vector 7 in Stokes space gives the relation between the output SOP, §, and the
frequency derivative of the output SOP: d §(w) / dw =7(w)x§(w) . The PSP’s are defined as
the states that 7(w)x§(w)=0, so that no changes in output polarization can be observed
close to these states at first order in w . To the first order, the impulse response of an optical
fiber with PMD is defined as (Karlsson 1994)

hpmd(T) =7.0(T - Tomd /2)|p,>+ro(T+ Tomd /2) |p-> ©)

where y, are the splitting ratios and |p, > are the PSP’s vectors. The factors y. and 7,
vary depending on the particular fiber and its associated stresses, where the splitting ratios can

range from zero to one. Note that, the function #,,,,4(T) is normalized in the range (- to «).

3.1 Splitting ratios

Consider that the PSP's occur with a uniform distribution over the Poincare sphere, and that §
is aligned with the north pole of the sphere as shown in Fig.(2). The probability density of
PSP's which is found in the range d6 about the angle 8 relative to § is proportional to the
differential area 27siné d6 sketched in the figure. As there is north/south symmetry in the
differential area, the ranges (0 toz /2)and (#/2 to 7 ) of @ are combined to obtain the
combined probability density p,(6)=siné . For the effective range (0 toz /2 ) describing the
occurrence of PSP's with angle 6 (and 7 —8) relative to +§, the distribution p,(0) is
properly normalized through the range (0 to z /2 ). The analyses of splitting ratios have led to
a number of important fundamental advances as well as the technical point of view (Rogers
2008; Kogelnik & Jopson 2002). The splitting ratios y, can be determined from the polarization
vectors. In other words y, represent the projection of |p, >and |p_ > onto |s>. Formally,
72 =l<s|p, >*, where |s> and | p, > are the input SOP and the two PSP's vectors.

If the PSP’s are defined as | p. >=[p., p.,] ', then

2 *
Pex | o oq | 1Pl PaaPsy
|pe><p.l= L’ }[Prx piy:| :{ |2/] (10)

ty piypix | piy
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where <p, | are the transpose conjugation of | p, > . Now, it is straightforward to show that

2 2
e} <pslop|pe> [P _|P¢y|
P =<p. |Gl pe>= |2y | = <PalOy | Pr>|=| Parbiy +PayPar (11)
sl Lepaloslp>] i, pl, -poply)

Comparing Eqs.(10) and (11), |p, ><ps |=(I, £p-&)/2 can be extracted. In turn, the splitting
ratios can be calculated by using Eq.(11) and the fact that <a|p-&|a>=p-a as follows

y2=<s|p, ><p,|s>=<s|(Iy+p-6)|s>/2=(1+p-§)/2=cos*(d /2) (12a)

y2=<s|p_><p_|s>=<s|(I,~p-&)|s>/2=(1-p-8) /2= sin*(0 /2) (12b)

Until now, the relationship between the splitting ratios and elevation angle was calculated,
where the ratios y, are identical only for =7 /2.

Fig. 2. Sketch of differential area on Poincare sphere as a function of elevation angle 6.

3.2 Statistics of DGD

Throughout this subsection, the PMD statistics have been carefully analyzed since it causes
a variation in the pulse properties. A proper measure of pulse width for pulses of arbitrar
shapes is the root-mean square (rms) width of the pulse defined as 7,, =V<T*>-<T > .

The PMD induced pulse broadening is characterized by the rms value of 7,,,;. The 7, is

pm
obtained after averaging over random birefringence changes. The second moment of z,,,; is
given by (Fushchini & Poole 1991)

STt >= T =203 02 [ L/t +e ' -1 (13)

rms

where 7, is the correlation length that is defined as the length over which two polarization
components remain correlated, A, = ZJ; - vg; is related to the difference in group velocities
along the two PSP's. For distances L >>1 km , a reasonable estimate of pulse broadening was
obtained by taking the limit L >> ¢ in Eq.(13). The result is given by 7, = Aﬂlm = Dp\/i ,
where D, is known as the PMD parameter that takes the values (0.01-10)ps/ Jkm . The variable
7,ma has been determined to obey a Maxwellian distribution of the form (Agrawal 2005)
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2
T a2 2
Pep) =y T g2 "

4 Trms

The mean of 7,,, is done simply as 7,,, =+/8/37 ,,,. Using this result, the Maxwellian
distribution will take the form

2

27 2

p(rpmd): - _V3md e‘4fpmd/7ffpmd (15)
T Tpmd

A cursory inspection of Eq.(15) reveals that the p(z,,,;) can be found if 7,,,; is known. Here,

a relationship for r,,,
. _ m
has a maximum value at 7,,,; =7, =

calculating the maximum likelihood value of 7,,,; if 7,4

¢ that will maximize p(z,,,) can be found. The distribution p(z,,,)

pmd
=rT, TTyq/2 . This conclusion provides a method for

is known.

3.3 Statistics of impulse response

The rms width of the impulse response, 7,4, can be readily calculated by substituting Eq.(9)
into 7, =V<T?>-<T>? toyield

—00 —00

2
Ty = jT Mg (T)AT = { [ Ty )dT} =sind 7,,,/2 (16)

Using the result p,(0)=sin# and Eq.(16), the density distribution for @ can be transformed
to the density for 7,4 as follows

do _ 4Teﬁ
dTeﬁ‘ Tpmd\/z-;%md - 4162/7

Pz, (T) = Po(6(7e5) (17)

It is important to note that the probability density is a function of 7, and 7,,,. As a
consequence of this dependence, Eq.(17) can not be integrated to determine 7,5 due to the
presence of the other variable 7,
determine the statistical properties of output pulses. The joint probability distribution

4+ 50, the next step is to seek about Pz, (o) in order to

P(Te s Tpmg) can be illustrated using Eqs.(14) and (17) as follows

642—8 T M 7[2'
Pl i) = e €/ (18)

z-;amd \/ pmd 4:Teﬁr

Recalling Eq.(16), it may be written as 7,,, =27, /sing. Since 0<sinf<1, such that
27,5 <7,y <. The probability distribution p(7,;)can be found by integrating Eq.(18)
about 7,,,; through the range 274 <7,,; <o to obtain

322- —107, 7[1'
eﬂ' e 16 Eff/ nd (19)

p( eff)_

7T, Tpm d
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At a basic level, Eq.(17) is the same as Eq.(19) but the latter is a function of 7, only, which
can be integrated to obtain 7,;. However, both equations are normalized properly. The
mean value of 7, is determined as 6 =7 /2. So, Eq.(19) may be written as

eff e—/r reﬁ/4 Qﬁ (20)

2
ZEff

p(Teﬁ’)

The distribution p(z,;) has a maximum value at 7,5 =7,5™ =/ / 327,,,; . This is equivalent
to find the maximum likelihood value of 7,4 if 7,,, is known.

3.4 Pulse characteristics

Using the PSP’s as an orthogonal basis set, any input or output polarization can be
expressed as the vector sum of two components, each aligned with a PSP. Within the realm
of the first-order PMD, the output electric field from a fiber with PMD has the form (Rogers
2008)

|Aout(T) =V A (T Tpmd /2) |p+ >ty Am(T+Tpmd /2) |p > (21)

where A, (T) is the input electric field. To determine the output power

P(T)=<A,,(T)|A,,(T)>, it is important to point out the orthogonality properties of Jones
vectors, thatis; <p, |p. >=0 and <p, |p. >=1. Note that, we perform the derivation using a
normalized Gaussian pulse that takes the form A, (T)=Dexp(-T? /2T2), where D=\E, / Tz
Ty is the initial pulse width, and E;, is the input pulse energy. For normalized power, we
make D? =1. Therefore, according to Eq.(21), the shifted pulses will reshape as

(T2 /2)°
Ain (T t Tpmd / 2) = Dexp{—sz (22)
Substituting Egs.(12) and (22) into (21), using the output power definition, using the
orthogonality properties of Jones vectors, and simplified the result, we obtain the following
expression

P t(T)=[Cos2(9 72y Tl sin2(9 ) 2) @/ } T o)/ 417 (23)

ou

The width of the output pulse T; can be determined as follows

T out dT— ) TP out(T dT TO md / 2)2 SiI‘12 0 (24)
neyl [ remar] =i

The time jittering of the pulse can be found by determining the maximum value of P, ,(T).
This maximum value will happen at T =T, =7,,,co0s(f) /2. The peak power, as a
function of DGD and an angle @, at the pulse center can be determined by substituting the
latter result into Eq.(23) to get

-sin? 6/2)1de /TU

ppeak(rmd,g) =Cos (9/ 2)e + sin (9/2) 087 (6/2)3,4/ Ty (25)
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At this point, we drive formulas for the output power form, final width, time jittering
(shifting), and peak power as functions of the random physical variables ¢ and z,,,,.

Fig.(3) illustrates the simulation with the parameters: L=>50km,D, =0.5ps/ Jim , and
Ty =5 ps . The solid line represents the original pulse while the discrete lines represent the
resulted pulses with different values of 7,,, ranging from 0 to 8ps, where the closest to
T =0 is the pulse that has least value of 7. At the angle =0, one note that the pulse is
faced only by a displacement to the right at T, =7,,, /2. Increasing @, the pulse width
and distortion will be increased, while the power and shifting will be decreased. These
variations are the greatest at § =7 /2. After § =7 /2, the effects are reversed. At #=r,
again the pulse is faced only by a displacement but to the left at T, =-7,,, /2. It is clear
that the penalty could be greater if 8 =7 /2 and will be zeroat =0 or 7.

Lol =)

normil zad power

10

Fig. 3. Pulse shape with different values of 7,,,, and @ for different values of 7,,,;;
the lower value of 7,,,, is the closest to the pulse center.

4. Polarization mode dispersion and chromatic dispersion

The pulses that propagate through single mode fiber (SMF) are affected by two types of
dispersion which are CD and PMD. Notice that the effects of the two types of dispersion
happen at the same time, so to give a distinct sense of the two types of dispersion we
decided to obtain the effects in the frequency domain. The initial pulse, A(0,w)=3{A(0,T)},
first faces the affect of CD (the transfer function H,(w)) to obtain H,(w)A(0,w). The CD
does not depend on SOP therefore the input SOP (the Jones vector |a>) will not change.
Next, the pulse divides into two orthogonal components towards PSP’s ( |a” > and |a” >)
under the effects of PMD. The component in the direction |a" > will face the effects of the
function H,,(w) to obtain the pulse H,(w)H,(w)A(0,w) and at the same time the SOP will
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change from |a" > to |b" >. On the other hand, the pulse in the direction |a~ > faces the
effects of the function H,,(w) to yield H, f(w)Hl(w)A(O,w) and also the SOP will change
from |a~ > to |b” >. The input or output PSP's does remain orthogonal when the PDL is
absent. Finally, the vector sum of the two components will produce the final pulse
H,(w)H,(w)A(0,w) . The transfer function of the CD of lossless fiber in frequency domain is
H,(w)=exp(iw® p, L/2) , where B, =-A2d(2)/2x ¢, d(A) is fiber chromatic dispersion
parameter, L is the fiber length, and A4 is light wavelength. Now, assume that there is
negligible PDL, so that we can use the principal states model (Lin & Agrawal 2003b;
Ibragimv & Shtenge 2002; Foshchini & Poole 1991) to characterize first-order PMD. Under
this model, there exist a pair of orthogonal input PSP’s, |a* > and |a” > , and a pair of
orthogonal output PSP’s, |b" > and |b™ >, where all of PSP’s are expressed as Jones vectors.
If an arbitrary polarized field A,(t)=A,(t) |a> is input to the fiber, this input field can be
projected onto the two PSP’s as

A(T)=y, A(T) |a*>+y A(T) |a > (26)
In terms of first-order PMD, the output field of the fiber takes the form

Ap(T) = 7 A (T =g / 21" > 470 AT 4204 /2) |67 > (27)

According to Eq.(9), the fiber transfer functions for first-order in the time and frequency
domains are given by

M) =7, ST~ /2) 167> +7. 8(T +1,4 /Db > (282)

W, /2

H,(w)= 7.e 1bY > 4y e > (28b)

The root mean square width of this impulse response which can be calculated as

<T>= [ Thy(T)T = (7, Tyl b > =7 Tpq [67>)/2

[b">+y 2 4 |b>)/4 (29)

<T?>= [ T2hy(T)dT =(y, = 2

rr =[N<T?>-<T>%],=0

where the signs (+, -) mean that the impulse response in directions of |b" > or |b™ >,
respectively. That is; the width of an impulse response in the direction of PSP’s will be zero,
while the width in the direction of |b > will be 7,,,, =siné 7,,,; /2. This represents the extra
width that results due to the effects of PMD on the propagated signal. It is clear that, if the
input SOP is in direction of PSP’s, then the pulse will not suffer any broadening.

The Fourier transformation of the initial pulse takes the form A(0,w) = Dv2xT, exp(-w?T? /2).
The total effects on the pulse shape can be obtained by using the convolution of the transfer
functions of the combined PMD and CD with the input Gaussian signal in the time domain,
or equivalently by using the inverse Fourier transform as follows

2
pmd

Az, T) =3 HA(0,w)- Hy(w) - Hy(w)} =cos(0 / 2) A,(z,T) |b* >+sin(@ /2)A_(z,T) |b">  (30)
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where

T T? .
A (z,T)=D— exp(-——= ) exp(i ¢.(zT))
" P 2T A

2= Ty + (5, 2)°
Ti=TiTpmd/2

Ty =\T2 + (B2 / T2)?

2
b2 T)=-L22 L L2/ T2)

2T T2 2

The parameter T; represents the pulse width including CD effects where it is the same for
the two orthogonal components. The width of each component will not increase under the
effects of PMD, but the pulse which results from the vector sum of the two orthogonal
components will face a broadening that can be determined by z,,,, . The parameters ¢, (z,T)
represent the nonlinear phases that generate through the propagation in optical fiber. The
nonlinear phase as a function of time differs from one component to another by the amount
T,ma - but in the frequency domain they remain the same and add the same value of noise to
both components. The frequency chirp can be written as

00.(z,T) pozT, pPzTxAr/2
) == S T D

This means that the new frequencies generated are similar for the two components and the
difference lies in T+7,,, /2 only, which means that one of the components advances the
other by time 7,,,,. Eq.(30) explains that the pulse amplitude will decrease by increasing the
propagation distance, which will be converted to the same equations as in reference
(Agrawal 2007) by ignoring the effects of PMD. The Jones vectors |b" > and |b™ > are
orthogonal, i.e. <b"|b” >=0. That is enough to assume a random form to one of them to
find the other. For example, if |b* >=[x iy]' then |b” >=[iy x]' keeping in mind that all
the polarization vectors have unit values.

Now, the reconstructed width after including the effects of CD is T;. Next, the input pulse
has a width T; which will be increased by the amount z,,, due to the PMD. Such that, the
final width will be

rms

Ty =\[T2+72,,sin%0 /4 (32)

Fig.(4 a) illustrates the shape of pulse for various values of f,, assuming 7,,,;=2 ps,
0=r/2,T,=10 ps, and L=60 km. Since 7,,, is constant for all cases, this implies that
the time separation between the orthogonal components remains the same. The width of
both components increases (under the effects of CD) by increasing f, . Consequently, the
width of the final pulse increases by increasing f,, but the amplitude is decreased. The
existence of CD causes a broadening factor (BR) of value T; /T, , and the existence of PMD

adds a BR of value z,,,, /T; . That is; the width of pulse will increase due to the existence of
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Fig. 4. Evolution of the pulse shapeat §=7 /2, T, =10 ps,and L=60 km:
a) for various values of f, and 7,,,; =2 ps, b) for various values of 7,,, and
B =1 ps3 / km. The dotted, continuous, and discrete lines refer to the initial pulse,
two orthogonal components, and final pulse, respectively.

the two types of dispersion. In other words, the time separation between the two orthogonal
components will be fixed, both amplitude and width of the pulse will change under the
effects of CD. Fig.(4 b) illustrates the shape of pulse for various values of ¢

pmd
assuming 3, =1 ps° /km, 0=x/2, T,=10 ps, and L=60 km. Since B, and L are
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constants this implies that T; is constant also. That is; the width of both orthogonal
components are similar for all 7, values, but the difference appears as a time increase
separation between the two components. This leads to adding a BR of value 7,,, /T; to the

reconstructed pulse.

5. Polarization mode dispersion and birefringence

In the optical fibers, the birefringence vector £ may be defined in two forms as (Schuh et al.
1995)

Apcos2a AP cos2a
B, =| ABsin2a | or fy =| ABsin2a (33)
0 T

where ¢ is the angle of birefringence in Jones space, AS is the magnitude of linear
birefringence, i.e. AB=|B,| , { is the photo-elastic coefficient of glass, and T is the twist
rate in (rad/m). The angle «a is not constant along the fiber; also, Af and T . This means
that each segment of fiber has a birefringence vector differs from another position randomly,
depending on the values of a, Af, and T. If AB4 BL |, then ,BL =ApB 7, where 7
represents a unit vector in Stokes space. The vector 7 represents a rotation axis of the
polarization vector, which differs from one section to another randomly.

Consequently, the PMD vector can be defined as a function of 7 and ¢ (Gordon & Kogelnik
2000)

T=¢,/+7,sing+7,x7(cosg—1) (34)

where ¢=ApPAz represents the rotation angle of the polarization state vector § around the
birefringence vector f,and ¢, and 7, represent their first derivatives of frequency. Eq.(34)
obtains that the angle and direction of rotation control the resultant vector 7 . Substituting
the first definition in Eq.(33) into (34), yields

7y & Az cos(2a) —sin(¢g)sin(2a)
7=|1, |=| & AzsinQa) |+22%| sin(g)cos(2a) (35)
T3 0 “loa- cos(¢)

where &=dAp /dw represents PMD parameter, and Az is the fiber segment length. On the
other hand, 7 is a function of w, which may be written as a Taylor series around the
central frequency w, as follows (Agrawal 2005)

dz Aw* d°F

T(w)=7(w,)+Aw—|

o o=, +TW|w=w0 Frtrererereeienene (36)

Comparing Eqgs.(35) and (36), the first term on the right hand side of Eq.(35) will represent
the first order of PMD vector, while the second term indicates all higher orders of PMD
vector. Accounting that the higher orders depend on the value of da /dw . For a very small
variations of o with frequency, the second term on the right hand side of Eq.(35) may be
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neglected. Elsewhere, the higher order effects must be included through the determination
of PMD vector.

5.1 Linear birefringence
Neglecting the higher order effects makes the PMD vector as follows

7 & Az cos(2a) A
T=|1,|=|¢AzsinRa)| =¢ Azt = Z—; f = const. B (37)
T3 0

This means, 7 coincides with the birefringence vector / if the intrinsic birefringence is
linear and the higher order PMD effects are neglected. Elsewhere, the two vectors are never
coincided. Using Eq.(37), we can obtained DGD of the fiber segment as

DGD, = rﬁzd =7l=¢ Az (38)

The value of DGD; represents the delay time between the two components of polarization
in a single segment of the optical fiber. Since the DGD’s of the fiber segments are random, so

N
that DGD; can be calculated as < Tomd >:l27; ;- For the case of wide frequency band,

the higher order effects of the PMD must be included. The DGD, of this case can be
obtained using Eq.(35) as follows

DGD, = T;(jn)d = \/(g Az)* +8(1-cosg) a2 (39)

Clearly, the DGD, is related to the change of a with respect to frequency, and Tﬁi FRS T;(jn) ;.
This means that the higher order effects increase the DGD. The angle between the two
vectors 7 and £ is determined as: y = cos " (T;}Zd / T,(jn)d) . This means that the two vectors

in the same direction if the higher order PMD is neglected, i.e. rﬁz =< 71(311)51 .

5.2 Nonlinear birefringence
For the nonlinear intrinsic birefringence, 7 can be calculated using the second definition in
Eq.(33) and (34) as follows

(4, + aysing)cos(2ax) + az(cosp—1)sin(2cr) —a, singsin(2a) + a,(cos ¢ — 1) cos(2cx)
7 =| (4, + aysing)sin(2a) — a4 (cosp—1)cos(2e) |+ d—a a,singcos(2a) +a,(cosg—1)sin(2a) | (40)
ay + a5 sing v ag(cosg—1)

where the parameters a4, into ag are defined as

APeAz Ape ¢ T
155 Iy == 2
ANt ABNr
1y =gy =S TABE LY,
K ABnr
T AB%e 2b
ST o2l

ABnL ABRy
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AByy =AB* +(¢ T) K=(p*+ T2

LA TAB ((T)e
™ K

Eq.(40) represents a new formula of the PMD vector demonstrating the difficulties to
compensate the noise that arises due to PMD when the pulse propagates through optical
fibers. Many approaches have been proposed (McCurdy et al. 2004;Lima et al. 2001;
Vanwiggeren & Ray 1999; Ibragimv & Shtenge 2002; Schuh et al. 1995), which deal only with
the first order of PMD. This means that the compensation depends on the first term
presented in the right hand side of Eq.(40) and assuming that the birefringence vector is
linear.

The vector 7 can be found from £ . Ignoring the higher orders of the vector 7, the vector 7
is linear only if £ is linear, otherwise they are different. When the distance is changed this
implies to rotate § around £ by an angle ¢. On the other hand, the change of frequency
causes to rotate § around 7 by an angle 6. Fig.(5 a) illustrates the relation among the three
vectors S, B ,and 7 where the polarization vector § is rotating around ,B and 7 . Adding
the higher orders of 7, the vector 7 is now nonlinear which does not coincided with the
vector [ as illustrated in Fig.(5 b). The general case considers the birefringence vector is
nonlinear and assuming all orders of 7 as illustrates in Fig.(5 c), which shows that each vector
rotates in Stokes space.

(@) (b)
Fig. 5. Rotation of SOP around B and 7 :a) p and 7 are linear, b) B islinear and 7 is
nonlinear, c) ,B and 7 are nonlinear.

6. Combined PMD and PDL effects

As far as the continuum limit at the end is set, the following simple arrangement are
considered: each PMD element (having 7; vector) is followed by a PDL element (having &;)
leading to the following transmission Jones matrix (Yasser 2010)

1. . w. .
T =Tpp Tppp = exp(E aj.a)exp(—? 7;.0) (41)

where
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exp(% @;.G)= [cosh(a; /2)+(a;.G)sinh(a; /2)]

exp(—%fjﬁ) = [cos(wzll), /2)~i(p;6)sin(wrl)), / 2)]

Here 7, = T;Qdfa ; represents the j-th PMD segment having DGD T;Q ; and the fast polarization
axis is expressed by the unit vector p; in the Stokes space. The PMD vector 7 is, generally,
frequency dependent; the first term in the Taylor expansion of 7(w) is conventionally referred
to as the first-order PMD (Agrawal 2005). To clarify the notation used in this section, we
attempt to keep the notation simple and transparent while linking to the notation already
established as much as possible. The following is an abbreviated group of present notation:
The letters C, ¢, S, and s represent cos(wrpmd /2), cosh(a;/2), sm(wrr(,]nid /2), and
sinh(a; / 2), respectively.

Notice that in this representation PDL matrix, the polarization component of the field that is
parallel to a] experlences a gain ¢, but the anti-parallel component is attenuated by ™
The expressions e /2 represent the eigenvalues 4;,4, of PDL matrix. The vector @; = a]a]
stands for the j-th PDL segment with value expressed in dB by

PDL(dB) = 10/40g10(%)2 =20| a; | ogyy(e) (42)

The action of an optical component exhibiting PDL and PMD on a field can be described by
(Chen et al. 2007)

|s>=T|t>=Top; Tpnp | > (43)

where |s>and |f> are output and input SOP, respectively. The eigenvalues of the matrix
T =TppTopp are (Yasser 2010)

A =[cC—i(@-P)sS]+[cC—i(é-p)sSP -1 (44)

It was evident from Eq.(44) that the eigenvalues are complex, where the real part will
control the new rotation angle of § around the PSP vector, and imaginary part can be used
into Eq.(42) to obtain the PDL value in presence of PMD. Obviously, the new eigenvalues in
presence of the combined PMD and PDL effects are different from that obtained for each
effect separately.

6.1 Special cases

1. In presenting PDL only, the eigenstates of the PDL matrix are orthogonal, the output
Stokes vector can be obtained as follows: combining the relations |s>=Tpp; |[t>, and
<s|=<t|Tjp,, into §=<s|&|s>,and using the facts (Yasser 2010; Gordon & Kogelnik 2000)

(45a)

Qi

(@.6)(B.6)=a.p+iaxp.
(B.6)@.6)=a.p—iaxp. (45b)

Qi

(B-5)6 = p-ifxé (45¢)
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G(B-6)=pf+ifixe (45d)
(B-6)6(B-6)=2B(f-56)- pG (45¢)
Tio, = Tppy =C+(@.5)s (45f)
a useful relation can be deduced
§ =t — st +25ca + 257G (G - 1) (46)

The output SOP which is a combination of the vectors t and &, ie. t does not rotate
around ¢ . If the input SOP is parallel or anti-parallel to PDL then the output SOP takes the
form e™“t or ¢”t. The first component, that is parallel to PDL vector, experience a gain e”
and the other, that is anti-parallel to PDL vector, is attenuated by ¢ .

2. Similarly, in presence of PMD only, the eigenstates of the PMD matrix are also orthogonal
and the output SOP can be determined as follows: combining the relations <s|=<t| T
and |s>=Tpyp | s> into §=<s|&|s>, using Eqs.(45) with the facts that Ty, =C—i(p-&)S
and Thyp = Tpyp =C+i(p-6)S to yield

§=C*-S%F+25C(pxt)+28%p(p-1) (47)

This equation refers to the input SOP that are parallel or anti-parallel to PMD vector which
experiences no change, i.e. §=f along the optical fiber. Notice that, the PMD causes a
rotation of the SOP around 7 , which is presented through the third term.
3. Finally, in presenting the combined PDL-PMD effects, determining § as a function of £,
@ ,and p which is very complicated, is beyond the scope of this chapter.

6.2 The output power
The normalized Gaussian pulse before entering the PMD and PDL components has the form

| A, (T)>=De T/ |a> (48)

m

where T, is the initial pulse width, and |a> is the Jones vector of the szignzal. Clearly, the
normalized input power is found to be P, (T)=<A,,(T)|5| A, (T)>=¢" /&, where § is

the input Stokes vector. The Fourier transform of Eq.(48) is

| Agy () = 5{] 4, (T) >} = D= /2 2> (49)

m \/g

As far | A, (w) >=Tpp; Tppp (w) | A;,(w) >, the output field which can be illustrated by the

m
inverse Fourier transformation as follows

2. 2
7T T omd

| A, (T)>= DLTPDLS—{e—wZTUZ/Ze—i(w/Z)(f»&)} la>= e 21?2 ed-&e—Tf.&/ZTf la> (50)

2z

In order to compute the output power from this equation. The vector 7i was set to equal
fi=(@—7 T/T?)/2,such that
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2, 2
T T pma

A (T)y>=e 2T % |a> (51)
out

The new vector 7i is a random. Its value is n= \/az +T2r§md /T —2Tar§md cos/T? /2,
where 6 is the angle between & and 7, while the direction is 7i=(a-T7 /T?2)/n.
Substi;cuting Eq.(51) into the definition P ,(T)=<A,, |&|A,;> and introducing the fact
(i-6) =1-6,yields

2,2
T T omd

B, (T)=e ™ <a|(coshn+-&sinhn)é(coshn +ii-&sinhn)|a> (52)

Considering Eqgs.(45), the last equation may be written as

2. 2
T 475

B, (t)=¢ 7 [§ + 2fi(sinh n1cosh + sinh? ncos ¢, )] (53)

where ¢, is the angle between the random vector # and the input SOP, § . To visualize the
situation more easily, Eq.( 53) was written as

2 2
T 4754

- 2 R
Pout(T): € g : f(T, z-pmdla) - Sout (54)

where f(T,7,,4,@)and s, are the value and direction of the expression inside the square
brackets. Eq.(54) represents the output power in presenting of PMD and PDL, which may be
written in certain cases as in the following subsections.

6.2.1 PMD only
In this case, 7i=-T7 /2T> and #=—p, hence, Eq.(53) can be simplified as
_T2+1;md _T2+T;2)md
B (T)=e " [§-2p(sinhncoshn+sinh?ncosd)l=f(T,rpg)e  © Gue  (59)

Here ¢, is replaced by ¢, which represents the angle between 7 and §.If 7=0, then
B, =P, . That is; the power and SOP are not affected in absence of PMD. The PSP’s are the
states that are parallel or antiparallel to p, so the powers in the PSP’s direction are
P, (T)psp = exp(~(T* + rﬁmd) /T2)s. The parallel or antiparallel SOP to p will not be
changed through the propagation, but the position of the pulse components will be shifted
by iTpmz;l / 2.

6.2.2 PDL only
Here, i=d /2 and 71=a, hence, Eq.(53) will be

T T’

B, (T)=e T [4+24(sinhncoshn +sinh?ncos )] = f(a)e ™ & (56)

out

Here ¢, is replaced by ¢; which represents the angle between ¢ and §.If @=0, then
P, =P,,. That is; the power and SOP are not affected in absence of PDL. There are two

out *
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important SOP’s that are 2parallel or antiparallel to & . For these SOP’s, Eq.(56) will be
reduced to P, ,(T)=e¢**¢"" /%§ . This means that, the power will be affected by the factor
e** but the pulse shape and SOP will not change.

6.3 The complex PSP vector

Before discussing the impact of PMD and PDL on the dynamical equation of SOP, we notice:
First, without including PDL, the transmission matrix of the fiber is always unitary.
However, when the fiber PMD is intertwined with PDL elements, the transmission matrix
losses its unitary property. Nevertheless, by the polar decomposition theorem (Kogelnik &
Jopson 2002), a complex 2x2 matrix can be decomposed into T = Tpp; Tpyp , Where Tpp; is
a positive definite Hermitian matrix, i.e. Tip, =Tpp;, and Tpypis a unitary matrix, i.e.
ThvpTpmp =1 - Second, the PDL vector may by frequency dependent. This will influence the
PDL induced waveform distortion effect in an optic link. Considering that such frequency
dependent waveform distortion is not so important in a system with realistic parameters
(Shtaif & Rosenberg 2005; Phua & Ippen 2005), the PDL vector was approximated as a
frequency independent.

As pulses are described by wave packets with a finite frequency band, the frequency
dependence of |s> should be considered now. A fixed input polarization was assumed, i.e.
|t>,=0 hence f, =0, as is appropriate for a pulse entering the fiber at zero time. Now, by
differentiating Eq.(43) with respect to frequency and eliminating |¢>, the change of the
output Jones vector was obtained

d | S > | 1
o =TpprTpmp T Tppr | 8>

(57)

where Tpyp represents the derivative of Ty, with respect to frequency. Eq.(57) tell us that
for most input polarizations, the output polarization will change with frequency in the first
order. Notice that, if |s> either of the two eigenstates of the operator Tpp; TpnpTrinTror
then |s>,=0. The dynamical equation of SOP in Stokes space can be obtained by using
Eq.(57) as, see (Yasser 2010)

&, =[(c* +5°)7 —25%(7 - @)@ + 2isc(T x @)]x 3 (58)

Many published studies (Chen et al. 2007; Wang & Menyuk 2001; Shtaif & Rosenberg 2005)
related to the theoretical treatment of the combined effects of PMD and PDL, which are
introduced in many forms of the frequency derivative of Stokes vector, but all these forms
may be considered as a partial form of Eq.(58) above.

The expression between brackets in the right hand side of the last equation represents the
complex PSP vector which can be decomposed as real and imaginary parts as follows

W=Q+iA (59)

where Q and A represent the new vectors in presenting of PMD and PDL. The two new
vectors take the forms

Q=(*+s*)7-25(7-q)a (60a)

A =25c(7 x Q) (60b)
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There are many features that can be deduced from Eq.(59): if 7 is parallel or anti-parallel to &
then Q =7, i.e. the old and new PMD vectors are identical, and A =0, i.e. the PDL effects will
disappear. If 7 is perpendicular on @ then Q=(c* +s%)7, i.e. the old and new PMD vector
have the same direction but distinct values, and A =2sc& (where & =7 x @) that means the
new PDL vector is perpendicular to the plane that contains 7 and & .If 7=0 then both
vectors Q and A are zero. Remembering that, the absence of PMD will not permit the
emergence of two components, as a result there is no PDL but the reverse is not correct. Since
the PSP vector is complex, then the fast and slow PSP’s are not orthogonal. If ¢ =0, i.e. no
PDL, then Q=7 . The new DGD takes the form /s =ReyW-W =0, where the meaning
of DGD over infinite frequency is called the scalar PMD. Thereafter, the SOP rotates around
the PSP vector by an angle 7,.w. The new DAS takes the form a,,, =ImVW-W .
Accordingly, the new PDL value is 20|, | £0g4(€) -

7. Birefringence and nonlinearity

To formulate the birefringence effects more precisely, considering the nonlinear Helmholtz
equation (Agrawal 2007)

wE, w?

V2E+ E-- Y p 61
2 2 ) NL (61)

i

where the tilde denotes the Fourier transformation, ¢, is the vacuum permittivity, and & is
the linear part of the dielectric constant. Notice that the tensorial nature is important to
account for the PMD effects that have their origin in the birefringence of silica fibers, while
its frequency dependence leads to chromatic dispersion. Assuming that the instantaneous
electronic response dominates and neglecting Raman contribution (Lin & Agrawal 2003 a),
the third order nonlinear polarization in a medium as silica glass is found to be

= & Z(?’) Z 2 2k s = =

B (w) = 2L (E.B)E +2(E - B)E| (62)
The electric field vector evolves along the fiber length and its SOP changes because of the
birefringence. It is assumed here that the z-axis is directed along the fiber length and The
electric field vector lies in the x-y plane. This assumption amounts to neglect the
longitudinal component of the vector and is justified in practice as long as the spatial size of
the fiber mode is longer than the optical wavelength. In Jones-matrix notation, the field at
any point r inside the fiber can be written as (Kogelnik & Jopson 2002)

E(r,w) = F(x,y)| A(z,w) > " (63)

where F(x,y) represents the fiber mode profile, k is the propagation constant, and Jones
vector |A> is a two-dimensional column vector representing the two components of the
electric field in the x-y plane. Since F(x,y) does not change with z, one needs to consider
only the evolution of | A > along the fiber.
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Substituting Eq.(63) into Eq.(62), inserting the result into Eq.(61), and integrate over the
transverse mode distribution in the x-y plane, assuming | A > to be slowly varying function
of z so that neglecting their second-order derivative with respect to z. With these
simplifications, the equation governing the evolution of | A > takes the form

d|A>

2. ;
w'E, ko, 1y * ¥
4 +(—+1—J|A>_€[2<A|A>+|A ><A'||A> (64)

2ike> 2

where o, is a unit matrix. To proceed Eq.(64) further, the dielectric constant tensor & may
be represented in the basis of Pauli matrices as (Lin & Agrawal 2003 a)
w?E,

2
: =[k+i%} o, ~kp.é (65)

c

The vector  accounts for the fiber birefringence and its frequency dependence produces
PMD. The vector & is formed as & =é,0q +é,0, + €305, where é;, é,, and ¢é; are a three
unit vectors in the Stokes space. Substituting Eq.(65) into (64) leads to the following vector
equation

d|A> «
+_
dz 2

ao|A>=_éﬁ.a|A>+%[2<A|A>+|A*><A*|]|A> (66)

Eq.(66) can be put in simplified form by neglecting the second term on the left hand side, by
proposing that the medium is lossless; then, using the following identity

|[A"><A"| = [<A|A>+<A|G|A>G]/2-<A|oy|A>0y (67)

into Eq.(66) yields the following elegant equation that describes the evolution of Jones vector
through the optical fiber

d|A> i 0y . .o
—=(-=pB.c+= 5. A>

il wr ARl LR ) (68)
where the proportionality term | A > affects only the global phase and can be neglected,
§=<A|&|A> is the normalized power (Stokes vector). Using Eq.(68), it is not difficult to
obtain

B (B +2700,5) /3)xs )
Eq.(69) presents the effect of nonlinearity. Introducing y effect is considered as the main
contribution of this section, because it is a phenomenon that can not be neglected in the
study of the evolution of polarization through the optical fibers. However, the rotation axis
in presence of nonlinearity is £ +25(0,0,s;)' /3 instead of f. The simplest case, without
nonlinearity effect, has been studied by many researches using different approaches, see for
example (Gordon & Kogelnik 2000; Agrawal 2005; Vanwiggeren and Roy 1999).
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8. Conclusions

In conclusion, we have achieved the following: an important mathematical relationship
between PMD and birefringence are presented and all possible assumptions are discussed.
The statistics of PMD are simply analyzed. The combined effect of PMD and chromatic
dispersion causes an additional amount of pulse broadening. Interaction of PMD and PDL
makes the two PSP’s are not orthogonal nor do they represent the fastest and slowest pulses,
which causes a change in DGD and PDL compared with the impact of each individual.
Nonlinearity causes a change in the rotation axis and therefore it changes the properties of
polarization state during the propagation. Finally, all results are generally subject to random
changes as long as most of the causes random.
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1. Introduction

The application area of optical fibers is quite extensive. Telecommunication applications
were the primary field of fibers employment. The related area is the utilization of optical
fibers for control purposes, which benefits from principal galvanic isolation between the
transmitting and receiving part of the system. A minimal sensitivity of light propagation
inside the fiber to electromagnetic field of common magnitudes allows use the fiber in
systems with high level of electromagnetic disturbance. Regarding the physical aspects of
light propagation in fibers, they find utilization possibility in physical quantities sensors. It
is possible to modulate the phase and state of polarization of the wave inside fiber optical
medium by means of external physical quantity. The interaction is described by
electro-optical, magnet-optical and elasto-optical effects.

In order to achieve high data transmission rates in field of telecommunication applications
the single-mode fibers are used exclusively. Similarly, single-mode fibers are used in the
case of intrinsic fiber optic sensors. Intrinsic fiber optic sensors exploit the fiber itself to
external quantity sensing and the fiber serves to signal transmission also. The reason of
single-mode fiber utilization is the presence of basic waveguide mode - single wave with
single phase and single polarization characteristic.

In spite of the fiber utilization advantages we have to take into account undesirable effects,
which are present in real non-ideal optical fiber. In telecommunication and sensor application
field the presence of inherent and induced birefringence is crucial. The presence of
birefringence may cause an undesirable state of polarization change. In the case of
high-speed data transmission on long distances the polarization mode dispersion may occur.
Due to this effect the light pulses are broadened. This may result in inter-symbol interference.
In the case of sensor application, when the state of polarization is a carrier quantity, the
possibility of output characteristic distortion and sensors sensitivity decreasing may occur.

It's advantageous to consider fiber sensor application for purposes of birefringence origin
and influence description, since the presence of linear and circular birefringence together is
watched often. While the inherent circular birefringence is negligible in common
single-mode fibers, the inherent and induced linear birefringence may be present in
considerable rate. The inherent linear birefringence is mostly undesirable effect, when we
exclude utilization in polarization maintaining fibers. Whereas, the induced linear
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birefringence may be utilized for sensing purposes, e.g. for mechanical stress or pressure
sensing. Similarly, induced circular birefringence is a principle effect for group of
polarimetric sensors, e.g. polarimetric current sensor.

For the suppression of unwanted linear birefringence influence, inherent and induced also,
several approaches and methods have been developed and published. They are often based
on different principles. However, they differ in view of their properties and suitability for
various applications.

The goal of this chapter is to present basic effects, which lead to occurrence of linear and
circular birefringence in single-mode fibers. The methods, which may be used in order to
suppress unwanted birefringence, will be presented also. Since the main manifestation of
birefringence effects is the transformation of the polarization state of transmitted light, a
brief recapitulation of basic polarization states and their illustrative visualizations are given.
In following subchapters various mechanisms, which induce birefringence will be
introduced together with corresponding relations and comprehensible illustrations. In the
last descriptive subchapter the most significant methods for unwanted linear birefringence
are presented with their properties and references to related literature.

2. Light polarization

The electromagnetic wave polarization represents how varies orientation, pertinently
projection magnitude, of electric field component in a plane which is perpendicular to
propagation direction. The polarization character of the wave may be described by means of
the magnetic field component also. However, the interaction of matter with light wave is
done mainly via the electric field component. Then the electric field intensity vector E is
used for polarization states description usually. The general polarization state of the wave is
the elliptical one. The special cases are the circular birefringence and linear birefringence.
Consider an electromagnetic wave which is described by electric field intensity vector E and
which propagates in direction of z axis. The wave may be represented as a superposition of
two partial waves with mutually orthogonal linear polarizations and with the same frequency

E=E, +E,, )

where xyz is orthogonal coordinate system and E,, E, are vectors of electrical field intensity,
which are aligned in x axis direction and y axis direction. It should be noted, that we
consider the same frequency of both waves in all of the following analysis. In case of linear
polarizations the electric field intensity vectors E;, E, swing along a straight line. These two
vectors may be assigned to two degenerated modes of the single-mode fiber, which is a
dielectric circular waveguide. In a lossless medium hold for field components magnitude
relations

E.(z,t)=Ey cos(kz— ot +¢,),
E, (zt)=E, cos(kz —ot+ ¢y), )

where Eq, Eqy are wave amplitudes, @is angular frequency of the waves, t is time and ¢, ¢,
are phases of the wave, k is magnitude of the wave vector. Amplitudes ratio of Eq. and Eo,
and phase difference Ag= ¢ - ¢, determine the state of the polarization of the resulting
wave.
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In case when Eg.=Ey, and A¢g=0 the orthogonal waves are in phase with the same
amplitude. We obtain a linearly polarized wave by their superposition. Its plane of
polarization is in 45° to y axis (or -45° to x axis) as shown in Fig. 1. In Fig. 1 and following
tigures k represents the wave vector.

E;

=

Y

Fig. 1. Superposition of in-phase wave equal in amplitude results in linear polarized wave.

In case when Eo . = Eo, and A¢ = +n/2 the resultant wave has a circular polarization. The end
point of E vector of circular polarized wave traces a circle. We differ between
right-handed and left-handed circular polarized wave depending on the phase difference
Ag¢ polarity, plus or minus. An illustration of right-handed circular polarized wave is shown
in Fig. 2.

x,[z
Y

Fig. 2. Right-handed circular polarized wave.

When A¢+#0, +n/2 or E.# Eg,, we obtain an elliptically polarized wave, right-handed or
left-handed, in dependence on phase difference A¢ polarity. The end point of E vector of
elliptically polarized wave traces an ellipse. The case of left-handed elliptically polarized
wave is shown in Fig. 3

Fig. 3. Left-handed elliptically polarized wave.

As the light wave propagates in homogenous isotropic medium, its velocity remains
constant independently on the propagation direction. The propagation velocity is given by
the refractive index of the medium n. Refractive index is a ratio of wave velocity in vacuum
c and wave phase velocity vy, in the medium, n = ¢/v,. However, medium may be of
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anisotropic character. This means, that the propagation velocity depends on the propagation
direction, pertinently polarization. This effect is observed in birefringent materials. In
common birefringent materials the optical properties are described by means of index
ellipsoid, which is shown in Fig. 4. When linearly polarized wave travels in z axis direction
and it is polarized in y axis direction, the wave phase velocity is given by refractive index n,.
When the same wave will be polarized in x axis direction, the phase velocity will be given
by refractive index #,. Since n, > n,, the first wave will travel slower.

ny .

\I’l
“\ |/
\[/

Fig. 4. Index ellipsoid example of birefringent material.

The velocity of wave polarized between y and x axis directions will be given by refractive
index, which magnitude lies on ellipse in xy plane. When a light wave travels in birefringent
medium of such type described above, it may occur a phase shift between its orthogonal
components, which are described by relation (2). This occurs due to different propagation
velocities of the components. The resulting state of polarization depends on total phase
difference A¢, which is a function of propagation length in birefringent medium also. An
example of state of polarization change from linear to elliptical by birefringent medium
crossing is shown in Fig. 5.

E. E:

birefringent medium
ne>n,

Fig. 5. State of polarization change in birefringent medium.

3. Linear birefringence in optical fiber

In previous section a polarization state of wave has been explained as a superposition result
of two partial waves with certain phase shift and certain amplitude ratio. The similar
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concept may be used for description of polarization state transformation in single-mode
optical fiber. As has been mentioned above, two degenerate modes HE11* and HE;1y may
exist in the fiber with circular core cross-section. The superposition of the two modes, which
are orthogonal, results in the wave propagating in the fiber. And, the phase shift of these
two modes determines the polarization state of the wave in the fiber. A deeper analysis of
mode theory of fibers is out of the scope of this chapter and may be found in relevant
literature (lizuka, 2002).

The phase velocities of two orthogonal modes in the fiber v¢, and vg, are given by
magnitudes of wave numbers S, and g, of the modes

Uf,x = ﬂ_x ’ (3)
2
o, :ﬂiyf, @

where f is the frequency of the wave. An ideal single-mode fiber with circular core
cross-section along its length, made from homogenous isotropic material, will exhibit the
same refractive index n for both of the modes. The wave numbers £, and S, will be equal
also. The modes will propagate with the same phase speed vr. At this condition the modes
remain degenerate and the resulting polarization state will be preserved. A non-ideal fiber
has not a constant circular core cross-section along its length or it exhibits anisotropy due to
bending or other mechanical stress. As a consequence, the loss of modes degeneracy occurs.
The fiber will behave as a birefringent medium with different refractive indices n, and n,
and different phase velocities v, and vs,. In case of constant core cross-section and constant
anisotropy, we can designate £, as a wave number for a fast mode and g, for a slow mode.
Corresponding axes x and y may be designated as a fast axis and a slow axis of the fiber.

If a linear polarized wave is coupled into the birefringent fiber with gradually varying core
cross-section or varying anisotropy, it is not possible to designate one mode as a fast one
and second as a slow one. The mode phase shift Ag which determines the output
polarization state, is dependent on average wave number magnitudes and on the fiber
length

Ag=(B. =B, )L ©5)

The output polarization state will not be stable, when one would manipulate with the fiber
or when the ambient temperature fluctuates. Since the wave number will be changing. This
fact complicates the utilization of single-mode fibers in application with defined
polarization state, as the fiber lasers or fiber sensors. Further, photodetectors, which are
used in the field of fiber optic telecommunication, are not sensitive to polarization state.
However, owing to the fiber birefringence, the phase shift of partial modes, pertaining to
individual pulses, occurs. This effect causes a broadening of the impulses resulting in
inter-symbol interferences.

The fiber birefringence rate is characterized by beat length . It is possible to deduce from
(5), that the state of polarization will transform periodically, as shows Fig. 6. Linear
polarization of the wave with the polarization plane at angle 45° to x axis gradually
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transforms across right-handed elliptical polarization to right-handed circular polarization.
It transforms further across right-handed elliptical and linear polarization perpendicular to
the original one. Then it transforms across left-handed elliptical and left-handed circular to
perpendicular left-handed elliptical polarization and finally to original linear polarization.
At this point, the total phase shift of the modes is A¢ = 27 and the corresponding fiber length
is the fiber beat length Iy..

e R G
ﬂp_;_“ )

by

Fig. 6. Periodical transformation of the state of polarization in fiber with beat length ..

2m A A
I = - - , (6)
ﬂx - ﬂy nx,eff - ny,eff Aneff

where n.er and 1y are effective refractive indices in x axis and in y axis, Aneg is the
difference of effective refractive indices and 4 is light wavelength.

3.1 Linear birefringence owing to elliptical fiber core cross-section

As mentioned above, the linear birefringence may be of latent or induced nature. The main
cause of latent linear birefringence in real fiber is the manufacture imperfection. The
cross-section of the fiber core is not ideally circular but slightly elliptical, as shown in Fig. 7.

) core

a X

cladding

Fig. 7. Elliptical cross-section of the non-ideal fiber core.

Let the major axis of the ellipse representing core cross-section lies in the x axis direction
and the minor axis lies in the y axis direction. The wave number of the mode, which
propagates in x axis direction, will be of a larger magnitude than the wave number of the y
axis mode. The difference of effective refractive indices An. is determined by the ellipticity
ratio a/b. In case of small ellipticity rate, when a = b, holds the relation

Atggg = 0.2[% - 1J(An)z , ()

where An = neo- nq is the difference of core refractive index ., and cladding refractive index
nq. For specific phase shift of the modes it may be derived from (7) a relation

3= 221 ®)
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In order to attain a large beat length the fiber core should approach the circular
cross-section as much as possible. It may be derived by means of (6) and (8) a demand for
relative deviation from ideal circularity

(E— 1} -100% = %-100. 9)
b 0.21, (1 — 1)

For typical single-mode fiber with n. =1.48, nqg=1.46 and operating wavelength 1 =633 nm
the required deviation from ideal circularity achieves 0.016%. This demand is very hard to
accomplish in fiber manufacture. The common fibers maintain the polarization state close to
the initial only a few meters along.

3.2 Inner mechanical stress induced linear birefringence

The fiber core ellipticity is not a single source of fiber birefringence imposed by the
manufacture. A second important source, which may take effect, is the presence of inner
mechanical stress on the core. This may be caused by non-homogeneity of cladding density
in area close to the core. In order to simplify the analysis we can consider an elliptical
density distribution owing to imperfect technology process of fiber drawing from hot
preform. The far area of the cladding influences the inner area by centripetal pressure after
the fiber cooled down. Since the core-close area has a non-homogenous density, the
pressures on core, p, and p,, will act non-uniformly as illustrates Fig. 8.

y

Fig. 8. Non-uniform stress on fiber core owing to imperfect inner structure.

Due to the photo-elastic effect, which causes pressure dependent anisotropy, the fiber core
becomes a birefringent medium. Then, the difference of effective refractive indices in x axis

and y axis is
F7 -1
St poaTLP2 (10)

Ve ry—l’
Py

where v, is Poisson constant of the core, Av is difference of expansion coefficients of outer
and inner cladding areas, AT is difference between softening temperature of the cladding
and the ambient temperature. Coefficient C; is characteristic for given fiber, given by

Algge = 1

1(n. —n }
Cf:E(“’de (711—712)(1_"«,)' (11)
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where ry1, r2 are components of photo-elastic tensor matrix of the fiber material.
Photo-elastic matrix description is above the scope of this chapter and may be found in
(Huard, 1997). For specific phase shift of the modes it may be derived from (10) a relation

F7—1
Ag=2B_Ct poar /Py (12)

A 1—VC F7_1
Py

The influence of inner stress induced linear birefringence is weak in compare to
birefringence owing to elliptical core cross-section in common single-mode fibers. However,
the inner stress induced linear birefringence may be imposed intentionally in case of
polarization maintaining (PM) fibers manufacture.

3.3 Outer mechanical stress induced linear birefringence

Linear birefringence in single mode fiber may be induced by outer influence also. It is
caused by outer mechanical stress (pressure or tensile force) on fiber cladding. Cladding
transfers the mechanical stress on the core and similar effect described above uprises. In
practice, an action of force in one dominant direction appears usually. It induces origin of
two axis of symmetry, x and y, with two refractive indices n, and n, again.

One of the possible effects causing linear birefringence is fiber bending, which is illustrated
in Fig. 9. A fiber with cladding diameter d. is bended with diameter R. The fiber axis is
equal to y axis direction. The pressure imposed on core in x axis increase refractive index 7,
in compare to n, due to the photo-elastic effect. In this configuration, the slow mode
propagates in the bending plane xy and the fast mode propagates in plane yz.

Fig. 9. Geometric relation of fiber bending causing induced linear birefringence.

The difference of effective refractive indices in x axis and y axis will be (Huard, 1997)

1. d? d
A =—Cr—L 4 20C, —L 13
Meff 2 fR2 4@ R (13)

and related specific phase shift of the modes is expressed as
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d> d
R—C; +2£C, -4 } (14)

1
-C Lo
f R

A¢:2_n[2

A

where Ct is fiber coefficient given by (11), ¢ is the rate of axis deformation caused by
longitudinal tensile force. The terms on the right side of relations (13) and (14) represent a
situation when an additive tensile force acts on the fiber. This may occur when the fiber is
bended over a solid, as a coil core. If the fiber is bended without the additive tensile force
relations (13) and (14) are simplified. Then, the resultant relation for specific phase shift is

m . d;
Ap=—Cp=2L. (15)
¢ 2 f R2
Relation (15) may be substituted by relation, where the fiber coefficient C; is replaced by the
product of Young module of the fiber material E. and photo-elastic coefficient of the fiber
core R (Ulrich et al., 1980)
II d21
A¢:IECSRR_CZ' (16)
As in previous cases, it may be derived from (16) a relation for specific phase shift of the
modes

20’ a3

Ay, == —ER=L (17)
When a one fiber turn with radius R = 8 cm would be formed from a typical single-mode
fiber with Ec =7.45-10° Pa, R =-3.34-10-11 Pa-! (Namihira, 1983) and dq = 125 um, the phase
shift at wavelength A=633 nm achieves Ag¢~-n/2. In this case, for example linear
polarization will be transformed into the circular. The original polarization state will be lost.
A second significant effect, which induces linear birefringence in the fiber is a lateral
pressure, which is illustrated in Fig. 10.

SIS

Fig. 10. Imposing a lateral pressure force on the fiber.

Induced anisotropy in the fiber is a result of photo-elastic effect, which is induced by
compressing fiber between two planar solid slabs. If we consider Fn, as a force acting on unit
length, the phase difference of the fiber modes will be (Huard, 1997)

Ap= 2_Hcf ﬂ (18)
A HdCIEC
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The fast mode will propagate along the x axis and the slow one along the y axis. Lateral
pressure induced birefringence may occur by fiber assembly in to optical components, such
as connectors.

At the close of this chapter, there should be mentioned another way to induce the fiber
linear birefringence. It may be imposed by electro-optical effect in the fiber core. However,
the fiber core is made from amorphous material and the electro-optic effect is of a very weak
character (Wagner et al., 1992).

4. Circular birefringence in optical fiber

In the case of circular birefringence analysis we introduce a concept of chiral birefringent
medium. It exhibits two refractive indices nr and n! for right-handed and left-handed
circular polarized waves. Counter rotating waves, which propagate in this medium, travel
with different phase velocities and they gain a phase shift. Both of the circular polarized
waves we may decompose on two linear polarized waves with equal amplitudes and with
n/2 or -n/2 phase shift. Thus, the right-handed circular polarized wave propagating in z
axis direction is a superposition of two orthogonal linear polarized waves described by
components E,r and E,*. For their magnitudes holds

Ei(z,t)= %cos(ﬁrz— wt —%],
(19)

E;(z,t) = %cos(ﬂrz —a)t),

where /' is wave number of right-handed circular polarized wave. Likewise, for left-handed
circular polarized wave components holds

Ei(z,t) = Ecos(ﬁlz— ot + EJ,
2 2 (20)

1 _E 1
Ey(z,t)—7cos(,8 z—a)t),

where f is wave number of left-handed circular polarized wave. Wave numbers of waves
propagating in fiber core are given as

A ) (21)

Due to the magnitude difference of refractive indices ny and 7}l in circular birefringent fiber
core, the counter rotating waves travel with different phase velocities and they gain a phase
shift

2p=(5" - )i =22 (g5 - Bl = s, 22)

where o is specific rotation of fiber core and I is fiber length.

When we superpose two circular polarized waves, which were described above, we obtain a
linear polarized wave with a certain orientation of polarization plane. The change of
polarization plane rotation angle A is equal to the phase shift Ag from (22), Aa = Ag.
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It may be concluded, that the presence of circular birefringence in the fiber results in
polarization plane rotation. When the fiber is free from linear birefringence and we couple a
linear polarized wave into the fiber, we obtain a linear polarized wave with rotated
polarization plane at the output. The angle of plane rotation is due to the circular
birefringence rate and the fiber length.

In contrast to linear birefringence, circular birefringence of latent origin is negligible in
common single-mode fiber. Nevertheless, it is possible to impose it in manufacturing
process or induced it by outer influence. This can be attained by suitable applied mechanical
stress or by magnetic field applying in the direction of fiber axis.

4.1 Outer mechanical stress induced circular birefringence
If a fiber section with length I is exposed to torsion with specific torsion rate ¢

, (23)

where s torsion angle as shown in Fig. 11, a sheer stress is imposed in plane perpendicular
to fiber axis.

Fig. 11. A fiber section with length It exposed to torsion with angle 6.

Imposed sheer stress results in fiber core anisotropy owing to photo-elastic effect. In order to
describe optical properties of anisotropic fiber core, it is useful to exploit tensor matrix of
dielectric constant & (Saleh & Teich, 1991)

e 00 0 -gry O e —gry 0
e=g+AMe =10 ¢ O|+|gry 0 —grx|=|gry & —grx |, (24)
0 0 ¢ 0 grx 0 0 grx &£

where g is dielectric constant tensor of original medium and A& is tensor of torsion
contribution. Coordinates x,; in matrix Ag belongs to point A" in sheer stress plane, where is
the dielectric constant expressed and for coefficient g holds

8= ”44”3 = (rn - Vlz)njr (25)

where ry1, 12 and ry are components of photo-elastic matrix of the fiber core material. For
further analysis, it is advantageous to exploit a Jones calculus (Jones, 1941) to characterize
the influence of torsion modified medium on the polarization state of the wave. The
relations of photo-elastic coefficients of the medium and Jones matrix of the medium are
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beyond the scope of this chapter and may be found for example in (lizuka, 2002). The Jones
matrix of the torsion modified medium is in the form

0 i
T, :{. ’gr}, (26)

jgr 0
where j is imaginary unit. Jones matrix T. describes the polarizing properties of circular
birefringent medium. If we multiply matrix T. with Jones vector J; of linear polarized wave,

we obtain vector J» with imaginary components. Both of the components represent
left-handed and right-handed circular polarized waves.

I B U R I O B s
A 0 LB e ) @

The phase shift of circular polarized waves A¢ and corresponding polarization rotation
angle A is proportional to the torsion rate 7. Then, a twisted single mode fiber with length I¢
acts as a polarization rotator with rotation angle

Aa = grl;. (28)

4.2 Magnetic field induced circular birefringence

The second source of fiber circular birefringence is magneto-optical effect. Between three
types of magneto-optical effect (Cotton-Mouton, Kerr, Faraday) (Craig & Chang, 2003), the
Faraday effect is significant for silica fiber. It induces circular birefringence owing to
magnetic field action in direction along the fiber axis. Analogous to fiber torsion, the
Faraday magneto-optical effect modifies the dielectric constant tensor

e 00 0 —-jnB 0 e —jnB 0
e=g+Ae,=|0 ¢ O|+|jyB 0 O|=|jpyB ¢ 0], (29)
0 0 ¢ 0 0 0 0 0 ¢

where Agno is tensor of magneto-optical effect contribution, B is the magnitude of flux
density of the external magnetic field, 7 is coefficient, which is proportional to magneto-
optic specific rotation coefficient (Huard, 1997). Again, dielectric constant tensor (29)
describes a birefringent medium, where right-handed and left-handed circular polarized
waves travel with different velocities. Here, the resulting phase shift of the waves is
proportional to magnitude of magnetic flux density and the length of birefringent medium.
In order to explain the origin of Faraday magneto-optical effect, it is possible to model the
effect as an electron oscillator movement in magnetic field (Waynant & Ediger, 2000). The
effect itself results from interaction of outer magnetic field with oscillating electron, which is
excited by the electric field of the light wave. Electrons represent harmonic oscillators. For
them equations of forced oscillations hold. In the presence of external magnetic field with
flux density B, parallel to wave propagation direction, for the electron oscillator holds

e

2
m d—Z+Ku:—eE—e[ﬂxB}, (30)
dt dt
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where . is electron mass, e is electron charge, u is vector, which determines the electron
displacement, xu is quasi-elastic force preserving electron in equilibrium position, E is
electric field vector of propagating wave. Electric field of the wave polarizes the medium

P =—N_eu, (31)

where N, is the count of electrons in volume unit, which are deflected by the electric field of
the wave. Substituting equation (31) into (30) we get

2
de= m,

c12_P e[dP
dt m

2
_xB}La)gP:NCe E, (32)
e

where ay is frequency of the electron oscillator. Equation (32) represents the system of two
simultaneous differential equations. We obtain two terms by their solution. One for the
right-handed, second for the left-handed circular polarized wave in the medium (Born &
Wolf, 1999)

r r_jot
Ef =Ej”,

E' = Eloie!, (33)

where wis frequency of circular polarized waves. The macroscopic relation for the medium
polarization due to the electric field of circular polarized waves is in the form

Pl‘ — goZrEr,

(34)
pl— & JE,

where y and j are dielectric susceptibilities for right-handed and left-handed circular
polarized waves and g is dielectric constant of vacuum. Refractive index of the medium is
related to dielectric susceptibility

n*=g =1+, (35)

where & is relative dielectric constant of the medium. Substituting equations (34) into
system (32) and by utilization of relation (35), we obtain relations for refractive indices of
right-handed and left-handed circular polarized waves

("r)Z _1+Nee2 . 1
‘ Gl 2 — @ + - Bw
me
5 (36)
(n1)2:1+Nee . 1
‘ glMe 2 — 0 - Bao
0
m

e

When we take into account certain simplifications, we can differentiate equations (36) and
we can derive relation for polarization plane rotation in dependence on the outer magnetic
field flux density B and on the interaction length I; (fiber length in magnetic field)
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Aa = A¢_%N=E_ @
1,

; 5 Bl = VB, (37)
(a)o -

where 1 is wavelength of the wave, n_c = (ns +nd)/2 is the mean refractive index, o is
angular frequency of the wave, V is Verdet constant, which characterizes magneto-optic
properties of medium. It is obvious, that Verdet constant depends on the wavelength.

The right part of equation (37) is the basic relation for Faraday magneto-optic effect. The
effect is non-reciprocal. The polarization rotation direction depends on the mutual
orientation of magnetic flux density B and the wave propagation direction. The polarization
of wave propagating in the direction of B experiences a rotation Ac. The polarization of
wave propagating in the opposite direction to B experiences a rotation -(Ae). This
non-reciprocal character is important for example for polarization mode conjugation as will
be shown later. The illustration of polarization plane rotation in fiber section due to Faraday
magneto-optic effect is shown in Fig. 12.

I
w
S
|
|
|
|
|
|
|
|
|
|

Fig. 12. Polarization plane rotation in fiber section due to Faraday magneto-optic effect.

5. Superposition of linear and circular birefringence in fiber

Both types of birefringence, linear and circular, may appear in single mode fiber. Both of
them may be of latent or induced origin. The total phase shift of modes in fiber, determining
the output polarization, is given by their geometrical average

ag= it (4] )

where ¢. is mode phase shift caused by circular birefringence and ¢ is mode phase shift
caused by linear birefringence (Ripka, 2001). Generally, the polarization state of the output
wave will be elliptical due to the linear birefringence and the orientation of axes of the
polarization ellipse will rotate due to the circular birefringence. The analysis of the optical
system with fiber, which exhibits both types of birefringence, may be performed by means
of Jones calculus. Jones matrix of the fiber will be in the form (Tabor & Chen, 1968)

cosAf + ]ﬁ sin Ag » sin A¢g
T, = . 2 A¢ A¢p (39)
b sin Ag cosAg— ]ﬂ sin A¢

Ag Ag
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where A¢ results from (38). By means of (39), it is possible to study transformation of
polarization state of the wave, which passed trough the fiber. Generally, in presence of both
types of birefringence, the fiber behaves as phase retarder and polarization rotator
simultaneously.

6. Techniques for unwanted fiber birefringence suppression

In previous chapters, it has been explained how the birefringence affects the polarization
state of the wave in fiber. The transformation of polarization state is often unwanted, if we
intend to use it as a carrier quantity.

It is important to suppress the polarization mode dispersion in telecommunication
applications, in order to avoid pulses broadening. It is caused by linear birefringence.
Important is also to avoid the unwanted birefringence in polarimetric sensors applications.
It has to be ensured, that the polarization state will be modified by sensing quantity only.
Polarimetric fiber optic sensor may be divided into two groups. Sensors of mechanical
quantities (strain, pressure, vibrations) utilize induced linear birefringence. Sensors of
magnetic field utilize induced -circular birefringence. Since the inherent circular
birefringence of common fibers is insignificant, the key parameter is the rate of linear
birefringence.

The facts mentioned above place demands for methods for unwanted linear birefringence
suppression. Following subchapters present a brief overview of the most significant selected
methods, which are used to meet this requirement. The methods differ in view of its
principle, efficiency or usability in various applications.

6.1 Polarization maintaining fibers

Polarization maintaining (PM) fibers have a specific inner structure, which allows
maintaining polarization of the wave on long distances. In general view, polarization
maintaining fibers may be divided in two groups. The first represents polarization
maintaining fibers with low birefringence (PM LB). PM LB fiber approaches the concept of
ideal fiber with constant circular cross-section and with very low linear birefringence. As
has been mentioned above, these fibers are difficult to manufacture. Moreover, the
manipulation (as bending or compressing) with fiber induces linear birefringence due to
photo-elastic effect. In the second group belong polarization maintaining fibers with high
birefringence (PM HB). A strong linear birefringence is imposed in the fiber by means of
internal mechanical strain, which results in the loss of degeneracy of hybrid fiber modes
HEq;. Therefore, the beat length of PM HB fibers is only a few millimeters. Hybrid modes
propagate in fiber along the major and minor axis of ellipse, whose ellipticity is given by the
ratio of mode wave numbers B and fJ,. If the light wave, for example with linear
polarization, is coupled into the fiber with polarization plane in direction of one of the axes,
the both orthogonal wave modes will experience equal wave numbers and the equal
refractive indices. The wave will propagate along the fiber without the polarization state
transformation (Kaminow & Ramaswamy, 1979). The sensitivity on bending and
temperature fluctuations is greatly reduced. Nevertheless, the insensitive polarization state
preserving is ensured only for one certain polarization plane orientation, when both wave
modes experience same refractive indices.

The principle of PM HB fibers manufacturing consists in implementing of stress components
in the fiber cladding. Stress components impose symmetrical defined pressure force on
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circular fiber core. Stress components are implemented by doping of designated cladding
areas with atoms of certain elements, typically boron atoms. In this way, areas with different
thermal expansion coefficient are formed. After the drawn fiber cools down, the doped areas
cause inner strain, which acts on the fiber core. Doped areas may have variety of shapes as
shown in Fig. 13. The influence of fiber latent linear birefringence is strongly exceeded by
the imposed birefringence, which temperature and bending dependence is very weak.

In order to characterize the properties of PM HB fibers the polarization crosstalk CT is
defined (Noda et al., 1986). Polarization crosstalk, defined by relation (40), is given by
logarithmic ratio of optical power of excited mode P, and optical power of coupled mode P,.
The polarization crosstalk is typically lower than -40 dB for fiber length of 100 meters
(Senior, 2009).

doped cladding areas

a) b) c)
Fig. 13. Various profiles of PM HB fibers: a) elliptical, b) PANDA type, c) Bow-Tie type.

P
CT =10log—~. (40)
PX
In the following chapters, fibers with intended polarization preserving properties are

discussed. Although they exploit different principles, they may be considered as a special
type of PM LB or PM HB fibers, as will be mentioned.

6.2 Fibers with high circular birefringence

The demands of telecommunication applications for polarization state preserving in fiber
may be satisfactory covered by PM fibers. Since, PM fiber allows preservation of state
polarization only for one certain polarization plane orientation, they are not well suited for
applications in polarimetric fiber sensors. The polarization plane rotates due to the sensing
quantity magnitude in case of these sensors. Therefore, the different fiber modifications
were studied.

6.2.1 Twisted fibers

One of the approaches is fiber twisting, which may impose a strong circular birefringence in
the core. If the rate of induced circular birefringence will be much greater than the rate of
linear birefringence, relation (38) may be modified

2 g4
Ag= ¢3+[%] = g2 = ¢ (41)

The influence of circular birefringence will dominate and the linear birefringence may be
neglected. Since the effect of linear birefringence is canceled, twisted fibers belong to group
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of PM LB fibers. Twisted fiber will behave as polarization plane rotator, which preserves the
polarization state of the wave. The polarization plane rotation is proportional to specific
rotation of the fiber core and o and [ is fiber length

Aa =0l (42)

If this principle would be utilized in polarimetric fiber sensor application, the polarization
rotation due to sensed physical quantity will be additive to inherent polarization rotation of
the fiber.

The circular birefringence in fiber core is possible to impose by fiber twisting in a plane,
which is perpendicular to fiber longitudinal axis. The rate of circular birefringence
corresponds to photo-elastic properties of the core, core refractive index, fiber length and
specific torsion rate (relation (23)). In order to minimize the influence of linear birefringence,
the specific torsion rate should be maximized. However, this is limited by torsion limit of
the fiber. When exceeds, the fiber may be broken.

The disadvantage of the twisted fiber utilization in fiber sensing applications is the
temperature dependence of twisting imposed circular birefringence, due to temperature
dependence of core anisotropy. The next issue is the fabrication difficulty of small fiber coils
for magnetic field sensing around conductors. The bending induced linear birefringence
achieves a higher magnitude for small fiber coils. Therefore, the large torsion rate of the fiber
has to be used and it may exceed the torsion limit. The approximate torsion limit of common
single mode fiber is 100 turns per 1 meter (Payne et al., 1982). Taking into account this limit, it
is possible to fabricate fiber coils with minimal diameter of 15 cm (Laming & Payne, 1989).

6.2.2 Spun low- and high-birefringent fibers

The more sophisticated approach to linear birefringence suppression was development of
spun fibers. Spun fiber fabrication consists in twisting of melted preform during fiber
drawing. During the fiber drawing, all fiber imperfections, as deviation from circularity and
other non-uniformities, are spread out in all directions. Therefore, phase retardations, which
experience propagating modes, cancel each other out. Since the twisted preform is melted, no
stress induced anisotropy is present in the core after the fiber cools down. Simultaneously,
the fiber is free from temperature dependency effects. Hence, the spun fiber behaves as an
ideal fiber with circular cross-section core, which retain any polarization state of coupled
wave, from the input to the output. In principle, spun fibers belong to group of PM LB fibers.
We designate them as low-birefringent spun fibers (spun LB). Spun LB fiber exhibits only a
negligible latent circular birefringence, due to limited viscosity of the preform during the
drawing. The principle of spun LB fiber implies their main disadvantage, which is the
sensitivity on fiber bending. This results in stress induced linear birefringence and the
limitation for small radius fiber coil fabrication remains (Payne et al., 1982).

A similar concept of spun LB fiber represents highly birefringent spun fibers (Spun HB).
Spun HB fibers are manufactured by rotating of melted preform also. However, the preform
is prepared as for classical PM HB fiber, e.g. Bow-Tie (Laming & Payne, 1989). Spun HB
fiber transforms the input linear polarization on to the elliptical. By carefully chosen rotation
rate of the preform in relation to the fiber linear birefringence rate, it is possible to attain
quasi-circular birefringence with negligible residual linear birefringence (Payne et al., 1982).
Generally, we may consider spun HB fibers as a type of PM HB fiber group. The advantage
of spun HB fibers is considerable immunity to rising of linear birefringence by fiber bending
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or compressing. Since the quasi-circular birefringence in the fiber originates from twisting of
stress components, the temperature dependence of anisotropy is indispensable. Therefore
temperature compensation has to be used in applications utilizing spun HB fibers. On the
present, spun HB fibers for telecommunication and sensing application are available for
wavelengths from 600 nm to 1600 nm, with attenuation in order of ones of dB-km-1. They
may be wind on fiber coils with radius above 20 mm.

In connection with recent advances in microstructured fibers research, new possibilities of
spun fiber fabrication emerge. The concept of microstructured fiber allows designing and
producing of fibers with specific parameters on selected wavelength, single mode or multi
mode character, polarization transformation properties and others. A development of
microstructured spun fiber with six air chambers around the core and attenuation below
5dB-km? is reported in (Nikitov et al., 2009). The possibility of circular polarization
transmission has been achieved by rotating of the microstructured preform, together with
magneto-optic properties preservation. The fiber coils with diameter above 2.5 mm can be
fabricated for current sensing application.

6.3 Annealed fibers

Drawback of twisted fibers and spun HB fibers, which is anisotropy temperature
dependence, limits their applicability mainly in polarimetric current sensor applications. A
method for suppression of temperature dependence of anisotropy together with the
suppression of bending induced linear birefringence has been proposed and experimentally
studied (Stone, 1988; Rose et al., 1996). The method utilizes annealing of fabricated fiber coil.
The procedure consists in temperature treatment of the fiber coil, which is installed in
ceramic labyrinth. The coil is then heated up with approximate temperature-time gradient
AT/At=8102°C-s1. When 850 °C is reached, the temperature is maintained for roughly
24 hours. Then, the slow cooling follows with approximate gradient AT/At =-3-103 °C-s-1.
Annealed fiber coil is then transferred into protective case, which is filled with low-viscosity
gel in order to damp the vibrations. The annealing procedure leads to removing of bending
induced stress on the fiber and the linear birefringence is greatly suppressed. Prior to the
annealing procedure, the fiber jacket and buffer has to be removed, because its oxidation at
the temperatures 500 - 600 °C would damage the fiber. Since the fiber jacket and buffer act
as fiber strength element, their removal is difficult and fiber rupture impends. The outer
layers removal is facilitated by etching in organic solvent. The oxidation proceeds then
without the negative influence on the fiber cladding (Rose et al., 1996).

Due to considerable temperature stability, the annealing method is used for fabrication of
fiber current sensors, which are installed in outdoor environment on high voltage systems.
The need for reliable galvanic isolation and accuracy predominates the technological
difficulties in fiber coil fabrication. The annealing procedure has to be carefully performed
and it has to be handled a technology of fiber coil isolation from vibrations. Since the fiber
strength outer layers have been removed, the fiber coils have increased sensitivity to
vibrations. For outdoor installations on high voltage system an annealed fiber sensors with
sensitivity variation smaller than 0.2 %, dynamic range of 80 dB and temperature range
20-80 °C were developed (Higuera-Lopez, 2002).

6.4 Reciprocal compensation of linear birefringence
In combination with fibers, which were described above and with common single mode
fibers also, another perspective approach for linear birefringence suppression may be
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exploited. The approach is based on reciprocity of linear birefringence. Beyond this, the
circular birefringence is of non-reciprocal character, which gives usability especially in
polarimetric current fiber sensors. Utilizing this fact, a compensation of linear birefringence
may be performed on sensor output signal level in case of counter-propagating of two light
waves in fiber. Second possibility consists in compensation of modes phase shift on fiber
level in case of back-propagating of light wave with ortho-conjugated polarization.

6.4.1 Compensation on sensor output signal level

Since the linear birefringence is of reciprocal character, its influence on polarization state of
the wave in fiber is not dependent on the propagation direction. The wave will experience
the same polarization state transformation with the same orientation, no matter the
propagation direction. Conversely, the magnetic field induced circular birefringence is
non-reciprocal. When the wave will propagate in one direction, it will gain a polarization
rotation. When the wave will propagate in opposite direction, it will gain rotation in
opposite direction. The total rotation will be the double of the rotation in one direction.
Setups, which exploit the reciprocity of linear birefringence, have been demonstrated as
polarimetric current sensors. An example of the sensor setup is shown in Fig. 14 (Claus &
Fang, 1996).

polarizing
fiber
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fiber coil 4$PD1 U
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Fig. 14. Sensor setup with compensation on output signal level a), signal processing b).

b)

In Fig. 14a), the signal from laser source L is divided into two channels by means of fiber
coupler FC. After passing FC; and FC,, the two optical signals propagate in opposite
direction through the polarizing parts and the sensing part of the fiber. The unused coupler
outputs are led into immersion gel to avoid reflections. The optical signals are sensed by
photodetectors PDy, PD,. For output voltage signals of the detectors we can deduce

U, =Ry, -FC,-T;, -FC,-FC-P,,

(43)
U, =Ry ,-FC, T}, -FC, -FC-P,,

where P, is the input optical power. FC, FC;, FC; are split ratio of coupler FC, FC; FCy, Tov*
and T,y are polarizing transfer functions of the fiber path in one and in second direction,
Ruy1, Rup are responsivities of photodetectors. For correct operation, it must hold
FC=FCy=FCy=0,5and Ry;1 = Ry = Ry. Relation (43) transforms into
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U, =Ry -FC* Ty,

1 19) ov (44)
U, =Ry -FC*-T},.
In signal processing block, as shown in Fig. 14b), the normalized difference is computed

3 - + _
:U1—U2:RU'FC .(TOV_TDV):TOV_T:V. (45)
Up+Uy  Ry-FC*-(Ty+Ty,) Tou+ 75,

Considering the presence of reciprocal linear birefringence only, the equality Tov* = Tov
holds. The output signal according to (45) will be zero. Since the magnetic field induced
circular birefringence is non-reciprocal, the equality of polarizing transfer functions will not
hold. Hence, the system will be responsive on varying rotation due to induced circular
birefringence. Sensor utilizing above described principle dispose of considerable
temperature stability and vibration insensitivity. More detailed description and sensor
properties may be found in (Fang et al., 1994; Wilsch et al., 1996).

6.4.2 Orthogonal conjugation compensation

The reciprocity of undesirable birefringences in optical fiber may be used for their
compensation exploiting the polarization ortho-conjugation of the wave modes. The method
involves the back-propagation of light wave with conjugated modes through the same
section of birefringent fiber.

As it has been stated above, imposing stress on fiber (pressure, bending) leads to origin of
linear birefringent fiber core with two refractive indices, one lying in x axis direction - 1,
and second lying in y axis direction - 1,. We may designate the axis as the fast fiber axis,
with lower refractive index, and the slow fiber axis, with higher refractive index. However,
the orientation of the fast and slow axes system towards the geometrical coordinate system
of the fiber changes along, in dependence on the bending or pressure force orientation. The
modes propagating with different refractive indices gain a phase shift to each other, which
results in wave polarization transformation. Since the instantaneous magnitudes of
refractive indices in fast and slow axis may vary due to rate of bending or compressing, the
resulting phase difference relies on average magnitudes of the refractive indices in both
axes.

In order to restore the original polarization state, the wave at the output of the birefringent
fiber has to be reflected and coupled back in the fiber together with modes conjugation. To
accomplish this, Faraday polarization rotator and flat mirror is exploited, as shown in
Fig. 15. The whole device is called ortho-conjugation reflector (OCR) or often Faraday
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Fig. 15. Principle of Faraday rotation mirror.
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rotation mirror (FRM). It consists of Faraday rotator, mounted inside a permanent magnet,
flat mirror and collimator (for fiber optic application). The magnetic field magnitude, rotator
dimension and its assembly is properly adjusted, that a light wave polarization is rotated
with angle 45° while passing the rotator. Mirror allows reflection in perpendicular direction
and collimator serves for fiber coupling.

Consider a birefringent fiber with a fast axis and a slow axis, Fig. 15. The modes of light
wave, which travels in fiber, gain a phase shift. The mode in slow axis is retarded, while
the mode in fast axis travels faster. At the fiber output, the wave is collimated to rotator. It
rotates the wave polarization with angle 6/2 = 45° during a single pass. Then the wave is
reflected back. After the second rotator pass, the rotation angle is #=90° due to the
rotation non-reciprocity. The wave is coupled back into the fiber. Now, the wave
propagates in fiber in backward direction. The wave mode, which traveled previously
along the fast axis, travels now along the slow axis. Conversely, the mode, which traveled
previously along the slow axis, travels now along the fast axis. The total phase shift of the
modes is equalized and the original polarization state is restored. It should be mentioned,
although the difference of average refractive indices will no be constant in time (for
example by fiber manipulation), the final phase shift will remain zero thanks to reciprocal
compensation. The temperature stability of the method is considerable also. However, this
is true only when the temperature of FRM is stable, since the Verdet constant of rotator in
FRM is temperature dependent.

Though the principle is not applicable for telecommunication purposes, it may be utilized
in applications, where the polarization state preservation is desirable. This is often required
in erbium-doped fiber amplifiers or tunable fiber lasers. Fiber optic sensors are another
field of application. In case of fiber interferometers a polarization state of waves incoming
from reference arm and sensing arm has to be preserved in order to interfere. Therefore,
FRMs are used in both arms of interferometer. Fiber optic current sensors are another
example of usage of FRM (Drexler & Fiala, 2008). Fiber current sensors exploit polarization
rotation of the guided wave due to the magnet field actuation. Since the circular
birefringence owing to Faraday magneto-optic effect is of non-reciprocal character, it will
not be compensated during the backward propagation. Moreover, the polarization rotation
will be double, which improves the sensitivity of the sensor. The example of fiber optic
polarimetric current sensor utilizing FRM is shown in Fig. 16 (Drexler & Fiala, 2009). Laser
beam from laser source L is collimated by means of collimator C and linear polarized by
means of polarizer P. Beam passes a non-polarizing beam splitter NBS and it its collimated
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Fig. 16. Fiber optic polarimetric current sensor utilizing Faraday rotation mirror.
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into the fiber by collimator C. The beam propagates through the magnetic field sensing fiber
OF and exits the fiber. Collimator C collimates the beam into the FRM and collimates
backward beam back into the fiber. The beam travels the fiber in opposite direction. After
the collimation, part of the beam is deflected by beam splitter NBS. It passes the analyzer
A and hits the photodetector PD. The output linear polarization state is perpendicular to
the input linear polarization state. When magnetic field acts on the sensing part of the
fiber, the polarization plane rotates. The polarization modulation is converted on intensity
modulation by means of analyzer A.

In spite of the advantages of the FRM application, several drawbacks limits its usage. One of
the drawbacks is temperature dependence of rotator Verdet constant (Santoyo-Mendoza &
Barmenkov, 2003). Therefore the FRM unit has to be temperature stabilized. Simultaneously,
it has to be shielded from outer magnetic field. Indispensable is the cost of this solution also
owing to precise fabrication and adjusting of the FRM. Commercially available are FRMs in
compact fiber pigtailed housing for longer wavelengths (1310 nm, 1550 nm). There are also
available FRMs for shorter wavelengths (633 nm). However, they are bulky, because of the
need of more powerful magnet.

7. Conclusion

Due to their unique properties, single mode fibers have found a huge application potential
in various fields of industry and science. They are massively exploited in telecommunication
technology, control and sensor systems, industrial laser systems and they represent an
unsubstitutable tool for advanced science. The requirements for specific fiber properties
differ for various applications. In lot of them, a transmission of light wave with preserving
of state of polarization is demanded, which is often a weak point of common fibers.
However, this drawback is possible to overcome with a suitable approach, depending on
demands of particular application.

In order to evaluate the possibility of polarization state distortion, various influences have to
be conceived. It is also very advantageous to be able to quantify them. According to this
demand, the intention of the first part of the contribution is to specify the fundamental
effects, which lead to fiber birefringence. The basic relations, which allow estimating the
birefringence rate are presented also.

Once the fiber birefringence occurs, in lot of cases arises a need to suppress its undesirable
consequences. A various approaches, which may be utilized, are the point of the interest of
the second part of the contribution. The principles of the most significant methods are
described. Their advantages and disadvantages are presented also. The suitability of a
selected method is given by the application requirements. They differ in cost, complexity,
temperature and mechanical stability and others. Because of the limited extent of this
contribution, all of the methods properties and details could not be presented. Nonetheless,
the chapter may be a convenient starting point for orientation in this field and details may
be found in cited reference sources.
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1. Introduction

The polarization is a relative property to the vibratory nature of light. In an optical fibre,
light is a combination of two vibrations of perpendicular directions. Each direction
represents one mode of polarization. Indeed, the optical fibres and the components of the
optical fibres present a small difference in the refractive index in the pair of the polarization
states, a property called the birefringence. This last one induces a difference of propagation
speed between the two modes. So, light at the output, cannot be restored more faithfully.
The birefringence can change the state of polarization (SOP) of light when it crosses the
fibre. In a single mode fibre, the birefringence is combined with a random coupling of
polarization modes. The delay measured at the output of the fibre between the two
polarization modes is called the difference of group delay DGD (measured in picoseconds).
The polarization modes dispersion (PMD) results from the variation of the DGD according
to the wavelength and the environment conditions.

The typical tolerance of a system to the PMD is roughly 10% of the bit period, which gives
40 Ps for a system of 2.5 Gb/s, 10 Ps for a system of 10 Gb/s and only 2.5 Ps for a system of
40 Gbs/s (Noé et al.,1999). The PMD is a random phenomenon and constitutes an enormous
obstacle ahead of the increase of the debits from 10 Gbit/s for a part of the networks of most
telecommunication companies. Several solutions have been proposed to compensate the
PMD as: The electronic compensation after a direct photo-detection that can only eliminate a
part of the PMD effects since the information about the polarization and the phase get lost at
the detection; the second solution is the electronic compensation in a coherent receptor with
diversity of polarizations, and the third one is the optical compensation in at least a
differential delay section. Other solutions are proposed by the Corning society and which
rely on the use of spun fibres allowing the control of the coupling of the modes, therefore
reducing the PMD; thus, giving differential group delays of order of Femtoseconds. In the
past decade, some considerable efforts have been made to understand the origins of the
PMD and to attenuate its effects in the systems. The PMD can be reduced in a fibre with two
different manners. The first one consists in minimizing the asymmetries in the refractive
index profile and the constraints, which implies improvements of the industrial process in
the manufacture of the fibre in order to assure a better geometry and to reduce the rate of
constraints in the fiber. The second method allows the control of the coupling of the modes
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of the polarization in the fibre while spinning it during its manufacture. Indeed, the
spinning has been used in the manufacture of fibres since the beginning of the 1990s, and it
showed that it is an efficient technique to reduce the PMD in the fibre. First, we start by
presenting in this work the spun fibres explaining their technology, their principle and their
different types. Next, the description of the reduction of the PMD by using the spinning is
developed by a mathematical formalism based on the theory of coupling and Jones's matrix.
Moreover, the reduction of the PMD is verified in the spun fibres while applying the
method of JME and the COTDR method (photon counting -Optical temporal Domain of
Reflectometry) that allowed us to measure the DGD of the order of femtosecond (Cherbi et
al., 2009). The comparison of the DGD found in this type of new generation of fibres with
those of the standard ones, led us to confirm that the spun fibres offer effectively a smaller
DGD than those of the standard fibres, emphasizing the importance of this type of fibres in
the reduction of the PMD.

We present the different results already published (Cherbi et al., 2009) while using the
reflectometers COTDR and POFDR (polarization- Optical Frequency Domain of
Reflectometry) which are used to get the polarization characteristics of the spun fibres as the
beat length and the PMD and to observe the spatial frequencies linked directly to the period
of spinning.

2. Principle of spun fibres

2.1 Technologies of the spun fibres
There are more than two decades when the concept of the spun fibres has been proposed
originally in an article published by (Barlow et al., 1981).
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- Device of Fibre
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Fig. 1. Two approaches used to present the rotating fibres (a) turn preforms (b) turn the fibre.
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The fibre spun is achieved by the rotation of the preform during the drawing of the fibre
(figure 1.a). In this approach, the system of drawing is the same as that of the
conventional standard fibre systems (OVD) except that a rotating motor is placed on the
top of the preform. When the motor is set in motion with a predetermined speed, the
preform starts turning dragging the rotations of the axes of the birefringence. The rotation
will end up with the end of the drawing operation. This approach is quite simple and
appropriate for the pulling of the fibre at low speed. However, this is not convenient for
the production of the fibre with a high speed pulling because the rotation of the motor
must be at very high speed as well. To illustrate this, we consider a rotation rate of the
fibre of 3 turns/min, for a drawing speed of 1 m/s, the rotating speed of the preform is
thus only 180 turns/min.

On the other hand, for a modern drawing device having a speed higher than 20m/s, the
perform must turn at a speed greater than 3600 turns/mn, which is far from practical. For
this reason the concept of the spun fibres has not been used in the production of fibres
until the half of the nineties when methods of more adapted spinning have been proposed
(Ming-Jun & Nolan, 1998). Moreover, the transmission systems as they appeared at low
rate (<= 2.5 Gb/s), the PMD was not a major problem to seek fibres that perform this
reduction.

Several convenient techniques have been suggested during the year 1990, for example, by
(Hart et al., 1994] in order to make the fibre turn rather than the preform. Later on, this
technique became the most adapted one for the manufacturing of the fibres performing the
reduction of the PMD.

Axis of the tilted wheel Two wheels moving
back and forth back and forth in
opposite directions

(a)

(b)

Fig. 2. Examples of fibre rotation systems: (a) tilted wheel, (b) two wheels moving in
opposite directions.
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In this case (fig 1.b), a rotating device of the fibre, is put along the way of fibrage to rotate
the fibre directly. Two examples of this device are illustrated in figue 2. In the first example
(fig 2.a), a wheel is in contact with the fibre and tilted with respect to its initial position, thus
applying a moment of rotation to turn the fibre. In the second example (fig 2.b), two wheels
are placed horizontally and are both in contact with the fibre (Blaszyk & Christoffand,2001).
The two wheels move back and forth in opposite directions driving the rotational movement
of the fibre. Imposing a direct motion to the fibre eliminates the problem of the preform
when turning at high speed. Besides, this technique provides flexibility to control and
implement different profiles of rotation for a better reduction of the PMD.

2.2 Theory of spun fibres

Two approaches have been suggested to model the reduction of the PMD in the spun fibres,
one of which is based on the evolution of the polarization state (Galtarossa et al., 2001;
Ming-Jun &Nolan, 1998). The evolution of the vector representing the polarization
dispersion is ruled by the dynamic equation which is linked to the vector of the local
birefringence. While solving the dynamic equation, the vector representing the
polarization’s dispersion is gotten and its module gives the delay of the differential group
(DGD). Another approach is based on the theory of the coupled modes of Jones' matrix
(Ming-Jun et al., 2002) where the complex amplitudes of the two modes of polarization are
described by the equations of the modes coupling. While solving these equations, the
complex amplitudes are derived and Jones' matrix is determined and the DGD can be
computed from this matrix. Basically, the two approaches give equivalent results. Our
survey of the spun fibres is founded on Jones' matrix formalism, where we notice that the
analytical solutions obtained are simple.

2.2.1 Equations of the mode coupling

As the birefringence in the fibres used in telecommunications is generally small, the
formalism based on the theory of disruption (Ming-Jun et al., 2002), can be used to describe
the different mechanisms of birefringence in the single mode fibres, including the
birefringence due to the distortion of the core, constraints, curvature, rotation of the fibre
and torsion. In what follows, we will present the theory of the coupled modes and we will
show how to implement it in the different problems of birefringence. Indeed, the small
birefringence of telecommunication fibres can be treated as an anisotropic disruption to a
material originally isotrope. In the condition of weak guidance, the electric field E is
described by the following wave equation (Dandliker,1992):

AE -ty &y € E= piop @

Where ¢ et 1 are the dielectric and magnetic constants of vacuum respectively, ¢ is the
relative dielectric constant of the non disrupted fibre, and p is the disruption term given by
the following relation:

p=&AsE ()

Where Ae¢ is the electric tensor describing the anisotropy of the medium. Without the term
of disruption, the equation (1) has modal solutions of the following shape:
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E,(x,y,2) =e,(x,y)exp(-if2) n=1,2 ®)

where e, (x,y) is the distribution of the electric field. For a monomode fibre, n =1, 2
represent the two modes of polarization.

In absence of disruption, the two modes are degenerated and propagate with the same
constant 3. In presence of the disruption term, it is supposed that the electric field E(x,y,z) is
given by the linear superposition of the two non disrupted modes (Ming-Jun et al., 2002):

E(x,y,2) =2 A, (2)e, (x,y)exp(=if3y 2) ()

Where A, (z) are the complex coefficients describing the amplitudes and the phases of the
two modes. Let's put equation (4) into equations (1) and (2) and use the relation of
orthogonality between the two modes (Ming-Jun et al., 2002):

m=n

| em<x,y).en<x,y>dxdy={é“m ©)

m#n
Knowing that N,, is a constant of normalization which can be calculated as follows:

1/2
N,, :%_[Em xh zds = eoeur | €0 J‘e,znds (6)
2 o

and using the condition of the weak coupling:

d*A
dz?

1
B

We get the equations of the coupled modes that describe the evolution of the complex

dA,
<
dz

n

)

amplitudes A, (z):

dA
—=ik.A
P ®)

where A is the complex amplitude vector taking the following form:

A=A Ay 9)

and k is the matrix of the coupling coefficients.

k= (10)

The coupling coefficients are associated to the different types of disruptions:
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k
k., =—2—|el(x,y).Ae(x,v,2). e, (x,y)dxd (11)
ZnONOI(y) (x,1,2). €, (x, y)dxely

Where n, is the effective refractive index of both non disrupted modes.

2.2.2 Jones matrix and the PMD of spun fibre

The evolution of the local polarization along the birefringent fibre is described by the
equations of the modes coupling. The total change of polarization of an input signal, after
having traveled a given distance in the fibre is better described by Jones' matrix. Let's
assume that the losses in the fibres are negligible, the already predefined Jones matrix, can
be put under another form which is:

A(z)  —Ay(2) A,
T= with A" +[4,[ =1 (12)

A5(2) Ay(2)

The four complex elements of Jones' matrix can be gotten while integrating the equations of
the coupled modes with suitable initial conditions. Once Jones' matrix is known, the PMD
can be calculated easily from the elements of the matrix (Chen, 2002; Ming-Jun et al., 2002):

2 2

dAy
do

=2 + a4, (13)
dw

In order to describe the reduction of the PMD, we define a parameter, named reduction
factor of PMD (PMDREF) ¢ as the ratio of the DGD of the spun fibres over the DGD of the
standard fibre.

c== (14)

Where the used lengths for the spun fibres and standard fibres are the same. For example, if
¢ is equal to 1, the reduction of the PMD is not achieved and if ¢ is equal to 0.5, a factor of
two is obtained in the reduction of the PMD.

2.3 Different types of spun fibres

The coupling coefficients matrix depends upon the dielectric tensor of the disruption. The
values of these elements are determined by the type of disruption, which means that they
depend on the configuration of the fibre. In this section, we describe some configurations of
the fibres and we give their coupling coefficients matrix. It is important to note that the
coupling matrixes in this work are expressed on the basis of the circular polarization
because it is more appropriate to process the rotating fibres (Ming-Jun et al., 2002).

2.3.1 The linearly birefringent fibre

The linear birefringence is a consequence of disruptions as the distortions of the core, the
asymmetry of the lateral constraints, the curvature. In the case of the linear birefringence,
the coupling coefficients matrix is given by (Ming-Jun et al., 2002):
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0 ABe'*
(15)
ABe 20 0

where AP is the linear birefringence, and ® is the orientation of the birefringence with
respect to a given axis

2.3.2 Spun fibres

In a spun fiber, the orientation of the birefringence takes place depending on the x axis. The
rotation angle ® accumulated is therefore a function of the fibre length 'z', which in turn is
determined by the rate of rotation «(z):

O = ja(z) dz (16)
0

Replacing the equation (16) in equation (15), we get the coupling coefficients matrix of the
rotating fibres, describing the disruption of the birefringence,:

i2jz.a(z)dz
1 0 Ape °
k==
> Z (17)
-i2[a(z)dz
|ABe ° 0 ]

2.3.3 Twisted fibre

There are two effects in this type of fibres: The rotation of the birefringence and the
mechanical torsion. The rotation of the birefringence is similar to that of the rotating fibre. If
the rate of torsion is T, the angle @ is calculated by

O=Tz (18)

The rate of torsion is determined by the coefficients of photo - elasticity of the fibre. The
torsion constraint induces the circular birefringence proportionally to the rate of torsion.

0=gT (19)

Where g is the coefficient determined by the coefficients of photo elasticity of the glass. The
typical value of g for fibres in silica is 0.16. Combining both effects of rotation and torsion,
the coupling matrix comes up with the following form:

5 Aﬂ €i2TZ
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2.4 Solutions of the coupled equations for different types of the spun fibres

Generally, the matrix of the coupling coefficients depends upon the variable z, and the
analytic solutions of equation (8) have no existence in the majority of the cases. The
numerical integration is always used to get numerical solutions. Different methods, as the
method of the finite differences, the Runge-Kutta method (Chen, 2002), can be applied to
solve the equation of the coupled modes. However, in the two following special cases, we
can derive the analytic solutions which will be discussed in this section.

2.4.1 Constant spinning rate
For a constant spinning rate, the function 'spin' (rotation) can be written as follows:

a=a (21)

Where ¢ is a constant. In this case, the birefringence of a fibre is estimated in only one
direction with a rate ¢ . For this reason, the constant spinning rate is often assigned to an
unidirectional spinning. For a spun fibre, with a constant spinning rate, the integral of the
coupling matrix can be calculated easily, and the coupled equations become (Hart, 1994):

% - %i A2 A, 22)
‘% = %i AB e A, (23)

With initial conditions A;(0)=1, A,(0)=0.
The solutions of equations (22) and (23) are:

Alz _Mei(ao'“))z + % +Uei(ao—v)z (24)
2v 20
Ay= AB jitcayr)z AP itayro: (25)
4v 4v

Where v= }a§+iA/32

Using equations (12) and (13), we find that the DGD can be expressed by a simple equation
for the spinning constant:

2
r(2)=Lo |(ap) 22 +| ogin[ 22 (26)
20 AB 2
Where y, = ddA—B = %0 is the PMD of a uniform birefringent fibre without modes coupling at
®

the z position. The sinusoidal term of equation (26) doesn't play an important role when the
fibre is sufficiently long. On the other hand, for long fibres, the DGD is given by:



Spun Fibres for Compensation of PMD: Theory and Characterization 159

OREE @)

Equation (27) indicates that the DGD progresses linearly with the length of the fibre, and the
PMDREF takes the following form:

_ap

gZu

(28)
We notice that for spun fibres of constant rate, the PMDRF depends upon the length of
beating or the birefringence.

2.4.2 The periodic spin function

For the functions of periodic spin, under some conditions, we can describe analytic solutions
by using the theory of disruption (Chen et al., 2002) in which fibres are submitted to
uniform disruptions only, or in the case of small lengths regime (typically smaller than 100
m) in order to fine down their analysis. Indeed, in this approach, the random characteristic
of the variation of the disruption in case of important lengths regime is ignored. Using the
initial conditions issued from the previous paragraph, the first order solutions of disruption
for A1 (z) and A2(z) are as follows:

A(z)=1 (29)
Ay (2)=(i / 2)AB jexp[—Zi@(z')]dz' (30)
0

Where 0(z) = ia(z')dz'
0

It becomes easier to obtain the DGD by using equation (13):

T(Z) =Yo (31)

Jz.exp[—Z 10(z")']dz'
0

Based on the theory of disruption, the first order of the disruption’s expansion is valid only
when Af <<1. This condition puts some limits on the application of equation (31) on fibres
that have a low PMD.

The validity of this solution has been tested by (chen et al., 2002). When the length of beating
is important (some meters), i.e. Af=1, and the period of spin is smaller than the length of
beating, the theory of disruption of the first order can always be applied. For sinusoidal
profiles of spin, the expression for the factor of the PMD reduction can be gotten from the
solutions of the disruption equation. Let's notice that the profile of sinusoidal spin takes the
following form:

a(z) = oy cos(nz) (32)

Where a0 is the spin amplitude , and 1) is the angular frequency of the spatial modulations,
which is linked to the spin period A through the following relationship n=2m/ A.
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With the analytical solution of equation (31), we are able to assert which spin parameters
give right to the optimization of the PMD performances. With the first observations, we
remark that, when the length of beating of a fibre is bigger than some meters, the PMDREF is
independent of the beating length, and therefore of the intrinsic birefringence of the fibre. In
equation (31), the only contribution to the birefringence of the fibre, comes from y,,, and the
DGD is proportional to this size. Let's note that y, is the PMD of the unspun fibers (non
rotating). On the other hand, the PMDEFR will be independent of y,, .

This conclusion is also verified by the direct numerical integration of equation (8) with k
given by equation (17). Some old fibres had beating lengths inferior to some meters; with the
improvement of fibre manufacturing, the majority of these lengths were improved lately
beyond some meters. The PMDRF independence from the intrinsic birefringence of the fibre,
offers the advantage of simplicity in its conception because it is worthless to optimize the
spin profiles for the different birefringences of the fibre. Moreover, we noticed that the DGD
increases linearly when the length of the fibre increases (figure 3) despite the fact that we got
some overlapping oscillations on the graph representing the variation of the DGD with
respect to the distance.

35

3 e (a)

4 ] ] 1 1
0 0 5 10 15 20 0'000' 5 10 15 20

Distance (m) Distance (m)

Fig. 3. Evolution of the DGD along a spun fibre.

We can also separate the real and imaginary contributions of the integral (31) in order to
better analyze the variation of the DGD along the fibre. We express the equation (31) in an
alternative way of the DGD for one spatial period T:

DGD(T) = y, [ cos[26(z")]dz'~i [ sin[20(z")]dz' (33)
0 0

T
DGD(T) = ychos[2®(z')]dz', O(z) is an even function
0

T
DGD(T) = 7szin[2®(z')]dz', 0(z) is an odd function
0
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We suppose that ©(z) is a periodic function. When ®(z) is an even function,
T T
fsin[Z@(z‘)]dz' is equal to zero. When ©(z) is an odd function, jcos[2® )]dz' is equal to
0

zero. For multiple values of the period T, the DGD becomes n[DGD )] . For values in
between, some oscillations are encrusted in the linear variation of the DGD. On the other
hand, this survey based on [40] leads us to the conclusion that the dependence of the DGD
of the standard fibres on the square root of their lengths, comes from the statistical nature of
the random coupling of the two modes of polarization. The linear evolution of the DGD
with respect to the length of the spun fibre is caused by the periodicity of the coupling
induced by the spinning, thus we have a coupling mode better-controlled than in the case of
standard fibres. However, it is possible that the DGD of the spun fibres follows a different
evolution law in a region where the first order theory of disruption is not valid any more;
for example, when the intrinsic birefringence of the fibre is high and / or the spin rate is
high.

With the aforementioned results, it is rather simple to find the phase matching conditions
for which the maximum reduction of the PMD can be obtained. In this case, the condition is
fixed such that the PMDER is equal to zero (chen et al., 2002):

'T[exp[—ZiG)(z')] dz'=0 (34)
0

Equation (34) can be expressed in another way if we use the properties discussed previously
for even and odd functions. We notice that when the phase matching conditions are
satisfied, the evolution of the DGD along the spun fibre is periodic. The DGD doesn't
increase anymore when the length of the fibre increases.

Equations (31) and (34) are valid for a whole category of periodic profiles of spin. To
illustrate the way how to determine the phase matching conditions, we take an example of a
sinusoidal spin profile. Such a profile is defined by equation (32). The integration of this
profile gives O(z) = ¢ sin(n7z) / 17 ; then we get the DGD by using equation (31):

2a0 sin(7z)

DGD(z)=y, jexp ldz' (35)

The integral can be valued analytically by using the following identity:

exp[~ixsin(d)] = Jo(x) + 22 Jo (x).cos(2n6) 212 Jopeq (X)sin[ (271 +1)0] (36)
Then, we get "
DGD(z) =7, [ K@)+ P(2)| (37)
where
R(z)=J,(2ay / )z + EWSin(Zmy z) (38)
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Fig. 4. The PMD change factor as a function of the spin amplitude and the spin period.

We note that when J,(2¢, /1) #0, the dominant contribution comes from the term of the

linear increase of equation (38). Neglecting the oscillations term, the expression of the DGD
becomes:

DGD(2) = y,,Jo (2 / 1)z (40)

As in the case of spun fibres with a constant rate, in absence of random disruptions, the

DGD increases linearly with the length of the fibre; in contrast with the PMDRF which takes
a simpler shape:

PMDRF = J,(2a, / ) (41)

Equation (41) indicates that the PMDREF is independent from the beating length in the case
of spun fibres with sinusoidal profile whose beating lengths are equal to some meters or
more. When J,(2¢;, /17) =0, the linear increase term disappears, and the oscillation terms
cannot be neglected any more. In this case, the DGD oscillates between 0 and a maximum
value and is independent of the propagating distance. The condition where the minimum of
the PMD is reached is called the condition of phase matching (figure 4).

Figure 4 illustrates the presentation in three dimensions for the graph of the PMD reduction
as a function of the spin period and the spin amplitude. The phase matching condition can
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be achieved for different spin parameters enabling to get an optimal reduction of PMD;
though in general, amplitudes of higher spins give a better reduction of PMD. Figure (3.a)
shows the evolution of DGD along the fibre with the phase matching condition. Finally, the
maximum of reduction can be reached at the zeroes of the Bessel function of order zero
(equation 41).

2.5 Reduction of the PMD for different profiles of spin

2.5.1 The constant spin rate

While using equation (28), the PMDREF, as function of the spin rate, is represented for
different beating lengths in figure 5; for a constant spin rate.
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Fig. 5. The factor of reduction of the PMD with respect to the spin amplitude in the case of a
constant spinning rate for different beat lengths.

We note that the PMD is reduced when the spin rate increases. For the same spin rate,
PMDRF depends on the beating length. The higher the beating length is, the more reduced
is the PMD. For a high PMD of the fibre (beating length <Im), a high spin rate is necessary
to reduce the PMD.

2.5.2 Sinusoidal spin

In figure 6, we use a beating length of 1m as example to illustrate the reduction of the PMD
for sinusoidal types of spin (Ming-Jun et al., 2002).

Figure 6 shows that for sinusoidal spin types, the PMDREF oscillates with the spin amplitude,
which is different from the case where the spin was constant. Furthermore, this figure shows
that, for a sinusoidal spin, the phase matching condition can be gotten in order to come to a
low PMD; on the other hand, in the case of constant spin, the phase matching doesn't exist.
The phenomenon of phase matching can be explained by the mechanism of coupling of
modes. The constant spin reduces the birefringence of the fibre, and causes no coupling of
modes as well. For the sinusoidal spin, the variation in the rate of spin carries along the two
modes of polarization to intercouple, reaching a compensation of the PMD. For some spin
profile and birefringence of fibre, the conditions of phase matching are satisfied and the
maximum of energy exchange occurs in order to provide a better reduction of PMD. The
results of modeling indicate that the conditions of phase matching depend on the beating
length, the period of the spin and the amplitude of the spin. We can use the same function of
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Fig. 6. The factor of reduction of the PMD versus the spin amplitude in the sinusoidal spin
profiles.

spin to get a small reduction of PMD for high lengths of beating. However, for small lengths
of beating; the phase matching has a strong dependence with the length of beating.

The fact that the birefringence of the real fibres is not constant and changes randomly, it is
impossible to have the phase matching for the whole birefringence while using only one
sinusoidal spin. This problem can be solved by admitting spin profiles with many Fourier
components. To get to this point, the concept of the use of the modulated spin in amplitude
and frequency has been developed by the Corning society.

2.6 Statistical evolution of the PMD of the spun fibres

As it was mentioned in the previous sections, the spun fibres follow a linear evolution law
without the random modes coupling or in the régime of short lengths. When the random
mode coupling is present, it has been found that the spun fibres follow an evolution law, a
function of square root, similar to that of the unspun fibres, but with a different rate
depending on the spin parameters (Chen, 2002). The random mode coupling can be
characterized by a random variation of the birefringence axis and / or by the induced phase
shift by the external constraints with an occurrence frequency of 1/1, where h is called the
coupling length of the modes. On the other side, a fibre of length «I» can be divided into (I/h)
segments. Using this model, for a sinusoidal profile of spun fibre under no optimal
conditions (no phase matching ), the DGD can be expressed under the following simple
form:

T= Q/w\/m (42)

We notice that the fact that the PMDRF « ¢ » is independent of the beating length when the
length of beating is greater than some meters, the DGD in the régime of important lengths, and
in presence of the random coupling mode, is corrected by a factor ¢, which is the reduction

induced by the fibre spinning during the process of drawing. In this case, the property of
evolution of the PMD is similar to that of the fibre possessing the linear birefringence.
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Fig. 7. The DGD of a spun fibre according to the length of the fibre. The amplitude of spin is

3.5 turn/m, the period of spin is 1m, the length of beating is 10m and the length of coupling
is 10m.
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Fig. 8. Probability density function versus the DGD of the fibre when the condition of phase
matching is not verified. The amplitude of spin is 3.5 turn/m, the period of spin is 1m, the
length of fibre is 500m and the length of coupling is 10m.

The simplest law of evolution given by equation (42) has been verified by using a numerical
modeling (Chen, 2003). Figure 7 shows the results of the numerical simulation for a
sinusoidal spun fibre under the non optimal conditions. As it is shown in this figure, the
numerical modeling accomodates very well with the theoretical prediction.

In the case of standard fibres (unspun fibres ) with a random coupling mode length h, the
distribution of the DGD is analog to the distribution of Maxwell, where the standard
deviation o used in the expression of PDF can be given by the following expression:

A
o=(Whi /3 (43)
cL,
We have proven that the Maxwell distribution is valid in the case of the spun fibres, except

that, the parameter o should be corrected by the contribution of the spinning fibre. The
modified parameter o is now under the following form



166 Recent Progress in Optical Fiber Research

o =[ Io2as /)| /5 (44)
b

This equation has been tested and validated in (chen, 2002). Figure 8 represents the
probability density function 'PDF ', according to the DGD of the spun fibre, obtained by
numerical calculations and Maxwell distribution equation where we confirm according to
the figures that the two results converge perfectly.

When the conditions of phase matching are satisfied, the total DGD of the fibre is a periodic
function, and it oscillates between the zero value and a maximal value ¢,,,, . For this reason,
the DGD of only one segment of a fibre is linked to the average of DGD inside one period of
spin. Therefore, in the regime of high lengths (I >>h), the total DGD can be written as

follows (Ming-Jun et al., 2002):
r:f:‘gq I/h (45)

Where ¢, is the square average of the DGD in one period of spin, and ¢ is a coefficient
that depends on the average coupling coefficient between two segments. For a condition of
phase matching (for example: a, =2.76tours /m etn=2zm"), ¢ is found equal to 1.194.
Besides, the DGD increases when the length of coupling of modes decreases (Ming-Jun et al.,
1998). It is foreseeable, because under the conditions of phase matching, the DGD is minimum.
Any disruption moves the fibre away from the optimal conditions, implying an increase of the
PMD. Despite the fact that the DGD of the optimized spun fibres changes differently with the
coupling length in comparison with the DGD of the non optimized spun fibres, the DGD
always follows a Maxwell distribution, but with a modified parameter ¢ (Chen, 2002).

U=(8‘€q\/l/_h)/\/§ (46)

3. Application of the JME method for the measurement of the PMD of the
spun fibres

We used the JME method (Derickson, 1998) in order to verify the reduction of the PMD in

the spun fibres (Cherbi et al., 2006). This applied method, between 1510 to 1615 nanometers,

consists in determining the DGD directly between the two main states of polarization by

measuring the Jones matrix of the device under test to a set of wavelengths. In order to

determine the PMD of the spun fibres, we take the following steps:

e Measure Jones' matrixes JM(4,) for a set of wavelengths 4,4, ....4, of the work range
(1510 nm-1615nm)

e Do the product JM(4 +A2).JM™ (4 — AA)

¢  Determine the eigen values p; and p, of the calculated product of matrix

e The DGD (4;) is gotten then by (Heffner, 1992):

arg[p]
DGD(%)= Az = A—Pz 47)
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The PMD of the fibre under test is determined by the arithmetic mean of the ‘n" measured
DGD:

> DGD(%)
PMD = =
n
We applied the above procedure to two types of the spun fibres in order to compare their
performances. The first fibre is unidirectional of length 212m in which we noted that the
rotation of the spins was only in one sense once removed it from the spool. On the other
hand, for the second bi-directional of length 1Km, the rotation of the spins was in the two
senses. The results gotten in the figure 9.a and the figure 9.b, show that this method has a
good resolution because it permitted to measure DGD of the order of femtoseconds, and to
show that this type of fibre presents effectively low DGD compared to those measured in
standard fibres that are of order of the picoseconds. Besides, we noted that the bi-directional
fibre possesses a lower DGD than that of the unidirectional one indicating thus the
efficiency of the bi-directional spun fibres in the reduction of the PMD.

00M15 DGD mean = 7,43 fS
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Fig. 9. Representation of DGD measured of spun fibre according to the wavelength for the
length (a) L =290m, (b) L = 212m.
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The researchers and inventors of the optical fibre of telecommunication systems predict the
impact of PMD from the distribution of Az, because this results from the variation of Az as
a function of wavelength and the conditions of the environment. On the other hand, due to
this type of variation, the PMD of an optical path is expressed then statistically, as either the
average or the root mean square (RMS) of Ar(%) (Derickson, 1998 ). It is interesting to
determine the total PMD of a link made of a series of different spun fibres.

For this reason, we took three different lengths of spun fibres (fibre2, 3 and 4). We started by
measuring, with the JME method, their PMD separately, for a given temperature while
using a reference fibre (fibrel) used in calibration (table 1). Then, we connected the three
fibres, and done the measurement of the total PMD in the same experimental conditions.
The same procedure has been applied for the two fibres (fibres 3 and 4). We sought for the
best relation of computation to determine the total PMD of a link of spun fibres, by testing
the two following relations:

PMD,,,;, = PMD, + PMD, + ........... PMD, (48)

totale

Or PMD,,y, =y/PMD} + PMD3 +.........PMD> (49)

With n the number of fibres used in the link

Our experimental results regrouped in table 1 are in very good agreement with the first
relation [Cherbi et al., 2006].

DGD(fs) measured |Total DGD (fs) Total DGD (fs)
with the step calculated with calculated with
(10nm) relation (48) relation (49)

reference fibre of (1 km) |98,721

Fibre 2 (212 m) 4,8223
Fibre 3 (290m) 7,4315
Fibre 4 (1 km) 9,7399
connected Fibres (2+3+4) | 22,9437 21,99 13,16
connected fibres (3+4) 17,1985 17,17 12,25

Table 1. The PMD relation of the spun fibres link.

4. Determination of the polarization’s properties of the spun fibres using the
reflectometers

The beat length of the fibre can be measured directly by the extraction of the spatial
period of the backscattered signals (Wegmuller, 2002, 2004), which permits to estimate the
PMD in the single-mode fibres (Ellison et al., 1998; Chen, 2002). The OFDR method is not
exploited again especially for investigating of the spun fibres for the determination of its
parameters and of their PMD according to the distance. In this section, we will present the
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relation already demonstrated experimentally by COTDR in our anterior works (Cherbi et
al., 2009) existing between the spatial period of the backscattered signal and the PMD of
the spun fibre and given by (Chen, 2003). Even more, the COTDR method allowed us to
compare the results found with those of the JME method. Afterward we will present the
POFDR method which used for spun fibres (Cherbi et al., 2009; Wegmuller et al., 2005) to
obtain the beat lengths of the two types of spun fibres and the spin period of the bi-
directional fibre.

Chen( Chen, 2003) has demonstrated that the spatial period of the backscattered signals
obtained from a POTDR (polarization-sensitive optical time-domain reflectometer) of the
spun fibres varies linearly with the beat length of the fibre. This means that for a given beat
length, the spatial period T, can be used as calibration for the reduction of the PMD. A
simple relation linking the spatial frequency F (F=1/T,) to the beat length and the spin
parameters, is given by:

F=[1o(2e0 /n) /1, /2) (50)

The PMD of the bi-directional spun fibre is linked to the spatial frequency in the form
(Chen, 2003):

PMD =(A/2c)F (51)

Thus, the PMD of the bi-directional spun fibres can be determined directly through the
measure of the spatial period as in the case of the standard fibres, while measuring the
spatial period of the backscattered obtained from the reflectometers. The equation (50)
shows that when the spin is zero, the spatial period converges to the one of the standard
fibres.

4.1 Measure of the DGD in the spun fibres by the C-OTDR method

The technique (COTDR) (Wegmuller et al., 2004) is appropriate to detect the defaults in a
given fibre (sites of reflection, losses) with a spatial resolution of the decimetre order. The
main difference of this reflectometer (Cherbi et al., 2009) compared to a classic OTDR
(Ellison & Siddiqui, 1998) resides in the use of photon counting detector (InGaAs avalanche
photodiode). It is used in the so-called gated Geiger mode, which means that the detector is
only active during a short time slot. During this period, only a single photon falls in the
detector and triggers an avalanche, which is then detected by electronics discriminator.
Contrary to the operation of a classic detector APD in linear regime, this avalanche is no
longer proportional to optical input signal power, but independent of it. The detection is
therefore a binary one, either there is an avalanche, or not. In order to evaluate the incident
optical power (or mean photon number) on the detector during its activation, the detection
process (gate opening) must be repeated many times in order to determine the detection
probability of photons with a good precision. This probability is proportional to the incident
signal power that is smaller than about 40% (no detector saturation) and larger than the
detector thermal noise (dark counts). This condition is satisfied in our set-up by using the
variable attenuator before the excitation of the fibre.
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From the detection probability for a certain gate position, set by the delay generator, the
reflectivity at the corresponding location in the fibre is readily gotten with a spatial 2- point
resolution determined by gate duration. Thus, to have some information on the different
positions in the fibre, the gate delay must be adjusted. In our set-up, the user can specify the
zoom interval (L, L, ) for which the reflectivity is automatically measured with a step

size (sampling resolution ).

250 —
200

150 -

PSD [ua]

100

50 4

—_—

o+
0,000 0,004 0,008 0,012 0,016 0,020 0,024 0,028 0,032

Frequency (m”)

Fig. 10. The Power spectral density of C-OTDR signal for the bi-directional spun fibre of 1 Km.

Figure 10 presents the PSD of the backscattered signal power measured by the C-OTDR
reflectometer with its spatial frequencies for a bi-directional spun fibre of 1 Km length. Two
peaks appear, respectively, at spatial frequencies F and F/2, in the COTDR trace. A spatial
frequency of 0.005m™" is gotten from the backscattered signal PSD. The relation (51) gives a
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DGD of the used spun fibre equal to 11.4 femtosecondes. We found for the same fibre a
mean value of the DGD equal to 11,53 femtosecondes while using the JME method. These
two results are in very good agreement. In conclusion, this demonstrates that the DGD of a
spun fibre can be calculated from the spatial frequency of the COTDR signal in accordance
with relation (51) permitting to calculate the spatial frequency of a backscattered signal
COTDR in a spun fibre from its parameters": ¢y =3.57rad, A=15m and Lz =20m . The
calculated spatial frequency is equal to F=0.005 m™, which is equal to the same one
measured from the C-OTDR trace. Based on that, we validate the equation, linking the
spatial frequency, the spin parameters and the intrinsic birefringence of the bi-directional
spun fibre, given in (Chen, 2003)

4.2 Measure of the beat length of the spun fibres by P-OFDR

This reflectometer implements the technique of coherent detection sensitive to the
polarization in order to get information about the evolution of the polarization states along
the fibre under test. In our case, a POFDR is used, implementing the detection of
polarization diversity ( Cherbi et al, 2009] and a polarized beam splitter which plays the role
of a fixed analyser. The former permits to remove the Rayleigh reflections independent of
the polarization by subtracting output 1 from output 2, thereby removing the frequencies of
the back scattered signal that are not related to the fibre birefringence.

The used laser in this reflectometer is a DFB (distributed feedback) characterised by a
spectral width of the order of IMHz on the whole tuning range, a spatial range of 80 m. Due
to the coherent detection, a very good sensitivity of 100 dB is gotten with this reflectometer.
The only factor limiting the resolution of this method is the tuning of the laser. The laser that
we used is limited by the continuous tuning of 20 GHz that gives approximately a resolution
of 9 mm.

In (cherbi et al., 2009), we have analyzed three types of fibres having the same length of 200
m: a bi-directional spun fibre, a unidirectional spun fibre and a standard fibre. They were
wrapped on a table in order to minimize the external constraints. Figure 11 shows the
example of the different POFDR traces for different used resolutions of the unidirectional
spun fibre (dark line is the mean of different traces). The beat lengths of the two types of
spun fibres and the one of the standard fibre are calculated by the following relation
(Wegmuller et al., 2002):

1 12

<Ly>=—— = (52)
std(DSP)\ =

Where PSD is the power spectral density of POFDR signal.

The calculated values of beat lengths derived for the PSD signals of the different fibres:
unidirectional spun fibre (figure 11), standard fibre and bi-directional spun fibre (figure 12)
are respectively: 50 m, 38 m, and 150 m. We note that the beat length of the bi-directional
spun fibre is more important than those of the others, which means that the PMD of the bi-
directional spun fibre is lower than that of the two other types of fibres, result that we found
with the JME method. It also confirms that the bi-directional spun fibre reduce efficiently the
PMD compared to the unidirectional spun and the standard fibres.
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Fig. 11. The mean power spectral density of the backscattered signals POFDR, obtained for
different resolutions, of the unidirectional spun fibre of 200 m length.
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Fig. 12. The mean power spectral density of the backscattered signals POFDR obtained for
bi-directional spun fibres and standards of lengths 200m.
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5. Conclusion

In this chapter, we presented the principle of the spun fibres with their technology and their
role in the reduction of the PMD in a transmission link of optical fibre. Several types of spun
fibres have been given. The theory of these fibres based on the equations of the coupled
modes has been detailed.

The reduction of the PMD in these fibres is verified while applying the JME method and the
COTDR method used to measure the DGD of the order of femtoseconds. We also confirmed
this result while measuring the beat length of these fibres with the POFDR method and
compare it with that of a standard fibre. This comparison proved the efficiency of this type
of fibres in the reduction of the PMD. Finally, according to the use of the COTDR and
POFDR, we concluded that the validity of the data analysis, obtained from the
reflectometers and used nowadays for standard fibres, has been demonstrated for the spun
fibres and more precisely for the bi-directional spun fibres. Besides, the high spatial
resolution of the POFDR enables again the observation of the spatial frequencies directly
linked to the spin period, so a precise characterization of the spun fibres can be
accomplished.
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1. Introduction

The use of Photonic Crystal Fibers (PCF) is understood within their unique chromatic
dispersion characteristics and nonlinear behavior, which is suitable for dispersion
compensation or transmission of information without pulse spreading, leading to an
intersymbol interference. Pulse spreading being the result of chromatic dispersion in optical
fibers is considered as one of the critical issues in the design of optical fibers. Since the
dispersion can result in worse system performance, it is necessary to prevent its occurrence
or to compensate it.

A systematic study of dispersion properties in PCFs is presented. The investigation includes
a description of fiber chromatic dispersion dependence on structural and material
parameters. Potential zero or anomalous dispersion in doped PCFs is achieved. An
overview of current innovations on the studied problem is presented.

Moreover, the new PCF with nearly zero ultra-flattened chromatic dispersion is introduced.
It is shown from the numerical results that the dispersion of -0.025 ps/nm/km is available
from the wavelength of 1200 nm to 1700 nm.

2. Photonic crystal fibers

PCFs, also known as microstructured or holey fibers, are investigated in view of their
unique properties of light guidance. Unlike conventional step-index fibers, PCFs guide light
through confining field within microstructure periodic air holes. PCFs are characterized by
the periodicity of refractive index, implemented as an array of air holes around the core. The
guidance mechanism in some aspects resembles the operation of semiconductor materials.
In other words, the photons in PCFs have a function, which is similar to the operating
principle of electrons in semiconductors.

2.1 Types of photonic crystal fibers

PCFs are classified in two categories: solid core high-index guiding (or simply an index
guiding) fibers and hollow core low-index guiding fibers. The Index Guiding Photonic
Crystal Fiber (IGPCF) guides light in a solid core by Modified Total Internal Reflection
(M-TIR). This principle is similar to the guidance in conventional optical fibers. The other
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category of PCFs, Hollow Core Photonic Crystal Fiber (HCPCF) guides light by the
Photonic Band Gap (PBG) effect. Light is confined in the low-index core, since the
distribution of energy levels in the structure makes the propagation in the cladding region
impossible.

The M-TIR principle of light guidance relies on a high-index core region, typically pure
silica, surrounded by a lower effective index material, provided by air holes in the cladding.

2.2 New properties achievable in photonic crystal fibers

The effective index of such a fiber can be approximated by a standard step-index fiber, with
a high-index core and a low-index cladding. However, the refractive index of a
microstructured cladding in PCFs exhibits strong wavelength dependence very different
from pure silica, which allows PCFs to be designed with a new set of features unattainable
within the classical approach. For example, endlessly single mode PCF can be designed
through the strong wavelength dependence of the effective index (reducing thus the value
of normalized frequency, a parameter important for modal regimes). This is fundamentally
different from the conventional fibers where, at huge core diameter to wavelength ratios, a
multi-mode operation is unavoidable at shorter wavelengths, because the cladding index is
constant and normalized frequency arises with wavelength, once exceeding the value
critical for single-mode operation. In addition, the presence of air holes in the cladding can
change the spectral characteristics of microstructured fibers.

Among PCFs with modified spectral properties, zero dispersion or anomalous dispersion
fibers are very promising for group velocity dispersion compensation. The latest designs
show optimal dispersion for broadband applications, in contrast to the commercially
available compensating fibers, which can usually operate at a specific wavelength.

3. Photonic crystal fibers for dispersion compensation or zero-dispersion
transmission

Chromatic dispersion directly affects the pulse width and the phase-matching conditions
important for most telecommunications applications. Chromatic dispersion in lightwave
systems is related to the variation in group velocity of optical signals in a fiber. The
adjective “chromatic” emphasizes its wavelength-dependent nature. Chromatic
dispersion limits the maximum distance, to which a signal can be transmitted without the
necessity of regeneration of its shape, timing, and amplitude. The pulse spreading must
be compensated or avoided, for example, by specific fiber design.

As far as basic terminology is concerned, when the chromatic dispersion coefficient is less
than zero, the dispersion regime is said to be anomalous, and shorter wavelengths
propagate faster than longer wavelengths. The pulse is said to be negatively chirped. In the
opposite case of dispersion coefficient being greater than zero, the dispersion regime is said
to be normal. Long waves are guided faster than the short ones.

3.1 Engineered chromatic dispersion in photonic crystal fibers

The mechanism of light dispersion depends on various reasons, therefore the techniques
of suppressing particular dispersion components vary from each other. One can
distinguish between a number of types of dispersion, such as modal, waveguide or
material dispersion. Chromatic dispersion consists of two components. The first one
comes from bulk material dispersion Dy, The second one comes from waveguide
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dispersion D,, where the material and the waveguide dispersion are expressed, as
follows:

-2 d*ny,
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where n,, is the matrix index. Since waveguide dispersion can be anomalous and material
dispersion normal, optimal dispersion design can be achieved by the suitable balance of
particular dispersion components contributing to the total dispersion. To design a fiber with
zero dispersion, it is necessary to optimize both: material properties, as well as the shape of
the waveguide. There exists, therefore, a wavelength, at which total dispersion is equal to
zero. Beyond this, the fiber exhibits a region of anomalous dispersion, which can be used for
the compression of pulses in optical fibers.

To achieve a specific value of total dispersion, one must compensate material dispersion
Dt with waveguide dispersion Dy,. The slope of D, should be adjusted by optimizing the
fiber’s geometry in order to make it parallel to -Dy,. If the goal is to obtain flattened
dispersion in a target wavelength interval, one must control D,, to make it follow a trajectory
parallel to that of -Dy:. If material dispersion is linear in a target interval, a systematic
approach can be used. Generally, this is the classical method of how to treat chromatic
dispersion profiles using geometrical parameters in PCFs with successive iterations of
structural parameters to improve the quality of the results.

3.2 Current state of the art

Due to unique dispersion flexibility, PCFs are considered as useful for achieving anomalous
dispersion. They are used for the robust compensation of chromatic dispersion or
dispersion-free transmission. There are several practical solutions to limit chromatic
dispersion and to keep the initial width of optical pulses. One of the methods is to design
fibers with zero dispersion. Resultant zero dispersion can be achieved by compensating
material dispersion with waveguide dispersion. This operation is generally possible at a
specific wavelength, so that the signal must be transmitted within a very narrow range of
optical frequencies.

3.2.1 Dispersion compensating fibers

Zero dispersion is useful for low-speed systems, but can be undesired in high-speed
transmission systems, since the phase match of all the frequency components can result in
nonlinear effects. Another method of keeping a constant pulse width is to retain small
normal dispersion in optical fibers and compensate it by using Dispersion Compensation
Fiber (DCF), added at signal repeater. In general, chromatic dispersion compensators
optically restore signals that have become degraded by chromatic dispersion, significantly
reducing bit error rates at the receiving end of a fiber’s span. A DCF is characterized by
strong anomalous dispersion, which exactly compensates normal dispersion arising
between repeaters. Many studies have been published about the design and optimization
of chromatic dispersion in PCFs. They tend to shift zero-dispersion wavelengths or
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minimum anomalous dispersion wavelength towards at the conventional band around
1550 nm, (known as C-band). Conventional dispersion compensating fibers are designed
to operate at a specific wavelength, for example at 1550 nm, achieving negative value of at
least hundreds ps/km/nm at the operating wavelength. Recently, the extension of
operating bandwidth towards longer wavelengths is the area of interests, since short
optical frequencies are more used in high-speed transmission systems.

PCFs are highly flexible for engineered dispersion. By manipulating the geometry design of
the PCF (core diameter, normalized hole diameter, number of rings, hole defects), it is
possible to achieve desired dispersion and losses required for specific applications. The
interplay between chromatic dispersion and geometrical structure allows establishing a
well-defined procedure to design specific predetermined dispersion profiles. This topic is
described in many studies about the dispersion controllability.

One of the very first works with significant contribution to this topic is a work by Birks et al.
(1999). The latest studies report new aspects related to the topic (for example the work of
Haxha et al., the work by Liu et al. or finally the one by Razzak et al). The main topic
addressed in those works is the ultra-flattened dispersion at a wide wavelength interval and
at low confinement losses.

Premium DCF is demonstrated by Wu et al. (2008), where the negative dispersion value of
-1350 ps/km/km at 1550 nm is achieved. Other designs aim to achieve dispersion in the
wavelength range of about 1500-1625 nm. This could open a door for broadband dispersion
compensation using PCFs.

3.2.2 Dispersion flattened photonic crystal fibers

Achieving a flattened dispersion curve is required for many telecommunication applications,
in which we desire to have the same dispersion values for broad band utilization. For this
purpose, some studies are focused on investigating various techniques of adjusting the PCF’s
geometry to obtain flattened dispersion characteristic. With this regard, a study presented by
Liu et al. (2007) shows, how ultra-flattened dispersion curve could be achieved using elliptical
holes. An optimized design of a PCF over ultra-wide band by replacing two rings of inner
circular air holes with elliptical air holes is presented. The permitted dispersion fluctuation is
0.6-1.0 ps/nm/km within a broad band from 1000 nm to 1900 nm, which means over all: S, C,
and L bands. Moreover, periodic structures having small core with large equal-sized air holes
managed to shift zero-dispersion wavelengths towards shorter wavelengths.

Summarizing, the design process requires high attention to all important properties, such as
flattened chromatic dispersion curve, effective mode area, confinement loss over broad
bandwidth. In addition, designers should consider the complexity of new structure’s
fabrication process.

3.2.3 Doping technique for enhanced dispersion properties

The standard solid core PCF with hexagonal lattice and medium air-fraction volume
exhibits chromatic dispersion characteristics far from the preferable ones for practical
implementations. Doped cores can be used to enhance dispersion properties of IGPCF. The
technique is based on doping of the central part of the SiO; core by the GeO, material. The
germanium dioxide raises the refractive index of the doped region and hence modifies the
waveguide properties of the PCF.
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The dispersion behavior has been investigated for Highly Non-linear PCF (HNPCF), where
the core’s refractive index is increased by doping with high-index material, such as rare
earth ions. The idea of doping the PCF’s core with rare earth elements has been investigated.
For example, an ytterbium-doped PCF can be used to achieve enhanced nonlinearities. The
most widely used dopant in PCF is Germania - GeO,, due to its intensified nonlinearities
and enhanced photo-sensitivity. In fiber fabrication process, the refractive index of the
doped core is determined mainly by the concentration of the GeO; ions embedded in the
core. The accurate characterization of the dopant’s location and its concentration in optical
fibers is studied by Zhong et al. The dispersion dependence on the concentration of GeO, in
the fiber’s core is explained accurately by Hoo et al. (2004). Notice is hereby given that GeO,
is a dopant commonly used for doping the core region for raising the refractive index, on the
other hand, B>O; or F are doping substances suitable for doping the cladding region that in
turn lower the refractive index.

3.3 Shortcomings of existing solutions

The narrow bandwidth of operating wavelengths is considered as a limitation, in particular
for systems with Wavelength Division Multiplexing. Therefore, recent studies focus on the
ultra-low, ultra-flattened broadband dispersion over a wide spectrum of telecommunication
wavelengths. PCFs can be exploited into this aim, since the large refractive index variation
between silica and air permits to achieve significant waveguide dispersion over a wide
wavelength range. PCFs with large air-holes have already been proposed in some studies
about dispersion compensation.

Many DCFs uses the technique of doping their core with high-index material. This can result
in high confinement losses, reaching even more than 1 dB/km, as indicated in catalogues of
commercially available fibers. In addition, those fibers suffer from small effective mode area,
since some DCFs have an extremely small core and concurrently high air fraction to enhance
nonlinear evolution of spectral characteristics.

4, Simulation method

Huge possibilities of geometry manipulation and air-holes shapes arrangements have
increased the complexity of numerical analysis of PCFs. The main objective of simulations is
to study chromatic dispersion characteristics of IGPCF and HNPCEF. Such structures
demand efficient numerical methods to analyze them accurately. Thus, many modeling
methods have been applied in this perspective, such as the plane wave expansion method,
localized function method, finite element method, finite difference time domain method,
finite difference frequency domain method, Fourier composition method or multipole
method. The results presented in this work have been achieved by using the full-vectorial
Finite Difference Frequency Domain method (FDFD), which was described in details by Zhu
et al. (2002). This tool practically employs the same algorithm as the Finite Difference Time
Domain (FDTD) method, the only difference between the two algorithms is that FDFD is a
2D solution, whereas FDTD is a 3D solution, which means that FDFD is easier for software
implementation and meanwhile leads to the same numerical dispersion equation as that of
the 3D-FDTD method.

For a given frequency, the numerical propagation constants and mode patterns can be
calculated. The main geometrical quantities concerned: hole diameter d, the hole pitch A,
and the core diameter, used in the implementation are displayed in Fig. 1.
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Fig. 1. Geometrical quantities describing PCFs.

In order to investigate the optical behavior of PCFs, the structure presented in Fig. 2 is used.
It represents a HNPCF structure, where the core is doped with high-index material.
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Fig. 2. Doped structure evaluated in terms of dispersion compensation (left) and the
fundamental mode of the modeled PCF (right).

The basic flow of simulation is executed with several iterations to calculate the number of
parameters and to obtain precise results. The simulation algorithm for parameters sweeping
contains few steps: once the physical structure is created, the simulation parameters and
mesh are set, as well as the monitors are defined, the simulation is run. The frequency
domain information is available at any point of the cross-section of a modeled fiber.

In order to perform a series of simulations to investigate the change in measured intensity as
a function of geometry or to perform any other systematic study, the built-in scripting
environment is used. This scripting environment has many advantages, where one can
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extract specific values of parameters or implement a required sweep in the structure and
observe how chromatic dispersion or bending loss parameters are changed.

5. Simulation results

In order to understand the behavior of chromatic dispersion and loss in PCFs, an analysis
has been proceeded to study the HNPCF with high-index doped core.

5.1 Dispersion in doped PCFs

The investigated HNPCF structure is specified in Table 1, where the cladding includes five
rings of air holes and the core, which doped with high-index material, of which the
refractive index is equal to 1.475. Relatively small air holes are preferred.

Parameter [unit] Value

Pitch A [um] 4.4

Hole’s diameter d [um] Varied 0.6-2.2
Normalized hole diameter d/A [-] Varied 0.1-0.5
Air-fraction refractive index [-] 1

Dopant’s (core’s) refractive index [-] 1.475

Silica glass refractive index (high-index cladding region) [-] 1.458

Propagating wavelength [nm] 1550
Core diameter [um] 14
Effective index of cladding at 1550 nm 1.4582
Number of rings at the cladding Nr 5

Table 1. Structural parameters for the doped PCF presented in Fig. 2

Dispersion in nonlinear doped microstructured optical fiber, specified in Table 1, is shown
in Fig. 3.

The doped PCF has a parabolic dispersion curve (in contrast to standard IGPCF, where
dispersion shows linear increase with wavelength, which is presented in studies describing
dispersion in PCFs). Usually, dispersion in fibers with a hexagonal lattice has a Zero
Dispersion Wavelength (ZDW) at the O-band.

A general tendency in microstructured fibers is that both ZDWs are found at shorter
wavelengths, when the fraction of air filling is increased or when the central defect is
decreased.

Adjusting the geometrical parameters can be a tool to control the curvature of a dispersion
profile. This can eventually lead to two closely laying ZDWs and very low minimum
dispersion or, vice versa, to ZDWs far from each other, and flat dispersion curve. This
mechanism shows a good agreement with the results achieved in this numerical analysis.
Though, the second ZDW is located rather at longer wavelengths.

For the studied structure, the dispersion curve of HNPCF presented in Fig. 3 crosses the x-
axis at two zero points, the first one appears at the shorter wavelength, usually at the O-
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band or the E-band, whereas the second point is located at the longer wavelength, usually at
the C-band or the L-band.

[ ]
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Dispersion [ps/nm/km]
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Wavelength [um]

Fig. 3. Chromatic dispersion in regular solid-core PCF and modeled doped PCF.

The investigation focuses on the properties resulting from a doped core to control the
dispersion in PCFs. The technique is based on doping the central part of the SiO. core by the
GeO; material. The ZDWs are found at shorter wavelengths, when the fraction of air filling
is increased and the central defect is decreased. Adjusting the geometrical parameters can
rather result in different dispersion properties; the most mature designs assume the second
ZDW being rather at longer wavelengths, since shorter optical frequencies are more used in
high speed transmission systems.

The advantage of the studied structure is the flexibility of adjusting both: minimum
anomalous wavelength and ZDW locations. As it is demonstrated below, such type of fibers
is highly sensitive to geometrical parameters, as well as to the change of material index
values. It also keeps an endlessly single mode characteristic of a solid core PCF.

5.2 Chromatic dispersion dependence on air-fraction volume

Results shown in Fig. 4 indicate a negative behavior of chromatic dispersion; the second
ZDW is affected by the air fraction percentage.

With a decrease in hole diameter, it is possible to move the position of the second ZDW to
higher wavelengths, reaching the C and L-band, with regard to current trends in systems
using Wavelength Division Multiplex.

5.3 Chromatic dispersion dependence on core diameter

Similar results are achieved for the core diameter optimization and for varied refractive
index. Parameters for the core diameter sweeping are presented in Table 2. For this purpose,
all the parameters are fixed, as given in Table 2, while the core diameter is chosen to vary
from 2.8 to 4.4 um As far as core diameter is concerned, all the remaining parameters are
fixed (with d/A being 0.3). As depicted in Fig. 5, the minimum dispersion value arises with
the increase in core diameter.
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Fig. 4. Chromatic dispersion dependence on hole diameter.

Another conclusion, which reveals at Fig. 5, refers to the behavior of ZDW. We observe that
greater value of a core diameter is responsible for ZDW achieved at longer wavelength. At
the specific value of a core diameter (3.6 um), the values of studied dispersion start to be

positive.
Parameter [unit] Value
Pitch A [um] 44
Hole’s diameter d [um] 1.32
Normalized hole diameter d/A [-] 0.3
Air-fraction index [-] 1
Dopant’s (core’s) refractive index [-] 1.475
Silica glass refractive index (high-index cladding region) [-] 1.458
Propagating wavelength [nm] 1550
Core diameter [um] Varied 2.8- 4.4
Effective index of cladding at 1550 nm 1.4586
Number of rings at the cladding Nr 5

Table 2. Structural parameters for PCF doped in a small core.

5.4 Chromatic dispersion dependence on doping level

In order to precisely control chromatic dispersion, the effect of changing the dopant’s
refractive index (that can be practically achieved by changing the concentration of GeO;
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from 16 to 30 %) is further investigated. By the increase in refractive index, lower minimum
dispersion in the area of negative values is produced.
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Fig. 5. Chromatic dispersion dependence on core diameter.

Fig. 6 combines the effect of the refractive index values varied from 1.472 to 1.49, in which a
summarized impact over all: O, E, S, C, L bands is shown. Considering a specific
wavelength, for instance 1550 nm, dispersion increases with refractive index of the doped

core.
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Fig. 6. Chromatic dispersion dependence on dopant material refractive index.
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Extracted values of ZDW obtained for varied material refractive index are presented in
Table 3.

Refractive index [-] First ZDW [nm] Second ZDW [nm]
1.472 728 1190
1.474 780 1320
1.477 835 1450
1.48 913 1556

Table 3. Location of first and second ZDW in the modeled PCF.

6. Design of PCF with ultra-flat chromatic dispersion

The combination of studied parameters could interplay with their effects to achieve optimal
dispersion for telecommunication applications. This is generally considered as one of the
major advantages of PCFs.

A PCF with flattened dispersion curve is required for telecommunication applications, in
which we desire to have the same dispersion values for broadband utilization, in this case
long-distance propagation with nearly zero dispersion in systems with Wavelength Division
Multiplexing. The final goal is to optimize the structure to achieve flattened dispersion curve
and dispersion values near zero. This could be done by finding the suitable configuration of
the following parameters: hole diameter, core diameter, and selective doping.

The proposed structure is doped by using GeO». The fiber has three air rings of holes in
the cladding. The doped core radius is 7.4 um, which is relatively big compared to all
above studied structures. Detailed description of the proposed structure is summarized in
Table 4.

Parameter [unit] Value
Pitch A [um] 44
Hole’s diameter d [pm] 1.32
Normalized hole diameter d/A [-] 0.3
Air-fraction index [-] 1
Dopant’s (core’s) refractive index [-] 1.48
Silica glass refractive index (high-index cladding region) [-] 1.458
Propagating wavelength [nm] 1550
Core diameter [um] 7.4
Effective index of cladding at 1550 nm 1.465
Number of rings at the cladding Nr 3

Table 4. Structural parameters of HNPCF for achieving ultra-flattened dispersion diagram.
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As it is observed in Fig. 7, the fundamental mode is trapped in the core. The fiber operates
as a single-mode PCF. A special attention should be taken during the fabrication of the core,
which is much greater than the doping region, as depicted in Fig. 7.
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Fig. 7. The fundamental mode of the proposed near-zero ultra-flattened PCF.
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Fig. 8. Chromatic dispersion of the designed PCF compared to the regular IGPCF.

The achieved dispersion is ultra-flat with small negative values around -0.025 ps/nm/km.
It can be observed that the chromatic dispersion is almost constant at a wide
telecommunication wavelength range. The result is compared with the regular solid-core
IGPCF. (As a reference, a standard structure made with medium-sized, pure silica core and
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medium air-filling fraction is concerned). In Fig. 8, a comparison between the dispersion
values of the standard IGPCF and the designed structure is presented.

7. Conclusion

New fiber structure with near-zero ultra-flattened is proposed. It is suitable for broadband
utilization in transmission systems. Before this, many fibers have been examined and many
improvements have been applied to the studied structures. It is described how to control the
location and shape of the chromatic dispersion curves. An investigation is carried out to
study the PCF with high-index core material, in which a parabolic curve is evaluated in
terms of potential ZDWs.

Investigated PCFs showed higher flexibility in fiber design. A new fiber structure is
introduced and investigated. The bandwidth, in which anomalous dispersion is achieved, is
getting wider with decreasing air fraction. By the increase in hole diameter, the second ZDW
is extended till the U-band. Lower minimum dispersion values are achieved by the increase
in doping region diameter.

Utilizing all the previous results of the interplay between chromatic dispersion on one
side, and geometrical parameters as well as refractive index on the other side, has
provided a well-defined procedure to design ultra-flattened and ultra-low chromatic
dispersion profile.

HNPCEF is doped with high-index material (dopant GeO,) with the refractive index of 1.48
and only three air rings in the cladding. The achieved dispersion results were ultra-flattened
with very small negative dispersion values: -0.025 [ps/nm/km] over the telecommunication
band. The fiber is suitable for broadband zero-dispersion propagation of optical signals in
high-speed transmission systems.

The future study will focus on achieving flattened and high anomalous chromatic
dispersion for telecommunication applications. For example, the insertion of liquids in PCFs
is promising for achieving optimal chromatic dispersion and nonlinear effects. Another goal
is to optimize the studied structures without doping. Structures matching the characteristic
of ITU-T standard fibers will be studied.

Last but not least, the future research should be highlighted on the recurrent optimization of
algorithms to be developed.
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1. Introduction

Fiber loop mirrors (FLMs), also called Sagnac interferometers, are interesting and very useful
components for use in optical devices and systems [1, 2]. Many components based on FLMs
have been demonstrated for applications in wavelength-division-multiplexing filters and in
sensors, among others [3-7]. In FLM, the two interfering waves counter-propagate through the
same fiber and are exposed to the same environment. This makes it less sensitive to noise from
the environment. In general, a conventional fiber loop mirror made of high-birefringent fibers
(HiBi fibers) or polarization-maintaining fibers (PMFs) has several advantages compared with
a Mach-Zehnder interferometer, such as insensitivity, high extinction ratio, in-dependence of
input polarization, easy to manufacture and low cost [1, 2]. However, conventional PMFs (e.g.,
Panda and bow-tie PMFs) have a high thermal sensitivity due to the large thermal expansion
coefficient difference between boron-doped stress-applying parts and the cladding (normally
pure silica). Consequently, conventional PMFs exhibit temperature-sensitive birefringence [8].
Therefore, conventional PMF based Sagnac interferometers exhibit relatively high temperature
sensitivity, which is about 1 and 2 orders of magnitude higher than that of long-period fiber
grating (LPG) and fiber Bragg grating (FBG) sensors [9, 10]. This can limit the practical use of
the devices in some applications.

Various kinds of sensors based on HiBi-FLMs have been proposed and realized since HiBi-
FLMs are sensitive to many parameters and have a high sensitivity, such as temperature
sensors, level liquid sensors, refractive index sensors, strain sensors and biochemical sensors
[7, 9-12]. However, when a HiBi-FLM is used to measure strain or other parameters, its
cross-sensitivity to temperature may degrade sensor performance since the optical path
length of the HiBi-FLM shows temperature dependence caused by thermal refractive-index
change and thermal expansion effect. Thus, the temperature effect must be discriminated or
eliminated when they are used for sensing [13-15].

The photonic crystal fiber (PCF) is a new class of optical fiber that emerged in recent years.
Typically, these fibers incorporate a number of air holes that run along the length of the fiber
and have a variety of different shapes, sizes, and distributions [16-17]. Of the many unusual
properties exhibited by a PCF, a particularly exciting feature is that the PCF can be made
HiBi by arranging the core and the air-hole cladding geometry, thereby introducing
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asymmetry [18-19]. Their birefringence can be of the order of 103, which is about one order
of magnitude larger than that of conventional HiBi fibers. Unlike conventional PMFs (bow-
tie, elliptical core, or Panda), which contain at least two different glasses each with a
different thermal expansion coefficient, thereby causing the polarization of the propagation
wave to vary with changing temperature, the PCF birefringence is highly insensitive to
temperature because it is made of only one material (and air holes). Recently, some of FLMs
used PCFs have been developed and applied on various devices [20-22] and optical fiber
sensors [24-35], including strain sensors, pressure sensors, temperature sensors and
curvature sensors, and so on.

In this chapter, we will first introduce the basic operation principle of FLMs, secondly, will
demonstrate a temperature-insensitive interferometer based on a HiBi-PCF FLM. We will
then move on to various applications in optical sensors such as strain sensors, pressure
sensors, and temperature sensors. Following, we will discuss a demodulation technology of
HiBi-PCF FLM based sensors. Finally, we will describe several multiplexing schemes for
HiBi-PCF based FLM sensors.

PCF

3dB coupler

Input Output
Fig. 1. Configuration of FLM made of a PCF.

2. Basic principle of FLMs

As shown in Fig. 1, the 3-dB coupler splits the input signal equally into two counter-
propagating waves which subsequently recombine (at the coupler) after propagating
around the loop. The interference of the counter-propagating waves will be constructive or
destructive, depending on the birefringence of the cavity, and thus, the loop transmission
response is wavelength dependent. The phase difference between the fast and slow beams
that propagate in the PCF is given by [1, 2]:

0=2xBL/ A (1)

where B, L, and N are the birefringence of the PCF, the length of the PCF and the
wavelength, respectively. When the variation of B following the wavelength is small, there
is B=/n,ny/, where n, and ny are the effective refractive index for each polarization mode.
Ignoring insertion loss of the 3-dB coupler and the attenuation of the PCF and the single-
mode fiber in the loop, the transmission spectrum of the fiber loop is approximately a
periodic function of the wavelength, namely,

T=(1-cosb)/2 )
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The transmission dip wavelengths are the resonant wavelengths satisfying 2iBL/Aqip = 2k,
where k is any integer. Thus, the resonant dip wavelengths can be described as

Agipy =BL [k (3)
And the wavelength spacing between transmission dips can be expressed as

S=4%/BL (4)

When some varies (strain or temperature) applied on the PCF sensing element, they will
cause the birefringence change AB and length change AL of the PCF. So the Aqip has a change
and it can be expressed as:

Ady, = (ABL+BAL) / k )

So the change of varies can be obtained by measuring the wavelength shift of the dip in the
output spectrum. The setting of the polarization controller (PC) can affect the contrast of the
transmission function. By adjusting the state of the PC, transmission bands with large
extinction ratio can be obtained.

3. Temperature-insensitive interferometer using a HiBi-PCF FLM [21]

In general, the optical path length of a conventional HiBi-FLM shows temperature
dependence caused by thermal refractive-index change and thermal expansion of the
devices [8]. This can limit the practical use of the device. In this part, utilizing the high
birefringence and the low temperature coefficient of birefringence, a temperature-insensitive
interferometer based on a HiBi-PCF FLM is realized.

In this experiment, a 6.5-cm-long HiBi-PCF was used, which was fabricated by Blaze-
Photonics Com., and the cross-sectional scanning electron micrograph is shown in Fig. 2.
Mode field diameters at the two orthogonal polarizations are 3.6 and 3.1 pm. The HiBi-PCF
has a group birefringence Ang of 8.65x10+ at 1550 nm, and a nominal beat length of 1.8 mm.
Both ends of the HiBi-PCF are spliced to conventional single-mode fiber (SMF) by using a
CO;, laser splicing system. The PCF-SMF splicing loss is large (about 3.5 dB) because of
mismatching of mode field and numerical apertures between the PCF and the SMF. The
splicing loss will be reduced when a pre-tapering technology is used. The PCE-SMF splicing
losses will increase the total insertion loss of the HiBi-PCF-FLM. The device characteristics
are measured with a tunable laser source (Agilent 81689 A) which can be tuned from 1.5 to
1.6 pm and a power sensor (Agilent 81634 A).

Fig. 3 shows the transmission spectra of the HiBi-PCF-FLM at different temperatures. The
temperature of the HiBi-PCF-FLM is controlled by a temperature chamber during
measurement. The transmission spectrum is approximately a periodic function of
wavelength, as given by equation (2). The corresponding wavelength spacing between
transmission peaks is about 0.43 nm, which is consistent with equation (4). The extinction
ratio is nearly 26 dB and the total insertion loss of the HiBi-PCF-FLM is 10 dB.

Since the phase difference is given by equation (1), a change of the phase matching condition
caused by the environment leads to a wavelength spacing variation and a resonance
wavelength shift. As shown in Fig. 3 and Fig. 4, when the ambient temperature of the HiBi-
PCF-FLM is increased, the transmission peaks shift a little to shorter wavelength. We choose
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Fig. 2. Scanning electron micrograph of the cross section of the HiBi-PCF.
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Fig. 3. Transmission spectra as a function of temperature for the HiBi-PCF-FLM, insertion:
the transmission spectra in the range of 1554 -1557 nm.
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Fig. 4. Variation of the transmission peak wavelength at 1554.6 nm with temperature for the
HiBi-PCF-FLM.
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the transmission peak at 1554.6 nm as an example. The wavelength shift of the transmission
peak with temperature is 0.3 pm /°C. The line (a) in Fig. 5, which is for the HiBi-PCF-FLM,
shows the wavelength spacing change with temperature. The variation of wavelength
spacing is very small: only 0.05 pm /°C.
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Fig. 5. Variation of the wavelength spacing with temperature (a) the HiBi-PCF-FLM; (b) the
PMEF-FLM.

In order to compare the new HiBi-PCF-FLM with the conventional FLM, we used a Panda
polarization maintaining fiber (PMF) as the HiBi fiber. The Panda PMF is from Fujikura
(SM-13P) with a measured birefringence of An, = 3.85x10+ at 1550 nm. The length of the
Panda PMF is about 14.8 m. The wavelength spacing of the PMF-FLM is about 0.42 nm at
temperature 25 °C. The extinction ratio is about 25 dB. As shown in Fig. 6, the transmission
peaks shift very significantly at different temperatures. The line (b) in Fig. 5 shows the
temperature dependence of the wavelength spacing for the conventional PMF-FLM. The
variation of the wavelength spacing with temperature is about 0.5 pm /°C, which is nearly
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Fig. 6. Transmission spectra for the HiBi-PMF-FLM at different temperatures.
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ten times of that for the HiBi-PCF-FLM. Furthermore, Fig. 7 shows the transmission peak
shift as a function of temperature for the PMF-FLM. In theory, the wavelength shift of
transmission peaks with temperature is nearly 16.6 pm /°C. In the experiment, however, the
polarization of the propagation wave may vary with temperature, because different glasses
of the PMF have different thermal expansion coefficient. This also effects the stability of the
PMF-FLM. Such a large variation of the properties of the FLM made of conventional PMF
with temperature makes it unsuitable for many applications in optical communication or
sensor systems. However, by using HiBi-PCF, temperature-insensitivity of the FLM is
improved by about 55 times.

1555.2

£ 8

c

= 1554.8 ® o°

5 0 L ! e

S °

< 15544 - o

% [}

2 °*°
1554 ‘ —

20 30 40 50 60 70 80 90

Temperature

Fig. 7. Variation of the transmission peak wavelength near 1554.6 nm with temperature for
the HiBi-PMF-FLM (e: theoretical and o: experimental results).

4. Optical fiber sensors based on a HiBi-PCF FLM

4.1 A temperature independent strain sensor based on a HiBi-PCF FLM [24]

Strain sensors based on the strain-induced variation in birefringence of the HiBi fibers used
in FLMs were also proposed and characterized. These sensors possess lots of advantages
including simple design, easy to manufacture, high sensitivity, and low cost. However,
previously reported FLM sensors are all based on conventional HiBi fibers whose
birefringence is dependent on temperature. When they are used for sensing other
measurands such as strain, the high thermal response of conventional PMFs may cause
serious cross-sensitivity effects and reduce the measurement accuracy. In this part, a HiBi-
PCF FLM strain sensor is demonstrated. The strain measurement is inherently temperature
insensitive due to the great thermal stability of HiBi-PCF based FLM.

The proposed FLM strain sensor is as shown in Fig.8. When a strain is applied on the HiBi-
PCF, the phase change induced by an elongation AL (i.e., a strain ¢ =AL /L) to the PM-PCF

can be given approximately by

AO= 27”[ALB + LAB] ©)

where AB=An,-/\ny, is the variation of birefringence of the PM-PCF caused by photoelastic
effect. Based on the analysis of photoelastic effect in single-mode fibers [35], the change of
effective refractive index in the fiber core is related to the applied strain with a coefficient
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named effective photoelastic constant. It is therefore assumed that Ans and Any have
similar descriptions but different effective photoelastic constants, expressed as follows:

An, =pin.e , and (7a)
An, =plin,e (7b)

Where p;andp! are the effective photoelastic constant for the slow and fast axes,
respectively. By substituting Eqgs. (7a) and (7b) into Eq.(6) and considering the relationship
between spectrum (or peak wavelength) shift and phase change, i.e,, AA=S5SA8/(2x), the
following relationship can be obtained:

A =21+p.)e (8)

where B, =(n,p! —n,p;)/ B, is a constant that describes the strain-induced variation of the
birefringence of the PM-PCF.

From Eq. (8), it can be seen that A\ is directly proportional to ¢ ; therefore, linear spectrum
(or peak wavelength) shift is expected with change of the applied strain.
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Fig. 8. Experimental setup of the proposed strain sensor based on a FLM made of a highly
birefringent PCF.

In the experiment, the HiBi-PCF is 86 mm long, whose structure is the same as that in the
section 3. Fig. 9 shows the transmission spectrum of the HiBi-PCF based FLM within a wide
wavelength range of 70 nm. The wavelength spacing between the two transmission minima
is 32.5 nm, and a good extinction ratio of 32 dB was achieved at the first transmission mini-
mum located at 1547 nm. Since the light source we used is not polarized and there is no
polarization-dependent element used in the sensor system, the stability of the sensor output
against environmental variations, such as small vibrations, is good.

We fixed one end of the HiBi-PCF and stretched the other end by using a precision
translation stage. Fig. 10 shows several measured transmission spectra around the
transmission minimum at 1547 nm under different applied strains. The spectrum shifted 7.5
nm to the longer wavelength direction when the strain was increased from 0 to 32 m. The
measured data are shown in Fig.11. A linear fitting to the experimental data gives a
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Fig. 9. The transmission spectrum of the HiBi-PCF FLM.
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Fig. 10. Measured transmission spectra under different strains.
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Fig. 11. Wavelength shift of the transmission minimum at 1547 nm against the applied
strain.
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wavelength-strain sensitivity of 0.23 pm/us and a high R2 value of 0.9996, which shows that
the linearity of the wavelength to strain response is excellent. Therefore, the experimental
data agree well with the theoretical prediction, and the constant p, in Eq. (8), calculated
from the wavelength-strain sensitivity value, is -0.82.

The resolution of the strain measurement, limited by the 10 pm wavelength resolution of the
used OSA, is 43 pe, which is actually quite high when taking into account the large
measurement range. The maximum value of the applied strain is mostly determined by the
maximum strain that the HiBi-PCF can endure, not the strength of the fusion splicing points
because the two splicing points between the HiBi-PCF and SMFs were prevented from being
stretched as they were glued to the strain-applying blocks. As a result, the measurement
range is several times larger than that of fiber Bragg grating and long-period grating
sensors, where the fiber strength is significantly weaken during the grating inscription by
high power ultraviolet laser beams [37]. This may be regarded as one of the several
advantages of the proposed HiBi-PCF based the strain sensor over the two kinds of fiber
grating sensors.

Temperature stability of the HiBi-PCF FLM strain sensor was also tested by setting the
sensor head into a temperature-controlled container. The transmission minimum at 1547 nm
was moved to shorter wavelength by only 22 pm when the temperature was increased up to
80°C. Measurement results are shown in Fig.12. The temperature sensitivity is only 0.29
pm/°C, which, compared with the reported value of 0.99 nm/°C of the FLM temperature
sensor based on conventional PMF [7], is about 3000 times lower. The temperature
sensitivity is also in good agreement with the previously reported value in Ref. 21 where the
same HiBi-PCF was used. If a temperature variation of 30°C is assumed, the corresponding
wavelength shift of the strain sensor is only 8.7 pm, which is even smaller than the
wavelength resolution of the OSA. Therefore, such a low temperature sensitivity can be
totally neglected when the sensor is operated in normal environmental condition without
very large temperature variations.

y o= -0, 2005x + 0,345

Wavelength variation (pm)

(4] 210 40 i) R}
Temperature (*C)

Fig. 12. Wavelength variation of the transmission minimum at 1547 nm against temperature.

Compared with the conventional HiBi fiber based FLM sensors and fiber Bragg grating or
long-period grating sensors, the HiBi-PCF FLM strain sensor is inherently insensitive to
temperature, eliminating the requirement for temperature compensation. It is also simple,
easy to manufacture, potentially low cost, and possesses a much larger measurement range.
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4.2 Pressure sensor realized with a HiBi-PCF FLM [29]

In this part, we demonstrate a pressure sensor based on a HiBi-PCF FLM. The FLM itself acts
as a sensitive pressure sensing element, making it an ideal candidate for pressure sensor. Other
reported fiber optic pressure sensors generally required some sort of modification to the fiber
to increase their sensitivity [38]. The HiBi-PCF FLM pressure sensor does not require
polarimetric detection and the pressure information is wavelength encoded.

Fig. 13 shows the experimental setup of the pressure sensor with the HiBi-PCF based FLM
interferometer. The used HiBi-PCF is 58.4 cm and is laid in an open metal box and the box is
placed inside a sealed air tank. The tank is connected to an air compressor with adjustable
air pressure that was measured with a pressure meter. The input and output ends of the
FLM are placed outside the air tank.

Broadband I .
Light Source Y OSA

Air Compressor

3dB Coupler
PM-PCF

o | Sealed Air Tank

Inset

Fig. 13. The experimental setup of our proposed pressure sensor.

Ignoring the loss of the FLM, the transmission spectrum of the fiber loop is approximately a
periodic function of the wavelength and is given as Eq. (1). The total phase difference 0
introduced by the HiBi-PCF can be expressed as

0=6,+6, 9)

where 0y and Op are the phase differences due to the intrinsic and pressure-induced
birefringence over the length L of the HiBi-PCF and are given by

_27-B-L
A

6y (10)

g, Zﬂ-(K;Ap) L a

AP is the applied pressure and the birefringence-pressure coefficient of HiBi-PCF can be
described as [39]

on, _5&

=== ) 12
oP 0P 12

p

The pressure-induce wavelength shift of the transmission minimum isAA=S5-6, / 2z . Thus
the relationship between wavelength shift and applied pressure can be obtained as
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M= (E

)-AP. (13)

Eq. (13) shows that for a small wavelength shift, the spectral shift is linearly proportional to
the applied pressure.

Transmission [dB)

35 L L )
1544 1548 1552 1556 1560

Wavelength [nm)

Fig. 14. Transmission spectrum of the HiBi-PCF based Sagnac interferometer.
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Fig. 15. Measured transmission spectra under different pressures.

Fig 14 shows the transmission spectrum of the HiBi-PCF FLM at atmospheric pressure, i.e.,
at zero applied pressure. The spacing between two adjacent transmission minimums is ~5.3
nm and an extinction ratio of better than 20 dB was achieved. The intrinsic birefringence of
the HiBi-PCF used in our experiment is 7.8 x 104 at 1550 nm.

The air compressor is initially at one atmospheric pressure (about 0.1MPa). In the
experiment, we can increase air pressure up to 0.3 MPa; thus, the maximum pressure that
can be applied to the HiBi-PCF-based FLM sensor is ~0.4 MPa. At one atmospheric pressure
one of the transmission minimums occurs at 1551.86 nm and shifts to a longer wavelength
with applied pressure. When the applied pressure was increased by 0.3MPa, a 1.04 nm
wavelength shift of the transmission minimum was measured, as shown in Fig 15. Fig. 16
shows the experimental data of the wavelength-pressure variation and the linear curve
fitting. The measured wavelength-pressure coefficient is 3.42 nm/MPa with a good R2 value
of 0.999, which agrees well with the theoretical prediction. From Eq. (13), the birefringence-
pressure coefficient is ~1.7 x 10-6 MPa~1. The resolution of the pressure measurement is ~2.9
kPa when using an OSA with a 10 pm wavelength resolution. Because of the limitations of
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our equipment, we have not studied the performance of this pressure sensor for high
pressure at this stage. However, we found that the HiBi-PCF can stand pressure of 10 MPa
without damage to its structure. This part of the work is ongoing and will be reported in our
further studies.
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Fig. 16. Wavelength shift of the transmission minimum at 1551.86 nm against applied
pressure with variation up to 0.3Mpa.
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Fig. 17. Wavelength shift of the transmission minimum against applied pressure for HiBi-
PCFs with length of 40 (circles) and 79.6 cm (triangles); the wavelength pressure coefficients
are 3.46 and 3.43 nm/MPa, respectively.

Although the length of HiBi-PCF used in our experiment is 58.4 cm, it is important to note
that the HiBi-PCF can be coiled into a very small diameter circle with virtually no additional
bending loss so that a compact pressure sensor design can be achieved. The induced
bending loss by coiling the HiBi-PCF into 10 turns of a 5mm diameter circle, shown in the
inset of Fig. 16, is measured to be less than 0.01 dB with a power meter (FSM-8210, ILX
Lightwave Corporation). The exceptionally low bending loss will simplify sensor design
and packaging and fulfils the strict requirements of some applications where small size is
needed, such as in down-hole oil well applications. To investigate the effects of coiling, we
have studied two extreme cases in which the HiBi-PCF was wound with its fast axis and
then its slow axis on the same plane of the coil. There were no measurable changes for either
the birefringence or the wavelength-pressure coefficient when the fiber was coiled into 15
and 6mm diameter circles with both of the orientations coiling. The coiling of the HiBi-PCF
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into small diameter circles makes the entire sensor very compact and could reduce any
unwanted environmental distortions, such as vibrations.

The wavelength-pressure coefficient is independent of the length of the HiBi-PCF, as
described in Eq. (13). Fig. 17 shows the wavelength-pressure coefficients are 3.46 and 3.43
nm/MPa for HiBi-PCFs with lengths of 40 and 79.6 cm, respectively. After comparing the two
wavelength-pressure coefficients with that of the pressure sensor with a 58.4 cm HiBi-PCF
(Fig. 17), we observed that the wavelength-pressure coefficient is constant around 1550 nm;
this agrees well with our theoretical prediction. However, the length of the PM-PCF cannot be
reduced too much because this would result in broad attenuation peaks in the transmission
spectrum and that would reduce the reading accuracy of the transmission minimums.
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Fig. 18. Wavelength shift of the transmission minimum at 1551.86 nm against temperature.

Temperature sensitivity of the proposed pressure sensor is also investigated by placing the
sensor into an oven and varying its temperature. Fig 18 shows the wavelength shift of a
transmission minimum versus temperature linearly with a good R?2 value of 0.9984. The
measured temperature coefficient is -2.2 pm/°C, which is much smaller than the 10 pm/°C
of fiber Bragg grating. The temperature may be neglected for applications that operate over
a normal temperature variation range.

Based on the small size, the high wavelength pressure coefficient, the reduced temperature
sensitivity characteristic, and other intrinsic advantages of fiber optic sensors, such as light
weight and electro-magnetically passive operation, the proposed pressure sensor is a
promising candidate for pressure sensing even in harsh environments. Considering the
whole pressure sensing system, we can also replace the light source with laser and use a
photodiode for intensity detection at the sensing signal receiving end. Since the power
fluctuation is very small even when the HiBi-PCF is bent, intensity detection is practical for
real applications. Because of the compact size of the laser and photodiode, the entire system
can be made into a very portable system. Furthermore, the use of intensity detection instead
of wavelength measurement would greatly enhance interrogation speed and consequently
makes the system much more attractive.

4.3 A high sensitive temperature sensor based on a FLM made of an alcohol-filled
PCF [33]

HiBi-PCFs have a low thermo-optic and thermo-expansion coefficient HiBi-PCF, so HiBi-
PCF FLMs can not be used to measure temperature directly. However, by inserting a short
alcohol-filled HiBi-PCF into a FLM, a temperature sensor with an extremely high sensitivity
can be realized by measuring the wavelength shift of the resonant dips of the alcohol-filled
HiBi-PCF FLM.
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Fig. 19. Experimental setup of the temperature sensor based on a FLM inserted an alcohol-
filled highly birefringent PCF. Insertion: SEM of the cross section of the used PCF.

The temperature sensor, as shown in Fig. 19, consists of a 3dB coupler and a short alcohol-
filled PCF. Alcohol is chosen to fill into HiBi-PCF since it is an easy-filled liquid with a high
temperature sensitivity. Here, an alcohol-filled HiBi-PCF is inserted into a FLM as a
temperature sensing head. Birefringence change AB and length change AL of the alcohol-
filled HiBi-PCF caused by temperature, leads a wavelength shifting of the resonant dips
according to Eq. (3). The relationship between the dip wavelength change Algip, AB and AL
is simply expressed as Eq. (5), A4y, =(ABL+ BAL) / k , where AB is the birefringence change
caused by the thermo-optic effect, including that of the original HiBi-PCF and that of the
filled alcohol, and AL is the length change caused by the thermo-expansion effect, which
also includes the elongation of the original HiBi-PCF and the expansion of the filled alcohol.
We neglect AB and AL caused by the HiBi-PCF itself because of a good thermal independence
of the HiBi-PCF. Further, AL caused by the thermo-expansion of the filled alcohol is also
ignored since the volume of alcohol filled into the air-holes of the HiBi-PCF is small. Thus,
A\gip mainly depends on AB of the alcohol-filled HiBi-PCF. The birefringence-temperature
dependence of the alcohol-filled HiBi-PCF is analyzed by using a full-vector finite element
method (FEM). The diameters of the bigger and smaller holes are 7 and 3.2 um, respectively,
and the pitch length between centers of two adjacent holes is 5.46 pm, according to the HiBi-
PCF used in experiment. The refractive index of pure silica and the filled alcohol is taken as
1.4457 and the empirical value which is calculated by an empirical equation according to [40].
Fig. 20 shows the empirical temperature dependence of the refractive index of alcohol and
the theoretical temperature dependence of the birefringence of the alcohol-filled HiBi-PCF.
With the temperature rising, the refractive index of alcohol decreases linearly, while the
birefringence of the alcohol-filled HiBi-PCF increases linearly. The mode fields of the two
orthogonal polarizations at 20 °C are shown in the insertion of Fig. 21. The birefringence of
the alcohol-filled HiBi-PCF is calculated at 3.5x10-4 at 20 °C. P; is defined as a thermo-optic
constant on the birefringence of the alcohol-filled HiBi-PCF, which equals to the slope of the
temperature dependence curve of birefringence and is calculated at 1.5x10-¢ /°C. According
to Eq. (2) and Eq. (5), the relationship between the resonant dip wavelengths shift AAgi, and
the temperature change AT can be deduced as

1.
Ay, =ABL / k= %AT = %PAT (14)



Photonics Crystal Fiber Loop Mirrors and Their Applications 207

Based on the above equation, the temperature sensitivity of the alcohol-filled HiBi-PCF FLM
is related to A4ip, Pt and B. A high temperature sensitivity depends on a long wavelength Aqip
of the measured resonant dip, a high thermo-optic constant P; and a small birefringence B of
the filled HiBi-PCF.

The HiBi-PCF used in the experiment is provided by Yangtze Optical Fibre and Cable
Company. The HiBi-PCF has a birefringence of 10.2x104 at 1550 nm, and the length is 6.1
cm. After the HiBi-PCF filling with alcohol by air-holes capillary force, the birefringence of
the PCF reduces significantly, which bring advantages on a larger wavelength space
between two resonant dips and on a wider measurement range. Both ends of the alcohol-
filled HiBi-PCF are spliced to conventional single-mode fiber (SMF) by using a regular arc
splicing machine (Fujikura FSM 60).
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Fig. 20. Temperature dependence of the refractive index of alcohol and the birefringence of
polarization mode fields of the alcohol-filled HiBi-PCF at 20 °C.
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Fig. 21. Transmission spectrum of the alcohol-filled HiBi-PCF FLM at 20 °C.
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Fig. 21 shows the transmission spectrum of the alcohol-filled HiBi-PCF FLM at room
temperature (20 °C). Two resonant dips of the FLM display in the wavelength range from
1400 to 1600 nm. One is at the wavelength of 1455.8 nm (dip A) with 15.5 dB extinction ratio;
the other is at about 1549.8 nm (dip B) with 10.5 dB extinction ratio. The wavelength spacing
between these two dips is ~94 nm and the corresponding birefringence of the alcohol-filled
HiBi-PCF is ~3.9x10+4 at 20 °C, which is close to the theoretical value (~3.5x10-4). The little
difference between the experimental and theoretical values may be caused by the error of
air-holes geometry size of HiBi-PCF according the SEM.

In the experiment, the temperature characteristic of the alcohol-filled HiBi-PCF FLM is
tested by placing the alcohol-filled HiBi-PCF of the FLM at a temperature-controlled
container. Fig. 22 (a) and (b) show the transmission spectra of the alcohol-filled HiBi-PCF
FLM at temperature range of 20 to 34 °C and 8 to 20 °C, respectively. Dip A red-shifts from
1455.8 to 1543.7 nm with temperature increasing gradually from 20 to 34 °C, at the same
time, the extinction ratio of dip A decreases. While, dip B blue-shifts from 1549.8 to 1470.4
nm with the temperature decreasing gradually from 20 to 8 °C.
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Fig. 22. Transmission spectra of the alcohol-filled HiBi-PCF FLM (a) when temperature
increases from 20 and 34 °C and (b) when temperature decreases from 20 and 8°C.

Fig. 23 shows the experimental relationship between temperature and the resonant
wavelength of dip A and dip B. The fitting curves can be expressed as y = 6.2176x+1331.7 for
dip A and y = 6.6335x+1416.7 for dip B, and the high fitting degrees 0.9997 and 0.9995 mean
the linearity of the resonant wavelength to temperature is excellent. The experimental
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Fig. 23. The relationship between temperature and the resonant wavelength of dip A and
dip B.

temperature sensitivities of dip A and dip B are ~6.2 nm/°C and ~6.6 nm/°C, respectively.
And the theoretical sensitivities are ~6.1 nm/°C and ~6.5 nm/°C from Eq. (14). It is clear
that the theoretical and the experimental results are in accordance. The temperature
sensitivity of the alcohol-filled HiBi-PCF FLM is very high, and reach up to about 660 and 7
times higher than that of a FBG (~0.01 nm/°C) and that of the FLM made of a conventional
HiBi fiber with a 72 cm length (~0.94 nm/°C) [10].

In practical uses, for a wider measurement range of temperature, the length L of the HiBi-
PCF can be shortened in order to widen the spacing between two resonant dips based on S =
A2/BL. For example, when the alcohol-filled HiBi-PCF is 1 cm, the spacing of the proposed
FLM sensor is ~564 nm. It can be provided the measurement range of ~84 °C with the same
temperature sensitivity ~6.6 nm /°C according to Eq. (14), in which the length of the sensing
fiber is the same as the length of FBG sensing head and is shortened 72 times than that of the
conventional HiBi-FLM temperature sensor.

5. Demodaulation of sensors based on HiBi-PCF FLM [34]

All HiBi-PCF FLM sensors demonstrated above are based on monitoring the resonant
wavelength variation of the FLM. In these configurations, a broadband light source and an
optical spectrum analyzer (OSA) are needed, which cause the sensors expensive. In this
part, we introduce a simple demodulation technology for a strain sensor based on HiBi-PCF
FLM, which can also be used in other FLM based sensors. By utilizing the fact that the
transmission intensity of a FLM at a fixed wavelength is strongly affected by the strain
applied on a piece of HiBi-PCF in the FLM since the transmission spectrum of the FLM
shifts with the applied strain, but the resonant dip (both wavelength and intensity) is
insensitive to temperature, a low-cost temperature-insensitive strain sensor based on a HiBi-
PCF FLM is achieved. The sensor uses a distributed-feedback (DFB) laser as the light source.
Since the output intensity of the FLM is directly proportional to the applied strain, only an
optical power meter is sufficient to detect strain variation, avoiding the need for an
expensive OSA.

Since the HiBi-PCF is insensitive to temperature, the strain applied on the HiBi-PCF is an
only influence factor on the transmission spectrum of the FLM. When an axial strain is
applied on the HiBi-PCF, the phase difference of the FLM is changed, which is induced by
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an elongation of the HiBi-PCF and the variation of birefringence of the HiBi-PCF caused by
photoelastic effect. The relationship between the FLM phase change A# and the axial strain
applied on the HiBi-PCF can be expressed as

AG = ZTE(LB +LP,)e (15)

where P, =Pn, —P/n,, and p, and p} are the effective photoelastic constant for the slow
and fast axes, respectively.

So, when an axial strain is applied on the HiBi-PCF, the transmission spectrum of the FLM
can be described as

T =[1-cos(6+A8)]/2 (16)

Fig. 24 shows the theoretical transmission spectra of the FLM at a free state and at the state of
an axial strain (6000p¢) applied on the HiBi-PCF, which is gotten based on the equation (16). In
theoretical calculation, the length and the birefringence of the HiBi-PCF are taken as L = 79.5
mm and B = 8.5x10+4, respectively, in accordance to the experimental data. P. of the HiBi-PCF
is assumed to P. = -2.24x10+ [16], which best fits the experiment. As shown in Fig. 25, the
transmission spectrum of the FLM shifts to longer wavelength since the phase matching
condition is changed when an axial strain is applied on the HiBi-PCF. Therefore, the applied
strain can be gotten by monitoring the resonant wavelength shift of the FLM through using a
broadband light source and an OSA in a high cost. The theoretical sensitivity of strain based on
monitoring the resonant wavelength shift is obtained at 1.1 pm/ pe.
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Fig. 24. Theoretical transmission spectra of the FLM at a free state and at the state of an axial
strain (6000 pe) applied on the HiBi-PCF.

Meanwhile, the transmission intensity at a fixed wavelength changes when the transmission
spectrum of the FLM shifts with the strain applied on the HiBi-PCF. Thus, the information
of the applied strain can be also gotten by monitoring the transmission intensity. The HiBi-
PCF FLM sensor based on intensity measurement can be achieved in a low cost by using a
DEFB laser and an optical power meter, instead of an expansive broadband source and an
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OSA. When an axial strain is applied on the HiBi-PCF, the FLM transmission intensity at a
fixed wavelength can be described as

Ty =[1-cos(g, +Cye)]/ 2 17)

where 0y = %LB /Cy = %(LB +LP). Itis clear that, the transmission intensity of the FLM

at a fixed wavelength varies accordingly with the applied strain. The transmission intensity
variation of the FLM with the change of the axial strain applied on the HiBi-PCF can be
deduced as

Ty _ L sin(g, +Cye) (18)
de 2

Fig. 25 is the theoretical relationship between the transmission intensity of the FLM sensor
and the applied axial strain at three different wavelengths, which are gotten from the
equation (17). As shown in the Fig. 24, the transmission intensity of the FLM at a fixed
wavelength is approximately a periodic function of the axial strain applied on the HiBi-PCF.
The strain spacing is about 33000 pe. This means the maximal measurement range is about
16500 pe, in which the relationship between the applied strain and the transmission intensity
of the FLM is a proportional dependence. When the strain is measured from 0 pe, the
measurement range of the applied strain is different for the different fixed wavelength.
When the fixed wavelength is chosen at the resonant wavelength (1535.6 nm), the
measurement range of the strain is maximum, which is from 0 to 16500 pe.

Fig. 26 is the enlarged drawing of the circle part in Fig. 25. Fig. 26 shows that all of the
transmission intensity of the FLM at four different wavelengths (1530 nm, 1532 nm, 1545 nm
and 1547 nm) are proportional to the applied strain, when the strain is in the range of 0 ~
6000 pe. The strain sensitivity is in positive when the fixed wavelength (1530 nm and 1530
nm) is shorter than the resonant wavelength (1535.6 nm) of the FLM; on the other hand, the
strain sensitivity is in negative when the fixed wavelength (1545 nm and 1547 nm) is longer
than the resonant wavelength (1535.6 nm) of the FLM.
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Fig. 25. Theoretical strain dependence of the transmission intensity of the FLM at different
wavelengths.
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Fig. 26. Theoretical strain dependence of the transmission intensity of the FLM at different
wavelengths in the strain range of 0~6000 pe.

Fig. 27 shows the transmission spectrum of the HiBi-PCF FLM. The HiBi-PCF has a
birefringence B of ~8.5x10- at 1550 nm, and the length L of 79.5 mm. The corresponding
wavelength spacing between transmission peaks (or transmission dips) is about 35.6 nm,
and the extinction ratio is nearly 26 dB. Fig. 28 shows the strain characteristics of the FLM at
different strain. The whole transmission spectrum shifts toward longer wavelength with the
applied strain increasing because the length of the HiBi-PCF increases with the axial
stretching and the birefringence of the HiBi-PCF decreases due to the photoelastic effect of
the fiber. When the strain sensor is based on the resonant wavelength monitoring, the strain
sensitivity with wavelength which is the slope of the curve, is estimated to be 1.1 pm/pe as
shown in Fig. 39. Experimental results are identical with the theoretical analysis. When an
OSA with a wavelength resolution of 10 pm is used, the strain resolution is about 9.1 pe.
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Fig. 27. Experimental transmission spectrum of the HiBi-PCF FLM.

When the strain sensor is based on the transmission intensity measurement, a single
wavelength source such as a wavelength tunable laser or a DFB laser is used as a light
source. The HiBi-PCF FLM sensor based on optical intensity measurement is measured with
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Fig. 28. Experimental transmission spectra of the FLM at different strain applied on the
HiBi-PCF (from left to right, the strain: 0, 2137, 3357, 4565 and 5770 pe, respectively).

a tunable laser source (Agilent 81689 A) and a power meter (Agilent 81634 A). The
wavelength of the tunable laser is near the resonant wavelength of the FLM and hence the
output light intensity from the FLM is directly related to the FLM’s transmission at the
wavelength of the DFB laser. Since the FLM’s transmission is insensitive to temperature, the
output power is only affected by the transmission spectrum change caused by the strain
applied on the HiBi-PCF. Fig. 30 shows the measured and theoretical relationship between
the output intensity of the FLM sensor and the applied axial strain for various laser
wavelengths. It's clear that the strain sensitivity with intensity is related to the wavelength
of the used laser source. In our experiment, a tunable laser is used for easiness of
wavelength adjustment. In practice, a DFB laser with appropriate wavelength would be
better for the purpose of reducing cost.

As shown in Fig. 30, for laser wavelengths of 1530 nm and 1532 nm, which are shorter than
the resonant wavelength (1535.6 nm) of the FLM, the output intensity increases with applied
strain and the strain sensitivity is positive. Meanwhile, for laser wavelength longer than the
resonant wavelength (1535.6 nm), the output intensity decreases with the applied strain and
the intensity sensitivities are negative. Fig. 30 also shows the theoretical curves of the
relation between the output intensity and the applied strain. The experimental results are in
a good agreement with the theoretical analysis.

From the equation (17), the output intensity in response of the strain can be expressed in T =
[1-cos(0o+Coe)]/2. When laser wavelengths are 1530 nm and 1545 nm, the theoretical
relationships between the output intensity and the applied strain are Tis3 = [1-
€0s(277+203¢)]/2 and Tis45 = [1-cos(274+201¢)]/2, respectively. The coefficients 0y and Cy of
the above equations are different since the wavelength is different. In the above theoretical
equations, dispersion effect on the B is ignored. The experimental and theoretical results are
identical, and the fitting degrees between them are obtained highly as R? = 0.997 at the
wavelength 1530 nm and R? = 0.994 at the wavelength 1545 nm, respectively. Furthermore,
the strain sensitivity is various with the applied strain. When the applied strain is 3000 e,
the strain sensitivity is 2.7 dB/1000pe at 1530 nm and -3.2dB/1000pe at 1545 nm. When an
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optical power meter with an intensity resolution of 0.01 dB is used, a strain resolution of 3.7
pe at 1530 nm and 3.1 pe at 1545 nm is achieved, which is about 2.5 times higher than that of
the strain sensor based on the resonant wavelength measurement.
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Fig. 29. The experimental relationship between the of the FLM at different wavelengths.
Lines: theoretical curves. Pointes: experimental data.

Visao= (1-C08(277+203x))/2
R%=0.997

g
E 107
g
£
5
]
E =15 -
&
[
Yisas= (1-cos(274+201x))/2
R°=0.994
=20 T T
Q 2000 4000 G000
Strain (ug)

Fig. 30. Strain dependence of the transmission intensity wavelength of the transmission peak
near 1535.6 nm of the FLM and the strain applied on the HiBi-PCF.
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6. Multiplexing of HiBi-PCF based Sagnac interferometric sensors [35]

In this part, three multiplexing schemes for PM-PCF based Sagnac interferometric sensors
are presented. The first scheme is to multiplex sensors in the wavelength domain using
coarse wavelength division multiplexers (CWDMs). The sensing signal from each sensor
can be measured within a specific wavelength channel of the CWDM. The second scheme
is to multiplex sensors by connecting them in series along a single fiber. It is simple in
terms of system architecture as no additional fiber-optic components are needed. The
third scheme is to multiplex sensors in parallel by using fiber-optic couplers. The sensing
information of the first multiplexing technique can be obtained by direct measurement
such as with an optical spectrum analyzer. For the serial and parallel multiplexing, signal
processing methods are required to demultiplex the complex sensing signal. Two
mathematical transformations, namely the discrete wavelet transform (DWT) and the
Fourier transform (FT), are used independently to convert the multiplexed sensing signal
back to their constituent sensor signals. These two transform methods are experimentally
demonstrated via two multiplexed Sagnac interferometric sensors. Their operating
principles, experimental setup, and overall performance are discussed. In the part of 4.2,
we have demonstrated the utilization of PM-PCF based Sagnac interferometers for
pressure sensing [29]. Similar pressure sensing experiments were performed here for the
purposes of demonstration and verification of the multiplexing schemes as well as the
demultiplexing methods.

6.1 Multiplexing technique base on CWDM

Wavelength division multiplexing is a direct multiplexing technique that can be readily
implemented into Sagnac interferometric sensors. Since the output interference spectra of all
the sensors cover the whole bandwidth of the light source, individual sensor signals can be
physically separated by CWDMs into different wavelength channels. The experimental
setup of two multiplexed sensors using CWDMs is illustrated in Fig.31. It includes a

PM-PCF 1
Ll %
/
3-dB Coupler
Broadband
Light Source ~ FWDM PM-PCF 2 FWDM 0OSA
~N
—— —
3-dB Coupler

Fig. 31. Experimental setup of FWDM multiplexing technique for two PM-PCF based Sagnac
interferometric sensors.
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broadband light source, an OSA, two identical filter wavelength division multiplexers
(FWDMs) with the two output ports having respective operation range in the C and L bands
(1500~1562 nm/1570~1640 nm). The two Sagnac interferometric sensors, PM-PCF1 and PM-
PCF2, have effective PM-PCF lengths of 40 cm and 80 cm, respectively. After the broadband
light was launched into the first FWDM, the light was split into C and L bands. These two
bands of light then illuminated the two sensors separately and were recombined by the
second FWDM.

Figure 32 shows the output spectrum of the two Sagnac interferometric sensors multiplexed
by FWDM. From the figure, sensors PM-PCF 1 and PM-PCF 2 are found in the L band and C
band, respectively. The FWDMs are shown to have good flatness in their operating
wavelength range. There is an abrupt discontinuity at the edges of the two FWDMs at
around 1562 nm-1570 nm, where such range should be excluded from measurements. By
measuring the shifts of individual transmission minima (or maxima) of the two Sagnac
interferometric sensors within their corresponding wavelength ranges, sensing information
of both sensors can be obtained.
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Fig. 32. Output Spectrum of the CWDM multiplexing technique for PM-PCF based Sagnac
interferometric sensor.

6.2 Multiplexed in series along a single fiber with transmitted signals

The second multiplexing scheme is to multiplex Sagnac interferometric sensors in series
along a single fiber. Similar concatenated sensor configuration has been employed
previously in optical filtering [41], and in strain and temperature discrimination [42].
However, in both cases, multiplexing was not the main focus, and so the techniques of
multiplexing were not studied. Figure 33 illustrates such a scheme by simply cascading the
sensors together. For K Sagnac interferometric sensors multiplexed in series, the output
spectrum is given by,
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P k
—outpul 10LogH{1Lk[1 - cos(z—ﬂ/l +6,)]}[dB] (19)
input k=1 2 Sk

where Ly, Sy, Ok are the loss, the period of the output spectrum and the initial phase of the k-
th sensor, respectively. Note that the output spectrum is the multiplication of all individual
sensor signals.
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Fig. 33. Experimental setup of in series multiplexing technique for PM-PCF based Sagnac
interferometric sensor.
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Fig. 34. Output transmission spectra of the two multiplexed Sagnac interferometric sensors
in series with one sensor under applied pressure variations.

In the experimental demonstration, two sensors were spliced together adjacent to each other
in series. The effective lengths of PM-PCF1 and PM-PCF2 were 20 cm and 60 cm,
respectively. PM-PCF1 was placed freely on a table, while PM-PCF2 was placed inside a
sealed pressure chamber. Pressure was applied to PM-PCF2 from 0-3 bars in steps of 0.5
bar, and was measured by a pressure gauge (COMARK C9557). Figure 34 shows the output
spectra of various pressure values measured by the OSA. In principle, to obtain the sensing
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information, the wavelength shift of the transmission minima of each sensor needs to be
determined. However, as can be seen, the multiplexed sensor signal is more complex, and so
simply tracing the initial phase may not yield accurate results. Thus, in order to separate the
multiplexed signals, the DWT and FT methods were used independently to demultiplex the
sensing signals. They worked by transforming the signals into another domain, such that
each individual sensor signal can be easily identified, and their phase shifts measured.

6.3 DWT demultiplexing method

The principle of the DWT demultiplexing method has been outlined in Ref. [43]. When DWT
is applied to a signal, it is decomposed and halved into high and low frequency
components, represented as detail and approximation coefficients, respectively. This is
similar to applying both a high-pass and a low-pass filter simultaneously to a signal. Then,
the approximation coefficients (i.e., low frequency components) of the signal can be further
decomposed into 2nd-level detail and approximation coefficients. This iterative process
continues until all individual sensor signals are separated and appear on different wavelet
levels. In other words, it continues until the spatial frequency of the sensing signals matches
with the frequency range at which the wavelet level represents. Figure 35 shows the
extracted detail coefficients of the two sensors at different wavelet levels. By tracking their
phase shifts, the response of the two sensors under various pressure levels can be detected.
Figure 36(a) shows the phase shifts of the two sensors as a function of applied pressure. It is
clear that PM-PCEF2 shifted linearly with applied pressure, while PM-PCF1 remained about
the zero shift position. The crosstalk between the two multiplexed sensor signals was also
measured. The crosstalk given here is the ratio of the phase shift of PM-PCF1 (no pressure
applied) to that of PM-PCF2 (pressured applied), and is shown in Fig. 36(b). It should be
noted that, the crosstalk measurement represented here includes other sources of errors,
such as measurement error and ambient noise. As can be seen from the figure, the crosstalk
between the two sensors is less than 5% and decreases progressively at higher pressure
values. This means the absolute crosstalk values are quite stable for the measured pressure
range, and implies that the errors are mainly due to sources other than the actual crosstalk
between the two sensors. On the other hand, if the crosstalk measurement shows a trend
that correlates with the applied pressure, this would mean there is actual crosstalk present
in the multiplexed sensor system.
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Fig. 35. Sensing signals of the two Sagnac interferometric sensors extracted using the
wavelet method.
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Fig. 36. (a) The wavelength shift as a function of pressure variation for the two Sagnac
interferometric sensors,(b) sensing signal crosstalk of the two Sagnac interferometric
sensors.

6.4 FT demultiplexing method

Besides the DWT, we also employed the FT method and the operating principle can be found
in Ref. [44].The FT method works by transforming the multiplexed sensing signal from the
original (wavelength) domain, into its dual (spatial frequency) domain, and is represented in
the FT magnitude and phase spectra. Since the multiplexed signal is periodic, each individual
sensor appeared as an finite amplitude peak in the FT magnitude spectrum; residing at a
position dependent on the spatial frequency of the original sinusoidal signals. Thus, provided
no two sensors have the same spatial frequency, each sensor can be distinctly identified.
Normally, there are two ways of tracing the measurand-induced changes of individual
sensors: (i) if the spatial-frequencies of the sensors change, measurands can be detected by the
amount the amplitude peaks shift in the magnitude spectrum; and (ii) if the phase of the
sensors change (and not the spatial-frequencies), measurands can be detected by the change
of slope of the phase spectrum over the region corresponding to the amplitude peaks of the
sensors in the magnitude spectrum. For the PM-PCF Sagnac interferometric sensors, when
pressure was applied, the phase of the signals shifted proportionally while the spatial
frequencies have no noticeable change, and so the second method applies. Figure 37 gives the
FT magnitude and phase spectra of the multiplexed sensing signals after taking the FT. The
corresponding regions of phase for the two sensors are shown in Fig.38. From the figure, one
can see that PM-PCF1 is held constant (no noticeable change in the phase slope), while PM-
PCF2 is under a varying amount of applied pressure which resulted in a gradual change of
the phase slope. The calculated equivalent wavelength shift and crosstalk between the two
sensors are shown in Figs. 39(a) and 39(b), respectively. From the figure, the maximum
crosstalk is~5%, which is considered small.

6.5 Multiplexed in parallel by using coupler with reflected signals

The third multiplexing scheme is to multiplex Sagnac interferometric sensors in parallel, and
is illustrated in Fig.40.The effective lengths of PM-PCF1 and PM-PCF2 are 20 cm and 60 cm,
respectively. The source light is split equally by the 3-dB coupler into two paths to
illuminate the two sensors separately. The sensing signals reflected back from the two
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Fig. 38. Phase shift of the sensing signal from the two Sagnac interferometric sensors.
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sensors are then coupled together by the same 3-dB coupler, and were measured with an
OSA. The unused ends of the sensors were coiled in small loops to minimize Fresnel
reflections. As compared to the serial multiplexing scheme, it required an additional 3-dB
coupler. Note that the reflected sensing signals were taken instead of the transmitted
signals, and there were two reasons for it. First, it helped to use one less 3-dB coupler to
combine individual sensor signals at the output side and so reduced the system cost and
complexity. Second, the reflected signal spectrum is, mathematically, the complement of the
transmitted spectrum; and since the spectrum is of the form of sinusoidal pattern, the only
difference is the phase angle of m. For K Sagnac interferometric sensors multiplexed in
parallel, the output spectrum is given by,

P k
—2PM ~10Logye Y. {%LkRk[l + cos(zs—” +6,)])[dB] (20)
k=1 k

input

where Ry, Ly, Sk, Ok are the coupling ratio, the loss, the period of the output spectrum and the
initial phase of the k-th sensor, respectively. Note that the output spectrum is the arithmetic
sum of all individual sensor signals, as opposed to multiplication in the serial multiplexing
case.
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Fig. 40. Experimental setup of in parallel multiplexing technique for PM-PCF based Sagnac
interferometric sensors.

As an experimental demonstration, a similar pressure sensing experiment to the previous
multiplexing scheme was performed. Figure 41 shows the output spectra, with PM-PCF1
placed freely on the table and PM-PCF2 placed inside the pressure chamber. Again, we
employed both the DWT and FT methods independently to demultiplex the sensing signal.

6.6 DWT demultiplexing method

After taking the DWT of the multiplexed sensing signal, Fig.42 shows the detail coefficients
of the two sensors at different wavelet levels. It is apparent from the figure that PM-PCF 1
remained almost constant, while PM-PCF2 can visibly be seen to have had the whole signal
shifted. The phase shifts of the two sensors and the corresponding crosstalk measurement
are shown in Figs. 43(a) and 43(b), respectively. The crosstalk between the two sensing
signals is indeed very small, with a maximum value of less than 2%.
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Fig. 41. Output transmission spectra of the two multiplexed Sagnac interferometric sensors
in parallel with one sensor under applied pressure variations.
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Fig. 42. Sensing signals of the two Sagnac interferometric sensors extracted using the

wavelet method.
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6.7 FT demultiplexing method

With the FT method applied, Fig. 44 gives the FT magnitude and phase spectra of the
multiplexed sensing signals. The corresponding regions of phase for the two sensors are
illustrated in Fig.45. From the figure, one can notice that PM-PCF1 has no noticeable change
in the phase slope, while PM-PCF2 experienced pressure changes which resulted in a
gradual change in the phase slope. The calculated equivalent wavelength shifts and the
corresponding crosstalk measurement are shown in Figs. 46(a) and 46(b), respectively.
Again, the crosstalk is very small, with a maximum of less than 3%.
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Fig. 44. Magnitude spectrum and phase spectrum of the sensing signal under Fourier
transformation.
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Fig. 45. Phase shift of the sensing signal from the two Sagnac interferometric sensors.

6.8 Discussions

Each of the three multiplexing schemes has its own characteristics and is suitable for
different applications. The CWDM scheme enables easy real-time system implementation. It
provides a direct measurement without the need for dealing with crosstalk between signals
from different channels. The number of sensors that can be multiplexed is limited by the
available channels of the CWDM at a fixed light source bandwidth. Although with more
channels, more sensors can be multiplexed; the bandwidth of each channel becomes
narrower. In principle, the minimum bandwidth of each channel has to be larger than the
period of the sensor signal, plus a bit of guard band between channel edges to avoid
erroneous results due to signal discontinuities.
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Fig. 46. (a) The wavelength shifts as a function of pressure variation for the two Sagnac
interferometric sensors, (b) sensing signal crosstalk of the two Sagnac interferometric
Sensors.

For the serial multiplexing scheme, no additional fiber-optic components are needed. The
sensors are multiplexed easily by connecting them together one by one, which makes this
scheme the simplest in terms of sensor system architecture. The number of sensors that can be
multiplexed is mainly limited by the splicing loss between PM-PCFs and SMFs. On the other
hand, for the parallel multiplexing scheme, it requires the addition of fiber couplers, which
makes the system architecture relatively more complex and increases the total system cost. In
addition, it increases the insertion loss due to splicing and fiber couplers. Nevertheless, the
errors and adverse effects are also less because individual sensor signals are added rather than
multiplied, and so they do not suffer from spectral shadowing and nonlinear mapping as is
found in the serial multiplexing scheme [42]. It is evident from our experiments that parallel
multiplexing has less crosstalk (with other sources of errors included) than that of serial
multiplexing. It should be pointed out that the measurement errors due to fluctuations in the
applied pressure played a role in our results, which can be noticed in their deviation from
ideal values. This implies the intrinsic crosstalk is believed to be quite low.

There is a consideration when using the DWT and FI methods to demultiplex the sensor
signals obtained from the serial and parallel multiplexing schemes. The effective length of PM-
PCFs must be properly chosen not to be too close to each other in order to avoid overlap after
performing the transformations. However, it is not an issue for the CWDM scheme because
signals from sensors are well distinguished by each channel. These three multiplexing schemes
can be implemented together to further increase the number of sensors.

For example, within each channel in the CWDM, sensors can be multiplexed in series or in
parallel. This combined configuration cannot only increase the number of sensors by several
times, but also maximizes the full use of the light source bandwidth. To sum up, from
practicability point of view, the CWDM scheme is among the easiest and simplest, whereas
serial multiplexing is more practical in real applications. On the other hand, parallel
multiplexing offers slightly better performance in terms of crosstalk and measurement
errors. At present stage, the main limitations on the last two multiplexing schemes are the
insertion loss. The presented multiplexing schemes, together with the two demultiplexing
methods, are not only limited to use for PM-PCF Sagnac interferometric sensors. Indeed,
they can be applied in any PCF sensor that has sinusoidal patterns. This will be one step
closer towards a more practical sensing system using PCF based sensors.
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7. Summary

In this chapter, we have introduced and demonstrated the basic operation principle of
FLMs, and their applications in optical devices and in optical sensors, which include:

i.

ii.

iii.

iv.

Vi.

Temperature-insensitive interferometer based on HiBi-PCF FLM. The temperature-
insensitivity of the FLM is improved 55 times by using the HiBi-PCF, mainly because
the temperature coefficient of birefringence in PCF is measured to be 30 times lower
than that of conventional PMF;

Temperature-insensitive strain sensor based on HiBi-PCF FLM. Strain measurement
with a sensitivity of 0.23 pm/ye is achieved, and the measurement range, by stretching
the PM-PCF only, is up to 32 me. The strain measurement is inherently temperature
insensitive due to the great thermal stability of PM-PCF based Sagnac interferometers.
That improves the accuracy of strain measurement and eliminates the requirement for
temperature compensation;

Pressure sensor realized with HiBi-PCF based Sagnac interferometer. The Sagnac loop
itself acts as a sensitive pressure sensing element, making it an ideal candidate for
pressure sensor. Pressure measurement results show a sensing sensitivity of 3.42
nm/MPa, which is achieved by using a 58.4 cm PM-PCF-based Sagnac interferometer.
Important features of the pressure sensor are the low thermal coefficient and the
exceptionally low bending loss of the PM-PCF, which permits the fiber to be coiled
into a 5mm diameter circle. This allows the realization of a very small pressure
sensor;

Compact and highly sensitive temperature sensor based on an alcohol-filled HiBi-PCF
FLM. Due to the high temperature sensitivity of the filled alcohol, an alcohol-filled
HiBi-PCF FLM with an extremely high sensitivity on temperature are presented
Experimental results show that the sensitivity is as high as 6.6 nm/°C, which is 660 and
7 times higher than that of a FBG and that of the FLM made of a conventional HiBi
fiber;

Demodulation of sensors based on HiBi-PCF FLM. The sensor demodulation is based
on the intensity measurement, in which a distributed-feedback (DFB) laser is used as
the light source. Since the output intensity of the FLM is directly proportional to the
applied strain, only an optical power meter is sufficient to detect strain variation,
avoiding the need for an expensive OSA;

Multiplexing of HiBi-PCF based Sagnac interferometric sensors. Three multiplexing
schemes are presented for HiBi-PCF based Sagnac interferometric sensors. The first
technique is wavelength division multiplexing using coarse wavelength division
multiplexers (CWDMs) to distinguish signals from each multiplexed sensor in different
wavelength channels. The other two schemes are to multiplex sensors in series along a
single fiber link and in parallel by using fiber-optic couplers. While for the CWDM
scheme, the multiplexed sensing signal can be obtained by direct measurement; for the
other two multiplexing techniques, the sensing signal is more complex and cannot be
easily demultiplexed. Thus, some signal processing methods are required. In this
regard, two mathematical transformations, namely the discrete wavelet transform and
Fourier transform, have been independently and successfully implemented into these
two schemes. The operating principles, experimental setup, and overall performance
are discussed.
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1. Introduction

Optical coherence tomography (OCT) is a new technology for noninvasive cross-sectional
imaging of tissue structure in biological system by directing a focused beam of light at the
tissue to be image [Bouma et al., 1995; Jiang et al., 2005; Ryu et al., 2005]. The technique
measures the optical pulse time delay and intensity of backscattered light using
interferometry with broadband light sources or with frequency swept lasers. It is analogous
to ultrasound imaging or radar, except that it uses light rather than sound or radio waves. In
addition, unlike ultrasound, OCT does not require direct contact with the tissue being
imaged. OCT depends on optical ranging; in other words, distances are measured by
shining a beam of light onto the object, then recording the optical pulse time delay of light.
Since the velocity of light is so high, it is not possible to directly measure the optical pulse
time delay of reflections; therefore, a technique known as low-coherence interferometry
compares reflected light from the biological tissue to that reflected from a reference path of
known length. Different internal structures produce different time delays, and cross-
sectional images of the structures can be generated by scanning the incident optical beam.
Earlier OCT systems typically required many seconds or minutes to generate a single OCT
image of tissue structure, raising the likelihood of suffering from motion artifacts and
patient discomfort during in vivo imaging. To counter such problems, techniques have been
developed for scanning the reference arm mirror at sufficiently high speeds to enable real-
time OCT imaging [Tearnery et al., 1997]. OCT can be used where excisional biopsy would
be hazardous or impossible, such as imaging the retina, coronary arteries or nervous tissue.
OCT has had the largest impact in ophthalmology where it can be used to create cross-
sectional images of retinal pathology with higher resolution than any other noninvasive
imaging technique. Now a days OCT is a prospective technology which is used not only for
ophthalmology but also for dermatology, dental as well as for the early detection of cancer
in digestive organs. The wavelength range of the OCT light source is spread from the 0.8 to
1.6 pm band. This spectral region is of particular interest for OCT because it penetrates
deeply into biological tissue and permits spectrally resolved imaging of water absorption
bands. In this spectral region, attenuation is minimum due to absorption and scattering. It
should be noted that scattering decreases at longer wavelengths in proportion to 1/\4,
indicating that the scattering magnitude at 0.8 ~ 1.6 pm wavelengths is lower than at the
visible wavelengths [Agrawal, 1995]. Ultrahigh-resolution OCT imaging in the spectral
region from 0.8 to 1.6 pm requires extremely broad bandwidths because longitudinal
resolution depends on the coherence length. The coherence length is inversely proportional
to the bandwidth and proportional to square of the light source center wavelength. This can
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be achieved by supercontinuum (SC) light using photonic crystal fibers. The ophthalmology
and dermatology OCT imaging are done predominantly at near 0.8 pm center wavelength
[Bouma et al., 1995; Drexler et al., 1999; Ohmi et al., 2004; Pan et al., 1998; Welzel et al., 1997].
The dentistry OCT imaging is performed at 1.3 pm wavelength [Boppart et al., 1998; Colston
et al., 1998; Hartl et al.,, 2001; Herz et al., 2004]. Currently, it is reported that the OCT
imaging at 1.5 ~ 1.6 pm broadband light source can be readily applied to take images of
human tooth samples [Lee et al,, 2009]. On the other hand, telecommunication window
(around 1.55 pm) is the most attractive window in optical communication systems,
dispersion compensation and nonlinear optics because of the minimum transmission loss of
the fiber [Begum et al., 2007a, 2007b, 2009a].

Photonic crystal fibers (PCFs) [Russel, 2003], a pure silica core optical fibers with tiny air
holes embedded in the host silica matrix running along the propagation axis, have boosted
the fiber optic research due to their remarkable modal properties such as provide single-
mode operation for very short operating wavelengths [Knight et al., 1996], remain single-
mode for large scale fibers [Knight et al., 1998], achieve high birefringence [Kaijage et al.,
2000], and controllable dispersion characteristics [Begum et al., 2009b] which cannot be
achieved with conventional optical fibers. These fibers are also termed as microstructured
fibers (MSFs) or microstructured optical fibers (MOFs). PCFs are dived into two categories
according to the light confinement mechanisms: one is index-guiding or solid core fibers
[Knight et al., 1996] and the other is photonic bandgap (PBG) or hollow core fibers [Couny et
al., 2008]. Those with a solid core light can confine in a high-index core by modified total
internal reflection which is same index guiding principle as conventional optical fibers.
However, they can have a much higher effective-index contrast between core and cladding,
and therefore can have much stronger confinement for applications in nonlinear optical
devices, polarization maintaining fibers, etc. Alternatively, in PBG fibers where the light is
confined in a lower index core by a photonic bandgap created by the microstructured
cladding. The presence of air holes in the cladding gives rise to strong wavelength
dependence of the cladding index which is primarily responsible for its magnificent
characteristics. The extra degrees of freedom in PCFs facilitate a complete control on its
properties such as ultraflattened dispersion and high negative dispersion. The precise
control of geometrical parameters can provide ultraflattened dispersion in PCFs. PCFs are
very attractive and efficient to produce high power light source in OCT system. Because
PCFs can generate SC spectrum due to their design degree of freedom which make it
possible to enhance the nonlinear effects by reducing effective area and tailor chromatic
dispersion. As it is well known, the optical attenuation sources in PCFs include intrinsic
losses due to Rayleigh scattering, imperfection losses due to the fabrication, and
confinement losses caused by finite number of air holes in the cladding. Since the core has
the same refractive index as the cladding, the guided mode is intrinsically leaky and
experiences confinement losses. In fact, confinement losses occur even in the absence of the
other two losses. By careful design, it is possible to reduce confinement losses to negligible
values compared with the intrinsic losses. Control of chromatic dispersion keeping a low
confinement loss to a level below the Rayleigh scattering limit is a very important for any
optical system supporting ultrashort soliton pulse propagation [Agrawal, 1995]. In all cases,
almost flattened fiber dispersion and low confinement loss behavior becomes a crucial issue.
Although the resolution power of the currently available OCT machines are remarkable,
they are not sufficiently high to unequivocally identify all retinal sublayers and make
‘biopsy’-like diagnoses. Resolution is limited mainly by the bandwidth of the light source,
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usually a superluminescent diode (SLD) [Colston et al., 1998; Ryu et al., 2005] and increased
resolution will require wider bandwidth light sources. The emergence of ultrabroad
bandwidth femtosecond laser technology has allowed the development of an ultra-high
resolution OCT [Boppart et al., 1998; Bouma et al., 1995; Drexler et al., 1999; Hartl et al.,
2001; Herz et al., 2004; Jiang et al., 2005; Lee et al., 2009; Ohmi et al., 2004; Pan et al., 1998;
Tearnery et al., 1997; Welzel et al., 1997]. The ultrahigh resolution OCT will in effect be a
microscope capable of revealing certain histopathological aspects of macular disease in the
living tissue. Femtosecond laser source is expensive than picosecond laser source and low
incident power. Consequently, currently researchers are paying attention to develop
picosecond light sources for using ultrahigh-resolution OCT system. Picosecond pulse laser
source gives more narrow spectra than femtosecond laser source but since the laser source is
cheaper in this case it attracts practical implementation. The ultrahigh resolution OCT will
in effect be a microscope capable of revealing certain histopathological aspects of macular
disease in the living tissue.

In this work, we report a broadband SC generation in highly nonlinear photonic crystal fiber
(HN-PCF) at center wavelength 0.8 pm, 1.3 pm and 1.55 pm using high power picosecond
pulses which can be applicable in ultrahigh-resolution OCT system for ophthalmology,
dermatology and dental imaging. The proposed HN-PCF is investigated through a full-
vector finite difference method with anisotropic perfectly matched layer. Through numerical
simulation, it is demonstrated that it is possible to achieve different properties of the
proposed HN-PCF. Based on the nonlinear Schrodinger equation, we find that the proposed
HN-PCF, having four rings and two different sizes of air holes, can achieve SC spectrum
with input picosecond pulses. We have further investigated the full width of half maximum
of the generated SC spectrum of HN-PCF that can gives significant information on the
longitudinal resolution in biological tissue by assuming coherent length. The achieved
longitudinal resolutions in tissue are 0.97 pm at 0.8 pm for ophthalmology and dermatology,
0.85 pm at 1.3 pm for dental imaging and 1.1 pm at 1.55 pm also for dental imaging. To our
knowledge, these are the highest resolution achieved in biological tissue to date at 0.8 pm,
1.3 pm and 1.55 pm wavelength. Furthermore, numerical simulation result shown that it is
possible to obtain ultra-flattened chromatic dispersion, low dispersion slope, high nonlinear
coefficient and very low confinement loss, simultaneously from the proposed HN-PCF.

2. Proposed HN-PCF structure

Fig. 1 (a) shows the schematic cross section of the conventional PCF structure. This PCF
consists of a triangular lattice of air holes where the core is defined by a missing air hole.
The core diameter is 2a, where ‘a’ equals A-d/2. The air hole pitch is labeled A, and
measures the period of the air hole structure (the distance between the centers of
neighboring air holes). The air hole size is labeled d, and measures the diameter of the holes.
The background material is regular silica with a cladding refractive index n = 1.45. Fig. 1 (b)
shows the proposed HN-PCF structure. It has a pitch A, two air holes with diameters d; and
d. The pitch constant is chosen to be A = 0.87 pm, while the diameter of the air holes in the
cladding of the fiber are d; = 0.46 pm, d = 0.80 pm, with a total number of 4 hole layers in the
cladding. Designing HN-PCF for the OCT and telecommunication window using a
conventional PCF structure is difficult: therefore, the dimensions of the first rings of the
proposed HN-PCF are scaled downed to shape the dispersion characteristics. The
dimensions of the other rings are retained sufficiently large for better field confinement.
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Fig. 1(a). Schematic cross section of the conventional PCF structure.
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Fig. 1(b). The proposed HN-PCF structure.

This HN-PCF structure can provide ultra-flattened chromatic dispersion characteristics with
very high nonlinearity, and low confinement loss for the OCT and telecommunication
window. We analyzed the proposed HN-PCF with low confinement losses by modulating
only dimension of the first rings, in order to simplify the structure and decrease the
fabrication difficulties. In telecommunication widow, the parameters A = 0.79 pym, d; = 0.28
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pm, d = 0.69 pm, with a total number of 7 hole layers in the cladding are selected for
achieving ultra-flattened chromatic dispersion characteristics, small effective area, and low
confinement loss. In this case, 7 air hole layers are selected only for reducing confinement
loss below 0.2 dB/km.

3. Numerical model

The situation in photonics is especially favorable for computation because the Maxwell
equations are practically exact, the relevant material properties are well known, and the
length scales are not too small. The results of such computations have consistently agreed
with experiments. This makes it possible and preferable to optimize the design of photonic
crystals on a computer, and then manufacture them. For this proposed HN-PCF structure,
by using an accurate modal analysis based on a full-vector finite difference method (FDM)
[Begum et al.,, 2011; Shen et al., 2003] with anisotropic perfectly matched boundary layers
(PML), we evaluate the different properties of HN-PCF. The PML in fact is not a boundary
condition, but an additional domain that absorbs the incident radiation waves without
producing reflections. Once the effective refractive index nes is obtained by solving an
eigenvalue problem drawn from the Maxwell’s equations using the FDM, the parameter
chromatic dispersion D(A), confinement loss L., effective area Aess and nonlinear coefficient y
can be calculated [Begum et al., 2011; Shen et al., 2003].

3.1 Chromatic dispersion

The group-velocity dispersion D(A) is defined as the change in pulse width per unit distance
of propagation (i.e., ps/(nm.km). It means that D(\) causes a short pulse of light to spread in
time as a result of different frequency components of the pulse traveling at different
velocities. This can be calculated from following equation.

D(2)

dp df 1) 2w,  ad’Relny]
_dﬂ_dﬂ[vg(/l)}_ 2P @

¢ di?
where, 1 and f> are the propagation constant parameters, vg is the group velocity, A is the
operating wavelength in pm, c is the velocity of the light in a vacuum, Re[n.] is the real part
of the effective index.
The corresponding dispersion slope S(A) is defined as

S(4) = —di (j)

)
Since the total chromatic dispersion is the summation of material dispersion Dn(\) and
waveguide dispersion Dy(\). The material dispersion quantified from the Sellmeier equation
is directly included in the FDM calculation process. The reason for this is that Dm(A) is
mostly determined by the wavelength dependence of the fiber material and for this reason it
cannot be altered significantly in the engineering process. On the other hand, D.(}), which
is strongly dependent to the silica-air structure. Therefore, in our calculation chromatic
dispersion D(\) [Begum et al., 2011; Shen et al., 2003] corresponds to the total dispersion of
the PCFs.
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3.2 Confinement loss

The attenuation caused by the waveguide geometry is called confinement loss L. This is an
additional form of loss that occurs in single-material fibers particularly in PCFs because they
are usually made of pure silica and given by [Begum et al., 2011; Shen et al., 2003]

L, =-20log;ge ™" ) = 8,686k, Im][n,g] 3)

where, k is the propagation constant in free space, A is the operating wavelength in pm, and
Im(regt) is the imaginary part of the complex effective index #eg:.

3.3 Effective area
The effective area Act is defined as follows [Begum et al., 2011; Shen et al., 2003]

(] JIEP dxdy)’
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where, E is the electric field derived by solving Maxwell’s equations. From this equation, it
is seen that effective area Acf depends on the fiber parameters such as the mode field
diameter and core-cladding index difference.

3.4 Nonlinear coefficient

In this research, silica is used as a background material for designing PCFs. Since silica can
be treated as a homogeneous material, the lowest-order nonlinear coefficient is the third-
order susceptibility x©®). Most of the nonlinear effects in optical fibers therefore originate
from nonlinear refraction, a phenomenon that refers to the intensity dependence of the
refractive index resulting from the contribution of x©®), i.e., the refractive index of the fiber
becomes [Agrawal, 1995]

1=, +n,E? )

where, 11 is the linear refractive index which is responsible for material dispersion, E? is the
optical intensity inside the fiber, n> is the nonlinear refractive index related to x® by the
following relation

3 3
My = %Re (chz)zz ) ©)

where, Re stands for the real part. Another way to represents the refractive index is
P
n=n;+ny— (7)
eff

where, P is the incident light power and A is the effective area of the fiber. From nonlinear
part of Eq. (5) and Eq. (7), we can write
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From Eq. (8), it is clear that optical intensity inside the fiber E can be increased by two ways.
One is by focusing the light tightly to reduced A and by increasing incident optical power.

The nonlinear coefficient of PCFs depends on the value of nonlinear refractive index and the
effective area of the PCFs. The nonlinear coefficient is calculated according to following

equation [Agrawal, 1995].
o) 1y 2z )| ny
(e -
c )\ A A )N Ay

where, y is the nonlinear coefficient, @ is the angular frequency, 1, is the nonlinear refractive
index, A is the wavelength of the light, (12/Aef) is the nonlinear constant. It is possible to
enhance the nonlinearity by reducing the effective area Aesf through a smaller core diameter
and increasing nonlinear refractive index of a material n,. This n, is constant and depending
on the material of the fibers while is variable and varied from 2.2~3.4x10-20 m2/W.

3.5 Nonlinear Schrodinger equation

Nonlinear Schrédinger equation (NLSE) is used for numerical calculation of SC spectrum
[Agrawal, 1995]. The propagation equation Eq. (10) is a nonlinear partial differential
equation that does not generally lend itself to analytic solutions when both the nonlinearity
and the dispersion effect are present. A numerical approach is therefore often necessary for
an understanding of the nonlinear effects in optical fibers. The split-step Fourier method is
one of these, and is the most popular algorithm because of its good accuracy and relatively
modest computing time [Agrawal, 1995].
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where, A is the complex amplitude of the optical field, z is the propagation distance, a is the
attenuation constant of the fiber, T =t - z/v; (t is the physical time, vgis the group velocity at
the center wavelength), y is the nonlinear coefficient, A. is the center wavelength, and Tk is
the slope of the Raman gain, f, (n =1 to 3) are the n-th order propagation constant. This
propagation constant () is approximated by a few first terms of a Taylor series expansion
about the carrier frequency @y, that is

ﬁ(w)=ﬂ0+(W—wo)ﬂ1+%(W—wo)2ﬂ2+%(‘U—wo)3ﬂ3+"" (11)

where,
_[ s 12
s, [W ] )

The second order propagation constant f> [ps?/km], accounts for the dispersion effects in
fiber-optic communication systems. Depending on the sign of f,, the dispersion region can
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be classified into two regions, normal dispersion region (f> >0) and anomalous dispersion
region (f2 < 0).

3.6 Coherence length

Coherence length I. is one of the important parameter in estimating the longitudinal
resolution of the OCT source. The shorter the coherence length of the source, the more
closely the sample and reference arm group delays must be matched for the constructive
interference to occur. On the other word, we can say the combination of the reflected light
from the sample arm (containing the item of the interest) and the reference light from the
reference arm (usually a mirror) gives rise to an interference pattern but only if light from
both arms traveled the same optical distance. The same optical distance means a difference
of less than a coherence length. For a Gaussian spectrum the FWHM-duration of the
coherence time t. is

_4In2

(13)
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where, the half-power bandwidth Av represents the spectral bandwidth of the source in the
optical frequency domain.
Because of the backscattering configuration of OCT that the light travels back and forth in the

interferometer, the coherence length I. (in air) is expressed by the formula [Bouma et al., 1995]

2
lczi:2cln(2).i:21n(2).ﬂv_c (14)
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I = 0.44/1—6 (15)
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where, ¢ is the velocity of light in free-space, A is the center wavelength of the spectrum and

A} is the FWHM-wavelength width, szﬁis the spectral bandwidth. This I is very
A

c
important for estimating the longitudinal resolution I; in air and biological tissue.

3.7 Longitudinal resolution

The axial or longitudinal and lateral or transverse resolutions of OCT are decoupled from
one another; the former being an equivalent to the coherence length I of the light source and
the latter being a function of the optics. After calculating coherence length [, longitudinal
resolution in air and biological tissue can be estimated by [Bouma et al., 1995]

| =t (16)

-
Mtissue

where, nssue is the refractive index of the biological tissue. For ultrahigh-resolution OCT
imaging I. should be low value because I, is proportional with .

4, Simulation results

Fig. 2 (a), (b) and (c) shows the wavelength dependence properties of chromatic dispersion,
dispersion slope, effective area, nonlinear coefficient and confinement loss for the four-rings
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HN-PCF in Fig. 1. As shown in Fig. 1, only the diameter of the first air hole ring is varied
and the diameters of the remaining air holes remain the same, where d; = 0.46 ym, d = 0.80
pm, for a fixed pitch A = 0.87 pm. From Fig. 2, it is found that the proposed HN-PCF
owning ultra-flattened chromatic dispersion and dispersion slope at 0.8 pm are 0.55
ps/(nm.km) and 0.2 ps/ (nm2.km), respectively. The nonlinear coefficient is larger than 208.0
[W-km]? at 0.8 pm wavelength. Besides, the confinement loss is calculated and it is found
that confinement loss is less than 102 dB/km in the wavelength range of 0.75 pm to 1.0 pm
which is lower than Rayleigh scattering loss in conventional fiber.

Fig. 3 (a), (b) and (c) demonstrates the wavelength dependence properties of chromatic
dispersion, confinement loss and effective area for the seven-rings HN-PCF in Fig. 1, where
d1 =0.28 pm, d = 0.69 pm, for a fixed pitch A = 0.79 pm. In this case, it has been selected 7 air
hole rings for reducing confinement loss lower than Rayleigh scattering loss in conventional
fiber at 1.55 pm. Numerical simulation results show that the 7-rings HN-PCF have nonlinear
coefficients more than 54.0 [W-km]-1 and confinement loss lower than 0.1 dB/km at 1.55 pm,
ultra-flattened chromatic dispersion of -2.3 ps/(nm.km) at 1.55 pm wavelength.

SC generation in the proposed HN-PCF is numerically calculated which is shown in Fig. 4 (a),
(b) and (c). In Fig. 4 consider the propagation of the sech? (square of the hyperbolic-secant)
waveform with the full width at half maximum (FWHM), Trwam and Raman scattering
parameter are 1.0 ps and 3.0 fs, respectively, through the proposed HN-PCF. The input power
Py, of the incident pulses are 18.0 W, 55.0 W and 58.0 W at 0.8 ym, 1.3 pm and 1.55 pum,
respectively. The propagation constant around the carrier frequency f. and fs are 1.88 ps2/km
and 0.02 ps3/km, respectively for Fig. 4 (a). Again, the propagation constant around the carrier
frequency f, and ps are 2.55 ps?/km and -0.03 ps3/km, respectively for Fig. 4 (b). Moreover, the
propagation constant around the carrier frequency f> and 5 are 1.51 ps2/km and 0.01 ps®/km,
respectively for Fig. 4 (c). The achieved fiber length is 10.0 m in all cases. The calculated SC
spectrum FWHM bandwidth is 200 nm, 530 nm and 590 nm at center wavelength 0.8 pym, 1.3
pm and 1.55 pm, respectively. From these results, it is evident that high quality SC spectrum is
readily generated with relatively short fiber length and good incident power compared to the
previously reported ones [Boppart et al., 1998; Bouma et al., 1995; Colston et al., 1998; Drexler
et al., 1999; Hartl et al., 2001; Herz et al., 2004; Jiang et al., 2005; Lee et al., 2009; Ohmi et al.,
2004; Pan et al., 1998; Ryu et al., 2005; Tearnery et al., 1997; Welzel et al., 1997].

Fig. 5 (a), (b) and (c) represents the intensity spectra of the proposed HN-PCF at center
wavelengths 0.8 pm, 1.3 pm and 1.55 pm, respectively when changing incident optical
powers. It should be noted that in this time, the fiber lengths are remain unchanged in all of
the center wavelengths. From these figures, it is seen that intensity spectra are gradually
broadening with increasing the input power, Pi, at the particular wavelength. Therefore, it is
clearly seen that the SC spectral width is dependent to the incident power.

Fig. 6 (a), (b) and (c) represents the intensity spectra of the proposed HN-PCF at center
wavelengths 0.8 pm, 1.3 pm and 1.55 pm, respectively in different fiber lengths while incident
optical powers are remain unchanged. From these figures, it is observed that intensity spectra
are gradually broadening with increasing the fiber length, Lr at the particular wavelength. So,
it is noted that the SC spectral width is dependent to the fiber length. From Fig. 5 and 6, it is
clear that the SC spectral width is dependent to the incident power and fiber length as well.
Fig. 7 (a), (b) and (c) demonstrates the output powers of the proposed HN-PCF at center
wavelengths 0.8 pm, 1.3 pm and 1.55 pm, respectively when the fiber length is 10 m in all
center wavelengths. From these figures, it is found that output powers are increased with
increasing incident input powers at particular wavelength.
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The spectral bandwidths, FWHM are 200 nm, 530 nm and 590 nm at center wavelength 0.8
pm, 1.3 pm and 1.55 pm, respectively. The calculated . values are 1.4 pm, 1.4 pm and 1.8 pm at
center wavelength 0.8 pm, 1.3 pm and 1.55 pm, respectively. The calculated /; values are 0.97
pm, 0.85 pm and 1.1 pm when typical e is 1.44, 1.65 and 1.65 at center wavelengths 0.8 pm,
1.3 pm and 1.55 pm, respectively [Ohmi et al., 2000]. These calculated I; value is better than
that of Ref. [Boppart et al., 1998; Bouma et al., 1995; Colston et al., 1998; Drexler et al., 1999;
Hartl et al., 2001; Herz et al., 2004; Jiang et al., 2005; Lee et al., 2009; Ohmi et al., 2004; Pan et al.,
1998; Ryu et al., 2005; Tearnery et al., 1997; Welzel et al., 1997] and SLDs with OCT imaging
longitudinal resolution of ~ 10 - 15 pm. Some calculated parameters of the proposed HN-PCF
are shown in table 1. From this Table 1, it is seen that the highest longitudinal resolution and
wider FWHM is obtained at 1.3 pm and 1.55 pm wavelengths, respectively.

Paramters Ac=0.8 pm Ac=13 pm Ac=1.55 pm
P2 [ps?/km] 1.88 2.55 1.51
P3[ps3/km] 0.02 -0.03 0.01

Tr [fs] 3.0 3.0 3.0
TrwrmM [ps] 1.0 1.0 1.0

Pin [W] 18.0 55.0 58.0

L [m] 10.0 10.0 10.0
FWHM [nm] 200.0 530.0 590.0

I [pm] 14 14 1.8

I; [pm] 0.97 0.85 1.1

Table 1. Some calculated parameters of the proposed HN-PCF.

The apparent advantages of our HN-PCF design are the facts that it simultaneously exhibits
numerous optical properties such as flattened dispersion, low confinement loss, high
nonlinearity at three central wavelengths 0.8 ym, 1.3 pm and 1.55 pm. Moreover, one can
take advantage of the different dispersion characteristics of the two different geometrical
parameters to get one more degree of freedom for tailoring the generated SC spectrum.
Furthermore, the proposed fiber can be used to make a fiber-based light source to generate
SC in three different central wavelengths for ophthalmology, dermatology and dentistry
OCT imaging application. Hence, the same fiber with three center wavelengths can be used
in several OCT imaging and optical communication applications while exhibiting relatively
good longitudinal resolution performance, high power, and in turn can pave the way for the
compact, robust and cheap fiber-based OCT light sources. Therefore, picosecond pulse
based PCFs are among the most specialized optical lightguides in the new optical fiber
technology which is highly competitive compared to traditional laser designs.

5. Conclusions

We have proposed broadband SC generated HN-PCF which can be used as a high power
picoseconds pulses light source in ultrahigh-resolution OCT system for ophthalmology,
dermatology and dental imaging. Moreover, it has been sent that this proposed HN-PCF
would be applicable in optical communication. We achieved longitudinal resolutions in
tissue are 0.97 pm, 0.85 pm and 1.1 pm at center wavelength of 0.8 ym, 1.3 pm and 1.55 pm,
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respectively. Furthermore, from numerical simulation results it was found that the proposed
HN-PCFs have high nonlinear coefficients with ultra-flattened chromatic dispersion, low
dispersion slopes, and very low confinement losses, simultaneously. The broad bandwidth
of the light source permits high resolution for bright OCT imaging in the wavelength ranges
from 0.8 pm to 1.6 pm. For the less number of geometrical parameters, this light source has
the potential to be made compact, robust and cheap fiber-based OCT light sources and
suitable for clinical applications. Consequently, the same proposed fiber can be used in
different optical communication applications such as dispersion controlling, wavelength
conversion, SC generation, optical parametric amplification, and so on.
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1. Introduction

1.1 Phylums of optic fibers

The optic fiber represents internal dielectric medium (crystal, glass etc.), which one is
contained a main body of a quantity of light transmitted on a fiber, and which one is called
as a core. The core can be surrounded by a layer with lower refractive index, which one is
called as a shell. For protection against exposures and for increase of a mechanical strength
the core with a shell can be coated with a padding layer of plastic.

coating

Core

Fig. 1. An optic fiber.

There are different phylums of fibers. The optic fibers without a shell represent simply glass
or quartz fiber. They are friable and are ineffective. For them large losses, as on border of
two mediums the electrical field is not equal to zero point and the border is rather
incomplete. Besides, that such fiber was monomode; his diameter should be less than 1
micron. Such fibers now practically are not applied.

Optic fibers with a shell. The core in such optic fibers is coated with a shell with lower
refractive index. The losses in fibers with a shell are much less than losses in fibers without a
shell. As we shall see hereinafter, the illumination in such fibers depends on reduced
frequency. And essentialist: the manufacturing of such fibers is technologically possible, in
which one one mode of propagation will be diffused only. Hereinafter we shall esteem
basically only fibers with a shell.

On a structure of refractive index of a fiber it is possible to secure two most often meeting of
a type: stepwise and gradient.

In a stepwise fiber the refractive index in a core remains to a constant (see fig. 2a):

In a gradient fiber the refractive index of a core varies depending on r - spacing interval
from an axis of a fiber (see fig. 2b).
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Fig. 2. Phylums of optic fibers, their structures of refractive index and broadering of an
optical impulse: and - stepwise; - parabolic; in - monomode.

As we shall see later, in a gradient fiber, in which one the refractive index varies under the
parabolic law, the optical pathes of different beams will be practically identical, that
essentially reduces a dispersion of a fiber. The gradient fiber as contrasted to stepwise has
the best characteristics on dispersion and consequently has large throughput capacity.

The selected law of change of refractive index can be more or less composite. The directional
illumination is possible as well in a homogeneous material, if to him to give the definite
form. Gears of an illumination in most often used stepwise and gradient fibers.

1.2 Stepwise fiber - A numbered aperture

Let's consider a stepwise optic fiber (fig. 2a). Let and - radius of a core, b - radius of a shell. If
diameter of a fiber about several tens micrometers, and difference of refractive indexes
about 10-2, it is possible to use concepts of a ray optics and to speak about propagation of
light rays.

Let's consider the gear of an illumination in a fiber, neglecting absorption in stuff, it is
necessary to allow which one, generally speaking. Let light beam in a core is diffused bevel
way 0 to an axis Oz, the axis Oz is directed on an axis of a fiber (fig. 3).

Longitudinal wave number or propagation coefficients:

0]
B=kcos0=—n; cos®=const .
c
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The surge, gated in in a core of a fiber, will be retained in her at the expense of full internal
reflection at fulfilment of a condition 0 < 6k , where 0y, - critical angle. At fulfilment of a
condition of full internal reflection the surge in a shell is an only imaginary and fast damp
on exponential law at deleting from a demarcation a core a shell. At increase of a angle? The
condition of total reflection ceases to be executed, and the surge in a shell becomes real.
Pursuant to above mentioned it is possible to secure three kinds of rays:

1. Routed rays (rays distributing in a fiber),

2. Beams distributing with outflow (loss),

3. Refracted beams? If is satisfied condition of full internal reflection,

And alone area, where the beam is real, is the core, the beam is considered as routed (fig. 3).
If the beam appears by real in some part of a shell, he is diffused with outflow ( (fig. 4).

If the beam appears by real in all volume of a shell, we deal with a refracted beam.

Fig. 4. Beam distributing with outflow. The part of a beam inpours into a shell.

Let's consider in more detail beams distributing in a fiber. Let beam drops from air on butt
end of a fiber bevel way Q. Let's find a maximum angle Q., , under which one it is possible
to enter this beam into a fiber, that the beam was hereinafter diffused in a fiber. Thus the ray
in a core will be diffused bevel way 0k, conforming to a case of total reflection from a
demarcation with a shell (see fig. 5).
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Fig. 5. An illumination in a stepwise fiber.
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For a demarcation an air - core of a fiber (point A):

sin2, n

sin@,, n,
Here n0 - refractive index of air. Let's count ng =1.
Let's find sin Qn,

cos 6 =n, /n,.

Angle 0y is discovered:

2
- - 2 n 2 2
sin&, =nysin6,, =n;fl—cos” 6, =n, l——§=1/n1 -nj .
i3

Value sin Qy, call as a numbered aperture of a fiber. The numbered aperture has notation
NA. Thus, the numbered aperture is peer

NA =sinQ_ =n? -n2 .

The numbere