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Preface 

Optical fiber refers to technology associated with the transmission of information as 
light pulses along a glass or plastic strand or fiber. Optical fiber carries much more 
information than conventional copper wire. It’s immune to electromagnetic 
interference and is cheaper. From the early experiments by John Tyndall in the guided 
transmission light, through the development of light-emitting diodes and lasers and 
the emergence of dense wavelength-division multiplexing (DWDM), the applications 
for optical fiber have increased. Today, optical fiber technologies permeate a variety of 
industries. For instance, delivering high-definition broadcast (HDTV) at high 
resolutions has become possible through the deployment of fiber-to-the-home (FTTH) 
networks. This new book reviews current researches on optical fiber including 
nonlinear effects and polarization related issues in optical fibers, photonic crystal 
fibers (PCFs) as well as other characteristics.  

This book is divided into four sections. The first section (chapters 1 to 5) discusses the 
nonlinear effects in optical fibers which has become an area of academic research and 
of great importance in the optical fiber based systems. In optical communication 
systems, the term nonlinearity refers to the dependence of the system on the power of 
the optical beams being launched into the fiber cable. The nonlinearities in optical 
fibers are due to the third order susceptibility (X3) according to the Schrödinger 
equation. The real part of the equation describes self-phase modulation (SPM), cross-
phase modulation (XPM) and four-wave mixing (FWM) while the imaginary part of 
the equation describes stimulated Brillouin scattering (SBS) and stimulated Raman 
scattering (SRS). Chapter 1 discusses the modeling tools based on a multimode 
generalized nonlinear Schrödinger equation, its simplification to experimentally 
relevant situations and a few selected applications. Chapter 2 reviews the physics of 
spontaneous nonlinear scattering processes in optical fibers. The variable-coefficient 
higher order nonlinear Schrödinger equation is investigated in Chapter 3. This 
equation describes the wave propagation in a nonlinear fiber medium with higher 
order effects such as third order dispersion, self-steepening and SRS. Chapter 4 
describes the nonlinear effect applications in supercontinuum generation using a 
continuous wave (CW) pump source. Compared to the pulsed source, average powers 
available for the CW pump are stronger and thus increase the spectral power of the 
supercontinuum source. The dynamic of the supercontinuum generation is 
considerably different in this case and, thus, intensive numerical studies to optimize 



XII Preface

the fiber parameters are presented in this chapter. Recently, on the other hand, 
researchers found ways to realize slow light operating in room temperature, and solid-
state materials via various techniques such as SBS, coherent population oscillations 
(CPO), and tunable time delays based on group velocity dispersion or 
conversion/dispersion. In Chapter 5 we describe some of the physical mechanisms that 
can be used to induce slow and fast light effects in room-temperature solids and some 
of the exotic propagation effects that can be observed. 

The second section comprises three chapters discussing polarization losses in optical 
fibers, optical fiber birefringence effects and spun fibers. Chapter 6 provides details of 
polarization mode dispersion (PMD), chromatic dispersion and polarization 
dependent loss. Chapter 7 presents the basic effects, which lead to the occurrence of 
linear and circular birefringence in single-mode fibers. Chapter 8 discusses the theory 
and characterization of spun fibers which are used for compensation of PMD.  

The third section consists of 5 chapters which cover some selected topics on PCF 
researches. The use of PCF is associated with their unique chromatic dispersion 
properties and nonlinear behavior, making them suitable for dispersion compensation 
or zero-dispersion propagation. A systematic study of dispersion properties in PCFs is 
presented in Chapter 9. Chapter 10 elaborates on PCF loop mirrors and their 
applications in several optical devices and sensors. Chapter 11 reports on a broadband 
super-continuum light generated using a highly nonlinear PCF in conjunction with 
high power picoseconds pulses for applications in ultrahigh-resolution optical 
coherence tomography (OCT) system for ophthalmology, dermatology and dental 
imaging. Chapter 12 explains the behavior of optical fiber on the basis of photonic 
crystal. Chapter 13 proposes and demonstrates a new design concept for 
microstructured fiber taper that can be produced on a traditional optical fiber draw 
tower with multi-pressure control. 

The final section presents current research on new applications for optical fibers. This 
section consists of seven chapters. Chapter 14 discusses the fabrication of long period 
gratings (LPGs) in new generation fibers such as D-shaped fibers and PCFs as well as 
the novel application fields offered by the hosting fiber. Chapter 15 discusses the 
propagation of vortex multimode laser beams in an optical fiber for applications in 
mode division multiplexing and multimode self-imaging. Chapter 16 explains the use 
of optical fibers and some limitations in two exoplanet detection methods: nulling 
interferometry and the radial velocity method. Chapter 17 reviews the published 
work, covering the transfer of low frequency and time, and the necessary techniques 
for accurate optical frequency transmission. Chapter 18 presents the current 
applications of the fiber-optic chip platform including spectro-electro-chemical 
measurements, fluorescence detection of a bioassay, a broadband fiber optic light 
source, and Raman interrogation of molecular adsorbates. Chapter 19 discusses a 
theoretical framework of optical fibers in phase space. This chapter is intended to give 
a brief review of the phase-space analysis applied to fiber optics, stressing the use of 
the Wigner distribution function (WDF). Chapter 20 discusses the effect of γ-ray 

Preface XI 

radiation on commercial optical fibers. Two different dose and dose rate γ-ray pulses 
are employed to irradiate four kinds of optical fibers and radiation-induced losses are 
measured by using five lasers with different wavelengths as carriers. 
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Multimode Nonlinear Fibre Optics:
Theory and Applications

Peter Horak and Francesco Poletti
University of Southampton

United Kingdom

1. Introduction

Optical fibres have been developed as an ideal medium for the delivery of optical pulses
ever since their inception (Kao & Hockham, 1966). Much of that development has been
focused on the transmission of low-energy pulses for communication purposes and thus
fibres have been optimised for singlemode guidance with minimum propagation losses only
limited by the intrinsic material absorption of silica glass of about 0.2dB/km in the near
infrared part of the spectrum (Miya et al., 1979). The corresponding increase in accessible
transmission length simultaneously started the interest in nonlinear fibre optics, for example
with early work on the stimulated Raman effect (Stolen et al., 1972) and on optical solitons
(Hasegawa & Tappert, 1973). Since the advent of fibre amplifiers (Mears et al., 1987), available
fibre-coupled laser powers have been increasing dramatically and, in particular, fibre lasers
now exceed kW levels in continuous wave (cw) operation (Jeong et al., 2004) and MW peak
powers for pulses (Galvanauskas et al., 2007) in all-fibre systems. These developments are
pushing the limits of current fibre technology, demanding fibres with larger mode areas and
higher damage threshold. However, it is increasingly difficult to meet these requirements with
fibres supporting one single optical mode and therefore often multiple modes are guided.
Non-fibre-based laser systems are capable of delivering even larger peak powers, for example
commercial Ti:sapphire fs lasers now reach the GW regime. Such extreme powers cannot
be transmitted in conventional glass fibres at all without destroying them (Gaeta, 2000), but
there is a range of applications for such pulses coupled into hollow-core capillaries, such
as pulse compression (Sartania et al., 1997) and high-harmonic generation (Rundquist et al.,
1998). For typical experimental parameters, these capillaries act as optical waveguides for a
large number of spatial modes and modal interactions contribute significantly to the system
dynamics.
In order to design ever more efficient fibre lasers, to optimise pulse delivery and to
control nonlinear applications in the high power regime, a thorough understanding of pulse
propagation and nonlinear interactions in multimode fibres and waveguides is required.
The conventional tools for modelling and investigating such systems are based on beam
propagation methods (Okamoto, 2006). However, these are numerically expensive and
provide little insight into the dependence of fundamental nonlinear processes on specific fibre
properties, e.g., on transverse mode functions, dispersion and nonlinear mode coupling. For
such an interpretation a multimode equivalent of the nonlinear Schrödinger equation, the
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standard and highly accurate method for describing singlemode nonlinear pulse propagation
(Agrawal, 2001; Blow & Wood, 1989), is desirable.
In this chapter, we discuss the basics of such a multimode generalised nonlinear Schrödinger
equation (Poletti & Horak, 2008), its simplification to experimentally relevant situations and
a few select applications. We start by introducing and discussing the theoretical framework
for fibres with χ(3) nonlinearity in Sec. 2. The following sections are devoted to multimode
nonlinear applications, presented in the order of increasing laser peak powers. A sample
application in the multi-kW regime is supercontinuum generation, discussed in Sec. 3. Here
we demonstrate how fibre mode symmetries and launching conditions affect intermodal
power transfer and spectral broadening. For peak powers in the MW regime, self-focusing
effects become significant and lead to strong mode coupling. The spatio-temporal evolution
of pulses in this limit is the topic of Sec. 4. Finally, at GW peak power levels, optical pulses
can only be delivered by propagation in gases. Still, intensities become so high that nonlinear
effects related to ionisation must be taken into account. An extension of the multimode theory
to include these extreme high power effects is presented in Sec. 5 and the significance of mode
interaction is demonstrated by numerical examples pertaining to a recent experiment. Finally,
we end this chapter with conclusions in Sec. 6.

2. The multimode generalised nonlinear Schrödinger equation

Pulse propagation in singlemode fibres is frequently modelled by a generalised nonlinear
Schrödinger equation (NLSE) which describes the evolution of the electric field amplitude
envelope of an optical pulse as it propagates along the fibre (Agrawal, 2001; Blow & Wood,
1989). This framework has been extremely successful in incorporating all linear and nonlinear
effects usually encountered in fibres, such as second and higher order dispersion, Kerr and
Raman nonlinearities and self-steepening, and its predictions have been corroborated by
numerous experiments using conventional fibres, photonic crystal fibres and fibre tapers of
different materials, as well as laser sources from the continuous wave regime down to few
cycle pulses. Perhaps the most prominent application of the NLSE is in the description
of supercontinuum generation where all the linear and nonlinear dispersion effects come
together to induce spectacular spectral broadening of light, often over very short propagation
distances (Dudley et al., 2006).
For very high power applications, as motivated above, a further extension of the NLSE is
required to deal with the multimode aspects of large-mode area fibres. A very general
multimode framework has been presented recently allowing for arbitrary mode numbers,
polarisations, tight mode confinements and ultrashort pulses (Poletti & Horak, 2008). Here
we describe a slightly simplified version that is more easily tractable and still is applicable to
many realistic situations, e.g., for the description of high power applications as discussed in
the later sections.
We start by considering a laser pulse propagating in a multimode fibre. The pulse can be

written as the product of a carrier wave exp[i(β
(0)
0 z − ω0t)], where ω0 is the carrier angular

frequency and β
(0)
0 is its propagation constant in the fundamental fibre mode, and an envelope

function E(x, t) in space and time. Note that throughout this chapter we adopt the notation
that vectorial quantities are written in bold face and x = (x, y, z). For convenience, we assume
E(x, t) to be complex-valued, so that it includes the envelope phase as well as the amplitude,
and we consider the pulse evolution in a reference frame moving with the group velocity of
the fundamental mode, so that in the absence of dispersion a pulse would stay centred at time
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t = 0 throughout its propagation. Finally, we use units such that |E(x, t)|2 is the field intensity
in W/m2. The envelope function can then be expanded into a superposition of individual
modes p = 0, 1, 2, ..., each represented by a discrete transverse fibre mode profile Fp(x, y) and
a modal envelope Ap(z, t), as

E(x, t) = ∑
p

Fp(x, y)
[∫

dx dy |Fp|2
]1/2 Ap(z, t). (1)

Note that |Ap(z, t)|2 gives the instantaneous power propagating in mode p in units of W,
and that a simplified normalisation has been used compared to a more rigorous previous
formulation (Poletti & Horak, 2008). The accuracy of this approximation improves as the fibre
core size is increased and the core-cladding index contrast is decreased, leading to guided
modes with an increasingly negligible longitudinal component of polarisation.
The multimode generalised nonlinear Schrödinger equation (MM-NLSE) is then given by the
following set of coupled equations to describe the dynamics of the mode envelopes,

∂Ap

∂z
= D{Ap}

+i
n2ω0

c

(
1 +

i
ω0

∂

∂t

)
∑

l,m,n

{
(1 − fR)S

K
plmn Al Am A∗

n + fRSR
plmnAl [h ∗ (Am A∗

n)]
}

. (2)

The following approximations have been applied here: (i) we have assumed that the Raman
response and the pulse envelope functions vary slowly on the time scale of a single cycle of
the carrier wave, so that we can neglect a rapidly oscillating term, and (ii) an additional term
related to the frequency dependence of the mode functions has been omitted, assuming the
variation of SK,R

plmn is slow compared to the 1/ω0 self-steepening term. In Eq. (2),

D{Ap} = i(β
(p)
0 −�[β(0)0 ])Ap − (β

(p)
1 −�[β(0)1 ])

∂Ap

∂t
+ i ∑

n≥2

β
(p)
n

n!

(
i

∂

∂t

)n
Ap (3)

yields the effects of dispersion of mode p with coefficients β
(p)
n = ∂nβ(p)/∂ωn. Here we

allow for complex values of the modal propagation constants β(p) where the imaginary part
describes mode and wavelength dependent losses; �[..] denotes the real part only. The second
line of (2) represents the effects of optical nonlinearity with a nonlinear refractive index n2.
The term ∝ ∂/∂t describes self-steepening and the two terms within the sum describe Kerr
and Raman nonlinearities. The Raman term contributes with a fraction fR to the overall
nonlinearity ( fR = 0.18 for silica glass fibres) and contains the Raman mode overlap factors

SR
plmn =

∫
dx dy

[
F∗

p · Fl
][

Fm · F∗
n
]

[∫
dx dy |Fp|2
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as well as a convolution of the time dependent Raman response function h(t) with two mode
amplitudes
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standard and highly accurate method for describing singlemode nonlinear pulse propagation
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effects related to ionisation must be taken into account. An extension of the multimode theory
to include these extreme high power effects is presented in Sec. 5 and the significance of mode
interaction is demonstrated by numerical examples pertaining to a recent experiment. Finally,
we end this chapter with conclusions in Sec. 6.

2. The multimode generalised nonlinear Schrödinger equation
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polarisations, tight mode confinements and ultrashort pulses (Poletti & Horak, 2008). Here
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We start by considering a laser pulse propagating in a multimode fibre. The pulse can be

written as the product of a carrier wave exp[i(β
(0)
0 z − ω0t)], where ω0 is the carrier angular

frequency and β
(0)
0 is its propagation constant in the fundamental fibre mode, and an envelope

function E(x, t) in space and time. Note that throughout this chapter we adopt the notation
that vectorial quantities are written in bold face and x = (x, y, z). For convenience, we assume
E(x, t) to be complex-valued, so that it includes the envelope phase as well as the amplitude,
and we consider the pulse evolution in a reference frame moving with the group velocity of
the fundamental mode, so that in the absence of dispersion a pulse would stay centred at time
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t = 0 throughout its propagation. Finally, we use units such that |E(x, t)|2 is the field intensity
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E(x, t) = ∑
p

Fp(x, y)
[∫

dx dy |Fp|2
]1/2 Ap(z, t). (1)

Note that |Ap(z, t)|2 gives the instantaneous power propagating in mode p in units of W,
and that a simplified normalisation has been used compared to a more rigorous previous
formulation (Poletti & Horak, 2008). The accuracy of this approximation improves as the fibre
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The following approximations have been applied here: (i) we have assumed that the Raman
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the carrier wave, so that we can neglect a rapidly oscillating term, and (ii) an additional term
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yields the effects of dispersion of mode p with coefficients β
(p)
n = ∂nβ(p)/∂ωn. Here we
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The term ∝ ∂/∂t describes self-steepening and the two terms within the sum describe Kerr
and Raman nonlinearities. The Raman term contributes with a fraction fR to the overall
nonlinearity ( fR = 0.18 for silica glass fibres) and contains the Raman mode overlap factors
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The mode overlap factors responsible for the instantaneous Kerr effect are given by

SK
plmn =

2
3

SR
plmn +

1
3

∫
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n
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dx dy |Fp|2
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dx dy |Fl |2

∫
dx dy |Fm|2

∫
dx dy |Fn|2

]1/2 . (6)

Numerically, the mode functions of all the modes involved in the nonlinear effects under
consideration are first evaluated at ω0 and a table of overlap integrals is calculated. The
number of modes and overlap integrals can be greatly reduced based on mode symmetry
arguments (Poletti & Horak, 2008); all the applications discussed in the following will employ
such reduced sets of modes. Next, the dispersion curves for these modes are calculated.
Finally, the system of equations (2) is integrated numerically using a standard symmetrised
split-step Fourier method (Agrawal, 2001), where adaptive step size control is implemented by
propagating the nonlinear operator using a Runge-Kutta-Fehlberg method (Press et al., 2006).
In order to avoid numerical artifacts, we also found it necessary to further limit the maximum
step size to a fraction of the shortest beat length between all the modes considered. The
accuracy and convergence of the results is further checked by running multiple simulations
with increasingly small longitudinal step sizes.
The framework presented above still allows for modes of arbitrary polarisation. In most
practical situations, however, one is interested in a subset of modes representing only a
specific polarisation state which is determined by the pump laser. The two most common
cases are briefly discussed in the following.

2.1 Circular polarisation
Under the weak guiding condition, modes fall into groups of LPmn modes containing either
two (m = 0) or four (m > 0) degenerate modes. Within each group, the modes can be
combined into modes that are either σ+ or σ− circularly polarised at every point in the fibre. If
the light launched into the fibre is, for example, σ+ polarised, the form of the overlap integrals
(4) and (6) guarantees that no light is coupled into the σ− polarised modes during propagation
and those modes can therefore be eliminated entirely from the model. It is worth emphasising
that this is an exact result within the weak guiding limit. Using the properties of circular
polarisation vectors, the overlap integrals are then simplified to

SR
plmn =

∫
dx dy FpFlFmFn[∫

dx dy F2
p
∫

dx dy F2
l

∫
dx dy F2

m
∫

dx dy F2
n
]1/2 ,

SK
plmn =

2
3

SR
plmn, (7)

where the mode functions have been written as Fp = e+Fp for σ+ polarised modes with
real-valued scalar mode functions Fp.

2.2 Linear polarisation
The situation is slightly more complicated in the case of linearly polarised pump light. In
this case, nonlinear coupling between orthogonal polarisation modes is in principle allowed,
leading to, for example, birefringent phase matching and vector modulation instability
(Agrawal, 2001; Dupriez et al., 2007). However, for many practical situations where modes
can be described as LPmn modes, if linearly polarised light is launched into the fibre, nonlinear
coupling to orthogonal polarisation states is effectively so small that most of the pulse energy
remains in its original polarisation throughout the entire pulse propagation. This allows
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halving the number of modes to be considered in the model with significant computational
advantage, and a simpler definition of the overlap factors (4) and (6). There are several
important practical situations where this approximation can be acceptable:
(i) For degenerate modes (no birefringence), the overlap factor (6) for four-wave mixing
(FWM) between modes of parallel polarisation is three times larger than that for orthogonal
polarisation. Since the dispersion properties, and therefore the phase matching conditions,
are the same, nonlinear gain is much higher for the same polarisation and thus will dominate
the dynamics.
(ii) For few-moded fibres power transfer to orthogonal modes by FWM can be negligible
if either the phase matching condition cannot be fulfilled at all, or if the phase matching
condition is achieved only for widely separated wavelength bands where the difference in
group velocities limits the effective interaction length due to walk-off effects.
In these situations one can therefore use an approximate theoretical description of pulse
propagation by restricting the MM-NLSE to the LPmn modes of the fibre with the same linear
polarisation everywhere. Assuming real-valued x-polarised mode functions Fp = ex Fp, the
overlap integrals then reduce to

SR
plmn = SK

plmn =

∫
dx dy FpFlFmFn[∫

dx dy F2
p
∫

dx dy F2
l

∫
dx dy F2

m
∫

dx dy F2
n
]1/2 . (8)

A further simplification is also sometimes possible. If linearly polarised light is predominantly
launched in an LP0n mode, power transfer into LPmn modes with m > 0 can only be initiated
by spontaneous FWM processes. By contrast, other LP0n modes of the same polarisation can
be excited by stimulated processes, see Sec. 3.1. Thus, if the dominant processes within the
pulse propagation are stimulated ones, e.g., in the regime of high powers and relatively short
propagation distances, the study can be effectively restricted to LP0n modes with the same
polarisation.

3. Supercontinuum generation in multimode fibres

One of the first applications where the MM-NLSE presented in the previous section can
provide deep insights is that of supercontinuum (SC) generation in multimode fibres. As
already mentioned, the complex dynamic underlying SC generation in singlemode fibres is by
now well understood. Octave spanning SC in suitably designed fibres arises as a combination
of various nonlinear phenomena, including soliton compression and fission, modulation
instability, parametric processes, intrapulse Raman scattering, self phase modulation (SPM)
and cross phase modulation (XPM) (Dudley et al., 2006). As the fibre diameter is increased
though, as required for example to increase the SC power spectral density without destroying
the fibre, the fibre starts to support multiple modes. Previous theoretical models were
usually restricted to two polarisation modes of a birefringent fibre (Agrawal, 2001; Coen et al.,
2002; Lehtonen et al., 2003; Martins et al., 2007) or included a maximum of two spatially
distinct modes (Dudley et al., 2002; Lesvigne et al., 2007; Tonello et al., 2006). Using the full
MM-NLSE, however, fibres with arbitrary modal contents can be studied, for which a rich
new list of intermodal nonlinear phenomena emerges, causing the transfer of nonlinear phase
and/or power between selected combinations of modes (Poletti & Horak, 2009).
In this section, using simulations of a specific few-moded fibre as an illustrative example, we
will discuss how modal symmetries and launch conditions can have a drastic influence on
intermodal power transfer dynamics. For pump peak powers in the range of tens to hundreds
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The mode overlap factors responsible for the instantaneous Kerr effect are given by
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cases are briefly discussed in the following.
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combined into modes that are either σ+ or σ− circularly polarised at every point in the fibre. If
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where the mode functions have been written as Fp = e+Fp for σ+ polarised modes with
real-valued scalar mode functions Fp.

2.2 Linear polarisation
The situation is slightly more complicated in the case of linearly polarised pump light. In
this case, nonlinear coupling between orthogonal polarisation modes is in principle allowed,
leading to, for example, birefringent phase matching and vector modulation instability
(Agrawal, 2001; Dupriez et al., 2007). However, for many practical situations where modes
can be described as LPmn modes, if linearly polarised light is launched into the fibre, nonlinear
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important practical situations where this approximation can be acceptable:
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(FWM) between modes of parallel polarisation is three times larger than that for orthogonal
polarisation. Since the dispersion properties, and therefore the phase matching conditions,
are the same, nonlinear gain is much higher for the same polarisation and thus will dominate
the dynamics.
(ii) For few-moded fibres power transfer to orthogonal modes by FWM can be negligible
if either the phase matching condition cannot be fulfilled at all, or if the phase matching
condition is achieved only for widely separated wavelength bands where the difference in
group velocities limits the effective interaction length due to walk-off effects.
In these situations one can therefore use an approximate theoretical description of pulse
propagation by restricting the MM-NLSE to the LPmn modes of the fibre with the same linear
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A further simplification is also sometimes possible. If linearly polarised light is predominantly
launched in an LP0n mode, power transfer into LPmn modes with m > 0 can only be initiated
by spontaneous FWM processes. By contrast, other LP0n modes of the same polarisation can
be excited by stimulated processes, see Sec. 3.1. Thus, if the dominant processes within the
pulse propagation are stimulated ones, e.g., in the regime of high powers and relatively short
propagation distances, the study can be effectively restricted to LP0n modes with the same
polarisation.

3. Supercontinuum generation in multimode fibres

One of the first applications where the MM-NLSE presented in the previous section can
provide deep insights is that of supercontinuum (SC) generation in multimode fibres. As
already mentioned, the complex dynamic underlying SC generation in singlemode fibres is by
now well understood. Octave spanning SC in suitably designed fibres arises as a combination
of various nonlinear phenomena, including soliton compression and fission, modulation
instability, parametric processes, intrapulse Raman scattering, self phase modulation (SPM)
and cross phase modulation (XPM) (Dudley et al., 2006). As the fibre diameter is increased
though, as required for example to increase the SC power spectral density without destroying
the fibre, the fibre starts to support multiple modes. Previous theoretical models were
usually restricted to two polarisation modes of a birefringent fibre (Agrawal, 2001; Coen et al.,
2002; Lehtonen et al., 2003; Martins et al., 2007) or included a maximum of two spatially
distinct modes (Dudley et al., 2002; Lesvigne et al., 2007; Tonello et al., 2006). Using the full
MM-NLSE, however, fibres with arbitrary modal contents can be studied, for which a rich
new list of intermodal nonlinear phenomena emerges, causing the transfer of nonlinear phase
and/or power between selected combinations of modes (Poletti & Horak, 2009).
In this section, using simulations of a specific few-moded fibre as an illustrative example, we
will discuss how modal symmetries and launch conditions can have a drastic influence on
intermodal power transfer dynamics. For pump peak powers in the range of tens to hundreds
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of kW, if the nonlinear length of the pump pulses is shorter than the walk-off length between
the modes involved, significant power transfer into high-order modes with the appropriate
symmetry can occur, which can be beneficial, for example, to further extend the SC spectrum
to shorter wavelengths. Even if conditions for significant intermodal power transfer are not
met, it is found that intermodal XPM can still play a significant role in the SC dynamics by
broadening the spectrum of modes which would not otherwise present a significant spectral
broadening if pumped on their own.
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Fig. 1. GVD curves and transverse mode functions, calculated at 850nm, of the 7 circularly
polarised modes guided in a HF with Λ = 2.7μm and d = 2.5μm .

To discuss the intermodal nonlinear dynamics leading to SC generation we focus on a
moderately multimoded holey fibre (HF) consisting of two rings of large circular air holes with
pitch Λ = 2.7μm and relative hole size d/Λ = 0.93, surrounding a solid core with a diameter
of a few optical wavelengths (D = 2Λ − d = 2.9μm ), see Fig. 1. From 400nm to 2000nm the
fibre supports 14 modes with effective areas ranging between 3.6 and 6.1μm2. To reduce the
computational time it is possible to combine these modes into 7 pairs of circularly polarised
modes and to exploit the forbidden power exchange between modes with opposite circular
polarisation (see Sec. 2.1), only to focus on the 7 right-handed circularly polarised modes M1,
M2,..., M7 shown in Fig. 1. The group velocity dispersion (GVD) curves of these modes are
significantly different from each other, with a first zero dispersion wavelength (ZDW) ranging
from λ7 = 550nm for M7 to λ1 = 860nm for M1.

3.1 Effect of modal symmetries and launch conditions on intermodal power transfer
Equation (2) shows that the transfer of power between modes is mediated by FWM terms of
the form SK

plmnAl Am A∗
n, with l, m �= n. If only a single mode l is initially excited with a narrow

spectral line, the strongest power transfer to mode p and therefore the first to be observed in
the nonlinear process is the one controlled by degenerate FWM terms of the form SK

pllnAl Al A∗
n.

If both modes p and n are initially empty, power transfer starts with a spontaneous FWM
process and is therefore slow. If one of the generated photons is however returned into
the pump l by stimulated emission, the process becomes much faster and tends to dominate
the nonlinear dynamics in the limit of high-power pulse propagation over short distances.
Interestingly, these SK

plll Al Al A∗
l processes produce automatic phase-locking of mode p to the

pump mode l, similarly to what happens in non-phase matched second and third harmonic
generation processes (Roppo et al., 2007). However, processes SK

plll require (i) that modes p
and l belong to the same symmetry class, and (ii) that they present a large overlap. For the HF
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under investigation these conditions are only fulfilled for the two LP0n modes M1 and M6,
and therefore one would expect significant power transfer only between them.
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Fig. 2. Simulations of multimode nonlinear propagation in the HF of Fig. 1 after 7.5mm (top
row) and 30mm (bottom row), for a 100fs sech-shaped pump centred at 850nm. (a) Only M1
is excited and (b) both M1 and M2 are excited with a 50kW peak power pulse.

This expected behaviour is indeed confirmed by the numerical simulation shown in Fig. 2(a),
where a hyperbolic secant pump pulse with temporal profile Ap(0, t) =

√
P0 sech(t/T0) with

T0 = 100fs (full width at half maximum 176fs) and centred at λp = 850nm is launched into
M1 only and propagated through 30mm of the HF. Here the pulse peak power P0 is set to
50kW, corresponding to a 10nJ pulse and, for mode M1, to a soliton of order N = 166. As
one would expect from single mode SC theory (Dudley et al., 2006), besides SPM-induced
spectral broadening, such a high-N pulse develops sidebands which grow spontaneously
from noise, through an initial modulation instability (MI) process. The characteristic distance
of this phenomenon LMI ∼ 16LNL = 16λ/(3πn2SK

1111P0) = 6.9mm correlates well with the
simulation results. As expected, of all the other 6 modes only M6 is significantly amplified
at wavelengths around λp, and subsequently develops a wide spectral expansion and an
isolated peak at 360nm. Further analysis of spectrograms and phase matching conditions
indicates that this peak is a dispersive wave in M6, phase matched to a soliton in M1 and
slowly shifting to shorter wavelengths as the soliton red-shifts due to the effect of intrapulse
Raman nonlinearity. Under these launching conditions the study can thus be restricted to the
LP0n modes of the fibre without loss of accuracy. Simulations also show that if either M2, M3,
M4, M5 or M7 are selectively launched, no power is transferred to any of the other modes,
and each of them evolves as in the single mode case.
When two or more modes contain a significant amount of power, they can all act as pumps
for weaker modes. Moreover, if these modes belong to different symmetry classes, additional
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of kW, if the nonlinear length of the pump pulses is shorter than the walk-off length between
the modes involved, significant power transfer into high-order modes with the appropriate
symmetry can occur, which can be beneficial, for example, to further extend the SC spectrum
to shorter wavelengths. Even if conditions for significant intermodal power transfer are not
met, it is found that intermodal XPM can still play a significant role in the SC dynamics by
broadening the spectrum of modes which would not otherwise present a significant spectral
broadening if pumped on their own.
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To discuss the intermodal nonlinear dynamics leading to SC generation we focus on a
moderately multimoded holey fibre (HF) consisting of two rings of large circular air holes with
pitch Λ = 2.7μm and relative hole size d/Λ = 0.93, surrounding a solid core with a diameter
of a few optical wavelengths (D = 2Λ − d = 2.9μm ), see Fig. 1. From 400nm to 2000nm the
fibre supports 14 modes with effective areas ranging between 3.6 and 6.1μm2. To reduce the
computational time it is possible to combine these modes into 7 pairs of circularly polarised
modes and to exploit the forbidden power exchange between modes with opposite circular
polarisation (see Sec. 2.1), only to focus on the 7 right-handed circularly polarised modes M1,
M2,..., M7 shown in Fig. 1. The group velocity dispersion (GVD) curves of these modes are
significantly different from each other, with a first zero dispersion wavelength (ZDW) ranging
from λ7 = 550nm for M7 to λ1 = 860nm for M1.
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Equation (2) shows that the transfer of power between modes is mediated by FWM terms of
the form SK
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n, with l, m �= n. If only a single mode l is initially excited with a narrow

spectral line, the strongest power transfer to mode p and therefore the first to be observed in
the nonlinear process is the one controlled by degenerate FWM terms of the form SK
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If both modes p and n are initially empty, power transfer starts with a spontaneous FWM
process and is therefore slow. If one of the generated photons is however returned into
the pump l by stimulated emission, the process becomes much faster and tends to dominate
the nonlinear dynamics in the limit of high-power pulse propagation over short distances.
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under investigation these conditions are only fulfilled for the two LP0n modes M1 and M6,
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This expected behaviour is indeed confirmed by the numerical simulation shown in Fig. 2(a),
where a hyperbolic secant pump pulse with temporal profile Ap(0, t) =

√
P0 sech(t/T0) with

T0 = 100fs (full width at half maximum 176fs) and centred at λp = 850nm is launched into
M1 only and propagated through 30mm of the HF. Here the pulse peak power P0 is set to
50kW, corresponding to a 10nJ pulse and, for mode M1, to a soliton of order N = 166. As
one would expect from single mode SC theory (Dudley et al., 2006), besides SPM-induced
spectral broadening, such a high-N pulse develops sidebands which grow spontaneously
from noise, through an initial modulation instability (MI) process. The characteristic distance
of this phenomenon LMI ∼ 16LNL = 16λ/(3πn2SK

1111P0) = 6.9mm correlates well with the
simulation results. As expected, of all the other 6 modes only M6 is significantly amplified
at wavelengths around λp, and subsequently develops a wide spectral expansion and an
isolated peak at 360nm. Further analysis of spectrograms and phase matching conditions
indicates that this peak is a dispersive wave in M6, phase matched to a soliton in M1 and
slowly shifting to shorter wavelengths as the soliton red-shifts due to the effect of intrapulse
Raman nonlinearity. Under these launching conditions the study can thus be restricted to the
LP0n modes of the fibre without loss of accuracy. Simulations also show that if either M2, M3,
M4, M5 or M7 are selectively launched, no power is transferred to any of the other modes,
and each of them evolves as in the single mode case.
When two or more modes contain a significant amount of power, they can all act as pumps
for weaker modes. Moreover, if these modes belong to different symmetry classes, additional
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FWM terms come into play, giving rise to a much richer phenomenology. As an example,
Fig. 2(b) shows what happens when both M1 and M2 are simultaneously excited with a
P0 = 50kW sech pulse. This pulse corresponds to an N = 27 soliton for M2, due to its

much larger value of β
(2)
2 at the pump wavelength. As a result, the SC generated in M2

has a more temporally coherent nature, as it originates from soliton compression and fission
mechanisms (the fission length Lfiss = N · LNL is around 16mm). Due to a shorter ZDW than
M1, the final SC in M2 also extends to much shorter wavelengths than the one in M1 (400nm
versus 550nm, respectively), which can be one of the benefits of using multimode fibres for SC
generation. Moreover, in addition to M6, also M3 and M4 are amplified from noise, generating
a complex output spectrum, where the final relative magnitude of different modes is a strong
function of wavelength. This is reminiscent of early experimental results (Delmonte et al.,
2006; Price et al., 2003).

3.2 Non-phase matched permanent intermodal power transfer
To understand the complex dynamics of intermodal power transfer it is useful to refer to the
approximate analytical theory of cw pumped parametric processes, which neglects the effects
of GVD and pulse walk-off but still provides a valid reference (Stolen & Bjorkholm, 1982).
Within this framework, parametric gain leading to exponential signal amplification requires
the propagation constant mismatch Δβplmn = β(l)(ωl) + β(m)(ωm)− β(p)(ωp)− β(n)(ωn) to
be smaller than a few times the average inverse nonlinear length 1/LNL = γP0.
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Fig. 3. (a) Dynamic gain evolution for each individual mode when M1 and M2 are
simultaneously excited at launch as in Fig. 2(b), showing the oscillatory behaviour typical of
non-phase matched parametric processes. (b) Permanent power transfer to M4 despite the
lack of parametric phase matching due to walk-off between the pumps in M1 and M2 and
the signal in M4.

For multimode processes, an estimate of γ can be obtained by averaging all the intermodal
nonlinearities γplmn = 3πn2

λ SK
plmn which contribute to SPM and XPM between the relevant

modes. However, in most practical situations involving SC generation in highly nonlinear
multimode fibres, Δβplmn � γP0 for all the relevant FWM processes considered. Thus,
no parametric gain is typically observed and each FWM term leads to an oscillatory power
exchange between modes, as shown by the dynamic gain curves of high order modes when
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only M1 and M2 are initially pumped, reported in Fig. 3(a). The oscillation periods are given
by the beat lengths Lb ∼ 2π/|Δβ|. For example, for the process leading to amplification of
M6, Δβ6111 = 4.1 · 105 m−1, corresponding to a value of Lb = 15.3μm in agreement with the
simulation. For modes amplified by a cascade of intermodal FWM processes, such as M5 and
M7 in the example, the signature of multiple beating frequencies can be clearly observed.
Despite the non-phase matched nature of most FWM processes, simulations show that after
long enough propagation some power is permanently transferred into the weaker modes. This
is shown, for example, in Fig. 3(b) extending the propagation distance of M4 from 0.4mm to
4mm. A more detailed analysis excluding XPM and Raman effects found this behaviour to
be uniquely caused by the temporal walk-off between the pulses involved. The typical length
scale of this permanent power transfer is therefore of the order of the walk-off length of all the

pulses involved, given by Lpq
W = T0/|1/v(p)

g − 1/v(q)
g | = T0/|β(p)

1 − β
(q)
1 | for modes p and q.

For the example in Fig. 3(b), L12
W = 3mm, L24

W = 2.4mm and L14
W = 1.3mm, which correlate

well with the simulation.
In conclusion, nonlinear intermodal power transfer is governed by two length scales, a beat
length leading to fast initial power oscillations and a walk-off length leading to permanent
power transfer. In order to observe in practice intermodal nonlinear effects, the nonlinear
length of the pump pulses must be shorter than the walk-off length, i.e., high peak powers are
required. Otherwise, nominally multimode fibres can exhibit the same nonlinear behaviour
as singlemode ones. Scaling a fixed fibre structure to larger core sizes allows for larger power
throughput, but at the same time longer beat and walk-off lengths lead to much stronger mode
coupling, and significant amounts of power can be transferred into higher order modes. In
this case, as shown in Fig. 2, higher order modes may also serve to extend the SC spectral
extension to much shorter wavelengths.

3.3 Effect of intermodal cross phase modulation
Intermodal power transfer mediated by FWM terms, which can permanently exchange power
between modes even in the absence of proper phase matching, is not the only intermodal
nonlinear effect which can occur in a multimode fibre. Intermodal XPM can also play a role
in significantly broadening the spectrum of a mode which would not undergo a significant
spectral expansion if propagated on its own (Chaipiboonwong et al., 2007; Schreiber et al.,
2005).
To illustrate this phenomenon, we simulate the propagation of a pulse launched in M1 and/or
M2 at 725nm, where M1 is in the normal dispersion region and M2 is in the anomalous region.
In order to observe significant spectral expansion and intermodal effects within the distance
where the pulses are temporally overlapped, we increase the input power up to a value of
P0 = 500kW, close to the estimated fibre damage threshold.
Figs. 4(a) and (b) show that when M1 is individually launched, only some SPM-based spectral
expansion is visible, whereas if only M2 is launched, a wide MI-based SC develops. On the
other hand, if the same input pulse is launched simultaneously in both modes as in Fig. 4(c),
a much wider output spectrum is developed also in M1. Under these operating conditions
the intermodal power transfer is negligible, as confirmed by nearly identical spectral results
obtained when all SK

plmn and SR
plmn coefficients responsible for intermodal FWM are set to

zero. Therefore, the increased spectral expansion in M1 must be generated by intermodal
XPM effects alone. This is indeed confirmed by the simulation in Fig. 4(d), showing that when
all intermodal XPM effects are artificially switched off, M1 and M2 produce a very similar
spectrum to that of their individual propagation.
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Despite the non-phase matched nature of most FWM processes, simulations show that after
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power transfer. In order to observe in practice intermodal nonlinear effects, the nonlinear
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as singlemode ones. Scaling a fixed fibre structure to larger core sizes allows for larger power
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in significantly broadening the spectrum of a mode which would not undergo a significant
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2005).
To illustrate this phenomenon, we simulate the propagation of a pulse launched in M1 and/or
M2 at 725nm, where M1 is in the normal dispersion region and M2 is in the anomalous region.
In order to observe significant spectral expansion and intermodal effects within the distance
where the pulses are temporally overlapped, we increase the input power up to a value of
P0 = 500kW, close to the estimated fibre damage threshold.
Figs. 4(a) and (b) show that when M1 is individually launched, only some SPM-based spectral
expansion is visible, whereas if only M2 is launched, a wide MI-based SC develops. On the
other hand, if the same input pulse is launched simultaneously in both modes as in Fig. 4(c),
a much wider output spectrum is developed also in M1. Under these operating conditions
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Fig. 4. Spectral output after 2mm propagation in the HF of Fig. 1 of a T0 = 100fs and
P0 = 500kW sech pulse centred at 725nm and launched in: (a) M1 only (blue, solid line); (b)
M2 only (green, dashed-dot line); (c) both M1 and M2, and (d) both M1 and M2 when all
intermodal XPM coefficients are artificially set to zero. The input pulse is shown as a black
dotted line.

4. Self-focusing in optical fibres in a modal picture

For laser powers larger than discussed in the previous section and into the MW regime, the
nonlinear refractive index induced in the glass by the laser may become strong enough to
introduce significant spatial reshaping of the beam in the transverse direction. The refractive
index of a material is given by n0 + n2 I, including both the linear, n0, and nonlinear term,
n2, and where I is the position-dependent intensity of the laser. Thus, if the beam has a
Gaussian-like transverse profile and the optical Kerr nonlinearity n2 is positive, as is the case
in most of the commonly used transparent materials, the induced nonlinear refractive index
is maximum at the centre of the beam and decreases towards the pulse edges. Therefore,
the induced index profile forms a focusing lens, acting back on the laser beam itself. This
effect is known as self-focusing and has been studied extensively in bulk materials for nearly
50 years (Askaryan, 1962; Chiao et al., 1964). For input powers P below a critical power Pcrit,
self-focusing is finally overcome by the beam divergence. In the case of P > Pcrit, however, the
pulse undergoes catastrophic collapse leading to permanent damage of the material (Gaeta,
2000). The critical power is given by

Pcrit = 1.86
λ2

4πn0n2
, (9)

where the numerical factor slightly depends on the beam profile in a bulk material
(Fibich & Gaeta, 2000). Numerically, self-focusing in bulk media is most commonly modelled
by slowly-varying envelope models or, more accurately, by a nonlinear envelope equation
(NEE) describing the dynamics of the transverse beam profile Φ(x, t) (Brabec & Krausz, 1997;
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Ranka & Gaeta, 1999),
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∂z
Φ = Dmat{Φ}+ i
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)−1
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⊥Φ + i
n2n0ω0

2π

(
1 +

i
ω0

∂

∂t

)
|Φ|2Φ, (10)

where Dmat{Φ} is a dispersion term similar to (3) describing the effect of material dispersion
and ∇2

⊥ is the transverse Laplace operator. The NEE incorporates many features similar
to the MM-NLSE (2), e.g., higher order dispersion, Kerr nonlinearity and self-steepening
terms. However, even in the presence of rotational symmetry, the envelope function Φ is a
two-dimensional object (radial and temporal coordinate), in contrast to the MM-NLSE which
only uses a finite number of one-dimensional (temporal) envelope functions to describe the
same situation. If the number of modes is small, the MM-NLSE is thus computationally
significantly more efficient, both in terms of reduced memory requirements and faster
dynamics simulation.
It is now well established that the same process of self-focusing occurs in optical waveguides
and fibres and that the same power threshold for catastrophic collapse applies (Farrow et al.,
2006; Gaeta, 2000). However, for powers below Pcrit the observed light propagation behaviour
is qualitatively different from that observed in bulk media, since here the light is additionally
bound by total internal reflection at the core-cladding interface, which can lead to additional
spatial and temporal interference and dispersion effects, such as periodic oscillations of the
beam profile or catastrophic pulse collapse even when the launched peak power is below
the critical value. In this section we will discuss these effects within the framework of the
MM-NLSE, which leads to an easy understanding of fibre-based self-focusing within a modal
picture (Horak & Poletti, 2009; Milosevic et al., 2000). Such an interpretation is particularly
useful in the context of high-power fibre lasers, which now achieve peak powers close to the
critical power with pulse lengths approaching the nanosecond regime (Galvanauskas et al.,
2007).

4.1 Continuous wave limit
We start our discussion with the case of cw propagation, which in practice is also a good
approximation to the behaviour of long pulses (ps to ns regime) near the pulse peak, and use
the MM-NLSE restricted to the linearly polarised LP0n modes, as discussed in Sec. 2.2. The
MM-NLSE thus reduces to

∂Ap

∂z
= i(β

(p)
0 − β

(0)
0 )Ap + i

n2ω0

c ∑
l,m,n

SK
plmnAl Am A∗

n (11)

with SK
plmn given by (8). Specifically, we assume propagation in a short piece of a step-index

fibre with a pure silica core of 40μm diameter and a refractive index step of 0.02 between
core and cladding. This fibre is similar to photonic crystal large-mode area fibres which
are commercially available, where the index step has been increased such that the fibre
supports eight LP0n modes. The zero-dispersion wavelength of this fibre is at 1.26μm, and
we assume a pump laser operating at 1300nm wavelength. The critical power (9) for silica at
this wavelength is Pcrit = 5.9MW. Note that at this power level pulses up to approximately
100ps length can be transmitted through the fibre without fibre damage (Stuart et al., 1996).
Figure 5 shows the dynamics of light propagation along this fibre when cw light is launched
into the fundamental LP01 mode with a power of 0.7Pcrit=4.84MW. The curves in Fig. 5(a)
show the power |Ap|2 in the lowest order modes obtained by solving Eq. (11). Power
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P0 = 500kW sech pulse centred at 725nm and launched in: (a) M1 only (blue, solid line); (b)
M2 only (green, dashed-dot line); (c) both M1 and M2, and (d) both M1 and M2 when all
intermodal XPM coefficients are artificially set to zero. The input pulse is shown as a black
dotted line.
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self-focusing is finally overcome by the beam divergence. In the case of P > Pcrit, however, the
pulse undergoes catastrophic collapse leading to permanent damage of the material (Gaeta,
2000). The critical power is given by
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, (9)

where the numerical factor slightly depends on the beam profile in a bulk material
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Fig. 5. Propagation of cw laser light at 1.3μm wavelength through a multimode silica
step-index fibre with 40μm core diameter and core-cladding index difference of 0.02. The
launched power is 0.7Pcrit=4.84MW in the fundamental LP01 mode. (a) Power in the lowest
four fibre modes versus propagation distance. (b) 2D (transverse and longitudinal) spatial
intensity profile of the beam. (c) Dynamics of the transverse beam width (FWHM),
normalised to the width of the fundamental fibre mode.

from the fundamental mode is quickly transferred over sub-mm propagation distances into
higher order modes by FWM processes, most prominently by induced FWM involving three
pump photons as described by terms of the form ∂Ap/∂z ∝ iA2

0 A∗
0, see Sec. 3.1. However,

because of the phase mismatch β
(p)
0 − β

(0)
0 between the fundamental mode and the higher

order modes the initial FWM gain is reversed after a certain propagation distance (about 1mm
for the chosen parameters) and power is coherently transferred back into the pump from the
higher order modes. This process is repeated subsequently leading to a periodic exchange of
power between modes. The phase mismatch increases for increasing mode order and thus the
maximum transferred power decreases.
In Fig. 5(b) we depict the corresponding 2D beam intensity |E(x, z)|2 calculated by summing
the modal contributions (1), normalised to the maximum field |E(0, 0)|2 at the fibre input. The
field experiences significant periodic enhancement on the beam axis at positions where large
fractions of the total power propagate inside higher order LP0n modes. At these positions of
enhanced intensity, the full width at half maximum (FWHM) of the beam profile is strongly
reduced, as shown in Fig. 5(c). The intermodal FWM processes together with the modal
phase mismatch are therefore responsible for periodic beam self-focusing and defocusing
in a fibre. This complements the standard interpretation of self-focusing in a bulk medium
using Gaussian beam propagation, which describes the same phenomenon as focusing by
a Kerr-induced lensing effect, followed by beam divergence and subsequent total internal
reflection at the core-cladding interface. We finally note that a stationary solution can be
obtained for the cw MM-NLSE in which the modal amplitudes and phases are locked in
such a way that no oscillations occur. In the bulk interpretation this corresponds to the
situation where nonlinear focusing and diffraction are perfectly balanced, thereby generating
a stationary spatial soliton.
It may seem that this modal description of self-focusing is only possible in multimode fibres
but breaks down in singlemode fibres, for example in large-mode area photonic crystal fibres
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designed for endlessly single mode operation (Mortensen et al., 2003). However, in this case
the role of the higher order bound modes of a multimode fibre is taken over by the cladding
modes, and it is the FWM-induced power exchange between the guided mode of a singlemode
fibre and its cladding modes which provides a modal interpretation of self-focusing.
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Fig. 6. Minimum beam diameter during the first period of self-focusing oscillation under cw
pumping vs pump power for the same fibre parameters as in Fig. 5. The curves correspond
to MM-NLSE simulations involving the lowest 2, 3, 6 modes only, and all 8 LP0n modes (from
top to bottom). The crosses indicate simulation results using the nonlinear envelope
equation.

Using only a finite number of modes in the simulation of the MM-NLSE necessarily limits
the transverse spatial resolution that can be achieved by this method. For example, the LP0n
mode function exhibits n maxima and n − 1 zeros along the radial direction within the fibre
core region. With simulations using n different modes one can therefore expect a maximum
resolution of the order of R/n where R is the core radius. Simulations with pump powers
approaching the critical power Pcrit will thus require a larger number of modes in order
to correctly describe the increasingly small minimum beam diameter. We investigate this
behaviour in Fig. 6. Here we show the minimum beam diameter achieved during the first
period of self-focusing and diffraction, i.e., at approximately 1mm of propagation for the
parameters of Fig. 5, when the MM-NLSE is restricted to different numbers of modes. For
clarity, the beam diameter is normalised to the diameter of the launched beam (LP01 mode).
We observe that simulations with 2, 3, and 6 modes are accurate up to pump powers of
approximately 0.2Pcrit, 0.4Pcrit, and 0.8Pcrit, respectively, compared to simulations involving
all 8 bound fibre modes of this sample fibre. For comparison, we also show the results of
the NEE beam propagation method (10). This confirms the accuracy of the MM-NLSE with 8
modes up to 0.95Pcrit corresponding to a nearly five-fold spatial compression of the beam.
For the simulations shown in Fig. 6 we used the same 4th-5th order Runge-Kutta integration
method with adaptive step size control (MATLAB R2010b by MathWorks, Inc.) for both
the MM-NLSE and the NEE. Each data point required approximately 0.9s of CPU time on a
standard desktop computer with the 8-mode MM-NLSE and <0.2s with 6 modes. In contrast,
the corresponding NEE simulations with 1024 radial grid points required 101s, that is, two to
three orders of magnitude slower than the MM-NLSE.
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Fig. 5. Propagation of cw laser light at 1.3μm wavelength through a multimode silica
step-index fibre with 40μm core diameter and core-cladding index difference of 0.02. The
launched power is 0.7Pcrit=4.84MW in the fundamental LP01 mode. (a) Power in the lowest
four fibre modes versus propagation distance. (b) 2D (transverse and longitudinal) spatial
intensity profile of the beam. (c) Dynamics of the transverse beam width (FWHM),
normalised to the width of the fundamental fibre mode.

from the fundamental mode is quickly transferred over sub-mm propagation distances into
higher order modes by FWM processes, most prominently by induced FWM involving three
pump photons as described by terms of the form ∂Ap/∂z ∝ iA2

0 A∗
0, see Sec. 3.1. However,

because of the phase mismatch β
(p)
0 − β

(0)
0 between the fundamental mode and the higher

order modes the initial FWM gain is reversed after a certain propagation distance (about 1mm
for the chosen parameters) and power is coherently transferred back into the pump from the
higher order modes. This process is repeated subsequently leading to a periodic exchange of
power between modes. The phase mismatch increases for increasing mode order and thus the
maximum transferred power decreases.
In Fig. 5(b) we depict the corresponding 2D beam intensity |E(x, z)|2 calculated by summing
the modal contributions (1), normalised to the maximum field |E(0, 0)|2 at the fibre input. The
field experiences significant periodic enhancement on the beam axis at positions where large
fractions of the total power propagate inside higher order LP0n modes. At these positions of
enhanced intensity, the full width at half maximum (FWHM) of the beam profile is strongly
reduced, as shown in Fig. 5(c). The intermodal FWM processes together with the modal
phase mismatch are therefore responsible for periodic beam self-focusing and defocusing
in a fibre. This complements the standard interpretation of self-focusing in a bulk medium
using Gaussian beam propagation, which describes the same phenomenon as focusing by
a Kerr-induced lensing effect, followed by beam divergence and subsequent total internal
reflection at the core-cladding interface. We finally note that a stationary solution can be
obtained for the cw MM-NLSE in which the modal amplitudes and phases are locked in
such a way that no oscillations occur. In the bulk interpretation this corresponds to the
situation where nonlinear focusing and diffraction are perfectly balanced, thereby generating
a stationary spatial soliton.
It may seem that this modal description of self-focusing is only possible in multimode fibres
but breaks down in singlemode fibres, for example in large-mode area photonic crystal fibres
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designed for endlessly single mode operation (Mortensen et al., 2003). However, in this case
the role of the higher order bound modes of a multimode fibre is taken over by the cladding
modes, and it is the FWM-induced power exchange between the guided mode of a singlemode
fibre and its cladding modes which provides a modal interpretation of self-focusing.
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Fig. 6. Minimum beam diameter during the first period of self-focusing oscillation under cw
pumping vs pump power for the same fibre parameters as in Fig. 5. The curves correspond
to MM-NLSE simulations involving the lowest 2, 3, 6 modes only, and all 8 LP0n modes (from
top to bottom). The crosses indicate simulation results using the nonlinear envelope
equation.

Using only a finite number of modes in the simulation of the MM-NLSE necessarily limits
the transverse spatial resolution that can be achieved by this method. For example, the LP0n
mode function exhibits n maxima and n − 1 zeros along the radial direction within the fibre
core region. With simulations using n different modes one can therefore expect a maximum
resolution of the order of R/n where R is the core radius. Simulations with pump powers
approaching the critical power Pcrit will thus require a larger number of modes in order
to correctly describe the increasingly small minimum beam diameter. We investigate this
behaviour in Fig. 6. Here we show the minimum beam diameter achieved during the first
period of self-focusing and diffraction, i.e., at approximately 1mm of propagation for the
parameters of Fig. 5, when the MM-NLSE is restricted to different numbers of modes. For
clarity, the beam diameter is normalised to the diameter of the launched beam (LP01 mode).
We observe that simulations with 2, 3, and 6 modes are accurate up to pump powers of
approximately 0.2Pcrit, 0.4Pcrit, and 0.8Pcrit, respectively, compared to simulations involving
all 8 bound fibre modes of this sample fibre. For comparison, we also show the results of
the NEE beam propagation method (10). This confirms the accuracy of the MM-NLSE with 8
modes up to 0.95Pcrit corresponding to a nearly five-fold spatial compression of the beam.
For the simulations shown in Fig. 6 we used the same 4th-5th order Runge-Kutta integration
method with adaptive step size control (MATLAB R2010b by MathWorks, Inc.) for both
the MM-NLSE and the NEE. Each data point required approximately 0.9s of CPU time on a
standard desktop computer with the 8-mode MM-NLSE and <0.2s with 6 modes. In contrast,
the corresponding NEE simulations with 1024 radial grid points required 101s, that is, two to
three orders of magnitude slower than the MM-NLSE.
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4.2 Short pulse propagation
Next, we consider the propagation of short pulses in the regime of peak powers close to the
critical power, where in addition to transverse spatial effects the pulse may exhibit complex
temporal dynamics related to intermodal and intramodal dispersion, self-steepening and
nonlinear effects. As an example we consider sech-shaped pulses with a temporal FWHM of
100fs launched with a peak power of 0.8Pcrit into the fundamental mode of the multimode
fibre considered above. The pump wavelength is again set to 1.3μm. The simulations
discussed in the following used a 6-mode MM-NLSE with 2048 temporal grid points solved
with a split-step Fourier method (Poletti & Horak, 2008; 2009).
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Fig. 7. Propagation of a 100fs sech-shaped pulse with 0.8Pcrit peak power at 1.3μm
wavelength with the same fibre parameters as in Fig. 5 after (a) 1mm and (b) 2mm of
propagation. The bottom part of the figure shows the overall temporal pulse profile (thick
solid line) as well as its contributions from the fundamental mode (thin solid), first (dashed)
and second (dash-dotted) higher order modes. The top part of the figure shows the spatial
FWHM beam diameter along the pulse, normalised to the FWHM of the fundamental mode.

The initial dynamics of the pulse propagation are shown in Fig. 7. After 1mm of propagation,
Fig. 7(a), a significant amount of power has been transferred from the fundamental mode into
the higher order modes, leading to a transverse beam focusing to approximately 40% of the
input beam width. The transverse beam size depends on the pulse power and thus varies
along the pulse shape: the beam diameter is smallest near the temporal peak of the pulse, but
remains unchanged in the trailing and leading edges where the power is low. Propagating
further to 2mm, Fig. 7(b), most of the power has been converted back into the fundamental
mode, similar to the cw case of Fig. 5. However, the transfer is not complete and is not
uniform along the pulse. This is related to the walk-off of the higher order modes because of
intermodal dispersion as well as a slight dependence of the beam oscillation period on power.
Therefore, the spatial FWHM of the beam at 2mm propagation length is below that of the
fundamental mode in some parts of the pulse while it exceeds it in other parts.
Continuing the propagation of Fig. 7, the spatial beam variations persist, but the deviations
from a simple oscillation become more prominent. This is shown clearly in Fig. 8(a) in the
beam properties after 7mm of propagation. At this point the initial sech-shaped temporal
profile has steepened on the trailing edge and an ultrashort pulse peak is forming due to the
interference of the modal contributions. In particular, the first high order mode exhibits a
similar power level as the fundamental mode. Simultaneously, the beam diameter is strongly
reduced. At 7.4mm of propagation, Fig. 8(b), this peak has narrowed further and reaches
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Fig. 8. Continuation of the pulse propagation of Fig. 7 to (a) 7mm and (b) 7.4mm of fibre
length exhibiting simultaneous spatial and temporal collapse.

the critical power for catastrophic collapse while the beam diameter has reduced to 20%
of the fundamental mode. For even longer propagation lengths the simulations show the
pulse breaking up into many ultrashort high-intensity parts around this initial instability,
however the MM-NLSE with 6 modes becomes invalid at this point due to its limited spatial
and temporal resolution. Simulations with the MM-NLSE restricted to the fundamental
mode reveal only a very small amount of pulse reshaping due to self-steepening over this
propagation distance (a shift of the pulse peak by about 10fs) and exhibit none of the complex
dynamics seen in Fig. 8. We therefore conclude that the simultaneous spatial and temporal
collapse of the pulse observed here is a pure multimode effect, driven by FWM-based
power exchange together with modal dispersion and self-steepening, in agreement with
investigations based on beam propagation methods (Zharova et al., 2006).

5. Multimode effects in gas-filled waveguides

As discussed above, the peak power that can be transmitted in optical fibres is limited by the
critical power for self-focusing and catastrophic collapse to levels of a few MW. According to
Eq. (9), for a fixed laser wavelength Pcrit only depends on the material linear and nonlinear
refractive index. In general, the linear refractive index does not vary much across transparent
media, between 1 for vacuum and ∼4 for some non-silica glasses (Price et al., 2007) and
semiconductors, whereas the nonlinear index n2 can span many orders of magnitude. A
common method for guiding extremely high power pulses is thus in hollow-core capillaries
or fibres, where most of the light propagates in a gas. For example, n2 ≈ 5 × 10−23 m2/W in
air, compared to 2.5 × 10−20 m2/W in silica glass, thus pushing Pcrit into the GW regime.
In contrast to solid-core fibres, gas-filled capillaries do not support strictly bound modes,
but all modes are intrinsically leaky with losses scaling proportional to λ2/R3 where λ is
the light wavelength and R is the radius of the capillary hole (Marcatili & Schmeltzer, 1964).
Hence, the capillary hole must be sufficiently large in order to allow for transmission of light
over long distances. For example, 800nm wavelength light propagating in the fundamental
LP01 mode of a silica glass capillary with a 75μm radius hole experiences losses of ∼3dB/m.
For such a large hole compared to the laser wavelength, the capillary is multimoded, and
this is the situation we will consider in the following. It should be noted, however, that
single-mode guidance in hollow-core fibres is in principle possible using bandgap effects in
photonic crystal fibres (Knight et al., 1998; Petrovich et al., 2008).
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4.2 Short pulse propagation
Next, we consider the propagation of short pulses in the regime of peak powers close to the
critical power, where in addition to transverse spatial effects the pulse may exhibit complex
temporal dynamics related to intermodal and intramodal dispersion, self-steepening and
nonlinear effects. As an example we consider sech-shaped pulses with a temporal FWHM of
100fs launched with a peak power of 0.8Pcrit into the fundamental mode of the multimode
fibre considered above. The pump wavelength is again set to 1.3μm. The simulations
discussed in the following used a 6-mode MM-NLSE with 2048 temporal grid points solved
with a split-step Fourier method (Poletti & Horak, 2008; 2009).
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Fig. 7. Propagation of a 100fs sech-shaped pulse with 0.8Pcrit peak power at 1.3μm
wavelength with the same fibre parameters as in Fig. 5 after (a) 1mm and (b) 2mm of
propagation. The bottom part of the figure shows the overall temporal pulse profile (thick
solid line) as well as its contributions from the fundamental mode (thin solid), first (dashed)
and second (dash-dotted) higher order modes. The top part of the figure shows the spatial
FWHM beam diameter along the pulse, normalised to the FWHM of the fundamental mode.

The initial dynamics of the pulse propagation are shown in Fig. 7. After 1mm of propagation,
Fig. 7(a), a significant amount of power has been transferred from the fundamental mode into
the higher order modes, leading to a transverse beam focusing to approximately 40% of the
input beam width. The transverse beam size depends on the pulse power and thus varies
along the pulse shape: the beam diameter is smallest near the temporal peak of the pulse, but
remains unchanged in the trailing and leading edges where the power is low. Propagating
further to 2mm, Fig. 7(b), most of the power has been converted back into the fundamental
mode, similar to the cw case of Fig. 5. However, the transfer is not complete and is not
uniform along the pulse. This is related to the walk-off of the higher order modes because of
intermodal dispersion as well as a slight dependence of the beam oscillation period on power.
Therefore, the spatial FWHM of the beam at 2mm propagation length is below that of the
fundamental mode in some parts of the pulse while it exceeds it in other parts.
Continuing the propagation of Fig. 7, the spatial beam variations persist, but the deviations
from a simple oscillation become more prominent. This is shown clearly in Fig. 8(a) in the
beam properties after 7mm of propagation. At this point the initial sech-shaped temporal
profile has steepened on the trailing edge and an ultrashort pulse peak is forming due to the
interference of the modal contributions. In particular, the first high order mode exhibits a
similar power level as the fundamental mode. Simultaneously, the beam diameter is strongly
reduced. At 7.4mm of propagation, Fig. 8(b), this peak has narrowed further and reaches
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Fig. 8. Continuation of the pulse propagation of Fig. 7 to (a) 7mm and (b) 7.4mm of fibre
length exhibiting simultaneous spatial and temporal collapse.

the critical power for catastrophic collapse while the beam diameter has reduced to 20%
of the fundamental mode. For even longer propagation lengths the simulations show the
pulse breaking up into many ultrashort high-intensity parts around this initial instability,
however the MM-NLSE with 6 modes becomes invalid at this point due to its limited spatial
and temporal resolution. Simulations with the MM-NLSE restricted to the fundamental
mode reveal only a very small amount of pulse reshaping due to self-steepening over this
propagation distance (a shift of the pulse peak by about 10fs) and exhibit none of the complex
dynamics seen in Fig. 8. We therefore conclude that the simultaneous spatial and temporal
collapse of the pulse observed here is a pure multimode effect, driven by FWM-based
power exchange together with modal dispersion and self-steepening, in agreement with
investigations based on beam propagation methods (Zharova et al., 2006).

5. Multimode effects in gas-filled waveguides

As discussed above, the peak power that can be transmitted in optical fibres is limited by the
critical power for self-focusing and catastrophic collapse to levels of a few MW. According to
Eq. (9), for a fixed laser wavelength Pcrit only depends on the material linear and nonlinear
refractive index. In general, the linear refractive index does not vary much across transparent
media, between 1 for vacuum and ∼4 for some non-silica glasses (Price et al., 2007) and
semiconductors, whereas the nonlinear index n2 can span many orders of magnitude. A
common method for guiding extremely high power pulses is thus in hollow-core capillaries
or fibres, where most of the light propagates in a gas. For example, n2 ≈ 5 × 10−23 m2/W in
air, compared to 2.5 × 10−20 m2/W in silica glass, thus pushing Pcrit into the GW regime.
In contrast to solid-core fibres, gas-filled capillaries do not support strictly bound modes,
but all modes are intrinsically leaky with losses scaling proportional to λ2/R3 where λ is
the light wavelength and R is the radius of the capillary hole (Marcatili & Schmeltzer, 1964).
Hence, the capillary hole must be sufficiently large in order to allow for transmission of light
over long distances. For example, 800nm wavelength light propagating in the fundamental
LP01 mode of a silica glass capillary with a 75μm radius hole experiences losses of ∼3dB/m.
For such a large hole compared to the laser wavelength, the capillary is multimoded, and
this is the situation we will consider in the following. It should be noted, however, that
single-mode guidance in hollow-core fibres is in principle possible using bandgap effects in
photonic crystal fibres (Knight et al., 1998; Petrovich et al., 2008).
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Using fs pulses at 800nm wavelength from commercial Ti:sapphire laser systems it is possible
to reach peak powers large enough to observe nonlinear effects, and even self-focusing,
in gases. Capillary guidance is used in this context for several high-power applications.
One of these is pulse compression, where the nonlinearity of the gas in the capillary is
exploited to spectrally broaden a pulse by self-phase modulation, which allows the pulse to
be compressed after the capillary by purely dispersive means such as gratings or dispersive
mirrors (Sartania et al., 1997). For intensities above ∼1013W/cm2, the electric field of the
laser is large enough to start ionising the gaseous medium. The generated plasma exhibits
a negative refractive index, which can counteract the self-focusing effect of the neutral gas
and lead to pulse filamentation (Couairon & Mysyrowicz, 2007). In another application,
ionisation and recombination effects are used for high harmonic generation of XUV and soft
X-ray radiation, processes whose efficiencies can be enhanced significantly by phase matching
techniques in capillaries (Rundquist et al., 1998).
In the following we will therefore discuss how the MM-NLSE can be extended to include
these important effects and demonstrate a few sample effects related to the multimode nature
of hollow capillaries typically used for such high-power applications.

5.1 Ionisation and plasma effects in the multimode nonlinear Schrödinger equation
The starting point for this derivation is the capability of high-intensity light to ionise the gas
inside the capillary. Two effects contribute to the ionisation: (i) direct multiphoton ionisation,
where several photons are absorbed simultaneously to eject one electron from its orbit, and
(ii) tunneling ionisation, where the electric field of the laser is so strong that it deforms the
electric potential of the nucleus and allows an electron to tunnel through the potential barrier.
Tunneling ionisation occurs at higher field strengths than multiphoton ionisation, and is the
dominant process for the effects we want to discuss here. The rate of tunneling ionisation W
can be calculated using Keldysh theory (Popov, 2004) as

W(x, t) = W0κ2

√
3
π

C2
κl2

2n∗
F(x, t)1.5−2n∗

exp
(
− 2

3F(x, t)

)
, (12)

where κ2 = Ip/IH is the ratio of the ionisation potential Ip of the gas species over the ionisation
potential for hydrogen IH = 13.6eV, W0 = mee4/h̄3 = 4.13× 1016s−1, F(x, t) = E�(x, t)/(κ3Ea)
is the reduced electric field of the laser with Ea = 5.14 × 1011V/m the atomic unit of field
intensity and E�(x, t) the real-valued electric field in units of V/m corresponding to E(x, t),
Eq. (1). The dimensionless parameters Cκl and n∗ are specific for the gas and can be looked
up in tables (Popov, 2004). For the case of argon, which we will use as our example here, we
have Ip = 15.76eV, Cκl = 0.95, and n∗ = 0.929.
Given the modal amplitudes Ap(z, t) we can calculate the electric field E(x, t) and thus the
ionisation rate W(x, t) at every point and time in the capillary. From this we obtain the fraction
of neutral atoms r0(x, t) and the fraction of ionised atoms r1(x, t) = 1 − r0(x, t) by solving

∂r0(x, t)
∂t

= −W(x, t)r0(x, t). (13)

The generated plasma modifies the refractive index of the gas to

n(x, t) =

√
1 − ωpl(x, t)2

ω2 , (14)
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where the plasma frequency is given by

ωpl(x, t) =

√
ρr1(x, t)e2

me�0
. (15)

Here ρ is the gas density and e and me are the electron charge and mass, respectively. The
MM-NLSE thus aquires a new nonlinear term ∂Ap(z, t)/∂z ∝ Npl{Ap} with

Npl{Ap} = −
(

1 − i
ω0

∂

∂t

)
i
2

k0

∫
dxdy

Fp(x, y)∗ · E(x, t)
[∫

dx dy |Fp|2
]1/2

ωpl(x, t)2

ω2
0

, (16)

which includes a self-steepening correction term and the projection of the modified laser field
onto mode p via a spatial overlap integral.
In addition to the effect of the plasma induced refractive index, we also have to consider
the loss of energy from the propagating laser pulse due the ionisation process itself
(Courtois et al., 2001). In the modal decomposition, this leads to a nonlinear loss term in the
propagation of the mode envelope Ap of the form

Lion{Ap} = − 1
2

∫
dxdy

Fp(x, y)∗ · E(x, t)
[∫

dx dy |Fp|2
]1/2

ρr0(x, t)W(x, t)Ip

|E(x, t)|2 . (17)

The full MM-NLSE in the presence of gas ionisation by tunneling in the strong-field limit thus
becomes (Chapman et al., 2010)

∂Ap

∂z
= D{Ap}+N{Ap}+Npl{Ap}+ Lion{Ap} (18)

where the individual terms are given by (2), (3), (16) and (17).

5.2 Ultrashort pulse propagation in capillaries
In the following we present simulation results of the extended MM-NLSE (18) for a specific
experimental situation (Froud et al., 2009). In particular, we consider a 7cm long capillary with
a 75μm radius hole filled with argon at a pressure of 80mbar in the central 3cm of the capillary;
the Ar pressure tapers down over 2cm to 0mbar at the input and output. Laser pulses of 40fs
length at 780nm wavelength are launched with a Gaussian waist of 40μm centred into the
capillary. For the simulations, 20 linearly polarised LP0n modes are considered, as discussed
in Sec. 2.2.
Results from two sets of simulations with different launched pulse energies, 0.5mJ and 0.7mJ,
respectively, are presented in Fig. 9. The distribution of Ar+ ions in the capillary is shown
in Figs. 9(a) and (b). As expected, ionisation mainly occurs on axis where the laser intensity
is maximum. Moreover, because the transverse beam size of the launched laser pulses is not
ideally matched to the fundamental mode of the capillary, power is also coupled into the first
higher order mode, which leads to mode beating and thus to the periodic ionisation pattern
along the capillary length with a periodicity of ∼2cm, observed most clearly at lower powers,
Fig. 9(a). At higher powers, the nonlinear ionisation processes become much stronger and a
spate of additional radial and longitudinal structures are found in the ionisation pattern, Fig.
9(b). In Fig. 9(c) the partial Ar+ pressures of (a) and (b) are averaged over the transverse
cross section of the capillary. The distribution shown in this figure can be easily verified
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Using fs pulses at 800nm wavelength from commercial Ti:sapphire laser systems it is possible
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W(x, t) = W0κ2

√
3
π

C2
κl2

2n∗
F(x, t)1.5−2n∗

exp
(
− 2

3F(x, t)

)
, (12)

where κ2 = Ip/IH is the ratio of the ionisation potential Ip of the gas species over the ionisation
potential for hydrogen IH = 13.6eV, W0 = mee4/h̄3 = 4.13× 1016s−1, F(x, t) = E�(x, t)/(κ3Ea)
is the reduced electric field of the laser with Ea = 5.14 × 1011V/m the atomic unit of field
intensity and E�(x, t) the real-valued electric field in units of V/m corresponding to E(x, t),
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have Ip = 15.76eV, Cκl = 0.95, and n∗ = 0.929.
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∂r0(x, t)
∂t

= −W(x, t)r0(x, t). (13)

The generated plasma modifies the refractive index of the gas to

n(x, t) =

√
1 − ωpl(x, t)2

ω2 , (14)

18 Recent Progress in Optical Fiber Research Multimode Nonlinear Fibre Optics:
Theory and Applications 17

where the plasma frequency is given by

ωpl(x, t) =

√
ρr1(x, t)e2

me�0
. (15)

Here ρ is the gas density and e and me are the electron charge and mass, respectively. The
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(
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∂
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)
i
2

k0
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dxdy
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dx dy |Fp|2
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ωpl(x, t)2

ω2
0

, (16)

which includes a self-steepening correction term and the projection of the modified laser field
onto mode p via a spatial overlap integral.
In addition to the effect of the plasma induced refractive index, we also have to consider
the loss of energy from the propagating laser pulse due the ionisation process itself
(Courtois et al., 2001). In the modal decomposition, this leads to a nonlinear loss term in the
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2

∫
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[∫

dx dy |Fp|2
]1/2

ρr0(x, t)W(x, t)Ip

|E(x, t)|2 . (17)

The full MM-NLSE in the presence of gas ionisation by tunneling in the strong-field limit thus
becomes (Chapman et al., 2010)
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where the individual terms are given by (2), (3), (16) and (17).

5.2 Ultrashort pulse propagation in capillaries
In the following we present simulation results of the extended MM-NLSE (18) for a specific
experimental situation (Froud et al., 2009). In particular, we consider a 7cm long capillary with
a 75μm radius hole filled with argon at a pressure of 80mbar in the central 3cm of the capillary;
the Ar pressure tapers down over 2cm to 0mbar at the input and output. Laser pulses of 40fs
length at 780nm wavelength are launched with a Gaussian waist of 40μm centred into the
capillary. For the simulations, 20 linearly polarised LP0n modes are considered, as discussed
in Sec. 2.2.
Results from two sets of simulations with different launched pulse energies, 0.5mJ and 0.7mJ,
respectively, are presented in Fig. 9. The distribution of Ar+ ions in the capillary is shown
in Figs. 9(a) and (b). As expected, ionisation mainly occurs on axis where the laser intensity
is maximum. Moreover, because the transverse beam size of the launched laser pulses is not
ideally matched to the fundamental mode of the capillary, power is also coupled into the first
higher order mode, which leads to mode beating and thus to the periodic ionisation pattern
along the capillary length with a periodicity of ∼2cm, observed most clearly at lower powers,
Fig. 9(a). At higher powers, the nonlinear ionisation processes become much stronger and a
spate of additional radial and longitudinal structures are found in the ionisation pattern, Fig.
9(b). In Fig. 9(c) the partial Ar+ pressures of (a) and (b) are averaged over the transverse
cross section of the capillary. The distribution shown in this figure can be easily verified
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Fig. 9. Propagation of 40fs pulses at 780nm wavelength in a hollow-core capillary (length
7cm, hole radius 75μm) filled with argon with partial ionisation. (a), (b) Partial pressure of
Ar+ ions (in dB of mbar) vs position z and radius r inside the capillary for launched pulse
energies of 0.5mJ and 0.7mJ, respectively. (c) Ar+ pressure averaged over the capillary cross
section vs z. (d) Corresponding integrated pulse energy vs z. The total gas pressure in the
capillary centre is 80mbar.

experimentally as it is proportional to the intensity of the Ar+ ion fluorescence observed at
488nm (Chapman et al., 2010; Froud et al., 2009). Finally, in Fig. 9(d) the pulse energy summed
over all modes is presented versus the propagation distance for these two simulations. The
effect of propagation losses due to ionisation, described by the term Lion{Ap} in Eq. (17),
is clearly visible with strong losses associated with the peaks of large ionisation in Fig. 9(c).
Because of the highly nonlinear nature of tunneling ionisation, losses at slightly higher input
energies (0.7mJ instead of 0.5mJ) are several times larger.
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The spatial and temporal distribution of ions generated by the propagating laser pulse acts
back on the pulse through its (negative) refractive index, according to the term Npl{Ap}
given in Eq. (16). Because of the strong localisation of the regions with high ionisation,
different capillary modes are affected differently resulting in strong intermodal scattering
and mode-specific spectral broadening, as is demonstrated in Fig. 10. At a relatively low
pulse energy of 0.3mJ where ionisation is weak, a slight blue-shift of the spectral contribution
of the excited LP02 mode is observed, but no higher order mode excitation. Increasing
the pulse energy to 0.5-0.7mJ, more and more light is scattered into higher order modes.
Moreover, the spectrum first develops a small peak at the long-wavelength side of the pump
(790-800nm) and then a very broad and high-intensity shoulder at short wavelengths. It is
interesting to note that these short wavelength parts of the spectrum are more pronounced in
the higher order modes LP02 and LP03 of the capillary, in fact they contain more power than
the fundamental mode at these wavelengths for launched pulse energies above 0.6mJ. This
finding has again been confirmed by experiments, where a strong position-dependence of the
spectrum was observed in the far field beyond the capillary (Chapman et al., 2010).
These selected results demonstrate clearly that mode interference and mode coupling, i.e.,
transverse spatial effects, play a significant role in the propagation of high-intensity laser
pulses in regimes where ionisation becomes important. This also impacts other applications
of such systems, for example the angular dependence of high harmonic generation as recently
observed in a capillary-based XUV source (Praeger et al., 2007).

6. Conclusions and outlook

To summarise, we presented an analysis of nonlinear effects of short laser pulses propagating
in multimode optical fibres. We developed a general theoretical framework which is based
on the modal decomposition of the propagating light and takes the form of a multimode
generalised nonlinear Schrödinger equation. This approach provides new insights into the
significance of fibre properties, e.g., modal dispersion and mode overlaps, for nonlinear
pulse propagation, and for moderately multimode fibres and waveguides it has been
shown to be numerically significantly more efficient than beam propagation methods. We
subsequently discussed several applications of the model covering laser peak powers in the
kW (supercontinuum generation), MW (self-focusing effects) and GW regime (ionisation and
plasma nonlinearities) highlighting the importance of multimode effects throughout.
While we focused our discussion here on the high-power regime, we emphasise that
there is also rapidly growing interest in the application of multimode fibres at low,
W-level peak powers. A fast emerging area of interest comes, for example, from optical
telecommunications, where in an attempt to increase the fibre capacity researchers are
now considering the use of several fibre modes, or several cores within a single fibre, as
independent channels. Intermodal nonlinear effects are expected to pose an ultimate limit
to the maximum information capacity of the link, which we believe could be estimated by
simulations using our model. Various sensing and imaging applications can also benefit
from multimode fibres. Moreover, new sources in the mid-IR spectral region are currently
being developed for spectroscopy and sensing applications that require novel waveguides
such as soft glass fibres or semiconductor-based waveguides and fibres, some of which
are intrinsically multimoded at near-IR pump wavelengths. We therefore expect that the
multimode nonlinear Schrödinger equation discussed in this work will provide a valuable
tool in the analysis and investigation of many future photonics applications.
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Fig. 9. Propagation of 40fs pulses at 780nm wavelength in a hollow-core capillary (length
7cm, hole radius 75μm) filled with argon with partial ionisation. (a), (b) Partial pressure of
Ar+ ions (in dB of mbar) vs position z and radius r inside the capillary for launched pulse
energies of 0.5mJ and 0.7mJ, respectively. (c) Ar+ pressure averaged over the capillary cross
section vs z. (d) Corresponding integrated pulse energy vs z. The total gas pressure in the
capillary centre is 80mbar.

experimentally as it is proportional to the intensity of the Ar+ ion fluorescence observed at
488nm (Chapman et al., 2010; Froud et al., 2009). Finally, in Fig. 9(d) the pulse energy summed
over all modes is presented versus the propagation distance for these two simulations. The
effect of propagation losses due to ionisation, described by the term Lion{Ap} in Eq. (17),
is clearly visible with strong losses associated with the peaks of large ionisation in Fig. 9(c).
Because of the highly nonlinear nature of tunneling ionisation, losses at slightly higher input
energies (0.7mJ instead of 0.5mJ) are several times larger.
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The spatial and temporal distribution of ions generated by the propagating laser pulse acts
back on the pulse through its (negative) refractive index, according to the term Npl{Ap}
given in Eq. (16). Because of the strong localisation of the regions with high ionisation,
different capillary modes are affected differently resulting in strong intermodal scattering
and mode-specific spectral broadening, as is demonstrated in Fig. 10. At a relatively low
pulse energy of 0.3mJ where ionisation is weak, a slight blue-shift of the spectral contribution
of the excited LP02 mode is observed, but no higher order mode excitation. Increasing
the pulse energy to 0.5-0.7mJ, more and more light is scattered into higher order modes.
Moreover, the spectrum first develops a small peak at the long-wavelength side of the pump
(790-800nm) and then a very broad and high-intensity shoulder at short wavelengths. It is
interesting to note that these short wavelength parts of the spectrum are more pronounced in
the higher order modes LP02 and LP03 of the capillary, in fact they contain more power than
the fundamental mode at these wavelengths for launched pulse energies above 0.6mJ. This
finding has again been confirmed by experiments, where a strong position-dependence of the
spectrum was observed in the far field beyond the capillary (Chapman et al., 2010).
These selected results demonstrate clearly that mode interference and mode coupling, i.e.,
transverse spatial effects, play a significant role in the propagation of high-intensity laser
pulses in regimes where ionisation becomes important. This also impacts other applications
of such systems, for example the angular dependence of high harmonic generation as recently
observed in a capillary-based XUV source (Praeger et al., 2007).

6. Conclusions and outlook

To summarise, we presented an analysis of nonlinear effects of short laser pulses propagating
in multimode optical fibres. We developed a general theoretical framework which is based
on the modal decomposition of the propagating light and takes the form of a multimode
generalised nonlinear Schrödinger equation. This approach provides new insights into the
significance of fibre properties, e.g., modal dispersion and mode overlaps, for nonlinear
pulse propagation, and for moderately multimode fibres and waveguides it has been
shown to be numerically significantly more efficient than beam propagation methods. We
subsequently discussed several applications of the model covering laser peak powers in the
kW (supercontinuum generation), MW (self-focusing effects) and GW regime (ionisation and
plasma nonlinearities) highlighting the importance of multimode effects throughout.
While we focused our discussion here on the high-power regime, we emphasise that
there is also rapidly growing interest in the application of multimode fibres at low,
W-level peak powers. A fast emerging area of interest comes, for example, from optical
telecommunications, where in an attempt to increase the fibre capacity researchers are
now considering the use of several fibre modes, or several cores within a single fibre, as
independent channels. Intermodal nonlinear effects are expected to pose an ultimate limit
to the maximum information capacity of the link, which we believe could be estimated by
simulations using our model. Various sensing and imaging applications can also benefit
from multimode fibres. Moreover, new sources in the mid-IR spectral region are currently
being developed for spectroscopy and sensing applications that require novel waveguides
such as soft glass fibres or semiconductor-based waveguides and fibres, some of which
are intrinsically multimoded at near-IR pump wavelengths. We therefore expect that the
multimode nonlinear Schrödinger equation discussed in this work will provide a valuable
tool in the analysis and investigation of many future photonics applications.
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1. Introduction

When light travels in a optical fiber, a fraction of its total power is always scattered to other
wavelengths (or polarization) due to material non linearity. Whether that scattering is weak or
strong, desirable or not, depends on the situation. One distinguishes (i) scattering stimulated
by the presence of a seed wave (at another wavelength or polarization), (ii) spontaneous
scattering, and (iii) amplified spontaneous scattering. Stimulated Raman scattering (SRS),
stimulated Brillouin scattering (SBS) and four-wave mixing (FWM) are examples of stimulated
scatterings. Those have been thoroughly studied in the past thirty years and are well
summarized in classic nonlinear fiber optics textbooks, e.g. (Agrawal, 2007). Several chapters
of this book also deal with specific aspects and applications of stimulated scattering. The
present chapter focuses on spontaneous scattering processes, cases (ii) and (iii).
The chapter also concentrates on nonlinear scattering in silica fibers because nowadays those
are the most common and widely used types of fibers. Gas-filled hollow core fibers (Benabid
et al., 2005) and ion doped fibers (Digonnet, 2001) are not considered here, and it is assumed
that the fiber has not been subjected to poling (Bonfrate et al., 1999; Huy et al., 2007; Kazansky
et al., 1997), so that the main non linearity is of third order. In this context the most important
spontaneous nonlinear scattering processes are

1. the spontaneous Raman scattering (RS),

2. the spontaneous Brillouin scattering (BS), and

3. the spontaneous four-photon scattering (FPS).

These phenomena play an important role in many applications of optical fibers. This role can
be positive as in remote optical sensing (Alahbabi et al., 2005a;b; Dakin et al., 1985; Farahani &
Gogolla, 1999; Wait et al., 1997). It can also be detrimental as in fiber optics telecommunication,
where spontaneous nonlinear scattering processes contribute to decrease the signal-to-noise
ratio (SNR) or in supercontinuum generation, where it limits the coherence and stability of the
supercontinuum (Corwin et al., 2003; Dudley et al., 2006). In the emerging field of quantum
photonics, fiber optical photon-pair sources are intrinsically based on the physics of the FPS
(Amans et al., 2005; Brainis, 2009; Brainis et al., 2005), while at the same time RS is the main
factor that limits the SNR (Brainis et al., 2007; Dyer et al., 2008; Fan & Migdall, 2007; Lee et al.,
2006; Li et al., 2004; Lin et al., 2006; 2007; Rarity et al., 2005; Takesue, 2006).
This chapter reviews the physics of spontaneous nonlinear scattering processes in optical
fibers. In Sec. 2, the physical origin of RS, BS and FPS in explained. Because those are pure
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Gogolla, 1999; Wait et al., 1997). It can also be detrimental as in fiber optics telecommunication,
where spontaneous nonlinear scattering processes contribute to decrease the signal-to-noise
ratio (SNR) or in supercontinuum generation, where it limits the coherence and stability of the
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photonics, fiber optical photon-pair sources are intrinsically based on the physics of the FPS
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quantum mechanical effects, they cannot be properly described in the framework of classical
nonlinear optics. A quantum mechanical treatment is presented in Sec. 3. Finally, in Sec. 4, the
coupling between different scattering processes in considered.

2. Physics of nonlinear scattering processes in optical fibers

2.1 Raman scattering
Light at frequency ωp traveling in an optical fiber, can excite the fiber molecules from ground
to excited vibrational states. In amorphous silica fiber, vibrational states have energy h̄|Ω|
with |Ω|/(2π) in the 0-40 THz range.These energies (about 0.05 eV) being much smaller than
the photon energy h̄ωp, no direct excitation of the vibrational states is possible. However, the
states can be excited through a second order Raman transition involving a second photon at
frequency ωs and a virtual state as shown in Fig. 1. The spontaneous inelastic scattering that
converts a ωp photon into a ωs = ωp − |Ω| photon and a vibrational excitation at frequency
|Ω| is call a spontaneous Stokes process. If a vibrational state at frequency |Ω| is initially
populated, the complementary process in which a ωp photon is converted into a ωa = ωp +
|Ω| photon is also allowed and called a spontaneous anti-Stokes process, see Fig. 1.

Fig. 1. Spontaneous Stokes and anti-Stokes processes in amorphous silica fibers

Molecular vibrations behave like waves (phonons). The momentum of these vibrational
waves corresponds to the momentum mismatch of the pump and (anti-)Stoke waves and
does not depend on |Ω|. For this reason, Raman scattering has no preferential direction. It
happens in the forward but also in the backward direction. The damping of a phonon wave
depends on the wave number and is stronger for shorter wavelength. In fibers the damping is
very strong because of the amorphous nature of silica. Therefore the molecular vibration can
to a good approximation be considered as local. Yet the small difference in the forward and
backward damping explains that the strengths of Raman scattering in forward and backward
directions is slightly different (Bloembergen & Shen, 1964).
In addition to the Stokes and anti-Stokes processes that convert pump photons to other
wavelengths, Raman scattering can also convert the Stokes and anti-Stokes photons at ωs and
ωa back to the pump mode through reverse Stokes and anti-Stokes scattering. In Sec. 3.1, both
direct and reverse scattering processes are taken into account to derive the basic equations
governing the net energy transfer from the pump to Stokes and anti-Stokes waves. For a
single monochromatic pump wave at ωp the scattered spectral power density S(z, ω) obeys
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the following propagation equation

d
dz

S(z, ω) =

[
S(z, ω)g(ωp, Ω, θ) +

h̄ω

2π
[mth(|Ω|) + ν(Ω)] |g(ωp, Ω, θ)|

]
Pp(z) (1)

where Ω = ωp − ω (positive for a Stokes process and negative for an anti-Stokes ones), ν(Ω)
is the Heaviside step function, and

mth(|Ω|) =
[

exp
(

h̄|Ω|
kBT

)
− 1

]−1
(2)

is the thermal equilibrium expectation value of the number of vibrational excitations at
angular frequency |Ω|. The function g(ωp, Ω, θ) in Eq. (1) is the Raman gain. The Raman
gain measures the scattering strength and is polarization dependent. For a linearly polarized
pump field, the Raman gain is maximal for photon scattered with polarization parallel to the
pump and minimal for photons scattered with polarization orthogonal to the pump (Stolen,
1979):

g(ωp, Ω, θ) = g�(ωp, Ω) cos2(θ) + g⊥(ωp, Ω) sin2(θ), (3)

where θ is the angle between the linear polarization vectors of pump and scattered photons.
The parallel and orthogonal gains are g�(ωp, Ω) and g⊥(ωp, Ω) are material properties that
can be measured experimentally. It can be shown (see Sec. 3.1) that the ratio of the Stokes to
anti-Stokes gain corresponding to the same vibrational mode |Ω| is

g(ωp, Ω, θ)

g(ωp,−Ω, θ)
= −n(ωp + |Ω|)

n(ωp − |Ω|
(

ωp − |Ω|
ωp + |Ω|

)3

. (4)

Stokes and anti-Stokes gain have opposite signs: Stokes gain is positive while anti-Stokes gain
is negative.

2.1.1 Spontaneous scattering
With initial condition S(0, ω) = 0, ∀ω �= ωp, Eq. (1) describes both spontaneous Raman
scattering and its subsequent amplification. In the initial propagation stage, the first term in
the square bracket can be neglected. This regime corresponds to pure spontaneous Raman
scattering. The solution of Eq. (1) is

S(L, ω) =
h̄ω

2π
[mth(|Ω|) + ν(Ω)] |g(ωp, Ω, θ)| Pp L, (5)

where L is the propagation length. The strength of the spontaneous Raman parallel and
orthogonal scattering is often measured by the parallel and orthogonal spontaneous Raman
coefficients

R�,⊥(ωp, Ω, T) =
h̄ωp

2π
[mth(|Ω|) + ν(Ω)] |g�,⊥(ωp, Ω)|. (6)

Spontaneous Raman scattering has been observed and measured in bulk glass (Hellwarth
et al., 1975; Stolen & Ippen, 1973) and in optical fibers (Stolen et al., 1984; Wardle, 1999).
In optical fiber, the polarization properties are usually more difficult to measure because
standard fibers do not preserve and even scramble polarization. For this reason, the effective
spontaneous Raman coefficient is often taken to be R = (R� + R⊥)/2.
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quantum mechanical effects, they cannot be properly described in the framework of classical
nonlinear optics. A quantum mechanical treatment is presented in Sec. 3. Finally, in Sec. 4, the
coupling between different scattering processes in considered.
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Fig. 1. Spontaneous Stokes and anti-Stokes processes in amorphous silica fibers

Molecular vibrations behave like waves (phonons). The momentum of these vibrational
waves corresponds to the momentum mismatch of the pump and (anti-)Stoke waves and
does not depend on |Ω|. For this reason, Raman scattering has no preferential direction. It
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the following propagation equation

d
dz
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Pp(z) (1)

where Ω = ωp − ω (positive for a Stokes process and negative for an anti-Stokes ones), ν(Ω)
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(
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− 1

]−1
(2)
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)3
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et al., 1975; Stolen & Ippen, 1973) and in optical fibers (Stolen et al., 1984; Wardle, 1999).
In optical fiber, the polarization properties are usually more difficult to measure because
standard fibers do not preserve and even scramble polarization. For this reason, the effective
spontaneous Raman coefficient is often taken to be R = (R� + R⊥)/2.
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It is interesting to note that the ratio of Stoke to anti-Stokes spectral components only depend
on temperature:

S(L, ωp − |Ω|)
S(L, ωp + |Ω|) =

n(ωp + |Ω|)
n(ωp − |Ω|

(
ωp − |Ω|
ωp + |Ω|

)4

exp
(

h̄|Ω|
kBT

)
. (7)

This is the reason why spontaneous Raman scattering is used for temperature sensing
(Alahbabi et al., 2005a;b; Dakin et al., 1985; Farahani & Gogolla, 1999; Wait et al., 1997).

2.1.2 Amplified spontaneous scattering
According to Eq. (1), the spontaneous scattering regime ends as soon as S(z, ω) becomes
significant compared to h̄ω

2π [mth(|Ω|) + ν(Ω)]. At that point, the scattering becomes
stimulated and the system enters the amplification regime. From Eq. (5), one sees that the
amplification regime is reached when g(ωp, Ω, θ) Pp L ≈ 1. For S(0, ω) = 0, the solution of
Eq. (1) is

S(L, ω) =
h̄ω

2π
[mth(|Ω|) + ν(Ω)]

∣∣∣eg(ωp ,Ω,θ) Pp L − 1
∣∣∣ . (8)

Stokes radiation (Ω > 0, g > 0) is grows exponentially while anti-Stokes (Ω > 0, g < 0)
radiation saturates at S(L, ω) = h̄ω

2π mth(|Ω|). When losses are taken into account, the gain
must overcome a threshold value to enter the amplification regime. Since the Raman gain is
frequency dependent, the amplification bandwidth depends on the input power. The effective
amplification threshold is usually considered to be reached when Stokes and pump intensity
have the same value at the output of the fiber (Agrawal, 2007; Smith, 1972).
By measuring the grows of the Stokes wave, one can deduced the Raman gain as a function of
frequency (Mahgerefteh et al., 1996; Stolen et al., 1984). Amplified spontaneous Stokes wave
plays an important role in Raman fiber amplifiers (Aoki, 1988; Mochizuki et al., 1986; Olsson
& Hegarty, 1986).
Fig. 2 shows the typical (forward) Raman gain g�(ωp, Ω) and the spontaneous Raman
coefficient R�(ωp, Ω, T) in a silica fiber at λp = 1.5 μm. The parallel Raman gain has a
peak at ΩR = 13.2 THz and a width of about 5 THz. The peak value varies for fiber to
fiber. A typical value is gR = 1.6 W−1 km−1. The orthogonal gain g⊥(ωp, Ω) is about 30
times smaller (Agrawal, 2007; Dougherty et al., 1995; Stolen, 1979). The parallel gain can
be fit using a 10-Lorentzian model, each Lorentzian having three independent parameters :
strength, central frequency, and width (Drummond & Corney, 2001). Note that spontaneous
anti-Stokes scattering can be eliminated by lowering the temperature, while the spontaneous
Stokes coefficient R� is at least h̄ωp/(2π)× g�.

2.2 Brillouin scattering
Brillouin scattering is very similar to Raman scattering in the sense it couples two light modes
to material vibrations. However, in the contrast with Raman scattering which couples light to
molecular vibrations, Brillouin scattering couples light to vibration modes of the fiber itself,
that is sound waves. Therefore the vibrational frequencies involved in Brillouin scattering are
much lower: |Ω|/(2π) is usually in the 10 GHz range. BS is also polarization dependent: as
long as the fiber can be considered as mechanically isotropic, their is no orthogonal BS, that is
g⊥ = 0 (Benedek & Fritsch, 1966; McElhenny et al., 2008; Stolen, 1979). The major difference
between Raman and Brillouin scattering lies in the dispersion relation of acoustics vibrations:

|Ω| = vA |kA|, (9)
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Fig. 2. (a) Raman gain g� in a silica fiber for λp = 1.5 μm and forward propagation. Peak
value: gR = 1.6 W−1 km−1. Peak position: ΩR = 13.2 THz. (b) Spontaneous Raman
coefficient R� for λp = 1.5 μm and forward propagation at T = 295 K and 77 K.

where vA = 5.96 km/s in silica fibers and kA is the wave vector of the acoustic wave. Because
of momentum conservation, kA is equal to the wave vector mismatch between pump and
(anti-)Stokes waves: kA = kp − ks,a. Since the energy difference between pump, Stokes
and anti-Stokes waves is very small, |kp| ≈ |ks,a| and |kA|2 ≈ 2|kp|2 [1 − cos(φ)] =

4|kp|2 sin2(φ/2), where φ is the angle between kp and ks,a. Eq. (9) yields

|Ω| = 2 vA |kp| sin2(φ/2) = 4π vA
n(ωp)

λp
sin2(φ/2). (10)

The maximum value of |Ω| occurs for backward propagation (φ = π), while for forward
propagation of (anti-)Stokes waves (φ = 0), |Ω| = 0. Therefore, forward Brillouin scattering
is not observed. In the backward direction the Brillouin gain as a peak is at ΩR/(2π) = 11.1
GHz when λp = 1.55 μm. The Brillouin gain has a Lorentzian spectrum

g�(ωp, Ω) = sign(Ω)
gB(ΓB/2)2

(|Ω| − ΩB)2 + (ΓB/2)2 (11)

and its spectral width ΓB/(2π) is in the 10-100 MHz range. 1/ΓB is the decay time of the
sound waves. The peak value gB is usually of the order of 1000 W−1 km−1, one thousand
times higher than the Raman gain peak gR.
The Brillouin gain spectrum discussed so far corresponds to a plane acoustic wave
propagating along the fiber axis. Other smaller peaks may occur due to other acoustic modes,
the presence of dopants and their spatial distribution (Lee et al., 2005; Yeniay et al., 2002).
Guided acoustic wave can also produce narrow and very low frequency Brillouin shifts (50
kHz to 1 GHz) and can be even observed in the forward direction (Shelby et al., 1985a;b).
Despite the differences in the Raman and Brillouin gain functions, the underlying scattering
mechanism is the same. Therefore, the principle explained in Sec. 3.1 in the context of RS
also apply to BS. In particular spontaneous BS exhibits the same temperature dependence
as spontaneous RS. Spontaneous Brillouin scattering can be used for temperature sensing
(Alahbabi et al., 2005a;b; Pi et al., 2008; Wait et al., 1997).
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2.3 Four-photon scattering
The four-photon scattering process differs from the previous scattering processes in that it
involves four photons and no material vibration. Since a silica fiber is centro-symmetric,
it is the lowest order nonlinear scattering phenomenon that involves only photons in the
input and output channels. As shown in Fig. 3, a FPS process consists in the conversion

Fig. 3. Spontaneous four-photon scattering processes in silica fibers: ordinary and
degenerated case.

of two pump photons at frequencies ωp1 and ωp2 into two other photons at frequencies ωs
and ωa. The photon of lower energy is called “Stokes”, the one of higher energy in called
“anti-Stokes” as in the RS and BS processes. The conversion process satisfies the energy and
moment conservation laws

ωp1 + ωp2 = ωs + ωa, (12)

kp1 + kp2 = ks + ka. (13)

When ωp1 = ωp2 the FPS process is said to degenerated and is by far the most studied
case, both experimentally and theoretically. FPS is a non resonant process. Therefore many
different resonances can contribute to it. In silica, the main contribution comes from electronic
resonances. Molecular vibrations contribute to a fraction fR = 18% of the FPS strength.
The spectrum of a spontaneous FPS process is usually very broadband. It is not limited by
resonance conditions (as RS) or losses (as BS), but merely by the phase matching conditions
(13). If a single mode fiber, the wave number of a optical wave has a linear part kL(ω) =
n(ω)ω/c that depends on the effective index n(ω) of the mode, and a nonlinear part kNL
that depends on the power carried by the wave itself (self-phase modulation) and the power
of the other waves propagation in the fiber (cross-phase modulation) (Agrawal, 2007). In a
spontaneous FPS problem, Stokes and anti-Stokes waves are so faint that their contribution to
self or cross-phase modulation is negligible. On the other hand, the pump wave modulates
its own phase as well as the phases of the Stokes and anti-Stokes waves. If a wave carries a
power P, self-phase modulation changes its own wave number by kNL = γP, where γ is the
nonlinear coefficient of the fiber. At the same time, that wave modifies the wave number of
any other co-polarized wave by kNL = 2γP and any other orthogonally polarized wave by
kNL = (2/3)γP, through the cross-phase modulation effect. For instance, for a degenerate
co-polarized FPS, the wave number mismatch is Δk = ks + ka − 2kp = (kLs + 2γPp) +
(kLa + 2γPp) − 2(kLp + γPp) = ΔkL + 2γPp, where Pp is the pump power. Using quantum
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perturbation theory (Brainis, 2009), it can be shown that the spectral density of power at Stokes
and anti-Stokes wavelengths is

S(L, ωs) = S(L, ωa) =
h̄ωs,a

2π

(
γPpL

)2 sinc2
(

Δk
2

L
)

(14)

in the case of degenerate co-polarized FPS. Equivalent formulas for non co-polarized
degenerate FPS processes can be found in (Brainis, 2009). Whatever the FPS process
(degenerated or not, co-polarized or not, ...), Stokes and anti-Stokes powers are always equal
because those photons are created in pairs and the spectrum always depends on the wave
number mismatch through the same sinc-function factor, see also Sec. 4.2.
It is important to note that the strength of a spontaneous FPS process scales as (PpL)2, while
the strength of spontaneous RS and BS scales as PpL. The spontaneous FPS spectrum is also
independent on temperature. Increasing the propagation length L not only increases the
amount of scattered photons, but also narrows the spectrum. In contrast, raising the pump
power increases scattering, but as little impact of the spectrum. Therefore, adjusting both
parameters, it is possible to set the spectral width of the Stokes and anti-Stokes waves as well
as their intensities. Because Stokes and anti-Stokes photons are created in pair, FPS as been
extensively studied in the context of photon-pair generation for quantum optics and quantum
information applications (Amans et al., 2005; Brainis, 2009; Brainis et al., 2005; 2007; Dyer et al.,
2008; Fan & Migdall, 2007; Lee et al., 2006; Li et al., 2004; Lin et al., 2006; 2007; Rarity et al.,
2005; Takesue, 2006).
When the scattered intensity becomes high enough (γPp � 1), spontaneous scattering gets
amplified. In the case of the degenerate co-polarized FPS, the growth of Stokes and anti-Stokes
waves in the amplification regime in described by (Brainis, 2009; Dyer et al., 2008)

S(L, ωs) = S(L, ωa) =
h̄ωs,a

2π

(
γPpL

)2
∣∣∣∣
sinh (g(ωs,a)L)

g(ωs,a)L

∣∣∣∣
2

, (15)

where g(ωs,a) =
√
(γPp)2 − (Δk/2)2 is the parametric gain function that appears in the

classical theory of four-wave mixing (Agrawal, 2007). Amplification only occurs at those
frequencies for which g(ωs,a) ∈ R. Because such a condition is never satisfied in the

spontaneous regime (g(ωs,a)
P→0−→ i

√
ΔkLγPp), it strongly modifies the FPS spectrum when

amplification begins. It the amplified regime, the spectral width is determined by g(ωs,a)
rather by the propagation length. The peak value of the parametric gain gP is larger by 70%
that the Raman peak gain gR.

3. Quantum mechanical description of nonlinear scattering

Spontaneous scattering of light cannot be understood in the framework of classical nonlinear
optics. A proper description requires the quantum theory. There are two possible approaches.
The most elementary one consists in (i) applying quantum perturbation theory to calculate
the scattering of light by a single molecule in the first place, then (ii) extending the result
to continuous media. The drawback of this method is that it gives access the scattered power
density, but not to the field amplitudes. The second approach consists in using a quantum field
theory of propagation of light in the fiber that is based on an effective matter/light interaction
Hamiltonian.
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When ωp1 = ωp2 the FPS process is said to degenerated and is by far the most studied
case, both experimentally and theoretically. FPS is a non resonant process. Therefore many
different resonances can contribute to it. In silica, the main contribution comes from electronic
resonances. Molecular vibrations contribute to a fraction fR = 18% of the FPS strength.
The spectrum of a spontaneous FPS process is usually very broadband. It is not limited by
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(13). If a single mode fiber, the wave number of a optical wave has a linear part kL(ω) =
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in the case of degenerate co-polarized FPS. Equivalent formulas for non co-polarized
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power increases scattering, but as little impact of the spectrum. Therefore, adjusting both
parameters, it is possible to set the spectral width of the Stokes and anti-Stokes waves as well
as their intensities. Because Stokes and anti-Stokes photons are created in pair, FPS as been
extensively studied in the context of photon-pair generation for quantum optics and quantum
information applications (Amans et al., 2005; Brainis, 2009; Brainis et al., 2005; 2007; Dyer et al.,
2008; Fan & Migdall, 2007; Lee et al., 2006; Li et al., 2004; Lin et al., 2006; 2007; Rarity et al.,
2005; Takesue, 2006).
When the scattered intensity becomes high enough (γPp � 1), spontaneous scattering gets
amplified. In the case of the degenerate co-polarized FPS, the growth of Stokes and anti-Stokes
waves in the amplification regime in described by (Brainis, 2009; Dyer et al., 2008)

S(L, ωs) = S(L, ωa) =
h̄ωs,a

2π

(
γPpL

)2
∣∣∣∣
sinh (g(ωs,a)L)

g(ωs,a)L

∣∣∣∣
2

, (15)

where g(ωs,a) =
√
(γPp)2 − (Δk/2)2 is the parametric gain function that appears in the

classical theory of four-wave mixing (Agrawal, 2007). Amplification only occurs at those
frequencies for which g(ωs,a) ∈ R. Because such a condition is never satisfied in the

spontaneous regime (g(ωs,a)
P→0−→ i

√
ΔkLγPp), it strongly modifies the FPS spectrum when

amplification begins. It the amplified regime, the spectral width is determined by g(ωs,a)
rather by the propagation length. The peak value of the parametric gain gP is larger by 70%
that the Raman peak gain gR.

3. Quantum mechanical description of nonlinear scattering

Spontaneous scattering of light cannot be understood in the framework of classical nonlinear
optics. A proper description requires the quantum theory. There are two possible approaches.
The most elementary one consists in (i) applying quantum perturbation theory to calculate
the scattering of light by a single molecule in the first place, then (ii) extending the result
to continuous media. The drawback of this method is that it gives access the scattered power
density, but not to the field amplitudes. The second approach consists in using a quantum field
theory of propagation of light in the fiber that is based on an effective matter/light interaction
Hamiltonian.
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The “perturbation theory” approach is used in Sec. 3.1 to derive, from first principles, the
main formula of Sec. 2.1 for RS. Having identified the limitations of that method, the “field
theory method” will be presented in Sec. 3.2.

3.1 Perturbation theory of Raman scattering
The simplest way to model Stokes and anti-Stokes Raman scattering from a coherent pump
wave at ωp consists in applying second order perturbation theory (Crosignani et al., 1980;
Wardle, 1999) to matter/light coupling described by the interaction Hamiltonian H = −d · E,
where

E(r, t) = i
f (x, y)√

L

[√
h̄ωp

2�0n2(ωp)
αp ei(k(ωp)z−ωpt) ep − c.c. +

√
h̄ω

2�0n2(ω)
a ei(k(ω)z−ωt) e − h.c.

]

(16)
is the electric field operator associated to the light travelling in the fiber and d is the electronic
dipole moment operator of a scattering fiber molecule at position r. In Eq. (16), the field
as been reduced to a pump mode in a coherent state with amplitude α (treated as a strong
classical field) and a signal mode representing either the Stokes or anti-Stokes wave at
frequency ω. The polarization of the pump and signal modes is defined by the unit vectors
ep and e. In Eq. (16), the quantity L is the quantization length, a formal parameter that will
disappear at the end of the calculation and f (x, y) is normalized so that

∫∫
f 2(x, y)dA = 1,

where the integration is over the entire fiber cross-section. This normalization is such that

h̄ω
c

n(ω)L
�a†a� = P(ω) and h̄ωp

c
n(ωp)L

|αp|2 = Pp, (17)

with Pp and P(ω) the powers in the pump mode and the signal mode, respectively.
The vibration of a molecule can be decomposed in normal modes. Assuming that only one
normal mode is excited, the electronic dipole moment of the molecule can be written to first
order as

d = d0 + d�Q, (18)

where Q is the normal mode coordinate of the vibration, d0 the dipole moment around the
molecular equilibrium point and d� = ∂d

∂Q .
Consider the Stokes process first (ω < ωp). Assuming that the molecule starts in the electronic
ground state |g� and the vibrational number state |m� and that the Stokes mode is in the Fock
state |n�, the transition probability amplitude to the state |g, m + 1, n + 1� after an interaction
time t can be calculated using second order perturbation theory (Wardle, 1999):

c(Ω, m, n, t) =
f 2(x, y)

L
ei[k(ω)−k(ωp)]z

√
ωpω

8h̄�2
0n2(ωp)n2(ω)MΩ

√
m + 1

√
n + 1 αp

[ep]
† · R · e

ei(Ω+ω−ωp)t − 1
Ω + ω − ωp

,

(19)

where M and Ω are the effective mass and angular frequency of the molecular normal mode
of vibration, while R ≈ 2 ∑e

1
ωeg

�e|d ⊗ d� + d� ⊗ d|g�, where ⊗ denotes the tensor product of
two vectors and the sum runs over all the electronic excited states of the scattering molecule
having Bohr frequencies ωeg with respect to the ground state.
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Around each point r, the material medium is made of many molecules and each molecule has
several normal modes of vibration. Since all the molecules are at thermal equilibrium, their
vibration have no locked phase relationship. The local field is thus simultaneously coupled to
a large thermal reservoir of independent vibration modes and the contribution c(Ω, m, n, t) of
each of them to the overall scattering probability can be added incoherently. Writing ρ(Ω) the
number of vibration modes in the volume dV centered on r with a frequency in the interval
[Ω, Ω + dΩ] and and taking the thermal average of the number of excitations in a vibration
mode Ω, the Stokes scattering rate from the point r (integrated over all the possible vibration
modes frequencies Ω) is found to be

S(n; r) =
dV
L2 f 4(x, y)

πωpω

4h̄�2
0n2(ωp)n2(ω)

ρ(|Ω|)�(e†
p · R · e)2�

M|Ω| (mth(|Ω|) + 1)(n + 1)|αp|2, (20)

where Ω is not an independent variable anymore but is now defined as Ω := ωp − ω,
and mth(|Ω|) – given by Eq. (2) – is the Bose-Einstein expectation value of the number of
vibrational excitations. The average �(e†

p · R · e)2� is taken over arbitrary molecular orientation
in amorphous silica. Therefore the quantity �(e†

p · R · e)2� only depends on the angle θ between
ep and e. As a result, one can write

ρ(|Ω|)�(e†
p · R · e)2�

M|Ω| = K�(|Ω|) cos2(θ) + K⊥(|Ω|) sin2(θ) = K(|Ω|, θ), (21)

where K�(|Ω|) and K⊥(|Ω|) are material characteristics that can be determined
experimentally1. The total scattering rate from ωp to ω due to the Stokes process in a fiber
segment dz is obtained by integration S(n, r) over the fiber cross-section. As a consequence,

Sp→s(n) = dz
πωpω

4h̄�2
0n2(ωp)n2(ω)AeffL2

K(|Ω|, θ) (mth(|Ω|) + 1) (n + 1) |αp|2, (22)

where Aeff = 1/
(∫∫

f 4(x, y)dA
)

is the effective area of the fiber (Agrawal, 2007).
The scattering rate for the anti-Stokes process (ω > ωp) can be computed according to the
same lines: the rate is the same as in Eq. (22) with the exception that (mth(|Ω|) + 1) is replaced
by mth(|Ω|) since an vibrational excitation is destroyed in that process:

Ap→a(n) = dz
πωpω

4h̄�2
0n2(ωp)n2(ω)AeffL2

K(|Ω|, θ) mth(|Ω|) (n + 1) |αp|2. (23)

During propagation, light is not only scattered from the pump to the Stokes and anti-Stokes
modes at ωp − |Ω| and ωp + |Ω| but also from these mode to the pump wave. The rates
associated to these reverse Raman processes are

As→p(n) = dz
πωpω

4h̄�2
0n2(ωp)n2(ω)AeffL2

K(|Ω|, θ) mth(Ω) n |αp|2, (24)

Sa→p(n) = dz
πωpω

4h̄�2
0n2(ωp)n2(ω)AeffL2

K(|Ω|, θ) (mth(|Ω|) + 1) n |αp|2. (25)

1 Note that K�(|Ω|) and K⊥(|Ω|) are slightly different in the core and in the cladding of the fiber because
of the dopants. Here, we neglect this difference.
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The “perturbation theory” approach is used in Sec. 3.1 to derive, from first principles, the
main formula of Sec. 2.1 for RS. Having identified the limitations of that method, the “field
theory method” will be presented in Sec. 3.2.

3.1 Perturbation theory of Raman scattering
The simplest way to model Stokes and anti-Stokes Raman scattering from a coherent pump
wave at ωp consists in applying second order perturbation theory (Crosignani et al., 1980;
Wardle, 1999) to matter/light coupling described by the interaction Hamiltonian H = −d · E,
where
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is the electric field operator associated to the light travelling in the fiber and d is the electronic
dipole moment operator of a scattering fiber molecule at position r. In Eq. (16), the field
as been reduced to a pump mode in a coherent state with amplitude α (treated as a strong
classical field) and a signal mode representing either the Stokes or anti-Stokes wave at
frequency ω. The polarization of the pump and signal modes is defined by the unit vectors
ep and e. In Eq. (16), the quantity L is the quantization length, a formal parameter that will
disappear at the end of the calculation and f (x, y) is normalized so that

∫∫
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where the integration is over the entire fiber cross-section. This normalization is such that

h̄ω
c

n(ω)L
�a†a� = P(ω) and h̄ωp
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with Pp and P(ω) the powers in the pump mode and the signal mode, respectively.
The vibration of a molecule can be decomposed in normal modes. Assuming that only one
normal mode is excited, the electronic dipole moment of the molecule can be written to first
order as

d = d0 + d�Q, (18)

where Q is the normal mode coordinate of the vibration, d0 the dipole moment around the
molecular equilibrium point and d� = ∂d

∂Q .
Consider the Stokes process first (ω < ωp). Assuming that the molecule starts in the electronic
ground state |g� and the vibrational number state |m� and that the Stokes mode is in the Fock
state |n�, the transition probability amplitude to the state |g, m + 1, n + 1� after an interaction
time t can be calculated using second order perturbation theory (Wardle, 1999):
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where M and Ω are the effective mass and angular frequency of the molecular normal mode
of vibration, while R ≈ 2 ∑e

1
ωeg

�e|d ⊗ d� + d� ⊗ d|g�, where ⊗ denotes the tensor product of
two vectors and the sum runs over all the electronic excited states of the scattering molecule
having Bohr frequencies ωeg with respect to the ground state.
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Around each point r, the material medium is made of many molecules and each molecule has
several normal modes of vibration. Since all the molecules are at thermal equilibrium, their
vibration have no locked phase relationship. The local field is thus simultaneously coupled to
a large thermal reservoir of independent vibration modes and the contribution c(Ω, m, n, t) of
each of them to the overall scattering probability can be added incoherently. Writing ρ(Ω) the
number of vibration modes in the volume dV centered on r with a frequency in the interval
[Ω, Ω + dΩ] and and taking the thermal average of the number of excitations in a vibration
mode Ω, the Stokes scattering rate from the point r (integrated over all the possible vibration
modes frequencies Ω) is found to be
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M|Ω| (mth(|Ω|) + 1)(n + 1)|αp|2, (20)

where Ω is not an independent variable anymore but is now defined as Ω := ωp − ω,
and mth(|Ω|) – given by Eq. (2) – is the Bose-Einstein expectation value of the number of
vibrational excitations. The average �(e†

p · R · e)2� is taken over arbitrary molecular orientation
in amorphous silica. Therefore the quantity �(e†

p · R · e)2� only depends on the angle θ between
ep and e. As a result, one can write

ρ(|Ω|)�(e†
p · R · e)2�

M|Ω| = K�(|Ω|) cos2(θ) + K⊥(|Ω|) sin2(θ) = K(|Ω|, θ), (21)

where K�(|Ω|) and K⊥(|Ω|) are material characteristics that can be determined
experimentally1. The total scattering rate from ωp to ω due to the Stokes process in a fiber
segment dz is obtained by integration S(n, r) over the fiber cross-section. As a consequence,

Sp→s(n) = dz
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where Aeff = 1/
(∫∫

f 4(x, y)dA
)

is the effective area of the fiber (Agrawal, 2007).
The scattering rate for the anti-Stokes process (ω > ωp) can be computed according to the
same lines: the rate is the same as in Eq. (22) with the exception that (mth(|Ω|) + 1) is replaced
by mth(|Ω|) since an vibrational excitation is destroyed in that process:

Ap→a(n) = dz
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4h̄�2
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K(|Ω|, θ) mth(|Ω|) (n + 1) |αp|2. (23)

During propagation, light is not only scattered from the pump to the Stokes and anti-Stokes
modes at ωp − |Ω| and ωp + |Ω| but also from these mode to the pump wave. The rates
associated to these reverse Raman processes are

As→p(n) = dz
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0n2(ωp)n2(ω)AeffL2
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1 Note that K�(|Ω|) and K⊥(|Ω|) are slightly different in the core and in the cladding of the fiber because
of the dopants. Here, we neglect this difference.
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Therefore the net Raman scattering rates from a coherent pump to Stokes and anti-Stokes
modes (containing n photons initially) are

S(n) = Sp→s(n)− As→p(n) =
πωpωdz

4h̄�2
0n2(ωp)n2(ω)AeffL2

K(|Ω|, θ) (n + mth(|Ω|) + 1) |αp|2,

(26)

A(n) = Ap→a(n)− Sa→p(n) =
πωpωdz

4h̄�2
0n2(ωp)n2(ω)AeffL2

K(|Ω|, θ) (−n + mth(|Ω|)) |αp|2.

(27)

When a pump wave is launched in an optical fiber it scatters photons to many Stokes and
anti-Stokes modes simultaneously. The variation in the power spectral density dS(z, ω)
due to the scattering in the fiber slice dz is found by multiplying Eqs. (26) or (27) by the
photon energy h̄ω and summing over the contribution from all the c/(n(ω)L)dω modes in
the interval [ω, ω + dω]. Therefore the following differential equations hold for Stokes and
anti-Stokes radiation, respectively:

d
dz

S(z, ω) =

⎧⎨
⎩

�
S(z, ω) + h̄ω

2π (mth(|Ω|) + 1)
�

g(ωp, Ω, θ)Pp(z) if Ω = ωp − ω > 0 (Stokes)�
S(z, ω)− h̄ω

2π mth(|Ω|)
�

g(ωp, Ω, θ)Pp(z) if Ω = ωp − ω<0 (anti-Stokes)

(28)

where

g(ωp, Ω, θ) =sign(Ω)
π

4h̄2c2�2
0

ω

n(ωp)n(ω)Aeff

�
K�(|Ω|) cos2(θ) + K⊥(|Ω|) sin2(θ)

�

=g�(ωp, Ω) cos2(θ) + g⊥(ωp, Ω) sin2(θ)

(29)

is the Raman gain. Eq. (28) is identical to Eq. (1).
Unfortunately, BS and FPS laws cannot be established in the same manner. For FPS, one can
start the analysis at the molecular scale, but fourth order perturbation theory is required. In
addition, transition amplitudes must be added coherently to get the phase matching right (see
Sec. 2.3). For BS, a molecular approach is not possible since BS couples light to the excitation
of an acoustic wave involving many molecules (see Sec. 2.2).

3.2 Nonlinear quantum field theory
The purpose of the quantum field theory approach is to establish a quantum generalization
of the nonlinear Schrödinger equation (NLSE) that governs the propagation of the optical
field in a fiber, accounting for dispersion and nonlinear interaction with matter, as well as for
spontaneous effects.

3.2.1 Operator equation for nonlinear propagation
Kärtner et al. presented a field theory model of Raman scattering (Kärtner et al., 1994). In
this model, a light field A(z, t) is coupled to an harmonic field Q(z), the amplitude of which
depends on the position in the fiber. The light field A(z, t) represents the envelope of the
E-field oscillating at the carrier frequency ω0 and is assumed to travel in the fiber at group
velocity vg and with no dispersion. Depending on the dispersion relationship of the field
Q(z), it can represent acoustical phonons (if ω(q) = vAq) or optical photons (if ω(q) = ΩR
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is independent of q). Coupling to acoustical and optical phonons is responsible for BS and
RS, respectively. In (Kärtner et al., 1994) it is assumed that Q(z) is an optical phonon field.
Physically Q(z) represents the coordinate of a molecular normal mode of vibration at position
z in the fiber. Such a field does not propagate but is nevertheless damped. In order to model
the damping (with a rate ΓR), it is assumed that Q(z) itself is coupled to a large bath of
harmonic oscillators at many different frequencies that are at thermal equilibrium. These
harmonic oscillators represent other optical and acoustical vibration modes. After eliminating
the field Q(z) and the bath variables from the equations, one founds that A(z, t) obeys the
nonlinear field equation

∂

∂z
A(z, t) =− 1

vg

∂

∂t
A(z, t) + i(1 − fR)γA†(z, t)A(z, t)A(z, t)

+ i fRγ
∫ t

−∞
hR(t − t�)A†(z, t�)A(z, t�)dt�A(z, t) + i

√
fRγNR(z, t)A(z, t),

(30)

and the commutation relationship
[

A(z, t), A†(z, t�)
]
= h̄ω0δ(t − t�), (31)

where fR = 0.18 (see Sec. 2.3), γ is the nonlinear coefficient (see Sec. 2.3),

hR(t) =
Ω2

R√
Ω2

R − (ΓR/2)2
sin

(√
Ω2

R − (ΓR/2)2 t
)

exp (−(ΓR/2)t) ν(t) (32)

is the Raman response function, and NR(z, t) is the Raman noise field (see Eqs . (35) and 36
below). In Eq. (32), ν(t) is the Heaviside step function. The Fourier transform of hR(t) is
called the Raman susceptibility:

χ
(3)
R (Ω) = χ�

R(Ω) + iχ��
R(Ω) =

∫ ∞

−∞
hR(t) e−iΩtdt. (33)

Since hR(t) ∈ R and is normalized such that
∫ ∞
−∞ hR(t)dt = 1,

χ�
R(−Ω) = χ�

R(Ω), χ��
R(−Ω) = −χ��

R(Ω), χ�
R(0) = 1, χ��

R(0) = 0. (34)

The Raman noise operator is such that its Fourier transform

ÑR(z, Ω) =
∫ ∞

−∞
NR(z, t) e−iΩt dt (35)

satisfies the following spectral correlations (Boivin et al., 1994; Drummond & Corney, 2001):

�Ñ†
R(z, Ω)ÑR(z�, Ω�)� = h̄(ω0 − Ω)

|χ��
R(Ω)|
π

[mth(|Ω|) + ν(Ω)] δ(z − z�)δ(Ω − Ω�). (36)

The second term at the right-hand side of Eq. (30) does not come out of Kärtner’s model
but has been added phenomenologically to account for the (1 − fR) fraction of the total non
linearity that originates in the interaction of light with bound electrons rather than molecular
vibrations.
The last term in Eq. (30) is the one responsible for the spontaneous Raman scattering. In
order to make the connection with the description given in Secs. 2.1 and 3.1, consider the
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Therefore the net Raman scattering rates from a coherent pump to Stokes and anti-Stokes
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is the Raman gain. Eq. (28) is identical to Eq. (1).
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Sec. 2.3). For BS, a molecular approach is not possible since BS couples light to the excitation
of an acoustic wave involving many molecules (see Sec. 2.2).

3.2 Nonlinear quantum field theory
The purpose of the quantum field theory approach is to establish a quantum generalization
of the nonlinear Schrödinger equation (NLSE) that governs the propagation of the optical
field in a fiber, accounting for dispersion and nonlinear interaction with matter, as well as for
spontaneous effects.

3.2.1 Operator equation for nonlinear propagation
Kärtner et al. presented a field theory model of Raman scattering (Kärtner et al., 1994). In
this model, a light field A(z, t) is coupled to an harmonic field Q(z), the amplitude of which
depends on the position in the fiber. The light field A(z, t) represents the envelope of the
E-field oscillating at the carrier frequency ω0 and is assumed to travel in the fiber at group
velocity vg and with no dispersion. Depending on the dispersion relationship of the field
Q(z), it can represent acoustical phonons (if ω(q) = vAq) or optical photons (if ω(q) = ΩR
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is independent of q). Coupling to acoustical and optical phonons is responsible for BS and
RS, respectively. In (Kärtner et al., 1994) it is assumed that Q(z) is an optical phonon field.
Physically Q(z) represents the coordinate of a molecular normal mode of vibration at position
z in the fiber. Such a field does not propagate but is nevertheless damped. In order to model
the damping (with a rate ΓR), it is assumed that Q(z) itself is coupled to a large bath of
harmonic oscillators at many different frequencies that are at thermal equilibrium. These
harmonic oscillators represent other optical and acoustical vibration modes. After eliminating
the field Q(z) and the bath variables from the equations, one founds that A(z, t) obeys the
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vg

∂

∂t
A(z, t) + i(1 − fR)γA†(z, t)A(z, t)A(z, t)

+ i fRγ
∫ t

−∞
hR(t − t�)A†(z, t�)A(z, t�)dt�A(z, t) + i

√
fRγNR(z, t)A(z, t),

(30)

and the commutation relationship
[

A(z, t), A†(z, t�)
]
= h̄ω0δ(t − t�), (31)

where fR = 0.18 (see Sec. 2.3), γ is the nonlinear coefficient (see Sec. 2.3),

hR(t) =
Ω2

R√
Ω2

R − (ΓR/2)2
sin

(√
Ω2

R − (ΓR/2)2 t
)

exp (−(ΓR/2)t) ν(t) (32)

is the Raman response function, and NR(z, t) is the Raman noise field (see Eqs . (35) and 36
below). In Eq. (32), ν(t) is the Heaviside step function. The Fourier transform of hR(t) is
called the Raman susceptibility:

χ
(3)
R (Ω) = χ�

R(Ω) + iχ��
R(Ω) =

∫ ∞

−∞
hR(t) e−iΩtdt. (33)

Since hR(t) ∈ R and is normalized such that
∫ ∞
−∞ hR(t)dt = 1,

χ�
R(−Ω) = χ�

R(Ω), χ��
R(−Ω) = −χ��

R(Ω), χ�
R(0) = 1, χ��

R(0) = 0. (34)

The Raman noise operator is such that its Fourier transform

ÑR(z, Ω) =
∫ ∞

−∞
NR(z, t) e−iΩt dt (35)

satisfies the following spectral correlations (Boivin et al., 1994; Drummond & Corney, 2001):

�Ñ†
R(z, Ω)ÑR(z�, Ω�)� = h̄(ω0 − Ω)

|χ��
R(Ω)|
π

[mth(|Ω|) + ν(Ω)] δ(z − z�)δ(Ω − Ω�). (36)

The second term at the right-hand side of Eq. (30) does not come out of Kärtner’s model
but has been added phenomenologically to account for the (1 − fR) fraction of the total non
linearity that originates in the interaction of light with bound electrons rather than molecular
vibrations.
The last term in Eq. (30) is the one responsible for the spontaneous Raman scattering. In
order to make the connection with the description given in Secs. 2.1 and 3.1, consider the
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propagation of a strong continuous pump field Ap(z, t) =
√

Pp together with a weak scattered
field Asc(z, t) that is null at the input of the fiber: A(z, t) = Ap + Asc(z, t). Ignoring all the

terms but the last one in Eq. (30) one easily finds that Asc(z, t) ≈ i
√

fRγPp
∫ L

0 NR(z, t)dz.
Therefore, the total scattered power is

∫ ∞

−∞
S(L, ω0 − Ω)dΩ = �A†

sc(z, t)Asc(z, t)� = fRγPp

∫ L

0
dz

∫ L

0
dz��N†

R(z, t)NR(z�, t�)�

= fRγP
∫ ∞

−∞
dΩ

∫ ∞

−∞
dΩ�

∫ L

0
dz

∫ L

0
dz��Ñ†

R(z, Ω)ÑR(z�, Ω�)�

Using Eq. (36), one finally gets

S(L, ω = ω0 − Ω) = h̄(ω0 − Ω) fRγ
|χ��

R(Ω)|
π

[mth(|Ω|) + ν(Ω)] PpL. (37)

Comparing this expression with Eq. (5), the Raman gain is found to be related to the imaginary
part of the Raman susceptibility by the following relationship:

g�(ωp, Ω) = −2 fRγχ��
R(Ω) (38)

According to the Kärtner’s model, the Raman gain would be Lorentzian in shape because

χ��
R(Ω) =

ΩΩ2
RΓR

(Ω2
R − Ω2)2 + Ω2Γ2

, (39)

according to Eqs. (32) and (33). This would be a rough approximation of the actual Raman
gain in Fig. 2a. As explained in (Drummond & Corney, 2001), the Raman gain is well fitted by
a 10-Lorentzian model. Modifying the quantum field model to couple light to ten Lorentzian
vibration modes is trivial: it only changes the shape of the Raman response function hR(t) in
Eq. (32), which becomes a linear superposition of damped sine functions with appropriate
oscillation frequencies and damping constants.
With this modification, the quantum propagation equation (30) is able to simulate the
spontaneous grow of Stokes and anti-Stokes wave and their amplification. However, Eq. (30)
is unable to simulate FPS despite that all the terms (second and third term of the right-hand
side) responsible for photon-pair generation are included. This is because phase-matching is
of crucial importance for the FPS process and Eq. (30) does not properly deal with the group
velocity dispersion of the traveling waves.

3.2.2 Dispersion
Dispersion plays an important role in the physics of spontaneous and stimulated nonlinear
effects. The exact dispersion of the fiber can be include in the quantum non linear propagation
equation (30) by replacing the first term in the right-hand side

− 1
vg

∂

∂t
A(z, t) (40)

by the generalized dispersion operator

D[A(z, t)] = +i
∞

∑
a=1

(i)a ka

a!
∂a

∂ta A(z, t), (41)
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where

ka =
da

dωa kL(ω)

∣∣∣∣
ω=ω0

(42)

are the derivatives of the propagation constant kL(ω). The dispersion operator can also be
written as a convolution integral (Kärtner et al., 1994; Lin et al., 2007)

D[A(z, t)] = i
∫ t

−∞
hL(t − t�)A(z, t�)dt�, (43)

where
hL(t) =

1
2π

∫ ∞

−∞
[kL(ω0 − Ω)− kL(ω0)]eiΩtdΩ (44)

is the linear response function of the fiber. Using (43) Eq. (30) reads:

∂

∂z
A(z, t) =i

∫ t

−∞
hL(t − t�)A(z, t�)dt� + i(1 − fR)γA†(z, t)A(z, t)A(z, t)

+ i fRγ
∫ t

−∞
hR(t − t�)A†(z, t�)A(z, t�)dt�A(z, t) + i

√
fRγNR(z, t)A(z, t),

(45)

3.2.3 Brillouin and polarization effects
As mentioned in Sec. 3.2.1, the quantum propagation model couples light to non propagative
phonons. Strictly speaking, such a model is unsuitable for describing BS. However, if the
propagation length is long enough to consider that momentum conservation (opto-acoustical
phase matching) is verified, the phonon field has a well defined oscillation frequency ΩB =

4π vA
n(ωp)

λp
, see Eq. (10). Therefore, the Brillouin Lorentzian gain can be included as an

eleventh Lorentzian (ultra-low frequency) contribution to the nonlinear Raman response hR(t)
(Drummond & Corney, 2001).
Eq. (45) only takes into account nonlinear effects that involve photons with the same
polarization state. One can generalize the model to take polarization into account (Brainis,
2009; Brainis et al., 2005; Lin et al., 2006; 2007).

3.2.4 Solving the quantum propagation equation
There are two main methods to solve the quantum nonlinear propagation equation.
The first one is using numerical integration and consists in converting Eq. 45 into a set of
c-number equations with stochastic terms in order to solve them on a computer (Brainis et al.,
2005; Kennedy & Wright, 1988). These methods have been first introduced to solve the scalar
quantum equation without the Raman effect ( fR = 0) to study the squeezing of a quantum
soliton (Carter et al., 1987; Drummond & Carter, 1987) and co-polarized FPS (Brainis et al.,
2005). It has been then generalized to study different types of non co-polarized FPS processes
(Amans et al., 2005; Brainis et al., 2005; Kennedy, 1991) and squeezing in birefringent fibers
(Kennedy & Wabnitz, 1988), as well as Raman scattering noise (Drummond & Corney, 2001).
The second method consists in linearizing the quantum nonlinear equation around a classical
solution such as a continuous pump wave or a soliton in order to derive linear couple mode
operator equations that can be solved analytically (Brainis, 2009; Brainis et al., 2007; Lin et al.,
2006; 2007). Coupled mode equations are easier to establish from the Fourier transform of Eq.
(45). Defining the Fourier components of the wave as

Ã(z, Ω) =
∫ ∞

−∞
A(z, t)e−iΩtdt, (46)
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soliton (Carter et al., 1987; Drummond & Carter, 1987) and co-polarized FPS (Brainis et al.,
2005). It has been then generalized to study different types of non co-polarized FPS processes
(Amans et al., 2005; Brainis et al., 2005; Kennedy, 1991) and squeezing in birefringent fibers
(Kennedy & Wabnitz, 1988), as well as Raman scattering noise (Drummond & Corney, 2001).
The second method consists in linearizing the quantum nonlinear equation around a classical
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one finds that they satisfy the following equation:

∂

∂z
Ã(z, Ω) = i[kL(ω0 − Ω)− kL(ω0)]Ã(z, Ω) + i

√
fRγ

1
2π

∫ ∞

−∞
dω1NR(z, Ω − ω1)A(z, ω1)

+ iγ
1

(2π)2

∫ ∞

−∞
dω1

∫ ∞

−∞
dω2χ(ω2 − ω1)Ã(z, ω1)Ã(z, ω2)Ã(z, Ω + ω1 − ω2),

(47)

where
χ(Ω) = (1 − fR) + fR χR(Ω) (48)

is the total third order susceptibility which takes into account both electronic and vibrational
non linearity. χ(Ω) is a complex function that has the same symmetry properties as χR(Ω),
see Eq. (34)

χ�(−Ω) = χ�(Ω), χ��(−Ω) = −χ��(Ω), χ�(0) = 1, χ��(0) = 0. (49)

Using Eq. (31), one finds that the operators Ã(z, Ω) satisfy the following commutation
relations [

Ã(z, Ω), Ã†(z, Ω�)
]
= 2πh̄ω0δ(Ω − Ω�). (50)

A generalization of Eqs. (47)-(50) that takes into account polarization can be found in (Lin
et al., 2007). Linearized coupled mode equations are directly obtained from Eq. (47). Hereafter,
the result is given for one and two pump waves. These coupled-mode equations will be used
in Sec. 4 to analyze the competition between the RS process and the FPS process.

3.2.4.1 Single pump configuration

Let us assume that that a monochromatic pump wave with frequency ωp = ω0 and spectral
amplitude Ã(z = 0, Ω) = 2π

√
Ppδ(Ω) is launched in the fiber. During the propagation,

the pump remains monochromatic but acquires a nonlinear phase modulation: Ã(z, Ω) =
2πAp(z)δ(Ω). The amount of phase modulation can be derived by injecting this ansatz in Eq.
(47). One finds that

dAp

dz
= iγA†

p(z)Ap(z)Ap(z). (51)

The solution of this equation is

Ap(z) =
√

PpeiγPpz. (52)

However, this solution is not a stable solution of Eq. (47). Brillouin, Raman and four-photon
scattering, will spontaneously scattered power from the pump to Stokes and anti-Stokes
frequencies. Nevertheless, for the calculation of the Stokes and anti-Stokes amplitudes, one
can make the assumption that the pump remains undepleted, i.e. (52) is approximately valid.
Injecting the ansatz

Ã(z, Ω) =
[
2πAp(z)δ(Ω) + Ãsc(z, Ω)

]
, (53)

and retaining only the terms of highest order in P, one finds that the scattered field Ãsc(z, Ω)
satisfies

∂

∂z
Ãsc(z, Ω) = i

[
[kL(ωp − Ω)− kL(ωp)] + B(Ω)γPp

]
Ãsc(z, Ω)

+ i χ(Ω)γPei2γPpz Ã†
sc(z,−Ω) + i

√
fRγPpeiγPpz NR(z, Ω),

(54)
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where
B(Ω) = χ(0) + χ(Ω) = 1 + χ(Ω) = 2 − fR[1 − χR(Ω)]. (55)

The coefficient B(Ω) measures the relative strength of the cross-phase modulation of the
scattered field by the pump and the self-phase modulation of the pump, see Eq. (52). If
Raman scattering is ignored ( fR = 0), it takes the usual value B = 2. At frequencies close to
the pump (Ω → 0), one also finds B ≈ 2, because χR ≈ 1 + 0i. Very far away from the pump
frequency (Ω → ∞), B ≈ 1.82 because χr ≈ 0 + 0i and fR = 0.18. The third term of the Eq.
(54) represents a FWM process with a complex coupling coefficient χ(Ω)γPp. In Sec. 4, it will
be shown that this term is responsible for stimulated FWM, stimulated Raman and Brillouin
scattering, as well as spontaneous FPS. One may notice that this term couples each spectral
component at Ω > 0 (Stokes) to the symmetric component at frequency Ω < 0 (anti-Stokes),
as required by the aforementioned processes. The last term in the right-hand side of Eq. (54)
is the source of spontaneous Raman and Brillouin scattering. Since Stokes and anti-Stokes
frequencies are always coupled, the coupled-mode equations

∂

∂z
Ãsc(z, Ω) = i

[
[kL(ωp − Ω)− kL(ωp)] + B(Ω)γPp

]
Ãsc(z, Ω)

+ i χ(Ω)γPpei2γPpz Ã†
sc(z,−Ω) + i

√
fRγPpeiγPpz NR(z, Ω), (56)

∂

∂z
Ãsc(z,−Ω) = i

[
[kL(ωp + Ω)− kL(ωp)] + B(−Ω)γPp

]
Ãsc(z,−Ω)

+ i χ(−Ω)γPpei2γPpz Ã†
sc(z, Ω) + i

√
fRγPpeiγPpz NR(z,−Ω). (57)

must be solved together to solve the propagation problem. These are linear, but
inhomogeneous equations. Note that

χ(−Ω) = χ∗(Ω), and B(−Ω) = B∗(Ω). (58)

3.2.4.2 Dual pump configuration

If two pump waves at frequencies ωp1 = ω0 − Ωp and ωp2 = ω0 + Ωp are launched
simultaneously in the fiber, the spectral amplitude can be written

Ã(z, Ω) = 2πAp1(z)δ(Ω − Ωp) + 2πAp2(z)δ(Ω + Ωp) (59)

Injecting this ansatz in Eq. 47 shows the the two pumps will interact through nonlinear effects:

dAp1

dz
= i

[
[kL(ω0 − Ωp)− kL(ω0)] + γ|Ap1|2 + B(2Ωp)γ|Ap2|2

]
Ap1(z) (60)

dAp2

dz
= i

[
[kL(ω0 + Ωp)− kL(ω0)] + γ|Ap2|2 + B(−2Ωp)γ|Ap1|2

]
Ap2(z) (61)

The third terms on the right-hand side are responsible for both cross-phase modulation and
stimulated Raman scattering: Eq. (38) shows that

iB(±2Ωp)γ = i
[
2 − fR[1 − χ�(±2Ωp)]

]
γ − fRγχ��(±2Ωp),

= i
[
2 − fR[1 − χ�(±2Ωp)]

]
γ +

g�(±2Ωp)

2
.

(62)

39Spontaneous Nonlinear Scattering Processes in Silica Optical Fibers



14 Will-be-set-by-IN-TECH

one finds that they satisfy the following equation:

∂

∂z
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Ã(z, Ω), Ã†(z, Ω�)
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√
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(54)

38 Recent Progress in Optical Fiber Research Spontaneous Nonlinear Scattering Processes in Silica Optical Fibers 15

where
B(Ω) = χ(0) + χ(Ω) = 1 + χ(Ω) = 2 − fR[1 − χR(Ω)]. (55)

The coefficient B(Ω) measures the relative strength of the cross-phase modulation of the
scattered field by the pump and the self-phase modulation of the pump, see Eq. (52). If
Raman scattering is ignored ( fR = 0), it takes the usual value B = 2. At frequencies close to
the pump (Ω → 0), one also finds B ≈ 2, because χR ≈ 1 + 0i. Very far away from the pump
frequency (Ω → ∞), B ≈ 1.82 because χr ≈ 0 + 0i and fR = 0.18. The third term of the Eq.
(54) represents a FWM process with a complex coupling coefficient χ(Ω)γPp. In Sec. 4, it will
be shown that this term is responsible for stimulated FWM, stimulated Raman and Brillouin
scattering, as well as spontaneous FPS. One may notice that this term couples each spectral
component at Ω > 0 (Stokes) to the symmetric component at frequency Ω < 0 (anti-Stokes),
as required by the aforementioned processes. The last term in the right-hand side of Eq. (54)
is the source of spontaneous Raman and Brillouin scattering. Since Stokes and anti-Stokes
frequencies are always coupled, the coupled-mode equations

∂

∂z
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+ i χ(−Ω)γPpei2γPpz Ã†
sc(z, Ω) + i

√
fRγPpeiγPpz NR(z,−Ω). (57)

must be solved together to solve the propagation problem. These are linear, but
inhomogeneous equations. Note that

χ(−Ω) = χ∗(Ω), and B(−Ω) = B∗(Ω). (58)

3.2.4.2 Dual pump configuration

If two pump waves at frequencies ωp1 = ω0 − Ωp and ωp2 = ω0 + Ωp are launched
simultaneously in the fiber, the spectral amplitude can be written

Ã(z, Ω) = 2πAp1(z)δ(Ω − Ωp) + 2πAp2(z)δ(Ω + Ωp) (59)

Injecting this ansatz in Eq. 47 shows the the two pumps will interact through nonlinear effects:

dAp1

dz
= i

[
[kL(ω0 − Ωp)− kL(ω0)] + γ|Ap1|2 + B(2Ωp)γ|Ap2|2

]
Ap1(z) (60)

dAp2

dz
= i

[
[kL(ω0 + Ωp)− kL(ω0)] + γ|Ap2|2 + B(−2Ωp)γ|Ap1|2

]
Ap2(z) (61)

The third terms on the right-hand side are responsible for both cross-phase modulation and
stimulated Raman scattering: Eq. (38) shows that

iB(±2Ωp)γ = i
[
2 − fR[1 − χ�(±2Ωp)]

]
γ − fRγχ��(±2Ωp),

= i
[
2 − fR[1 − χ�(±2Ωp)]

]
γ +

g�(±2Ωp)

2
.

(62)
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If the propagation distance L and the initial pump powers Pp1 and Pp2 are such that
g�(2Ωp)(Pp1 + Pp2)L � 1, power transfer due to stimulated Raman scattering is negligible
and the solution of Eqs. (60) and (61) is:

Ap1(z) = Pp1 exp
[
i
[
[kL(ω0 − Ωp)− kL(ω0)] + γPp1 +�[B(2Ωp)]γPp2

]
z
]

, (63)

Ap2(z) = Pp2 exp
[
i
[
[kL(ω0 + Ωp)− kL(ω0)] + γPp2 +�[B(−2Ωp)]γPp1

]
z
]

. (64)

As in the single pump case, such a solution in unstable and light will be spontaneously
scattered to other wavelength. To analyze that scattering, we introduce the ansatz

Ã(z, Ω) = 2πAp1(z)δ(Ω − Ωp) + 2πAp2(z)δ(Ω + Ωp) + Ãsc(z, Ω) (65)

in Eq. (47) and only keep the terms of highest order in Pp1 and Pp2. It is found that

∂

∂z
Ãsc(z, Ω) = i

[
[kL(ω0 − Ω)− kL(ω0)] + B(Ω − Ωp)γPp1 + B(Ω + Ωp)γPp2

]
Ãsc(z, Ω)

+ iγχ(Ω − Ωp)Ap1(z)Ap1(z)Ã†
sc(z, 2Ωp − Ω)

+ iγχ(Ω + Ωp)Ap2(z)Ap2(z)Ã†
sc(z,−2Ωp − Ω)

+ iγ2� [
χ(Ωp − Ω)

]
Ap1(z)Ap2(z)Ã†

sc(z,−Ω)

+ iγχ(2Ωp)A†
p1(z)Ap2(z)Ãsc(z,−2Ωp) + iγχ(−2Ωp)A†

p2(z)Ap1(z)Ãsc(z, 2Ωp)

+ iγχ(Ωp − Ω)A†
p1(z)Ap2(z)Ãsc(z, Ω + 2Ωp)

+ iγχ(Ω − Ωp)A†
p2(z)Ap1(z)Ãsc(z, Ω − 2Ωp)

+ i
√

fRγ
[
Ap1 (z)NR(z, Ω − Ωp) + Ap2 (z)NR(z, Ω + Ωp)

]
.

(66)

In striking contrast with Eq. (54), the light scattered at frequency ω0 − Ω is not only coupled
to the symmetric mode ω0 + Ω but also to six other modes at frequencies: ω0 − 2Ωp − Ω,
ω0 − 2Ωp, ω0 − 2Ωp + Ω, ω0 + 2Ωp − Ω , ω0 + 2Ωp, ω0 + 2Ωp + Ω. As a consequence, there
is no way to write down a closed set of coupled mode equations for that problem. However,
the perturbation theory technique introduced in (Brainis, 2009) can be applied to investigation
the quantum regime of scattering (see Sec. 4.2).

4. Coupling between spontaneous scattering processes

When light propagates in an optical fiber, spontaneous RS, BS and FPS take place
simultaneously. Several processes may scatter light to the same modes so that it may not
be possible the decouple the processes. Hereafter, that point is illustrated in the single and
dual pump configuration.

4.1 Single pump configuration
The field evolution in the single pump configuration is fully described by the coupled-mode
equations (56) and ( 57), the solution of which is

Ãsc(L, Ω) = μ1(L, Ω)Ãsc(0, Ω) + μ2(L, Ω)Ã†
sc(0,−Ω)

+ i
√

fRγP
∫ L

0
NR(z, Ω) (μ1(L − z, Ω)− μ2(L − z, Ω))dz (67)
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Ãsc(L,−Ω) = μ1(L,−Ω)Ãsc(0, Ω) + μ2(L,−Ω)Ã†
sc(0, Ω)

+ i
√

fRγP
∫ L

0
NR(z,−Ω) (μ1(L − z,−Ω)− μ2(L − z,−Ω))dz. (68)

If Ω > 0, Ãsc(L, Ω) corresponds to the Stokes part of the spectrum and Ãsc(L,−Ω) to the
anti-Stokes part. The functions μ1(z, Ω) and μ2(z, Ω) are defined as

μ1(z, Ω) =

[
cosh(g(Ω)L) + i

Δk(Ω)

2g(Ω)
sinh(g(Ω)L)

]
exp

(
i
kL(Ω)− kL(−Ω)

2
L
)

(69)

μ2(z, Ω) = i
γχ(Ω)Ppei2γPp L

g(Ω)
sinh(g(Ω)L) exp

(
i
kL(Ω)− kL(−Ω)

2
L
)

(70)

where

Δk(Ω) = kL(ωp − Ω) + kL(ωp + Ω)− 2kL(ωp) + 2γPp[B(Ω)− 1] = ΔkL(Ω) + 2γPpχ(Ω)
(71)

is the total phase mismatch and

g(Ω) =
√
(χ(Ω)γPp)2 − (Δk(Ω)/2)2 =

√
−ΔkL(Ω)γPpχ(Ω)− (ΔkL(Ω)/2)2 (72)

is the parametric gain. The square-root in Eq. (72) is chosen such that �(g) > 0. Comparing
with the results of Sec. 2.3, both the phase mismatch parameter and the parametric gain have
a modified value due to the simultaneous action of FPS and RS. This modification impacts the
stimulated FWM (Golovchenko et al., 1990; Vanholsbeeck et al., 2003) as well as spontaneous
FPS regime (Brainis et al., 2007; Lin et al., 2006).
The spontaneous regime corresponds to the initial conditions �Ã†

sc(0, Ω)Ãsc(0, Ω)� = 0, for
any value of Ω. The spectral power density S(L, ωp − Ω) at the fiber output can be calculated
as follows (Brainis et al., 2005; 2007):

S(L, ωp − Ω) = lim
�→0

1
2π�

∫ Ω+�/2

Ω−�/2

∫ Ω+�/2

Ω−�/2
�Ã†

sc(L, Ω1)Ãsc(L, Ω2)�dΩ1dΩ2. (73)

Using Eqs. (67) and (68), one finds (Brainis et al., 2007)

S(L, ωp − Ω)

h̄
(
ωp − Ω

) =
1

2π

∣∣χ(Ω)γPpL
∣∣2
∣∣∣∣
sinh(g(Ω)L)

g(Ω)L

∣∣∣∣
2
+

|�[χ(Ω)]|γPp

π
ρ(L, Ω) (mth(|Ω|) + ν(Ω)) ,

(74)
where

ρ(L, Ω) =
∫ L

0

∣∣∣∣cosh(g(Ω)z) + i sign(Ω)
Δk(Ω)

2g(Ω)
sinh(g(Ω)z)

∣∣∣∣
2

dz. (75)

The first and second terms in the right-hand side of Eq. (74) represent the photons scattered
through the four-photon and Raman processes, respectively. Note that |�[χ(Ω)]|γ =
fRγ|χ��

R(Ω)| = |g�(ωp, Ω)|/2, see Eq. (38).
In the spontaneous regime (|g(Ω)|Pp → 0), Eq. (74) reduces to

S(L, ωp − Ω)

h̄
(
ωp − Ω

) =
(|χ(Ω)|PpL)2

2π
sinc2

(
Δk
2

L
)
+

|g�(ωp, Ω)|PpL
2π

(mth(|Ω|) + ν(Ω)) . (76)
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If the propagation distance L and the initial pump powers Pp1 and Pp2 are such that
g�(2Ωp)(Pp1 + Pp2)L � 1, power transfer due to stimulated Raman scattering is negligible
and the solution of Eqs. (60) and (61) is:

Ap1(z) = Pp1 exp
[
i
[
[kL(ω0 − Ωp)− kL(ω0)] + γPp1 +�[B(2Ωp)]γPp2

]
z
]

, (63)

Ap2(z) = Pp2 exp
[
i
[
[kL(ω0 + Ωp)− kL(ω0)] + γPp2 +�[B(−2Ωp)]γPp1

]
z
]

. (64)

As in the single pump case, such a solution in unstable and light will be spontaneously
scattered to other wavelength. To analyze that scattering, we introduce the ansatz

Ã(z, Ω) = 2πAp1(z)δ(Ω − Ωp) + 2πAp2(z)δ(Ω + Ωp) + Ãsc(z, Ω) (65)

in Eq. (47) and only keep the terms of highest order in Pp1 and Pp2. It is found that

∂

∂z
Ãsc(z, Ω) = i

[
[kL(ω0 − Ω)− kL(ω0)] + B(Ω − Ωp)γPp1 + B(Ω + Ωp)γPp2

]
Ãsc(z, Ω)

+ iγχ(Ω − Ωp)Ap1(z)Ap1(z)Ã†
sc(z, 2Ωp − Ω)

+ iγχ(Ω + Ωp)Ap2(z)Ap2(z)Ã†
sc(z,−2Ωp − Ω)

+ iγ2� [
χ(Ωp − Ω)

]
Ap1(z)Ap2(z)Ã†

sc(z,−Ω)

+ iγχ(2Ωp)A†
p1(z)Ap2(z)Ãsc(z,−2Ωp) + iγχ(−2Ωp)A†

p2(z)Ap1(z)Ãsc(z, 2Ωp)

+ iγχ(Ωp − Ω)A†
p1(z)Ap2(z)Ãsc(z, Ω + 2Ωp)

+ iγχ(Ω − Ωp)A†
p2(z)Ap1(z)Ãsc(z, Ω − 2Ωp)

+ i
√

fRγ
[
Ap1 (z)NR(z, Ω − Ωp) + Ap2 (z)NR(z, Ω + Ωp)

]
.

(66)

In striking contrast with Eq. (54), the light scattered at frequency ω0 − Ω is not only coupled
to the symmetric mode ω0 + Ω but also to six other modes at frequencies: ω0 − 2Ωp − Ω,
ω0 − 2Ωp, ω0 − 2Ωp + Ω, ω0 + 2Ωp − Ω , ω0 + 2Ωp, ω0 + 2Ωp + Ω. As a consequence, there
is no way to write down a closed set of coupled mode equations for that problem. However,
the perturbation theory technique introduced in (Brainis, 2009) can be applied to investigation
the quantum regime of scattering (see Sec. 4.2).

4. Coupling between spontaneous scattering processes

When light propagates in an optical fiber, spontaneous RS, BS and FPS take place
simultaneously. Several processes may scatter light to the same modes so that it may not
be possible the decouple the processes. Hereafter, that point is illustrated in the single and
dual pump configuration.

4.1 Single pump configuration
The field evolution in the single pump configuration is fully described by the coupled-mode
equations (56) and ( 57), the solution of which is

Ãsc(L, Ω) = μ1(L, Ω)Ãsc(0, Ω) + μ2(L, Ω)Ã†
sc(0,−Ω)

+ i
√

fRγP
∫ L

0
NR(z, Ω) (μ1(L − z, Ω)− μ2(L − z, Ω))dz (67)
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Ãsc(L,−Ω) = μ1(L,−Ω)Ãsc(0, Ω) + μ2(L,−Ω)Ã†
sc(0, Ω)

+ i
√

fRγP
∫ L

0
NR(z,−Ω) (μ1(L − z,−Ω)− μ2(L − z,−Ω))dz. (68)

If Ω > 0, Ãsc(L, Ω) corresponds to the Stokes part of the spectrum and Ãsc(L,−Ω) to the
anti-Stokes part. The functions μ1(z, Ω) and μ2(z, Ω) are defined as

μ1(z, Ω) =

[
cosh(g(Ω)L) + i

Δk(Ω)

2g(Ω)
sinh(g(Ω)L)

]
exp

(
i
kL(Ω)− kL(−Ω)

2
L
)

(69)

μ2(z, Ω) = i
γχ(Ω)Ppei2γPp L

g(Ω)
sinh(g(Ω)L) exp

(
i
kL(Ω)− kL(−Ω)

2
L
)

(70)

where

Δk(Ω) = kL(ωp − Ω) + kL(ωp + Ω)− 2kL(ωp) + 2γPp[B(Ω)− 1] = ΔkL(Ω) + 2γPpχ(Ω)
(71)

is the total phase mismatch and

g(Ω) =
√
(χ(Ω)γPp)2 − (Δk(Ω)/2)2 =

√
−ΔkL(Ω)γPpχ(Ω)− (ΔkL(Ω)/2)2 (72)

is the parametric gain. The square-root in Eq. (72) is chosen such that �(g) > 0. Comparing
with the results of Sec. 2.3, both the phase mismatch parameter and the parametric gain have
a modified value due to the simultaneous action of FPS and RS. This modification impacts the
stimulated FWM (Golovchenko et al., 1990; Vanholsbeeck et al., 2003) as well as spontaneous
FPS regime (Brainis et al., 2007; Lin et al., 2006).
The spontaneous regime corresponds to the initial conditions �Ã†

sc(0, Ω)Ãsc(0, Ω)� = 0, for
any value of Ω. The spectral power density S(L, ωp − Ω) at the fiber output can be calculated
as follows (Brainis et al., 2005; 2007):

S(L, ωp − Ω) = lim
�→0

1
2π�

∫ Ω+�/2

Ω−�/2

∫ Ω+�/2

Ω−�/2
�Ã†

sc(L, Ω1)Ãsc(L, Ω2)�dΩ1dΩ2. (73)

Using Eqs. (67) and (68), one finds (Brainis et al., 2007)

S(L, ωp − Ω)

h̄
(
ωp − Ω

) =
1

2π

∣∣χ(Ω)γPpL
∣∣2
∣∣∣∣
sinh(g(Ω)L)

g(Ω)L

∣∣∣∣
2
+

|�[χ(Ω)]|γPp

π
ρ(L, Ω) (mth(|Ω|) + ν(Ω)) ,

(74)
where

ρ(L, Ω) =
∫ L

0

∣∣∣∣cosh(g(Ω)z) + i sign(Ω)
Δk(Ω)

2g(Ω)
sinh(g(Ω)z)

∣∣∣∣
2

dz. (75)

The first and second terms in the right-hand side of Eq. (74) represent the photons scattered
through the four-photon and Raman processes, respectively. Note that |�[χ(Ω)]|γ =
fRγ|χ��

R(Ω)| = |g�(ωp, Ω)|/2, see Eq. (38).
In the spontaneous regime (|g(Ω)|Pp → 0), Eq. (74) reduces to

S(L, ωp − Ω)

h̄
(
ωp − Ω

) =
(|χ(Ω)|PpL)2

2π
sinc2

(
Δk
2

L
)
+

|g�(ωp, Ω)|PpL
2π

(mth(|Ω|) + ν(Ω)) . (76)
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The Raman contribution to the scattered light is exactly the one given by Eq. 5: this means that
FPS has no impact on RS. The reverse is not true: RS as an influence on FPS since it modifies
the total susceptibility χ(Ω) appearing in the first term. In absence of RS ( fR = 0), χ(Ω) = 1
and one recovers the spectral density of power given by Eq. (14). Since −1 < χ�

R(Ω) ≤ 1 and

−1.4 < χ��
R(Ω) < 1.4, |χ(Ω)| =

√
(1 − fR(1 − χ�

R(Ω)))2 + ( fRχ��
R(Ω))2 is always close to one.

For this reason, spontaneous (not amplified ) FPS and RS can be considered has uncoupled
phenomena.
If the power is high enough (|g(Ω)|PpL > 1), amplification of the spontaneous scattering takes
place. The general formula (74) is well approximated by

S(L, ωp − Ω)

h̄
(
ωp − Ω

) =
e2�[g(Ω)]L

8π

[∣∣∣∣
χ(Ω)γPp

g(Ω)

∣∣∣∣
2

+
|g�(ωp, Ω)|γPp

2�[g(Ω)]

|g(ω) + i sign(Ω)Δk/2|2
|g(Ω)|2

]
.

(77)
In striking contrast with the analysis of Sec. 2.1, this result shows that the Raman anti-Stokes
wave grows at the same rate as the Raman Stokes wave instead of saturating at the power density
value S(L, ωp + |Ω|) = h̄ω

2π mth(|Ω|). This effect is due to the coupling of the RS with the
FWM. Its detailed explanation can be found in (Brainis et al., 2007; Coen et al., 2002). On
the other hand, the exponential amplification of the Stokes wave is completely quenched at
frequencies satisfying ΔkL(Ω) = 0 because the gain g(Ω) vanishes in that case, see Eq. (72)
(Golovchenko et al., 1990; Vanholsbeeck et al., 2003).

4.2 Dual pump configuration
In the dual pump configuration, the coupled-mode equations (66) do not form a closed set.
For this reason, one cannot write an explicit solution as in Sec. 4.1. To study the spontaneous
photon scattering, we apply the first-order perturbation technique introduced in (Brainis,
2009).
We first notice that the first term of the right-hand side of (66) represents the phase evolution
of scattered field, including the cross-phase modulation due to the two pumps. This phase
modulation has no impact on the population of the frequency modes and can be factored out
by writing the total scattered E-field

Esc(z, t) =

√
h̄ω0

4π�0n0c

∫
a(z, Ω) ei[kL(ω0−Ω)+B(Ω−Ωp)γPp1+B(Ω+Ωp)γPp2]ze−i(ω0−Ω)tdΩ, (78)

where a(z, Ω) is the annihilation operator of the frequency mode ω − Ω. Because the exact
phase evolution of the a(z, Ω) has been factored out, the z dependence of a(z, Ω) is only due
to the FPS effect (Brainis, 2009). On the other hand, the scattered field can be written as

Esc(z, t) =
1

2π
√

2�0n0c
eikL(ω0)z−iω0t

∫
Ãsc(z, Ω)eiΩtdΩ, (79)

where we used the fact that E(z, t) =
√

1/(2�0n0c)A(z, t)eikL(ω0)z−iω0t and Eq. (46).
Comparing Eqs. (78) and (79), one sees that

Ãsc(z, Ω) =
√

2πh̄ω0 a(z, Ω) ei[kL(ω0−Ω)−kL(ω0)+B(Ω−Ωp)γPp1+B(Ω+Ωp)γPp2]z. (80)
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In the following, we make the approximation that B(Ω) ≈ 2, see Eq. (55) and χ(Ω) ≈ 1, see
Eq. (48). This approximation consists in neglecting the dispersion of the non linearity. Using
Eq. (80), one obtains the evolution equation for the annihilation operators:

∂

∂z
a(z, Ω) = i γ Pp1 e−iΔk11(Ω)z a†(z, 2Ωp − Ω) + i γ Pp2 e−iΔk22(Ω)z a†(z,−2Ωp − Ω)

+ i 2γ
√

Pp1Pp2 e−iΔk12(Ω)z a†(z,−Ω)

+ i γ
√

Pp1Pp2 eiΔkaz a(z,−2Ωp) + i γ
√

Pp1Pp2 eiΔkbz a(z, 2Ωp)

+ i γ
√

Pp1Pp2 eiΔkcz a(z, Ω + 2Ωp) + i γ
√

Pp1Pp2 eiΔkdz a(z, Ω − 2Ωp)

+ i

√
fRγPp1

2πh̄ω0
ei[k(ω0−Ωp)−k(ω0−Ω)−γPp1]z NR(z, Ω − Ωp)

+ i

√
fRγPp2

2πh̄ω0
ei[k(ω0+Ωp)−k(ω0−Ω)−γPp2]z NR(z, Ω + Ωp)

(81)

where

Δk11(Ω) = kL(ω0 − Ω) + kL(ω0 − 2Ωp + Ω)− 2kL(ω0 − Ωp) + 2γPp1 (82)

Δk22(Ω) = kL(ω0 − Ω) + kL(ω0 + 2Ωp + Ω)− 2kL(ω0 + Ωp) + 2γPp2 (83)

Δk12(Ω) = kL(ω0 − Ω) + kL(ω0 + Ω)− kL(ω0 − Ωp)− kL(ω0 + Ωp) + γPp1 + γPp2 (84)

Δka(Ω) = kL(ω0 + 2Ωp) + kL(ω0 + Ωp)− kL(ω0 − Ωp)− kL(ω0 − Ω) + γPp1 − γPp2 (85)

Δkb(Ω) = kL(ω0 − 2Ωp) + kL(ω0 − Ωp)− kL(ω0 + Ωp)− kL(ω0 − Ω)− γPp1 + γPp2 (86)

Δkc(Ω) = kL(ω0 − Ω − 2Ωp) + kL(ω0 − Ωp)− kL(ω0 + Ωp)− kL(ω0 − Ω) + γPp1 − γPp2

(87)

Δkd(Ω) = kL(ω0 − Ω + 2Ωp) + kL(ω0 − Ωp)− kL(ω0 + Ωp)− kL(ω0 − Ω)− γPp1 + γPp2

(88)

Eq. (81) can be written

ih̄
∂

∂z
a(z, Ω) = [G(z), a(z, Ω)] + ih̄L(z, Ω), (89)

where

L(z, Ω) = i

√
fRγ

2πh̄ω0

[√
Pp1 ei[k(ω0−Ωp)−k(ω0−Ω)−γPp1]z NR(z, Ω − Ωp)

+
√

Pp2 ei[k(ω0+Ωp)−k(ω0−Ω)−γPp2]z NR(z, Ω + Ωp)
]

(90)
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The Raman contribution to the scattered light is exactly the one given by Eq. 5: this means that
FPS has no impact on RS. The reverse is not true: RS as an influence on FPS since it modifies
the total susceptibility χ(Ω) appearing in the first term. In absence of RS ( fR = 0), χ(Ω) = 1
and one recovers the spectral density of power given by Eq. (14). Since −1 < χ�

R(Ω) ≤ 1 and

−1.4 < χ��
R(Ω) < 1.4, |χ(Ω)| =

√
(1 − fR(1 − χ�

R(Ω)))2 + ( fRχ��
R(Ω))2 is always close to one.

For this reason, spontaneous (not amplified ) FPS and RS can be considered has uncoupled
phenomena.
If the power is high enough (|g(Ω)|PpL > 1), amplification of the spontaneous scattering takes
place. The general formula (74) is well approximated by

S(L, ωp − Ω)

h̄
(
ωp − Ω

) =
e2�[g(Ω)]L

8π

[∣∣∣∣
χ(Ω)γPp

g(Ω)

∣∣∣∣
2

+
|g�(ωp, Ω)|γPp

2�[g(Ω)]

|g(ω) + i sign(Ω)Δk/2|2
|g(Ω)|2

]
.

(77)
In striking contrast with the analysis of Sec. 2.1, this result shows that the Raman anti-Stokes
wave grows at the same rate as the Raman Stokes wave instead of saturating at the power density
value S(L, ωp + |Ω|) = h̄ω

2π mth(|Ω|). This effect is due to the coupling of the RS with the
FWM. Its detailed explanation can be found in (Brainis et al., 2007; Coen et al., 2002). On
the other hand, the exponential amplification of the Stokes wave is completely quenched at
frequencies satisfying ΔkL(Ω) = 0 because the gain g(Ω) vanishes in that case, see Eq. (72)
(Golovchenko et al., 1990; Vanholsbeeck et al., 2003).

4.2 Dual pump configuration
In the dual pump configuration, the coupled-mode equations (66) do not form a closed set.
For this reason, one cannot write an explicit solution as in Sec. 4.1. To study the spontaneous
photon scattering, we apply the first-order perturbation technique introduced in (Brainis,
2009).
We first notice that the first term of the right-hand side of (66) represents the phase evolution
of scattered field, including the cross-phase modulation due to the two pumps. This phase
modulation has no impact on the population of the frequency modes and can be factored out
by writing the total scattered E-field

Esc(z, t) =

√
h̄ω0

4π�0n0c

∫
a(z, Ω) ei[kL(ω0−Ω)+B(Ω−Ωp)γPp1+B(Ω+Ωp)γPp2]ze−i(ω0−Ω)tdΩ, (78)

where a(z, Ω) is the annihilation operator of the frequency mode ω − Ω. Because the exact
phase evolution of the a(z, Ω) has been factored out, the z dependence of a(z, Ω) is only due
to the FPS effect (Brainis, 2009). On the other hand, the scattered field can be written as

Esc(z, t) =
1

2π
√

2�0n0c
eikL(ω0)z−iω0t

∫
Ãsc(z, Ω)eiΩtdΩ, (79)

where we used the fact that E(z, t) =
√

1/(2�0n0c)A(z, t)eikL(ω0)z−iω0t and Eq. (46).
Comparing Eqs. (78) and (79), one sees that

Ãsc(z, Ω) =
√

2πh̄ω0 a(z, Ω) ei[kL(ω0−Ω)−kL(ω0)+B(Ω−Ωp)γPp1+B(Ω+Ωp)γPp2]z. (80)
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In the following, we make the approximation that B(Ω) ≈ 2, see Eq. (55) and χ(Ω) ≈ 1, see
Eq. (48). This approximation consists in neglecting the dispersion of the non linearity. Using
Eq. (80), one obtains the evolution equation for the annihilation operators:

∂
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√
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+ i
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+ i
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fRγPp2
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(81)

where

Δk11(Ω) = kL(ω0 − Ω) + kL(ω0 − 2Ωp + Ω)− 2kL(ω0 − Ωp) + 2γPp1 (82)

Δk22(Ω) = kL(ω0 − Ω) + kL(ω0 + 2Ωp + Ω)− 2kL(ω0 + Ωp) + 2γPp2 (83)

Δk12(Ω) = kL(ω0 − Ω) + kL(ω0 + Ω)− kL(ω0 − Ωp)− kL(ω0 + Ωp) + γPp1 + γPp2 (84)

Δka(Ω) = kL(ω0 + 2Ωp) + kL(ω0 + Ωp)− kL(ω0 − Ωp)− kL(ω0 − Ω) + γPp1 − γPp2 (85)

Δkb(Ω) = kL(ω0 − 2Ωp) + kL(ω0 − Ωp)− kL(ω0 + Ωp)− kL(ω0 − Ω)− γPp1 + γPp2 (86)

Δkc(Ω) = kL(ω0 − Ω − 2Ωp) + kL(ω0 − Ωp)− kL(ω0 + Ωp)− kL(ω0 − Ω) + γPp1 − γPp2

(87)

Δkd(Ω) = kL(ω0 − Ω + 2Ωp) + kL(ω0 − Ωp)− kL(ω0 + Ωp)− kL(ω0 − Ω)− γPp1 + γPp2

(88)

Eq. (81) can be written

ih̄
∂

∂z
a(z, Ω) = [G(z), a(z, Ω)] + ih̄L(z, Ω), (89)

where

L(z, Ω) = i

√
fRγ

2πh̄ω0

[√
Pp1 ei[k(ω0−Ωp)−k(ω0−Ω)−γPp1]z NR(z, Ω − Ωp)

+
√

Pp2 ei[k(ω0+Ωp)−k(ω0−Ω)−γPp2]z NR(z, Ω + Ωp)
]

(90)
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and
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(91)

In Eq. (89), L(z, Ω) represents the Raman scattering from both pumps. Raman scattered
photons contribute incoherently,

SR(L, ωp − Ω)

h̄(ω − Ω)
=

|g�(ωp1, Ω − Ωp)|Pp1L
2π

(
mth(|Ω − Ωp|) + ν(Ω − Ωp)

)

+
|g�(ωp2, Ω + Ωp)|Pp2L

2π

(
mth(|Ω + Ωp|) + ν(Ω + Ωp)

)
,

(92)

to the total scattered photon flux. The [G(z), a(z, Ω)] part of Eq. (89) represents several FPS
processes taking place simultaneously: (i) 2ωp1 → (ωp1 + Ωp − Ω) + (ωp1 − Ωp + Ω), (ii)
2ωp2 → (ωp2 − Ωp − Ω) + (ωp2 + Ωp + Ω), (iii) ωp1 + ωp2 → (ω0 − Ω) + (ω0 + Ω). To see
this explicitly, we writing down the evolution of the quantum state of light in the interaction
picture. The interaction picture is chosen such that the phase evolution of the modes is
part of the operator evolution, while energy transfer from mode to mode is part of the state
evolution. In this interaction picture a(I)(z, Ω) = a(0, Ω) (Brainis, 2009). Therefore the first
order perturbation Dyson expansion gives:

|ψ(L)� =
(

1 +
i
h̄

∫ L

0
G(I)(z)dz

)
|0� = |0�+

∫ ∞

−∞
dΩ

(
ξ11(L, Ω)|1Ω, 12Ωp−Ω�+ ξ12(L, Ω)|1Ω, 1−Ω�+ ξ22(L, Ω)|1Ω, 1−2Ωp−Ω�

) (93)

where

ξ11(L, Ω) = i
1
2
(γPp1L) e−iΔk11(Ω�) L

2 sinc
(

Δk11(Ω�) L
2

)
(94)

ξ12(L, Ω) = i(γ
√

Pp1Pp2L) e−iΔk12(Ω�) L
2 sinc

(
Δk12(Ω�) L

2

)
(95)

ξ22(L, Ω) = i
1
2
(γPp2L) e−iΔk22(Ω�) L

2 sinc
(

Δk22(Ω�) L
2

)
. (96)

The threefold entanglement is a clear signature of the interference between three independent
FPS processes. The spectral density of power due to these FPS processes can be deduced from
the matrix element �ψ(L)|a†(0, Ω)a(0, Ω)|ψ(L)� (Brainis, 2009).
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5. Conclusion

In this chapter, the physics of Raman, Brillouin, and four-photon scattering processes in silica
fibers has been reviewed, as well as their theoretical modeling. It has been shown that a
complete quantum field theory is needed to understand the coupling of theses processes in
the stimulated and spontaneous regimes. Two examples of coupling have been discussed.
The first one was the coupling of the Raman and four-photon scattering processes in a single
pump configuration. In that case, it has been shown that the coupling may have spectacular
consequences in the amplified spontaneous regime, where an unexpected exponential growth
of the anti-Stokes wave is seen. In the second example, the interaction of three FPS processes
in a dual pump configuration has been considered. It has been shown that this configuration
leads to the generation of a threefold entangled bi-photon state of light.
Spontaneous scattering processes are of great importance the context of quantum light
generation and quantum information processing. The methods presented in the chapter apply
to the design of quantum source based on optical fibers: engineering the working principle
(usually four-photon scattering processes) and estimating their figure of merit (usually limited
by the Raman process).
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generation and quantum information processing. The methods presented in the chapter apply
to the design of quantum source based on optical fibers: engineering the working principle
(usually four-photon scattering processes) and estimating their figure of merit (usually limited
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1. Introduction

Nowadays we can see many interesting applications of solitons in different areas of physical
sciences such as plasma physics (1), nonlinear optics (2; 3), Bose-Einstein condensate (4; 5),
fluid mechanics (6), and so on. Solitons are so robust particles that they are unlikely to
breakdown under small perturbations. The most interesting factor about the soliton, however,
is that their interactions with the medium through which it propagates is elastic. Recent
researches on nonlinear optics have shown that dispersion-managed pulse can be more useful
if the pulse is in the form of a power series of a stable localized pulse which is called soliton.
Optical solitons have been the objects of extensive theoretical and experimental studies
during the last four decades, because of their potential applications in long distance
communication. In 1973, the pioneering results of Hasegawa and Tappert (7) proved that
the major constraint in the optical fiber, namely, the group velocity dispersion (GVD) could be
exactly counterbalanced by the self-phase modulation (SPM). SPM is the dominant nonlinear
effect in silica fibers due to the Kerr effect. The theoretical results of Hasegawa and Tappert
were greatly supported by the experimental demonstration of optical solitons by Mollenauer
et al. (8) in 1980. Since then many theoretical and experimental works have been done to
achieve a communication system based on optical solitons.
The solitons, localized-in-time optical pulses, evolve from a nonlinear change in the refractive
index of the material, known as Kerr effect, induced by the light intensity distribution.
When the combined effects of the intensity-dependent refractive index nonlinearity and
the frequency-dependent pulse dispersion exactly compensate for one another, the pulse
propagates without any change in its shape, being self-trapped by the waveguide nonlinearity.
The propagation of optical solitons in a nonlinear dispersive optical fiber is governed by the
well-known completely integrable nonlinear Schrödinger (NLS) equation

i
∂q
∂z

+ �
∂2q
∂τ2 + |q|2q = 0, � = ±1, (1)

where q is the complex amplitude of the pulse envelope, τ and z represent the spatial and
temporal coordinates, and the + and − sign of � before the dispersive term denote the
anomalous and normal dispersive regimes, respectively. In the anomalous dispersive regime,
this equation possesses a bright soliton solution, and in the normal dispersive regime it
possesses dark solitons. The bright soliton and dark soliton solutions can be derived by

3
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the inverse-scattering transform method with vanishing (9; 11) and nonvanishing boundary
conditions (10).
However, if optical pulses are shorter, the standard NLS equation becomes inadequate.
Therefore, some higher-order effects such as third-order dispersion, self-steepening, and
stimulated Raman scattering, will play important roles in the propagation of optical pulses.
In such a case, the governing equation is the one known widely as the higher-order NLS
equation, first derived by Kodama and Hasegawa (12). The effect of these effects in uncoupled
and coupled systems for bright solitons is well explained (13; 14). Inelastic Raman scattering
is due to the delayed response of the medium, which forces the pulse to undergo a frequency
shift which is known as a self-frequency shift. The effect of self-steepening is due to the
intensity-dependent group velocity of the optical pulse, which gives the pulse a very narrow
width in the course of propagation. Because of this, the peak of the pulse will travel more
slowly than the wings.
In practice, the refractive index or the core diameter of the optical fiber are fucntions of the
axial coordinate, which means that the fiber is actually axially inhomogeneous. In this case,
the parameters which characterize the dispersive and nonlinear properties of the fiber exhibit
variations and the corresponding nonlinear wave equations are NLS equations with variable
coefficients. Moreover, the problem of ultrashort pulse propagation in nonlinear and axially
inhomogeneous optical fibers near the zero dispersion point is more complicated because
the high order effects have to be taken into account as well. In order to understand such
phenomena, we consider the higher-order NLS (HNLS) equation with variable coefficients

∂u
∂z

= i(d1
∂2u
∂τ2 + d2|u|2u) + d3

∂3u
∂τ3 + d4

∂(u|u|2)
∂τ

+ d5u
∂|u|2

∂τ
+ d6u, (2)

where u is the slowly varying envelope of the pulse, d1, d2, d3, d4, d5 and d6 are the z-dependent
real parameters related to GVD, SPM, third-order dispersion (TOD), self-steepening, and
stimulated Raman scattering (SRS), and the heat-insulating amplification or loss, respectively.
Though Eq. (2) was first derived in the year 1980s, only for the past few years, it has
attracted much attention among the researchers from both theoretical and experimental points
of view. For example, Porsezian and Nakkeeran (13) derive all parametric conditions for
soliton-type pulse propagation in HNLS equation using the Painlevé analysis, and generalize
the Ablowitz-Kaup-Newell-Segur method to the 3 × 3 eigenvalue problem to construct the
Lax pair for the integrable case. Papaioannou et al. (15) give an analytical treatment of the
effect of axial inhomogeneity on femtosecond solitary waves near the zero dispersion point
which governed by the variable-coefficient HNLS equation. The exact bright and dark soliton
wave solutions of this variable-coefficient equation are derived and their behaviors in the
presence of the inhomogeneity are analyzed. Mahalingam and Porsezian (16) analyze the
propagation of dark solitons with higher-order effects in optical fibers by Painlevé analysis
and Hirota bilinear method. Xu et al. (17) investigate the modulation instability and solitons
on a cw background in an optical fiber with higher-order effects. In addition, there have
recently been several papers giving W-shaped solitary wave solution in the HNLS equation.
However, in recent years the studies of Eq. (2) have not been widespread. In this
chapter, we consider equation (2) again and derive some exact soliton solutions in explicit
form for specified soliton management conditions. We first change the variable-coefficient
HNLS equation into the well-known constant-coefficient HNLS equation through similarity
transformation. Then the Lax pairs for two integrable cases of the constant-coefficient
HNLS equation are constructed explicitly by prolongation technique, and the novel exact
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bright N-soliton solutions for the bright soliton version of HNLS equation are obtained by
Riemann-Hilbert formulation. Finally, we examine the dynamics and present the features
of the optical solitons. It is seen that the bright two-soliton solution of the HNLS equation
behaves in an elastic manner characteristic of all soliton solutions. These results are useful in
the design of transmission lines with spatial parameter variations and soliton management to
future research.

2. Similarity transformation

A direct and efficient method for investigating the variable-coefficient nonlinear wave
equation is to transform them into their constant-coefficient counterparts by similarity
transformation. To do so, we firstly take the similarity transformation (18; 19)

u = ρ q (T, X) ei(a1τ+a2), (3)

to reduce Eq. (2) to the constant-coefficient HNLS equation

∂q
∂T

= i(α1
∂2q
∂X2 + α2|q|2q) + �(α3

∂3q
∂X3 + α4

∂(q|q|2)
∂X

+ α5q
∂|q|2
∂X

), (4)

where q = q(T, X) is the complex amplitude of the pulse envelope, the parameter � (0 < � <
1) denotes the relative width of the spectrum that arises due to the quasi-monochromocity,
α1, α2, α3, α4 and α5 are the real constant parameters. In Eq. (3), ρ, T, a1 and a2 are functions of
z, and X is a function of τ and z.
Substituting Eq. (3) into Eq. (2) and asking q (T, X) to satisfy the constant-coefficient HNLS
equation (4), we have a set of partial differential equations (PDEs)

d1Xττ + 3 d3Xττ a1 = 0, d3Xτ
3 = α3Tz, ρz = d6ρ,

2 d1Xτ a1 + Xz + 3 d3Xτ a1
2 = d3Xτττ , ρ2d4a1 + ρ2d2 = α2Tz,

2 ρ2Xτd4 + ρ2Xτd5 = 2 α4Tz + α5Tz, ρ2Xτd4 + ρ2Xτd5 = α4Tz + α5Tz,

d3 a1
3 + a1zτ + a2z + d1 a1

2 = 0, 3 d3Xτ
2a1 + d1Xτ

2 = α1Tz, Xτ,τ = 0,

where the subscript denotes the derivative with respect to z and τ. Solving this set of PDEs,
we have X = kτ + f and

a1 = c, d1 =
Tz (kα1 − 3 α3c)

k3 , d2 =
Tz (α2k − α4c)

ρ2k
, d3 =

α3Tz

k3 ,

d4 =
α4Tz

ρ2k
, d5 =

α5Tz

ρ2k
, f =

c (3 α3c − 2 kα1) T
k2 , a2 =

(2 α3c − kα1) c2T
k3 ,

where ρ = ρ0 e
∫

d6z, k, ρ0 and c are constants, and T and d6 are arbitrary functions of z. So the
similarity transformation (3) becomes

u = ρ0 e
∫

d6dzq
(

T,
k3τ − 2 ckα1T + 3 c2α3T

k2

)
eic(k3τ+2 c2α3T−ckα1T)/k3

. (5)

Therefore, if we can get the exact soliton solutions of the constant-coefficient HNLS equation
(4) we can obtain the exact soliton solutions for HNLS equation (2) through Eq. (5). In the next
section, we will investigate the integrable condition of equation (4) by prolongation technique.
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and Hirota bilinear method. Xu et al. (17) investigate the modulation instability and solitons
on a cw background in an optical fiber with higher-order effects. In addition, there have
recently been several papers giving W-shaped solitary wave solution in the HNLS equation.
However, in recent years the studies of Eq. (2) have not been widespread. In this
chapter, we consider equation (2) again and derive some exact soliton solutions in explicit
form for specified soliton management conditions. We first change the variable-coefficient
HNLS equation into the well-known constant-coefficient HNLS equation through similarity
transformation. Then the Lax pairs for two integrable cases of the constant-coefficient
HNLS equation are constructed explicitly by prolongation technique, and the novel exact
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bright N-soliton solutions for the bright soliton version of HNLS equation are obtained by
Riemann-Hilbert formulation. Finally, we examine the dynamics and present the features
of the optical solitons. It is seen that the bright two-soliton solution of the HNLS equation
behaves in an elastic manner characteristic of all soliton solutions. These results are useful in
the design of transmission lines with spatial parameter variations and soliton management to
future research.

2. Similarity transformation

A direct and efficient method for investigating the variable-coefficient nonlinear wave
equation is to transform them into their constant-coefficient counterparts by similarity
transformation. To do so, we firstly take the similarity transformation (18; 19)

u = ρ q (T, X) ei(a1τ+a2), (3)

to reduce Eq. (2) to the constant-coefficient HNLS equation

∂q
∂T

= i(α1
∂2q
∂X2 + α2|q|2q) + �(α3

∂3q
∂X3 + α4

∂(q|q|2)
∂X

+ α5q
∂|q|2
∂X

), (4)

where q = q(T, X) is the complex amplitude of the pulse envelope, the parameter � (0 < � <
1) denotes the relative width of the spectrum that arises due to the quasi-monochromocity,
α1, α2, α3, α4 and α5 are the real constant parameters. In Eq. (3), ρ, T, a1 and a2 are functions of
z, and X is a function of τ and z.
Substituting Eq. (3) into Eq. (2) and asking q (T, X) to satisfy the constant-coefficient HNLS
equation (4), we have a set of partial differential equations (PDEs)

d1Xττ + 3 d3Xττ a1 = 0, d3Xτ
3 = α3Tz, ρz = d6ρ,

2 d1Xτ a1 + Xz + 3 d3Xτ a1
2 = d3Xτττ , ρ2d4a1 + ρ2d2 = α2Tz,

2 ρ2Xτd4 + ρ2Xτd5 = 2 α4Tz + α5Tz, ρ2Xτd4 + ρ2Xτd5 = α4Tz + α5Tz,

d3 a1
3 + a1zτ + a2z + d1 a1

2 = 0, 3 d3Xτ
2a1 + d1Xτ

2 = α1Tz, Xτ,τ = 0,

where the subscript denotes the derivative with respect to z and τ. Solving this set of PDEs,
we have X = kτ + f and

a1 = c, d1 =
Tz (kα1 − 3 α3c)

k3 , d2 =
Tz (α2k − α4c)

ρ2k
, d3 =

α3Tz

k3 ,

d4 =
α4Tz

ρ2k
, d5 =

α5Tz

ρ2k
, f =

c (3 α3c − 2 kα1) T
k2 , a2 =

(2 α3c − kα1) c2T
k3 ,

where ρ = ρ0 e
∫

d6z, k, ρ0 and c are constants, and T and d6 are arbitrary functions of z. So the
similarity transformation (3) becomes

u = ρ0 e
∫

d6dzq
(

T,
k3τ − 2 ckα1T + 3 c2α3T

k2

)
eic(k3τ+2 c2α3T−ckα1T)/k3

. (5)

Therefore, if we can get the exact soliton solutions of the constant-coefficient HNLS equation
(4) we can obtain the exact soliton solutions for HNLS equation (2) through Eq. (5). In the next
section, we will investigate the integrable condition of equation (4) by prolongation technique.
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3. Prolongation structures of the constant-coefficient HNLS equation

In this section, we investigate the prolongation structures of the constant-coefficient HNLS
equation (4) by means of the prolongation technique (20–22). Firstly, the complex conjugate
of the dependent variable q in Eq. (4) is denoted as q∗ = u. Then, Eq. (4) and its conjugate
become

iα1qXX + iα2q2u + �[α3qXXX + (α4 + α5)q2uX + (2α4 + α5)quqX]− qT = 0, (6a)

−iα1uXX − iα2u2q + �[α3uXXX + (α4 + α5)u
2qX + (2α4 + α5)quuX]− uT = 0. (6b)

Next we introduce four new variables p, r, v and w by

qX = p, pX = r, uX = v, vX = w, (7)

and define a set of differential 2-form I = {θ1, θ2, θ3, θ4, θ5, θ6} on solution manifold M =
{T, X, u, v, w, p, q, r} , where

θ1 = dq ∧ dT + pdT ∧ dX, θ2 = dp ∧ dT + rdT ∧ dX,

θ3 = du ∧ dT + vdT ∧ dX, θ4 = dv ∧ dT + wdT ∧ dX,

θ5 = dq ∧ dX + α3dr ∧ dT + ρ1dX ∧ dT, θ6 = du ∧ dX + α3dw ∧ dT + ρ2dX ∧ dT,

with
ρ1 = iα1r + iα2q2u + �[(α4 + α5)q

2v + (2α4 + α5)qup],

ρ2 = −iα1w − iα2u2q + �[(α4 + α5)u
2 p + (2α4 + α5)quv].

When these differential 2-forms restricted on the solution manifold M become zero, we
recover the original constant-coefficient HNLS equation (4). It is easy to verify that I is a
differential closed idea, i.e. dI ⊂ I.
We further introduce n differential 1-forms

Ωi = dζ i − F̃idX − G̃idT, (8)

where i = 1, 2, · · · , n, F̃i and G̃i are functions of u, v, w, p, q, r, ζ i and are assumed to be both
linearly dependent on ζ i, namely F̃i = Fiζ i, G̃i = Giζ i. For the sake of simplification, we drop
the indices by rewriting ζ i as ζ, Fi as F and Gi as G. When restricting on solution manifold, the
differential 1-forms Ωi are null, i.e. Ωi = 0 which is just the linear spectral problem ζX = Fζ
and ζT = Gζ.
Following the well-known prolongation technique, the extended set of differential form Ĩ =

I
⋃{

Ωi
}

must be a closed ideal under exterior differentiation, i.e. dĨ ⊂ Ĩ. Because dI ⊂ I ⊂ Ĩ,

we only need to let d
{

Ωi
}
⊂ Ĩ, which denotes that

dΩi =
6

∑
j=1

f i
j θ j + ηi ∧ Ωi, i = 1, 2, · · · , n, (9)

where f i
j (j = 1, 2, 3, 4, 5, 6) are functions of (T, X), and ηi = gi(T, X)dX + hi(T, X)dT are

differential 1-forms.

52 Recent Progress in Optical Fiber Research Optical Solitons in a Nonlinear Fiber
Medium with Higher-Order Effects 5

When Eq. (9) is written out in detail, after dropping the indices we have the following PDEs
about F and G as

Gr = �α3Fq, Gw = �α3Fu,

Gq p + Gpr + Guv + Gvw − Fq

[
iα1r + iα2q2u + � (α4 + α5) q2v + � (2 α4 + α5) qup

]
(10)

−Fu

[
−iα1w − iα2u2q + � (α4 + α5) u2p + � (2 α4 + α5) quv

]
− [F, G] = 0,

with [F, G] = FG − GF.
Solving Eq. (10), we have the expressions of F and G as

F = x0 + x1q + x2u, (11)

G = � α3x1r + � α3x2w + vq� α3x5 + v� α3x4 − pu� α3x5 + p� α3x3 − iquα1x5

+ipx1α1 + qx2� u2α4 +
2
3

qx2� u2α5 +
1
2

� α3u2x13 + q2� x1uα4 +
2
3

q2� x1uα5

+qu� α3x8 + qu� α3x10 + � α3x7u +
1
2

q2� α3x9 + q� α3x6 + iqα1x3 − iα1x4u − ivx2α1 + x15,

where L = {x0, x1, x2, · · · , x15} is an incomplete Lie algebra which is called prolongation
algebra and it satisfies the following commutation relations

[x2, x5] = x14, x2α5 = 3 α3x14, 2 x8 + x10 = x12, x1α5 + 3 α3x11 = 0,

[x0, x1] = x3, [x0, x2] = x4, [x0, x3] = x6, [x0, x4] = x7, [x0, x5] = x8,

[x1, x2] = x5, [x1, x3] = x9, [x1, x4] = x10, [x1, x5] = x11, [x2, x3] = x12,

[x2, x4] = x13, � α3[x0, x9] + 2 iα1x9 + 2 � α3[x1, x6] = 0, [x1, x15] + iα1x6 + � α3[x0, x6],

α3[x1, x9] = 0, α3[x2, x13] = 0, [x0, x15] = 0, 2 � α3[x2, x7] + � α3[x0, x13] = 2 iα1x13,

[x2, x15] + � α3[x0, x7] = iα1x7, 6 � α3([x0, x10] + [x1, x7] + [x2, x6] + [x0, x8]) + 6 iα1x8 = 0,

(6 � [x1, x8] + 6 � [x1, x10] + 3 � [x2, x9]) α3
2 + (4 � α5x3 + 6 � α4x3 + 6 ix1α2) α3 + 2 iα1x1α5 = 0,

(6 � [x2, x10] + 3 � [x1, x13] + 6 � [x2, x8]) α3
2 +(4 � α5x4 + 6 � α4x4 − 6 ix2α2) α3 − 2 iα1x2α5 = 0.

It is known that nontrivial matrix representations of prolongation algebra L correspond to
nontrivial prolongation structures. To find the matrix representation of L, following the
procedure of Fordy (23), we try to embed it into Lie algebra sl(n, C). Starting from the
case of n = 2, we found that sl(2, C) is the whole algebra for some special coefficients
αj(j = 1, 2, 3, 4, 5). For the case of n = 3, we can also find that sl(3, C) will be the whole
algebra for some other special coefficients αj(j = 1, 2, 3, 4, 5). In this paper, we only examine
the case of sl(2, C) algebra.
From the above commutation relations, we have the special relations among elements x1, x2
and x5 as

[x2, x5] =
α5

3α3
x2, [x1, x5] = − α5

3α3
x1, [x1, x2] = x5, (12)

from which we know that x1 and x2 are nilpotent elements and x5 is a neutral element. So we
have α5 = ±6 δ2α3 and

x1 =

(
0 δ

0 0

)
, x2 =

(
0 0

±δ 0

)
, x5 =

(±δ2 0

0 ∓δ2

)
, (13)
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We further introduce n differential 1-forms
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where i = 1, 2, · · · , n, F̃i and G̃i are functions of u, v, w, p, q, r, ζ i and are assumed to be both
linearly dependent on ζ i, namely F̃i = Fiζ i, G̃i = Giζ i. For the sake of simplification, we drop
the indices by rewriting ζ i as ζ, Fi as F and Gi as G. When restricting on solution manifold, the
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we only need to let d
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⊂ Ĩ, which denotes that
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− [F, G] = 0,

with [F, G] = FG − GF.
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where L = {x0, x1, x2, · · · , x15} is an incomplete Lie algebra which is called prolongation
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It is known that nontrivial matrix representations of prolongation algebra L correspond to
nontrivial prolongation structures. To find the matrix representation of L, following the
procedure of Fordy (23), we try to embed it into Lie algebra sl(n, C). Starting from the
case of n = 2, we found that sl(2, C) is the whole algebra for some special coefficients
αj(j = 1, 2, 3, 4, 5). For the case of n = 3, we can also find that sl(3, C) will be the whole
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x2, [x1, x5] = − α5
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x1, [x1, x2] = x5, (12)
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0 ∓δ2
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with δ a nonzero constant. Substituting (13) into the commutation relations of prolongation
algebra L, we finally get the 2× 2 matrix representations of F and G. Therefore, we obtain two
integrable HNLS equations with 2 × 2 spectral problems.
When α2 = 2 δ2α1, α4 = 6 δ2α3 and α5 = −6 δ2α3, Eq. (4) becomes the bright soliton version of
Hirota equation

qT = iα1qXX + 2 iα1δ2|q|2q + � α3qXXX + 6 �δ2α3 |q|2qX, (14)

with linear spectral problem
ζX = Fζ, ζT = Gζ, (15)

and

F =

( −iλ δq

−δq∗ iλ

)
, (16)

G = 4 iα3�λ3

(
1 0

0 −1

)
− 2 λ2

(
iα1 2� α3δ q

−2 � α3δq∗ −iα1

)

+ 2 λ

( −i� α3δ2|q|2 α1δq − i� α3δqX

−α1δq∗ − i� α3δq∗X i� α3δ2|q|2

)
(17)

+

(
� α3δ2qXq∗ − � α3δ2q∗Xq + iα1δ2|q|2 � α3δqXX + iα1δqX + 2 �δ3α3 |q|2q

iα1δq∗X − � α3δq∗XX − 2 �δ3α3 |q|2q∗ � α3δ2q∗Xq − � α3δ2qXq∗ − iα1δ2|q|2

)
,

where λ is a spectral parameter and ζ(T, X, λ) is a vector or matrix function.
When α2 = −2 δ2α1, α4 = −6 δ2α3 and α5 = 6 δ2α3, Eq. (4) becomes the dark soliton version
of Hirota equation

qT = iα1qXX − 2 iδ2α1|q|2q + � α3qXXX − 6 � δ2α3|q|2qX, (18)

with linear spectral problem Eq. (15) and

F =

(−iλ δq

δq∗ iλ

)
, (19)

G = 4 i� λ3α3

(
1 0

0 −1

)
− 2λ2

(
iα1 2� α3δ q

2 � α3δq∗ −iα1

)

+ 2λ

(
i� α3δ2|q|2 −i� α3δqX + α1δq

α1δq∗ + i� α3δq∗X −i� α3δ2|q|2

)
(20)

+

(
� α3δ2q∗Xq − � α3δ2qXq∗ − iα1δ2|q|2 � α3δqXX + iα1δqX − 2 � δ3α3|q|2q

� α3δq∗XX − iα1δq∗X − 2 � δ3α3|q|2q∗ � α3δ2qXq∗ − � α3δ2q∗Xq + iα1δ2|q|2

)
.
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4. The bright soliton solutions for Eq. (14)

In this section, we propose the N-bright soliton solutions of Eq. (14) using the
Riemann-Hilbert formulation (24–28). Let us consider Eq. (14) for localized solutions, i.e.
assuming that potential function q decay to zero sufficiently fast as X, T → ±∞. In the
Riemann-Hilbert formulation, we treat ζ as a fundamental matrix of the two linear equations
in (15). From (15) we note that when X, T → ±∞, one has ζ = e−iλΛX+(4 iα3�λ3−2i λ2α1)ΛT with
Λ = diag(1,−1). This motivates us to introduce the variable transformation

ζ = Je−iλΛX+(4 iα3�λ3−2i λ2α1)ΛT, (21)

where J is (X, T)-independent at infinity. Inserting (21) into (15) with (16)-(17), we get

JX = −iλ[Λ, J] + δQJ, (22a)

JT = −(2i α1λ2 − 4 iα3�λ3)[Λ, J] + VJ, (22b)

with

Q =

(
0 q

−q∗ 0

)
, V = (2 λα1δ − 4 λ2� α3δ)Q + 2 λ

(−i� α3δ2|q|2 −i� α3δqX

−i� α3δq∗X i� α3δ2|q|2

)

+

(
� α3δ2qXq∗ − � α3δ2q∗Xq + iα1δ2|q|2 � α3δqXX + iα1δqX + 2 �δ3α3 |q|2q

iα1δq∗X − � α3δq∗XX − 2 �δ3α3 |q|2q∗ � α3δ2q∗Xq − � α3δ2qXq∗ − iα1δ2|q|2

)
.

Here [Λ, J] = ΛJ − JΛ is the commutator, tr(Q) = tr(V) = 0 and

Q† = −Q, V† = −V, (23)

where † represents the Hermitian of a matrix.
In what folows, we consider the scattering problem of the Eq. (22a). By doing so, the variable
T is fixed and is a dummy variable. We first introduce the matrix Jost solutions J±(X, λ) of
(22a) with the asymptotic condition

J± → I, when X → ±∞, (24)

where I is a 2 × 2 unit matrix. Here the subscripts in J± refer to which end of the X-axis the
boundary conditions are set. Then due to tr(Q) = 0 and Abel’s formula we have det(J±) = 1
for all X. Next we denote E = e−iλΛX. Since Ψ ≡ J+E and Φ ≡ J−E are both solutions of the
first equation in (15), they must be linearly related, i.e.

J−E = J+ES(λ), λ ∈ R (25)

where

S(λ) =
(

s11 s12
s21 s22

)
, λ ∈ R

is the scattering matrix, and R is the set of real numbers. Notice that det(S(λ)) = 1 since
det(J±) = 1. If we denote (Φ, Ψ) as a collection of columns,

Φ = [φ1, φ2], Ψ = [ψ1, ψ2], (26)
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Hirota equation
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with linear spectral problem
ζX = Fζ, ζT = Gζ, (15)

and

F =

( −iλ δq

−δq∗ iλ

)
, (16)

G = 4 iα3�λ3

(
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)
− 2 λ2

(
iα1 2� α3δ q

−2 � α3δq∗ −iα1

)

+ 2 λ

( −i� α3δ2|q|2 α1δq − i� α3δqX

−α1δq∗ − i� α3δq∗X i� α3δ2|q|2

)
(17)

+

(
� α3δ2qXq∗ − � α3δ2q∗Xq + iα1δ2|q|2 � α3δqXX + iα1δqX + 2 �δ3α3 |q|2q

iα1δq∗X − � α3δq∗XX − 2 �δ3α3 |q|2q∗ � α3δ2q∗Xq − � α3δ2qXq∗ − iα1δ2|q|2

)
,

where λ is a spectral parameter and ζ(T, X, λ) is a vector or matrix function.
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4. The bright soliton solutions for Eq. (14)

In this section, we propose the N-bright soliton solutions of Eq. (14) using the
Riemann-Hilbert formulation (24–28). Let us consider Eq. (14) for localized solutions, i.e.
assuming that potential function q decay to zero sufficiently fast as X, T → ±∞. In the
Riemann-Hilbert formulation, we treat ζ as a fundamental matrix of the two linear equations
in (15). From (15) we note that when X, T → ±∞, one has ζ = e−iλΛX+(4 iα3�λ3−2i λ2α1)ΛT with
Λ = diag(1,−1). This motivates us to introduce the variable transformation

ζ = Je−iλΛX+(4 iα3�λ3−2i λ2α1)ΛT, (21)

where J is (X, T)-independent at infinity. Inserting (21) into (15) with (16)-(17), we get

JX = −iλ[Λ, J] + δQJ, (22a)

JT = −(2i α1λ2 − 4 iα3�λ3)[Λ, J] + VJ, (22b)

with

Q =

(
0 q

−q∗ 0

)
, V = (2 λα1δ − 4 λ2� α3δ)Q + 2 λ

(−i� α3δ2|q|2 −i� α3δqX

−i� α3δq∗X i� α3δ2|q|2

)

+

(
� α3δ2qXq∗ − � α3δ2q∗Xq + iα1δ2|q|2 � α3δqXX + iα1δqX + 2 �δ3α3 |q|2q

iα1δq∗X − � α3δq∗XX − 2 �δ3α3 |q|2q∗ � α3δ2q∗Xq − � α3δ2qXq∗ − iα1δ2|q|2

)
.

Here [Λ, J] = ΛJ − JΛ is the commutator, tr(Q) = tr(V) = 0 and

Q† = −Q, V† = −V, (23)

where † represents the Hermitian of a matrix.
In what folows, we consider the scattering problem of the Eq. (22a). By doing so, the variable
T is fixed and is a dummy variable. We first introduce the matrix Jost solutions J±(X, λ) of
(22a) with the asymptotic condition

J± → I, when X → ±∞, (24)

where I is a 2 × 2 unit matrix. Here the subscripts in J± refer to which end of the X-axis the
boundary conditions are set. Then due to tr(Q) = 0 and Abel’s formula we have det(J±) = 1
for all X. Next we denote E = e−iλΛX. Since Ψ ≡ J+E and Φ ≡ J−E are both solutions of the
first equation in (15), they must be linearly related, i.e.

J−E = J+ES(λ), λ ∈ R (25)

where

S(λ) =
(

s11 s12
s21 s22

)
, λ ∈ R

is the scattering matrix, and R is the set of real numbers. Notice that det(S(λ)) = 1 since
det(J±) = 1. If we denote (Φ, Ψ) as a collection of columns,

Φ = [φ1, φ2], Ψ = [ψ1, ψ2], (26)
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by using the same formulation as (24; 25; 27), we have the Jost solution

P+ = [φ1, ψ2]e
iλΛX = J−H1 + J+H2, (27)

is analytic in λ ∈ C+, and Jost solution

P− = e−iλΛX
[

φ̂1
ψ̂2

]
= H1 J−1

− + H2 J−1
+ , (28)

is analytic in λ ∈ C−, with

Φ−1 =

[
φ̂1
φ̂2

]
, Ψ−1 =

[
ψ̂1
ψ̂2

]
,

and
H1 = diag(1, 0), H2 = diag(0, 1).

In addition, it is easy to see that

P+(X, λ) → I, as λ ∈ C+ → ∞, (29)

and
P−(X, λ) → I, as λ ∈ C− → ∞. (30)

In addition, if we express S−1 as

S−1 =

(
ŝ11 ŝ12
ŝ21 ŝ22

)
, λ ∈ R,

from det(S(λ)) = 1 we have

ŝ11 = s22, ŝ22 = s11, ŝ12 = −s12, ŝ21 = −s21. (31)

Hence we have constructed two matrix functions P+ and P− which are analytic in C+ and
C−, respectively. On the real line, using Eqs. (25), (27) and (28), it is easily to see that

P−(X, λ)P+(X, λ) = G(X, λ), λ ∈ R, (32)

with

G = E(H1 + H2S)(H1 + S−1H2)E
−1 = E

(
1 ŝ12

s21 1

)
E−1.

This determines a matrix Riemann-Hilbert problem with asymptotics

P±(X, λ) → I, as λ → ∞, (33)

which provide the canonical normalization condition for this Riemann-Hilbert problem. If
this problem can be solved, one can readily reconstruct the potential q(X, T) as follows. Notice
that P+ is the solution of the spectral problem (22a). Thus if we expand P+ at large λ as

P+(X, λ) = I +
1
λ

P+
1 (X) + O(λ−2), λ → ∞, (34)

and inserting this expansion into (22a), then comparing O(1) terms in (34), we find that

δQ = i[Λ, P+
1 ] =

(
0 2iP12

−2iP21 0

)
. (35)

56 Recent Progress in Optical Fiber Research Optical Solitons in a Nonlinear Fiber
Medium with Higher-Order Effects 9

Thus, recalling the definition of Q the potentials q is reconstructed immediately as

q = 2iP12/δ, (36)

where P+
1 = (Pij). In addition, from the definitions of P+, P− and Eq. (25) we have

detP+ = ŝ22 = s11, detP− = s22 = ŝ11. (37)

The symmetry properties of the potential Q and V in (23) give rise to symmetry properties in
the scattering matrix as well as in the Jost functions. In fact, after some computation we have
J± satisfies the involution property

J†±(X, λ∗) = J−1± (X, λ), (38)

analytic solutions P± satisfy the involution property

(P+)†(λ∗) = P−(λ), (39)

and S satisfies the involution property

S†(λ∗) = S−1(λ). (40)

Let λk and λ̄k are zero points of detP+ and detP−, respectively. We see from (37) that (λk, λ̄k)
are zeros of the scattering coefficients ŝ22(λ) and s22(λ). Due to the above involution property,
we have the symmetry relation

λ̄k = λ∗
k . (41)

For simplicity, we assume that all zeros
{
(λk, λ̄k), k = 1, 2, ·, N

}
are simple zeros of ŝ22(λ) and

s22(λ), then each kernal of P+(λk) and P−(λ̄k) contains only a single column vector vk and
row vector v̄k,

P+(λk)vk = 0, v̄kP−(λ̄k) = 0.

Taking the Hermitian of the above equations and using the involution properties, we have

v̄k = v†
k . (42)

To obtain the soliton solutions, we set G = I in (32). In this case, the solutions to this special
Riemann-Hilbert problem have been derived in (25; 26) as

P+
1 (T, X, λ) =

N

∑
j,k=1

vj

(
M−1

)
jk

v̄k, (43)

where

Mjk =
v̄jvk

λ̄j − λk
. (44)

The zeros λk and λ̄k are T-independent. To find the spatial and temporal evolutions for vectors
vk(T, X), we take the X-derivative to equation P+vk = 0. By using (22a), one gets

P+(X, λk)(
∂vk
∂X

+ iλkΛvk) = 0, (45)
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thus we have
dvk
dX

+ iλkΛvk = 0. (46)

Similarly, taking T-derivative to equation P+vk = 0 and using (22b), one has

P+(T, X, λk)(
∂vk
∂T

+ (2i α1λk
2 − 4 iα3�λk

3)vk) = 0, (47)

thus we have
∂vk
∂T

+ (2i α1λk
2 − 4 iα3�λk

3)vk = 0. (48)

Solving (46) and (48) we get

vk(T, X) =e−iλkΛX+(4 iα3�λk
3−2i λk

2α1)ΛTvk0, (49a)

v̄k(T, X) =v̄k0eiλkΛX+(−4 iα3�λk
3+2i λk

2α1), (49b)

where (vk0, v̄k0) are constant vectors.

In summary, the N-bright soliton solutions to Eq. (14) are obtained from the analytical
functions P+

1 in (43) together with the potential reconstruction formula (36) as

q(T, X) = 2iP12/δ = 2i

⎛
⎝ N

∑
j,k=1

vj

�
M−1

�
jk

v̄k

⎞
⎠

12

/δ, (50)

where the vectors vj are given by (49). Without loss of generality, we take vk0 = [bk, 1]
�

with
bk constants. And if we denote

ξk = −iλkX + (4 iα3�λk
3 − 2i λk

2α1)T, (51)

the general N-soliton solution to Eq. (14) can be written out explicitly as

q(T, X) =
2i
δ

N

∑
j,k=1

bje
ξ j−ξ∗

k (M−1)jk, (52)

with
Mjk =

1
λ∗

j − λk

�
b∗j ckeξk+ξ∗

j − e−ξk−ξ∗
j

�
. (53)

In what follows, we investigate the dynamics of the one-soliton and two-soliton solutions in
Eqs. (14) in detail.

4.1 Examples of single and two bright solitons in Eq. (14)
To get the single bright soliton solution for Eq. (14), we set N = 1 in (52) to have

q(T, X) =
2i(λ∗

1 − λ1)

δ

b1eξ1−ξ∗
1

e−ξ1−ξ∗
1 + |b1|2eξ1+ξ∗

1
. (54)

If setting λ1 = ζ1 + iη1, b1 = e−2η1 X0+iω0 , the single soliton solution (54) can be rewritten as

q(T, X) =
2η1

δ
sech[2 η1(X +

�
4 α3� η1

2 + 4 α1ζ1 − 12 α3� ζ1
2
�

T − X0)] expiθ , (55)
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Fig. 1. (color online). Evolution of single soliton |q(T, X)| in (55) with parameters (56). It is
similar to single soliton in standard NLS equation.

Fig. 2. (color online). The shapes of two-soliton solutions |q(T, X)| in (52) with (53). (a)
soliton collision with parameters (57); (b) bound state with parameters (58).

with θ = −2ζ1 X +
(
−4 α1ζ1

2 + 4 α1η1
2 + 8 α3� ζ1

3 − 24 α3� ζ1 η1
2
)

T + ω0, and X0, ω0 are
constants. This solution is similar to the solitary wave solution in the standard NLS equation
(1). Its amplitude function has the shape of a hyperbolic secant with peak amplitude 2η1/δ,
and its velocity depends on several parameters, which is 12 α3� ζ1

2 − 4 α3� η1
2 − 4 α1ζ1. The

phase θ of this solution depends linearly both on space X and time T. We show this single
soliton solution in Fig. 1 with parameters

ζ1 = 0.5, η1 = 0.1, X0 = 1.5, ω0 = 2, δ = 1, α1 = 0.5, α3 = 1, � = 1. (56)

The two-soliton solution in Eq. (14) corresponds to N = 2 in the general N-soliton solution
(52) with (53). This solution can also be written out explicitly, however, we prefer to showing
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Fig. 1. (color online). Evolution of single soliton |q(T, X)| in (55) with parameters (56). It is
similar to single soliton in standard NLS equation.

Fig. 2. (color online). The shapes of two-soliton solutions |q(T, X)| in (52) with (53). (a)
soliton collision with parameters (57); (b) bound state with parameters (58).
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Fig. 3. (color online). Evolution of single soliton solutions |u(z, τ)| in HNLS equation (2) with
controlable coefficients (59) and (62), respectively. (a) Soliton solution (61) with parameter
(56) and ρ0 = 0.5, c = 1, k = 2. (b) Soliton solution (64) with parameter (59) and
ρ0 = 0.5, c = 1, k = 2.

their behaviors by figures, see Fig. 2(a)-(b). Below we take λ1 = ζ1 + iη1 and λ2 = ζ2 + iη2
and examine this solution with various velocity parameters: one is 12 α3� ζ1

2 − 4 α3� η1
2 −

4 α1ζ1 = 12 α3� ζ2
2 − 4 α3� η2

2 − 4 α1ζ2, i.e. the collision between two solitons, and the other
is 12 α3� ζ1

2 − 4 α3� η1
2 − 4 α1ζ1 �= 12 α3� ζ2

2 − 4 α3� η2
2 − 4 α1ζ2, i.e. bound state. In Fig. 2(a),

the two soliton parameters in Eq. (52) with (53) are

α1 = 0.5, α3 = 0.8, � = 1, δ = 1, λ1 = 0.2 + 0.7i, λ2 = −0.1 + 0.5i, b1 = 1, b2 = 1. (57)

Under these parameters, the velocity of the two solitons are different. It is observed that
interactions between two soliton don’t change the shape and velocity of the solitons, and there
is no energy radiation emitted to the far field. Thus the interaction of these solitons is elastic,
which is a remarkable property which signals that the HNLS equation (14) is integrable.
Fig. 2(b) displays a bound state in Eq. (14), and the soliton parameters here are

α1 = 0.5, α3 = 0.8, � = 1, δ = 1, λ1 = 0.3i, λ2 = −0.1 + 0.4272i, b1 = 1, b2 = 1. (58)

Under these parameters, the two constituent solitons have equal velocities, thus they will stay
together to form a bound state which moves at the common speed. It can be seen that the
width of this solution changes periodically with time, thus this solution is called breather
soliton.

5. Dynamics of solitons in HNLS equation (2)

In what follows, we investigate the dynamic behavior of solitons in the variable-coefficients
HNLS equation (2) with special soliton management parameters dj(j = 1, 2, 3, 4, 5, 6).

5.1 Single soliton solutions
We choose two cases of soliton management parameters dj(j = 1, 2, 3, 4, 5, 6) to study
the dynamics of the single solitons in HNLS equation (2). Firstly, if we take the soliton
management parameters to satisfy

d1 = 1.6 (kα1 − 3 α3c) z/k3, d2 = 1.6 (α2k − α4c) z/ρ0
2k,
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Fig. 4. (color online). The two-soliton solutions |u(z, τ)| in HNLS equation (2) with
coefficients (59). (a) soliton collision with parameter (57) and ρ0 = 0.5, c = 1, k = 2; (b) bound
state with parameter (58) and ρ0 = 0.5, c = 1, k = 2.

d3 = 1.6 α3z/k3, d4 = 1.6 α4z/ρ0
2k, d5 = 1.6 α5z/ρ0

2k, d6 = 0, (59)

the variables ρ, T and X in similarity transformation (3) are

ρ = ρ0, T = 0.8 z2, X = kτ + (2.4 c2α3 − 1.6 ckα1)z
2/k2. (60)

So the single soliton solution in HNLS equation (2) with coefficients (59) is

u(z, τ) = ρ0q (T, X) eic(k3τ+1.6 c2α3 z2−0.8 ckα1z2)/k3
, (61)

where q (T, X) satisfies Eq. (55) and T, X satisfy Eq. (60).
Secondly, if we take the soliton management parameters to satisfy

d1 = 0.8 cos (0.8 z) (kα1 − 3 α3c) /k3, d2 = 0.8 cos (0.8 z) (α2k − α4c) /ρ0
2k, d6 = 0,

d3 = 0.8 α3 cos (0.8 z) /k3, d4 = 0.8 α4 cos (0.8 z) /ρ0
2k, d5 = 0.8 α5 cos (0.8 z) /ρ0

2k, (62)

the variables ρ, T and X in similarity transformation (3) are

ρ = ρ0, T = sin (0.8 z) , X = kτ + (3 c2α3 − 2 ckα1) sin (0.8 z) /k2. (63)

In this case the single soliton solution in HNLS equation (2) with coefficients (62) is

u(z, τ) = ρ0q (T, X) eic(k3τ+2 c2α3 sin(0.8 z)−ckα1 sin(0.8 z))/k3
, (64)

where q (T, X) satisfies Eq. (55) and T, X satisfy Eq. (63).
In Fig. 3, we show the single soliton solutions (61) and (64) in HNLS equation (2) with
coefficients (59) and (62), respectively. Here the solution parameters are given in (56) and
ρ0 = 0.5, c = 1, k = 2. It is observered that when the soliton management parameters
dj(j = 1, 2, 3, 4, 5) are linearly dependent on variable z and d6 = 0 (see Eq. (59)), the trajectory
of the optical soliton is a localized parabolic curve, as shown in Fig. 3(a). When the soliton
management parameters dj(j = 1, 2, 3, 4, 5) are periodically dependent on variable z and
d6 = 0 (see Eq. (62)), the trajectory of the optical soliton is a periodical localized nonlinear
wave, as shown in Fig. 3(b).
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Fig. 3. (color online). Evolution of single soliton solutions |u(z, τ)| in HNLS equation (2) with
controlable coefficients (59) and (62), respectively. (a) Soliton solution (61) with parameter
(56) and ρ0 = 0.5, c = 1, k = 2. (b) Soliton solution (64) with parameter (59) and
ρ0 = 0.5, c = 1, k = 2.

their behaviors by figures, see Fig. 2(a)-(b). Below we take λ1 = ζ1 + iη1 and λ2 = ζ2 + iη2
and examine this solution with various velocity parameters: one is 12 α3� ζ1

2 − 4 α3� η1
2 −

4 α1ζ1 = 12 α3� ζ2
2 − 4 α3� η2
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is 12 α3� ζ1

2 − 4 α3� η1
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2 − 4 α3� η2
2 − 4 α1ζ2, i.e. bound state. In Fig. 2(a),
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α1 = 0.5, α3 = 0.8, � = 1, δ = 1, λ1 = 0.2 + 0.7i, λ2 = −0.1 + 0.5i, b1 = 1, b2 = 1. (57)

Under these parameters, the velocity of the two solitons are different. It is observed that
interactions between two soliton don’t change the shape and velocity of the solitons, and there
is no energy radiation emitted to the far field. Thus the interaction of these solitons is elastic,
which is a remarkable property which signals that the HNLS equation (14) is integrable.
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α1 = 0.5, α3 = 0.8, � = 1, δ = 1, λ1 = 0.3i, λ2 = −0.1 + 0.4272i, b1 = 1, b2 = 1. (58)

Under these parameters, the two constituent solitons have equal velocities, thus they will stay
together to form a bound state which moves at the common speed. It can be seen that the
width of this solution changes periodically with time, thus this solution is called breather
soliton.

5. Dynamics of solitons in HNLS equation (2)

In what follows, we investigate the dynamic behavior of solitons in the variable-coefficients
HNLS equation (2) with special soliton management parameters dj(j = 1, 2, 3, 4, 5, 6).

5.1 Single soliton solutions
We choose two cases of soliton management parameters dj(j = 1, 2, 3, 4, 5, 6) to study
the dynamics of the single solitons in HNLS equation (2). Firstly, if we take the soliton
management parameters to satisfy

d1 = 1.6 (kα1 − 3 α3c) z/k3, d2 = 1.6 (α2k − α4c) z/ρ0
2k,
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Fig. 4. (color online). The two-soliton solutions |u(z, τ)| in HNLS equation (2) with
coefficients (59). (a) soliton collision with parameter (57) and ρ0 = 0.5, c = 1, k = 2; (b) bound
state with parameter (58) and ρ0 = 0.5, c = 1, k = 2.
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2k, d5 = 1.6 α5z/ρ0

2k, d6 = 0, (59)

the variables ρ, T and X in similarity transformation (3) are

ρ = ρ0, T = 0.8 z2, X = kτ + (2.4 c2α3 − 1.6 ckα1)z
2/k2. (60)

So the single soliton solution in HNLS equation (2) with coefficients (59) is

u(z, τ) = ρ0q (T, X) eic(k3τ+1.6 c2α3 z2−0.8 ckα1z2)/k3
, (61)

where q (T, X) satisfies Eq. (55) and T, X satisfy Eq. (60).
Secondly, if we take the soliton management parameters to satisfy

d1 = 0.8 cos (0.8 z) (kα1 − 3 α3c) /k3, d2 = 0.8 cos (0.8 z) (α2k − α4c) /ρ0
2k, d6 = 0,

d3 = 0.8 α3 cos (0.8 z) /k3, d4 = 0.8 α4 cos (0.8 z) /ρ0
2k, d5 = 0.8 α5 cos (0.8 z) /ρ0

2k, (62)

the variables ρ, T and X in similarity transformation (3) are

ρ = ρ0, T = sin (0.8 z) , X = kτ + (3 c2α3 − 2 ckα1) sin (0.8 z) /k2. (63)

In this case the single soliton solution in HNLS equation (2) with coefficients (62) is

u(z, τ) = ρ0q (T, X) eic(k3τ+2 c2α3 sin(0.8 z)−ckα1 sin(0.8 z))/k3
, (64)

where q (T, X) satisfies Eq. (55) and T, X satisfy Eq. (63).
In Fig. 3, we show the single soliton solutions (61) and (64) in HNLS equation (2) with
coefficients (59) and (62), respectively. Here the solution parameters are given in (56) and
ρ0 = 0.5, c = 1, k = 2. It is observered that when the soliton management parameters
dj(j = 1, 2, 3, 4, 5) are linearly dependent on variable z and d6 = 0 (see Eq. (59)), the trajectory
of the optical soliton is a localized parabolic curve, as shown in Fig. 3(a). When the soliton
management parameters dj(j = 1, 2, 3, 4, 5) are periodically dependent on variable z and
d6 = 0 (see Eq. (62)), the trajectory of the optical soliton is a periodical localized nonlinear
wave, as shown in Fig. 3(b).
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Fig. 5. (color online). The two-soliton solutions |u(z, τ)| in HNLS equation (2) with
coefficients (62). (a) soliton collision with parameter (57) and ρ0 = 0.5, c = 1, k = 2; (b) bound
state with parameter (58) and ρ0 = 0.5, c = 1, k = 2.

5.2 Collisions of the two-solitons
We now demonstrate various collision scenarios in HNLS equation (2) with coefficients (59)
and (62), respectively. As in Section 4.1, we consider the two-soliton collisions and bound
states in equation (2).
When the coefficients of equation (2) satisfies (59), its two-soliton solution is

u(z, τ) = ρ0q (T, X) eic(k3τ+1.6 c2α3 z2−0.8 ckα1z2)/k3
, (65)

where T, X satisfy Eq. (60), and q (T, X) satisfies Eq. (52) with (53) and N = 2.
When the coefficients of equation (2) satisfies (62), its two-soliton solution is

u(z, τ) = ρ0q (T, X) eic(k3τ+2 c2α3 sin(0.8 z)−ckα1 sin(0.8 z))/k3
, (66)

where T, X satisfy Eq. (63), and q (T, X) satisfies Eq. (52) with (53) and N = 2.
In Fig. 4, we display the evolutions of the two-soliton solutions (65) in HNLS equation (2) with
coefficients (59). Fig. 4(a) shows the soliton collision with parameter (57) and ρ0 = 0.5, c =
1, k = 2, and Fig. 4(b) shows the bound state with parameter (58) and ρ0 = 0.5, c = 1, k = 2. In
Fig. 5, we display the evolutions of the two-soliton solutions (66) in HNLS equation (2) with
coefficients (62). Fig. 5(a) shows the soliton collision with parameter (57) and ρ0 = 0.5, c =
1, k = 2, and Fig. 5(b) shows the bound state with parameter (58) and ρ0 = 0.5, c = 1, k = 2.

6. Conclusions

In summary, we have studied the variable-coefficient higher order nonlinear Schrödinger
equation which describes the wave propagation in a nonlinear fiber medium with
higher-order effects such as third order dispersion, self-steepening and stimulated Raman
scattering. By means of similarity transformation, we first change this variable-coefficient
equation into the constant-coefficient HNLS equation. Then we investigate the integrability
of the constant-coefficient HNLS equation by prolongation technique and find two Lax
integrable HNLS equations. The exact bright N-soliton solutions for the bright soliton version
of HNLS equation are obtained using Riemann-Hilbert formulation. Finally, the dynamics
of the optical solitons in both constant-coefficient and variable-coefficient HNLS equations is
examined and the effects of higher-order effects on the velocity and shape of the optical soliton
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are observed. In addition, it is seen that the bright two-soliton solution of the HNLS equation
behaves in an elastic manner characteristic of all soliton solutions.
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Fig. 5. (color online). The two-soliton solutions |u(z, τ)| in HNLS equation (2) with
coefficients (62). (a) soliton collision with parameter (57) and ρ0 = 0.5, c = 1, k = 2; (b) bound
state with parameter (58) and ρ0 = 0.5, c = 1, k = 2.

5.2 Collisions of the two-solitons
We now demonstrate various collision scenarios in HNLS equation (2) with coefficients (59)
and (62), respectively. As in Section 4.1, we consider the two-soliton collisions and bound
states in equation (2).
When the coefficients of equation (2) satisfies (59), its two-soliton solution is
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, (65)

where T, X satisfy Eq. (60), and q (T, X) satisfies Eq. (52) with (53) and N = 2.
When the coefficients of equation (2) satisfies (62), its two-soliton solution is
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where T, X satisfy Eq. (63), and q (T, X) satisfies Eq. (52) with (53) and N = 2.
In Fig. 4, we display the evolutions of the two-soliton solutions (65) in HNLS equation (2) with
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coefficients (62). Fig. 5(a) shows the soliton collision with parameter (57) and ρ0 = 0.5, c =
1, k = 2, and Fig. 5(b) shows the bound state with parameter (58) and ρ0 = 0.5, c = 1, k = 2.
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In summary, we have studied the variable-coefficient higher order nonlinear Schrödinger
equation which describes the wave propagation in a nonlinear fiber medium with
higher-order effects such as third order dispersion, self-steepening and stimulated Raman
scattering. By means of similarity transformation, we first change this variable-coefficient
equation into the constant-coefficient HNLS equation. Then we investigate the integrability
of the constant-coefficient HNLS equation by prolongation technique and find two Lax
integrable HNLS equations. The exact bright N-soliton solutions for the bright soliton version
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1. Introduction

Supercontinuum (SC) light sources are nowadays a very common way to access a large span
of wavelengths, usually ranging from the near ultraviolet (around 400 nm) to the infrared
(around 2.4 μm). It corresponds to a range of interest for many applications in optics for
measuring transmission, dispersion, or in biophotonics for achieving fluorescence microscopy,
optical coherence tomography... Indeed these sources are really promising because they
should allow to replace the N laser sources used in these experimental setups to access
to all theses wavelengths by a single broad one and a spectral filtering apparatus. Most
of these results have been obtained by using powerful pump lasers of several kilo-Watts
peak power, operating from the femtosecond (Titane:Saphire) to the nanosecond regimes
(Nd:YAG), launched in the low dispersion region of a microstructured optical fiber. Although
these fibers are short enough (typically from 1 to 10 m) to neglect the linear absorption
during the propagation of the pump, the spectral power density is relatively low (few
hundreds of μw/nm) which could limit the implementation of SC sources in many application
devices. This is related to a technological limitation of the pump source because it is
not easy to combine strong peak power and high average power. One of the simplest
solutions to increase the the spectral power density of SC sources is to replace pulsed sources
with continuous-wave (CW) light sources whose available average powers are much more
important. We will see that the dynamics of SC formation is considerably different in this case,
requiring to perform intensive numerical studies to optimize the fiber parameters. Indeed,
longer fibers are required (from tens to hundreds of meters) which heightens sensitivity to
fiber attenuation, namely of the OH pic absorption, that strongly impacts the soliton evolution.
However extremely powerful SCs have been reported with more than 10 mW/nm of spectral
power density. Furthermore, these pump sources are usually all-fiber that leads to a second
advantage against most of pulsed SC because CW pump can be directly spliced on the PCF.
It is also important to point out that these SC sources have different temporal properties than
the ones of pulsed SCs.
The first experimental demonstration of CW SC have been realized at the end of the nineties
with a Raman laser launched in a standard telecommunication fiber. The spectral broadening
was relatively restricted (around 200 nm) because it was mainly due to Raman effect
Gonzalez-Herraez et al. (2003); Persephonis et al. (1996); Prabhu et al. (2000). A breakthrough
was reached a few years later when stronger pump lasers (from more than one order of
magnitude) based on Ytterbium doped fibers were combined with photonic crystal fibers
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1. Introduction

Supercontinuum (SC) light sources are nowadays a very common way to access a large span
of wavelengths, usually ranging from the near ultraviolet (around 400 nm) to the infrared
(around 2.4 μm). It corresponds to a range of interest for many applications in optics for
measuring transmission, dispersion, or in biophotonics for achieving fluorescence microscopy,
optical coherence tomography... Indeed these sources are really promising because they
should allow to replace the N laser sources used in these experimental setups to access
to all theses wavelengths by a single broad one and a spectral filtering apparatus. Most
of these results have been obtained by using powerful pump lasers of several kilo-Watts
peak power, operating from the femtosecond (Titane:Saphire) to the nanosecond regimes
(Nd:YAG), launched in the low dispersion region of a microstructured optical fiber. Although
these fibers are short enough (typically from 1 to 10 m) to neglect the linear absorption
during the propagation of the pump, the spectral power density is relatively low (few
hundreds of μw/nm) which could limit the implementation of SC sources in many application
devices. This is related to a technological limitation of the pump source because it is
not easy to combine strong peak power and high average power. One of the simplest
solutions to increase the the spectral power density of SC sources is to replace pulsed sources
with continuous-wave (CW) light sources whose available average powers are much more
important. We will see that the dynamics of SC formation is considerably different in this case,
requiring to perform intensive numerical studies to optimize the fiber parameters. Indeed,
longer fibers are required (from tens to hundreds of meters) which heightens sensitivity to
fiber attenuation, namely of the OH pic absorption, that strongly impacts the soliton evolution.
However extremely powerful SCs have been reported with more than 10 mW/nm of spectral
power density. Furthermore, these pump sources are usually all-fiber that leads to a second
advantage against most of pulsed SC because CW pump can be directly spliced on the PCF.
It is also important to point out that these SC sources have different temporal properties than
the ones of pulsed SCs.
The first experimental demonstration of CW SC have been realized at the end of the nineties
with a Raman laser launched in a standard telecommunication fiber. The spectral broadening
was relatively restricted (around 200 nm) because it was mainly due to Raman effect
Gonzalez-Herraez et al. (2003); Persephonis et al. (1996); Prabhu et al. (2000). A breakthrough
was reached a few years later when stronger pump lasers (from more than one order of
magnitude) based on Ytterbium doped fibers were combined with photonic crystal fibers
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(PCFs) owing a low group-velocity dispersion (GVD) value around the pump wavelength
Avdokhin et al. (2003). With these setups, SC generation was mainly due to solitonic effects
like in pulsed SC. A renew of interest for these sources started from 2007 where first numerical
demonstrations of very broad CW SC were reportedMussot et al. (2007), just followed by
experimental demonstrationsCumberland et al. (2008a); Kudlinski & Mussot (2008).
As an example, a typical and simple experimental setup used for SC generation is schematized
in Fig. 1. In our experimental configuration used for the experiments hereafter, the PCFs were

Fig. 1. Scheme of the experimental setup used for the SC generation experiments. L : lens.

pumped with ytterbium-doped fiber laser delivering either 20 W at 1064 nm with a full width
at half maximum of 0.5 nm, or 50 W or 100 W at 1070 nm with a full width at half maximum of
1 nm. The output beam diameter of the laser was reduced with an afocal setup and the beam
was then launched into the fiber with appropriate aspheric lenses (of a few mm focal length).
All lenses were antireflection coated and a heat dissipater was carefully placed on top of the
V-groove supporting the PCF in order to manage thermal issues caused by the high power
laser. This allowed to greatly improve the temporal stability of the injection setup and no
noticeable change in coupling efficiency was observed for several tens of minutes at full pump
power. The coupling efficiency in these conditions was typically 70%–80%. The output of the
fiber was butt-coupled to a pigtail to reduce the power launched inside the optical spectrum
analyzer (OSA). All-fiber schemes are also used Cumberland et al. (2008a) but splicing issues
are usually more -time-consuming for a lab experiment than free-space coupling.

2. Basic mechanisms of continuous-wave supercontinuum generation

Mechanisms at the origin of SC are now well knownCumberland et al. (2008b); Dudley et al.
(2006); Kobtsev & Smirnov (2005); Mussot et al. (2007); Travers et al. (2008); Vanholsbeeck et al.
(2005). The modulationnal instability (MI) process is at the origin of the formation of CW SC.
It originates from the perfect balance between linear and nonlinear effects experienced by a
strong field, the pump, and a small perturbation, the noise, when working in anomalous GVD
region of an optical fiber. At the beginning of the fiber, this small perturbation is amplified.
The typical signature of this process in the spectral domain is two symmetric side lobes located
around the pump (Figs. 2-(a) and (b)). By further propagating into the fiber, this small periodic
perturbation is amplified to become a train of solitonic pulses (Figs. 2-(c)and (d)). Note that
these pulses have not identical characteristics as they originate from a process that is seeded
by noise. On the other hand, we remind that in the case of a single soliton propagating in
an optical fiber, it is well known that during its propagation, it is disturbed by higher order
dispersion orders effect and as a consequence it shed energy to radiations called dispersive
waves (DWs) which verify a phase matching condition. This leads to the generation of DWs
on the short wavelength side of the soliton and to a red shift of the soliton, called spectral recoil
for momentum conservation (Figs. 3-(a) and (b)). The consequence of the phase matching
condition, is that solitons and DWs do not travel at the same velocity. If no additional effect
is experienced by these waves, they will no longer interact again during their respective
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Fig. 2. Schemes illustrating the first steps of modulationnal instability, (a)-(b) at the beginning
of the process when the small perturbation starts to grow and (c)-(d) when the solitonic train
is created. (a) and (c) correspond to the time domain, and (b) and (d) correspond to the
frequency domain.

propagation. However, during the propagation of solitons, because they are strong waves,
the Raman effect induces an additional and continuous red shift of their central frequencies
. This effect is called soliton self-frequency shift (SSFS)Gordon (1986) and decelerates the
soliton because the group index increases with frequency in usual fibers (Fig. 3-(c)). As a
consequence, as the velocity of DWs has not changed, the solitons can interact again with
them via the cross-phase modulation effectGenty et al. (2004) which shifts DWs toward short
wavelengths. Finally, it is important to understand that this group velocity matching is the
rule that allows to connect lower and upper limits of SCs (Figs. 3-(d))Stone & Knight (2008).
This is different in fibers with two zero dispersion wavelengths (ZDWs). When the soliton
approaches the second ZDW, it still generates DWs but on the long wavelength side of the
SCGenty et al. (2004); Mussot et al. (2007). The spectral recoil tends now to shift it on the
opposite side that the one of the SSFS. An equilibrium is reached and the frequency shift of
the soliton is cancelledSkryabin et al. (2003). In this case solitons and DWs will no interact
together and no trapping mechanism will occur like it is the case in fiber with a single ZDW.

3. Bandwidth-limited near infrared continuous-wave supercontinuum

The interest of limiting the spectral extension of CW SC is to concentrate of the available
power in the desired spectral span. This is achieved in fibers with two ZDWs in which the
SSFS can be cancelled by the spectral recoil effect experienced by solitons located just below
the second zero dispersion wavelength. By this way, increasing the power leads to an increase
of the power spectral density.

3.1 Double zero-dispersion wavelength photonic crystal fibers
It is possible to design PCFs with two ZDWs from part to part of the pump wavelength at
1064 nm, and a low anomalous dispersion region at this wavelength. Such group-velocity
dispersion (GVD) curves can be achieved with a relatively small hole-to-hole spacing Λ
in the order of 1.7 μm and a d/Λ value in the range of 0.4–0.5 (d is the hole diameter)
Mussot et al. (2007); Tse et al. (2006). It is well known that a microstructured cladding with
these geometrical properties would lead to relatively high confinement losses at wavelengths
around 1.5 μm which is the reason why 10 periods of holes were necessary between the core
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Fig. 3. Schemes illustrating (a) the DW generation from a single soliton, (b) the SSFS effect
and (c) the trapping of teh DW by the soliton, for a single soliton. In each cases, the dispersion
curve is represented in blue and the group index curve in red. (d) Schemes illustrating the
formation of a CW SC, involving N solitons.

and the external jacket to decrease confinement losses to an acceptable values of a few dB/km
at 1550 nm, at which the SC is expected to be generated. Figure 4(a) displays a scanning
electron microscope (SEM) image of such a PCF (labelled fiber C in what follows, see Table 1).
Another important issue in CW SC generation is the absorption of the water band centered
at 1380 nm Cumberland et al. (2008a). We thus performed a chemical cleaning of the stacked
preform under halogenic atmosphere to reduce surface contamination and to lower the water
content. This allowed to decrease the peak attenuation at 1380 nm from typically 600 dB/km
(without any special treatment) to about 120 dB/km. A typical attenuation spectrum is shown
in Fig. 4(b) for fiber C, which SEM is represented in Fig. 4(a). The background loss being
around 30 dB/km at 1380 nm, the contribution of the water contamination is about 90 dB/km
at 1380 nm.
Three different PCF samples (labeled A, B and C) are investigated here. These fibers are
characterized by slightly differing Λ and d/Λ values so that the GVD curve of each fiber
is slightly different. The GVD curves are represented in Fig. 5(a), where the vertical line
represents the pump wavelength. All GVD curves have been calculated with a finite-elements
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Fig. 4. (a) Typical SEM image of PCFs used for infrared CW supercontinuum. (b) Typical
attenuation spectrum.

Parameter Fiber A Fiber B Fiber C
ZDW1 (nm) 1012 958 903
ZDW2 (nm) 1236 1346 1570

γ at 1064 nm (W−1.km−1) 22 24 30
GVD at 1064 nm (ps/nm/km) +4 +12 +30

Table 1. Parameters of the PCFs under investigation in this section.

method (FEM) from high resolution SEM images of the PCFs. Table 1 summarizes the
properties of the three fibers under investigation.

3.2 Control of the supercontinuum long-wavelength edge
The experiments reported in this section were performed in 100 m-long samples of each PCF
described in Table 1. In the launching conditions described in the previous paragraph, the
output power were respectively 7.35 W, 7.25 W and 7.16 W for fibers A to C, with a 20 W CW
fiber laser at 1064 nm. Figure 5(b) shows the spectra obtained in all fibers. The green curve
corresponds to fiber A, with the closest ZDWs. As expected from Ref. Mussot et al. (2007),
the spectral width is limited by the second ZDW. The dispersion value at the 1064 nm pump
wavelength is very low (+4 ps/nm/km). The spectral broadening is thus initially dominated
by MI, with the anti-Stokes MI sideband overlapping with the normal GVD region. The short
wavelength extension just below the first ZDW results from a spectral overlap of MI sidebands
and blue-shifted dispersive wave in the normal GVD region, as analyzed in Cumberland et al.
(2008b). Since the spectral position of the Stokes MI sidebands is just below the second ZDW
of the fiber, the SSFS is very short and the spectrum remains consequently quite symmetric.
The power generated above the second ZDW (depicted by a vertical line) is attributed to the
generation of red-shifted dispersive waves accompanying the cancelation of the SSFS. The
red curve in Fig. 5(b) corresponds to the spectrum measured for fiber B, with both ZDWs
separated by about 400 nm. In this fiber, the long-wavelength ZDW is very close to the center
of the water absorption band (1380 nm). It is well known that the SSFS is canceled if a second
ZDW is present at longer wavelengths Skryabin et al. (2003), which is the case here. This
is seen in the red spectrum of Fig. 5(b) as a peak centered at 1310 nm, which corresponds
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Fig. 5. (a) GVD curves of the three PCFs under investigation in this section. The vertical line
depicts the pump wavelength. (b) Corresponding output spectra recorded for a fiber length
of 100 m and a pump power of 12.5 W launched into the PCFs. Vertical lines represent the
ZDWs.

to an accumulation of all solitons stopped by the second ZDW. Additionally, a large part
of energy is transferred to a dispersive wave centered at 1420 nm, which is phase-matched
with the solitons. In fiber C displayed in Fig. 5(b) in blue, the flatness of the spectrum is
clearly affected by the water absorption at 1380 nm. This can be seen as a spectral decrease
at wavelengths higher than 1380 nm. The higher energy solitons are able to tunnel through
the water attenuation band and are then stopped by the second ZDW located at 1570 nm in
fiber C. The less energetic ones stop just below 1380 nm due to the water absorption peak. As
in fiber B, an accumulation of solitons is seen just before the second ZDW, and a dispersive
wave which is phase-matched with the solitons is generated at 1630 nm. Note that the peak
located around 1120 nm is due to Raman lasing because of Fresnel reflection at both fiber
faces. It is also important to note that, unlike in fiber A, no short wavelength extension is
observed in fibers B and C. Indeed, in these fibers, the amount of energy transferred from
solitons to blue-shifted dispersive waves is negligible because there is no spectral overlap
between solitons and dispersive waves Akhmediev & Karlsson (1995).

3.3 Dynamics of the supercontinuum formation
To go further into the detailed dynamics of SC formation, we performed a cut-back
measurement on fiber C. The spectrum was measured every 5 m for fiber lengths between
0.5 and 100 m. The results are displayed in Fig. 6, where the output spectra are represented
as a function of fiber length. The solitonic waves created by MI are progressively red-shifted
by SSFS during the first 30 m of propagation. They are then stopped by the second ZDW
located at 1570 nm (depicted by the white dotted vertical line). The soliton build-up due
to spectral recoil before the second ZDW can be seen as an increase in spectral power. The
red-shifted dispersive wave is also observed from this propagation length of 30 m. For more
important fiber lengths, the spectrum extension remain almost constant. The experimental
results displayed in Figs. 5 and 6 illustrate the possibility of tailoring the spectrum extent in
the context of multi-watt and relatively flat SC generation. The long-wavelength edge of the
spectrum is limited by red-shifted dispersive waves, whose spectral location is imposed by
the second ZDW.
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4. Extension towards visible wavelengths

Another long term issue of CW-pumped SC concerns the lack of short wavelengths generation
when pumping at 1 μm. The generation of visible wavelengths would be of great interest
for a substantial number of applications including high resolution imaging, metrology or
spectroscopy. One possible approach to achieve this is to take advantage of the process
of dispersive wave trapping by solitons Nishizawa & Goto (2002). This process leads to
an extra blue shift of dispersive waves in the spectral domain Genty et al. (2004; 2005);
Gorbach & Skryabin (2007a;b); Gorbach et al. (2006); Travers (2009); Travers & Taylor (2009).
Experimentally, this phenomenon has been proved to be of primary importance to generate
short wavelengths in pulsed pumping regime Stone & Knight (2008). It has also been
combined with dispersion-engineered PCFs to further extend SC to the UV in nanosecond
and picosecond pumping schemes Kudlinski et al. (2006). This idea consists in modifying
the dispersion curve along the fiber so that group-velocity matching conditions for trapped
dispersive waves continuously evolve along propagation. This leads to the generation of new
wavelengths as the ZDW decreases along propagation. The present work is based on this idea
which has been adapted to CW pumping conditions.

4.1 Zero-dispersion wavelength decreasing photonic crystal fibers
The dispersion-engineered PCF firstly used within this framework consists of a 100 m-long
section with a constant dispersion followed by a 100 m-long section with decreasing ZDW, as
illustrated in Fig.7(c). The total attenuation of the 200 m-long PCF is 1.5 dB at 1064 nm. A SEM
image of the input and output faces of the PCF is represented in Figs. 7(a) and (b) respectively,
with the same scale. The input outer diameter is 125 μm, the hole-to-hole spacing Λ is 4.7 μm
and the hole diameter d is 2.6 μm. The dispersion curves at the PCF input and output have
been computed with a finite elements method from high resolution SEMs and are represented

Fig. 6. Experimental measurement of the SC dynamics as a function of fiber length, in fiber C.
The white vertical line represent the second ZDW.
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4. Extension towards visible wavelengths

Another long term issue of CW-pumped SC concerns the lack of short wavelengths generation
when pumping at 1 μm. The generation of visible wavelengths would be of great interest
for a substantial number of applications including high resolution imaging, metrology or
spectroscopy. One possible approach to achieve this is to take advantage of the process
of dispersive wave trapping by solitons Nishizawa & Goto (2002). This process leads to
an extra blue shift of dispersive waves in the spectral domain Genty et al. (2004; 2005);
Gorbach & Skryabin (2007a;b); Gorbach et al. (2006); Travers (2009); Travers & Taylor (2009).
Experimentally, this phenomenon has been proved to be of primary importance to generate
short wavelengths in pulsed pumping regime Stone & Knight (2008). It has also been
combined with dispersion-engineered PCFs to further extend SC to the UV in nanosecond
and picosecond pumping schemes Kudlinski et al. (2006). This idea consists in modifying
the dispersion curve along the fiber so that group-velocity matching conditions for trapped
dispersive waves continuously evolve along propagation. This leads to the generation of new
wavelengths as the ZDW decreases along propagation. The present work is based on this idea
which has been adapted to CW pumping conditions.

4.1 Zero-dispersion wavelength decreasing photonic crystal fibers
The dispersion-engineered PCF firstly used within this framework consists of a 100 m-long
section with a constant dispersion followed by a 100 m-long section with decreasing ZDW, as
illustrated in Fig.7(c). The total attenuation of the 200 m-long PCF is 1.5 dB at 1064 nm. A SEM
image of the input and output faces of the PCF is represented in Figs. 7(a) and (b) respectively,
with the same scale. The input outer diameter is 125 μm, the hole-to-hole spacing Λ is 4.7 μm
and the hole diameter d is 2.6 μm. The dispersion curves at the PCF input and output have
been computed with a finite elements method from high resolution SEMs and are represented

Fig. 6. Experimental measurement of the SC dynamics as a function of fiber length, in fiber C.
The white vertical line represent the second ZDW.
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Fig. 7. (a),(b) SEMs of the input and output faces of the ZDW decreasing fiber. Respective
outer diameters are 125 and 80 μm. (c) Outer diameter versus fiber length. (d) GVD curves at
the input (red line) and output (blue line) of the ZDW decreasing fiber. (e) ZDW versus fiber
length.

in Fig. 7(d) in red and blue lines, respectively. The input ZDW is located at 1053 nm, just
below the pump wavelength of 1064 nm. To decrease the size of the microstructure along
propagation and consequently shift the ZDW toward shorter wavelengths, the outer diameter
of the fiber has been approximately linearly reduced to a final diameter of 80 μm (see Fig. 7(c)).
This was done by gradually increasing the drawing speed during the fiber fabrication whilst
keeping the preform feed rate constant. The pitch Λ at the fiber output was reduced to 3.1 μm
and the d/Λ ratio was kept constant along the whole PCF, so that the output ZDW is shifted
down to 950 nm. The longitudinal evolution of the ZDW of the PCF is represented in Fig. 7(e).
In the first 100 m, the ZDW is fixed to 1053 nm, and it drops to 950 nm in a quasi-linear way
along the last 100 m.

4.2 Generation of visible light
The setup used to pump the fabricated PCF is shown in Fig. 1. The beam from a 20 W CW
fiber laser at 1064 nm was collimated and launched into the fiber with a lens of 4.5 mm focal
length. The coupling efficiency was 75%, corresponding to a power of 13.5 W launched into
the PCFs.
The SC spectrum measured at full pump power in the ZDW-decreasing PCF described above
displayed in Fig. 8 in red line. It is ranging from 670 nm to 1350 nm with an output power
of 9.5 W. Additional spectral components are located around 550 nm and the visible part of
the SC was easily observable with naked eye at the PCFs output. The inset of Fig 8 displays
a far-field image of the whole visible spot observable at the PCF output. Since the modal
distribution of the SC does not look single mode, the far-field profile was investigated as a
function of wavelength by using 10 nm bandpass filters. Right insets of Fig. 8 show far-field
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Fig. 8. Output spectra obtained in the uniform PCF (black line) and in the ZDW-decreasing
one (red line). Inset: output beam dispersed by a prism. Right: output far-field without any
filter (top), with a 550 nm filter (center) and with a 700 nm filter (bottom).

images centered at 550 nm and 700 nm . The green spectral components located around
550 nm are clearly generated in higher-order modes. This part of the spectrum was not
expected from our design and is probably due to a phase-matching condition satisfied with
higher-order modes Efimov et al. (2003); Omenetto et al. (2001). The far-field image recorded
at 700 nm shows that the red spectral components are generated in a fundamental mode. We
also checked that the mode was fundamental-like in the whole spectrum above 700 nm for all
fibers.
A uniform PCF with dispersion comparable to the ZDW-decreasing fiber input was used for
comparison. The output spectrum obtained in the same conditions than above is displayed
in Fig. 8, in grey line. It extends up to 1355 nm into the infrared, which is very similar to
the spectrum obtained in the ZDW-decreasing PCF. However, the short-wavelength edge is
located at about 840 nm, which is much less spectacular than in in the ZDW-decreasing PCF
where it reaches 670 nm. This clearly shows that the extra 170 nm bandwidth toward the
visible is generated thanks to the decreasing ZDW.
In order to generate even shorter wavelengths, the ZDW-decreasing PCF has been pumped
with a more powerful Yb fiber laser delivering 50 W at 1070 nm with a full width at half
maximum of 1 nm. With the same setup as described above, we were able to launch a
maximum power of 35 W in the fiber, corresponding to a coupling efficiency of 70 %. The
resulting experimental spectrum is displayed in Fig. 9. For the highest pump power of 35 W,
the SC is ranging from 650 nm to 1380 nm with a 19.5 W output power.

4.3 Discussion and numerical modelling
As claimed above, the basics of using a ZDW decreasing PCF to extend the spectrum towards
short wavelengths was to use progressively red-shifted solitons to trap dispersive waves in
the visible. The results displayed in Fig. 8 indeed suggest that the long- and short-wavelength
edges of the spectra are correlated. In order to have a further insight into the mechanisms of
the visible SC formation, the power dynamics of the spectral broadening has been investigated
in the ZDW-decreasing PCF for launched powers of 8.2 W, 11.3 W and 13.5 W (see Ref. ?).
As expected, a broadening of the output spectrum occurs on both sides with increasing
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Fig. 9. Experimental (red line) and numerical (black line) output spectra obtained in the
ZDW-decreasing PCF for a launched pump power of 35 W. The average power at the fiber
output is 19.5 W. Spectrogram of a single-shot simulation at the output of the 200 m-long
ZDW-decreasing PCF. The vertical line joins a soliton and its corresponding trapped
dispersive wave. The color scale ranges over 30 dB.

launch power inside the fiber. The long and short wavelengths sides were identified by
measuring the wavelength of typical spectral features on both edges of the spectrum. The
spectral broadening on the long-wavelength side stops at 1140, 1160 and 1250 nm for
respective increasing pump powers. The short-wavelength edge is progressively blue-shifted
with increasing pump powers and extends to respectively 763, 751 and 720 nm. These
experimental results have been compared with the computed group-index curve calculated
for the end (small diameter) of the ZDW-decreasing PCF. This is illustrated in Fig. 10, where
the group-index curve is plotted as a function of wavelength. Markers represents the long
and short wavelength edges experimentally measured for launched powers of 8.2 W (green),
11.3 W (blue) and 13.5 W (red) respectively. The corresponding points for a fixed power
are joined by nearly horizontal lines on the plot, which means that these radiations travel at
almost the same group velocity when they go out of the fiber. This provides a strong support
to the process of group-velocity matching between the most blue- and red-shifted spectral
components of each spectrum and this evidences the benefit of the ZDW-decreasing fiber for
the generation of shorter wavelengths.
In order to get a deeper understanding of the nonlinear mechanisms originating the visible
extension, we performed numerical simulations. We integrated the generalized nonlinear
Schrödinger equation including the experimental attenuation curve and all experimental
parameters. The numerical method used to model the pump laser was fully described in
Ref. Mussot et al. (2007). The simulations were very time consuming (1 week on a standard
PC) so we did not perform the usual averaging procedure Mussot et al. (2007) required to
account for the experimental measurements. The output spectra resulting from a single
simulation is plotted in black line in Fig. 9(a). By performing several other simulations
we checked that there was no significant modification from simulation to simulation. The
agreement between numerical simulations and experimental results is excellent in terms of
shape and extension of the spectrum. It is important to note that numerical simulations
have been performed without any free parameters. In both cases, the stop of the spectral
broadening at the long-wavelength is due to a relatively high OH absorption around 1380 nm
(measured to be about 300 dB/km). The slight discrepancy with experiments observed
at short wavelengths (680 nm for the simulations against 650 nm for the experiments) is
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Fig. 10. (a) Output spectra recorded in the ZDW-decreasing PCF for pump powers of 8.2 W
(green), 11.3 W (blue) and 13.5 W (red). Output powers are indicated on the graph. (b)
Group-index curve calculated at the ZDW-decreasing PCF output (black line). Markers
indicate extreme wavelengths of the corresponding SC spectrum experimentally recorded.

probably due to the uncertainty of the calculated GVD curve, leading to a slightly different
group-velocity matching condition between red-shifted solitons and trapped dispersive
waves. To further illustrate the trapping mechanism responsible for the short wavelength
part of the spectrum, the numerical spectrogram of the optical field at the output of the fiber
is represented in Fig. 9(b). It corresponds to the numerical spectrum displayed in black line in
Fig. 9(a). In the spectrogram, one can see a whole spectral region full of solitons (represented
as red dots) originating from the initial MI process. This region extends from the pump
wavelength (1070 nm) to the upper limit of the spectrum. Some of the solitons are close to
the pump wavelength and some other ones exhibit an important red-shift due to SSFS. The
most shifted ones are stopped by the important OH absorption peak at 1380 nm. The region
between 680 nm and the pump wavelength corresponds to dispersive waves generated from
solitons Travers (2009); Travers et al. (2008). For the most red-shifted solitons, a blue-shifted
trapped dispersive wave can be observed just below 700 nm, both travelling at the same
group-velocity. An example of a soliton group-velocity matched with a dispersive wave is
highlighted in Fig. ??, where both are joined by a black line. We can see that the trapped
dispersive wave is exactly at the vertical of the soliton which confirms that both waves
travel at the same velocity inside the fiber. It thus confirms that the extension of the SC
towards short wavelengths is mainly due to the trapping of dispersive waves by red-shifted
solitons Nishizawa & Goto (2002) rather than by the basic dispersive wave generation process
Akhmediev & Karlsson (1995). It should be noted then that the generation of even shorter
wavelengths must be possible with the mechanism of dispersive waves trapping by reducing
the OH absorption peak, which can be achieved by a careful cleaning treatment during the
fiber fabrication process, and/or by enhancing the fiber nonlinearity.

5. White-light continuous-wave supercontinuum

5.1 Benefit of GeO2 doping
As explained above, CW SC generation is intimately linked to the propagation of fundamental
solitons generated from MI. In order to optimize the SC bandwidth, it is thus necessary to
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optimize the soliton self-frequency shift effect. One of the most natural solitons to do that
is to use GeO2-doped fibers, because this doping is well known to enhance both Kerr and
Raman nonlinearities. However, in order to be usable in CW SC generation experiments, it is
important that the ZDW remains slightly lower than the pump wavelength. By adjusting the
microstructured cladding properties, it is possible to find some designs with greatly enhance
nonlinearity, and still controlled dispersion Barviau et al. (2011). Figure 11 illustrates this. The
blue line in (a) correspond to the GVD curve and nonlinear coefficient of a pure silica PCF
with a 1060 nm ZDW, and the red line corresponds to a GeO2-doped PCF with a parabolic
profile and a maximum refractive index difference of 20 mol.%. The microstructured cladding
parameters have been adjusted so that the doped PCF has the same ZDW of 1060 nm, but
in this case, the nonlinear coefficient is enhanced by a factor of about 4 at 1064 nm. Indeed,
it reached about 38 W−1.km−1 in the GeO2-doped PCF, against 10 W−1.km−1 in the pure
silica one. Moreover, Fig. 11(b) shows the enhancement of the material Raman gain due to
the presence of GeO2 as compared to pure silica. A GeO2-doped PCF corresponding to this
design has thus been fabricated, and the pure silica PCF has also been used for comparison.

Fig. 11. (a) GVD curves (left axis) and nonlinear coefficient (right axis) calculated for a pure
silica PCF (blue) and a PCF doped with a GeO2 content of 20 mol.%. (b) Raman gain spectra
gR for pure silica (blue) and 20 mol.% GeO2-doped silica (for a 164 nm pump).

5.2 Spectral extension to the blue
In order to highlight the benefit of using GeO2-doped PCFs in the context of CW SC
generation, both fibers were pumped with a CW fiber laser at 1064 nm in similar conditions.
Figure 12(a) shows output spectra obtained for a pump power of 13 W and a length of 300 m
for the GeO2-doped PCF and 400 m for the pure silica one. The SC spectrum looks much
broader in the GeO2-doped PCF than in the pure silica one, yet longer.
As mentioned above, long and short-wavelength SC edges are fixed by a group-velocity
matching condition between solitons and trapped dispersive waves Genty et al. (2004; 2005);
Gorbach & Skryabin (2007a;b); Gorbach et al. (2006); Travers (2009); Travers & Taylor (2009).
Bottom curves in Fig. 12 show group index curves of both fibers, and blue lines illustrates the
group-index matching between both SC edges in the pure silica fiber. In the GeO2-doped
one, a dip in the spectral power density appears just below 1380 nm because of soliton
accumulation just below the OH absorption band. As a consequence, a dip in the spectral
power density can be observed at the corresponding group-velocity matched wavelength
(around 805 nm) because of trapped dispersive wave accumulation. From the measurement of
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Fig. 12. Top: Supercontinuum generated in the pure silica PCF (blue line) and in the
GeO2-doped one (red line) for a pump power of 13 W. Bottom: corresponding calculated
group index curves.

the short wavelength edge (570 nm for the GeO2-doped PCF) together with the group-index
matching, it is thus possible to estimate the long-wavelength one to 2040 nm (not reachable
with our optical spectrum analyzer). In this case, there is thus a threefold enhancement of the
SC bandwidth (in frequency) as compared to the pure silica PCF.
Note that comparable results in terms of spectral extent have been reported in pure silica PCFs
Travers et al. (2008), but with a much higher pump power.

5.3 White-light generation
With the aim of still enhancing the SC bandwidth, it is possible to associate the benefits of
GeO2 doping and fiber tapering presented above. We have thus fabricated a GeO2-doped
ZDW decreasing PCF, characterized by a 50 m long uniform section followed by a 130-m long
section over which the outer diameter linearly decreases from 135 to 85 μm. Figure 13(a)
shows the spectrum obtained with this fiber for a 45 W pump power. It spans from 470 nm to
more than 1750 nm, with an output power of 10 W. A picture of this experiment showing
white-light generation is displayed in Fig. 13(b). This is the first demonstration of CW
white-light supercontinuum generation.
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matching, it is thus possible to estimate the long-wavelength one to 2040 nm (not reachable
with our optical spectrum analyzer). In this case, there is thus a threefold enhancement of the
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With the aim of still enhancing the SC bandwidth, it is possible to associate the benefits of
GeO2 doping and fiber tapering presented above. We have thus fabricated a GeO2-doped
ZDW decreasing PCF, characterized by a 50 m long uniform section followed by a 130-m long
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Fig. 13. (a) Supercontinuum generated in a GeO2-doped ZDW decreasing PCF, with a pump
power of 45 W. Top inset: photograph of the output beam far-field. Bottom inset: photograph
of the output beam dispersed by a prism. (b) Photograph of the experiment.

6. Conclusion

It is now possible to generate continuous wave supercontinua ranging from the near
ultraviolet to the near infrared with spectral power densities in the order of tens of mW/nm.
Most of the manipulation of the spectra were carried out by a fine control of the fiber
microstructure. These all-fiber sources are very promising for many applications requiring
stable and extremely powerful sources.
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Fig. 13. (a) Supercontinuum generated in a GeO2-doped ZDW decreasing PCF, with a pump
power of 45 W. Top inset: photograph of the output beam far-field. Bottom inset: photograph
of the output beam dispersed by a prism. (b) Photograph of the experiment.

6. Conclusion

It is now possible to generate continuous wave supercontinua ranging from the near
ultraviolet to the near infrared with spectral power densities in the order of tens of mW/nm.
Most of the manipulation of the spectra were carried out by a fine control of the fiber
microstructure. These all-fiber sources are very promising for many applications requiring
stable and extremely powerful sources.
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1. Introduction  
The group velocity at which light pulses propagate through a dispersive material system is 
very different from the vacuum speed of light c, One refers to light as being “slow” for vg << 
c (Boyd & Gauthier, 2009) or “fast” for vg > c or vg <0 (Stenner et al, 2003 ). For vg <0, the 
pulse envelope appears to travel backward in the material (Gehring et al, 2006), and hence it 
is sometimes referred to as “backward light.”  
The subject of slow light has caused keen interest in the past decade or more, and it is 
possible to control the group velocity of light pulses in the dispersive materials.  Interest in 
slow and fast light dates back to the early days of the 20th century. Sommerfeld and 
Brillouin (Sommerfeld & Brillouin, 1960) were intrigued by the fact that theory predicts that 
vg can exceed c, which leads to apparent inconsistencies with Einstein’s special theory of 
relativity. Experimental investigations of extreme propagation velocities were performed 
soon after the invention of the laser (Faxvog and et al, 1970).  In 1999, Harris’s group 
research work greatly stimulated researchers’ interests, which showed that light could be 
slowed down to 17m/s. The result was obtained in ultra cold atom clouds with the use of 
electromagnetically induced transparency (EIT), which induces transparency in a material 
while allowing it to retain strong linear and nonlinear optical properties (Hau et al, 1999). 
Slow light can also be obtained through the use of the optical response of hot atomic vapors 
(Philips et al, 2001). These early research works require hard conditions and the slow light 
cannot operate in room temperature. 
Recently, researchers found ways to realize slow light operating in room temperature and 
solid-state materials, which are more suited for many practical applications, namely slow 
light via stimulated Brillouin scattering(SBS), slow light via coherent population oscillations 
(CPO), tunable time delays based on group velocity dispersion or conversion/ 
dispersion(C/D), slow light in fiber Bragg gratings and so on. In this chapter, we describe 
some of the physical mechanisms that can be used to induce slow and fast light effects in 
room-temperature solids (Bigelow et al, 2003) and some of the exotic propagation effects 
that can thereby be observed. We also survey some applications of slow and fast light within 
the fields of quantum electronics and photonics.  

2. Fundamentals of slow and fast light 
Slow and fast light refer to the group velocity of a light wave. The group velocity is the 
velocity most closely related to the velocity at which the peak of a light pulse moves through 
an optical dispersive material (Milonni, 2005), and is given by the standard result 
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where n is the refractive (phase) index and ω  is the angular frequency of the carrier wave of 
the light field. One refers to light as being slow light for vg << c, fast light for for vg > c, and 
backwards light for vg <0 or vg is negative. Extreme values of the group velocity invariably 
rely on the dominance of the second contribution to the group index of Equation (1). This 
contribution of course results from the frequency dependence of the refractive index, and for 
this reason extreme values of the group velocity are usually associated with the resonant or 
near-resonant response of material systems.  
According to this theory, slow light is expected in the wings of an absorption line and fast 
light is expected near line center, and the spatial dispersion, that is, the non-locality in space 
of the medium response, is another mechanism that can lead to slow light, as has been 
predicted (Kocharovskaya et al,2001) and observed (Strekalov et al, 2001). We catalogue the 
main methods to realize slow light in room temperature solid, namely slow light via 
stimulated Brillouin scattering(SBS), slow light via coherent population oscillations (CPO), 
tunable time delays based on group velocity dispersion or conversion/ dispersion(C/D), 
slow light in fiber Bragg gratings and so on. We will describe CPO and SBS slow light in 
more details. 

3. Slow light via coherent population oscillations (CPO) 
3.1 Introduction of CPO  
The technique of coherent population oscillation(CPO) is also exploited to reduce the group 
velocity.The process of CPO allows the reduction of absorption and simultaneously 
provides a steep spectral variation of the refractive index which leads to a strong reduction 
of the optical group velocity,i.e.,slow light propagation.This process is easily achieved in a 
two-level system which interacts with a signal whose amplitude is periodically 
modulated.The population of the ground state of the medium will be induced to oscillate at 
the modulation frequency. This oscillation creates an arrow hole in the absorption spectrum, 
whose linewidth is proportional to the inverse of the relaxation lifetime of the excited level. 
CPO is highly insensitive to dephasing processes in contrast to what happens in other 
schema such as EIT, where the width of the spectral hole burned in the absorption profile is 
proportional to the inverse of the dephasing time of the ground state. That makes CPO an 
appropriate technique to easily achieve slow light propagation in solid-state materials at 
room temperature.  

3.2 Theoretical mode  
Making use of this technology, we observe optical pulse delay and advancement 
propagation in an erbium-doped optical fiber. Compared to other solid material, erbium-
doped optical fiber allows for long interaction lengths, which can be desirable in producing 
strong influence(Schwartz& Tan, 1967). We obtain the controllable pulse delay continuously 
from positive to negative by using a separate pump laser. 
When pumped at 980nm, the erbium-doped fiber acts as a three-level molecular system. The 
relaxation time from the metastable state to the ground state is much greater than the one 
from the excited state to the metastable state. The energy levels and pumping scheme that 
we employed to observe slow and fast light in erbium-doped fiber is shown in Fig 1. 
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Fig. 1. The energy levels and pumping scheme we employed to observe slow and fast light 
in erbium-doped fiber. 

The relaxation time from the excited state associated with the signal frequency to the ground 
state is much greater than the one from the excited state associated with the pump 
frequency to the excited state associated with the signal frequency. The population of upper 
excited level is approximately equal to zero, which indicates 1 2n n ρ+ = . The population 
density of the ground state will accord with the rate equation(Novak & Gieske, 2002) 
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where W denotes transition rates associated with signal and R presents transition rates 
associated with pump. 1T  is the lifetime of the excited state and ρ  is the erbium ion 
density. The transition rates are also functions of t and z, as well as being proportional to the 
pump and signal powers. According to the equations for the transition rates and neglecting 
the losses through the fiber, we have   
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If we modulate the signal(~1550nm) intensity as 

 ( )0(0, ) (0) 1 cos .s sI t I tμ δ= +                          (4) 

here, 0(0)sI  is the average input power at the input (Z=0) and 0(0) (0)s s mI Iμ = is the 
modulation amplitude. A single intensity-modulated beam contains only a carrier wave (to 
act as the pump) and two sidebands (to act as probes) on the output spectrum, which induce 
population oscillation. The population of the ground state is given by 

 ( )0
1 1( ) 1 cosN t N tξ δ φ= ⎡ + ⋅ + ⎤⎣ ⎦ ,                        (5) 

where 0
1N is the mean (un-modulated) steady-state population. We next find the steady-state 

solution to Eq. (3). Finally, We can determine the expression of the delay of the optical signal  
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here, 0(0)sI  is the average input power at the input (Z=0) and 0(0) (0)s s mI Iμ = is the 
modulation amplitude. A single intensity-modulated beam contains only a carrier wave (to 
act as the pump) and two sidebands (to act as probes) on the output spectrum, which induce 
population oscillation. The population of the ground state is given by 

 ( )0
1 1( ) 1 cosN t N tξ δ φ= ⎡ + ⋅ + ⎤⎣ ⎦ ,                        (5) 

where 0
1N is the mean (un-modulated) steady-state population. We next find the steady-state 

solution to Eq. (3). Finally, We can determine the expression of the delay of the optical signal  
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3.3 Experimental results 
The signal optical field from a distributed feedback laser diode operating at 1550nm 
through the attenuator is divided into two parts: one part of laser (98%) goes through an 
erbium-doped optical fiber and then to an InGaAs photodetector with 10MHz bandwidth. 
The other part of laser output signal (2%) is sent directly to an identical photodetector to 
be used as reference.Transmitted signals are received by photodetectors, and sent into a 
digital oscillograph for recording. Then the comparison between the reference signal and 
the EDOF signal is made in a computer (Sargent,1978, Boyd & Gauthier, 2005). The group 
velocity in fibers can be inferred. In the experiments, the injection current of the laser is 
sinusoidally modulated by a function generator. We use single mode, Al2SiO5-glass-based 
erbium-doped optical fibers at several ions density. The experimental setup is shown in 
Fig.2. 
The absorption coefficient α and the emission coefficient β  are related to their cross 
sections respectively and shown by the following 

 12s sα σ ρ= Γ   13p pα σ ρ= Γ   21s sβ σ ρ= Γ .                 (7) 

 

 
Fig. 2. The experimental setup used to observe slow light in an erbium-doped optical fiber. 

Parameters used for the calculation are sα =31.71 dB/m, pα =42.3dB/m, sβ =47.665 dB/m, 
1 10.5T = ms, L=2m, and ρ =6.3×1025. Our experimental results are obtained through use of 

modulation techniques such that the optical field contains only a carrier wave (to act as the 
pump)and two sidebands (to act as probes). Because the decay time is so long (about 
10.5ms), this oscillation will only occur if the beat frequency ( δ ) between the pump and 
probe beams is small so that 1Tδ ～1.When this condition is fulfilled, the pump wave can 
efficiently scatter off the temporally modulated ground state population into the probe 
wave, resulting in reduced absorption of the probe wave. We consider the Kramers-Kronig 
relations, which show that a narrow hole in an absorption spectrum will produce strong 
normal dispersion. Fig.3 illustrates the results of our experiments.  
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Fig. 3. Observed time delay as a function of the modulation frequency for input power of 
1.85mW. The solid line is the theoretical fit to the experimental data. The open circles 
represent the measured group velocity. The inset shows the normalized 5Hz input (solid 
line) and output (dashed line) signal. The signal is delayed 8.75ms corresponding to a group 
velocity as low as 228.57m/s. 

In Fig.3, we show the measured delay in an optical fiber with erbium ion density of 
6.3×1025m-3 and compare it with the numerical solution of Eq.(6) for input power of 1.85mW. 
We observe the largest delay, 8.75ms, which corresponds in the inset of Fig.3. The inferred 
group velocity is as low as 228.57m/s. A maximum fractional delay of 0.129 is observed at 
the modulation frequency of 60Hz. Fig.3 shows the delay as a function of modulation 
frequency in the low frequency region. 

4. Slow light via stimulated Brillouin scattering (SBS) 
4.1 Introduction 
Slow light based on stimulated Brillouin scattering (SBS) in optical fibers has attracted much 
more interests for its potential application in optical buffering, data synchronization, optical 
memories and optical signal processing. Compared with previously demonstrated slow-
light  techniques (Gehring et al, 2008, Zhu et al, 2007), such as electromagnetically induced 
transparency (EIT) (Hau et al, 1999) and coherent population oscillations (CPO) (Bigelow et 
al, 2003), it has a lot of advantages, for instance, the simple, flexible and easy-to-handle SBS 
can be realized in room temperature; the optical fiber components based on it can easily 
integrated with the existing telecommunications infrastructure; the slow-light resonance can 
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modulation techniques such that the optical field contains only a carrier wave (to act as the 
pump)and two sidebands (to act as probes). Because the decay time is so long (about 
10.5ms), this oscillation will only occur if the beat frequency ( δ ) between the pump and 
probe beams is small so that 1Tδ ～1.When this condition is fulfilled, the pump wave can 
efficiently scatter off the temporally modulated ground state population into the probe 
wave, resulting in reduced absorption of the probe wave. We consider the Kramers-Kronig 
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normal dispersion. Fig.3 illustrates the results of our experiments.  

 
Slow Light in Optical Fibers 

 

85 

0 500 1000 1500 2000 2500 3000

0

2

4

6

8

10

 6.3*1025/m3

 experimental time delay
 experimental group velocity 

Modulation Frequency(Hz)

D
el

ay
(m

s)

0.0

2.0x105

4.0x105

6.0x105

8.0x105

1.0x106

500 550 600 650 700

-0.01

0.00

0.01

0.02
Time Delay=8.75ms

OutputInput 
N

or
m

al
iz

ed
 In

te
ns

ity

Time(ms)

0 2 4 6 8 10

0

2

4

6

8

10

G
roup velocity(m

/s)

 
Fig. 3. Observed time delay as a function of the modulation frequency for input power of 
1.85mW. The solid line is the theoretical fit to the experimental data. The open circles 
represent the measured group velocity. The inset shows the normalized 5Hz input (solid 
line) and output (dashed line) signal. The signal is delayed 8.75ms corresponding to a group 
velocity as low as 228.57m/s. 

In Fig.3, we show the measured delay in an optical fiber with erbium ion density of 
6.3×1025m-3 and compare it with the numerical solution of Eq.(6) for input power of 1.85mW. 
We observe the largest delay, 8.75ms, which corresponds in the inset of Fig.3. The inferred 
group velocity is as low as 228.57m/s. A maximum fractional delay of 0.129 is observed at 
the modulation frequency of 60Hz. Fig.3 shows the delay as a function of modulation 
frequency in the low frequency region. 

4. Slow light via stimulated Brillouin scattering (SBS) 
4.1 Introduction 
Slow light based on stimulated Brillouin scattering (SBS) in optical fibers has attracted much 
more interests for its potential application in optical buffering, data synchronization, optical 
memories and optical signal processing. Compared with previously demonstrated slow-
light  techniques (Gehring et al, 2008, Zhu et al, 2007), such as electromagnetically induced 
transparency (EIT) (Hau et al, 1999) and coherent population oscillations (CPO) (Bigelow et 
al, 2003), it has a lot of advantages, for instance, the simple, flexible and easy-to-handle SBS 
can be realized in room temperature; the optical fiber components based on it can easily 
integrated with the existing telecommunications infrastructure; the slow-light resonance can 
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be tunable within the optical communications wavelength windows; the use of optical fiber 
allows for a relaxed pump-power requirement owning to long interaction length, small 
effective mode area and so on.  
However, the SBS-induced group index change is always so small in standard single mode 
fiber and dispersion shift fibers (DSFs) (Song et al, 2005) to delay the time very little. In 
order to explore suitable optical fibers served as slow light generation with much efficiency, 
some special optical fibers, such as chalcogenide fiber (Abedin,2005, Song et al, 2006), 
tellurite fiber (Abedin,2006), bismuth fiber (Jauregui et al, 2006) and so on, have been 
extensively studied, these kinds of optical fiber are usually with large gain coefficient and 
low loss coefficient. Though long pulse delay can be obtained using cascaded ber segments 
joined by unidirectional optical attenuators to overcome pump depletion (gain saturation) 
and amplied spontaneous Brillouin emission (ASBE), it’s always accompanied with serious 
pulse distortion (Song et al, 2005). So gain tailoring is used in pulse distortion management 
to keep a balance between time delay and pulse distortion (Stenner et al, 2007). To overcome 
the narrow band spectral resonance of SBS which limits the maximum data rate of the 
optical system, a simple and inexpensive pump spectral broadening technique is used in 
broadening the SBS slow light bandwidth (Herraez et al, 2006), which paves the way 
towards real applications based on SBS slow light. 
Numerical studies of SBS slow light focusing on different pulse parameters were also 
studied (Kalosha et al, 2006), which provide an insight into the SBS slow light process, but 
we can’t learn a lot about how the optical fiber structures and Brillouin gain parameters 
influence on the SBS process, the time delay and the pulse shape. In this section, the SBS 
model in optical fiber is described and the three coupled SBS equations are solved by the 
method of finite difference with prediction-correction, the effects of gain coefficient, gain 
bandwidth and effective mode area on time delay and pulse broadening are demonstrated. 
Considering the injected stokes pulse shape, the influence of its sharpness, magnitude and 
duration on delay time and pulse broadening factor was observed mainly, and its reason 
was analyzed. These results provide base for designing optical buffer, time delay line or 
other optical components based on the SBS slow light technologies. 

4.2 Theory foundation and numerical model 
The process of SBS is the interaction of two counter-propagating waves, a strong pump 
wave and a weak Stokes wave. If a particular frequency relation is satisfied  

 pump Stokes Bv v v= + ,                                 (8) 

Where pumpv  and Stokesv  are the frequency of pump wave and stocks wave respectively, Bv  
is the Brillouin frequency. Then an acoustic wave is generated which scatters photons from 
the pump to the Stokes wave and the interference of these two optical waves in turn 
stimulates the process. From a practical point of view, the process of SBS can be viewed as a 
narrowband amplification process, in which a continuous-wave pump produces a 
narrowband gain in a spectral region around pump Bv v− . In this paper, the Stokes pulse is set 
on the SBS gain line center to achieve the maximum delay. 
For simply describing the SBS process, assume: (1) Transverse field variations are neglected, 
Stokes and pump fields are assumed to vary with time t and space z only. (2) The slowly 
varying envelope approximation (SVEA) SBS model is used, i.e., the field amplitudes are 
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assumed to vary slowly in time and space as compared with their temporal and spatial 
frequencies. (3) The initial (t=0) phonon field is zero and the Stokes output grows from an 
injected Stokes field at z=0. (4) The frequency difference between the pump and Stokes wave 
is set to the Brillouin shift of the fiber, i.e., the Stokes pulse is on the SBS line center. 
Considering a Brillouin amplifier where the pump wave counter-propagates through the 
ber with respect to the Stokes pulse, the SBS process can be described by one-dimensional 
coupled wave equations involving a backward pump wave (−z direction), a forward Stokes 
wave (+z direction), and a backward acoustic wave. Under the slowly varying envelope 
approximation (SVEA) and neglecting the transverse field variations, the equations are 
written as follows (Damzen et al,2003) 
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where pA , sA ,and Q  are the amplitudes of the pump wave, the Stokes wave, and the 
acoustic wave, respectively; n is the group refractive index when SBS is absent;α is the loss 
coefficient of the fiber; / 2B πΓ  is the bandwidth (FWHM) of the Brillouin gain; 1g is the 
coupled coefficient between the pump wave and the Stokes wave, 2g  is the coupled 
coefficient between the pump (Stokes) wave and the acoustic wave, 0 1 24 / Bg g g= Γ  is the 
peak value of the Brillouin gain coefficient. 
According to the small signal steady state theory of stimulated Brillouin scattering, the 
pump power criticalP  required to reach Brillouin threshold in a single pass scheme is related 
to the Brillouin gain coefficient 0g by the following equation:  

 0( / ) 21critical eff effg P A L ≅ ,                                      (12) 

where criticalP  is the power corresponding to the Brillouin threshold, effL  is the effective 
length defined as 1[1 exp( )]effL Lα α−= − − , from Eq.(12) we can obtain the threshold pump 
intensity 

 0/ 21 /( )critical critical eff effI P A g L= ≅ .                              (13) 

Once reaching the threshold pump intensity, a large part of the pump power is transferred 
to the Stokes wave, resulting in the generation of Stokes wave at the output depletes the 
pump seriously and leads to serious Stokes pulse distortion. In our simulations, we consider 
the pump intensity is near the Brillouin threshold and obtain the Stokes gain around 16 
using the previous parameters, here the Stokes gain is defined as:  
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be tunable within the optical communications wavelength windows; the use of optical fiber 
allows for a relaxed pump-power requirement owning to long interaction length, small 
effective mode area and so on.  
However, the SBS-induced group index change is always so small in standard single mode 
fiber and dispersion shift fibers (DSFs) (Song et al, 2005) to delay the time very little. In 
order to explore suitable optical fibers served as slow light generation with much efficiency, 
some special optical fibers, such as chalcogenide fiber (Abedin,2005, Song et al, 2006), 
tellurite fiber (Abedin,2006), bismuth fiber (Jauregui et al, 2006) and so on, have been 
extensively studied, these kinds of optical fiber are usually with large gain coefficient and 
low loss coefficient. Though long pulse delay can be obtained using cascaded ber segments 
joined by unidirectional optical attenuators to overcome pump depletion (gain saturation) 
and amplied spontaneous Brillouin emission (ASBE), it’s always accompanied with serious 
pulse distortion (Song et al, 2005). So gain tailoring is used in pulse distortion management 
to keep a balance between time delay and pulse distortion (Stenner et al, 2007). To overcome 
the narrow band spectral resonance of SBS which limits the maximum data rate of the 
optical system, a simple and inexpensive pump spectral broadening technique is used in 
broadening the SBS slow light bandwidth (Herraez et al, 2006), which paves the way 
towards real applications based on SBS slow light. 
Numerical studies of SBS slow light focusing on different pulse parameters were also 
studied (Kalosha et al, 2006), which provide an insight into the SBS slow light process, but 
we can’t learn a lot about how the optical fiber structures and Brillouin gain parameters 
influence on the SBS process, the time delay and the pulse shape. In this section, the SBS 
model in optical fiber is described and the three coupled SBS equations are solved by the 
method of finite difference with prediction-correction, the effects of gain coefficient, gain 
bandwidth and effective mode area on time delay and pulse broadening are demonstrated. 
Considering the injected stokes pulse shape, the influence of its sharpness, magnitude and 
duration on delay time and pulse broadening factor was observed mainly, and its reason 
was analyzed. These results provide base for designing optical buffer, time delay line or 
other optical components based on the SBS slow light technologies. 

4.2 Theory foundation and numerical model 
The process of SBS is the interaction of two counter-propagating waves, a strong pump 
wave and a weak Stokes wave. If a particular frequency relation is satisfied  
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Where pumpv  and Stokesv  are the frequency of pump wave and stocks wave respectively, Bv  
is the Brillouin frequency. Then an acoustic wave is generated which scatters photons from 
the pump to the Stokes wave and the interference of these two optical waves in turn 
stimulates the process. From a practical point of view, the process of SBS can be viewed as a 
narrowband amplification process, in which a continuous-wave pump produces a 
narrowband gain in a spectral region around pump Bv v− . In this paper, the Stokes pulse is set 
on the SBS gain line center to achieve the maximum delay. 
For simply describing the SBS process, assume: (1) Transverse field variations are neglected, 
Stokes and pump fields are assumed to vary with time t and space z only. (2) The slowly 
varying envelope approximation (SVEA) SBS model is used, i.e., the field amplitudes are 
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assumed to vary slowly in time and space as compared with their temporal and spatial 
frequencies. (3) The initial (t=0) phonon field is zero and the Stokes output grows from an 
injected Stokes field at z=0. (4) The frequency difference between the pump and Stokes wave 
is set to the Brillouin shift of the fiber, i.e., the Stokes pulse is on the SBS line center. 
Considering a Brillouin amplifier where the pump wave counter-propagates through the 
ber with respect to the Stokes pulse, the SBS process can be described by one-dimensional 
coupled wave equations involving a backward pump wave (−z direction), a forward Stokes 
wave (+z direction), and a backward acoustic wave. Under the slowly varying envelope 
approximation (SVEA) and neglecting the transverse field variations, the equations are 
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where pA , sA ,and Q  are the amplitudes of the pump wave, the Stokes wave, and the 
acoustic wave, respectively; n is the group refractive index when SBS is absent;α is the loss 
coefficient of the fiber; / 2B πΓ  is the bandwidth (FWHM) of the Brillouin gain; 1g is the 
coupled coefficient between the pump wave and the Stokes wave, 2g  is the coupled 
coefficient between the pump (Stokes) wave and the acoustic wave, 0 1 24 / Bg g g= Γ  is the 
peak value of the Brillouin gain coefficient. 
According to the small signal steady state theory of stimulated Brillouin scattering, the 
pump power criticalP  required to reach Brillouin threshold in a single pass scheme is related 
to the Brillouin gain coefficient 0g by the following equation:  
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where criticalP  is the power corresponding to the Brillouin threshold, effL  is the effective 
length defined as 1[1 exp( )]effL Lα α−= − − , from Eq.(12) we can obtain the threshold pump 
intensity 
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Once reaching the threshold pump intensity, a large part of the pump power is transferred 
to the Stokes wave, resulting in the generation of Stokes wave at the output depletes the 
pump seriously and leads to serious Stokes pulse distortion. In our simulations, we consider 
the pump intensity is near the Brillouin threshold and obtain the Stokes gain around 16 
using the previous parameters, here the Stokes gain is defined as:  
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where outP  and inP  are the output and input of the Stokes power, respectively. 
Let us assume that pump wave is continuous wave and stokes field is sufficiently weak. The 
group index is the function of frequency described as follow(Zhu et al, 2005) 
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where pI  is the optical intensity of pump wave; δω  is the margin between the angular 
frequency of stokes pulse and the center angular frequency of the gain bandwidth;  
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 is the line-center gain factor which is associated with the material physical  

properties, Bv  is the velocity of acoustic wave. 
Delay time dT  is defined to describe the difference of the arrival time when the output 
stokes pulse reach its maximum between when SBS occurs and doesn’t occurs, 

/rd dT T T= to describe the relative delay time with T which is the FWHM of the injected 
stokes pulse. According to the weak signal theory, delay time and B are given by (Velchev et 
al, 1999) 

 /d BT G= Γ                                      (16) 
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where B pG g I L=  is the weak signal gain parameter; L is the fiber length. For the purpose of 
indicating how much the pump wave energy contributes to the stokes wave energy, we 
define real gain as 

 out inlog( / )rG P P=                                   (18) 

where outP  and inP  are power of the output and input stokes wave, respectively.  
We assume that injected stokes pulse is super-Gaussion shaped 
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where t is the time of pulse transmission, U(t) is normalized amplitude, 0T  is the half width 
of pulse (at 1/e-intensity point). The parameter m controls the degree of edge sharpness (for 
m=1, it is Gaussion-shaped; for m>1, it is super-gaussion-shaped, and the degree of edge 
sharpness is increased with m). For different m, pulse with same FWHM can be written as 
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Furthermore, we define average intensity of normalized super-Gaussion pulse with FWHM 
of T as 
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In our numerical processing, applying the slowly-varying envelope approximation (SVEA) 
for both pump and stokes fields, firstly, we obtained the values of ρ  at some time by 
solving the Eq.(11) with Fourier transformation and inverse Fourier transformation. 
Secondly, we transform the Eqs (9-10) into single variable partial differential equations by 
using characteristics. Finally, applying the value of ρ  we obtained to the single variable 
partial differential equations, we can calculate the values of pE  and sE  at next time by 
using the fourth-order Runge-Kutta formula. And we set these results as the initialization 
value to achieve the value of ρ  at next time. Repeating above steps, we can achieve the 
output stokes pulse at anytime.  

4.3 Numerical simulation results 
In order to study the situation where the pump is depleted, we solve the Eqs. (9)-(11) 
numerically using the method of implicit finite difference with prediction-correction to 
determine how gain coefficient, gain bandwidth and effective mode area influence SBS slow 
light.  
In our simulation, the parameters are considered from the common single-mode fiber, and 
select: fiber length L=25m, pump wavelength λ =1550nm, group refractive index n=1.45, 
effect mode area effA =50 2mμ , loss coefficient α =0.2dB/km, gain bandwidth (FWHM) 

/ 2B πΓ =40MHz, gain coefficient 11
0 5 10g −= × m/W. We assume the pump wave is CW 

and the Stokes wave is Gaussian shaped with the peak power of 0.1 Wμ  and the FWHM 
pulse width of 120ns (its FWHM bandwidth in frequency domain is around 3.7MHz which 
is much smaller than that of SBS gain bandwidth we use).  

4.3.1 Influence of gain coefficient on time delay and pulse broadening 
The curves of the pulse delay and pulse broadening factor as a function of the gain with 
different gain coefficient 0g were shown in Fig.4. It can be seen from Fig.4(a) that the time 
delay increases linearly with Stokes gain when the gain is small (≤10), that’s because the 
pump isn’t completely affected when the gain is small. For larger gain, pump depletion 
becomes more and more seriously, the time delay increases slowly with gain and reaches its 
maximum before decreasing with gain. At the same time, for larger gain coefficient, the time 
delay decreases with increasing gain more quickly and even leads to pulse advancement 
which can be explained by gain saturation. It can also be seen that the smaller gain 
coefficient reaches the gain saturation at a larger gain and the maximum time delay is 
accordingly larger, the gain saturation limits the maximum time delay for a Stokes pulse at a 
given input power. 
The pulse broadening factor for different gain coefficients as a function of gain was shown 
in Fig.4(b). It shows that the pulse broadening factor is also increasing linearly with gain 
when the small signal regime holds. As the gain further increases, the pulse broadening 
factor increases slowly with gain and then gradually decreases to less than 1, it means that 
the pulse become more and more narrower, the pulse with larger gain coefficient narrows 
more seriously than the smaller one. The time delay is always accompanied with pulse 
distortion, the Stokes pulse broadens a little in the small signal regime but can narrow  
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where outP  and inP  are the output and input of the Stokes power, respectively. 
Let us assume that pump wave is continuous wave and stokes field is sufficiently weak. The 
group index is the function of frequency described as follow(Zhu et al, 2005) 
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where pI  is the optical intensity of pump wave; δω  is the margin between the angular 
frequency of stokes pulse and the center angular frequency of the gain bandwidth;  
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Γ
 is the line-center gain factor which is associated with the material physical  

properties, Bv  is the velocity of acoustic wave. 
Delay time dT  is defined to describe the difference of the arrival time when the output 
stokes pulse reach its maximum between when SBS occurs and doesn’t occurs, 

/rd dT T T= to describe the relative delay time with T which is the FWHM of the injected 
stokes pulse. According to the weak signal theory, delay time and B are given by (Velchev et 
al, 1999) 

 /d BT G= Γ                                      (16) 
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16ln 21

B
B G

T
= +

Γ
                                    (17) 

where B pG g I L=  is the weak signal gain parameter; L is the fiber length. For the purpose of 
indicating how much the pump wave energy contributes to the stokes wave energy, we 
define real gain as 

 out inlog( / )rG P P=                                   (18) 

where outP  and inP  are power of the output and input stokes wave, respectively.  
We assume that injected stokes pulse is super-Gaussion shaped 
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where t is the time of pulse transmission, U(t) is normalized amplitude, 0T  is the half width 
of pulse (at 1/e-intensity point). The parameter m controls the degree of edge sharpness (for 
m=1, it is Gaussion-shaped; for m>1, it is super-gaussion-shaped, and the degree of edge 
sharpness is increased with m). For different m, pulse with same FWHM can be written as 
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Furthermore, we define average intensity of normalized super-Gaussion pulse with FWHM 
of T as 
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In our numerical processing, applying the slowly-varying envelope approximation (SVEA) 
for both pump and stokes fields, firstly, we obtained the values of ρ  at some time by 
solving the Eq.(11) with Fourier transformation and inverse Fourier transformation. 
Secondly, we transform the Eqs (9-10) into single variable partial differential equations by 
using characteristics. Finally, applying the value of ρ  we obtained to the single variable 
partial differential equations, we can calculate the values of pE  and sE  at next time by 
using the fourth-order Runge-Kutta formula. And we set these results as the initialization 
value to achieve the value of ρ  at next time. Repeating above steps, we can achieve the 
output stokes pulse at anytime.  

4.3 Numerical simulation results 
In order to study the situation where the pump is depleted, we solve the Eqs. (9)-(11) 
numerically using the method of implicit finite difference with prediction-correction to 
determine how gain coefficient, gain bandwidth and effective mode area influence SBS slow 
light.  
In our simulation, the parameters are considered from the common single-mode fiber, and 
select: fiber length L=25m, pump wavelength λ =1550nm, group refractive index n=1.45, 
effect mode area effA =50 2mμ , loss coefficient α =0.2dB/km, gain bandwidth (FWHM) 

/ 2B πΓ =40MHz, gain coefficient 11
0 5 10g −= × m/W. We assume the pump wave is CW 

and the Stokes wave is Gaussian shaped with the peak power of 0.1 Wμ  and the FWHM 
pulse width of 120ns (its FWHM bandwidth in frequency domain is around 3.7MHz which 
is much smaller than that of SBS gain bandwidth we use).  

4.3.1 Influence of gain coefficient on time delay and pulse broadening 
The curves of the pulse delay and pulse broadening factor as a function of the gain with 
different gain coefficient 0g were shown in Fig.4. It can be seen from Fig.4(a) that the time 
delay increases linearly with Stokes gain when the gain is small (≤10), that’s because the 
pump isn’t completely affected when the gain is small. For larger gain, pump depletion 
becomes more and more seriously, the time delay increases slowly with gain and reaches its 
maximum before decreasing with gain. At the same time, for larger gain coefficient, the time 
delay decreases with increasing gain more quickly and even leads to pulse advancement 
which can be explained by gain saturation. It can also be seen that the smaller gain 
coefficient reaches the gain saturation at a larger gain and the maximum time delay is 
accordingly larger, the gain saturation limits the maximum time delay for a Stokes pulse at a 
given input power. 
The pulse broadening factor for different gain coefficients as a function of gain was shown 
in Fig.4(b). It shows that the pulse broadening factor is also increasing linearly with gain 
when the small signal regime holds. As the gain further increases, the pulse broadening 
factor increases slowly with gain and then gradually decreases to less than 1, it means that 
the pulse become more and more narrower, the pulse with larger gain coefficient narrows 
more seriously than the smaller one. The time delay is always accompanied with pulse 
distortion, the Stokes pulse broadens a little in the small signal regime but can narrow  
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Fig. 4. (a) Time delay and (b) pulse broadening as a function of gain with different gain 
coefficients. 

largely in the gain saturation regime. Fig.5 shows the normalized output pulse shapes with 
the gain coefficient 11

0 5 10g −= × m/W at gain=0, 12, and 17, respectively. The output Stokes 
pulse with a maximum time delay ~45 ns at gain=12 with a little distortion while the output 
Stokes pulse is advanced by 42.9 ns at gain=17 but is distorted substantially.  
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Next, we consider the time delay and pulse broadening factor varying with the gain 
coefficient at a given pump peak power 0.125W shown in Fig.6. From Fig.6(a) we can see 
that the time delay increases with the increasing gain coefficient in a linear fashion. Fig.6(b) 
shows that the pulse broadening factor also increases with the increasing gain coefficient. 
Note that the maximum gain parameter is 6.25 at the gain coefficient 10

0 1 10g −= × m/W, 
which satisfies the small signal condition.  
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Fig. 6. (a) Time delay and (b) pulse broadening as a function of gain coefficient at a given 
pump power. 

4.3.2 Influence of gain bandwidth on time delay and pulse broadening 
Fig.7(a) shows the time delay as a function of gain with different gain bandwidths. The time 
delay increases with the gain linearly when the gain is small, but for smaller gain 
bandwidth, the time delay increases with the gain more quickly and reaches the saturation 
at a larger gain, the maximum time delay is accordingly larger. Once reaching the gain 
saturation, the time delay also decreases more quickly for smaller gain bandwidth. 
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Next, we consider the time delay and pulse broadening factor varying with the gain 
coefficient at a given pump peak power 0.125W shown in Fig.6. From Fig.6(a) we can see 
that the time delay increases with the increasing gain coefficient in a linear fashion. Fig.6(b) 
shows that the pulse broadening factor also increases with the increasing gain coefficient. 
Note that the maximum gain parameter is 6.25 at the gain coefficient 10

0 1 10g −= × m/W, 
which satisfies the small signal condition.  
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Fig. 6. (a) Time delay and (b) pulse broadening as a function of gain coefficient at a given 
pump power. 

4.3.2 Influence of gain bandwidth on time delay and pulse broadening 
Fig.7(a) shows the time delay as a function of gain with different gain bandwidths. The time 
delay increases with the gain linearly when the gain is small, but for smaller gain 
bandwidth, the time delay increases with the gain more quickly and reaches the saturation 
at a larger gain, the maximum time delay is accordingly larger. Once reaching the gain 
saturation, the time delay also decreases more quickly for smaller gain bandwidth. 
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Fig. 7. (a) Time delay and (b) pulse broadening as a function of gain with different gain 
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The pulse broadening factor as a function of gain with different gain bandwidths was 
shown in Fig.7(b). It can be seen that the pulse broadening factor increases with the gain 
before gain saturation and then it decreases with the increasing gain which is similar with 
time delay versus gain in Fig.7(a). The smaller the gain bandwidth is, the more quickly the 
broadening factor increases with the gain in the small signal regime and decreases with the 
gain in the gain saturation. It indicates that the pulse with smaller gain bandwidth always 
obtains the longer time delay but at the cost of much larger pulse broadening. 
We also calculated the time delay and pulse broadening factor as a function of gain 
bandwidth at a given pump peak power 0.125W. As we can see in Fig.8, both the time delay 
and pulse broadening factor decrease with the increasing gain bandwidth and keep an 
inverse proportion to it. The maximum gain parameter is 6.25, which is also in the small 
signal regime for these different gain bandwidths.  
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Fig. 8. (a) Time delay and (b) pulse broadening as a function of gain bandwidth at a given 
pump power. 

4.3.3 Influence of effective mode area on time delay and pulse broadening 
For the pulse with same peak power, it has a larger intensity for the smaller effective mode 
area, which increases its intensity in the other way, so it can also influence the gain 
saturation obviously. As can be seen from Fig.9(a), in the small signal regime, the time delay 
still increases with the gain linearly for different effective mode areas, the pulse with smaller 
effective mode area reaches the gain saturation at a smaller gain, and the maximum time 
delay is accordingly smaller. Once reaching the gain saturation, the pulse with smaller 
effective mode area also decrease more quickly than the others.  
Fig.9(b) shows the pulse broadening factor versus gain, the pulse broadening factor 
increases linearly with the increasing gain in the small signal regime, which is the same as 
the time delay versus gain. As has been said before, the pulse with larger effective mode 
area reaches the gain saturation at a larger gain and its maximum pulse broadening factor is 
accordingly larger. In the gain saturation regime, the pulse with smaller effective mode area 
narrows more seriously than the others at a fixed gain. We can even see that the pulse 
broadening factor begins to increase for the gain around 16.  
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Fig. 9. (a) Time delay and (b) pulse broadening as a function of gain with different effective 
mode areas. 

We also investigate the time delay and pulse broadening factor as a function of effective 
mode area at a given pump power 0.125W. It can be seen from Fig.10, both the time delay 
and pulse broadening factor decrease with the increasing effective mode area and keep an 
inverse proportion to it. As previously mentioned, we also make sure that the 
corresponding gain parameter is within the small signal regime for these different effective 
mode areas. 
 

20 30 40 50 60

10

15

20

25

30
 

tim
e 

de
la

y 
(n

s)
effective mode area (μm2)

pump peak power 
  0.125 W

(a)

 

20 30 40 50 60
1.015

1.020

1.025

1.030

1.035

1.040

1.045

1.050

1.055
 

pu
ls

e 
br

oa
de

ni
ng

 fa
ct

or

effective mode area (μm2)

pumppeak power 
  0.125 W

(b)

 
Fig. 10. (a) Time delay and (b) pulse broadening as a function of effective mode area at a 
given pump power. 
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The pulse broadening factor as a function of gain with different gain bandwidths was 
shown in Fig.7(b). It can be seen that the pulse broadening factor increases with the gain 
before gain saturation and then it decreases with the increasing gain which is similar with 
time delay versus gain in Fig.7(a). The smaller the gain bandwidth is, the more quickly the 
broadening factor increases with the gain in the small signal regime and decreases with the 
gain in the gain saturation. It indicates that the pulse with smaller gain bandwidth always 
obtains the longer time delay but at the cost of much larger pulse broadening. 
We also calculated the time delay and pulse broadening factor as a function of gain 
bandwidth at a given pump peak power 0.125W. As we can see in Fig.8, both the time delay 
and pulse broadening factor decrease with the increasing gain bandwidth and keep an 
inverse proportion to it. The maximum gain parameter is 6.25, which is also in the small 
signal regime for these different gain bandwidths.  
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Fig. 8. (a) Time delay and (b) pulse broadening as a function of gain bandwidth at a given 
pump power. 

4.3.3 Influence of effective mode area on time delay and pulse broadening 
For the pulse with same peak power, it has a larger intensity for the smaller effective mode 
area, which increases its intensity in the other way, so it can also influence the gain 
saturation obviously. As can be seen from Fig.9(a), in the small signal regime, the time delay 
still increases with the gain linearly for different effective mode areas, the pulse with smaller 
effective mode area reaches the gain saturation at a smaller gain, and the maximum time 
delay is accordingly smaller. Once reaching the gain saturation, the pulse with smaller 
effective mode area also decrease more quickly than the others.  
Fig.9(b) shows the pulse broadening factor versus gain, the pulse broadening factor 
increases linearly with the increasing gain in the small signal regime, which is the same as 
the time delay versus gain. As has been said before, the pulse with larger effective mode 
area reaches the gain saturation at a larger gain and its maximum pulse broadening factor is 
accordingly larger. In the gain saturation regime, the pulse with smaller effective mode area 
narrows more seriously than the others at a fixed gain. We can even see that the pulse 
broadening factor begins to increase for the gain around 16.  
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We also investigate the time delay and pulse broadening factor as a function of effective 
mode area at a given pump power 0.125W. It can be seen from Fig.10, both the time delay 
and pulse broadening factor decrease with the increasing effective mode area and keep an 
inverse proportion to it. As previously mentioned, we also make sure that the 
corresponding gain parameter is within the small signal regime for these different effective 
mode areas. 
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given pump power. 
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4.3.4 The influence of stokes pulse with different m on SBS slow light  
We first consider the pulse time delay and pulse broadening factor as a function of 
parameter real gain for super-Gaussion-shaped pulse with different m, which is indicated in 
Fig.11. In this case, T=120ns, 0.1inP Wμ= . Fig.11 (a) shows that with the increase of rG , 

dT increases accordingly and reaches its maximum. Then it decreases with further 
increasing rG , even becomes negative. Comparing with different m, we can see that 
maximum rG  and the time when maximum rG  obtains decrease with m because when m 
changes from 0.5 to 3, Is  is equal to 0.5410, 0.6805, 0.7559 and 0.8705, respectively, i.e., for 
the same duration and apex, the super-Gaussion-shaped pulse with higher m is easier to 
reach gain saturation. And dT  when dT  reaches its maximum will decrease, which leads to 
the reducing of maximum dT .  
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Fig. 11. Parameters of output stokes pulse versus real gain for different parameter m. a) 
Time delay dT  versus real gain; b) Pulse broadening factor B versus real gain. 

We observe an advantageous phenomenon for practical applications. When m=1.5, pulse 
broadening factor B is close to 1. While m=3, B decreases with increasing rG  and reaches its 
peak value at gain=13. Then it increase with rG  and reaches its maximum at rG =15.5, it 
decrease with further increasing rG . The reason why B has the rule can be explained well 
by Fig.12. Considering SBS process and no SBS process, respectively, for three different m, 
the normalized output stokes pulses at rG =5 and rG =13 are shown in Fig.12, where t is the 
time axis. It is indicated from Fig.12 (a) that with increasing m the leading edge and the 
trailing edge of super-Gaussion-shaped pulse become steeper and steeper in time domain. 
So they will become broader and broader in the frequency domain. Considering equation 
(2), we can conclude that the difference among the speeds of points at the leading edge will 
increase and the leading edge will be compressed more. Moreover, the increasing m leads to 
the increasing energy of pulse with same peak value. And most energy of pump wave is 
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depleted in the leading edge of stokes pulse, the trailing edge only can get less energy from 
pump wave, the broadening of the trailing edge of stokes pulse is limited. All of this can 
contribute to decreasing B and result in B is almost close to 1 before stokes pulse is near 
saturation. When rG  increases to saturation gain step by step, the trailing edge gets more 
and more energy, resulting in broadening of the trailing, i.e., B will increase, like shown in 
Fig.12(b). When rG  go on increasing, it is out of the range of weak signal, the output stokes 
pulse is distortion seriously. 
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4.3.5 The influence of stokes pulse with different power and FWHM on SBS slow light 
Based on the result of above that when m=1.5 B is very close to 1, the next numerical 
simulation will select different power and duration of super-Gaussion pulse with m=1.5 as 
the injected stokes pulse. Fig.13 shows that delay and B as a function of parameter rG  for 
super-Gaussion-shaped pulse with different power. It can be seen form Fig.13 (a) that 
maximum dT  and rG needed for obtaining maximum dT  increase with injected power. And 
before entering gain-saturation regime dT  is equal to each other. The reason is in the 
condition of weak signal delay is in direct proportion to gain approximately. As we can see 
from Fig.13(b) that when rG  is smaller than saturation gain, B is close to 1 and B of the pulse 
which has the largest power will reach the peak shown in Fig.11(b) firstly with increasing 

rG . The peak value becomes lager and larger, which correspond to high power pulse is easy 
to enter saturation regime. 
Fig.14 shows that rdT  and B as a function of parameter rG  for super-Gaussion-shaped pulse 
with different T. The power of injected stokes pulse is 0.1 Wμ and other parameter is the 
same like above. It is indicated that smaller duration pulse can obtain lager relative delay. 
The rG  needed for obtaining maximum rdT  becomes lager and larger with the decreasing T. 
The reason is for same peak value the smaller duration pulse contains less energy. Then 
when it enters gain-saturation regime it need more energy and higher saturation gain results 
in higher rdT . The changing rule of pulse broadening factor of the pulse which duration is 
less than 120ns is different from the one which duration is 120ns, however, it is the same 
with the one when injected stokes pulse is Gaussion-shaped. The main reason is the energy  
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4.3.4 The influence of stokes pulse with different m on SBS slow light  
We first consider the pulse time delay and pulse broadening factor as a function of 
parameter real gain for super-Gaussion-shaped pulse with different m, which is indicated in 
Fig.11. In this case, T=120ns, 0.1inP Wμ= . Fig.11 (a) shows that with the increase of rG , 

dT increases accordingly and reaches its maximum. Then it decreases with further 
increasing rG , even becomes negative. Comparing with different m, we can see that 
maximum rG  and the time when maximum rG  obtains decrease with m because when m 
changes from 0.5 to 3, Is  is equal to 0.5410, 0.6805, 0.7559 and 0.8705, respectively, i.e., for 
the same duration and apex, the super-Gaussion-shaped pulse with higher m is easier to 
reach gain saturation. And dT  when dT  reaches its maximum will decrease, which leads to 
the reducing of maximum dT .  
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Fig. 11. Parameters of output stokes pulse versus real gain for different parameter m. a) 
Time delay dT  versus real gain; b) Pulse broadening factor B versus real gain. 

We observe an advantageous phenomenon for practical applications. When m=1.5, pulse 
broadening factor B is close to 1. While m=3, B decreases with increasing rG  and reaches its 
peak value at gain=13. Then it increase with rG  and reaches its maximum at rG =15.5, it 
decrease with further increasing rG . The reason why B has the rule can be explained well 
by Fig.12. Considering SBS process and no SBS process, respectively, for three different m, 
the normalized output stokes pulses at rG =5 and rG =13 are shown in Fig.12, where t is the 
time axis. It is indicated from Fig.12 (a) that with increasing m the leading edge and the 
trailing edge of super-Gaussion-shaped pulse become steeper and steeper in time domain. 
So they will become broader and broader in the frequency domain. Considering equation 
(2), we can conclude that the difference among the speeds of points at the leading edge will 
increase and the leading edge will be compressed more. Moreover, the increasing m leads to 
the increasing energy of pulse with same peak value. And most energy of pump wave is 
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depleted in the leading edge of stokes pulse, the trailing edge only can get less energy from 
pump wave, the broadening of the trailing edge of stokes pulse is limited. All of this can 
contribute to decreasing B and result in B is almost close to 1 before stokes pulse is near 
saturation. When rG  increases to saturation gain step by step, the trailing edge gets more 
and more energy, resulting in broadening of the trailing, i.e., B will increase, like shown in 
Fig.12(b). When rG  go on increasing, it is out of the range of weak signal, the output stokes 
pulse is distortion seriously. 
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4.3.5 The influence of stokes pulse with different power and FWHM on SBS slow light 
Based on the result of above that when m=1.5 B is very close to 1, the next numerical 
simulation will select different power and duration of super-Gaussion pulse with m=1.5 as 
the injected stokes pulse. Fig.13 shows that delay and B as a function of parameter rG  for 
super-Gaussion-shaped pulse with different power. It can be seen form Fig.13 (a) that 
maximum dT  and rG needed for obtaining maximum dT  increase with injected power. And 
before entering gain-saturation regime dT  is equal to each other. The reason is in the 
condition of weak signal delay is in direct proportion to gain approximately. As we can see 
from Fig.13(b) that when rG  is smaller than saturation gain, B is close to 1 and B of the pulse 
which has the largest power will reach the peak shown in Fig.11(b) firstly with increasing 

rG . The peak value becomes lager and larger, which correspond to high power pulse is easy 
to enter saturation regime. 
Fig.14 shows that rdT  and B as a function of parameter rG  for super-Gaussion-shaped pulse 
with different T. The power of injected stokes pulse is 0.1 Wμ and other parameter is the 
same like above. It is indicated that smaller duration pulse can obtain lager relative delay. 
The rG  needed for obtaining maximum rdT  becomes lager and larger with the decreasing T. 
The reason is for same peak value the smaller duration pulse contains less energy. Then 
when it enters gain-saturation regime it need more energy and higher saturation gain results 
in higher rdT . The changing rule of pulse broadening factor of the pulse which duration is 
less than 120ns is different from the one which duration is 120ns, however, it is the same 
with the one when injected stokes pulse is Gaussion-shaped. The main reason is the energy  
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Fig. 13. Parameters of output stokes pulse versus real gain for different power. a)Time delay 

dT  versus real gain; b) Pulse broadening factor B versus real gain. 

which pulse contains decrease with the decreasing duration for same peak value. The 
energy getting from pump wave decreases, too. So the tailing edge of stokes pulse can 
obtain more energy than the one when T=120ns, resulting in the tailing edge broaden 
widely. This counteracts the compression corresponding to the steep leading edge. It can be 
predicted that increasing m can make the leading edge steeper and can decrease B. Our 
numerical result proved it. For the pulse with T=60ns, B at maximum rdT  decreases from 
1.406 to 1.295 when m is changed from 1.5 to 5. 
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Fig. 14. Parameters of output stokes pulse versus real gain for different duration. a) Relative 
time delay rdT  versus real gain; b) Pulse broadening factor B versus real gain. 
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5. Conclusion 
We make a numerical study of the SBS slow light in optical fibers, and consider the 
influences of gain coefficient, gain bandwidth and effective mode area on time delay and 
pulse broadening. In the small signal regime, we find that the time delay and the pulse 
broadening factor increase with the increasing gain, but for pulse with the smaller gain 
bandwidth has a larger slope than the others. In the gain saturation regime, the pulse with 
larger gain coefficient, smaller gain bandwidth, smaller effective mode area begins to 
decrease more quickly in the gain range of 0~16. For the gain larger than 16, the pulse 
advancement becomes more obviously and the distortion also becomes more seriously, 
which may render the delay useless. We also investigate the time delay and pulse 
broadening factor vary with the increasing gain coefficient, gain bandwidth and effective 
mode area at a given pump power whose gain parameter is in the small signal regime, 
and find that the time delay and pulse broadening factor are proportional to the gain 
coefficient, whereas inversely proportional to the gain bandwidth and the effective mode 
area. 
According to the above numerical calculation and theory analysis, we find that decreasing 
the power and duration of injected stokes pulse induces increasing delay time and pulse 
broadening factor; using super-Gaussion-shaped pulse as the injected stokes pulse can 
contribute evidently to decreasing pulse broadening factor in low frequency. Selecting 
pretty m can get perfect delay time and pulse broadening factor. Though this adjusting 
effect will become weaker for a shorter pulse, this reform still takes advantage of decreasing 
the error rate of all-optical-buffer. 
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energy getting from pump wave decreases, too. So the tailing edge of stokes pulse can 
obtain more energy than the one when T=120ns, resulting in the tailing edge broaden 
widely. This counteracts the compression corresponding to the steep leading edge. It can be 
predicted that increasing m can make the leading edge steeper and can decrease B. Our 
numerical result proved it. For the pulse with T=60ns, B at maximum rdT  decreases from 
1.406 to 1.295 when m is changed from 1.5 to 5. 
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5. Conclusion 
We make a numerical study of the SBS slow light in optical fibers, and consider the 
influences of gain coefficient, gain bandwidth and effective mode area on time delay and 
pulse broadening. In the small signal regime, we find that the time delay and the pulse 
broadening factor increase with the increasing gain, but for pulse with the smaller gain 
bandwidth has a larger slope than the others. In the gain saturation regime, the pulse with 
larger gain coefficient, smaller gain bandwidth, smaller effective mode area begins to 
decrease more quickly in the gain range of 0~16. For the gain larger than 16, the pulse 
advancement becomes more obviously and the distortion also becomes more seriously, 
which may render the delay useless. We also investigate the time delay and pulse 
broadening factor vary with the increasing gain coefficient, gain bandwidth and effective 
mode area at a given pump power whose gain parameter is in the small signal regime, 
and find that the time delay and pulse broadening factor are proportional to the gain 
coefficient, whereas inversely proportional to the gain bandwidth and the effective mode 
area. 
According to the above numerical calculation and theory analysis, we find that decreasing 
the power and duration of injected stokes pulse induces increasing delay time and pulse 
broadening factor; using super-Gaussion-shaped pulse as the injected stokes pulse can 
contribute evidently to decreasing pulse broadening factor in low frequency. Selecting 
pretty m can get perfect delay time and pulse broadening factor. Though this adjusting 
effect will become weaker for a shorter pulse, this reform still takes advantage of decreasing 
the error rate of all-optical-buffer. 
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1. Introduction 
Very long span optical communications are mainly limited by the chromatic dispersion (CD) 
or group velocity dispersion (GVD), fiber nonlinearities, and optical amplifier noise 
(Agrawal 2005). Different frequencies of a pulse travel with their own velocities, which 
involves a pulse spreading. In a fiber-optic communication system, information is 
transmitted within a fiber by using a coded sequence of optical pulses whose width is 
determined by the bit rate of the system. The CD induced broadening of pulses is 
undesirable phenomenon since it interferes with the detection process leading to errors in 
the received bit pattern (Kogelnik & Jopson 2002; Mechels et al. 1997). Clearly GVD will 
limit the bit rate and the transmission distance of a fiber-optic communication system. GVD 
is basically constant over time, and compensation can be set once and forgotten (Karlsson 
1994).  
When the signal channel bit rates reached beyond 10 Gb/s, polarization mode dispersion 
(PMD) becomes interesting to a larger technical community. PMD is now regarded as a 
major limitation in optical transmission systems in general, and an ultimate limitation for 
ultra-high speed signal channel systems based on standard single mode fibers (Mahgerftech 
& Menyuk 1999). PMD arises in optical fibers when the cylindrical symmetry is broken due 
to noncircular symmetric stress. The loss of such symmetry destroys the degeneracy of the 
two eigen-polarization modes in fiber, which will cause different GVD parameters for these 
modes. In standard single mode fibers, PMD is random, i.e. it varies from fiber to fiber. 
Moreover, at the same fiber PMD will vary randomly with respect to wavelength and 
ambient temperature (Lin & Agrawal 2003b; Sunnerud et al. 2002). The differential group 
delay (DGD) between two orthogonal states of polarization called the principal states of 
polarization (PSP’s) causes the PMD (Tan et al. 2002; Wang et al. 2001). As a pulse 
propagates through a light-wave transmission system with a PMD, the pulse is spilt into a 
fast and slow one, and therefore becomes broadened. This kind of PMD is commonly known 
as first-order PMD. Under first-order PMD, a pulse at the input of a fiber can be 
decomposed into two pulses with orthogonal states of polarization (SOP). Both pulses will 
arrive at the output of the fiber undistorted and polarized along different SOP’s, the output 
SOP’s being orthogonal (Chertkov et al. 2004; Foshchini & Poole 1991). Both the PSP’s and 
the DGD are assumed to be frequency independent when only first-order PMD is being 
considered (Lin & Agrawal 2003c; Gordon & Kogelnik 2000). 
Second-order PMD effects account for the frequency dependence of the DGD and the PSP’s. 
The frequency dependence of the DGD introduces an effective chromatic dispersion of 
opposite sign on the signals polarized along the output PSP’s (Elbers et al. 1997; Ibragimv & 
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Shtenge 2002). Fiber PMD causes a variety of impairments in optical fiber transmission 
systems. First of all there is the inter-symbol interference (ISI) impairment of a single digital 
transmission channel. The ISI impairment is caused by the DGD between the two pulses 
propagating in the fiber when the input polarization of the signal does not match one of the 
PSP’s of the fiber PMD impairments due to inter-channel effects that occur in polarization-
multiplexed transmission systems (Agrawal 2005; Yang et al. 2001). 
There are two polarization effects that lead to impairments in the long-haul optical fiber 
transmission systems: PMD and polarization dependent loss (PDL) (Chen et al. 2003; Chen 
et al. 2007). The WDM systems whose channels are spread over a large bandwidth rapidly 
change their state of polarizations (SOP’s) due to PMD so that the overall DOP of the system 
is nearly zero (Agrawal 2005; Kogelnik & Jopson 2002). At the same time different channels 
expiries different amounts of PDL, and since the amplifiers maintain the total signal power 
nearly constant, individual channels undergo a kind of random walk so that it is possible for 
some channels to fade (Shtaif & Rosenberg 2005; Menyuk et al. 1997). Calculating the 
impairments due to the combination of PMD and PDL in WDM systems is a formidable 
theoretical challenge (Phua & Ippen 2005). Physically, light pulses polarized along these 
PSP’s propagate without polarization-induced distortion. When there is no PDL, the two 
PSP’s are orthogonal and correspond to the fastest and slowest pulses, which can propagate 
in the fiber (Yasser 2010; Yaman et al. 2006). They thus constitute a convenient basis for 
polarization modes. When the system includes PDL, the Jones formalism is still applicable, 
but several of the above facts are not valid anymore. The notion of PSP’s is still correct, but 
the two PSP’s are not orthogonal nor do they represent the fastest and slowest pulses (Yoon 
& Lee 2004). 
In this chapter, the analysis of Jones and Stokes vectors and the relation between them were 
discussed in section 2. The statistics of PMD are presented in section 3. The pulse 
broadening in presence of PMD and CD were illustrated in section 4. In section 5, the 
principal comparison between PMD and birefringence vector will be obtained. The 
combined effects of PMD and PDL are presented in section 6. Finally, section 7 will 
summarize the effects of nonlinearity on the effective birefringence vector. 

2. Polarization dynamics 
The representation of polarization in Jones and Stokes spaces and the connection between 
the two spaces will be presented in this section. Throughout this chapter, it is assumed that 
the usual loss term of the fiber has been factored out so that one can deal with unitary 
transmission matrices. Light in optical fibers can be treated as transverse electromagnetic 
waves. Considering the two perpendicular and linearly polarized light waves propagating 
through the same region of space in the z-direction, the two fields can be represented in 
complex notation as (Azzam & Bashara 1989) 

 ( )
0ˆ( , )   xi kz wt

x xE z t x E e ϕ− +=  (1a) 

 ( )
0ˆ( , )   yi kz wt

y yE z t y E e ϕ− +=  (1b) 

where xϕ  and xϕ  are the phases of the two field components, and k  is the propagation 
constant. The resultant optical field is the vector sum of these two perpendicular waves, i.e. 
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 ( , ) ( , ) ( , )x yE z t E z t E z t= +  (2) 

The polarization state can be represented in terms of Jones vectors as 
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where 2 2
0 0 0/x x x ya E E E= + , 2 2

0 0 0/y y x ya E E E= + , and 2 2 1x ya a+ = . Here 0xE  and 0yE  are 
the initial amplitude components of the light. The familiar form of Jones vector is denoted as 
ket vector as (Gordon & Kogelnik 2000) 
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whereas the bra |s<  indicates the corresponding complex conjugate row vector, i.e. 
* *| [ ]x ys s s< = , where * indicates complex conjugation. The bra-ket notation is used to 

distinguish Jones vectors from another type of vectors that will be used in this chapter 
which is called the Stokes vectors. Partial correlation yields partial polarization and total 
correlation gives total polarization (Karlsson 1994; Sunnerud et al. 2002). When the light is 
coherent, Jones vectors are all of unit magnitude, i.e. * *| 1x x y ys s s s s s< >= + = . Given the Jones 
vector, the values of the azimuth angle, ψ , and the ellipticity angle, η , can be found by 
solving the equations (Rogers 2008) 
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where Re  and Im  denote the real and imaginary parts, respectively. Fig.(1 a) illustrates 
Jones representation of polarization vector.  
The Poincare sphere is a graphical tool in real three dimensional space that allows 
convenient description of polarized signals and polarization transformations caused by 
propagation through devices. Any SOP can be represented uniquely by a point on or within 
a unit sphere centered on a rectangular coordinates system. The coordinates of a point are 
the three normalized Stokes parameters describing the state of polarization (Azzam & 
Bashara 1989; Rogers 2008). Partially polarized light can be considered as a combination of 
purely polarized light and un-polarized light. Orthogonal polarizations are located 
diametrically opposite to the sphere. As shown in Fig.(1 b), linear polarizations are located 
on the equator. Circular states are located at the poles, with intermediate elliptical states 
continuously distributed between the equator and the poles (Karlsson 1994; Kogelnik & 
Jopson 2002). There are two angles (or degrees of freedom, i.e. ψ  and η ) describing an 
arbitrary Jones vector. These angles can be interpreted as coordinates in a spherical 
coordinates system, and each polarization state can then correspond to a point, represented 
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by a Stokes vector, 1 2 3ˆ (  , s  , s )ts s=  on the Poincare sphere, where t  represents the 
transpose. The three Cartesian components can be defined as (Gordon & Kogelnik 2000) 

 

2 2
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 (6) 

Therefore, the angle 2ψ  is the angle from the direction of 1s  to the projection of ŝ  on the 
1 2s s−  plane, and 2η  is the angle from 1 2s s−  plane to the vector ŝ , see Fig. (1 b). Given 

Stokes vector, the values of ψ  and η  are obtained by solving the equations 2 1/ tan 2s s ψ= , 
and 3s sin 2η= . 
 

 
Fig. 1. Illustration of: a) Jones representation , b) Stokes representation. 

Any Stokes vector ŝ  is related to another one |s >  in Jones space as ˆ | |s s sσ=< > , where 
1 2 3( , , )σ σ σ σ=  is the Pauli spin vector whose components are defined as (Levent et al. 2003) 

 1 2 3
1 0 0 1 0

  ,     ,   
0 1 1 0 0

i
i

σ σ σ
−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
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 (7) 

It is important to note that if the angle between p̂  and ŝ  in Stokes vector is θ , then the 
angle between |p > and |s >  in Jones space is / 2θ . That is; if two vectors are perpendicular 
in Jones space then the corresponding two vectors in Stokes space are antiparallel. Each of 
these two spaces gives certain illustrations according to the case of study. For totally 
polarization, the value of polarization vector is unity, elsewhere, the value differs from 
unity. In general, the three components of ŝ  are not zero for elliptical polarization. The 
third component of ŝ  equals zero for linear polarization, whereas the first two components 
of ŝ  are zero for circular polarization. There is a unitary matrix, T , in Jones space which 
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relates output to input via | |s T t>= > , where |s >  and |t >  are the output and input Jones 
vectors, respectively. On the other hand, a transformation matrix (Muller), R , in Stokes 
space relates output to input via ˆŝ R t= , where ŝ  and t̂  are the output and input Stokes 
vectors, respectively. The transmission matrices are related as †R T Tσ σ= , where †  denotes 
the transpose of the complex conjugate (Agrawal 2007; Chen et al. 2007). 

3. Statistical managements 

The effects of PMD are usually treated by means of the three-dimensional PMD vector that 
is defined as ˆpmdpτ τ= , where p̂  is a unit vector pointing in the direction of slow PSP and 

pmdτ  is the DGD between the fast and slow components which is defined as (Mahgerftech & 
Menyuk 1999) 

 2 2 2
1 2 3| |pmdτ τ τ τ τ= = + +  (8) 

The PMD vector τ  in Stokes space gives the relation between the output SOP, ŝ , and the 
frequency derivative of the output SOP: ˆ ˆ( ) / ( ) ( )d s w dw w s wτ= × . The PSP’s are defined as 
the states that ˆ( ) ( ) 0w s wτ × = , so that no changes in output polarization can be observed 
close to these states at first order in w . To the first order, the impulse response of an optical 
fiber with PMD is defined as (Karlsson 1994) 

 ( ) ( / 2)| ( / 2) |pmd pmd pmdh T T p T pγ δ τ γ δ τ+ + − −= − > + + >  (9) 

where γ ±  are the splitting ratios and |p± >  are the PSP’s vectors. The factors γ ±  and pmdτ  
vary depending on the particular fiber and its associated stresses, where the splitting ratios can 
range from zero to one. Note that, the function ( )pmdh T  is normalized in the range ( −∞  to ∞ ). 

3.1 Splitting ratios 
Consider that the PSP's occur with a uniform distribution over the Poincare sphere, and that ŝ  
is aligned with the north pole of the sphere as shown in Fig.(2). The probability density of 
PSP's which is found in the range dθ  about the angle θ  relative to ŝ  is proportional to the 
differential area 2 sin  dπ θ θ  sketched in the figure. As there is north/south symmetry in the 
differential area, the ranges ( 0  to / 2π ) and ( / 2π  to π ) of θ  are combined to obtain the 
combined probability density ( ) sinpθ θ θ= . For the effective range ( 0  to / 2π ) describing the 
occurrence of PSP's with angle θ  (and π θ− ) relative to ŝ± , the distribution ( )pθ θ  is 
properly normalized through the range ( 0 to / 2π ). The analyses of splitting ratios have led to 
a number of important fundamental advances as well as the technical point of view (Rogers 
2008; Kogelnik & Jopson 2002). The splitting ratios γ ±  can be determined from the polarization 
vectors. In other words γ ±  represent the projection of |p+ > and |p− >  onto |s > . Formally, 

2 2| | |s pγ ± ±=< > , where |s >  and |p± >  are the input SOP and the two PSP's vectors.  
If the PSP’s are defined as | [  ] t

x yp p p± ± ±>= , then  
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by a Stokes vector, 1 2 3ˆ (  , s  , s )ts s=  on the Poincare sphere, where t  represents the 
transpose. The three Cartesian components can be defined as (Gordon & Kogelnik 2000) 
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Therefore, the angle 2ψ  is the angle from the direction of 1s  to the projection of ŝ  on the 
1 2s s−  plane, and 2η  is the angle from 1 2s s−  plane to the vector ŝ , see Fig. (1 b). Given 

Stokes vector, the values of ψ  and η  are obtained by solving the equations 2 1/ tan 2s s ψ= , 
and 3s sin 2η= . 
 

 
Fig. 1. Illustration of: a) Jones representation , b) Stokes representation. 

Any Stokes vector ŝ  is related to another one |s >  in Jones space as ˆ | |s s sσ=< > , where 
1 2 3( , , )σ σ σ σ=  is the Pauli spin vector whose components are defined as (Levent et al. 2003) 

 1 2 3
1 0 0 1 0

  ,     ,   
0 1 1 0 0

i
i

σ σ σ
−⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 (7) 

It is important to note that if the angle between p̂  and ŝ  in Stokes vector is θ , then the 
angle between |p > and |s >  in Jones space is / 2θ . That is; if two vectors are perpendicular 
in Jones space then the corresponding two vectors in Stokes space are antiparallel. Each of 
these two spaces gives certain illustrations according to the case of study. For totally 
polarization, the value of polarization vector is unity, elsewhere, the value differs from 
unity. In general, the three components of ŝ  are not zero for elliptical polarization. The 
third component of ŝ  equals zero for linear polarization, whereas the first two components 
of ŝ  are zero for circular polarization. There is a unitary matrix, T , in Jones space which 
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relates output to input via | |s T t>= > , where |s >  and |t >  are the output and input Jones 
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vectors, respectively. The transmission matrices are related as †R T Tσ σ= , where †  denotes 
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where γ ±  are the splitting ratios and |p± >  are the PSP’s vectors. The factors γ ±  and pmdτ  
vary depending on the particular fiber and its associated stresses, where the splitting ratios can 
range from zero to one. Note that, the function ( )pmdh T  is normalized in the range ( −∞  to ∞ ). 
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a number of important fundamental advances as well as the technical point of view (Rogers 
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where |p±<  are the transpose conjugation of |p± > . Now, it is straightforward to show that 
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Comparing Eqs.(10) and (11), 2 ˆ| | ( ) / 2 p p I p σ± ±>< = ± ⋅ can be extracted. In turn, the splitting 
ratios can be calculated by using Eq.(11) and the fact that ˆ ˆ ˆ| |a p a p aσ< ⋅ >= ⋅  as follows 

 2 2
2 ˆ ˆ ˆ| | |( )| /2 (1 ) / 2 cos (  /2)s p p s s I p s p sγ σ θ+ + +=< >< >=< + ⋅ > = + ⋅ =  (12a) 

 2 2
2 ˆ ˆ ˆ| | |( )| /2 (1 ) / 2  sin (  /2)s p p s s I p s p sγ σ θ− − −=< >< >=< − ⋅ > = − ⋅ =  (12b) 

Until now, the relationship between the splitting ratios and elevation angle was calculated, 
where the ratios γ ±  are identical only for /2θ π= .  
 

 
Fig. 2. Sketch of differential area on Poincare sphere as a function of elevation angle θ . 

3.2 Statistics of DGD 
Throughout this subsection, the PMD statistics have been carefully analyzed since it causes 
a variation in the pulse properties. A proper measure of pulse width for pulses of arbitrary 
shapes is the root-mean square (rms) width of the pulse defined as 2 2

rms T Tτ = < > − < > . 
The PMD induced pulse broadening is characterized by the rms value of pmdτ . The rmsτ  is 
obtained after averaging over random birefringence changes. The second moment of pmdτ  is 
given by (Fushchini & Poole 1991) 

 /2 2 2 2
12( )    [ / 1 ]cL

pmd rms c cL eτ τ β −< >= = Δ + −  (13) 

where c  is the correlation length that is defined as the length over which two polarization 
components remain correlated, 1 1

1 gx gyv vβ − −Δ = −  is related to the difference in group velocities 
along the two PSP's. For distances 1 L km>> , a reasonable estimate of pulse broadening was 
obtained by taking the limit cL >> in Eq.(13). The result is given by 1 2rms c pL D Lτ β≈ Δ = , 
where pD  is known as the PMD parameter that takes the values km(0.01-10)ps/ . The variable 

pmdτ  has been determined to obey a Maxwellian distribution of the form (Agrawal 2005) 
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The mean of pmdτ  is done simply as 8 / 3  pmd rmsπτ τ= . Using this result, the Maxwellian 
distribution will take the form 
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A cursory inspection of Eq.(15) reveals that the ( )pmdp τ  can be found if pmdτ  is known. Here, 
a relationship for pmdτ  that will maximize ( )pmdp τ  can be found. The distribution ( )pmdp τ  
has a maximum value at max /2 pmd pmd pmdτ τ πτ= = . This conclusion provides a method for 
calculating the maximum likelihood value of pmdτ  if pmdτ  is known. 

3.3 Statistics of impulse response 
The rms width of the impulse response, effτ , can be readily calculated by substituting Eq.(9) 
into 2 2

rms T Tτ = < > − < >  to yield 
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Using the result ( ) sin  pθ θ θ= and Eq.(16), the density distribution for θ  can be transformed 
to the density for effτ  as follows 
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It is important to note that the probability density is a function of effτ  and pmdτ . As a 
consequence of this dependence, Eq.(17) can not be integrated to determine effτ  due to the 
presence of the other variable pmdτ . So, the next step is to seek about ( )

eff effpτ τ  in order to 
determine the statistical properties of output pulses. The joint probability distribution 

( , )eff pmdp τ τ  can be illustrated using Eqs.(14) and (17) as follows 
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Recalling Eq.(16), it may be written as 2 /sinpmd effτ τ θ= . Since 0 sin 1θ≤ ≤ , such that 
2 eff pmdτ τ≤ < ∞ . The probability distribution ( )effp τ can be found by integrating Eq.(18) 
about pmdτ  through the range 2 eff pmdτ τ≤ < ∞  to obtain 
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where |p±<  are the transpose conjugation of |p± > . Now, it is straightforward to show that 
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Using the result ( ) sin  pθ θ θ= and Eq.(16), the density distribution for θ  can be transformed 
to the density for effτ  as follows 
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It is important to note that the probability density is a function of effτ  and pmdτ . As a 
consequence of this dependence, Eq.(17) can not be integrated to determine effτ  due to the 
presence of the other variable pmdτ . So, the next step is to seek about ( )

eff effpτ τ  in order to 
determine the statistical properties of output pulses. The joint probability distribution 
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Recalling Eq.(16), it may be written as 2 /sinpmd effτ τ θ= . Since 0 sin 1θ≤ ≤ , such that 
2 eff pmdτ τ≤ < ∞ . The probability distribution ( )effp τ can be found by integrating Eq.(18) 
about pmdτ  through the range 2 eff pmdτ τ≤ < ∞  to obtain 
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At a basic level, Eq.(17) is the same as Eq.(19) but the latter is a function of effτ  only, which 
can be integrated to obtain effτ . However, both equations are normalized properly. The 
mean value of effτ  is determined as /2θ π= . So, Eq.(19) may be written as 

 
2 2 /4 

2( )
2

 eff effeff
eff

eff
p e π τ ττπτ

τ
−=  (20) 

The distribution ( )effp τ  has a maximum value at max / 32eff eff pmdτ τ π τ= = . This is equivalent 
to find the maximum likelihood value of effτ  if pmdτ  is known. 

3.4 Pulse characteristics 
Using the PSP’s as an orthogonal basis set, any input or output polarization can be 
expressed as the vector sum of two components, each aligned with a PSP. Within the realm 
of the first-order PMD, the output electric field from a fiber with PMD has the form (Rogers 
2008) 

 _| ( )  ( / 2)  |  ( / 2)  |out in pmd in pmdA T A T p A T pγ τ γ τ+ + −>= − > + + >  (21) 

where ( )inA T  is the input electric field. To determine the output power 
( ) ( )| ( )out out outP T A T A T=< > , it is important to point out the orthogonality properties of Jones 

vectors, that is; | 0 p p±< >=∓  and | 1p p± ±< >= . Note that, we perform the derivation using a 
normalized Gaussian pulse that takes the form 2 2

0( ) exp( /2 )inA T D T T= − , where 0/inD E T π= , 

0T  is the initial pulse width, and inE  is the input pulse energy. For normalized power, we 
make 2 1D = . Therefore, according to Eq.(21), the shifted pulses will reshape as 
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Substituting Eqs.(12) and (22) into (21), using the output power definition, using the 
orthogonality properties of Jones vectors, and simplified the result, we obtain the following 
expression 
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 (23) 

The width of the output pulse 1T  can be determined as follows 
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The time jittering of the pulse can be found by determining the maximum value of ( )outP T . 
This maximum value will happen at cos( ) /2peak pmdT T τ θ= = . The peak power, as a 
function of DGD and an angle θ , at the pulse center can be determined by substituting the 
latter result into Eq.(23) to get 

 
2 2 2 2 2 2

0 0-sin ( /2) / -cos ( /2) /2 2( , ) cos ( /2) e  in ( /2) epmd pmdT T
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At this point, we drive formulas for the output power form, final width, time jittering 
(shifting), and peak power as functions of the random physical variables θ  and pmdτ . 

Fig.(3) illustrates the simulation with the parameters: 50 L km= , 0.5 /  pD ps km= , and 
0 5 T ps= . The solid line represents the original pulse while the discrete lines represent the 

resulted pulses with different values of pmdτ  ranging from 0  to 8ps , where the closest to 
0T =  is the pulse that has least value of τ . At the angle 0θ = , one note that the pulse is 

faced only by a displacement to the right at /2peak pmdT τ= . Increasing θ , the pulse width 
and distortion will be increased, while the power and shifting will be decreased. These 
variations are the greatest at /2θ π= . After /2θ π= , the effects are reversed. At θ π= , 
again the pulse is faced only by a displacement but to the left at / 2peak pmdT τ= − . It is clear 
that the penalty could be greater if /2θ π=  and will be zero at 0   orθ π= . 
 

 
Fig. 3. Pulse shape with different values of pmdτ  and θ  for different values of pmdτ ;  
the lower value of pmdτ  is the closest to the pulse center. 

4. Polarization mode dispersion and chromatic dispersion 

The pulses that propagate through single mode fiber (SMF) are affected by two types of 
dispersion which are CD and PMD. Notice that the effects of the two types of dispersion 
happen at the same time, so to give a distinct sense of the two types of dispersion we 
decided to obtain the effects in the frequency domain. The initial pulse, (0, ) { (0, )}A w A T= ℑ , 
first faces the affect of CD (the transfer function 1( )H w ) to obtain 1( ) (0, )H w A w . The CD 
does not depend on SOP therefore the input SOP (the Jones vector |a > ) will not change. 
Next, the pulse divides into two orthogonal components towards PSP’s ( |a+ >  and |a− > ) 
under the effects of PMD. The component in the direction |a+ >  will face the effects of the 
function 2 ( )sH w  to obtain the pulse 2 1( ) ( ) (0, )sH w H w A w  and at the same time the SOP will 
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At a basic level, Eq.(17) is the same as Eq.(19) but the latter is a function of effτ  only, which 
can be integrated to obtain effτ . However, both equations are normalized properly. The 
mean value of effτ  is determined as /2θ π= . So, Eq.(19) may be written as 
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3.4 Pulse characteristics 
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expressed as the vector sum of two components, each aligned with a PSP. Within the realm 
of the first-order PMD, the output electric field from a fiber with PMD has the form (Rogers 
2008) 

 _| ( )  ( / 2)  |  ( / 2)  |out in pmd in pmdA T A T p A T pγ τ γ τ+ + −>= − > + + >  (21) 

where ( )inA T  is the input electric field. To determine the output power 
( ) ( )| ( )out out outP T A T A T=< > , it is important to point out the orthogonality properties of Jones 

vectors, that is; | 0 p p±< >=∓  and | 1p p± ±< >= . Note that, we perform the derivation using a 
normalized Gaussian pulse that takes the form 2 2

0( ) exp( /2 )inA T D T T= − , where 0/inD E T π= , 

0T  is the initial pulse width, and inE  is the input pulse energy. For normalized power, we 
make 2 1D = . Therefore, according to Eq.(21), the shifted pulses will reshape as 
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pmd

in pmd
o

T
A T D

T
τ

τ
⎡ ⎤±
⎢ ⎥± = −
⎢ ⎥⎣ ⎦

 (22) 

Substituting Eqs.(12) and (22) into (21), using the output power definition, using the 
orthogonality properties of Jones vectors, and simplified the result, we obtain the following 
expression 

 
2 2 2 2 2

0 0 0/ / -(4T )/42 2( ) cos (  / 2) sin ( / 2)  epmd pmd pmdT T T T T
outP T e eτ τ τθ θ− +⎡ ⎤= +⎢ ⎥⎣ ⎦

 (23) 

The width of the output pulse 1T  can be determined as follows 

 
2

2 2 2 2
1 0( ) ( ) ( /2) sinout out pmdT T P T dT TP T dT T τ θ

∞ ∞

−∞ −∞
⎡ ⎤= − = +⎢ ⎥⎣ ⎦∫ ∫  (24) 

The time jittering of the pulse can be found by determining the maximum value of ( )outP T . 
This maximum value will happen at cos( ) /2peak pmdT T τ θ= = . The peak power, as a 
function of DGD and an angle θ , at the pulse center can be determined by substituting the 
latter result into Eq.(23) to get 

 
2 2 2 2 2 2

0 0-sin ( /2) / -cos ( /2) /2 2( , ) cos ( /2) e  in ( /2) epmd pmdT T
peak pmdP sθ τ θ ττ θ θ θ= +  (25) 
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At this point, we drive formulas for the output power form, final width, time jittering 
(shifting), and peak power as functions of the random physical variables θ  and pmdτ . 

Fig.(3) illustrates the simulation with the parameters: 50 L km= , 0.5 /  pD ps km= , and 
0 5 T ps= . The solid line represents the original pulse while the discrete lines represent the 

resulted pulses with different values of pmdτ  ranging from 0  to 8ps , where the closest to 
0T =  is the pulse that has least value of τ . At the angle 0θ = , one note that the pulse is 

faced only by a displacement to the right at /2peak pmdT τ= . Increasing θ , the pulse width 
and distortion will be increased, while the power and shifting will be decreased. These 
variations are the greatest at /2θ π= . After /2θ π= , the effects are reversed. At θ π= , 
again the pulse is faced only by a displacement but to the left at / 2peak pmdT τ= − . It is clear 
that the penalty could be greater if /2θ π=  and will be zero at 0   orθ π= . 
 

 
Fig. 3. Pulse shape with different values of pmdτ  and θ  for different values of pmdτ ;  
the lower value of pmdτ  is the closest to the pulse center. 

4. Polarization mode dispersion and chromatic dispersion 

The pulses that propagate through single mode fiber (SMF) are affected by two types of 
dispersion which are CD and PMD. Notice that the effects of the two types of dispersion 
happen at the same time, so to give a distinct sense of the two types of dispersion we 
decided to obtain the effects in the frequency domain. The initial pulse, (0, ) { (0, )}A w A T= ℑ , 
first faces the affect of CD (the transfer function 1( )H w ) to obtain 1( ) (0, )H w A w . The CD 
does not depend on SOP therefore the input SOP (the Jones vector |a > ) will not change. 
Next, the pulse divides into two orthogonal components towards PSP’s ( |a+ >  and |a− > ) 
under the effects of PMD. The component in the direction |a+ >  will face the effects of the 
function 2 ( )sH w  to obtain the pulse 2 1( ) ( ) (0, )sH w H w A w  and at the same time the SOP will 
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change from |a+ >  to |b+ > . On the other hand, the pulse in the direction |a− >  faces the 
effects of the function 2 ( )fH w  to yield 2 1( ) ( ) (0, )fH w H w A w  and also the SOP will change 
from |a− >  to |b− > . The input or output PSP's does remain orthogonal when the PDL is 
absent. Finally, the vector sum of the two components will produce the final pulse 

2 1( ) ( ) (0, )H w H w A w . The transfer function of the CD of lossless fiber in frequency domain is 
2

1 2( ) exp(    / 2) H w i w Lβ= , where  2
2 ( ) /2  d cβ λ λ π= − , ( )d λ  is fiber chromatic dispersion 

parameter, L is the fiber length, and λ  is light wavelength. Now, assume that there is 
negligible PDL, so that we can use the principal states model (Lin & Agrawal 2003b; 
Ibragimv & Shtenge 2002; Foshchini & Poole 1991) to characterize first-order PMD. Under 
this model, there exist a pair of orthogonal input PSP’s, |a+ >  and |a− >  , and a pair of 
orthogonal output PSP’s, |b+ >  and |b− > , where all of PSP’s are expressed as Jones vectors. 
If an arbitrary polarized field ( ) ( )  |a aA t A t a= >  is input to the fiber, this input field can be 
projected onto the two PSP’s as  

 ( )  ( )  |  ( )  |a a aA T A T a A T aγ γ+ −
+ −= > + >  (26) 

In terms of first-order PMD, the output field of the fiber takes the form 

 ( ) ( /2)|  ( /2)  |b b pmd b pmdA T A T b A T bγ τ γ τ+ −
+ −= − > + + >  (27) 

According to Eq.(9), the fiber transfer functions for first-order in the time and frequency 
domains are given by 

 2( )   ( /2)  |  ( /2)|pmd pmdh t T b T bγ δ τ γ δ τ+ −
+ −= − > + + >  (28a) 

 /2 /2
2( )    |    |pmd pmdiw iwH w e b e bτ τγ γ −+ −

+ −= > + >  (28b) 

The root mean square width of this impulse response which can be calculated as 
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T T h T dT b b
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γ τ γ τ

τ

∞
+ −

+ −
−∞
∞

+ −
+ −

−∞

±
±

< >= = > − >

< >= = > + >

= < > − < > =

∫

∫  (29) 

where the signs ( ,  -+ ) mean that the impulse response in directions of |b+ >  or |b− > , 
respectively. That is; the width of an impulse response in the direction of PSP’s will be zero, 
while the width in the direction of |b >  will be sin  /2rms pmdτ θ τ= . This represents the extra 
width that results due to the effects of PMD on the propagated signal. It is clear that, if the 
input SOP is in direction of PSP’s, then the pulse will not suffer any broadening.  
The Fourier transformation of the initial pulse takes the form 2 2(0, ) 2 exp( /2)o oA w D T w Tπ= − . 
The total effects on the pulse shape can be obtained by using the convolution of the transfer 
functions of the combined PMD and CD with the input Gaussian signal in the time domain, 
or equivalently by using the inverse Fourier transform as follows 

1
1 2( , ) { (0, ) ( ) ( )} cos( /2) ( , ) | sin( /2) ( , ) |A z T A w H w H w A z T b A z T bθ θ− + −

+ −= ℑ ⋅ ⋅ = > + > (30) 
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where 
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2
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4 24
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1 22
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o o
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βφ β
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−±
±

= ±
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= − +

 

The parameter 1T  represents the pulse width including CD effects where it is the same for 
the two orthogonal components. The width of each component will not increase under the 
effects of PMD, but the pulse which results from the vector sum of the two orthogonal 
components will face a broadening that can be determined by rmsτ . The parameters ( , )z Tφ±  
represent the nonlinear phases that generate through the propagation in optical fiber. The 
nonlinear phase as a function of time differs from one component to another by the amount 

pmdτ , but in the frequency domain they remain the same and add the same value of noise to 
both components. The frequency chirp can be written as 

 2 2
2 2 2 2

1 1

( , ) / 2 ( )
2o o

z T z T z Tw T
T T T T T

φ β β τδ ± ±
±

∂ ± Δ
= − = =

∂
 (31) 

This means that the new frequencies generated are similar for the two components and the 
difference lies in / 2pmdT τ±  only, which means that one of the components advances the 
other by time pmdτ . Eq.(30) explains that the pulse amplitude will decrease by increasing the 
propagation distance, which will be converted to the same equations as in reference 
(Agrawal 2007) by ignoring the effects of PMD. The Jones vectors |b+ >  and |b− >  are 
orthogonal, i.e. | 0b b+ −< >= . That is enough to assume a random form to one of them to 
find the other. For example, if | [ ]tb x iy+ >=  then | [ ]tb iy x− >=  keeping in mind that all 
the polarization vectors have unit values. 
Now, the reconstructed width after including the effects of CD is 1T . Next, the input pulse 
has a width 1T  which will be increased by the amount rmsτ  due to the PMD. Such that, the 
final width will be 

 2 2 2
1 sin / 4f pmdT T τ θ= +  (32) 

Fig.(4 a) illustrates the shape of pulse for various values of 2β , assuming 2  pmd psτ = , 
/ 2θ π= , 10  psoT = , and 60  kmL = . Since pmdτ  is constant for all cases, this implies that 

the time separation between the orthogonal components remains the same. The width of 
both components increases (under the effects of CD) by increasing 2β . Consequently, the 
width of the final pulse increases by increasing 2β , but the amplitude is decreased. The 
existence of CD causes a broadening factor (BR) of value 1 / oT T  , and the existence of PMD 
adds a BR of value 1/rms Tτ . That is; the width of pulse will increase due to the existence of  
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change from |a+ >  to |b+ > . On the other hand, the pulse in the direction |a− >  faces the 
effects of the function 2 ( )fH w  to yield 2 1( ) ( ) (0, )fH w H w A w  and also the SOP will change 
from |a− >  to |b− > . The input or output PSP's does remain orthogonal when the PDL is 
absent. Finally, the vector sum of the two components will produce the final pulse 

2 1( ) ( ) (0, )H w H w A w . The transfer function of the CD of lossless fiber in frequency domain is 
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1 2( ) exp(    / 2) H w i w Lβ= , where  2
2 ( ) /2  d cβ λ λ π= − , ( )d λ  is fiber chromatic dispersion 

parameter, L is the fiber length, and λ  is light wavelength. Now, assume that there is 
negligible PDL, so that we can use the principal states model (Lin & Agrawal 2003b; 
Ibragimv & Shtenge 2002; Foshchini & Poole 1991) to characterize first-order PMD. Under 
this model, there exist a pair of orthogonal input PSP’s, |a+ >  and |a− >  , and a pair of 
orthogonal output PSP’s, |b+ >  and |b− > , where all of PSP’s are expressed as Jones vectors. 
If an arbitrary polarized field ( ) ( )  |a aA t A t a= >  is input to the fiber, this input field can be 
projected onto the two PSP’s as  

 ( )  ( )  |  ( )  |a a aA T A T a A T aγ γ+ −
+ −= > + >  (26) 

In terms of first-order PMD, the output field of the fiber takes the form 

 ( ) ( /2)|  ( /2)  |b b pmd b pmdA T A T b A T bγ τ γ τ+ −
+ −= − > + + >  (27) 

According to Eq.(9), the fiber transfer functions for first-order in the time and frequency 
domains are given by 
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The root mean square width of this impulse response which can be calculated as 
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where the signs ( ,  -+ ) mean that the impulse response in directions of |b+ >  or |b− > , 
respectively. That is; the width of an impulse response in the direction of PSP’s will be zero, 
while the width in the direction of |b >  will be sin  /2rms pmdτ θ τ= . This represents the extra 
width that results due to the effects of PMD on the propagated signal. It is clear that, if the 
input SOP is in direction of PSP’s, then the pulse will not suffer any broadening.  
The Fourier transformation of the initial pulse takes the form 2 2(0, ) 2 exp( /2)o oA w D T w Tπ= − . 
The total effects on the pulse shape can be obtained by using the convolution of the transfer 
functions of the combined PMD and CD with the input Gaussian signal in the time domain, 
or equivalently by using the inverse Fourier transform as follows 

1
1 2( , ) { (0, ) ( ) ( )} cos( /2) ( , ) | sin( /2) ( , ) |A z T A w H w H w A z T b A z T bθ θ− + −

+ −= ℑ ⋅ ⋅ = > + > (30) 
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The parameter 1T  represents the pulse width including CD effects where it is the same for 
the two orthogonal components. The width of each component will not increase under the 
effects of PMD, but the pulse which results from the vector sum of the two orthogonal 
components will face a broadening that can be determined by rmsτ . The parameters ( , )z Tφ±  
represent the nonlinear phases that generate through the propagation in optical fiber. The 
nonlinear phase as a function of time differs from one component to another by the amount 

pmdτ , but in the frequency domain they remain the same and add the same value of noise to 
both components. The frequency chirp can be written as 
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This means that the new frequencies generated are similar for the two components and the 
difference lies in / 2pmdT τ±  only, which means that one of the components advances the 
other by time pmdτ . Eq.(30) explains that the pulse amplitude will decrease by increasing the 
propagation distance, which will be converted to the same equations as in reference 
(Agrawal 2007) by ignoring the effects of PMD. The Jones vectors |b+ >  and |b− >  are 
orthogonal, i.e. | 0b b+ −< >= . That is enough to assume a random form to one of them to 
find the other. For example, if | [ ]tb x iy+ >=  then | [ ]tb iy x− >=  keeping in mind that all 
the polarization vectors have unit values. 
Now, the reconstructed width after including the effects of CD is 1T . Next, the input pulse 
has a width 1T  which will be increased by the amount rmsτ  due to the PMD. Such that, the 
final width will be 

 2 2 2
1 sin / 4f pmdT T τ θ= +  (32) 

Fig.(4 a) illustrates the shape of pulse for various values of 2β , assuming 2  pmd psτ = , 
/ 2θ π= , 10  psoT = , and 60  kmL = . Since pmdτ  is constant for all cases, this implies that 

the time separation between the orthogonal components remains the same. The width of 
both components increases (under the effects of CD) by increasing 2β . Consequently, the 
width of the final pulse increases by increasing 2β , but the amplitude is decreased. The 
existence of CD causes a broadening factor (BR) of value 1 / oT T  , and the existence of PMD 
adds a BR of value 1/rms Tτ . That is; the width of pulse will increase due to the existence of  
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(a) 

 

 
(b) 

Fig. 4. Evolution of the pulse shape at / 2θ π= , 10  psoT = , and 60  kmL = :  
a) for various values of 2β  and 2  pmd psτ = , b) for various values of pmdτ  and 

3
2 1  ps / kmβ = . The dotted, continuous, and discrete lines refer to the initial pulse,  

two orthogonal components, and final pulse, respectively. 

the two types of dispersion. In other words, the time separation between the two orthogonal 
components will be fixed, both amplitude and width of the pulse will change under the 
effects of CD. Fig.(4 b) illustrates the shape of pulse for various values of pmdτ , 
assuming 3

2 1  ps / kmβ = , / 2θ π= , 10  psoT = , and 60  kmL = . Since 2β  and L  are 
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constants this implies that 1T  is constant also. That is; the width of both orthogonal 
components are similar for all pmdτ  values, but the difference appears as a time increase 
separation between the two components. This leads to adding a BR of value 1/rms Tτ  to the 
reconstructed pulse. 

5. Polarization mode dispersion and birefringence 

In the optical fibers, the birefringence vector β  may be defined in two forms as (Schuh et al. 
1995) 

 
cos2 cos2
sin 2          sin 2
0

L NLor
T

β α β α
β β α β β α

ζ

Δ Δ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= Δ = Δ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (33) 

where α  is the angle of birefringence in Jones space, βΔ  is the magnitude of linear 
birefringence, i.e. | |LBβΔ =  , ζ  is the photo-elastic coefficient of glass, and T is the twist 
rate in (rad/m). The angle α  is not constant along the fiber; also, βΔ  and T . This means 
that each segment of fiber has a birefringence vector differs from another position randomly, 
depending on the values of α , βΔ , and T . If | |LBβΔ = , then ˆ L rβ β= Δ , where r̂  
represents a unit vector in Stokes space. The vector r̂  represents a rotation axis of the 
polarization vector, which differs from one section to another randomly.  
Consequently, the PMD vector can be defined as a function of r̂  and φ (Gordon & Kogelnik 
2000) 

 ˆ ˆ ˆ ˆsin (cos 1)w w wr r r rτ φ φ φ= + + × −  (34) 

where zφ β= Δ Δ  represents the rotation angle of the polarization state vector ŝ  around the 
birefringence vector β , and wφ  and ŵr  represent their first derivatives of frequency. Eq.(34) 
obtains that the angle and direction of rotation control the resultant vector τ . Substituting 
the first definition in Eq.(33) into (34), yields 
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 (35) 

where /d dwε β= Δ  represents PMD parameter, and zΔ  is the fiber segment length. On the 
other hand, τ  is a function of w , which may be written as a Taylor series around the 
central frequency ow  as follows (Agrawal 2005) 

 
0

2 2

2( ) ( ) | | .................
2oo w w w w

d w dw w w
dw dw
τ ττ τ = =

Δ
= + Δ + +  (36) 

Comparing Eqs.(35) and (36), the first term on the right hand side of Eq.(35) will represent 
the first order of PMD vector, while the second term indicates all higher orders of PMD 
vector. Accounting that the higher orders depend on the value of /d dwα . For a very small 
variations of α  with frequency, the second term on the right hand side of Eq.(35) may be 
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constants this implies that 1T  is constant also. That is; the width of both orthogonal 
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where /d dwε β= Δ  represents PMD parameter, and zΔ  is the fiber segment length. On the 
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neglected. Elsewhere, the higher order effects must be included through the determination 
of PMD vector. 

5.1 Linear birefringence 
Neglecting the higher order effects makes the PMD vector as follows 
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 z cos(2 )
ˆz sin(2 )   z r   const. 

0

z
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This means, τ  coincides with the birefringence vector β  if the intrinsic birefringence is 
linear and the higher order PMD effects are neglected. Elsewhere, the two vectors are never 
coincided. Using Eq.(37), we can obtained DGD of the fiber segment as 

 (1)
1 | |  zpmdDGD τ τ ε= = = Δ  (38) 

The value of 1DGD  represents the delay time between the two components of polarization 
in a single segment of the optical fiber. Since the DGD’s of the fiber segments are random, so  

that 1DGD  can be calculated as 
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the higher order effects of the PMD must be included. The 2DGD  of this case can be 
obtained using Eq.(35) as follows 
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5.2 Nonlinear birefringence 
For the nonlinear intrinsic birefringence, τ  can be calculated using the second definition in 
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where the parameters 1a  into 8a  are defined as 
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Eq.(40) represents a new formula of the PMD vector demonstrating the difficulties to 
compensate the noise that arises due to PMD when the pulse propagates through optical 
fibers. Many approaches have been proposed (McCurdy et al. 2004;Lima et al. 2001; 
Vanwiggeren & Ray 1999; Ibragimv & Shtenge 2002; Schuh et al. 1995), which deal only with 
the first order of PMD. This means that the compensation depends on the first term 
presented in the right hand side of Eq.(40) and assuming that the birefringence vector is 
linear. 
The vector τ  can be found from β . Ignoring the higher orders of the vector τ , the vector τ  
is linear only if β  is linear, otherwise they are different. When the distance is changed this 
implies to rotate ŝ  around β  by an angle ϕ . On the other hand, the change of frequency 
causes to rotate ŝ  around τ  by an angle θ . Fig.(5 a) illustrates the relation among the three 
vectors ŝ , β , and τ  where the polarization vector ŝ  is rotating around β  and τ . Adding 
the higher orders of τ , the vector τ  is now nonlinear which does not coincided with the 
vector β  as illustrated in Fig.(5 b). The general case considers the birefringence vector is 
nonlinear and assuming all orders of τ  as illustrates in Fig.(5 c), which shows that each vector 
rotates in Stokes space. 
 

 
  (a)    (b)    (c) 

Fig. 5. Rotation of SOP around β  and τ : a) β  and τ  are linear, b) β  is linear and τ  is 
nonlinear, c) β  and τ  are nonlinear. 

6. Combined PMD and PDL effects 

As far as the continuum limit at the end is set, the following simple arrangement are 
considered: each PMD element (having iτ vector) is followed by a PDL element (having iα ) 
leading to the following transmission Jones matrix (Yasser 2010) 
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the higher orders of τ , the vector τ  is now nonlinear which does not coincided with the 
vector β  as illustrated in Fig.(5 b). The general case considers the birefringence vector is 
nonlinear and assuming all orders of τ  as illustrates in Fig.(5 c), which shows that each vector 
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Fig. 5. Rotation of SOP around β  and τ : a) β  and τ  are linear, b) β  is linear and τ  is 
nonlinear, c) β  and τ  are nonlinear. 
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1 ˆexp(   . )   [cosh( / 2) ( . )sinh( / 2)] 
2
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j j j j
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Here ( ) ˆj
j jpmdpτ τ=  represents the j-th PMD segment having DGD ( )j

pmdτ  and the fast polarization 
axis is expressed by the unit vector ˆ jp  in the Stokes space. The PMD vector τ  is, generally, 
frequency dependent; the first term in the Taylor expansion of ( )wτ  is conventionally referred 
to as the first-order PMD (Agrawal 2005). To clarify the notation used in this section, we 
attempt to keep the notation simple and transparent while linking to the notation already 
established as much as possible. The following is an abbreviated group of present notation: 
The letters C, c, S, and s represent ( )cos( / 2)j

pmdwτ , cosh( / 2)jα , ( )sin( / 2)j
pmdwτ , and 

sinh( / 2)jα , respectively. 
Notice that, in this representation PDL matrix, the polarization component of the field that is 
parallel to jα  experiences a gain eα , but the anti-parallel component is attenuated by e α− . 
The expressions /2je α±  represent the eigenvalues 1 2,λ λ  of PDL matrix. The vector ˆj j jα α α=  
stands for the j-th PDL segment with value expressed in dB by 

 21
10 10

2
( ) 10 ( ) 20| | ( )jPDL dB og og eλ α

λ
= =  (42) 

The action of an optical component exhibiting PDL and PMD on a field can be described by 
(Chen et al. 2007) 

 | | |PDL PMDs T t T T t>= >= >  (43) 

where |s > and |t >  are output and input SOP, respectively. The eigenvalues of the matrix 
PDL PMDT T T=  are (Yasser 2010) 

 2ˆ ˆ ˆ ˆ[ ( ) ] [ ( ) ] 1cC i p sS cC i p sSλ α α= − ⋅ ± − ⋅ −  (44) 

It was evident from Eq.(44) that the eigenvalues are complex, where the real part will 
control the new rotation angle of ŝ  around the PSP vector, and imaginary part can be used 
into Eq.(42) to obtain the PDL value in presence of PMD. Obviously, the new eigenvalues in 
presence of the combined PMD and PDL effects are different from that obtained for each 
effect separately. 

6.1 Special cases 
1. In presenting PDL only, the eigenstates of the PDL matrix are orthogonal, the output 
Stokes vector can be obtained as follows: combining the relations | |PDLs T t>= > , and 

†| | PDLs t T< =<  into ˆ | |s s sσ=< > , and using the facts (Yasser 2010; Gordon & Kogelnik 2000)  

 ( )( ) iα σ β σ α β α β σ• • • •= + ×  (45a) 

 ( )( ) iβ σ α σ α β α β σ• • • •= − ×  (45b) 

 ( ) -iβ σ σ β β σ⋅ = ×  (45c) 
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 ( ) iσ β σ β β σ⋅ = + ×  (45d) 

 2( ) ( ) 2 ( )β σ σ β σ β β σ β σ• • = ⋅ −  (45e) 

 † ( )PDL PDLT T c sα σ•= = +  (45f) 

a useful relation can be deduced 

 2 2 2ˆ ˆ ˆˆ ˆ ˆ ˆ2 2 ( )s c t s t sc s tα α α= − + + ⋅  (46) 

The output SOP which is a combination of the vectors t̂  and α̂ , i.e. t̂  does not rotate 
around α̂ . If the input SOP is parallel or anti-parallel to PDL then the output SOP takes the 
form ˆe tα−  or ˆe tα . The first component, that is parallel to PDL vector, experience a gain eα  
and the other, that is anti-parallel to PDL vector, is attenuated by e α− .  
2. Similarly, in presence of PMD only, the eigenstates of the PMD matrix are also orthogonal 
and the output SOP can be determined as follows: combining the relations †| | PMDs t T< =<  
and | |PMDs T s>= >  into ˆ | |s s sσ=< > , using Eqs.(45) with the facts that ˆ( )PMDT C i p Sσ= − ⋅  
and † 1 ˆ( )PMD PMDT T C i p Sσ−= = + ⋅  to yield 

 2 2 2ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ2 ( ) 2 ( )s C t S t SC p t S p p t= − + × + ⋅  (47) 

This equation refers to the input SOP that are parallel or anti-parallel to PMD vector which 
experiences no change, i.e. ˆŝ t=  along the optical fiber. Notice that, the PMD causes a 
rotation of the SOP around τ , which is presented through the third term. 
3. Finally, in presenting the combined PDL-PMD effects, determining ŝ  as a function of t̂ , 
α̂ , and p̂  which is very complicated, is beyond the scope of this chapter. 

6.2 The output power 
The normalized Gaussian pulse before entering the PMD and PDL components has the form 

 2 2/2| ( )  |oT T
inA T D e a−>= >  (48) 

where oT  is the initial pulse width, and |a >  is the Jones vector of the signal. Clearly, the 
normalized input power is found to be 

2 2/ ˆ( ) ( )| | ( ) oT T
in in inP T A T A T e sσ −=< >= , where ŝ  is 

the input Stokes vector. The Fourier transform of Eq.(48) is 

 2 2 /2| ( ) {| ( ) } |
2

ow To
in in

TA w A T D e a
π

−>= ℑ > = >  (49) 

As far | ( ) ( )| ( )out PDL PMD inA w T T w A w>= > , the output field which can be illustrated by the 
inverse Fourier transformation as follows 

 

2 2

2 2 2 2/2 2 /2( /2)( )| ( ) { } |  |
2
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o o o

T

w T T T Ti wo
out PDL

TA T D T e e a e e e a
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π

+
−

− − ⋅− ⋅− ⋅>= ℑ >= >  (50) 

In order to compute the output power from this equation. The vector n  was set to equal 
2(  / ) / 2on T Tα τ= − , such that 
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3. Finally, in presenting the combined PDL-PMD effects, determining ŝ  as a function of t̂ , 
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 2 2/2| ( )  |oT T
inA T D e a−>= >  (48) 
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In order to compute the output power from this equation. The vector n  was set to equal 
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2 2
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τ

σ

+
−

⋅>= >  (51) 

The new vector n  is a random. Its value is 2 2 2 4 2 2/ 2 cos / / 2pmd o pmd on T T T Tα τ ατ θ= + − , 
where θ  is the angle between α  and τ , while the direction is 2ˆ ( / ) /on T T nα τ= − . 
Substituting Eq.(51) into the definition ( ) | |out out outP T A Aσ=< >  and introducing the fact 

†
( )n nσ σ⋅ = ⋅ , yields 

 

2 2

2
ˆ ˆ( )  |(cosh sinh ) (cosh sinh )|
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T
outP T e a n n n n n n a

τ

σ σ σ

+
−

= < + ⋅ + ⋅ >  (52) 

Considering Eqs.(45), the last equation may be written as 

 

2 2

2 2
1ˆ ˆ( ) [ 2 (sinh cosh sinh cos )]
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T

T
outP t e s n n n n

τ

φ

+
−

= + +  (53) 

where 1φ  is the angle between the random vector n̂  and the input SOP, ŝ . To visualize the 
situation more easily, Eq.( 53) was written as 

 

2 2

2

pmd outˆ( )  .  (T, , )  .  s
pmd

o

T

T
outP T e f

τ

τ α

+
−

=  (54) 

where pmd(T, , )f τ α and ˆouts  are the value and direction of the expression inside the square 
brackets. Eq.(54) represents the output power in presenting of PMD and PDL, which may be 
written in certain cases as in the following subsections. 

6.2.1 PMD only 
In this case, 2/ 2  on T Tτ= −  and ˆ ˆn p= − , hence, Eq.(53) can be simplified as 

 

2 2 2 2

2 22
2ˆ ˆ ˆ( ) [ 2 (sinh cosh sinh cos )] ( , )

pmd pmd

o o

T T

T T
out pmd outP T e s p n n n f T e s

τ τ

φ τ

+ +
− −

= − + =  (55) 

Here 1φ  is replaced by 2φ  which represents the angle between τ̂  and ŝ . If 0τ = , then 
in outP P= . That is; the power and SOP are not affected in absence of PMD. The PSP’s are the 

states that are parallel or antiparallel to p̂ , so the powers in the PSP’s direction are 
2 2 2 ˆ( ) exp( ( ) / )out PSP pmd oP T T T sτ= − ± . The parallel or antiparallel SOP to p̂  will not be 

changed through the propagation, but the position of the pulse components will be shifted 
by / 2pmdτ± . 

6.2.2 PDL only 
Here, / 2n α=  and ˆ ˆn α= , hence, Eq.(53) will be 
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Here 1φ  is replaced by 3φ  which represents the angle between α̂  and ŝ . If 0α = , then 
in outP P= . That is; the power and SOP are not affected in absence of PDL. There are two 

 
Polarization Losses in Optical Fibers 

 

121 

important SOP’s that are parallel or antiparallel to α̂ . For these SOP’s, Eq.(56) will be 
reduced to 

2 2/ ˆ( )  oT T
outP T e e sα −±= . This means that, the power will be affected by the factor 

e α±  but the pulse shape and SOP will not change. 

6.3 The complex PSP vector  
Before discussing the impact of PMD and PDL on the dynamical equation of SOP, we notice: 
First, without including PDL, the transmission matrix of the fiber is always unitary. 
However, when the fiber PMD is intertwined with PDL elements, the transmission matrix 
losses its unitary property. Nevertheless, by the polar decomposition theorem (Kogelnik & 
Jopson 2002), a complex 2 2×  matrix can be decomposed into PDL PMDT T T= , where PDLT  is 
a positive definite Hermitian matrix, i.e. †

PDL PDLT T= , and PMDT is a unitary matrix, i.e. 
†
PMD PMDT T I= . Second, the PDL vector may by frequency dependent. This will influence the 

PDL induced waveform distortion effect in an optic link. Considering that such frequency 
dependent waveform distortion is not so important in a system with realistic parameters 
(Shtaif & Rosenberg 2005; Phua & Ippen 2005), the PDL vector was approximated as a 
frequency independent. 
As pulses are described by wave packets with a finite frequency band, the frequency 
dependence of |s >  should be considered now. A fixed input polarization was assumed, i.e. 
| 0wt > =  hence ˆ 0wt = , as is appropriate for a pulse entering the fiber at zero time. Now, by 
differentiating Eq.(43) with respect to frequency and eliminating |t > , the change of the 
output Jones vector was obtained 

 1 1| |PDL PMD PMD PDL
d s T T T T s

dw
− −> ′= >  (57) 

where PMDT′  represents the derivative of PMDT  with respect to frequency. Eq.(57) tell us that 
for most input polarizations, the output polarization will change with frequency in the first 
order. Notice that, if |s >  either of the two eigenstates of the operator 1 1

PDL PMD PMD PDLT T T T− −′  
then | 0ws > = . The dynamical equation of SOP in Stokes space can be obtained by using 
Eq.(57) as, see (Yasser 2010) 

 2 2 2ˆ ˆ ˆ ˆ ˆ[( ) 2 ( ) 2 ( )]ws c s s isc sτ τ α α τ α= + − ⋅ + × ×  (58) 

Many published studies (Chen et al. 2007; Wang & Menyuk 2001; Shtaif & Rosenberg 2005) 
related to the theoretical treatment of the combined effects of PMD and PDL, which are 
introduced in many forms of the frequency derivative of Stokes vector, but all these forms 
may be considered as a partial form of Eq.(58) above. 
The expression between brackets in the right hand side of the last equation represents the 
complex PSP vector which can be decomposed as real and imaginary parts as follows 

 W i= Ω + Λ  (59) 

where Ω  and Λ  represent the new vectors in presenting of PMD and PDL. The two new 
vectors take the forms 

 2 2 2 ˆ ˆ( ) 2 ( )c s sτ τ α αΩ = + − ⋅  (60a) 

 ˆ2 ( )sc τ αΛ = ×  (60b) 
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Considering Eqs.(45), the last equation may be written as 
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where 1φ  is the angle between the random vector n̂  and the input SOP, ŝ . To visualize the 
situation more easily, Eq.( 53) was written as 
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where pmd(T, , )f τ α and ˆouts  are the value and direction of the expression inside the square 
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written in certain cases as in the following subsections. 
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(Shtaif & Rosenberg 2005; Phua & Ippen 2005), the PDL vector was approximated as a 
frequency independent. 
As pulses are described by wave packets with a finite frequency band, the frequency 
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There are many features that can be deduced from Eq.(59): if τ  is parallel or anti-parallel to α̂  
then τΩ = , i.e. the old and new PMD vectors are identical, and 0Λ = , i.e. the PDL effects will 
disappear. If τ  is perpendicular on α̂  then 2 2( )c s τΩ = + , i.e. the old and new PMD vector 
have the same direction but distinct values, and 2scξΛ =  (where ˆξ τ α= × ) that means the 
new PDL vector is perpendicular to the plane that contains τ  and α̂ . If 0τ =  then both 
vectors Ω  and Λ  are zero. Remembering that, the absence of PMD will not permit the 
emergence of two components, as a result there is no PDL but the reverse is not correct. Since 
the PSP vector is complex, then the fast and slow PSP’s are not orthogonal. If ˆ 0α = , i.e. no 
PDL, then τΩ = . The new DGD takes the form Renew old

pmd pmdW Wτ τ= ⋅ = , where the meaning 
of DGD over infinite frequency is called the scalar PMD. Thereafter, the SOP rotates around 
the PSP vector by an angle new

pmdwτ . The new DAS takes the form Imnew W Wα = ⋅ . 
Accordingly, the new PDL value is 1020| | ( )new og eα . 

7. Birefringence and nonlinearity 

To formulate the birefringence effects more precisely, considering the nonlinear Helmholtz 
equation (Agrawal 2007) 
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2 2
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ε

ε
∇ + = −  (61) 

where the tilde denotes the Fourier transformation, oε  is the vacuum permittivity, and sε  is 
the linear part of the dielectric constant. Notice that the tensorial nature is important to 
account for the PMD effects that have their origin in the birefringence of silica fibers, while 
its frequency dependence leads to chromatic dispersion. Assuming that the instantaneous 
electronic response dominates and neglecting Raman contribution (Lin & Agrawal 2003 a), 
the third order nonlinear polarization in a medium as silica glass is found to be 
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* *( ) ( )  2( )
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o xxxx
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• •
⎡ ⎤= +⎢ ⎥⎣ ⎦  (62) 

The electric field vector evolves along the fiber length and its SOP changes because of the 
birefringence. It is assumed here that the z-axis is directed along the fiber length and The 
electric field vector lies in the x-y plane. This assumption amounts to neglect the 
longitudinal component of the vector and is justified in practice as long as the spatial size of 
the fiber mode is longer than the optical wavelength. In Jones-matrix notation, the field at 
any point r  inside the fiber can be written as (Kogelnik & Jopson 2002) 

 ( , ) ( , )| ( , ) ikzE r w F x y A z w e= >  (63) 

where ( , )F x y  represents the fiber mode profile, k  is the propagation constant, and Jones 
vector |A >  is a two-dimensional column vector representing the two components of the 
electric field in the x-y plane. Since ( , )F x y  does not change with z, one needs to consider 
only the evolution of |A >  along the fiber. 
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Substituting Eq.(63) into Eq.(62), inserting the result into Eq.(61), and integrate over the 
transverse mode distribution in the x-y plane, assuming |A >  to be slowly varying function 
of z so that neglecting their second-order derivative with respect to z. With these 
simplifications, the equation governing the evolution of |A >  takes the form 
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* *
2

| | 2 | | | |
2 32

s ow kd A ii A A A A A A
dz ikc

ε σ γ⎛ ⎞> ⎡ ⎤+ + >= < > + >< >⎜ ⎟ ⎣ ⎦⎜ ⎟
⎝ ⎠

 (64) 

where oσ  is a unit matrix. To proceed Eq.(64) further, the dielectric constant tensor sε  may 
be represented in the basis of Pauli matrices as (Lin & Agrawal 2003 a) 
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2
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w k i k
c
ε α σ β σ⎡ ⎤= + −⎢ ⎥⎣ ⎦

 (65) 

The vector β  accounts for the fiber birefringence and its frequency dependence produces 
PMD. The vector σ  is formed as 1 1 2 2 3 3ˆ ˆ ˆe e eσ σ σ σ= + + , where 1ê , 2ê , and 3ê  are a three 
unit vectors in the Stokes space. Substituting Eq.(65) into (64) leads to the following vector 
equation 

 * *| | | 2 | | | |
2 2 3o

d A i iA A A A A A A
dz

α γσ β σ•> ⎡ ⎤+ >= − > + < > + >< >⎣ ⎦  (66) 

Eq.(66) can be put in simplified form by neglecting the second term on the left hand side, by 
proposing that the medium is lossless; then, using the following identity 

 * *
3 3| |  [ A|A A| |A ]/2 | |A A A Aσ σ σ σ>< = < > + < > ⋅ − < >  (67) 

into Eq.(66) yields the following elegant equation that describes the evolution of Jones vector 
through the optical fiber 

 
| ˆ(  [  ]  )|

2 6
d A i i s A

dz
tγβ σ σ• •

>
= − + >  (68) 

where the proportionality term |A >  affects only the global phase and can be neglected, 
ˆ | |s A Aσ=< >  is the normalized power (Stokes vector). Using Eq.(68), it is not difficult to 

obtain 

 3
ˆ ˆ( 2 (0,0, ) / 3)tds s s

dz
β γ= + ×  (69) 

Eq.(69) presents the effect of nonlinearity. Introducing γ  effect is considered as the main 
contribution of this section, because it is a phenomenon that can not be neglected in the 
study of the evolution of polarization through the optical fibers. However, the rotation axis 
in presence of nonlinearity is 32 (0,0, ) /3tsβ γ+  instead of β . The simplest case, without 
nonlinearity effect, has been studied by many researches using different approaches, see for 
example (Gordon & Kogelnik 2000; Agrawal 2005; Vanwiggeren and Roy 1999). 
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Eq.(69) presents the effect of nonlinearity. Introducing γ  effect is considered as the main 
contribution of this section, because it is a phenomenon that can not be neglected in the 
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8. Conclusions 
In conclusion, we have achieved the following: an important mathematical relationship 
between PMD and birefringence are presented and all possible assumptions are discussed. 
The statistics of PMD are simply analyzed. The combined effect of PMD and chromatic 
dispersion causes an additional amount of pulse broadening. Interaction of PMD and PDL 
makes the two PSP’s are not orthogonal nor do they represent the fastest and slowest pulses, 
which causes a change in DGD and PDL compared with the impact of each individual. 
Nonlinearity causes a change in the rotation axis and therefore it changes the properties of 
polarization state during the propagation. Finally, all results are generally subject to random 
changes as long as most of the causes random. 
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8. Conclusions 
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1. Introduction 
The application area of optical fibers is quite extensive. Telecommunication applications 
were the primary field of fibers employment. The related area is the utilization of optical 
fibers for control purposes, which benefits from principal galvanic isolation between the 
transmitting and receiving part of the system. A minimal sensitivity of light propagation 
inside the fiber to electromagnetic field of common magnitudes allows use the fiber in 
systems with high level of electromagnetic disturbance. Regarding the physical aspects of 
light propagation in fibers, they find utilization possibility in physical quantities sensors. It 
is possible to modulate the phase and state of polarization of the wave inside fiber optical 
medium by means of external physical quantity. The interaction is described by  
electro-optical, magnet-optical and elasto-optical effects. 
In order to achieve high data transmission rates in field of telecommunication applications 
the single-mode fibers are used exclusively. Similarly, single-mode fibers are used in the 
case of intrinsic fiber optic sensors. Intrinsic fiber optic sensors exploit the fiber itself to 
external quantity sensing and the fiber serves to signal transmission also. The reason of 
single-mode fiber utilization is the presence of basic waveguide mode – single wave with 
single phase and single polarization characteristic. 
In spite of the fiber utilization advantages we have to take into account undesirable effects, 
which are present in real non-ideal optical fiber. In telecommunication and sensor application 
field the presence of inherent and induced birefringence is crucial. The presence of 
birefringence may cause an undesirable state of polarization change. In the case of  
high-speed data transmission on long distances the polarization mode dispersion may occur. 
Due to this effect the light pulses are broadened. This may result in inter-symbol interference. 
In the case of sensor application, when the state of polarization is a carrier quantity, the 
possibility of output characteristic distortion and sensors sensitivity decreasing may occur. 
It’s advantageous to consider fiber sensor application for purposes of birefringence origin 
and influence description, since the presence of linear and circular birefringence together is 
watched often. While the inherent circular birefringence is negligible in common  
single-mode fibers, the inherent and induced linear birefringence may be present in 
considerable rate. The inherent linear birefringence is mostly undesirable effect, when we 
exclude utilization in polarization maintaining fibers. Whereas, the induced linear  
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birefringence may be utilized for sensing purposes, e.g. for mechanical stress or pressure 
sensing. Similarly, induced circular birefringence is a principle effect for group of 
polarimetric sensors, e.g. polarimetric current sensor. 
For the suppression of unwanted linear birefringence influence, inherent and induced also, 
several approaches and methods have been developed and published. They are often based 
on different principles. However, they differ in view of their properties and suitability for 
various applications. 
The goal of this chapter is to present basic effects, which lead to occurrence of linear and 
circular birefringence in single-mode fibers. The methods, which may be used in order to 
suppress unwanted birefringence, will be presented also. Since the main manifestation of 
birefringence effects is the transformation of the polarization state of transmitted light, a 
brief recapitulation of basic polarization states and their illustrative visualizations are given. 
In following subchapters various mechanisms, which induce birefringence will be 
introduced together with corresponding relations and comprehensible illustrations. In the 
last descriptive subchapter the most significant methods for unwanted linear birefringence 
are presented with their properties and references to related literature. 

2. Light polarization 
The electromagnetic wave polarization represents how varies orientation, pertinently 
projection magnitude, of electric field component in a plane which is perpendicular to 
propagation direction. The polarization character of the wave may be described by means of 
the magnetic field component also. However, the interaction of matter with light wave is 
done mainly via the electric field component. Then the electric field intensity vector E is 
used for polarization states description usually. The general polarization state of the wave is 
the elliptical one. The special cases are the circular birefringence and linear birefringence.  
Consider an electromagnetic wave which is described by electric field intensity vector E and 
which propagates in direction of z axis. The wave may be represented as a superposition of 
two partial waves with mutually orthogonal linear polarizations and with the same frequency 

 ,x y= +E E E  (1) 

where xyz is orthogonal coordinate system and Ex, Ey are vectors of electrical field intensity, 
which are aligned in x axis direction and y axis direction. It should be noted, that we 
consider the same frequency of both waves in all of the following analysis. In case of linear 
polarizations the electric field intensity vectors Ex, Ey swing along a straight line. These two 
vectors may be assigned to two degenerated modes of the single-mode fiber, which is a 
dielectric circular waveguide. In a lossless medium hold for field components magnitude 
relations 
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where E0,x, E0,y are wave amplitudes, ω is angular frequency of the waves, t is time and φx, φy 
are phases of the wave, k is magnitude of the wave vector. Amplitudes ratio of E0,x and E0,y 
and phase difference Δφ = φx - φy determine the state of the polarization of the resulting 
wave. 

 
Optical Fiber Birefringence Effects – Sources, Utilization and Methods of Suppression 

 

129 

In case when E0,x = E0,y and Δφ = 0 the orthogonal waves are in phase with the same 
amplitude. We obtain a linearly polarized wave by their superposition. Its plane of 
polarization is in 45° to y axis (or -45° to x axis) as shown in Fig. 1. In Fig. 1 and following 
figures k represents the wave vector. 
 

 
Fig. 1. Superposition of in-phase wave equal in amplitude results in linear polarized wave. 

In case when E0,x = E0,y and Δφ = ±π/2 the resultant wave has a circular polarization. The end 
point of E vector of circular polarized wave traces a circle. We differ between  
right-handed and left-handed circular polarized wave depending on the phase difference 
Δφ polarity, plus or minus. An illustration of right-handed circular polarized wave is shown 
in Fig. 2. 
 

 
Fig. 2. Right-handed circular polarized wave. 

When Δφ ≠ 0, ±π/2 or E0,x ≠ E0,y, we obtain an elliptically polarized wave, right-handed or  
left-handed, in dependence on phase difference Δφ polarity. The end point of E vector of 
elliptically polarized wave traces an ellipse. The case of left-handed elliptically polarized 
wave is shown in Fig. 3 
 

 
Fig. 3. Left-handed elliptically polarized wave. 

As the light wave propagates in homogenous isotropic medium, its velocity remains 
constant independently on the propagation direction. The propagation velocity is given by 
the refractive index of the medium n. Refractive index is a ratio of wave velocity in vacuum 
c and wave phase velocity vp in the medium, n = c/vp. However, medium may be of  
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where E0,x, E0,y are wave amplitudes, ω is angular frequency of the waves, t is time and φx, φy 
are phases of the wave, k is magnitude of the wave vector. Amplitudes ratio of E0,x and E0,y 
and phase difference Δφ = φx - φy determine the state of the polarization of the resulting 
wave. 
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c and wave phase velocity vp in the medium, n = c/vp. However, medium may be of  
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anisotropic character. This means, that the propagation velocity depends on the propagation 
direction, pertinently polarization. This effect is observed in birefringent materials. In 
common birefringent materials the optical properties are described by means of index 
ellipsoid, which is shown in Fig. 4. When linearly polarized wave travels in z axis direction 
and it is polarized in y axis direction, the wave phase velocity is given by refractive index ny. 
When the same wave will be polarized in x axis direction, the phase velocity will be given 
by refractive index nx. Since ny > nx , the first wave will travel slower. 
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Fig. 4. Index ellipsoid example of birefringent material. 

The velocity of wave polarized between y and x axis directions will be given by refractive 
index, which magnitude lies on ellipse in xy plane. When a light wave travels in birefringent 
medium of such type described above, it may occur a phase shift between its orthogonal 
components, which are described by relation (2). This occurs due to different propagation 
velocities of the components. The resulting state of polarization depends on total phase 
difference Δφ, which is a function of propagation length in birefringent medium also. An 
example of state of polarization change from linear to elliptical by birefringent medium 
crossing is shown in Fig. 5. 
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Fig. 5. State of polarization change in birefringent medium. 

3. Linear birefringence in optical fiber 
In previous section a polarization state of wave has been explained as a superposition result 
of two partial waves with certain phase shift and certain amplitude ratio. The similar 
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concept may be used for description of polarization state transformation in single-mode 
optical fiber. As has been mentioned above, two degenerate modes HE11x and HE11y may 
exist in the fiber with circular core cross-section. The superposition of the two modes, which 
are orthogonal, results in the wave propagating in the fiber. And, the phase shift of these 
two modes determines the polarization state of the wave in the fiber. A deeper analysis of 
mode theory of fibers is out of the scope of this chapter and may be found in relevant 
literature (Iizuka, 2002). 
The phase velocities of two orthogonal modes in the fiber vf,x and vf,y are given by 
magnitudes of wave numbers βx and βy of the modes  

 f,
π2 ,x

x

fv
β

=  (3) 

 f,
π2 ,y
y

fv
β

=  (4) 

where f is the frequency of the wave. An ideal single-mode fiber with circular core  
cross-section along its length, made from homogenous isotropic material, will exhibit the 
same refractive index n for both of the modes. The wave numbers βx and βy will be equal 
also. The modes will propagate with the same phase speed vf. At this condition the modes 
remain degenerate and the resulting polarization state will be preserved. A non-ideal fiber 
has not a constant circular core cross-section along its length or it exhibits anisotropy due to 
bending or other mechanical stress. As a consequence, the loss of modes degeneracy occurs. 
The fiber will behave as a birefringent medium with different refractive indices nx and ny 
and different phase velocities vf,x and vf,y. In case of constant core cross-section and constant 
anisotropy, we can designate βy as a wave number for a fast mode and βx for a slow mode. 
Corresponding axes x and y may be designated as a fast axis and a slow axis of the fiber. 
If a linear polarized wave is coupled into the birefringent fiber with gradually varying core 
cross-section or varying anisotropy, it is not possible to designate one mode as a fast one 
and second as a slow one. The mode phase shift Δφ, which determines the output 
polarization state, is dependent on average wave number magnitudes and on the fiber 
length 

 ( ) v.x y lφ β βΔ = −  (5) 

The output polarization state will not be stable, when one would manipulate with the fiber 
or when the ambient temperature fluctuates. Since the wave number will be changing. This 
fact complicates the utilization of single-mode fibers in application with defined 
polarization state, as the fiber lasers or fiber sensors. Further, photodetectors, which are 
used in the field of fiber optic telecommunication, are not sensitive to polarization state. 
However, owing to the fiber birefringence, the phase shift of partial modes, pertaining to 
individual pulses, occurs. This effect causes a broadening of the impulses resulting in  
inter-symbol interferences. 
The fiber birefringence rate is characterized by beat length lb. It is possible to deduce from 
(5), that the state of polarization will transform periodically, as shows Fig. 6. Linear 
polarization of the wave with the polarization plane at angle 45° to x axis gradually 
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In previous section a polarization state of wave has been explained as a superposition result 
of two partial waves with certain phase shift and certain amplitude ratio. The similar 
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concept may be used for description of polarization state transformation in single-mode 
optical fiber. As has been mentioned above, two degenerate modes HE11x and HE11y may 
exist in the fiber with circular core cross-section. The superposition of the two modes, which 
are orthogonal, results in the wave propagating in the fiber. And, the phase shift of these 
two modes determines the polarization state of the wave in the fiber. A deeper analysis of 
mode theory of fibers is out of the scope of this chapter and may be found in relevant 
literature (Iizuka, 2002). 
The phase velocities of two orthogonal modes in the fiber vf,x and vf,y are given by 
magnitudes of wave numbers βx and βy of the modes  
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where f is the frequency of the wave. An ideal single-mode fiber with circular core  
cross-section along its length, made from homogenous isotropic material, will exhibit the 
same refractive index n for both of the modes. The wave numbers βx and βy will be equal 
also. The modes will propagate with the same phase speed vf. At this condition the modes 
remain degenerate and the resulting polarization state will be preserved. A non-ideal fiber 
has not a constant circular core cross-section along its length or it exhibits anisotropy due to 
bending or other mechanical stress. As a consequence, the loss of modes degeneracy occurs. 
The fiber will behave as a birefringent medium with different refractive indices nx and ny 
and different phase velocities vf,x and vf,y. In case of constant core cross-section and constant 
anisotropy, we can designate βy as a wave number for a fast mode and βx for a slow mode. 
Corresponding axes x and y may be designated as a fast axis and a slow axis of the fiber. 
If a linear polarized wave is coupled into the birefringent fiber with gradually varying core 
cross-section or varying anisotropy, it is not possible to designate one mode as a fast one 
and second as a slow one. The mode phase shift Δφ, which determines the output 
polarization state, is dependent on average wave number magnitudes and on the fiber 
length 

 ( ) v.x y lφ β βΔ = −  (5) 

The output polarization state will not be stable, when one would manipulate with the fiber 
or when the ambient temperature fluctuates. Since the wave number will be changing. This 
fact complicates the utilization of single-mode fibers in application with defined 
polarization state, as the fiber lasers or fiber sensors. Further, photodetectors, which are 
used in the field of fiber optic telecommunication, are not sensitive to polarization state. 
However, owing to the fiber birefringence, the phase shift of partial modes, pertaining to 
individual pulses, occurs. This effect causes a broadening of the impulses resulting in  
inter-symbol interferences. 
The fiber birefringence rate is characterized by beat length lb. It is possible to deduce from 
(5), that the state of polarization will transform periodically, as shows Fig. 6. Linear 
polarization of the wave with the polarization plane at angle 45° to x axis gradually 
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transforms across right-handed elliptical polarization to right-handed circular polarization. 
It transforms further across right-handed elliptical and linear polarization perpendicular to 
the original one. Then it transforms across left-handed elliptical and left-handed circular to 
perpendicular left-handed elliptical polarization and finally to original linear polarization. 
At this point, the total phase shift of the modes is Δφ = 2π and the corresponding fiber length 
is the fiber beat length lb. 
 

 
Fig. 6. Periodical transformation of the state of polarization in fiber with beat length lb. 
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where nx,eff and ny,eff are effective refractive indices in x axis and in y axis, Δneff is the 
difference of effective refractive indices and λ is light wavelength. 

3.1 Linear birefringence owing to elliptical fiber core cross-section 
As mentioned above, the linear birefringence may be of latent or induced nature. The main 
cause of latent linear birefringence in real fiber is the manufacture imperfection. The  
cross-section of the fiber core is not ideally circular but slightly elliptical, as shown in Fig. 7. 
 

 
Fig. 7. Elliptical cross-section of the non-ideal fiber core. 

Let the major axis of the ellipse representing core cross-section lies in the x axis direction 
and the minor axis lies in the y axis direction. The wave number of the mode, which 
propagates in x axis direction, will be of a larger magnitude than the wave number of the y 
axis mode. The difference of effective refractive indices Δneff is determined by the ellipticity 
ratio a/b. In case of small ellipticity rate, when a ≈ b, holds the relation 
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where Δn = nco- ncl is the difference of core refractive index nco and cladding refractive index 
ncl. For specific phase shift of the modes it may be derived from (7) a relation 
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In order to attain a large beat length the fiber core should approach the circular  
cross-section as much as possible. It may be derived by means of (6) and (8) a demand for 
relative deviation from ideal circularity 
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For typical single-mode fiber with nc = 1.48, ncl= 1.46 and operating wavelength λ = 633 nm 
the required deviation from ideal circularity achieves 0.016%. This demand is very hard to 
accomplish in fiber manufacture. The common fibers maintain the polarization state close to 
the initial only a few meters along. 

3.2 Inner mechanical stress induced linear birefringence  
The fiber core ellipticity is not a single source of fiber birefringence imposed by the 
manufacture. A second important source, which may take effect, is the presence of inner 
mechanical stress on the core. This may be caused by non-homogeneity of cladding density 
in area close to the core. In order to simplify the analysis we can consider an elliptical 
density distribution owing to imperfect technology process of fiber drawing from hot 
preform. The far area of the cladding influences the inner area by centripetal pressure after 
the fiber cooled down. Since the core-close area has a non-homogenous density, the 
pressures on core, px and py, will act non-uniformly as illustrates Fig. 8. 
 

 
Fig. 8. Non-uniform stress on fiber core owing to imperfect inner structure. 

Due to the photo-elastic effect, which causes pressure dependent anisotropy, the fiber core 
becomes a birefringent medium. Then, the difference of effective refractive indices in x axis 
and y axis is 
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where νc is Poisson constant of the core, Δυ is difference of expansion coefficients of outer 
and inner cladding areas, ΔT is difference between softening temperature of the cladding 
and the ambient temperature. Coefficient Cf is characteristic for given fiber, given by  
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where r11, r12 are components of photo-elastic tensor matrix of the fiber material.  
Photo-elastic matrix description is above the scope of this chapter and may be found in 
(Huard, 1997). For specific phase shift of the modes it may be derived from (10) a relation 
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The influence of inner stress induced linear birefringence is weak in compare to 
birefringence owing to elliptical core cross-section in common single-mode fibers. However, 
the inner stress induced linear birefringence may be imposed intentionally in case of 
polarization maintaining (PM) fibers manufacture. 

3.3 Outer mechanical stress induced linear birefringence  
Linear birefringence in single mode fiber may be induced by outer influence also. It is 
caused by outer mechanical stress (pressure or tensile force) on fiber cladding. Cladding 
transfers the mechanical stress on the core and similar effect described above uprises. In 
practice, an action of force in one dominant direction appears usually. It induces origin of 
two axis of symmetry, x and y, with two refractive indices nx and ny again.  
One of the possible effects causing linear birefringence is fiber bending, which is illustrated 
in Fig. 9. A fiber with cladding diameter dcl is bended with diameter R. The fiber axis is 
equal to y axis direction. The pressure imposed on core in x axis increase refractive index nx 
in compare to ny due to the photo-elastic effect. In this configuration, the slow mode 
propagates in the bending plane xy and the fast mode propagates in plane yz. 
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Fig. 9. Geometric relation of fiber bending causing induced linear birefringence. 

The difference of effective refractive indices in x axis and y axis will be (Huard, 1997) 
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and related specific phase shift of the modes is expressed as 
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where Cf is fiber coefficient given by (11), ζ is the rate of axis deformation caused by 
longitudinal tensile force. The terms on the right side of relations (13) and (14) represent a 
situation when an additive tensile force acts on the fiber. This may occur when the fiber is 
bended over a solid, as a coil core. If the fiber is bended without the additive tensile force 
relations (13) and (14) are simplified. Then, the resultant relation for specific phase shift is 

 cl
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Relation (15) may be substituted by relation, where the fiber coefficient Cf is replaced by the 
product of Young module of the fiber material Ec and photo-elastic coefficient of the fiber 
core ℜ (Ulrich et al., 1980) 
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As in previous cases, it may be derived from (16) a relation for specific phase shift of the 
modes 
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When a one fiber turn with radius R = 8 cm would be formed from a typical single-mode 
fiber with Ec = 7.45⋅109 Pa, ℜ = -3.34⋅10-11 Pa-1 (Namihira, 1983) and dcl = 125 μm, the phase 
shift at wavelength λ = 633 nm achieves Δφ ≈ -π/2. In this case, for example linear 
polarization will be transformed into the circular. The original polarization state will be lost. 
A second significant effect, which induces linear birefringence in the fiber is a lateral 
pressure, which is illustrated in Fig. 10. 
 

 
Fig. 10. Imposing a lateral pressure force on the fiber. 

Induced anisotropy in the fiber is a result of photo-elastic effect, which is induced by 
compressing fiber between two planar solid slabs. If we consider Fm as a force acting on unit 
length, the phase difference of the fiber modes will be (Huard, 1997) 
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where r11, r12 are components of photo-elastic tensor matrix of the fiber material.  
Photo-elastic matrix description is above the scope of this chapter and may be found in 
(Huard, 1997). For specific phase shift of the modes it may be derived from (10) a relation 
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Fig. 9. Geometric relation of fiber bending causing induced linear birefringence. 
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The fast mode will propagate along the x axis and the slow one along the y axis. Lateral 
pressure induced birefringence may occur by fiber assembly in to optical components, such 
as connectors. 
At the close of this chapter, there should be mentioned another way to induce the fiber 
linear birefringence.  It may be imposed by electro-optical effect in the fiber core. However, 
the fiber core is made from amorphous material and the electro-optic effect is of a very weak 
character (Wagner et al., 1992). 

4. Circular birefringence in optical fiber 
In the case of circular birefringence analysis we introduce a concept of chiral birefringent 
medium. It exhibits two refractive indices nr and nl for right-handed and left-handed 
circular polarized waves. Counter rotating waves, which propagate in this medium, travel 
with different phase velocities and they gain a phase shift. Both of the circular polarized 
waves we may decompose on two linear polarized waves with equal amplitudes and with 
π/2 or -π/2 phase shift. Thus, the right-handed circular polarized wave propagating in z 
axis direction is a superposition of two orthogonal linear polarized waves described by 
components Exr and Eyr. For their magnitudes holds 
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where βr is wave number of right-handed circular polarized wave. Likewise, for left-handed 
circular polarized wave components holds 
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where βl is wave number of left-handed circular polarized wave. Wave numbers of waves 
propagating in fiber core are given as  

 r r l l
j j 2 2, .n nπ πβ β

λ λ
= =  (21) 

Due to the magnitude difference of refractive indices njr and njl in circular birefringent fiber 
core, the counter rotating waves travel with different phase velocities and they gain a phase 
shift 

 ( ) ( )r l r l
f j j f c f

2 ,l l lπφ β β β β σ
λ

Δ = − = − =  (22) 

where σc is specific rotation of fiber core and lf is fiber length. 
When we superpose two circular polarized waves, which were described above, we obtain a 
linear polarized wave with a certain orientation of polarization plane. The change of 
polarization plane rotation angle Δα is equal to the phase shift Δφ from (22), Δα = Δφ. 
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It may be concluded, that the presence of circular birefringence in the fiber results in 
polarization plane rotation. When the fiber is free from linear birefringence and we couple a 
linear polarized wave into the fiber, we obtain a linear polarized wave with rotated 
polarization plane at the output. The angle of plane rotation is due to the circular 
birefringence rate and the fiber length. 
In contrast to linear birefringence, circular birefringence of latent origin is negligible in 
common single-mode fiber. Nevertheless, it is possible to impose it in manufacturing 
process or induced it by outer influence. This can be attained by suitable applied mechanical 
stress or by magnetic field applying in the direction of fiber axis. 

4.1 Outer mechanical stress induced circular birefringence  
If a fiber section with length lf is exposed to torsion with specific torsion rate τ 

 
f

,
l
δτ =  (23) 

where δ is torsion angle as shown in Fig. 11, a sheer stress is imposed in plane perpendicular 
to fiber axis. 
 

 
Fig. 11. A fiber section with length lf exposed to torsion with angle δ. 

Imposed sheer stress results in fiber core anisotropy owing to photo-elastic effect. In order to 
describe optical properties of anisotropic fiber core, it is useful to exploit tensor matrix of 
dielectric constant ε (Saleh & Teich, 1991) 
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where εi is dielectric constant tensor of original medium and Δεt is tensor of torsion 
contribution. Coordinates x,y in matrix Δεt belongs to point A’ in sheer stress plane, where is 
the dielectric constant expressed and for coefficient g holds 

 ( )c c
4 4

44 11 12 ,g r n r r n= = −  (25) 

where r11, r12 and r44 are components of photo-elastic matrix of the fiber core material. For 
further analysis, it is advantageous to exploit a Jones calculus (Jones, 1941) to characterize 
the influence of torsion modified medium on the polarization state of the wave. The 
relations of photo-elastic coefficients of the medium and Jones matrix of the medium are 
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linear polarized wave with a certain orientation of polarization plane. The change of 
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It may be concluded, that the presence of circular birefringence in the fiber results in 
polarization plane rotation. When the fiber is free from linear birefringence and we couple a 
linear polarized wave into the fiber, we obtain a linear polarized wave with rotated 
polarization plane at the output. The angle of plane rotation is due to the circular 
birefringence rate and the fiber length. 
In contrast to linear birefringence, circular birefringence of latent origin is negligible in 
common single-mode fiber. Nevertheless, it is possible to impose it in manufacturing 
process or induced it by outer influence. This can be attained by suitable applied mechanical 
stress or by magnetic field applying in the direction of fiber axis. 

4.1 Outer mechanical stress induced circular birefringence  
If a fiber section with length lf is exposed to torsion with specific torsion rate τ 

 
f

,
l
δτ =  (23) 

where δ is torsion angle as shown in Fig. 11, a sheer stress is imposed in plane perpendicular 
to fiber axis. 
 

 
Fig. 11. A fiber section with length lf exposed to torsion with angle δ. 

Imposed sheer stress results in fiber core anisotropy owing to photo-elastic effect. In order to 
describe optical properties of anisotropic fiber core, it is useful to exploit tensor matrix of 
dielectric constant ε (Saleh & Teich, 1991) 
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where εi is dielectric constant tensor of original medium and Δεt is tensor of torsion 
contribution. Coordinates x,y in matrix Δεt belongs to point A’ in sheer stress plane, where is 
the dielectric constant expressed and for coefficient g holds 

 ( )c c
4 4

44 11 12 ,g r n r r n= = −  (25) 

where r11, r12 and r44 are components of photo-elastic matrix of the fiber core material. For 
further analysis, it is advantageous to exploit a Jones calculus (Jones, 1941) to characterize 
the influence of torsion modified medium on the polarization state of the wave. The 
relations of photo-elastic coefficients of the medium and Jones matrix of the medium are 
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beyond the scope of this chapter and may be found for example in (Iizuka, 2002). The Jones 
matrix of the torsion modified medium is in the form  

 c
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where j is imaginary unit. Jones matrix Tc describes the polarizing properties of circular 
birefringent medium. If we multiply matrix Tc with Jones vector J1 of linear polarized wave, 
we obtain vector J2 with imaginary components. Both of the components represent  
left-handed and right-handed circular polarized waves. 
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The phase shift of circular polarized waves Δφ and corresponding polarization rotation 
angle Δα is proportional to the torsion rate τ. Then, a twisted single mode fiber with length lf 
acts as a polarization rotator with rotation angle  

 f .g lα τΔ =  (28) 

4.2 Magnetic field induced circular birefringence  
The second source of fiber circular birefringence is magneto-optical effect. Between three 
types of magneto-optical effect (Cotton-Mouton, Kerr, Faraday) (Craig & Chang, 2003), the 
Faraday effect is significant for silica fiber. It induces circular birefringence owing to 
magnetic field action in direction along the fiber axis. Analogous to fiber torsion, the 
Faraday magneto-optical effect modifies the dielectric constant tensor 
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where Δεmo is tensor of magneto-optical effect contribution, B is the magnitude of flux 
density of the external magnetic field, η is coefficient, which is proportional to magneto-
optic specific rotation coefficient (Huard, 1997). Again, dielectric constant tensor (29) 
describes a birefringent medium, where right-handed and left-handed circular polarized 
waves travel with different velocities. Here, the resulting phase shift of the waves is 
proportional to magnitude of magnetic flux density and the length of birefringent medium. 
In order to explain the origin of Faraday magneto-optical effect, it is possible to model the 
effect as an electron oscillator movement in magnetic field (Waynant & Ediger, 2000). The 
effect itself results from interaction of outer magnetic field with oscillating electron, which is 
excited by the electric field of the light wave. Electrons represent harmonic oscillators. For 
them equations of forced oscillations hold. In the presence of external magnetic field with 
flux density B, parallel to wave propagation direction, for the electron oscillator holds 
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where me is electron mass, e is electron charge, u is vector, which determines the electron 
displacement, κu is quasi-elastic force preserving electron in equilibrium position, E is 
electric field vector of propagating wave. Electric field of the wave polarizes the medium 

 eN e= −P u,  (31) 

where Ne is the count of electrons in volume unit, which are deflected by the electric field of 
the wave. Substituting equation (31) into (30) we get 
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where ω0 is frequency of the electron oscillator. Equation (32) represents the system of two 
simultaneous differential equations. We obtain two terms by their solution. One for the 
right-handed, second for the left-handed circular polarized wave in the medium (Born & 
Wolf, 1999) 
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where ω is frequency of circular polarized waves. The macroscopic relation for the medium 
polarization due to the electric field of circular polarized waves is in the form 
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where χr and χl are dielectric susceptibilities for right-handed and left-handed circular 
polarized waves and ε0 is dielectric constant of vacuum. Refractive index of the medium is 
related to dielectric susceptibility 

 r
2 1 ,n ε χ= = +  (35) 

where εr is relative dielectric constant of the medium. Substituting equations (34) into 
system (32) and by utilization of relation (35), we obtain relations for refractive indices of 
right-handed and left-handed circular polarized waves 
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When we take into account certain simplifications, we can differentiate equations (36) and 
we can derive relation for polarization plane rotation in dependence on the outer magnetic 
field flux density B and on the interaction length lf (fiber length in magnetic field) 
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beyond the scope of this chapter and may be found for example in (Iizuka, 2002). The Jones 
matrix of the torsion modified medium is in the form  
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where j is imaginary unit. Jones matrix Tc describes the polarizing properties of circular 
birefringent medium. If we multiply matrix Tc with Jones vector J1 of linear polarized wave, 
we obtain vector J2 with imaginary components. Both of the components represent  
left-handed and right-handed circular polarized waves. 
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The phase shift of circular polarized waves Δφ and corresponding polarization rotation 
angle Δα is proportional to the torsion rate τ. Then, a twisted single mode fiber with length lf 
acts as a polarization rotator with rotation angle  

 f .g lα τΔ =  (28) 

4.2 Magnetic field induced circular birefringence  
The second source of fiber circular birefringence is magneto-optical effect. Between three 
types of magneto-optical effect (Cotton-Mouton, Kerr, Faraday) (Craig & Chang, 2003), the 
Faraday effect is significant for silica fiber. It induces circular birefringence owing to 
magnetic field action in direction along the fiber axis. Analogous to fiber torsion, the 
Faraday magneto-optical effect modifies the dielectric constant tensor 
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where Δεmo is tensor of magneto-optical effect contribution, B is the magnitude of flux 
density of the external magnetic field, η is coefficient, which is proportional to magneto-
optic specific rotation coefficient (Huard, 1997). Again, dielectric constant tensor (29) 
describes a birefringent medium, where right-handed and left-handed circular polarized 
waves travel with different velocities. Here, the resulting phase shift of the waves is 
proportional to magnitude of magnetic flux density and the length of birefringent medium. 
In order to explain the origin of Faraday magneto-optical effect, it is possible to model the 
effect as an electron oscillator movement in magnetic field (Waynant & Ediger, 2000). The 
effect itself results from interaction of outer magnetic field with oscillating electron, which is 
excited by the electric field of the light wave. Electrons represent harmonic oscillators. For 
them equations of forced oscillations hold. In the presence of external magnetic field with 
flux density B, parallel to wave propagation direction, for the electron oscillator holds 
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where me is electron mass, e is electron charge, u is vector, which determines the electron 
displacement, κu is quasi-elastic force preserving electron in equilibrium position, E is 
electric field vector of propagating wave. Electric field of the wave polarizes the medium 

 eN e= −P u,  (31) 

where Ne is the count of electrons in volume unit, which are deflected by the electric field of 
the wave. Substituting equation (31) into (30) we get 
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where ω0 is frequency of the electron oscillator. Equation (32) represents the system of two 
simultaneous differential equations. We obtain two terms by their solution. One for the 
right-handed, second for the left-handed circular polarized wave in the medium (Born & 
Wolf, 1999) 
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where ω is frequency of circular polarized waves. The macroscopic relation for the medium 
polarization due to the electric field of circular polarized waves is in the form 
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where χr and χl are dielectric susceptibilities for right-handed and left-handed circular 
polarized waves and ε0 is dielectric constant of vacuum. Refractive index of the medium is 
related to dielectric susceptibility 
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2 1 ,n ε χ= = +  (35) 

where εr is relative dielectric constant of the medium. Substituting equations (34) into 
system (32) and by utilization of relation (35), we obtain relations for refractive indices of 
right-handed and left-handed circular polarized waves 
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When we take into account certain simplifications, we can differentiate equations (36) and 
we can derive relation for polarization plane rotation in dependence on the outer magnetic 
field flux density B and on the interaction length lf (fiber length in magnetic field) 
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where λ is wavelength of the wave, cn  = (ncr + ncl)/2 is the mean refractive index, ω is 
angular frequency of the wave, V is Verdet constant, which characterizes magneto-optic 
properties of medium. It is obvious, that Verdet constant depends on the wavelength. 
The right part of equation (37) is the basic relation for Faraday magneto-optic effect. The 
effect is non-reciprocal. The polarization rotation direction depends on the mutual 
orientation of magnetic flux density B and the wave propagation direction. The polarization 
of wave propagating in the direction of B experiences a rotation Δα. The polarization of 
wave propagating in the opposite direction to B experiences a rotation –(Δα). This  
non-reciprocal character is important for example for polarization mode conjugation as will 
be shown later. The illustration of polarization plane rotation in fiber section due to Faraday 
magneto-optic effect is shown in Fig. 12. 
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Fig. 12. Polarization plane rotation in fiber section due to Faraday magneto-optic effect. 

5. Superposition of linear and circular birefringence in fiber 
Both types of birefringence, linear and circular, may appear in single mode fiber. Both of 
them may be of latent or induced origin. The total phase shift of modes in fiber, determining 
the output polarization, is given by their geometrical average 
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where φc is mode phase shift caused by circular birefringence and φl is mode phase shift 
caused by linear birefringence (Ripka, 2001). Generally, the polarization state of the output 
wave will be elliptical due to the linear birefringence and the orientation of axes of the 
polarization ellipse will rotate due to the circular birefringence. The analysis of the optical 
system with fiber, which exhibits both types of birefringence, may be performed by means 
of Jones calculus. Jones matrix of the fiber will be in the form (Tabor & Chen, 1968) 
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where Δφ results from (38). By means of (39), it is possible to study transformation of 
polarization state of the wave, which passed trough the fiber. Generally, in presence of both 
types of birefringence, the fiber behaves as phase retarder and polarization rotator 
simultaneously. 

6. Techniques for unwanted fiber birefringence suppression 
In previous chapters, it has been explained how the birefringence affects the polarization 
state of the wave in fiber. The transformation of polarization state is often unwanted, if we 
intend to use it as a carrier quantity.  
It is important to suppress the polarization mode dispersion in telecommunication 
applications, in order to avoid pulses broadening. It is caused by linear birefringence. 
Important is also to avoid the unwanted birefringence in polarimetric sensors applications. 
It has to be ensured, that the polarization state will be modified by sensing quantity only. 
Polarimetric fiber optic sensor may be divided into two groups. Sensors of mechanical 
quantities (strain, pressure, vibrations) utilize induced linear birefringence. Sensors of 
magnetic field utilize induced circular birefringence. Since the inherent circular 
birefringence of common fibers is insignificant, the key parameter is the rate of linear 
birefringence. 
The facts mentioned above place demands for methods for unwanted linear birefringence 
suppression. Following subchapters present a brief overview of the most significant selected 
methods, which are used to meet this requirement. The methods differ in view of its 
principle, efficiency or usability in various applications. 

6.1 Polarization maintaining fibers 
Polarization maintaining (PM) fibers have a specific inner structure, which allows 
maintaining polarization of the wave on long distances. In general view, polarization 
maintaining fibers may be divided in two groups. The first represents polarization 
maintaining fibers with low birefringence (PM LB). PM LB fiber approaches the concept of 
ideal fiber with constant circular cross-section and with very low linear birefringence. As 
has been mentioned above, these fibers are difficult to manufacture. Moreover, the 
manipulation (as bending or compressing) with fiber induces linear birefringence due to 
photo-elastic effect. In the second group belong polarization maintaining fibers with high 
birefringence (PM HB). A strong linear birefringence is imposed in the fiber by means of 
internal mechanical strain, which results in the loss of degeneracy of hybrid fiber modes 
HE11. Therefore, the beat length of PM HB fibers is only a few millimeters. Hybrid modes 
propagate in fiber along the major and minor axis of ellipse, whose ellipticity is given by the 
ratio of mode wave numbers βx and βy. If the light wave, for example with linear 
polarization, is coupled into the fiber with polarization plane in direction of one of the axes, 
the both orthogonal wave modes will experience equal wave numbers and the equal 
refractive indices. The wave will propagate along the fiber without the polarization state 
transformation (Kaminow & Ramaswamy, 1979). The sensitivity on bending and 
temperature fluctuations is greatly reduced. Nevertheless, the insensitive polarization state 
preserving is ensured only for one certain polarization plane orientation, when both wave 
modes experience same refractive indices. 
The principle of PM HB fibers manufacturing consists in implementing of stress components 
in the fiber cladding. Stress components impose symmetrical defined pressure force on 
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where λ is wavelength of the wave, cn  = (ncr + ncl)/2 is the mean refractive index, ω is 
angular frequency of the wave, V is Verdet constant, which characterizes magneto-optic 
properties of medium. It is obvious, that Verdet constant depends on the wavelength. 
The right part of equation (37) is the basic relation for Faraday magneto-optic effect. The 
effect is non-reciprocal. The polarization rotation direction depends on the mutual 
orientation of magnetic flux density B and the wave propagation direction. The polarization 
of wave propagating in the direction of B experiences a rotation Δα. The polarization of 
wave propagating in the opposite direction to B experiences a rotation –(Δα). This  
non-reciprocal character is important for example for polarization mode conjugation as will 
be shown later. The illustration of polarization plane rotation in fiber section due to Faraday 
magneto-optic effect is shown in Fig. 12. 
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Fig. 12. Polarization plane rotation in fiber section due to Faraday magneto-optic effect. 

5. Superposition of linear and circular birefringence in fiber 
Both types of birefringence, linear and circular, may appear in single mode fiber. Both of 
them may be of latent or induced origin. The total phase shift of modes in fiber, determining 
the output polarization, is given by their geometrical average 
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where φc is mode phase shift caused by circular birefringence and φl is mode phase shift 
caused by linear birefringence (Ripka, 2001). Generally, the polarization state of the output 
wave will be elliptical due to the linear birefringence and the orientation of axes of the 
polarization ellipse will rotate due to the circular birefringence. The analysis of the optical 
system with fiber, which exhibits both types of birefringence, may be performed by means 
of Jones calculus. Jones matrix of the fiber will be in the form (Tabor & Chen, 1968) 
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where Δφ results from (38). By means of (39), it is possible to study transformation of 
polarization state of the wave, which passed trough the fiber. Generally, in presence of both 
types of birefringence, the fiber behaves as phase retarder and polarization rotator 
simultaneously. 

6. Techniques for unwanted fiber birefringence suppression 
In previous chapters, it has been explained how the birefringence affects the polarization 
state of the wave in fiber. The transformation of polarization state is often unwanted, if we 
intend to use it as a carrier quantity.  
It is important to suppress the polarization mode dispersion in telecommunication 
applications, in order to avoid pulses broadening. It is caused by linear birefringence. 
Important is also to avoid the unwanted birefringence in polarimetric sensors applications. 
It has to be ensured, that the polarization state will be modified by sensing quantity only. 
Polarimetric fiber optic sensor may be divided into two groups. Sensors of mechanical 
quantities (strain, pressure, vibrations) utilize induced linear birefringence. Sensors of 
magnetic field utilize induced circular birefringence. Since the inherent circular 
birefringence of common fibers is insignificant, the key parameter is the rate of linear 
birefringence. 
The facts mentioned above place demands for methods for unwanted linear birefringence 
suppression. Following subchapters present a brief overview of the most significant selected 
methods, which are used to meet this requirement. The methods differ in view of its 
principle, efficiency or usability in various applications. 

6.1 Polarization maintaining fibers 
Polarization maintaining (PM) fibers have a specific inner structure, which allows 
maintaining polarization of the wave on long distances. In general view, polarization 
maintaining fibers may be divided in two groups. The first represents polarization 
maintaining fibers with low birefringence (PM LB). PM LB fiber approaches the concept of 
ideal fiber with constant circular cross-section and with very low linear birefringence. As 
has been mentioned above, these fibers are difficult to manufacture. Moreover, the 
manipulation (as bending or compressing) with fiber induces linear birefringence due to 
photo-elastic effect. In the second group belong polarization maintaining fibers with high 
birefringence (PM HB). A strong linear birefringence is imposed in the fiber by means of 
internal mechanical strain, which results in the loss of degeneracy of hybrid fiber modes 
HE11. Therefore, the beat length of PM HB fibers is only a few millimeters. Hybrid modes 
propagate in fiber along the major and minor axis of ellipse, whose ellipticity is given by the 
ratio of mode wave numbers βx and βy. If the light wave, for example with linear 
polarization, is coupled into the fiber with polarization plane in direction of one of the axes, 
the both orthogonal wave modes will experience equal wave numbers and the equal 
refractive indices. The wave will propagate along the fiber without the polarization state 
transformation (Kaminow & Ramaswamy, 1979). The sensitivity on bending and 
temperature fluctuations is greatly reduced. Nevertheless, the insensitive polarization state 
preserving is ensured only for one certain polarization plane orientation, when both wave 
modes experience same refractive indices. 
The principle of PM HB fibers manufacturing consists in implementing of stress components 
in the fiber cladding. Stress components impose symmetrical defined pressure force on 
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circular fiber core. Stress components are implemented by doping of designated cladding 
areas with atoms of certain elements, typically boron atoms. In this way, areas with different 
thermal expansion coefficient are formed. After the drawn fiber cools down, the doped areas 
cause inner strain, which acts on the fiber core. Doped areas may have variety of shapes as 
shown in Fig. 13. The influence of fiber latent linear birefringence is strongly exceeded by 
the imposed birefringence, which temperature and bending dependence is very weak.  
In order to characterize the properties of PM HB fibers the polarization crosstalk CT is 
defined (Noda et al., 1986). Polarization crosstalk, defined by relation (40), is given by 
logarithmic ratio of optical power of excited mode Px and optical power of coupled mode Py. 
The polarization crosstalk is typically lower than -40 dB for fiber length of 100 meters 
(Senior, 2009). 
 

 
Fig. 13. Various profiles of PM HB fibers: a) elliptical, b) PANDA type, c) Bow-Tie type. 
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In the following chapters, fibers with intended polarization preserving properties are 
discussed. Although they exploit different principles, they may be considered as a special 
type of PM LB or PM HB fibers, as will be mentioned. 

6.2 Fibers with high circular birefringence 
The demands of telecommunication applications for polarization state preserving in fiber 
may be satisfactory covered by PM fibers. Since, PM fiber allows preservation of state 
polarization only for one certain polarization plane orientation, they are not well suited for 
applications in polarimetric fiber sensors. The polarization plane rotates due to the sensing 
quantity magnitude in case of these sensors. Therefore, the different fiber modifications 
were studied.  

6.2.1 Twisted fibers 
One of the approaches is fiber twisting, which may impose a strong circular birefringence in 
the core. If the rate of induced circular birefringence will be much greater than the rate of 
linear birefringence, relation (38) may be modified 
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The influence of circular birefringence will dominate and the linear birefringence may be 
neglected. Since the effect of linear birefringence is canceled, twisted fibers belong to group 
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of PM LB fibers. Twisted fiber will behave as polarization plane rotator, which preserves the 
polarization state of the wave. The polarization plane rotation is proportional to specific 
rotation of the fiber core and σc and lf is fiber length 

 c f .lα σΔ =  (42) 

If this principle would be utilized in polarimetric fiber sensor application, the polarization 
rotation due to sensed physical quantity will be additive to inherent polarization rotation of 
the fiber.  
The circular birefringence in fiber core is possible to impose by fiber twisting in a plane, 
which is perpendicular to fiber longitudinal axis. The rate of circular birefringence 
corresponds to photo-elastic properties of the core, core refractive index, fiber length and 
specific torsion rate (relation (23)). In order to minimize the influence of linear birefringence, 
the specific torsion rate should be maximized. However, this is limited by torsion limit of 
the fiber. When exceeds, the fiber may be broken. 
The disadvantage of the twisted fiber utilization in fiber sensing applications is the 
temperature dependence of twisting imposed circular birefringence, due to temperature 
dependence of core anisotropy. The next issue is the fabrication difficulty of small fiber coils 
for magnetic field sensing around conductors. The bending induced linear birefringence 
achieves a higher magnitude for small fiber coils. Therefore, the large torsion rate of the fiber 
has to be used and it may exceed the torsion limit. The approximate torsion limit of common 
single mode fiber is 100 turns per 1 meter (Payne et al., 1982). Taking into account this limit, it 
is possible to fabricate fiber coils with minimal diameter of 15 cm (Laming & Payne, 1989). 

6.2.2 Spun low- and high-birefringent fibers 
The more sophisticated approach to linear birefringence suppression was development of 
spun fibers. Spun fiber fabrication consists in twisting of melted preform during fiber 
drawing. During the fiber drawing, all fiber imperfections, as deviation from circularity and 
other non-uniformities, are spread out in all directions. Therefore, phase retardations, which 
experience propagating modes, cancel each other out. Since the twisted preform is melted, no 
stress induced anisotropy is present in the core after the fiber cools down. Simultaneously, 
the fiber is free from temperature dependency effects. Hence, the spun fiber behaves as an 
ideal fiber with circular cross-section core, which retain any polarization state of coupled 
wave, from the input to the output. In principle, spun fibers belong to group of PM LB fibers. 
We designate them as low-birefringent spun fibers (spun LB). Spun LB fiber exhibits only a 
negligible latent circular birefringence, due to limited viscosity of the preform during the 
drawing. The principle of spun LB fiber implies their main disadvantage, which is the 
sensitivity on fiber bending. This results in stress induced linear birefringence and the 
limitation for small radius fiber coil fabrication remains (Payne et al., 1982). 
A similar concept of spun LB fiber represents highly birefringent spun fibers (Spun HB). 
Spun HB fibers are manufactured by rotating of melted preform also. However, the preform 
is prepared as for classical PM HB fiber, e.g. Bow-Tie (Laming & Payne, 1989). Spun HB 
fiber transforms the input linear polarization on to the elliptical. By carefully chosen rotation 
rate of the preform in relation to the fiber linear birefringence rate, it is possible to attain 
quasi-circular birefringence with negligible residual linear birefringence (Payne et al., 1982). 
Generally, we may consider spun HB fibers as a type of PM HB fiber group. The advantage 
of spun HB fibers is considerable immunity to rising of linear birefringence by fiber bending  
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circular fiber core. Stress components are implemented by doping of designated cladding 
areas with atoms of certain elements, typically boron atoms. In this way, areas with different 
thermal expansion coefficient are formed. After the drawn fiber cools down, the doped areas 
cause inner strain, which acts on the fiber core. Doped areas may have variety of shapes as 
shown in Fig. 13. The influence of fiber latent linear birefringence is strongly exceeded by 
the imposed birefringence, which temperature and bending dependence is very weak.  
In order to characterize the properties of PM HB fibers the polarization crosstalk CT is 
defined (Noda et al., 1986). Polarization crosstalk, defined by relation (40), is given by 
logarithmic ratio of optical power of excited mode Px and optical power of coupled mode Py. 
The polarization crosstalk is typically lower than -40 dB for fiber length of 100 meters 
(Senior, 2009). 
 

 
Fig. 13. Various profiles of PM HB fibers: a) elliptical, b) PANDA type, c) Bow-Tie type. 
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In the following chapters, fibers with intended polarization preserving properties are 
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type of PM LB or PM HB fibers, as will be mentioned. 
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The influence of circular birefringence will dominate and the linear birefringence may be 
neglected. Since the effect of linear birefringence is canceled, twisted fibers belong to group 
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of PM LB fibers. Twisted fiber will behave as polarization plane rotator, which preserves the 
polarization state of the wave. The polarization plane rotation is proportional to specific 
rotation of the fiber core and σc and lf is fiber length 

 c f .lα σΔ =  (42) 

If this principle would be utilized in polarimetric fiber sensor application, the polarization 
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has to be used and it may exceed the torsion limit. The approximate torsion limit of common 
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is possible to fabricate fiber coils with minimal diameter of 15 cm (Laming & Payne, 1989). 
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The more sophisticated approach to linear birefringence suppression was development of 
spun fibers. Spun fiber fabrication consists in twisting of melted preform during fiber 
drawing. During the fiber drawing, all fiber imperfections, as deviation from circularity and 
other non-uniformities, are spread out in all directions. Therefore, phase retardations, which 
experience propagating modes, cancel each other out. Since the twisted preform is melted, no 
stress induced anisotropy is present in the core after the fiber cools down. Simultaneously, 
the fiber is free from temperature dependency effects. Hence, the spun fiber behaves as an 
ideal fiber with circular cross-section core, which retain any polarization state of coupled 
wave, from the input to the output. In principle, spun fibers belong to group of PM LB fibers. 
We designate them as low-birefringent spun fibers (spun LB). Spun LB fiber exhibits only a 
negligible latent circular birefringence, due to limited viscosity of the preform during the 
drawing. The principle of spun LB fiber implies their main disadvantage, which is the 
sensitivity on fiber bending. This results in stress induced linear birefringence and the 
limitation for small radius fiber coil fabrication remains (Payne et al., 1982). 
A similar concept of spun LB fiber represents highly birefringent spun fibers (Spun HB). 
Spun HB fibers are manufactured by rotating of melted preform also. However, the preform 
is prepared as for classical PM HB fiber, e.g. Bow-Tie (Laming & Payne, 1989). Spun HB 
fiber transforms the input linear polarization on to the elliptical. By carefully chosen rotation 
rate of the preform in relation to the fiber linear birefringence rate, it is possible to attain 
quasi-circular birefringence with negligible residual linear birefringence (Payne et al., 1982). 
Generally, we may consider spun HB fibers as a type of PM HB fiber group. The advantage 
of spun HB fibers is considerable immunity to rising of linear birefringence by fiber bending  
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or compressing. Since the quasi-circular birefringence in the fiber originates from twisting of 
stress components, the temperature dependence of anisotropy is indispensable. Therefore 
temperature compensation has to be used in applications utilizing spun HB fibers. On the 
present, spun HB fibers for telecommunication and sensing application are available for 
wavelengths from 600 nm to 1600 nm, with attenuation in order of ones of dB⋅km-1. They 
may be wind on fiber coils with radius above 20 mm. 
In connection with recent advances in microstructured fibers research, new possibilities of 
spun fiber fabrication emerge. The concept of microstructured fiber allows designing and 
producing of fibers with specific parameters on selected wavelength, single mode or multi 
mode character, polarization transformation properties and others. A development of 
microstructured spun fiber with six air chambers around the core and attenuation below 
5 dB⋅km-1 is reported in (Nikitov et al., 2009). The possibility of circular polarization 
transmission has been achieved by rotating of the microstructured preform, together with 
magneto-optic properties preservation. The fiber coils with diameter above 2.5 mm can be 
fabricated for current sensing application. 

6.3 Annealed fibers 
Drawback of twisted fibers and spun HB fibers, which is anisotropy temperature 
dependence, limits their applicability mainly in polarimetric current sensor applications. A 
method for suppression of temperature dependence of anisotropy together with the 
suppression of bending induced linear birefringence has been proposed and experimentally 
studied (Stone, 1988; Rose et al., 1996). The method utilizes annealing of fabricated fiber coil. 
The procedure consists in temperature treatment of the fiber coil, which is installed in 
ceramic labyrinth. The coil is then heated up with approximate temperature-time gradient 
ΔT/Δt = 8⋅10-2 °C⋅s-1. When 850 °C is reached, the temperature is maintained for roughly 
24 hours. Then, the slow cooling follows with approximate gradient ΔT/Δt = -3⋅10-3 °C⋅s-1. 
Annealed fiber coil is then transferred into protective case, which is filled with low-viscosity 
gel in order to damp the vibrations. The annealing procedure leads to removing of bending 
induced stress on the fiber and the linear birefringence is greatly suppressed. Prior to the 
annealing procedure, the fiber jacket and buffer has to be removed, because its oxidation at 
the temperatures 500 - 600 °C would damage the fiber. Since the fiber jacket and buffer act 
as fiber strength element, their removal is difficult and fiber rupture impends. The outer 
layers removal is facilitated by etching in organic solvent. The oxidation proceeds then 
without the negative influence on the fiber cladding (Rose et al., 1996).   
Due to considerable temperature stability, the annealing method is used for fabrication of 
fiber current sensors, which are installed in outdoor environment on high voltage systems. 
The need for reliable galvanic isolation and accuracy predominates the technological 
difficulties in fiber coil fabrication. The annealing procedure has to be carefully performed 
and it has to be handled a technology of fiber coil isolation from vibrations. Since the fiber 
strength outer layers have been removed, the fiber coils have increased sensitivity to 
vibrations. For outdoor installations on high voltage system an annealed fiber sensors with 
sensitivity variation smaller than 0.2 %, dynamic range of 80 dB and temperature range  
20-80 °C were developed (Higuera-Lopez, 2002). 

6.4 Reciprocal compensation of linear birefringence  
In combination with fibers, which were described above and with common single mode 
fibers also, another perspective approach for linear birefringence suppression may be 
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exploited. The approach is based on reciprocity of linear birefringence. Beyond this, the 
circular birefringence is of non-reciprocal character, which gives usability especially in 
polarimetric current fiber sensors. Utilizing this fact, a compensation of linear birefringence 
may be performed on sensor output signal level in case of counter-propagating of two light 
waves in fiber. Second possibility consists in compensation of modes phase shift on fiber 
level in case of back-propagating of light wave with ortho-conjugated polarization. 

6.4.1 Compensation on sensor output signal level 
Since the linear birefringence is of reciprocal character, its influence on polarization state of 
the wave in fiber is not dependent on the propagation direction. The wave will experience 
the same polarization state transformation with the same orientation, no matter the 
propagation direction. Conversely, the magnetic field induced circular birefringence is  
non-reciprocal. When the wave will propagate in one direction, it will gain a polarization 
rotation. When the wave will propagate in opposite direction, it will gain rotation in 
opposite direction. The total rotation will be the double of the rotation in one direction.  
Setups, which exploit the reciprocity of linear birefringence, have been demonstrated as 
polarimetric current sensors. An example of the sensor setup is shown in Fig. 14 (Claus & 
Fang, 1996). 
 

 
Fig. 14. Sensor setup with compensation on output signal level a), signal processing b). 

In Fig. 14a), the signal from laser source L is divided into two channels by means of fiber 
coupler FC. After passing FC1 and FC2, the two optical signals propagate in opposite 
direction through the polarizing parts and the sensing part of the fiber. The unused coupler 
outputs are led into immersion gel to avoid reflections. The optical signals are sensed by 
photodetectors PD1, PD2. For output voltage signals of the detectors we can deduce 
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where Po is the input optical power. FC, FC1, FC2 are split ratio of coupler FC, FC1 FC2, Tov+ 
and Tov- are polarizing transfer functions of the fiber path in one and in second direction, 
RU,1, RU,2 are responsivities of photodetectors. For correct operation, it must hold 
FC = FC1 = FC2 = 0,5 and RU,1 = RU,2 = RU. Relation (43) transforms into 
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or compressing. Since the quasi-circular birefringence in the fiber originates from twisting of 
stress components, the temperature dependence of anisotropy is indispensable. Therefore 
temperature compensation has to be used in applications utilizing spun HB fibers. On the 
present, spun HB fibers for telecommunication and sensing application are available for 
wavelengths from 600 nm to 1600 nm, with attenuation in order of ones of dB⋅km-1. They 
may be wind on fiber coils with radius above 20 mm. 
In connection with recent advances in microstructured fibers research, new possibilities of 
spun fiber fabrication emerge. The concept of microstructured fiber allows designing and 
producing of fibers with specific parameters on selected wavelength, single mode or multi 
mode character, polarization transformation properties and others. A development of 
microstructured spun fiber with six air chambers around the core and attenuation below 
5 dB⋅km-1 is reported in (Nikitov et al., 2009). The possibility of circular polarization 
transmission has been achieved by rotating of the microstructured preform, together with 
magneto-optic properties preservation. The fiber coils with diameter above 2.5 mm can be 
fabricated for current sensing application. 

6.3 Annealed fibers 
Drawback of twisted fibers and spun HB fibers, which is anisotropy temperature 
dependence, limits their applicability mainly in polarimetric current sensor applications. A 
method for suppression of temperature dependence of anisotropy together with the 
suppression of bending induced linear birefringence has been proposed and experimentally 
studied (Stone, 1988; Rose et al., 1996). The method utilizes annealing of fabricated fiber coil. 
The procedure consists in temperature treatment of the fiber coil, which is installed in 
ceramic labyrinth. The coil is then heated up with approximate temperature-time gradient 
ΔT/Δt = 8⋅10-2 °C⋅s-1. When 850 °C is reached, the temperature is maintained for roughly 
24 hours. Then, the slow cooling follows with approximate gradient ΔT/Δt = -3⋅10-3 °C⋅s-1. 
Annealed fiber coil is then transferred into protective case, which is filled with low-viscosity 
gel in order to damp the vibrations. The annealing procedure leads to removing of bending 
induced stress on the fiber and the linear birefringence is greatly suppressed. Prior to the 
annealing procedure, the fiber jacket and buffer has to be removed, because its oxidation at 
the temperatures 500 - 600 °C would damage the fiber. Since the fiber jacket and buffer act 
as fiber strength element, their removal is difficult and fiber rupture impends. The outer 
layers removal is facilitated by etching in organic solvent. The oxidation proceeds then 
without the negative influence on the fiber cladding (Rose et al., 1996).   
Due to considerable temperature stability, the annealing method is used for fabrication of 
fiber current sensors, which are installed in outdoor environment on high voltage systems. 
The need for reliable galvanic isolation and accuracy predominates the technological 
difficulties in fiber coil fabrication. The annealing procedure has to be carefully performed 
and it has to be handled a technology of fiber coil isolation from vibrations. Since the fiber 
strength outer layers have been removed, the fiber coils have increased sensitivity to 
vibrations. For outdoor installations on high voltage system an annealed fiber sensors with 
sensitivity variation smaller than 0.2 %, dynamic range of 80 dB and temperature range  
20-80 °C were developed (Higuera-Lopez, 2002). 

6.4 Reciprocal compensation of linear birefringence  
In combination with fibers, which were described above and with common single mode 
fibers also, another perspective approach for linear birefringence suppression may be 
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exploited. The approach is based on reciprocity of linear birefringence. Beyond this, the 
circular birefringence is of non-reciprocal character, which gives usability especially in 
polarimetric current fiber sensors. Utilizing this fact, a compensation of linear birefringence 
may be performed on sensor output signal level in case of counter-propagating of two light 
waves in fiber. Second possibility consists in compensation of modes phase shift on fiber 
level in case of back-propagating of light wave with ortho-conjugated polarization. 

6.4.1 Compensation on sensor output signal level 
Since the linear birefringence is of reciprocal character, its influence on polarization state of 
the wave in fiber is not dependent on the propagation direction. The wave will experience 
the same polarization state transformation with the same orientation, no matter the 
propagation direction. Conversely, the magnetic field induced circular birefringence is  
non-reciprocal. When the wave will propagate in one direction, it will gain a polarization 
rotation. When the wave will propagate in opposite direction, it will gain rotation in 
opposite direction. The total rotation will be the double of the rotation in one direction.  
Setups, which exploit the reciprocity of linear birefringence, have been demonstrated as 
polarimetric current sensors. An example of the sensor setup is shown in Fig. 14 (Claus & 
Fang, 1996). 
 

 
Fig. 14. Sensor setup with compensation on output signal level a), signal processing b). 

In Fig. 14a), the signal from laser source L is divided into two channels by means of fiber 
coupler FC. After passing FC1 and FC2, the two optical signals propagate in opposite 
direction through the polarizing parts and the sensing part of the fiber. The unused coupler 
outputs are led into immersion gel to avoid reflections. The optical signals are sensed by 
photodetectors PD1, PD2. For output voltage signals of the detectors we can deduce 
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where Po is the input optical power. FC, FC1, FC2 are split ratio of coupler FC, FC1 FC2, Tov+ 
and Tov- are polarizing transfer functions of the fiber path in one and in second direction, 
RU,1, RU,2 are responsivities of photodetectors. For correct operation, it must hold 
FC = FC1 = FC2 = 0,5 and RU,1 = RU,2 = RU. Relation (43) transforms into 
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In signal processing block, as shown in Fig. 14b), the normalized difference is computed 
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Considering the presence of reciprocal linear birefringence only, the equality Tov+ = Tov- 
holds. The output signal according to (45) will be zero. Since the magnetic field induced 
circular birefringence is non-reciprocal, the equality of polarizing transfer functions will not 
hold. Hence, the system will be responsive on varying rotation due to induced circular 
birefringence. Sensor utilizing above described principle dispose of considerable 
temperature stability and vibration insensitivity. More detailed description and sensor 
properties may be found in (Fang et al., 1994; Wilsch et al., 1996). 

6.4.2 Orthogonal conjugation compensation  
The reciprocity of undesirable birefringences in optical fiber may be used for their 
compensation exploiting the polarization ortho-conjugation of the wave modes. The method 
involves the back-propagation of light wave with conjugated modes through the same 
section of birefringent fiber.  
As it has been stated above, imposing stress on fiber (pressure, bending) leads to origin of 
linear birefringent fiber core with two refractive indices, one lying in x axis direction – nx 
and second lying in y axis direction – ny. We may designate the axis as the fast fiber axis, 
with lower refractive index, and the slow fiber axis, with higher refractive index. However, 
the orientation of the fast and slow axes system towards the geometrical coordinate system 
of the fiber changes along, in dependence on the bending or pressure force orientation. The 
modes propagating with different refractive indices gain a phase shift to each other, which 
results in wave polarization transformation. Since the instantaneous magnitudes of 
refractive indices in fast and slow axis may vary due to rate of bending or compressing, the 
resulting phase difference relies on average magnitudes of the refractive indices in both 
axes.  
In order to restore the original polarization state, the wave at the output of the birefringent 
fiber has to be reflected and coupled back in the fiber together with modes conjugation. To 
accomplish this, Faraday polarization rotator and flat mirror is exploited, as shown in 
Fig. 15. The whole device is called ortho-conjugation reflector (OCR) or often Faraday  
 

 
Fig. 15. Principle of Faraday rotation mirror. 
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rotation mirror (FRM). It consists of Faraday rotator, mounted inside a permanent magnet, 
flat mirror and collimator (for fiber optic application). The magnetic field magnitude, rotator 
dimension and its assembly is properly adjusted, that a light wave polarization is rotated 
with angle 45° while passing the rotator. Mirror allows reflection in perpendicular direction 
and collimator serves for fiber coupling. 
Consider a birefringent fiber with a fast axis and a slow axis, Fig. 15. The modes of light 
wave, which travels in fiber, gain a phase shift. The mode in slow axis is retarded, while 
the mode in fast axis travels faster. At the fiber output, the wave is collimated to rotator. It 
rotates the wave polarization with angle θ/2 = 45° during a single pass. Then the wave is 
reflected back. After the second rotator pass, the rotation angle is θ = 90° due to the 
rotation non-reciprocity. The wave is coupled back into the fiber. Now, the wave 
propagates in fiber in backward direction. The wave mode, which traveled previously 
along the fast axis, travels now along the slow axis. Conversely, the mode, which traveled 
previously along the slow axis, travels now along the fast axis. The total phase shift of the 
modes is equalized and the original polarization state is restored. It should be mentioned, 
although the difference of average refractive indices will no be constant in time (for 
example by fiber manipulation), the final phase shift will remain zero thanks to reciprocal 
compensation. The temperature stability of the method is considerable also. However, this 
is true only when the temperature of FRM is stable, since the Verdet constant of rotator in 
FRM is temperature dependent. 
Though the principle is not applicable for telecommunication purposes, it may be utilized 
in applications, where the polarization state preservation is desirable. This is often required 
in erbium-doped fiber amplifiers or tunable fiber lasers. Fiber optic sensors are another 
field of application. In case of fiber interferometers a polarization state of waves incoming 
from reference arm and sensing arm has to be preserved in order to interfere. Therefore, 
FRMs are used in both arms of interferometer. Fiber optic current sensors are another 
example of usage of FRM (Drexler & Fiala, 2008). Fiber current sensors exploit polarization 
rotation of the guided wave due to the magnet field actuation. Since the circular 
birefringence owing to Faraday magneto-optic effect is of non-reciprocal character, it will 
not be compensated during the backward propagation. Moreover, the polarization rotation 
will be double, which improves the sensitivity of the sensor. The example of fiber optic 
polarimetric current sensor utilizing FRM is shown in Fig. 16 (Drexler & Fiala, 2009). Laser 
beam from laser source L is collimated by means of collimator C and linear polarized by 
means of polarizer P. Beam passes a non-polarizing beam splitter NBS and it its collimated  
 

 
Fig. 16. Fiber optic polarimetric current sensor utilizing Faraday rotation mirror. 
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In signal processing block, as shown in Fig. 14b), the normalized difference is computed 
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Considering the presence of reciprocal linear birefringence only, the equality Tov+ = Tov- 
holds. The output signal according to (45) will be zero. Since the magnetic field induced 
circular birefringence is non-reciprocal, the equality of polarizing transfer functions will not 
hold. Hence, the system will be responsive on varying rotation due to induced circular 
birefringence. Sensor utilizing above described principle dispose of considerable 
temperature stability and vibration insensitivity. More detailed description and sensor 
properties may be found in (Fang et al., 1994; Wilsch et al., 1996). 

6.4.2 Orthogonal conjugation compensation  
The reciprocity of undesirable birefringences in optical fiber may be used for their 
compensation exploiting the polarization ortho-conjugation of the wave modes. The method 
involves the back-propagation of light wave with conjugated modes through the same 
section of birefringent fiber.  
As it has been stated above, imposing stress on fiber (pressure, bending) leads to origin of 
linear birefringent fiber core with two refractive indices, one lying in x axis direction – nx 
and second lying in y axis direction – ny. We may designate the axis as the fast fiber axis, 
with lower refractive index, and the slow fiber axis, with higher refractive index. However, 
the orientation of the fast and slow axes system towards the geometrical coordinate system 
of the fiber changes along, in dependence on the bending or pressure force orientation. The 
modes propagating with different refractive indices gain a phase shift to each other, which 
results in wave polarization transformation. Since the instantaneous magnitudes of 
refractive indices in fast and slow axis may vary due to rate of bending or compressing, the 
resulting phase difference relies on average magnitudes of the refractive indices in both 
axes.  
In order to restore the original polarization state, the wave at the output of the birefringent 
fiber has to be reflected and coupled back in the fiber together with modes conjugation. To 
accomplish this, Faraday polarization rotator and flat mirror is exploited, as shown in 
Fig. 15. The whole device is called ortho-conjugation reflector (OCR) or often Faraday  
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rotation mirror (FRM). It consists of Faraday rotator, mounted inside a permanent magnet, 
flat mirror and collimator (for fiber optic application). The magnetic field magnitude, rotator 
dimension and its assembly is properly adjusted, that a light wave polarization is rotated 
with angle 45° while passing the rotator. Mirror allows reflection in perpendicular direction 
and collimator serves for fiber coupling. 
Consider a birefringent fiber with a fast axis and a slow axis, Fig. 15. The modes of light 
wave, which travels in fiber, gain a phase shift. The mode in slow axis is retarded, while 
the mode in fast axis travels faster. At the fiber output, the wave is collimated to rotator. It 
rotates the wave polarization with angle θ/2 = 45° during a single pass. Then the wave is 
reflected back. After the second rotator pass, the rotation angle is θ = 90° due to the 
rotation non-reciprocity. The wave is coupled back into the fiber. Now, the wave 
propagates in fiber in backward direction. The wave mode, which traveled previously 
along the fast axis, travels now along the slow axis. Conversely, the mode, which traveled 
previously along the slow axis, travels now along the fast axis. The total phase shift of the 
modes is equalized and the original polarization state is restored. It should be mentioned, 
although the difference of average refractive indices will no be constant in time (for 
example by fiber manipulation), the final phase shift will remain zero thanks to reciprocal 
compensation. The temperature stability of the method is considerable also. However, this 
is true only when the temperature of FRM is stable, since the Verdet constant of rotator in 
FRM is temperature dependent. 
Though the principle is not applicable for telecommunication purposes, it may be utilized 
in applications, where the polarization state preservation is desirable. This is often required 
in erbium-doped fiber amplifiers or tunable fiber lasers. Fiber optic sensors are another 
field of application. In case of fiber interferometers a polarization state of waves incoming 
from reference arm and sensing arm has to be preserved in order to interfere. Therefore, 
FRMs are used in both arms of interferometer. Fiber optic current sensors are another 
example of usage of FRM (Drexler & Fiala, 2008). Fiber current sensors exploit polarization 
rotation of the guided wave due to the magnet field actuation. Since the circular 
birefringence owing to Faraday magneto-optic effect is of non-reciprocal character, it will 
not be compensated during the backward propagation. Moreover, the polarization rotation 
will be double, which improves the sensitivity of the sensor. The example of fiber optic 
polarimetric current sensor utilizing FRM is shown in Fig. 16 (Drexler & Fiala, 2009). Laser 
beam from laser source L is collimated by means of collimator C and linear polarized by 
means of polarizer P. Beam passes a non-polarizing beam splitter NBS and it its collimated  
 

 
Fig. 16. Fiber optic polarimetric current sensor utilizing Faraday rotation mirror. 
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into the fiber by collimator C. The beam propagates through the magnetic field sensing fiber 
OF and exits the fiber. Collimator C collimates the beam into the FRM and collimates 
backward beam back into the fiber. The beam travels the fiber in opposite direction. After 
the collimation, part of the beam is deflected by beam splitter NBS. It passes the analyzer 
A and hits the photodetector PD. The output linear polarization state is perpendicular to 
the input linear polarization state. When magnetic field acts on the sensing part of the 
fiber, the polarization plane rotates. The polarization modulation is converted on intensity 
modulation by means of analyzer A. 
In spite of the advantages of the FRM application, several drawbacks limits its usage. One of 
the drawbacks is temperature dependence of rotator Verdet constant (Santoyo-Mendoza & 
Barmenkov, 2003). Therefore the FRM unit has to be temperature stabilized. Simultaneously, 
it has to be shielded from outer magnetic field. Indispensable is the cost of this solution also 
owing to precise fabrication and adjusting of the FRM. Commercially available are FRMs in 
compact fiber pigtailed housing for longer wavelengths (1310 nm, 1550 nm). There are also 
available FRMs for shorter wavelengths (633 nm). However, they are bulky, because of the 
need of more powerful magnet. 

7. Conclusion 
Due to their unique properties, single mode fibers have found a huge application potential 
in various fields of industry and science. They are massively exploited in telecommunication 
technology, control and sensor systems, industrial laser systems and they represent an 
unsubstitutable tool for advanced science. The requirements for specific fiber properties 
differ for various applications. In lot of them, a transmission of light wave with preserving 
of state of polarization is demanded, which is often a weak point of common fibers. 
However, this drawback is possible to overcome with a suitable approach, depending on 
demands of particular application. 
In order to evaluate the possibility of polarization state distortion, various influences have to 
be conceived. It is also very advantageous to be able to quantify them. According to this 
demand, the intention of the first part of the contribution is to specify the fundamental 
effects, which lead to fiber birefringence. The basic relations, which allow estimating the 
birefringence rate are presented also. 
Once the fiber birefringence occurs, in lot of cases arises a need to suppress its undesirable 
consequences. A various approaches, which may be utilized, are the point of the interest of 
the second part of the contribution. The principles of the most significant methods are 
described. Their advantages and disadvantages are presented also. The suitability of a 
selected method is given by the application requirements. They differ in cost, complexity, 
temperature and mechanical stability and others. Because of the limited extent of this 
contribution, all of the methods properties and details could not be presented. Nonetheless, 
the chapter may be a convenient starting point for orientation in this field and details may 
be found in cited reference sources. 
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1. Introduction 
The polarization is a relative property to the vibratory nature of light. In an optical fibre, 
light is a combination of two vibrations of perpendicular directions. Each direction 
represents one mode of polarization. Indeed, the optical fibres and the components of the 
optical fibres present a small difference in the refractive index in the pair of the polarization 
states, a property called the birefringence. This last one induces a difference of propagation 
speed between the two modes. So, light at the output, cannot be restored more faithfully. 
The birefringence can change the state of polarization (SOP) of light when it crosses the 
fibre. In a single mode fibre, the birefringence is combined with a random coupling of 
polarization modes. The delay measured at the output of the fibre between the two 
polarization modes is called the difference of group delay DGD (measured in picoseconds). 
The polarization modes dispersion (PMD) results from the variation of the DGD according 
to the wavelength and the environment conditions.  
The typical tolerance of a system to the PMD is roughly 10% of the bit period, which gives 
40 Ps for a system of 2.5 Gb/s, 10 Ps for a system of 10 Gb/s and only 2.5 Ps for a system of 
40 Gbs/s (Noé et al.,1999). The PMD is a random phenomenon and constitutes an enormous 
obstacle ahead of the increase of the debits from 10 Gbit/s for a part of the networks of most 
telecommunication companies. Several solutions have been proposed to compensate the 
PMD as: The electronic compensation after a direct photo-detection that can only eliminate a 
part of the PMD effects since the information about the polarization and the phase get lost at 
the detection; the second solution is the electronic compensation in a coherent receptor with 
diversity of polarizations, and the third one is the optical compensation in at least a 
differential delay section. Other solutions are proposed by the Corning society and which 
rely on the use of spun fibres allowing the control of the coupling of the modes, therefore 
reducing the PMD; thus, giving differential group delays of order of Femtoseconds. In the 
past decade, some considerable efforts have been made to understand the origins of the 
PMD and to attenuate its effects in the systems. The PMD can be reduced in a fibre with two 
different manners. The first one consists in minimizing the asymmetries in the refractive 
index profile and the constraints, which implies improvements of the industrial process in 
the manufacture of the fibre in order to assure a better geometry and to reduce the rate of 
constraints in the fiber. The second method allows the control of the coupling of the modes 
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of the polarization in the fibre while spinning it during its manufacture. Indeed, the 
spinning has been used in the manufacture of fibres since the beginning of the 1990s, and it 
showed that it is an efficient technique to reduce the PMD in the fibre. First, we start by 
presenting in this work the spun fibres explaining their technology, their principle and their 
different types. Next, the description of the reduction of the PMD by using the spinning is 
developed by a mathematical formalism based on the theory of coupling and Jones's matrix. 
Moreover, the reduction of the PMD is verified in the spun fibres while applying the 
method of JME and the COTDR method (photon counting -Optical temporal Domain of 
Reflectometry) that allowed us to measure the DGD of the order of femtosecond (Cherbi et 
al., 2009). The comparison of the DGD found in this type of new generation of fibres with 
those of the standard ones, led us to confirm that the spun fibres offer effectively a smaller 
DGD than those of the standard fibres, emphasizing the importance of this type of fibres in 
the reduction of the PMD.  
We present the different results already published (Cherbi et al., 2009) while using the 
reflectometers COTDR and POFDR (polarization- Optical Frequency Domain of 
Reflectometry) which are used to get the polarization characteristics of the spun fibres as the 
beat length and the PMD and to observe the spatial frequencies linked directly to the period 
of spinning.  

2. Principle of spun fibres 
2.1 Technologies of the spun fibres 
There are more than two decades when the concept of the spun fibres has been proposed 
originally in an article published by (Barlow et al.,1981). 
 

 
Fig. 1. Two approaches used to present the rotating fibres (a) turn preforms (b) turn the fibre. 
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The fibre spun is achieved by the rotation of the preform during the drawing of the fibre 
(figure 1.a). In this approach, the system of drawing is the same as that of the 
conventional standard fibre systems (OVD) except that a rotating motor is placed on the 
top of the preform. When the motor is set in motion with a predetermined speed, the 
preform starts turning dragging the rotations of the axes of the birefringence. The rotation 
will end up with the end of the drawing operation. This approach is quite simple and 
appropriate for the pulling of the fibre at low speed. However, this is not convenient for 
the production of the fibre with a high speed pulling because the rotation of the motor 
must be at very high speed as well. To illustrate this, we consider a rotation rate of the 
fibre of 3 turns/min, for a drawing speed of 1 m/s, the rotating speed of the preform is 
thus only 180 turns/min.  
On the other hand, for a modern drawing device having a speed higher than 20m/s, the 
perform must turn at a speed greater than 3600 turns/mn, which is far from practical. For 
this reason the concept of the spun fibres has not been used in the production of fibres 
until the half of the nineties when methods of more adapted spinning have been proposed 
(Ming-Jun & Nolan, 1998). Moreover, the transmission systems as they appeared at low 
rate (<= 2.5 Gb/s), the PMD was not a major problem to seek fibres that perform this 
reduction.  
Several convenient techniques have been suggested during the year 1990, for example, by 
(Hart et al., 1994] in order to make the fibre turn rather than the preform. Later on, this 
technique became the most adapted one for the manufacturing of the fibres performing the 
reduction of the PMD. 
 

 
Fig. 2. Examples of fibre rotation systems: (a) tilted wheel, (b) two wheels moving in 
opposite directions. 
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perform must turn at a speed greater than 3600 turns/mn, which is far from practical. For 
this reason the concept of the spun fibres has not been used in the production of fibres 
until the half of the nineties when methods of more adapted spinning have been proposed 
(Ming-Jun & Nolan, 1998). Moreover, the transmission systems as they appeared at low 
rate (<= 2.5 Gb/s), the PMD was not a major problem to seek fibres that perform this 
reduction.  
Several convenient techniques have been suggested during the year 1990, for example, by 
(Hart et al., 1994] in order to make the fibre turn rather than the preform. Later on, this 
technique became the most adapted one for the manufacturing of the fibres performing the 
reduction of the PMD. 
 

 
Fig. 2. Examples of fibre rotation systems: (a) tilted wheel, (b) two wheels moving in 
opposite directions. 
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In this case (fig 1.b), a rotating device of the fibre, is put along the way of fibrage to rotate 
the fibre directly. Two examples of this device are illustrated in figue 2. In the first example 
(fig 2.a), a wheel is in contact with the fibre and tilted with respect to its initial position, thus 
applying a moment of rotation to turn the fibre. In the second example (fig 2.b), two wheels 
are placed horizontally and are both in contact with the fibre (Blaszyk & Christoffand,2001). 
The two wheels move back and forth in opposite directions driving the rotational movement 
of the fibre. Imposing a direct motion to the fibre eliminates the problem of the preform 
when turning at high speed. Besides, this technique provides flexibility to control and 
implement different profiles of rotation for a better reduction of the PMD. 

2.2 Theory of spun fibres 
Two approaches have been suggested to model the reduction of the PMD in the spun fibres, 
one of which is based on the evolution of the polarization state (Galtarossa et al., 2001; 
Ming-Jun &Nolan, 1998). The evolution of the vector representing the polarization 
dispersion is ruled by the dynamic equation which is linked to the vector of the local 
birefringence. While solving the dynamic equation, the vector representing the 
polarization’s dispersion is gotten and its module gives the delay of the differential group 
(DGD). Another approach is based on the theory of the coupled modes of Jones' matrix 
(Ming-Jun et al., 2002) where the complex amplitudes of the two modes of polarization are 
described by the equations of the modes coupling. While solving these equations, the 
complex amplitudes are derived and Jones' matrix is determined and the DGD can be 
computed from this matrix. Basically, the two approaches give equivalent results. Our 
survey of the spun fibres is founded on Jones' matrix formalism, where we notice that the 
analytical solutions obtained are simple. 

2.2.1 Equations of the mode coupling  
As the birefringence in the fibres used in telecommunications is generally small, the 
formalism based on the theory of disruption (Ming-Jun et al., 2002), can be used to describe 
the different mechanisms of birefringence in the single mode fibres, including the 
birefringence due to the distortion of the core, constraints, curvature, rotation of the fibre 
and torsion. In what follows, we will present the theory of the coupled modes and we will 
show how to implement it in the different problems of birefringence. Indeed, the small 
birefringence of telecommunication fibres can be treated as an anisotropic disruption to a 
material originally isotrope. In the condition of weak guidance, the electric field E is 
described by the following wave equation (Dandliker,1992): 

 0 0 0E E p       (1) 

Where 0 et 0  are the dielectric and magnetic constants of vacuum respectively, ε is the 
relative dielectric constant of the non disrupted fibre, and p is the disruption term given by 
the following relation: 

 0p E    (2) 

Where   is the electric tensor describing the anisotropy of the medium. Without the term 
of disruption, the equation (1) has modal solutions of the following shape: 
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where ( , )ne x y  is the distribution of the electric field. For a monomode fibre, n =1, 2 
represent the two modes of polarization. 
In absence of disruption, the two modes are degenerated and propagate with the same 
constant β0. In presence of the disruption term, it is supposed that the electric field E(x,y,z) is 
given by the linear superposition of the two non disrupted modes (Ming-Jun et al., 2002): 
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Where ( )nA z  are the complex coefficients describing the amplitudes and the phases of the 
two modes. Let's put equation (4) into equations (1) and (2) and use the relation of 
orthogonality between the two modes (Ming-Jun et al., 2002): 

 

( , ) . ( , )
0

m
m n

m nNe x y e x y dxdy
m n

   
  (5) 
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and using the condition of the weak coupling: 
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We get the equations of the coupled modes that describe the evolution of the complex 
amplitudes ( )nA z : 
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where A is the complex amplitude vector taking the following form: 

 1 2( )TA A A  (9) 

and k  is the matrix of the coupling coefficients. 
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The coupling coefficients are associated to the different types of disruptions: 



 
Recent Progress in Optical Fiber Research 154 
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the fibre directly. Two examples of this device are illustrated in figue 2. In the first example 
(fig 2.a), a wheel is in contact with the fibre and tilted with respect to its initial position, thus 
applying a moment of rotation to turn the fibre. In the second example (fig 2.b), two wheels 
are placed horizontally and are both in contact with the fibre (Blaszyk & Christoffand,2001). 
The two wheels move back and forth in opposite directions driving the rotational movement 
of the fibre. Imposing a direct motion to the fibre eliminates the problem of the preform 
when turning at high speed. Besides, this technique provides flexibility to control and 
implement different profiles of rotation for a better reduction of the PMD. 

2.2 Theory of spun fibres 
Two approaches have been suggested to model the reduction of the PMD in the spun fibres, 
one of which is based on the evolution of the polarization state (Galtarossa et al., 2001; 
Ming-Jun &Nolan, 1998). The evolution of the vector representing the polarization 
dispersion is ruled by the dynamic equation which is linked to the vector of the local 
birefringence. While solving the dynamic equation, the vector representing the 
polarization’s dispersion is gotten and its module gives the delay of the differential group 
(DGD). Another approach is based on the theory of the coupled modes of Jones' matrix 
(Ming-Jun et al., 2002) where the complex amplitudes of the two modes of polarization are 
described by the equations of the modes coupling. While solving these equations, the 
complex amplitudes are derived and Jones' matrix is determined and the DGD can be 
computed from this matrix. Basically, the two approaches give equivalent results. Our 
survey of the spun fibres is founded on Jones' matrix formalism, where we notice that the 
analytical solutions obtained are simple. 

2.2.1 Equations of the mode coupling  
As the birefringence in the fibres used in telecommunications is generally small, the 
formalism based on the theory of disruption (Ming-Jun et al., 2002), can be used to describe 
the different mechanisms of birefringence in the single mode fibres, including the 
birefringence due to the distortion of the core, constraints, curvature, rotation of the fibre 
and torsion. In what follows, we will present the theory of the coupled modes and we will 
show how to implement it in the different problems of birefringence. Indeed, the small 
birefringence of telecommunication fibres can be treated as an anisotropic disruption to a 
material originally isotrope. In the condition of weak guidance, the electric field E is 
described by the following wave equation (Dandliker,1992): 

 0 0 0E E p       (1) 

Where 0 et 0  are the dielectric and magnetic constants of vacuum respectively, ε is the 
relative dielectric constant of the non disrupted fibre, and p is the disruption term given by 
the following relation: 

 0p E    (2) 

Where   is the electric tensor describing the anisotropy of the medium. Without the term 
of disruption, the equation (1) has modal solutions of the following shape: 

 
Spun Fibres for Compensation of PMD: Theory and Characterization 155 

 0( , , ) ( , )exp( )n nE x y z e x y i z           1,2n   (3) 

where ( , )ne x y  is the distribution of the electric field. For a monomode fibre, n =1, 2 
represent the two modes of polarization. 
In absence of disruption, the two modes are degenerated and propagate with the same 
constant β0. In presence of the disruption term, it is supposed that the electric field E(x,y,z) is 
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Where 0n  is the effective refractive index of both non disrupted modes. 

2.2.2 Jones matrix and the PMD of spun fibre  
The evolution of the local polarization along the birefringent fibre is described by the 
equations of the modes coupling. The total change of polarization of an input signal, after 
having traveled a given distance in the fibre is better described by Jones' matrix. Let's 
assume that the losses in the fibres are negligible, the already predefined Jones matrix, can 
be put under another form which is: 
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The four complex elements of Jones' matrix can be gotten while integrating the equations of 
the coupled modes with suitable initial conditions. Once Jones' matrix is known, the PMD 
can be calculated easily from the elements of the matrix (Chen, 2002; Ming-Jun et al., 2002): 
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In order to describe the reduction of the PMD, we define a parameter, named reduction 
factor of PMD (PMDRF)   as the ratio of the DGD of the spun fibres over the DGD of the 
standard fibre. 
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Where the used lengths for the spun fibres and standard fibres are the same. For example, if 
 is equal to 1, the reduction of the PMD is not achieved and if  is equal to 0.5, a factor of 
two is obtained in the reduction of the PMD. 

2.3 Different types of spun fibres  
The coupling coefficients matrix depends upon the dielectric tensor of the disruption. The 
values of these elements are determined by the type of disruption, which means that they 
depend on the configuration of the fibre. In this section, we describe some configurations of 
the fibres and we give their coupling coefficients matrix. It is important to note that the 
coupling matrixes in this work are expressed on the basis of the circular polarization 
because it is more appropriate to process the rotating fibres (Ming-Jun et al., 2002). 

2.3.1 The linearly birefringent fibre 
The linear birefringence is a consequence of disruptions as the distortions of the core, the 
asymmetry of the lateral constraints, the curvature. In the case of the linear birefringence, 
the coupling coefficients matrix is given by (Ming-Jun et al., 2002): 
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where ∆β is the linear birefringence, and Φ is the orientation of the birefringence with 
respect to a given axis  

2.3.2 Spun fibres  
In a spun fiber, the orientation of the birefringence takes place depending on the x axis. The 
rotation angle   accumulated is therefore a function of the fibre length 'z', which in turn is 
determined by the rate of rotation ( )z :  
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Replacing the equation (16) in equation (15), we get the coupling coefficients matrix of the 
rotating fibres, describing the disruption of the birefringence,: 
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2.3.3 Twisted fibre 
There are two effects in this type of fibres: The rotation of the birefringence and the 
mechanical torsion. The rotation of the birefringence is similar to that of the rotating fibre. If 
the rate of torsion is T, the angle  is calculated by  

 T z   (18) 

The rate of torsion is determined by the coefficients of photo - elasticity of the fibre. The 
torsion constraint induces the circular birefringence proportionally to the rate of torsion. 

 .g T   (19) 

Where g is the coefficient determined by the coefficients of photo elasticity of the glass. The 
typical value of g for fibres in silica is 0.16. Combining both effects of rotation and torsion, 
the coupling matrix comes up with the following form: 
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Where 0n  is the effective refractive index of both non disrupted modes. 
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because it is more appropriate to process the rotating fibres (Ming-Jun et al., 2002). 
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where ∆β is the linear birefringence, and Φ is the orientation of the birefringence with 
respect to a given axis  
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2.3.3 Twisted fibre 
There are two effects in this type of fibres: The rotation of the birefringence and the 
mechanical torsion. The rotation of the birefringence is similar to that of the rotating fibre. If 
the rate of torsion is T, the angle  is calculated by  

 T z   (18) 

The rate of torsion is determined by the coefficients of photo - elasticity of the fibre. The 
torsion constraint induces the circular birefringence proportionally to the rate of torsion. 
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Where g is the coefficient determined by the coefficients of photo elasticity of the glass. The 
typical value of g for fibres in silica is 0.16. Combining both effects of rotation and torsion, 
the coupling matrix comes up with the following form: 
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2.4 Solutions of the coupled equations for different types of the spun fibres  
Generally, the matrix of the coupling coefficients depends upon the variable z, and the 
analytic solutions of equation (8) have no existence in the majority of the cases. The 
numerical integration is always used to get numerical solutions. Different methods, as the 
method of the finite differences, the Runge-Kutta method (Chen, 2002), can be applied to 
solve the equation of the coupled modes. However, in the two following special cases, we 
can derive the analytic solutions which will be discussed in this section. 

2.4.1 Constant spinning rate 
For a constant spinning rate, the function 'spin' (rotation) can be written as follows: 

 0   (21) 

Where 0 is a constant. In this case, the birefringence of a fibre is estimated in only one 
direction with a rate 0 . For this reason, the constant spinning rate is often assigned to an 
unidirectional spinning. For a spun fibre, with a constant spinning rate, the integral of the 
coupling matrix can be calculated easily, and the coupled equations become (Hart, 1994): 
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With initial conditions 1 2(0) 1, (0) 0A A  . 
The solutions of equations (22) and (23) are: 
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Using equations (12) and (13), we find that the DGD can be expressed by a simple equation 
for the spinning constant: 
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Where 0d B
d L





   is the PMD of a uniform birefringent fibre without modes coupling at 

the z position. The sinusoidal term of equation (26) doesn't play an important role when the 
fibre is sufficiently long. On the other hand, for long fibres, the DGD is given by: 
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Equation (27) indicates that the DGD progresses linearly with the length of the fibre, and the 
PMDRF takes the following form: 
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We notice that for spun fibres of constant rate, the PMDRF depends upon the length of 
beating or the birefringence. 

2.4.2 The periodic spin function 
For the functions of periodic spin, under some conditions, we can describe analytic solutions 
by using the theory of disruption (Chen et al., 2002) in which fibres are submitted to 
uniform disruptions only, or in the case of small lengths regime (typically smaller than 100 
m) in order to fine down their analysis. Indeed, in this approach, the random characteristic 
of the variation of the disruption in case of important lengths regime is ignored. Using the 
initial conditions issued from the previous paragraph, the first order solutions of disruption 
for A1 (z) and A2(z) are as follows: 
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It becomes easier to obtain the DGD by using equation (13): 
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Based on the theory of disruption, the first order of the disruption’s expansion is valid only 
when 1  . This condition puts some limits on the application of equation (31) on fibres 
that have a low PMD.  
The validity of this solution has been tested by (chen et al., 2002). When the length of beating 
is important (some meters), i.e. 1  , and the period of spin is smaller than the length of 
beating, the theory of disruption of the first order can always be applied. For sinusoidal 
profiles of spin, the expression for the factor of the PMD reduction can be gotten from the 
solutions of the disruption equation. Let's notice that the profile of sinusoidal spin takes the 
following form: 

 0( ) cos( )z z    (32) 

Where α0 is the spin amplitude , and η is the angular frequency of the spatial modulations, 
which is linked to the spin period Λ through the following relationship η=2π/Λ.  
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numerical integration is always used to get numerical solutions. Different methods, as the 
method of the finite differences, the Runge-Kutta method (Chen, 2002), can be applied to 
solve the equation of the coupled modes. However, in the two following special cases, we 
can derive the analytic solutions which will be discussed in this section. 

2.4.1 Constant spinning rate 
For a constant spinning rate, the function 'spin' (rotation) can be written as follows: 

 0   (21) 

Where 0 is a constant. In this case, the birefringence of a fibre is estimated in only one 
direction with a rate 0 . For this reason, the constant spinning rate is often assigned to an 
unidirectional spinning. For a spun fibre, with a constant spinning rate, the integral of the 
coupling matrix can be calculated easily, and the coupled equations become (Hart, 1994): 
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With initial conditions 1 2(0) 1, (0) 0A A  . 
The solutions of equations (22) and (23) are: 
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Where  2 2
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Using equations (12) and (13), we find that the DGD can be expressed by a simple equation 
for the spinning constant: 
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Where 0d B
d L





   is the PMD of a uniform birefringent fibre without modes coupling at 

the z position. The sinusoidal term of equation (26) doesn't play an important role when the 
fibre is sufficiently long. On the other hand, for long fibres, the DGD is given by: 

 
Spun Fibres for Compensation of PMD: Theory and Characterization 159 

 

. .( )
2

zz  



  (27) 

Equation (27) indicates that the DGD progresses linearly with the length of the fibre, and the 
PMDRF takes the following form: 

 2

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

  (28) 

We notice that for spun fibres of constant rate, the PMDRF depends upon the length of 
beating or the birefringence. 

2.4.2 The periodic spin function 
For the functions of periodic spin, under some conditions, we can describe analytic solutions 
by using the theory of disruption (Chen et al., 2002) in which fibres are submitted to 
uniform disruptions only, or in the case of small lengths regime (typically smaller than 100 
m) in order to fine down their analysis. Indeed, in this approach, the random characteristic 
of the variation of the disruption in case of important lengths regime is ignored. Using the 
initial conditions issued from the previous paragraph, the first order solutions of disruption 
for A1 (z) and A2(z) are as follows: 
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It becomes easier to obtain the DGD by using equation (13): 
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Based on the theory of disruption, the first order of the disruption’s expansion is valid only 
when 1  . This condition puts some limits on the application of equation (31) on fibres 
that have a low PMD.  
The validity of this solution has been tested by (chen et al., 2002). When the length of beating 
is important (some meters), i.e. 1  , and the period of spin is smaller than the length of 
beating, the theory of disruption of the first order can always be applied. For sinusoidal 
profiles of spin, the expression for the factor of the PMD reduction can be gotten from the 
solutions of the disruption equation. Let's notice that the profile of sinusoidal spin takes the 
following form: 

 0( ) cos( )z z    (32) 

Where α0 is the spin amplitude , and η is the angular frequency of the spatial modulations, 
which is linked to the spin period Λ through the following relationship η=2π/Λ.  
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With the analytical solution of equation (31), we are able to assert which spin parameters 
give right to the optimization of the PMD performances. With the first observations, we 
remark that, when the length of beating of a fibre is bigger than some meters, the PMDRF is 
independent of the beating length, and therefore of the intrinsic birefringence of the fibre. In 
equation (31), the only contribution to the birefringence of the fibre, comes from  , and the 
DGD is proportional to this size. Let's note that   is the PMD of the unspun fibers (non 
rotating). On the other hand, the PMDFR will be independent of  .  
This conclusion is also verified by the direct numerical integration of equation (8) with k 
given by equation (17). Some old fibres had beating lengths inferior to some meters; with the 
improvement of fibre manufacturing, the majority of these lengths were improved lately 
beyond some meters. The PMDRF independence from the intrinsic birefringence of the fibre, 
offers the advantage of simplicity in its conception because it is worthless to optimize the 
spin profiles for the different birefringences of the fibre. Moreover, we noticed that the DGD 
increases linearly when the length of the fibre increases (figure 3) despite the fact that we got 
some overlapping oscillations on the graph representing the variation of the DGD with 
respect to the distance.  
 

 
Fig. 3. Evolution of the DGD along a spun fibre. 

We can also separate the real and imaginary contributions of the integral (31) in order to 
better analyze the variation of the DGD along the fibre. We express the equation (31) in an 
alternative way of the DGD for one spatial period T: 
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We suppose that ( )z  is a periodic function. When ( )z  is an even function, 
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is equal to  

zero. For multiple values of the period T, the DGD becomes  ( )n DGD T . For values in 
between, some oscillations are encrusted in the linear variation of the DGD. On the other  
hand, this survey based on [40] leads us to the conclusion that the dependence of the DGD 
of the standard fibres on the square root of their lengths, comes from the statistical nature of 
the random coupling of the two modes of polarization. The linear evolution of the DGD 
with respect to the length of the spun fibre is caused by the periodicity of the coupling 
induced by the spinning, thus we have a coupling mode better-controlled than in the case of 
standard fibres. However, it is possible that the DGD of the spun fibres follows a different 
evolution law in a region where the first order theory of disruption is not valid any more; 
for example, when the intrinsic birefringence of the fibre is high and / or the spin rate is 
high.  
With the aforementioned results, it is rather simple to find the phase matching conditions 
for which the maximum reduction of the PMD can be obtained. In this case, the condition is 
fixed such that the PMDFR is equal to zero (chen et al., 2002):  
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(34) 

Equation (34) can be expressed in another way if we use the properties discussed previously 
for even and odd functions. We notice that when the phase matching conditions are 
satisfied, the evolution of the DGD along the spun fibre is periodic. The DGD doesn't 
increase anymore when the length of the fibre increases.  
Equations (31) and (34) are valid for a whole category of periodic profiles of spin. To 
illustrate the way how to determine the phase matching conditions, we take an example of a 
sinusoidal spin profile. Such a profile is defined by equation (32). The integration of this 
profile gives 0( ) sin( ) /z z    ; then we get the DGD by using equation (31): 
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The integral can be valued analytically by using the following identity: 
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between, some oscillations are encrusted in the linear variation of the DGD. On the other  
hand, this survey based on [40] leads us to the conclusion that the dependence of the DGD 
of the standard fibres on the square root of their lengths, comes from the statistical nature of 
the random coupling of the two modes of polarization. The linear evolution of the DGD 
with respect to the length of the spun fibre is caused by the periodicity of the coupling 
induced by the spinning, thus we have a coupling mode better-controlled than in the case of 
standard fibres. However, it is possible that the DGD of the spun fibres follows a different 
evolution law in a region where the first order theory of disruption is not valid any more; 
for example, when the intrinsic birefringence of the fibre is high and / or the spin rate is 
high.  
With the aforementioned results, it is rather simple to find the phase matching conditions 
for which the maximum reduction of the PMD can be obtained. In this case, the condition is 
fixed such that the PMDFR is equal to zero (chen et al., 2002):  
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Equation (34) can be expressed in another way if we use the properties discussed previously 
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satisfied, the evolution of the DGD along the spun fibre is periodic. The DGD doesn't 
increase anymore when the length of the fibre increases.  
Equations (31) and (34) are valid for a whole category of periodic profiles of spin. To 
illustrate the way how to determine the phase matching conditions, we take an example of a 
sinusoidal spin profile. Such a profile is defined by equation (32). The integration of this 
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Fig. 4. The PMD change factor as a function of the spin amplitude and the spin period. 

We note that when 0 0(2 / ) 0J    , the dominant contribution comes from the term of the 
linear increase of equation (38). Neglecting the oscillations term, the expression of the DGD 
becomes:  

 0 0( ) (2 / )DGD z J z    (40)  

As in the case of spun fibres with a constant rate, in absence of random disruptions, the 
DGD increases linearly with the length of the fibre; in contrast with the PMDRF which takes 
a simpler shape: 

 0 0(2 / )PMDRF J    (41) 

Equation (41) indicates that the PMDRF is independent from the beating length in the case 
of spun fibres with sinusoidal profile whose beating lengths are equal to some meters or 
more. When 0 0(2 / ) 0J    , the linear increase term disappears, and the oscillation terms 
cannot be neglected any more. In this case, the DGD oscillates between 0 and a maximum 
value and is independent of the propagating distance. The condition where the minimum of 
the PMD is reached is called the condition of phase matching (figure 4). 
Figure 4 illustrates the presentation in three dimensions for the graph of the PMD reduction 
as a function of the spin period and the spin amplitude. The phase matching condition can 
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be achieved for different spin parameters enabling to get an optimal reduction of PMD; 
though in general, amplitudes of higher spins give a better reduction of PMD. Figure (3.a) 
shows the evolution of DGD along the fibre with the phase matching condition. Finally, the 
maximum of reduction can be reached at the zeroes of the Bessel function of order zero 
(equation 41). 

2.5 Reduction of the PMD for different profiles of spin 
2.5.1 The constant spin rate  
While using equation (28), the PMDRF, as function of the spin rate, is represented for 
different beating lengths in figure 5; for a constant spin rate.  
 

 
Fig. 5. The factor of reduction of the PMD with respect to the spin amplitude in the case of a 
constant spinning rate for different beat lengths. 

We note that the PMD is reduced when the spin rate increases. For the same spin rate, 
PMDRF depends on the beating length. The higher the beating length is, the more reduced 
is the PMD. For a high PMD of the fibre (beating length <1m), a high spin rate is necessary 
to reduce the PMD. 

2.5.2 Sinusoidal spin 
In figure 6, we use a beating length of 1m as example to illustrate the reduction of the PMD 
for sinusoidal types of spin (Ming-Jun et al., 2002).  
Figure 6 shows that for sinusoidal spin types, the PMDRF oscillates with the spin amplitude, 
which is different from the case where the spin was constant. Furthermore, this figure shows 
that, for a sinusoidal spin, the phase matching condition can be gotten in order to come to a 
low PMD; on the other hand, in the case of constant spin, the phase matching doesn't exist. 
The phenomenon of phase matching can be explained by the mechanism of coupling of 
modes. The constant spin reduces the birefringence of the fibre, and causes no coupling of 
modes as well. For the sinusoidal spin, the variation in the rate of spin carries along the two 
modes of polarization to intercouple, reaching a compensation of the PMD. For some spin 
profile and birefringence of fibre, the conditions of phase matching are satisfied and the 
maximum of energy exchange occurs in order to provide a better reduction of PMD. The 
results of modeling indicate that the conditions of phase matching depend on the beating 
length, the period of the spin and the amplitude of the spin. We can use the same function of  
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cannot be neglected any more. In this case, the DGD oscillates between 0 and a maximum 
value and is independent of the propagating distance. The condition where the minimum of 
the PMD is reached is called the condition of phase matching (figure 4). 
Figure 4 illustrates the presentation in three dimensions for the graph of the PMD reduction 
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be achieved for different spin parameters enabling to get an optimal reduction of PMD; 
though in general, amplitudes of higher spins give a better reduction of PMD. Figure (3.a) 
shows the evolution of DGD along the fibre with the phase matching condition. Finally, the 
maximum of reduction can be reached at the zeroes of the Bessel function of order zero 
(equation 41). 

2.5 Reduction of the PMD for different profiles of spin 
2.5.1 The constant spin rate  
While using equation (28), the PMDRF, as function of the spin rate, is represented for 
different beating lengths in figure 5; for a constant spin rate.  
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We note that the PMD is reduced when the spin rate increases. For the same spin rate, 
PMDRF depends on the beating length. The higher the beating length is, the more reduced 
is the PMD. For a high PMD of the fibre (beating length <1m), a high spin rate is necessary 
to reduce the PMD. 

2.5.2 Sinusoidal spin 
In figure 6, we use a beating length of 1m as example to illustrate the reduction of the PMD 
for sinusoidal types of spin (Ming-Jun et al., 2002).  
Figure 6 shows that for sinusoidal spin types, the PMDRF oscillates with the spin amplitude, 
which is different from the case where the spin was constant. Furthermore, this figure shows 
that, for a sinusoidal spin, the phase matching condition can be gotten in order to come to a 
low PMD; on the other hand, in the case of constant spin, the phase matching doesn't exist. 
The phenomenon of phase matching can be explained by the mechanism of coupling of 
modes. The constant spin reduces the birefringence of the fibre, and causes no coupling of 
modes as well. For the sinusoidal spin, the variation in the rate of spin carries along the two 
modes of polarization to intercouple, reaching a compensation of the PMD. For some spin 
profile and birefringence of fibre, the conditions of phase matching are satisfied and the 
maximum of energy exchange occurs in order to provide a better reduction of PMD. The 
results of modeling indicate that the conditions of phase matching depend on the beating 
length, the period of the spin and the amplitude of the spin. We can use the same function of  
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Fig. 6. The factor of reduction of the PMD versus the spin amplitude in the sinusoidal spin 
profiles. 

spin to get a small reduction of PMD for high lengths of beating. However, for small lengths 
of beating; the phase matching has a strong dependence with the length of beating.  
The fact that the birefringence of the real fibres is not constant and changes randomly, it is 
impossible to have the phase matching for the whole birefringence while using only one 
sinusoidal spin. This problem can be solved by admitting spin profiles with many Fourier 
components. To get to this point, the concept of the use of the modulated spin in amplitude 
and frequency has been developed by the Corning society.  

2.6 Statistical evolution of the PMD of the spun fibres  
As it was mentioned in the previous sections, the spun fibres follow a linear evolution law 
without the random modes coupling or in the régime of short lengths. When the random 
mode coupling is present, it has been found that the spun fibres follow an evolution law, a 
function of square root, similar to that of the unspun fibres, but with a different rate 
depending on the spin parameters (Chen, 2002). The random mode coupling can be 
characterized by a random variation of the birefringence axis and / or by the induced phase 
shift by the external constraints with an occurrence frequency of 1/h, where h is called the 
coupling length of the modes. On the other side, a fibre of length «l» can be divided into (l/h) 
segments. Using this model, for a sinusoidal profile of spun fibre under no optimal 
conditions (no phase matching ), the DGD can be expressed under the following simple 
form: 

 
hl   (42) 

We notice that the fact that the PMDRF «  » is independent of the beating length when the 
length of beating is greater than some meters, the DGD in the régime of important lengths, and 
in presence of the random coupling mode, is corrected by a factor  , which is the reduction 
induced by the fibre spinning during the process of drawing. In this case, the property of 
evolution of the PMD is similar to that of the fibre possessing the linear birefringence. 
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Fig. 7. The DGD of a spun fibre according to the length of the fibre. The amplitude of spin is 
3.5 turn/m, the period of spin is 1m, the length of beating is 10m and the length of coupling 
is 10m. 
 

 
Fig. 8. Probability density function versus the DGD of the fibre when the condition of phase 
matching is not verified. The amplitude of spin is 3.5 turn/m, the period of spin is 1m, the 
length of fibre is 500m and the length of coupling is 10m. 

The simplest law of evolution given by equation (42) has been verified by using a numerical 
modeling (Chen, 2003). Figure 7 shows the results of the numerical simulation for a 
sinusoidal spun fibre under the non optimal conditions. As it is shown in this figure, the 
numerical modeling accomodates very well with the theoretical prediction. 
In the case of standard fibres (unspun fibres ) with a random coupling mode length h, the 
distribution of the DGD is analog to the distribution of Maxwell, where the standard 
deviation   used in the expression of PDF can be given by the following expression: 

 
( ) . / 3
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h l

cL
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We have proven that the Maxwell distribution is valid in the case of the spun fibres, except 
that, the parameter   should be corrected by the contribution of the spinning fibre. The 
modified parameter   is now under the following form 

length of fiber  (m)
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hl   (42) 

We notice that the fact that the PMDRF «  » is independent of the beating length when the 
length of beating is greater than some meters, the DGD in the régime of important lengths, and 
in presence of the random coupling mode, is corrected by a factor  , which is the reduction 
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Fig. 7. The DGD of a spun fibre according to the length of the fibre. The amplitude of spin is 
3.5 turn/m, the period of spin is 1m, the length of beating is 10m and the length of coupling 
is 10m. 
 

 
Fig. 8. Probability density function versus the DGD of the fibre when the condition of phase 
matching is not verified. The amplitude of spin is 3.5 turn/m, the period of spin is 1m, the 
length of fibre is 500m and the length of coupling is 10m. 

The simplest law of evolution given by equation (42) has been verified by using a numerical 
modeling (Chen, 2003). Figure 7 shows the results of the numerical simulation for a 
sinusoidal spun fibre under the non optimal conditions. As it is shown in this figure, the 
numerical modeling accomodates very well with the theoretical prediction. 
In the case of standard fibres (unspun fibres ) with a random coupling mode length h, the 
distribution of the DGD is analog to the distribution of Maxwell, where the standard 
deviation   used in the expression of PDF can be given by the following expression: 

 
( ) . / 3

b
h l

cL
   (43) 

We have proven that the Maxwell distribution is valid in the case of the spun fibres, except 
that, the parameter   should be corrected by the contribution of the spinning fibre. The 
modified parameter   is now under the following form 

length of fiber  (m)
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This equation has been tested and validated in (chen, 2002). Figure 8 represents the 
probability density function 'PDF ', according to the DGD of the spun fibre, obtained by 
numerical calculations and Maxwell distribution equation where we confirm according to 
the figures that the two results converge perfectly.  
When the conditions of phase matching are satisfied, the total DGD of the fibre is a periodic 
function, and it oscillates between the zero value and a maximal value max . For this reason, 
the DGD of only one segment of a fibre is linked to the average of DGD inside one period of 
spin. Therefore, in the regime of high lengths (l >>h), the total DGD can be written as 
follows (Ming-Jun et al., 2002): 

 ' /q l h  
 

(45) 

Where q  is the square average of the DGD in one period of spin, and '  is a coefficient 
that depends on the average coupling coefficient between two segments. For a condition of 
phase matching (for example: 1 '

0 2.76 / 2 ),tours m et m     is found equal to 1.194. 
Besides, the DGD increases when the length of coupling of modes decreases (Ming-Jun et al., 
1998). It is foreseeable, because under the conditions of phase matching, the DGD is minimum. 
Any disruption moves the fibre away from the optimal conditions, implying an increase of the 
PMD. Despite the fact that the DGD of the optimized spun fibres changes differently with the 
coupling length in comparison with the DGD of the non optimized spun fibres, the DGD 
always follows a Maxwell distribution, but with a modified parameter   (Chen, 2002).  

 
'( / ) / 3q l h    (46) 

3. Application of the JME method for the measurement of the PMD of the 
spun fibres  
We used the JME method (Derickson, 1998) in order to verify the reduction of the PMD in 
the spun fibres (Cherbi et al., 2006). This applied method, between 1510 to 1615 nanometers, 
consists in determining the DGD directly between the two main states of polarization by 
measuring the Jones matrix of the device under test to a set of wavelengths. In order to 
determine the PMD of the spun fibres, we take the following steps:  
 Measure Jones' matrixes ( )iJM   for a set of wavelengths 1 2,, .... n   of the work range 

(1510 nm-1615nm)  
 Do the product 1( ). ( )i iJM JM        
 Determine the eigen values 1  and 2  of the calculated product of matrix 
 The DGD ( )i  is gotten then by (Heffner, 1992):  
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The PMD of the fibre under test is determined by the arithmetic mean of the ‘n’ measured 
DGD:  
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We applied the above procedure to two types of the spun fibres in order to compare their 
performances. The first fibre is unidirectional of length 212m in which we noted that the 
rotation of the spins was only in one sense once removed it from the spool. On the other 
hand, for the second bi-directional of length 1Km, the rotation of the spins was in the two 
senses. The results gotten in the figure 9.a and the figure 9.b, show that this method has a 
good resolution because it permitted to measure DGD of the order of femtoseconds, and to 
show that this type of fibre presents effectively low DGD compared to those measured in 
standard fibres that are of order of the picoseconds. Besides, we noted that the bi-directional 
fibre possesses a lower DGD than that of the unidirectional one indicating thus the 
efficiency of the bi-directional spun fibres in the reduction of the PMD.  

 
Fig. 9. Representation of DGD measured of spun fibre according to the wavelength for the 
length (a ) L = 290m, (b) L = 212m.  

(a) 

(b) 



 
Recent Progress in Optical Fiber Research 166 

 
0 0(2 / ) ( ) . / 3

b
J h l

cL
       (44) 

This equation has been tested and validated in (chen, 2002). Figure 8 represents the 
probability density function 'PDF ', according to the DGD of the spun fibre, obtained by 
numerical calculations and Maxwell distribution equation where we confirm according to 
the figures that the two results converge perfectly.  
When the conditions of phase matching are satisfied, the total DGD of the fibre is a periodic 
function, and it oscillates between the zero value and a maximal value max . For this reason, 
the DGD of only one segment of a fibre is linked to the average of DGD inside one period of 
spin. Therefore, in the regime of high lengths (l >>h), the total DGD can be written as 
follows (Ming-Jun et al., 2002): 

 ' /q l h  
 

(45) 

Where q  is the square average of the DGD in one period of spin, and '  is a coefficient 
that depends on the average coupling coefficient between two segments. For a condition of 
phase matching (for example: 1 '

0 2.76 / 2 ),tours m et m     is found equal to 1.194. 
Besides, the DGD increases when the length of coupling of modes decreases (Ming-Jun et al., 
1998). It is foreseeable, because under the conditions of phase matching, the DGD is minimum. 
Any disruption moves the fibre away from the optimal conditions, implying an increase of the 
PMD. Despite the fact that the DGD of the optimized spun fibres changes differently with the 
coupling length in comparison with the DGD of the non optimized spun fibres, the DGD 
always follows a Maxwell distribution, but with a modified parameter   (Chen, 2002).  

 
'( / ) / 3q l h    (46) 

3. Application of the JME method for the measurement of the PMD of the 
spun fibres  
We used the JME method (Derickson, 1998) in order to verify the reduction of the PMD in 
the spun fibres (Cherbi et al., 2006). This applied method, between 1510 to 1615 nanometers, 
consists in determining the DGD directly between the two main states of polarization by 
measuring the Jones matrix of the device under test to a set of wavelengths. In order to 
determine the PMD of the spun fibres, we take the following steps:  
 Measure Jones' matrixes ( )iJM   for a set of wavelengths 1 2,, .... n   of the work range 

(1510 nm-1615nm)  
 Do the product 1( ). ( )i iJM JM        
 Determine the eigen values 1  and 2  of the calculated product of matrix 
 The DGD ( )i  is gotten then by (Heffner, 1992):  

 

1

2
arg

( )iDGD




 


 
  
   


 (47) 

 
Spun Fibres for Compensation of PMD: Theory and Characterization 167 

The PMD of the fibre under test is determined by the arithmetic mean of the ‘n’ measured 
DGD:  

0
( )

n

i
i

DGD
PMD

n





 

We applied the above procedure to two types of the spun fibres in order to compare their 
performances. The first fibre is unidirectional of length 212m in which we noted that the 
rotation of the spins was only in one sense once removed it from the spool. On the other 
hand, for the second bi-directional of length 1Km, the rotation of the spins was in the two 
senses. The results gotten in the figure 9.a and the figure 9.b, show that this method has a 
good resolution because it permitted to measure DGD of the order of femtoseconds, and to 
show that this type of fibre presents effectively low DGD compared to those measured in 
standard fibres that are of order of the picoseconds. Besides, we noted that the bi-directional 
fibre possesses a lower DGD than that of the unidirectional one indicating thus the 
efficiency of the bi-directional spun fibres in the reduction of the PMD.  

 
Fig. 9. Representation of DGD measured of spun fibre according to the wavelength for the 
length (a ) L = 290m, (b) L = 212m.  

(a) 

(b) 



 
Recent Progress in Optical Fiber Research 168 

The researchers and inventors of the optical fibre of telecommunication systems predict the 
impact of PMD from the distribution of  , because this results from the variation of   as 
a function of wavelength and the conditions of the environment. On the other hand, due to 
this type of variation, the PMD of an optical path is expressed then statistically, as either the 
average or the root mean square (RMS) of  i   (Derickson, 1998 ). It is interesting to 
determine the total PMD of a link made of a series of different spun fibres. 
For this reason, we took three different lengths of spun fibres (fibre2, 3 and 4). We started by 
measuring, with the JME method, their PMD separately, for a given temperature while 
using a reference fibre (fibre1) used in calibration (table 1). Then, we connected the three 
fibres, and done the measurement of the total PMD in the same experimental conditions. 
The same procedure has been applied for the two fibres (fibres 3 and 4). We sought for the 
best relation of computation to determine the total PMD of a link of spun fibres, by testing 
the two following relations:  

 1 2 ..............totale nPMD PMD PMD PMD    (48) 

 Or   2 2 2
1 2 ..........totale nPMD PMD PMD PMD    (49)  

With n the number of fibres used in the link 
Our experimental results regrouped in table 1 are in very good agreement with the first 
relation [Cherbi et al., 2006].  
 

 

DGD(fs) measured 
with the step 
(10nm)  

Total DGD (fs) 
calculated with 
relation (48)  

Total DGD (fs) 
calculated with 
relation (49)  

reference fibre of (1 km) 98,721   

Fibre 2 (212 m)  4,8223   

Fibre 3 (290m)  7,4315   

Fibre 4 (1 km)  9,7399   

connected Fibres (2+3+4) 22,9437 21,99 13,16 

connected fibres (3+4)  17,1985 17,17 12,25 

Table 1. The PMD relation of the spun fibres link. 

4. Determination of the polarization’s properties of the spun fibres using the 
reflectometers 
The beat length of the fibre can be measured directly by the extraction of the spatial 
period of the backscattered signals (Wegmuller, 2002, 2004), which permits to estimate the 
PMD in the single-mode fibres (Ellison et al., 1998; Chen, 2002). The OFDR method is not 
exploited again especially for investigating of the spun fibres for the determination of its 
parameters and of their PMD according to the distance. In this section, we will present the 
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relation already demonstrated experimentally by COTDR in our anterior works (Cherbi et 
al., 2009) existing between the spatial period of the backscattered signal and the PMD of 
the spun fibre and given by (Chen, 2003). Even more, the COTDR method allowed us to 
compare the results found with those of the JME method. Afterward we will present the 
POFDR method which used for spun fibres (Cherbi et al., 2009; Wegmuller et al., 2005) to 
obtain the beat lengths of the two types of spun fibres and the spin period of the bi-
directional fibre. 
Chen( Chen, 2003) has demonstrated that the spatial period of the backscattered signals 
obtained from a POTDR (polarization-sensitive optical time-domain reflectometer) of the 
spun fibres varies linearly with the beat length of the fibre. This means that for a given beat 
length, the spatial period sT  can be used as calibration for the reduction of the PMD. A 
simple relation linking the spatial frequency F ( 1 / sF T ) to the beat length and the spin 
parameters, is given by: 

  0 02 / /( /2)bF J L   (50) 

The PMD of the bi-directional spun fibre is linked to the spatial frequency in the form 
(Chen, 2003):  

  /2PMD c F  (51) 

Thus, the PMD of the bi-directional spun fibres can be determined directly through the 
measure of the spatial period as in the case of the standard fibres, while measuring the 
spatial period of the backscattered obtained from the reflectometers. The equation (50) 
shows that when the spin is zero, the spatial period converges to the one of the standard 
fibres.  

4.1 Measure of the DGD in the spun fibres by the C-OTDR method 
The technique (COTDR) (Wegmuller et al., 2004) is appropriate to detect the defaults in a 
given fibre (sites of reflection, losses) with a spatial resolution of the decimetre order. The 
main difference of this reflectometer (Cherbi et al., 2009) compared to a classic OTDR 
(Ellison & Siddiqui, 1998) resides in the use of photon counting detector (InGaAs avalanche 
photodiode). It is used in the so-called gated Geiger mode, which means that the detector is 
only active during a short time slot. During this period, only a single photon falls in the 
detector and triggers an avalanche, which is then detected by electronics discriminator. 
Contrary to the operation of a classic detector APD in linear regime, this avalanche is no 
longer proportional to optical input signal power, but independent of it. The detection is 
therefore a binary one, either there is an avalanche, or not. In order to evaluate the incident 
optical power (or mean photon number) on the detector during its activation, the detection 
process (gate opening) must be repeated many times in order to determine the detection 
probability of photons with a good precision. This probability is proportional to the incident 
signal power that is smaller than about 40% (no detector saturation) and larger than the 
detector thermal noise (dark counts). This condition is satisfied in our set-up by using the 
variable attenuator before the excitation of the fibre. 
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relation already demonstrated experimentally by COTDR in our anterior works (Cherbi et 
al., 2009) existing between the spatial period of the backscattered signal and the PMD of 
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The technique (COTDR) (Wegmuller et al., 2004) is appropriate to detect the defaults in a 
given fibre (sites of reflection, losses) with a spatial resolution of the decimetre order. The 
main difference of this reflectometer (Cherbi et al., 2009) compared to a classic OTDR 
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photodiode). It is used in the so-called gated Geiger mode, which means that the detector is 
only active during a short time slot. During this period, only a single photon falls in the 
detector and triggers an avalanche, which is then detected by electronics discriminator. 
Contrary to the operation of a classic detector APD in linear regime, this avalanche is no 
longer proportional to optical input signal power, but independent of it. The detection is 
therefore a binary one, either there is an avalanche, or not. In order to evaluate the incident 
optical power (or mean photon number) on the detector during its activation, the detection 
process (gate opening) must be repeated many times in order to determine the detection 
probability of photons with a good precision. This probability is proportional to the incident 
signal power that is smaller than about 40% (no detector saturation) and larger than the 
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From the detection probability for a certain gate position, set by the delay generator, the 
reflectivity at the corresponding location in the fibre is readily gotten with a spatial 2- point 
resolution determined by gate duration. Thus, to have some information on the different 
positions in the fibre, the gate delay must be adjusted. In our set-up, the user can specify the 
zoom interval ( ,start stopL L ) for which the reflectivity is automatically measured with a step 
size (sampling resolution ).  
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Fig. 10. The Power spectral density of C-OTDR signal for the bi-directional spun fibre of 1 Km. 

Figure 10 presents the PSD of the backscattered signal power measured by the C-OTDR 
reflectometer with its spatial frequencies for a bi-directional spun fibre of 1 Km length. Two 
peaks appear, respectively, at spatial frequencies F and F/2, in the COTDR trace. A spatial 
frequency of 10.005 m  is gotten from the backscattered signal PSD. The relation (51) gives a 
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DGD of the used spun fibre equal to 11.4 femtosecondes. We found for the same fibre a 
mean value of the DGD equal to 11,53 femtosecondes while using the JME method. These 
two results are in very good agreement. In conclusion, this demonstrates that the DGD of a 
spun fibre can be calculated from the spatial frequency of the COTDR signal in accordance 
with relation (51) permitting to calculate the spatial frequency of a backscattered signal 
COTDR in a spun fibre from its parameters": 0 3.5 ,rad  1.5 m   and 20BL m . The 
calculated spatial frequency is equal to 10.005F m , which is equal to the same one 
measured from the C-OTDR trace. Based on that, we validate the equation, linking the 
spatial frequency, the spin parameters and the intrinsic birefringence of the bi-directional 
spun fibre, given in (Chen, 2003) 

4.2 Measure of the beat length of the spun fibres by P-OFDR  
This reflectometer implements the technique of coherent detection sensitive to the 
polarization in order to get information about the evolution of the polarization states along 
the fibre under test. In our case, a POFDR is used, implementing the detection of 
polarization diversity ( Cherbi et al, 2009] and a polarized beam splitter which plays the role 
of a fixed analyser. The former permits to remove the Rayleigh reflections independent of 
the polarization by subtracting output 1 from output 2, thereby removing the frequencies of 
the back scattered signal that are not related to the fibre birefringence.  
The used laser in this reflectometer is a DFB (distributed feedback) characterised by a 
spectral width of the order of 1MHz on the whole tuning range, a spatial range of 80 m. Due 
to the coherent detection, a very good sensitivity of 100 dB is gotten with this reflectometer. 
The only factor limiting the resolution of this method is the tuning of the laser. The laser that 
we used is limited by the continuous tuning of 20 GHz that gives approximately a resolution 
of 9 mm.  
In (cherbi et al., 2009), we have analyzed three types of fibres having the same length of 200 
m: a bi-directional spun fibre, a unidirectional spun fibre and a standard fibre. They were 
wrapped on a table in order to minimize the external constraints. Figure 11 shows the 
example of the different POFDR traces for different used resolutions of the unidirectional 
spun fibre (dark line is the mean of different traces). The beat lengths of the two types of 
spun fibres and the one of the standard fibre are calculated by the following relation 
(Wegmuller et al., 2002):  

 

1 12
( )bL

std DSP 
   (52) 

Where PSD is the power spectral density of POFDR signal.  
The calculated values of beat lengths derived for the PSD signals of the different fibres: 
unidirectional spun fibre (figure 11), standard fibre and bi-directional spun fibre (figure 12) 
are respectively: 50 m, 38 m, and 150 m. We note that the beat length of the bi-directional 
spun fibre is more important than those of the others, which means that the PMD of the bi-
directional spun fibre is lower than that of the two other types of fibres, result that we found 
with the JME method. It also confirms that the bi-directional spun fibre reduce efficiently the 
PMD compared to the unidirectional spun and the standard fibres. 
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DGD of the used spun fibre equal to 11.4 femtosecondes. We found for the same fibre a 
mean value of the DGD equal to 11,53 femtosecondes while using the JME method. These 
two results are in very good agreement. In conclusion, this demonstrates that the DGD of a 
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measured from the C-OTDR trace. Based on that, we validate the equation, linking the 
spatial frequency, the spin parameters and the intrinsic birefringence of the bi-directional 
spun fibre, given in (Chen, 2003) 

4.2 Measure of the beat length of the spun fibres by P-OFDR  
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the fibre under test. In our case, a POFDR is used, implementing the detection of 
polarization diversity ( Cherbi et al, 2009] and a polarized beam splitter which plays the role 
of a fixed analyser. The former permits to remove the Rayleigh reflections independent of 
the polarization by subtracting output 1 from output 2, thereby removing the frequencies of 
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spectral width of the order of 1MHz on the whole tuning range, a spatial range of 80 m. Due 
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The only factor limiting the resolution of this method is the tuning of the laser. The laser that 
we used is limited by the continuous tuning of 20 GHz that gives approximately a resolution 
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In (cherbi et al., 2009), we have analyzed three types of fibres having the same length of 200 
m: a bi-directional spun fibre, a unidirectional spun fibre and a standard fibre. They were 
wrapped on a table in order to minimize the external constraints. Figure 11 shows the 
example of the different POFDR traces for different used resolutions of the unidirectional 
spun fibre (dark line is the mean of different traces). The beat lengths of the two types of 
spun fibres and the one of the standard fibre are calculated by the following relation 
(Wegmuller et al., 2002):  

 

1 12
( )bL

std DSP 
   (52) 

Where PSD is the power spectral density of POFDR signal.  
The calculated values of beat lengths derived for the PSD signals of the different fibres: 
unidirectional spun fibre (figure 11), standard fibre and bi-directional spun fibre (figure 12) 
are respectively: 50 m, 38 m, and 150 m. We note that the beat length of the bi-directional 
spun fibre is more important than those of the others, which means that the PMD of the bi-
directional spun fibre is lower than that of the two other types of fibres, result that we found 
with the JME method. It also confirms that the bi-directional spun fibre reduce efficiently the 
PMD compared to the unidirectional spun and the standard fibres. 
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Fig. 11. The mean power spectral density of the backscattered signals POFDR, obtained for 
different resolutions, of the unidirectional spun fibre of 200 m length. 

 
 
 

 
 
 

Fig. 12. The mean power spectral density of the backscattered signals POFDR obtained for 
bi-directional spun fibres and standards of lengths 200m.  
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5. Conclusion 
In this chapter, we presented the principle of the spun fibres with their technology and their 
role in the reduction of the PMD in a transmission link of optical fibre. Several types of spun 
fibres have been given. The theory of these fibres based on the equations of the coupled 
modes has been detailed. 
The reduction of the PMD in these fibres is verified while applying the JME method and the 
COTDR method used to measure the DGD of the order of femtoseconds. We also confirmed 
this result while measuring the beat length of these fibres with the POFDR method and 
compare it with that of a standard fibre. This comparison proved the efficiency of this type 
of fibres in the reduction of the PMD. Finally, according to the use of the COTDR and 
POFDR, we concluded that the validity of the data analysis, obtained from the 
reflectometers and used nowadays for standard fibres, has been demonstrated for the spun 
fibres and more precisely for the bi-directional spun fibres. Besides, the high spatial 
resolution of the POFDR enables again the observation of the spatial frequencies directly 
linked to the spin period, so a precise characterization of the spun fibres can be 
accomplished.  
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Photonic Crystal Fibers with Optimized 
Dispersion for Telecommunication Systems 

Michal Lucki 
Czech Technical University in Prague,  
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Czech Republic 

1. Introduction 

The use of Photonic Crystal Fibers (PCF) is understood within their unique chromatic 
dispersion characteristics and nonlinear behavior, which is suitable for dispersion 
compensation or transmission of information without pulse spreading, leading to an 
intersymbol interference. Pulse spreading being the result of chromatic dispersion in optical 
fibers is considered as one of the critical issues in the design of optical fibers. Since the 
dispersion can result in worse system performance, it is necessary to prevent its occurrence 
or to compensate it. 
A systematic study of dispersion properties in PCFs is presented. The investigation includes 
a description of fiber chromatic dispersion dependence on structural and material 
parameters. Potential zero or anomalous dispersion in doped PCFs is achieved. An 
overview of current innovations on the studied problem is presented. 
Moreover, the new PCF with nearly zero ultra-flattened chromatic dispersion is introduced. 
It is shown from the numerical results that the dispersion of –0.025 ps/nm/km is available 
from the wavelength of 1200 nm to 1700 nm.  

2. Photonic crystal fibers 
PCFs, also known as microstructured or holey fibers, are investigated in view of their 
unique properties of light guidance. Unlike conventional step-index fibers, PCFs guide light 
through confining field within microstructure periodic air holes. PCFs are characterized by 
the periodicity of refractive index, implemented as an array of air holes around the core. The 
guidance mechanism in some aspects resembles the operation of semiconductor materials. 
In other words, the photons in PCFs have a function, which is similar to the operating 
principle of electrons in semiconductors. 

2.1 Types of photonic crystal fibers 
PCFs are classified in two categories: solid core high-index guiding (or simply an index 
guiding) fibers and hollow core low-index guiding fibers. The Index Guiding Photonic 
Crystal Fiber (IGPCF) guides light in a solid core by Modified Total Internal Reflection 
(M-TIR). This principle is similar to the guidance in conventional optical fibers. The other 
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category of PCFs, Hollow Core Photonic Crystal Fiber (HCPCF) guides light by the 
Photonic Band Gap (PBG) effect. Light is confined in the low-index core, since the 
distribution of energy levels in the structure makes the propagation in the cladding region 
impossible.  
The M-TIR principle of light guidance relies on a high-index core region, typically pure 
silica, surrounded by a lower effective index material, provided by air holes in the cladding.  

2.2 New properties achievable in photonic crystal fibers 
The effective index of such a fiber can be approximated by a standard step-index fiber, with 
a high-index core and a low-index cladding. However, the refractive index of a 
microstructured cladding in PCFs exhibits strong wavelength dependence very different 
from pure silica, which allows PCFs to be designed with a new set of features unattainable 
within the classical approach. For example, endlessly single mode PCF can be designed 
through the strong wavelength dependence of the effective index (reducing thus the value 
of normalized frequency, a parameter important for modal regimes). This is fundamentally 
different from the conventional fibers where, at huge core diameter to wavelength ratios, a 
multi-mode operation is unavoidable at shorter wavelengths, because the cladding index is 
constant and normalized frequency arises with wavelength, once exceeding the value 
critical for single-mode operation. In addition, the presence of air holes in the cladding can 
change the spectral characteristics of microstructured fibers.  
Among PCFs with modified spectral properties, zero dispersion or anomalous dispersion 
fibers are very promising for group velocity dispersion compensation. The latest designs 
show optimal dispersion for broadband applications, in contrast to the commercially 
available compensating fibers, which can usually operate at a specific wavelength.  

3. Photonic crystal fibers for dispersion compensation or zero-dispersion 
transmission 
Chromatic dispersion directly affects the pulse width and the phase-matching conditions 
important for most telecommunications applications. Chromatic dispersion in lightwave 
systems is related to the variation in group velocity of optical signals in a fiber. The 
adjective “chromatic” emphasizes its wavelength-dependent nature. Chromatic 
dispersion limits the maximum distance, to which a signal can be transmitted without the 
necessity of regeneration of its shape, timing, and amplitude. The pulse spreading must 
be compensated or avoided, for example, by specific fiber design. 
As far as basic terminology is concerned, when the chromatic dispersion coefficient is less 
than zero, the dispersion regime is said to be anomalous, and shorter wavelengths 
propagate faster than longer wavelengths. The pulse is said to be negatively chirped. In the 
opposite case of dispersion coefficient being greater than zero, the dispersion regime is said 
to be normal. Long waves are guided faster than the short ones.  

3.1 Engineered chromatic dispersion in photonic crystal fibers 
The mechanism of light dispersion depends on various reasons, therefore the techniques 
of suppressing particular dispersion components vary from each other. One can 
distinguish between a number of types of dispersion, such as modal, waveguide or 
material dispersion. Chromatic dispersion consists of two components. The first one 
comes from bulk material dispersion Dmat. The second one comes from waveguide 
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dispersion Dw, where the material and the waveguide dispersion are expressed, as 
follows:  
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where nm is the matrix index. Since waveguide dispersion can be anomalous and material 
dispersion normal, optimal dispersion design can be achieved by the suitable balance of 
particular dispersion components contributing to the total dispersion. To design a fiber with 
zero dispersion, it is necessary to optimize both: material properties, as well as the shape of 
the waveguide. There exists, therefore, a wavelength, at which total dispersion is equal to 
zero. Beyond this, the fiber exhibits a region of anomalous dispersion, which can be used for 
the compression of pulses in optical fibers. 
To achieve a specific value of total dispersion, one must compensate material dispersion 
Dmat with waveguide dispersion Dw. The slope of Dw should be adjusted by optimizing the 
fiber’s geometry in order to make it parallel to –Dmat. If the goal is to obtain flattened 
dispersion in a target wavelength interval, one must control Dw to make it follow a trajectory 
parallel to that of –Dmat. If material dispersion is linear in a target interval, a systematic 
approach can be used. Generally, this is the classical method of how to treat chromatic 
dispersion profiles using geometrical parameters in PCFs with successive iterations of 
structural parameters to improve the quality of the results. 

3.2 Current state of the art 
Due to unique dispersion flexibility, PCFs are considered as useful for achieving anomalous 
dispersion. They are used for the robust compensation of chromatic dispersion or 
dispersion-free transmission. There are several practical solutions to limit chromatic 
dispersion and to keep the initial width of optical pulses. One of the methods is to design 
fibers with zero dispersion. Resultant zero dispersion can be achieved by compensating 
material dispersion with waveguide dispersion. This operation is generally possible at a 
specific wavelength, so that the signal must be transmitted within a very narrow range of 
optical frequencies.  

3.2.1 Dispersion compensating fibers 
Zero dispersion is useful for low-speed systems, but can be undesired in high-speed 
transmission systems, since the phase match of all the frequency components can result in 
nonlinear effects. Another method of keeping a constant pulse width is to retain small 
normal dispersion in optical fibers and compensate it by using Dispersion Compensation 
Fiber (DCF), added at signal repeater. In general, chromatic dispersion compensators 
optically restore signals that have become degraded by chromatic dispersion, significantly 
reducing bit error rates at the receiving end of a fiber’s span. A DCF is characterized by 
strong anomalous dispersion, which exactly compensates normal dispersion arising 
between repeaters. Many studies have been published about the design and optimization 
of chromatic dispersion in PCFs. They tend to shift zero-dispersion wavelengths or 
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dispersion Dw, where the material and the waveguide dispersion are expressed, as 
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where nm is the matrix index. Since waveguide dispersion can be anomalous and material 
dispersion normal, optimal dispersion design can be achieved by the suitable balance of 
particular dispersion components contributing to the total dispersion. To design a fiber with 
zero dispersion, it is necessary to optimize both: material properties, as well as the shape of 
the waveguide. There exists, therefore, a wavelength, at which total dispersion is equal to 
zero. Beyond this, the fiber exhibits a region of anomalous dispersion, which can be used for 
the compression of pulses in optical fibers. 
To achieve a specific value of total dispersion, one must compensate material dispersion 
Dmat with waveguide dispersion Dw. The slope of Dw should be adjusted by optimizing the 
fiber’s geometry in order to make it parallel to –Dmat. If the goal is to obtain flattened 
dispersion in a target wavelength interval, one must control Dw to make it follow a trajectory 
parallel to that of –Dmat. If material dispersion is linear in a target interval, a systematic 
approach can be used. Generally, this is the classical method of how to treat chromatic 
dispersion profiles using geometrical parameters in PCFs with successive iterations of 
structural parameters to improve the quality of the results. 

3.2 Current state of the art 
Due to unique dispersion flexibility, PCFs are considered as useful for achieving anomalous 
dispersion. They are used for the robust compensation of chromatic dispersion or 
dispersion-free transmission. There are several practical solutions to limit chromatic 
dispersion and to keep the initial width of optical pulses. One of the methods is to design 
fibers with zero dispersion. Resultant zero dispersion can be achieved by compensating 
material dispersion with waveguide dispersion. This operation is generally possible at a 
specific wavelength, so that the signal must be transmitted within a very narrow range of 
optical frequencies.  

3.2.1 Dispersion compensating fibers 
Zero dispersion is useful for low-speed systems, but can be undesired in high-speed 
transmission systems, since the phase match of all the frequency components can result in 
nonlinear effects. Another method of keeping a constant pulse width is to retain small 
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Fiber (DCF), added at signal repeater. In general, chromatic dispersion compensators 
optically restore signals that have become degraded by chromatic dispersion, significantly 
reducing bit error rates at the receiving end of a fiber’s span. A DCF is characterized by 
strong anomalous dispersion, which exactly compensates normal dispersion arising 
between repeaters. Many studies have been published about the design and optimization 
of chromatic dispersion in PCFs. They tend to shift zero-dispersion wavelengths or 
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minimum anomalous dispersion wavelength towards at the conventional band around 
1550 nm, (known as C-band). Conventional dispersion compensating fibers are designed 
to operate at a specific wavelength, for example at 1550 nm, achieving negative value of at 
least hundreds ps/km/nm at the operating wavelength. Recently, the extension of 
operating bandwidth towards longer wavelengths is the area of interests, since short 
optical frequencies are more used in high-speed transmission systems. 
PCFs are highly flexible for engineered dispersion. By manipulating the geometry design of 
the PCF (core diameter, normalized hole diameter, number of rings, hole defects), it is 
possible to achieve desired dispersion and losses required for specific applications. The 
interplay between chromatic dispersion and geometrical structure allows establishing a 
well-defined procedure to design specific predetermined dispersion profiles. This topic is 
described in many studies about the dispersion controllability. 
One of the very first works with significant contribution to this topic is a work by Birks et al. 
(1999). The latest studies report new aspects related to the topic (for example the work of 
Haxha et al., the work by Liu et al. or finally the one by Razzak et al). The main topic 
addressed in those works is the ultra-flattened dispersion at a wide wavelength interval and 
at low confinement losses.  
Premium DCF is demonstrated by Wu et al. (2008), where the negative dispersion value of 
−1350 ps/km/km at 1550 nm is achieved. Other designs aim to achieve dispersion in the 
wavelength range of about 1500-1625 nm. This could open a door for broadband dispersion 
compensation using PCFs. 

3.2.2 Dispersion flattened photonic crystal fibers 
Achieving a flattened dispersion curve is required for many telecommunication applications, 
in which we desire to have the same dispersion values for broad band utilization. For this 
purpose, some studies are focused on investigating various techniques of adjusting the PCF’s 
geometry to obtain flattened dispersion characteristic. With this regard, a study presented by 
Liu et al. (2007) shows, how ultra-flattened dispersion curve could be achieved using elliptical 
holes. An optimized design of a PCF over ultra-wide band by replacing two rings of inner 
circular air holes with elliptical air holes is presented. The permitted dispersion fluctuation is 
0.6–1.0 ps/nm/km within a broad band from 1000 nm to 1900 nm, which means over all: S, C, 
and L bands. Moreover, periodic structures having small core with large equal-sized air holes 
managed to shift zero-dispersion wavelengths towards shorter wavelengths. 
Summarizing, the design process requires high attention to all important properties, such as 
flattened chromatic dispersion curve, effective mode area, confinement loss over broad 
bandwidth. In addition, designers should consider the complexity of new structure’s 
fabrication process. 

3.2.3 Doping technique for enhanced dispersion properties 
The standard solid core PCF with hexagonal lattice and medium air-fraction volume 
exhibits chromatic dispersion characteristics far from the preferable ones for practical 
implementations. Doped cores can be used to enhance dispersion properties of IGPCF. The 
technique is based on doping of the central part of the SiO2 core by the GeO2 material. The 
germanium dioxide raises the refractive index of the doped region and hence modifies the 
waveguide properties of the PCF.  
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The dispersion behavior has been investigated for Highly Non-linear PCF (HNPCF), where 
the core’s refractive index is increased by doping with high-index material, such as rare 
earth ions. The idea of doping the PCF’s core with rare earth elements has been investigated.  
For example, an ytterbium-doped PCF can be used to achieve enhanced nonlinearities. The 
most widely used dopant in PCF is Germania – GeO2, due to its intensified nonlinearities 
and enhanced photo-sensitivity. In fiber fabrication process, the refractive index of the 
doped core is determined mainly by the concentration of the GeO2 ions embedded in the 
core. The accurate characterization of the dopant’s location and its concentration in optical 
fibers is studied by Zhong et al. The dispersion dependence on the concentration of GeO2 in 
the fiber’s core is explained accurately by Hoo et al. (2004). Notice is hereby given that GeO2 
is a dopant commonly used for doping the core region for raising the refractive index, on the 
other hand, B2O3 or F are doping substances suitable for doping the cladding region that in 
turn lower the refractive index. 

3.3 Shortcomings of existing solutions 
The narrow bandwidth of operating wavelengths is considered as a limitation, in particular 
for systems with Wavelength Division Multiplexing. Therefore, recent studies focus on the 
ultra-low, ultra-flattened broadband dispersion over a wide spectrum of telecommunication 
wavelengths. PCFs can be exploited into this aim, since the large refractive index variation 
between silica and air permits to achieve significant waveguide dispersion over a wide 
wavelength range. PCFs with large air-holes have already been proposed in some studies 
about dispersion compensation.  
Many DCFs uses the technique of doping their core with high-index material. This can result 
in high confinement losses, reaching even more than 1 dB/km, as indicated in catalogues of 
commercially available fibers. In addition, those fibers suffer from small effective mode area, 
since some DCFs have an extremely small core and concurrently high air fraction to enhance 
nonlinear evolution of spectral characteristics. 

4. Simulation method 
Huge possibilities of geometry manipulation and air-holes shapes arrangements have 
increased the complexity of numerical analysis of PCFs. The main objective of simulations is 
to study chromatic dispersion characteristics of IGPCF and HNPCF. Such structures 
demand efficient numerical methods to analyze them accurately. Thus, many modeling 
methods have been applied in this perspective, such as the plane wave expansion method, 
localized function method, finite element method, finite difference time domain method, 
finite difference frequency domain method, Fourier composition method or multipole 
method. The results presented in this work have been achieved by using the full-vectorial 
Finite Difference Frequency Domain method (FDFD), which was described in details by Zhu 
et al. (2002). This tool practically employs the same algorithm as the Finite Difference Time 
Domain (FDTD) method, the only difference between the two algorithms is that FDFD is a 
2D solution, whereas FDTD is a 3D solution, which means that FDFD is easier for software 
implementation and meanwhile leads to the same numerical dispersion equation as that of 
the 3D-FDTD method. 
For a given frequency, the numerical propagation constants and mode patterns can be 
calculated. The main geometrical quantities concerned: hole diameter d, the hole pitch Λ, 
and the core diameter, used in the implementation are displayed in Fig. 1.  
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minimum anomalous dispersion wavelength towards at the conventional band around 
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least hundreds ps/km/nm at the operating wavelength. Recently, the extension of 
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at low confinement losses.  
Premium DCF is demonstrated by Wu et al. (2008), where the negative dispersion value of 
−1350 ps/km/km at 1550 nm is achieved. Other designs aim to achieve dispersion in the 
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geometry to obtain flattened dispersion characteristic. With this regard, a study presented by 
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flattened chromatic dispersion curve, effective mode area, confinement loss over broad 
bandwidth. In addition, designers should consider the complexity of new structure’s 
fabrication process. 

3.2.3 Doping technique for enhanced dispersion properties 
The standard solid core PCF with hexagonal lattice and medium air-fraction volume 
exhibits chromatic dispersion characteristics far from the preferable ones for practical 
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technique is based on doping of the central part of the SiO2 core by the GeO2 material. The 
germanium dioxide raises the refractive index of the doped region and hence modifies the 
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The dispersion behavior has been investigated for Highly Non-linear PCF (HNPCF), where 
the core’s refractive index is increased by doping with high-index material, such as rare 
earth ions. The idea of doping the PCF’s core with rare earth elements has been investigated.  
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most widely used dopant in PCF is Germania – GeO2, due to its intensified nonlinearities 
and enhanced photo-sensitivity. In fiber fabrication process, the refractive index of the 
doped core is determined mainly by the concentration of the GeO2 ions embedded in the 
core. The accurate characterization of the dopant’s location and its concentration in optical 
fibers is studied by Zhong et al. The dispersion dependence on the concentration of GeO2 in 
the fiber’s core is explained accurately by Hoo et al. (2004). Notice is hereby given that GeO2 
is a dopant commonly used for doping the core region for raising the refractive index, on the 
other hand, B2O3 or F are doping substances suitable for doping the cladding region that in 
turn lower the refractive index. 
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The narrow bandwidth of operating wavelengths is considered as a limitation, in particular 
for systems with Wavelength Division Multiplexing. Therefore, recent studies focus on the 
ultra-low, ultra-flattened broadband dispersion over a wide spectrum of telecommunication 
wavelengths. PCFs can be exploited into this aim, since the large refractive index variation 
between silica and air permits to achieve significant waveguide dispersion over a wide 
wavelength range. PCFs with large air-holes have already been proposed in some studies 
about dispersion compensation.  
Many DCFs uses the technique of doping their core with high-index material. This can result 
in high confinement losses, reaching even more than 1 dB/km, as indicated in catalogues of 
commercially available fibers. In addition, those fibers suffer from small effective mode area, 
since some DCFs have an extremely small core and concurrently high air fraction to enhance 
nonlinear evolution of spectral characteristics. 

4. Simulation method 
Huge possibilities of geometry manipulation and air-holes shapes arrangements have 
increased the complexity of numerical analysis of PCFs. The main objective of simulations is 
to study chromatic dispersion characteristics of IGPCF and HNPCF. Such structures 
demand efficient numerical methods to analyze them accurately. Thus, many modeling 
methods have been applied in this perspective, such as the plane wave expansion method, 
localized function method, finite element method, finite difference time domain method, 
finite difference frequency domain method, Fourier composition method or multipole 
method. The results presented in this work have been achieved by using the full-vectorial 
Finite Difference Frequency Domain method (FDFD), which was described in details by Zhu 
et al. (2002). This tool practically employs the same algorithm as the Finite Difference Time 
Domain (FDTD) method, the only difference between the two algorithms is that FDFD is a 
2D solution, whereas FDTD is a 3D solution, which means that FDFD is easier for software 
implementation and meanwhile leads to the same numerical dispersion equation as that of 
the 3D-FDTD method. 
For a given frequency, the numerical propagation constants and mode patterns can be 
calculated. The main geometrical quantities concerned: hole diameter d, the hole pitch Λ, 
and the core diameter, used in the implementation are displayed in Fig. 1.  
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Fig. 1. Geometrical quantities describing PCFs. 

In order to investigate the optical behavior of PCFs, the structure presented in Fig. 2 is used. 
It represents a HNPCF structure, where the core is doped with high-index material.  
 

  
Fig. 2. Doped structure evaluated in terms of dispersion compensation (left) and the 
fundamental mode of the modeled PCF (right). 

The basic flow of simulation is executed with several iterations to calculate the number of 
parameters and to obtain precise results. The simulation algorithm for parameters sweeping 
contains few steps: once the physical structure is created, the simulation parameters and 
mesh are set, as well as the monitors are defined, the simulation is run. The frequency 
domain information is available at any point of the cross-section of a modeled fiber.  
In order to perform a series of simulations to investigate the change in measured intensity as 
a function of geometry or to perform any other systematic study, the built-in scripting 
environment is used. This scripting environment has many advantages, where one can 
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extract specific values of parameters or implement a required sweep in the structure and 
observe how chromatic dispersion or bending loss parameters are changed. 

5. Simulation results  
In order to understand the behavior of chromatic dispersion and loss in PCFs, an analysis 
has been proceeded to study the HNPCF with high-index doped core.  

5.1 Dispersion in doped PCFs 
The investigated HNPCF structure is specified in Table 1, where the cladding includes five 
rings of air holes and the core, which doped with high-index material, of which the 
refractive index is equal to 1.475. Relatively small air holes are preferred.  
 

Parameter [unit] Value  

Pitch Λ [µm] 4.4 

Hole’s diameter d [µm] Varied 0.6–2.2 

Normalized hole diameter d/Λ [-] Varied 0.1–0.5 

Air-fraction refractive index [-] 1 

Dopant’s (core’s) refractive index [-] 1.475 

Silica glass refractive index (high-index cladding region) [-] 1.458 

Propagating wavelength [nm] 1550 

Core diameter [µm] 1.4 

Effective index of cladding at 1550 nm 1.4582 

Number of rings at the cladding Nr 5 

Table 1. Structural parameters for the doped PCF presented in Fig. 2 

Dispersion in nonlinear doped microstructured optical fiber, specified in Table 1, is shown 
in Fig. 3.  
The doped PCF has a parabolic dispersion curve (in contrast to standard IGPCF, where 
dispersion shows linear increase with wavelength, which is presented in studies describing 
dispersion in PCFs). Usually, dispersion in fibers with a hexagonal lattice has a Zero 
Dispersion Wavelength (ZDW) at the O-band. 
A general tendency in microstructured fibers is that both ZDWs are found at shorter 
wavelengths, when the fraction of air filling is increased or when the central defect is 
decreased. 
Adjusting the geometrical parameters can be a tool to control the curvature of a dispersion 
profile. This can eventually lead to two closely laying ZDWs and very low minimum 
dispersion or, vice versa, to ZDWs far from each other, and flat dispersion curve. This 
mechanism shows a good agreement with the results achieved in this numerical analysis. 
Though, the second ZDW is located rather at longer wavelengths. 
For the studied structure, the dispersion curve of HNPCF presented in Fig. 3 crosses the x-
axis at two zero points, the first one appears at the shorter wavelength, usually at the O-
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The doped PCF has a parabolic dispersion curve (in contrast to standard IGPCF, where 
dispersion shows linear increase with wavelength, which is presented in studies describing 
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Dispersion Wavelength (ZDW) at the O-band. 
A general tendency in microstructured fibers is that both ZDWs are found at shorter 
wavelengths, when the fraction of air filling is increased or when the central defect is 
decreased. 
Adjusting the geometrical parameters can be a tool to control the curvature of a dispersion 
profile. This can eventually lead to two closely laying ZDWs and very low minimum 
dispersion or, vice versa, to ZDWs far from each other, and flat dispersion curve. This 
mechanism shows a good agreement with the results achieved in this numerical analysis. 
Though, the second ZDW is located rather at longer wavelengths. 
For the studied structure, the dispersion curve of HNPCF presented in Fig. 3 crosses the x-
axis at two zero points, the first one appears at the shorter wavelength, usually at the O-
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band or the E-band, whereas the second point is located at the longer wavelength, usually at 
the C-band or the L-band. 
 

 
Fig. 3. Chromatic dispersion in regular solid-core PCF and modeled doped PCF. 

The investigation focuses on the properties resulting from a doped core to control the 
dispersion in PCFs. The technique is based on doping the central part of the SiO2 core by the 
GeO2 material. The ZDWs are found at shorter wavelengths, when the fraction of air filling 
is increased and the central defect is decreased. Adjusting the geometrical parameters can 
rather result in different dispersion properties; the most mature designs assume the second 
ZDW being rather at longer wavelengths, since shorter optical frequencies are more used in 
high speed transmission systems. 
The advantage of the studied structure is the flexibility of adjusting both: minimum 
anomalous wavelength and ZDW locations. As it is demonstrated below, such type of fibers 
is highly sensitive to geometrical parameters, as well as to the change of material index 
values. It also keeps an endlessly single mode characteristic of a solid core PCF.  

5.2 Chromatic dispersion dependence on air-fraction volume 
Results shown in Fig. 4 indicate a negative behavior of chromatic dispersion; the second 
ZDW is affected by the air fraction percentage.  
With a decrease in hole diameter, it is possible to move the position of the second ZDW to 
higher wavelengths, reaching the C and L-band, with regard to current trends in systems 
using Wavelength Division Multiplex. 

5.3 Chromatic dispersion dependence on core diameter 
Similar results are achieved for the core diameter optimization and for varied refractive 
index. Parameters for the core diameter sweeping are presented in Table 2. For this purpose, 
all the parameters are fixed, as given in Table 2, while the core diameter is chosen to vary 
from 2.8 to 4.4 µm As far as core diameter is concerned, all the remaining parameters are 
fixed (with d/Λ being 0.3). As depicted in Fig. 5, the minimum dispersion value arises with 
the increase in core diameter.  
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Fig. 4. Chromatic dispersion dependence on hole diameter. 

Another conclusion, which reveals at Fig. 5, refers to the behavior of ZDW. We observe that 
greater value of a core diameter is responsible for ZDW achieved at longer wavelength. At 
the specific value of a core diameter (3.6 µm), the values of studied dispersion start to be 
positive. 
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Effective index of cladding at 1550 nm 1.4586 

Number of rings at the cladding Nr 5 

Table 2. Structural parameters for PCF doped in a small core. 

5.4 Chromatic dispersion dependence on doping level 
In order to precisely control chromatic dispersion, the effect of changing the dopant’s 
refractive index (that can be practically achieved by changing the concentration of GeO2 
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from 16 to 30 %) is further investigated. By the increase in refractive index, lower minimum 
dispersion in the area of negative values is produced. 
 

 
Fig. 5. Chromatic dispersion dependence on core diameter. 

Fig. 6 combines the effect of the refractive index values varied from 1.472 to 1.49, in which a 
summarized impact over all: O, E, S, C, L bands is shown. Considering a specific 
wavelength, for instance 1550 nm, dispersion increases with refractive index of the doped 
core. 
 

 
Fig. 6. Chromatic dispersion dependence on dopant material refractive index. 

 
Photonic Crystal Fibers with Optimized Dispersion for Telecommunication Systems 

 

187 

Extracted values of ZDW obtained for varied material refractive index are presented in 
Table 3.  
 

Refractive index [-] First ZDW [nm] Second ZDW [nm] 

1.472 728 1190 

1.474 780 1320 

1.477 835 1450 

1.48 913 1556 

Table 3. Location of first and second ZDW in the modeled PCF. 

6. Design of PCF with ultra-flat chromatic dispersion 
The combination of studied parameters could interplay with their effects to achieve optimal 
dispersion for telecommunication applications. This is generally considered as one of the 
major advantages of PCFs.  
A PCF with flattened dispersion curve is required for telecommunication applications, in 
which we desire to have the same dispersion values for broadband utilization, in this case 
long-distance propagation with nearly zero dispersion in systems with Wavelength Division 
Multiplexing. The final goal is to optimize the structure to achieve flattened dispersion curve 
and dispersion values near zero. This could be done by finding the suitable configuration of 
the following parameters: hole diameter, core diameter, and selective doping. 
The proposed structure is doped by using GeO2. The fiber has three air rings of holes in 
the cladding. The doped core radius is 7.4 µm, which is relatively big compared to all 
above studied structures. Detailed description of the proposed structure is summarized in 
Table 4.  
 

Parameter [unit] Value 

Pitch Λ [µm] 4.4 

Hole’s diameter d [µm] 1.32 

Normalized hole diameter d/Λ [-] 0.3 

Air-fraction index [-] 1 

Dopant’s (core’s) refractive index [-] 1.48 

Silica glass refractive index (high-index cladding region) [-] 1.458 

Propagating wavelength [nm] 1550 

Core diameter [µm] 7.4 

Effective index of cladding at 1550 nm 1.465 

Number of rings at the cladding Nr 3 

Table 4. Structural parameters of HNPCF for achieving ultra-flattened dispersion diagram. 
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the cladding. The doped core radius is 7.4 µm, which is relatively big compared to all 
above studied structures. Detailed description of the proposed structure is summarized in 
Table 4.  
 

Parameter [unit] Value 

Pitch Λ [µm] 4.4 

Hole’s diameter d [µm] 1.32 

Normalized hole diameter d/Λ [-] 0.3 

Air-fraction index [-] 1 

Dopant’s (core’s) refractive index [-] 1.48 

Silica glass refractive index (high-index cladding region) [-] 1.458 

Propagating wavelength [nm] 1550 

Core diameter [µm] 7.4 

Effective index of cladding at 1550 nm 1.465 

Number of rings at the cladding Nr 3 

Table 4. Structural parameters of HNPCF for achieving ultra-flattened dispersion diagram. 
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As it is observed in Fig. 7, the fundamental mode is trapped in the core. The fiber operates 
as a single-mode PCF. A special attention should be taken during the fabrication of the core, 
which is much greater than the doping region, as depicted in Fig. 7. 
 

 
Fig. 7. The fundamental mode of the proposed near-zero ultra-flattened PCF. 

 

 
Fig. 8. Chromatic dispersion of the designed PCF compared to the regular IGPCF. 

The achieved dispersion is ultra-flat with small negative values around –0.025 ps/nm/km. 
It can be observed that the chromatic dispersion is almost constant at a wide 
telecommunication wavelength range. The result is compared with the regular solid-core 
IGPCF. (As a reference, a standard structure made with medium-sized, pure silica core and 
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medium air-filling fraction is concerned). In Fig. 8, a comparison between the dispersion 
values of the standard IGPCF and the designed structure is presented. 

7. Conclusion 
New fiber structure with near-zero ultra-flattened is proposed. It is suitable for broadband 
utilization in transmission systems. Before this, many fibers have been examined and many 
improvements have been applied to the studied structures. It is described how to control the 
location and shape of the chromatic dispersion curves. An investigation is carried out to 
study the PCF with high-index core material, in which a parabolic curve is evaluated in 
terms of potential ZDWs.  
Investigated PCFs showed higher flexibility in fiber design. A new fiber structure is 
introduced and investigated. The bandwidth, in which anomalous dispersion is achieved, is 
getting wider with decreasing air fraction. By the increase in hole diameter, the second ZDW 
is extended till the U-band. Lower minimum dispersion values are achieved by the increase 
in doping region diameter. 
Utilizing all the previous results of the interplay between chromatic dispersion on one 
side, and geometrical parameters as well as refractive index on the other side, has 
provided a well-defined procedure to design ultra-flattened and ultra-low chromatic 
dispersion profile. 
HNPCF is doped with high-index material (dopant GeO2) with the refractive index of 1.48 
and only three air rings in the cladding. The achieved dispersion results were ultra-flattened 
with very small negative dispersion values: –0.025 [ps/nm/km] over the telecommunication 
band. The fiber is suitable for broadband zero-dispersion propagation of optical signals in 
high-speed transmission systems. 
The future study will focus on achieving flattened and high anomalous chromatic 
dispersion for telecommunication applications. For example, the insertion of liquids in PCFs 
is promising for achieving optimal chromatic dispersion and nonlinear effects. Another goal 
is to optimize the studied structures without doping. Structures matching the characteristic 
of ITU-T standard fibers will be studied. 
Last but not least, the future research should be highlighted on the recurrent optimization of 
algorithms to be developed.  
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1. Introduction 
Fiber loop mirrors (FLMs), also called Sagnac interferometers, are interesting and very useful 
components for use in optical devices and systems [1, 2]. Many components based on FLMs 
have been demonstrated for applications in wavelength-division-multiplexing lters and in 
sensors, among others [3-7]. In FLM, the two interfering waves counter-propagate through the 
same ber and are exposed to the same environment. This makes it less sensitive to noise from 
the environment. In general, a conventional ber loop mirror made of high-birefringent bers 
(HiBi fibers) or polarization-maintaining fibers (PMFs) has several advantages compared with 
a Mach–Zehnder interferometer, such as insensitivity, high extinction ratio, in-dependence of 
input polarization, easy to manufacture and low cost [1, 2]. However, conventional PMFs (e.g., 
Panda and bow-tie PMFs) have a high thermal sensitivity due to the large thermal expansion 
coefficient difference between boron-doped stress-applying parts and the cladding (normally 
pure silica). Consequently, conventional PMFs exhibit temperature-sensitive birefringence [8]. 
Therefore, conventional PMF based Sagnac interferometers exhibit relatively high temperature 
sensitivity, which is about 1 and 2 orders of magnitude higher than that of long-period fiber 
grating (LPG) and fiber Bragg grating (FBG) sensors [9, 10]. This can limit the practical use of 
the devices in some applications.  
Various kinds of sensors based on HiBi-FLMs have been proposed and realized since HiBi-
FLMs are sensitive to many parameters and have a high sensitivity, such as temperature 
sensors, level liquid sensors, refractive index sensors, strain sensors and biochemical sensors 
[7, 9-12]. However, when a HiBi-FLM is used to measure strain or other parameters, its 
cross-sensitivity to temperature may degrade sensor performance since the optical path 
length of the HiBi-FLM shows temperature dependence caused by thermal refractive-index 
change and thermal expansion effect. Thus, the temperature effect must be discriminated or 
eliminated when they are used for sensing [13-15].  
The photonic crystal ber (PCF) is a new class of optical ber that emerged in recent years. 
Typically, these bers incorporate a number of air holes that run along the length of the ber 
and have a variety of different shapes, sizes, and distributions [16-17]. Of the many unusual 
properties exhibited by a PCF, a particularly exciting feature is that the PCF can be made 
HiBi by arranging the core and the air-hole cladding geometry, thereby introducing 
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asymmetry [18-19]. Their birefringence can be of the order of 10-3, which is about one order 
of magnitude larger than that of conventional HiBi bers. Unlike conventional PMFs (bow-
tie, elliptical core, or Panda), which contain at least two different glasses each with a 
different thermal expansion coefcient, thereby causing the polarization of the propagation 
wave to vary with changing temperature, the PCF birefringence is highly insensitive to 
temperature because it is made of only one material (and air holes). Recently, some of FLMs 
used PCFs have been developed and applied on various devices [20-22] and optical fiber 
sensors [24-35], including strain sensors, pressure sensors, temperature sensors and 
curvature sensors, and so on.  
In this chapter, we will first introduce the basic operation principle of FLMs, secondly, will 
demonstrate a temperature-insensitive interferometer based on a HiBi-PCF FLM. We will 
then move on to various applications in optical sensors such as strain sensors, pressure 
sensors, and temperature sensors. Following, we will discuss a demodulation technology of 
HiBi-PCF FLM based sensors. Finally, we will describe several multiplexing schemes for 
HiBi-PCF based FLM sensors. 
 

PCF
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2. Basic principle of FLMs 
As shown in Fig. 1, the 3-dB coupler splits the input signal equally into two counter-
propagating waves which subsequently recombine (at the coupler) after propagating 
around the loop. The interference of the counter-propagating waves will be constructive or 
destructive, depending on the birefringence of the cavity, and thus, the loop transmission 
response is wavelength dependent. The phase difference between the fast and slow beams 
that propagate in the PCF is given by [1, 2]: 

 2 /BLθ π λ=  (1) 

where B, L, and λ are the birefringence of the PCF, the length of the PCF and the 
wavelength, respectively. When the variation of B following the wavelength is small, there 
is B=/nx-ny/, where nx and ny are the effective refractive index for each polarization mode. 
Ignoring insertion loss of the 3-dB coupler and the attenuation of the PCF and the single-
mode fiber in the loop, the transmission spectrum of the fiber loop is approximately a 
periodic function of the wavelength, namely,  

 (1 cos ) / 2T θ= −  (2) 
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The transmission dip wavelengths are the resonant wavelengths satisfying 2πBL/λdip = 2kπ, 
where k is any integer. Thus, the resonant dip wavelengths can be described as  

 /dip BL kλ =  (3) 

And the wavelength spacing between transmission dips can be expressed as  

 2 /S BLλ=  (4) 

When some varies (strain or temperature) applied on the PCF sensing element, they will 
cause the birefringence change ΔB and length change ΔL of the PCF. So the λdip has a change 
and it can be expressed as:  

 ( ) /dip BL B L kλΔ = Δ + Δ  (5) 

So the change of varies can be obtained by measuring the wavelength shift of the dip in the 
output spectrum. The setting of the polarization controller (PC) can affect the contrast of the 
transmission function. By adjusting the state of the PC, transmission bands with large 
extinction ratio can be obtained. 

3. Temperature-insensitive interferometer using a HiBi-PCF FLM [21] 
In general, the optical path length of a conventional HiBi-FLM shows temperature 
dependence caused by thermal refractive-index change and thermal expansion of the 
devices [8]. This can limit the practical use of the device. In this part, utilizing the high 
birefringence and the low temperature coefficient of birefringence, a temperature-insensitive 
interferometer based on a HiBi-PCF FLM is realized.  
In this experiment, a 6.5-cm-long HiBi-PCF was used, which was fabricated by Blaze-
Photonics Com., and the cross-sectional scanning electron micrograph is shown in Fig. 2. 
Mode field diameters at the two orthogonal polarizations are 3.6 and 3.1 μm. The HiBi-PCF 
has a group birefringence Δng of 8.65×10-4 at 1550 nm, and a nominal beat length of 1.8 mm. 
Both ends of the HiBi-PCF are spliced to conventional single-mode fiber (SMF) by using a 
CO2 laser splicing system. The PCF-SMF splicing loss is large (about 3.5 dB) because of 
mismatching of mode field and numerical apertures between the PCF and the SMF. The 
splicing loss will be reduced when a pre-tapering technology is used. The PCF-SMF splicing 
losses will increase the total insertion loss of the HiBi-PCF-FLM. The device characteristics 
are measured with a tunable laser source (Agilent 81689 A) which can be tuned from 1.5 to 
1.6 μm and a power sensor (Agilent 81634 A).  
Fig. 3 shows the transmission spectra of the HiBi-PCF-FLM at different temperatures. The 
temperature of the HiBi-PCF-FLM is controlled by a temperature chamber during 
measurement. The transmission spectrum is approximately a periodic function of 
wavelength, as given by equation (2). The corresponding wavelength spacing between 
transmission peaks is about 0.43 nm, which is consistent with equation (4). The extinction 
ratio is nearly 26 dB and the total insertion loss of the HiBi-PCF-FLM is 10 dB.  
Since the phase difference is given by equation (1), a change of the phase matching condition 
caused by the environment leads to a wavelength spacing variation and a resonance 
wavelength shift. As shown in Fig. 3 and Fig. 4, when the ambient temperature of the HiBi-
PCF-FLM is increased, the transmission peaks shift a little to shorter wavelength. We choose  
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Fig. 2. Scanning electron micrograph of the cross section of the HiBi-PCF. 

 

 
Fig. 3. Transmission spectra as a function of temperature for the HiBi-PCF-FLM, insertion: 
the transmission spectra in the range of 1554 -1557 nm. 

 

 
Fig. 4. Variation of the transmission peak wavelength at 1554.6 nm with temperature for the 
HiBi-PCF-FLM.  
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the transmission peak at 1554.6 nm as an example. The wavelength shift of the transmission 
peak with temperature is 0.3 pm /oC. The line (a) in Fig. 5, which is for the HiBi-PCF-FLM, 
shows the wavelength spacing change with temperature. The variation of wavelength 
spacing is very small: only 0.05 pm /oC.  
 

 
Fig. 5. Variation of the wavelength spacing with temperature (a) the HiBi-PCF-FLM; (b) the 
PMF-FLM.  

In order to compare the new HiBi-PCF-FLM with the conventional FLM, we used a Panda 
polarization maintaining fiber (PMF) as the HiBi fiber. The Panda PMF is from Fujikura 
(SM-13P) with a measured birefringence of Δng = 3.85×10-4 at 1550 nm. The length of the 
Panda PMF is about 14.8 m. The wavelength spacing of the PMF-FLM is about 0.42 nm at 
temperature 25 oC. The extinction ratio is about 25 dB. As shown in Fig. 6, the transmission 
peaks shift very significantly at different temperatures. The line (b) in Fig. 5 shows the 
temperature dependence of the wavelength spacing for the conventional PMF-FLM. The 
variation of the wavelength spacing with temperature is about 0.5 pm /oC, which is nearly  
 

 
Fig. 6. Transmission spectra for the HiBi-PMF-FLM at different temperatures.  
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ten times of that for the HiBi-PCF-FLM. Furthermore, Fig. 7 shows the transmission peak 
shift as a function of temperature for the PMF-FLM. In theory, the wavelength shift of 
transmission peaks with temperature is nearly 16.6 pm /oC. In the experiment, however, the 
polarization of the propagation wave may vary with temperature, because different glasses 
of the PMF have different thermal expansion coefficient. This also effects the stability of the 
PMF-FLM. Such a large variation of the properties of the FLM made of conventional PMF 
with temperature makes it unsuitable for many applications in optical communication or 
sensor systems. However, by using HiBi-PCF, temperature-insensitivity of the FLM is 
improved by about 55 times. 
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Fig. 7. Variation of the transmission peak wavelength near 1554.6 nm with temperature for 
the HiBi-PMF-FLM (●: theoretical and ○: experimental results). 

4. Optical fiber sensors based on a HiBi-PCF FLM 
4.1 A temperature independent strain sensor based on a HiBi-PCF FLM [24] 
Strain sensors based on the strain-induced variation in birefringence of the HiBi fibers used 
in FLMs were also proposed and characterized. These sensors possess lots of advantages 
including simple design, easy to manufacture, high sensitivity, and low cost. However, 
previously reported FLM sensors are all based on conventional HiBi fibers whose 
birefringence is dependent on temperature. When they are used for sensing other 
measurands such as strain, the high thermal response of conventional PMFs may cause 
serious cross-sensitivity effects and reduce the measurement accuracy. In this part, a HiBi-
PCF FLM strain sensor is demonstrated. The strain measurement is inherently temperature 
insensitive due to the great thermal stability of HiBi-PCF based FLM.  
The proposed FLM strain sensor is as shown in Fig.8. When a strain is applied on the HiBi-
PCF, the phase change induced by an elongation ΔL (i.e., a strain /L Lε = Δ ) to the PM-PCF 
can be given approximately by 

 2 [ ]LB L Bπθ
λ

Δ = Δ + Δ  (6) 

where ΔB=△nx-△ny, is the variation of birefringence of the PM-PCF caused by photoelastic 
effect. Based on the analysis of photoelastic effect in single-mode fibers [35], the change of 
effective refractive index in the fiber core is related to the applied strain with a coefficient 
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named effective photoelastic constant. It is therefore assumed that △nx and △ny have 
similar descriptions but different effective photoelastic constants, expressed as follows:  

 n x
x e xp n εΔ = , and (7a) 

 n y
y e yp n εΔ =  (7b) 

Where x
ep and y

ep are the effective photoelastic constant for the slow and fast axes, 
respectively. By substituting Eqs. (7a) and (7b) into Eq.(6) and considering the relationship 
between spectrum (or peak wavelength) shift and phase change, i.e., /(2 )Sλ θ πΔ = Δ , the 
following relationship can be obtained: 

 e(1 p )λ λ ε′Δ = +  (8) 

where e ( ) /y x
y e x eP n p n p B′ = − , is a constant that describes the strain-induced variation of the 

birefringence of the PM-PCF. 
From Eq. (8), it can be seen that △λ is directly proportional to ε ; therefore, linear spectrum 
(or peak wavelength) shift is expected with change of the applied strain.  
 

 
Fig. 8. Experimental setup of the proposed strain sensor based on a FLM made of a highly 
birefringent PCF.  

In the experiment, the HiBi-PCF is 86 mm long, whose structure is the same as that in the 
section 3. Fig. 9 shows the transmission spectrum of the HiBi-PCF based FLM within a wide 
wavelength range of 70 nm. The wavelength spacing between the two transmission minima 
is 32.5 nm, and a good extinction ratio of 32 dB was achieved at the first transmission mini-
mum located at 1547 nm. Since the light source we used is not polarized and there is no 
polarization-dependent element used in the sensor system, the stability of the sensor output 
against environmental variations, such as small vibrations, is good.  
We fixed one end of the HiBi-PCF and stretched the other end by using a precision 
translation stage. Fig. 10 shows several measured transmission spectra around the 
transmission minimum at 1547 nm under different applied strains. The spectrum shifted 7.5 
nm to the longer wavelength direction when the strain was increased from 0 to 32 m. The 
measured data are shown in Fig.11. A linear fitting to the experimental data gives a  
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Fig. 9. The transmission spectrum of the HiBi-PCF FLM.  
 

 
Fig. 10. Measured transmission spectra under different strains.  
 

 
Fig. 11. Wavelength shift of the transmission minimum at 1547 nm against the applied 
strain. 
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wavelength-strain sensitivity of 0.23 pm/με  and a high R2 value of 0.9996, which shows that 
the linearity of the wavelength to strain response is excellent. Therefore, the experimental 
data agree well with the theoretical prediction, and the constant '

ep in Eq. (8), calculated 
from the wavelength-strain sensitivity value, is -0.82.  
The resolution of the strain measurement, limited by the 10 pm wavelength resolution of the 
used OSA, is 43 με, which is actually quite high when taking into account the large 
measurement range. The maximum value of the applied strain is mostly determined by the 
maximum strain that the HiBi-PCF can endure, not the strength of the fusion splicing points 
because the two splicing points between the HiBi-PCF and SMFs were prevented from being 
stretched as they were glued to the strain-applying blocks. As a result, the measurement 
range is several times larger than that of fiber Bragg grating and long-period grating 
sensors, where the fiber strength is significantly weaken during the grating inscription by 
high power ultraviolet laser beams [37]. This may be regarded as one of the several 
advantages of the proposed HiBi-PCF based the strain sensor over the two kinds of fiber 
grating sensors. 
Temperature stability of the HiBi-PCF FLM strain sensor was also tested by setting the 
sensor head into a temperature-controlled container. The transmission minimum at 1547 nm 
was moved to shorter wavelength by only 22 pm when the temperature was increased up to 
80°C. Measurement results are shown in Fig.12. The temperature sensitivity is only 0.29 
pm/°C, which, compared with the reported value of 0.99 nm/°C of the FLM temperature 
sensor based on conventional PMF [7], is about 3000 times lower. The temperature 
sensitivity is also in good agreement with the previously reported value in Ref. 21 where the 
same HiBi-PCF was used. If a temperature variation of 30°C is assumed, the corresponding 
wavelength shift of the strain sensor is only 8.7 pm, which is even smaller than the 
wavelength resolution of the OSA. Therefore, such a low temperature sensitivity can be 
totally neglected when the sensor is operated in normal environmental condition without 
very large temperature variations.  
 

 
Fig. 12. Wavelength variation of the transmission minimum at 1547 nm against temperature. 

Compared with the conventional HiBi fiber based FLM sensors and fiber Bragg grating or 
long-period grating sensors, the HiBi-PCF FLM strain sensor is inherently insensitive to 
temperature, eliminating the requirement for temperature compensation. It is also simple, 
easy to manufacture, potentially low cost, and possesses a much larger measurement range. 
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4.2 Pressure sensor realized with a HiBi-PCF FLM [29] 
In this part, we demonstrate a pressure sensor based on a HiBi-PCF FLM. The FLM itself acts 
as a sensitive pressure sensing element, making it an ideal candidate for pressure sensor. Other 
reported fiber optic pressure sensors generally required some sort of modification to the fiber 
to increase their sensitivity [38]. The HiBi-PCF FLM pressure sensor does not require 
polarimetric detection and the pressure information is wavelength encoded.  
Fig. 13 shows the experimental setup of the pressure sensor with the HiBi-PCF based FLM 
interferometer. The used HiBi-PCF is 58.4 cm and is laid in an open metal box and the box is 
placed inside a sealed air tank. The tank is connected to an air compressor with adjustable 
air pressure that was measured with a pressure meter. The input and output ends of the 
FLM are placed outside the air tank.  
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periodic function of the wavelength and is given as Eq. (1). The total phase difference θ 
introduced by the HiBi-PCF can be expressed as 
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Eq. (13) shows that for a small wavelength shift, the spectral shift is linearly proportional to 
the applied pressure. 
 

 
Fig. 14. Transmission spectrum of the HiBi-PCF based Sagnac interferometer. 

 

 
Fig. 15. Measured transmission spectra under different pressures. 

Fig 14 shows the transmission spectrum of the HiBi-PCF FLM at atmospheric pressure, i.e., 
at zero applied pressure. The spacing between two adjacent transmission minimums is ∼5.3 
nm and an extinction ratio of better than 20 dB was achieved. The intrinsic birefringence of 
the HiBi-PCF used in our experiment is 7.8 × 10−4 at 1550 nm. 
The air compressor is initially at one atmospheric pressure (about 0.1MPa). In the 
experiment, we can increase air pressure up to 0.3 MPa; thus, the maximum pressure that 
can be applied to the HiBi-PCF-based FLM sensor is ~0.4 MPa. At one atmospheric pressure 
one of the transmission minimums occurs at 1551.86 nm and shifts to a longer wavelength 
with applied pressure. When the applied pressure was increased by 0.3MPa, a 1.04 nm 
wavelength shift of the transmission minimum was measured, as shown in Fig 15. Fig. 16 
shows the experimental data of the wavelength–pressure variation and the linear curve 
fitting. The measured wavelength–pressure coefficient is 3.42 nm/MPa with a good R2 value 
of 0.999, which agrees well with the theoretical prediction. From Eq. (13), the birefringence–
pressure coefficient is ~1.7 × 10−6 MPa−1. The resolution of the pressure measurement is ∼2.9 
kPa when using an OSA with a 10 pm wavelength resolution. Because of the limitations of 
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our equipment, we have not studied the performance of this pressure sensor for high 
pressure at this stage. However, we found that the HiBi-PCF can stand pressure of 10 MPa 
without damage to its structure. This part of the work is ongoing and will be reported in our 
further studies.  
 

 
Fig. 16. Wavelength shift of the transmission minimum at 1551.86 nm against applied 
pressure with variation up to 0.3Mpa. 

 

 
Fig. 17. Wavelength shift of the transmission minimum against applied pressure for HiBi-
PCFs with length of 40 (circles) and 79.6 cm (triangles); the wavelength pressure coefficients 
are 3.46 and 3.43 nm/MPa, respectively.  

Although the length of HiBi-PCF used in our experiment is 58.4 cm, it is important to note 
that the HiBi-PCF can be coiled into a very small diameter circle with virtually no additional 
bending loss so that a compact pressure sensor design can be achieved. The induced 
bending loss by coiling the HiBi-PCF into 10 turns of a 5mm diameter circle, shown in the 
inset of Fig. 16, is measured to be less than 0.01 dB with a power meter (FSM-8210, ILX 
Lightwave Corporation). The exceptionally low bending loss will simplify sensor design 
and packaging and fulfils the strict requirements of some applications where small size is 
needed, such as in down-hole oil well applications. To investigate the effects of coiling, we 
have studied two extreme cases in which the HiBi-PCF was wound with its fast axis and 
then its slow axis on the same plane of the coil. There were no measurable changes for either 
the birefringence or the wavelength–pressure coefficient when the fiber was coiled into 15 
and 6mm diameter circles with both of the orientations coiling. The coiling of the HiBi-PCF 
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into small diameter circles makes the entire sensor very compact and could reduce any 
unwanted environmental distortions, such as vibrations. 
The wavelength–pressure coefficient is independent of the length of the HiBi-PCF, as 
described in Eq. (13). Fig. 17 shows the wavelength-pressure coefficients are 3.46 and 3.43 
nm/MPa for HiBi-PCFs with lengths of 40 and 79.6 cm, respectively. After comparing the two 
wavelength–pressure coefficients with that of the pressure sensor with a 58.4 cm HiBi-PCF 
(Fig. 17), we observed that the wavelength–pressure coefficient is constant around 1550 nm; 
this agrees well with our theoretical prediction. However, the length of the PM-PCF cannot be 
reduced too much because this would result in broad attenuation peaks in the transmission 
spectrum and that would reduce the reading accuracy of the transmission minimums. 
 

 
Fig. 18. Wavelength shift of the transmission minimum at 1551.86 nm against temperature. 

Temperature sensitivity of the proposed pressure sensor is also investigated by placing the 
sensor into an oven and varying its temperature. Fig 18 shows the wavelength shift of a 
transmission minimum versus temperature linearly with a good R2 value of 0.9984. The 
measured temperature coefficient is -2.2 pm/°C, which is much smaller than the 10 pm/°C 
of fiber Bragg grating. The temperature may be neglected for applications that operate over 
a normal temperature variation range.  
Based on the small size, the high wavelength pressure coefficient, the reduced temperature 
sensitivity characteristic, and other intrinsic advantages of fiber optic sensors, such as light 
weight and electro-magnetically passive operation, the proposed pressure sensor is a 
promising candidate for pressure sensing even in harsh environments. Considering the 
whole pressure sensing system, we can also replace the light source with laser and use a 
photodiode for intensity detection at the sensing signal receiving end. Since the power 
fluctuation is very small even when the HiBi-PCF is bent, intensity detection is practical for 
real applications. Because of the compact size of the laser and photodiode, the entire system 
can be made into a very portable system. Furthermore, the use of intensity detection instead 
of wavelength measurement would greatly enhance interrogation speed and consequently 
makes the system much more attractive. 

4.3 A high sensitive temperature sensor based on a FLM made of an alcohol-filled 
PCF [33] 
HiBi-PCFs have a low thermo-optic and thermo-expansion coefficient HiBi-PCF, so HiBi-
PCF FLMs can not be used to measure temperature directly. However, by inserting a short 
alcohol-filled HiBi-PCF into a FLM, a temperature sensor with an extremely high sensitivity 
can be realized by measuring the wavelength shift of the resonant dips of the alcohol-filled 
HiBi-PCF FLM. 
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into small diameter circles makes the entire sensor very compact and could reduce any 
unwanted environmental distortions, such as vibrations. 
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wavelength–pressure coefficients with that of the pressure sensor with a 58.4 cm HiBi-PCF 
(Fig. 17), we observed that the wavelength–pressure coefficient is constant around 1550 nm; 
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reduced too much because this would result in broad attenuation peaks in the transmission 
spectrum and that would reduce the reading accuracy of the transmission minimums. 
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Temperature sensitivity of the proposed pressure sensor is also investigated by placing the 
sensor into an oven and varying its temperature. Fig 18 shows the wavelength shift of a 
transmission minimum versus temperature linearly with a good R2 value of 0.9984. The 
measured temperature coefficient is -2.2 pm/°C, which is much smaller than the 10 pm/°C 
of fiber Bragg grating. The temperature may be neglected for applications that operate over 
a normal temperature variation range.  
Based on the small size, the high wavelength pressure coefficient, the reduced temperature 
sensitivity characteristic, and other intrinsic advantages of fiber optic sensors, such as light 
weight and electro-magnetically passive operation, the proposed pressure sensor is a 
promising candidate for pressure sensing even in harsh environments. Considering the 
whole pressure sensing system, we can also replace the light source with laser and use a 
photodiode for intensity detection at the sensing signal receiving end. Since the power 
fluctuation is very small even when the HiBi-PCF is bent, intensity detection is practical for 
real applications. Because of the compact size of the laser and photodiode, the entire system 
can be made into a very portable system. Furthermore, the use of intensity detection instead 
of wavelength measurement would greatly enhance interrogation speed and consequently 
makes the system much more attractive. 

4.3 A high sensitive temperature sensor based on a FLM made of an alcohol-filled 
PCF [33] 
HiBi-PCFs have a low thermo-optic and thermo-expansion coefficient HiBi-PCF, so HiBi-
PCF FLMs can not be used to measure temperature directly. However, by inserting a short 
alcohol-filled HiBi-PCF into a FLM, a temperature sensor with an extremely high sensitivity 
can be realized by measuring the wavelength shift of the resonant dips of the alcohol-filled 
HiBi-PCF FLM. 
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Fig. 19. Experimental setup of the temperature sensor based on a FLM inserted an alcohol-
filled highly birefringent PCF. Insertion: SEM of the cross section of the used PCF. 

The temperature sensor, as shown in Fig. 19, consists of a 3dB coupler and a short alcohol-
filled PCF. Alcohol is chosen to fill into HiBi-PCF since it is an easy-filled liquid with a high 
temperature sensitivity. Here, an alcohol-filled HiBi-PCF is inserted into a FLM as a 
temperature sensing head. Birefringence change ΔB and length change ΔL of the alcohol-
filled HiBi-PCF caused by temperature, leads a wavelength shifting of the resonant dips 
according to Eq. (3). The relationship between the dip wavelength change Δλdip, ΔB and ΔL 
is simply expressed as Eq. (5), ( ) /dip BL B L kλΔ = Δ + Δ , where ΔB is the birefringence change 
caused by the thermo-optic effect, including that of the original HiBi-PCF and that of the 
filled alcohol, and ΔL is the length change caused by the thermo-expansion effect, which 
also includes the elongation of the original HiBi-PCF and the expansion of the filled alcohol. 
We neglect ΔB and ΔL caused by the HiBi-PCF itself because of a good thermal independence 
of the HiBi-PCF. Further, ΔL caused by the thermo-expansion of the filled alcohol is also 
ignored since the volume of alcohol filled into the air-holes of the HiBi-PCF is small. Thus, 
Δλdip mainly depends on ΔB of the alcohol-filled HiBi-PCF. The birefringence-temperature 
dependence of the alcohol-filled HiBi-PCF is analyzed by using a full-vector finite element 
method (FEM). The diameters of the bigger and smaller holes are 7 and 3.2 µm, respectively, 
and the pitch length between centers of two adjacent holes is 5.46 µm, according to the HiBi-
PCF used in experiment. The refractive index of pure silica and the filled alcohol is taken as 
1.4457 and the empirical value which is calculated by an empirical equation according to [40]. 
Fig. 20 shows the empirical temperature dependence of the refractive index of alcohol and 
the theoretical temperature dependence of the birefringence of the alcohol-filled HiBi-PCF. 
With the temperature rising, the refractive index of alcohol decreases linearly, while the 
birefringence of the alcohol-filled HiBi-PCF increases linearly. The mode fields of the two 
orthogonal polarizations at 20 °C are shown in the insertion of Fig. 21. The birefringence of 
the alcohol-filled HiBi-PCF is calculated at 3.5×10-4 at 20 °C. Pt is defined as a thermo-optic 
constant on the birefringence of the alcohol-filled HiBi-PCF, which equals to the slope of the 
temperature dependence curve of birefringence and is calculated at 1.5×10-6 /°C. According 
to Eq. (2) and Eq. (5), the relationship between the resonant dip wavelengths shift Δλdip and 
the temperature change ΔT can be deduced as 
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Based on the above equation, the temperature sensitivity of the alcohol-filled HiBi-PCF FLM 
is related to λdip, Pt and B. A high temperature sensitivity depends on a long wavelength λdip 
of the measured resonant dip, a high thermo-optic constant Pt and a small birefringence B of 
the filled HiBi-PCF.  
The HiBi-PCF used in the experiment is provided by Yangtze Optical Fibre and Cable 
Company. The HiBi-PCF has a birefringence of 10.2×10-4 at 1550 nm, and the length is 6.1 
cm. After the HiBi-PCF filling with alcohol by air-holes capillary force, the birefringence of 
the PCF reduces significantly, which bring advantages on a larger wavelength space 
between two resonant dips and on a wider measurement range. Both ends of the alcohol-
filled HiBi-PCF are spliced to conventional single-mode fiber (SMF) by using a regular arc 
splicing machine (Fujikura FSM 60).  
 

 
Fig. 20. Temperature dependence of the refractive index of alcohol and the birefringence of 
polarization mode fields of the alcohol-filled HiBi-PCF at 20 °C. 

 

 
Fig. 21. Transmission spectrum of the alcohol-filled HiBi-PCF FLM at 20 °C. 
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Fig. 19. Experimental setup of the temperature sensor based on a FLM inserted an alcohol-
filled highly birefringent PCF. Insertion: SEM of the cross section of the used PCF. 
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filled HiBi-PCF caused by temperature, leads a wavelength shifting of the resonant dips 
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caused by the thermo-optic effect, including that of the original HiBi-PCF and that of the 
filled alcohol, and ΔL is the length change caused by the thermo-expansion effect, which 
also includes the elongation of the original HiBi-PCF and the expansion of the filled alcohol. 
We neglect ΔB and ΔL caused by the HiBi-PCF itself because of a good thermal independence 
of the HiBi-PCF. Further, ΔL caused by the thermo-expansion of the filled alcohol is also 
ignored since the volume of alcohol filled into the air-holes of the HiBi-PCF is small. Thus, 
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dependence of the alcohol-filled HiBi-PCF is analyzed by using a full-vector finite element 
method (FEM). The diameters of the bigger and smaller holes are 7 and 3.2 µm, respectively, 
and the pitch length between centers of two adjacent holes is 5.46 µm, according to the HiBi-
PCF used in experiment. The refractive index of pure silica and the filled alcohol is taken as 
1.4457 and the empirical value which is calculated by an empirical equation according to [40]. 
Fig. 20 shows the empirical temperature dependence of the refractive index of alcohol and 
the theoretical temperature dependence of the birefringence of the alcohol-filled HiBi-PCF. 
With the temperature rising, the refractive index of alcohol decreases linearly, while the 
birefringence of the alcohol-filled HiBi-PCF increases linearly. The mode fields of the two 
orthogonal polarizations at 20 °C are shown in the insertion of Fig. 21. The birefringence of 
the alcohol-filled HiBi-PCF is calculated at 3.5×10-4 at 20 °C. Pt is defined as a thermo-optic 
constant on the birefringence of the alcohol-filled HiBi-PCF, which equals to the slope of the 
temperature dependence curve of birefringence and is calculated at 1.5×10-6 /°C. According 
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Based on the above equation, the temperature sensitivity of the alcohol-filled HiBi-PCF FLM 
is related to λdip, Pt and B. A high temperature sensitivity depends on a long wavelength λdip 
of the measured resonant dip, a high thermo-optic constant Pt and a small birefringence B of 
the filled HiBi-PCF.  
The HiBi-PCF used in the experiment is provided by Yangtze Optical Fibre and Cable 
Company. The HiBi-PCF has a birefringence of 10.2×10-4 at 1550 nm, and the length is 6.1 
cm. After the HiBi-PCF filling with alcohol by air-holes capillary force, the birefringence of 
the PCF reduces significantly, which bring advantages on a larger wavelength space 
between two resonant dips and on a wider measurement range. Both ends of the alcohol-
filled HiBi-PCF are spliced to conventional single-mode fiber (SMF) by using a regular arc 
splicing machine (Fujikura FSM 60).  
 

 
Fig. 20. Temperature dependence of the refractive index of alcohol and the birefringence of 
polarization mode fields of the alcohol-filled HiBi-PCF at 20 °C. 

 

 
Fig. 21. Transmission spectrum of the alcohol-filled HiBi-PCF FLM at 20 °C. 
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Fig. 21 shows the transmission spectrum of the alcohol-filled HiBi-PCF FLM at room 
temperature (20 °C). Two resonant dips of the FLM display in the wavelength range from 
1400 to 1600 nm. One is at the wavelength of 1455.8 nm (dip A) with 15.5 dB extinction ratio; 
the other is at about 1549.8 nm (dip B) with 10.5 dB extinction ratio. The wavelength spacing 
between these two dips is ~94 nm and the corresponding birefringence of the alcohol-filled 
HiBi-PCF is ~3.9×10-4 at 20 °C, which is close to the theoretical value (~3.5×10-4). The little 
difference between the experimental and theoretical values may be caused by the error of 
air-holes geometry size of HiBi-PCF according the SEM.  
In the experiment, the temperature characteristic of the alcohol-filled HiBi-PCF FLM is 
tested by placing the alcohol-filled HiBi-PCF of the FLM at a temperature-controlled 
container. Fig. 22 (a) and (b) show the transmission spectra of the alcohol-filled HiBi-PCF 
FLM at temperature range of 20 to 34 °C and 8 to 20 °C, respectively. Dip A red-shifts from 
1455.8 to 1543.7 nm with temperature increasing gradually from 20 to 34 °C, at the same 
time, the extinction ratio of dip A decreases. While, dip B blue-shifts from 1549.8 to 1470.4 
nm with the temperature decreasing gradually from 20 to 8 °C.  
 

 
 

 
Fig. 22. Transmission spectra of the alcohol-filled HiBi-PCF FLM (a) when temperature 
increases from 20 and 34 °C and (b) when temperature decreases from 20 and 8°C. 

Fig. 23 shows the experimental relationship between temperature and the resonant 
wavelength of dip A and dip B. The fitting curves can be expressed as y = 6.2176x+1331.7 for 
dip A and y = 6.6335x+1416.7 for dip B, and the high fitting degrees 0.9997 and 0.9995 mean 
the linearity of the resonant wavelength to temperature is excellent. The experimental  
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Fig. 23. The relationship between temperature and the resonant wavelength of dip A and 
dip B. 

temperature sensitivities of dip A and dip B are ~6.2 nm/°C and ~6.6 nm/°C, respectively. 
And the theoretical sensitivities are ~6.1 nm/°C and ~6.5 nm/°C from Eq. (14). It is clear 
that the theoretical and the experimental results are in accordance. The temperature 
sensitivity of the alcohol-filled HiBi-PCF FLM is very high, and reach up to about 660 and 7 
times higher than that of a FBG (~0.01 nm/°C) and that of the FLM made of a conventional 
HiBi fiber with a 72 cm length (~0.94 nm/°C) [10].  
In practical uses, for a wider measurement range of temperature, the length L of the HiBi-
PCF can be shortened in order to widen the spacing between two resonant dips based on S = 
λ2/BL. For example, when the alcohol-filled HiBi-PCF is 1 cm, the spacing of the proposed 
FLM sensor is ~564 nm. It can be provided the measurement range of ~84 °C with the same 
temperature sensitivity ~6.6 nm /°C according to Eq. (14), in which the length of the sensing 
fiber is the same as the length of FBG sensing head and is shortened 72 times than that of the 
conventional HiBi-FLM temperature sensor.  

5. Demodulation of sensors based on HiBi-PCF FLM [34] 
All HiBi-PCF FLM sensors demonstrated above are based on monitoring the resonant 
wavelength variation of the FLM. In these configurations, a broadband light source and an 
optical spectrum analyzer (OSA) are needed, which cause the sensors expensive. In this 
part, we introduce a simple demodulation technology for a strain sensor based on HiBi-PCF 
FLM, which can also be used in other FLM based sensors. By utilizing the fact that the 
transmission intensity of a FLM at a fixed wavelength is strongly affected by the strain 
applied on a piece of HiBi-PCF in the FLM since the transmission spectrum of the FLM 
shifts with the applied strain, but the resonant dip (both wavelength and intensity) is 
insensitive to temperature, a low-cost temperature-insensitive strain sensor based on a HiBi-
PCF FLM is achieved. The sensor uses a distributed-feedback (DFB) laser as the light source. 
Since the output intensity of the FLM is directly proportional to the applied strain, only an 
optical power meter is sufficient to detect strain variation, avoiding the need for an 
expensive OSA.  
Since the HiBi-PCF is insensitive to temperature, the strain applied on the HiBi-PCF is an 
only influence factor on the transmission spectrum of the FLM. When an axial strain is 
applied on the HiBi-PCF, the phase difference of the FLM is changed, which is induced by 
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Fig. 21 shows the transmission spectrum of the alcohol-filled HiBi-PCF FLM at room 
temperature (20 °C). Two resonant dips of the FLM display in the wavelength range from 
1400 to 1600 nm. One is at the wavelength of 1455.8 nm (dip A) with 15.5 dB extinction ratio; 
the other is at about 1549.8 nm (dip B) with 10.5 dB extinction ratio. The wavelength spacing 
between these two dips is ~94 nm and the corresponding birefringence of the alcohol-filled 
HiBi-PCF is ~3.9×10-4 at 20 °C, which is close to the theoretical value (~3.5×10-4). The little 
difference between the experimental and theoretical values may be caused by the error of 
air-holes geometry size of HiBi-PCF according the SEM.  
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Fig. 22. Transmission spectra of the alcohol-filled HiBi-PCF FLM (a) when temperature 
increases from 20 and 34 °C and (b) when temperature decreases from 20 and 8°C. 

Fig. 23 shows the experimental relationship between temperature and the resonant 
wavelength of dip A and dip B. The fitting curves can be expressed as y = 6.2176x+1331.7 for 
dip A and y = 6.6335x+1416.7 for dip B, and the high fitting degrees 0.9997 and 0.9995 mean 
the linearity of the resonant wavelength to temperature is excellent. The experimental  
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Fig. 23. The relationship between temperature and the resonant wavelength of dip A and 
dip B. 

temperature sensitivities of dip A and dip B are ~6.2 nm/°C and ~6.6 nm/°C, respectively. 
And the theoretical sensitivities are ~6.1 nm/°C and ~6.5 nm/°C from Eq. (14). It is clear 
that the theoretical and the experimental results are in accordance. The temperature 
sensitivity of the alcohol-filled HiBi-PCF FLM is very high, and reach up to about 660 and 7 
times higher than that of a FBG (~0.01 nm/°C) and that of the FLM made of a conventional 
HiBi fiber with a 72 cm length (~0.94 nm/°C) [10].  
In practical uses, for a wider measurement range of temperature, the length L of the HiBi-
PCF can be shortened in order to widen the spacing between two resonant dips based on S = 
λ2/BL. For example, when the alcohol-filled HiBi-PCF is 1 cm, the spacing of the proposed 
FLM sensor is ~564 nm. It can be provided the measurement range of ~84 °C with the same 
temperature sensitivity ~6.6 nm /°C according to Eq. (14), in which the length of the sensing 
fiber is the same as the length of FBG sensing head and is shortened 72 times than that of the 
conventional HiBi-FLM temperature sensor.  

5. Demodulation of sensors based on HiBi-PCF FLM [34] 
All HiBi-PCF FLM sensors demonstrated above are based on monitoring the resonant 
wavelength variation of the FLM. In these configurations, a broadband light source and an 
optical spectrum analyzer (OSA) are needed, which cause the sensors expensive. In this 
part, we introduce a simple demodulation technology for a strain sensor based on HiBi-PCF 
FLM, which can also be used in other FLM based sensors. By utilizing the fact that the 
transmission intensity of a FLM at a fixed wavelength is strongly affected by the strain 
applied on a piece of HiBi-PCF in the FLM since the transmission spectrum of the FLM 
shifts with the applied strain, but the resonant dip (both wavelength and intensity) is 
insensitive to temperature, a low-cost temperature-insensitive strain sensor based on a HiBi-
PCF FLM is achieved. The sensor uses a distributed-feedback (DFB) laser as the light source. 
Since the output intensity of the FLM is directly proportional to the applied strain, only an 
optical power meter is sufficient to detect strain variation, avoiding the need for an 
expensive OSA.  
Since the HiBi-PCF is insensitive to temperature, the strain applied on the HiBi-PCF is an 
only influence factor on the transmission spectrum of the FLM. When an axial strain is 
applied on the HiBi-PCF, the phase difference of the FLM is changed, which is induced by 
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an elongation of the HiBi-PCF and the variation of birefringence of the HiBi-PCF caused by 
photoelastic effect. The relationship between the FLM phase change θΔ  and the axial strain 
applied on the HiBi-PCF can be expressed as  

 2 ( )eLB LPπθ ε
λ

Δ = +  (15) 

where yx
e e x e yP P n P n= − , and x

ep and y
ep are the effective photoelastic constant for the slow 

and fast axes, respectively. 
So, when an axial strain is applied on the HiBi-PCF, the transmission spectrum of the FLM 
can be described as 

 ' [1 cos( )]/ 2T θ θ= − + Δ  (16) 

Fig. 24 shows the theoretical transmission spectra of the FLM at a free state and at the state of 
an axial strain (6000με) applied on the HiBi-PCF, which is gotten based on the equation (16). In 
theoretical calculation, the length and the birefringence of the HiBi-PCF are taken as L = 79.5 
mm and B = 8.5×10-4, respectively, in accordance to the experimental data. Pe of the HiBi-PCF 
is assumed to Pe = -2.24×10-4 [16], which best fits the experiment. As shown in Fig. 25, the 
transmission spectrum of the FLM shifts to longer wavelength since the phase matching 
condition is changed when an axial strain is applied on the HiBi-PCF. Therefore, the applied 
strain can be gotten by monitoring the resonant wavelength shift of the FLM through using a 
broadband light source and an OSA in a high cost. The theoretical sensitivity of strain based on 
monitoring the resonant wavelength shift is obtained at 1.1 pm/με.  
 

 
Fig. 24. Theoretical transmission spectra of the FLM at a free state and at the state of an axial 
strain (6000 με) applied on the HiBi-PCF. 

Meanwhile, the transmission intensity at a fixed wavelength changes when the transmission 
spectrum of the FLM shifts with the strain applied on the HiBi-PCF. Thus, the information 
of the applied strain can be also gotten by monitoring the transmission intensity. The HiBi-
PCF FLM sensor based on intensity measurement can be achieved in a low cost by using a 
DFB laser and an optical power meter, instead of an expansive broadband source and an 
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OSA. When an axial strain is applied on the HiBi-PCF, the FLM transmission intensity at a 
fixed wavelength can be described as 

 '
0 0 0[1 cos( )]/ 2T Cθ ε= − +  (17) 

where 0
0

2 LBπθ
λ

= , 0
0

2 ( )eC LB LPπ
λ

= + . It is clear that, the transmission intensity of the FLM 

at a fixed wavelength varies accordingly with the applied strain. The transmission intensity 
variation of the FLM with the change of the axial strain applied on the HiBi-PCF can be 
deduced as  
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Fig. 25 is the theoretical relationship between the transmission intensity of the FLM sensor 
and the applied axial strain at three different wavelengths, which are gotten from the 
equation (17). As shown in the Fig. 24, the transmission intensity of the FLM at a fixed 
wavelength is approximately a periodic function of the axial strain applied on the HiBi-PCF. 
The strain spacing is about 33000 με. This means the maximal measurement range is about 
16500 με, in which the relationship between the applied strain and the transmission intensity 
of the FLM is a proportional dependence. When the strain is measured from 0 με, the 
measurement range of the applied strain is different for the different fixed wavelength. 
When the fixed wavelength is chosen at the resonant wavelength (1535.6 nm), the 
measurement range of the strain is maximum, which is from 0 to 16500 με.  
Fig. 26 is the enlarged drawing of the circle part in Fig. 25. Fig. 26 shows that all of the 
transmission intensity of the FLM at four different wavelengths (1530 nm, 1532 nm, 1545 nm 
and 1547 nm) are proportional to the applied strain, when the strain is in the range of 0 ~ 
6000 με. The strain sensitivity is in positive when the fixed wavelength (1530 nm and 1530 
nm) is shorter than the resonant wavelength (1535.6 nm) of the FLM; on the other hand, the 
strain sensitivity is in negative when the fixed wavelength (1545 nm and 1547 nm) is longer 
than the resonant wavelength (1535.6 nm) of the FLM. 
 

 
Fig. 25. Theoretical strain dependence of the transmission intensity of the FLM at different 
wavelengths. 
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Fig. 25. Theoretical strain dependence of the transmission intensity of the FLM at different 
wavelengths. 
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Fig. 26. Theoretical strain dependence of the transmission intensity of the FLM at different 
wavelengths in the strain range of 0~6000 με. 

Fig. 27 shows the transmission spectrum of the HiBi-PCF FLM. The HiBi-PCF has a 
birefringence B of ~8.5×10-4 at 1550 nm, and the length L of 79.5 mm. The corresponding 
wavelength spacing between transmission peaks (or transmission dips) is about 35.6 nm, 
and the extinction ratio is nearly 26 dB. Fig. 28 shows the strain characteristics of the FLM at 
different strain. The whole transmission spectrum shifts toward longer wavelength with the 
applied strain increasing because the length of the HiBi-PCF increases with the axial 
stretching and the birefringence of the HiBi-PCF decreases due to the photoelastic effect of 
the fiber. When the strain sensor is based on the resonant wavelength monitoring, the strain 
sensitivity with wavelength which is the slope of the curve, is estimated to be 1.1 pm/με as 
shown in Fig. 39. Experimental results are identical with the theoretical analysis. When an 
OSA with a wavelength resolution of 10 pm is used, the strain resolution is about 9.1 με.  
 

 
Fig. 27. Experimental transmission spectrum of the HiBi-PCF FLM. 

When the strain sensor is based on the transmission intensity measurement, a single 
wavelength source such as a wavelength tunable laser or a DFB laser is used as a light 
source. The HiBi-PCF FLM sensor based on optical intensity measurement is measured with  
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Fig. 28. Experimental transmission spectra of the FLM at different strain applied on the 
HiBi-PCF (from left to right, the strain: 0, 2137, 3357, 4565 and 5770 με, respectively). 

a tunable laser source (Agilent 81689 A) and a power meter (Agilent 81634 A). The 
wavelength of the tunable laser is near the resonant wavelength of the FLM and hence the 
output light intensity from the FLM is directly related to the FLM’s transmission at the 
wavelength of the DFB laser. Since the FLM’s transmission is insensitive to temperature, the 
output power is only affected by the transmission spectrum change caused by the strain 
applied on the HiBi-PCF. Fig. 30 shows the measured and theoretical relationship between 
the output intensity of the FLM sensor and the applied axial strain for various laser 
wavelengths. It’s clear that the strain sensitivity with intensity is related to the wavelength 
of the used laser source. In our experiment, a tunable laser is used for easiness of 
wavelength adjustment. In practice, a DFB laser with appropriate wavelength would be 
better for the purpose of reducing cost.  
As shown in Fig. 30, for laser wavelengths of 1530 nm and 1532 nm, which are shorter than 
the resonant wavelength (1535.6 nm) of the FLM, the output intensity increases with applied 
strain and the strain sensitivity is positive. Meanwhile, for laser wavelength longer than the 
resonant wavelength (1535.6 nm), the output intensity decreases with the applied strain and 
the intensity sensitivities are negative. Fig. 30 also shows the theoretical curves of the 
relation between the output intensity and the applied strain. The experimental results are in 
a good agreement with the theoretical analysis.  
From the equation (17), the output intensity in response of the strain can be expressed in T = 
[1-cos(θ0+C0ε)]/2. When laser wavelengths are 1530 nm and 1545 nm, the theoretical 
relationships between the output intensity and the applied strain are T1530 = [1-
cos(277+203ε)]/2 and T1545 = [1-cos(274+201ε)]/2, respectively. The coefficients θ0 and C0 of 
the above equations are different since the wavelength is different. In the above theoretical 
equations, dispersion effect on the B is ignored. The experimental and theoretical results are 
identical, and the fitting degrees between them are obtained highly as R2 = 0.997 at the 
wavelength 1530 nm and R2 = 0.994 at the wavelength 1545 nm, respectively. Furthermore, 
the strain sensitivity is various with the applied strain. When the applied strain is 3000 με, 
the strain sensitivity is 2.7 dB/1000με at 1530 nm and -3.2dB/1000με at 1545 nm. When an 
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Fig. 26. Theoretical strain dependence of the transmission intensity of the FLM at different 
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better for the purpose of reducing cost.  
As shown in Fig. 30, for laser wavelengths of 1530 nm and 1532 nm, which are shorter than 
the resonant wavelength (1535.6 nm) of the FLM, the output intensity increases with applied 
strain and the strain sensitivity is positive. Meanwhile, for laser wavelength longer than the 
resonant wavelength (1535.6 nm), the output intensity decreases with the applied strain and 
the intensity sensitivities are negative. Fig. 30 also shows the theoretical curves of the 
relation between the output intensity and the applied strain. The experimental results are in 
a good agreement with the theoretical analysis.  
From the equation (17), the output intensity in response of the strain can be expressed in T = 
[1-cos(θ0+C0ε)]/2. When laser wavelengths are 1530 nm and 1545 nm, the theoretical 
relationships between the output intensity and the applied strain are T1530 = [1-
cos(277+203ε)]/2 and T1545 = [1-cos(274+201ε)]/2, respectively. The coefficients θ0 and C0 of 
the above equations are different since the wavelength is different. In the above theoretical 
equations, dispersion effect on the B is ignored. The experimental and theoretical results are 
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optical power meter with an intensity resolution of 0.01 dB is used, a strain resolution of 3.7 
με at 1530 nm and 3.1 με at 1545 nm is achieved, which is about 2.5 times higher than that of 
the strain sensor based on the resonant wavelength measurement. 
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Fig. 29. The experimental relationship between the of the FLM at different wavelengths. 
Lines: theoretical curves. Pointes: experimental data. 

 

 
Fig. 30. Strain dependence of the transmission intensity wavelength of the transmission peak 
near 1535.6 nm of the FLM and the strain applied on the HiBi-PCF. 
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6. Multiplexing of HiBi-PCF based Sagnac interferometric sensors [35] 
In this part, three multiplexing schemes for PM-PCF based Sagnac interferometric sensors 
are presented. The first scheme is to multiplex sensors in the wavelength domain using 
coarse wavelength division multiplexers (CWDMs). The sensing signal from each sensor 
can be measured within a specific wavelength channel of the CWDM. The second scheme 
is to multiplex sensors by connecting them in series along a single fiber. It is simple in 
terms of system architecture as no additional fiber-optic components are needed. The 
third scheme is to multiplex sensors in parallel by using fiber-optic couplers. The sensing 
information of the first multiplexing technique can be obtained by direct measurement 
such as with an optical spectrum analyzer. For the serial and parallel multiplexing, signal 
processing methods are required to demultiplex the complex sensing signal. Two 
mathematical transformations, namely the discrete wavelet transform (DWT) and the 
Fourier transform (FT), are used independently to convert the multiplexed sensing signal 
back to their constituent sensor signals. These two transform methods are experimentally 
demonstrated via two multiplexed Sagnac interferometric sensors. Their operating 
principles, experimental setup, and overall performance are discussed. In the part of 4.2, 
we have demonstrated the utilization of PM-PCF based Sagnac interferometers for 
pressure sensing [29]. Similar pressure sensing experiments were performed here for the 
purposes of demonstration and verification of the multiplexing schemes as well as the 
demultiplexing methods.  

6.1 Multiplexing technique base on CWDM 
Wavelength division multiplexing is a direct multiplexing technique that can be readily 
implemented into Sagnac interferometric sensors. Since the output interference spectra of all 
the sensors cover the whole bandwidth of the light source, individual sensor signals can be 
physically separated by CWDMs into different wavelength channels. The experimental 
setup of two multiplexed sensors using CWDMs is illustrated in Fig.31. It includes a  
 

 
Fig. 31. Experimental setup of FWDM multiplexing technique for two PM-PCF based Sagnac 
interferometric sensors. 
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optical power meter with an intensity resolution of 0.01 dB is used, a strain resolution of 3.7 
με at 1530 nm and 3.1 με at 1545 nm is achieved, which is about 2.5 times higher than that of 
the strain sensor based on the resonant wavelength measurement. 
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Fig. 29. The experimental relationship between the of the FLM at different wavelengths. 
Lines: theoretical curves. Pointes: experimental data. 

 

 
Fig. 30. Strain dependence of the transmission intensity wavelength of the transmission peak 
near 1535.6 nm of the FLM and the strain applied on the HiBi-PCF. 
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Fig. 31. Experimental setup of FWDM multiplexing technique for two PM-PCF based Sagnac 
interferometric sensors. 
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broadband light source, an OSA, two identical filter wavelength division multiplexers 
(FWDMs) with the two output ports having respective operation range in the C and L bands 
(1500~1562 nm/1570~1640 nm). The two Sagnac interferometric sensors, PM-PCF1 and PM-
PCF2, have effective PM-PCF lengths of 40 cm and 80 cm, respectively. After the broadband 
light was launched into the first FWDM, the light was split into C and L bands. These two 
bands of light then illuminated the two sensors separately and were recombined by the 
second FWDM.  
Figure 32 shows the output spectrum of the two Sagnac interferometric sensors multiplexed 
by FWDM. From the figure, sensors PM-PCF 1 and PM-PCF 2 are found in the L band and C 
band, respectively. The FWDMs are shown to have good flatness in their operating 
wavelength range. There is an abrupt discontinuity at the edges of the two FWDMs at 
around 1562 nm–1570 nm, where such range should be excluded from measurements. By 
measuring the shifts of individual transmission minima (or maxima) of the two Sagnac 
interferometric sensors within their corresponding wavelength ranges, sensing information 
of both sensors can be obtained. 
 

 
Fig. 32. Output Spectrum of the CWDM multiplexing technique for PM-PCF based Sagnac 
interferometric sensor. 

6.2 Multiplexed in series along a single fiber with transmitted signals 
The second multiplexing scheme is to multiplex Sagnac interferometric sensors in series 
along a single fiber. Similar concatenated sensor configuration has been employed 
previously in optical filtering [41], and in strain and temperature discrimination [42]. 
However, in both cases, multiplexing was not the main focus, and so the techniques of 
multiplexing were not studied. Figure 33 illustrates such a scheme by simply cascading the 
sensors together. For K Sagnac interferometric sensors multiplexed in series, the output 
spectrum is given by, 
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where Lk, Sk, θk are the loss, the period of the output spectrum and the initial phase of the k-
th sensor, respectively. Note that the output spectrum is the multiplication of all individual 
sensor signals. 
 

 
Fig. 33. Experimental setup of in series multiplexing technique for PM-PCF based Sagnac 
interferometric sensor. 

 

 
Fig. 34. Output transmission spectra of the two multiplexed Sagnac interferometric sensors 
in series with one sensor under applied pressure variations. 

In the experimental demonstration, two sensors were spliced together adjacent to each other 
in series. The effective lengths of PM-PCF1 and PM-PCF2 were 20 cm and 60 cm, 
respectively. PM-PCF1 was placed freely on a table, while PM-PCF2 was placed inside a 
sealed pressure chamber. Pressure was applied to PM-PCF2 from 0–3 bars in steps of 0.5 
bar, and was measured by a pressure gauge (COMARK C9557). Figure 34 shows the output 
spectra of various pressure values measured by the OSA. In principle, to obtain the sensing 
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broadband light source, an OSA, two identical filter wavelength division multiplexers 
(FWDMs) with the two output ports having respective operation range in the C and L bands 
(1500~1562 nm/1570~1640 nm). The two Sagnac interferometric sensors, PM-PCF1 and PM-
PCF2, have effective PM-PCF lengths of 40 cm and 80 cm, respectively. After the broadband 
light was launched into the first FWDM, the light was split into C and L bands. These two 
bands of light then illuminated the two sensors separately and were recombined by the 
second FWDM.  
Figure 32 shows the output spectrum of the two Sagnac interferometric sensors multiplexed 
by FWDM. From the figure, sensors PM-PCF 1 and PM-PCF 2 are found in the L band and C 
band, respectively. The FWDMs are shown to have good flatness in their operating 
wavelength range. There is an abrupt discontinuity at the edges of the two FWDMs at 
around 1562 nm–1570 nm, where such range should be excluded from measurements. By 
measuring the shifts of individual transmission minima (or maxima) of the two Sagnac 
interferometric sensors within their corresponding wavelength ranges, sensing information 
of both sensors can be obtained. 
 

 
Fig. 32. Output Spectrum of the CWDM multiplexing technique for PM-PCF based Sagnac 
interferometric sensor. 

6.2 Multiplexed in series along a single fiber with transmitted signals 
The second multiplexing scheme is to multiplex Sagnac interferometric sensors in series 
along a single fiber. Similar concatenated sensor configuration has been employed 
previously in optical filtering [41], and in strain and temperature discrimination [42]. 
However, in both cases, multiplexing was not the main focus, and so the techniques of 
multiplexing were not studied. Figure 33 illustrates such a scheme by simply cascading the 
sensors together. For K Sagnac interferometric sensors multiplexed in series, the output 
spectrum is given by, 
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where Lk, Sk, θk are the loss, the period of the output spectrum and the initial phase of the k-
th sensor, respectively. Note that the output spectrum is the multiplication of all individual 
sensor signals. 
 

 
Fig. 33. Experimental setup of in series multiplexing technique for PM-PCF based Sagnac 
interferometric sensor. 

 

 
Fig. 34. Output transmission spectra of the two multiplexed Sagnac interferometric sensors 
in series with one sensor under applied pressure variations. 

In the experimental demonstration, two sensors were spliced together adjacent to each other 
in series. The effective lengths of PM-PCF1 and PM-PCF2 were 20 cm and 60 cm, 
respectively. PM-PCF1 was placed freely on a table, while PM-PCF2 was placed inside a 
sealed pressure chamber. Pressure was applied to PM-PCF2 from 0–3 bars in steps of 0.5 
bar, and was measured by a pressure gauge (COMARK C9557). Figure 34 shows the output 
spectra of various pressure values measured by the OSA. In principle, to obtain the sensing 
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information, the wavelength shift of the transmission minima of each sensor needs to be 
determined. However, as can be seen, the multiplexed sensor signal is more complex, and so 
simply tracing the initial phase may not yield accurate results. Thus, in order to separate the 
multiplexed signals, the DWT and FT methods were used independently to demultiplex the 
sensing signals. They worked by transforming the signals into another domain, such that 
each individual sensor signal can be easily identified, and their phase shifts measured. 

6.3 DWT demultiplexing method 
The principle of the DWT demultiplexing method has been outlined in Ref. [43].When DWT 
is applied to a signal, it is decomposed and halved into high and low frequency 
components, represented as detail and approximation coefficients, respectively. This is 
similar to applying both a high-pass and a low-pass filter simultaneously to a signal. Then, 
the approximation coefficients (i.e., low frequency components) of the signal can be further 
decomposed into 2nd-level detail and approximation coefficients. This iterative process 
continues until all individual sensor signals are separated and appear on different wavelet 
levels. In other words, it continues until the spatial frequency of the sensing signals matches 
with the frequency range at which the wavelet level represents. Figure 35 shows the 
extracted detail coefficients of the two sensors at different wavelet levels. By tracking their 
phase shifts, the response of the two sensors under various pressure levels can be detected. 
Figure 36(a) shows the phase shifts of the two sensors as a function of applied pressure. It is 
clear that PM-PCF2 shifted linearly with applied pressure, while PM-PCF1 remained about 
the zero shift position. The crosstalk between the two multiplexed sensor signals was also 
measured. The crosstalk given here is the ratio of the phase shift of PM-PCF1 (no pressure 
applied) to that of PM-PCF2 (pressured applied), and is shown in Fig. 36(b). It should be 
noted that, the crosstalk measurement represented here includes other sources of errors, 
such as measurement error and ambient noise. As can be seen from the figure, the crosstalk 
between the two sensors is less than 5% and decreases progressively at higher pressure 
values. This means the absolute crosstalk values are quite stable for the measured pressure 
range, and implies that the errors are mainly due to sources other than the actual crosstalk 
between the two sensors. On the other hand, if the crosstalk measurement shows a trend 
that correlates with the applied pressure, this would mean there is actual crosstalk present 
in the multiplexed sensor system. 
 

 
Fig. 35. Sensing signals of the two Sagnac interferometric sensors extracted using the 
wavelet method. 
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Fig. 36. (a) The wavelength shift as a function of pressure variation for the two Sagnac 
interferometric sensors,(b) sensing signal crosstalk of the two Sagnac interferometric 
sensors. 

6.4 FT demultiplexing method 
Besides the DWT, we also employed the FT method and the operating principle can be found 
in Ref. [44].The FT method works by transforming the multiplexed sensing signal from the 
original (wavelength) domain, into its dual (spatial frequency) domain, and is represented in 
the FT magnitude and phase spectra. Since the multiplexed signal is periodic, each individual 
sensor appeared as an finite amplitude peak in the FT magnitude spectrum; residing at a 
position dependent on the spatial frequency of the original sinusoidal signals. Thus, provided 
no two sensors have the same spatial frequency, each sensor can be distinctly identified. 
Normally, there are two ways of tracing the measurand-induced changes of individual 
sensors: (i) if the spatial-frequencies of the sensors change, measurands can be detected by the 
amount the amplitude peaks shift in the magnitude spectrum; and (ii) if the phase of the 
sensors change (and not the spatial-frequencies), measurands can be detected by the change 
of slope of the phase spectrum over the region corresponding to the amplitude peaks of the 
sensors in the magnitude spectrum. For the PM-PCF Sagnac interferometric sensors, when 
pressure was applied, the phase of the signals shifted proportionally while the spatial 
frequencies have no noticeable change, and so the second method applies. Figure 37 gives the 
FT magnitude and phase spectra of the multiplexed sensing signals after taking the FT. The 
corresponding regions of phase for the two sensors are shown in Fig.38. From the figure, one 
can see that PM-PCF1 is held constant (no noticeable change in the phase slope), while PM- 
PCF2 is under a varying amount of applied pressure which resulted in a gradual change of 
the phase slope. The calculated equivalent wavelength shift and crosstalk between the two 
sensors are shown in Figs. 39(a) and 39(b), respectively. From the figure, the maximum 
crosstalk is~5%, which is considered small. 

6.5 Multiplexed in parallel by using coupler with reflected signals 
The third multiplexing scheme is to multiplex Sagnac interferometric sensors in parallel, and 
is illustrated in Fig.40.The effective lengths of PM-PCF1 and PM-PCF2 are 20 cm and 60 cm, 
respectively. The source light is split equally by the 3-dB coupler into two paths to 
illuminate the two sensors separately. The sensing signals reflected back from the two  
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information, the wavelength shift of the transmission minima of each sensor needs to be 
determined. However, as can be seen, the multiplexed sensor signal is more complex, and so 
simply tracing the initial phase may not yield accurate results. Thus, in order to separate the 
multiplexed signals, the DWT and FT methods were used independently to demultiplex the 
sensing signals. They worked by transforming the signals into another domain, such that 
each individual sensor signal can be easily identified, and their phase shifts measured. 

6.3 DWT demultiplexing method 
The principle of the DWT demultiplexing method has been outlined in Ref. [43].When DWT 
is applied to a signal, it is decomposed and halved into high and low frequency 
components, represented as detail and approximation coefficients, respectively. This is 
similar to applying both a high-pass and a low-pass filter simultaneously to a signal. Then, 
the approximation coefficients (i.e., low frequency components) of the signal can be further 
decomposed into 2nd-level detail and approximation coefficients. This iterative process 
continues until all individual sensor signals are separated and appear on different wavelet 
levels. In other words, it continues until the spatial frequency of the sensing signals matches 
with the frequency range at which the wavelet level represents. Figure 35 shows the 
extracted detail coefficients of the two sensors at different wavelet levels. By tracking their 
phase shifts, the response of the two sensors under various pressure levels can be detected. 
Figure 36(a) shows the phase shifts of the two sensors as a function of applied pressure. It is 
clear that PM-PCF2 shifted linearly with applied pressure, while PM-PCF1 remained about 
the zero shift position. The crosstalk between the two multiplexed sensor signals was also 
measured. The crosstalk given here is the ratio of the phase shift of PM-PCF1 (no pressure 
applied) to that of PM-PCF2 (pressured applied), and is shown in Fig. 36(b). It should be 
noted that, the crosstalk measurement represented here includes other sources of errors, 
such as measurement error and ambient noise. As can be seen from the figure, the crosstalk 
between the two sensors is less than 5% and decreases progressively at higher pressure 
values. This means the absolute crosstalk values are quite stable for the measured pressure 
range, and implies that the errors are mainly due to sources other than the actual crosstalk 
between the two sensors. On the other hand, if the crosstalk measurement shows a trend 
that correlates with the applied pressure, this would mean there is actual crosstalk present 
in the multiplexed sensor system. 
 

 
Fig. 35. Sensing signals of the two Sagnac interferometric sensors extracted using the 
wavelet method. 
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Fig. 36. (a) The wavelength shift as a function of pressure variation for the two Sagnac 
interferometric sensors,(b) sensing signal crosstalk of the two Sagnac interferometric 
sensors. 

6.4 FT demultiplexing method 
Besides the DWT, we also employed the FT method and the operating principle can be found 
in Ref. [44].The FT method works by transforming the multiplexed sensing signal from the 
original (wavelength) domain, into its dual (spatial frequency) domain, and is represented in 
the FT magnitude and phase spectra. Since the multiplexed signal is periodic, each individual 
sensor appeared as an finite amplitude peak in the FT magnitude spectrum; residing at a 
position dependent on the spatial frequency of the original sinusoidal signals. Thus, provided 
no two sensors have the same spatial frequency, each sensor can be distinctly identified. 
Normally, there are two ways of tracing the measurand-induced changes of individual 
sensors: (i) if the spatial-frequencies of the sensors change, measurands can be detected by the 
amount the amplitude peaks shift in the magnitude spectrum; and (ii) if the phase of the 
sensors change (and not the spatial-frequencies), measurands can be detected by the change 
of slope of the phase spectrum over the region corresponding to the amplitude peaks of the 
sensors in the magnitude spectrum. For the PM-PCF Sagnac interferometric sensors, when 
pressure was applied, the phase of the signals shifted proportionally while the spatial 
frequencies have no noticeable change, and so the second method applies. Figure 37 gives the 
FT magnitude and phase spectra of the multiplexed sensing signals after taking the FT. The 
corresponding regions of phase for the two sensors are shown in Fig.38. From the figure, one 
can see that PM-PCF1 is held constant (no noticeable change in the phase slope), while PM- 
PCF2 is under a varying amount of applied pressure which resulted in a gradual change of 
the phase slope. The calculated equivalent wavelength shift and crosstalk between the two 
sensors are shown in Figs. 39(a) and 39(b), respectively. From the figure, the maximum 
crosstalk is~5%, which is considered small. 

6.5 Multiplexed in parallel by using coupler with reflected signals 
The third multiplexing scheme is to multiplex Sagnac interferometric sensors in parallel, and 
is illustrated in Fig.40.The effective lengths of PM-PCF1 and PM-PCF2 are 20 cm and 60 cm, 
respectively. The source light is split equally by the 3-dB coupler into two paths to 
illuminate the two sensors separately. The sensing signals reflected back from the two  
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Fig. 37. Magnitude spectra and phase spectra of the sensing signal under Fourier 
transformation. 
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Fig. 38. Phase shift of the sensing signal from the two Sagnac interferometric sensors. 
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Fig. 39. (a) The wavelength shifts as a function of pressure variation for the two Sagnac 
interferometric sensors, (b) sensing signal crosstalk of the two Sagnac interferometric 
sensors. 
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sensors are then coupled together by the same 3-dB coupler, and were measured with an 
OSA. The unused ends of the sensors were coiled in small loops to minimize Fresnel 
reflections. As compared to the serial multiplexing scheme, it required an additional 3-dB 
coupler. Note that the reflected sensing signals were taken instead of the transmitted 
signals, and there were two reasons for it. First, it helped to use one less 3-dB coupler to 
combine individual sensor signals at the output side and so reduced the system cost and 
complexity. Second, the reflected signal spectrum is, mathematically, the complement of the 
transmitted spectrum; and since the spectrum is of the form of sinusoidal pattern, the only 
difference is the phase angle of π. For K Sagnac interferometric sensors multiplexed in 
parallel, the output spectrum is given by, 

 10 k
1

1 210 { [1 cos( )]}[ ]
2

k
output

k k
input kk

P
Log L R dB

P S
π θ

=
= + +∑  (20) 

where Rk, Lk, Sk, θk are the coupling ratio, the loss, the period of the output spectrum and the 
initial phase of the k-th sensor, respectively. Note that the output spectrum is the arithmetic 
sum of all individual sensor signals, as opposed to multiplication in the serial multiplexing 
case. 
 

 
Fig. 40. Experimental setup of in parallel multiplexing technique for PM-PCF based Sagnac 
interferometric sensors. 

As an experimental demonstration, a similar pressure sensing experiment to the previous 
multiplexing scheme was performed. Figure 41 shows the output spectra, with PM-PCF1 
placed freely on the table and PM-PCF2 placed inside the pressure chamber. Again, we 
employed both the DWT and FT methods independently to demultiplex the sensing signal. 

6.6 DWT demultiplexing method 
After taking the DWT of the multiplexed sensing signal, Fig.42 shows the detail coefficients 
of the two sensors at different wavelet levels. It is apparent from the figure that PM-PCF 1 
remained almost constant, while PM-PCF2 can visibly be seen to have had the whole signal 
shifted. The phase shifts of the two sensors and the corresponding crosstalk measurement 
are shown in Figs. 43(a) and 43(b), respectively. The crosstalk between the two sensing 
signals is indeed very small, with a maximum value of less than 2%. 
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Fig. 37. Magnitude spectra and phase spectra of the sensing signal under Fourier 
transformation. 
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Fig. 38. Phase shift of the sensing signal from the two Sagnac interferometric sensors. 
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Fig. 39. (a) The wavelength shifts as a function of pressure variation for the two Sagnac 
interferometric sensors, (b) sensing signal crosstalk of the two Sagnac interferometric 
sensors. 
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sensors are then coupled together by the same 3-dB coupler, and were measured with an 
OSA. The unused ends of the sensors were coiled in small loops to minimize Fresnel 
reflections. As compared to the serial multiplexing scheme, it required an additional 3-dB 
coupler. Note that the reflected sensing signals were taken instead of the transmitted 
signals, and there were two reasons for it. First, it helped to use one less 3-dB coupler to 
combine individual sensor signals at the output side and so reduced the system cost and 
complexity. Second, the reflected signal spectrum is, mathematically, the complement of the 
transmitted spectrum; and since the spectrum is of the form of sinusoidal pattern, the only 
difference is the phase angle of π. For K Sagnac interferometric sensors multiplexed in 
parallel, the output spectrum is given by, 
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where Rk, Lk, Sk, θk are the coupling ratio, the loss, the period of the output spectrum and the 
initial phase of the k-th sensor, respectively. Note that the output spectrum is the arithmetic 
sum of all individual sensor signals, as opposed to multiplication in the serial multiplexing 
case. 
 

 
Fig. 40. Experimental setup of in parallel multiplexing technique for PM-PCF based Sagnac 
interferometric sensors. 

As an experimental demonstration, a similar pressure sensing experiment to the previous 
multiplexing scheme was performed. Figure 41 shows the output spectra, with PM-PCF1 
placed freely on the table and PM-PCF2 placed inside the pressure chamber. Again, we 
employed both the DWT and FT methods independently to demultiplex the sensing signal. 

6.6 DWT demultiplexing method 
After taking the DWT of the multiplexed sensing signal, Fig.42 shows the detail coefficients 
of the two sensors at different wavelet levels. It is apparent from the figure that PM-PCF 1 
remained almost constant, while PM-PCF2 can visibly be seen to have had the whole signal 
shifted. The phase shifts of the two sensors and the corresponding crosstalk measurement 
are shown in Figs. 43(a) and 43(b), respectively. The crosstalk between the two sensing 
signals is indeed very small, with a maximum value of less than 2%. 
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Fig. 41. Output transmission spectra of the two multiplexed Sagnac interferometric sensors 
in parallel with one sensor under applied pressure variations. 
 

 
Fig. 42. Sensing signals of the two Sagnac interferometric sensors extracted using the 
wavelet method. 
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Fig. 43. (a) The wavelength shifts as a function of pressure variation for the two Sagnac 
interferometric sensors, (b) sensing signal crosstalk of the two Sagnac interferometric 
sensors. 
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6.7 FT demultiplexing method 
With the FT method applied, Fig. 44 gives the FT magnitude and phase spectra of the 
multiplexed sensing signals. The corresponding regions of phase for the two sensors are 
illustrated in Fig.45. From the figure, one can notice that PM-PCF1 has no noticeable change 
in the phase slope, while PM-PCF2 experienced pressure changes which resulted in a 
gradual change in the phase slope. The calculated equivalent wavelength shifts and the 
corresponding crosstalk measurement are shown in Figs. 46(a) and 46(b), respectively. 
Again, the crosstalk is very small, with a maximum of less than 3%. 
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Fig. 44. Magnitude spectrum and phase spectrum of the sensing signal under Fourier 
transformation. 
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Fig. 45. Phase shift of the sensing signal from the two Sagnac interferometric sensors. 

6.8 Discussions 
Each of the three multiplexing schemes has its own characteristics and is suitable for 
different applications. The CWDM scheme enables easy real-time system implementation. It 
provides a direct measurement without the need for dealing with crosstalk between signals 
from different channels. The number of sensors that can be multiplexed is limited by the 
available channels of the CWDM at a fixed light source bandwidth. Although with more 
channels, more sensors can be multiplexed; the bandwidth of each channel becomes 
narrower. In principle, the minimum bandwidth of each channel has to be larger than the 
period of the sensor signal, plus a bit of guard band between channel edges to avoid 
erroneous results due to signal discontinuities. 
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Fig. 41. Output transmission spectra of the two multiplexed Sagnac interferometric sensors 
in parallel with one sensor under applied pressure variations. 
 

 
Fig. 42. Sensing signals of the two Sagnac interferometric sensors extracted using the 
wavelet method. 
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Fig. 43. (a) The wavelength shifts as a function of pressure variation for the two Sagnac 
interferometric sensors, (b) sensing signal crosstalk of the two Sagnac interferometric 
sensors. 
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6.7 FT demultiplexing method 
With the FT method applied, Fig. 44 gives the FT magnitude and phase spectra of the 
multiplexed sensing signals. The corresponding regions of phase for the two sensors are 
illustrated in Fig.45. From the figure, one can notice that PM-PCF1 has no noticeable change 
in the phase slope, while PM-PCF2 experienced pressure changes which resulted in a 
gradual change in the phase slope. The calculated equivalent wavelength shifts and the 
corresponding crosstalk measurement are shown in Figs. 46(a) and 46(b), respectively. 
Again, the crosstalk is very small, with a maximum of less than 3%. 
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Fig. 44. Magnitude spectrum and phase spectrum of the sensing signal under Fourier 
transformation. 
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Fig. 45. Phase shift of the sensing signal from the two Sagnac interferometric sensors. 

6.8 Discussions 
Each of the three multiplexing schemes has its own characteristics and is suitable for 
different applications. The CWDM scheme enables easy real-time system implementation. It 
provides a direct measurement without the need for dealing with crosstalk between signals 
from different channels. The number of sensors that can be multiplexed is limited by the 
available channels of the CWDM at a fixed light source bandwidth. Although with more 
channels, more sensors can be multiplexed; the bandwidth of each channel becomes 
narrower. In principle, the minimum bandwidth of each channel has to be larger than the 
period of the sensor signal, plus a bit of guard band between channel edges to avoid 
erroneous results due to signal discontinuities. 
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Fig. 46. (a) The wavelength shifts as a function of pressure variation for the two Sagnac 
interferometric sensors, (b) sensing signal crosstalk of the two Sagnac interferometric 
sensors. 

For the serial multiplexing scheme, no additional fiber-optic components are needed. The 
sensors are multiplexed easily by connecting them together one by one, which makes this 
scheme the simplest in terms of sensor system architecture. The number of sensors that can be 
multiplexed is mainly limited by the splicing loss between PM-PCFs and SMFs. On the other 
hand, for the parallel multiplexing scheme, it requires the addition of fiber couplers, which 
makes the system architecture relatively more complex and increases the total system cost. In 
addition, it increases the insertion loss due to splicing and fiber couplers. Nevertheless, the 
errors and adverse effects are also less because individual sensor signals are added rather than 
multiplied, and so they do not suffer from spectral shadowing and nonlinear mapping as is 
found in the serial multiplexing scheme [42]. It is evident from our experiments that parallel 
multiplexing has less crosstalk (with other sources of errors included) than that of serial 
multiplexing. It should be pointed out that the measurement errors due to fluctuations in the 
applied pressure played a role in our results, which can be noticed in their deviation from 
ideal values. This implies the intrinsic crosstalk is believed to be quite low.  
There is a consideration when using the DWT and FT methods to demultiplex the sensor 
signals obtained from the serial and parallel multiplexing schemes. The effective length of PM-
PCFs must be properly chosen not to be too close to each other in order to avoid overlap after 
performing the transformations. However, it is not an issue for the CWDM scheme because 
signals from sensors are well distinguished by each channel. These three multiplexing schemes 
can be implemented together to further increase the number of sensors.  
For example, within each channel in the CWDM, sensors can be multiplexed in series or in 
parallel. This combined configuration cannot only increase the number of sensors by several 
times, but also maximizes the full use of the light source bandwidth. To sum up, from 
practicability point of view, the CWDM scheme is among the easiest and simplest, whereas 
serial multiplexing is more practical in real applications. On the other hand, parallel 
multiplexing offers slightly better performance in terms of crosstalk and measurement 
errors. At present stage, the main limitations on the last two multiplexing schemes are the 
insertion loss. The presented multiplexing schemes, together with the two demultiplexing 
methods, are not only limited to use for PM-PCF Sagnac interferometric sensors. Indeed, 
they can be applied in any PCF sensor that has sinusoidal patterns. This will be one step 
closer towards a more practical sensing system using PCF based sensors. 
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7. Summary 
In this chapter, we have introduced and demonstrated the basic operation principle of 
FLMs, and their applications in optical devices and in optical sensors, which include:  
i. Temperature-insensitive interferometer based on HiBi-PCF FLM. The temperature-

insensitivity of the FLM is improved 55 times by using the HiBi-PCF, mainly because 
the temperature coefcient of birefringence in PCF is measured to be 30 times lower 
than that of conventional PMF;  

ii. Temperature-insensitive strain sensor based on HiBi-PCF FLM. Strain measurement 
with a sensitivity of 0.23 pm/με is achieved, and the measurement range, by stretching 
the PM-PCF only, is up to 32 mε. The strain measurement is inherently temperature 
insensitive due to the great thermal stability of PM-PCF based Sagnac interferometers. 
That improves the accuracy of strain measurement and eliminates the requirement for 
temperature compensation;  

iii. Pressure sensor realized with HiBi-PCF based Sagnac interferometer. The Sagnac loop 
itself acts as a sensitive pressure sensing element, making it an ideal candidate for 
pressure sensor. Pressure measurement results show a sensing sensitivity of 3.42 
nm/MPa, which is achieved by using a 58.4 cm PM-PCF-based Sagnac interferometer. 
Important features of the pressure sensor are the low thermal coefficient and the 
exceptionally low bending loss of the PM-PCF, which permits the fiber to be coiled 
into a 5mm diameter circle. This allows the realization of a very small pressure 
sensor;  

iv. Compact and highly sensitive temperature sensor based on an alcohol-filled HiBi-PCF 
FLM. Due to the high temperature sensitivity of the filled alcohol, an alcohol-filled 
HiBi-PCF FLM with an extremely high sensitivity on temperature are presented 
Experimental results show that the sensitivity is as high as 6.6 nm/°C, which is 660 and 
7 times higher than that of a FBG and that of the FLM made of a conventional HiBi 
fiber;  

v. Demodulation of sensors based on HiBi-PCF FLM. The sensor demodulation is based 
on the intensity measurement, in which a distributed-feedback (DFB) laser is used as 
the light source. Since the output intensity of the FLM is directly proportional to the 
applied strain, only an optical power meter is sufficient to detect strain variation, 
avoiding the need for an expensive OSA;  

vi. Multiplexing of HiBi-PCF based Sagnac interferometric sensors. Three multiplexing 
schemes are presented for HiBi-PCF based Sagnac interferometric sensors. The first 
technique is wavelength division multiplexing using coarse wavelength division 
multiplexers (CWDMs) to distinguish signals from each multiplexed sensor in different 
wavelength channels. The other two schemes are to multiplex sensors in series along a 
single fiber link and in parallel by using fiber-optic couplers. While for the CWDM 
scheme, the multiplexed sensing signal can be obtained by direct measurement; for the 
other two multiplexing techniques, the sensing signal is more complex and cannot be 
easily demultiplexed. Thus, some signal processing methods are required. In this 
regard, two mathematical transformations, namely the discrete wavelet transform and 
Fourier transform, have been independently and successfully implemented into these 
two schemes. The operating principles, experimental setup, and overall performance 
are discussed. 
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Fig. 46. (a) The wavelength shifts as a function of pressure variation for the two Sagnac 
interferometric sensors, (b) sensing signal crosstalk of the two Sagnac interferometric 
sensors. 

For the serial multiplexing scheme, no additional fiber-optic components are needed. The 
sensors are multiplexed easily by connecting them together one by one, which makes this 
scheme the simplest in terms of sensor system architecture. The number of sensors that can be 
multiplexed is mainly limited by the splicing loss between PM-PCFs and SMFs. On the other 
hand, for the parallel multiplexing scheme, it requires the addition of fiber couplers, which 
makes the system architecture relatively more complex and increases the total system cost. In 
addition, it increases the insertion loss due to splicing and fiber couplers. Nevertheless, the 
errors and adverse effects are also less because individual sensor signals are added rather than 
multiplied, and so they do not suffer from spectral shadowing and nonlinear mapping as is 
found in the serial multiplexing scheme [42]. It is evident from our experiments that parallel 
multiplexing has less crosstalk (with other sources of errors included) than that of serial 
multiplexing. It should be pointed out that the measurement errors due to fluctuations in the 
applied pressure played a role in our results, which can be noticed in their deviation from 
ideal values. This implies the intrinsic crosstalk is believed to be quite low.  
There is a consideration when using the DWT and FT methods to demultiplex the sensor 
signals obtained from the serial and parallel multiplexing schemes. The effective length of PM-
PCFs must be properly chosen not to be too close to each other in order to avoid overlap after 
performing the transformations. However, it is not an issue for the CWDM scheme because 
signals from sensors are well distinguished by each channel. These three multiplexing schemes 
can be implemented together to further increase the number of sensors.  
For example, within each channel in the CWDM, sensors can be multiplexed in series or in 
parallel. This combined configuration cannot only increase the number of sensors by several 
times, but also maximizes the full use of the light source bandwidth. To sum up, from 
practicability point of view, the CWDM scheme is among the easiest and simplest, whereas 
serial multiplexing is more practical in real applications. On the other hand, parallel 
multiplexing offers slightly better performance in terms of crosstalk and measurement 
errors. At present stage, the main limitations on the last two multiplexing schemes are the 
insertion loss. The presented multiplexing schemes, together with the two demultiplexing 
methods, are not only limited to use for PM-PCF Sagnac interferometric sensors. Indeed, 
they can be applied in any PCF sensor that has sinusoidal patterns. This will be one step 
closer towards a more practical sensing system using PCF based sensors. 
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FLMs, and their applications in optical devices and in optical sensors, which include:  
i. Temperature-insensitive interferometer based on HiBi-PCF FLM. The temperature-

insensitivity of the FLM is improved 55 times by using the HiBi-PCF, mainly because 
the temperature coefcient of birefringence in PCF is measured to be 30 times lower 
than that of conventional PMF;  

ii. Temperature-insensitive strain sensor based on HiBi-PCF FLM. Strain measurement 
with a sensitivity of 0.23 pm/με is achieved, and the measurement range, by stretching 
the PM-PCF only, is up to 32 mε. The strain measurement is inherently temperature 
insensitive due to the great thermal stability of PM-PCF based Sagnac interferometers. 
That improves the accuracy of strain measurement and eliminates the requirement for 
temperature compensation;  

iii. Pressure sensor realized with HiBi-PCF based Sagnac interferometer. The Sagnac loop 
itself acts as a sensitive pressure sensing element, making it an ideal candidate for 
pressure sensor. Pressure measurement results show a sensing sensitivity of 3.42 
nm/MPa, which is achieved by using a 58.4 cm PM-PCF-based Sagnac interferometer. 
Important features of the pressure sensor are the low thermal coefficient and the 
exceptionally low bending loss of the PM-PCF, which permits the fiber to be coiled 
into a 5mm diameter circle. This allows the realization of a very small pressure 
sensor;  

iv. Compact and highly sensitive temperature sensor based on an alcohol-filled HiBi-PCF 
FLM. Due to the high temperature sensitivity of the filled alcohol, an alcohol-filled 
HiBi-PCF FLM with an extremely high sensitivity on temperature are presented 
Experimental results show that the sensitivity is as high as 6.6 nm/°C, which is 660 and 
7 times higher than that of a FBG and that of the FLM made of a conventional HiBi 
fiber;  

v. Demodulation of sensors based on HiBi-PCF FLM. The sensor demodulation is based 
on the intensity measurement, in which a distributed-feedback (DFB) laser is used as 
the light source. Since the output intensity of the FLM is directly proportional to the 
applied strain, only an optical power meter is sufficient to detect strain variation, 
avoiding the need for an expensive OSA;  

vi. Multiplexing of HiBi-PCF based Sagnac interferometric sensors. Three multiplexing 
schemes are presented for HiBi-PCF based Sagnac interferometric sensors. The first 
technique is wavelength division multiplexing using coarse wavelength division 
multiplexers (CWDMs) to distinguish signals from each multiplexed sensor in different 
wavelength channels. The other two schemes are to multiplex sensors in series along a 
single fiber link and in parallel by using fiber-optic couplers. While for the CWDM 
scheme, the multiplexed sensing signal can be obtained by direct measurement; for the 
other two multiplexing techniques, the sensing signal is more complex and cannot be 
easily demultiplexed. Thus, some signal processing methods are required. In this 
regard, two mathematical transformations, namely the discrete wavelet transform and 
Fourier transform, have been independently and successfully implemented into these 
two schemes. The operating principles, experimental setup, and overall performance 
are discussed. 
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1. Introduction 
Optical coherence tomography (OCT) is a new technology for noninvasive cross-sectional 
imaging of tissue structure in biological system by directing a focused beam of light at the 
tissue to be image [Bouma et al., 1995; Jiang et al., 2005; Ryu et al., 2005]. The technique 
measures the optical pulse time delay and intensity of backscattered light using 
interferometry with broadband light sources or with frequency swept lasers. It is analogous 
to ultrasound imaging or radar, except that it uses light rather than sound or radio waves. In 
addition, unlike ultrasound, OCT does not require direct contact with the tissue being 
imaged. OCT depends on optical ranging; in other words, distances are measured by 
shining a beam of light onto the object, then recording the optical pulse time delay of light. 
Since the velocity of light is so high, it is not possible to directly measure the optical pulse 
time delay of reflections; therefore, a technique known as low-coherence interferometry 
compares reflected light from the biological tissue to that reflected from a reference path of 
known length. Different internal structures produce different time delays, and cross-
sectional images of the structures can be generated by scanning the incident optical beam. 
Earlier OCT systems typically required many seconds or minutes to generate a single OCT 
image of tissue structure, raising the likelihood of suffering from motion artifacts and 
patient discomfort during in vivo imaging. To counter such problems, techniques have been 
developed for scanning the reference arm mirror at sufficiently high speeds to enable real-
time OCT imaging [Tearnery et al., 1997]. OCT can be used where excisional biopsy would 
be hazardous or impossible, such as imaging the retina, coronary arteries or nervous tissue. 
OCT has had the largest impact in ophthalmology where it can be used to create cross-
sectional images of retinal pathology with higher resolution than any other noninvasive 
imaging technique. Now a days OCT is a prospective technology which is used not only for 
ophthalmology but also for dermatology, dental as well as for the early detection of cancer 
in digestive organs. The wavelength range of the OCT light source is spread from the 0.8 to 
1.6 μm band. This spectral region is of particular interest for OCT because it penetrates 
deeply into biological tissue and permits spectrally resolved imaging of water absorption 
bands. In this spectral region, attenuation is minimum due to absorption and scattering. It 
should be noted that scattering decreases at longer wavelengths in proportion to 1/λ4, 
indicating that the scattering magnitude at 0.8 ~ 1.6 μm wavelengths is lower than at the 
visible wavelengths [Agrawal, 1995]. Ultrahigh-resolution OCT imaging in the spectral 
region from 0.8 to 1.6 μm requires extremely broad bandwidths because longitudinal 
resolution depends on the coherence length. The coherence length is inversely proportional 
to the bandwidth and proportional to square of the light source center wavelength. This can 
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deeply into biological tissue and permits spectrally resolved imaging of water absorption 
bands. In this spectral region, attenuation is minimum due to absorption and scattering. It 
should be noted that scattering decreases at longer wavelengths in proportion to 1/λ4, 
indicating that the scattering magnitude at 0.8 ~ 1.6 μm wavelengths is lower than at the 
visible wavelengths [Agrawal, 1995]. Ultrahigh-resolution OCT imaging in the spectral 
region from 0.8 to 1.6 μm requires extremely broad bandwidths because longitudinal 
resolution depends on the coherence length. The coherence length is inversely proportional 
to the bandwidth and proportional to square of the light source center wavelength. This can 
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be achieved by supercontinuum (SC) light using photonic crystal fibers. The ophthalmology 
and dermatology OCT imaging are done predominantly at near 0.8 μm center wavelength 
[Bouma et al., 1995; Drexler et al., 1999; Ohmi et al., 2004; Pan et al., 1998; Welzel et al., 1997]. 
The dentistry OCT imaging is performed at 1.3 μm wavelength [Boppart et al., 1998; Colston 
et al., 1998; Hartl et al., 2001; Herz et al., 2004]. Currently, it is reported that the OCT 
imaging at 1.5 ~ 1.6 μm broadband light source can be readily applied to take images of 
human tooth samples [Lee et al., 2009]. On the other hand, telecommunication window 
(around 1.55 μm) is the most attractive window in optical communication systems, 
dispersion compensation and nonlinear optics because of the minimum transmission loss of 
the fiber [Begum et al., 2007a, 2007b, 2009a]. 
Photonic crystal fibers (PCFs) [Russel, 2003], a pure silica core optical fibers with tiny air 
holes embedded in the host silica matrix running along the propagation axis, have boosted 
the fiber optic research due to their remarkable modal properties such as provide single-
mode operation for very short operating wavelengths [Knight et al., 1996], remain single-
mode for large scale fibers [Knight et al., 1998], achieve high birefringence [Kaijage et al., 
2000], and controllable dispersion characteristics [Begum et al., 2009b] which cannot be 
achieved with conventional optical fibers. These fibers are also termed as microstructured 
fibers (MSFs) or microstructured optical fibers (MOFs). PCFs are dived into two categories 
according to the light confinement mechanisms: one is index-guiding or solid core fibers 
[Knight et al., 1996] and the other is photonic bandgap (PBG) or hollow core fibers [Couny et 
al., 2008]. Those with a solid core light can confine in a high-index core by modified total 
internal reflection which is same index guiding principle as conventional optical fibers. 
However, they can have a much higher effective-index contrast between core and cladding, 
and therefore can have much stronger confinement for applications in nonlinear optical 
devices, polarization maintaining fibers, etc. Alternatively, in PBG fibers where the light is 
confined in a lower index core by a photonic bandgap created by the microstructured 
cladding. The presence of air holes in the cladding gives rise to strong wavelength 
dependence of the cladding index which is primarily responsible for its magnificent 
characteristics. The extra degrees of freedom in PCFs facilitate a complete control on its 
properties such as ultraflattened dispersion and high negative dispersion. The precise 
control of geometrical parameters can provide ultraflattened dispersion in PCFs. PCFs are 
very attractive and efficient to produce high power light source in OCT system. Because 
PCFs can generate SC spectrum due to their design degree of freedom which make it 
possible to enhance the nonlinear effects by reducing effective area and tailor chromatic 
dispersion. As it is well known, the optical attenuation sources in PCFs include intrinsic 
losses due to Rayleigh scattering, imperfection losses due to the fabrication, and 
confinement losses caused by finite number of air holes in the cladding. Since the core has 
the same refractive index as the cladding, the guided mode is intrinsically leaky and 
experiences confinement losses. In fact, confinement losses occur even in the absence of the 
other two losses. By careful design, it is possible to reduce confinement losses to negligible 
values compared with the intrinsic losses. Control of chromatic dispersion keeping a low 
confinement loss to a level below the Rayleigh scattering limit is a very important for any 
optical system supporting ultrashort soliton pulse propagation [Agrawal, 1995]. In all cases, 
almost flattened fiber dispersion and low confinement loss behavior becomes a crucial issue. 
Although the resolution power of the currently available OCT machines are remarkable, 
they are not sufficiently high to unequivocally identify all retinal sublayers and make 
‘biopsy’-like diagnoses. Resolution is limited mainly by the bandwidth of the light source, 
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usually a superluminescent diode (SLD) [Colston et al., 1998; Ryu et al., 2005] and increased 
resolution will require wider bandwidth light sources. The emergence of ultrabroad 
bandwidth femtosecond laser technology has allowed the development of an ultra-high 
resolution OCT [Boppart et al., 1998; Bouma et al., 1995; Drexler et al., 1999; Hartl et al., 
2001; Herz et al., 2004; Jiang et al., 2005; Lee et al., 2009; Ohmi et al., 2004; Pan et al., 1998; 
Tearnery et al., 1997; Welzel et al., 1997]. The ultrahigh resolution OCT will in effect be a 
microscope capable of revealing certain histopathological aspects of macular disease in the 
living tissue. Femtosecond laser source is expensive than picosecond laser source and low 
incident power. Consequently, currently researchers are paying attention to develop 
picosecond light sources for using ultrahigh-resolution OCT system. Picosecond pulse laser 
source gives more narrow spectra than femtosecond laser source but since the laser source is 
cheaper in this case it attracts practical implementation. The ultrahigh resolution OCT will 
in effect be a microscope capable of revealing certain histopathological aspects of macular 
disease in the living tissue.  
In this work, we report a broadband SC generation in highly nonlinear photonic crystal fiber 
(HN-PCF) at center wavelength 0.8 μm, 1.3 μm and 1.55 μm using high power picosecond 
pulses which can be applicable in ultrahigh-resolution OCT system for ophthalmology, 
dermatology and dental imaging. The proposed HN-PCF is investigated through a full-
vector finite difference method with anisotropic perfectly matched layer. Through numerical 
simulation, it is demonstrated that it is possible to achieve different properties of the 
proposed HN-PCF. Based on the nonlinear Schrödinger equation, we find that the proposed 
HN-PCF, having four rings and two different sizes of air holes, can achieve SC spectrum 
with input picosecond pulses. We have further investigated the full width of half maximum 
of the generated SC spectrum of HN-PCF that can gives significant information on the 
longitudinal resolution in biological tissue by assuming coherent length. The achieved 
longitudinal resolutions in tissue are 0.97 μm at 0.8 μm for ophthalmology and dermatology, 
0.85 μm at 1.3 μm for dental imaging and 1.1 μm at 1.55 μm also for dental imaging. To our 
knowledge, these are the highest resolution achieved in biological tissue to date at 0.8 μm, 
1.3 μm and 1.55 μm wavelength. Furthermore, numerical simulation result shown that it is 
possible to obtain ultra-flattened chromatic dispersion, low dispersion slope, high nonlinear 
coefficient and very low confinement loss, simultaneously from the proposed HN-PCF.  

2. Proposed HN-PCF structure 
Fig. 1 (a) shows the schematic cross section of the conventional PCF structure. This PCF 
consists of a triangular lattice of air holes where the core is defined by a missing air hole. 
The core diameter is 2a, where ‘a’ equals Λ-d/2. The air hole pitch is labeled Λ, and 
measures the period of the air hole structure (the distance between the centers of 
neighboring air holes). The air hole size is labeled d, and measures the diameter of the holes. 
The background material is regular silica with a cladding refractive index n = 1.45. Fig. 1 (b) 
shows the proposed HN-PCF structure. It has a pitch Λ, two air holes with diameters d1 and 
d. The pitch constant is chosen to be Λ = 0.87 μm, while the diameter of the air holes in the 
cladding of the fiber are d1 = 0.46 μm, d = 0.80 μm, with a total number of 4 hole layers in the 
cladding. Designing HN-PCF for the OCT and telecommunication window using a 
conventional PCF structure is difficult: therefore, the dimensions of the first rings of the 
proposed HN-PCF are scaled downed to shape the dispersion characteristics. The 
dimensions of the other rings are retained sufficiently large for better field confinement.  
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Fig. 1(a). Schematic cross section of the conventional PCF structure. 
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Fig. 1(b). The proposed HN-PCF structure.  

This HN-PCF structure can provide ultra-flattened chromatic dispersion characteristics with 
very high nonlinearity, and low confinement loss for the OCT and telecommunication 
window. We analyzed the proposed HN-PCF with low confinement losses by modulating 
only dimension of the first rings, in order to simplify the structure and decrease the 
fabrication difficulties. In telecommunication widow, the parameters Λ = 0.79 μm, d1 = 0.28 
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μm, d = 0.69 μm, with a total number of 7 hole layers in the cladding are selected for 
achieving ultra-flattened chromatic dispersion characteristics, small effective area, and low 
confinement loss. In this case, 7 air hole layers are selected only for reducing confinement 
loss below 0.2 dB/km. 

3. Numerical model 
The situation in photonics is especially favorable for computation because the Maxwell 
equations are practically exact, the relevant material properties are well known, and the 
length scales are not too small. The results of such computations have consistently agreed 
with experiments. This makes it possible and preferable to optimize the design of photonic 
crystals on a computer, and then manufacture them. For this proposed HN-PCF structure, 
by using an accurate modal analysis based on a full-vector finite difference method (FDM) 
[Begum et al., 2011; Shen et al., 2003] with anisotropic perfectly matched boundary layers 
(PML), we evaluate the different properties of HN-PCF. The PML in fact is not a boundary 
condition, but an additional domain that absorbs the incident radiation waves without 
producing reflections. Once the effective refractive index neff is obtained by solving an 
eigenvalue problem drawn from the Maxwell’s equations using the FDM, the parameter 
chromatic dispersion D(λ), confinement loss Lc, effective area Aeff and nonlinear coefficient γ 
can be calculated [Begum et al., 2011; Shen et al., 2003].  

3.1 Chromatic dispersion 
The group-velocity dispersion D(λ) is defined as the change in pulse width per unit distance 
of propagation (i.e., ps/(nm.km). It means that D(λ) causes a short pulse of light to spread in 
time as a result of different frequency components of the pulse traveling at different 
velocities. This can be calculated from following equation. 
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where, β1 and β2 are the propagation constant parameters, vg is the group velocity, λ is the 
operating wavelength in μm, c is the velocity of the light in a vacuum, Re[neff] is the real part 
of the effective index.  
The corresponding dispersion slope S(λ) is defined as 

 ( )( ) dDS
d
λλ
λ

=  (2) 

Since the total chromatic dispersion is the summation of material dispersion Dm(λ) and 
waveguide dispersion Dw(λ). The material dispersion quantified from the Sellmeier equation 
is directly included in the FDM calculation process. The reason for this is that Dm(λ) is 
mostly determined by the wavelength dependence of the fiber material and for this reason it 
cannot be altered significantly in the engineering process. On the other hand, Dw(λ), which 
is strongly dependent to the silica-air structure. Therefore, in our calculation chromatic 
dispersion D(λ) [Begum et al., 2011; Shen et al., 2003] corresponds to the total dispersion of 
the PCFs.  
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Fig. 1(a). Schematic cross section of the conventional PCF structure. 
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Fig. 1(b). The proposed HN-PCF structure.  

This HN-PCF structure can provide ultra-flattened chromatic dispersion characteristics with 
very high nonlinearity, and low confinement loss for the OCT and telecommunication 
window. We analyzed the proposed HN-PCF with low confinement losses by modulating 
only dimension of the first rings, in order to simplify the structure and decrease the 
fabrication difficulties. In telecommunication widow, the parameters Λ = 0.79 μm, d1 = 0.28 
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crystals on a computer, and then manufacture them. For this proposed HN-PCF structure, 
by using an accurate modal analysis based on a full-vector finite difference method (FDM) 
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(PML), we evaluate the different properties of HN-PCF. The PML in fact is not a boundary 
condition, but an additional domain that absorbs the incident radiation waves without 
producing reflections. Once the effective refractive index neff is obtained by solving an 
eigenvalue problem drawn from the Maxwell’s equations using the FDM, the parameter 
chromatic dispersion D(λ), confinement loss Lc, effective area Aeff and nonlinear coefficient γ 
can be calculated [Begum et al., 2011; Shen et al., 2003].  

3.1 Chromatic dispersion 
The group-velocity dispersion D(λ) is defined as the change in pulse width per unit distance 
of propagation (i.e., ps/(nm.km). It means that D(λ) causes a short pulse of light to spread in 
time as a result of different frequency components of the pulse traveling at different 
velocities. This can be calculated from following equation. 
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where, β1 and β2 are the propagation constant parameters, vg is the group velocity, λ is the 
operating wavelength in μm, c is the velocity of the light in a vacuum, Re[neff] is the real part 
of the effective index.  
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Since the total chromatic dispersion is the summation of material dispersion Dm(λ) and 
waveguide dispersion Dw(λ). The material dispersion quantified from the Sellmeier equation 
is directly included in the FDM calculation process. The reason for this is that Dm(λ) is 
mostly determined by the wavelength dependence of the fiber material and for this reason it 
cannot be altered significantly in the engineering process. On the other hand, Dw(λ), which 
is strongly dependent to the silica-air structure. Therefore, in our calculation chromatic 
dispersion D(λ) [Begum et al., 2011; Shen et al., 2003] corresponds to the total dispersion of 
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3.2 Confinement loss 
The attenuation caused by the waveguide geometry is called confinement loss Lc. This is an 
additional form of loss that occurs in single-material fibers particularly in PCFs because they 
are usually made of pure silica and given by [Begum et al., 2011; Shen et al., 2003] 

 0 Im[ ]
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c effL e k n−= − =  (3) 

where, k0 is the propagation constant in free space, λ is the operating wavelength in μm, and 
Im(neff) is the imaginary part of the complex effective index neff.  

3.3 Effective area 
The effective area Aeff is defined as follows [Begum et al., 2011; Shen et al., 2003] 
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where, E is the electric field derived by solving Maxwell’s equations. From this equation, it 
is seen that effective area Aeff depends on the fiber parameters such as the mode field 
diameter and core-cladding index difference. 

3.4 Nonlinear coefficient 
In this research, silica is used as a background material for designing PCFs. Since silica can 
be treated as a homogeneous material, the lowest-order nonlinear coefficient is the third-
order susceptibility χ(3). Most of the nonlinear effects in optical fibers therefore originate 
from nonlinear refraction, a phenomenon that refers to the intensity dependence of the 
refractive index resulting from the contribution of χ(3), i.e., the refractive index of the fiber 
becomes [Agrawal, 1995] 

 2
1 2n n n E= +  (5) 

where, n1 is the linear refractive index which is responsible for material dispersion, 2E is the 
optical intensity inside the fiber, n2 is the nonlinear refractive index related to χ(3) by the 
following relation  
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where, Re stands for the real part. Another way to represents the refractive index is 
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where, P is the incident light power and Aeff is the effective area of the fiber. From nonlinear 
part of Eq. (5) and Eq. (7), we can write 
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From Eq. (8), it is clear that optical intensity inside the fiber E can be increased by two ways. 
One is by focusing the light tightly to reduced Aeff and by increasing incident optical power.  
The nonlinear coefficient of PCFs depends on the value of nonlinear refractive index and the 
effective area of the PCFs. The nonlinear coefficient is calculated according to following 
equation [Agrawal, 1995].  
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where, γ is the nonlinear coefficient, ω is the angular frequency, n2 is the nonlinear refractive 
index, λ is the wavelength of the light, (n2/Aeff) is the nonlinear constant. It is possible to 
enhance the nonlinearity by reducing the effective area Aeff through a smaller core diameter 
and increasing nonlinear refractive index of a material n2. This n2 is constant and depending 
on the material of the fibers while is variable and varied from 2.2~3.4×10-20 m2/W.  

3.5 Nonlinear Schrödinger equation 
Nonlinear Schrödinger equation (NLSE) is used for numerical calculation of SC spectrum 
[Agrawal, 1995]. The propagation equation Eq. (10) is a nonlinear partial differential 
equation that does not generally lend itself to analytic solutions when both the nonlinearity 
and the dispersion effect are present. A numerical approach is therefore often necessary for 
an understanding of the nonlinear effects in optical fibers. The split-step Fourier method is 
one of these, and is the most popular algorithm because of its good accuracy and relatively 
modest computing time [Agrawal, 1995].  
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where, A is the complex amplitude of the optical field, z is the propagation distance, α is the 
attenuation constant of the fiber, T = t – z/vg (t is the physical time, vg is the group velocity at 
the center wavelength), γ is the nonlinear coefficient, λc is the center wavelength, and TR is 
the slope of the Raman gain, βn (n =1 to 3) are the n-th order propagation constant. This 
propagation constant β(ω) is approximated by a few first terms of a Taylor series expansion 
about the carrier frequency ω0, that is  
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The second order propagation constant β2 [ps2/km], accounts for the dispersion effects in 
fiber-optic communication systems. Depending on the sign of β2, the dispersion region can 
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3.2 Confinement loss 
The attenuation caused by the waveguide geometry is called confinement loss Lc. This is an 
additional form of loss that occurs in single-material fibers particularly in PCFs because they 
are usually made of pure silica and given by [Begum et al., 2011; Shen et al., 2003] 
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where, k0 is the propagation constant in free space, λ is the operating wavelength in μm, and 
Im(neff) is the imaginary part of the complex effective index neff.  

3.3 Effective area 
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where, E is the electric field derived by solving Maxwell’s equations. From this equation, it 
is seen that effective area Aeff depends on the fiber parameters such as the mode field 
diameter and core-cladding index difference. 

3.4 Nonlinear coefficient 
In this research, silica is used as a background material for designing PCFs. Since silica can 
be treated as a homogeneous material, the lowest-order nonlinear coefficient is the third-
order susceptibility χ(3). Most of the nonlinear effects in optical fibers therefore originate 
from nonlinear refraction, a phenomenon that refers to the intensity dependence of the 
refractive index resulting from the contribution of χ(3), i.e., the refractive index of the fiber 
becomes [Agrawal, 1995] 
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where, n1 is the linear refractive index which is responsible for material dispersion, 2E is the 
optical intensity inside the fiber, n2 is the nonlinear refractive index related to χ(3) by the 
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where, P is the incident light power and Aeff is the effective area of the fiber. From nonlinear 
part of Eq. (5) and Eq. (7), we can write 
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From Eq. (8), it is clear that optical intensity inside the fiber E can be increased by two ways. 
One is by focusing the light tightly to reduced Aeff and by increasing incident optical power.  
The nonlinear coefficient of PCFs depends on the value of nonlinear refractive index and the 
effective area of the PCFs. The nonlinear coefficient is calculated according to following 
equation [Agrawal, 1995].  
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where, γ is the nonlinear coefficient, ω is the angular frequency, n2 is the nonlinear refractive 
index, λ is the wavelength of the light, (n2/Aeff) is the nonlinear constant. It is possible to 
enhance the nonlinearity by reducing the effective area Aeff through a smaller core diameter 
and increasing nonlinear refractive index of a material n2. This n2 is constant and depending 
on the material of the fibers while is variable and varied from 2.2~3.4×10-20 m2/W.  

3.5 Nonlinear Schrödinger equation 
Nonlinear Schrödinger equation (NLSE) is used for numerical calculation of SC spectrum 
[Agrawal, 1995]. The propagation equation Eq. (10) is a nonlinear partial differential 
equation that does not generally lend itself to analytic solutions when both the nonlinearity 
and the dispersion effect are present. A numerical approach is therefore often necessary for 
an understanding of the nonlinear effects in optical fibers. The split-step Fourier method is 
one of these, and is the most popular algorithm because of its good accuracy and relatively 
modest computing time [Agrawal, 1995].  
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where, A is the complex amplitude of the optical field, z is the propagation distance, α is the 
attenuation constant of the fiber, T = t – z/vg (t is the physical time, vg is the group velocity at 
the center wavelength), γ is the nonlinear coefficient, λc is the center wavelength, and TR is 
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The second order propagation constant β2 [ps2/km], accounts for the dispersion effects in 
fiber-optic communication systems. Depending on the sign of β2, the dispersion region can 
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be classified into two regions, normal dispersion region (β2 >0) and anomalous dispersion 
region (β2 < 0). 

3.6 Coherence length 
Coherence length lc is one of the important parameter in estimating the longitudinal 
resolution of the OCT source. The shorter the coherence length of the source, the more 
closely the sample and reference arm group delays must be matched for the constructive 
interference to occur. On the other word, we can say the combination of the reflected light 
from the sample arm (containing the item of the interest) and the reference light from the 
reference arm (usually a mirror) gives rise to an interference pattern but only if light from 
both arms traveled the same optical distance. The same optical distance means a difference 
of less than a coherence length. For a Gaussian spectrum the FWHM-duration of the 
coherence time tc is  

 4ln 2
ct vπ
=

Δ
 (13) 

where, the half-power bandwidth vΔ represents the spectral bandwidth of the source in the 
optical frequency domain.  
Because of the backscattering configuration of OCT that the light travels back and forth in the 
interferometer, the coherence length lc (in air) is expressed by the formula [Bouma et al., 1995] 
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where, c is the velocity of light in free-space, λc is the center wavelength of the spectrum and 
Δλ is the FWHM-wavelength width, 

2
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Δ = is the spectral bandwidth. This lc is very 

important for estimating the longitudinal resolution lr in air and biological tissue.  

3.7 Longitudinal resolution 
The axial or longitudinal and lateral or transverse resolutions of OCT are decoupled from 
one another; the former being an equivalent to the coherence length lc of the light source and 
the latter being a function of the optics. After calculating coherence length lc, longitudinal 
resolution in air and biological tissue can be estimated by [Bouma et al., 1995]  
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where, ntissue is the refractive index of the biological tissue. For ultrahigh-resolution OCT 
imaging lc should be low value because lr is proportional with lc.  

4. Simulation results 
Fig. 2 (a), (b) and (c) shows the wavelength dependence properties of chromatic dispersion, 
dispersion slope, effective area, nonlinear coefficient and confinement loss for the four-rings 
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HN-PCF in Fig. 1. As shown in Fig. 1, only the diameter of the first air hole ring is varied 
and the diameters of the remaining air holes remain the same, where d1 = 0.46 μm, d = 0.80 
μm, for a fixed pitch Λ = 0.87 μm. From Fig. 2, it is found that the proposed HN-PCF 
owning ultra-flattened chromatic dispersion and dispersion slope at 0.8 μm are 0.55 
ps/(nm.km) and 0.2 ps/(nm2.km), respectively. The nonlinear coefficient is larger than 208.0 
[W.km]-1 at 0.8 μm wavelength. Besides, the confinement loss is calculated and it is found 
that confinement loss is less than 10-2 dB/km in the wavelength range of 0.75 μm to 1.0 μm 
which is lower than Rayleigh scattering loss in conventional fiber. 
Fig. 3 (a), (b) and (c) demonstrates the wavelength dependence properties of chromatic 
dispersion, confinement loss and effective area for the seven-rings HN-PCF in Fig. 1, where 
d1 = 0.28 μm, d = 0.69 μm, for a fixed pitch Λ = 0.79 μm. In this case, it has been selected 7 air 
hole rings for reducing confinement loss lower than Rayleigh scattering loss in conventional 
fiber at 1.55 μm. Numerical simulation results show that the 7-rings HN-PCF have nonlinear 
coefficients more than 54.0 [W.km]-1 and confinement loss lower than 0.1 dB/km at 1.55 μm, 
ultra-flattened chromatic dispersion of -2.3 ps/(nm.km) at 1.55 μm wavelength. 
SC generation in the proposed HN-PCF is numerically calculated which is shown in Fig. 4 (a), 
(b) and (c). In Fig. 4 consider the propagation of the sech2 (square of the hyperbolic-secant) 
waveform with the full width at half maximum (FWHM), TFWHM and Raman scattering 
parameter are 1.0 ps and 3.0 fs, respectively, through the proposed HN-PCF. The input power 
Pin of the incident pulses are 18.0 W, 55.0 W and 58.0 W at 0.8 μm, 1.3 μm and 1.55 μm, 
respectively. The propagation constant around the carrier frequency β2 and β3 are 1.88 ps2/km 
and 0.02 ps3/km, respectively for Fig. 4 (a). Again, the propagation constant around the carrier 
frequency β2 and β3 are 2.55 ps2/km and -0.03 ps3/km, respectively for Fig. 4 (b). Moreover, the 
propagation constant around the carrier frequency β2 and β3 are 1.51 ps2/km and 0.01 ps3/km, 
respectively for Fig. 4 (c). The achieved fiber length is 10.0 m in all cases. The calculated SC 
spectrum FWHM bandwidth is 200 nm, 530 nm and 590 nm at center wavelength 0.8 μm, 1.3 
μm and 1.55 μm, respectively. From these results, it is evident that high quality SC spectrum is 
readily generated with relatively short fiber length and good incident power compared to the 
previously reported ones [Boppart et al., 1998; Bouma et al., 1995; Colston et al., 1998; Drexler 
et al., 1999; Hartl et al., 2001; Herz et al., 2004; Jiang et al., 2005; Lee et al., 2009; Ohmi et al., 
2004; Pan et al., 1998; Ryu et al., 2005; Tearnery et al., 1997; Welzel et al., 1997]. 
Fig. 5 (a), (b) and (c) represents the intensity spectra of the proposed HN-PCF at center 
wavelengths 0.8 μm, 1.3 μm and 1.55 μm, respectively when changing incident optical 
powers. It should be noted that in this time, the fiber lengths are remain unchanged in all of 
the center wavelengths. From these figures, it is seen that intensity spectra are gradually 
broadening with increasing the input power, Pin at the particular wavelength. Therefore, it is 
clearly seen that the SC spectral width is dependent to the incident power.  
Fig. 6 (a), (b) and (c) represents the intensity spectra of the proposed HN-PCF at center 
wavelengths 0.8 μm, 1.3 μm and 1.55 μm, respectively in different fiber lengths while incident 
optical powers are remain unchanged. From these figures, it is observed that intensity spectra 
are gradually broadening with increasing the fiber length, LF at the particular wavelength. So, 
it is noted that the SC spectral width is dependent to the fiber length. From Fig. 5 and 6, it is 
clear that the SC spectral width is dependent to the incident power and fiber length as well.  
Fig. 7 (a), (b) and (c) demonstrates the output powers of the proposed HN-PCF at center 
wavelengths 0.8 μm, 1.3 μm and 1.55 μm, respectively when the fiber length is 10 m in all 
center wavelengths. From these figures, it is found that output powers are increased with 
increasing incident input powers at particular wavelength.  
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be classified into two regions, normal dispersion region (β2 >0) and anomalous dispersion 
region (β2 < 0). 

3.6 Coherence length 
Coherence length lc is one of the important parameter in estimating the longitudinal 
resolution of the OCT source. The shorter the coherence length of the source, the more 
closely the sample and reference arm group delays must be matched for the constructive 
interference to occur. On the other word, we can say the combination of the reflected light 
from the sample arm (containing the item of the interest) and the reference light from the 
reference arm (usually a mirror) gives rise to an interference pattern but only if light from 
both arms traveled the same optical distance. The same optical distance means a difference 
of less than a coherence length. For a Gaussian spectrum the FWHM-duration of the 
coherence time tc is  
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where, the half-power bandwidth vΔ represents the spectral bandwidth of the source in the 
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The axial or longitudinal and lateral or transverse resolutions of OCT are decoupled from 
one another; the former being an equivalent to the coherence length lc of the light source and 
the latter being a function of the optics. After calculating coherence length lc, longitudinal 
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where, ntissue is the refractive index of the biological tissue. For ultrahigh-resolution OCT 
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4. Simulation results 
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HN-PCF in Fig. 1. As shown in Fig. 1, only the diameter of the first air hole ring is varied 
and the diameters of the remaining air holes remain the same, where d1 = 0.46 μm, d = 0.80 
μm, for a fixed pitch Λ = 0.87 μm. From Fig. 2, it is found that the proposed HN-PCF 
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ps/(nm.km) and 0.2 ps/(nm2.km), respectively. The nonlinear coefficient is larger than 208.0 
[W.km]-1 at 0.8 μm wavelength. Besides, the confinement loss is calculated and it is found 
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which is lower than Rayleigh scattering loss in conventional fiber. 
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hole rings for reducing confinement loss lower than Rayleigh scattering loss in conventional 
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SC generation in the proposed HN-PCF is numerically calculated which is shown in Fig. 4 (a), 
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Fig. 5 (a), (b) and (c) represents the intensity spectra of the proposed HN-PCF at center 
wavelengths 0.8 μm, 1.3 μm and 1.55 μm, respectively when changing incident optical 
powers. It should be noted that in this time, the fiber lengths are remain unchanged in all of 
the center wavelengths. From these figures, it is seen that intensity spectra are gradually 
broadening with increasing the input power, Pin at the particular wavelength. Therefore, it is 
clearly seen that the SC spectral width is dependent to the incident power.  
Fig. 6 (a), (b) and (c) represents the intensity spectra of the proposed HN-PCF at center 
wavelengths 0.8 μm, 1.3 μm and 1.55 μm, respectively in different fiber lengths while incident 
optical powers are remain unchanged. From these figures, it is observed that intensity spectra 
are gradually broadening with increasing the fiber length, LF at the particular wavelength. So, 
it is noted that the SC spectral width is dependent to the fiber length. From Fig. 5 and 6, it is 
clear that the SC spectral width is dependent to the incident power and fiber length as well.  
Fig. 7 (a), (b) and (c) demonstrates the output powers of the proposed HN-PCF at center 
wavelengths 0.8 μm, 1.3 μm and 1.55 μm, respectively when the fiber length is 10 m in all 
center wavelengths. From these figures, it is found that output powers are increased with 
increasing incident input powers at particular wavelength.  
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Fig. 2. (a) Chromatic dispersion and dispersion slope, (b) Effective area and nonlinear 
coefficient and (c) Confinement loss of the 4-rings proposed HN-PCF. 
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Fig. 3. (a) Chromatic dispersion and dispersion slope, (b) Effective area and nonlinear 
coefficient and (c) Confinement loss of the 7-rings HN-PCF. 
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Fig. 2. (a) Chromatic dispersion and dispersion slope, (b) Effective area and nonlinear 
coefficient and (c) Confinement loss of the 4-rings proposed HN-PCF. 
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Fig. 3. (a) Chromatic dispersion and dispersion slope, (b) Effective area and nonlinear 
coefficient and (c) Confinement loss of the 7-rings HN-PCF. 
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Fig. 4. Spectral intensity at (a) 0.8 μm (b) 1.3 μm and (c) at 1.55 μm of the proposed HN-PCF 
which is shown in Fig. 1. 
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Fig. 5. Intensity spectra at center wavelengths (a) 0.8 μm, (b) 1.3 μm and (c) 1.55 μm of the 
proposed HN-PCF which is shown in Fig. 1 when changing incident optical powers. 
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Fig. 4. Spectral intensity at (a) 0.8 μm (b) 1.3 μm and (c) at 1.55 μm of the proposed HN-PCF 
which is shown in Fig. 1. 
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Fig. 5. Intensity spectra at center wavelengths (a) 0.8 μm, (b) 1.3 μm and (c) 1.55 μm of the 
proposed HN-PCF which is shown in Fig. 1 when changing incident optical powers. 
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Fig. 6. Intensity spectra at center wavelengths (a) 0.8 μm, (b) 1.3 μm and (c) 1.55 μm of the 
proposed HN-PCF which is shown in Fig. 1 in different fiber lengths. 
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Fig. 7. Output power at center wavelengths (a) 0.8 μm, (b) 1.3 μm and (c) 1.55 μm of the 
proposed HN-PCF which is shown in Fig. 1. 
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Fig. 6. Intensity spectra at center wavelengths (a) 0.8 μm, (b) 1.3 μm and (c) 1.55 μm of the 
proposed HN-PCF which is shown in Fig. 1 in different fiber lengths. 
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Fig. 7. Output power at center wavelengths (a) 0.8 μm, (b) 1.3 μm and (c) 1.55 μm of the 
proposed HN-PCF which is shown in Fig. 1. 
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The spectral bandwidths, FWHM are 200 nm, 530 nm and 590 nm at center wavelength 0.8 
μm, 1.3 μm and 1.55 μm, respectively. The calculated lc values are 1.4 μm, 1.4 μm and 1.8 μm at 
center wavelength 0.8 μm, 1.3 μm and 1.55 μm, respectively. The calculated lr values are 0.97 
μm, 0.85 μm and 1.1 μm when typical ntissue is 1.44, 1.65 and 1.65 at center wavelengths 0.8 μm, 
1.3 μm and 1.55 μm, respectively [Ohmi et al., 2000]. These calculated lr value is better than 
that of Ref. [Boppart et al., 1998; Bouma et al., 1995; Colston et al., 1998; Drexler et al., 1999; 
Hartl et al., 2001; Herz et al., 2004; Jiang et al., 2005; Lee et al., 2009; Ohmi et al., 2004; Pan et al., 
1998; Ryu et al., 2005; Tearnery et al., 1997; Welzel et al., 1997] and SLDs with OCT imaging 
longitudinal resolution of ≈ 10 – 15 μm. Some calculated parameters of the proposed HN-PCF 
are shown in table 1. From this Table 1, it is seen that the highest longitudinal resolution and 
wider FWHM is obtained at 1.3 μm and 1.55 μm wavelengths, respectively. 
 

Paramters λc = 0.8 μm λc = 1.3 μm λc = 1.55 μm 
β2 [ps2/km] 1.88 2.55 1.51 
β3 [ps3/km] 0.02 -0.03 0.01 
TR [fs] 3.0 3.0 3.0 
TFWHM [ps] 1.0 1.0 1.0 
Pin [W] 18.0 55.0 58.0 
LF [m] 10.0 10.0 10.0 
FWHM [nm] 200.0 530.0 590.0 
lc [μm] 1.4 1.4 1.8 
lr [μm] 0.97 0.85 1.1 

Table 1. Some calculated parameters of the proposed HN-PCF. 

The apparent advantages of our HN-PCF design are the facts that it simultaneously exhibits 
numerous optical properties such as flattened dispersion, low confinement loss, high 
nonlinearity at three central wavelengths 0.8 μm, 1.3 μm and 1.55 μm. Moreover, one can 
take advantage of the different dispersion characteristics of the two different geometrical 
parameters to get one more degree of freedom for tailoring the generated SC spectrum. 
Furthermore, the proposed fiber can be used to make a fiber-based light source to generate 
SC in three different central wavelengths for ophthalmology, dermatology and dentistry 
OCT imaging application. Hence, the same fiber with three center wavelengths can be used 
in several OCT imaging and optical communication applications while exhibiting relatively 
good longitudinal resolution performance, high power, and in turn can pave the way for the 
compact, robust and cheap fiber-based OCT light sources. Therefore, picosecond pulse 
based PCFs are among the most specialized optical lightguides in the new optical fiber 
technology which is highly competitive compared to traditional laser designs. 

5. Conclusions 
We have proposed broadband SC generated HN-PCF which can be used as a high power 
picoseconds pulses light source in ultrahigh-resolution OCT system for ophthalmology, 
dermatology and dental imaging. Moreover, it has been sent that this proposed HN-PCF 
would be applicable in optical communication. We achieved longitudinal resolutions in 
tissue are 0.97 μm, 0.85 μm and 1.1 μm at center wavelength of 0.8 μm, 1.3 μm and 1.55 μm, 
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respectively. Furthermore, from numerical simulation results it was found that the proposed 
HN-PCFs have high nonlinear coefficients with ultra-flattened chromatic dispersion, low 
dispersion slopes, and very low confinement losses, simultaneously. The broad bandwidth 
of the light source permits high resolution for bright OCT imaging in the wavelength ranges 
from 0.8 μm to 1.6 μm. For the less number of geometrical parameters, this light source has 
the potential to be made compact, robust and cheap fiber-based OCT light sources and 
suitable for clinical applications. Consequently, the same proposed fiber can be used in 
different optical communication applications such as dispersion controlling, wavelength 
conversion, SC generation, optical parametric amplification, and so on. 
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The spectral bandwidths, FWHM are 200 nm, 530 nm and 590 nm at center wavelength 0.8 
μm, 1.3 μm and 1.55 μm, respectively. The calculated lc values are 1.4 μm, 1.4 μm and 1.8 μm at 
center wavelength 0.8 μm, 1.3 μm and 1.55 μm, respectively. The calculated lr values are 0.97 
μm, 0.85 μm and 1.1 μm when typical ntissue is 1.44, 1.65 and 1.65 at center wavelengths 0.8 μm, 
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are shown in table 1. From this Table 1, it is seen that the highest longitudinal resolution and 
wider FWHM is obtained at 1.3 μm and 1.55 μm wavelengths, respectively. 
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Table 1. Some calculated parameters of the proposed HN-PCF. 

The apparent advantages of our HN-PCF design are the facts that it simultaneously exhibits 
numerous optical properties such as flattened dispersion, low confinement loss, high 
nonlinearity at three central wavelengths 0.8 μm, 1.3 μm and 1.55 μm. Moreover, one can 
take advantage of the different dispersion characteristics of the two different geometrical 
parameters to get one more degree of freedom for tailoring the generated SC spectrum. 
Furthermore, the proposed fiber can be used to make a fiber-based light source to generate 
SC in three different central wavelengths for ophthalmology, dermatology and dentistry 
OCT imaging application. Hence, the same fiber with three center wavelengths can be used 
in several OCT imaging and optical communication applications while exhibiting relatively 
good longitudinal resolution performance, high power, and in turn can pave the way for the 
compact, robust and cheap fiber-based OCT light sources. Therefore, picosecond pulse 
based PCFs are among the most specialized optical lightguides in the new optical fiber 
technology which is highly competitive compared to traditional laser designs. 

5. Conclusions 
We have proposed broadband SC generated HN-PCF which can be used as a high power 
picoseconds pulses light source in ultrahigh-resolution OCT system for ophthalmology, 
dermatology and dental imaging. Moreover, it has been sent that this proposed HN-PCF 
would be applicable in optical communication. We achieved longitudinal resolutions in 
tissue are 0.97 μm, 0.85 μm and 1.1 μm at center wavelength of 0.8 μm, 1.3 μm and 1.55 μm, 
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respectively. Furthermore, from numerical simulation results it was found that the proposed 
HN-PCFs have high nonlinear coefficients with ultra-flattened chromatic dispersion, low 
dispersion slopes, and very low confinement losses, simultaneously. The broad bandwidth 
of the light source permits high resolution for bright OCT imaging in the wavelength ranges 
from 0.8 μm to 1.6 μm. For the less number of geometrical parameters, this light source has 
the potential to be made compact, robust and cheap fiber-based OCT light sources and 
suitable for clinical applications. Consequently, the same proposed fiber can be used in 
different optical communication applications such as dispersion controlling, wavelength 
conversion, SC generation, optical parametric amplification, and so on. 
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1. Introduction 
1.1 Phylums of optic fibers 
The optic fiber represents internal dielectric medium (crystal, glass etc.), which one is 
contained a main body of a quantity of light transmitted on a fiber, and which one is called 
as a core. The core can be surrounded by a layer with lower refractive index, which one is 
called as a shell. For protection against exposures and for increase of a mechanical strength 
the core with a shell can be coated with a padding layer of plastic. 
 

 
Fig. 1. An optic fiber. 

There are different phylums of fibers. The optic fibers without a shell represent simply glass 
or quartz fiber. They are friable and are ineffective. For them large losses, as on border of 
two mediums the electrical field is not equal to zero point and the border is rather 
incomplete. Besides, that such fiber was monomode; his diameter should be less than 1 
micron. Such fibers now practically are not applied. 
Optic fibers with a shell. The core in such optic fibers is coated with a shell with lower 
refractive index. The losses in fibers with a shell are much less than losses in fibers without a 
shell. As we shall see hereinafter, the illumination in such fibers depends on reduced 
frequency. And essentialist: the manufacturing of such fibers is technologically possible, in 
which one one mode of propagation will be diffused only. Hereinafter we shall esteem 
basically only fibers with a shell. 
On a structure of refractive index of a fiber it is possible to secure two most often meeting of 
a type: stepwise and gradient. 
In a stepwise fiber the refractive index in a core remains to a constant (see fig. 2a): 
In a gradient fiber the refractive index of a core varies depending on r - spacing interval 
from an axis of a fiber (see fig. 2b). 
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The optic fiber represents internal dielectric medium (crystal, glass etc.), which one is 
contained a main body of a quantity of light transmitted on a fiber, and which one is called 
as a core. The core can be surrounded by a layer with lower refractive index, which one is 
called as a shell. For protection against exposures and for increase of a mechanical strength 
the core with a shell can be coated with a padding layer of plastic. 
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There are different phylums of fibers. The optic fibers without a shell represent simply glass 
or quartz fiber. They are friable and are ineffective. For them large losses, as on border of 
two mediums the electrical field is not equal to zero point and the border is rather 
incomplete. Besides, that such fiber was monomode; his diameter should be less than 1 
micron. Such fibers now practically are not applied. 
Optic fibers with a shell. The core in such optic fibers is coated with a shell with lower 
refractive index. The losses in fibers with a shell are much less than losses in fibers without a 
shell. As we shall see hereinafter, the illumination in such fibers depends on reduced 
frequency. And essentialist: the manufacturing of such fibers is technologically possible, in 
which one one mode of propagation will be diffused only. Hereinafter we shall esteem 
basically only fibers with a shell. 
On a structure of refractive index of a fiber it is possible to secure two most often meeting of 
a type: stepwise and gradient. 
In a stepwise fiber the refractive index in a core remains to a constant (see fig. 2a): 
In a gradient fiber the refractive index of a core varies depending on r - spacing interval 
from an axis of a fiber (see fig. 2b). 
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Fig. 2. Phylums of optic fibers, their structures of refractive index and broadering of an 
optical impulse: and - stepwise; - parabolic; in - monomode. 

As we shall see later, in a gradient fiber, in which one the refractive index varies under the 
parabolic law, the optical pathes of different beams will be practically identical, that 
essentially reduces a dispersion of a fiber. The gradient fiber as contrasted to stepwise has 
the best characteristics on dispersion and consequently has large throughput capacity. 
The selected law of change of refractive index can be more or less composite. The directional 
illumination is possible as well in a homogeneous material, if to him to give the definite 
form. Gears of an illumination in most often used stepwise and gradient fibers. 

1.2 Stepwise fiber - A numbered aperture 
Let's consider a stepwise optic fiber (fig. 2a). Let and - radius of a core, b - radius of a shell. If 
diameter of a fiber about several tens micrometers, and difference of refractive indexes 
about 10-2, it is possible to use concepts of a ray optics and to speak about propagation of 
light rays. 
Let's consider the gear of an illumination in a fiber, neglecting absorption in stuff, it is 
necessary to allow which one, generally speaking. Let light beam in a core is diffused bevel 
way θ to an axis Oz, the axis Oz is directed on an axis of a fiber (fig. 3). 
Longitudinal wave number or propagation coefficients: 
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The surge, gated in in a core of a fiber, will be retained in her at the expense of full internal 
reflection at fulfilment of a condition θ < θkr , where θkr - critical angle. At fulfilment of a 
condition of full internal reflection the surge in a shell is an only imaginary and fast damp 
on exponential law at deleting from a demarcation a core a shell. At increase of a angle? The 
condition of total reflection ceases to be executed, and the surge in a shell becomes real. 
Pursuant to above mentioned it is possible to secure three kinds of rays: 
1. Routed rays (rays distributing in a fiber), 
2. Beams distributing with outflow (loss), 
3. Refracted beams? If is satisfied condition of full internal reflection, 
And alone area, where the beam is real, is the core, the beam is considered as routed (fig. 3). 
If the beam appears by real in some part of a shell, he is diffused with outflow ( (fig. 4). 
If the beam appears by real in all volume of a shell, we deal with a refracted beam. 
 

 
Fig. 3. Routed beam. There is a total reflection from a shell. 

 

 
Fig. 4. Beam distributing with outflow. The part of a beam inpours into a shell. 

Let's consider in more detail beams distributing in a fiber. Let beam drops from air on butt 
end of a fiber bevel way Ω. Let's find a maximum angle Ωm , under which one it is possible 
to enter this beam into a fiber, that the beam was hereinafter diffused in a fiber. Thus the ray 
in a core will be diffused bevel way θkr, conforming to a case of total reflection from a 
demarcation with a shell (see fig. 5). 
 

 
Fig. 5. An illumination in a stepwise fiber. 
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For a demarcation an air - core of a fiber (point A): 

 
Here n0 - refractive index of air. Let's count n0 =1. 
Let's find sin Ωm  

 
Angle θкp is discovered:  

 
Value sin Ωm call as a numbered aperture of a fiber. The numbered aperture has notation 
NA. Thus, the numbered aperture is peer 

 
The numbered aperture of a fiber determines a maximum corner(angle) of input in a fiber of 
a beam, which one will test total reflection and to be diffused in a fiber. 
If the condition of total reflection is defaulted, the beams with outflow or refracted beams 
will be diffused.  

1.3 Gradiant fiber - A numbered aperture 
Let's consider a gradient optic fiber (see fig. 2б). His(its) refractive index, as against a 
stepwise fiber, varies at change r: 

 
To similarly stepwise fiber, it is possible to find a maximum angle of input of radiation in a 
fiber, only he will depend on spacing interval r:? m =? m (r). Value sin Ωm (r) we shall call as 
a local numbered aperture of a fiber: 

 
Any beams dropping on butt end of a fiber apart r from an axis and falling inside of an 
aperture tumulus with an apex angle Ωm(r) , tests after input total reflection and is diffused 
in a fiber. The local numbered aperture is max on an axis of a fiber and up to zero point on 
border a core and shells drops. 
As numbered aperture of a gradient fiber we shall call maximum value of the local numeric 
aperture. 
For a gradient fiber with a quadratic structure of refractive index the effective numbered 
aperture is determined, which one is peer: 
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1.4 Power entered into a fiber 
Let's show, that only part of light which is radiated a small diffuse source, placed on an axis 
of sighting of a fiber near to his  butt end, can be entered into a fiber. Let's consider a small 
diffuse light source, the brightness which one is identical in all directions figured in figure 6. 
Let I0- power which is radiated in unit of solid angle on a normal to a source, I (0) = I0cos0 - 
power which is radiated bevel way 0. Then power which is radiated in small solid angle δθ, 
is peer: 
 

 
Fig. 6. 

 
The total power which is radiated such source, is by integrating of this expression on all 
directions: 

 
The power, gated in in a fiber, diameter of a core which one is more than diameter of a 
source, is determined by a following integral: 
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The power entered into a fiber, depends on a numbered aperture of a fiber NA.  
To enter into a fiber maximal light, it is necessary to supply large values of values n1 and Δ. 
Apparently, that best, that it can be made to use for manufacturing of a fiber glass with large 
refractive index and to not cover with his shell. However thus alongside with increase of 
power entered into a fiber, there are two problems: 
1. The part of a surge even at full internal reflection inpours  out through an echoing area. 

And the foregone availability of irregularities and heterogeneities on her will convert a 
surge, fading in air, in distributing, that results in large losses. 

2. At increase Δ the intermodal dispersion is augmented, that results in signal 
degradation. 

1.5 Pathway of light rayss 
a. Stepwise fiber. 
The refractive index of a core of a stepwise fiber n1 is a constant. A angle θ, under which one 
the beam is diffused in a fiber, is a constant. The beam is diffused, testing total reflection on 
a demarcation a core - shell. Between two series total reflections a ray path straight-line. 
 

 
Fig. 7. A pathway of rays  in a stepwise multimode fiber. 
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The pathway consists of equal sections received one of other by a mixing length lengthwise 
axis Oz on definite spacing interval and turn on a angle. Around of an axis  Oz. In a 
transverse projection they concern the same circumference of radius R. 
b. Gradient fiber. 
Because of that the refractive index of a core varies, the pathway of beams in a gradient fiber 
has composite nature and depends on a concrete view of relation n (r). In that specific case 
fibers with quadratic refractive index 

 
The ray path in a transverse projection represents a closed curve. In a longitudinal section of 
a pathway are smoothly varying lines (fig. 8).  
 

 
Fig. 8. Feature of such gradient fiber is that the optical lengths of paths are identical to all 
beams, that corresponds to absence of an intermodal dispersion. 

2. Special optic fibers 
2.1 Total characteristic of special optic fibers 
Overwhelming majority of optic fibers for telecommunications acting on the world market - 
of a fiber conforming international standards: ITU T Recommendation G.652 - G.656. It, so-
called main optic fibers, main problem which one - delivery of a maximum amount of 
information with maximum speed on maximum spacing intervals with minimum losses.  
Main problem of special optic fibers - fulfilment of miscellaneous operations with light 
signals and flows (strengthening, modulation, filtration etc.), and also activity of fibers in 
special modes and conditions (for example, at high mechanical loads - impact or static, heat, 
irradiation, humidity, in YF mean IR and distant IR ranges). Therefore requirements to 
optical losses in such fibers depart on the second schedule. Representative length of special 
optic fibers not kilometres, as in case of main fibers, and from units up to several tens 
meters.  
Many sires of special optic fibers dilate the clients in an orb of a biomedicine, aircraft and in 
military branches. Other sires see more capabilities for special optic fibers in application in 
sensors and fiber optic gyros. Already it becomes now clear, that in any version of further 
development the special optic fibers will be used in the equipment of communications 
networks of following breed. 
Now it is possible to call about twenty phylums of special optic fibers distinguished by the 
design characteristics and the basic properties. Is resulted the basic items of information on 
some eurysynusic special optic fibers conditionally categorized on the most relevant areas of 
their application in optical communication below. Further in sections are resulted more in-
depth information on four phylums of special optic fibers: activated, photosensing, 
anisotropic, photonic crystal. 
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Fig. 7. A pathway of rays  in a stepwise multimode fiber. 
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2.1.1 Fiber, as fissile medium, for fiber lasers and amplifiers 
The optic fibers, doped by erbium, are designed for erbium of fiber amplifiers (EDFA) with 
a broad band of the requirements to characteristics, predestined for DWDM, CATV and 
other applications of a telecommunication. EDFA amplifiers actuates power amplifiers, 
preamplifiers both linear amplifiers for C- and L-ranges. 
In representative erbium the fiber amplifier doped by erbium a fiber 980 nm (or 1480 nm) is 
pumped by a laser diode with a wavelength to supply amplification in range 1550 nm. 
Erbium the fiber should be executed  by such to supply a peak efficiency of absorption of 
pumping with a wavelength 980 nm, and also optimum signal amplification in range 1550 
nm. It is executed by creation of a fiber with a high numbered aperture with representative 
value from 0.23 to reach reasonable overlapping of areas of a field of pumping and field of a 
signal. The wavelength of a cut-off of a fiber has also critical value in his design, as it 
determines a wavelength, on which one the fiber should work in a single mode. 
Representative erbium the fiber has such wavelength of a cut-off, which one guarantees, 
that the pumping will be diffused in a single mode ensuring maximum overlap between 
area of a field and area erbium of ions in a core of a fiber. 
Ytterbium a fiber and ytterbium a fiber with a double shell will be used in high-power 
stimulus sources and amplifiers. These fibers were designed to meet the requirements to 
optical high-power amplifiers, industrial and military lasers, and also infrared sources. The 
fibers were specially designed effectively to aggregate a monomode signal and high power 
of pumping from the multimode diode in a passive fiber with a double shell. Integrating 
cheap with large output power multimode diodes of pumping on a wavelength 915 or 976 
nm with these fibers is possible easily to reach high-watt power levels with effective attitude 
of electrical power to optical. Using stepwise fibers in a mode of continuous radiation, the 
output power reaches kilowatt with an angle of divergence restricted only by diffraction. In 
a pulse mode the mean power about 100 watt even for femtosecond can be reached fiber 
laser. Amplifiers with ytterbium by a fiber with a double shell - attractive technology for the 
phased high-power gratings. They have many advantages, including large strengthening 
and ease in control of a thermal way. 

2.1.2 Fiber for pumping fiber lasers 
These fibers have a multimode core conforming on the sizes to diameter of an inner shell 
ytterbium of a fiber used as a fissile member for fiber lasers and amplifiers. They will be 
used for power transmission of radiation from an optical source of pumping of a fiber laser 
(or amplifier) to his fissile member and delivery of an output laser emission for different 
applications. They can be utilised as connectors - pigtails for laser diodes of pumping and as 
shoulders for fiber couplers and summators. Summarizes output power from several laser 
diodes of pumping in one fiber, augmenting thereby power of pumping. 
The data of a fiber have following features: they multimode, have a large numbered 
aperture (~0,45), damping on a wavelength 915 nm about 3 db/kms. Some fibers for power 
transmission of radiation from an optical source of pumping can reallocate back distributing 
light, reflected from an active fiber of the laser, which one is the main cause of failures of 
multimode laser diodes of pumping. 

2.1.3 Fiber for optical multiplexers and demultiplexers 
The optical multiplexers and demultiplexers of an input / conclusion usually form with 
usage of photosensing fibers. Capacity of an optic fiber under operating of light to change 

 
Optic Fiber on the Basis of Photonic Crystal 

 

255 

refractive index of a core is called as a photosensitivity of a fiber. When the ultraviolet 
radiation illuminates a core of a fiber doped by germanium, the ultra-violet photons lacerate 
electron-pair bindings, the refractive index of a core changes and after irradiation remains 
invariable. The photosensing fibers will be used for creation of fiber Bragg gratings, which 
one, are a main component of multiplexers and demultiplexers of an input / conclusion of 
radiation. The fiber Bragg grating represents an optic fiber with an alternation of refractive 
index along his core. Irradiating a photosensing fiber by the laser through a phase mask, it is 
possible to create a fiber Bragg grating. 
The main property of this grating is the reflection of light, distributing on a fiber, in a 
narrow bandwidth, which one is centered about a Bragg wavelength. The fiber Bragg 
grating has a high reflection coefficient on a definite wavelength, small insertion losses, 
sharp selectivity of a wavelength and small crosstalks. Therefore she is the rather attractive 
device for the installation in multiplexers and demultiplexers of an input / conclusion. To 
carve out an input signal from opposite to a distributing radio echo, the optical not mutual 
circulator will be used. Each multiplexer of an input / conclusion has two circulators: one 
for input of a definite wavelength, other - for a conclusion. The circulator usually introduces 
losses from 0,5 up to 1 db. The insertion losses grow the more, than more gratings and 
circulators in the multiplexer (demultiplexer). 

2.1.4 Fiber for optical choppers 
There are two types of optical wave-guide modulators: planar and fiber. Both types are be 
by phase modulators more often. The planar modulator is constructed as an optical 
waveguide on a substrate (integrally - optical chopper). He provides modulation and 
coordination with fibers  established on an input  and an output  of the planar chip, which 
one can be either customary monomode fibers or polarization fibers . 
Alternative version of external modulators is completely fiber acousto-optical modulator. 
Most often completely fiber acousto-optical modulator represents devices executing 
frequency shift on the basis of surface acoustic waves. In them the phenomenon of 
communication of polarized modes in polarization fibers or spatial communication of 
modes in customary monomode fibers will be used. 
Thus, in optical fiber modulators will be used both polarization fibers, and customary optic 
fibers. The monomode fibers with birefringence transmit optical radiation by two 
disconnected modes, which one are linearly polarized, are orthogonally related and have 
different phase velocities of propagation. The polarization fibers are constructed so that to 
transmit input light only to one linear polarization. The desirable direction of a polarization 
plane receives on the basis of a principle of creation of mechanical pressure, using in a fiber 
an elliptical shell an ambient round core or round shell an ambient elliptical core, and also 
other frames of a fiber. 

2.1.5 Fibers for optical filters 
Now there are many phylums of optical fiber filters: filters on diffraction or Bragg gratings, 
filters Fabre-Pero, etc. Fabre-Pero the filter represents a resonator consisting from two 
bound among themselves of optical waveguides with particulateing reflect mirrors on test 
leadss. The filters of Mach are constructed with usage of two directional couplers and two 
customary fibers, one of which is a reference shoulder, and in the friend the refractive index 
is varied pursuant to a control signal. The Bragg fiber filter represents a photosensing fiber, 
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on a part which one is formed the Bragg grating. The characteristics of such fiber are 
submitted in section 5.3. If to change (to operate)((control)) the season of a grating of the 
Bragg filter, he becomes a tunable filter. The season of a grating can be changed at the 
expense of heating or mechanical pressure. 

2.1.6 Fibers for compensation of a dispersion 
Indemnification of dispersion can be executed by several methods. For example, the special 
fibers or devices dispersions, named by compensators, (dispersion compensating modules) 
can be applied. These fibers have a large negative dispersion (80-100 ps/nm), and also 
negative slope of a dispersion curve. With the help of fibers compensatory dispersion, it is 
possible to execute the broad audience of operations. 
The second example of indemnification of dispersion can serve fiber Bragg of a grating with 
the variable season. In these fibers the season changes along a fiber linearly. Thereof, the 
surges of miscellaneous length are mirrored from gratings arranged on miscellaneous 
spacing intervals from an input, that results in miscellaneous time of their propagation and 
accordingly to indemnification of a chromatic dispersion. All compensators with the linear 
season of a grating are not rebuilt devices. In rebuilt compensators the change of the season 
of a grating along a fiber should be non-linear. The variation of indemnification of 
dispersion is reached by stretching of a fiber by a mechanical or thermal way. 
Thus, for indemnification of a dispersion the optic fibers with a negative dispersion and 
photosensing fibers will be used, from which one receive Bragg fiber gratings with the 
variable season. 

2.1.7 Fiber for sources of supercontinuum 
The special examples of special optic fibers are Photonic crystal fibers. Due to a 
development of a series of unique properties they find a use not only in optical 
communication, but also in transfer of large powers, sensing sensors, nonlinear circuits and 
other areas. In photonic crystal fibers the area of a shell of a fiber with longitudinal air 
passages will be used, which one encircles a core, where the radiation is massed. Their 
internal periodic frame made of filled air capillary tubes represent in cross section hexagonal 
or square grating. The handling phylum of a grating, its step, form of air passages and 
refractive index of a glass allows to receive properties, which one do not exist for customary 
fibers. So, for example, the brightly expressed non-linear properties do photonic crystal 
fibers capable to generate supercontinuum, i.e. to convert light of a definite wavelength to 
the public with more by lengthy and more by short waves. Thus, the creation of broadband 
light sources on new principles is possible. 

2.2 Activated fibers for the optical amplifiers and lasers 
2.2.1 Stuffs for the Erbium fiber amplifiers 
In fact amplifying medium of the amplifier is an Erbium fiber - the optical fiber with 
impurity of the Erbium ions. Such optical waveguides are produced by the same methods, 
as optical waveguides for a transmission of information, with attachment of intermediate 
operation of impregnation not foundered stuff of a core by solution of salts of erbium or 
operation of doping by ions of erbium from a gas phase directly in a precipitation process of 
a core. The wave-guide parameters of the erbium optical fiber do similar to the parameters 
of optical wave-guides used for a transmission of information, with the purposes of 
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reduction losses on connections. Principled is the selection of addition elements reshaping a 
core of the fissile optical wave-guide, and also guard ropes of an ion concentration of 
erbium. The different components in a quartz glass change nature of Stark scission of energy 
levels of erbium ions (fig. 1.2.4). By-turn it results in change of absorption spectrums and 
radiation. In a fig.. 1.2.8 the radiation spectrums of ions of erbium are submitted in a quartz 
glass doped most often used in technology of optical fibers by the used of in technology, 
phosphorum and aluminium. From the introduced data it is visible, that the most broad 
luminescent spectrum (so, and spectrum of strengthening), amounting about 40 nm on half-
height, is reached at usage as the component of aluminium. Therefore this member became 
indispensable component of a stuff of a core erbium of optical fibers. 
The ion concentration of erbium in a core of an optic fiber actually determines his length 
used in the amplifier at given signal levels and pumping. The high limit of concentration of 
fissile ions is determined by originating of effect of cooperative up-conversion. This 
phenomenon is that is possible at large concentration of fissile ions the formation of clusters 
consisting of two and more ions of erbium. When these ions appear in an exited state, there 
is an exchange of energies, as a result of which one of them passes in a condition with higher 
energy, and second - is nonradioactive relaxation on an index plane. Thus, the part of ions of 
erbium occludes radiation of a reinforced signal, reducing efficiency of the amplifier. 
Other direction of researches in an expansion region of a band of strengthening erbium of 
amplifiers, and also increase of an ion concentration of erbium is connected to looking for 
other (not silicate) glass-forming matrixes for a core of a fiber. Recently so has appeared 
considerable concern to phosphate, telluride and fluoride glasses. 
Width of a luminescent spectrum for phosphate glasses is close to by silicate (fig. 1.2.14). Here 
of scoring for these stuffs as contrasted to by silicate matrixes no. Nevertheless, increase of 
concentration of erbium in phosphate glasses does not result in noticeable formation of erbium 
clusters, as it takes place in silicate glasses. Therefore phosphate glasses have lower coefficients 
of non-linear up-conversion luminescence damping in comparison with silicate glasses. It 
allows realizing in phosphate glasses much higher erbium ion concentrations without 
noticeable concentration damping, in comparison with silicate glasses. 
High concentration phosphate glasses doped by erbium and ytterbium, have found the 
application at mining planar wave-guide amplifiers. 
In spite of attractiveness telluride and fluoride matrixes, they do not find yet broad usage in 
optical fiber amplifiers in a kind of composite technology of an extract of a fiber. 

2.2.2 Activated fibers with a double shell 
In fiber lasers the optical pumping will be used, that is creations of inverse in fissile medium 
need external radiation of optical range. For example, pumpings Nd of lasers need radiation 
with a wavelength in region 810 nm, for Yb of lasers in the field of 910-980 nm, though it is 
possible to use and other lengths of surges falling in a band of absorption. 
The pumping of the maiden fiber lasers implemented through a lateral area with the help of 
radiation of lamps - flashes. Such scheme of pumping allowed to reach efficiency of 
generating, that is attitude of power of generating to power of sources of pumping, no more 
than 5 %. It is connected, first of all, that the large part of power of pumping was not 
occluded. The pumping of a fiber laser through butt end of the optical waveguide utilised 
directly in a core. Such scheme allowed to occlude all radiated power of pumping, so and it 
is essential to increase efficiency of generating. However, apparently, that in this case it is 
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possible to use and other lengths of surges falling in a band of absorption. 
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radiation of lamps - flashes. Such scheme of pumping allowed to reach efficiency of 
generating, that is attitude of power of generating to power of sources of pumping, no more 
than 5 %. It is connected, first of all, that the large part of power of pumping was not 
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impossible to use a lamp pumping because of its small brightness, and is unique by a 
possible source of pumping under such scheme there are lasers. Thus, for effective pumping 
of fiber lasers it is possible to use solid-state or semiconducting lasers, and the brightness 
last allows till now to enter into a monomode core power more several watt. 
To raise output power of fiber lasers and to simplify input of radiation of semiconducting 
laser diodes in an optical fiber, have offered to use the optical waveguide with a double clad 
fiber - DCF. The optical waveguide of such design represents (fig. 9) monomode a core - 1 
inside the multimode optical waveguide (maiden shell) - 2, surrounded second shell 
(polymer or from a quartz glass) with lower refractive index - 3. Out of door such design 
sometimes covers  
 

 
Fig. 9.  

By containment shell - 4. In such frame the radiation of pumping at the expense of full 
internal reflection from the second shell is diffused on the maiden shell, being step-by-step 
occluded in a core, doped by fissile ions, on which one the radiation of generating is 
diffused. The area of the maiden shell can be much more area of a core, that allows to enter 
into such frame much more powers of pumping, than in a core. Despite of such advancing 
usage a lamp pumping for such fiber lasers practically is eliminated, as the maximum 
sectional area of the maiden shell does not exceed 1 mm 2, and as a rule lies within the limits 
of 0,01-0,1 мм2. The increase of the area of the maiden shell is limited first of all to necessity 
to have sufficient absorption of radiation of pumping from the maiden shell. The 
section(cross-section) of the maiden shell can be made rectangular, and thus it is possible by 
a maximum mode  to agree the aperture and frame of fields of the channel of pumping laser 
diode used for pumping and, accordingly to increase efficiency of pumping. 
 

 
Fig. 10. An active fiber with a double shell (DCF): 1 - core, activated ytterbium, with 
refractive index n1, 2 - maiden shell for distribution of pumping with n2 (n2 < n1), 3 - 
second shell with n3 (n3 < n2), 4 protective coatings. 
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The absorption on a core is limited to maximum technologically accessible concentration of 
fissile ions, and the area of a core is limited to conditions her one mode or monomode and 
other parameters. Depending on a cross-section profile of the optical waveguide the lobe of 
modes which are not blocked with a core varies. Apparently, that best absorption of 
radiation of pumping needs such form of the optical waveguide, which one minimized or 
would eliminate existence of such modes. Besides for increase of absorption in optical 
waveguides accepting distribution of such modes is possible to place a core of the optical 
waveguide not in center (fig. 10), or to use a bending of the optical waveguide, that enriches 
exchange between modes intersecting a core and modes, having in centre a minimum. 

2.2.3 Photonic crystal activated fibers 
Recently rough development was received by lasers on the basis of photonic crystal fibers. 
Photonic crystal fiber have following distinctive features as contrasted to by customary 
fibers: 
• High numbered aperture 0.6 (limiting idealized values 0.9); 
• Large diameter of a core (up to 40 microns), which one can support a single mode. As a 

result of it in photonic crystal fibers it is possible to realize high powers of pumping and 
generating without noticeable heating; 

• Absence of non-linear effects; 
• A high anisotropy of frame of a fiber permitting to skip radiation with a high scale of 

polarization. 

2.2.4 Photonic crystal (microstructured) fibers 
Photonic crystal the fiber, in has a solid core and also has the expressed non-linear - optical 
behaviour. As opposed to him, for a hollow-by-a-core fiber, the non-linear - optical 
behaviour show is gentle. Last two types of fibers are applied as spectral selectors and to 
indemnification of a dispersion in fiber communication circuits. 
Some advantages and lacks photonic crystal of fibers, as contrasted to customary, are 
adduced in tab. 1 
 

The characteristics a customary fiber FC-fiber 

The numbered aperture, NA 0.06 > 0.6 is reached 
0.9 - limit 

Diameter of a fiber for a 
single mode, micron 

7 
λ= 1540 nm 

> 40 
λ= 300 – 2000 nm 

The area of a core, mkm2 50 from 3 to 1000 
The non-linear effects a full set miss or are brightly expressed 
The losses, db/km 0.2 are close to an idealized 

limit 
10- reached idealized limit 
0.0005  

Table 1. The comparative characteristics customary and photonic crystal of fibers. 

From the table it is visible, that photonic crystal of a fiber can have a large numbered 
aperture, that easies input of radiation in them. The non-linear - optical effects in a photonic 
crystal fiber can be overwhelmed or, to the contrary, are increased. The losses in photonic 
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crystal fibers, now considerably exceed losses in fibers regular style. In a fig. 11  is given 
frame photonic crystal of a fiber and channelling inside it the beams. 
 

 
Fig. 11.  

As a result of it in a core of photonic crystal are reshaped wave modes, similar to modes of 
common fibers (fig. 12)  
 

 
Fig. 12. Modes of photonic crystal fibers. 

In a fig. 12 are shown the cross sections of some phylums photonic crystal of fibers having 
the special properties. The maiden phylum of a fiber a multimode fiber with the solid heart 
and large numbered aperture NA. Such fibers can be applied to pumping fiber lasers. In 
monomode photonic crystal fibers by selection of diameter of channels it is possible over a 
wide range to change dispersion. The similar fibers have the expressed non-linear - optical 
behaviour and are applied in fiber lasers, and also to control of optical signals.  
In too time, theoretically photonic crystal of a fiber with empty by a core the losses at a level 
of 0.0005 db/kms can have. 
Unique property of optical photonic fibers is strong dependence of dispersion properties 
from geometrical parameters of a fiber. The selection of geometry of a fiber allows to realise. 
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Positive, negative and zero dispersions, and also to vary a slope dispersion by a curve. 
Therefore photonic crystals of a fiber are perspective for usage in multiway fiber 
communication circuits for indemnification of a broadering of optical impulses. Photonic 
crystal of a fiber with a small chromatic dispersion can be utilised in rebuilt lasers, and also 
optical multiplexers and demultiplexers. 

2.2.4.1 Common views about photon chips and their properties 
Photonic crystal waveguides and the fibers are new phylum of optical waveguides. Their 
occurrence is connected to creation and research of new optical objects - photon chips.  
Three types of optical fibers with frame of photon chips are now known. It is optical fibers 
with solid light-guided  habitation, optical fibers with hollow light-guided habitation and 
optical fibers with coaxial frame (fig. 13). Between them there is a relevant distinction in 
gears ensuring wave properties of optical waveguides (fig. 14).  
 

 
Fig. 13. A coaxial fiber of a Bragg type. 

 

 
Fig. 14. Relation of effective refractive indexes and fundamental mode from the normalized 
frequency A/λ. 
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The perforated optical waveguide with solid light-guiding habitation represents a core from 
a quartz glass in a shell from a photon chip (quartz glass with air-vessels by channels), 
having lower mean factor of an interception in relation to a vein. Therefore wave guiding of 
property of such optical waveguides are provided simultaneously with two effects: full 
internal reflection, as in customary optical waveguides, and zonal properties of a photon 
chip. The availability of a shell by the way of photon chip essentially distinguishes 
perforated fibers from customary optical fibers.  
The photon chips represent periodic frames from dielectrics with distinguished refractive 
index. The season of these frames - about a wavelength. Unidimensional (1D) the photon 
chip represents interleaving dielectric layers with high and low refractive indexes. As a rule, 
the optical distance of these layers is aliquot. From here is apparent, that the Bragg reflector 
and Bragg waveguide are at the same time unidimensional photon chips. Elementary 
bivariate (2D) the photon chip represents a dielectric lamina with the in batches arranged 
foramens. Three-dimensional (3D) the photon chip can be formed, for example, from 
dielectric spheres. The similar photon chip is called as a simulated opal, as his frame and the 
optical behaviour are close to frame and properties natural precious of a rock of an opal. 
The title of photon chips is called by that the properties of photons in such periodic frames 
are look-alike to properties of electrons in a periodic electrical field of atoms of customary 
chips. It is known, that the electron has wave properties. In a customary chip there is an 
interference between «surge "- electron" and periodic electrical field of atoms. It results in 
occurrence of allowed and forbidden wave bands or energies of electrons in a chip. So there 
are a valence band and conduction band - ranges of energies, allowed for an electron, and 
forbidden region - area of energies, which one an electron in a chip receive can not. In a 
photon chip takes place the similar situation. The photon, which one simultaneously is an 
electromagnetic wave, interferes with periodic frame of a photon chip. In outcome there are 
ranges of allowed and forbidden energies of photons (or lengths of surges of an 
electromagnetic wave) in a photon chip. The photons with forbidden energies are mirrored 
from a photon chip; and the photons with allowed energies in him in pour. For such 
photons he is transparent. 
2.2.4.2 Property and application photonic crystal of fibers 
In photonic crystal a fiber properties of a photon chip has only medium ambient his core. In 
dielguides regular style channelling is provided with effect of full internal reflection from 
border of a core of the waveguide with medium. In photonic crystal waveguides the 
channelling descends as a result of an interference of a surge in medium with photonic 
crystal by properties and reflection from it. 
The representative frame of an optical fiber with a double shell is submitted in a fig. 15. He 
consists of three layers: a monomode core 1, doped both fissile impurity of a rare earth 
member, and impurity reshaping a structure PP; an internal quartz shell 2; an external 
polymer shell 3 with PP, under as contrasted to PP of a quartz glass. The internal quartz 
shell has the representative size 0.1 - 1 mm, that provides a capability of input of radiation of 
pumping from semiconducting sources with power some tens watt. At distribution on a 
quartz shell the radiation of pumping is occluded by fissile ions of a rare earth member, 
invoking luminescence, which one if there is a resonator formed VBR 4, develops in a lasing 
localized in a core of the optical waveguide, diameter by which one makes 5-10 microns. For 
more effective absorption of pumping the quartz shell, as a rule, has rectangular or Δ. 
Figurative cross section. 
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Fig. 15.  

Already now on the basis of optical waveguides with a double shell are designed the laser 
systems have output power ~1 kW. Such systems are applied to processing of different 
stuffs, and also as sources of pumping for fiber lasers operating a phenomenon of an 
enforced Raman effect of light (VKR-LASERS). 
2.2.4.3 Photonic crystal coaxial optic fiber 
The transfer of a potent laser radiation for the technological purposes at the help fiber of 
optical waveguides is an actual problem of modern optoelectronics. An interrupting in 
implementation of fiber optic transmission systems of a potent laser radiation is the 
occurrence of undesirable non-linear effects: enforced dissipation  VRMB and VKR and 
four-photon mixture. The solution of the given problem results in mining optical fibers with 
the increased section of a field of a dominant mode. 
The photon chip, in particular unidimensional (fig. 16), is a periodic dielectric frame, the 
season by which one consists, as a minimum, of two layers. Let's consider the elementary 
example of unidimensional infinite periodic frame. The refractive index of such frame (fig. 
16) is determined with the help of a periodic function:  

 n (x) = n1, 0 < x < h1  (1) 

 n (x) = n2, h1 < x <h  (2) 

Where Λ = h1 +h2 the season of a grating. 
Electrical and magnetic permeability depend on a parameter interceptions by a conventional 
mode: 

 nm = (εm μm) -0.5 , m = 1, 2.    (3) 

Thus, the uni-dimensional photon chip is anything diverse as a Bragg’s mirror, consisting 
from alternate layers with low and high refractive index. Such frame precludes with an 
illumination in a definite wave band dependent on a pitch angle of a plane wave on frame. 
In other words for photonic crystal frames there is an area of frequencies, where the 
illumination is forbidden inside a stuff particulate or completely. This area is called as a 
forbidden region, by analogy with a solid (chip), where the areas of possible  energy of 
electrons "are sorted out" by forbidden regions.  
The effect reflection of light in such frame will be used in multilayer dielectric mirrors. Thus 
the optical distance of layers should be comparable to a wavelength, and also at an angular 
variation of dip the area of forbidden lengths of frequencies displaces. 
On the other hand, the radiation can be diffused in bridge to layers and such frame 
represents the multiway planar waveguide, in which one there is an essential  
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Fig. 16. An arbitrary segment of a unidimensional photon chip. 
n1 Refractive indexes and h of depth of the conforming layers, Λ = h1 +h2 the season  of 
frame. [5]. 

communication  of channels. This communication conducts to "spreading" of dispersion 
curves separately taken the planar waveguide and formation of a zone, similar zones of a 
solid (zone of passing). The similar situations descend and in bivariate photon chips (FC), 
Bragg optic fibers consisting, for example, from the regularly arranged parallel dielectric 
barrels. The illumination perpendicularly to axes of barrels nor is always possible, while 
along barrels the routed surges can be diffused at any frequency. Thus, at inclined dip the 
excitation and routed modes of multiway waveguides and partial passing is possible. 
For a qualitative analysis of properties of natural modes of a photonic crystal fiber the model 
of the coaxial waveguide can be utilised. The physical gear of wave-guide propagation of 
electromagnetic radiation in waveguides of the given type is similar to the gear of wave-guide 
propagation in hollow FK-fibers and is connected to availability of photon forbidden regions 
in a transmission spectrum of a shell of the waveguide. The bivariate periodic frame of a shell 
of a FC-fiber is changed within the framework of this model with a system of coaxial glass 
barrels (fig. 17) by depth b c by an inner radius N-th of the waveguide  

 r N =r0 + N (b+c),  (4) 

Where r0 - radius hollow of a core, with - depth of a backlash between walls of barrels.  
The geometrical sizes of layers which are generatrix the coaxial waveguide, are selected 
with allowance for of space factor by air of a FK-envelope of the microstructured fiber (MS). 
Space factor of a shell of a fiber by air is under the formula:  

 η=πa2/4Λ.  (5) 

With allowance for of this factor are selected the parameters of the coaxial waveguide b and 
from (fig. 15). 
The similar model allows using visual physical submissions for an estimation of dispersion 
properties and obtaining of a qualitative picture of distribution of intensity of 
electromagnetic radiation in waveguide modes localized in hollow to a core of a fiber. The 
relevant characteristic of waveguide modes of МS-fibers is the degree of localization of a 
light field in a core of a fiber. For increase of efficiency of non-linear - optical interplays in a 
central lode of a fiber it is required to reach, probably, higher localization of a field by 
reduction an effective area of a mode. This problem can be resolved by the conforming  
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Fig. 17. The possible scheme of selection of parameters of the coaxial waveguide for 
simulation of a transmission spectrum of a FC-fiber. The black circles figure borders of 
periodic  layers with different refractive  indexes. 

selection of attitude of the size of a core of a fiber to a wavelength of radiation and usage of 
a fiber with the greater difference of refractive index of a shell and core. 
In a fig. 18 the schedule of a dispersion of group velocities (DGV) is submitted. The MS-
fibers with two cycles of air foramens around of a central waveguide channel about a 
diameter about 3 microns provide an abnormal mode of a dispersion for radiation with a 
wavelength less than 900 nm. The wave band (from 1,05 up to 1,35 microns) with near-zero 
by a dispersion actuates some lengths of surges of standard radiation 1,06 microns and 1.3 
microns. The affinity of a wavelength of a laser radiation to a wavelength conforming to 
zero value of a dispersion of a group velocity, allows to reduce to minimum influencing 
effects of dispersion bleed at distribution femto second of momentums impulses in a fiber 
and to supply fulfilment of conditions of the phase coordination for parametric processes of 
four-wave interplay. 
To the similar requirements effectively there corresponds coaxial frame of an optic fiber 
with a condition of synchronization of modes [2,3]. According to the solution of 
characteristic equation the condition of self-conformity of a light field gives the solution for 
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Fig. 16. An arbitrary segment of a unidimensional photon chip. 
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Fig. 18. A dispersion of a group velocity of a dominant mode of a МS-fiber with two cycles 
of ring structures around of a central wave-guide lode (d - diameter of a core). 

the areas between light guide zones will be used, and the area corresponds  theoretically to 
defined value: 

 SN = 0,5 *3,14*λ*(0,5 Μ)0,5 *(rN1+rN2),   (7) 

Where λ - wavelength of radiation, N - of a ring-type zone, M - number of modes of 
radiation, rN1, rN2 - external and inner radius N- й of a ring-type zone. The layer between 
zones is executed  from a condition of a ratio for full internal reflection with a factor of an 
interception nc. At a mode of distribution of refractive index conforming to the law of 
Gauss, there is a coordination between irradiance both refractive index and the directivity of 
modes are increased. As such frame was earlier represented the multiway planar 
waveguide, in which one there is an essential communication of channels. At which one 
there is "spreading" of dispersion curves separately of taken planar waveguide by the way 
of ring-type zone and formation of a zone, similar zones of a solid (zone of passing). Due to 
full filling the light guide ring-type zones of all cross section of an optic fiber descend sharp 
increase of skipped power up to more than in 100 times.  
 

 
Fig. 19. Model of a standard fiber with a stepwise structure of refractive index. 
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The simulation of frame of an optical field conducted on a method of matched sine waves 
has shown the different configuration of a field pattern for a standard and coaxial optic fiber 
(fig. 19-22). 
 

 
Fig. 20. Distribution of an optical field on an output of a standard fiber. 

 

    
Fig. 21. Model of a coaxial fiber, diameter of a member -1 microns and diameter of a member 
0.4 microns, size of section cross-section 9 mkm* 9 mkm. 

The simulation has shown reduction diameter of an output field for coaxial frame, that 
corresponds to allocation of directional modes with high coherency (fig. 19-22). 
The optical metalized fiber executed on coaxial frame has a minimum dispersion, by 
minimum non-linear effects and maintains heightened heat loads accompanying 
distribution of potent optical radiation. Allows to augment a numbered aperture and to 
transmit a heightened radiated power. Last researches demonstrate the friend recursive 
approach in the analysis of a radiative transfer in a photon chip [4,5]. The development of 
this direction allows to use new operating characteristics of such models for phylum of 
Cantor fractal. 



 
Recent Progress in Optical Fiber Research 

 

266 

 
Fig. 18. A dispersion of a group velocity of a dominant mode of a МS-fiber with two cycles 
of ring structures around of a central wave-guide lode (d - diameter of a core). 

the areas between light guide zones will be used, and the area corresponds  theoretically to 
defined value: 

 SN = 0,5 *3,14*λ*(0,5 Μ)0,5 *(rN1+rN2),   (7) 

Where λ - wavelength of radiation, N - of a ring-type zone, M - number of modes of 
radiation, rN1, rN2 - external and inner radius N- й of a ring-type zone. The layer between 
zones is executed  from a condition of a ratio for full internal reflection with a factor of an 
interception nc. At a mode of distribution of refractive index conforming to the law of 
Gauss, there is a coordination between irradiance both refractive index and the directivity of 
modes are increased. As such frame was earlier represented the multiway planar 
waveguide, in which one there is an essential communication of channels. At which one 
there is "spreading" of dispersion curves separately of taken planar waveguide by the way 
of ring-type zone and formation of a zone, similar zones of a solid (zone of passing). Due to 
full filling the light guide ring-type zones of all cross section of an optic fiber descend sharp 
increase of skipped power up to more than in 100 times.  
 

 
Fig. 19. Model of a standard fiber with a stepwise structure of refractive index. 

 
Optic Fiber on the Basis of Photonic Crystal 

 

267 

The simulation of frame of an optical field conducted on a method of matched sine waves 
has shown the different configuration of a field pattern for a standard and coaxial optic fiber 
(fig. 19-22). 
 

 
Fig. 20. Distribution of an optical field on an output of a standard fiber. 

 

    
Fig. 21. Model of a coaxial fiber, diameter of a member -1 microns and diameter of a member 
0.4 microns, size of section cross-section 9 mkm* 9 mkm. 

The simulation has shown reduction diameter of an output field for coaxial frame, that 
corresponds to allocation of directional modes with high coherency (fig. 19-22). 
The optical metalized fiber executed on coaxial frame has a minimum dispersion, by 
minimum non-linear effects and maintains heightened heat loads accompanying 
distribution of potent optical radiation. Allows to augment a numbered aperture and to 
transmit a heightened radiated power. Last researches demonstrate the friend recursive 
approach in the analysis of a radiative transfer in a photon chip [4,5]. The development of 
this direction allows to use new operating characteristics of such models for phylum of 
Cantor fractal. 



 
Recent Progress in Optical Fiber Research 

 

268 

    
Fig. 22. Distribution of an optical field in the conforming models. 

2.3 Anisotropic monomode optical waveguides 
Alongside with trunk links of communication the optical fibers will widely be used in the 
diversified measuring, diagnostic and highly sensitive monitoring systems and control. On 
the basis of anisotropic monomode optical fibers there are sensors for measurement of 
different physical quantities and such unique devices as fiber optic gyros. 
Most reasonable phylum anisotropic OF for a commercial production is the optical 
waveguide with an elliptical exerting shell. 
The production process of such optic fiber lies in manufacturing of bar MSVD by a method 
with concentric frame of internal layers, abrasive processing of round bar and  hyper thermal 
round off. The exerting shell contains 15-20 mol. % B2О3 and GеО2, in quantity indispensable 
for indemnification of change of refractive index conditioned by the introducing of a boron. 
The isolating shell, ambient a core, is indispensable for a decrease of optical losses on a 
wavelength more than 1 micron conditioned by oscillation of atoms. The containment shell 
isolates deposited layers from hydrogen diffusing from a reference quartz tube. All shells in 
fiberglass have value of refractive index close to refractive index of a quartz glass. 
The abrasive work on a work piece is encompass byed grooving of two flutes with 
diametrically opposite of the parties. At the subsequent hyper thermal round off of a flute 
peter, the bar becomes round, and exerting shell elliptical. 
The optical waveguides with an elliptical core or exerting shell succumb on an optical 
behaviour OF such as "«PANDA" a little, however, is expedient differ under the cost, and 
also simplicity and stability of a master schedule of their manufacturing. Effecting of such 
optical waveguides in world practice bases, basically, on MSVD a method of manufacturing 
of bars. The optic fibers with elliptical members of frame can be received by one of three 
methods: to hyper thermal compression of a handset with marked in layers at rarefaction in 
some mm of a water pile; by parallel plate grinding with round off at 2100-2200оC and 
pressing of round bar at series heating of sites up to 1800-2000оC. 
The design of an optic fiber with an elliptical shell MSVD by a method can also be produced 
BC such as “tie - bowtie” with application of unilateral internal etching of layers of an 
exerting shell on an internal surface of a handset which is heated up from the diametrically 
opposite parties.  
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Now most perspective OF for sensors are the anisotropic fibers, in which one there are 
pressure by definite building blocks essentially distinguished by coefficient of thermal 
expansion from a base material. 
In the customary monomode optical waveguide with round cross section of the heart and 
axisymmetrical distribution of refractive index two are diffused orthogonally polarized 
modes HE11, which one are accepted for meaning НЕx11 and НЕy11. At the introducing in a 
fiber of one of these modes the condition of polarization changes because of transformation 
to an orthogonal mode under effect of external factors: pressure, temperature, chatterings 
and etc. Linearly polarized radiation becomes ellipse polarized. The swapping of a quantity 
of light from one mode in other is conditioned by that they are vacuous, that is their 
propagation coefficients px and py are identical. 
The condition of polarization of radiation can be kept if to break a symmetry of the form or 
refractive index of a core. In this case Px Py will differ, limiting a degree of metamorphosis 
of orthogonal modes. The optic fibers of such type are called as anisotropic monomode 
optical waveguides. The geometrical anisotropy forms by metamorphosis of the round form 
of a core in elliptical, and the anisotropy of refractive index is provided with orthogonal 
orientation of pressure (voltage, stresses) at usage of stuffs with miscellaneous coefficients of 
thermal expansion. A measure of an anisotropy of such optical waveguide is the modal 
birefringence: 

 B = (px - py)/(2tcA,)  (8) 

On which one count the basis of measurement of length of beats of orthogonal modes 
(length, on which one the phase phase progression of polarization modes makes 2π) Lb: 

 B = L/Lb  (9) 

Than less than length of beats, the more birefringence and, therefore, is less 
communication(connection) between polarization modes. 
The lobe of power gated in in the optical waveguide of linear-polarized radiation Px, passed 
on an orthogonal (spurious) mode Py, is characterized by an extinction coefficient m: 

  m= 10 lg (Py/Px) = 10 lg (hL)   (10) 

Where h - degree of preservation of polarization of radiation, L - length of the optical 
waveguide. 
From this equation follows, that: 

 h = (Py/Px)L-1  (11) 

The birefringence OF with an out-of-round core having large (a) and small (b) an axes, at an 
ellipticity (a/b-1) more unit is proportional to a square of a difference of refractive indexes 
of a core and shell (An2).  
Conclusions: The photonic crystal fiber allows to increase the characteristics of fiber-optic links 
of communication and to create a new generation of telecommunication instrumentation. 
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1. Introduction 
Microstructured Optical Fibres (MOFs) can be tapered in many ways depending on the 
length scale. Short taper of a few centimetres in length is commonly produced using the 
flame brush technique on a conventional fibre tapering rig (Bilodeau et al., 1988). Meso-
taper of up to tens of metres in length can be produced using improved tapering rig with a 
ceramic microheater (Vukovic et al., 2008). It is also possible to taper optical fibre on a 
standard fibre draw tower, both for conventional step index fibre (Chernikov et al., 1993) 
and for MOFs (Tse et al., 2006b). Longitudinal variation of the MOF structure can lead to a 
comprehensive control of dispersion and nonlinearity, for spectral control under general 
conditions (Tse et al., 2008). The possibility of different long-length fibre-taper designs can 
lead to exciting applications in nonlinear fibre optics, such as uniform and stable 
supercontinuum generation for telecommunications spectral slicing (Chen et al., 2009a; 
Dudley & Coen, 2002; Genty et al., 2009; Vukovic & Broderick 2010), adiabatic soliton 
compression (Hu et al., 2006; Tse et al., 2006b, 2008), mode conversion (Town & Lizier, 2001) 
and pulse transformation (Broderick, 2010). 
The early dispersion-decreasing microstructured fibres were fabricated by stacking of glass 
capillaries with radial (2D) designs consisted of uniform air hole size (Travers et al. 2007; Tse 
et al., 2006b). The preforms were drawn into canes (diameter in mm scale), and finally 
tapered down either by changing the pressure of all the air holes, or by reducing the outer 
diameter (OD) of the fibre during the drawing process. Both methods led to variation of 
hole and core sizes along the fibre. The disadvantage of such tapering schemes is that when 
the features reduce in size, the associated confinement loss increases (Marks et al. 2006; 
Nguyen et al., 2005). Therefore, a large number of rings of air holes are needed to reduce the 
loss to a low level; the fabrication of these MOFs is labour intensive. Moreover, decrease of 
the outer diameter of the fibre may reduce the mechanical strength of the fibre and handling 
may became difficulty, at the same time induce complication when connecting to standard 
fibres. 
It has been reported that selective holes within the microstructure region of MOFs can be 
independently pressurised during the fibre drawing process (Couny et al. 2008). Together 
with the possibility to vary the pressure of the holes during the drawing process (Tse et al., 
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2006b; Voyce et al. 2009), more complex 3D fibre designs can be achieved. A design concept 
is introduced for long microstructured fibre taper to be produced by stacking of silica 
capillaries, and to be drawn on a traditional optical fibre draw tower with multi-pressure 
control (Tse et al., 2009b). 
In this chapter, we will investigate in detail the optical properties of these draw-tower 
tapers, in particular, the Effective Refractive Index (neff), Confinement Loss (CL), Dispersion 
(D) and Effective Mode Area (Aeff). In Section II, an outline of the concept of the proposed 
fibre tapering scheme and the simulation method will be presented. In Section III, the 
simulation result for the effective refractive index and confinement loss of the chosen fibre 
designs will be presented and discussed. Section IV investigates the dispersion profile and 
the effective mode area at different positions along various fibre tapers. In Section V, the 
proposed fabrication method and preliminary results will be presented. Final section 
summarises the results with conclusion. 

2. Long microstructured fibre taper design concept 
The proposed tapering scheme consists of microstructure features with large air-holes (high 
air-filling fraction) in every ring initially. The holes of the innermost rings are then tapered 
longitudinally by an independent pressure control, while keeping the outer diameter of the 
fibre constant by varying the draw speed at the same time. However, the variation of draw 
speed is not necessary for fibres with d << OD, because the variation of the glass volume is 
very small. Here, we investigate the simplest case, in which only the innermost ring-of-holes 
is varied in size. Thus, the core is made of 7-cell defects at the beginning of an index guiding 
taper, and the core is reduced to a 1-cell defect at the end of the taper, see Fig. 1. This 
tapering scheme offers low confinement loss over the entire length of the fibre, and large 
end-to-end core-size variation. Moreover, the mechanical strength of the fibre is the same 
throughout, because of the constant outer diameter. This concept has already found 
application in core expansion of MOFs using the flame brush method for fibre splicing, see 
(Chen et al., 2009b). However, the proposed draw-tower, multi-pressure MOF taper here 
should not be confused with tapers that are made on a tapering rig by post-processing 
methods after a fibre is drawn. 
In this work, a full vector finite-element-method (FEM) based optical mode solver (Mode 
SolutionsTM 3.0 by Lumerical Solution Inc.) was used to study the fibre designs. Pure 
silica fibres are simulated. Dense grids consisting of large number of mesh cells (typically 
between 90,000 and 100,000), with emphasis at the centre region (where the guided modes 
were found), were used in the simulation to ensure accuracy. Perfectly matched layer 
(PML) boundary conditions were used. The effective index was also checked against a 
more commonly used simulation tool for modeling MOF (COMSOL Multiphysics), and 
similar results were found. The modal behaviour at different positions along various 
tapered MOFs for pump wavelength of 1060 nm was investigated. This wavelength 
coincides with that of efficient Yb-doped bre laser sources. Dispersion profiles around 
1060 nm were simulated.  
MOFs with design consisting of 8 initial rings of air-holes are studied, with small hole-to-
hole spacing (pitch), Λ, varied from 0.5 to 0.7 µm. The ultra-small pitch or core ensured the 
minimum effective mode area is obtained, and also reduced the multimodeness. The air-
filling fraction, d2+/Λ, of ring 2 to 8 varied from 0.6 to 0.9 for different fibres. The large  
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Fig. 1. A schematic of the proposed MOF taper scheme. Rings 2-8 consisted of large air-
holes. The core-size is reduced by introducing the innermost ring of holes (ring 1). A 7-cell 
defect solid-core is found in the beginning of the fibre , which is formed partly by totally 
collapsing the holes in ring 1. A single-cell defect solid-core is found at the end of the fibre. 
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the effective mode area at different positions along various fibre tapers. In Section V, the 
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speed is not necessary for fibres with d << OD, because the variation of the glass volume is 
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silica fibres are simulated. Dense grids consisting of large number of mesh cells (typically 
between 90,000 and 100,000), with emphasis at the centre region (where the guided modes 
were found), were used in the simulation to ensure accuracy. Perfectly matched layer 
(PML) boundary conditions were used. The effective index was also checked against a 
more commonly used simulation tool for modeling MOF (COMSOL Multiphysics), and 
similar results were found. The modal behaviour at different positions along various 
tapered MOFs for pump wavelength of 1060 nm was investigated. This wavelength 
coincides with that of efficient Yb-doped bre laser sources. Dispersion profiles around 
1060 nm were simulated.  
MOFs with design consisting of 8 initial rings of air-holes are studied, with small hole-to-
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minimum effective mode area is obtained, and also reduced the multimodeness. The air-
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Fig. 1. A schematic of the proposed MOF taper scheme. Rings 2-8 consisted of large air-
holes. The core-size is reduced by introducing the innermost ring of holes (ring 1). A 7-cell 
defect solid-core is found in the beginning of the fibre , which is formed partly by totally 
collapsing the holes in ring 1. A single-cell defect solid-core is found at the end of the fibre. 
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d2+/Λ ensured low confinement loss. The air-filling fraction, d1/Λ, of the innermost ring 
(ring 1) was varied from 0 to d2+/Λ in each MOF taper. We studied the characteristics of 
each taper by simulating at least ten 2D cross-sections along the fibre. For example, when 
d2+/Λ= 0.9, cross-sections with d1/Λ= 0, 0.1, 0.2…0.9 were simulated. 

3. Effective refractive index and confinement loss 
In this section, we investigate the effective refractive index and confinement loss of long 
MOF tapers with different feature sizes. The simulated effective index of the fundamental 
mode and the first higher order mode along the fibres under investigation at 1060 nm are 
presented in Fig. 2. The result of the simulated associated confinement loss is presented in 
Fig. 3. 
Fig. 2 shows that as the first ring-of-holes is being introduced (d1/Λ increases), the 
effective index decreases, owing to the increased amount of mode field propagating in the 
air-holes. Therefore, as the core-size decreases (d1/Λ increases), the confinement loss 
increases, see Fig. 3. It is more evident by looking at the mode field amplitude found from 
the simulated meshed structure. The mode field images of one of the taper design (Λ= 0.6 
µm and d2+/Λ= 0.75) are shown in Fig. 4. It shows that at the beginning of the taper with a 
7-cell core (d1/Λ= 0), the fundamental mode is well confined in the silica core. Near the 
middle of the taper (d1/Λ= 0.4) and at the end of the taper (d1/Λ= 0.75), significant 
amount of the mode field is propagating in the first ring of air-holes. For comparison, the 
mode fields of the 1st higher order mode are also shown in Fig. 4. The overlap of mode 
field and air is even more apparent for the higher order modes. The power in the air-holes 
will add an additional loss through scattering, as more power overlapping the air-glass 
boundary (White et al., 2002). 
The confinement loss of the HE11 mode and higher order modes varied along the MOF 
tapers. We assumed for effectively single-mode guidance, the CL of the higher order mode 
is 10,000 times greater than that of the fundamental mode. Therefore, for each MOF taper 
design, part of the taper is effectively single-mode and part of the taper is slightly multi-
mode. In general, the tapers are becoming more single-mode as d1/Λ increases. The multi-
mode to single-mode transition is indicated with an asterisk in Fig. 3. For Λ= 0.6 µm and 
d2+/Λ= 0.6, the entire MOF taper is effectively single mode, however, loss is very high (up 
to 100 dB/m). We have also simulated the same MOF taper with fibre bending radius of 1 
mm, and found that there is negligible changes to the loss. This is expected for all the 
structures consider here, as the cores are very small. Bending loss is usually more significant 
in Large Mode MOFs (Baggett et al., 2003). 
Note that, the result is presented with a general fibre length scale. In practice, depending on 
how the pressure is varied with time during the drawing process, the length of particular 
portions of the fibre can be chosen according to application requirement. A MOF taper 
produced on a fibre draw tower can have length of a few metres up to kilometres. 

4. Simulated dispersion profiles and effective mode areas 
In this section, the dispersion profiles and the effective mode area at different position along 
the fibre tapers around 1060 nm are investigated. Dispersion profiles are studied in Section 
4.1 and mode field areas are presented in Section 4.2. 
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Fig. 2. Simulated effective refractive index of the HE11 mode (solid line) and the 1st higher 
order mode (dotted line) along tapers with different Λ and d2+/Λ: (a) Λ= 0.6 µm, d2+/Λ = 
0.6, 0.7, 0.75 0.8 and 0.9 (b) d2+/Λ= 0.9, Λ = 0.5, 0.55, 0.6, 0.65 and 0.7 µm. 
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d2+/Λ ensured low confinement loss. The air-filling fraction, d1/Λ, of the innermost ring 
(ring 1) was varied from 0 to d2+/Λ in each MOF taper. We studied the characteristics of 
each taper by simulating at least ten 2D cross-sections along the fibre. For example, when 
d2+/Λ= 0.9, cross-sections with d1/Λ= 0, 0.1, 0.2…0.9 were simulated. 

3. Effective refractive index and confinement loss 
In this section, we investigate the effective refractive index and confinement loss of long 
MOF tapers with different feature sizes. The simulated effective index of the fundamental 
mode and the first higher order mode along the fibres under investigation at 1060 nm are 
presented in Fig. 2. The result of the simulated associated confinement loss is presented in 
Fig. 3. 
Fig. 2 shows that as the first ring-of-holes is being introduced (d1/Λ increases), the 
effective index decreases, owing to the increased amount of mode field propagating in the 
air-holes. Therefore, as the core-size decreases (d1/Λ increases), the confinement loss 
increases, see Fig. 3. It is more evident by looking at the mode field amplitude found from 
the simulated meshed structure. The mode field images of one of the taper design (Λ= 0.6 
µm and d2+/Λ= 0.75) are shown in Fig. 4. It shows that at the beginning of the taper with a 
7-cell core (d1/Λ= 0), the fundamental mode is well confined in the silica core. Near the 
middle of the taper (d1/Λ= 0.4) and at the end of the taper (d1/Λ= 0.75), significant 
amount of the mode field is propagating in the first ring of air-holes. For comparison, the 
mode fields of the 1st higher order mode are also shown in Fig. 4. The overlap of mode 
field and air is even more apparent for the higher order modes. The power in the air-holes 
will add an additional loss through scattering, as more power overlapping the air-glass 
boundary (White et al., 2002). 
The confinement loss of the HE11 mode and higher order modes varied along the MOF 
tapers. We assumed for effectively single-mode guidance, the CL of the higher order mode 
is 10,000 times greater than that of the fundamental mode. Therefore, for each MOF taper 
design, part of the taper is effectively single-mode and part of the taper is slightly multi-
mode. In general, the tapers are becoming more single-mode as d1/Λ increases. The multi-
mode to single-mode transition is indicated with an asterisk in Fig. 3. For Λ= 0.6 µm and 
d2+/Λ= 0.6, the entire MOF taper is effectively single mode, however, loss is very high (up 
to 100 dB/m). We have also simulated the same MOF taper with fibre bending radius of 1 
mm, and found that there is negligible changes to the loss. This is expected for all the 
structures consider here, as the cores are very small. Bending loss is usually more significant 
in Large Mode MOFs (Baggett et al., 2003). 
Note that, the result is presented with a general fibre length scale. In practice, depending on 
how the pressure is varied with time during the drawing process, the length of particular 
portions of the fibre can be chosen according to application requirement. A MOF taper 
produced on a fibre draw tower can have length of a few metres up to kilometres. 

4. Simulated dispersion profiles and effective mode areas 
In this section, the dispersion profiles and the effective mode area at different position along 
the fibre tapers around 1060 nm are investigated. Dispersion profiles are studied in Section 
4.1 and mode field areas are presented in Section 4.2. 
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Fig. 2. Simulated effective refractive index of the HE11 mode (solid line) and the 1st higher 
order mode (dotted line) along tapers with different Λ and d2+/Λ: (a) Λ= 0.6 µm, d2+/Λ = 
0.6, 0.7, 0.75 0.8 and 0.9 (b) d2+/Λ= 0.9, Λ = 0.5, 0.55, 0.6, 0.65 and 0.7 µm. 
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Fig. 3. Simulated confinement loss of the HE11 mode (solid line) and the 1st higher order 
mode (dotted line) along tapers with different Λ and d2+/Λ: (a) Λ= 0.6 µm, d2+/Λ= 0.6, 0.75 
and 0.9 (b) d2+/Λ= 0.9, Λ= 0.5, 0.6 and 0.7 µm. (Asterisks indicate where CL of the 1st higher 
order mode is 10,000 times larger than that of the fundamental mode) 
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Fig. 4. Simulated modal field images of the HE11 mode and the 1st higher order mode for a 
taper design with Λ=0.6 µm and d2+/Λ= 0.75, when d1/Λ= 0, 0.4 and 0.75. 
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Fig. 4. Simulated modal field images of the HE11 mode and the 1st higher order mode for a 
taper design with Λ=0.6 µm and d2+/Λ= 0.75, when d1/Λ= 0, 0.4 and 0.75. 
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4.1 Dispersion 
Dispersion profiles of the fundamental modes simulated from selected cross-sections along 
five MOF tapers are presented in Fig. 5. The MOF taper designs covered a large range of 
normal and anomalous dispersion at 1060 nm wavelength. Moreover, relatively flat 
dispersion slopes were found in many simulated cross-sections, especially at 1060 nm. The 
convex, flattened and decreasing dispersion profile would provide the ideal condition for 
generation of highly uniform and stable supercontinuum, which is required in 
telecommunications spectral slicing applications. Supercontinuum generated separately in 
MOFs with similar dispersion profiles pumping at 1060 nm had been studied 
experimentally (Tse et al., 2006a), but not in a single taper. If MOF taper technology is to be 
employed in optical communications networks, then the proposed constant fibre outer 
diameter is preferred when connecting to standard fibre via strong fusion splicing (Tse et al., 
2009a; Chen et al., 2009b). 
Fig. 5 shows that for various designed feature parameters, different dispersion profiles were 
found at different position along the tapers. In general, the dispersion curves varied with Λ 
and d2+/Λ according to some predictable patterns. At around 1060 nm, as d1/Λ decreases, 
the dispersion curve moves toward the normal dispersion regime. However, the flattest 
point of the curve may shift away from 1060 nm wavelength, as clearly shown in fig. 5(b). 
For Λ= 0.6 µm, as d2+/Λ decreases, the dispersion also moves toward the normal dispersion 
regime for the same d1/Λ, see for example, Fig. 5(b), (d) and (e), d1/Λ= 0.2 and 0.3. 
Therefore, a greater portion (assuming constant rate of variation in d1/Λ) of taper falls in the 
anomalous dispersion regime for a design with larger d2+/Λ. It is less predictable for 
d2+/Λ= 0.9 and varying Λ. The gradient of the curves varied asymmetrically in the 
wavelength range studied here. In practice, these results provide some valuable fabrication 
tolerance levels. 
Individual dispersion profiles similar to or better than those shown in Fig. 5 can be achieved 
in fibres without longitudinal variation, however, to achieve multiple profiles in a single 
fibre, longitudinal variation is required (i.e. a fibre-taper).  
For some applications, for example, soliton compression, a large anomalous dispersion 
variation may be preferred. However, if single-mode guidance is required, the dispersion 
profiles should be studied together with the confinement loss results presented in Fig. 3. In 
some cases, at the 7-cell core end, a few modes are supported in the core. For most 
applications, it is likely that only part of a MOF taper is useful, and not the entire length that 
d1/Λ varied from 0 to d2+/Λ. The unwanted portions can either be discarded, or shorten in 
length during the fibre drawing process. 

4.2 Effective mode area 
The effective mode area of the fundamental mode at 1060 nm pump wavelength is studied. 
As shown in Fig. 6, the effective area decreases along each MOF taper as the core-size 
decreases with d1/Λ increases. For Λ= 0.5, 0.6 and 0.7 µm, part of the tapers has a sub-
wavelength core size, thus greatly enhanced the nonlinearity. At the output of the tapers 
with d2+/Λ= 0.9, the minimum effective area (Aeff) is around 0.65 µm2, the nonlinearity (γ) is 
> 200 W-1km-1 at 1060 nm. For Λ= 0.7 µm, the end-to-end Aeff ratio is about 3, Aeff= 2.02 µm2 
at the input, however, a large portion of the taper is multi-mode. For Λ= 0.6 µm, smaller 
portion of the tapers is multi-mode, but at the expense of the Aeff ratio. For a MOF taper 
design with 8 rings of air holes, Λ= 0.6 µm and d2+/Λ = 0.9, Aeff= 1.58 µm2 at the input, the 
confinement loss of the entire taper is less than 0.0002 dB/m. 
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Fig. 5. Simulated dispersion profiles of the fundamental mode around 1060 nm at different 
position along five tapered fibres with different Λ and d2+/Λ: (a) Λ= 0.7 µm and d2+/Λ= 0.9, 
(b) Λ= 0.6 µm and d2+/Λ= 0.9, (c) Λ= 0.5 µm and d2+/Λ= 0.9, (d) Λ= 0.6 µm and d2+/Λ= 
0.75, (e) Λ= 0.6 µm and d2+/Λ= 0.6. 
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Fig. 5. Simulated dispersion profiles of the fundamental mode around 1060 nm at different 
position along five tapered fibres with different Λ and d2+/Λ: (a) Λ= 0.7 µm and d2+/Λ= 0.9, 
(b) Λ= 0.6 µm and d2+/Λ= 0.9, (c) Λ= 0.5 µm and d2+/Λ= 0.9, (d) Λ= 0.6 µm and d2+/Λ= 
0.75, (e) Λ= 0.6 µm and d2+/Λ= 0.6. 
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Fig. 6. Simulated effective mode area profiles along 4 tapered fibres with different Λ and 
d2+/Λ. (Asterisks indicate where CL of the 1st higher order mode is 10,000 times larger than 
that of the fundamental mode) 

5. Fibre fabrication 
In this section, a possible method for the fabrication of the proposed fibre-taper design is 
described by a modified capillaries stacking technique with multi-pressure hole-size control 
(Tse, 2007). The proposed generic method is given in Section 5.1 and the early fabrication 
result is presented in Section 5.2 

5.1 Proposed fabrication method 
Fig. 7 illustrates the modified capillary stacking method. The scheme consists of a traditional 
stack of open-ended and rigid capillaries in a holding tube, see Fig. 7(a). (Note that, the 
usual microstructured preform is made by stacking capillaries that are sealed at the top 
end.) Additional capillaries with smaller diameter are inserted into the open-ended 
capillaries. The outer diameter (perhaps 250 µm to 400 µm) of the inserted capillaries should 
be of good-fit to the inner diameter of the rigid capillaries. The flexible capillaries will 
provide the necessary physical elasticity for connecting to different pressure channels. 
Therefore, the pressure or hole-size of each hole can be controlled independently during 
fibre-draw. Here, we only need to consider controlling the pressure in each ring-of-holes. 
Since our design only require tapering one ring-of-holes (ring 1), and hole-size in rings 2 to 8 
are to be kept constant, thus only two pressure regulatory channels are needed. 
The modified stacking technique should work for both one-stage and two-stage fibre-draw. 
For one-stage draw, fibre is drawn directly from the stack. For 2-stage draw, the stack is 
drawn into cane first, an extra jacketing tube is added, then the jacket and cane are drawn 
together into fibre, see Fig. 7(b). The interstitial holes should collapse if the fibre is drawn 
close to 2000 0C with low draw-tension.  
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Fig. 7. A schematic of the proposed MOF taper fabrication method. (a) End-view of the 
stacking arrangement. (b) Shows the inserted flexible capillaries extension which can be 
connected to different pressure regulatory channels. 

The main challenges will be on improving the pressure regulatory management system, the 
connection of the flexible capillaries to the pressure channels, and the feedback control of 
the fibre drawing system. In order to precisely control the hole-sizes, accurate active 
pressurisation is required. The pressures needed are often small, ranged to within a few 
millibars. Fibre draw tower should be equipped with fast and accurate pressure regulatory, 
drawing temperature and outer diameter feedback controls. 
Constant pressure should be applied to all the holes when establishing the initial stable fibre 
drawing state. With all the feedback controls mentioned above, the pressure in the first ring-of-
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Fig. 6. Simulated effective mode area profiles along 4 tapered fibres with different Λ and 
d2+/Λ. (Asterisks indicate where CL of the 1st higher order mode is 10,000 times larger than 
that of the fundamental mode) 
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described by a modified capillaries stacking technique with multi-pressure hole-size control 
(Tse, 2007). The proposed generic method is given in Section 5.1 and the early fabrication 
result is presented in Section 5.2 
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Fig. 7 illustrates the modified capillary stacking method. The scheme consists of a traditional 
stack of open-ended and rigid capillaries in a holding tube, see Fig. 7(a). (Note that, the 
usual microstructured preform is made by stacking capillaries that are sealed at the top 
end.) Additional capillaries with smaller diameter are inserted into the open-ended 
capillaries. The outer diameter (perhaps 250 µm to 400 µm) of the inserted capillaries should 
be of good-fit to the inner diameter of the rigid capillaries. The flexible capillaries will 
provide the necessary physical elasticity for connecting to different pressure channels. 
Therefore, the pressure or hole-size of each hole can be controlled independently during 
fibre-draw. Here, we only need to consider controlling the pressure in each ring-of-holes. 
Since our design only require tapering one ring-of-holes (ring 1), and hole-size in rings 2 to 8 
are to be kept constant, thus only two pressure regulatory channels are needed. 
The modified stacking technique should work for both one-stage and two-stage fibre-draw. 
For one-stage draw, fibre is drawn directly from the stack. For 2-stage draw, the stack is 
drawn into cane first, an extra jacketing tube is added, then the jacket and cane are drawn 
together into fibre, see Fig. 7(b). The interstitial holes should collapse if the fibre is drawn 
close to 2000 0C with low draw-tension.  
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Fig. 7. A schematic of the proposed MOF taper fabrication method. (a) End-view of the 
stacking arrangement. (b) Shows the inserted flexible capillaries extension which can be 
connected to different pressure regulatory channels. 

The main challenges will be on improving the pressure regulatory management system, the 
connection of the flexible capillaries to the pressure channels, and the feedback control of 
the fibre drawing system. In order to precisely control the hole-sizes, accurate active 
pressurisation is required. The pressures needed are often small, ranged to within a few 
millibars. Fibre draw tower should be equipped with fast and accurate pressure regulatory, 
drawing temperature and outer diameter feedback controls. 
Constant pressure should be applied to all the holes when establishing the initial stable fibre 
drawing state. With all the feedback controls mentioned above, the pressure in the first ring-of-
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holes can then be decreased gradually to form the required taper structure. In previous 
experiment (Tse et al., 2006b), collapsing of holes using the capillaries self-pressurise method 
during fibre-draw can be stable and smooth. Similar stable draw can be expected for the active 
pressurise method proposed here, see the next section for some preliminary results. 

5.2 Active pressure fabrication experiment 
5.2.1 One-stage cane drawing 
In this section, the effect of active pressure made to a stacked preform is experimentally 
investigated. A relatively loose stack with only 2 ring-of-holes is used in this experiment. 
The whole perform is made of high grade low OH F300 silica glass. The stack arrangement 
and a photo of the preform are shown in Fig. 8. The preform is 1200 mm in length, consisted 
of 1 core rod with diameter of 1 mm, 20 rigid capillaries with outer diameter (OD) of 0.800 
mm and inner diameter (ID) of 0.520 mm, 7 flexible capillaries with OD= 0.335 mm and ID= 
0.220 mm, and a holding tube with OD= 12 mm and ID= 4.3 mm. 
 

 
Fig. 8. (Left) A scaled schematic of the stack arrangement of the preform used in the active 
pressure experiment. (Right) A photo of the stacked preform with the flexible capillaries 
extended out. The dimensions of the stack elements are included in the figure.  

The preform is arranged with the core rod surrounded by 7 open-ended capillaries, which 
forms the inner ring. A further 7 flexible capillaries are inserted in the inner ring, and 
extended out from the top of the rigid part of the prefrom. The flexible capillaries are then 
connected to a nitrogen pressure channel accordingly. The outer ring had 13 sealed-ends 
capillaries arranged closely around the wall of the holding tube. Therefore, active pressure is 
applied to the inner ring-of-holes only, and the outer ring is self-pressurised. According to the 
study carried out by Voyce et. al., the pressure inside a sealed capillary can remain relatively 
constant provided that long length is used and significantly extended out upward from the 
furnace, which is the case here (Voyce et. al., 2009). This setup will provide the necessary 
differential pressure for different ring-of-holes during draw to demonstrate the generic 
fabrication method proposed in section 5.1. The inner holes should stay open with a pressure 
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of >2.73 kPa, suggested in the work done by Wadsworth et. al. following a simple 
relationship of Pst(kPa)= 600/d(µm), where Pst is the pressure required in unit of kilopascal 
to prevent a hole with diameter d in unit of micron from collapsing (Wadsworth et. al., 2005). 
The preform is drawn to cane size with OD of around 1.2 mm using a tractor belt puller. The 
drawing temperature was 1905 °C, the preform feeding speed was 10 mm/min, the pulling 
speed was 1 m/min, and the initial pressure applied to the inner ring was 8 kPa. At low 
temperature hole collapsing due to surface tension is reduced significantly. The furnace 
resistance graphite element has a diameter of >50 mm, with a capillary stack of ~4.3 mm 
wide loaded in the middle of the furnace, the temperature gradient across the stack is 
minimised. Note that, the preform is drawn without vacuum, which is often used in a 
traditional MOF drawing to get rid of the interstitial space and to help expanding the holes 
by introducing a negative pressure in the region. Thus the drawing conditions presented 
here led to a more accurate result of the effect caused to the capillaries by actively 
controlling the pressure in the holes only, with space for shrinkage and expansion. 
The cane drawing result is summarised in Fig. 9, presented as microscope images of the 
cross-section. A total length of ~50 m of canes is drawn. Three pressure values were set 
during the draw, started at 8 kPa, then subsequently changed to 16 kPa  11 kPa  8 kPa 

 11 kPa. The effect of the pressure change can be seen clearly from the pictures shown in 
Fig. 9 at different draw distance. By doubling the initial pressure of 8 kPa to 16 kPa, the 
pressure experienced by the holes was clearly over the set pressure of 16 kPa, see Fig. 9(a). 
This is because a lagging time is required for the pressure to stabilise by the pressure 
feedback loop control. It would be better to increase the pressure by small increment for a 
more stable hole-size increase. For the dimension of capillaries used in this preform, 16 kPa 
would inflate the inner holes and over power the outer ring-of-holes almost completely. At 
11 kPa, the inner holes are almost at balance in pressure with similar size to the outer holes. 
At 8 kPa, shrinkage of the 7 inner holes relative to the outer holes is clearly visible. The outer 
holes were almost constant in size with pressure applied to the inner holes at 8 kPa and 11 
kPa (Fig. 9(d)-(j)), which confirmed that a constant pressure is possible with long sealed-
ends capillaries under self-pressurisation. It was found that decreasing pressure gave a 
more stable result without pressure over shooting the set point. 
The study carried out in this section provide some useful data as a starting point for 
realising fibre-tapers on a fibre draw tower. It shows that an accurate control of selective 
hole-size is possible during one-stage cane-draw with active pressure. Optimal structure 
was achieved with a pressure of ~11 kPa, which is about 4x of the suggested pressure (Pst) 
required to prevent hole from collapsing.  

5.2.2 Two-stage fibre drawing 
The process of cane drawing studied in the previous section represents an one-stage draw 
with selective pressure control, and well controlled fibre structures were obtained. Next, a 
cane with the 7 inner holes connected to the same pressure control is inserted into a 
jacketing tube (OD= 12 mm, ID= 4.3 mm), and the outer holes were again subjected to self-
pressurisation. The cane is being drawn to fibre as a two-stage draw with selective active 
pressure control. 
The microscope image of the cane used in the fibre-draw is shown in Fig. 10(a), the diameter 
of the largest hole in the inner ring was assumed to be ~110 µm. The pressure applied to the 
inner holes was set initially at 5.5 kPa. The drawing temperature was 1905 °C, the preform  
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holes can then be decreased gradually to form the required taper structure. In previous 
experiment (Tse et al., 2006b), collapsing of holes using the capillaries self-pressurise method 
during fibre-draw can be stable and smooth. Similar stable draw can be expected for the active 
pressurise method proposed here, see the next section for some preliminary results. 

5.2 Active pressure fabrication experiment 
5.2.1 One-stage cane drawing 
In this section, the effect of active pressure made to a stacked preform is experimentally 
investigated. A relatively loose stack with only 2 ring-of-holes is used in this experiment. 
The whole perform is made of high grade low OH F300 silica glass. The stack arrangement 
and a photo of the preform are shown in Fig. 8. The preform is 1200 mm in length, consisted 
of 1 core rod with diameter of 1 mm, 20 rigid capillaries with outer diameter (OD) of 0.800 
mm and inner diameter (ID) of 0.520 mm, 7 flexible capillaries with OD= 0.335 mm and ID= 
0.220 mm, and a holding tube with OD= 12 mm and ID= 4.3 mm. 
 

 
Fig. 8. (Left) A scaled schematic of the stack arrangement of the preform used in the active 
pressure experiment. (Right) A photo of the stacked preform with the flexible capillaries 
extended out. The dimensions of the stack elements are included in the figure.  

The preform is arranged with the core rod surrounded by 7 open-ended capillaries, which 
forms the inner ring. A further 7 flexible capillaries are inserted in the inner ring, and 
extended out from the top of the rigid part of the prefrom. The flexible capillaries are then 
connected to a nitrogen pressure channel accordingly. The outer ring had 13 sealed-ends 
capillaries arranged closely around the wall of the holding tube. Therefore, active pressure is 
applied to the inner ring-of-holes only, and the outer ring is self-pressurised. According to the 
study carried out by Voyce et. al., the pressure inside a sealed capillary can remain relatively 
constant provided that long length is used and significantly extended out upward from the 
furnace, which is the case here (Voyce et. al., 2009). This setup will provide the necessary 
differential pressure for different ring-of-holes during draw to demonstrate the generic 
fabrication method proposed in section 5.1. The inner holes should stay open with a pressure 
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of >2.73 kPa, suggested in the work done by Wadsworth et. al. following a simple 
relationship of Pst(kPa)= 600/d(µm), where Pst is the pressure required in unit of kilopascal 
to prevent a hole with diameter d in unit of micron from collapsing (Wadsworth et. al., 2005). 
The preform is drawn to cane size with OD of around 1.2 mm using a tractor belt puller. The 
drawing temperature was 1905 °C, the preform feeding speed was 10 mm/min, the pulling 
speed was 1 m/min, and the initial pressure applied to the inner ring was 8 kPa. At low 
temperature hole collapsing due to surface tension is reduced significantly. The furnace 
resistance graphite element has a diameter of >50 mm, with a capillary stack of ~4.3 mm 
wide loaded in the middle of the furnace, the temperature gradient across the stack is 
minimised. Note that, the preform is drawn without vacuum, which is often used in a 
traditional MOF drawing to get rid of the interstitial space and to help expanding the holes 
by introducing a negative pressure in the region. Thus the drawing conditions presented 
here led to a more accurate result of the effect caused to the capillaries by actively 
controlling the pressure in the holes only, with space for shrinkage and expansion. 
The cane drawing result is summarised in Fig. 9, presented as microscope images of the 
cross-section. A total length of ~50 m of canes is drawn. Three pressure values were set 
during the draw, started at 8 kPa, then subsequently changed to 16 kPa  11 kPa  8 kPa 

 11 kPa. The effect of the pressure change can be seen clearly from the pictures shown in 
Fig. 9 at different draw distance. By doubling the initial pressure of 8 kPa to 16 kPa, the 
pressure experienced by the holes was clearly over the set pressure of 16 kPa, see Fig. 9(a). 
This is because a lagging time is required for the pressure to stabilise by the pressure 
feedback loop control. It would be better to increase the pressure by small increment for a 
more stable hole-size increase. For the dimension of capillaries used in this preform, 16 kPa 
would inflate the inner holes and over power the outer ring-of-holes almost completely. At 
11 kPa, the inner holes are almost at balance in pressure with similar size to the outer holes. 
At 8 kPa, shrinkage of the 7 inner holes relative to the outer holes is clearly visible. The outer 
holes were almost constant in size with pressure applied to the inner holes at 8 kPa and 11 
kPa (Fig. 9(d)-(j)), which confirmed that a constant pressure is possible with long sealed-
ends capillaries under self-pressurisation. It was found that decreasing pressure gave a 
more stable result without pressure over shooting the set point. 
The study carried out in this section provide some useful data as a starting point for 
realising fibre-tapers on a fibre draw tower. It shows that an accurate control of selective 
hole-size is possible during one-stage cane-draw with active pressure. Optimal structure 
was achieved with a pressure of ~11 kPa, which is about 4x of the suggested pressure (Pst) 
required to prevent hole from collapsing.  

5.2.2 Two-stage fibre drawing 
The process of cane drawing studied in the previous section represents an one-stage draw 
with selective pressure control, and well controlled fibre structures were obtained. Next, a 
cane with the 7 inner holes connected to the same pressure control is inserted into a 
jacketing tube (OD= 12 mm, ID= 4.3 mm), and the outer holes were again subjected to self-
pressurisation. The cane is being drawn to fibre as a two-stage draw with selective active 
pressure control. 
The microscope image of the cane used in the fibre-draw is shown in Fig. 10(a), the diameter 
of the largest hole in the inner ring was assumed to be ~110 µm. The pressure applied to the 
inner holes was set initially at 5.5 kPa. The drawing temperature was 1905 °C, the preform  
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Fig. 9. Optical microscope images of the cross-section of the canes drawn from the preform 
with active pressure applied to the inner ring and self-pressurised for the outer ring. Draw 
temperature= 1905 °C, feed speed= 10 mm/min and draw speed= 1 m/min. The Draw 
length (L), active pressure (P) and outer diameter (OD) are included in the diagram. 
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Fig. 10. (a) A photo to show the structure of the cane used in the two-stage fibre drawing 
experiment with active pressure control in the inner ring. (b) The SEM images of the fibre 
when pressure was below 18 kPa. (c)-(f) The SEM images of the fibre over the length of 
about 2 metres with pressure set point increased from 18 to 25. 
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Fig. 9. Optical microscope images of the cross-section of the canes drawn from the preform 
with active pressure applied to the inner ring and self-pressurised for the outer ring. Draw 
temperature= 1905 °C, feed speed= 10 mm/min and draw speed= 1 m/min. The Draw 
length (L), active pressure (P) and outer diameter (OD) are included in the diagram. 
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Fig. 10. (a) A photo to show the structure of the cane used in the two-stage fibre drawing 
experiment with active pressure control in the inner ring. (b) The SEM images of the fibre 
when pressure was below 18 kPa. (c)-(f) The SEM images of the fibre over the length of 
about 2 metres with pressure set point increased from 18 to 25. 



 
Recent Progress in Optical Fiber Research 

 

286 

feeding speed was 3 mm/min and the drawing speed was 3 m/min. No vacuum is applied 
to the space between the cane and the jacketing tube. The pressure in unit of kPa was then 
adjusted every few minutes to 5.8  6.2  6.7  7.3  8  9  11  14  18  25. The 
outer diameter of the fibre varied from 350 µm to 365 µm.  
The SEM images of the fibre are shown in Fig. 10 (b)-(f). It was found that for pressure 
below 18 kPa, all the holes including the outer holes collapsed, with no structure found, 
SEM image of an example is presented in Fig. 10 (b). Some holes are opened and observed 
when the pressure was increased from 18 kPa to 25 kPa, see Fig. 10 (c)-(f). However, due to 
the large increment between the pressure set points, the pressure was increased too rapidly 
and was over shooting the set value, thus the holes in the cane massively expanded or 
‘burst’ (picture excluded in the figure). A jacketing tube with ID closely fitted to the cane 
would solve the bursting problem.  
Nonetheless, the effect of increasing pressure actively can be seen in a short portion of the 
fibre. The evolution of the fibre structure shown in Fig. 10 (c)-(f) only account for ~2 m of 
fibre in total. It is worth noting that not all 7 holes opened at the same time, and some may 
not open at all. This is because the hole-sizes of the 7 holes are different in the cane initially, 
and thus suggesting that it is a very important factor to consider when applying the same 
pressure to a ring-of-holes. The larger holes will open first and may dominate the structure. 
With the drawing conditions chosen, none of the outer holes opened under self-
pressurisation, and only the largest holes are observed in the active pressured inner ring. 
Further study need to be carried out for pressure adjusted with small increment and for 
pressure decreases when the optimal pressure is known. The results obtained here suggest 
again, a pressure of ~4Pst is prefer for obtaining good structure, and should be chosen to 
establish a stable draw initially. 
Selective active pressure control method for MOF fabrication is demonstrated for both one-
stage and two-stage fibre drawings. Further work need to be done by employing more than 
one pressure/vacuum channels, and refining the pressure adjustment, capillaries and 
jacketing tube selections in order to achieve the required fibre design.  

6. Conclusions 
A new design concept for microstructured fibre taper that can be produced on a traditional 
optical fibre draw tower with multi-pressure control is proposed. A study of the simplest 
case with different MOF parameters is presented. The design consists of the innermost ring-
of-holes varied in size along the fibre, and outer rings with large holes of constant size to 
provide low confinement loss. The outer diameter of the taper is preserved with effective 
area taper ratio of between 2 and 3 is achieved. Potentially, larger ratio is possible by 
tapering more than one ring-of-holes, while the outer diameter for the taper is preserved. 
Designs with effective mode area as small as 0.65 µm2 operating at 1.06 µm are simulated. 
Different designs offer different advantages depending on the application requirements. In 
general, this tapering concept offers low confinement, dispersion and nonlinearity tailoring, 
and high mechanical strength and ease of handling over the entire length of the MOF taper. 
Early experiments demonstrated the feasibility for the proposed fabrication method with 
encouraging result. Further work is required to achieve the proposed fibre taper design. 
The proposed active pressure control scheme not only produces tapered fibres, but other 
designs in three-dimensions. Preliminary experimental results showed that hole-size can be 
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selectively controlled longitudinally by both up-pressure and down-pressure; which suggest 
that fibre structure can be controlled comprehensively under general conditions. Similar 
scheme should also works for non-silica glass or polymer MOFs. By designing a more 
complex 2D fibre structure (Poletti et. al., 2005) together with the extra 3D design degree of 
freedom proposed here, one would expect this approach further extend the versatility of the 
microstructured fibre technology. 
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outer diameter of the fibre varied from 350 µm to 365 µm.  
The SEM images of the fibre are shown in Fig. 10 (b)-(f). It was found that for pressure 
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SEM image of an example is presented in Fig. 10 (b). Some holes are opened and observed 
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the large increment between the pressure set points, the pressure was increased too rapidly 
and was over shooting the set value, thus the holes in the cane massively expanded or 
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would solve the bursting problem.  
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fibre in total. It is worth noting that not all 7 holes opened at the same time, and some may 
not open at all. This is because the hole-sizes of the 7 holes are different in the cane initially, 
and thus suggesting that it is a very important factor to consider when applying the same 
pressure to a ring-of-holes. The larger holes will open first and may dominate the structure. 
With the drawing conditions chosen, none of the outer holes opened under self-
pressurisation, and only the largest holes are observed in the active pressured inner ring. 
Further study need to be carried out for pressure adjusted with small increment and for 
pressure decreases when the optimal pressure is known. The results obtained here suggest 
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selectively controlled longitudinally by both up-pressure and down-pressure; which suggest 
that fibre structure can be controlled comprehensively under general conditions. Similar 
scheme should also works for non-silica glass or polymer MOFs. By designing a more 
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freedom proposed here, one would expect this approach further extend the versatility of the 
microstructured fibre technology. 

7. Acknowledgment 
This work was supported by the University Grants Council’s Matching Grant of the Hong 
Kong Special Administrative Region Government under the Niche Areas Project J-BB9J. 

8. References 
Baggett, J. C.; Monro, T. M.; Furusawa, K.; Finazzi V. & Richardson, D. J. (2003). 

Understanding bending losses in holey optical fibres, Optics Communications, Vol. 
227, No. 4-6, (November 2003), pp. 317-335, ISSN 0030-4018 

Bilodeau, F.; Hill, K. 0.; Faucher, S. & Johnson, D. C. (1988). Low-loss highly overcoupled 
fused couplers: fabrication and sensitivity to external pressure, Journal of Lightwave 
Technology, Vol. 6, No. 10, (October 1988), pp. 1476-1482, ISSN 0733-8724 

Chen, Z.; Taylor, A. J. & Emov, A. (2009a). Coherent mid-infrared broadband continuum 
generation in non-uniform ZBLAN ber taper, Optics Express, Vol. 17, No. 7, 
(March 2009), pp. 5852-5860, ISSN 1094-4087 

Chen, Z.; Xiong, C.; Xiao, L. M.; Wadsworth, W. J. & Birks, T. A. (2009b). More than 
threefold expansion of highly nonlinear photonic crystal ber cores for low-loss 
fusion splicing, Optics Letters, Vol. 34, No. 14, (July 2009), pp. 2240-2242, ISSN 0146-
9592 

Chernikov, S. V.; Dianov, E. M.; Richardson, D. J. & Payne, D. N. (1993). Soliton pulse 
compression in dispersion-decreasing fibre, Optics Letters, Vol. 18, No. 7, 
(September 1993), pp. 476-478, ISSN 0146-9592 

Couny, F.; Roberts, P. J.; Birks T. A. & Benabid, F. (2008). Square-lattice large-pitch hollow-
core photonic crystal fibre, Optics Express, Vol. 16, No. 25, (November 2008), pp. 
20626-20636, ISSN 1094-4087 

Dudley J. & Coen, S. (2002). Numerical simulations and coherence properties of 
supercontinuum generation in photonic crystal and tapered optical fibres, IEEE 
Journal of Selected Topics in Quantum Electronics, Vol. 8, No.3, (May-June 2002), pp. 
651-659, ISSN 1077-260X 

Genty, G.; Coen S. & Dudley, J. M. (2007). Fibre supercontinuum sources, Journal of the 
Optical Society of America B (Optical Physics), Vol. 24, No. 8, (August 2007), pp. 1771-
1785, ISSN 0740-3224 

Hu, J.; Marks, B. S.; Menyuk, C. R.; Kim, J.; Carruthers, T. F.; Wright, B. M.; Taunay, T. F. & 
Friebele, E. J. (2006). Pulse compression using a tapered microstructure optical 
ber, Optics Express, Vol. 17, No. 9, (May 2006), pp. 4026-4036, ISSN 1094-4087 

Nguyen, H. C.; Kuhlmey, B. T.; Steel, M. J.; Smith, C. L.; Mägi, E. C.; McPhedran, R. C. & 
Eggleton, B. J. (2005). Leakage of the fundamental mode in photonic crystal fibre 
tapers, Optics Letters, Vol. 30, No. 10, (May 2005), pp. 1123-1125, ISSN 0146-9592 



 
Recent Progress in Optical Fiber Research 

 

288 

Poletti, F.; Finazzi, V.; Monro, T. M.; Broderick, N. G. R.; Tse, V. & Richardson, D. J. (2005). 
Inverse design and fabrication tolerances of ultra-attened dispersion holey bers, 
Optics Express, Vol. 13, No. 10, (May 2005), pp. 3728-3736, ISSN 1094-4087 

Town G. E. & Lizier J. T. (2001). Tapered holey fibers for spot-size and numerical-aperture 
conversion, Optics Letters, Vol. 26, No. 14, (July 2001), pp. 1042-1044, ISSN 0146-9592 

Travers, J. C.; Stone, J. M.; Rulkov, A. B.; Cumberland, B. A.; George, A. K.; Popov, S. V.; 
Knight, J. C. & Taylor, J. R. (2007). Optical pulse compression in dispersion 
decreasing photonic crystal fibre, Optics Express, Vol. 15, No. 20, (October 2007), pp. 
13203-13211, ISSN 1094-4087 

Tse, M. L. V.; Horak, P.; Poletti, F.; Broderick, N. G. R.; Price, J. H. V.; Hayes, J. R. & 
Richardson, D. J. (2006a). Supercontinuum generation at 1.06 µm in holey fibres 
with dispersion flattened profiles, Optics Express, Vol. 14, No. 10, (May 2006), pp. 
4445-4451, ISSN 1094-4087 

Tse, M. L. V.; Horak, P.; Price, J. H. V.; Poletti, F.; He, F. & Richardson, D. J. (2006b). Pulse 
compression at 1.06 µm in dispersion-decreasing holey fibres, Optics Letters, Vol. 31, 
No. 23, (December 2006), pp. 3504-3506, ISSN 0146-9592 

Tse, M. L. V. (2007). Development and applications of dispersion controlled high nonlinearity 
microstructured fibres, PhD thesis, University of Southampton, Southampton, U.K. 

Tse, M. L. V.; Horak, P.; Poletti, F. & Richardson, D. J. (2008). Designing tapered holey fibres 
for soliton compression, IEEE Journal of Quantum Electronics, Vol. 44, No. 2, 
(February 2008), pp. 192-198, ISSN 0018-9197 

Tse, M. L. V.; Tam, H. Y.; Fu, L. B.; Thomas, B. K.; Dong, L.; Lu, C. & Wai, P. K. A. (2009a). 
Fusion splicing holey fibres and single-mode fibres: a simple method to reduce loss 
and increase strength, IEEE Photonics Technology Letters, Vol. 21, No. 3, (February 
2009), pp. 164-166, ISSN 1041-1135 

Tse, M. L. V.; Tam, H. Y.; Lu, C. & Wai, P. K. A. (2009b). Novel design of a microstructured 
fibre taper, Proceedings of 14th OptoElectronics and Communications Conference 
(OECC), ThLP32 , ISSN 978-1-4244-4102-0, Hong Kong, China, July 13-17, 2009 

Voyce, C. J.; Fitt, A. D.; Hayes, J. R. & Monro, T. M. (2009). Mathematical modeling of the 
self-pressurising mechanism for microstructured fiber drawing, Journal of Lightwave 
Technology, Vol. 27, No. 7, (April 2009), pp. 871-878, ISSN 0733-8724 

Vukovic, N.; Broderick, N. G. R.; Petrovich M. & Brambilla G. (2008). Novel method for the 
fabrication of long optical fibre tapers, IEEE Photonics Technology Letters, Vol. 20, 
No. 14, (July 2008), pp. 1264-1266, ISSN 1041-1135 

Wadsworth, W. J.; Witkowska, A.; Leon-Saval, S. G. & Birks, T. A. (2005). Hole inflation and 
tapering of stock photonic crystal fibres, Optics Express, Vol. 13, No. 18, (September 
2005), pp. 1094-4087, ISSN 1094-4087 

White, T. P.; McPhedran, R. C.; Martijn de Sterke, C.; Litchinitser, N. M. & Eggleton, B. J. 
(2002). Resonance and scattering in microstructured optical fibres, Optics Letters, 
Vol. 27, No. 22, (November 2002), pp. 1977-1979, ISSN 0146-9592 

Part 4 

Special Characteristics and Applications 



 
Recent Progress in Optical Fiber Research 

 

288 

Poletti, F.; Finazzi, V.; Monro, T. M.; Broderick, N. G. R.; Tse, V. & Richardson, D. J. (2005). 
Inverse design and fabrication tolerances of ultra-attened dispersion holey bers, 
Optics Express, Vol. 13, No. 10, (May 2005), pp. 3728-3736, ISSN 1094-4087 

Town G. E. & Lizier J. T. (2001). Tapered holey fibers for spot-size and numerical-aperture 
conversion, Optics Letters, Vol. 26, No. 14, (July 2001), pp. 1042-1044, ISSN 0146-9592 

Travers, J. C.; Stone, J. M.; Rulkov, A. B.; Cumberland, B. A.; George, A. K.; Popov, S. V.; 
Knight, J. C. & Taylor, J. R. (2007). Optical pulse compression in dispersion 
decreasing photonic crystal fibre, Optics Express, Vol. 15, No. 20, (October 2007), pp. 
13203-13211, ISSN 1094-4087 

Tse, M. L. V.; Horak, P.; Poletti, F.; Broderick, N. G. R.; Price, J. H. V.; Hayes, J. R. & 
Richardson, D. J. (2006a). Supercontinuum generation at 1.06 µm in holey fibres 
with dispersion flattened profiles, Optics Express, Vol. 14, No. 10, (May 2006), pp. 
4445-4451, ISSN 1094-4087 

Tse, M. L. V.; Horak, P.; Price, J. H. V.; Poletti, F.; He, F. & Richardson, D. J. (2006b). Pulse 
compression at 1.06 µm in dispersion-decreasing holey fibres, Optics Letters, Vol. 31, 
No. 23, (December 2006), pp. 3504-3506, ISSN 0146-9592 

Tse, M. L. V. (2007). Development and applications of dispersion controlled high nonlinearity 
microstructured fibres, PhD thesis, University of Southampton, Southampton, U.K. 

Tse, M. L. V.; Horak, P.; Poletti, F. & Richardson, D. J. (2008). Designing tapered holey fibres 
for soliton compression, IEEE Journal of Quantum Electronics, Vol. 44, No. 2, 
(February 2008), pp. 192-198, ISSN 0018-9197 

Tse, M. L. V.; Tam, H. Y.; Fu, L. B.; Thomas, B. K.; Dong, L.; Lu, C. & Wai, P. K. A. (2009a). 
Fusion splicing holey fibres and single-mode fibres: a simple method to reduce loss 
and increase strength, IEEE Photonics Technology Letters, Vol. 21, No. 3, (February 
2009), pp. 164-166, ISSN 1041-1135 

Tse, M. L. V.; Tam, H. Y.; Lu, C. & Wai, P. K. A. (2009b). Novel design of a microstructured 
fibre taper, Proceedings of 14th OptoElectronics and Communications Conference 
(OECC), ThLP32 , ISSN 978-1-4244-4102-0, Hong Kong, China, July 13-17, 2009 

Voyce, C. J.; Fitt, A. D.; Hayes, J. R. & Monro, T. M. (2009). Mathematical modeling of the 
self-pressurising mechanism for microstructured fiber drawing, Journal of Lightwave 
Technology, Vol. 27, No. 7, (April 2009), pp. 871-878, ISSN 0733-8724 

Vukovic, N.; Broderick, N. G. R.; Petrovich M. & Brambilla G. (2008). Novel method for the 
fabrication of long optical fibre tapers, IEEE Photonics Technology Letters, Vol. 20, 
No. 14, (July 2008), pp. 1264-1266, ISSN 1041-1135 

Wadsworth, W. J.; Witkowska, A.; Leon-Saval, S. G. & Birks, T. A. (2005). Hole inflation and 
tapering of stock photonic crystal fibres, Optics Express, Vol. 13, No. 18, (September 
2005), pp. 1094-4087, ISSN 1094-4087 

White, T. P.; McPhedran, R. C.; Martijn de Sterke, C.; Litchinitser, N. M. & Eggleton, B. J. 
(2002). Resonance and scattering in microstructured optical fibres, Optics Letters, 
Vol. 27, No. 22, (November 2002), pp. 1977-1979, ISSN 0146-9592 

Part 4 

Special Characteristics and Applications 



 

 

14 

Long Period Gratings in  
New Generation Optical Fibers 

Agostino Iadicicco1, Domenico Paladino2, Pierluigi Pilla2 
Stefania Campopiano1, Antonello Cutolo2 and Andrea Cusano2 

1Department for Technologies, University of Naples “Parthenope” 
2Optoelectronic Division-Engineering Department, University of Sannio 

Italy  

1. Introduction  
The development of fiber gratings has had a significant impact on research and 
development in telecommunications and fiber optic sensing. Fiber gratings are intrinsic 
devices that allow control over the properties of light propagating within the fiber—they are 
used as spectral filters, as dispersion compensating components and in wavelength division 
multiplexing systems (Erdogan, 1997). The sensitivity of their properties to perturbation of 
the fiber by the surrounding environmental conditions has led to extensive study of their 
use as fiber sensor elements (Kersey et al., 1997). Fiber gratings consist of a periodic 
perturbation of the properties of the optical fiber, generally of the refractive index of the core 
and/or geometry, and fall into two general classifications based upon the period of the 
grating. Short-period fiber gratings, or fiber Bragg gratings (FBGs), have a sub-micron 
period and act to couple light from the forward-propagating core mode of the optical fiber 
to a backward, counter-propagating one (Kashyap, 1999; Canning, 2008; Cusano et al., 
2009a). The long-period gratings (LPGs), instead, have period typically in the range 0.1-1 
mm (James & Tatam, 2003). The LPG promotes coupling between the propagating core 
mode and co-propagating cladding modes. The high attenuation of the cladding modes 
results in the transmission spectrum of the fiber containing a series of attenuation bands 
centred at discrete wavelengths, each attenuation band corresponding to the coupling to a 
different cladding mode. The exact form of the spectrum, and the centre wavelengths of the 
attenuation bands, are sensitive to the period of the LPG, the length of the LPG and to the 
local environment: temperature, strain, bend radius and the refractive index (RI) of the 
medium surrounding the fiber. The peculiar spectral features of LPGs made them broadly 
used in many applications ranging from telecommunications to sensing (Bhatia, 1999). In 
particular, LPGs represent above all one of the most promising fiber grating technological 
platforms, to be employed in a number of chemical applications because of their intrinsic 
sensitivity to surrounding RI (SRI) changes (Shu et al., 2002). Up to now great efforts have 
been done in order to enhance the performance of LPGs in single mode fibers (SMFs) in 
terms of tuning capability and/or sensitivity. For instance several approaches have been 
proposed to achieve remarkable sensitivities such as cladding etching, LPG design for 
coupling to higher order modes near their dispersion turning points or in-fiber complex 
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configuration including multi-gratings (Chung & Yin, 2004; Iadicicco et al., 2007, 2008; Pilla 
et al., 2008). Additionally, once the effects of depositing a thin high RI (HRI) layer onto the 
cladding over the grating region have been discovered, huge sensitivity enhancements in 
comparison to bare LPGs have been obtained due to the so-called modal transition (Del 
Villar et al., 2005; Cusano et al., 2005, 2006a). 
On the other side, it is worth noting that new fiber designs such as D-shaped fibers and 
photonic crystal fibers (PCFs) (with solid and air core) capable to offer new perspective in 
sensing and telecommunications applications have attracted the attention of several 
researcher groups and scientists (Tseng & Chen, 1992; Smith et al., 2004; Gordon et al., 2007; 
Kaiser et al., 1974; Knight et al., 1996). However to increase the impact of the new generation 
fibers technology, in-fiber components such as grating filters are required. In this chapter 
the recent progresses of LPGs into new generation fibers will be reported. Fabrication 
techniques and novel applications fields offered by the hosting fiber will be discussed. In 
particular here the following optical fiber designs will be take into considerations: 
i. D-shaped fiber. This category refers to a generic optical fiber showing a D-shaped 

transversal section. In such a fiber the core can be very close to the flat side of the “D” 
shape. This proximity allows access to the core electromagnetic fields more easily than 
in standard SMF and thus D-fiber is extremely attractive especially in sensing 
applications. A D-shaped fiber can be readily obtained from a standard SMF by side-
polishing (Tseng & Chen, 1992) or, alternatively, is commercially available from KVH 
Industries, Inc. (Smith et al., 2004; Gordon et al., 2007). The possibility to combine LPGs 
with D-fibers has represented and still represents an open challenge for the scientific 
community. In this kind of fiber LPGs can be achieved impressing physical 
modification of the core (intra-core LPGs). Alternatively, thanks to the proximity of the 
core region to the flat surface, periodic modification of the effective RI of the core mode 
(forming the LPG) can be induced via evanescent-wave interaction if the flat surface is 
morphologically modified with appropriate pitch (Jang et al., 2009). Here fabrications 
and applications of both D-fiber LPGs are resumed. 

ii. Photonic crystal fibers. They refer to a new class of optical fibers that have wavelength-
scale morphological microstructure running down their length (Knight et al., 1996). 
They, according to their guiding mechanisms, may be divided into index-guiding PCFs 
and photonic band-gap fibers (PBFs). The former permit light to be guided in silica 
solid core while the second one enable the light guiding in the air core. Even if the first 
PCF was proposed in 1974 (Kaiser et al., 1974), the first pure silica PCF was achieved for 
practical use in the middle of the 1990s (Birks et al., 1995; Knight et al., 1996). Such 
structured optical fibers, indeed, thanks to their composite nature enable a plenty of 
possibilities and functionalities hitherto not possible – long range spectroscopy as well 
as large mode areas fiber laser just to name a few (Canning, 2008). Particular attention 
has been focused on hollow core PCFs (HC-PCFs)  due to the lattice assisted light 
propagation within the hollow core (Smith et al., 2003). This particular feature, indeed, 
has a number of advantages such as lower Rayleigh scattering, reduced nonlinearity, 
novel dispersion characteristics, and potentially lower loss compared to conventional 
optical fibers. Fabrication of gratings in PCFs fiber still represents a challenge for the 
scientific community (Cusano et al, 2009; Y. Wang, 2010). Here the fabrication of LPGs 
in PCFs as well as the novel application fields offered by the hosting fiber will be 
discussed. 
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The next sections are organized as follows: Section 2 provides a brief review of LPGs in 
SMFs, Section 3 focuses on LPGs in D-shaped fibers and Section 4 reports recent progresses 
about LPGs in PCFs. 

2. Long period gratings: a view back 
Long Period Gratings are a periodic perturbation of the properties of the optical fiber, 
generally of the refractive index of the core and/or geometry, in a single mode fiber. They 
have periods typically ranging between 200 μm and 500 μm and lengths around 2-3 cm. The 
perturbation acts on the fundamental core mode enabling power transfer to a discrete set of 
co-propagating cladding modes that are excited at different wavelengths where a phase 
matching condition is satisfied. This modal coupling process determines a loss in the core 
mode that is reflected into a series of attenuation bands in the transmission spectrum of the 
optical fiber. Although they were primarily introduced as devices for optical communications 
(Vengsarkar et al., 1996), for which they have been used to develop band rejection filters, gain 
equalizers, optical amplifiers, fiber couplers, dispersion compensators (Chiang & Liu, 2006), 
however, they have immediately found vast application in the sensing field (Bathia et al., 
1996). In fact any physical entity able to affect the difference of the core and cladding effective 
indices and/or the grating period and length, results in a change of the transmission 
spectrum in terms of central wavelength, depth and bandwidth of attenuation bands. 
Therefore LPGs have been investigated as sensors for a number of environmental parameters 
such as temperature, strain, bending and ambient RI (James & Tatam, 2003). LPGs are 
classically realized by exposing an optical fiber to UV lasers through an amplitude mask and 
exploiting the photosensitivity of silica glass. In this regard, despite extensive research on 
the physical mechanisms underlying the fiber photosensitivity in the past decades, there are 
some aspects that are not fully understood. The reason is that a number of mechanisms take 
part in this optical phenomenon, sometimes simultaneously, whose relative weight depends 
on the specific chemical composition of the fiber and drawing process, the photosensitization 
(hydrogen loading, flame brushing, co-doping, strain) and writing processes (irradiation 
power , wavelength, duration) (Vasiliev et al., 2005). The amplitude mask is usually made of 
a chrome- plated silica substrate that is patterned in order to have light transmitting slits 
alternating with reflective regions. The fiber is placed within a few millimetres behind the 
amplitude mask with its axis oriented perpendicular to the mask slits. A cylindrical lens 
focuses the Gaussian spot of the laser into a line parallel to the fiber axis. The UV light 
passing through the amplitude mask imprints a RI modulation onto the photosensitive fiber 
core thus yielding a grating with the same period as that of the mask pattern. The 
shortcomings of the amplitude mask technique are the restrictions on the grating period and 
length that are fixed by the geometrical features of the mask itself. Moreover amplitude 
masks can be easily damaged if they are exposed to UV light whose intensity exceeds their 
damage threshold thus requiring long exposure times at limited source intensities. Another 
widespread grating inscription method is the point-by-point writing technique, in which the 
grating is obtained by focusing the laser source in a single spot on the fiber and successively 
displacing the fiber of the required grating periodicity to induce the next index change. This 
method is far more flexible than the amplitude mask because length and grating index 
profiles are fully reconfigurable. On the other side, the former allows the grating to be written 
all at once and offers more precision in the spectral response which is critical for some 
devices such as cascaded long-period gratings. 
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The most frequently employed UV laser wavelengths for LPGs fabrication are 248nm and 
193nm (from KrF and ArF excimer lasers, respectively) where are located strong absorption 
peaks due to defects of the GeO2-SiO2 network. Ultra-short wavelength of 152 nm from an F2 
laser was used to produce LPGs in SMF-28 without prior hydrogen loading. The inscribed 
gratings, being immune to the problem of post-writing hydrogen out-diffusion, showed 
higher thermal stability compared to those realized by the standard photosensitizing 
technique. Recently, high intensity femtosecond laser pulses at longer wavelengths (211nm, 
264nm and even 800nm) are becoming a fairly widespread method to induce RI modulation 
through a multi-photon absorption process that does not necessarily require 
photosensitization (Kalachev et al., 2005). Even if the UV writing methods by means of an 
amplitude mask or through a point-by-point process are the most commonly and readily 
used writing methods in research and industry, they have certain general shortcomings: a 
large number of masks is required to fabricate gratings with different periods; 
photosensitizing pre-treatments are necessary to facilitate the RI change; UV written 
gratings generally suffer poor thermal stability; last but not least, UV laser sources are 
expensive. For these reasons several non-photosensitive techniques for grating fabrication 
have been investigated. In this regard, refractive index modulation produced by high 
temperature thermal treatments exploiting CO2 lasers (10.6 μm wavelength) or an electric 
arc discharge has received great attention in last years. Both methods, to obtain the localized 
heating of the fiber, rely on a point-by-point writing approach and therefore they inherit the 
advantageous flexibility already mentioned. Also for these techniques there are several 
mechanisms that contribute to the refractive index modulation: relaxation of frozen stresses 
during fiber drawing, physical deformation, glass compaction or expansion, core dopants 
diffusion, among which the predominant cause depends on the heating treatment, the fiber 
type and any mechanical stress applied (Rego et al., 2005a; Y. Wang, 2010). For example, the 
arc discharge technique was used to form LPGs into pure-silica PCFs without any physical 
deformation (e.g. air holes collapse) by exploiting the glass structure change. The refractive 
index modulation was attributed to a glass density reduction due to the rapid heating-
cooling process (Morishita & Miyake, 2004). It is worth to observe that an additional benefit 
of the electric arc technique lie in the fact that it is based on a very simple fabrication 
procedure needing inexpensive equipment. However it should be also pointed out as a 
major pitfall of these techniques that the intrinsic asymmetry in the heating process leads to 
birefringence with consequent polarization dependent losses or coupling to azimuthally 
asymmetric cladding modes (Rego et al., 2006).  
Coming back to the applications of LPGs as sensors we can identify four physical 
parameters of interest: applied tensile stress can modify the effective indices of core and 
cladding modes through the elasto-optic effect and the grating period because of elongation 
; thermo-optic effect is responsible for the effective index change while thermal expansion 
for period modification in the case of the temperature changes (Shu et al., 2002); bending 
breaks the cylindrical symmetry of the waveguide promoting coupling to azhymuthally 
asymmetric cladding modes that are differently affected in their effective indices depending 
on the region of the fiber where they are confined (Block et al., 2006); finally the effective 
indices of cladding modes directly depend on the index contrast between the cladding and 
the surrounding medium being a boundary condition in the solution of the waveguide 
equation (Patrick et al. 1998). An interesting feature of LPGs is that the sensitivity to a 
particular measurand depends drastically on the order of the coupled cladding mode and 
on the type of the fiber. This makes possible the discrimination of different parameters 
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acting simultaneously on the sensor and offers the possibility to design devices that are 
particularly sensitive or insensitive to a given stimulus (Bathia, 1999). LPGs written in 
standard optical fibers offer a temperature sensitivity up to one order of magnitude larger 
than FBGs and strain sensitivity to almost double by appropriate choice of observed 
cladding mode. Altering the fiber composition to increase the difference in the thermo-optic 
coefficients of core and cladding can be a valuable means to achieve higher sensitivities up 
to 2.75nm/°C (Shu et al., 2001). Among all, one of the most appealing features of LPGs is 
their intrinsic sensitivity to changes of the SRI because it can serve as a basis for achieving 
biomolecular and chemical sensors. The first applications of this feature, however, were 
more like solution concentration sensors since the bare LPG alone does not possess any 
chemical selectivity (Falciai et al., 2001; Falate et al., 2005). The deposition of thin overlay 
materials that can change their RI as a consequence of a physic-chemical interaction with the 
surrounding environment has opened a very interesting niche of applications (De Lisa et al., 
2000). Moreover, another major pitfall for bare LPGs is their scarce SRI sensitivity in low 
index ambient (air, water) while they show maximum sensitivity for SRIs close to the 
cladding RI, typically around 1.45. In this context, a paradigm shift has been represented by 
the integration of nano-scale polymer overlays with HRI than the cladding and by the 
discovery of the modal transition phenomenon (Rees et al., 2002; Del Villar et al., 2005; Z. 
Wang et al. 2005; Cusano et al., 2005). It is by now very well known that the SRI sensitivity 
of LPGs can be optimized for the specific measurement environment through the deposition 
of a HRI thin film by acting on its thickness (ranging in hundreds of nanometres). 
Sensitivities as high as thousands of nanometres for a unitary change of SRI can be easily 
obtained and therefore LPGs coated by HRI functional layers have been successfully 
exploited for chemical and biomolecular sensing (Cusano et al., 2006b; Pilla et al., 2009). 
Humidity sensing is a fairly investigated application, that was performed with LPGs coated 
by thin films of different hygrosensitive materials (Tan et al., 2005; Kostantaki et al., 2006; 
Liu et al., 2007; Venugopalan et al., 2008). A zeolite overlay was used in combination with 
LPGs to detect the presence of few ppm of toluene and isopropanol vapours (Zhang et al., 
2008). A sol-gel derived coating of tin dioxide with optimized thickness for high sensitivity 
(≈200 nm) was used to detect ethanol vapours claiming a resolution of 1ppm (Gu et al., 
2006). A partially etched LPG with cladding substituted by a polymer coating of finely 
tuned RI and able to perform solid-phase microextraction of organic solvents such as xylene, 
cyclohexane and gasoline was demonstrated. The extra peculiarity of this study being the 
interrogation system potentially highly miniaturizable and based on the concept of the 
cavity ring down spectroscopy (Barnes et. al, 2010). A very sensitive probe for pH was 
manufactured by means of electrostatically self assembled multilayers without the use of 
colorants. The transduction principle was the swelling of the overlay as a consequence of 
increased concentration of hydrogen ions (Corres et al., 2007).  
In the never ending quest for increased SRI sensitivity, a growing interest, both theoretical 
and experimental, has been recently shown also for the possibility to excite surface plasma 
waves by means of cladding modes (Tang et al., 2006, He et al., 2006). A Pd-coated LPG was 
used as hydrogen sensor (Wei et al., 2008). A particular dispersion behaviour of one of the 
cladding modes obtained for a specific grating period at a certain wavelength, the so-called 
turn around point (TAP), together with functional coatings of synthetic or biological nature, 
was exploited to obtain ultra-sensitivity for volatile organic compounds or biomolecules 
detection (Chen et al., 2007; Z. Wang et al., 2009; Topliss et al., 2010). It should be noted that 
the number of biosensing applications with LPGs is rapidly growing and it can be foreseen 
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laser was used to produce LPGs in SMF-28 without prior hydrogen loading. The inscribed 
gratings, being immune to the problem of post-writing hydrogen out-diffusion, showed 
higher thermal stability compared to those realized by the standard photosensitizing 
technique. Recently, high intensity femtosecond laser pulses at longer wavelengths (211nm, 
264nm and even 800nm) are becoming a fairly widespread method to induce RI modulation 
through a multi-photon absorption process that does not necessarily require 
photosensitization (Kalachev et al., 2005). Even if the UV writing methods by means of an 
amplitude mask or through a point-by-point process are the most commonly and readily 
used writing methods in research and industry, they have certain general shortcomings: a 
large number of masks is required to fabricate gratings with different periods; 
photosensitizing pre-treatments are necessary to facilitate the RI change; UV written 
gratings generally suffer poor thermal stability; last but not least, UV laser sources are 
expensive. For these reasons several non-photosensitive techniques for grating fabrication 
have been investigated. In this regard, refractive index modulation produced by high 
temperature thermal treatments exploiting CO2 lasers (10.6 μm wavelength) or an electric 
arc discharge has received great attention in last years. Both methods, to obtain the localized 
heating of the fiber, rely on a point-by-point writing approach and therefore they inherit the 
advantageous flexibility already mentioned. Also for these techniques there are several 
mechanisms that contribute to the refractive index modulation: relaxation of frozen stresses 
during fiber drawing, physical deformation, glass compaction or expansion, core dopants 
diffusion, among which the predominant cause depends on the heating treatment, the fiber 
type and any mechanical stress applied (Rego et al., 2005a; Y. Wang, 2010). For example, the 
arc discharge technique was used to form LPGs into pure-silica PCFs without any physical 
deformation (e.g. air holes collapse) by exploiting the glass structure change. The refractive 
index modulation was attributed to a glass density reduction due to the rapid heating-
cooling process (Morishita & Miyake, 2004). It is worth to observe that an additional benefit 
of the electric arc technique lie in the fact that it is based on a very simple fabrication 
procedure needing inexpensive equipment. However it should be also pointed out as a 
major pitfall of these techniques that the intrinsic asymmetry in the heating process leads to 
birefringence with consequent polarization dependent losses or coupling to azimuthally 
asymmetric cladding modes (Rego et al., 2006).  
Coming back to the applications of LPGs as sensors we can identify four physical 
parameters of interest: applied tensile stress can modify the effective indices of core and 
cladding modes through the elasto-optic effect and the grating period because of elongation 
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for period modification in the case of the temperature changes (Shu et al., 2002); bending 
breaks the cylindrical symmetry of the waveguide promoting coupling to azhymuthally 
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the surrounding medium being a boundary condition in the solution of the waveguide 
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acting simultaneously on the sensor and offers the possibility to design devices that are 
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standard optical fibers offer a temperature sensitivity up to one order of magnitude larger 
than FBGs and strain sensitivity to almost double by appropriate choice of observed 
cladding mode. Altering the fiber composition to increase the difference in the thermo-optic 
coefficients of core and cladding can be a valuable means to achieve higher sensitivities up 
to 2.75nm/°C (Shu et al., 2001). Among all, one of the most appealing features of LPGs is 
their intrinsic sensitivity to changes of the SRI because it can serve as a basis for achieving 
biomolecular and chemical sensors. The first applications of this feature, however, were 
more like solution concentration sensors since the bare LPG alone does not possess any 
chemical selectivity (Falciai et al., 2001; Falate et al., 2005). The deposition of thin overlay 
materials that can change their RI as a consequence of a physic-chemical interaction with the 
surrounding environment has opened a very interesting niche of applications (De Lisa et al., 
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index ambient (air, water) while they show maximum sensitivity for SRIs close to the 
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of LPGs can be optimized for the specific measurement environment through the deposition 
of a HRI thin film by acting on its thickness (ranging in hundreds of nanometres). 
Sensitivities as high as thousands of nanometres for a unitary change of SRI can be easily 
obtained and therefore LPGs coated by HRI functional layers have been successfully 
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interrogation system potentially highly miniaturizable and based on the concept of the 
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manufactured by means of electrostatically self assembled multilayers without the use of 
colorants. The transduction principle was the swelling of the overlay as a consequence of 
increased concentration of hydrogen ions (Corres et al., 2007).  
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and experimental, has been recently shown also for the possibility to excite surface plasma 
waves by means of cladding modes (Tang et al., 2006, He et al., 2006). A Pd-coated LPG was 
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turn around point (TAP), together with functional coatings of synthetic or biological nature, 
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detection (Chen et al., 2007; Z. Wang et al., 2009; Topliss et al., 2010). It should be noted that 
the number of biosensing applications with LPGs is rapidly growing and it can be foreseen 
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that it will represent an area of major interest in coming years (Eggen et al., 2010; Smietana 
et al., 2011). In this context LPGs realized in Photonic Crystal Fibers are extremely attractive 
for the possibility to achieve very intense light matter interactions with a unique optofluidic 
design and with nano-liter sample consumption (Rindorf et al.,2006; He et al., 2011).  
However, the attractiveness of the SRI sensitivity of LPGs is not limited to the field of 
sensing applications and it is extended to the optical communication domain for the 
possibility to develop tuneable filters and optical modulators (Yin et al., 2001; Chung et al., 
2004; J. Lee et al., 2007). An interesting and relatively new trend in LPGs made in classical 
telecom fibers is the fabrication of compound structures characterized by spectral details of 
finer scale for higher resolution in the measurements of environmental parameters or to 
obtain a compensation against cross-sensitivities (D. Kim et al, 2006; Pilla et al., 2008; Jiang et 
al.,2009; Mosquera et al., 2010) .  

3. Long period gratings in D-shaped fibers  
The main advantage of LPGs over short-period FBGs is their intrinsic SRI sensitivity. 
Nevertheless, the fiber section geometry strongly influences the sensitivity characteristics of 
the considered LPG, in terms of SRI as well as in terms of the other external parameters able 
to induce changes in the grating spectrum: temperature, strain, bending, etc. In general, one 
of the most obvious manner to increase the interaction of the light propagating within an 
optical fiber and the surroundings is represented by the reduction of their distance from the 
core layer. The fiber structure that better satisfies such a need avoiding the micro-
structuring of the fiber itself is the D-shaped optical fiber. In such a fiber the core can be very 
close to the flat side of the “D” shape maintaining a certain robustness of the fiber structure, 
especially if compared with a SMF uniformly thinned – preserving its azimuthal symmetry 
– to reach the same distance of the core from the surroundings. Obviously, a first type of D-
shaped fiber can be readily obtained from a standard SMF (see Fig. 1(a)) by side-polishing 
(Tseng & Chen, 1992). On the other hand, a special D-shaped fiber is commercially available 
from KVH Industries, Inc.: it is a polarization maintaining SMF. Such a structure has been 
successfully exploited in the past for applications in both telecommunications and sensing 
(Smith et al., 2004, 2006; Smith, 2005; Gibson et al., 2007; Gordon et al., 2007). Note that 
slightly different geometrical features have been reported for this D-fiber by the different 
research groups involved with it in the past. However, Fig. 1 tries to compare the 
transversal geometrical features of a standard SMF with those of the D-fiber supplied by 
KVH. Differently from the standard SMF, the D-fiber is a three-layer structure. In particular, 
it presents an elliptical Ge-doped core (major and minor axis of ~5 and ~2.5 µm, 
respectively, and RI of 1.4756) with the major axis parallel to the flat side, an elliptical inner 
fluorine-doped depressed cladding (~22×18 µm2, RI of 1.441), and a D-shaped undoped 
silica supercladding (RI of 1.444) The distance of the core layer from the flat surface of the D-
fiber is of ~13.5 μm. Note that the maximum transversal dimension of the D-fiber is exactly 
the same of the standard SMF: 125 μm. Evidently, the possibility to combine LPGs with D-
shaped optical fibers have represented and still represent an open challenge for the scientific 
community. In this section, the scientific efforts already carried out in this field are resumed. 
The subject is treated as follows: first the attention is focused on the fabrication of LPGs into 
D-fibers, dividing the category in gratings involving physical modification of the core layer 
(intra-core LPGs) and gratings obtained by evanescent-wave mechanism; successively the 
different applications proposed for such structures are discussed. 
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Fig. 1. Schematic diagram of the cross-section of (a) a standard SMF and (b) a D-fiber by 
KVH Industries, Inc. (not in scale). 

3.1 Intra-core LPGs 
Classically, a LPG is an axially periodic RI variation inscribed in the core of a photosensitive 
SMF by UV irradiation, which couples light from the fiber core into the cladding modes at 
discrete wavelengths. The index modulation produces a set of attenuation bands seen in the 
transmission spectrum of the optical fiber. The first paper presenting a LPG written in D-
shaped SMF was dated 2004 (Allsop et al., 2004). Few data were given about the fiber 
structure: the D-fiber was originally designed for coupler fabrication. The core’s radius was 
4 μm, and the distance between its center and the flat of the “D” was 9 µm with a cladding 
radius of 62.5 µm. The core was a composition of GeO2/SiO2 and the cladding was assumed 
to be SiO2. The D-fiber was not specifically designed to be photosensitive and so its 
photosensitivity was increased by hydrogenation at a pressure of 120 Bar for two weeks. 
The LPGs were fabricated using a frequency doubled argon ion laser at a wavelength of 244 
nm with a point-by-point writing technique. Several grating periods were used from 140 to 
400 μm with a grating length of 5 cm. Scrutinizing the transmission spectrum during 
fabrication, it was noticed that the attenuation bands grew in strength with a red shift but 
this strengthening and red shifting continued post-fabrication with shifts well in excess of 
150 nm followed by a roughly comparable blue shift. An example of part of post-fabrication 
spectral evolution is shown in Fig. 2. The authors hypothesized this behaviour was due to 
different H2 diffusion rates from core and cladding. 
 

 
Fig. 2. Post-fabrication spectral evolution of an attenuation band from a D-fiber based LPG 
(period of 400 μm). Reproduced with permission from (Allsop et al., 2004). 
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that it will represent an area of major interest in coming years (Eggen et al., 2010; Smietana 
et al., 2011). In this context LPGs realized in Photonic Crystal Fibers are extremely attractive 
for the possibility to achieve very intense light matter interactions with a unique optofluidic 
design and with nano-liter sample consumption (Rindorf et al.,2006; He et al., 2011).  
However, the attractiveness of the SRI sensitivity of LPGs is not limited to the field of 
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the considered LPG, in terms of SRI as well as in terms of the other external parameters able 
to induce changes in the grating spectrum: temperature, strain, bending, etc. In general, one 
of the most obvious manner to increase the interaction of the light propagating within an 
optical fiber and the surroundings is represented by the reduction of their distance from the 
core layer. The fiber structure that better satisfies such a need avoiding the micro-
structuring of the fiber itself is the D-shaped optical fiber. In such a fiber the core can be very 
close to the flat side of the “D” shape maintaining a certain robustness of the fiber structure, 
especially if compared with a SMF uniformly thinned – preserving its azimuthal symmetry 
– to reach the same distance of the core from the surroundings. Obviously, a first type of D-
shaped fiber can be readily obtained from a standard SMF (see Fig. 1(a)) by side-polishing 
(Tseng & Chen, 1992). On the other hand, a special D-shaped fiber is commercially available 
from KVH Industries, Inc.: it is a polarization maintaining SMF. Such a structure has been 
successfully exploited in the past for applications in both telecommunications and sensing 
(Smith et al., 2004, 2006; Smith, 2005; Gibson et al., 2007; Gordon et al., 2007). Note that 
slightly different geometrical features have been reported for this D-fiber by the different 
research groups involved with it in the past. However, Fig. 1 tries to compare the 
transversal geometrical features of a standard SMF with those of the D-fiber supplied by 
KVH. Differently from the standard SMF, the D-fiber is a three-layer structure. In particular, 
it presents an elliptical Ge-doped core (major and minor axis of ~5 and ~2.5 µm, 
respectively, and RI of 1.4756) with the major axis parallel to the flat side, an elliptical inner 
fluorine-doped depressed cladding (~22×18 µm2, RI of 1.441), and a D-shaped undoped 
silica supercladding (RI of 1.444) The distance of the core layer from the flat surface of the D-
fiber is of ~13.5 μm. Note that the maximum transversal dimension of the D-fiber is exactly 
the same of the standard SMF: 125 μm. Evidently, the possibility to combine LPGs with D-
shaped optical fibers have represented and still represent an open challenge for the scientific 
community. In this section, the scientific efforts already carried out in this field are resumed. 
The subject is treated as follows: first the attention is focused on the fabrication of LPGs into 
D-fibers, dividing the category in gratings involving physical modification of the core layer 
(intra-core LPGs) and gratings obtained by evanescent-wave mechanism; successively the 
different applications proposed for such structures are discussed. 
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Fig. 1. Schematic diagram of the cross-section of (a) a standard SMF and (b) a D-fiber by 
KVH Industries, Inc. (not in scale). 

3.1 Intra-core LPGs 
Classically, a LPG is an axially periodic RI variation inscribed in the core of a photosensitive 
SMF by UV irradiation, which couples light from the fiber core into the cladding modes at 
discrete wavelengths. The index modulation produces a set of attenuation bands seen in the 
transmission spectrum of the optical fiber. The first paper presenting a LPG written in D-
shaped SMF was dated 2004 (Allsop et al., 2004). Few data were given about the fiber 
structure: the D-fiber was originally designed for coupler fabrication. The core’s radius was 
4 μm, and the distance between its center and the flat of the “D” was 9 µm with a cladding 
radius of 62.5 µm. The core was a composition of GeO2/SiO2 and the cladding was assumed 
to be SiO2. The D-fiber was not specifically designed to be photosensitive and so its 
photosensitivity was increased by hydrogenation at a pressure of 120 Bar for two weeks. 
The LPGs were fabricated using a frequency doubled argon ion laser at a wavelength of 244 
nm with a point-by-point writing technique. Several grating periods were used from 140 to 
400 μm with a grating length of 5 cm. Scrutinizing the transmission spectrum during 
fabrication, it was noticed that the attenuation bands grew in strength with a red shift but 
this strengthening and red shifting continued post-fabrication with shifts well in excess of 
150 nm followed by a roughly comparable blue shift. An example of part of post-fabrication 
spectral evolution is shown in Fig. 2. The authors hypothesized this behaviour was due to 
different H2 diffusion rates from core and cladding. 
 

 
Fig. 2. Post-fabrication spectral evolution of an attenuation band from a D-fiber based LPG 
(period of 400 μm). Reproduced with permission from (Allsop et al., 2004). 
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In the same year, LPGs were also fabricated within the D-shaped fiber supplied by KVH 
(Chen et al., 2004). To provide for comparison, LPGs were UV inscribed in both the D-
fiber and standard SMF employing the point-by-point fabrication technique and a 
continuous-wave frequency-doubled Ar laser of 100 mW power. Prior to UV exposure, 
the fibers were photosensitized by a standard H2-loading treatment. Following 
inscription, the gratings were stabilized by thermal annealing at 80°C for 48 hours. Figs. 
3(a) and (b) show typical spectra for two 4 cm long LPGs with periods of 490 and 380 μm 
in standard SMF and D-fiber, respectively. In the D-fiber case, the birefringence results in 
the presence of two sets of broad loss peaks corresponding, respectively, to the two 
orthogonal polarization states. 
 

 
Fig. 3. Typical transmission spectra of LPGs in (a) standard SMF, and (b) D-fiber. There are 
two sets of resonances in D-fiber grating spectrum, corresponding to the two orthogonal 
polarization states, P1 and P2. Reproduced with permission from (Chen et al., 2004). 

Obviously, D-fiber based LPGs can be also obtained by grating writing in standard SMF and 
successive side-polishing of the fiber section containing the grating (Tien et al., 2009a). In 
that case, a 2 cm long LPG with period of 380 μm was written within a H2-loaded standard 
SMF using a KrF excimer laser with a wavelength of 248 nm and an amplitude mask. After 
grating writing, the fiber section containing the LPG was double-sided-polished: during the 
process, the polishing depth was monitored by checking the transmitted light power levels. 
Fig. 4 shows the original LPG transmission spectrum and that obtained after polishing: a red 
shift in the range of several nanometres is observable. 
Finally, special attention has to be dedicated to the air-gap LPG (AG-LPG) first proposed in 
2009 (Fu et al., 2009). Differently from standard UV written LPGs, in fact, here the grating 
is an axially periodic structural modification of the core layer (periodic AGs). The 
fabrication steps of such a D-fiber based LPG are resumed in Fig. 5. In particular, starting 
from a standard SMF, the first step is to side-polish the fiber to yield a flat polished surface 
on the cladding layer (see Fig. 5(a)). The distance between the core and the flat polished 
surface is ~12-15 μm. The second step is to coat a negative photoresist with a thickness of 
~10 μm on the flat polished surface of the fiber. After it is exposed and developed under 
UV light, the fiber is coated with a periodic (410 μm) resist (see Fig. 5(b)). Finally, the fiber 
is HF etched to yield a 3 cm long AG-LPG (see Fig. 5(c)). Note that, owing to the isotropic 
nature of the HF based etching, experimentally the sections of AGs appear to be ladder-
shaped. 
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Fig. 4. Transmission spectra before and after side-polishing of the LPG. Reproduced with 
permission from (Tien et al., 2009a). 

 
Fig. 5. Schematic diagram of the fabrication steps for the realization of AG-LPGs (not in 
scale). Reproduced with permission from (Fu et al., 2011). 

3.2 Evanescent-wave LPGs 
Along a LPG, the core periodic modification is substantially necessary to induce an effective 
RI modulation with the same periodicity on the core mode of the SMF: this is the real 
perturbation able to force the modal coupling between the core and cladding modes. On the 
other hand, the direct modification of the interested fiber layer is not the only way to force 
an effective RI modulation of the modes propagating within that layer. Uniform HRI nano-
coatings, for example, have been proved to induce strong changes on the cladding modes 
effective RIs via evanescent-wave (Cusano et al., 2009b). By exploiting the same principle, 
HRI coatings should be able to induce changes on the core mode effective RI if the diameter 
of the cladding layer is opportunely reduced (Cusano et al., 2007). The first evanescent-wave 
D-fiber based LPG has been demonstrated in 2009 (Jang et al., 2009). The cladding layer of a 
SMF was substantially reduced using the side-polishing method to enhance the interaction 
between the core mode and the external medium via evanescent-wave. In particular, the 
unjacketed fiber was placed in a bent groove (curvature radius of 250 mm) in a quartz block 
and was held by a UV epoxy. The block was polished until the cladding of the fiber was 
nearly removed. Successively, the LPG pattern was formed on the side-polished surface 
using a photolithography process: i) photoresist was spread on the polished surface by spin-
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successive side-polishing of the fiber section containing the grating (Tien et al., 2009a). In 
that case, a 2 cm long LPG with period of 380 μm was written within a H2-loaded standard 
SMF using a KrF excimer laser with a wavelength of 248 nm and an amplitude mask. After 
grating writing, the fiber section containing the LPG was double-sided-polished: during the 
process, the polishing depth was monitored by checking the transmitted light power levels. 
Fig. 4 shows the original LPG transmission spectrum and that obtained after polishing: a red 
shift in the range of several nanometres is observable. 
Finally, special attention has to be dedicated to the air-gap LPG (AG-LPG) first proposed in 
2009 (Fu et al., 2009). Differently from standard UV written LPGs, in fact, here the grating 
is an axially periodic structural modification of the core layer (periodic AGs). The 
fabrication steps of such a D-fiber based LPG are resumed in Fig. 5. In particular, starting 
from a standard SMF, the first step is to side-polish the fiber to yield a flat polished surface 
on the cladding layer (see Fig. 5(a)). The distance between the core and the flat polished 
surface is ~12-15 μm. The second step is to coat a negative photoresist with a thickness of 
~10 μm on the flat polished surface of the fiber. After it is exposed and developed under 
UV light, the fiber is coated with a periodic (410 μm) resist (see Fig. 5(b)). Finally, the fiber 
is HF etched to yield a 3 cm long AG-LPG (see Fig. 5(c)). Note that, owing to the isotropic 
nature of the HF based etching, experimentally the sections of AGs appear to be ladder-
shaped. 
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Fig. 4. Transmission spectra before and after side-polishing of the LPG. Reproduced with 
permission from (Tien et al., 2009a). 

 
Fig. 5. Schematic diagram of the fabrication steps for the realization of AG-LPGs (not in 
scale). Reproduced with permission from (Fu et al., 2011). 

3.2 Evanescent-wave LPGs 
Along a LPG, the core periodic modification is substantially necessary to induce an effective 
RI modulation with the same periodicity on the core mode of the SMF: this is the real 
perturbation able to force the modal coupling between the core and cladding modes. On the 
other hand, the direct modification of the interested fiber layer is not the only way to force 
an effective RI modulation of the modes propagating within that layer. Uniform HRI nano-
coatings, for example, have been proved to induce strong changes on the cladding modes 
effective RIs via evanescent-wave (Cusano et al., 2009b). By exploiting the same principle, 
HRI coatings should be able to induce changes on the core mode effective RI if the diameter 
of the cladding layer is opportunely reduced (Cusano et al., 2007). The first evanescent-wave 
D-fiber based LPG has been demonstrated in 2009 (Jang et al., 2009). The cladding layer of a 
SMF was substantially reduced using the side-polishing method to enhance the interaction 
between the core mode and the external medium via evanescent-wave. In particular, the 
unjacketed fiber was placed in a bent groove (curvature radius of 250 mm) in a quartz block 
and was held by a UV epoxy. The block was polished until the cladding of the fiber was 
nearly removed. Successively, the LPG pattern was formed on the side-polished surface 
using a photolithography process: i) photoresist was spread on the polished surface by spin-
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coating (thickness of 2.1 μm) and ii) the LPG pattern was formed by UV exposure through a 
shadow long-period mask followed by a development process. The evanescent-wave LPG 
was 25 mm long, with a period of 600 μm. Fig. 6(a) and (b) show a schematic diagram of the 
LPG and a microscope image of a section of the LPG, respectively. In this case, the HRI 
photoresist increases the effective RI of the core mode along the coated regions, whereas it is 
left unperturbed elsewhere. 
 

 
Fig. 6. Side-polished fiber with a LPG pattern: (a) schematic diagram (not in scale); (b) 
microscope image. Reproduced with permission from (Jang et al., 2009). 

The same principle of operation has been exploited to develop an evanescent-wave LPG 
also along a D-shaped PCF (H. Kim et al., 2010). Figs. 7(a) and (b) schematically show the 
device evolution along the longitudinal direction of the fiber at different steps of its 
fabrication; Fig. 7(c), instead, shows the transversal section of one of the coated regions 
along the final device. The utilized PCF had pitch of 5.1 μm, air hole size of 1.3 μm, and 
core and cladding diameter of 10 and 130 μm, respectively. To fabricate the D-shaped 
PCF, two polishing processes were performed. In the first one, the PCF was placed on a V-
groove along a quartz block (curvature radius of 90 cm) and fixed by using a UV-curable 
epoxy. The structure was ground down on a brass plate with Al2O3 powder. Then, the 
slurry on the flat surface was washed by ultrasonic cleaning with de-ionized water and 
successively dried at 100°C for 10 min. The air holes on the polished surface were covered 
by using a UV-curable epoxy (RI of 1.56) in order to remove external materials infiltrated 
into air holes: the transmission loss caused by the epoxy was measured to be less than 0.2 
dB. For the second polishing process, the ground PCF was positioned on a polyurethane 
plate and polished with CeO2 powder to diminish the surface roughness of the D-shaped 
PCF. Also after this step, the polished surface was washed and dried. The measured 
residual cladding thickness was ~0.1 μm. The previously described photolithography 
processes were used for the deposition of a uniform photoresist overlay and for its 
patterning. Two D-shaped PCF samples with different surface structures were fabricated: 
one presenting a uniform thin film of resist (thickness d of 3.5 μm) and the other one with 
the same resist layer patterned with a period of 400 μm to produce the LPG. Figs. 7(d) and 
(e) show the transmission spectrum of the two D-shaped PCF samples. In both cases, dips 
associated to modal coupling are present. In particular, the PCF-based thin layer present 
two different dips at ~800 and ~1320 nm: they are probably due to coupling of the core 
mode with overlay modes. On the other side, for the surface LPG these two dips are 
narrower and reduced in depth; in addition also a dip slightly beyond 1000 nm is present, 
probably the only one effectively associated to the grating. 
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Fig. 7. Schematic diagram (not in scale) of (a) the uniform thin layer along the D-shaped 
PCF, (b) the PCF-based surface LPG, and (c) the cross section of the D-shaped PCF with the 
photoresist overlay; transmission spectrum of (d) the PCF-based thin layer and (e) the PCF-
based surface LPG. Reproduced with permission from (H. Kim et al., 2010). 

The idea at the basis of the previous evanescent-wave LPG configuration is very interesting, 
but its fabrication procedure shows certain limitations: i) the fiber device has to be 
integrated in a bulk material for side-polishing, loosing its typical compactness and ii) the 
adoptable overlay types are limited to photoresist. To overcome this limits, we recently 
proposed a different approach to realize evanescent-wave D-fiber based LPGs (Quero et al., 
2011). First of all, the D-fiber supplied by KVH (see Fig. 1(b)) was adopted: it simply needs 
superficial etching in correspondence of the flat surface to allow evanescent-wave 
interaction of the core mode (Fig. 8(a)). It also provides, at this stage, the possibility to tailor 
the SRI sensitivity of the device by a proper choice of the etching depth. Successively, as 
proof of concept, a basic polymeric overlay of atactic polystyrene (PS) was uniformly 
deposited along the fiber by dip-coating technique (Fig. 8(b)). Finally, the overlay was 
properly confined in correspondence of the core layer on the flat surface of the fiber (Fig. 
8(c)) and periodically patterned (Fig. 8(d)) by laser micromachining techniques. The main 
advantage of this approach relies on the flexibility: PS was used only for validation, several 
HRI material can be adopted depending on the specific application. During the HF based 
etching procedure, a particular point to be taken into account is the different etching rates of 
the three layer constituting the D-fiber structure. In particular, it is necessary to etch the 
fluorine-doped inner cladding to obtain evanescent-wave interaction of the core mode and 
such a layer etches ~1.4 times faster than the silica super-cladding. However, the etching 
depth can be controlled by monitoring the transmitted power: a 2.5 cm etched sample 
presenting 5% optical power losses was selected. The correspondent transmitted spectrum is 
reported in Fig. 8(e) (black curve). During the second step, a uniform PS overlay (RI of 
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was 25 mm long, with a period of 600 μm. Fig. 6(a) and (b) show a schematic diagram of the 
LPG and a microscope image of a section of the LPG, respectively. In this case, the HRI 
photoresist increases the effective RI of the core mode along the coated regions, whereas it is 
left unperturbed elsewhere. 
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microscope image. Reproduced with permission from (Jang et al., 2009). 
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also along a D-shaped PCF (H. Kim et al., 2010). Figs. 7(a) and (b) schematically show the 
device evolution along the longitudinal direction of the fiber at different steps of its 
fabrication; Fig. 7(c), instead, shows the transversal section of one of the coated regions 
along the final device. The utilized PCF had pitch of 5.1 μm, air hole size of 1.3 μm, and 
core and cladding diameter of 10 and 130 μm, respectively. To fabricate the D-shaped 
PCF, two polishing processes were performed. In the first one, the PCF was placed on a V-
groove along a quartz block (curvature radius of 90 cm) and fixed by using a UV-curable 
epoxy. The structure was ground down on a brass plate with Al2O3 powder. Then, the 
slurry on the flat surface was washed by ultrasonic cleaning with de-ionized water and 
successively dried at 100°C for 10 min. The air holes on the polished surface were covered 
by using a UV-curable epoxy (RI of 1.56) in order to remove external materials infiltrated 
into air holes: the transmission loss caused by the epoxy was measured to be less than 0.2 
dB. For the second polishing process, the ground PCF was positioned on a polyurethane 
plate and polished with CeO2 powder to diminish the surface roughness of the D-shaped 
PCF. Also after this step, the polished surface was washed and dried. The measured 
residual cladding thickness was ~0.1 μm. The previously described photolithography 
processes were used for the deposition of a uniform photoresist overlay and for its 
patterning. Two D-shaped PCF samples with different surface structures were fabricated: 
one presenting a uniform thin film of resist (thickness d of 3.5 μm) and the other one with 
the same resist layer patterned with a period of 400 μm to produce the LPG. Figs. 7(d) and 
(e) show the transmission spectrum of the two D-shaped PCF samples. In both cases, dips 
associated to modal coupling are present. In particular, the PCF-based thin layer present 
two different dips at ~800 and ~1320 nm: they are probably due to coupling of the core 
mode with overlay modes. On the other side, for the surface LPG these two dips are 
narrower and reduced in depth; in addition also a dip slightly beyond 1000 nm is present, 
probably the only one effectively associated to the grating. 

 
Long Period Gratings in New Generation Optical Fibers 

 

301 

 
Fig. 7. Schematic diagram (not in scale) of (a) the uniform thin layer along the D-shaped 
PCF, (b) the PCF-based surface LPG, and (c) the cross section of the D-shaped PCF with the 
photoresist overlay; transmission spectrum of (d) the PCF-based thin layer and (e) the PCF-
based surface LPG. Reproduced with permission from (H. Kim et al., 2010). 

The idea at the basis of the previous evanescent-wave LPG configuration is very interesting, 
but its fabrication procedure shows certain limitations: i) the fiber device has to be 
integrated in a bulk material for side-polishing, loosing its typical compactness and ii) the 
adoptable overlay types are limited to photoresist. To overcome this limits, we recently 
proposed a different approach to realize evanescent-wave D-fiber based LPGs (Quero et al., 
2011). First of all, the D-fiber supplied by KVH (see Fig. 1(b)) was adopted: it simply needs 
superficial etching in correspondence of the flat surface to allow evanescent-wave 
interaction of the core mode (Fig. 8(a)). It also provides, at this stage, the possibility to tailor 
the SRI sensitivity of the device by a proper choice of the etching depth. Successively, as 
proof of concept, a basic polymeric overlay of atactic polystyrene (PS) was uniformly 
deposited along the fiber by dip-coating technique (Fig. 8(b)). Finally, the overlay was 
properly confined in correspondence of the core layer on the flat surface of the fiber (Fig. 
8(c)) and periodically patterned (Fig. 8(d)) by laser micromachining techniques. The main 
advantage of this approach relies on the flexibility: PS was used only for validation, several 
HRI material can be adopted depending on the specific application. During the HF based 
etching procedure, a particular point to be taken into account is the different etching rates of 
the three layer constituting the D-fiber structure. In particular, it is necessary to etch the 
fluorine-doped inner cladding to obtain evanescent-wave interaction of the core mode and 
such a layer etches ~1.4 times faster than the silica super-cladding. However, the etching 
depth can be controlled by monitoring the transmitted power: a 2.5 cm etched sample 
presenting 5% optical power losses was selected. The correspondent transmitted spectrum is 
reported in Fig. 8(e) (black curve). During the second step, a uniform PS overlay (RI of 
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~1.59) was deposited along the etched D-fiber by dip-coating (thickness of approximately 
1.4 μm): the correspondent transmitted spectrum is shown in red in Fig. 8(e). Evidently, the 
HRI overlay induces further optical losses, but, above all, forces selective spectral features 
probably due to a coupling mechanism of the guided light with overlay modes. To avoid 
that the spectral features of the LPG to be realized would be compromised by such selective 
spectral features, an excimer laser micromachining system (KrF, λ=248 nm) was used to 
confine the overlay on the flat surface of the fiber: a strip 2 cm long and 30 μm wide was 
realized in correspondence of the core. As observable from the spectral response of the 
device after confinement (green curve in Fig. 8(e)), the selective spectral features were no 
more observable and the transmission spectrum results quite flat. Finally, the evanescent-
wave LPG was realized via laser micromachining by periodically patterning the PS strip 
with a period of 500 μm (250 μm alternatively coated and uncoated): as shown in Fig. 8(f), 
the LPG transmission spectrum present three different attenuation bands located at ~1360, 
~1440, and ~1530 nm. 
 

 
Fig. 8. Evanescent-wave LPFG: (a)–(d) Schematic diagram (not in scale) of the fiber structure 
step-by-step; transmission spectrum at (e) steps (a)–(c) and (f) step (d). (Quero et al., 2011). 

3.3 Applications 
D-fiber based LPGs have been demonstrated to be very useful devices, especially in the 
sensing field. In this section, the applications of such devices are briefly resumed: according 
to the previous sections, first intra-core and then evanescent-wave LPGs will be considered. 
The bending and orientational characteristics were the main aim of the first study about D-
fiber based LPGs (Allsop et al., 2004). Typically increasing curvature causes splitting of LPG 
attenuation bands in standard SMF. Differently, the spectral evolution versus bending of 
one of the first D-fiber based LPGs is shown in Fig. 9. As observable, new bands appear 
under the influence of bending. Such transmission features are due to mode coupling 
coefficients that increase with curvature. The most sensitive bend-induced attenuation 
bands was characterized by a bend sensitivity of 12.55 ± 2×10-2 nm•m, whereas the normal 
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attenuation band had a sensitivity of –1.735 ± 8×10-3 nm•m. Also, it was found that the 
bend-induced bands were sensitive to the orientation of the bend with respect to the flat of 
the “D”, suggesting, in principle, a possible application as directional bend sensor for the D-
fiber LPG. The grating was tested also versus temperature, revealing the possibility to use 
the LPG sensor also to discriminate between temperature and bending effects because it 
yields a reasonably well-conditioned sensitivity matrix. 
 

 
Fig. 9. Evolution of the transmission spectrum of a D-fiber based LPG (period of 380 μm) 
subjected to bending, showing the appearance of bend induced stop-bands. (Reproduced 
with permission from (Allsop et al., 2004)). 

The application proposed for the first LPG inscribed within the D-fiber by KVH, instead, 
was as optical chemsensor with cladding etching to enhance sensitivity (Chen et al., 2004). A 
comparative investigation on the SRI sensitivity was conducted on LPGs in both D-fiber and 
the standard SMF by measuring the grating response to the aqueous sugar solutions, with 
sugar concentrations varying from 0% to 60%. The LPGs presented in Fig. 3 were utilized 
and both of them were tested in standard configuration and after an etching time of 40 min 
in HF bath at 10% concentration (the etching rate was found to be the same for the two 
kinds of optical fiber). Evidently, the D-fiber device possessed an intrinsically higher SRI 
sensitivity and the etching significantly enhances the SRI sensitivity, especially for the D-
fiber LPG. However, it is important to note that different grating periods were considered 
(shorter for the D-fiber) and this surely influenced the SRI sensitivity. The same authors also 
proposed a dual-parameter in-fiber sensor based on a hybrid LPG-FBG structure (Chen et 
al., 2005). The simultaneous measurement of temperature (FBG) and SRI (LPG) was proved. 
Always in 2004, the bending sensitivity characteristics of such D-fiber based LPGs were 
studied (D. Zhao et al., 2004a; D. Zhao et al., 2004b): their spectral response depends 
strongly not only on the curvature amplitude but also on the fiber orientation. Potential 
applications as directional shape sensor, bend-insensitive sensor, and two-axis curvature 
sensor (here a couple of LPGs is necessary) were hypothesized. Finally, the spectral 
characteristics of LPGs UV-written within the D-fiber supplied by KVH were also studied 
by Allsop et al. in 2006 (Allsop et al., 2006). The authors were able to fabricate LPGs with 
overlapping orthogonal polarization state attenuation bands: the use of such bands can 
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attenuation band had a sensitivity of –1.735 ± 8×10-3 nm•m. Also, it was found that the 
bend-induced bands were sensitive to the orientation of the bend with respect to the flat of 
the “D”, suggesting, in principle, a possible application as directional bend sensor for the D-
fiber LPG. The grating was tested also versus temperature, revealing the possibility to use 
the LPG sensor also to discriminate between temperature and bending effects because it 
yields a reasonably well-conditioned sensitivity matrix. 
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comparative investigation on the SRI sensitivity was conducted on LPGs in both D-fiber and 
the standard SMF by measuring the grating response to the aqueous sugar solutions, with 
sugar concentrations varying from 0% to 60%. The LPGs presented in Fig. 3 were utilized 
and both of them were tested in standard configuration and after an etching time of 40 min 
in HF bath at 10% concentration (the etching rate was found to be the same for the two 
kinds of optical fiber). Evidently, the D-fiber device possessed an intrinsically higher SRI 
sensitivity and the etching significantly enhances the SRI sensitivity, especially for the D-
fiber LPG. However, it is important to note that different grating periods were considered 
(shorter for the D-fiber) and this surely influenced the SRI sensitivity. The same authors also 
proposed a dual-parameter in-fiber sensor based on a hybrid LPG-FBG structure (Chen et 
al., 2005). The simultaneous measurement of temperature (FBG) and SRI (LPG) was proved. 
Always in 2004, the bending sensitivity characteristics of such D-fiber based LPGs were 
studied (D. Zhao et al., 2004a; D. Zhao et al., 2004b): their spectral response depends 
strongly not only on the curvature amplitude but also on the fiber orientation. Potential 
applications as directional shape sensor, bend-insensitive sensor, and two-axis curvature 
sensor (here a couple of LPGs is necessary) were hypothesized. Finally, the spectral 
characteristics of LPGs UV-written within the D-fiber supplied by KVH were also studied 
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considerably simplify the sensor interrogation. However, the spectral sensitivity of both 
orthogonal polarization states was measured with respect to temperature, rotation and 
bending. The temperature sensitivity was low compared to LPGs in standard SMF. 
Moreover, such LPGs devices produced blue and red shifts depending upon the orientation 
of the bend with measured maximum sensitivities of –3.56 and 6.51 nm•m. The use of 
neighbouring bands to the overlapping orthogonally polarized attenuation bands to 
perform simultaneous measurement of temperature and bending was also demonstrated, 
which yielded a maximum polarization dependence curvature error of ±0.08 m-1 and a 
temperature error of ±0.05°C. Since also the rotation of the bent LPG produced wavelength 
shifts, this type of LPG may be useful as a shape sensor and the polarization dependence 
can be reduced by using the overlapping orthogonal polarization state attenuation bands. 
The effective scientific interest in D-fiber based LPGs is demonstrated also by the theoretical 
works regarding SRI measurements based on surface plasmon polariton (Tripathi et al., 
2008; Tripathi et al., 2009), opening the way to the design of high performance 
chemical/biological sensors. The 2008 work studies the SRI sensing characteristics of metal-
coated side-polished standard SMF gratings: both FBGs and LPGs. The authors used a 
simple approach for modelling side-polished SMF (Sharma et al., 1990) and demonstrated 
that the LPG-based sensor requires shorter grating lengths and higher metal thickness for a 
given sensitivity, making it more practical to realize. The 2009 work, instead, is focused on 
the SRI sensitivity characteristics of metal-coated LPGs operating in the power coupling 
regime corresponding to dual spectral resonance within D-fiber by KVH. The authors used a 
simple and sufficiently accurate first-order perturbation model (Kumar & Varshney, 1984) 
and demonstrated that, by an optimum combination of metal thickness and core to flat 
surface separation, SRI sensitivity as high as 5971 nm/RIU (RIU – RI Unit) can be reached. 
The double-sided polished D-fiber LPG proposed by Tien et al. in 2009 was first proposed as 
magnetic field sensor (Tien et al., 2009a). The magnetic sensing material was a Fe thin film 
with a thickness of 80 nm, deposited by evaporation coating technique onto the double-
sided-polished surface. The maximum blue shift experienced by the 1310 nm attenuation 
band (see Fig. 4) was 36 nm when the magnetic field was 153 kA/m, corresponding to a 
sensitivity of about 0.24 nm/(kA/m). The double-sided-polished D-fiber LPG was also 
proposed for liquid RI measurements in the bare configuration (Tien et al., 2009b), revealing 
a maximum SRI sensitivity of 143.396 nm/RIU. 
To complete the intra-core LPGs category, the applications of AG-LPGs needs to be 
mentioned: first, they were tested for SRI measurements (Fu et al., 2009). Fig. 10(a) shows 
the transmission spectrum of a AG-LPG with period of 410 μm for several SRIs (sugar 
solutions at different concentrations): differently from standard LPGs, a red shift as the SRI 
grows up is observable. In particular, in the 1.33-1.42 SRI range a linear behaviour has been 
pointed out for the attenuation band at ~1550 nm with SRI sensitivity of ~620 nm/RIU. This 
peculiar spectral feature can be explained by considering that the resonant wavelengths 
λres,m of a LPG with period Λ are determined by the following phase-matching condition 
(Vengsarkar et al., 1996; Shu et al., 2002): 

 ( ), ,
effeff

res m core cladding mn nλ = − ⋅Λ                    (1) 

where neffcore and neffcladding,m are the effective RIs of the fundamental core mode and the m-
th cladding mode, respectively. For a standard LPG, SRI changes are able to modify only the 
cladding mode RIs: the higher is the SRI, the higher are the cladding mode RIs, leading to a 
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blue shift of the attenuation bands. In the AG-LPG case, instead, SRI changes influence both 
the cladding and the core mode effective RIs. In particular, the SRI sensitivity is higher for 
the core mode and consequently a red shift as the SRI grows up is observable in Fig. 10(a). 
Successively, the AG-LPG has been proposed as humidity sensor (Fu et al., 2011). In this 
case, the polished surface of a 500 μm period AG-LPG was coated with a calcium chloride 
(CaCl2) thin film of ~3 μm thickness. Since CaCl2 is strongly hygroscopic, it is known as a 
drying agent or desiccant: in practice, the higher the relative humidity (RH) increases, the 
lower the RI of the CaCl2 thin film decreases. The device was tested in the RH range from 
55% to 95% and a linear blue shift was observed for the grating attenuation band, revealing 
a sensitivity of about 1.36 nm/1%RH. However, when the RH was increased from 85% to 
95%, no wavelength shift was observed because of the saturation of the chemical interaction 
between CaCl2 and H2O molecules. Finally, the thermal crosstalk was smaller than that of 
conventional LPGs with consequent less thermal compensation requirements. 
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Fig. 10. (a) Transmission spectrum of an AG-LPG with period of 410 μm for several SRIs. 
(Reproduced with permission from (Fu et al., 2009)). (b) Wavelength shift versus the SRI of 
the first two attenuation bands of the evanescent-wave LPG. (Quero et al., 2011) 

As regards evanescent-wave D-fiber based LPGs, they represent a more recent research 
conquest. However, their spectral evolution versus the SRI is very similar to that of AG-
LPGs (see Fig. 10(a)): a red shift of the attenuation bands is observable for increasing SRIs. 
The first evanescent-wave LPG was proposed as sensitive DNA biosensor (Jang et al., 2009). 
The grating was used to detect the hybridization of single strand DNA (ssDNA). The 
wavelength shift were measured after the binding of the Poly-L-lysine, probe ssDNA and 
target ssDNA to the surface of the sensor. The overall shift induced by the DNA 
hybridization was 1.82 nm and the majority of it (0.94 nm) occurred in the first 9 min due to 
the rapid reaction with DNA hybridization. Recently, the same kind of evanescent-wave 
LPG – but PCF-based – has been proposed for SRI and temperature measurements 
demonstrating higher sensitivities as compared with conventional LPGs (H. Kim et al., 
2011). As regards the more flexible evanescent-wave D-fiber based LPG recently proposed 
by us (Quero et al., 2011), it was characterized versus the SRI: Fig. 10(b) shows the 
wavelength shift of the attenuation bands located at ~1360 and ~1440 nm (see Fig. 8(f)). 
Without optimization of the device parameters, SRI sensitivity around the water RI of ~700 
and ~625 nm/RIU for the first and the second dip, respectively, has been pointed out. As 
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considerably simplify the sensor interrogation. However, the spectral sensitivity of both 
orthogonal polarization states was measured with respect to temperature, rotation and 
bending. The temperature sensitivity was low compared to LPGs in standard SMF. 
Moreover, such LPGs devices produced blue and red shifts depending upon the orientation 
of the bend with measured maximum sensitivities of –3.56 and 6.51 nm•m. The use of 
neighbouring bands to the overlapping orthogonally polarized attenuation bands to 
perform simultaneous measurement of temperature and bending was also demonstrated, 
which yielded a maximum polarization dependence curvature error of ±0.08 m-1 and a 
temperature error of ±0.05°C. Since also the rotation of the bent LPG produced wavelength 
shifts, this type of LPG may be useful as a shape sensor and the polarization dependence 
can be reduced by using the overlapping orthogonal polarization state attenuation bands. 
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works regarding SRI measurements based on surface plasmon polariton (Tripathi et al., 
2008; Tripathi et al., 2009), opening the way to the design of high performance 
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coated side-polished standard SMF gratings: both FBGs and LPGs. The authors used a 
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that the LPG-based sensor requires shorter grating lengths and higher metal thickness for a 
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the SRI sensitivity characteristics of metal-coated LPGs operating in the power coupling 
regime corresponding to dual spectral resonance within D-fiber by KVH. The authors used a 
simple and sufficiently accurate first-order perturbation model (Kumar & Varshney, 1984) 
and demonstrated that, by an optimum combination of metal thickness and core to flat 
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peculiar spectral feature can be explained by considering that the resonant wavelengths 
λres,m of a LPG with period Λ are determined by the following phase-matching condition 
(Vengsarkar et al., 1996; Shu et al., 2002): 

 ( ), ,
effeff

res m core cladding mn nλ = − ⋅Λ                    (1) 

where neffcore and neffcladding,m are the effective RIs of the fundamental core mode and the m-
th cladding mode, respectively. For a standard LPG, SRI changes are able to modify only the 
cladding mode RIs: the higher is the SRI, the higher are the cladding mode RIs, leading to a 
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blue shift of the attenuation bands. In the AG-LPG case, instead, SRI changes influence both 
the cladding and the core mode effective RIs. In particular, the SRI sensitivity is higher for 
the core mode and consequently a red shift as the SRI grows up is observable in Fig. 10(a). 
Successively, the AG-LPG has been proposed as humidity sensor (Fu et al., 2011). In this 
case, the polished surface of a 500 μm period AG-LPG was coated with a calcium chloride 
(CaCl2) thin film of ~3 μm thickness. Since CaCl2 is strongly hygroscopic, it is known as a 
drying agent or desiccant: in practice, the higher the relative humidity (RH) increases, the 
lower the RI of the CaCl2 thin film decreases. The device was tested in the RH range from 
55% to 95% and a linear blue shift was observed for the grating attenuation band, revealing 
a sensitivity of about 1.36 nm/1%RH. However, when the RH was increased from 85% to 
95%, no wavelength shift was observed because of the saturation of the chemical interaction 
between CaCl2 and H2O molecules. Finally, the thermal crosstalk was smaller than that of 
conventional LPGs with consequent less thermal compensation requirements. 
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Fig. 10. (a) Transmission spectrum of an AG-LPG with period of 410 μm for several SRIs. 
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wavelength shift were measured after the binding of the Poly-L-lysine, probe ssDNA and 
target ssDNA to the surface of the sensor. The overall shift induced by the DNA 
hybridization was 1.82 nm and the majority of it (0.94 nm) occurred in the first 9 min due to 
the rapid reaction with DNA hybridization. Recently, the same kind of evanescent-wave 
LPG – but PCF-based – has been proposed for SRI and temperature measurements 
demonstrating higher sensitivities as compared with conventional LPGs (H. Kim et al., 
2011). As regards the more flexible evanescent-wave D-fiber based LPG recently proposed 
by us (Quero et al., 2011), it was characterized versus the SRI: Fig. 10(b) shows the 
wavelength shift of the attenuation bands located at ~1360 and ~1440 nm (see Fig. 8(f)). 
Without optimization of the device parameters, SRI sensitivity around the water RI of ~700 
and ~625 nm/RIU for the first and the second dip, respectively, has been pointed out. As 
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consequence, this configuration represents an extremely attractive technological platform 
for chemical/biological sensing. In addition, the possibility to use HRI materials with 
different natures (electro-optical, magneto-optical, etc.) to fabricate such devices would open 
the way to self-functionalized evanescent-wave LPGs suitable for specific applications. 

4. Long period gratings in photonic crystal fibers 
Photonic Crystal Fibers, thanks to the new ways provided to control and guide light, not 
obtainable with conventional optical fibers, are driving an exciting and irrepressible 
research activity all over the World, starting in the telecommunication field and then 
touching metrology, spectroscopy, microscopy, astronomy, micromachining, biology and 
sensing. A PCF consists of regularly spaced air holes along the fiber cladding (Russell, 2003). 
The core of the PCF is formed by the introduction of a defect or a missed hole at the center 
of the fiber. According to the distinct mechanisms of light propagation in the core region, as 
shown in Fig. 11, PCFs fall into two general categories: (1) microstructure fiber or holey fiber 
in which the light is trapped by total internal reflection (TIR) in a solid core, which has a 
larger refractive index than the cladding region (i.e. index guided IG-PCF – see Fig. 11(a)), 
and (2) photonic bandgap fiber (PBG) in which the core of the fiber is hollow, and the light is 
trapped in the central lower-index region by a two-dimensional photonic bandgap created 
by the periodic cladding (i.e. hollow core HC-PCF – see Fig. 11(b))  (Frazao et al., 2008). 
 

 
Fig. 11. Two main classes of photonic crystal fibers (PCF): index-guiding PBF (a) and 
photonic bandgap PBF (b). Reprinted with permission from Frazao, O., Santos, J.L., Araujo, 
F. M., & Ferreira, L.A., (2008). Optical sensing with photonic crystal fibers. Laser & 
Photonics Reviews, Vol. 2, No. 6, November 2008, pp.(449–459), ISSN 1863-8899. 

In contrast to conventional fibers, most of PCFs are made by use of just a single material, 
typically fused silica, using the stack and draw technique, and their dispersion, mode-field 
confinement, single-mode range, and polarization dependence can be greatly controlled by 
size, shape, and pitch of the air holes. The structure of the PCF enables to have different 
types of fibers such as endless single mode, double clad, germanium or rare earth doped, 
high birefringence, and many others with peculiar features due to its manufacturing 
flexibility. This variety of choices permits the use of PCF in numerous applications spanning 
from communication components to sensors which measure physical parameters 
(temperature, pressure, force, etc.), chemical compounds in gas and liquids, and even 
biosensors. In particular, since 1999 (Eggleton et al. 1999, Espindola et a., 1999, Diez et al., 
2000, Kakarantzas et al., 2002, Lim et al., 2004), the writing of LPGs into different types of 
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PCFs with or without photosensitivity by the use of advanced laser processing techniques 
along with mechanical and chemical methods was quickly embraced expecting many new 
applications as sensors (Frazao et al., 2008) and fiber components (Y. Wang et al., 2007). For 
example, the resonant wavelength of an LPG written in a PCF is blue-shifted with the 
increase of grating periodicity, contrary to the usual case in a conventional single mode fiber 
(SMF). The next sections will present an overview of the long-period-grating written in IG-
PCF and in HC-PCF. 

4.1 LPGs in IG-PCFs 
The first photochemical grating written in PCF was achieved in 1999 (Eggleton et al. 1999). 
In this work a special PCF with a photosensitive Ge-doped core was used and the induced 
refractive index changes originated from the linear absorption of Ge oxygen-deficient 
centers with the maximum at 242 nm (common single-quantum inscription mechanism). 
UV-laser exposure is a common technique for writing gratings in Ge-doped fiber, but, 
however, typical PCFs have no photosensitivity because they are composed of pure silica, 
which is fully transparent in the UV spectral region. Therefore new non photochemical 
inscription techniques to fabricate LPGs in PCFs have been explored, that modify the 
refractive index in the fiber cladding either by heating (using CO2 laser light or an electric 
arc discharge) or by applying mechanical pressure.  Kakarantzas et al. reported the first 
example of structural LPGs written in pure-silica solid core PCFs (Kakarantzas et al., 2002). 
As shown in Fig. 12, the gratings are realized by periodic collapse of air holes in the PCF via 
heat treatment with a CO2 laser. The resulting periodic hole-size perturbation produces 
core-to cladding- mode conversion, thus creating LPG in the PCF. In contrast with the LPGs 
written by UV light, which become unstable over time, CO2 laser-induced LPGs are 
temperature insensitive because of their structural perturbation along the fiber. This 
property can be utilized to obtain temperature-insensitive PCF-based devices, as 
demonstrated in (C. Zhao et al., 2008). The CO2 laser irradiation is a flexible, highly efficient, 
point-by-point, low cost technique for writing very compact (few mm), deep notched 
(>20dB) LPGs in a pure-silica PCFs without photosensitivity and the writing process can be 
computer-programmed to produce complicated grating profiles.  
Similar to the CO2 laser is the arc induced technique. The LPGs are imprinted in PCFs with 
the electric arc discharge of a fusion splicer by using a point-by-point technique, which is 
extremely low cost since it eliminates the need for expensive laser systems or the need for 
pre-hydrogenation of the fiber (in comparison with UV gratings) and consequent post-
thermal annealing to stabilize the gratings (Humbert et al., 2003, Dobb et al., 2006). 
Repeatability was assured by always maintaining a constant arc current, arc duration and 
fiber tension. However, the reported number of the grating periods that is needed to achieve 
a comparable attenuation band is much larger than that of CO2 laser irradiation technique 
(Ju & Jin, 2010). Practically all the LPGs written in PCFs by local heating rely on glass 
structure change and fiber deformation. Because of the high fictive temperature of pure 
silica, a high heating temperature (achieved with intense CO2-laser radiation or an electric 
arc) is needed to cause significant glass structure change. Thus, one of the serious 
disadvantages of these methods is the collapsing of fragile PCF holes, especially in the case 
of PCFs with relatively large holes, which results in a high insertion loss. Another 
disadvantage originates from the irregularity of period deformation. A recent study shows 
that by applying tension to the fiber during the writing process, through the mechanism of 
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consequence, this configuration represents an extremely attractive technological platform 
for chemical/biological sensing. In addition, the possibility to use HRI materials with 
different natures (electro-optical, magneto-optical, etc.) to fabricate such devices would open 
the way to self-functionalized evanescent-wave LPGs suitable for specific applications. 

4. Long period gratings in photonic crystal fibers 
Photonic Crystal Fibers, thanks to the new ways provided to control and guide light, not 
obtainable with conventional optical fibers, are driving an exciting and irrepressible 
research activity all over the World, starting in the telecommunication field and then 
touching metrology, spectroscopy, microscopy, astronomy, micromachining, biology and 
sensing. A PCF consists of regularly spaced air holes along the fiber cladding (Russell, 2003). 
The core of the PCF is formed by the introduction of a defect or a missed hole at the center 
of the fiber. According to the distinct mechanisms of light propagation in the core region, as 
shown in Fig. 11, PCFs fall into two general categories: (1) microstructure fiber or holey fiber 
in which the light is trapped by total internal reflection (TIR) in a solid core, which has a 
larger refractive index than the cladding region (i.e. index guided IG-PCF – see Fig. 11(a)), 
and (2) photonic bandgap fiber (PBG) in which the core of the fiber is hollow, and the light is 
trapped in the central lower-index region by a two-dimensional photonic bandgap created 
by the periodic cladding (i.e. hollow core HC-PCF – see Fig. 11(b))  (Frazao et al., 2008). 
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typically fused silica, using the stack and draw technique, and their dispersion, mode-field 
confinement, single-mode range, and polarization dependence can be greatly controlled by 
size, shape, and pitch of the air holes. The structure of the PCF enables to have different 
types of fibers such as endless single mode, double clad, germanium or rare earth doped, 
high birefringence, and many others with peculiar features due to its manufacturing 
flexibility. This variety of choices permits the use of PCF in numerous applications spanning 
from communication components to sensors which measure physical parameters 
(temperature, pressure, force, etc.), chemical compounds in gas and liquids, and even 
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PCFs with or without photosensitivity by the use of advanced laser processing techniques 
along with mechanical and chemical methods was quickly embraced expecting many new 
applications as sensors (Frazao et al., 2008) and fiber components (Y. Wang et al., 2007). For 
example, the resonant wavelength of an LPG written in a PCF is blue-shifted with the 
increase of grating periodicity, contrary to the usual case in a conventional single mode fiber 
(SMF). The next sections will present an overview of the long-period-grating written in IG-
PCF and in HC-PCF. 

4.1 LPGs in IG-PCFs 
The first photochemical grating written in PCF was achieved in 1999 (Eggleton et al. 1999). 
In this work a special PCF with a photosensitive Ge-doped core was used and the induced 
refractive index changes originated from the linear absorption of Ge oxygen-deficient 
centers with the maximum at 242 nm (common single-quantum inscription mechanism). 
UV-laser exposure is a common technique for writing gratings in Ge-doped fiber, but, 
however, typical PCFs have no photosensitivity because they are composed of pure silica, 
which is fully transparent in the UV spectral region. Therefore new non photochemical 
inscription techniques to fabricate LPGs in PCFs have been explored, that modify the 
refractive index in the fiber cladding either by heating (using CO2 laser light or an electric 
arc discharge) or by applying mechanical pressure.  Kakarantzas et al. reported the first 
example of structural LPGs written in pure-silica solid core PCFs (Kakarantzas et al., 2002). 
As shown in Fig. 12, the gratings are realized by periodic collapse of air holes in the PCF via 
heat treatment with a CO2 laser. The resulting periodic hole-size perturbation produces 
core-to cladding- mode conversion, thus creating LPG in the PCF. In contrast with the LPGs 
written by UV light, which become unstable over time, CO2 laser-induced LPGs are 
temperature insensitive because of their structural perturbation along the fiber. This 
property can be utilized to obtain temperature-insensitive PCF-based devices, as 
demonstrated in (C. Zhao et al., 2008). The CO2 laser irradiation is a flexible, highly efficient, 
point-by-point, low cost technique for writing very compact (few mm), deep notched 
(>20dB) LPGs in a pure-silica PCFs without photosensitivity and the writing process can be 
computer-programmed to produce complicated grating profiles.  
Similar to the CO2 laser is the arc induced technique. The LPGs are imprinted in PCFs with 
the electric arc discharge of a fusion splicer by using a point-by-point technique, which is 
extremely low cost since it eliminates the need for expensive laser systems or the need for 
pre-hydrogenation of the fiber (in comparison with UV gratings) and consequent post-
thermal annealing to stabilize the gratings (Humbert et al., 2003, Dobb et al., 2006). 
Repeatability was assured by always maintaining a constant arc current, arc duration and 
fiber tension. However, the reported number of the grating periods that is needed to achieve 
a comparable attenuation band is much larger than that of CO2 laser irradiation technique 
(Ju & Jin, 2010). Practically all the LPGs written in PCFs by local heating rely on glass 
structure change and fiber deformation. Because of the high fictive temperature of pure 
silica, a high heating temperature (achieved with intense CO2-laser radiation or an electric 
arc) is needed to cause significant glass structure change. Thus, one of the serious 
disadvantages of these methods is the collapsing of fragile PCF holes, especially in the case 
of PCFs with relatively large holes, which results in a high insertion loss. Another 
disadvantage originates from the irregularity of period deformation. A recent study shows 
that by applying tension to the fiber during the writing process, through the mechanism of 
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frozen-in viscoelasticity, it is possible to write strong gratings in PCFs with a dosage of CO2 
laser radiation low enough not to cause any signification fiber structure deformation (H. Lee 
& Chiang, 2009).  
 

  
Fig. 12. Fabrication of a LPG based on microcollapsing the PCF holes with a CO2 laser beam 
(left) and optical micrographs of a section of the LPG after the holes at the parts heated by 
the CO2 laser have completely collapsed (right). The inset shows a magnification of one 
period. Reprinted from (Kakarantzas et al., 2002) with permission of Optical Society of 
America. 

More recently the fabrication of LPG in PCFS was successfully demonstrated by use of a 
high-intensity femtosecond laser via a multiphoton absorption process. In order to avoid 
some drawbacks of the femtosecond laser technique, such as low efficiency (Allsop et al., 
2008) or a H2 -loading pre-procedure (Fotiadi e al., 2007), S. Liu et al.  propose to tightly 
focus femtosecond infrared beam onto the holey inner-cladding region of a PCF (Liu et al., 
2010). As shown in Fig. 13, the high intensity femtosecond-laser irradiation results in the 
filling of air-holes through possibly a laser-induced micro-explosion and redeposition 
process, which modifies the waveguide structure and forms an LPG. Fig. 13 shows the 
evolution of transmission spectrum with an increasing number of grating periods. Two 
resonant dips (A: 1540 nm, 26 dB; B: 1370 nm, 5 dB) were observed for the LPG with 13 
periods and the insertion loss is 2 dB. Furthermore, several LPGs were fabricated with 
similar inscription parameters but with pitch varying from 340 to 390 µm. Fig. 13 shows the 
measured relation between the resonant wavelength (the resonant dip A) and the grating 
pitch. 
Mechanical pressure has provided another direct and flexible means for LPG inscription in 
PCF (Lim et al., 2004, D. Lee et al., 2006, Parka et al., 2006). Pressure on the fiber surface with 
a periodic grooved plate induces periodic index changes in the fiber. With this method the 
strength and the resonant wavelength of the mechanically induced LPG can be easily tuned 
simply by adjusting the grating period and the pressure applied on the PCF. The efficiency 
of the mode coupling between the core mode and a cladding mode varies with pressure. 
LPGs with proper lengths and periods have to be selected such that mode coupling occurs at 
the predetermined wavelength. However, the coupling was found to be highly polarization-
dependent and dependent on the angular position where stress was applied (D. Lee et al., 
2006). The highly polarization-dependent broadband coupling was observed due to the 
unique beat-length dispersion between the core-mode and cladding-mode, which could find 
potential applications in wide-band polarization dependent loss (PDL) compensation. 
Acousto-optical interaction can also cause mode coupling between different modes if phase 
matching conditions are satisfied. The acoustic LPG has great advantages in terms of tuning 
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range and speed. Therefore, it has been extensively studied and is enabling numerous 
practical applications in optical communication. The acoustic LPG built on a PCF can make 
a function with the tuning range over 1000 nm as a single optical element (Hong et al., 2008). 
In conclusion, as synthetically illustrated, the integration of LPGs in PCFs can be achieved 
with different, complementary techniques. This provides new promising platforms for 
developing novel devices, for application in telecommunication and in sensing, combining 
the unique properties of the PCFs with the peculiarities of the PLGs. 
 

 
Fig. 13. (Top right a) Experimental setup for LPG fabrication. Scanning electron micrographs 
of LMA-10 PCF cross section (left b) before and (left c) after femtosecond-laser treatment. 
(left d) Top view of femtosecond-laser fabricated LPG. (Bottom Right a) Evolution of the 
transmission spectrum of LPG with increasing number of grating periods. (Bottom Right  b) 
Relation between grating pitch and resonant wavelength. Reprinted with permission from 
Liu, S., Jin, L., Jin, W., Wang, Y., & Wang, D. N. (2010). Fabrication of Long-Period Gratings 
by Femtosecond Laser-Induced Filling of Air-Holes in Photonic Crystal Fibers. IEEE 
Photonics Technology Letters, Vol. 22, No. 22, November 2010, pp. (1635-1637), ISSN 1041–
1135 © 2010 IEEE.  

4.2 LPGs in HC-PCFs 
As discussed above, a large number of gratings have been demonstrated in different types 
of IG-PCFs by the use of various fabrication techniques while the development of efficient 
techniques useful to write LPG structure in HC-PCFs (Smith, 2003;  Frazao et al., 2008) is a 
hard challenge for research community. Since more than 95 % of the light propagates in the 
core-air of an HC-PCF and not in the glass (see Fig. 11(b)), such fibers offer a number of 
unique features including lower Rayleigh scattering, reduced nonlinearity, novel dispersion 
characteristics, and potentially lower loss compared to conventional optical fibers (Smith et 
al., 2003; West et al., 2004). In addition, the hollow core characteristic also enables enhanced 
light/material interaction, thus providing a valuable technological platform for ultra-
sensitive and distributed biochemical sensors. However, periodic index modulations usually 
required to realize mode coupling in LPG devices are not easy to achieve in HC-PCFs 
(Ozcana & Demircib, 2004; Frazao et al., 2008).  The main issue relies on the difficulty in 
introducing UV-induced refractive index modulation since up to 95% of the light energy is 
confined within the air-core. Additionally, the alternative use of localized fiber tapers could 
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frozen-in viscoelasticity, it is possible to write strong gratings in PCFs with a dosage of CO2 
laser radiation low enough not to cause any signification fiber structure deformation (H. Lee 
& Chiang, 2009).  
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a periodic grooved plate induces periodic index changes in the fiber. With this method the 
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2006). The highly polarization-dependent broadband coupling was observed due to the 
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Acousto-optical interaction can also cause mode coupling between different modes if phase 
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range and speed. Therefore, it has been extensively studied and is enabling numerous 
practical applications in optical communication. The acoustic LPG built on a PCF can make 
a function with the tuning range over 1000 nm as a single optical element (Hong et al., 2008). 
In conclusion, as synthetically illustrated, the integration of LPGs in PCFs can be achieved 
with different, complementary techniques. This provides new promising platforms for 
developing novel devices, for application in telecommunication and in sensing, combining 
the unique properties of the PCFs with the peculiarities of the PLGs. 
 

 
Fig. 13. (Top right a) Experimental setup for LPG fabrication. Scanning electron micrographs 
of LMA-10 PCF cross section (left b) before and (left c) after femtosecond-laser treatment. 
(left d) Top view of femtosecond-laser fabricated LPG. (Bottom Right a) Evolution of the 
transmission spectrum of LPG with increasing number of grating periods. (Bottom Right  b) 
Relation between grating pitch and resonant wavelength. Reprinted with permission from 
Liu, S., Jin, L., Jin, W., Wang, Y., & Wang, D. N. (2010). Fabrication of Long-Period Gratings 
by Femtosecond Laser-Induced Filling of Air-Holes in Photonic Crystal Fibers. IEEE 
Photonics Technology Letters, Vol. 22, No. 22, November 2010, pp. (1635-1637), ISSN 1041–
1135 © 2010 IEEE.  

4.2 LPGs in HC-PCFs 
As discussed above, a large number of gratings have been demonstrated in different types 
of IG-PCFs by the use of various fabrication techniques while the development of efficient 
techniques useful to write LPG structure in HC-PCFs (Smith, 2003;  Frazao et al., 2008) is a 
hard challenge for research community. Since more than 95 % of the light propagates in the 
core-air of an HC-PCF and not in the glass (see Fig. 11(b)), such fibers offer a number of 
unique features including lower Rayleigh scattering, reduced nonlinearity, novel dispersion 
characteristics, and potentially lower loss compared to conventional optical fibers (Smith et 
al., 2003; West et al., 2004). In addition, the hollow core characteristic also enables enhanced 
light/material interaction, thus providing a valuable technological platform for ultra-
sensitive and distributed biochemical sensors. However, periodic index modulations usually 
required to realize mode coupling in LPG devices are not easy to achieve in HC-PCFs 
(Ozcana & Demircib, 2004; Frazao et al., 2008).  The main issue relies on the difficulty in 
introducing UV-induced refractive index modulation since up to 95% of the light energy is 
confined within the air-core. Additionally, the alternative use of localized fiber tapers could 
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induces holes collapsing in the cladding region preventing the low loss propagation of light 
in the hollow core. 
To bypass these technological difficulties and at same time to keep the concept of the PBG 
fiber, few years ago some LPG structures were demonstrated in a new kind of bandgap-
guiding fibers such as fluid-filled PBG fibers. Such fiber was composed of two different 
materials and can be fabricated by taking a solid core PCF with air-holes in the cladding and 
filling the holes with a high index fluid (Kuhlmey, 2009). The first LPG in fluid-filled PBG 
fibers was formed by inducing periodic mechanical stresses on the fiber in 2006 (Steinvurzel, 
2006a, 2006b). The periodic stress-induced deformations of the fiber force light coupling 
between core mode and higher order modes. On the same kind of fiber also an electric-arc 
induced LPG was demonstrated (Iredale, 2006). One year later, it was proposed a rewritable 
self-assembled LPG in air-core PBG fibers (Ozcana & Demircib, 2007). The LPGs were 
written by filling the air-core region of the fiber with a solution containing polystyrene 
microspheres. The microspheres are self-assembled into a periodic structure as the liquid 
inside the fiber evaporates, forming the long-period grating.  
In 2008 instead, Wang et al. demonstrated the first example (as authors declared) of gratings 
written in an HC-PCF (Y. Wang et al, 2008). They proposed the use of a focused CO2 laser 
beam to periodically deform/perturb air holes along the fiber axis (used HC-PCF: Crystal-
Fiber HC-1500-02). Figs 14(a) and 14(b) compare the cross-section of the unperturbed and 
CO2 treated fiber. The focused CO2 beam scans periodically the HC-PCF causing the 
ablation of glass on the fiber surface and the partial or complete collapse of air holes in the 
cladding. The outer rings of air holes in the cladding, facing to the CO2 laser irradiation, 
were largely deformed; however, little or no deformation were observed in the innermost 
ring of air holes and in the air core. As a result, periodic index modulations are achieved 
along the fiber axis due to the periodic perturbation (see Fig. 14(c)). Compared with the 
fabrication parameters for writing a grating in a solid-core PCF (Ju et al. 2004) a lower 
average laser power and shorter total time of laser irradiation are typically used to write a 
LPG in an HC-PCF. A proper choice of the fabrication parameters is critical for the 
fabrication of such LPG. High energy pulses with a long irradiation time may cause large 
deformation or collapsing of the holes and thus a higher insertion loss, while low energy 
pulses with short irradiation time may be insufficient to inscribe an LPG. Fig. 14(d) shows 
the measured transmitted spectrum of a 40-period LPG. It was retrieved the 3dB-bandwidth 
is about 5.6nm, which is much narrower than that of the LPGs with same number of grating 
periods in conventional SMFs (Bhatia et al., 1999) and in IG-PCFs (Morishita & Miyake, 
2004).  Besides, Wang et al. believe that for the LPG written in HC-PCF, periodic 
perturbations of the waveguide (geometric) structure could be the dominant factor that 
causes resonant mode coupling, although the stress relaxation-induced index variation may 
also contribute a little (Y. Wang et al., 2008, 2010). Recently, the same group theoretically 
investigated the LPGs fabricated in HC-PCFs with a pulsed CO2 laser (Jin et al., 2011). By the 
use of the coupled local-mode theory, they numerically modelled the transmission and the 
polarization properties of the LPGs. They found that resonant couplings are resulted from 
the periodic modification of the fundamental and the higher order mode fields. As a result, 
two highly polarization dependent resonant dips are observed. Finally, they also 
investigated the spectral response versus the grating pitch (see Fig. 14(e)). Accordingly with 
LPG in IG-PCFs (Morishita & Miyake, 2004; Petrovic, 2008) and in disagreement with LPG 
in SMFs (Vengsarkar, 1996), the LPGs written in the HC-PCFs have negative relationship 
between resonant wavelength and grating pitch. 
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Fig. 14. Scanning electron micrographs of HC-PCF cross-sections (a) before and (b) after CO2 
laser irradiation; (c) LPG on HC-PCF with 50 scanning cycles; (d) Evolution of the 
transmitted spectrum of LPG with 40 periods and a grating pitch of 430μm with increasing 
number of scanning cycles; (e) Variation of LPFG resonant wavelengths with grating pitch. 
Reprinted from (Y. Wang et al., 2008) with permission of Optical Society of America. 

Recently, the authors of the present work have investigated the possibility to use a modified 
Electric Arc Discharge (EAD) technique (such as a pressure assisted EAD technique) to 
fabricate LPGs in HC-PCFs (Iadicicco et al, 2011a, 2011b). The fabrication procedure relies 
on the combined use of EAD step, to locally heat the HC fiber, and of a static pressure 
slightly higher than the external one inside the fiber holes, to modify the holes. This 
procedure permits to preserve the holey structure of the host fiber avoiding any hole 
collapsing and it enables a local effective refractive index change due to the size and shape 
modifications of core and cladding holes. EAD procedure has been carried out by a 
commercial fusion splicer unit (Sumitomo Type-39). To achieve an arc-discharge that would 
locally heat the fiber (avoiding any permanent distortion) fusion current and arc duration 
were manually selected to approximately 13 mA and 300ms, respectively. Besides, to force a 
static pressure inside the fiber holes, one end of the hollow-core fiber was EAD treated in 
order to force hole collapsing in both core and cladding region while the other end was 
connected to the needle of a 1ml syringe. Before any EAD step, static pressure inside core 
and cladding holes was imposed by decreasing the syringe volume of 20%. A microscope 
image of the HC fiber cross-section before and after the pressure assisted EAD procedure is 
show in Figs. 15(a) and 15(b), respectively. By image analysis it is possible to retrieve that 
the external diameter of the fiber is reduced from 120±1 μm to 117±1 μm as well as the inner 
diameter of the external solid silica region from approximately 70±1 μm  to 65±1 μm. 
Moreover, the core size resulted enlarged passing from 11±1 μm to 13±1 µm whereas none 
air-hole rings was found collapsed even if changes in shape and size are evident. It is 
important to remark that further optimization margins exist by controlling the EAD 
procedure through fusion current, arc duration and syringe volume decreasing while the 
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induces holes collapsing in the cladding region preventing the low loss propagation of light 
in the hollow core. 
To bypass these technological difficulties and at same time to keep the concept of the PBG 
fiber, few years ago some LPG structures were demonstrated in a new kind of bandgap-
guiding fibers such as fluid-filled PBG fibers. Such fiber was composed of two different 
materials and can be fabricated by taking a solid core PCF with air-holes in the cladding and 
filling the holes with a high index fluid (Kuhlmey, 2009). The first LPG in fluid-filled PBG 
fibers was formed by inducing periodic mechanical stresses on the fiber in 2006 (Steinvurzel, 
2006a, 2006b). The periodic stress-induced deformations of the fiber force light coupling 
between core mode and higher order modes. On the same kind of fiber also an electric-arc 
induced LPG was demonstrated (Iredale, 2006). One year later, it was proposed a rewritable 
self-assembled LPG in air-core PBG fibers (Ozcana & Demircib, 2007). The LPGs were 
written by filling the air-core region of the fiber with a solution containing polystyrene 
microspheres. The microspheres are self-assembled into a periodic structure as the liquid 
inside the fiber evaporates, forming the long-period grating.  
In 2008 instead, Wang et al. demonstrated the first example (as authors declared) of gratings 
written in an HC-PCF (Y. Wang et al, 2008). They proposed the use of a focused CO2 laser 
beam to periodically deform/perturb air holes along the fiber axis (used HC-PCF: Crystal-
Fiber HC-1500-02). Figs 14(a) and 14(b) compare the cross-section of the unperturbed and 
CO2 treated fiber. The focused CO2 beam scans periodically the HC-PCF causing the 
ablation of glass on the fiber surface and the partial or complete collapse of air holes in the 
cladding. The outer rings of air holes in the cladding, facing to the CO2 laser irradiation, 
were largely deformed; however, little or no deformation were observed in the innermost 
ring of air holes and in the air core. As a result, periodic index modulations are achieved 
along the fiber axis due to the periodic perturbation (see Fig. 14(c)). Compared with the 
fabrication parameters for writing a grating in a solid-core PCF (Ju et al. 2004) a lower 
average laser power and shorter total time of laser irradiation are typically used to write a 
LPG in an HC-PCF. A proper choice of the fabrication parameters is critical for the 
fabrication of such LPG. High energy pulses with a long irradiation time may cause large 
deformation or collapsing of the holes and thus a higher insertion loss, while low energy 
pulses with short irradiation time may be insufficient to inscribe an LPG. Fig. 14(d) shows 
the measured transmitted spectrum of a 40-period LPG. It was retrieved the 3dB-bandwidth 
is about 5.6nm, which is much narrower than that of the LPGs with same number of grating 
periods in conventional SMFs (Bhatia et al., 1999) and in IG-PCFs (Morishita & Miyake, 
2004).  Besides, Wang et al. believe that for the LPG written in HC-PCF, periodic 
perturbations of the waveguide (geometric) structure could be the dominant factor that 
causes resonant mode coupling, although the stress relaxation-induced index variation may 
also contribute a little (Y. Wang et al., 2008, 2010). Recently, the same group theoretically 
investigated the LPGs fabricated in HC-PCFs with a pulsed CO2 laser (Jin et al., 2011). By the 
use of the coupled local-mode theory, they numerically modelled the transmission and the 
polarization properties of the LPGs. They found that resonant couplings are resulted from 
the periodic modification of the fundamental and the higher order mode fields. As a result, 
two highly polarization dependent resonant dips are observed. Finally, they also 
investigated the spectral response versus the grating pitch (see Fig. 14(e)). Accordingly with 
LPG in IG-PCFs (Morishita & Miyake, 2004; Petrovic, 2008) and in disagreement with LPG 
in SMFs (Vengsarkar, 1996), the LPGs written in the HC-PCFs have negative relationship 
between resonant wavelength and grating pitch. 
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Fig. 14. Scanning electron micrographs of HC-PCF cross-sections (a) before and (b) after CO2 
laser irradiation; (c) LPG on HC-PCF with 50 scanning cycles; (d) Evolution of the 
transmitted spectrum of LPG with 40 periods and a grating pitch of 430μm with increasing 
number of scanning cycles; (e) Variation of LPFG resonant wavelengths with grating pitch. 
Reprinted from (Y. Wang et al., 2008) with permission of Optical Society of America. 

Recently, the authors of the present work have investigated the possibility to use a modified 
Electric Arc Discharge (EAD) technique (such as a pressure assisted EAD technique) to 
fabricate LPGs in HC-PCFs (Iadicicco et al, 2011a, 2011b). The fabrication procedure relies 
on the combined use of EAD step, to locally heat the HC fiber, and of a static pressure 
slightly higher than the external one inside the fiber holes, to modify the holes. This 
procedure permits to preserve the holey structure of the host fiber avoiding any hole 
collapsing and it enables a local effective refractive index change due to the size and shape 
modifications of core and cladding holes. EAD procedure has been carried out by a 
commercial fusion splicer unit (Sumitomo Type-39). To achieve an arc-discharge that would 
locally heat the fiber (avoiding any permanent distortion) fusion current and arc duration 
were manually selected to approximately 13 mA and 300ms, respectively. Besides, to force a 
static pressure inside the fiber holes, one end of the hollow-core fiber was EAD treated in 
order to force hole collapsing in both core and cladding region while the other end was 
connected to the needle of a 1ml syringe. Before any EAD step, static pressure inside core 
and cladding holes was imposed by decreasing the syringe volume of 20%. A microscope 
image of the HC fiber cross-section before and after the pressure assisted EAD procedure is 
show in Figs. 15(a) and 15(b), respectively. By image analysis it is possible to retrieve that 
the external diameter of the fiber is reduced from 120±1 μm to 117±1 μm as well as the inner 
diameter of the external solid silica region from approximately 70±1 μm  to 65±1 μm. 
Moreover, the core size resulted enlarged passing from 11±1 μm to 13±1 µm whereas none 
air-hole rings was found collapsed even if changes in shape and size are evident. It is 
important to remark that further optimization margins exist by controlling the EAD 
procedure through fusion current, arc duration and syringe volume decreasing while the 
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parameters used for first prototyping allowed to preserve the fiber band-gap since 
negligible insertion losses were observed. Finally, the LPG writing was possible by spatially 
repeating the EAD procedure along the host fiber by the use of a micro-controlled 
translation stage. Fig. 15(c) shows the side view of an LPG with 20 periods and pitch of 
400µm. In comparison with grating notches provided by CO2 laser approach in Fig. 14, the 
pressure assisted EAD procedure permits to avoid the strong impairment of final device and 
reduce the polarization dependent due to the asymmetric perturbations.  
 

 
Fig. 15. Optical microscopy images of HC-PCF cross-section (a) before and (b) after EAD 
procedure; (c) Optical microscopy image of LPG with Λ=400µm (20 periods); transmitted 
spectra of LPG in HC-PCF with (d) 20 periods and Λ=400µm, (e) 25 periods and Λ=400µm, 
and (f) 25 periods and Λ=350µm. (Iadicicco et al., 2011). 

Fig. 15(d) plots the transmitted spectrum of the LPG realized with 20 periods and a pitch of 
400 µm. Despite  the limited grating length (approx. 8mm), the transmitted spectrum clearly 
exhibits attenuation bands due to resonant coupling of the fundamental core mode to leaky 
higher order modes (core or surface-like). Resonant wavelengths are approximately at 
1495.3nm and 1519.8nm with attenuation depth of about 5 dB and 6 dB respectively. The 
3dB bandwidth for both resonances was found to be 1.2 nm and 2.0 nm, respectively, and 
thus narrower than the common LPGs written in SMFs (Bhatia , 1999). Besides the geometric 
variation, it is worth highlighting that EAD also induces silica refractive index change due 
to stress relaxation induced by local hot spots. However, accordingly with the LPG based on 
CO2 laser we believe that the effective refractive index modulation is principally related to 
geometrical perturbation since the confinement of the fundamental mode (>95%)  within air 
core. Moreover, from Fig. 15(d), it is also possible to observe  background oscillations or 
ripples (in spectra with or without LPG) attributable to different effects: i) Fabry-Perot effect 
due to HCF-SMF splicing  ii) accordingly to [13], HOM (higher order modes) weakly excited 
in the HC fiber. Besides, Fig. 15(e) plots the spectrum of a LPG with 25 periods and Λ= 
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400µm. As expected, two attenuation bands at 1495.4 nm and 1520.3 nm (very close to 
attenuation bands shown in Fig. 15(d) ) with depth of 9 dB and 12 dB and bandwidth of 
1.4nm and 1.5 nm, respectively, can be observed. Fig. 15(f), instead, plots the transmitted 
spectrum of a LPG with 25 periods and Λ= 350µm. It seems that the resonant wavelengths 
increase with the decrease in the grating pitch, which is opposite to the behavior of LPFGs 
written in the conventional SMFs (Bhatia, 1999), but agrees with the above presented results 
(Y. Wang, 2008; Morishita & Miyake, 2004). Here, two attenuation bands at 1503.0 nm and 
1532.2 nm with depth of 9 dB and 11 dB and bandwidth of 0.9nm and 1.2 nm, respectively, 
are evident. Finally, it is worth noting that all the spectra in Figs 15(d)-15(f) exhibit side 
lobes around the main peaks. These lobes could be attributed to the coupling of the core 
mode into asymmetric cladding modes probably due to not-perfect symmetry of arc-
induced perturbation. Ivanov and Rego demonstrated that the asymmetry in arc 
perturbation is principally caused by the temperature gradient during arc discharge (Ivanov 
& Rego, 2007). 

4.3 Applications of LPGs in PCFs  
As LPGs in standard fiber (see section 2) also LPGs in PCFs have found many promising 
applications for temperature, strain, bend, torsion, pressure, and biochemical sensors as well 
as they are becoming appealing for communications applications. In this section a brief 
review of the main applications of LPGs in PCFs is presented. 
Concerning the temperature dependence of LPGs in IG-PCF, most of the papers report that 
temperature sensitivity is of the order of few picometers (up to 10) per degrees centigrade 
(Dobb et al., 2004; Petrovic et al., 2007; Zhu et al. 2005; Humbert et al., 2004) while the 
sensitivity of gratings in SMF is reported to be in the range 30-200 pm/°C or more (James & 
Tatam, 2003; Rego et al. 2005b). The shifts of LPG bands due to thermal changes is 
principally attributed to two factors such as the thermooptic effect and the thermal 
expansion of the fiber that force wavelength shifts of opposite signs (Petrovic et al., 2007). As 
in SMFs, the impact of the former is dominant and determines the sign of the shift. The 
unique property of all silica–air fibers is that the light propagates mainly through the silica, 
and thus, the variations in the effective indices of the core and cladding modes with the 
refractive index of silica nearly cancel each other in the second term. The overall effect is a 
red wavelength shift of only a few picometers. This explains the very weak sensitivity of the 
LPG to temperature. The relatively low temperature sensitivity of the LPG in PCFs despite 
the sensitivity to other external parameters such as strain, bending and refractive index 
permitted to proposed several sensing configurations. Just to name a few of them, Dobb et 
al. (Dobb et al. 2004, 2006) demonstrated a temperature-insensitive LPG sensor to measure 
strain or curvature. The LPG structure with a period of 500 μm was written by EAD. The 
LPG was characterized for temperature, strain and curvature and showed sensitivities of 
0±10 pm/°C, −2.04 ± 0.12 pm/με, and 3.7 nm/m, respectively. Similar study has been 
conducted from on LPG fabricated by the use of focused CO2 laser beam (Y. Wang et al., 
2006; C. Zhao et al., 2008). These structures written with CO2 laser were proposed as strain-
insensitive high-temperature PCF sensors (Zhu et al., 2005). For high-temperature 
applications, LPGs written in PCF with the electric arc technique have also shown an 
adequate performance, as was reported in (Humbert et al. 2004). Wang et al. also proposed 
an dipper characterization of the strain and temperature sensitivity as function of the 
external grooves created by focused CO2 laser (Y. Wang, 2006). They realized two LPGs with 
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parameters used for first prototyping allowed to preserve the fiber band-gap since 
negligible insertion losses were observed. Finally, the LPG writing was possible by spatially 
repeating the EAD procedure along the host fiber by the use of a micro-controlled 
translation stage. Fig. 15(c) shows the side view of an LPG with 20 periods and pitch of 
400µm. In comparison with grating notches provided by CO2 laser approach in Fig. 14, the 
pressure assisted EAD procedure permits to avoid the strong impairment of final device and 
reduce the polarization dependent due to the asymmetric perturbations.  
 

 
Fig. 15. Optical microscopy images of HC-PCF cross-section (a) before and (b) after EAD 
procedure; (c) Optical microscopy image of LPG with Λ=400µm (20 periods); transmitted 
spectra of LPG in HC-PCF with (d) 20 periods and Λ=400µm, (e) 25 periods and Λ=400µm, 
and (f) 25 periods and Λ=350µm. (Iadicicco et al., 2011). 

Fig. 15(d) plots the transmitted spectrum of the LPG realized with 20 periods and a pitch of 
400 µm. Despite  the limited grating length (approx. 8mm), the transmitted spectrum clearly 
exhibits attenuation bands due to resonant coupling of the fundamental core mode to leaky 
higher order modes (core or surface-like). Resonant wavelengths are approximately at 
1495.3nm and 1519.8nm with attenuation depth of about 5 dB and 6 dB respectively. The 
3dB bandwidth for both resonances was found to be 1.2 nm and 2.0 nm, respectively, and 
thus narrower than the common LPGs written in SMFs (Bhatia , 1999). Besides the geometric 
variation, it is worth highlighting that EAD also induces silica refractive index change due 
to stress relaxation induced by local hot spots. However, accordingly with the LPG based on 
CO2 laser we believe that the effective refractive index modulation is principally related to 
geometrical perturbation since the confinement of the fundamental mode (>95%)  within air 
core. Moreover, from Fig. 15(d), it is also possible to observe  background oscillations or 
ripples (in spectra with or without LPG) attributable to different effects: i) Fabry-Perot effect 
due to HCF-SMF splicing  ii) accordingly to [13], HOM (higher order modes) weakly excited 
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400µm. As expected, two attenuation bands at 1495.4 nm and 1520.3 nm (very close to 
attenuation bands shown in Fig. 15(d) ) with depth of 9 dB and 12 dB and bandwidth of 
1.4nm and 1.5 nm, respectively, can be observed. Fig. 15(f), instead, plots the transmitted 
spectrum of a LPG with 25 periods and Λ= 350µm. It seems that the resonant wavelengths 
increase with the decrease in the grating pitch, which is opposite to the behavior of LPFGs 
written in the conventional SMFs (Bhatia, 1999), but agrees with the above presented results 
(Y. Wang, 2008; Morishita & Miyake, 2004). Here, two attenuation bands at 1503.0 nm and 
1532.2 nm with depth of 9 dB and 11 dB and bandwidth of 0.9nm and 1.2 nm, respectively, 
are evident. Finally, it is worth noting that all the spectra in Figs 15(d)-15(f) exhibit side 
lobes around the main peaks. These lobes could be attributed to the coupling of the core 
mode into asymmetric cladding modes probably due to not-perfect symmetry of arc-
induced perturbation. Ivanov and Rego demonstrated that the asymmetry in arc 
perturbation is principally caused by the temperature gradient during arc discharge (Ivanov 
& Rego, 2007). 

4.3 Applications of LPGs in PCFs  
As LPGs in standard fiber (see section 2) also LPGs in PCFs have found many promising 
applications for temperature, strain, bend, torsion, pressure, and biochemical sensors as well 
as they are becoming appealing for communications applications. In this section a brief 
review of the main applications of LPGs in PCFs is presented. 
Concerning the temperature dependence of LPGs in IG-PCF, most of the papers report that 
temperature sensitivity is of the order of few picometers (up to 10) per degrees centigrade 
(Dobb et al., 2004; Petrovic et al., 2007; Zhu et al. 2005; Humbert et al., 2004) while the 
sensitivity of gratings in SMF is reported to be in the range 30-200 pm/°C or more (James & 
Tatam, 2003; Rego et al. 2005b). The shifts of LPG bands due to thermal changes is 
principally attributed to two factors such as the thermooptic effect and the thermal 
expansion of the fiber that force wavelength shifts of opposite signs (Petrovic et al., 2007). As 
in SMFs, the impact of the former is dominant and determines the sign of the shift. The 
unique property of all silica–air fibers is that the light propagates mainly through the silica, 
and thus, the variations in the effective indices of the core and cladding modes with the 
refractive index of silica nearly cancel each other in the second term. The overall effect is a 
red wavelength shift of only a few picometers. This explains the very weak sensitivity of the 
LPG to temperature. The relatively low temperature sensitivity of the LPG in PCFs despite 
the sensitivity to other external parameters such as strain, bending and refractive index 
permitted to proposed several sensing configurations. Just to name a few of them, Dobb et 
al. (Dobb et al. 2004, 2006) demonstrated a temperature-insensitive LPG sensor to measure 
strain or curvature. The LPG structure with a period of 500 μm was written by EAD. The 
LPG was characterized for temperature, strain and curvature and showed sensitivities of 
0±10 pm/°C, −2.04 ± 0.12 pm/με, and 3.7 nm/m, respectively. Similar study has been 
conducted from on LPG fabricated by the use of focused CO2 laser beam (Y. Wang et al., 
2006; C. Zhao et al., 2008). These structures written with CO2 laser were proposed as strain-
insensitive high-temperature PCF sensors (Zhu et al., 2005). For high-temperature 
applications, LPGs written in PCF with the electric arc technique have also shown an 
adequate performance, as was reported in (Humbert et al. 2004). Wang et al. also proposed 
an dipper characterization of the strain and temperature sensitivity as function of the 
external grooves created by focused CO2 laser (Y. Wang, 2006). They realized two LPGs with 
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same length and pitch but with different notches on the fiber surface: the first one presents 
evident grooves on the fiber surface achieved with setup provided in (Y. Wang, 2006), the 
second grating was fabricated by use of the same  laser setup but a lower dosage of  
irradiation and presents no observable grooves on the fiber surface. The responses of the 
resonant wavelength to tensile strain and temperature of LPGs with and without visible 
notches is plotted in Fig. 16. The strain sensitivity of the LPG with grooves (−7.6 pm/ με) is 
about 25 times higher than the LPG without physical deformation (−0.31 pm/ με) (Fig. 16(a)) 
whereas the temperature sensitivities of the two LPGs are approximately the same (Fig. 
16(b)). The asymmetrical structure caused by the periodic grooves introduces microbend 
when the LPG is axially stretched, which effectively enhanced the effective refractive index 
change of the LPGs with grooves. However the LPG with visible grooves also demonstrated 
very strong polarization dependent loss and can be used as in-fiber polarizers with good 
temperature stability (Y. Wang, 2007).  
 

 
Fig. 16. Resonant wavelength of LPFG via (a) the tensile strain and (b) the temperature:  
and ■ refer to LPG with period grooves and ▲ and X refer to LPG without period grooves. 
Reprinted from (Y. Wang et al. 2006) with permission of Optical Society of America. 

Han et al. demonstrated simultaneous measurement of strain and temperature using LPGs 
written in PCFs with different air-hole sizes (Han et al., 2007). They fabricated LPGs in IG-
PCFs with Ge-doped core and different air-hole size by the UV exposure (at 244 nm) 
through an amplitude metal mask. They experimentally proved that the strain sensitivity of 
LPFGs depend on the air-hole size. Since all fibers have the same material composition, the 
LPGs exhibited similar temperature sensitivities regardless of the air-hole size. However, 
the strain sensitivities of the LPGs are different because of the different cross-sectional areas 
of the fibers depending on the different air-hole sizes. Similar functionality was reported by 
Sun et al. with processing based on an artificial neural network (Sun et al, 2007). Pressure 
sensing using an LPG fabricated in a PCF was presented in (Lim et al. 2004). Later, a 
hydrostatic pressure sensor using a tapered LPG written in PCF by the electric arc technique 
was also reported (Bock et al., 2007). The pressure sensitivity was found to be 11.2 pm/bar, a 
factor of two higher than the value found in standard single-mode fibers. 
Concerning to the sensing for chemical application, LPGs in PCF seem an appealing 
technological platform. Spectral sensitivity to refractive index of the surround medium is 
possible only if part of guided light comes into contact with surrounding materials (Petrovic 
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et al., 2007). On this topic Dobb et al. experimentally investigated the SRI sensitivity of LPGs 
written in different fibers by EAD (Dobb et al, 2006).  They demonstrated that LPGs written 
in large mode area (LMA) PCFs could be used for sensing SRI whereas the no-LMA PCFs 
exhibit minimal changes to SRI. They declare the spectral response of former gratings is 
similar to the behavior of LPGs fabricated in SMFs. The sensitivity increases as the SRI 
approaches that of the cladding. Besides, when the SRI and cladding indices are matched, 
the cladding appears to be infinite and thus, no cladding modes are supported. However the 
most appealing characteristic of the PCFs is to provide strong light/material interaction 
inside the fiber-hole, which offers a new features for developing ultra-sensitive and 
distributed gas and liquid sensors. Rindorf et al. presented LPG in photonic crystal fibers as 
sensitive biochemical sensor (Rindorf et al., 2006). A layer of biomolecules was immobilized 
on the sides of the holes of the PCF and by observing the shift in the resonant wavelength of 
the LPG it was possible to measure the thickness of the layer. The thicknesses of a 
monolayer of poly-L-lysine and double-stranded DNA was measured with s sensitivity of 
approximately 1.4nm/1nm. Later, LPG in large-mode-area PCF was presented as highly 
sensitive refractometers exhibiting  1500 nm/RIU at a refractive index of 1.33 (Rindorf and 
Bong, 2008). The high sensitivity is obtained by infiltrating the sample into the holes of the 
PCF to give a strong interaction between the sample and the probing field.  
Furthermore, as for the same device in SMF, LPGs in PCF have found useful applications in 
optical communications systems. For example, a tuneable long-period grating filter in a 
hybrid polymer–silica PCF was reported in 2002 (Kerbage et al., 2002). The polymer is 
infused into the fiber holes and it is possible to change the LPG resonance wavelength in a 
range of 200 nm, with a temperature variation of 10 °C. Recently, by utilizing coupled-mode 
theory, a design of band stop filter based on optimal LPG parameters (in terms of  full-width 
half-maximum and grating length) in PCF is presented (Seraji et al., 2011). The analysis is 
presented for optimization of LPG length and number of gratings with respect to air–hole 
spacing Λ, hole diameter d, and air filling factor d/Λ of the PCF in which LPG is inscribed.  
It is worth noting that also the response of LPGs in HC-PCF as function of physical 
parameters changes in terms of temperature stain and bending was investigated. The 
responses of the first LPG in the HC-PCF realized by  focused CO2 laser to temperature, 
strain and bend in reported in Fig. 17 (Y. Wang at al., 2008). The temperature sensitivity of 
the resonant wavelength is about 2.9pm/°C. Accordingly to LPG in IG-PCF, the wavelength 
sensitivity is one to two orders of magnitude less than those of the LPGs in SMFs (Bhatia & 
Vengsarkar, 1996). Also, the same LPG (in HC-PCF) was immerged into liquids with 
different refractive index and the resonant wavelength hardly changed, whereas the LPGs in 
SMFs are very sensitive to SRI. Differently, with the increase of applied tensile strain, the 
resonant wavelength of CO2 LPG shifted linearly toward shorter wavelength with a strain 
sensitivity of -0.83nm/mε and thus with sensitivity higher than that typical of LPGs in SMFs 
(Bhatia & Vengsarkar, 1996). Finally, when the curvature of LPG was increased to 13.3m-1, 
the resonant wavelength changed by only ±8pm. From these results Wang et al. declare that 
LPG in HC-PCF achieved by CO2 laser may be used as a strain sensor without cross-
sensitivity to temperature, curvature, and external refractive index. 
Finally, Fig. 18 reports the resonant wavelengths of the LPG in HC-PCF realized by EAD as 
function of the temperate. The grating take into consideration for the thermal 
characterization is composed by 25 perturbation with pitch of Λ=400µm. The spectrum of 
this grating is presented in Fig. 15(b) showing two attenuation bands at 1495.4 nm and 
1520.3 nm, respectively (Iadicicco et al., 2011). Thermal characterization in range 30-80 °C  
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same length and pitch but with different notches on the fiber surface: the first one presents 
evident grooves on the fiber surface achieved with setup provided in (Y. Wang, 2006), the 
second grating was fabricated by use of the same  laser setup but a lower dosage of  
irradiation and presents no observable grooves on the fiber surface. The responses of the 
resonant wavelength to tensile strain and temperature of LPGs with and without visible 
notches is plotted in Fig. 16. The strain sensitivity of the LPG with grooves (−7.6 pm/ με) is 
about 25 times higher than the LPG without physical deformation (−0.31 pm/ με) (Fig. 16(a)) 
whereas the temperature sensitivities of the two LPGs are approximately the same (Fig. 
16(b)). The asymmetrical structure caused by the periodic grooves introduces microbend 
when the LPG is axially stretched, which effectively enhanced the effective refractive index 
change of the LPGs with grooves. However the LPG with visible grooves also demonstrated 
very strong polarization dependent loss and can be used as in-fiber polarizers with good 
temperature stability (Y. Wang, 2007).  
 

 
Fig. 16. Resonant wavelength of LPFG via (a) the tensile strain and (b) the temperature:  
and ■ refer to LPG with period grooves and ▲ and X refer to LPG without period grooves. 
Reprinted from (Y. Wang et al. 2006) with permission of Optical Society of America. 
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in large mode area (LMA) PCFs could be used for sensing SRI whereas the no-LMA PCFs 
exhibit minimal changes to SRI. They declare the spectral response of former gratings is 
similar to the behavior of LPGs fabricated in SMFs. The sensitivity increases as the SRI 
approaches that of the cladding. Besides, when the SRI and cladding indices are matched, 
the cladding appears to be infinite and thus, no cladding modes are supported. However the 
most appealing characteristic of the PCFs is to provide strong light/material interaction 
inside the fiber-hole, which offers a new features for developing ultra-sensitive and 
distributed gas and liquid sensors. Rindorf et al. presented LPG in photonic crystal fibers as 
sensitive biochemical sensor (Rindorf et al., 2006). A layer of biomolecules was immobilized 
on the sides of the holes of the PCF and by observing the shift in the resonant wavelength of 
the LPG it was possible to measure the thickness of the layer. The thicknesses of a 
monolayer of poly-L-lysine and double-stranded DNA was measured with s sensitivity of 
approximately 1.4nm/1nm. Later, LPG in large-mode-area PCF was presented as highly 
sensitive refractometers exhibiting  1500 nm/RIU at a refractive index of 1.33 (Rindorf and 
Bong, 2008). The high sensitivity is obtained by infiltrating the sample into the holes of the 
PCF to give a strong interaction between the sample and the probing field.  
Furthermore, as for the same device in SMF, LPGs in PCF have found useful applications in 
optical communications systems. For example, a tuneable long-period grating filter in a 
hybrid polymer–silica PCF was reported in 2002 (Kerbage et al., 2002). The polymer is 
infused into the fiber holes and it is possible to change the LPG resonance wavelength in a 
range of 200 nm, with a temperature variation of 10 °C. Recently, by utilizing coupled-mode 
theory, a design of band stop filter based on optimal LPG parameters (in terms of  full-width 
half-maximum and grating length) in PCF is presented (Seraji et al., 2011). The analysis is 
presented for optimization of LPG length and number of gratings with respect to air–hole 
spacing Λ, hole diameter d, and air filling factor d/Λ of the PCF in which LPG is inscribed.  
It is worth noting that also the response of LPGs in HC-PCF as function of physical 
parameters changes in terms of temperature stain and bending was investigated. The 
responses of the first LPG in the HC-PCF realized by  focused CO2 laser to temperature, 
strain and bend in reported in Fig. 17 (Y. Wang at al., 2008). The temperature sensitivity of 
the resonant wavelength is about 2.9pm/°C. Accordingly to LPG in IG-PCF, the wavelength 
sensitivity is one to two orders of magnitude less than those of the LPGs in SMFs (Bhatia & 
Vengsarkar, 1996). Also, the same LPG (in HC-PCF) was immerged into liquids with 
different refractive index and the resonant wavelength hardly changed, whereas the LPGs in 
SMFs are very sensitive to SRI. Differently, with the increase of applied tensile strain, the 
resonant wavelength of CO2 LPG shifted linearly toward shorter wavelength with a strain 
sensitivity of -0.83nm/mε and thus with sensitivity higher than that typical of LPGs in SMFs 
(Bhatia & Vengsarkar, 1996). Finally, when the curvature of LPG was increased to 13.3m-1, 
the resonant wavelength changed by only ±8pm. From these results Wang et al. declare that 
LPG in HC-PCF achieved by CO2 laser may be used as a strain sensor without cross-
sensitivity to temperature, curvature, and external refractive index. 
Finally, Fig. 18 reports the resonant wavelengths of the LPG in HC-PCF realized by EAD as 
function of the temperate. The grating take into consideration for the thermal 
characterization is composed by 25 perturbation with pitch of Λ=400µm. The spectrum of 
this grating is presented in Fig. 15(b) showing two attenuation bands at 1495.4 nm and 
1520.3 nm, respectively (Iadicicco et al., 2011). Thermal characterization in range 30-80 °C  
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Fig. 17. Measured resonant wavelength and peak transmitted attenuation of the LPG in HC-
PCF as functions of a) temperature, b) tensile strain and c) curvature. Reprinted from (Y. 
Wang et al., 2008) with permission of Optical Society of America. 
 

 
Fig. 18. Measured resonant wavelengths of the LPG in HC-PCF achieved by EAD as 
functions of temperature for left (a) and right (b) band.  

are obtained using a furnace and a commercial FBG-based temperature sensor as reference. 
Accordingly with other LPG prototype above presented, both attenuation bands exhibit red 
shift with temperature increasing. Sensitivity of 11.9pm/°C (Fig. 18(a)) and 13.8pm/°C (Fig. 
18(b)) are measured for the left and right band respectively. In addition, the same LPG was 
characterized to different SRIs by using different liquids with RI ranging from 1.33 to 1.47. 
As expected from the HC-PCFs mode fields distribution, no spectral changes were 
measured. Compared with the LPG in HC-PCF fabricated by focused CO2 laser (Y. Wang et 
al., 2008), it exhibits higher sensitivity versus thermal changes even if it is kept significantly 
lower than LPGs in SMFs (Bhatia et al, 1996). Besides, accordingly with CO2 laser, EAD 
based LPG exhibits trivial sensitivity to SRI.  
In conclusion the LPGs in PCF (both IG and principally HC) act as novel platform to 
develop future devices with high performance principally for sensing applications. 
However at the state of the art, they still represent a very young technology requiring more 
work before of the industrialization of full sensing systems based on LPGs in PCF. 

5. Conclusions 
In this work, the fabrication techniques and application fields of LPGs in new generation 
optical fibers involving D-shaped fiber and solid- and hollow-core PCFs are reported. 
Despite the mature status of LPG technology in SMFs, in fact, LPGs transfer into new 
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hosting fiber with novel features in terms of tuning and sensitivity of the guided field to 
environmental parameters is not easy. However, to address this issue, a lot of work has been 
made in the last decade and further work is currently in progress, since LPGs in new 
generation optical fibers seem to be extremely promising technological platforms. 
D-shaped fiber seems the easiest solution to enhance the interaction between the guided 
mode and the surrounding medium. Among the different configurations, highly attractive is 
the evanescent-wave LPG made by patterning HRI layer on etched D-fiber surface and 
exhibiting (in a not optimized prototype) SRI sensitivity around the water RI of ~700 
nm/RIU. From these results, evanescent-wave LPGs represent an extremely attractive 
technological platform for chemical and/or biological sensing. In addition, the possibility to 
use patterned coating with different properties (electro-optical, magneto-optical, etc.) to 
fabricate such devices would open the way to self-functionalized evanescent-wave LPGs 
suitable for specific applications. 
Furthermore also LPGs in PCFs act as a novel technological platform for the development of 
optical fiber devices. It is important to distinguish between different PCFs. LPGs in IG-PCFs 
are in our opinion a quite-mature technology. Several approaches have been adopted to 
fabricate grating in IG-PCFs and many works report on their sensing capabilities, ranging 
from chemical/biological applications to physical parameters detections. On the other side, 
only few prototypes of LPGs in HC-PCFs have been reported. However we believe that the 
last configuration represents the most attractive one for chemical/biological applications in 
light of the strong light/material interaction that HC fibers allow inside the fiber hollow 
core. On this topic more work is required and it is reasonable to believe that good results 
will be published in next years 
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Fig. 17. Measured resonant wavelength and peak transmitted attenuation of the LPG in HC-
PCF as functions of a) temperature, b) tensile strain and c) curvature. Reprinted from (Y. 
Wang et al., 2008) with permission of Optical Society of America. 
 

 
Fig. 18. Measured resonant wavelengths of the LPG in HC-PCF achieved by EAD as 
functions of temperature for left (a) and right (b) band.  
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hosting fiber with novel features in terms of tuning and sensitivity of the guided field to 
environmental parameters is not easy. However, to address this issue, a lot of work has been 
made in the last decade and further work is currently in progress, since LPGs in new 
generation optical fibers seem to be extremely promising technological platforms. 
D-shaped fiber seems the easiest solution to enhance the interaction between the guided 
mode and the surrounding medium. Among the different configurations, highly attractive is 
the evanescent-wave LPG made by patterning HRI layer on etched D-fiber surface and 
exhibiting (in a not optimized prototype) SRI sensitivity around the water RI of ~700 
nm/RIU. From these results, evanescent-wave LPGs represent an extremely attractive 
technological platform for chemical and/or biological sensing. In addition, the possibility to 
use patterned coating with different properties (electro-optical, magneto-optical, etc.) to 
fabricate such devices would open the way to self-functionalized evanescent-wave LPGs 
suitable for specific applications. 
Furthermore also LPGs in PCFs act as a novel technological platform for the development of 
optical fiber devices. It is important to distinguish between different PCFs. LPGs in IG-PCFs 
are in our opinion a quite-mature technology. Several approaches have been adopted to 
fabricate grating in IG-PCFs and many works report on their sensing capabilities, ranging 
from chemical/biological applications to physical parameters detections. On the other side, 
only few prototypes of LPGs in HC-PCFs have been reported. However we believe that the 
last configuration represents the most attractive one for chemical/biological applications in 
light of the strong light/material interaction that HC fibers allow inside the fiber hollow 
core. On this topic more work is required and it is reasonable to believe that good results 
will be published in next years 
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1. Introduction 
The optical vortices (Dennis et al., 2009; Desyatnikov et al., 2005; Soskin & Vasnetsov, 2001) 
or angular harmonics exp(imϕ) describe a wavefront peculiarity, or helical dislocation, 
when in passing around the origin of coordinates the light field phase acquires a phase shift 
of 2πm, where m is the optical vortex's order. The generation and propagation of the laser 
vortices in free space has been studied fairly well, meanwhile, the excitation of individual 
vortex modes and obtaining desired superpositions thereof in optical fibers present a greater 
challenge (Berdague & Facq, 1982; Bolshtyansky et al., 1999; Dubois et al., 1994; Karpeev & 
Khonina, 2007; Mikaelian, 1990; Soifer & Golub, 1994; Thornburg et al., 1994; Volyar & 
Fadeeva, 2002).  
Note that the most interesting is the excitation and propagation of pure optical vortices that 
are not step- or graded-index fiber modes. However decomposition of the light fields in 
terms of angular harmonics has a number of advantages over other bases, including modal 
ones, when dealing with problems of laser beam generation and analysis and mode division 
multiplexing. As distinct from the classical LP-modes, the angular harmonics are scale-
invariant when coupled into the fiber and selected at the fiber's output using diffractive 
optical elements (DOEs) (Dubois et al., 1994; Karpeev & Khonina, 2007; Soifer & Golub, 
1994; Thornburg et al., 1994). This gives much freedom in choosing parameters of an optical 
scheme, allowing one to effectively counteract noises, as it will be demonstrated below. 
A term "mode division multiplexing" (MDM) is used for multimodal optical fibers when 
describing methods for data transmission channel multiplexing, with each spatial fiber 
mode being treated as a separate channel that carries its own signal (Berdague & Facq, 1982; 
Soifer & Golub, 1994). The essence of mode division multiplexing is as follows: laser beams 
as a linear superposition of fiber modes can be used to generate signals that will effectively 
transmit data in a physical carrier - a multimodal fiber. The data transmitted can be 
contained both in the modal composition and in the energy portion associated with each 
laser mode.   
The MDM concept has not yet been turned to practical use because a definite mode 
superposition with desired between-mode energy distribution is difficult to excite. Another 
reason is that there is energy redistribution between modes when transmitting data in real 
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Soifer & Golub, 1994). The essence of mode division multiplexing is as follows: laser beams 
as a linear superposition of fiber modes can be used to generate signals that will effectively 
transmit data in a physical carrier - a multimodal fiber. The data transmitted can be 
contained both in the modal composition and in the energy portion associated with each 
laser mode.   
The MDM concept has not yet been turned to practical use because a definite mode 
superposition with desired between-mode energy distribution is difficult to excite. Another 
reason is that there is energy redistribution between modes when transmitting data in real 
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fibers over long distances. However, for optical fibers 1-2 m long - for example, used in 
endoscopy - the modes do not mix at small bendings (when the curvature radius is much 
greater than fiber's core radius), acquiring only a radius-related phase delay.  
A major problem with the MDM is exciting a definite modal superposition with a desired 
energy distribution between modes. Lower-order modes (e.g., LP11) can be excited by 
applying a periodic fiber deformation (squeezing or bending) and with a tilted grating 
written in a photosensitive fiber by two interfering laser beams. Higher-order modes LPm1 
can be generated through the off-axis coupling of laser light into the fiber's end at a definite 
angle or by DOE in which the complex amplitude of mode distribution was encoded. Using 
diffractive optical elements any set of modes with designed weights can be effectively 
generated and selected (Soifer & Golub, 1994; Karpeev & Khonina, 2007). 
We discuss linear superpositions of LP-modes of a stepped-index fiber in the first section. 
As an alternative to the superposition of classical LP-modes used to carry signal in a light 
fiber we propose a superposition of angular harmonics that can be derived as a special 
combination of LP-modes also featuring modal properties in an optical fiber.   
Imposing the certain conditions on mode’s compound it is possible to form laser beams with 
the definite self-reproduction (Kotlyar et al., 1998), while mode’s weights and phase shift 
between modes provide approximation of desirable cross-section distribution of laser beam 
intensity on the certain distances (Almazov & Khonina, 2004).   
The light field periodic self-reproduction in the gradient-index media was analytically 
studied using the ray tracing approach and wave theory in (Mikaelian, 1980). The self-
reproduction was treated in the above studies as self-focusing, i.e. a periodic focusing of 
radiation. The analytical expressions for the refractive index of the medium where the 
phenomenon occurs have been derived.  
In the second section we numerically simulate the behavior of multi-mode light fields in the 
circular parabolic graded-index fibers which propagate linearly polarized Laguerre-
Gaussian (LG) modes in the weak guidance approximation. Analytical formulae describing 
the propagation of a linear composition of the LG modes in a fiber are rather simple, thus 
making it possible to simulate the propagation of a certain light field (image) along a 
definite fiber via decomposing it into the LG modes (Snyder & Love, 1987). Note that the 
accuracy of image representation is essential. The more modes are found in the linear 
combination, the more adequate is the image approximation. Also, with regard to the 
aforementioned application, it would be interesting to determine the self-reproduction 
periods of the chosen mode superposition.  
Unfortunately, the use of an arbitrary number of modes satisfying definite criteria is 
impossible for the following two reasons: (1) a multi-mode fiber is able to transmit only a 
limited number of modes determined by its radius and the core's refractive index and (2) the 
more modes participate in the approximation, the greater is their general period, i.e. the 
image self-reproduction will occur more rarely. Besides, the image is disintegrated even 
under a minor change in the fiber length (of about 0.1.mm) as a result of temperature 
variations, mechanical deformation, etc. Thus, the "direct" image recognition from the 
intensity pattern becomes difficult if possible at all. However, the images can be fairly 
accurately recognized from the distribution pattern of the squared modules of the mode 
coefficients (Bolshtyansky & Zel’dovich,  1996), which are preserved at any distance in the 
ideal fiber.  
The propagation of the electromagnetic wave in the medium can be modeled in several 
ways. The most common technique is to describe the propagation using Maxwell’s 
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equations, from which vectorial wave equations defining the electric and magnetic field 
components can be deduced. If the relative change of the medium refractive index per 
wavelength is significantly smaller than unity, the Helmhotz equation can be written for 
each scalar component of the vector field (Agrawal, 2002).  
For weakly nonuniform media, the approximation based on a periodic array of identical 
optical elements placed in a uniform medium is also valid. In particular, for the parabolic-
index medium, this array comprises circular converging lenses. For the limiting case of an 
infinitely large number of lenses with an infinitesimally small separation we derive an 
integral operator to describe the propagation of light in a medium with parabolic refractive 
index in the scalar theory. This integral operator is analogous to the Fresnel transform that 
describes, with the same accuracy, the propagation of light in a uniform medium. 

2. Vortical laser beams in a weakly guiding stepped-index fibers 
Let us consider a circular stepped-index optical fiber, in which the core of radius a has the 
refractive index of n1, and the cladding of radius b has the refractive index of n2. For most 
popular commercial fibers, the core-cladding index contrast, ∆n=n1–n2, is less than 1%. For 
such fibers, termed weakly guiding, assuming n1≅n2, we can consider in place of hybrid 
modes of the propagating electromagnetic field their linearly polarized superpositions 
(Cherin, 1987; Gloge, 1971; Marcuse, 1972; Yeh, 1990).  
Considering that for the LP-mode the transverse field is essentially linearly polarized, a 
complete set of modes takes place when only one electric and one magnetic component are 
predominant. In this case, it is possible, for example, to consider the electric vector E 
directed along the x-axis, and a perpendicular magnetic vector H, directed along the y-axis. 
Note, also, that the time-averaged power flux (Re[E×H]/2) appears to be proportional to the 
electric vector intensity (Gloge, 1971; Yeh, 1990). All above considered,  we will consider the 
LP-modes in the scalar form: 
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equations, from which vectorial wave equations defining the electric and magnetic field 
components can be deduced. If the relative change of the medium refractive index per 
wavelength is significantly smaller than unity, the Helmhotz equation can be written for 
each scalar component of the vector field (Agrawal, 2002).  
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Note, also, that the time-averaged power flux (Re[E×H]/2) appears to be proportional to the 
electric vector intensity (Gloge, 1971; Yeh, 1990). All above considered,  we will consider the 
LP-modes in the scalar form: 
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are derived from an equation for eigen-values: 
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In Eq. (4), λ is the wavelength of laser light in air. In Eq. (1), the first-kind Bessel functions 
Jm(x) describe the field in the fiber core,whereas the modified Bessel functions  Km(x) are for 
the cladding.   
We consider the propagation of a linear superposition of LP-modes in an ideal stepped-
index optical fiber: 
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where Cpq are the complex coefficients, Ψpq(r,ϕ) are the modes of Eq. (1) at z=0, whose 
angular component is represented in a different way without loss of generality: 
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Although Eqs. (1) and (7) are connected via a simple relation, they describe modes with 
somewhat different properties. By way of illustration, the modes in Eq. (1) are real at z=0, 
but they do not have an orbital angular momentum. Thus, for each mode in Eq. (7), the 
linear density of z-projection of the orbital angular momentum is proportional to the first 
index p (Allen et al., 2003).  
For the field in Eq. (6) with the modes of Eq. (7), the z-projection of the orbital momentum 
(Kotlyar et al., 2002):  
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The modes show a key property of invariance to the propagation operator in a given 
medium, implying that in propagation the mode structure remains unchanged, acquiring 
only a phase shift. In particular, the cross-section of the field in Eq. (7) will remain 
unchanged at any distance, being equal to its value at z=0: 

 
2 2 22( , , ) ( )exp( )exp( ) ( ) ( , )pq pq pq pq pqr z R r ip i z R r rφ φ β φΨ = − = = Ψ . (9) 

Because the expression in Eq. (9) is z-independent in a perfect fiber, it can be used as an 
additional parameter to characterize individual modes in Eq. (7) or modal groups with an 
identical first index.  
Figure 1 shows cross-section distributions for some modes of Eq. (7) for a stepped-index 
fiber with cut-off number V=8.4398. These modal characteristics remain unchanged upon 
propagation in a perfect fiber, with only phase changes taking place. For comparison, shown 
in Figs. 1d and 1e are phases at z=0 and z=100 μm, respectively.  
The numerical simulation parameters are as follows: core radius is a=5 μm, cladding 
radius is b=62.5 μm, the respective refractive indices of the core and cladding are n1=1.45 
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and n2=1.44. Optical fibers with the above-specified parameters are normally used in a 
unimodal regime for wavelengths λ=1.31 μm and λ=1.55 μm. However, for the 
wavelength of λ=0.633 μm of a He-Ne laser a few-mode regime occurs (Khonina et al., 
2003), meaning that several modes are propagated. For used parameters there are 11 
propagating modes with |p|≤5. 
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(1,2)      
 

(2,1)      
 

(4,1)      
 

  (a)            (b)          (c)  (d)        (e) 
Fig. 1. The (p,q) modes: (0,3), (1,2), (2,1), (4,1): (a) transverse amplitude distribution 
(negative), (b) radial amplitude cross-section, and (c) transverse intensity distribution 
(negative) in the plane z=0; transverse phase distribution (white: zero phase, black: 2π) in the 
planes (d) z=0 and (e) z=100 μm. 

2.1 Multimode laser beam self-imaging  in a weakly guiding stepped-index fibers 
In the general case, the field in Eq. (6) does not show invariance regarding an individual 
mode in Eq. (9). However, by fitting a modal composition in Eq. (6) it is possible to find a 
modal superposition showing some self-reproduction properties.  
In a perfect fiber at distance z, the superposition in Eq. (6) has the complex distribution 
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and n2=1.44. Optical fibers with the above-specified parameters are normally used in a 
unimodal regime for wavelengths λ=1.31 μm and λ=1.55 μm. However, for the 
wavelength of λ=0.633 μm of a He-Ne laser a few-mode regime occurs (Khonina et al., 
2003), meaning that several modes are propagated. For used parameters there are 11 
propagating modes with |p|≤5. 
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In the general case, the field in Eq. (6) does not show invariance regarding an individual 
mode in Eq. (9). However, by fitting a modal composition in Eq. (6) it is possible to find a 
modal superposition showing some self-reproduction properties.  
In a perfect fiber at distance z, the superposition in Eq. (6) has the complex distribution 
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is other than the intensity at z=0: 
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because the former has a cosine term.   
By imposing definite conditions on all pairs of constituent modes in the superposition in Eq. 
(6), it is possible to obtain fields featuring special properties of intensity distribution self-
reproduction.  
Invariance in the entire region of propagation 

In propagation, a change in the transverse field distribution is due to intermode dispersion 
caused by a difference between mode propagation constants βpq. For the function of the form 
(7) only modes with identical indices (|p|,q) will have the same propagation velocities. 
Thus, at any interval (in a perfect fiber) the invariance is shown only by a mode pair 
superposition given by 

  ( , ) ( , )p q p q p q p qC r C rφ φ− −Ψ + Ψ . (13) 

In this case, in Eq. (11) we have 

cos (arg arg ) ( ) ( ) cos (arg arg ) 2p q p q p q p q p q p qC C p p z C C pφ β β φ− − −
⎡ ⎤ ⎡ ⎤− + + + − = − +⎣ ⎦ ⎣ ⎦  

and the cross-section intensity ceases to depend on z, remaining unchanged. The form of the 
intensity distribution is entirely determined by the coefficients Cpq (see Fig. 2). 
In a particular case, when 

p q p qC C−= ±  we get classical LP-modes in the form of Eq. (1) 

(first row in Fig. 2). It is noteworthy that the complex coefficient arguments have no effect 
on the value of the orbital angular momentum for the superposition of Eq. (6). Thus, with 
the coefficient amplitudes remaining unchanged, we obtain a rotated classical LP-mode 
whose orbital angular momentum is also zero (second row in Fig. 2).  
Changes in the coefficient amplitude cause both the cross-section structure and the orbital 
angular momentum to be changed. For the third and bottom rows in Fig. 2, the respective 
values of the orbital angular momentum in Eq. (8) are different and equal to 0.6 and 0.923.  
Invariance on the interval [0,z].  

Besides, superpositions that approximately (to some accuracy) preserve the cross-section 
intensity distribution may be of interest.  In this case, for all constituent mode pairs the 
following condition should be met:  

 cos ( ) ( ) cos ( )
i i j ji j p q p q i jp p z p pφ β β φ ε⎡ ⎤ ⎡ ⎤− + − − − <⎣ ⎦⎣ ⎦ , (14) 
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where ε is small and defines the "recession" of different modes on the z-axis. Such between-
mode "delay" can be defined as a small phase shift φε: 

 
i i j jp q p q z εβ β ϕ− ≤ . (15) 

 

( ), argpq pqC C⎡ ⎤
⎣ ⎦  (a) (b) (c) 

C1,1=[1,0] 
C–1,1=[1,0] 

 

C1,1=[1,0] 
C–1,1=[1,π/2] 

 

C1,1=[1,0] 
C–1,1=[2,0] 

 

C1,1=[1,0] 
C–1,1=[5,π] 

 
Fig. 2. Superposition of the (p,q) modes: (1,1)+(–1,1) with different complex coefficients: 
transverse distribution of (а) intensity, and (b) phase in the plane z=0, and (c) phase 
distribution at distance z=200 m. 

Formalizing the condition of the interval-specific invariance to a desired accuracy makes 
possible an automated procedure for selecting admissible superpositions from the entire set 
of fiber modes. The algorithm can be realized as an exhaustive search of modes with 
selection of superpositions satisfying the condition formulated.  
For instance, putting on the 10 μm interval the admissible phase shift equal to φε=π/18, the 
algorithm allowed us to select 59 superpositions (containing 2-5 modes, regarding the index 
p sign) from the set of 11 propagating modes for used parameters.  
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where ε is small and defines the "recession" of different modes on the z-axis. Such between-
mode "delay" can be defined as a small phase shift φε: 
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Formalizing the condition of the interval-specific invariance to a desired accuracy makes 
possible an automated procedure for selecting admissible superpositions from the entire set 
of fiber modes. The algorithm can be realized as an exhaustive search of modes with 
selection of superpositions satisfying the condition formulated.  
For instance, putting on the 10 μm interval the admissible phase shift equal to φε=π/18, the 
algorithm allowed us to select 59 superpositions (containing 2-5 modes, regarding the index 
p sign) from the set of 11 propagating modes for used parameters.  
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Figure 3 shows the transverse distributions of amplitude, intensity, and phase at different 
distances for a single superposition, namely, (p,q): (1,2)+(–1,2)+(3,1)+(–3,1), with the Cpq 
coefficients chosen to be the same. 
 

 
z=0 20 μm 40 μm 60 μm 100 μm 160 μm 280 μm 

   

   
 

Fig. 3. Propagation of the superposition (p,q): (1,2)+(–1,2)+(3,1)+(–3,1): transverse 
distributions of intensity (top row), and phase (bottom row) at different distances z. 

As seen from Fig. 3, intensity of the multimode beam remains practically constant up to 
distance 40 μm. Unfortunately, since intermode dispersion in a stepped-index fiber being 
very high, putting the phase shift φε≤π/18 makes possible only 17 superpositions on the 20 
μm interval and 8 superpositions on the interval 40 μm. Note that there are just 8 
superpositions of Eq. (10) which are admissible on any interval.    
The number of superpositions that preserve their form on any interval can be essentially 
extended if considering a rotation-accurate invariance or "rotating" fields.  

All-region, rotation-accurate propagation invariance  

Assuming rotation-accurate invariance, mode pairs in the superposition must obey the 
following condition: 

 0cos ( ) ( ) cos ( )( )
i i j j

i j i jp q p qp p z p pφ β β φ φ⎡ ⎤ ⎡ ⎤− + − = − +⎢ ⎥ ⎣ ⎦⎣ ⎦
, (16) 

where ϕ0 is some angle.  
From Eq. (16), the rotation condition for any pair in the superposition is  

 0
i i j jp q p q

i j
z

p p

β β
φ

−
=

−
, (17) 

The exact condition in Eq. (17) complies with any two-mode superpositions, given 
|pi|≠|pj|, since at |pi|=|pj| there will occur the rotation by angle ϕ0=0, i.e. the total 
invariance dealt with in the previous section. Thus, exciting various mode pairs enables 
obtaining fields that preserve their structure (except for rotation) at any interval. There 
may be 154 such superpositions, which exceeds 8 purely invariant syperpositions. By way 
of illustration, Fig. 4 shows the propagation at distance 150 m of invariant, rotating mode 
pairs. 
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Z=0 25 m 50 m 75 m 100 m 125 m 150 m 

   

   

   
Fig. 4. Propagation of rotating modal pairs, (p,q): (1,2)+(–2,1) – top row, (3,2)+(5,1) – middle 
row, (4,1)+(5,1) – bottom row; the intensity distribution is shown at different distances z. 

From Fig. 4, the superpositions are seen to have symmetry of order  

 1 2s p p= − . (18) 

Note that due to symmetry, the transverse intensity distribution is self-reproduced s times at 
a distance of one full revolution.   
For such a pair, the rotation rate is given by  

 1 1 2 2

1 2

p q p q

p p

β β
ϑ

−
=

−
, (19) 

with the rotation direction corresponding to the sign of Eq. (18). 
It is noteworthy that the rotation rate of interference pattern for the constituent modes in Eq. 
(19) is not related to the orbital angular momentum, depending on the propagation 
constants rather than the mode coefficients.  In particular, for the mode pairs in Fig. 4, 
considering equal coefficients, Eqs. (9) and (24) take the values:  for (1,2)+(–2,1), ωJz0=0.5, 
ϑ=0.54; for (3,2)+(5,1), ωJz0=–4, ϑ=–0.35; and for (4,1)+(5,1),  ωJz0=–4.5, ϑ=1.02. 
Note that the transverse energy distribution of a beam composed of two modes can be 
varied by varying the mode coefficients. The intensity distribution itself will be preserved in 
propagation in a perfect fiber. 

Rotation-accurate invariance on the [0,z] interval  

Rotating superpositions containing more than two modes become possible by assuming a 
small error in the self-reproduction of the transverse intensity distribution. In this case, the 
following condition should be met for any two modal pairs in the superposition, (pi,qi)+(pj,qj) 
and (pk,qk)+(pl,ql): 

 max minkl kl
ij ij εφΔ − Δ ≤ ,  (20) 
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Figure 3 shows the transverse distributions of amplitude, intensity, and phase at different 
distances for a single superposition, namely, (p,q): (1,2)+(–1,2)+(3,1)+(–3,1), with the Cpq 
coefficients chosen to be the same. 
 

 
z=0 20 μm 40 μm 60 μm 100 μm 160 μm 280 μm 

   

   
 

Fig. 3. Propagation of the superposition (p,q): (1,2)+(–1,2)+(3,1)+(–3,1): transverse 
distributions of intensity (top row), and phase (bottom row) at different distances z. 

As seen from Fig. 3, intensity of the multimode beam remains practically constant up to 
distance 40 μm. Unfortunately, since intermode dispersion in a stepped-index fiber being 
very high, putting the phase shift φε≤π/18 makes possible only 17 superpositions on the 20 
μm interval and 8 superpositions on the interval 40 μm. Note that there are just 8 
superpositions of Eq. (10) which are admissible on any interval.    
The number of superpositions that preserve their form on any interval can be essentially 
extended if considering a rotation-accurate invariance or "rotating" fields.  

All-region, rotation-accurate propagation invariance  

Assuming rotation-accurate invariance, mode pairs in the superposition must obey the 
following condition: 

 0cos ( ) ( ) cos ( )( )
i i j j

i j i jp q p qp p z p pφ β β φ φ⎡ ⎤ ⎡ ⎤− + − = − +⎢ ⎥ ⎣ ⎦⎣ ⎦
, (16) 

where ϕ0 is some angle.  
From Eq. (16), the rotation condition for any pair in the superposition is  

 0
i i j jp q p q

i j
z

p p

β β
φ

−
=

−
, (17) 

The exact condition in Eq. (17) complies with any two-mode superpositions, given 
|pi|≠|pj|, since at |pi|=|pj| there will occur the rotation by angle ϕ0=0, i.e. the total 
invariance dealt with in the previous section. Thus, exciting various mode pairs enables 
obtaining fields that preserve their structure (except for rotation) at any interval. There 
may be 154 such superpositions, which exceeds 8 purely invariant syperpositions. By way 
of illustration, Fig. 4 shows the propagation at distance 150 m of invariant, rotating mode 
pairs. 
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Z=0 25 m 50 m 75 m 100 m 125 m 150 m 

   

   

   
Fig. 4. Propagation of rotating modal pairs, (p,q): (1,2)+(–2,1) – top row, (3,2)+(5,1) – middle 
row, (4,1)+(5,1) – bottom row; the intensity distribution is shown at different distances z. 

From Fig. 4, the superpositions are seen to have symmetry of order  

 1 2s p p= − . (18) 

Note that due to symmetry, the transverse intensity distribution is self-reproduced s times at 
a distance of one full revolution.   
For such a pair, the rotation rate is given by  
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−
=

−
, (19) 

with the rotation direction corresponding to the sign of Eq. (18). 
It is noteworthy that the rotation rate of interference pattern for the constituent modes in Eq. 
(19) is not related to the orbital angular momentum, depending on the propagation 
constants rather than the mode coefficients.  In particular, for the mode pairs in Fig. 4, 
considering equal coefficients, Eqs. (9) and (24) take the values:  for (1,2)+(–2,1), ωJz0=0.5, 
ϑ=0.54; for (3,2)+(5,1), ωJz0=–4, ϑ=–0.35; and for (4,1)+(5,1),  ωJz0=–4.5, ϑ=1.02. 
Note that the transverse energy distribution of a beam composed of two modes can be 
varied by varying the mode coefficients. The intensity distribution itself will be preserved in 
propagation in a perfect fiber. 

Rotation-accurate invariance on the [0,z] interval  

Rotating superpositions containing more than two modes become possible by assuming a 
small error in the self-reproduction of the transverse intensity distribution. In this case, the 
following condition should be met for any two modal pairs in the superposition, (pi,qi)+(pj,qj) 
and (pk,qk)+(pl,ql): 

 max minkl kl
ij ij εφΔ − Δ ≤ ,  (20) 
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where kl
ij ij klφ φΔ = − , i i j jp q p q

ij
i j

z
p p

β β
φ

−
=

−
, ϕε is the admissible rotation mismatch angle on the 

entire interval [0,z].  
Figure 5 shows the propagation of a superposition of three modes (p,q): (2,2)+(–4,1)+(5,1) 
with identical coefficients at distance 1500 μm. This superposition obeys the condition in Eq. 
(25) with admissible mismatch angle of ϕε ≤ π/36 on the interval up to 150 μm. The  
(–2,2)+(4,1)+(–5,1) superposition, with symmetric index signs, shows a similar property. No 
other more-than-two modal combinations were found. 
 

Z=0 75 μm 150 μm 225 μm 300 μm 750 μm 1500 μm 

   
Fig. 5. Propagation of a superposition of (p,q): (2,2)+(–4,1)+(5,1): transverse distributions of 
intensity at different distances z. 

It is seen from the above that the more-than-two-mode superpositions preserve their 
structure at a short interval of about one hundred microns, followed by the structure's 
disintegration. After a while (period), however, the beam cross-section is self-reproduced.  
Periodic self-reproduction  

For a two-mode superposition there is always a self-reproduction period z0 defined as 

 [ ]
1 1 2 21 2 0 1 2cos ( ) ( ) cos ( )p q p qp p z p pφ β β φ⎡ ⎤− + − = −⎣ ⎦  ⇒ 0 2 ,

i i j jp q p q z mβ β π− =  (21) 

where m is integer. 
However, once the distance zL is set, it would be of greater interest to identify possible 
modal superpositions that will be self-reproduced at this distance to a certain admissible 
accuracy. Such superpositions can be formed as mode pairs satisfying the condition: 

 ( )
i i j jp q p q Lz ε

π
β β ϕ⎡ ⎤− ≤⎣ ⎦ , (22) 

where φε is the admissible, reduced phase shift and […]π denotes reduction to the interval  
[–π,π].  
For example, putting zL=1089.4 um (which is close to the self-reproduction period for two 
modes, (0,3)+(5,1)), specifying the admissible reduced phase shift equal to φε ≤ π/12 allows a 
set of 41 admissible superpositions, each containing 2-5 modes, to exist. In particular, Fig. 6 
shows how a five-mode superposition, (p,q): (0,3)+(3,2)+(–3,2)+(5,1)+(–5,1), propagates at the 
interval from z=0 to zL. In the zL-plane the superposition is self-reproduced with an error of 
δ=0.48% for intensity. Note that the complex field correlation at z=0 and zL is close to unity: 
η=0.989. 
It is noteworthy that at a half-period distance, zL/2 = 544.7 μm, the transverse intensity 
distribution equals the original one rotated by 180 degrees (see fig. 6). Thus, it is possible to 
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increase the number of points where a field is self-reproduced if considering the rotation-
accurate self-reproduction. 
 

z=0 108.9 μm 272.3 μm 544.7 μm 653.6 μm 817.1 μm 1089.4 μm 

   

   
Fig. 6. In propagation, the superposition of (p,q) modes: (0,3)+(3,2)+(–3,2)+(5,1)+(–5,1) is 
nearly self-reproduced at distance zL=1089 μm (intensity and phase distributions are 
depicted at various distances z). 

Periodic rotation-accurate self-reproduction 
Similar to the previous section, putting the distance zL (e.g. fiber's length), we consider mode 
superpositions self-reproduced at this distance (period) up to a rotation-angle, with an 
admissible mismatch (otherwise, the set will only contain two-mode superpositions). In this 
case, the mode pairs in superposition should obey the condition: 

 max minkl kl
ij ij εφΔ − Δ ≤ , (23) 

where kl
ij ij kl π

φ φ⎡ ⎤Δ = −⎣ ⎦
,

( )
i i j jp q p q L

ij
i j

z

p p

β β
φ
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−
, ϕε is the admissible mismatch angle in the zL-

plane.  
Putting zL = 1 m and the admissible mismatch angle equal to ϕε  ≤ π/9, it is possible to obtain 
a set of 173 allowed superposition, each containing from 2 to 3 modes. Figure 7 shows the 
propagation of a three-mode superposition of (p,q): (2,1)+(3,1)+(4,1) on the interval from z=0 
to zL (at point zL = 1 m, the mismatch angle being ϕε  ≤ π/30). 
 

z=0 0.05 m 0.25 m 0.3 m 0.45 m 0.75 m 1 m 

   

Fig. 7. In propagation, the superposition of (p,q) modes: (2,1)+(3,1)+(4,1), is nearly self-
reproduced at distance zL=1 m (intensity and phase distributions are depicted at various 
distances z). 
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Figure 5 shows the propagation of a superposition of three modes (p,q): (2,2)+(–4,1)+(5,1) 
with identical coefficients at distance 1500 μm. This superposition obeys the condition in Eq. 
(25) with admissible mismatch angle of ϕε ≤ π/36 on the interval up to 150 μm. The  
(–2,2)+(4,1)+(–5,1) superposition, with symmetric index signs, shows a similar property. No 
other more-than-two modal combinations were found. 
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Fig. 5. Propagation of a superposition of (p,q): (2,2)+(–4,1)+(5,1): transverse distributions of 
intensity at different distances z. 

It is seen from the above that the more-than-two-mode superpositions preserve their 
structure at a short interval of about one hundred microns, followed by the structure's 
disintegration. After a while (period), however, the beam cross-section is self-reproduced.  
Periodic self-reproduction  

For a two-mode superposition there is always a self-reproduction period z0 defined as 
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where m is integer. 
However, once the distance zL is set, it would be of greater interest to identify possible 
modal superpositions that will be self-reproduced at this distance to a certain admissible 
accuracy. Such superpositions can be formed as mode pairs satisfying the condition: 
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where φε is the admissible, reduced phase shift and […]π denotes reduction to the interval  
[–π,π].  
For example, putting zL=1089.4 um (which is close to the self-reproduction period for two 
modes, (0,3)+(5,1)), specifying the admissible reduced phase shift equal to φε ≤ π/12 allows a 
set of 41 admissible superpositions, each containing 2-5 modes, to exist. In particular, Fig. 6 
shows how a five-mode superposition, (p,q): (0,3)+(3,2)+(–3,2)+(5,1)+(–5,1), propagates at the 
interval from z=0 to zL. In the zL-plane the superposition is self-reproduced with an error of 
δ=0.48% for intensity. Note that the complex field correlation at z=0 and zL is close to unity: 
η=0.989. 
It is noteworthy that at a half-period distance, zL/2 = 544.7 μm, the transverse intensity 
distribution equals the original one rotated by 180 degrees (see fig. 6). Thus, it is possible to 
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increase the number of points where a field is self-reproduced if considering the rotation-
accurate self-reproduction. 
 

z=0 108.9 μm 272.3 μm 544.7 μm 653.6 μm 817.1 μm 1089.4 μm 

   

   
Fig. 6. In propagation, the superposition of (p,q) modes: (0,3)+(3,2)+(–3,2)+(5,1)+(–5,1) is 
nearly self-reproduced at distance zL=1089 μm (intensity and phase distributions are 
depicted at various distances z). 

Periodic rotation-accurate self-reproduction 
Similar to the previous section, putting the distance zL (e.g. fiber's length), we consider mode 
superpositions self-reproduced at this distance (period) up to a rotation-angle, with an 
admissible mismatch (otherwise, the set will only contain two-mode superpositions). In this 
case, the mode pairs in superposition should obey the condition: 
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plane.  
Putting zL = 1 m and the admissible mismatch angle equal to ϕε  ≤ π/9, it is possible to obtain 
a set of 173 allowed superposition, each containing from 2 to 3 modes. Figure 7 shows the 
propagation of a three-mode superposition of (p,q): (2,1)+(3,1)+(4,1) on the interval from z=0 
to zL (at point zL = 1 m, the mismatch angle being ϕε  ≤ π/30). 
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Fig. 7. In propagation, the superposition of (p,q) modes: (2,1)+(3,1)+(4,1), is nearly self-
reproduced at distance zL=1 m (intensity and phase distributions are depicted at various 
distances z). 
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From Fig. 7, the superposition's intensity is also seen to be self-reproduced (to some 
accuracy) in other planes. However, this work was not aimed at identifying all points of self-
reproduction for a definite superposition. The problem addressed was as follows: based on 
given physical characteristics of a stepped-index optical fiber (thickness, length, and 
parameters of material) it was required to identify the entire possible set of propagating 
modes and modal superpositions that show various self-reproduction properties to a 
designed accuracy. 

2.2 Experimental excitation and detection of angular harmonics in a stepped-index 
optical fiber 
When angular harmonics (optical vortices) are coupled into a fiber or selected at output 
using DOEs they show the scale invariance that provides much freedom in choosing optical 
scheme parameters. As shown below, this provides effective means for preventing system 
noise. 
We describe natural experiments on selective excitation of both separate angular harmonics 
and their superposition. We used a DOE that was able to form beams with phase singularity 
exp(imϕ) of order m=–1 and m=–2 and a superposition exp(im1ϕ)+exp(im2ϕ), m1=–1, m2=2 
(see Fig. 8). The multi-level DOEs were fabricated using e-beam lithography at the 
University of Joensuu (Finland). The DOEs parameters are: 32 quantization levels, diameter 
is 2.5 mm, and discretization step is 5 μm. Spiral DOEs were fabricated for wavelength 
λ=633 nm. 
Selection was performed using multi-order DOEs (Khonina et al., 2003) matched to angular 
harmonics, which were also fabricated at Joensuu University. Shown in Fig. 9 is the 8-order 
binary DOE to detect spiral singularities with different numbers. 
  

(a)    (c)   (e)  
 

(b)    (d)   (f)  

Fig. 8. Generation of light fields with phase singularity exp(inϕ): DOE phase for (a) m=–1, (c) 
m=–2 and (e) a superposition of m1=–1 and m2=2, and (b), (d), (f) corresponding far-field 
intensity distributions. 
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          (a)      (b)            (c) 

Fig. 9. Binary DOE matched to 8 different number angular harmonics: (a) phase, (b) 
corresponding patterns for the diffraction orders for plane wave and (c) the accordance 
scheme of angular harmonics’ numbers and diffraction orders. 

Diffraction order patterns are also put in correspondence with the numbers of the angular 
harmonics. The DOE parameters are: diameter is 10 mm, discretization step is 5 μm, and 
microrelief height for wavelength λ=633 nm. 
First, following the procedure described in (Karpeev et al., 2005), the system was adjusted 
for coupling the principal mode. At this stage, the mode-generating DOE's substrate, being 
already put into the beam, is displaced to prevent the phase microrelief region from getting 
into the beam path. At the output, the Gaussian beam of the principal mode is collimated 
and then passed through a DOE matched to the angular harmonics and a Fourier stage. The 
scale at the Fourier stage output plane is related to both the output beam's diameter and the 
Fourier stage focal length. For angular harmonics, these parameters can be independently 
changed, as distinct from the classical modes where the beam size is rigidly connected with 
the DOE parameters.  Besides, increasing focal length and correspondingly increasing scale 
help reduce noise. This is due to the high-frequency nature of noises resulting from high-
frequency discretization of the phase DOEs, with noise level becoming lower closer to the 
optical axis. Thus, with the optical system's overall size allowing a decrease, for the noise 
impact to be reduced, lower carrier frequencies need to be chosen (on the assumption that 
there is no order overlapping).  
The experiments were conducted with three beam-generation DOEs, which, accordingly, 
generated the first- and second-order angular harmonics as well as their superposition are 
coupled into a fiber. Figure 10 shows intensity distributions in the output plane when the 
corresponding beam is excited in a fiber. 
When a first-order optical vortex is excited the intensity peak appears at the center of the 
corresponding order with the near-noise intensity (no more than 10% of peak intensity) 
found at the other orders (fig. 10a). Next, a second-order optical vortex was excited (fig. 10b). 
It was found that depending on the position of the beam-generation DOE in the illuminating 
beam, the intensity peak can emerge in diffraction orders corresponding to the second-order 
harmonics of both signs. It is possible to excite both any separate mode and their 
combination featuring about the same intensity. Note, however, that in this case the excitation 
selectivity is lower, compared with the first-order harmonic.  
A third experiment was on excitation of a superposition of the opposite-sign, first- and 
second-order angular harmonics (fig. 10c). The emergence of the first- and second-order  
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From Fig. 7, the superposition's intensity is also seen to be self-reproduced (to some 
accuracy) in other planes. However, this work was not aimed at identifying all points of self-
reproduction for a definite superposition. The problem addressed was as follows: based on 
given physical characteristics of a stepped-index optical fiber (thickness, length, and 
parameters of material) it was required to identify the entire possible set of propagating 
modes and modal superpositions that show various self-reproduction properties to a 
designed accuracy. 

2.2 Experimental excitation and detection of angular harmonics in a stepped-index 
optical fiber 
When angular harmonics (optical vortices) are coupled into a fiber or selected at output 
using DOEs they show the scale invariance that provides much freedom in choosing optical 
scheme parameters. As shown below, this provides effective means for preventing system 
noise. 
We describe natural experiments on selective excitation of both separate angular harmonics 
and their superposition. We used a DOE that was able to form beams with phase singularity 
exp(imϕ) of order m=–1 and m=–2 and a superposition exp(im1ϕ)+exp(im2ϕ), m1=–1, m2=2 
(see Fig. 8). The multi-level DOEs were fabricated using e-beam lithography at the 
University of Joensuu (Finland). The DOEs parameters are: 32 quantization levels, diameter 
is 2.5 mm, and discretization step is 5 μm. Spiral DOEs were fabricated for wavelength 
λ=633 nm. 
Selection was performed using multi-order DOEs (Khonina et al., 2003) matched to angular 
harmonics, which were also fabricated at Joensuu University. Shown in Fig. 9 is the 8-order 
binary DOE to detect spiral singularities with different numbers. 
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Fig. 8. Generation of light fields with phase singularity exp(inϕ): DOE phase for (a) m=–1, (c) 
m=–2 and (e) a superposition of m1=–1 and m2=2, and (b), (d), (f) corresponding far-field 
intensity distributions. 

 
Optical Vortices in a Fiber: Mode Division Multiplexing and Multimode Self-Imaging 

 

339 

   
          (a)      (b)            (c) 

Fig. 9. Binary DOE matched to 8 different number angular harmonics: (a) phase, (b) 
corresponding patterns for the diffraction orders for plane wave and (c) the accordance 
scheme of angular harmonics’ numbers and diffraction orders. 

Diffraction order patterns are also put in correspondence with the numbers of the angular 
harmonics. The DOE parameters are: diameter is 10 mm, discretization step is 5 μm, and 
microrelief height for wavelength λ=633 nm. 
First, following the procedure described in (Karpeev et al., 2005), the system was adjusted 
for coupling the principal mode. At this stage, the mode-generating DOE's substrate, being 
already put into the beam, is displaced to prevent the phase microrelief region from getting 
into the beam path. At the output, the Gaussian beam of the principal mode is collimated 
and then passed through a DOE matched to the angular harmonics and a Fourier stage. The 
scale at the Fourier stage output plane is related to both the output beam's diameter and the 
Fourier stage focal length. For angular harmonics, these parameters can be independently 
changed, as distinct from the classical modes where the beam size is rigidly connected with 
the DOE parameters.  Besides, increasing focal length and correspondingly increasing scale 
help reduce noise. This is due to the high-frequency nature of noises resulting from high-
frequency discretization of the phase DOEs, with noise level becoming lower closer to the 
optical axis. Thus, with the optical system's overall size allowing a decrease, for the noise 
impact to be reduced, lower carrier frequencies need to be chosen (on the assumption that 
there is no order overlapping).  
The experiments were conducted with three beam-generation DOEs, which, accordingly, 
generated the first- and second-order angular harmonics as well as their superposition are 
coupled into a fiber. Figure 10 shows intensity distributions in the output plane when the 
corresponding beam is excited in a fiber. 
When a first-order optical vortex is excited the intensity peak appears at the center of the 
corresponding order with the near-noise intensity (no more than 10% of peak intensity) 
found at the other orders (fig. 10a). Next, a second-order optical vortex was excited (fig. 10b). 
It was found that depending on the position of the beam-generation DOE in the illuminating 
beam, the intensity peak can emerge in diffraction orders corresponding to the second-order 
harmonics of both signs. It is possible to excite both any separate mode and their 
combination featuring about the same intensity. Note, however, that in this case the excitation 
selectivity is lower, compared with the first-order harmonic.  
A third experiment was on excitation of a superposition of the opposite-sign, first- and 
second-order angular harmonics (fig. 10c). The emergence of the first- and second-order  
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         (a)    (b)           (c) 
Fig. 10. Output intensity distributions for different angular harmonic coupled into a fiber: 
(a) m=–1, (b) m=–2 and (c) a superposition of m1=–1 and m2=2. 

singularity, with central intensity maximum seen at the corresponding orders and near-noise 
intensity at the other orders (no more than 15% of maximum). It should be noted that the 
maximum corresponding to the second-order angular harmonic is 10% weaker than the 
maximum of the first-order harmonic. It may be due to inadequate resolution, because space 
resolution requirements for different-order angular harmonics are different.  

3. Multimode self-imaging in a weakly guiding parabolic fiber 
In a gradient parabolic fiber, the refractive index is given by  
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where r  is the radius of the cylindrical coordinate system; n0 is the refractive index on the 
fiber’s optical axis; r0 is a characteristic fiber radius; Δ is the dispersion parameter of the 
medium refractive index; and 02 rα = Δ  is a constant that defines the curvature of the 
refractive index profile. 
It has been known (Snyder & Love, 1987; Soifer & Golub, 1994) that the solution of the 
Helmholtz equation in the cylindrical coordinates is given by the superposition of the 
Laguerre-Gaussian (GL) modes 
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proportional to the mode phase speed, n is a non-negative integer number, m is integer. 
Propagation of an image in an ideal weakly guiding graded-index fiber can be described 
through a superposition of LG modes (Almazov & Khonina, 2004; Kotlyar et al., 1998). The 
approximation of an arbitrary image by the LG mode superposition is given by 
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where coefficients Cnm can be derived from  
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Then the beam (26) propagated distance z will have the following appearance 
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The cut-off condition is taken from  

 0 0 1 2nmkn knβ≤ ≤ − Δ . (29) 

Modelling the propagation of different test images (a cross, a triangle, a line-segment) 
through a fiber produces similar results: the image is disintegrated at a distance of about 0.1 
mm, whereas the coefficient distribution is preserved at any distance to a 0.2% accuracy, 
which is close to the computation error (see Figs. 11-13). Hence, we can infer that the image 
recognition from the distribution of squared modules of the expansion coefficients Cnm has 
advantages over intensity-based recognition, on the understanding that the fiber has no 
considerable nonhomogeneities and bending resulting in changed coefficients and energy 
redistribution between the modes. 
 

 

 
Fig. 11. Distribution of the squared modules of the coefficients of image expansion into the 
LG modes. 
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Fig. 10. Output intensity distributions for different angular harmonic coupled into a fiber: 
(a) m=–1, (b) m=–2 and (c) a superposition of m1=–1 and m2=2. 
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intensity at the other orders (no more than 15% of maximum). It should be noted that the 
maximum corresponding to the second-order angular harmonic is 10% weaker than the 
maximum of the first-order harmonic. It may be due to inadequate resolution, because space 
resolution requirements for different-order angular harmonics are different.  
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where r  is the radius of the cylindrical coordinate system; n0 is the refractive index on the 
fiber’s optical axis; r0 is a characteristic fiber radius; Δ is the dispersion parameter of the 
medium refractive index; and 02 rα = Δ  is a constant that defines the curvature of the 
refractive index profile. 
It has been known (Snyder & Love, 1987; Soifer & Golub, 1994) that the solution of the 
Helmholtz equation in the cylindrical coordinates is given by the superposition of the 
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proportional to the mode phase speed, n is a non-negative integer number, m is integer. 
Propagation of an image in an ideal weakly guiding graded-index fiber can be described 
through a superposition of LG modes (Almazov & Khonina, 2004; Kotlyar et al., 1998). The 
approximation of an arbitrary image by the LG mode superposition is given by 
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Then the beam (26) propagated distance z will have the following appearance 
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The cut-off condition is taken from  

 0 0 1 2nmkn knβ≤ ≤ − Δ . (29) 

Modelling the propagation of different test images (a cross, a triangle, a line-segment) 
through a fiber produces similar results: the image is disintegrated at a distance of about 0.1 
mm, whereas the coefficient distribution is preserved at any distance to a 0.2% accuracy, 
which is close to the computation error (see Figs. 11-13). Hence, we can infer that the image 
recognition from the distribution of squared modules of the expansion coefficients Cnm has 
advantages over intensity-based recognition, on the understanding that the fiber has no 
considerable nonhomogeneities and bending resulting in changed coefficients and energy 
redistribution between the modes. 
 

 

 
Fig. 11. Distribution of the squared modules of the coefficients of image expansion into the 
LG modes. 
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Fig. 12. Intensity and phase distribution for the cross image decomposition at different 
distances. 
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Fig. 13. The r.m.s. of the squared modules of amplitude coefficients Cnm (%) vs distance (♦ - 
cross, • - triangle and  - horizontal line-segment). 

3.1 Self-imaging  in a weakly guiding parabolic fiber 
From expression (25) it is possible to define the period of self-reproduction znm for each 
single mode in the superposition (28). The image will be periodically reproduced at a 
distance Z, such that Z/znm is an integer for any n, m of the constituent modes found in the 
composite image. Since the znm are irrational in the general case, there is no a general period 
even for a two-mode composition. However, we are able to obtain local self-reproduction 
periods where the image is reproduced to a sufficient accuracy. After the image has 
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propagated through several such distances the phase mismatch error will increase until it 
reaches a margin of visible image disintegration. However, having passed some distance the 
image will again enter a certain local stability zone with approximate self-reproduction 
points found at close intervals. It stands to reason that the greater number of modes are 
included into the image approximation, the greater is the self-reproduction period. For an 
ideal image composed of infinite number of modes the period is equal to infinity, i.e. there 
are no self-reproduction points. Thus, to be able to visually recognize the images we must 
impose an additional strict limitation on the approximation quality. Figures 14 and 15 show 
the patterns of the intensity and phase for the cross image at different distances in a circular 
graded-index fiber with parabolic refractive index distribution and the following 
parameters: r0=25 μm; n0=1.5; ∆=0.01; λ=0.63 μm. 
It is seen from Figs. 14 and 15 that the cross image within the fiber has a local period of 
about 1.105 mm (the first group of self-reproduction points) and a large period of about 2.9 
m (the second group of self-reproduction points). From Fig. 15 it is seen that after 2.9 m the 
reproduced image very closely matches the initial image (Fig. 14, z=0). Obviously, there are 
larger self-reproduction periods at which the superposition is reproduced to a greater 
accuracy.  
 

 
Z=0 Z= 1.094547 mm Z= 4.411702 mm Z= 7.733058 mm 

Fig. 14. Image self-reproduction – the “cross” image decomposition at different distances z 
from the first group of image self-reproduction points. 

 

 
Z= 2890.746699 mm Z= 2891.853399 mm Z= 2892.958399 mm Z= 2897.381399 mm 

Fig. 15. Image self-reproduction – the “cross” image decomposition at different distances z 
from the second group of image self-reproduction points. 

Figure 16 shows similar patterns of the decomposition of a triangle and a horizontal line-
segment. Figure 17 shows examples of test superpositions composed of a few number of 
modes. 
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It should be noted that arbitrary mode superpositions propagated in a fiber appear to have 
the same local self-reproduction periods. This fact can be due to existence of general local 
periods for the entire set of modes propagated in the fiber. Because the self-reproduction 
periods for separate LG modes in a given fiber are similar and found in the range from 420 
nm ((0,0) mode) to 426 nm (higher-order modes), the value of a local general period is much 
greater than an individual mode period.  
 

 

 
Z=0 Z= 1.094547 mm Z= 2.199985 mm Z= 3.305423 mm 

Fig. 16. Image self-reproduction – the “triangle” and  “horizontal line” images decomposition 
at different distances z from the first group of image self-reproduction points. 
 

 

 
Z=0 Z= 3.305423 mm Z=0 Z= 1.094547 mm 

Fig. 17. Self-reproduction of the test mode decomposition (n,m): (0,-1)+(1,0)+(2,1) (the first 
and second columns), and (n,m): (0,1)+(1,3)+(2,0) (the third and fourth) at different distances 
z from the first group of image self-reproduction points. 
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It remains to note that finding the points of approximate image self-reproduction is a real 
computational challenge even for a comparatively small number of modes propagated in a 
25 μm fiber. The problem is solved via successive search of the distance Z and finding a 
value at which all the quotients are integer. The method has other disadvantages. For 
example, it can provide only the boundaries of the intervals over which the desired mode 
composition is reproduced with a certain phase delay error, but is unable to identify an 
optimal within-interval point. This makes topical the development of a new, more efficient 
method of searching for the image self-reproduction points 

3.2 Propagation of laser vortex beams in a parabolic optical fiber 
The propagation of the electromagnetic wave in the medium can be modeled in several 
ways. The most common technique is to describe the propagation using Maxwell’s 
equations, from which vectorial wave equations defining the electric and magnetic field 
components can be deduced. If the relative change of the medium refractive index per 
wavelength is significantly smaller than unity, the Helmhotz equation can be written for 
each scalar component of the vector field.  
We have looked into the propagation of monochromatic light beams with helical phase 
singularity in a nonuniform medium, including a parabolic-index waveguide. We have 
proposed an approximation of the differential operator of propagation in a weakly 
nonuniform medium, which allows the propagation of light beams in the nonuniform 
medium to be treated as the propagation in a uniform medium through an array of thin 
optical elements. Using the limiting passage to an infinitely large number of lenses put at an 
infinitesimally small distance, a paraxial integral operator to describe the light field 
propagation in a parabolic medium has been derived (Khonina et al., 2010):  
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This integral operator makes it possible to simulate the propagation of arbitrarily shaped 
light beams, being indefinite in a general sense at distances multiple to the half-period. At 

0α →  this integral operator is reduced to the Fresnel transform that describes, with the 
same accuracy, the propagation of light in a uniform medium. The integral in Eq. (30) has a 
period of zT = 2π/α. 
At distances multiple to a quarter of period, the distribution ( ) ( ) { }, , , , expF x y z E x y z ikz= −  
has the following specific features: 
- at distance z = zT / 4, the distribution F(x, y, z) is defined by the Fourier transform of the 

initial distribution; 
- at distance z = zT / 2, the inverted distribution is formed: –E0(–x, –y); 
- at distance z = 3zT / 4, the distribution F(x, y, z) is the inverse Fourier transform of the 

initial distribution; 
- at distance z = zT, the initial distribution E0(x, y) is formed. 
We performed the numerical simulation of the paraxial integral operator in Eq. (30) by the 
sequential integration method based on the quadrature Simpson formulae in a bounded 
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square region. In a general sense, the paraxial integral is not defined at distances multiple to 
zT / 2, where the inverted and equi-initial intensity distributions are to be formed, so that 
the numerical simulation based on the quadrature formulae produces a completely 
erroneous result. At these distances, the integral in Eq. (30) needs to be treated in a general 
sense. 
Figure 18 depicts the numerically simulated propagation of the LG mode Ψ0,1 partially 
shielded with an opaque screen. The simulation is based on the paraxial integral operator in 
Eq. (30). 
 

0 zT / 8 zT / 4 3zT / 8 7zT / 8 

 
Fig. 18. Numerically simulated propagation of the mode 0,1Ψ  shielded by an aperture on 

the left ( 0σ σ= ). 

The above results suggest that although the use of the integral operator makes it possible to 
model the propagation of arbitrarily shaped beams, computational challenges arise at 
definite distances on the optical axis. 
An alternative method for modeling the propagation of light based on the decomposition of 
the input light beam into the medium eigenmodes has also been discussed. The effect of the 
operator in Eq. (30) on the LG modes can be found in ( Striletz & Khonina, 2008). Here, we 
only give the final relation 
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is the function that defines the phase velocity. 
In particular, when the waveguide is illuminated by the LG eigenmode (σ = σ0), Eq. (31) 
takes the form of Eq. (25). 
If the initial radius σ is smaller than the effective radius σ0of the fiber eigenmode, the beam 
radius σ(z) at first increases, attaining a maximum of 2

max 0σ σ σ=  at points 
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( )1 2sz sπ α= − , s∈N , where the Fourier image of the initial beam is formed. Then, the 
radius decreases, attaining a minimum of min 0σ σ=  at points σ(z), sz sπ α= , s∈N . 
However, if σ is larger than σ0, then, σ(z) at first decreases till 2

min 0σ σ σ=  and then 
increases up to the initial value. 
Figure 19 shows the intensity distributions for a LG mode superposition, whose propagation 
is defined by Eq. (31). 
The expansion coefficients for the Gaussian vortex beam have been deduced (Khonina et al., 
2010) in the analytical form and can be used for the non-paraxial modeling. 
 

0 zT / 8 zT / 4 3zT / 8 zT / 2 

 
 5zT / 8 3zT / 4 7zT / 8 zT 

 

 
Fig. 19. Intensity distribution of the mode superposition 0,0 1, 1−Ψ + Ψ  ( 0 2σ σ= ). 

A Gaussian vortex beam with an arbitrary initial radius σ  is given by 
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where μ  is an arbitrary constant. 
The result of application of the integral operator in Eq. (30) to the input vortex beam in Eq. 
(34) is most easily represented by a superposition of the LG modes in Eq. (31) with z=0: 

 ( ) ( )0
,

, , ,0nm nm
n m

E r C rϕ ϕ= Ψ∑  (35) 

Considering the normalization properties of the LG modes, the coefficients nmC  are defined as 
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Using the replacement 2 2rξ σ=  and taking the integral with respect to the variable ϕ, we 
obtain 
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( )1 2sz sπ α= − , s∈N , where the Fourier image of the initial beam is formed. Then, the 
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increases up to the initial value. 
Figure 19 shows the intensity distributions for a LG mode superposition, whose propagation 
is defined by Eq. (31). 
The expansion coefficients for the Gaussian vortex beam have been deduced (Khonina et al., 
2010) in the analytical form and can be used for the non-paraxial modeling. 
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(34) is most easily represented by a superposition of the LG modes in Eq. (31) with z=0: 
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Considering the normalization properties of the LG modes, the coefficients nmC  are defined as 
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Using the replacement 2 2rξ σ=  and taking the integral with respect to the variable ϕ, we 
obtain 
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Using the Laguerre polynomials in the form of Eq. (25) and integrating Eq. (37) n  times by 
parts, we obtain  
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If μ is integer, the expression in Eq. (39) is not equal to zero only at m = μ. In this case, the 
propagation of the vortex beam in the parabolic fiber is described by a superposition of the 
functions in Eq. (31): 
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Notice that the above relation also holds in a non-paraxial region because the modes in Eqs. 
(25) and (31) only differ by the propagation constant that has no effect on the decomposition 
coefficients.  
Figure 20 respectively give the intensity, ( ) 2, ,E r zϕ , and phase, ( ){ }arg , ,E r zϕ , distributions 
of the Gaussian beam in Eq. (34) for μ = 1. The computations have been conducted using Eq. 
(40) for a finite number of terms ( max 50n = ) and by the numerical integration in Eq. (30). The 
figures suggest that there is a good qualitative agreement between the two methods. However, 
the numerical integration is seen to result in a minor asymmetry. 
Propagation of vortex laser beam in a parabolic fiber has also been numerically simulated by 
the well known Beam Propagation Method (BPM) with use of BeamPROP simulation tool 
(RSoft Design, USA). The calculations were conducted for the wavelength of λ = 633 nm. 
The waveguide parameter α = 17.88 mm–1, α = 26.82 mm–1 and α = 35.76 mm–1, the 
waveguide width 30 μm, index on the waveguide axis n0 = 1.5. Sampling step was 0.1 μm 
along x- and y- axes and 0.05 μm along z-axis. Simulation area has the sizes 90 μm along x- 
and y- axes and 300 μm along z-axis. 
If the light field in initial plane E0(x, y) has the form of A(r)exp(inϕ), it is obvious that 
intensity in transverse planes will be repeated with the period π/α instead of 2π/α. It can be 
seen in Fig. 21. For mentioned values of parameter α periods will be the following: 
T = 175 μm, T = 120 μm  and T = 88 μm. 
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Fig. 20. Propagation Gaussian optical vortex with 1μ =  ( 0 2σ σ= ). 
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Fig. 21. Propagation of Gaussian optical vortex in parabolic waveguide for various values of 
parameter α : α  = 17.88 mm–1 (top part), α  = 26.82 mm–1 (central part) and α  = 35.76 mm–1 
(bottom part). Dashed lines mean periods of diffraction patterns (i.e. planes /z pπ α= , where 
p are integer numbers). 
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Fig. 21. Propagation of Gaussian optical vortex in parabolic waveguide for various values of 
parameter α : α  = 17.88 mm–1 (top part), α  = 26.82 mm–1 (central part) and α  = 35.76 mm–1 
(bottom part). Dashed lines mean periods of diffraction patterns (i.e. planes /z pπ α= , where 
p are integer numbers). 
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Fig. 22. Propagation Gaussian optical vortex with 1μ =  using BPM. 

So, variations in the transverse distribution of the light beam have been shown to be 
periodic for all beams other than fiber eigenmodes.  

4. Conclusion 
In this work: 
• Linearly polarized modes of a weakly guiding fiber with a non-zero orbital angular 

momentum have been discussed. Conditions (expressed through the mode indices) for 
various self-reproduction types of multi-mode laser fields (invariance, rotation, periodic 
self-reproduction of the field transverse intensity distribution) have been deduced;  

• An algorithm for generating a set of modal superpositions showing various self-
reproduction properties to a designed accuracy has been developed;  

• Experiments on excitation of lower-order angular harmonics and their superpositions in 
a stepped-index few-mode optical fiber have been conducted;  

• Аn algorithm for finding the self-reproduction periods of a linear superposition of the 
Laguerre-Gauss modes in a circular graded-index fiber is developed. In terms of self-
reproduction accuracy, various types of periods (local and general) have been 
identified. It has been found that arbitrary mode superpositions in a specific fiber have 
the same local self-reproduction periods, which is owing to the existence of general 
local periods of the entire set of the fiber modes.    

• We have looked into the propagation of monochromatic light beams with helical phase 
singularity in a nonuniform medium, including a parabolic-index waveguide. 
Variations in the transverse distribution of the light beam have been shown to be 
periodic for all beams other than fiber eigenmodes.  

• An alternative method for modeling the propagation of light based on the 
decomposition of the input light beam into the medium eigenmodes has also been 
discussed. The result of application of the integral operator to the non-paraxial 
Laguerre-Gauss modes with an arbitrary initial effective radius has been analytically 
derived.  

The revealed features of vortex beams propagation in an optical fiber expand opportunities 
of fiber optics in various applications, including, additional compression of information 
channels and new degrees of freedom in coding and protection of the information.  
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Use and Limitations of Single- and Multi-Mode
Optical Fibers for Exoplanet Detection
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1. Introduction

Optical fibers are of a great importance in diverse areas of modern observational astronomy.
Particularly, in the field of exoplanet detection, they have become an essential part of most
current and future instruments because of their filtering and stabilizing capability.
In this chapter, we will discuss the use of optical fibers and some limitations in two exoplanet
detection methods: nulling interferometry (Section 2) and the radial velocity method
(Section 3). We will present simulations, experiments and observations that demonstrate
improvements of the instrument performances in the field of exoplanet detection due to the
use of optical fibers, as well as some of their limitations.

2. Single-mode fibers in nulling interferometry

Nulling interferometry is a direct exoplanet detection method, aimed at the detection
of an Earth-like planet around a Sun-like star (Bracewell, 1978; Colavita et al., 2010;
Mennesson et al., 2011). It consists in combining light from several telescopes in such a way
that a quasi-perfect destructive interference occurs for the star light. In such an instrument,
the light coming from a potential planet orbiting the star would experience a (partially)
constructive interference because of the optical path differences between the arms of the
interferometer for an off-axis point source (i.e. the planet).
Single-mode fibers are used in all state-of-the-art wide-band nulling interferometers because
they provide natural wavefront filters, essential for a quasi-perfect destructive interference
(Mennesson et al., 2002; Wallner et al., 2003).
In addition to canceling the light from the star and thus making possible direct detection
of planets, nulling interferometry should also offer the possibility to obtain spectral
information from the planet if destructive interference can be achieved simultaneously for
all wavelengths in a wide spectral band (typically from 5-18 μm would be the optimal
wavelength range because it is where the brightness ratio between the star and the planet is
minimal)(Angel et al., 1986; Angel & Woolf, 1997). To realize that, very stringent requirements
must be fulfilled in terms of amplitude, phase and polarization of the beams to be combined
for all wavelengths. Most nulling interferometers use achromatic phase shifters (Rabbia et al.,
2003) to create an on-axis destructive interference independent of the wavelength and must
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that a quasi-perfect destructive interference occurs for the star light. In such an instrument,
the light coming from a potential planet orbiting the star would experience a (partially)
constructive interference because of the optical path differences between the arms of the
interferometer for an off-axis point source (i.e. the planet).
Single-mode fibers are used in all state-of-the-art wide-band nulling interferometers because
they provide natural wavefront filters, essential for a quasi-perfect destructive interference
(Mennesson et al., 2002; Wallner et al., 2003).
In addition to canceling the light from the star and thus making possible direct detection
of planets, nulling interferometry should also offer the possibility to obtain spectral
information from the planet if destructive interference can be achieved simultaneously for
all wavelengths in a wide spectral band (typically from 5-18 μm would be the optimal
wavelength range because it is where the brightness ratio between the star and the planet is
minimal)(Angel et al., 1986; Angel & Woolf, 1997). To realize that, very stringent requirements
must be fulfilled in terms of amplitude, phase and polarization of the beams to be combined
for all wavelengths. Most nulling interferometers use achromatic phase shifters (Rabbia et al.,
2003) to create an on-axis destructive interference independent of the wavelength and must
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also use an achromatic amplitude-matching device. The use of single-mode fibers in a nulling
interferometer can affect this achromaticity condition because the coupling of light into a
waveguide is wavelength-dependent. This coupling can therefore chromatically affect both
the amplitude and the phase of the beam.
In particular, two beams with slightly different wavefronts will have different
wavelength-dependent coupling efficiencies. This results in different wavelength-dependent
amplitudes and phases, which will limit the performance of the interferometer. A measure
for this performance is called the rejection ratio: it is the ratio between the intensities
corresponding to constructive and destructive interferences.
In this section, we will calculate the wavelength-dependent coupling efficiencies of aberrated
beams into a single-mode fiber and analyze the influence of aberrations on the rejection
ratio and therefore on the performance of the nulling interferometer. From these results, we
will quantitatively derive the wavefront quality required to allow the detection of Earth-like
planets. We will then show that amplitude, optical path difference and dispersion corrections
can be used to reduce the effect of induced wavelength-dependent coupling efficiencies and
relax the tolerances on optical quality.

2.1 Definitions
Let us consider the case of a two-beam nulling interferometer. We will assume that a perfectly
achromatic π-phase shift has been introduced between the beams in order to get destructive
interference for all wavelengths.
Each of the beams i (i = 1 or 2) has a distorted wavefront Wi, which can be described in terms
of normalized Zernike polynomials (Noll, 1976),

Wi(x, y) = ∑
j

a(i)
j Zj(x, y). (1)

In this representation, each polynomial represents an aberration and the coefficient a(i)
j gives

the RMS contribution of the corresponding aberration to the total wavefront.
As explained in Section 2, the beams are then focused onto a single-mode fiber that acts as a
wavefront filter. Indeed, the field at the output of the fiber is given (all losses neglected) by the
fundamental mode of the fiber, multiplied by a complex factor ξi called the complex coupling
efficiency that represents the part of the field that is coupled in the fiber (Mennesson et al.,
2002; Wallner & Leeb, 2002). This holds for any incoming field and therefore, all wavefront
distortions are taken care of by the optical fiber. However, different wavefronts will induce
different (wavelength-dependent) coupling efficiencies and this will limit the rejection ratio.
The field in the focal plane is given by the Fourier transform of the field in the entrance pupil,

Ei(X, Y, λ) =
∫∫

exp
[

j
2π

λ
Wi(x, y)

]
exp

[
−j

2π

λ f
(xX + yY)

]
dxdy, (2)

where λ is the wavelength, f the focal length of the focusing optics, (X, Y) and (x, y) are
respectively the coordinates in the focal plane and in the entrance pupil plane.
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The complex coupling efficiency ξ i of beam i is then given by the overlap integral between the
incident field Ei and the fundamental mode of the fiber F0,

ξ i(λ) =

∫∫
Ei(X, Y, λ)F∗

0 (X, Y, λ)dXdY
∫∫

|F0(X, Y, λ)|2 dXdY
, (3)

where ∗ denotes the complex conjugate.
The rejection ratio R is the ratio between intensities corresponding to constructive and
destructive interferences. Therefore, we have

R =

∫
|ξ1(λ) + ξ2(λ)|2 dλ

∫
|ξ1(λ)− ξ2(λ)|2 dλ

. (4)

2.2 Influence of each aberration on the rejection ratio
We consider a spectral band going from 500 to 650 nm. This spectral band was chosen to match
an existing experimental set-up. We will first assume that one of the beams has a perfect

plane wavefront (a(1)j = 0 for all j), while the second wavefront is distorted. In this first
simulation, we will study the influence of each aberration separately by setting the coefficient

a(2)j = 30 nm (wavefront at roughly λ/20 RMS) and calculate the rejection ratio as a function
of the Zernike index j (each index represents a different type of aberration). The results are
depicted in Figure 1 (black squares).
We see a “wave” pattern in the rejection ratio as a function of Zernike index. Each of these
waves corresponds to a different radial order of the Zernike polynomials. For each radial
order, the rejection ratio is minimal for zeroth azimuthal order (radially symmetric) and
increases with azimuthal order (towards higher spatial frequencies). The rejection ratio also
increases with radial order, since the fiber is less sensitive to high spatial frequencies.
The aberrated wavefront introduced amplitude and phase mismatches between the two
beams. There are therefore a few corrections that we can apply to improve the rejection
ratio. We can first use an achromatic intensity-matching device, e.g. a knife-edge (which
is achromatic at first order) to match the global intensities of the two beams (see Figure 1,
blue diamonds). Then, we can use an optical delay line to match the optical path differences
(OPD) between the beams (see Figure 1, red stars). Finally, we can compensate for dispersion
differences by adding glass plates with variable thicknesses (see Figure 1, magenta crosses)
(Spronck et al., 2008; Spronck et al., 2009).
We see that OPD and dispersion compensation only improves the rejection ratio for the
fourth (defocus), the twelfth (spherical aberration) and the twenty-fourth (6th order spherical
aberration) Zernike polynomials. Indeed these polynomials have a zero azimuthal frequency
(radial symmetry) and we can show that the coupling efficiencies corresponding to non-zero
azimuthal frequencies are real. Therefore, for these aberrations, no phase corrections can
increase the rejection ratio, only the amplitude correction can. Note that the limitation of
the rejection ratio is due to a wavelength-dependent amplitude mismatching, for which we
cannot easily compensate. Therefore, these results will strongly depend on the width of the
spectral band.
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wavelength-dependent coupling efficiencies. This results in different wavelength-dependent
amplitudes and phases, which will limit the performance of the interferometer. A measure
for this performance is called the rejection ratio: it is the ratio between the intensities
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In this section, we will calculate the wavelength-dependent coupling efficiencies of aberrated
beams into a single-mode fiber and analyze the influence of aberrations on the rejection
ratio and therefore on the performance of the nulling interferometer. From these results, we
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can be used to reduce the effect of induced wavelength-dependent coupling efficiencies and
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2.1 Definitions
Let us consider the case of a two-beam nulling interferometer. We will assume that a perfectly
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Each of the beams i (i = 1 or 2) has a distorted wavefront Wi, which can be described in terms
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the RMS contribution of the corresponding aberration to the total wavefront.
As explained in Section 2, the beams are then focused onto a single-mode fiber that acts as a
wavefront filter. Indeed, the field at the output of the fiber is given (all losses neglected) by the
fundamental mode of the fiber, multiplied by a complex factor ξi called the complex coupling
efficiency that represents the part of the field that is coupled in the fiber (Mennesson et al.,
2002; Wallner & Leeb, 2002). This holds for any incoming field and therefore, all wavefront
distortions are taken care of by the optical fiber. However, different wavefronts will induce
different (wavelength-dependent) coupling efficiencies and this will limit the rejection ratio.
The field in the focal plane is given by the Fourier transform of the field in the entrance pupil,
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where λ is the wavelength, f the focal length of the focusing optics, (X, Y) and (x, y) are
respectively the coordinates in the focal plane and in the entrance pupil plane.
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where ∗ denotes the complex conjugate.
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destructive interferences. Therefore, we have
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2.2 Influence of each aberration on the rejection ratio
We consider a spectral band going from 500 to 650 nm. This spectral band was chosen to match
an existing experimental set-up. We will first assume that one of the beams has a perfect

plane wavefront (a(1)j = 0 for all j), while the second wavefront is distorted. In this first
simulation, we will study the influence of each aberration separately by setting the coefficient

a(2)j = 30 nm (wavefront at roughly λ/20 RMS) and calculate the rejection ratio as a function
of the Zernike index j (each index represents a different type of aberration). The results are
depicted in Figure 1 (black squares).
We see a “wave” pattern in the rejection ratio as a function of Zernike index. Each of these
waves corresponds to a different radial order of the Zernike polynomials. For each radial
order, the rejection ratio is minimal for zeroth azimuthal order (radially symmetric) and
increases with azimuthal order (towards higher spatial frequencies). The rejection ratio also
increases with radial order, since the fiber is less sensitive to high spatial frequencies.
The aberrated wavefront introduced amplitude and phase mismatches between the two
beams. There are therefore a few corrections that we can apply to improve the rejection
ratio. We can first use an achromatic intensity-matching device, e.g. a knife-edge (which
is achromatic at first order) to match the global intensities of the two beams (see Figure 1,
blue diamonds). Then, we can use an optical delay line to match the optical path differences
(OPD) between the beams (see Figure 1, red stars). Finally, we can compensate for dispersion
differences by adding glass plates with variable thicknesses (see Figure 1, magenta crosses)
(Spronck et al., 2008; Spronck et al., 2009).
We see that OPD and dispersion compensation only improves the rejection ratio for the
fourth (defocus), the twelfth (spherical aberration) and the twenty-fourth (6th order spherical
aberration) Zernike polynomials. Indeed these polynomials have a zero azimuthal frequency
(radial symmetry) and we can show that the coupling efficiencies corresponding to non-zero
azimuthal frequencies are real. Therefore, for these aberrations, no phase corrections can
increase the rejection ratio, only the amplitude correction can. Note that the limitation of
the rejection ratio is due to a wavelength-dependent amplitude mismatching, for which we
cannot easily compensate. Therefore, these results will strongly depend on the width of the
spectral band.
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Fig. 1. Rejection ratio as a function of Zernike index when a(1)j = 0 for all j and a(2)j = 30 nm
(black squares). The blue diamonds correspond to the rejection ratio after an achromatic
intensity matching. For the red stars, the OPD have been matched (additionally to the
intensity matching). The magenta crosses corresponds to rejection ratio with intensity, OPD
and dispersion correction.

2.3 Rejection ratio with randomly chosen wavefronts

In this other simulation, we randomly chose the coefficients a(1)j and a(2)j for both wavefronts
in such a way that these wavefronts have a standard deviation of 30 nm RMS (λ/20) (see
Figure 2). We found the average rejection ratio with such wavefronts after 35 simulations is of
the order of 103 without corrections and 106 with amplitude, OPD and dispersion corrections.
We then repeated this simulation with different wavefront standard deviations and plotted
the average rejection ratio as a function of RMS wavefront quality (see Figure 3). From this,
we derive that the necessary RMS wavefront quality to obtain a 106-rejection ratio is 40 nm
RMS (λ/15). This means that the surface figure of the optics (we only considered here the
case of reflective optics) should be better than λ/30/

√
Nopt where Nopt is the total number of

surfaces encountered by the beams.
It is important to realize that these results highly depend on the desired spectral band and
cannot directly be translated in a general requirement. However, this is meant to indicate the
limitations of single-mode fibers in nulling interferometry. Note also that it will be easier to
meet the requirements in the IR where nulling interferometers mainly perform.
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Fig. 2. Rejection ratio for two beams with randomly chosen wavefronts that have a standard
deviation of 30 nm RMS.

Fig. 3. Rejection ratio as a function of RMS wavefront quality.
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3. Multi-mode fibers for high-precision radial velocities

Since the discovery of the first exoplanet by Mayor & Queloz (1995), more than 500
planets have been found using the radial velocity method. Currently, the state-of-the-art
spectrometers, such as HARPS (Mayor et al., 2003) on the 3.6-m telescope in La Silla and
HIRES on Keck I (Vogt et al., 1994), typically achieve precisions of 1-3 m s−1 (Howard et al.,
2010; Mayor & Udry, 2008). This only permits the detection of planets with amplitudes larger
than the measurement errors, typically Super Earth or Neptune-mass planets in relatively
short period orbits, or more massive Jupiter-like planets out to several AU. The detection of
true Earth analogs requires Doppler precisions on the order of 10 cm s−1, corresponding to
spectral line shifts across one ten-thousandth of a pixel. Further complicating the analysis, the
periodicity of this shift occurs over time scales of months or years for the most interesting
planets in the so-called habitable zone. This top level requirement for a measurement
precision of 10 cm s-1 leads to the demand for an instrument that exceeds the stability of
current instruments.
In order to reach the desired precision, we must reduce errors in the model of the instrumental
profile, which cross-talk with our measurement of the Doppler shift. In older spectrographs,
the starlight is coupled from the telescope to the instrument using a narrow slit. However,
the slit illumination is rapidly varying because of changes in seeing, focus and guiding errors.
Changes in slit illumination affect the spectrum in two ways. Since the spectral lines are
direct images of the slit, changes in slit illumination yield changes in the shape of the spectral
lines. Additionally, variations in slit illumination can result in changes in the illumination of
the spectrograph optics. This will in turn introduce different aberrations, which will change
the instrumental response. Mathematically, these two effects are modeled simultaneously by
convolving the spectrum with the instrumental profile (IP), in such a way that any variability
impedes our ability to recover Doppler shifts with the desired precision. If the instrumental
profile were unchanging, variations in the final extracted spectrum would be dramatically
reduced. Thus, instrumental profile stability has become a focus of current instrumentation
work.
Optical fibers provide an excellent way to reduce variability in the illumination of the
spectrograph. Fibers have been used since the 1980’s to couple telescopes to high-precision
spectrographs (Heacox & Connes, 1992). The throughput of fibers was initially low, however,
they offered unprecedented convenience in mechanical design. The attribute of fibers that is
particularly important today for high-precision Doppler measurements is the natural ability
of optical fibers to scramble light (Barden et al., 1981; Heacox, 1980; 1986; 1988) and produce a
more uniform and constant output beam. Because light from the telescope must be efficiently
coupled into the fiber, the fiber diameters must match the typical image size (generally 100
microns or more), so multi-mode fibers are required.
Other sources of errors come from environmental changes within the spectrograph.
Temperature, pressure or mechanical variations cause the spectrum to shift and to change.
These errors will not be solved by replacing the slit by a fiber.

3.1 Laboratory characterization
We have carried out laboratory measurements to better understand scrambling properties of
fibers with different geometries (circular, square, octagonal), different lengths, and different
fiber diameters. While testing these fibers, we have noticed that the optical properties vary
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widely from fiber to fiber. This is even true for supposedly identical commercial fibers from
the same manufacturer and same production batch.
At an observatory, the illumination of the fiber will vary due to guiding, focusing errors
and seeing changes. To characterize the scrambling properties of the fiber under similar
conditions, we scan the incoming beam across the fiber and examine the output beam.
As described by Hunter & Ramsey (1992), two characteristics are of importance when it comes
to the output beam: the far-field and the near-field patterns. The far-field is the cross-sectional
intensity distribution of the diverging beam. The far-field will be projected onto the collimator,
the grating and the rest of the spectrograph optics. Variations in the far-field will therefore
cause different parts of the grating and the optics to be illuminated. This will in turn introduce
different aberrations, which will change the instrumental profile. The near-field pattern is the
intensity distribution across the output face of the fiber. The spectral lines are direct images of
the fiber output face, so variations in the near-field pattern are also important in the stability
of the final spectrum. Commonly (but erroneously), the term near-field is used to describe
the image of the output face of the fiber by an optical system. We will adopt this definition
throughout this chapter.

3.1.1 Experimental set-up
The set-up used for the fiber characterization measurements is depicted in Figure 4.
We focus the light from either a green He-Ne laser or a LED onto a single-mode fiber that
is used to create a star-like point source. Light coming from the single-mode fiber is then
collimated (by lens L2) and re-focused (by lens L3) onto the test multi-mode fiber. Light
reflected from the fiber front surface is re-directed using a beam-splitter and re-imaged onto
a CCD (CCD1) to check the alignment of the beam with respect to the fiber front surface. A
translation stage allows us to move the fiber with respect to the incoming beam and therefore
simulate guiding errors. Light coming out of the test fiber is then collimated (by lens L7) and
re-focused (by lens L5) onto a CCD (CCD2). Lens L6 moves in and out of the light path to
enable measurements of the near-field (out) and the far-field (in) patterns.

Light Source:
Laser or LED Single-Mode

Fiber

L 1 L 2 L 3

L 4

L 7L 6L 5

Test
Fiber
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for the fiber
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Fig. 4. Schematic drawing of our set-up.
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widely from fiber to fiber. This is even true for supposedly identical commercial fibers from
the same manufacturer and same production batch.
At an observatory, the illumination of the fiber will vary due to guiding, focusing errors
and seeing changes. To characterize the scrambling properties of the fiber under similar
conditions, we scan the incoming beam across the fiber and examine the output beam.
As described by Hunter & Ramsey (1992), two characteristics are of importance when it comes
to the output beam: the far-field and the near-field patterns. The far-field is the cross-sectional
intensity distribution of the diverging beam. The far-field will be projected onto the collimator,
the grating and the rest of the spectrograph optics. Variations in the far-field will therefore
cause different parts of the grating and the optics to be illuminated. This will in turn introduce
different aberrations, which will change the instrumental profile. The near-field pattern is the
intensity distribution across the output face of the fiber. The spectral lines are direct images of
the fiber output face, so variations in the near-field pattern are also important in the stability
of the final spectrum. Commonly (but erroneously), the term near-field is used to describe
the image of the output face of the fiber by an optical system. We will adopt this definition
throughout this chapter.

3.1.1 Experimental set-up
The set-up used for the fiber characterization measurements is depicted in Figure 4.
We focus the light from either a green He-Ne laser or a LED onto a single-mode fiber that
is used to create a star-like point source. Light coming from the single-mode fiber is then
collimated (by lens L2) and re-focused (by lens L3) onto the test multi-mode fiber. Light
reflected from the fiber front surface is re-directed using a beam-splitter and re-imaged onto
a CCD (CCD1) to check the alignment of the beam with respect to the fiber front surface. A
translation stage allows us to move the fiber with respect to the incoming beam and therefore
simulate guiding errors. Light coming out of the test fiber is then collimated (by lens L7) and
re-focused (by lens L5) onto a CCD (CCD2). Lens L6 moves in and out of the light path to
enable measurements of the near-field (out) and the far-field (in) patterns.
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Fig. 4. Schematic drawing of our set-up.
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3.1.2 Scrambling versus fiber length
We first measured the amount of scrambling as a function of fiber length. All fibers used in
this test were 50-micron fibers from Polymicro (FBP050070085) with lengths of 5, 20 or 40 m.
We used a similar set-up as described in Section 3.1.1. A green He-Ne laser was coupled into
the single-mode fiber. A couple of lenses were used to re-image the single-mode fiber onto the
test fiber. The used imaging system was not of very high quality, so that the spot size was a
significant fraction of the fiber core.
For this experiment, we inserted a mirror on a kinematic mount between the two lenses and
tilted it to scan the image across the fiber face and simulate guiding errors. The far-field
pattern was recorded as a function of mirror tilt (or equivalently of beam position on the
fiber). To eliminate the speckle pattern caused by modal interference, we agitated the test
fiber.
Figure 5 depicts the far-field patterns as a function of beam position on the fiber for three
different fiber lengths (5, 20 and 40m). The left columns corresponds to input that was well
centered on the fiber. In the right columns, the beam is increasingly displaced from the fiber
center. For the 5-m fiber, we clearly see rings when moving away from the center, which
become dominant rather quickly. The 5-m fiber quickly develops a ring pattern. Rings are
also seen for the 20-m fiber, but not until the image is much further displaced from the center.
No ring pattern appears for the 40-m fiber; the far-field distribution seems almost independent
of the spot position.
Any type of variation in the far-field pattern is undesirable since it will induce variations in
the illumination of the grating and spectrograph optics that will cause varying instrumental
profile.
The rings occur because light is propagating through the cladding: they only appear when
the spot was large enough to overlap with the cladding (i.e., when the spot was slightly
off-center). Because light does not propagate very well in the cladding, there is a dependence
on fiber length and the 40-m fiber is long enough that this pattern is not seen in the output
beam.
These measurements were confirmed by measuring three fibers of each length. They all
exhibited the same behavior.
There are two important consequences of these measurements. First, longer fiber will be better
for scrambling. On the other hand, longer fiber will have a lower throughput. For example,
the Polymicro FBP fibers have 15 dB/km losses due to absorption at 500 nm. For a 5-m fiber,
that gives a throughput of 99 % for a 5-m fiber and 90 % for a 40-m fiber. A trade-off between
scrambling and throughput is needed given a specific application.
The second consequence is that if good scrambling is desired, the cladding should never be
illuminated. Cladding illumination can be avoided by appropriate masking (in the fiber input
plane or more easily, in an intermediate focal plane). The mask alignment can be critical.

3.1.3 Scrambling with circular fibers
In this test, we used the set-up depicted in Figure 4. A green LED (50-nm FWHM) was used as
light source. In terms of coherence length, a standard He-Ne laser would be more appropriate
than the LED for very high-resolution spectrographs. However, because of its low coherence,
the LED makes it possible to measure reproducible and precise fiber outputs without agitating
the fiber.
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Fig. 5. Scrambling of 50-micron fibers of various lengths

The single-mode fiber was re-imaged onto the test multi-mode fiber using a pair of
diffraction-limited aspheric lenses. This time, the resulting spot onto the test fiber was much
smaller than the fiber. Using a commercial camera, we imaged the input face of the test fiber
and the spot. This way we could carefully position the spot with respect to the fiber and we
could also make sure that the test fiber was exactly in the image plane (and thus the spot was
well in focus when entering the fiber).
We scanned the spot with respect to the fiber by moving the fiber (which was on a differential
screw stage with a precision of 1 μm). For every fiber position, we checked the spot position
with the camera. We then recorded both far-field and near-field patterns for every fiber
position.
Figure 6 shows the far-field (top row) and near-field (bottom row) as a function of
fiber position (from cladding to cladding) for a 15-m long 100-micron Polymicro fiber
(FBP100120140). The far-field pattern shows strange non-radially symmetric structures but
both far-field and near-field distributions are nearly independent of fiber position. However,
looking closer at the near-field (see Figure 7), systematic variations can be seen for different
fiber positions. This position memory is evidence of non-perfect scrambling by the fiber and
will limit the instrumental profile stability of a high-resolution spectrograph, since guiding
errors will directly translate into variations in near-field patterns.

3.1.4 Scrambling with octagonal fibers
It has been suggested that fibers with different geometries (square, hexagonal, octagonal)
were better scramblers and were therefore more suitable for high-precision radial velocities
(Avila et al., 2010; Chazelas et al., 2010). We purchased 20-m octagonal fibers from
CeramOptec with a 200-micron octagonal core and a 672-micron round cladding.
We repeated the measurements presented in Section 3.1.3. Figure 8 summarizes the results.
The top row is the far-field, the middle row is the near-field and the bottom row shows the
spot position across the input fiber face.
The far-field is better behaved in terms of symmetry than it was for the circular fiber but is
not as position independent for the octagonal fiber. On the other hand, the near-field (see
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3.1.2 Scrambling versus fiber length
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of the spot position.
Any type of variation in the far-field pattern is undesirable since it will induce variations in
the illumination of the grating and spectrograph optics that will cause varying instrumental
profile.
The rings occur because light is propagating through the cladding: they only appear when
the spot was large enough to overlap with the cladding (i.e., when the spot was slightly
off-center). Because light does not propagate very well in the cladding, there is a dependence
on fiber length and the 40-m fiber is long enough that this pattern is not seen in the output
beam.
These measurements were confirmed by measuring three fibers of each length. They all
exhibited the same behavior.
There are two important consequences of these measurements. First, longer fiber will be better
for scrambling. On the other hand, longer fiber will have a lower throughput. For example,
the Polymicro FBP fibers have 15 dB/km losses due to absorption at 500 nm. For a 5-m fiber,
that gives a throughput of 99 % for a 5-m fiber and 90 % for a 40-m fiber. A trade-off between
scrambling and throughput is needed given a specific application.
The second consequence is that if good scrambling is desired, the cladding should never be
illuminated. Cladding illumination can be avoided by appropriate masking (in the fiber input
plane or more easily, in an intermediate focal plane). The mask alignment can be critical.

3.1.3 Scrambling with circular fibers
In this test, we used the set-up depicted in Figure 4. A green LED (50-nm FWHM) was used as
light source. In terms of coherence length, a standard He-Ne laser would be more appropriate
than the LED for very high-resolution spectrographs. However, because of its low coherence,
the LED makes it possible to measure reproducible and precise fiber outputs without agitating
the fiber.
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Fig. 5. Scrambling of 50-micron fibers of various lengths

The single-mode fiber was re-imaged onto the test multi-mode fiber using a pair of
diffraction-limited aspheric lenses. This time, the resulting spot onto the test fiber was much
smaller than the fiber. Using a commercial camera, we imaged the input face of the test fiber
and the spot. This way we could carefully position the spot with respect to the fiber and we
could also make sure that the test fiber was exactly in the image plane (and thus the spot was
well in focus when entering the fiber).
We scanned the spot with respect to the fiber by moving the fiber (which was on a differential
screw stage with a precision of 1 μm). For every fiber position, we checked the spot position
with the camera. We then recorded both far-field and near-field patterns for every fiber
position.
Figure 6 shows the far-field (top row) and near-field (bottom row) as a function of
fiber position (from cladding to cladding) for a 15-m long 100-micron Polymicro fiber
(FBP100120140). The far-field pattern shows strange non-radially symmetric structures but
both far-field and near-field distributions are nearly independent of fiber position. However,
looking closer at the near-field (see Figure 7), systematic variations can be seen for different
fiber positions. This position memory is evidence of non-perfect scrambling by the fiber and
will limit the instrumental profile stability of a high-resolution spectrograph, since guiding
errors will directly translate into variations in near-field patterns.

3.1.4 Scrambling with octagonal fibers
It has been suggested that fibers with different geometries (square, hexagonal, octagonal)
were better scramblers and were therefore more suitable for high-precision radial velocities
(Avila et al., 2010; Chazelas et al., 2010). We purchased 20-m octagonal fibers from
CeramOptec with a 200-micron octagonal core and a 672-micron round cladding.
We repeated the measurements presented in Section 3.1.3. Figure 8 summarizes the results.
The top row is the far-field, the middle row is the near-field and the bottom row shows the
spot position across the input fiber face.
The far-field is better behaved in terms of symmetry than it was for the circular fiber but is
not as position independent for the octagonal fiber. On the other hand, the near-field (see
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Fig. 7. Scrambling of a circular fiber.

Figure 9) shows no systematic variations and seem independent of fiber position (within the
measurement precision).
The fact that the near-field is so independent on beam position is very encouraging for use
in high-resolution spectrographs, as it probably yields a very stable instrumental profile. In
contrast, the far-field is not as good and depending on the local quality of the spectrograph
optical components, can contribute to some variations in instrumental profile.

3.2 Results at Lick observatory
In 2009, we have installed a fiber feed for the Hamilton spectrograph on the 3-m telescope at
Lick Observatory (Spronck et al., 2010). The key results are presented in this section.

3.2.1 Comparison between slit and fiber using the Hamilton spectrograph
In August 2010, extensive tests were carried out to quantify the improvement in instrumental
profile stability brought by the fiber scrambler and to identify the remaining sources of error.
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Fig. 9. Scrambling of an octagonal fiber.

Observations of stars with known constant radial velocity were made on two consecutive
nights. The weather and seeing conditions were nearly identical for both nights. The fiber
scrambler was installed for the first night, and the regular observing slit (640 μm wide) was
used on the second night.
On both nights, an iodine cell was used. As starlight passes through the cell, the molecular
iodine imposes thousands of absorption lines in the stellar spectrum. We use an extremely
high resolution (R ≈ 1,000,000), high SNR Fourier Transform Spectrum (FTS) of the iodine
cell to model the instrumental profile, which when convolved with the product of the stellar
spectrum and the iodine FTS spectrum reproduces the observed spectrum. The instrumental
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Figure 9) shows no systematic variations and seem independent of fiber position (within the
measurement precision).
The fact that the near-field is so independent on beam position is very encouraging for use
in high-resolution spectrographs, as it probably yields a very stable instrumental profile. In
contrast, the far-field is not as good and depending on the local quality of the spectrograph
optical components, can contribute to some variations in instrumental profile.

3.2 Results at Lick observatory
In 2009, we have installed a fiber feed for the Hamilton spectrograph on the 3-m telescope at
Lick Observatory (Spronck et al., 2010). The key results are presented in this section.

3.2.1 Comparison between slit and fiber using the Hamilton spectrograph
In August 2010, extensive tests were carried out to quantify the improvement in instrumental
profile stability brought by the fiber scrambler and to identify the remaining sources of error.

362 Recent Progress in Optical Fiber Research Use and Limitations of Single- and Multi-Mode Optical Fibers for Exoplanet Detection 11

  

 Spot position (in microns)

 

 

-96 -64 -32 0 32 64 96

Spot

Near-Field

Far-Field

Fig. 8. Scrambling of an octagonal fiber.

-150 -100 -50 0 50 100 150

 Position (in microns)

0.0

0.2

0.4

0.6

0.8

1.0

N
ea

r-
F

ie
ld

 C
ro

ss
 S

ec
ti

on

Spot Pos.: -96 microns
Spot Pos.: -64 microns
Spot Pos.: -32 microns
Spot Pos.: 0 microns
Spot Pos.: 32 microns
Spot Pos.: 64 microns
Spot Pos.: 96 microns

Fig. 9. Scrambling of an octagonal fiber.

Observations of stars with known constant radial velocity were made on two consecutive
nights. The weather and seeing conditions were nearly identical for both nights. The fiber
scrambler was installed for the first night, and the regular observing slit (640 μm wide) was
used on the second night.
On both nights, an iodine cell was used. As starlight passes through the cell, the molecular
iodine imposes thousands of absorption lines in the stellar spectrum. We use an extremely
high resolution (R ≈ 1,000,000), high SNR Fourier Transform Spectrum (FTS) of the iodine
cell to model the instrumental profile, which when convolved with the product of the stellar
spectrum and the iodine FTS spectrum reproduces the observed spectrum. The instrumental
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profile must be modeled for small wavelength segments of the echelle spectrum to account for
2-D spatial variations. Although there are some asymmetries in the wings of the IP, a single
Gaussian gives, for our purpose, a reasonable fit to the composite IP. We fitted a Gaussian to
the instrumental profile for each of the spatial regions on the CCD and calculated the average
full-width half maximum (FWHM) of the Gaussian across the entire detector (iodine region).
Figure 10 depicts the evolution of the average FWHM for the slit observations (blue squares)
and for the fiber observations (red filled circles) through time. The abscissa in this plot is the
sequential observation number through the night. The time-dependence variation of the IP
for the slit observations (blue squares) is quite dramatic. For both nights, the same sequence
of observations were taken: a set of B stars, 50 observations of the velocity standard star
HD 161797, a second set of B stars, 50 observations of the velocity standard star HD 188512
and a third set of B stars.
The smooth functional dependence on time for slit observations strongly suggests that the
dominant factor in the instrumental profile variation is the changing illumination of the slit
due to monotonic changes in seeing or tracking through different hour angles (which might
result in different input angles into the fiber). The peak-to-valley (PTV) amplitude of the
variation is about 8% throughout the night.
Figure 10 also shows significant improvement in instrumental profile stability due to the fiber
scrambler (red solid dots). However, there is still a slight linear (upward) trend in the fiber
data (1%-2% PTV), indicative of incomplete scrambling with the fiber. After removing the
linear trend, the residual fluctuation is of the order of 1% PTV.
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Fig. 10. Average FWHM of a Gaussian fit to the instrumental profile for all observations
during Night 1 using the fiber (red filled circles) and Night 2 using the slit (blue squares).

3.2.2 Results with a double scrambler using the Hamilton spectrograph
In August 2010, a double scrambler (Avila, 1998; Hunter & Ramsey, 1992) was designed and
built. In this double scrambler, a ball-lens transforms the image of the fiber end in a pupil
that is then injected into a second fiber. The light from the second fiber is then sent to the
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spectrograph. Because of time constraints, the double scrambler was not optimized and as a
consequence, the throughput when used in the Hamilton spectrograph was rather low (15%
as opposed to 55-60% with one fiber only).
The double scrambler test consisted in taking alternative sets of five B-star observations with
the regular fiber scrambler (one fiber only) and with the double scrambler throughout the
same night. For each observation, we calculated the instrumental profile for each region of
the CCD and fitted it with a Gaussian. We then calculated the average FWHM of the fit across
the entire detector.
Figure 11 depicts the evolution of the average FWHM for the single fiber observations
(blue) and for the double scrambler observations (red) through the night. Different symbols
correspond to different sets of B stars. Even though the scale is different from Figure 10 (with
the slit observations), we can still see a linear trend in the fiber data in Figure 11, indicating
imperfect fiber scrambling. In this case, the amplitude of the variation is about 3%.
The IP obtained with the double scrambler is significantly more stable throughout the night,
with no significant (above errors) systematic trend.
Instrumental noise can be broken down into two main components: errors due to coupling
of the light to the instrument (varying fiber illumination due to guiding, tracking, seeing and
focusing) and environmental instability (mechanical, temperature or pressure). The double
scrambler results prove that coupling errors are the dominant source of instrumental noise.
Residual fluctuations from observation to observation have an amplitude of 1%, which is large
for precise radial velocities. The source for these fluctuations has not yet been identified but
possible culprits include modal noise in the fiber, photon noise and modeling errors. We do
not expect the environmental instability to be responsible for residual fluctuations because of
the short time scale of the variability.
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Fig. 11. Average FWHM of a Gaussian fit to the instrumental profile for B-star observations
taken with the fiber (blue) and with the double scrambler (red). All observations were taken
during the same night alternating with the fiber and with the double scrambler.
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profile must be modeled for small wavelength segments of the echelle spectrum to account for
2-D spatial variations. Although there are some asymmetries in the wings of the IP, a single
Gaussian gives, for our purpose, a reasonable fit to the composite IP. We fitted a Gaussian to
the instrumental profile for each of the spatial regions on the CCD and calculated the average
full-width half maximum (FWHM) of the Gaussian across the entire detector (iodine region).
Figure 10 depicts the evolution of the average FWHM for the slit observations (blue squares)
and for the fiber observations (red filled circles) through time. The abscissa in this plot is the
sequential observation number through the night. The time-dependence variation of the IP
for the slit observations (blue squares) is quite dramatic. For both nights, the same sequence
of observations were taken: a set of B stars, 50 observations of the velocity standard star
HD 161797, a second set of B stars, 50 observations of the velocity standard star HD 188512
and a third set of B stars.
The smooth functional dependence on time for slit observations strongly suggests that the
dominant factor in the instrumental profile variation is the changing illumination of the slit
due to monotonic changes in seeing or tracking through different hour angles (which might
result in different input angles into the fiber). The peak-to-valley (PTV) amplitude of the
variation is about 8% throughout the night.
Figure 10 also shows significant improvement in instrumental profile stability due to the fiber
scrambler (red solid dots). However, there is still a slight linear (upward) trend in the fiber
data (1%-2% PTV), indicative of incomplete scrambling with the fiber. After removing the
linear trend, the residual fluctuation is of the order of 1% PTV.
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during Night 1 using the fiber (red filled circles) and Night 2 using the slit (blue squares).

3.2.2 Results with a double scrambler using the Hamilton spectrograph
In August 2010, a double scrambler (Avila, 1998; Hunter & Ramsey, 1992) was designed and
built. In this double scrambler, a ball-lens transforms the image of the fiber end in a pupil
that is then injected into a second fiber. The light from the second fiber is then sent to the

364 Recent Progress in Optical Fiber Research Use and Limitations of Single- and Multi-Mode Optical Fibers for Exoplanet Detection 13

spectrograph. Because of time constraints, the double scrambler was not optimized and as a
consequence, the throughput when used in the Hamilton spectrograph was rather low (15%
as opposed to 55-60% with one fiber only).
The double scrambler test consisted in taking alternative sets of five B-star observations with
the regular fiber scrambler (one fiber only) and with the double scrambler throughout the
same night. For each observation, we calculated the instrumental profile for each region of
the CCD and fitted it with a Gaussian. We then calculated the average FWHM of the fit across
the entire detector.
Figure 11 depicts the evolution of the average FWHM for the single fiber observations
(blue) and for the double scrambler observations (red) through the night. Different symbols
correspond to different sets of B stars. Even though the scale is different from Figure 10 (with
the slit observations), we can still see a linear trend in the fiber data in Figure 11, indicating
imperfect fiber scrambling. In this case, the amplitude of the variation is about 3%.
The IP obtained with the double scrambler is significantly more stable throughout the night,
with no significant (above errors) systematic trend.
Instrumental noise can be broken down into two main components: errors due to coupling
of the light to the instrument (varying fiber illumination due to guiding, tracking, seeing and
focusing) and environmental instability (mechanical, temperature or pressure). The double
scrambler results prove that coupling errors are the dominant source of instrumental noise.
Residual fluctuations from observation to observation have an amplitude of 1%, which is large
for precise radial velocities. The source for these fluctuations has not yet been identified but
possible culprits include modal noise in the fiber, photon noise and modeling errors. We do
not expect the environmental instability to be responsible for residual fluctuations because of
the short time scale of the variability.
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Fig. 11. Average FWHM of a Gaussian fit to the instrumental profile for B-star observations
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(a)

(b)

Fig. 12. Instrumental profile parameters for all HIRES observations of (a) HD 26965 and (b)
HD 32147. Red dots correspond to slit observations and blue dots correspond to fiber
observations.
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3.3 Results at Keck observatory
During the last week of September 2010, we repeated the tests performed at Lick Observatory
at the Keck telescope using the HIRES spectrograph. The larger aperture telescope at Keck
helped to keep the exposure times short so that a large data set could be acquired and so that
barycentric errors were minimized. We designed and built a prototype fiber scrambler with a
200-micron 20-m Polymicro fiber
We collected data on two nights; on 30 September 2010, we used the fiber scrambler and on
1 October 2010, we obtained a similar set of data with the usual slit. We observed sets of 25
observations for the standard stars HD 26965 and HD 32147. Figure 12(a) and (b) depict one
of the parameters used to model the instrumental profile for all existing observations of (a)
HD 26965 and (b) HD 32147. The red filled circles correspond to slit observations and exhibit
an RMS scatter of 0.066 for HD 32147, while the fiber observations for the same star (blue
filled circles) exhibit a dramatically reduced RMS scatter of 0.0044, demonstrating a factor of
15 improvement in the IP stability.

4. Conclusion

In the fist part of this chapter, we have studied the performances of a two-beam
nulling interferometer with distorted wavefronts. We have studied the influence of each
individual aberration and we have seen that aberrations will induce phase and amplitude
mismatches between the beams that can partially be compensated. Unfortunately the
wavelength-dependence of these mismatches will limit the rejection ratio. We have seen
that the interferometer will be more sensitive to lower order aberrations (both radial and
azimuthal orders). In particular, aberrations that will mostly limit the rejection ratio are
radially symmetric aberrations (such as defocus, spherical aberration and sixth order spherical
aberration). For the considered spectral band (500-650 nm), we quantified the wavefront and
surface quality needed to have a rejection ratio of 106. The quality of the wavefront should be
better than λ/15 RMS. This result depends on the width of the spectral band. Even though
single-mode fibers are essential parts of nulling interferometers, they are not perfect modal
filters and will eventually limit the performances of the instrument if care is not taken in the
optical design.
In the second part of this chapter, we have characterized the scrambling properties of
multi-mode fibers as a function of length and cross-sectional geometry. We conclude that
longer fibers perform better in terms of scrambling (but have lower throughput) because light
in the cladding will not propagate efficiently. We also conclude that the best scrambling is
achieved when the cladding is not illuminated. We see evidence of non-perfect scrambling in
the near-field of the circular fiber, while the octagonal fiber has a very well-behaved near-field.
This implies that the octagonal fiber should therefore yield a very stable instrumental profile.
However, we find that the far-field of the octagonal fiber is not as good and therefore octagonal
fibers will only be helpful if the grating and other spectrograph optics have excellent optical
quality.
To summarize, in order to measure spectral line shifts smaller than one ten-thousandth of a
pixel and stable for many months, we must reduce errors in our instrumental profile, which
cross-talks with our measurement of the Doppler shift. The instrumental noise can be broken
down in coupling errors (slit or fiber illumination) and environmental instability. These results
show that coupling errors are the dominant source of instrumental noise. We show that double
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Fig. 12. Instrumental profile parameters for all HIRES observations of (a) HD 26965 and (b)
HD 32147. Red dots correspond to slit observations and blue dots correspond to fiber
observations.
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3.3 Results at Keck observatory
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at the Keck telescope using the HIRES spectrograph. The larger aperture telescope at Keck
helped to keep the exposure times short so that a large data set could be acquired and so that
barycentric errors were minimized. We designed and built a prototype fiber scrambler with a
200-micron 20-m Polymicro fiber
We collected data on two nights; on 30 September 2010, we used the fiber scrambler and on
1 October 2010, we obtained a similar set of data with the usual slit. We observed sets of 25
observations for the standard stars HD 26965 and HD 32147. Figure 12(a) and (b) depict one
of the parameters used to model the instrumental profile for all existing observations of (a)
HD 26965 and (b) HD 32147. The red filled circles correspond to slit observations and exhibit
an RMS scatter of 0.066 for HD 32147, while the fiber observations for the same star (blue
filled circles) exhibit a dramatically reduced RMS scatter of 0.0044, demonstrating a factor of
15 improvement in the IP stability.

4. Conclusion

In the fist part of this chapter, we have studied the performances of a two-beam
nulling interferometer with distorted wavefronts. We have studied the influence of each
individual aberration and we have seen that aberrations will induce phase and amplitude
mismatches between the beams that can partially be compensated. Unfortunately the
wavelength-dependence of these mismatches will limit the rejection ratio. We have seen
that the interferometer will be more sensitive to lower order aberrations (both radial and
azimuthal orders). In particular, aberrations that will mostly limit the rejection ratio are
radially symmetric aberrations (such as defocus, spherical aberration and sixth order spherical
aberration). For the considered spectral band (500-650 nm), we quantified the wavefront and
surface quality needed to have a rejection ratio of 106. The quality of the wavefront should be
better than λ/15 RMS. This result depends on the width of the spectral band. Even though
single-mode fibers are essential parts of nulling interferometers, they are not perfect modal
filters and will eventually limit the performances of the instrument if care is not taken in the
optical design.
In the second part of this chapter, we have characterized the scrambling properties of
multi-mode fibers as a function of length and cross-sectional geometry. We conclude that
longer fibers perform better in terms of scrambling (but have lower throughput) because light
in the cladding will not propagate efficiently. We also conclude that the best scrambling is
achieved when the cladding is not illuminated. We see evidence of non-perfect scrambling in
the near-field of the circular fiber, while the octagonal fiber has a very well-behaved near-field.
This implies that the octagonal fiber should therefore yield a very stable instrumental profile.
However, we find that the far-field of the octagonal fiber is not as good and therefore octagonal
fibers will only be helpful if the grating and other spectrograph optics have excellent optical
quality.
To summarize, in order to measure spectral line shifts smaller than one ten-thousandth of a
pixel and stable for many months, we must reduce errors in our instrumental profile, which
cross-talks with our measurement of the Doppler shift. The instrumental noise can be broken
down in coupling errors (slit or fiber illumination) and environmental instability. These results
show that coupling errors are the dominant source of instrumental noise. We show that double
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scrambler observations have a more stable IP than fiber observations, which have a more
stable IP than slit observations. The double scrambler data still has residual RMS scatter. The
source of this has not yet been identified but is likely to be modal noise, photon noise or
modeling errors. We do not expect that the residual scatter can be caused by environmental
effects due to the random nature of the variability.
While some fibers are clearly better than others at scrambling light, modal noise will always
limit the ability of multi-mode fibers to perfectly scramble light and therefore multi-mode
fibers will produce some variability in the instrumental profile. Whether this is important or
not depends on the level of precision needed in terms of radial velocities. When looking for
Earth analogs, a Doppler precision of 10 cm s−1 or better will be required. At this level of
precision, everything becomes relevant.
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1. Introduction 

The development towards more services in the digital domain, based on computers and 
server logs at different locations and in different networks, increases the need for high 
precision time indication. Even though GPS can support this with sufficient precision, many 
users do not have access to outdoor antennas. Furthermore, there is vulnerability in the 
weak radio-transmission from the satellites (NSTAC) as well as the dependence on the 
continuous replacement of old and outdated satellites (Chaplain). Therefore, alternative 
systems to support precise time are needed. Standardization of time transfer of a master 
clock is done for example in the IRIG system, but this one-way time transfer system do not  
take variations in transfer time into account, mainly because it is supposed to work on short 
distances (IRIG). In additional efforts to meet this request, several time and frequency 
transfer methods using optical fibers have been developed or are under development, using 
dedicated fibers (Kihara; Jefferts; Ebenhag2008; Kéfélian), dedicated capacity in existing 
fiber networks (Calhoun) or already existing synchronization in active fiber networks 
(Emardson, Ebenhag2010a). A similarity of all these techniques is the need for two-way 
communication to compensate for the inevitable variations of propagation time, such as 
variation of temperature and mechanical stress along the transmission path. A two-way 
connection may however be undesirable when many users are connected in one network, or 
when user privacy is requested. As an alternative, a one-way transmission over fiber optic 
wavelength division multiplexing network with detection of variation in propagation time 
has been presented (Ebenhag2010b, Hanssen). 
The general conception of fiber optic communication is the transmission of digital data from 
one user to another, and through recovery of the phase variation of the bit-slots after 
reception, the exact time it has taken to transfer the data is of low importance. The 
individual packets of the data may even follow different paths with different propagation 
time, and still be interpreted correctly at the user end. Physical effects such as noise, 
dispersion and polarization dependence are important, but as long as each bit can be 
detected correctly, slow variations in propagation time do not affect the communication. 
When the fiber is used to transmit time or frequency however, the physical properties of the 
transmission link become very important. Even though time and frequency may appear as 
two faces of the same parameter, there are differences in the requirement of a transmission 
link. For time transfer, any variations in the delay through the link must be compensated 
for, either in a real time compensator or through post processing. For frequency transfer, the 
frequency shift caused by the rapidity of a change in the fiber delay must be handled. 
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During the last years of the 20th century, the development and installation of optical fiber 
communication systems increased rapidly, and after a few slow years, the deployment has 
gained new speed. All continents are connected with submarine fiber networks, and all 
major cities have installed fibers at least for their long distance communication. In regular 
optical communication however, the propagation time through the fiber is of no major 
concern. Slow variations are handled through clock recovery at the receiver end. Therefore, 
little or no efforts have been made to develop transmission links with stable net 
transmission time. The development of synchronous networks, e.g. following the first 
version of Synchronous Digital Hierarchy (SDH), was left as soon as the control system 
could handle asynchronous routing between different links. With the increase of the need 
for precise time and frequency transfer over optical fibers, the time and time variations is 
however of outmost importance. This chapter will be a review of the published work, 
covering both the transfer of low frequency and time, and the necessary techniques for 
accurate optical frequency transmission. Even though the similarities are apparent, the 
transmission of frequency and the transmission of time require completely different 
properties. 

1.1 Definition of time 
When the definition of time was changed in 1972 from Greenwich Mean Time (GMT) to 
Universal Coordinated Time (UTC) (OICM), the need to compare clocks became more 
imminent. While GMT is determined from observations of the sun, UTC is the addition of 
seconds from Cesium oscillators around the world. These devices are to be compared 
constantly, and since there are more than 300 oscillators on almost 60 different locations 
around the world (BIPM), the preferred technique has been over radio transmission, and 
presently utilizing satellites. As the society moves into an ever increasing request for 
connectivity, with the subsequent needs for verification, identification, encryption etc. many 
systems rely on the time signal given. To ensure the quality of time information, and to 
make it robust towards radio based disturbances, there have been several suggestions on 
how to communicate between the participating clock laboratories using alternative 
techniques, and with the long distances at hand, the choice of optical fibers is obvious. 
One second is presently defined as the duration of 9 192 631 770 periods of the radiation 
corresponding to the transition between the two hyperfine levels of the ground state of the 
Cesium 133 atom (OICM). This definition has been official since 1967, and it does also 
correspond to the realization of a second. To increase the accuracy further, is there ongoing 
research on optical clocks. Optical clocks are defined by the output of an optical frequency 
standard and can offer an extremely high frequency precision and stability, exceeding the 
performance of the best Cesium atomic clocks. A challenge in the early years of optical 
clocks was to relate the stable optical frequency to a microwave frequency standard such as 
a Cesium atomic clock. This was solved with the realization of frequency combs from 
femtosecond mode-locked lasers (Paschotta). Optical clocks compared to microwave 
standards such as Cesium atomic clocks have some key advantages: 
• There are certain atoms and ions with extremely well-defined clock transitions that 

promise higher accuracy and stability than the best microwave atomic clocks. The 
anticipated (but not yet demonstrated) relative frequency uncertainty of atomic optical 
clocks for long enough averaging times (possibly a few days) is of the order of 10−18 
(Paschotta). 
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• The high optical frequencies themselves are of high importance because these allow 
precise clock comparisons within much shorter times. For example, a 10−15 precision can 
be achieved in a few seconds if the compared frequencies are in the optical range, 
whereas a full day would be required for microwave clocks. 

• Optical signals can easily be transported over long distances using fibers whereas 
microwave cables are more expensive and have much higher losses. 

Therefore, it is to be expected that in the near future the Cesium clock as the fundamental 
timing reference will be replaced with an optical clock, although it is at the moment not 
clear which type of optical clock would be used as such a standard. The definition of the 
second will then be changed to refer to an optical frequency rather than to a microwave 
frequency. However, even after that profound change, Cesium clocks (and other non-optical 
atomic clocks, such as Rubidium clocks) will continue to play an important role in 
technological applications as they can be simpler and more compact than optical clocks 
(Paschotta). In the purpose to be able to compare two optical clocks, the optical wave must 
be compared. To manage this, the optical link must be stable when it comes to frequency. 

1.2 Temperature of trunk fiber 
In all utilization of optical fiber, the influence of the environment must be handled, even 
though the solutions depend on the application, knowledge about which properties to take 
into account, and their magnitudes, is of equal importance. In time and frequency transfer, 
the surrounding temperature is the main source for variations and to estimate the size, some 
data is analyzed. 
 

 
Fig. 1. Soil temperature at 40” depth, at five US locations. 

Most fiber in the terrestrial networks is buried in the ground, at a depth of about 1 – 2m. A 
common misconception is that this would be a stable environment with respect to 
temperature. Figure 1 shows the measured soil temperature at 40” depth (approx. 1 m) at 
five different US locations, measured daily during 2010 (NRCS). The locations are all in the 
northern part of the country, with warm summers and cold winters, and represents 
examples of the worst conditions within the dataset with respect to temperature variations. 
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During the last years of the 20th century, the development and installation of optical fiber 
communication systems increased rapidly, and after a few slow years, the deployment has 
gained new speed. All continents are connected with submarine fiber networks, and all 
major cities have installed fibers at least for their long distance communication. In regular 
optical communication however, the propagation time through the fiber is of no major 
concern. Slow variations are handled through clock recovery at the receiver end. Therefore, 
little or no efforts have been made to develop transmission links with stable net 
transmission time. The development of synchronous networks, e.g. following the first 
version of Synchronous Digital Hierarchy (SDH), was left as soon as the control system 
could handle asynchronous routing between different links. With the increase of the need 
for precise time and frequency transfer over optical fibers, the time and time variations is 
however of outmost importance. This chapter will be a review of the published work, 
covering both the transfer of low frequency and time, and the necessary techniques for 
accurate optical frequency transmission. Even though the similarities are apparent, the 
transmission of frequency and the transmission of time require completely different 
properties. 

1.1 Definition of time 
When the definition of time was changed in 1972 from Greenwich Mean Time (GMT) to 
Universal Coordinated Time (UTC) (OICM), the need to compare clocks became more 
imminent. While GMT is determined from observations of the sun, UTC is the addition of 
seconds from Cesium oscillators around the world. These devices are to be compared 
constantly, and since there are more than 300 oscillators on almost 60 different locations 
around the world (BIPM), the preferred technique has been over radio transmission, and 
presently utilizing satellites. As the society moves into an ever increasing request for 
connectivity, with the subsequent needs for verification, identification, encryption etc. many 
systems rely on the time signal given. To ensure the quality of time information, and to 
make it robust towards radio based disturbances, there have been several suggestions on 
how to communicate between the participating clock laboratories using alternative 
techniques, and with the long distances at hand, the choice of optical fibers is obvious. 
One second is presently defined as the duration of 9 192 631 770 periods of the radiation 
corresponding to the transition between the two hyperfine levels of the ground state of the 
Cesium 133 atom (OICM). This definition has been official since 1967, and it does also 
correspond to the realization of a second. To increase the accuracy further, is there ongoing 
research on optical clocks. Optical clocks are defined by the output of an optical frequency 
standard and can offer an extremely high frequency precision and stability, exceeding the 
performance of the best Cesium atomic clocks. A challenge in the early years of optical 
clocks was to relate the stable optical frequency to a microwave frequency standard such as 
a Cesium atomic clock. This was solved with the realization of frequency combs from 
femtosecond mode-locked lasers (Paschotta). Optical clocks compared to microwave 
standards such as Cesium atomic clocks have some key advantages: 
• There are certain atoms and ions with extremely well-defined clock transitions that 

promise higher accuracy and stability than the best microwave atomic clocks. The 
anticipated (but not yet demonstrated) relative frequency uncertainty of atomic optical 
clocks for long enough averaging times (possibly a few days) is of the order of 10−18 
(Paschotta). 
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• The high optical frequencies themselves are of high importance because these allow 
precise clock comparisons within much shorter times. For example, a 10−15 precision can 
be achieved in a few seconds if the compared frequencies are in the optical range, 
whereas a full day would be required for microwave clocks. 

• Optical signals can easily be transported over long distances using fibers whereas 
microwave cables are more expensive and have much higher losses. 

Therefore, it is to be expected that in the near future the Cesium clock as the fundamental 
timing reference will be replaced with an optical clock, although it is at the moment not 
clear which type of optical clock would be used as such a standard. The definition of the 
second will then be changed to refer to an optical frequency rather than to a microwave 
frequency. However, even after that profound change, Cesium clocks (and other non-optical 
atomic clocks, such as Rubidium clocks) will continue to play an important role in 
technological applications as they can be simpler and more compact than optical clocks 
(Paschotta). In the purpose to be able to compare two optical clocks, the optical wave must 
be compared. To manage this, the optical link must be stable when it comes to frequency. 

1.2 Temperature of trunk fiber 
In all utilization of optical fiber, the influence of the environment must be handled, even 
though the solutions depend on the application, knowledge about which properties to take 
into account, and their magnitudes, is of equal importance. In time and frequency transfer, 
the surrounding temperature is the main source for variations and to estimate the size, some 
data is analyzed. 
 

 
Fig. 1. Soil temperature at 40” depth, at five US locations. 

Most fiber in the terrestrial networks is buried in the ground, at a depth of about 1 – 2m. A 
common misconception is that this would be a stable environment with respect to 
temperature. Figure 1 shows the measured soil temperature at 40” depth (approx. 1 m) at 
five different US locations, measured daily during 2010 (NRCS). The locations are all in the 
northern part of the country, with warm summers and cold winters, and represents 
examples of the worst conditions within the dataset with respect to temperature variations. 

0

5

10

15

20

25

2010/01/01 2010/03/02 2010/05/01 2010/06/30 2010/08/29 2010/10/28 2010/12/27

Te
m

pe
ra

tu
re

 (°
C)

Date (yyyy-mm-dd)

Geneva, NY
Lind, WA
Crescent Lake, MN
Marble Creek, CA
Torrington, WY



 
Recent Progress in Optical Fiber Research 374 

1.3 Temperature of fiber in amplifier stations 
The temperature of the fiber when it is installed into a repeater station, for amplification, 
routing, or any other process, cannot be presumed stable unless verified. While many end 
nodes are in rooms with controlled temperature, most inline amplifiers reside in small 
buildings with less stringent environment control. Figure 2 shows the temperature detected 
at 9 of the power supply cards of the amplifiers along one of the routes between Borås and 
Stockholm, Sweden. The actual temperature is high since the sensor is located close to a heat 
emitter, but the variations are caused by a variation in room temperature. In these stations, 
the affected fiber length is short, but the variations are fast. Furthermore, if the link is 
equipped with dispersion compensated fiber, these spools will be affected by the local 
indoor temperature variation and may cause a difference in propagation time for signals in 
opposite directions (Ebenhag2007). 
 

 
Fig. 2. Temperature measured in power supply in 9 telecom amplifier stations. 

2. Time transfer 
The unique characteristic of time, which also complicates the transmission, is that it is ever-
changing, and the required information is both the actual time-of-day, (TOD) and the time 
that has passed since this information was created. It can for many applications be sufficient 
to estimate an approximate delay, and accept the variations, but for better accuracy than µs, 
the transmission time must be constantly estimated or measured and taken into account. 
The output time tout(t) from an uncompensated fiber can be described by eq.(1) 

  (1) 

Where tin is the time information from the transmitter clock and τfiber(t) is the varying delay 
through the fiber. For increased accuracy, the equation can be elaborated to: 

  (2) 
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Where τfiber,0 is the delay through the fiber at t=0, τfiber,det(t) includes any delay variations that 
can be determined, and τfiber,rnd(t) are the remaining, random variations of transfer delay. 
The main effort of any time transfer is to minimize the undetermined variations of the delay, 
through complementary measurements to the actual signal transfer. 

2.1 Two-way time transfer 
Two-way time transfer presumes that the system is bidirectional, and that the propagation 
time is equal in both directions (or at least with a deterministic and measurable difference). 
It can be schematically described through figure 3.  
 

 
Fig. 3. Schematic system for two-way time transfer. 

A well-defined signal is transmitted from point A, and the time it leaves the sender is 
measured with respect to the master clock A; t1(tA). When it arrives at point B, the arrival 
time is measured with respect to the local clock B; t1(tB). In addition, another well-defined 
signal is transmitted back from B to A, resulting in the time stamps t2(tB) and t2(tA). 
Assuming that the delay through the fiber, in both directions, is τfiber+ τfiber,det(t), equations 
(3) – (5) is derived 

  (3) 

    (4) 

    (5) 

Thus, the relationship between signal emitters A and B can be determined from measured 
data, and the calculations can be made at either end of the link. 
Time transfer over optical fibers includes two-way transfer based on transmission on a 
dedicated fiber, a dedicated channel, and the piggy-back technique on existing traffic. Even 
though most of these techniques is based on measurements of delay, and corrections 
afterwards, some short distance transfer is achieved in real-time, were the output signal is 
corrected as the transmission characteristics change (Ebenhag2008). One-way time transfer 
based on two-wavelength transmission is also described in detail in this chapter. 

2.1.1 Time transfer over dedicated capacity 
Any transmission of a signal over a dedicated capacity requires that the network owner 
allocate bandwidth for the connection. It could be a channel space in a wavelength division 
multiplexed (WDM) system, or a whole fiber. Transmitting a signal over a dedicated fiber is 
to some extent the simplest technology, since there are no interference from adjacent 
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data, and the calculations can be made at either end of the link. 
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dedicated fiber, a dedicated channel, and the piggy-back technique on existing traffic. Even 
though most of these techniques is based on measurements of delay, and corrections 
afterwards, some short distance transfer is achieved in real-time, were the output signal is 
corrected as the transmission characteristics change (Ebenhag2008). One-way time transfer 
based on two-wavelength transmission is also described in detail in this chapter. 

2.1.1 Time transfer over dedicated capacity 
Any transmission of a signal over a dedicated capacity requires that the network owner 
allocate bandwidth for the connection. It could be a channel space in a wavelength division 
multiplexed (WDM) system, or a whole fiber. Transmitting a signal over a dedicated fiber is 
to some extent the simplest technology, since there are no interference from adjacent 
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channels that has to be taken into account, and the modulation format can be chosen 
arbitrarily.(Smotlacha; Amemiya). There are no major differences to transmit over a 
dedicated channel, i.e. using one wavelength in the vicinity of others, with the exception of 
any constraints induced by interchannel interference. 

2.1.2 Time transfer over shared capacity 
To minimize any unnecessary bandwidth allocation, it is advantageous to operate on an 
active channel, where data-communication uses all, or at least most of, the available 
capacity. An early approached used the data transmission of SONET OC-3 at 155,52 Mbit/s 
and locked this repetition rate to the master 5 MHz. Furthermore, a synchronization signal 
was generated in the data-stream at 1 pps (Calhoun). Thus, it would be possible to share the 
time and frequency transfer capacity with active communication, where time transfer only 
need a well defined sequence once per second. 
An even less bandwidth consuming technique uses an existing well defined sequence of a 
digital communication protocol for time transfer (Emardson, Ebenhag2010a). It can thereby 
be called a ‘piggy-back’ technique. Time transfer using this technique relies on an existing, 
continuous transmission of digital data. In this case, a sync sequence is detected in all 
locations of the two-way transmission, and the time stamp defining of the occasions is 
transfer separately, as a low bandwidth signal. The piggy back technique has been 
presented at 10 Gbit/s on the SONET and SDH protocol, where data is transmitted in 125 µs 
long frames and every frame start with a sequence of 192 A1 bytes, followed by 192 A2 
bytes1. If every occurrence of a frame start sequence is detected at both transmitters and 
both receivers of a fiber link, and all data is sent to a computational node, the necessary 
timing information can be calculated for accurate time transfer. The repetitive structure of 
the transmission enables a simplification, where it is sufficient to detect one sequence/s, and 
with the knowledge of 125 µs interval between sequences, time transfer can be extracted 
even though the four measurements correspond two four different sequences. 

2.2 One-way time transfer 
When the surrounding temperatures of the fiber vary, it affects both the transfer time and 
the dispersion, which can be measured at the receiving end of the fiber. Since there is an 
unambiguous relationship between these two parameters, the correlation between them can 
be used to estimate one from the other. The measurement technique for fiber dispersion is 
well known (Vella) and the variation with respect to temperature has been studied 
previously (Hatton; Walter). This property is utilized in the one-way time transfer, and the 
scale coefficient for a specific fiber link must be individually characterized. 
In a fully operational solution, the time from the Master clock is distributed to a Slave clock, 
with a precision better than what it would be in the case of a single signal was transmitted. 
The system is described schematically in figure 4. 
At the transmitting end, a Master clock controls two lasers, and at the receiving end a slave 
clock makes an interpretation of the two signals, received after transmission over two 
wavelengths, to enhance its precision. The thin and thick lines are electrical cables and 
optical fibers, respectively, and the open line on top symbolizes the outdoor transmission 
fiber of arbitrary length while the dashed regions indicates indoor environment. 
                                                                 
1 A1 = [11110110], A2 = [01101000] 
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Fig. 4. Schematic system for one-way fiber based time transfer. 

2.2.1 Theory  
The theory for one-way dual wavelength optical fiber time and frequency transfer is based 
on the transit time τ for propagation of a single mode in a fiber (Cochrane) expressed as the 
group velocity for a certain distance L and the wavelength λ. 

  L dnn
c d

τ λ
λ

⎛ ⎞= −⎜ ⎟
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  (6) 

where n is the refractive index and c is the speed of light in vacuum. The transit time τ, 
sometimes known as the group delay time, in a fiber is thus dependent on the refractive 
index and the wavelength. This means that two different wavelengths will propagate at 
different velocity in the same fiber. A standard single mode fiber is temperature dependent, 
to an extent shown in previous studies (Walter), and the most important factor to include in 
the calculations. By calculating the derivative of the transit time with respect to temperature, 
both wavelength and refractive index will be taken into account as follows: 
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The variation in transit time as a function of temperature can thus be calculated where λN 
N=1,2; represents the two wavelengths. The equations for the two wavelengths are 
subtracted from each other, resulting in: 
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This expression shows how the refractive indices of the two wavelengths are influenced by 
temperature, and based on this the variations in propagation time can be calculated.  The 
time transfer technique uses the property that the variations are different, but correlated, 
which also is supported by experimental results later on. 

2.2.2 Numerical simulations 
The difference in transit time through the fiber will, as shown in eq (8) depend on the 
variation of length, L, and the variation in refractive index, n. Both these effects will affect 
the chromatic dispersion of the fiber, but through different properties. 
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Fig. 4. Schematic system for one-way fiber based time transfer. 
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2.2.2.1 Variations in refractive index 
The refractive index of the fiber can be described by eq. (9), called the Sellmeier equation 
(Sellmeier; Ghosh) 

  �� = � + �
��� ��⁄ + �

��� ��⁄   (9) 

Where λ is the wavelength in µm and the Sellmeier coefficients A, B, C, D and E have been 
empirically fitted with respect to temperature, T, for different glasses. Using the data for 
fused Silica (Ghosh), results in: 
 

Sellmeier coefficient Fitted constants (SiO2)
A 6,90754*10-6T + 1,31552
B 2,35835*10-5T + 0,788404
C 5,84758*10-7T + 1,10199*10-2

D 5,48368*10-7T + 0,91326
E 100

Table 1. Empirically fitted values for Sellmeier coefficients 

From these equations, the material dispersion can be calculated as2: 
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Using these parameters, the material dispersion of SiO2 is calculated and shown in figure 5. 
It may vary slightly in communication fibers where the silica is doped with small amount of 
other substances. Nevertheless the overall behavior is comparable. 
 

 
Fig. 5. Calculation of material dispersion in Fused Silica at 20°C. 
                                                                 
2 This equation is corrected with respect to the reference, where the left side of the equation begins with 
a “-“. 
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From the equations (6)-(11), it is possible to estimate the amount of propagation time 
variations with respect to temperature. Assuming a fiber where material dispersion is 
dominant (as is the case in standard single mode fiber), at a length of 20 km and 
measurement at 1530 nm and 1560 nm, the result is shown in figure 6. The slope of the 
calculated dispersion is -0,0016 ps/nmkm°C, which is comparable to previously reported 
results -0,0025 ps/nmkm°C for NZDSF (non-zero dispersion shifted fiber) and -0,0038 
ps/nmkm°C for large core fiber (Walter). 
 

 
Fig. 6. Temperature dependence of transfer time (solid blue, left axis) and arrival time 
difference (dashed red, right axis). 

The solid curve (left axis) shows the transfer time for a signal at 1530 nm, and the dashed 
curve shows the arrival time difference for two signals at 1530 nm and 1560 nm. Both curves 
are normalized with respect to the value at  20°C, and it is apparent that the propagation 
time within a single, 20 km long fiber varies with almost 30 ns when affected by 40°C 
temperature difference. The calculations also suggests that this variation can be detected 
and compensated for, using transmission at two wavelengths and a measurement system 
that can measure time variations on ps level with sufficient precision. 
2.2.2.2 Variations of length 
This evaluation assumes that the cabling or mounting will stretch the fiber at increasing 
temperature, however leaving the volume intact. The variations in dimensions of the glass 
are assumed to be negligible. If the core of the fiber is modelled as a glass cylinder, of length 
L and diameter d, a geometrical approach gives that the variation in temperature will change 
the length with ΔL(T-T0) and the diameter with Δd(T-T0), such that 

  ��������� = − ��������
��   (12) 

where T is the temperature and T0 is the reference temperature.  
This change in diameter will change the dispersion according to the variation in waveguide 
dispersion (Gloge; Keiser): 

  ����� = −���
�� �

������
���   (13) 

where n2 is the refractive of the cladding and Δ is the relative difference of refractive index 
in the core and in the cladding. V and b are the normalized frequency and the normalized 
propagation constant, respectively, and can be found through: 
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A 6,90754*10-6T + 1,31552
B 2,35835*10-5T + 0,788404
C 5,84758*10-7T + 1,10199*10-2

D 5,48368*10-7T + 0,91326
E 100

Table 1. Empirically fitted values for Sellmeier coefficients 

From these equations, the material dispersion can be calculated as2: 
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Using these parameters, the material dispersion of SiO2 is calculated and shown in figure 5. 
It may vary slightly in communication fibers where the silica is doped with small amount of 
other substances. Nevertheless the overall behavior is comparable. 
 

 
Fig. 5. Calculation of material dispersion in Fused Silica at 20°C. 
                                                                 
2 This equation is corrected with respect to the reference, where the left side of the equation begins with 
a “-“. 
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From the equations (6)-(11), it is possible to estimate the amount of propagation time 
variations with respect to temperature. Assuming a fiber where material dispersion is 
dominant (as is the case in standard single mode fiber), at a length of 20 km and 
measurement at 1530 nm and 1560 nm, the result is shown in figure 6. The slope of the 
calculated dispersion is -0,0016 ps/nmkm°C, which is comparable to previously reported 
results -0,0025 ps/nmkm°C for NZDSF (non-zero dispersion shifted fiber) and -0,0038 
ps/nmkm°C for large core fiber (Walter). 
 

 
Fig. 6. Temperature dependence of transfer time (solid blue, left axis) and arrival time 
difference (dashed red, right axis). 

The solid curve (left axis) shows the transfer time for a signal at 1530 nm, and the dashed 
curve shows the arrival time difference for two signals at 1530 nm and 1560 nm. Both curves 
are normalized with respect to the value at  20°C, and it is apparent that the propagation 
time within a single, 20 km long fiber varies with almost 30 ns when affected by 40°C 
temperature difference. The calculations also suggests that this variation can be detected 
and compensated for, using transmission at two wavelengths and a measurement system 
that can measure time variations on ps level with sufficient precision. 
2.2.2.2 Variations of length 
This evaluation assumes that the cabling or mounting will stretch the fiber at increasing 
temperature, however leaving the volume intact. The variations in dimensions of the glass 
are assumed to be negligible. If the core of the fiber is modelled as a glass cylinder, of length 
L and diameter d, a geometrical approach gives that the variation in temperature will change 
the length with ΔL(T-T0) and the diameter with Δd(T-T0), such that 

  ��������� = − ��������
��   (12) 

where T is the temperature and T0 is the reference temperature.  
This change in diameter will change the dispersion according to the variation in waveguide 
dispersion (Gloge; Keiser): 

  ����� = −���
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���   (13) 

where n2 is the refractive of the cladding and Δ is the relative difference of refractive index 
in the core and in the cladding. V and b are the normalized frequency and the normalized 
propagation constant, respectively, and can be found through: 
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where k is the free-space propagation constant, β is the propagation constant and a = d/2 is 
the fiber core radius. From these equations, it is apparent that fibers with notable waveguide 
dispersion, e.g. dispersion shifted fibers, dispersion compensating fibers etc, will have 
different response to a change in diameter d, than standard fibers where material dispersion 
is dominant. However, this response must be evaluated for each fiber design, since the term 
V(d2(Vb)/dV2) is between 0 and 1,2 with a maximum at V≈1,2. These equations show 
nevertheless that the system of detecting a variation in propagation time through a fiber 
with substantial waveguide dispersion is possible, but must be optimized for the actual fiber 
parameters. 

2.2.3 Experimental setup 
The experimental setup for the verification of the proposed time and frequency transfer 
technique is shown in figure 7. Two lasers at wavelengths 1530 nm and 1560 nm are directly 
modulated by a 10MHz reference oscillator and the light is launched into the SMF through a 
50/50 power combiner. The reference oscillator is a frequency stabilized H-maser used as 
Master clock. In the experiment, the oscillator is also used as reference to the measurement 
equipment, connected as indicated by the lower line, in order to evaluate the technique. 
Furthermore, to increase sensitivity, the signal from the oscillator is connected to the LO-ports 
of the two double balanced mixers at the output of the transmitted signal paths. The 
equipment within the dashed frame is held within a controlled environment, and the spools of 
SMF are placed outdoors together with a temperature sensor for monitoring and comparison 
with transfer time variations. The total sum of fiber length is 12,761.5 m, including 187.6 m of 
transfer fiber between the lab and the outdoor fiber spools. At the receiving end, the two 
wavelengths are separated in a 50/50 power splitter, filtered in optical band-pass filters and  
 

 
Fig. 7. Experimental setup. Rec1 and Rec2 include optical pre-amplification, optical band 
pass filter, photodiode and electrical trans-impedance amplifier. Amp1 and Amp2 are 
electrical amplifiers, DVM digital voltmeter and TIC is time-interval counter. Thin lines 
symbolize electrical wires and thick lines optical fibers. 
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detected in two 10 Gb/s p-i-n receivers. The signals are amplified and connected to the RF 
ports of two double balanced mixers. One of the signals is also divided and connected to the 
reference time interval counter (TIC), which measures the total propagation time between 
the transmitter and the receiver. The output of the TIC is interpreted as the precision of an 
uncompensated one-way time and frequency transmission. By measuring the voltages of the 
two output ports of the mixers in a digital voltmeter (DVM), a correction signal is achieved 
and can be used for a real-time delay control of the uncompensated signal. 

2.2.4 Experimental results 
In Figure 8, the result from six days of measurement is plotted over time with the one-way 
method (blue, left scale), and the estimated delay from the two-wavelength time difference 
(red, left scale). The estimated transfer time Test is made through empirical fitting, and 
follows the equation: 

  ���� � �� arccos��� � ��� � ��  (16) 

where I1 and I2 are the output voltages from the two mixers, normalized with the maximum 
level of each output. The numerical values of the fitting parameters, F1 and F2 resulting in 
the lowest residual error (rms) are shown in table 2. 
 

Compensation parameter Fitted constant
F1 1,58*10-8 s
F2 1,71*10-9 s

Table 2. Empirically fitted compensation constants. 
 

 
Fig. 8. Measured variations during six days. The uncompensated one-way transfer time 
(blue, left axis) is compared with the compensation signal from two-wavelength difference 
measurement (red, left axis). The residual error (green, right axis) is an order of magnitude 
lower.  
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detected in two 10 Gb/s p-i-n receivers. The signals are amplified and connected to the RF 
ports of two double balanced mixers. One of the signals is also divided and connected to the 
reference time interval counter (TIC), which measures the total propagation time between 
the transmitter and the receiver. The output of the TIC is interpreted as the precision of an 
uncompensated one-way time and frequency transmission. By measuring the voltages of the 
two output ports of the mixers in a digital voltmeter (DVM), a correction signal is achieved 
and can be used for a real-time delay control of the uncompensated signal. 

2.2.4 Experimental results 
In Figure 8, the result from six days of measurement is plotted over time with the one-way 
method (blue, left scale), and the estimated delay from the two-wavelength time difference 
(red, left scale). The estimated transfer time Test is made through empirical fitting, and 
follows the equation: 
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The difference between the measured time delay and the compensation signal is shown in 
the final curve (green, right axis). The stability of the output signal is thereby enhanced from 
7,7 ns rms to 0,9 ns rms. 

3. Frequency transfer 
While time transfer stability is compensated for the actual difference in optical path length, 
the frequency transfer is sensitive for how fast the delay changes. In comparison to equation 
(1), the output frequency of an uncompensated fiber is described by: 

  ������� � ������ + �����
��   (17) 

where fin(t) and fout(t) are the momentaneous input and output frequencies, respectively, 
and τ(t) is the time varying delay through the fiber. The derivative dφ(t)/dt arises from the 
change in τ(t) with respect to the period of the microwave frequency, such that 

  ������� � �������� �������   (18) 

3.1 Optical transfer of microwave frequency 
When the fiber link is used to transfer a microwave frequency modulated on top of an 
optical carrier, this variation will only be notable over long distances, or if the fiber is 
installed in harsh environment (open air, sunlit roofs etc.). A two-way frequency transfer 
will then schematically be implemented as shown in figure 9. The control equipment adjusts 
the input signal to the phase modulator of the transmitted and returned signal, such that the 
total phase variation after a round-trip in the fiber link is cancelled out. 
 

 
Fig. 9. Schematic frequency transfer in microwave domain. 

3.2 Optical comb 
One key invention for optical frequency transfer, as well as for other techniques, is the 
optical comb (KVA). By generating short optical pulses with a constant repetition rate, the 
corresponding spectrum will consist of a comb of equidistant peaks. T. Hänsch and J. Hall 
managed in to broaden this spectrum to exceed one octave of optical tones, which enabled 
new measurements (Hall; Holzwarth). 
Figure 10 illustrates the comb structure of the optical spectrum. If one of the lowest 
frequencies in the spectrum, ν1, is doubled, it will create a new frequency, 2ν1, close to one of 
the highest in the comb, νd. Since the difference between the two frequencies is known,  
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Fig. 10.  Schematic spectrum of optical comb spanning one octave. 

every optical frequency in the comb can be determined at comparable accuracy of a 
microwave frequency. With the parameters fr and fdiff describing the repetition frequency of 
the pulses creating the comb, and the measured difference frequency between 2ν1 and νd, 
respectively, equations (19) and (20) results in the determination of an arbitrary optical 
frequency νi. 

    (19) 

    (20) 

3.3 Optical frequency transfer 
To be able to compare two optical clocks at different locations, optical frequency transfer 
over fiber is the only option. Figure 11 shows the basic technique, but does not cover all 
details. It can be described as follows. The optical clock A emits a wavelength corresponding 
to the atom or ion in use, usually not within the telecommunication bands. Therefore, an 
ultra-stable wavelength at approximately 1550 nm is also created in lab A. Through an 
optical comb, the frequency relation between these two wavelengths can be determined. 
 

 
Fig. 11. Schematic setup for optical frequency transfer. 

The light from the ultra-stable laser is launched through an optical frequency modulator 
(usually an acousto-optical modulator) and transferred through the fiber to lab B, where 
another frequency modulator is passed. A semi-reflecting mirror (often the Fresnel-
reflection of the glass-air interface is sufficient) lets the light return along the same path. 
After the return to lab A, the received signal is compared with the transmitted, and the 
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modulation is adjusted to counteract any phase variations induced through the fiber. The 
modulator in lab B is used to offset the return signal, whereas scattering effects in the fiber 
will deteriorate the signal when sent at the same wavelength in both directions. 
Finally, the light entering lab B is stable with respect to variations in the fiber, and can be 
compared with the light emitted from Optical clock B, through another optical comb. Since 
all this comparison must be performed through analog signal interference in the optical 
domain, the ultra-stable frequency transfer must be performed in real-time, where any 
perturbation in the fiber must be corrected on the fly. It is also significant that where a 
microwave frequency can be transferred between two labs through a fiber pair, with the 
addition of an increased uncertainty, optical frequency transfer must be performed through 
a bi-directional two-way transfer in a single fiber. 
Successful experiments with optical frequency transfer has been reported from several 
groups, bridging distances up to 480 km and connecting labs with optical clocks. (Jiang; 
Foreman; Terra). 

4. Conclusion 
In conclusion, fiber optics is shown to be an advantageous channel for precise time and 
frequency transfer, both for comparing next generation optical clocks and to support the 
emerging users of network time with high precision. For long baseline comparisons, there 
may however be a need for new components and connection schemes, and the development 
towards better and more precise links is in its beginning. The ultimate target to reach trans-
Atlantic and trans-Pacific distances will require much future effort, however definitely 
achievable. 
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1. Introduction  
The planar fiber-optic chip (FOC) technology combines the sensitivity of an attenuated total 
reflection (ATR) element with the ease of use of fiber-optic based spectrometers and light 
sources to create an improved platform for spectroscopic analysis of molecular adsorbates. A 
multi-mode optical fiber mounted in a V-groove block was side-polished to create a planar 
platform that allows access to the evanescent field escaping from the fiber core and has been 
previously applied to absorbance and spectroelectrochemical measurements of molecular thin-
films. Light generated in a surface-confined thin molecular film can be back-coupled into the 
FOC platform when the conditions for light propagation within the waveguide are met. In this 
chapter the current applications of the FOC platform will be presented including 
spectroelectrochemical measurements, fluorescence detection of a bioassay, a broadband fiber 
optic light source, and Raman interrogation of molecular adsorbates.  
In recent years, both planar waveguide-based and fiber-optic-based chemical sensors and 
biosensors have been developed in an attempt to meet the need for miniature, 
multifunctional, and sensitive sensor platforms. (Bradshaw et al., 2005; Kuswandi et al., 2001; 
Monk & Walt, 2004; Plowman et al., 1998; Potyrailo et al., 1998; Reichert, 1989; Tien, 1971; 
Wolfbeis, 2006) The benefits of fiber optic platforms have led several manufactures of 
analytical instrumentation to develop inexpensive fiber compatible equipment such as 
readily available fiber-coupled light sources and spectrometers with standard distal end 
fiber coupling schemes. Fiber coupled sensing architectures, utilizing the fiber as the optical 
signal transduction platform, have been developed for various geometries including distal 
end, tapered, de-clad cylindrical core, U-shape de-clad cylindrical core, and biconical 
tapered optical fibers. (Leung et al., 2007; McDonagh et al., 2008) Simple distal end fiber optic 
sensors are commercially available where the exposed core on a cleaved and polished end of 
a fiber is used as the sensing platform. However, the distal end geometry is limited by low 
sensitivity due to the small interaction area, analogous to the single-pass transmission 
absorbance measurement. A second more fragile distal end sensor geometry uses a tapered 
fiber where the fiber core is etched with HF into a point. The tapered fiber increases the 
evanescent field amplitude and penetration depth, thus increasing the sensitivity of the 
platform. Tapered fiber optic sensors are primarily used as fluorescence detection platforms 
in biochemical and clinical applications. (Anderson et al., 1993; Anderson et al., 1994; 
Anderson et al., 1994; Golden et al., 1992; Grant & Glass, 1997; Maragos & Thompson, 1999; 
Thompson & Maragos, 1996; Wiejata et al., 2003; Zhou et al., 1997)  
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Previous studies, which have taken advantage of the convenience of fiber coupled 
instrumentation and the increased sensitivity of the total internal reflection geometry, have 
used a fiber optic with the cladding removed to create a sensing element around the 
cylindrical fiber core. The exposed core region serves as an ATR element that can be used for 
absorbance measurements to detect volatile organic compounds (Blair et al., 1997), probe 
dye solutions (Ruddy et al., 1990), monitor methane gas (Tai et al., 1987) and ammonium ion 
(Malins et al., 1998) concentrations, and determine solution pH using indicator doped sol-gel 
coatings (Gupta & Sharma, 1997; MacCraith, 1993), or an indicator doped polymer film. 
(Egami et al., 1996) Several investigators have worked to further increase the sensitivity of 
the de-clad cylindrical core fiber optic sensors by tapering the fiber optic (Guo & Albin, 
2003; Gupta et al., 1994; Mackenzie & Payne, 1990; Mignani et al., 1998) or bending the 
sensing region (i.e. into a U-shape). (Khijwania & Gupta, 1998; Khijwania & Gupta, 2000) 
Fiber optic sensors using the tapered fiber geometry include a humidity (Bariain et al., 2000), 
temperature (Diaz-Herrera et al., 2004), hydrogen gas (Villatoro et al., 2005), and bovine 
serum albumin sensors. (Leung et al., 2007; Preejith et al., 2003) U-shaped fiber optic sensors 
have been used to detect humidity (Gupta & Ratnanjali, 2001), pH (Gupta & Sharma, 2002), 
and ammonium ion concentrations. (Potyrailo & Hieftje, 1998) Such fiber optic sensor 
architectures employ signal transduction through a fragile cylindrical probing interface, 
which can be problematic for several applications where a robust platform or planar 
deposition technologies are required. Clearly, a supported planar interface would be 
advantageous for using standard planar deposition technologies such as Langmuir-Blodgett 
(LB)-deposited thin-films (Doherty et al., 2005; Flora et al., 2005) and planar supported lipid 
bilayers. (McBee et al., 2006) In addition, due to its more robust supported platform, a planar 
design would be amenable for integration into microfluidic systems and sensor arrays. The 
FOC platform is schematically shown in Figure 1. 
 

 
Fig. 1. Fiber Optic Chip (FOC) schematic of a side polished fiber mounted in a V-groove 
where red represents the exposed fiber core sensing platform. a) Top down view; b) Side 
view; c) Cross section. Figure modified from Beam et al., 2007 and Beam et al., 2009. 

1.1 FOC manufacture 
The FOC is a D-shaped, side polished fiber optic platform with access to the evanescent field 
escaping from the fiber core. Fabrication of the FOC begins with stripping the jacket off of a 
small central section, 2 to 4 cm, of an optical fiber to expose the cladding. The optical fibers 
used for this work are a 50 µm core/125 µm cladding multimode, step-index optical fiber 
(Thorlabs AFS50/125Y), with 0.22 numerical aperture (NA). The stripped section of the 
optical fiber is then mounted in a V-groove substrate using a two-part epoxy; the V-groove 
acts as a platform for spectroscopic investigation as well as supports the fragile fiber during 
the polishing proceedure. Prior to mounting the fiber, the edges of the V-groove block must 
be polished to a 2° taper. Using a custom built assembly jig to keep tension on the fiber 
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during hotplate curing, the fiber is laid into the V-groove and optical grade epoxy (Epotek 
301) is applied liberally to ensure permanent immobilization of the fiber. The first 
generation FOC platforms were produced by side-polishing an optical fiber in a glass V-
groove mount, but subsequent improvements on the FOC manufacturing process include 
replacing the glass V-groove with a customized etched silicon wafer support, improved 
polishing processing, and finally generating arrays of side polished fibers (Figure 2). 
 

 
Fig. 2. Schematic for construction of FOC devices. 

Initially glass V-groove mounts were purchased from Mindrum with dimensions of 40 mm 
long, 2 mm wide, and 1.33 mm tall; however, there was a limited supply and the glass V-
grooves were not uniform requiring careful charaterization of each piece prior to use. Later 
V-groove mounts were produced using a chemical etching process (Kendall, 1979) to create 
a channel in a Si-wafer. Due to the crystalline structure of silicon, the resultant channel has 
two sloping walls forming a V shape. Creating the V-groove begins with a 500 µm thick Si-
wafer with a minimum of a 1 µm oxidized layer. A layer of hexamethyldisilazane (HMDS) 
primer followed by a layer of photo-resist (Shipley 1813) is spin-coated on the wafer and 
cured on a hot plate. A slotted mask is placed on top of the wafer using a mask aligner (Süss 
MicroTec). The slots are of the desired width for the eventual V-groove. The masked wafer 
is then exposed to UV light for 7 seconds. The wafer is then placed in developer 
(Microdeposit MF-319) leaving photo-resist in the areas that the mask covered and exposing 
the wafer surface in the slot formation. The wafer is covered in buffered oxide etchant (BOE) 
to erode the oxide layer of the exposed wafer, etching the masked pattern into the oxide 
layer. The BOE will remove 100nm/min of the oxidized layer, so at minimum the wafer 
should remain in the BOE for a period of 10 minutes. The remaining photo-resist is then 
removed using a solvent rinse. Finally, the V-grooves are formed through chemical etch in 
45% KOH, which is set on a magnetic stirrer and heated to 55° C. It should be noted that the 
etching rate of the KOH increases with temperature. The KOH etches the silicon at a much 
faster rate than the SiO2 creating grooves only in the areas without an oxidized layer. The 
angle between the sloping walls and the face of the substrate, 54.74°, is set by the silicon 
crystalline structure. Etching will terminate once the (1,1,1) plane is reached; therefore, the 
depth of the V-groove is pre-determined by the width of the lines in the mask. The resultant 
V-groove is approximately 240 μm wide and 170 μm deep. Once the chemical etching of the 
V-grooves is complete, the Si-wafer is diced into approximately 40 mm by 5 mm long strips 
with a V-groove running longwise through the center of each or the wafer can remain intact 
to create a FOC array base structure. 
Side polishing the fiber to create the D-shaped geometrey of the FOC is achieved using a 
two part lapping process, where the cladding is slowly polished away exposing the core of 
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the multimode fiber. All lapping and polishing steps are performed on a Lapmaseter model 
12 with a cast iron lapping plate covered with a polyurethane pad. The FOC device is 
mounted onto a custom machined spindle carrier with brass sleeve bearings to hinder 
parallax motion. If this wobble is not corrected for, the FOC will not be polished evenly 
leading to the outer edges eroding at a faster rate. First, a coarse grit slurry composed of 1% 
1-µm alumina powder (MetMaster SF-RF-1P) is used to lap the device at a rate of about 20 
rpm. When the measured width of the exposed cladding is approximately 115 μm, the 
slurry is changed to a fine grit polishing solution composed of 1% 0.5-µm cerium oxide 
(Logitech OCON 260). Polishing continues until the center of the fiber is reached, measuring 
approximately 125 µm across the width of the exposed cladding. Once lapping is complete, 
FC-PC connectors are attached to the optical fiber ends on both sides of the device. 
The sensitivity of an FOC device is intrinsically dependent upon the specific geometry of the 
side-polished fiber. The fundamental limit of the elliptical flattened area is determined by 
the structure of the V-groove mount, evenly mounting the fiber in epoxy, and the efficiency 
of exposure of the fiber core through the polishing process. The depth to which the fiber has 
been polished is determined by measuring the width of exposed fiber. The width of the fiber 
is monitored using a standard optical microscope (VWR Vista Vision) and periodically 
measuring from the boundary of the cladding and epoxy on either side of the fiber. 
Measurements are taken periodically throughout the lapping process to ensure the fiber is 
polishing evenly. 

1.2 Broadband absorbance measurements on the FOC platform 
The initial application of the FOC platform was to examine the broadband absorbance 
characteristics of molecular thin-films. A schematic of the experimental set-up for general 
absorbance measurements on the FOC is shown in Figure 3a. The thin-film absorbance 
sensitivity enhancement of the FOC device was evaluated and compared to previously 
existing technologies. The sensitivity factor (S) of a device, defined in Equation 1, is a scaling 
factor of the device absorbance (AFOC) with respect to the conventional absorbance measured 
(Atransmission) in direct transmission and used to quantify the sensitivity enhancement of the 
FOC and ATR platforms. 
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Where ε is the molar absorptivity and Γ is the molecular surface coverage of the film under 
test. Absorbance of a polyion self-assembled film of poly (diallyldimethylammonium 
chloride) (P+) and Nickel (II) phthalocyaninetetrasulfonic acid (Ni (TSPc)) on both the FOC 
and ATR (Doherty et al., 2002) platforms were used to compare the sensitivity perfomance of 
the two techniques. Figure 3b shows a comparison of the P+/Ni (TSPc) absorbance spectra 
on the ATR and FOC normalized by interaction length. Currently, the FOC yields thin-film 
absorbance values comparable with ATR instrumentation; however, the FOC eliminates the 
complex coupling optics and alignment procedures required to make such measurements 
using ATR instrumentation. (Beam et al., 2007) 
Further refinements in the FOC platform promise to substantially increase its sensitivity. 
The lower order modes of a fiber (those with optical rays propagating at a small angle from 
the fiber axis and described by a greater effective refractive index, N) do not provide a  
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Fig. 3. a) Instrument schematic for FOC absorbance measurements. b) Spectra are of a self-
assembled polyion film of P+ and Ni (TSPc), and the spectra are normalized by their 
interaction length (L) of 44 mm (for the ATR spectra) and 17.2 mm (for the FOC spectra). 
Modified from Beam et al., 2007.  

strong interaction with the molecules adsorbed on the active surface of the FOC. Removing 
these lower order modes from the optical beam prevents collecting average absorbance 
measurements which are unduly weighted toward the less sensitive traveling waves inside 
the fiber. (Gloge, 1971; Ruddy et al., 1990) To select the modes allowed to propagate in the 
FOC an annular mask that only transmits a ring of light of a defined angle has been used. A 
mask delivering light with a low effective index, therefore working only with the highest 
order modes that the fiber can support, was shown to double the measured thin-film 
absorbance on the FOC compared to that measured for the same film without a mask. (Beam 
et al., 2007)  

1.3 The electroactive-fiber optic chip (EA-FOC) 
Spectroelectrochemical measurements provide complimentary spectroscopic and 
electrochemical analytical data which have found applications using fiber coupled 
techniques. UV-Vis  (VanDyke & Cheng, 1988), FTIR  (Shaw & Geiger, 1996), and Raman  
(Hartnagel et al., 1995) fiber coupled spectroelectrochemical measurements have been 
obtained using the distal end of a fiber optic probe as the working electrode. These fiber 
optic probes, however, suffer from the limited optical pathlength of transmission 
absorbance spectroelectrochemical measurements. Over the last decade the sensitivity of 
spectroelectrochemical measurements has been significantly enhanced by using 
monochromatic and broadband ATR platforms, (Doherty et al., 2002; Winograd & 
Kuwana, 1969) multi-mode waveguides, and single-mode waveguides. (Bradshaw et al., 
2003; Dunphy et al., 1997; Dunphy et al., 1999; Itoh & Fujishima, 1988) A significant 
hindrance for these ATR and waveguide based spectroelectrochemical technologies has 
been interfacing the sensor platform with standard, commercially available spectroscopic 
instrumentation; thus, only one field portable instrument has been developed by 
Heinemann and coworkers to spectroelectrochemically detect ferrocyanide. (Monk et al., 
2002; Stegemiller et al., 2003) 
The first application of the FOC as a fully integrated fiber coupled spectroelctrochemical 
platform, was termed the electroactive-fiber optic chip (EA-FOC). To create the EA-FOC we 
coat the FOC with a thin-film of indium-tin oxide (ITO) as the working electrode (Figure 4a) 
and probe electrochemically driven changes in absorbance for surface confined redox species. 
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the multimode fiber. All lapping and polishing steps are performed on a Lapmaseter model 
12 with a cast iron lapping plate covered with a polyurethane pad. The FOC device is 
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(Logitech OCON 260). Polishing continues until the center of the fiber is reached, measuring 
approximately 125 µm across the width of the exposed cladding. Once lapping is complete, 
FC-PC connectors are attached to the optical fiber ends on both sides of the device. 
The sensitivity of an FOC device is intrinsically dependent upon the specific geometry of the 
side-polished fiber. The fundamental limit of the elliptical flattened area is determined by 
the structure of the V-groove mount, evenly mounting the fiber in epoxy, and the efficiency 
of exposure of the fiber core through the polishing process. The depth to which the fiber has 
been polished is determined by measuring the width of exposed fiber. The width of the fiber 
is monitored using a standard optical microscope (VWR Vista Vision) and periodically 
measuring from the boundary of the cladding and epoxy on either side of the fiber. 
Measurements are taken periodically throughout the lapping process to ensure the fiber is 
polishing evenly. 

1.2 Broadband absorbance measurements on the FOC platform 
The initial application of the FOC platform was to examine the broadband absorbance 
characteristics of molecular thin-films. A schematic of the experimental set-up for general 
absorbance measurements on the FOC is shown in Figure 3a. The thin-film absorbance 
sensitivity enhancement of the FOC device was evaluated and compared to previously 
existing technologies. The sensitivity factor (S) of a device, defined in Equation 1, is a scaling 
factor of the device absorbance (AFOC) with respect to the conventional absorbance measured 
(Atransmission) in direct transmission and used to quantify the sensitivity enhancement of the 
FOC and ATR platforms. 
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Where ε is the molar absorptivity and Γ is the molecular surface coverage of the film under 
test. Absorbance of a polyion self-assembled film of poly (diallyldimethylammonium 
chloride) (P+) and Nickel (II) phthalocyaninetetrasulfonic acid (Ni (TSPc)) on both the FOC 
and ATR (Doherty et al., 2002) platforms were used to compare the sensitivity perfomance of 
the two techniques. Figure 3b shows a comparison of the P+/Ni (TSPc) absorbance spectra 
on the ATR and FOC normalized by interaction length. Currently, the FOC yields thin-film 
absorbance values comparable with ATR instrumentation; however, the FOC eliminates the 
complex coupling optics and alignment procedures required to make such measurements 
using ATR instrumentation. (Beam et al., 2007) 
Further refinements in the FOC platform promise to substantially increase its sensitivity. 
The lower order modes of a fiber (those with optical rays propagating at a small angle from 
the fiber axis and described by a greater effective refractive index, N) do not provide a  
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Fig. 3. a) Instrument schematic for FOC absorbance measurements. b) Spectra are of a self-
assembled polyion film of P+ and Ni (TSPc), and the spectra are normalized by their 
interaction length (L) of 44 mm (for the ATR spectra) and 17.2 mm (for the FOC spectra). 
Modified from Beam et al., 2007.  

strong interaction with the molecules adsorbed on the active surface of the FOC. Removing 
these lower order modes from the optical beam prevents collecting average absorbance 
measurements which are unduly weighted toward the less sensitive traveling waves inside 
the fiber. (Gloge, 1971; Ruddy et al., 1990) To select the modes allowed to propagate in the 
FOC an annular mask that only transmits a ring of light of a defined angle has been used. A 
mask delivering light with a low effective index, therefore working only with the highest 
order modes that the fiber can support, was shown to double the measured thin-film 
absorbance on the FOC compared to that measured for the same film without a mask. (Beam 
et al., 2007)  

1.3 The electroactive-fiber optic chip (EA-FOC) 
Spectroelectrochemical measurements provide complimentary spectroscopic and 
electrochemical analytical data which have found applications using fiber coupled 
techniques. UV-Vis  (VanDyke & Cheng, 1988), FTIR  (Shaw & Geiger, 1996), and Raman  
(Hartnagel et al., 1995) fiber coupled spectroelectrochemical measurements have been 
obtained using the distal end of a fiber optic probe as the working electrode. These fiber 
optic probes, however, suffer from the limited optical pathlength of transmission 
absorbance spectroelectrochemical measurements. Over the last decade the sensitivity of 
spectroelectrochemical measurements has been significantly enhanced by using 
monochromatic and broadband ATR platforms, (Doherty et al., 2002; Winograd & 
Kuwana, 1969) multi-mode waveguides, and single-mode waveguides. (Bradshaw et al., 
2003; Dunphy et al., 1997; Dunphy et al., 1999; Itoh & Fujishima, 1988) A significant 
hindrance for these ATR and waveguide based spectroelectrochemical technologies has 
been interfacing the sensor platform with standard, commercially available spectroscopic 
instrumentation; thus, only one field portable instrument has been developed by 
Heinemann and coworkers to spectroelectrochemically detect ferrocyanide. (Monk et al., 
2002; Stegemiller et al., 2003) 
The first application of the FOC as a fully integrated fiber coupled spectroelctrochemical 
platform, was termed the electroactive-fiber optic chip (EA-FOC). To create the EA-FOC we 
coat the FOC with a thin-film of indium-tin oxide (ITO) as the working electrode (Figure 4a) 
and probe electrochemically driven changes in absorbance for surface confined redox species. 
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(Beam et al., 2009) The sensitivity enhancement of the EA-FOC platform is calculated using the 
methylene blue (MB) redox couple. Additionally, the properties of the EA-FOC are 
demonstrated by probing the redox spectroelectrochemistry of an electrodeposited film of the 
conducting polymer poly (3,4-ethylenedioxythiophene) (PEDOT). 
 

 
Fig. 4. The EA-FOC a) Schematic of the EA-FOC with labeled electrical contacts and a cross 
section (inset) b) comparison of the transmission spectra of an unpolished fiber with that of 
the EA-FOC and c) the EA-FOC out-coupled intensity as a function of potential at 665 nm in 
a 0.1M KNO3 aqueous solution. Modified from Beam et al., 2009. 

1.3.1 Optical effects of ITO on the FOC 
The optical properties of ITO are dependent on the electrochemical properties of the 
material. ITO is generally transparent in the visible region where the short wavelength cut 
off is determined by absorption due to the band gap of the material. The long wavelength 
cut off is due to scattering of free electrons and is determined by the plasma resonance 
frequency. As the free carriers within the material increases the plasma resonance 
wavelength decreases. Therefore, there is a trade off between increasing the free carrier 
concentration of ITO to improve the electrical properties and decreasing the transmission 
wavelength window. (Hartnagel et al., 1995) For the ITO sputtered onto the FOC device, the 
minimum absorptivity coefficient was estimated to be 5 × 10-3 at 500 nm (or a propagation 
loss of ~ 0.5 dB/cm). The transmission of the ITO film on the FOC will affect the optical 
properties of the device platform, and the broadband transmission of the EAFOC device is 
slightly decreased by the addition of ITO (Figure 4b). 
Before discussing spectroelectrochemical measurements made on the EA-FOC, it is 
important to evaluate the optical background of the device. Figure 4c plots the out-coupled 
intensity from the EA-FOC versus potential in an electrolyte solution without 
electrochemically active analytes. The linear decrease of intensity with potential is attributed 
to a change in the ITO absorptivity, which is due to the increase in free carrier concentration 
within the film as the applied potential decreases. To account for the affect of applied 
potential on the background signal of the EA-FOC, absorbance measurements at each 
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potential were calculated from solvent blanks recorded at a corresponding potential. 
Additionally, there is a slight hysteresis between the forward and backward potential 
sweeps due to ion diffusion. Equilibration of the ITO electrode in the electrolyte solution 
after 10 potential scans stabilized the magnitude of the hysteresis allowing analytical 
measurements to be collected. 

1.3.2 Spectroelectrochemical measurements 
The spectroelectrochemistry of adsorbed monolayers of methylene blue (MB) has been 
previously evaluated on both the ATR (Itoh & Fujishima, 1988) and waveguide-based 
(Dunphy et al., 1997) platforms; therefore, the MB redox couple is used to compare the 
EA-FOC measurements with these well-known techniques. MB electrostatically adsorbs to 
the ITO surface in its native oxidized form. The surface adsorbed MB undergoes a 
chemically reversible 2-electron reduction to the transparent leuco form of the dye at  
~ - 0.27 V versus a Ag/AgCl reference electrode. For the micromolar solution 
concentrations used in this study, the bulk MB absorbance does not contribute 
appreciably to the EA-FOC spectroelectrochemical response. Potential dependent spectra 
of MB on the EA-FOC (Figure 5a) shows absorbance maxima for both the monomer (665 
nm) and aggregate forms of this dye (605 nm). (Bergmann & O'Konski, 1963) 
Simultanteous optical and electrochemical detection of the MB redox couple allow for the 
calculation of the sensitivity of the EA-FOC using the the electrochemically determined 
surface coverage and the experimentally measured absorbance, using the Beer’s Law 
relationship in equation 1. The sensitivity of the EA-FOC was calculated to be 40 ± 2 or 
20.6/cm, which is comparable to sensitivities calculated for the FOC devices. (Beam et al., 
2009; Beam et al., 2007). 
 

 
Fig. 5. Spectroelectrochemistry with the EA-FOC a) Potential dependent broadband 
absorbance spectra of an MB film and b) Absorbance difference (at 550 nm) verus potential 
for PEDOT film (inset: broadband absorbance spectra for reduced/oxidized polymer on the 
EA-FOC). Modified from Beam et al., 2009.  

The EA-FOC was used to electrochemically polymerize an ultra-thin film, estimated to be 
0.3% of a monolayer, of poly (3,4-ethylenedioxythiophene) (PEDOT) and probe its 
electrochemical properties. The voltammogram of ultra-thin films of PEDOT has broad 
voltammetric peaks which are poorly distinquishable from the non-faradaic background. 
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(Beam et al., 2009) The sensitivity enhancement of the EA-FOC platform is calculated using the 
methylene blue (MB) redox couple. Additionally, the properties of the EA-FOC are 
demonstrated by probing the redox spectroelectrochemistry of an electrodeposited film of the 
conducting polymer poly (3,4-ethylenedioxythiophene) (PEDOT). 
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section (inset) b) comparison of the transmission spectra of an unpolished fiber with that of 
the EA-FOC and c) the EA-FOC out-coupled intensity as a function of potential at 665 nm in 
a 0.1M KNO3 aqueous solution. Modified from Beam et al., 2009. 

1.3.1 Optical effects of ITO on the FOC 
The optical properties of ITO are dependent on the electrochemical properties of the 
material. ITO is generally transparent in the visible region where the short wavelength cut 
off is determined by absorption due to the band gap of the material. The long wavelength 
cut off is due to scattering of free electrons and is determined by the plasma resonance 
frequency. As the free carriers within the material increases the plasma resonance 
wavelength decreases. Therefore, there is a trade off between increasing the free carrier 
concentration of ITO to improve the electrical properties and decreasing the transmission 
wavelength window. (Hartnagel et al., 1995) For the ITO sputtered onto the FOC device, the 
minimum absorptivity coefficient was estimated to be 5 × 10-3 at 500 nm (or a propagation 
loss of ~ 0.5 dB/cm). The transmission of the ITO film on the FOC will affect the optical 
properties of the device platform, and the broadband transmission of the EAFOC device is 
slightly decreased by the addition of ITO (Figure 4b). 
Before discussing spectroelectrochemical measurements made on the EA-FOC, it is 
important to evaluate the optical background of the device. Figure 4c plots the out-coupled 
intensity from the EA-FOC versus potential in an electrolyte solution without 
electrochemically active analytes. The linear decrease of intensity with potential is attributed 
to a change in the ITO absorptivity, which is due to the increase in free carrier concentration 
within the film as the applied potential decreases. To account for the affect of applied 
potential on the background signal of the EA-FOC, absorbance measurements at each 
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potential were calculated from solvent blanks recorded at a corresponding potential. 
Additionally, there is a slight hysteresis between the forward and backward potential 
sweeps due to ion diffusion. Equilibration of the ITO electrode in the electrolyte solution 
after 10 potential scans stabilized the magnitude of the hysteresis allowing analytical 
measurements to be collected. 

1.3.2 Spectroelectrochemical measurements 
The spectroelectrochemistry of adsorbed monolayers of methylene blue (MB) has been 
previously evaluated on both the ATR (Itoh & Fujishima, 1988) and waveguide-based 
(Dunphy et al., 1997) platforms; therefore, the MB redox couple is used to compare the 
EA-FOC measurements with these well-known techniques. MB electrostatically adsorbs to 
the ITO surface in its native oxidized form. The surface adsorbed MB undergoes a 
chemically reversible 2-electron reduction to the transparent leuco form of the dye at  
~ - 0.27 V versus a Ag/AgCl reference electrode. For the micromolar solution 
concentrations used in this study, the bulk MB absorbance does not contribute 
appreciably to the EA-FOC spectroelectrochemical response. Potential dependent spectra 
of MB on the EA-FOC (Figure 5a) shows absorbance maxima for both the monomer (665 
nm) and aggregate forms of this dye (605 nm). (Bergmann & O'Konski, 1963) 
Simultanteous optical and electrochemical detection of the MB redox couple allow for the 
calculation of the sensitivity of the EA-FOC using the the electrochemically determined 
surface coverage and the experimentally measured absorbance, using the Beer’s Law 
relationship in equation 1. The sensitivity of the EA-FOC was calculated to be 40 ± 2 or 
20.6/cm, which is comparable to sensitivities calculated for the FOC devices. (Beam et al., 
2009; Beam et al., 2007). 
 

 
Fig. 5. Spectroelectrochemistry with the EA-FOC a) Potential dependent broadband 
absorbance spectra of an MB film and b) Absorbance difference (at 550 nm) verus potential 
for PEDOT film (inset: broadband absorbance spectra for reduced/oxidized polymer on the 
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The EA-FOC was used to electrochemically polymerize an ultra-thin film, estimated to be 
0.3% of a monolayer, of poly (3,4-ethylenedioxythiophene) (PEDOT) and probe its 
electrochemical properties. The voltammogram of ultra-thin films of PEDOT has broad 
voltammetric peaks which are poorly distinquishable from the non-faradaic background. 
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However, PEDOT undergoes a reversible oxidation from the neutral dark blue form of the 
polymer to the almost transparent single polaron state and upon further oxidation the 
bipolaron state of the polymer. (Chen & Inganas, 1996) The spectroelectrochemical 
measurement in Figure 5b of the change in absorbance at the λmax (550 nm) versus potential 
on the EA-FOC illustrates the electrochromic behavior of the polymer. The EA-FOC only 
monitors the appearance/disappearance of the dark blue neutral form of the polymer and 
does not indicate the state of the polymer upon oxidation. (Beam et al., 2009) The EA-FOC 
has the requisite sensitivity to monitor optical redox changes in submonolayer surface 
coverages of molecular thin-films. 

2. Fluorescence bioassay 
Fluorescence detection architectures are of particular importance for biosensing applications 
where the fluorescence signal is detected against a zero background enabling low limits of 
detection, typically in the nano- to femto-molar range. Optical transducers have the 
advantages of being non-destructive, sensitive, and can be used for real-time and kinetic 
measurements. Fluorescence signal transduction has widespread applications due to the 
commercial availability of a variety of fluorescent labels which only require simple 
modification procedures for incorporation with biomolecules. Several reviews and books 
have been published which discuss the different fluorescent biosensor designs and 
applications. (Collings & Caruso, 1997; Cunningham, 1998; Janata et al., 1994; Marazuela & 
Moreno-Bondi, 2002; Taitt et al., 2005; Thompson, 2006)  
Commonly biosensor architectures require immobilization of the biological recognition 
event onto a surface for which the evanescent field of optical waveguide platforms is 
specifically suited. Fiber-coupled sensor platforms do not require the bulky free-space optics 
used for fluorescence microscopy, total internal reflection fluorescence (TIRF), and planar 
waveguide techniques. Therefore, integrated excitation and emission fiber optic platforms 
have been constructed using different structures including a de-clad cylindrical core and 
tapered optical fibers. The FOC is the first demonstration of a multi-mode side polished 
fiber as a planar integrated excitation and emission platform.  

2.1 Mechanism of back-coupled fluorescence 
According to Snell’s law, light traveling in a lower refractive index medium is refracted at a 
planar interface with angles below the critical angle in a high-index medium, such as a slab 
waveguide. For light to be guided within a waveguide it must be launched at angles greater 
than the critical angle; therefore, light from a lower refractive index medium cannot in 
principle be guided (Figure 6a). However, for surface confined fluorophores, the proximity 
of the fluorophores to the waveguiding structure allows coupling of the evanescent photons 
into guided modes of the waveguide termed back-coupled fluorescence. In other words, the 
electromagnetic near field, created by the oscillation of the excited dipole from the surface 
confined fluorophore, overlaps with the evanescent tail of the waveguide modes and meets 
the conditions for light propagation within the waveguide (Figure 6b). (Carniglia et al., 1972) 
Harrick and Loeb first applied the principle of back-coupled fluorescence using an ATR 
element to detect a fluorescently labeled self-assembled thin-film of bovine serum albumin. 
Fiber optic based back-coupled fluorescence biosensors were first presented by Andrade et 
al. in 1985 and theoretically explored by Glass et al. and Marcuse.  
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Fig. 6. Back-coupled fluorescence: a) light propagating from fluorophores far away from the 
waveguiding structure will be refracted at angles less than the critical angle, and therefore 
will not excite waveguide modes within the structure. b) Light propagating from 
fluorophores within close proximity of the waveguiding structure will back-couple 
fluorescence into the waveguide because the evanescent photons, or the near-field, of the 
fluorophore will overlap with the evanescent tail of propagating modes in the structure. 

2.2 Fiber optic based fluorescence sensors 
The pioneering research utilizing a de-clad quartz fiber to collect back-coupled fluorescence 
from immobilized biomolecules was presented by Sutherland et.al, Andrade et.al, and Glass 
et.al. Biosensors based on receptor proteins (Garden et al., 2004; Rogers et al., 1991; Rogers et 
al., 1989), antibody-antigen interactions (Anis et al., 1993; Bier et al., 1992; Devine et al., 1995; 
Eenink et al., 1990; McCormack et al., 1997; Oroszlan et al., 1993; Shriver-Lake et al., 1995; 
Toppozada et al., 1997; Walczak et al., 1992), sandwich immunoassay (Geng et al., 2006; 
Kapoor et al., 2004), and oligonucleotides (Abel et al., 1996; Graham et al., 1992; Pandey & 
Weetall, 1995) have been presented employing the de-clad fiber geometry. However, the de-
clad fiber architecture is limited by the fragile nature of the fiber platform and inefficient 
fluorescence back-coupling due to the sharp V-number mismatch.  
The V-number, or waveguide parameter, of a waveguide platform can be used to calculate 
the number of modes the structure will support (Equation 2). 
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Where π and λ have their usual meanings, r is the radius of the fiber, ncore and nclad are the 
refractive index of the core and cladding respectively. For example, a 50 µm fiber with an 
ncore of 1.460 and nclad of 1.443 will have a V-number of 62 at 560 nm. For the de-clad fiber 
sensor geometry, the value of nclad should be replaced with the aqueous medium 
surrounding the sensing platform (1.33); therefore, the V-number is 169 at 560 nm in the 
sensing region. Thus, approximately 60% of the modes in the sensing region of the fiber will 
not propagate in the fiber. To complicate the matter further, the back-coupled fluorescence 
primarily propagates in the higher order modes of the de-clad fiber, which are the non-
propagating modes in the clad fiber. 
One method researchers have employed to minimize back-coupled fluorescence loss due to 
V-number mismatch is to increase the value of nclad in the sensing region of a de-clad fiber. 
Potyrailo and Hieftje have immobilized reagents sensitive to ammonia, humidity, and 
oxygen in the polymer cladding of optical fibers, thus ensuring no change in the value of 
nclad. (Potyrailo & Hieftje, 1998; Potyrailo & Hieftje, 1999) An alternative strategy to increase 
nclad in the sensing region of a de-clad fiber is the application of a sol-gel cladding containing 
an analyte sensitive dye. (Browne et al., 1996; Kao et al., 1998; MacCraith et al., 1993; O'Keeffe 
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However, PEDOT undergoes a reversible oxidation from the neutral dark blue form of the 
polymer to the almost transparent single polaron state and upon further oxidation the 
bipolaron state of the polymer. (Chen & Inganas, 1996) The spectroelectrochemical 
measurement in Figure 5b of the change in absorbance at the λmax (550 nm) versus potential 
on the EA-FOC illustrates the electrochromic behavior of the polymer. The EA-FOC only 
monitors the appearance/disappearance of the dark blue neutral form of the polymer and 
does not indicate the state of the polymer upon oxidation. (Beam et al., 2009) The EA-FOC 
has the requisite sensitivity to monitor optical redox changes in submonolayer surface 
coverages of molecular thin-films. 

2. Fluorescence bioassay 
Fluorescence detection architectures are of particular importance for biosensing applications 
where the fluorescence signal is detected against a zero background enabling low limits of 
detection, typically in the nano- to femto-molar range. Optical transducers have the 
advantages of being non-destructive, sensitive, and can be used for real-time and kinetic 
measurements. Fluorescence signal transduction has widespread applications due to the 
commercial availability of a variety of fluorescent labels which only require simple 
modification procedures for incorporation with biomolecules. Several reviews and books 
have been published which discuss the different fluorescent biosensor designs and 
applications. (Collings & Caruso, 1997; Cunningham, 1998; Janata et al., 1994; Marazuela & 
Moreno-Bondi, 2002; Taitt et al., 2005; Thompson, 2006)  
Commonly biosensor architectures require immobilization of the biological recognition 
event onto a surface for which the evanescent field of optical waveguide platforms is 
specifically suited. Fiber-coupled sensor platforms do not require the bulky free-space optics 
used for fluorescence microscopy, total internal reflection fluorescence (TIRF), and planar 
waveguide techniques. Therefore, integrated excitation and emission fiber optic platforms 
have been constructed using different structures including a de-clad cylindrical core and 
tapered optical fibers. The FOC is the first demonstration of a multi-mode side polished 
fiber as a planar integrated excitation and emission platform.  

2.1 Mechanism of back-coupled fluorescence 
According to Snell’s law, light traveling in a lower refractive index medium is refracted at a 
planar interface with angles below the critical angle in a high-index medium, such as a slab 
waveguide. For light to be guided within a waveguide it must be launched at angles greater 
than the critical angle; therefore, light from a lower refractive index medium cannot in 
principle be guided (Figure 6a). However, for surface confined fluorophores, the proximity 
of the fluorophores to the waveguiding structure allows coupling of the evanescent photons 
into guided modes of the waveguide termed back-coupled fluorescence. In other words, the 
electromagnetic near field, created by the oscillation of the excited dipole from the surface 
confined fluorophore, overlaps with the evanescent tail of the waveguide modes and meets 
the conditions for light propagation within the waveguide (Figure 6b). (Carniglia et al., 1972) 
Harrick and Loeb first applied the principle of back-coupled fluorescence using an ATR 
element to detect a fluorescently labeled self-assembled thin-film of bovine serum albumin. 
Fiber optic based back-coupled fluorescence biosensors were first presented by Andrade et 
al. in 1985 and theoretically explored by Glass et al. and Marcuse.  
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Fig. 6. Back-coupled fluorescence: a) light propagating from fluorophores far away from the 
waveguiding structure will be refracted at angles less than the critical angle, and therefore 
will not excite waveguide modes within the structure. b) Light propagating from 
fluorophores within close proximity of the waveguiding structure will back-couple 
fluorescence into the waveguide because the evanescent photons, or the near-field, of the 
fluorophore will overlap with the evanescent tail of propagating modes in the structure. 

2.2 Fiber optic based fluorescence sensors 
The pioneering research utilizing a de-clad quartz fiber to collect back-coupled fluorescence 
from immobilized biomolecules was presented by Sutherland et.al, Andrade et.al, and Glass 
et.al. Biosensors based on receptor proteins (Garden et al., 2004; Rogers et al., 1991; Rogers et 
al., 1989), antibody-antigen interactions (Anis et al., 1993; Bier et al., 1992; Devine et al., 1995; 
Eenink et al., 1990; McCormack et al., 1997; Oroszlan et al., 1993; Shriver-Lake et al., 1995; 
Toppozada et al., 1997; Walczak et al., 1992), sandwich immunoassay (Geng et al., 2006; 
Kapoor et al., 2004), and oligonucleotides (Abel et al., 1996; Graham et al., 1992; Pandey & 
Weetall, 1995) have been presented employing the de-clad fiber geometry. However, the de-
clad fiber architecture is limited by the fragile nature of the fiber platform and inefficient 
fluorescence back-coupling due to the sharp V-number mismatch.  
The V-number, or waveguide parameter, of a waveguide platform can be used to calculate 
the number of modes the structure will support (Equation 2). 
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Where π and λ have their usual meanings, r is the radius of the fiber, ncore and nclad are the 
refractive index of the core and cladding respectively. For example, a 50 µm fiber with an 
ncore of 1.460 and nclad of 1.443 will have a V-number of 62 at 560 nm. For the de-clad fiber 
sensor geometry, the value of nclad should be replaced with the aqueous medium 
surrounding the sensing platform (1.33); therefore, the V-number is 169 at 560 nm in the 
sensing region. Thus, approximately 60% of the modes in the sensing region of the fiber will 
not propagate in the fiber. To complicate the matter further, the back-coupled fluorescence 
primarily propagates in the higher order modes of the de-clad fiber, which are the non-
propagating modes in the clad fiber. 
One method researchers have employed to minimize back-coupled fluorescence loss due to 
V-number mismatch is to increase the value of nclad in the sensing region of a de-clad fiber. 
Potyrailo and Hieftje have immobilized reagents sensitive to ammonia, humidity, and 
oxygen in the polymer cladding of optical fibers, thus ensuring no change in the value of 
nclad. (Potyrailo & Hieftje, 1998; Potyrailo & Hieftje, 1999) An alternative strategy to increase 
nclad in the sensing region of a de-clad fiber is the application of a sol-gel cladding containing 
an analyte sensitive dye. (Browne et al., 1996; Kao et al., 1998; MacCraith et al., 1993; O'Keeffe 
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et al., 1995) A second method to match the V-number between the clad and unclad sensing 
region of fiber optic sensors is to decrease r in the sensing region through etching the de-
clad fiber. Fluorescent fiber sensors, where the de-clad sensing region has been step- or 
taper-etched, exhibit a 20 to 50 fold improvement in sensitivity. (Anderson et al., 1994; 
Anderson et al., 1994) Tapered fiber optic biosensor platforms have been applied to 
sandwich assays (Golden et al., 1992; Zhou et al., 1997), immunosensors (Anderson et al., 
1993; Maragos & Thompson, 1999; Thompson & Maragos, 1996), and measuring pH. (Grant 
& Glass, 1997) The feasibility of collecting fluorescence using a single-mode biconical 
tapered fiber has also been explored. (Wiejata et al., 2003)  
The FOC provides a planar, robust, supported, side-polished multimode fiber platform for 
fluorescence biosensing applications. A related platform using a single-mode fiber in a bent 
configuration to collect the luminescence of a rhodamine 6-G film has been previously 
reported; however, this device was limited to single wavelength detection and relied on 
frequency modulated detection. (Poscio et al., 1990) The ability to simply collect broadband 
fluorescence will enable the FOC device to be used in a broad range of sensor configurations 
using fluorescence detection systems, including on-chip, fully integrated excitation and 
sequential optical characterization of luminescent analytes. The first generation FOC device 
demonstrated back-coupled fluoresence with a drop cast film of CdSe semiconductor 
nanoparticles (SC-NP) as a luminescent model system. (Beam et al., 2007) Here, the FOC is 
applied to quantitatively characterize a biotin-Streptavidin binding event as a model 
bioassay system. 

2.3 BSA-biotin/streptavidin-CY bioassay on the planar fiber optic chip 
A bioassay of surface-adsorbed biotin with fluorescently labeled streptavidin was chosen to 
quantitatively explore back-coupled fluorescence collection by the FOC. The small molecule 
biotin interacts non-covalently with the streptavidin protein and is highly specific, with one 
of the largest known binding constants (Ka ≅ 1015 M-1). Bovine serum albumin (BSA) labeled 
with biotin (Sigma) adsorbs to the surface of the FOC and is transparent in the visible 
region. The back-coupled fluorescence is collected from the fluorescently labeled (Cascade 
Yellow, CY: Invitrogen) streptavidin bound to the surface adsorbed biotin. The Cascade 
Yellow dye was chosen for labeling due to its large Stokes shift (~150 nm) and short 
excitation wavelength. A fluorophore with a large Stokes shift is very valuable for back-
coupled fluorescence measurements because of the magnified inner-filter effects of the 
fluorophores on the waveguide platform. Back-coupled fluorescence propagates in the 
waveguide modes; therefore, the emitted light is available in the evanescent field for re-
absorption by the same film. The concentration dependence of the bioassay and the 
efficiency of the back-coupled fluorescence collected by the FOC are examined. 
A representative spectrum of a BSA-biotin/streptavidin-CY film is plotted in Figure 7a 
along with two control experiments. The first control confirms that there is no contribution 
to the fluorescence from the BSA-biotin thin-film (blue line). The second control consisted of 
a BSA film, which was not labeled with biotin, to be incubated with the fluorescently tagged 
streptavidin to test for non-specific adsorption (green line). The contribution to the back-
coupled fluorescence from non-specific adsorption of streptavidin-CY was shown to be 
below the detection limit of the experimental set-up. Finally, to confirm the back-coupled 
fluorescence resulted from the Cascade Yellow dye, the corrected back-coupled fluorescence 
spectrum is compared with the Cascade Yellow spectrum supplied by the manufacturer.  
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Fig. 7. Back-coupled fluorescence for a biotin/streptavidin bioassay. a) Cascade Yellow 
flourescence (black) spectra from the manufacturer (Invitrogen). Back-coupled fluorescence 
spectra for a BSA-biotin/streptavidin-CY film (red), background fluorescence from the 
buffer and biotin-BSA film was shown to be negligible (blue), and fluorescence due to 
nonspecific adsorption of the strepavidin was shown to be below the detection limit of the 
measurement (green) by using an unlabeled film of BSA. b) Bioassay calibration plot of the 
streptavidin-CY bulk concentration versus the average maximum collected fluorescence 
intensity on the FOC. 

The concentration dependence of the collected back-coupled fluorescence for the bioassay 
was determined by varying the concentration of streptavidin-CY while maintaining the 
same adsorption conditions for the BSA-biotin film. The fluorescence for three BSA-
biotin/streptavidin-CY films was collected for each bulk solution concentration (1, 7, 14, 19, 
28, 56, and 75 µg/mL). A plot of bulk concentration versus the average fluorescence 
maximum intensity illustrates a linear dependence of fluorescence with bulk concentration 
and a R2 value close to 0.97 for bulk concentrations less than 28 µM (Figure 7b). A self 
limiting surface coverage at bulk concentrations ≥ 28 µM was observed. The subsequent 
slight decline in fluorescence for the higher bulk concentrations is attributed to 
luminescence quenching and photobleaching of dyes in close proximity to each other. The 
observed bulk concentration limit of detection for the biotin/streptavidin bioassay is 15 nM, 
which is on the order of the LOD reported for several de-clad fiber fluorescence sensors. 
(Anis et al., 1993; Devine et al., 1995; Eenink et al., 1990; Graham et al., 1992; McCormack et al., 
1997; Oroszlan et al., 1993; Pandey & Weetall, 1995; Shriver-Lake et al., 1995; Sutherland et al., 
1984) However, the measured pathlength of the FOC is only ~ 24 mm for this device 
compared to the ~ 60 mm pathlength of most cylindrical core de-clad fiber sensor platforms. 
The de-clad fiber sensor platforms require large fiber cores (~ 600 µm) with low modal 
surface interaction to increase mechanical strength, and therefore, a long interaction length 
is necessary. The supported planar substrate of the side polished FOC increases the 
mechanical robustness of the platform; thus, smaller core (50 µm), more surface sensitive 
fibers are used. One method which could be employed to decrease the LOD of the FOC 
based fluorescence sensor, and to surpass the de-clad fiber platforms, is to increase the 
physical pathlength of the FOC device. 
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fluorescence biosensing applications. A related platform using a single-mode fiber in a bent 
configuration to collect the luminescence of a rhodamine 6-G film has been previously 
reported; however, this device was limited to single wavelength detection and relied on 
frequency modulated detection. (Poscio et al., 1990) The ability to simply collect broadband 
fluorescence will enable the FOC device to be used in a broad range of sensor configurations 
using fluorescence detection systems, including on-chip, fully integrated excitation and 
sequential optical characterization of luminescent analytes. The first generation FOC device 
demonstrated back-coupled fluoresence with a drop cast film of CdSe semiconductor 
nanoparticles (SC-NP) as a luminescent model system. (Beam et al., 2007) Here, the FOC is 
applied to quantitatively characterize a biotin-Streptavidin binding event as a model 
bioassay system. 

2.3 BSA-biotin/streptavidin-CY bioassay on the planar fiber optic chip 
A bioassay of surface-adsorbed biotin with fluorescently labeled streptavidin was chosen to 
quantitatively explore back-coupled fluorescence collection by the FOC. The small molecule 
biotin interacts non-covalently with the streptavidin protein and is highly specific, with one 
of the largest known binding constants (Ka ≅ 1015 M-1). Bovine serum albumin (BSA) labeled 
with biotin (Sigma) adsorbs to the surface of the FOC and is transparent in the visible 
region. The back-coupled fluorescence is collected from the fluorescently labeled (Cascade 
Yellow, CY: Invitrogen) streptavidin bound to the surface adsorbed biotin. The Cascade 
Yellow dye was chosen for labeling due to its large Stokes shift (~150 nm) and short 
excitation wavelength. A fluorophore with a large Stokes shift is very valuable for back-
coupled fluorescence measurements because of the magnified inner-filter effects of the 
fluorophores on the waveguide platform. Back-coupled fluorescence propagates in the 
waveguide modes; therefore, the emitted light is available in the evanescent field for re-
absorption by the same film. The concentration dependence of the bioassay and the 
efficiency of the back-coupled fluorescence collected by the FOC are examined. 
A representative spectrum of a BSA-biotin/streptavidin-CY film is plotted in Figure 7a 
along with two control experiments. The first control confirms that there is no contribution 
to the fluorescence from the BSA-biotin thin-film (blue line). The second control consisted of 
a BSA film, which was not labeled with biotin, to be incubated with the fluorescently tagged 
streptavidin to test for non-specific adsorption (green line). The contribution to the back-
coupled fluorescence from non-specific adsorption of streptavidin-CY was shown to be 
below the detection limit of the experimental set-up. Finally, to confirm the back-coupled 
fluorescence resulted from the Cascade Yellow dye, the corrected back-coupled fluorescence 
spectrum is compared with the Cascade Yellow spectrum supplied by the manufacturer.  
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Fig. 7. Back-coupled fluorescence for a biotin/streptavidin bioassay. a) Cascade Yellow 
flourescence (black) spectra from the manufacturer (Invitrogen). Back-coupled fluorescence 
spectra for a BSA-biotin/streptavidin-CY film (red), background fluorescence from the 
buffer and biotin-BSA film was shown to be negligible (blue), and fluorescence due to 
nonspecific adsorption of the strepavidin was shown to be below the detection limit of the 
measurement (green) by using an unlabeled film of BSA. b) Bioassay calibration plot of the 
streptavidin-CY bulk concentration versus the average maximum collected fluorescence 
intensity on the FOC. 

The concentration dependence of the collected back-coupled fluorescence for the bioassay 
was determined by varying the concentration of streptavidin-CY while maintaining the 
same adsorption conditions for the BSA-biotin film. The fluorescence for three BSA-
biotin/streptavidin-CY films was collected for each bulk solution concentration (1, 7, 14, 19, 
28, 56, and 75 µg/mL). A plot of bulk concentration versus the average fluorescence 
maximum intensity illustrates a linear dependence of fluorescence with bulk concentration 
and a R2 value close to 0.97 for bulk concentrations less than 28 µM (Figure 7b). A self 
limiting surface coverage at bulk concentrations ≥ 28 µM was observed. The subsequent 
slight decline in fluorescence for the higher bulk concentrations is attributed to 
luminescence quenching and photobleaching of dyes in close proximity to each other. The 
observed bulk concentration limit of detection for the biotin/streptavidin bioassay is 15 nM, 
which is on the order of the LOD reported for several de-clad fiber fluorescence sensors. 
(Anis et al., 1993; Devine et al., 1995; Eenink et al., 1990; Graham et al., 1992; McCormack et al., 
1997; Oroszlan et al., 1993; Pandey & Weetall, 1995; Shriver-Lake et al., 1995; Sutherland et al., 
1984) However, the measured pathlength of the FOC is only ~ 24 mm for this device 
compared to the ~ 60 mm pathlength of most cylindrical core de-clad fiber sensor platforms. 
The de-clad fiber sensor platforms require large fiber cores (~ 600 µm) with low modal 
surface interaction to increase mechanical strength, and therefore, a long interaction length 
is necessary. The supported planar substrate of the side polished FOC increases the 
mechanical robustness of the platform; thus, smaller core (50 µm), more surface sensitive 
fibers are used. One method which could be employed to decrease the LOD of the FOC 
based fluorescence sensor, and to surpass the de-clad fiber platforms, is to increase the 
physical pathlength of the FOC device. 
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2.4 Back-coupled fluorescence collection efficiency 
To quantify the fluorescence collection of the FOC using the BSA-biotin/streptavidin-CY 
bioassay an efficiency calculation was conducted. The backcoupled fluorescence collection 
efficiency is calculated from the power ratio of the actual fluorescence collected (PFOC) and 
the calculated total power of fluorescence of the film (Pcalc) (Equation 3). 
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PFOC is the area under a gaussian fit curve to the corrected fluorescence spectrum detected 
(mW). The values in the denominator are an expression of the calculated fluorescence power 
propagating in all directions, where Po is the power launched into the fiber from the 405 nm 
laser (mW); L is defined as 1-Loss of the FOC; ( )4051 10 A−−  is the percent of power absorbed 
at 405 nm by the dye and available to be converted to fluorescence; and Qcy is the quantum 
yield of the Cascade Yellow labeled streptavidin. The calculated back-coupled fluorescence 
efficiency is 0.02% of the light emitted by the Cascade Yellow dye. For comparison, only 2% 
of the light emitted from an isotropic emitter is typically collected with a lens. To improve 
device performance and decrease the detection, the FOC should be engineered to more 
efficiently collect back-coupled fluorescence. The back-coupled fluorescence efficiency could 
be improved upon by increasing the numerical aperture/refractive index of the fiber; 
however, the extent of V-number mismatch of the FOC platform should be evaluated in 
conjunction with alternative FOC architectures.  

3. Bright and broadband-guided light source 
Field portable optical sensing devices require light sources that are robust, compact, 
spectrally broad, and bright. The ideal fiber coupled light source will have high power per 
unit area and unit solid angle; thus, yielding high power per guided mode inside an optical 
fiber. Using the back-coupled light mechanism of fluorescent thin-films deposited on the 
FOC platform, a fully integreated broadband, bright guided light source is created. The FOC 
light source is produced by pumping an aluminum tris-hydroxyquinoline thin-film capped 
with a silicon dioxide overlayer. A directly fiber coupled broadband FOC source extending 
from 405 nm to 650 nm is produced with an output of 1.8 mW, which is significantly 
brighter than a fiber-coupled tungsten source and spectrally borader than a light emitting 
diode (LED) source. 

3.1 Fiber optic light sources 
Bright and spectrally broad light sources are currently required for several applications 
including optical coherence tomography, optical spectroscopies, and chemical/biological 
sensing. Recently, several promising technologies have been developed to fulfill those 
needs. In particular, superluminescent LEDs (Zhang et al., 2009), supercontinuum-
generation light sources (Berge et al., 2007), and amplified spontaneous emission (Samuel 
& Turnbull, 2007) are becoming increasingly useful for many applications. Despite those 
developments, a cost-effective light source that is fiber-coupled, spectrally broad, and 
bright is still in quite demand, especially in the visible and ultra-violet regions of the 
spectrum. 
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3.2 Planar fiber optic chip broadband light source 
The planar geometry of the FOC device is amenable to standard thin-film deposition 
architectures such as thermal deposition. The back-coupled fluorescence from an organic 
fluorophore deposited on the polished surface of the FOC platform is used to create a fully 
integrated fiber optic broadband light source. With the growing interest in organic LEDs 
and photovoltaic devices, a vast number of inexpensive, easily processable, high quantum 
yield fluorescent organic materials are commercially available. (Kafafi, 2005; Li et al., 2007) 
These fluorescent organic compounds garner much interest because of their broad emission 
spectrum when compared to inorganic compounds such as GaN and Si. Tris-aluminum 8-
hydroxyquinoline (Alq3) was chosen as a fluorescent material for the FOC light source due 
to its broad emission in the visible region. A 45 nm thick film of Alq3 was deposited on the 
FOC using thermal deposition. Both oxygen and water can cause degradation of the Alq3 
thin-film (Burrows et al., 1994; McElvain et al., 1996); therefore, FOC light source devices 
must be protected from the ambient environment to ensure continued operation. 
Encapsulation of the FOC device was achieved with a 100 nm film of SiO2 deposited, by 
electron beam evaporation, over the Alq3 film without breaking vacuum. Emission of the 
Alq3 film on the FOC device is achieved with pumping the film with a 405 nm GaN laser 
diode which is fiber coupled into the FOC platform. Figure 8a shows a picture of the active 
region of the FOC light source, where luminescence in the Alq3 film is back-coupled into 
guided modes of the fiber, next to the light out-coupled from the FOC fiber. 
 

 
Fig. 8. a) Image of the FOC light source device; b) comparison of the fiber output of the FOC 
light source with a fiber coupled 6V tungsten-halogen lamp. 

A comparison of the out-coupled spectrum from the FOC light source with a fiber coupled 
6V tungsten lamp are plotted in Figure 8b. The light from the thermal source (6V tungsten 
lamp) is coupled into the same patch cable as the FOC using similar high precision 
aspheric optics. The fluorescence from the FOC light source has an increased out-coupled 
intensity over a 100 nm range from 480 to 580 nm overlapping with the Alq3 emission peak 
compared to the fiber coupled thermal source. The spectra resulting from the FOC light 
source includes a large intensity peak at 405 nm for the laser used to pump the film. The 
measured power intensity out-coupled from the FOC light source was measured to be 1.8 
mW.  
While optical pumping was used for these experiments, there is the potential to use an 
electrically pumped system to directly drive the FOC light source producing broadband 



 
Recent Progress in Optical Fiber Research 398 

2.4 Back-coupled fluorescence collection efficiency 
To quantify the fluorescence collection of the FOC using the BSA-biotin/streptavidin-CY 
bioassay an efficiency calculation was conducted. The backcoupled fluorescence collection 
efficiency is calculated from the power ratio of the actual fluorescence collected (PFOC) and 
the calculated total power of fluorescence of the film (Pcalc) (Equation 3). 
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PFOC is the area under a gaussian fit curve to the corrected fluorescence spectrum detected 
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efficiency is 0.02% of the light emitted by the Cascade Yellow dye. For comparison, only 2% 
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device performance and decrease the detection, the FOC should be engineered to more 
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be improved upon by increasing the numerical aperture/refractive index of the fiber; 
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spectrally broad, and bright. The ideal fiber coupled light source will have high power per 
unit area and unit solid angle; thus, yielding high power per guided mode inside an optical 
fiber. Using the back-coupled light mechanism of fluorescent thin-films deposited on the 
FOC platform, a fully integreated broadband, bright guided light source is created. The FOC 
light source is produced by pumping an aluminum tris-hydroxyquinoline thin-film capped 
with a silicon dioxide overlayer. A directly fiber coupled broadband FOC source extending 
from 405 nm to 650 nm is produced with an output of 1.8 mW, which is significantly 
brighter than a fiber-coupled tungsten source and spectrally borader than a light emitting 
diode (LED) source. 

3.1 Fiber optic light sources 
Bright and spectrally broad light sources are currently required for several applications 
including optical coherence tomography, optical spectroscopies, and chemical/biological 
sensing. Recently, several promising technologies have been developed to fulfill those 
needs. In particular, superluminescent LEDs (Zhang et al., 2009), supercontinuum-
generation light sources (Berge et al., 2007), and amplified spontaneous emission (Samuel 
& Turnbull, 2007) are becoming increasingly useful for many applications. Despite those 
developments, a cost-effective light source that is fiber-coupled, spectrally broad, and 
bright is still in quite demand, especially in the visible and ultra-violet regions of the 
spectrum. 

 
Applications of the Planar Fiber Optic Chip 399 
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The planar geometry of the FOC device is amenable to standard thin-film deposition 
architectures such as thermal deposition. The back-coupled fluorescence from an organic 
fluorophore deposited on the polished surface of the FOC platform is used to create a fully 
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and photovoltaic devices, a vast number of inexpensive, easily processable, high quantum 
yield fluorescent organic materials are commercially available. (Kafafi, 2005; Li et al., 2007) 
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spectrum when compared to inorganic compounds such as GaN and Si. Tris-aluminum 8-
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to its broad emission in the visible region. A 45 nm thick film of Alq3 was deposited on the 
FOC using thermal deposition. Both oxygen and water can cause degradation of the Alq3 
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must be protected from the ambient environment to ensure continued operation. 
Encapsulation of the FOC device was achieved with a 100 nm film of SiO2 deposited, by 
electron beam evaporation, over the Alq3 film without breaking vacuum. Emission of the 
Alq3 film on the FOC device is achieved with pumping the film with a 405 nm GaN laser 
diode which is fiber coupled into the FOC platform. Figure 8a shows a picture of the active 
region of the FOC light source, where luminescence in the Alq3 film is back-coupled into 
guided modes of the fiber, next to the light out-coupled from the FOC fiber. 
 

 
Fig. 8. a) Image of the FOC light source device; b) comparison of the fiber output of the FOC 
light source with a fiber coupled 6V tungsten-halogen lamp. 

A comparison of the out-coupled spectrum from the FOC light source with a fiber coupled 
6V tungsten lamp are plotted in Figure 8b. The light from the thermal source (6V tungsten 
lamp) is coupled into the same patch cable as the FOC using similar high precision 
aspheric optics. The fluorescence from the FOC light source has an increased out-coupled 
intensity over a 100 nm range from 480 to 580 nm overlapping with the Alq3 emission peak 
compared to the fiber coupled thermal source. The spectra resulting from the FOC light 
source includes a large intensity peak at 405 nm for the laser used to pump the film. The 
measured power intensity out-coupled from the FOC light source was measured to be 1.8 
mW.  
While optical pumping was used for these experiments, there is the potential to use an 
electrically pumped system to directly drive the FOC light source producing broadband 
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spectra with high brightness. Using an ITO film as a transparent electrode, organic layers 
could be built onto the FOC structure very similar to that of an organic light emitting diode. 
Combining emission spectra for multiple organic films would allow an even broader output 
spectrum to be achieved. With the amount of research in organic fluorescent compounds 
with increased quantum efficiences and variety of wavelength ranges, improving the power 
output and wavelength range of future FOC light source devices will be developed. 

4. Raman spectroscopy 
Raman spectroscopy is a well-established analytical technique that can identify chemical 
and physical properties through interactions with the vibrational states of a particular 
analyte. This section presents investigations of excitation and collection of Raman scattering 
using the FOC for thin molecular films. Thin-film Raman measurements were achieved with 
the added signal enhancement of surface enhanced raman spectroscopy (SERS). Gold 
nanoparticles are deposited on the FOC surface to enhance the Raman signal of a 4-
aminothiophenol film and the Raman signal was both excited and collected by the FOC in 
decoupled instrument schemes. In a similar approach, Raman scattering of carbon 
nanotubes was demonstrated, setting the stage for the FOC as a platform for interesting 
chemical analysis. 

4.1 Raman scattering 
Raman spectroscopy relies on the inelastic scattering of incident light with Raman active 
molecular thin-films. Typically, in an elastic event known as Rayleigh scattering, the excited 
molecule relaxes back to the initial ground state and light of equal energy to the incident 
light is reemitted. Raman scattering occurs when interactions between molecular vibrations 
and rotations with the incident light result in lower frequency, Stokes, or higher frequency, 
anti-Stokes, shifts from the incident frequency of light. Raman spectra are independent of 
the initial frequency of the incident light, and the resultant energy spectrum is a signature of 
the vibrational/rotational states of the probed molecules. 
Raman scattering occurs for only one out of every 106-108 scattering events, making it a very 
weak signal. (Smith & Dent, 2005) To improve upon this small cross section, researchers 
have utilized the effects of localized surface plasmon resonance. A localized surface 
plasmon resonance occurs when small metallic structures are irradiated by light. Similar to a 
lightning rod, these structures induce an electric-field enhancing corona effect. This effect 
relies on the size of the metallic structure to be small compared to the wavelength of the 
incident light, and the electric-field will concentrate in areas of greatest curvature. Surface 
enhanced Raman spectroscopy (SERS) occurs when Raman active molecules are in the 
presence of roughened metallic surfaces or nanoparticles. The electric-field amplitude will 
generate a larger intensity of the incident light as well as amplify Raman scattering. The 
SERS amplification effect has lead to reported Raman signal enhancements of 106 (Felidj et 
al., 2003), 1011 (Gupta & Weimer, 2003), even 1014 (Kneipp et al., 1997). (Willets & Van Duyne, 
2007) 
Increasing Raman spectroscopy sensitivity has been sought after in recent years, ultimately 
reaching single molecule detection. (Kneipp et al., 1997; Xu et al., 1999) Particularly, thin-film 
characterization is of interest to a growing number of fields yet analysis by conventional 
commercial Raman microscope instruments is difficult due to the convolution between 
analyte and substrate Raman activity. The unique geometry of the FOC allows for analyzing 
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a strip of sample rather than a single spot as found in conventional Raman machine. We 
present here the extended ability of the FOC to both excite and collect Raman scattering of 
thin-films.  

4.2 Fiber optic raman probes 
The use of distal end fiber probes for Raman scattering has been ongoing for some time. 
Although mechanisms have been described for propagating the excitation beam and 
collected Raman scattering through a single fiber (Potyrailo et al., 1998), these devices often 
utilize separate launching and collection fibers. In some schemes, a single launching fiber is 
surrounded by a bundle of collection fibers. Raman spectroscopy using distal end fiber 
probes has been demonstrated in a number of chemical (Khijwania et al., 2007; McCreery et 
al., 1983; Tiwari et al., 2007) and biomedical (Krafft et al., 2007; Lima et al., 2008; Vo-Dinh et 
al., 1999) applications. However, the overlap between the illumination cone and the 
collection cone is often poor for these sensor platforms, weakening the already very faint 
Raman signal. To improve sensitivity of Raman sensors modifications such as GRIN lens 
application to the distal end (Mo et al., 2009) or tapered fibers (Stokes et al., 2004) have been 
implemented. Although these changes have shown some improvement in overall signal to 
noise ratio, the move to a planar fiber optic chip offers the advantages of simplifying optical 
alignment and providing a larger surface area for interaction. 
Exposing the core of the optical probe allows for the use of evanescent field interactions of 
the exposed fiber core with immobilized analytes. Here the fiber core may be 
functionalized to capture the analyte or to enhance the Raman signal as in the case of a 
SERS substrate. In a D-shaped device similar to the FOC, Zhang et al. were able to 
demonstrate the excitation of the Raman analyte Rhodamine 6G by a SERS functionalized 
planar probe (Zhang et al., 2005). Near-field interactions do not rely on the optical 
alignment of the system; therefore, a more streamlined approach would only use a single 
fiber for both excitation and collection of the Raman signal. Coupled excitation and 
collection of SERS for an exposed core fiber has been demonstrated for thin-film and 
aqueous samples (Stokes & Vo-Dinh, 2000); however, the exposed fragile core limits the 
applications of this sensor architecture.  

4.3 Raman spectroscopy with the FOC 
A single fiber is used to deliver the excitation beam and collect the scattered Raman signal to 
form a fully integrated system. At the boundary of the exposed core of the FOC, adsorbed 
analytes interact with the evanescent field of the excitation light. The Raman signal of the 
analyte may then be launched into the fiber through near-field coupling. To test the FOC for 
its function in Raman spectroscopy, the excitation and collection of the Raman signal was 
decoupled. In the excitation scheme, laser light (632.8 nm) was launched into the fiber and 
the adsorbed analyte was excited. The scattered Raman signal was then collected by external 
optical components mounted over the FOC and delivered to a spectrometer connected to a 
CCD for data acquisition. For the collection scheme, external optics were used to deliver the 
excitation laser beam to the planar surface of the FOC. The Raman signal was then coupled 
into the FOC and guided by the fiber to the data acquisition set-up. Since, in both schemes, 
Rayleigh scattering of the laser line was generated, a notch filter was placed in the beam 
path before the spectrometer to remove as much of the initial laser beam as possible. Both 
schemes are shown in Figure 9. 
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spectra with high brightness. Using an ITO film as a transparent electrode, organic layers 
could be built onto the FOC structure very similar to that of an organic light emitting diode. 
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output and wavelength range of future FOC light source devices will be developed. 

4. Raman spectroscopy 
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and physical properties through interactions with the vibrational states of a particular 
analyte. This section presents investigations of excitation and collection of Raman scattering 
using the FOC for thin molecular films. Thin-film Raman measurements were achieved with 
the added signal enhancement of surface enhanced raman spectroscopy (SERS). Gold 
nanoparticles are deposited on the FOC surface to enhance the Raman signal of a 4-
aminothiophenol film and the Raman signal was both excited and collected by the FOC in 
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nanotubes was demonstrated, setting the stage for the FOC as a platform for interesting 
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2007) 
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commercial Raman microscope instruments is difficult due to the convolution between 
analyte and substrate Raman activity. The unique geometry of the FOC allows for analyzing 
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a strip of sample rather than a single spot as found in conventional Raman machine. We 
present here the extended ability of the FOC to both excite and collect Raman scattering of 
thin-films.  
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Although mechanisms have been described for propagating the excitation beam and 
collected Raman scattering through a single fiber (Potyrailo et al., 1998), these devices often 
utilize separate launching and collection fibers. In some schemes, a single launching fiber is 
surrounded by a bundle of collection fibers. Raman spectroscopy using distal end fiber 
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collection cone is often poor for these sensor platforms, weakening the already very faint 
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implemented. Although these changes have shown some improvement in overall signal to 
noise ratio, the move to a planar fiber optic chip offers the advantages of simplifying optical 
alignment and providing a larger surface area for interaction. 
Exposing the core of the optical probe allows for the use of evanescent field interactions of 
the exposed fiber core with immobilized analytes. Here the fiber core may be 
functionalized to capture the analyte or to enhance the Raman signal as in the case of a 
SERS substrate. In a D-shaped device similar to the FOC, Zhang et al. were able to 
demonstrate the excitation of the Raman analyte Rhodamine 6G by a SERS functionalized 
planar probe (Zhang et al., 2005). Near-field interactions do not rely on the optical 
alignment of the system; therefore, a more streamlined approach would only use a single 
fiber for both excitation and collection of the Raman signal. Coupled excitation and 
collection of SERS for an exposed core fiber has been demonstrated for thin-film and 
aqueous samples (Stokes & Vo-Dinh, 2000); however, the exposed fragile core limits the 
applications of this sensor architecture.  

4.3 Raman spectroscopy with the FOC 
A single fiber is used to deliver the excitation beam and collect the scattered Raman signal to 
form a fully integrated system. At the boundary of the exposed core of the FOC, adsorbed 
analytes interact with the evanescent field of the excitation light. The Raman signal of the 
analyte may then be launched into the fiber through near-field coupling. To test the FOC for 
its function in Raman spectroscopy, the excitation and collection of the Raman signal was 
decoupled. In the excitation scheme, laser light (632.8 nm) was launched into the fiber and 
the adsorbed analyte was excited. The scattered Raman signal was then collected by external 
optical components mounted over the FOC and delivered to a spectrometer connected to a 
CCD for data acquisition. For the collection scheme, external optics were used to deliver the 
excitation laser beam to the planar surface of the FOC. The Raman signal was then coupled 
into the FOC and guided by the fiber to the data acquisition set-up. Since, in both schemes, 
Rayleigh scattering of the laser line was generated, a notch filter was placed in the beam 
path before the spectrometer to remove as much of the initial laser beam as possible. Both 
schemes are shown in Figure 9. 
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Fig. 9. The experimental set-up for the a) excitation scheme in which the light is delivered to 
the analyte by evanescent waves, and the b) collection scheme in which the light is directly 
focused on the FOC surface. 

As a proof of concept study, the FOC was tested in the excitation scheme for the generation 
of Raman scattering of bulk media. A commercial optical gel (Cargille) was chosen for its 
potential as a higher index capping media for thin-films. The gel was deposited in a thin, 
even layer across the active area of the FOC. The Raman signal of the gel was induced by the 
FOC and collected by the external optics as seen in Figure 10. Demonstrating the feasibility 
of Raman excitation by the FOC sets the stage for the chip to be employed in other bulk 
media investigations without the need for surface enhancement. However, the more 
interesting objective was to determine the utility of the FOC in generating Raman scattering 
of smaller volumes of analyte such as in the case of thin-films. 
 

 
Fig. 10. Raman scattering of commericially available optical gel excited by the FOC. 

4.4 Surface enhanced raman of thin films with the FOC 
For thin-film analysis, the FOC was first functionalized with gold nanoparticles to create a 
SERS substrate. A seed based method (Wei et al., 2004; Wei & Zamborini, 2004) was 
performed directly on the FOC platform. In short, the process required three stages. First, 
the FOC was functionalized with 3- mercaptopropyltrimethoxysilane (MPTMS). Next, 5 nm 
gold nanoparticles were adsorbed to the MPTMS functionalized FOC platform. Finally, a 
gold growth solution catalyzed the growth of the nanoparticles to rods, platelets, and 
spheroids on the order of 20 nm in diameter.  
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The first analyte investigated was 4-aminothiophenol (p-ATP). Raman activity of p-ATP in 
the presence of gold SERS substrates has been well documented. (Baia et al., 2006; Guo et al., 
2007; Wang et al., 2008) The analyte was deposited onto the FOC by submersion in an 
ethanol solution overnight. The FOC was washed and dried under a nitrogen flow before 
analysis of the thin-film. As shown in Figure 11a, the Raman signal of p-ATP was excited by 
the FOC and collected by external optics in the excitation scheme. Similar results were 
achieved by external excitation of the analyte and collection of the Raman signal via the 
FOC in the Collection Scheme. Both spectra are consistent with published data of p-ATP 
Raman activity as well as spectra of the p-ATP coated FOC collected by a commercial 
machine (Renishaw Invia). To attain acceptable signal-to-noise ratios, integration times of 5 
to 10 minutes were used. Signal was detected for sub mW incident laser power, suggesting a 
low power light source could be used in a field version of the FOC Raman sensor platform. 
 

 
Fig. 11. a) Raman spectroscopy of p-ATP using both the excitation and collection schemes on 
the FOC. b) Excitation and collection of CNT G-band Raman signal by the FOC. 

The second analyte studied with the Raman FOC device coated with gold nanoparticles was 
carbon nanotubes (CNT) in an isopropanol solution. In this case, the CNT were deposited by 
a drop cast method and remained in solution during analysis. The G-band of the CNT 
spectra was examined in both the excitation and collection schemes using the FOC. The 
data, shown in Figure 11b, was consistent with established Raman data for the CNT G-band. 
(Dresselhaus et al., 2005; Kneipp et al., 2004) Pairing the FOC device with the specific and 
nondestructive technique of Raman spectroscopy is a very desirable application. 

5. Conclusion 
In this chapter the current applications of the FOC platform were presented. FOC fabrication 
consists of an optical fiber mounted in a V-groove block, side-polished to create a planar 
platform that allows access to the evanescent field escaping from the fiber core. Currently, 
the FOC yields thin-film abosrbance sensitivity comparable with existing ATR 
instrumentation; however, it eliminates the complex coupling optics and alignment 
procedures used with planar waveguide based instrumentation. Spectroelectrochemical 
measurements on an ITO coated FOC platform have been previously demonstrated for both 
the potential dependent spectra of a methylene blue film and 0.3% of a monolayer of a 
conductive polymer film. Additionally, light generated in a surface-confined thin molecular 



 
Recent Progress in Optical Fiber Research 402 

 
Fig. 9. The experimental set-up for the a) excitation scheme in which the light is delivered to 
the analyte by evanescent waves, and the b) collection scheme in which the light is directly 
focused on the FOC surface. 

As a proof of concept study, the FOC was tested in the excitation scheme for the generation 
of Raman scattering of bulk media. A commercial optical gel (Cargille) was chosen for its 
potential as a higher index capping media for thin-films. The gel was deposited in a thin, 
even layer across the active area of the FOC. The Raman signal of the gel was induced by the 
FOC and collected by the external optics as seen in Figure 10. Demonstrating the feasibility 
of Raman excitation by the FOC sets the stage for the chip to be employed in other bulk 
media investigations without the need for surface enhancement. However, the more 
interesting objective was to determine the utility of the FOC in generating Raman scattering 
of smaller volumes of analyte such as in the case of thin-films. 
 

 
Fig. 10. Raman scattering of commericially available optical gel excited by the FOC. 

4.4 Surface enhanced raman of thin films with the FOC 
For thin-film analysis, the FOC was first functionalized with gold nanoparticles to create a 
SERS substrate. A seed based method (Wei et al., 2004; Wei & Zamborini, 2004) was 
performed directly on the FOC platform. In short, the process required three stages. First, 
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The first analyte investigated was 4-aminothiophenol (p-ATP). Raman activity of p-ATP in 
the presence of gold SERS substrates has been well documented. (Baia et al., 2006; Guo et al., 
2007; Wang et al., 2008) The analyte was deposited onto the FOC by submersion in an 
ethanol solution overnight. The FOC was washed and dried under a nitrogen flow before 
analysis of the thin-film. As shown in Figure 11a, the Raman signal of p-ATP was excited by 
the FOC and collected by external optics in the excitation scheme. Similar results were 
achieved by external excitation of the analyte and collection of the Raman signal via the 
FOC in the Collection Scheme. Both spectra are consistent with published data of p-ATP 
Raman activity as well as spectra of the p-ATP coated FOC collected by a commercial 
machine (Renishaw Invia). To attain acceptable signal-to-noise ratios, integration times of 5 
to 10 minutes were used. Signal was detected for sub mW incident laser power, suggesting a 
low power light source could be used in a field version of the FOC Raman sensor platform. 
 

 
Fig. 11. a) Raman spectroscopy of p-ATP using both the excitation and collection schemes on 
the FOC. b) Excitation and collection of CNT G-band Raman signal by the FOC. 
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carbon nanotubes (CNT) in an isopropanol solution. In this case, the CNT were deposited by 
a drop cast method and remained in solution during analysis. The G-band of the CNT 
spectra was examined in both the excitation and collection schemes using the FOC. The 
data, shown in Figure 11b, was consistent with established Raman data for the CNT G-band. 
(Dresselhaus et al., 2005; Kneipp et al., 2004) Pairing the FOC device with the specific and 
nondestructive technique of Raman spectroscopy is a very desirable application. 

5. Conclusion 
In this chapter the current applications of the FOC platform were presented. FOC fabrication 
consists of an optical fiber mounted in a V-groove block, side-polished to create a planar 
platform that allows access to the evanescent field escaping from the fiber core. Currently, 
the FOC yields thin-film abosrbance sensitivity comparable with existing ATR 
instrumentation; however, it eliminates the complex coupling optics and alignment 
procedures used with planar waveguide based instrumentation. Spectroelectrochemical 
measurements on an ITO coated FOC platform have been previously demonstrated for both 
the potential dependent spectra of a methylene blue film and 0.3% of a monolayer of a 
conductive polymer film. Additionally, light generated in a surface-confined thin molecular 
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film can be back-coupled into the FOC platform when the conditions for light propagation 
within the waveguide are met. Back-coupled light into the FOC was used for the first time 
here to expand the applications of the FOC platform to a fluorescence bioassay, a broadband 
fiber optic light source, and Raman interrogation of molecular adsorbates. A BSA-
biotin/streptavidin-CY fluorescence bioassay was demonstrated on the FOC with a limit-of-
detection of 15 nM and calculated back-coupled fluorescence efficiency of 0.02%. A 1.8 mW 
directly fiber coupled broadband FOC source extending from 405 nm to 650 nm is produced 
with a SiO2 capped Alq3 film deposited on the FOC, which is significantly brighter than a 
fiber-coupled tungsten source and spectrally broader than a LED source. Finally the FOC 
platform was modified with gold nanoparticles to create a surface enhanced Raman 
substrate for detection of 4-aminothiophenol and carbon nanotubes. Contrary to the un-clad 
fiber approach, the FOC with a supported planar interface can facilitate the use of 
conventional planar deposition technologies and provide a robust planar platform that is 
amenable for integration into various sensor applications. 
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within the waveguide are met. Back-coupled light into the FOC was used for the first time 
here to expand the applications of the FOC platform to a fluorescence bioassay, a broadband 
fiber optic light source, and Raman interrogation of molecular adsorbates. A BSA-
biotin/streptavidin-CY fluorescence bioassay was demonstrated on the FOC with a limit-of-
detection of 15 nM and calculated back-coupled fluorescence efficiency of 0.02%. A 1.8 mW 
directly fiber coupled broadband FOC source extending from 405 nm to 650 nm is produced 
with a SiO2 capped Alq3 film deposited on the FOC, which is significantly brighter than a 
fiber-coupled tungsten source and spectrally broader than a LED source. Finally the FOC 
platform was modified with gold nanoparticles to create a surface enhanced Raman 
substrate for detection of 4-aminothiophenol and carbon nanotubes. Contrary to the un-clad 
fiber approach, the FOC with a supported planar interface can facilitate the use of 
conventional planar deposition technologies and provide a robust planar platform that is 
amenable for integration into various sensor applications. 
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1. Introduction

Since their discovery, optical fibers have received increasing attention due to its important
technological applications (Bottacchi, 2002; Culshaw, 1997; Harmon, 2001; Herrmann, 1973;
Keyl, 2002; Lauterborn et al., 1997; Prasad & Williams, 1991; Shimizu et al., 1997; Way, 1998;
Young, 2000). A fiber is an optical waveguide in which the propagation of an optical wave is
confined to two dimensions (the cross section dimensions). The dimension of the confinement
must be comparable to the wavelength of the light which one would like to confine (Kogelnik,
1979).
A fiber is formed by a region with a refractive index larger than that of the surrounding
media; this condition assures the total internal reflections at the interfaces required for
the beam propagation. If an integer number of wavelengths have traveled between two
consecutive reflections, a standing wave pattern will be developed, producing a constructive
interference which allows high electromagnetic power to be transmitted along the fiber. A
change in the fiber geometry, modifies the reflection angle and consequently the total number
of reflections: rays traveling thicker fibers require more reflections to travel along the same
length in the propagation direction. This implies that the effective velocity of light in thicker
fibers must be slower; this effect also produces a change in the phase of the output signal
(Arnaud, 1976). These phenomena are cumbersome to explain by standard optical methods
(Kogelnik, 1979; Torchigin & Torchigin, 2003) and are easily predicted by the use of the
Wigner Distribution Function (Reyes et al., 1999). One of the main advantages of the phase
space approach to solve optical problems is the simplicity of the mathematical calculations
compared with the traditional treatment (Bottacchi, 2002). This is due to the fact that in phase
space representation, the relevant properties of the system can be obtained by simple matrices
products.
Quantum mechanically, the development of nonlinear optics allowed the generation and
manipulation of new quantum states of light, going from the simplest and common one, the
so-called coherent states (Glauber, 1963), to squeezed states (Walls, 1983; Yuen, 1976), Fock
states (Lvovsky et al., 2001) or entangled states (Ou et al., 1992). A full quantum theoretical
analysis of the three-photon states is contained in the Wigner function (Leonhardt, 2001) that
has proven to be very helpful to visualize in the phase space (the amplitude q and phase p
quadratures) quantum mechanical system defined by its density matrix. This has already
been the case for some quantum states of light such as the coherent state, the squeezed
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vacuum or the bright squeezed state (Breitenbach et al., 1995; 1997; Smithey et al., 1993),
whose Wigner function has been experimentally reconstructed using homodyne quantum
tomography, a technique that allows the measurement of the marginal probability distribution
that expresses the quadrature amplitude distribution. The use of optical fiber for quantum
squeezing has considerable technological advantages, such as generating squeezing directly
at the communications wavelength and the use of existing transmission technology (Corney
et al., 2008).
More generally, the Wigner function contains the full information about the quantum states
(Wigner, 1932) and their moments allow to differentiate between paraxial regime, wave-like
regime and chaotic behavior (Rivera et al., 1997). More particularly, it allows us to establish
the quantum correlations between the different generated modes in the case of twin photons
or photon triplets (Benchekh et al., 2007). The Wigner function is a positive definite function
in the phase space only for classical states with Gaussian marginal probability distributions
(Rivera & Castano, 2010). However, it can be negative in some circumstances for particular
quantum states of light. These negativities are the signature of highly nonclassical behaviour
of a quantum state (Rivera & Castano, 2010) as it has been observed for a quantum state of
light prepared in a single-photon Fock state (Lvovsky et al., 2001). These quantum negativities
are also present in the case of complete degenerate three-photon states obtained by third order
optical parametric fluorescence or amplification, and also for aberrated optical systems.
Historically, the so-called Wigner Distribution Function (Wigner, 1932) has been of central
importance as an alternative description of Quantum Mechanics (Kim & Noz, 1991). However,
these phase-space mathematical tool has found exciting applications in a wide range of the
physical sciences and even engineering ranging from statistical mechanics (Green, 1951; Mori
et al., 1962) to optics (Perinova et al., 1998; Schleich, 2001; Wolf, 2004). Moreover, it has become
the basis of an entire discipline: time-frequency representation of wave phenomena (Allen &
Mills, 2004; Boashash, 2003; Cohen, 1995; Grochenig, 2000). There exist several reviews of the
quantum phase-space distribution functions, in particular of the Wigner distribution function.
A concise but authorative review of the quantum distribution functions is that by Wigner
(Wigner, 1971). A good mathematical treatment of the quantum distribution functions and
related operator algebra is given in the book by (Louisell, 1973). Some extensive reviews
of the quantum distribution functions are given by (Balazs & Jennings, 1984; Berry, 1977;
Filinov et al., 2008; Groot & Suttorp, 1972; Hillery et al., 1984; Lee, 1995; OConnell, 1983;
Takabayasi, 1954). Applications of the Wigner distribution function to Optics are reviewed
by (Dragoman, 1997; Dodonov, 2002; Mack & Schleich, 2003; Zalevsky & Mendlovic, 1997),
and for the particular case of fibers on the works (Bao & Chen, 2011; Benabid & Roberts, 2011;
Benchekh et al., 2007; Corney et al., 2008; Leonhardt, 2001; Rivera & Castano, 2010a).
As Wigner functions, the Lie Algebra, due to its mathematical simplicity to solve differential
equations by numerical integration, has become an important aid for the solution of different
problems in classical and quantum mechanics (Bakhturin, 2003; Frank & van Isacker, 1994;
Hamermesh, 1962; Jacobson, 1979). A Lie treatment of geometrical optics and aberrations has
been developed by (Dragt & Finn, 1976), and it is a new approach to fiber optics (Reyes et
al., 1999; Reyes & Castano, 2000) that simplifies the traditional solution of optical problems
(Born & Wolf, 1999) to the determination of the corresponding Symplectic Map associated to
the optical system, thus reducing the problem to simple matrices products. The Gaussian
Symplectic map helps to find the Wigner distribution function of the probability density of
an optical fiber, and from it, it is possible to obtain all the physical information required to
analyze the fiber (Rivera & Castano, 2010a).
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This chapter presents a brief review of the phase-space analysis applied to fiber Optics,
using the Wigner Distribution Function. The hope is that it will show the beauty, elegance
and usefulness of this mathematical construction. The rest of the chapter is organized as
follows. Section 2 gives a short review of phase space representation using the Wigner
Distribution Function which describes some of its important properties and its physical
interpretation. Section 3 presents the description of the Maxwell equations under paraxial
approach (considering parallel rays close to the optical axis of the system) that describe the
light propagation in a fiber by a parabolic type equation that is completely equivalent to the
quantum system Schrödinger equation for a bidimensional potential-well time-dependent.
Section 4 shows an example, analyzing a gaussian beam propagation through a fiber.

2. Phase space representation

The standard formulation of quantum mechanics either in the Schrödinger (Schrodinger, 1946)
or in Heisenberg pictures (Heisenberg, 1930) may create an impression that quantum and
classical dynamics are completely different (Dirac, 1935). However, there are representations
in which quantum dynamics seems to resemble classical statistical mechanics, and where the
state of a quantum system is represented by the quasiprobability distribution in phase space
of the corresponding classical system (Kim & Noz, 1991). Of course, there are at least two
important differences (Hillery et al., 1984):

1. Quasiprobability distributions may take negative values (unlike the true probability
distributions).

2. The classical distribution can be localized at a point in phase space, whereas the quantum
distribution must always be spread in a finite phase volume, in agreement with uncertainty
relations.

Among different quasiprobability distributions Cohen (1995), the Wigner Distribution
Function, introduced by Wigner in 19321 (Wigner, 1932), is the only one for which the
quantum evolution law coincides with the classical one for the case of linear dynamics
(Moyal, 1949). The Wigner distribution function is a real valued quasiprobability distribution
containing all information available about the system. Its popularity stems from its
characteristics (Wigner, 1932):

• It has a close connection to the marginal probability distributions characterizing the
probabilities of the outcomes of von Neumann measurements of the system.

• It lends itself to a visualization of quantum states, and some of their properties.

• It is a versatile calculation tool for normally ordered operators.

With the use of this distribution function, it is straightforward to cast quantum mechanics
in a form which resembles the classical theory of statistical averages over the classical phase
space, with the Wigner distribution function playing a role analogous to a probability function

1 Wigner’s original motivation for introducing it, was to be able to calculate the quantum correction to
the second virial coefficient of a gas, which indicates how it deviates from the ideal gas law (Wigner,
1932). Classically, to ca1culate the second virial coefficient one needs a joint distribution of position and
momentum. So Wigner devised the simplest joint distribution that gave, as marginals, the quantum
mechanical distributions of position and momentum. The quantum mechanics came in the distribution,
but the distribution was used in the classical manner. It was a hybrid method. Also, Wigner was
motivated in part by the work of Kirkwood (Kirkwood, 1933) who had previously calculated this
quantity but Wigner improved it.
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squeezing has considerable technological advantages, such as generating squeezing directly
at the communications wavelength and the use of existing transmission technology (Corney
et al., 2008).
More generally, the Wigner function contains the full information about the quantum states
(Wigner, 1932) and their moments allow to differentiate between paraxial regime, wave-like
regime and chaotic behavior (Rivera et al., 1997). More particularly, it allows us to establish
the quantum correlations between the different generated modes in the case of twin photons
or photon triplets (Benchekh et al., 2007). The Wigner function is a positive definite function
in the phase space only for classical states with Gaussian marginal probability distributions
(Rivera & Castano, 2010). However, it can be negative in some circumstances for particular
quantum states of light. These negativities are the signature of highly nonclassical behaviour
of a quantum state (Rivera & Castano, 2010) as it has been observed for a quantum state of
light prepared in a single-photon Fock state (Lvovsky et al., 2001). These quantum negativities
are also present in the case of complete degenerate three-photon states obtained by third order
optical parametric fluorescence or amplification, and also for aberrated optical systems.
Historically, the so-called Wigner Distribution Function (Wigner, 1932) has been of central
importance as an alternative description of Quantum Mechanics (Kim & Noz, 1991). However,
these phase-space mathematical tool has found exciting applications in a wide range of the
physical sciences and even engineering ranging from statistical mechanics (Green, 1951; Mori
et al., 1962) to optics (Perinova et al., 1998; Schleich, 2001; Wolf, 2004). Moreover, it has become
the basis of an entire discipline: time-frequency representation of wave phenomena (Allen &
Mills, 2004; Boashash, 2003; Cohen, 1995; Grochenig, 2000). There exist several reviews of the
quantum phase-space distribution functions, in particular of the Wigner distribution function.
A concise but authorative review of the quantum distribution functions is that by Wigner
(Wigner, 1971). A good mathematical treatment of the quantum distribution functions and
related operator algebra is given in the book by (Louisell, 1973). Some extensive reviews
of the quantum distribution functions are given by (Balazs & Jennings, 1984; Berry, 1977;
Filinov et al., 2008; Groot & Suttorp, 1972; Hillery et al., 1984; Lee, 1995; OConnell, 1983;
Takabayasi, 1954). Applications of the Wigner distribution function to Optics are reviewed
by (Dragoman, 1997; Dodonov, 2002; Mack & Schleich, 2003; Zalevsky & Mendlovic, 1997),
and for the particular case of fibers on the works (Bao & Chen, 2011; Benabid & Roberts, 2011;
Benchekh et al., 2007; Corney et al., 2008; Leonhardt, 2001; Rivera & Castano, 2010a).
As Wigner functions, the Lie Algebra, due to its mathematical simplicity to solve differential
equations by numerical integration, has become an important aid for the solution of different
problems in classical and quantum mechanics (Bakhturin, 2003; Frank & van Isacker, 1994;
Hamermesh, 1962; Jacobson, 1979). A Lie treatment of geometrical optics and aberrations has
been developed by (Dragt & Finn, 1976), and it is a new approach to fiber optics (Reyes et
al., 1999; Reyes & Castano, 2000) that simplifies the traditional solution of optical problems
(Born & Wolf, 1999) to the determination of the corresponding Symplectic Map associated to
the optical system, thus reducing the problem to simple matrices products. The Gaussian
Symplectic map helps to find the Wigner distribution function of the probability density of
an optical fiber, and from it, it is possible to obtain all the physical information required to
analyze the fiber (Rivera & Castano, 2010a).
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This chapter presents a brief review of the phase-space analysis applied to fiber Optics,
using the Wigner Distribution Function. The hope is that it will show the beauty, elegance
and usefulness of this mathematical construction. The rest of the chapter is organized as
follows. Section 2 gives a short review of phase space representation using the Wigner
Distribution Function which describes some of its important properties and its physical
interpretation. Section 3 presents the description of the Maxwell equations under paraxial
approach (considering parallel rays close to the optical axis of the system) that describe the
light propagation in a fiber by a parabolic type equation that is completely equivalent to the
quantum system Schrödinger equation for a bidimensional potential-well time-dependent.
Section 4 shows an example, analyzing a gaussian beam propagation through a fiber.

2. Phase space representation

The standard formulation of quantum mechanics either in the Schrödinger (Schrodinger, 1946)
or in Heisenberg pictures (Heisenberg, 1930) may create an impression that quantum and
classical dynamics are completely different (Dirac, 1935). However, there are representations
in which quantum dynamics seems to resemble classical statistical mechanics, and where the
state of a quantum system is represented by the quasiprobability distribution in phase space
of the corresponding classical system (Kim & Noz, 1991). Of course, there are at least two
important differences (Hillery et al., 1984):

1. Quasiprobability distributions may take negative values (unlike the true probability
distributions).

2. The classical distribution can be localized at a point in phase space, whereas the quantum
distribution must always be spread in a finite phase volume, in agreement with uncertainty
relations.

Among different quasiprobability distributions Cohen (1995), the Wigner Distribution
Function, introduced by Wigner in 19321 (Wigner, 1932), is the only one for which the
quantum evolution law coincides with the classical one for the case of linear dynamics
(Moyal, 1949). The Wigner distribution function is a real valued quasiprobability distribution
containing all information available about the system. Its popularity stems from its
characteristics (Wigner, 1932):

• It has a close connection to the marginal probability distributions characterizing the
probabilities of the outcomes of von Neumann measurements of the system.

• It lends itself to a visualization of quantum states, and some of their properties.

• It is a versatile calculation tool for normally ordered operators.

With the use of this distribution function, it is straightforward to cast quantum mechanics
in a form which resembles the classical theory of statistical averages over the classical phase
space, with the Wigner distribution function playing a role analogous to a probability function

1 Wigner’s original motivation for introducing it, was to be able to calculate the quantum correction to
the second virial coefficient of a gas, which indicates how it deviates from the ideal gas law (Wigner,
1932). Classically, to ca1culate the second virial coefficient one needs a joint distribution of position and
momentum. So Wigner devised the simplest joint distribution that gave, as marginals, the quantum
mechanical distributions of position and momentum. The quantum mechanics came in the distribution,
but the distribution was used in the classical manner. It was a hybrid method. Also, Wigner was
motivated in part by the work of Kirkwood (Kirkwood, 1933) who had previously calculated this
quantity but Wigner improved it.
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(Fairlie, 1964). Consequently, the Wigner distribution function has been used extensively to
study the classical limit of quantum mechanical systems (Kim & Noz, 1991; Mayer & Band,
1947; Moyal, 1949).
There is in principle an infinite variety of quantum phase-space distribution functions
corresponding to an infinite number of possible ordering rules of two noncommuting
operators and their linear combinations (Lee, 1995). The general class of this distributions is
given by (Cahill & Glauber, 1969; Cohen, 1966; Kakazu et al., 2007). Distribution functions in
general have different properties and are associated with various dynamical equations, so they
may be described most conveniently by distribution functions having different characteristics
(Hillery et al., 1984). Other distribution functions that have been considered in the past include
those of Kirkwood (Kirkwood, 1933), Margenau-Hill (Johansen & Luis, 2004; Margenau
& Hill, 1961; Terletsky, 1937)2, Husimi (Husimi, 1940), Q-functions (Husimi, 1940; Kano,
1965; Smith, 2006), Page (Page, 1952), Glauber-Sudarshan (Glauber, 1963; Sudarshan, 1963),
Rihaczek (Rihaczek, 1968), and Choi-Williams (Choi & Williams, 1989). Another very used
function is the ambiguity function (Bastiaans, 1980; Marks & Hall, 1979; Woodward, 1963).
Phase space representation, in particular through the so-called Wigner Distribution Function,
has proven to be a very effective tool applied in many branches of physics (Cohen, 1995;
Kim & Wigner, 1987; Kim & Noz, 1991; Mecklenbrauker et al., 1997; Moyal, 1949; Stewart et
al., 2002; Wigner, 1932), and more specifically in fiber optics (Dragoman & Meunier, 1998;
Kominis & Hizanidis, 2002; Reyes et al., 1999a; Rivera & Castano, 2010a; Sheppard & Larkin,
2000; Voss et al., 1999). The Wigner distribution function was invented by Wigner (Wigner,
1932) to study the quantum corrections to the classical behavior of certain statistical systems
described by the Boltzmann formula. For the evaluation of the Wigner function are various
implementations (Bala & Prabhu, 1989; Easton et al., 84; Eilouti & Khadra, 1989; Flandrin et al.,
1984; Frank et al., 2000; Gupta & Asakura, 1986; Lohmann, 1980; Lopez et al., 2002; Maanen,
1985; Mateeva & Sharlandjiev, 1986; Rivera et al., 1997; Subotic & Saleh, 1984).
In this chapter the notation will be for the optical position coordinates q (that corresponds
to the interaction of the ray with a z = 0 reference plane), and for the canonically conjugate
momentum p (which describes the direction of the ray with respect to the normal at the point
q that evolves over the system’s optical axis, z) (Buchdahl, 1970).
Consider a particle in one dimension. Classically, the particle is described by a phase space
distribution Pcl(q, p). The average of a function of position and momentum A(q, p) can then
be expressed as

�A�cl =
∫ ∞

−∞
dq

∫ ∞

−∞
dp A(q, p) Pcl(q, p) . (1)

A quantum mechanical particle is described by a density matrix ρ̂, and the average of a
function of the position and momentum operators Â(q̂, p̂) as

�A�quant = Tr (Â ρ̂) . (2)

It must be admitted that, given the classical expression A(q, p), the corresponding self adjoin
operator Â is not uniquely defined. The use of a quasiprobability phase space distribution

2 Kirkwood attempted to extend the classical theory to the quantum case and devised the distribution
commonly called the Rihaczek or Margenau-Hill distribution to do that. Many years later, Margenau
and Hill derived the distribution that bears their name. The importance of the Margenau-Hill work is
not the distribution but the derivation. They were also the first to consider joint distributions involving
spin.
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PQ(q, p), however, does give such a definition by expressing the quantum mechanical average
as

�A�quant =
∫ ∞

−∞
dq

∫ ∞

−∞
dp A(q, p) PQ(q, p) , (3)

where the function A(q, p) can be derived from the operator Â(q̂, p̂) by a well defined
correspondence rule. This allows one to cast quantum mechanical results into a form in which
they resemble classical ones. This is a reformulation of Schrödinger quantum mechanics
which describes states by functions in configuration space (Kim & Noz, 1991).
In the case where PQ in (3) is chosen to be the Wigner Distribution function (Wigner, 1932),
then the correspondence between A(q, p) and Â is that proposed by Weyl (Weyl, 1927), as
was first demonstrated by Moyal (Moyal, 1949).
The requirement given by Eq. (3) let us to define a function in the 6N dimensional q, p phase
space, called the Wigner Distribution Function in terms of the density matrix, ρ as:

Wρ (q, p; t) ≡
(

1
πh̄

)3N ∫ ∞

−∞
dr exp

(
2i
h̄

p · r
)

ρ(q − r, q + r; t) , (4)

Because for pure states described by a wavefunction Ψ, the density matrix is given by
(vonNeumann, 1927)

ρ(q, q�) = Ψ∗(q�)Ψ(q) , (5)

the expression (4) for pure states can be rewritten in coordinate representation as:

WΨ(q, p; z) ≡ 1
2πh̄

∫ ∞

−∞
dr Ψ∗

(
q − 1

2
r; z

)
e−i[p·r]/h̄ Ψ

(
q +

1
2

f r; z
)

(6)

or taking the Fourier transform (Goodman, 1968) in momentum representation as

WΨ(q, p; z) =
1

2πh̄

∫ ∞

−∞
dr Ψ̃

(
p +

1
2

r; z
)

e−i[q·r]/h̄ Ψ̃∗
(

p − 1
2

r; z
)

, (7)

where h̄ is the Planck constant divided by 2π, Ψ̃ denotes the Fourier transform of Ψ and
the asterisk represents the complex conjugate. In geometric optics, h̄ corresponds to the
wavelength λ of the beam (Wolf, 2004).
In Wigner phase-space representation everything we have said for the coordinate domain
holds for the momentum domain because the Wigner distribution is basically identical in
form in both domains (compare equations 6 and 7). The complete symmetry between q and
p in the former definitions of the Wigner function (equations 6 and 7), indicates that space
and momentum have equal weight in this description (Moyal, 1949). Due to this, the Wigner
distribution function can be thought as the expected value of the parity operator around (q, p)
in the phase space (Royer, 1997); i.e. the Wigner function is proportional to the overlap of
Ψ(q, z) with its specular image around (q, p), that is a measure of “how much centered” is
Ψ(q, z). Note that the Wigner distribution function is a 4-dimensional phase space distribution
function, where two dimensions correspond to real space and the other two to momentum
space. The Wigner distribution function is a real function that can take either positive and
negative values, however, only for a Gaussian the Wigner distribution function is positive
everywhere (Hudson, 1974; Soto & Claverie, 1983); therefore, one cannot interpret it as a
classical probability function in phase space (Lee, 1995). Tthe value of WΨ mirrors closely the
intuitive objects in the model, that in the case of quantum optics may be the coherent states
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(Fairlie, 1964). Consequently, the Wigner distribution function has been used extensively to
study the classical limit of quantum mechanical systems (Kim & Noz, 1991; Mayer & Band,
1947; Moyal, 1949).
There is in principle an infinite variety of quantum phase-space distribution functions
corresponding to an infinite number of possible ordering rules of two noncommuting
operators and their linear combinations (Lee, 1995). The general class of this distributions is
given by (Cahill & Glauber, 1969; Cohen, 1966; Kakazu et al., 2007). Distribution functions in
general have different properties and are associated with various dynamical equations, so they
may be described most conveniently by distribution functions having different characteristics
(Hillery et al., 1984). Other distribution functions that have been considered in the past include
those of Kirkwood (Kirkwood, 1933), Margenau-Hill (Johansen & Luis, 2004; Margenau
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1985; Mateeva & Sharlandjiev, 1986; Rivera et al., 1997; Subotic & Saleh, 1984).
In this chapter the notation will be for the optical position coordinates q (that corresponds
to the interaction of the ray with a z = 0 reference plane), and for the canonically conjugate
momentum p (which describes the direction of the ray with respect to the normal at the point
q that evolves over the system’s optical axis, z) (Buchdahl, 1970).
Consider a particle in one dimension. Classically, the particle is described by a phase space
distribution Pcl(q, p). The average of a function of position and momentum A(q, p) can then
be expressed as

�A�cl =
∫ ∞

−∞
dq

∫ ∞

−∞
dp A(q, p) Pcl(q, p) . (1)

A quantum mechanical particle is described by a density matrix ρ̂, and the average of a
function of the position and momentum operators Â(q̂, p̂) as

�A�quant = Tr (Â ρ̂) . (2)

It must be admitted that, given the classical expression A(q, p), the corresponding self adjoin
operator Â is not uniquely defined. The use of a quasiprobability phase space distribution

2 Kirkwood attempted to extend the classical theory to the quantum case and devised the distribution
commonly called the Rihaczek or Margenau-Hill distribution to do that. Many years later, Margenau
and Hill derived the distribution that bears their name. The importance of the Margenau-Hill work is
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PQ(q, p), however, does give such a definition by expressing the quantum mechanical average
as

�A�quant =
∫ ∞
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dq

∫ ∞

−∞
dp A(q, p) PQ(q, p) , (3)

where the function A(q, p) can be derived from the operator Â(q̂, p̂) by a well defined
correspondence rule. This allows one to cast quantum mechanical results into a form in which
they resemble classical ones. This is a reformulation of Schrödinger quantum mechanics
which describes states by functions in configuration space (Kim & Noz, 1991).
In the case where PQ in (3) is chosen to be the Wigner Distribution function (Wigner, 1932),
then the correspondence between A(q, p) and Â is that proposed by Weyl (Weyl, 1927), as
was first demonstrated by Moyal (Moyal, 1949).
The requirement given by Eq. (3) let us to define a function in the 6N dimensional q, p phase
space, called the Wigner Distribution Function in terms of the density matrix, ρ as:

Wρ (q, p; t) ≡
(

1
πh̄

)3N ∫ ∞

−∞
dr exp

(
2i
h̄

p · r
)

ρ(q − r, q + r; t) , (4)

Because for pure states described by a wavefunction Ψ, the density matrix is given by
(vonNeumann, 1927)

ρ(q, q�) = Ψ∗(q�)Ψ(q) , (5)

the expression (4) for pure states can be rewritten in coordinate representation as:

WΨ(q, p; z) ≡ 1
2πh̄
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−∞
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(
q − 1

2
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)
e−i[p·r]/h̄ Ψ

(
q +

1
2

f r; z
)

(6)

or taking the Fourier transform (Goodman, 1968) in momentum representation as

WΨ(q, p; z) =
1
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−∞
dr Ψ̃

(
p +

1
2

r; z
)

e−i[q·r]/h̄ Ψ̃∗
(

p − 1
2

r; z
)

, (7)

where h̄ is the Planck constant divided by 2π, Ψ̃ denotes the Fourier transform of Ψ and
the asterisk represents the complex conjugate. In geometric optics, h̄ corresponds to the
wavelength λ of the beam (Wolf, 2004).
In Wigner phase-space representation everything we have said for the coordinate domain
holds for the momentum domain because the Wigner distribution is basically identical in
form in both domains (compare equations 6 and 7). The complete symmetry between q and
p in the former definitions of the Wigner function (equations 6 and 7), indicates that space
and momentum have equal weight in this description (Moyal, 1949). Due to this, the Wigner
distribution function can be thought as the expected value of the parity operator around (q, p)
in the phase space (Royer, 1997); i.e. the Wigner function is proportional to the overlap of
Ψ(q, z) with its specular image around (q, p), that is a measure of “how much centered” is
Ψ(q, z). Note that the Wigner distribution function is a 4-dimensional phase space distribution
function, where two dimensions correspond to real space and the other two to momentum
space. The Wigner distribution function is a real function that can take either positive and
negative values, however, only for a Gaussian the Wigner distribution function is positive
everywhere (Hudson, 1974; Soto & Claverie, 1983); therefore, one cannot interpret it as a
classical probability function in phase space (Lee, 1995). Tthe value of WΨ mirrors closely the
intuitive objects in the model, that in the case of quantum optics may be the coherent states
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of the radiation field (Glauber, 1965), and in monochromatic paraxial wave optics, they are
often beams with Gaussian position and inclination distributions (Hillery et al., 1984; Rivera
& Castano, 2010).
From all phase space representations, the Wigner Distribution Function can be uniquely
distinguished (among shift-invariant joint distributions) by imposing a requirement of correct
marginals with respect to arbitrary directions in the time-frequency plane, thus connecting
the Wigner distribution with the fractional Fourier transform (Atakishiyev et al., 1999). It also
contains all the information of the system and it can be proved that it contains the hologram
of the signal (Wolf & Rivera, 1997).
For numerical calculations it is very useful to note that the Wigner distribution function is the
Fourier transform of the kernel (Wigner, 1932):

WΨ(q, p; z) = Ψ
(

q +
1
2

r
)

Ψ∗
(

q − 1
2

r
)

. (8)

Because WΨ(q, p; z) is Hermitian [WΨ(q, r) = W∗
Ψ(q,−r)], the Wigner distribution function

is real (Moyal, 1949).
When we integrate WΨ(q, p) over p, we obtain the probability distribution in q, while if we
integrate WΨ(q, p) over q, we obtain the probability distribution in p, (Moyal, 1949). Then, to
recover either the image |Ψ(q; z)|2 (light intensity on the two-dimensional screen of coordinate
q at the optical axis position z) or the diffraction pattern |Ψ̃(p; z)|2, it is necessary to make a
simple projection of the Wigner distribution function (Wigner, 1932):

|Ψ(q; z)|2 =
∫ ∞

−∞
dpWΨ(q, p; z) , (9)

|Ψ̃(p; z)|2 =
∫ ∞

−∞
dqWΨ(q, p; z) . (10)

If the signal or image of interest is nonstationary, the Wigner distribution function gives the
local spectrum centered at p as a function of location (Bartelt et al., 1980). Thus, the total
energy of Ψ(q, z) can be obtained from integration of WΨ(q, p; z) over the entire phase space
(Hillery et al., 1984).
Moreover |WΨ(q, p; z)| ≤ (2πh̄)−1.
Another interesting property (Schempp, 1986) is that the Wigner distribution function has the
same extension and is band-limited as the function Ψ(q, z).
The Wigner distribution function is the expectation value of the parity operator about the
phase-space point q, p (Royer, 1997). To show this, let us first rewrite

W(q, p) =
(

1
πh̄

)3N
�Ψ|Π̂q,p|Ψ� , (11)

where the operator Π̂q,p has the following three equivalent expressions:

Π̂q,p =
∫ ∞

−∞
dr e2ipr/h̄ |q − r� �q + r| ,

=
∫ ∞

−∞
dk e−2ikq/h̄ |p + k� �p − k| ,

=

(
1

πh̄

)3N ∫ ∞

−∞
dk

∫ ∞

−∞
dr ei[k(R̂−q)+r(P̂−p)]/h̄ . (12)
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Let us now consider the special case q = 0, p = 0, and denote Π̂q=0,p=0 = Π̂; we have

Π̂ =
∫ ∞

−∞
dq | − q� �q| ,

=
∫ ∞

−∞
dp |p� �−p| ,

=

(
1

πh̄

)3N ∫ ∞

−∞
dk

∫ ∞

−∞
dy ei[kR̂+yP̂]/h̄ . (13)

From (13) it is immediately apparent that Π̂ is the parity operator (about the origin): it changes
Ψ(q) into Ψ(−q) and Ψ̃(p) into Ψ̃(−p), or equivalently

Π̂R̂Π̂ = −R̂ , Π̂P̂Π̂ = −P̂ , (14)

moreover,
Π̂−1 = Π̂ . (15)

We now observe that Π̂q,p may be obtained from Π̂ by a unitary transformation

Π̂q,p = D̂(q, p) Π̂ D̂(q, p)−1 ; (16)

here
D̂(q, p) = ei(pR̂−qP̂)/h̄ (17)

is a phase-space displacement operator, introduced by Glauber (Glauber, 1963) in connection
with a different, though related, type of phase-space representation of quantum mechanics,
the coherent-state representation. We have the actions

D̂(q, p)−1 R̂ D̂(q, p) = R̂ + q , (18)

D̂(q, p)−1 P̂ D̂(q, p) = P̂ + p , (19)

D̂(q, p)−1 F(R̂, P̂) D̂(q, p) = F(R̂ + q, P̂ + p) . (20)

From this follows directly

Π̂q,p(R̂ − q)Π̂q,p = −(R̂ − q) , (21)

Π̂q,p(P̂ − p)Π̂q,p = −(P̂ − p) , (22)

that is, Π̂q,p reflects about the phase-space point q, p and is thus the parity operator about
that point. Note that

(Π̂q,p)
2 = 1 . (23)

The Wigner function, is thus
(

1
πh̄

)3N
times the expectation value of the parity operator about

q, p. Alternatively, W(q, p) is proportional to the overlap of Ψ with its mirror image about
q, p, which is clearly a measure of how much Ψ is “centered” about q, p.
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of the radiation field (Glauber, 1965), and in monochromatic paraxial wave optics, they are
often beams with Gaussian position and inclination distributions (Hillery et al., 1984; Rivera
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From all phase space representations, the Wigner Distribution Function can be uniquely
distinguished (among shift-invariant joint distributions) by imposing a requirement of correct
marginals with respect to arbitrary directions in the time-frequency plane, thus connecting
the Wigner distribution with the fractional Fourier transform (Atakishiyev et al., 1999). It also
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Fourier transform of the kernel (Wigner, 1932):

WΨ(q, p; z) = Ψ
(
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r
)

Ψ∗
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q − 1
2

r
)

. (8)

Because WΨ(q, p; z) is Hermitian [WΨ(q, r) = W∗
Ψ(q,−r)], the Wigner distribution function

is real (Moyal, 1949).
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recover either the image |Ψ(q; z)|2 (light intensity on the two-dimensional screen of coordinate
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If the signal or image of interest is nonstationary, the Wigner distribution function gives the
local spectrum centered at p as a function of location (Bartelt et al., 1980). Thus, the total
energy of Ψ(q, z) can be obtained from integration of WΨ(q, p; z) over the entire phase space
(Hillery et al., 1984).
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W(q, p) =
(

1
πh̄

)3N
�Ψ|Π̂q,p|Ψ� , (11)

where the operator Π̂q,p has the following three equivalent expressions:

Π̂q,p =
∫ ∞

−∞
dr e2ipr/h̄ |q − r� �q + r| ,

=
∫ ∞

−∞
dk e−2ikq/h̄ |p + k� �p − k| ,

=

(
1

πh̄

)3N ∫ ∞

−∞
dk

∫ ∞

−∞
dr ei[k(R̂−q)+r(P̂−p)]/h̄ . (12)
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Let us now consider the special case q = 0, p = 0, and denote Π̂q=0,p=0 = Π̂; we have

Π̂ =
∫ ∞

−∞
dq | − q� �q| ,

=
∫ ∞

−∞
dp |p� �−p| ,

=

(
1

πh̄

)3N ∫ ∞

−∞
dk

∫ ∞

−∞
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(Π̂q,p)
2 = 1 . (23)

The Wigner function, is thus
(

1
πh̄

)3N
times the expectation value of the parity operator about

q, p. Alternatively, W(q, p) is proportional to the overlap of Ψ with its mirror image about
q, p, which is clearly a measure of how much Ψ is “centered” about q, p.

419Optical Fibers in Phase Space: A Theoretical Framework



8 Optical Fibers / Book 3

3. Light propagation on a fiber

Propagation of light in a fiber is governed by Maxwell equations (Born & Wolf, 1999).
Consider a monocromatic light beam of frequency ω propagating through a fiber of refractive
index n, described by the wavefunction Ψ(x, y, z). It can be shown that this beam obeys the
Helmholtz equation (Born & Wolf, 1999):

∂2Ψ
∂x2 +

∂2Ψ
∂y2 +

∂2Ψ
∂z2 +

ω2

c2 n2Ψ = 0 , (24)

where n = n(x, y, z) is the refractive index of the fiber.
Under paraxial approach, the beam is almost parallel and close to the optical axis of the
system, z, then n = n(0, 0, z), and Ψ vary slowly with z allowing to neglect second order
derivatives in the z direction. This considerations let to write equation (24) as the parabolic
type equation (Leontovich & Fock, 1946)

i
k

∂Ψ
∂τ

=
1

2k2

(
∂2Ψ
∂x2 +

∂2Ψ
∂y2

)
+

(
n2

0 − n2
)

Ψ , (25)

where n0 is the vacuum refractive index, and

τ = −
∫ z

0

1
n0(z�)

dz� . (26)

Equation (25) shows that the light beam propagation in the paraxial approximation is
described by a Schrödinger equation where the wavelenght λ = 1

k plays the role of the
Planck constant and instead of time appears z. The potential well is given by the refractive
index n2

0 − n2(x, y, z). This treatment translate the problem of solving the Helmholtz equation
(24) to solve the Schrödinger equation for a system with two degrees of freedom (x, y) in a
time-dependent (z) potential well.
This Schrödinger equation (25) is valid for any wave that follows the Helmholtz equation
under the paraxial approach (for a detailed description check (Arnaud, 1976; Manko, 1986;
Marcuse, 1972). The validity of this approximation can be verified using the moments of the
Wigner distribution function of the solution as shown in (Rivera et al., 1997). To solve the
problem in fiber optics it can be applied the formalism of symplectic groups through coherent
state representation of quantum mechanics (Manko & Wolf, 1985).
In general, the output Wigner function of an optical system is related to the input Wigner
through (Castano et al., 1982; Gutierrez & Castano, 1992):

WΨout (q, p; z) = WΨin (a q + b p, c q + d p; z) , (27)

where a, b, c and d are parameters which depend on the specific system under study.
As an example, the free space propagator is given by

WΨout (q, p; z) = WΨin

(
q − z

k
p, p; z

)
, (28)

for a lens of focal length f , we have

WΨout (q, p; z) = WΨin

(
q,

1
f

q + p; z
)

, (29)

and to obtain a Fourier transform we use:

WΨout (q, p; z) = WΨin (−p, q; z) . (30)
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4. Gaussian beam propagation in optical fibers

To model optical fibers it is common to consider gaussian beams that travel freely through
space (Rivera & Castano, 2010). Gaussians are also ubiquitous in quantum mechanics, where
they are intimately related to the harmonic oscillator (Gitterman, 2003; Moshinsky, 1996;
Sako & Diercksen, 2003), to the coherent (Gori et al., 2003; Grewal, 2002; Grosshans et al.,
2003; Lauterborn et al., 1993; Lesurf et al., 1993) and squeezed states formalism (Agarwal &
Ponomarenko, 2003; Dodonov, 2002; Kim et al., 2002; Sohma & Hirota, 2003). In Quantum
Optics, Gaussian beams are fundamental to test and to compare wave optical models and
systems (Berry, 1994; Oraevsky, 1998; Rivera et al., 1997).
Using Fermat minimal action principle, it can be proved that the system is governed by the
optical Hamiltonian (Rivera et al., 1995):

H = −
√

n2 − p2 . (31)

This Hamiltonian generates a ray path, i.e. a unidimensional group of canonical
transformations of the points of the optical phase space. In a three-dimensional optical
medium we denote the two screen coordinates (perpendicular to the optical axis) by q = (x.y)
and the optical axis coordinate as z.
When the canonical transformation has a nonlinear part, it is possible to identify this
nonlinearity as the effect of aberrations as is studied in (Rivera et al., 1997; Rivera & Castano,
2010). An alternative approach (called coherent states for Lie groups) uses the continuous
representations in quantum mechanics as a particular case of arbitrary Lie groups and can be
used in fiber optics for analyzing nonquadratic media under the action of Hamiltonians that
are the linear form of the Lie group representation with z dependent coefficients (Klauder,
1964). In geometric optics (paraxial approach), momentum is |p| = n sin θ, where n denotes
the refractive index and θ is the angle between the ray and the optical axis (Wolf, 2004).
A Gaussian function Γ associated to the one-dimensional real coordinate x is defined as
(Simon, 2002)

Γ(x) = M exp
[
− (x − x0)

2

2w0
+ ip0x

]
, (32)

where M =
(

w1
π|w0|2

)1/4
, x0, p0 are real numbers, and w0 = w1 + iw2, w1 > 0 is a complex

number. The dimension of w0 is [x2], the one of x0 is [x], and that of p0 is [x−1]. The
pre-exponential factor M guarantees the normalization condition

�Γ | Γ� =
∫ ∞

−∞
dx Γ∗(x) Γ(x) = 1 . (33)

This Gaussian is centered at x0 and has a complex width
√

2w0. The value at its maximum is
M. If p0 �= 0 or w2 �= 0, this Gaussian shows oscillations.
The Fourier transform of the Gaussian Γ (Equation 32) provides the momentum representation
of the beam (Goodman, 1968):

Γ̃(p) =
1√
2π

∫ ∞

−∞
dx e−ipx Γ(x) =

(w1
π

) 1
4 exp

[
−w0(p − p0)

2

2
− ix0(p − p0)

]
. (34)

Interestingly, it is another Gaussian, centered in p0, with width
√

2/w0 and it oscillates for
x0 �= 0.
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they are intimately related to the harmonic oscillator (Gitterman, 2003; Moshinsky, 1996;
Sako & Diercksen, 2003), to the coherent (Gori et al., 2003; Grewal, 2002; Grosshans et al.,
2003; Lauterborn et al., 1993; Lesurf et al., 1993) and squeezed states formalism (Agarwal &
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Optics, Gaussian beams are fundamental to test and to compare wave optical models and
systems (Berry, 1994; Oraevsky, 1998; Rivera et al., 1997).
Using Fermat minimal action principle, it can be proved that the system is governed by the
optical Hamiltonian (Rivera et al., 1995):

H = −
√

n2 − p2 . (31)

This Hamiltonian generates a ray path, i.e. a unidimensional group of canonical
transformations of the points of the optical phase space. In a three-dimensional optical
medium we denote the two screen coordinates (perpendicular to the optical axis) by q = (x.y)
and the optical axis coordinate as z.
When the canonical transformation has a nonlinear part, it is possible to identify this
nonlinearity as the effect of aberrations as is studied in (Rivera et al., 1997; Rivera & Castano,
2010). An alternative approach (called coherent states for Lie groups) uses the continuous
representations in quantum mechanics as a particular case of arbitrary Lie groups and can be
used in fiber optics for analyzing nonquadratic media under the action of Hamiltonians that
are the linear form of the Lie group representation with z dependent coefficients (Klauder,
1964). In geometric optics (paraxial approach), momentum is |p| = n sin θ, where n denotes
the refractive index and θ is the angle between the ray and the optical axis (Wolf, 2004).
A Gaussian function Γ associated to the one-dimensional real coordinate x is defined as
(Simon, 2002)

Γ(x) = M exp
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− (x − x0)

2

2w0
+ ip0x

]
, (32)

where M =
(

w1
π|w0|2

)1/4
, x0, p0 are real numbers, and w0 = w1 + iw2, w1 > 0 is a complex

number. The dimension of w0 is [x2], the one of x0 is [x], and that of p0 is [x−1]. The
pre-exponential factor M guarantees the normalization condition

�Γ | Γ� =
∫ ∞

−∞
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2w0. The value at its maximum is
M. If p0 �= 0 or w2 �= 0, this Gaussian shows oscillations.
The Fourier transform of the Gaussian Γ (Equation 32) provides the momentum representation
of the beam (Goodman, 1968):
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∫ ∞
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π
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In phase space, the Gaussian Γ, is represented by its Wigner distribution function (Rivera &
Castano, 2010):

WΓ(x, p) = 2 exp
{
− (x − x0)

2

w1
− |w0|2

w1
(p − p0)

2 +
2w2
w1

(x − x0)(p − p0)

}
, (35)

that is a two-dimensional Gaussian; coordinate centered at x0 with width
√

w1, momentum
center p0 with width |w0|/√w1, and tilted by arctan(2w2/w1).
A Vacuum Coherent State (Dodonov, 2002) is a Gaussian function with x0 = p0 = 0 and w0 = 1.
It has the important property of being the only state described by the same function in both
coordinate and momentum representation (Dodonov & Manko, 2000). A generalized coherent
state is described by a Gaussian function with w0 = 1, but x0 and p0 arbitrary. The state for
which w0 �= 1 is called a squeezed state (Dodonov, 2002).
To evaluate the Wigner distribution function of a sectioned fiber we assume that an optical
fiber is a cylinder of radius a and infinite length. We will consider a Gaussian traveling
through a fiber with constant refractive index n until a break generated by a section with
different refractive index m encapsulated by two parabolic surfaces. The Symplectic Map
for this system is given by the product of the initial propagator (before the break), first
refraction, propagation between refraction surface, second refraction (after the break), and
last propagation. It can be shown that the Symplectic Map of this system is (Reyes & Castano,
2000)

Mtotal = . . . e:F4: e:F2: , (36)
where

e:F2: = e−
a

2n sin(2kπz):�p2:eα(n−m):�q2:e−
γ

2m :�p2:

×e−
γ
2 :�p2:e−α(n−m):�q2:e−

a
2n sin(2kπz�):�p2: ,

e:F4: = eA:(�p2)2:+B:�p2(�p·�q):+C :(�p·�q)2:+D:�p2�q2:

×eE :�q2(�p·�q):+F :(�q2)2: .

Here, z and z� give the propagation before and after the break, respectively.
In Eq. (36), the exponential e:F2: is the Gaussian term, while e:F4: corresponds to the aberration
term. This method simplifies the optical problem of obtaining the image of an optical system
to the determination of the corresponding Symplectic Map associated to the system, thus
reducing the problem to simple matrices products.
In order to calculate the Wigner distribution function we need to use the following
correspondence

: �p : −→ �p

: �q : −→ �q

to make the Symplectic map, and consider the convolution between a point source and Mtotal .
The point source is defined by the Dirac Delta

F(�p�, �q�) = δ(�q� −�q, �p� −�p) . (37)

The convolution between F and Mtotal (up to fourth order) is

F ∗ Mtotal = F(�p�, �q�) ∗ eF2 eF4 . . .

� [F(�p�, �q�) ∗ eF2 ](1 + F4)F(�p�, �q�) ∗ eF2

+[F(�p�, �q�) ∗ eF2 ]F4 . (38)
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The aberration of the system respect to the Gaussian ray (second term of the last equation) is

F ∗ eF2 = F(�p�, �q�) ∗ eF2 = C1
π√
α5

e−(
α1

�p�2−α2
�p� ·�p+α3�p

2

α4
) ,

where

α1 =
a

2n
sin(2kπz�)(β +

γ

2
) ,

α2 = β
a

2n
sin(2kπz�) ,

α3 = β(
γ

2
+

a
2n

sin(2kπz�)) ,

α4 = β +
γ

2
+

a
2n

sin(2kπz�) ,

α5 = (
γ

2n
+

a
2n

sin(2kπz))(β +
γ

2n
+

a
2n

sin(2kπz�)) .

Without perturbation (γ → 0), the aberration yield

F ∗ eF2 = C1
π√

a
2n sin(2kπz)

,

that corresponds to the convolution between e− a
2n sin(2kπz)�p2

and a point source.
Now we can calculate the Wigner distribution function in the image plane substituting in
Equation (6) the Symplectic Map of this system, Eqs. (36) and (38):

W(�q�, �p�) =
∫ ∞

−∞
d�r e−i�p� ·�r

×
{

F ∗ eF2 (�q� + �r
2
) + [F ∗ eF2 ]F4(�q� + �r

2
)

}

×
{

F ∗ eF2 (�q� − �r
2
) + [F ∗ eF2 ]F4(�q� − �r

2
)

}
,

that can be rewritten up to fourth order as

W(�q�, �p�) =

C2
1

2π3

α5
eiπe−(2/α4)(α1�p��2−[2α1+α2]�p�� ·�p+[α1+α2+α3]�p2)

×
{

1 + 2F4δ(�p�) + π2F
(

d2

dp�2
1
+

d2

dp�2
2

)2

+ 8π2eiπ

×
[
C
(

p�1
d

dp�1
+ p�2

d
dp�2

)2
+ 2F

(
q�1

d
dp�1

+ q�2
d

dp�2

)2

+E
(

p
�
1q�1

d2

dp�2
1
+ p

�
2q�2

d2

dp�2
2
+ (p

�
2q�1 + p

�
1q�2)

d
dp�

1

d
dp�

2

)

+
1
2
[D(�p�) + E(�p�) ·�q�]

(
d2

dp�2
1
+

d2

dp�2
2

)]}
δ(�p�) ,

(39)
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In phase space, the Gaussian Γ, is represented by its Wigner distribution function (Rivera &
Castano, 2010):

WΓ(x, p) = 2 exp
{
− (x − x0)

2

w1
− |w0|2

w1
(p − p0)

2 +
2w2
w1

(x − x0)(p − p0)

}
, (35)

that is a two-dimensional Gaussian; coordinate centered at x0 with width
√

w1, momentum
center p0 with width |w0|/√w1, and tilted by arctan(2w2/w1).
A Vacuum Coherent State (Dodonov, 2002) is a Gaussian function with x0 = p0 = 0 and w0 = 1.
It has the important property of being the only state described by the same function in both
coordinate and momentum representation (Dodonov & Manko, 2000). A generalized coherent
state is described by a Gaussian function with w0 = 1, but x0 and p0 arbitrary. The state for
which w0 �= 1 is called a squeezed state (Dodonov, 2002).
To evaluate the Wigner distribution function of a sectioned fiber we assume that an optical
fiber is a cylinder of radius a and infinite length. We will consider a Gaussian traveling
through a fiber with constant refractive index n until a break generated by a section with
different refractive index m encapsulated by two parabolic surfaces. The Symplectic Map
for this system is given by the product of the initial propagator (before the break), first
refraction, propagation between refraction surface, second refraction (after the break), and
last propagation. It can be shown that the Symplectic Map of this system is (Reyes & Castano,
2000)

Mtotal = . . . e:F4: e:F2: , (36)
where

e:F2: = e−
a

2n sin(2kπz):�p2:eα(n−m):�q2:e−
γ

2m :�p2:

×e−
γ
2 :�p2:e−α(n−m):�q2:e−

a
2n sin(2kπz�):�p2: ,

e:F4: = eA:(�p2)2:+B:�p2(�p·�q):+C :(�p·�q)2:+D:�p2�q2:

×eE :�q2(�p·�q):+F :(�q2)2: .

Here, z and z� give the propagation before and after the break, respectively.
In Eq. (36), the exponential e:F2: is the Gaussian term, while e:F4: corresponds to the aberration
term. This method simplifies the optical problem of obtaining the image of an optical system
to the determination of the corresponding Symplectic Map associated to the system, thus
reducing the problem to simple matrices products.
In order to calculate the Wigner distribution function we need to use the following
correspondence

: �p : −→ �p

: �q : −→ �q

to make the Symplectic map, and consider the convolution between a point source and Mtotal .
The point source is defined by the Dirac Delta

F(�p�, �q�) = δ(�q� −�q, �p� −�p) . (37)

The convolution between F and Mtotal (up to fourth order) is

F ∗ Mtotal = F(�p�, �q�) ∗ eF2 eF4 . . .

� [F(�p�, �q�) ∗ eF2 ](1 + F4)F(�p�, �q�) ∗ eF2

+[F(�p�, �q�) ∗ eF2 ]F4 . (38)

422 Recent Progress in Optical Fiber Research Optical Fibers in Phase Space:
a Theoretical Framework 11

The aberration of the system respect to the Gaussian ray (second term of the last equation) is

F ∗ eF2 = F(�p�, �q�) ∗ eF2 = C1
π√
α5

e−(
α1

�p�2−α2
�p� ·�p+α3�p

2

α4
) ,

where

α1 =
a

2n
sin(2kπz�)(β +

γ

2
) ,

α2 = β
a

2n
sin(2kπz�) ,

α3 = β(
γ

2
+

a
2n

sin(2kπz�)) ,

α4 = β +
γ

2
+

a
2n

sin(2kπz�) ,

α5 = (
γ

2n
+

a
2n

sin(2kπz))(β +
γ

2n
+

a
2n

sin(2kπz�)) .

Without perturbation (γ → 0), the aberration yield

F ∗ eF2 = C1
π√

a
2n sin(2kπz)

,

that corresponds to the convolution between e− a
2n sin(2kπz)�p2

and a point source.
Now we can calculate the Wigner distribution function in the image plane substituting in
Equation (6) the Symplectic Map of this system, Eqs. (36) and (38):
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that can be rewritten up to fourth order as
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(39)
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with �p� = �p�� −�p. From this equation is clear that after the break, the Wigner distribution
function is a Gaussian with center in (2α1 + α2�p)/(2α1). The Wigner function found have a
general phase of 2π, except in the term (4π2/3)F{ d2

dp�21
+ d2

dp�22
}2δ(�p�) where the phase is π.

Thus the initial Gaussian is modified by a corrective term, the F4 polynomial (the exponent of
the Aberration Lie Operator).
The limiting case without break, γ → 0, has a Wigner distribution function given by

W(�q�, �p�) =
C2

1eiπ

a
2n sin(2kπz)

δ(�p�) (1 + 2F4 + . . .) (40)

5. Conclusions

As shown in this chapter, phase space approach (through the Wigner distribution function)
simplifies the calculation and helps in the description of optical fibers. This is due to the
fact that in phase space representation, the relevant properties of the system can be obtained
by simple matrices products. Quasiprobability distribution functions are useful not only as
calculation tools but can also provide insights into the connections between geometric opticsl
and wave optics due to the fact that they allow one to express wave optics averages in a form
which is very similar to that for classical averages. In this sense it serves to validate paraxial
approximation.
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1. Introduction 
Optical fibers have many advantages over metallic lines such as broad bandwidth, low-loss, 
immunity from interference due to electromagnetic induction, etc. They can be used to 
implement ultra-fast pulse signal transmission over a long distance under the circumstance 
with sophisticated electromagnetic radiation. However, while optical fibers are exposed in 
nuclear radiation environments, changes in their optical properties will occur thus resulting 
in deterioration of system performance eventually. Optical fibers will be required to 
withstand exposure to nuclear environments. Since optical fibers were applied in nuclear 
radiation environments as signal transmission media, people began to study effects of 
radiation on optical fibers, to measure the changes of optical fiber parameters, e.g. radiation-
induced loss, irradiation damage recovery time and to analyze the effecting factors (Mattern 
et al., 1974; Evans et al., 1974; Golob et al., 1977; Friebele et al., 1978, 1979, 1980). Research 
results are used to evaluate the variation degree of optical fiber system performance and 
their working lives under nuclear circumstance, and to search methods for reducing 
radiation-induced loss (Tsunemi et al., 1986; Akira et al., 1988). As a result, anti-radiation 
optical fibers are developed subsequently. With the application of anti-radiation optical 
fibers, the degradation of performance will be reduced and the system life will be extended 
accordingly. On the other hand, radiation detecting systems based on the parameter changes 
above-mentioned are established to monitor the ambient radiation doses of underground 
nuclear exploders, space-aircrafts, radiation reactors and other nuclear facilities (Ramsey et 
al., 1993; Moss et al., 1994; Tighe et al., 1995; Fernadndez et al., 2002; May, 2006). 
When radiation projects to optical fibers, three effects will produce: (1) Increase of optical 
fibers absorption loss. The additional loss caused by radiation of photons and electrons with 
lower energy corresponds with the mechanism of color center. The color center spectrum 
lies usually within the visible and near-infrared wavelength regions, and it is resonant 
absorption that leads to additional loss. Neutron or alpha particle radiation absorbed by 
optical fibers can also cause additional loss. It will mainly damage optical fiber matrix 
structure and produce atomic structure defects and release electrons. (2) Changes of optical 
fiber refractive index. As a result, boundary conditions will no longer fully meet the optical 
fiber waveguides, and increase of evanescent field coupling energy will lead to additional 
loss. (3) Development of optical fiber luminescence. It is usually considered to be 
fluorescence or Cerenkov effects. It is very difficult to detect the light due to its weak 
intensity along optical fiber axis. 
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1. Introduction 
Optical fibers have many advantages over metallic lines such as broad bandwidth, low-loss, 
immunity from interference due to electromagnetic induction, etc. They can be used to 
implement ultra-fast pulse signal transmission over a long distance under the circumstance 
with sophisticated electromagnetic radiation. However, while optical fibers are exposed in 
nuclear radiation environments, changes in their optical properties will occur thus resulting 
in deterioration of system performance eventually. Optical fibers will be required to 
withstand exposure to nuclear environments. Since optical fibers were applied in nuclear 
radiation environments as signal transmission media, people began to study effects of 
radiation on optical fibers, to measure the changes of optical fiber parameters, e.g. radiation-
induced loss, irradiation damage recovery time and to analyze the effecting factors (Mattern 
et al., 1974; Evans et al., 1974; Golob et al., 1977; Friebele et al., 1978, 1979, 1980). Research 
results are used to evaluate the variation degree of optical fiber system performance and 
their working lives under nuclear circumstance, and to search methods for reducing 
radiation-induced loss (Tsunemi et al., 1986; Akira et al., 1988). As a result, anti-radiation 
optical fibers are developed subsequently. With the application of anti-radiation optical 
fibers, the degradation of performance will be reduced and the system life will be extended 
accordingly. On the other hand, radiation detecting systems based on the parameter changes 
above-mentioned are established to monitor the ambient radiation doses of underground 
nuclear exploders, space-aircrafts, radiation reactors and other nuclear facilities (Ramsey et 
al., 1993; Moss et al., 1994; Tighe et al., 1995; Fernadndez et al., 2002; May, 2006). 
When radiation projects to optical fibers, three effects will produce: (1) Increase of optical 
fibers absorption loss. The additional loss caused by radiation of photons and electrons with 
lower energy corresponds with the mechanism of color center. The color center spectrum 
lies usually within the visible and near-infrared wavelength regions, and it is resonant 
absorption that leads to additional loss. Neutron or alpha particle radiation absorbed by 
optical fibers can also cause additional loss. It will mainly damage optical fiber matrix 
structure and produce atomic structure defects and release electrons. (2) Changes of optical 
fiber refractive index. As a result, boundary conditions will no longer fully meet the optical 
fiber waveguides, and increase of evanescent field coupling energy will lead to additional 
loss. (3) Development of optical fiber luminescence. It is usually considered to be 
fluorescence or Cerenkov effects. It is very difficult to detect the light due to its weak 
intensity along optical fiber axis. 
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The purpose of the research is to provide experimental data for reducing radiation-induced 
loss of optical fibers and to attempt to evaluate system performance degradation of optical 
fibers under nuclear environments. 
This chapter will mainly discuss transient γ-ray effects on commercial optical fibers. Two 
different dose and dose rate γ-ray pulses are employed to irradiate four types of optical 
fibers and radiation-induced losses are measured by using five lasers with different 
wavelengths as carriers. 

2. Effects of γ-ray radiation on optical fibers 
2.1 Loss mechanism of optical fibers 
Loss is inherent nature of optical fibers. In accordance with different generation 
mechanisms, loss is usually classified into: absorption loss, scattering loss, waveguide loss 
and bending loss, etc (Liu et al., 2006). When light-waves propagate in optical fiber media, 
interactions between photons and atoms occur. Photons will continue to transfer their 
energy to matrix atoms gradually. This process results in absorption loss. Optical matrix 
materials and impurities are the main factors influencing the absorption loss. Based on the 
different absorption subjects, absorption loss is classified into intrinsic absorption loss, 
impurity absorption loss and atomic defect absorption loss. Collisions of photons with 
substrate atoms, microscopic changes in optical fiber material density, and uneven 
composition distribution or structural defects generated during the manufacturing process 
will produce scattering loss. Rayleigh scattering which is inevitable is the lowest limit of 
optical fiber loss. Once variation of boundary condition for optical waveguide or waveguide 
deformation appears, part of light-wave mode energy will leak out, resulting in energy loss, 
i.e. waveguide loss. Fiber bended to a certain extent, part of the light energy will be lost, 
resulting in bending loss. 

2.2 Effects of γ-ray radiation on optical fibers 
The photon of γ-ray is the quantum of electromagnetic radiation. Radiation damage of 
material due to incident photon flux is varied, depending upon the material through which 
the photon propagate and the photon energy of the radiation. Damage ranges from simple 
heating, as photons are absorbed, to ionization and even photon-nuclear disintegration if the 
interacting photon energy is of the order of 10MeV or greater. According to different photon 
energy, effects of γ-ray on materials include: photoelectric, Compton, electron pair and 
scattering effects (Mei, 1966). The variation of cross sections for different effects in optical 
fibers with photon energy is calculated by GEANT4 and shown in Fig. 1. The data exhibited 
in Fig. 1 serve to point out that Compton Effect is dominant over the behavior with γ-ray 
radiation exposure on optical fibers. In addition, there is also fluorescence and Cerenkov 
effects. The penetration of radiation into materials is not only dependent upon the material 
itself but also upon the type of radiation. The penetration rate of γ-ray into optical fibers is 
calculated and shown in Fig.2. Atomic and molecular electron energy levels are on the order 
of a few electron volts, and so an electron bound at an atomic site in a material would not 
undergo a simple transition to a higher atomic energy level due to interaction with γ-ray. 
The resulting high energy electron of Compton Effect is the primary source of radiation 
damage due to γ-ray absorption in optical fibers. Its energy and intensity distribution in the 
horizontal profile of optical fibers is depicted in Fig.3, 4, and 5 when γ-ray with photon 
energy of 0.3, 0.8, and 1.0MeV projects along the vertical profile respectively. 
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Fig. 1. Curve of different effects cross sections varying with photon energy. 

 

 
Fig. 2. Graph of penetration rate of γ-ray into optical fibers as a function of photo energy. 
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Fig. 3. Diagrams depicting distribution of resulting electronic energy and intensity in 
horizontal profile of optical fiber while photo energy of γ-ray is 0.3MeV. 

 

  
Fig. 4. Diagrams depicting distribution of resulting electronic energy and intensity in 
horizontal profile of optical fiber while photo energy of γ-ray is 0.8MeV. 

 

  
Fig. 5. Diagrams depicting distribution of resulting electronic energy and intensity in 
horizontal profile of optical fiber while photo energy of γ-ray is 1.0MeV. 

If sufficient ionizing radiation of γ-ray with energies from several MeV down into the keV 
range is absorbed by optical fibers, it causes damages to optical fiber materials. The 
damages which produce additional radiation-induced loss on light propagation are 
associated with the energy and intensity distribution of the resulting high energy 
electrons. 
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2.3 Mode distribution and alteration of refractive index in optical fibers 
The index of refraction is attributable to the electromagnetic properties of optical fibers. 
As in crystalline, similar processes of color center formation by radiation absorption may 
occur in amorphous. It’s reasonable to assume that some changes in the index of 
refraction may result from radiation exposure. In fact radiation-induced changes in the 
refractive index distribution of optical fibers will influence distribution of mode field and 
confinement factor and bring additional waveguide loss. Optical waveguide loss arises 
from the waveguide imperfections. Confinement factor of waveguide can be described as 
(1) (Yasuo, 2002) 
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The computational results of relative mode field distribution in the core and clad of optical 
fibers, relative distribution of electric field intensity and confinement factors as a function of 
refractive index changes are shown in Fig.6, 7, 8 respectively. Any alteration in indexes of 
refraction within optical waveguide will influence the mode distribution and cause 
waveguide loss eventually. 
 

 

 
Fig. 6. Relative mode field distribution of electromagnetic wave in core and clad. 
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Fig. 7. Relative distribution of electric field intensity in optical fiber as a function of 
refractive index changes. 

 

 
Fig. 8. Confinement factors as a function of refractive index changes. 
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3. Design of experimental measurement system 
3.1 Measurement system structure 
In order to measure pulsed γ-ray radiation-induced loss, a special experimental 
measurement system will be needed. During the system design, the following factors should 
be considered comprehensively: (1) Radiation sources. Radiation dose is adjusted by the 
nature of ray attenuations, with real-time simultaneous multi-point monitoring. (2) Optical 
fibers. In order to obtain uniform irradiation, optical fibers are coiled into circles with 
diameters as small as possible e.g. several centimeters, until the bending loss cannot be 
neglected. Its exposure length can be adjusted conveniently. (3) Response and record time 
sequence. The system’s response time should be controlled within a tenth or less of the time 
width of the radiation rays in order to reduce influence of the measurement system time 
characteristics on results. To ensure records of effect signal waveforms, all devices should be 
set at automatic working states. The measurement system linear dynamic range of 
amplitude should be as large as possible e.g. 100. (4) Measurement environment. The main 
radiation source is a large electron accelerator with strong space electromagnetic radiation, 
so all the electronic equipments should be shielded effectively. 
A typical experimental apparatus for measuring the radiation-induced loss in optical fibers 
is shown in Fig. 9. 

3.2 Measurement system components 
The measurement system consists of three parts: (1) Signal recording section. It contains a 
trigger, a signal generator and a transient digital oscilloscope. The trigger is used to start the 
transient oscilloscope and signal generator simultaneously. The signal generator is used to 
produce pulse signal to drive the analog optical fiber transmission system, thus producing 
pulsed light signal. The transient oscilloscope is used to record the optical signal while γ-ray 
impulses on optical fibers. (2) Optical fiber transmission section. It contains a semiconductor 
laser transmitter and a receiver. The semiconductor laser is used to convert the pulsed 
electric signal into optical ones, and the semiconductor receiver is used to convert pulsed 
light signals into electrical ones and send it to the transient oscilloscope. (3) Target section. It 
contains optical fibers under test and regulating facilities. 
 

 
Fig. 9. Schematic diagram of experimental setup for measuring transient radiation-induced 
loss in optical fibers under pulsed exposure. 
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3.3 Main technical parameters 
A comprehensive list of the important parameters in conducting a measurement of the 
radiation response of optical fibers is as below: 
Radiation source I: average photon energy of 0.3 MeV, pulse width of 25ns, dose rate of 
2.03×107 Gy/s. 
Radiation source II: average photon energy of 1.0 MeV, pulse width of 25ns, dose rate of 
5.32×109 Gy/s 
Trigger: input/output of -10-+10 V adjustable, time interval of 0.001-10μs adjustable. 
Signal generator: input and output amplitude of -5-+5 V adjustable, pulse width of 0.0003-
10μs adjustable. 
Transient oscilloscope: analog bandwidth of 1 GHz, digital sampling rate of 5 GHz. 
Optical fiber transmission system: bandwidth of 3 GHz, in-band flatness within ±1dB, linear 
dynamic range of 100 (non-linear is less than 3%), peak output noise less than 5mV. input / 
output impedance of 50 Ω, the laser wavelength of 405, 660, 850, 1310 and 1550 nm. 
Optical fiber types: ITU G.651(50/125μm, 62.5/125μm), G.652 and G.655 available bare 
optical fibers. 
In considering the effect of radiation, the radiation damage is a dynamic process, i. e. 
concurrent with the darkening due to the production of color centers by the irradiation is 
recovery due to emptying of the holes and electrons out of these centers. Thus ,the net 
optical absorption that is observed is the sum of these two process. 

4. Development of laser transmitter and receiver 
A broad-bandwidth analog optical fiber transmission system is developed for radiation-
induced loss measurement under the circumstance with complicated electromagnetic fields. 
The ultra-fast pulsed electric signal is converted to optical by electro-optic conversion method. 
With certain kilometers propagation, the optical signal is recovered by photo-electric 
conversion method. The experimental measurement results of the transmission system 
indicate that its bandwidth is (0.0003-3)GHz, in-band flatness ±1dB, linear dynamic range 100, 
output peak-to-peak noise less than 5mV, and input/output standing-wave-ratio less than 2. 

4.1 Structure and design 
4.1.1 Structure 
An analog optical fiber transmission system is usually comprised of a transmitter, a certain 
distance long optical fibers and a receiver. The structure is shown in Fig. 10. 
 

 
Fig. 10. Schematic diagram of broad bandwidth analog optical fiber transmission system. 
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Key technologies for designing and fabricating a broad bandwidth analog optical fiber 
transmission system lie in these aspects: (1) By impedance matching, the response in high 
frequency band is compensated and the overall system bandwidth is expanded 
consequently. (2) With peak-to-peak noise of PIN photoelectric diode and preamplifier 
reduced, the linear dynamic range is extended. (3) The parasitic parameters of components 
and micro-striplines in the modules reduced, the system can operate stably. 

4.1.2 Transmitter 
The transmitter contains an integrated multi-quantum-well distributed feedback laser 
diode(MQW-DFB-LD), an optical isolator, automatic power control (APC) circuits (Tanaka 
et al., 2002; Zivojinovic et al., 2004; Pocha et al., 2007), automatic temperature control (ATC) 
circuits, and DC bias circuits. The potential improvements of overall optical system 
performance depend on studying and analyzing LD transient characteristics such as 
modulation bandwidth, intensity, frequency noise levels and nonlinear distortion. 
Numerical laser models and sophisticated computation can accurately predict LD transient 
characteristics of above-mentioned parameters. The time dependent carrier density rate 
equations for LD in the active region are described as (Huang, 1994; Ghoniemy et al., 2003): 
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where N  is the average density of electrons, P  is the average density of photons, leakN  is the 
density of leaked carriers, d  is the thickness of the active layer, eτ  is the lifetime of electrons, 

pτ  is the lifetime of photons, G  is the differential coefficient which expresses light gain, β  is 
the simultaneous emission coefficient, eJ  is the injected current density, e  is the electron 
charge. 
The cutoff modulation frequency of LD is deduced from (2) and given by 
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where, Γ  is the light gain confine factor, thJ  is the threshold current density. 
From (3) it can be conclude that the cutoff modulation frequency can be enhanced by 
increasing the injected current. Considering the carrier transport effects, too large injected 
current may lead to the variation of the refractive index distribution in the active region, 
resulting in the deterioration of the modulation performance. The appropriate bias current 
should be selected by considering the relationship of bandwidth with dynamic range 
synthetically. 
With the help of a light-wave component analyzer, the transient characteristics of LD can be 
analyzed. The electrical equivalent circuit is shown in Fig. 11. Lp1, Lp2 is the lead inductance, 
Cp the package parasitic capacitance, Cd the PN junction diffusion capacitance, Cb the PN 
junction barrier capacitance, Rdiff the PN junction differential resistance, Rv the bulk 
resistance of semiconductor material, D the equivalent ideal diode. Elemental parameters in 
the electrical equivalent circuits provide P-Spice simulation software with original data. 
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Fig. 11. Equivalent AC circuit diagram of LD. 

A basic driving circuit is designed to meet LD analog amplitude modulation, and shown in 
Fig. 12. In the figure D1 is designed to prevent LD from reverse breakdown. R1-R4, C1-C3 are 
mainly used for impedance matching and high frequency response compensating. L1, C4, 
and C5 provide the bias decoupling, reducing transient current impact on LD, Vin is input 
modulation signal, and Ibias DC bias current. 
APC circuits are used to provide LD with static operating point current. Precise temperature 
control is needed for LD to operate stably, since its threshold current, output power and 
peak wavelength will vary with junction temperature fluctuation. ATC circuit will meet the 
demand of junction temperature control. With APC and ATC circuits, the LD’s variation of 
output power keeps within 2%, and the variation of operating temperature keeps within 
0.1℃. 
There may be some parasitic effects imposed on modulation characteristics to a certain 
extent. Simulation results show that when a LD is working in high-frequency modulation, 
the parasitic lead inductance will be impacted obviously on the amplitude-frequency 
characteristics. Efforts should be made to reduce the distribution parameters to a level as 
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4.1.3 Receiver 
The receiver is comprised of a PIN detector, bias circuit and broad band-width low-noise 
amplifier. The PIN converts optical signals into electrical ones. The broad bandwidth low-
noise amplifier enlarges the signal to an advisable level suitable for recording. Since the PIN 
output signal is usually weak, such techniques as low-noise, high-gain amplification and 
impedance matching are needed to design the receiver. 
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The equivalent PIN AC circuit is shown in Fig. 13 (An, 2002). In the figure Ii is an ideal 
current source, Cj the junction capacitance, Rj the junction resistance, Rp and Cp equivalent 
parasitic values, and Rload equivalent load for the amplifier. Amplifier bandwidth, noise 
characteristics, and impedance matching should be taken into account in designing photo-
electric conversion module. Its principle circuit is shown in Fig. 14. 
 

 
Fig. 13. Equivalent AC circuit diagram of PIN detector. 

 

 
Fig. 14. Principle circuit diagram of photo-electric conversion module. 

4.2 Performance 
4.2.1 Bandwidth 
Bandwidth indicates the response of the input electrical signal frequency components 
(Hinojosa et al., 2001). Both frequency and time domain measuring methods are employed 
in the experiments. In frequency-domain measurement a light-wave component analyzer is 
used. The results show that bandwidth is (0.0003-3) GHz, band flatness ±1dB. The measured 
amplitude-frequency characteristic curve is shown in Fig. 15 (frequency sweep range 
(0.0003-3) GHz, amplitude coordinate scale 2 dB/div). With a electrical sub-nanosecond 
pulse signal generator and a broad bandwidth digital oscilloscope, response in time domain 
is measured. The typical pulse waveform recorded is shown in Fig. 16. In the figure R1 is 
input pulse signal wave, and R2 is output waveform. The wave front of R1 and R2 is 153.5ps 
and 169.1ps respectively. According to the Gaussian approximation formula estimation, its 
bandwidth is approximately 3 GHz. 
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Fig. 11. Equivalent AC circuit diagram of LD. 
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Fig. 15. Curve of amplitude-frequency characteristics. 

 

 
Fig. 16. Waveform of pulse response. 

4.2.2 Linear dynamic range 
The linear dynamic range of the optical fiber transmission system is measured by point-to-
point scanning method. The input/output data and fitting curve are shown in Fig. 8. The 
result indicates that its dynamic range is greater than 100 with non-linear error less than 3%. 
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Fig. 17. Data and linear fitting curve of response. 

4.2.3 Output noise 
A broad bandwidth digital oscilloscope is used to record the output noise while the input is 
zero. A typical waveform recorded is shown in Fig. 18(time scale of 50ns/div, amplitude 
scale of 1mV/div). It can be seen from the waveform that the peak output noise Vp-p is less 
than 5mV (3.34mV recorded). 
 

 

 
 

Fig. 18. Waveform of output noise. 
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4.2.4 Standing wave ratio 
By a light-wave component analyzer, the measured curve is shown in Fig. 19. (frequency 
sweep range of (0.0003-3) GHz, amplitude coordinate scale of 1dB/div). The result shows 
that SWR is less than 2(1.59 recorded). 
 

 
Fig. 19. Curve of standing-wave-ratio in all bandwidth. 

5. Results and analysis 
Two different kinds of pulsed γ-ray devices with average photon energy of 0.3MeV, pulse 
width of 25ns, dose rate of 2.03×107Gy/s and average photon energy of 1.0MeV, pulse width 
of 25ns, dose rate of 5.32×109Gy are employed as irradiation sources in the experiment. The 
transient radiation-induced loss of pulsed γ-ray effecting on single-mode and multi-mode 
optical fibers have been measured. Optical fiber transmission systems with several different 
wavelength such as 405, 660, 850, 1310 and 1550nm are involved in the experimental 
measurement system. 

5.1 Amplitude performance of transient radiation-induced loss 
The experiments have been accomplished on two devices with high/low ray flux 
respectively. The high flux device makes detection system saturate, which has shorter 
detection wavelengths (405, 660 and 850nm). The low flux device exerts very low response 
on detection system which has longer detection wavelength (1310 and 1550nm). The signal 
level is too low to detect. The average radiation-induced loss of optical fibers under relative 
low and high flux pulsed γ-rays are shown in Table 1. and 2. respectively. It has become 
evident that the radiation-induced loss experienced by optical fibers is extremely larger than 
the intrinsic loss and dependent on the fiber type. It is appear that the single mode fiber may 
be influenced to a lesser degree than multi mode fibers. It is likely from the difference in  
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fractions of optical power that propagates within the cladding of the two types of fiber. To 
the response of same type fiber, the radiation-induced loss relies upon the wavelength of 
laser carrier. It is obvious that the shorter the wavelength of laser carrier, the larger the 
radiation-induced loss of optical fiber. 
 

optical fiber types G.651/50/125 G.651/62.5/125 G.652 G.655 
detection wavelength 
/nm 

1310 1550 1310 1550 1310 1550 1310 1550 

radiation-induced loss 
/dB/m/Gy 

0.027 0.016 0.037 0.017 0.023 0.015 0.031 0.011 

Table 1. Average transient irradiation-induced loss under low pulsed γ-ray. 

 
optical fiber types G.651/50/125 G.651/62.5/125 
detection wavelength 
/nm 

405 660 850 405 660 850 

radiation-induced loss 
/dB/m/Gy 

6.94 6.34 1.87 7.55 6.92 2.15 

Table 2. Average transient radiation-induced loss under high pulsed γ-ray. 

5.2 Time performance of transient radiation-induced loss 
Typical light signal waveform is shown in Fig. 20. The calculation result shows that the 
response time of transient radiation-induced loss is approximately 5ns. In order to measure 
the recovery of the tested optical fibers, the optical spectrum loss at the range of 700-1600 
nm is measured and compared with non-irradiated ones. The results are shown in Fig. 21. It 
can be seen from Fig. 21 that the radiation-induced loss of pulsed γ-ray effecting on optical 
fibers still remains, especially evident in the range of 700-1000nm and around 1390nm. The 
permanent radiation-induced loss increases with the decrease of wavelength in this range. 
To verify the heat recovery of radiation effects, the optical fibers have been heated to 80℃ 
for 2h and the above-mentioned loss measurements are repeated then. It can be found that 
the loss have no changes virtually indicating the existence of permanent radiation-induced 
loss under the irradiation conditions in this experiment. 
 

 
       (a)200mV/div 50ns/div          (b)200mV/div 100ns/div        (c)200mV/div 1000ns/div 

Fig. 20. Typical signal waveform recorded in experiments(200mV/div, 50, 100,200ns/div). 



 
Recent Progress in Optical Fiber Research 

 

444 

4.2.4 Standing wave ratio 
By a light-wave component analyzer, the measured curve is shown in Fig. 19. (frequency 
sweep range of (0.0003-3) GHz, amplitude coordinate scale of 1dB/div). The result shows 
that SWR is less than 2(1.59 recorded). 
 

 
Fig. 19. Curve of standing-wave-ratio in all bandwidth. 

5. Results and analysis 
Two different kinds of pulsed γ-ray devices with average photon energy of 0.3MeV, pulse 
width of 25ns, dose rate of 2.03×107Gy/s and average photon energy of 1.0MeV, pulse width 
of 25ns, dose rate of 5.32×109Gy are employed as irradiation sources in the experiment. The 
transient radiation-induced loss of pulsed γ-ray effecting on single-mode and multi-mode 
optical fibers have been measured. Optical fiber transmission systems with several different 
wavelength such as 405, 660, 850, 1310 and 1550nm are involved in the experimental 
measurement system. 

5.1 Amplitude performance of transient radiation-induced loss 
The experiments have been accomplished on two devices with high/low ray flux 
respectively. The high flux device makes detection system saturate, which has shorter 
detection wavelengths (405, 660 and 850nm). The low flux device exerts very low response 
on detection system which has longer detection wavelength (1310 and 1550nm). The signal 
level is too low to detect. The average radiation-induced loss of optical fibers under relative 
low and high flux pulsed γ-rays are shown in Table 1. and 2. respectively. It has become 
evident that the radiation-induced loss experienced by optical fibers is extremely larger than 
the intrinsic loss and dependent on the fiber type. It is appear that the single mode fiber may 
be influenced to a lesser degree than multi mode fibers. It is likely from the difference in  

 
Effects of Radiation on Optical Fibers 

 

445 

fractions of optical power that propagates within the cladding of the two types of fiber. To 
the response of same type fiber, the radiation-induced loss relies upon the wavelength of 
laser carrier. It is obvious that the shorter the wavelength of laser carrier, the larger the 
radiation-induced loss of optical fiber. 
 

optical fiber types G.651/50/125 G.651/62.5/125 G.652 G.655 
detection wavelength 
/nm 

1310 1550 1310 1550 1310 1550 1310 1550 

radiation-induced loss 
/dB/m/Gy 

0.027 0.016 0.037 0.017 0.023 0.015 0.031 0.011 

Table 1. Average transient irradiation-induced loss under low pulsed γ-ray. 

 
optical fiber types G.651/50/125 G.651/62.5/125 
detection wavelength 
/nm 

405 660 850 405 660 850 

radiation-induced loss 
/dB/m/Gy 

6.94 6.34 1.87 7.55 6.92 2.15 

Table 2. Average transient radiation-induced loss under high pulsed γ-ray. 

5.2 Time performance of transient radiation-induced loss 
Typical light signal waveform is shown in Fig. 20. The calculation result shows that the 
response time of transient radiation-induced loss is approximately 5ns. In order to measure 
the recovery of the tested optical fibers, the optical spectrum loss at the range of 700-1600 
nm is measured and compared with non-irradiated ones. The results are shown in Fig. 21. It 
can be seen from Fig. 21 that the radiation-induced loss of pulsed γ-ray effecting on optical 
fibers still remains, especially evident in the range of 700-1000nm and around 1390nm. The 
permanent radiation-induced loss increases with the decrease of wavelength in this range. 
To verify the heat recovery of radiation effects, the optical fibers have been heated to 80℃ 
for 2h and the above-mentioned loss measurements are repeated then. It can be found that 
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Fig. 20. Typical signal waveform recorded in experiments(200mV/div, 50, 100,200ns/div). 
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Fig. 21. Optical spectrum loss curve comparison before and after radiation exposure. 

5.3 Relationship between transient radiation-induced loss and radiation dose 
By 850nm laser measurement system, the measured data of low flux γ-ray transient 
radiation-induced loss on optical fiber G. 651 (62.5/125μm) and fitted curve are shown in 
Fig. 22. It can be drawn that the transient radiation-induced loss has an approximate linear 
relationship with total dose in the range of 0.1-3.5 Gy. It is observed that the radiation-
induced loss tends to saturation with increasing dose. The saturation is associated with the 
total radiation-induced color centers in a given length of fiber under test. In the experiments, 
it is not observed that the decreasing in radiation-induced loss with increasing dose, so 
called radiation annealing. 
Luminescence and Cherenkov lights are not observed in the experiments due to their weak 
intensities along fiber axis. The sensitivity of the measurement system is to be improved. 

5.4 Effect analysis 
The essential difference between the crystalline and amorphous solid is that there is not 
long-range order in the latter. Instead there are localized regions of ordered atomic 
arrangements in amorphous solids that exist only over a few atomic diameters. Therefore 
there will be localized electronic states within glasses which account for the optical 
properties in such materials. A color center is an impurity or imperfection within an 
otherwise well-ordered system. Generally there will be a set of energy levels available for 
electronic transitions. These energy levels then represent an absorption spectrum while light 
not absorbed gives the material its characteristic color. Impurities, atomic defects, irregular 
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arrangements of atoms or trapped charge carriers can cause color centers to form with sets 
of specific absorption spectrum. 
 

 
Fig. 22. Experimental data and fitting curve of transient radiation-induced loss. 

When γ-ray irradiates on optical fibers, Compton effect will occur usually and the resulting 
high energy electrons causing the primary radiation damage due to γ-ray absorption in 
optical fibers. High energy electrons will increase the concentration of color centers, which 
lead to additional absorption of incident light. Short-lived color center will continue to 
prevent the formation of new color centers. Therefore in a certain range of radiation dose, 
radiation-induced loss presents an approximately linear relationship with doses, but as the 
dose increases, radiation-induced loss tend to get saturated. γ-ray radiation also results in 
overall optical waveguide deterioration due to changes in the indexes of refraction of core, 
cladding, or both. It is likely that we could not be able to clearly separate the absorption 
effect and the index of refraction effect. But in this case, it may be manifest that the 
absorption effect is dominant. 
The role of external heat may accelerate the transition of excitation level, the relaxation of 
carriers from trapping, or diffusion of color centers, for many forms of color centers are 
unstable and thermal processes are sufficient to restore the material to its original state. So 
heat may be beneficial for recovery of radiation-induced loss. But external heat appears 
invalidation to the permanent radiation-induced loss, which arises from stable color centers. 
Radiation-induced loss is somewhat dependent on the fiber types. It appears that the single-
mode fibers may be less affected than multi-mode fibers. Single-mode fibers have more 
concentrated electromagnetic energy distribution than multi-mode fibers. In the same 
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Recent Progress in Optical Fiber Research 

 

448 

irradiation conditions, the absorption of single-mode fiber radiation dose is relatively small 
in the mode distribution region, so the radiation-induced loss of single-mode fiber is lower 
than that of multimode fiber. 

6. Conclusion 
In this chapter, two different dose rates of pulsed γ-ray devices are used to irradiate four 
kinds of optical fibers. By using near infrared and visible wavelength measurement system, 
the radiation-induced loss is measured. It can be drawn from the experimental results: (1) 
Under the same experimental condition, the radiation-induced loss of multimode fibers is 
slightly larger than single-mode fibers. (2) Radiation-induced loss will increase as the 
detection laser wavelength shifts from near-infrared to visible regions of optical spectrum. 
Within a certain dose range transient multi-mode fiber radiation-induced loss displays a 
nearly linear dependence upon the total dose. (3) Two models are invoked to explain 
radiation-induced loss. One is that the generation of new color centers in fiber materials will 
increase the absorption loss in the near infrared and visible region. The other is that the 
changes of refractive index will lead to additional waveguide loss. Both radiation-induced 
loss mechanisms exist simultaneously; therefore, radiation-induced loss is the result of joint 
action of the two. (4) Radiation-induced fluorescence density along the optical fiber axis is so 
low that measurement system with higher sensitivity is needed (e.g. photoelectric multiple 
tube). Taking the advantage of effects of radiation, on the one hand scientists can seek 
methods for decreasing additional loss and develop anti-radiation optical fibers suitable for 
transmission systems under radiation environments, and on the other hand they can also 
manufacture radiation dose meters based on this effect. 
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in the mode distribution region, so the radiation-induced loss of single-mode fiber is lower 
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