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Preface 

With the development of process industries to meet market demand, new efficient 
technologies have come up innovative ways to enhance production capacity by giving 
special effort to process intensification. Maximizing production by allowing optimal 
inputs to flow to the process has saved energy, raw materials, and utility in process 
industries. In order to reduce global warming, various measures and preventive 
actions are initiated around the world. 

This book provides the most recent information about the theory, history, state of the 
art, and best practices in implementing precise controllers in modern industrial 
processes, financial sectors, and bio processes. Presently monitoring and controlling 
are not only limited to industrial systems, but also have been extended to bio-medical, 
financial market, and areas related to forecasting and control. The main purpose of 
writing this book is to create an understanding of theory behind PID controller, how to 
tune, and where to apply the controller. The concept of applying PID controller to 
various fields and to design or tune the controller for specific purposes by fulfilling 
closed-loop performance specifications is the objective of this book. 

The book covers the general topic of PID control configuration and tuning as well as 
new requirements that originate from allied application areas. This book contains eight 
preliminary sections each of which has one or more chapters. Thus, a total of 11 
chapters has been accommodated in this book.  It is proposed that section one will 
have chapter one and two. Chapter one will introduce PID controller design methods 
under specified performance, especially, time-domain and frequency domain 
specifications, optimization of PID parameters using error criteria. Chapter two 
presents the general discussion on the family of PID controllers with a path to proceed 
for optimal control. The architecture (series, parallel, and cascade) and structure of PID 
controllers for first and second order processes are explained here. Chapter three 
describes the PID-like controller tuning for second order unstable systems with 
different model structures, relying on assignment of dominant poles, as well as time 
domain specifications, providing sufficient stability margins. The controller 
parameters are obtained in terms of process parameters, or by using iterative 
techniques.  Chapter four introduces concepts of tuning of PID controllers based on 
magnitude optimum for integrating unstable and Smith predictor systems in the 
continuous domain. The technique is combined with the concept of movement for 



XII Preface

cases on set point tracking and disturbance rejection.  Model based tuning criteria of 
PID controllers for conventional controllers (P, PI, PID, PD etc) for multi input multi 
output systems are described in chapter five. Features and methods of auto tuning of 
PID controller,  and the method of calculating performance of individual loops are also 
stated here. Tuning methods, using subspace identification techniques, different types 
of multiloop controllers with their design methods, and tuning of those controllers, are 
discussed in this chapter. Chapter six describes robust decentralized controller design 
for MIMO systems. Performances of individual loops and for the overall system are 
discussed here. Application of Nyquist type design for robust stability and nominal 
performance is discussed here.  Chapter seven accounts for various intelligent 
controllers, namely using fuzzy logic based on the Mamdani structure. A method to 
make a pseudo-equivalence between the linear PID controllers and the fuzzy PID 
controllers is given here. Chapter eight presents discrete PID controller tuning using 
piecewise linearization methods using neural networks. PID controller is used using 
pole assignment. Design method of fractional order PID controllers for fractional order 
process is addressed in chapter nine. The difficulties in designing fractional order PID 
due to presence of fractional derivatives is explained here. Application of PID 
controllers in financial sectors is described in chapter 10. In this chapter, a portfolio 
management model with the aim to obtain good returns and decrease portfolio risk 
through stabilization of returns, by means of the PID control applied to pure returns, 
has been illustrated. The possible extensions in practical application of PID controllers 
in other fields, for example, polymerization and production of bromelin are described 
in Chapter 11. Each of the above chapters contains applications of the respective 
theory presented in it.   

I sincerely thank the publisher and book-process-manager for their cooperation in 
bringing this book to a presentable manner. 

Rames C. Panda 
Scientist, Dept of Chemical Engineering, CLRI, Adyar, Chennai  

India 
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PID Controller Design for  
Specified Performance 

Štefan Bucz and Alena Kozáková 
Institute of Control and Industrial Informatics,  

Faculty of Electrical Engineering and Information Technology,  
Slovak University of Technology, Bratislava  

Slovak Republic 

1. Introduction  
„How can proper controller adjustments be quickly determined on any control 
application?” The question posed by authors of the first published PID tuning method 
J.G.Ziegler and N.B.Nichols in 1942 is still topical and challenging for control engineering 
community. The reason is clear: just every fifth controller implemented is tuned properly 
but in fact: 
 30% of improper performance is due to inadequate selection of controller design 

method, 
 30% of improper performance is due to neglected nonlinearities in the control loop,  
 20% of improper closed-loop dynamics is due to poorly selected sampling period. 
Although there are 408 various sources of PID controller tuning methods (O´Dwyer, 2006), 
30% of controllers permanently operate in manual mode and 25% use factory-tuning 
without any up-date with respect to the given plant (Yu, 2006). Hence, there is natural need 
for effective PID controller design algorithms enabling not only to modify the controlled 
variable but also achieve specified performance (Kozáková et al., 2010), (Osuský et al., 2010). 
The chapter provides a survey of 51 existing practice-oriented methods of PID controller 
design for specified performance. Various options for design strategy and controller 
structure selection are presented along with PID controller design objectives and 
performance measures. Industrial controllers from ABB, Allen&Bradley, Yokogawa, Fischer-
Rosemont commonly implement built-in model-free design techniques applicable for 
various types of plants; these methods are based on minimum information about the plant 
obtained by the well-known relay experiment. Model-based PID controller tuning 
techniques acquire plant parameters from a step-test; useful tuning formulae are provided 
for commonly used system models (FOPDT – first-order plus dead time, IPDT – integrator 
plus dead time, FOLIPDT – first-order lag and integrator plus dead time and SOPDT –   
second-order plus dead time). Optimization-based PID tuning approaches, tuning methods 
for unstable plants, and design techniques based on a tuning parameter to continuously 
modify closed-loop performance are investigated. Finally, a novel advanced design 
technique based on closed-loop step response shaping is presented and discussed on 
illustrative examples. 
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2. PID controller design for performance 
Time response of the controlled variable y(t) is modifiable by tuning proportional gain K, 
and integrating and derivative time constants Ti and Td, respectively; the objective is to 
achieve a zero steady-state control error e(t) irrespective if caused by changes in the 
reference w(t) or the disturbance d(t). This section presents practice-oriented PID controller 
design methods based on various perfomance criteria. Consider the control-loop in Fig. 1 
with control action u(t) generated by a PID controller (switch SW in position “1”). 
 
 
 
 
 
                     n(t) 
 
 
 

Fig. 1. Feedback control-loop with load disturbance d(t) and measurement noise n(t) 

A controller design is a two-step procedure consisting of controller structure selection (P, PI, 
PD or PID) followed by tuning coefficients of the selected controller type.  

2.1 Selection of PID controller structure 
Appropriate structure of the controller GR(s) is usually selected with respect to zero steady-
state error condition (e()=0), type, and parameters of the controlled plant. 

2.1.1 Controller structure selection based on zero steady-state error condition 
Consider the feedback control loop in Fig. 1 where G(s) is the plant transfer function. 
According to the Final Value Theorem, the steady-state error  

  
0 0 0

1lim ( ) lim ( ) ! lim
1 ( )

q

qs s s L

se sE s s W s q w
L s s K







  
   

 
 (1) 

is zero if in the open-loop L(s)=G(s)GR(s), the integrator degree L=S+R is greater than the 
degree q of the reference signal w(t)=wqtq, i.e.  

 L q   (2) 

where S and R are integrator degrees of the plant and controller, respectively, KL is open-
loop gain and wq is a positive constant (Harsányi et al., 1998). 

2.1.2 Principles of controller structure selection based on the plant type 
Industrial process variables (e.g. position, speed, current, temperature, pressure, humidity, 
level etc.) are commonly controlled using PI controllers. In practice, the derivative part is 
usually switched off due to measurement noise. For pressure and level control in gas tanks, 
using P controller is sufficient (Bakošová & Fikar, 2008). However, adding derivative part 
improves closed-loop stability and steepens the step response rise (Balátě, 2004). 

SW 3 
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Step generator 

PID controller 
2 
1 w(t)  e(t) u(t) y(t) 
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2.1.3 PID controller structure selection based on plant parametres  
Consider the FOPDT (j=1) and FOLIPDT (j=3) plant models given as GFOPDT=K1e-D1s/[T1s+1] 
and GFOLIPDT=K3e-D3s/{s[T3s+1]} with following parameters  

 1
1

1

D
T

  ;  1 1 cK K  ;  3
3

3

D
T
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3

lim ( )

( ) 2
s c c

c c

sG s T K K
G j
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2
3

3 2
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2 1
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arctg 

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 



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where Kc and c are critical gain and frequency of the plant, respectively. Normed time 
delay j and parameter j can be used to select appropriate PID control strategy. According 
to Tab. 1 (Xue et al., 2007), the derivative part is not used in presence of intense noise and a 
PID controller is not appropriate for plants with large time delays. 
 

Ranges for  and  
No precise 

control 
necessary 

Precise control needed 
High 
noise 

Low 
saturation 

Low measu-
rement noise 

1>1; 1<1,5 I I+B+C PI+B+C PI+B+C 
0,6<1<1; 1,5<1<2,25 I or PI I+A PI+A (PI or PID)+A+C 
0,15<1<0,6; 2,25<1<15 PI PI PI or PID PID 
1<0,15; 1>15 or 3>0,3; 3<2 P or PI PI PI or PID PI or PID 
3<0,3; 3>2 PD+E F PD+E PD+E 

Table 1. Controller structure selection with respect to plant model parameters:  
A: forward compensation suggested, B: forward compensation necessary, C: dead-time 
compensation suggested, D: dead-time compensation necessary, E: set-point weighing 
necessary, F: pole-placement 

2.2 PID controller design objectives  
Consider the following most frequently used PID controller types: ideal PID (4a), real 
interaction PID with derivative filtering (4b) and ideal PID in series with a first order filter 
(4c) 
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(4) 

In practical cases N8;16 (Visoli, 2006). The PID controller design objectives are: 
1. tracking of setpoint or reference variable w(t) by y(t), 
2. rejection of disturbance d(t) and noise n(t) influence on the controlled variable y(t).  
The first objective called also „servo-tuning” is frequent in motion systems (e.g. tracking 
required speed); techniques to guarantee the second objective are called „regulator-tuning“. 

2.3 Performance measures in the time domain 
Performance measures indicating satisfactory quality of setpoint tracking (Fig. 2a) and 
disturbance rejection (Fig. 2b) are small maximum overshoot and small decay ratio, 
respectively, given as 
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In practical cases N8;16 (Visoli, 2006). The PID controller design objectives are: 
1. tracking of setpoint or reference variable w(t) by y(t), 
2. rejection of disturbance d(t) and noise n(t) influence on the controlled variable y(t).  
The first objective called also „servo-tuning” is frequent in motion systems (e.g. tracking 
required speed); techniques to guarantee the second objective are called „regulator-tuning“. 

2.3 Performance measures in the time domain 
Performance measures indicating satisfactory quality of setpoint tracking (Fig. 2a) and 
disturbance rejection (Fig. 2b) are small maximum overshoot and small decay ratio, 
respectively, given as 
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where y() denotes steady state of y(t). The ratio of two successive amplitudes Ai+1/Ai is 
measure of y(t) decaying, where i=1...N, and N is half of the number of y() crossings by 
y(t) (Fig. 2b). A time-domain performance measure is the settling time ts, i.e. the time after 
which the output y(t) remains within % of its nal value (Fig. 2a); typically 
=[1%÷5%]y(), DR(1:4;1:2), max(0%;50%). Fig. 2c depicts underdamped (curve 1), 
overdamped (curve 2) and critically damped (curve 3) closed-loop step responses. 
 

 
 
 
 
 
 

Fig. 2. Performance measures: DR, ts, max and e(); a) setpoint step response; b) load 
disturbance step response; c) over-, critically- and underdamped closed-loop step-responses 

2.4 Model-free PID controller design techniques with guaranteed performance 
Model-free tuning PID controller techniques are used if plant dynamics is not complicated 
(without oscillations, vibrations, large overshoots) or if plant modelling is time demanding, 
uneconomical or even unfeasible. To find PID controller coefficients, instead of a full model 
usually 2-4 characteristic plant parameters are used obtained from the relay test.  

2.4.1 Tuning rules based on critical parameters of the plant 
Consider the closed-loop in Fig. 1 with proportional controller. If the controller gain K is 
successively increased until the process variable oscillates with constant amplitudes, critical 
parameters can be specified: the period of oscillations Tc and the corresponding gain Kc. If 
the controller (4a) is considered, coefficients of P, PI and PID controllers are calculated 
according to Tab. 2, where c=2/Tc is critical frequency of the plant.  
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9. (Bucz, 2011) PID 0,54Kc 0,79Tc 0,199Tc Overshoot max20% 
10. (Bucz, 2011) PID 0,28Kc 1,44Tc 0,359Tc Settling time ts13/c 

Table 2. Controller tuning based on critical parametres of the plant 
Rules No. 1 – 3 represent the famous Ziegler-Nichols frequency-domain method with fast 
rejection of the disturbance d(t) for DR=1:4 (Ziegler & Nichols, 1942). Related methods (No. 
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4 – 10) use various weighing of critical parameters thus allowing to vary closed-loop 
performance requirements. Methods (No. 1 – 10) are applicable for various plant types, 
easy-to-use and time efficient. 

2.4.2 Specification of critical parameters of the plant using relay experiment 
To quickly determine critical parameters Kc and Tc, industrial autotuners apply a relay test 
(Rotach, 1984) either with ideal relay (IR) or a relay with hysteresis (HR). In the loop in Fig. 1 
when adjusting the setpoint w(t) in manual mode and switching SW into „3“, a stable limit 
cycle around y() arises. Due to switching between the levels –M, +M, G(s) is excited by a 
periodic rectangular signal u(t), (Fig. 3a). Then, c and Kc can be calculated from  

 2
c

cT
  ;  _

4
c IR

c

MK
A

 ;  _
4( 0,5 )DB

c HR
c

MK
A





   (6) 

where the period and amplitude of oscillations Tc and Ac, respectively, can be obtained from 
a record of y(t) (Fig. 3b); DB is the width of the hysteresis. Relay amplitude M is usually 
adjusted at 3%10% of the control action limit. A relay with hysteresis is used if y(t) is 
corrupted by measurement noise n(t) (Yu, 2006); the critical gain is calculated using (6c). 
 

 
   
 
 
 
 

Fig. 3. A detailed view of u(t) and y(t) to determine critical parameters Kc and Tc  

2.5 Model-based PID controller design with guaranteed performance 
Steday-state and dynamic properties of real processes are described by simple FOPDT, 
IPDT, FOLIPDT or SOPDT models. Model parameters further used to calculate PID 
controller coefficients can be found e.g. from the plant step responses (Fig. 4 and 5). 

2.5.1 Specification of FOPDT, IPDT and FOLIPDT plant model parameters  
According to Fig. 1, the plant step response is obtained by switching SW into „2“ and 
performing a step change in u(t). Plant model parameters are obtained by evaluating the 
particular step response (Fig. 4).  
 
 
 
 
 
 
 
 

Fig. 4. Typical step responses of a) FOPDT; b) IPDT and c) FOLIPDT models 
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4 – 10) use various weighing of critical parameters thus allowing to vary closed-loop 
performance requirements. Methods (No. 1 – 10) are applicable for various plant types, 
easy-to-use and time efficient. 

2.4.2 Specification of critical parameters of the plant using relay experiment 
To quickly determine critical parameters Kc and Tc, industrial autotuners apply a relay test 
(Rotach, 1984) either with ideal relay (IR) or a relay with hysteresis (HR). In the loop in Fig. 1 
when adjusting the setpoint w(t) in manual mode and switching SW into „3“, a stable limit 
cycle around y() arises. Due to switching between the levels –M, +M, G(s) is excited by a 
periodic rectangular signal u(t), (Fig. 3a). Then, c and Kc can be calculated from  
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where the period and amplitude of oscillations Tc and Ac, respectively, can be obtained from 
a record of y(t) (Fig. 3b); DB is the width of the hysteresis. Relay amplitude M is usually 
adjusted at 3%10% of the control action limit. A relay with hysteresis is used if y(t) is 
corrupted by measurement noise n(t) (Yu, 2006); the critical gain is calculated using (6c). 
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2.5.2 Tuning formulae for FOPDT models  
FOPDT models (7a) are used for chemical processes, thermal systems, manufacturing 
processes etc. Corresponding P, PI and PID coefficients are calculated using formulae in Tab. 3. 
 

No. Design method, year, 
control purpose 

Cont-
roller K Ti Td Performance 

11. 
(Ziegler & Nichols, 
1942) 

P 1/1 - - 
Quarter decay 
ratio (δDR=1:4) 12. PI 0,9/1 3D1 - 

13. PID 1,2/1 2D1 0,5D1 
14. 

(Chien et al., 1952), 
Regulator tuning 

PI 0,6/1 4D1 - max=0%, 
D1/T1(0,1;1) 15. PID 0,95/1 2,38D1 0,42D1 

16. PI 0,7/1 2,33D1 - max=20%, 
D1/T1(0,1;1) 17. PID 1,2/1 2D1 0,42D1 

18. 
(Chien et al., 1952), 
Servo tuning 

PI 0,35/1 1,17D1 - max=0%, 
D1/T1(0,1;1) 19. PID 0,6/1 D1 0,5D1 

20. PI 0,6/1 D1 - max=20%, 
D1/T1(0,1;1) 21. PID 0,95/1 1,36D1 0,47D1 

22. (ControlSoft Inc., 
2005) 

PID 2/K1 T1+D1 max(D1/3;T1/6) Slow loop 
23. PID 2/K1 T1+D1 min(D1/3;T1/6) Fast loop 

Table 3. PID tuning rules based on FOPDT model; 1=K1D1/T1 is the normed process gain 

Formulae No. 11 – 13 represent the time-domain (or reaction curve) Ziegler-Nichols method 
(Ziegler & Nichols, 1942) and usually give higher open-loop gains than the frequency-
domain version. Algorithms by Chien-Hrones-Reswick provide different settings for 
setpoint regulation and disturbance rejection for two representative maximum overshoot 
values. 

2.5.3 Tuning formulae for IPDT and FOLIPDT models  
While dynamics of slow industrial processes (polymer production, heat exchangers) can be 
described by IPDT model (7b), electromechanic subsystems of turning machines and 
servodrives are typical examples for using FOLIPDT model (7c).  
 

No. Design method, year, model Cont-
roller K Ti Td Perfor-

mance 
24. (Haalman, 1965), IPDT P 0,66/(K2D2) - - Ms=1,9 
25. (Ziegler & Nichols, 1942), IPDT PI 0,9/(K2D2) 3,33D2 - δDR=1:4 
26. (Ford, 1953), IPDT PID 1,48/(K2D2) 2D2 0,37D2 δDR=1:2,7 
27. (Coon, 1956), FOLIPDT P x3/[K3(D3+T3)] - - δDR=1:4 
28.  (Haalman, 1965), FOLIPDT PD 0,66/(K3D3) - T3 Ms=1,9 

Table 4. Tuning rules based on IPDT and FOLIPDT model parameters 
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According to Haalman (rules No. 24 and 28), controller transfer function GR(s)=L(s)/G(s), 
where L(s)=0,66e-Ds/(Ds) is the ideal loop transfer function guaranteeing maximum closed-
loop sensitivity Ms=1,9 to disturbance d(t), (see subsection 2.8.1). For various G(s), various 
controller structures are obtained. The gain K in rule No. 27 depends on the normed time 
delay 3=D3/T3 of the FOLIPDT model; for corresponding couples hold: (3;x3)={(0,02;5), 
(0,053;4); (0,11;3); (0,25;2,2); (0,43;1,7); (1;1,3); (4;1,1)}. Due to integrator contained in IPDT 
and FOLIPDT models, I-term in the controller structure is needed just to achieve zero 
steady-state error e() under steady-state disturbance d(). 

2.5.4 Tuning formulae for SOPDT plant models 
Flexible systems in wood processing industry, automotive industry, robotis, shocks and 
vibrations damping are often modelled by SOSPTD models with transfer functions 
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For SOPDT model (8b), the relative damping 6(0;1) indicates oscillatory step response.  
 
 
 
 
 
 
 
 
 

Fig. 5. Step response of SOPDT model: a) non-oscillatory, b) oscillatory  

If 6>1, SOPDT model (8a) is used; its parameters are found from the non-oscillatory step 
response in Fig. 5a using the following relations 
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where S=K4(T4+T5+D4) denotes the area above the step response of y(t), and y() is its 
steady-state value. Parameters of the SOPDT model (8b) can be found from evaluation of 2-4 
periods of step response oscillations (Fig. 5b) using following rules (Vítečková, 1998) 
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Quality of identification improves with increasing number of read-off amplitudes N. If N>2 
several values 6, T6 and D6 are obtained and their average is taken for further calculations. 
Tab. 5 summarizes useful tuning formulae for both oscillatory and non-oscillatory systems 
with SOPDT model properties. 
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2.5.2 Tuning formulae for FOPDT models  
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According to Haalman (rules No. 24 and 28), controller transfer function GR(s)=L(s)/G(s), 
where L(s)=0,66e-Ds/(Ds) is the ideal loop transfer function guaranteeing maximum closed-
loop sensitivity Ms=1,9 to disturbance d(t), (see subsection 2.8.1). For various G(s), various 
controller structures are obtained. The gain K in rule No. 27 depends on the normed time 
delay 3=D3/T3 of the FOLIPDT model; for corresponding couples hold: (3;x3)={(0,02;5), 
(0,053;4); (0,11;3); (0,25;2,2); (0,43;1,7); (1;1,3); (4;1,1)}. Due to integrator contained in IPDT 
and FOLIPDT models, I-term in the controller structure is needed just to achieve zero 
steady-state error e() under steady-state disturbance d(). 
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For SOPDT model (8b), the relative damping 6(0;1) indicates oscillatory step response.  
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where S=K4(T4+T5+D4) denotes the area above the step response of y(t), and y() is its 
steady-state value. Parameters of the SOPDT model (8b) can be found from evaluation of 2-4 
periods of step response oscillations (Fig. 5b) using following rules (Vítečková, 1998) 
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Quality of identification improves with increasing number of read-off amplitudes N. If N>2 
several values 6, T6 and D6 are obtained and their average is taken for further calculations. 
Tab. 5 summarizes useful tuning formulae for both oscillatory and non-oscillatory systems 
with SOPDT model properties. 
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No. Method, 
year 

Cont-
roller K Ti Td Performance for 

29. (Suyama, 
1992)  PID 4 5

4 42
T T

K D
  T4+T5 4 5

4 5

T T
T T

 Closed-loop step response 
overshoot max=10% 

30. Vítečková, 
(1999), 
Vítečková  
et al., (2000)

PID 4 5
4

4 4

T Tx
K D
  T4+T5 4 5

4 5

T T
T T

 
Overdamped plants; T5>T4 
max=0%: x4=0,368 
max=30%: x4=0,801 

31. PID 6 6 6

6 6

x T
K D
  26T6 

6

62
T


 
Underdamped plants (0,5<61) 
max=0%: x6=0,736 
max=30%: x6=1,602 

32. (Wang & 
Shao, 1999) PID 6 6 6

6 6

x T
K D
  26T6 

6

62
T


 [GM=2, M=45]: x6=1,571 
[GM=5, M=72]: x6=0,628 

33. (Chen  
et al., 1999) PID 6 6 6

6 6

x T
K D
  26T6 

6

62
D


 [GM;M;Ms]=[3,14;61,4;1]: x6=1,0 
[GM;M;Ms]=[1,96;44,1;1,5]: x6=1,6 

Table 5. Tuning rules based on SOPDT model parameters 

2.6 PID controller design based on optimization techniques 
Optimal PID controller tuning can be found by minimizing the performance index  

 
2

0
( , , ) ( , , , )n

i d i dI K T T t e K T T t dt

      (11) 

Its particular cases are known as integral square error (ISE) for n=0; integral squared time 
weighed error (ISTE) for n=1, and integral squared time-squared weighed error (IST2E) for 
n=2. Some tuning formulae for PID controller in form (4a) are shown in Tab. 6. Settling time 
ts in rules No. 40 and 41 is affected by D2. 
 
No. Method, year, model K Ti  Td Performance 
34. (Zhuang & Atherton, 

1993), FOPDT model, 
10,1;1  

1,47310,970/K1 0,897T110,753 0,550T110,948 Minimum ISE 
35. 1,46810,970/K1 1,062T110,725 0,443T110,939 Minimum ISTE 
36. 1,53110,960/K1 1,030T110,746 0,413T110,933 Minimum IST2E 
37. (Zhuang & Atherton, 

1993), FOPDT model, 
11,1;2  

1,52410,735/K1 0,885T110,641 0,552T110,851 Minimum ISE 
38. 1,51510,730/K1 1,045T110,598 0,444T110,847 Minimum ISTE 
39. 1,59210,705/K1 1,045T110,597 0,414T110,850 Minimum IST2E 
40. (Wang a Cluett, 1997), 

IPDT model 
0,9588/[K2D2] 3,0425D2  0,3912D2  ts=D2 

41. 0,3144/[K2D2] 11,1637D2  0,1453D2  ts=5D2 

Table 6. Tuning rules based on minimizing performance indices 

2.7 PID controller setting for unstable FOPDT models 
Minimization of performance indices can be applied also for unstable FOPDT models  
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leading to simple tuning rules for PID controller (4a) (No. 42 – 44 in Tab. 7). Tuning rules 
No. 45 and 46 for PID controller (4c) show that settling time ts increases with growing 
normed time delay 1=D1/T1 of the FOPDT model (12). 
 
No. Method, year K Ti Td Tf Performance 
42. (Visoli, 2001), 

Regulator 
tuning 

1,371/K1 2,42T111,18  0,60T1 - Minimum ISE 
43. 1,371/K1 4,12T110,90  0,55T1 - Minimum ISTE 
44. 1,701/K1 4,52T111,13  0,50T1 - Minimum IST2E 
45. (Chandrashekar 

et al., 2002) 
10,3662/K1 0,3874T1 0,0435T1 0,0134T1 ts=0,1T1: 1=0,1 

46. 2,0217/K1 4,65T1 0,2366T1 0,0696T1 ts=0,8T1: 1=0,5 

Table 7. Tuning rules for unstable FOPDT model 

Using tuning methods shown in Tab. 2 – 7, achieved performance is a priori given by the 
chosen metod (e.g. a quarter decay ratio if using Ziegler-Nichols methods No. 11 – 13 in 
Tab. 3), or guaranteed performance however not specified by the designer (e.g. in Chen 
method No. 33 in Tab. 5, a gain margin GM=1,96, a phase margin M=44,1, and a maximum 
peak of the sensitivity to disturbance d(t) Ms=1,5). 

2.8 PID controller design for specified performance  
These methods provide tuning rules are based on a single tuning parameter that enables to 
systematically affect closed-loop performance by step response shaping. 

2.8.1 Performance measures used as a PID tuning parameter 
Most frequent parameters for tuning PID controllers are following performance measures 
(Åström & Hägglund, 1995):  
 M and GM:  phase and gain margins, respectively, 
 Ms and Mt:  maximum peaks of sensitivity S(j) and complementary sensitivity T(j) 

magnitudes, respectively, 
 :  required closed-loop time constant.   
If a controller GR(j) guarantees that S(j) or T(j) do not overrun prespecified values Ms 
or Mt, respectively, defined by 

 1sup ( ) sup
1 ( )sM S j

L j 



 


;   ( )sup ( ) sup

1 ( )t
L jM T j

L j 





 


 (13) 

over 0,), then the Nyquist plot L(j) of the open-loop L(s)=G(s)GR(s) avoids the 
respective circle MS or MT , each given by the their center and radius as follows  
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s
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t
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21
t
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 (14) 

If L(j) avoids entering the circles corresponding to MS or MT, a safe distance from the point 
CS is kept (Fig. 6a). Typical S(j) and T(j) plots for properly designed controller are 
plotted in Fig. 6b. The disturbance d(t) is sufficiently rejected if Ms(1,2;2). The reference 
w(t) is properly tracked by the process output y(t) if Mt(1,3;2,5). With further increasing of 
Mt the closed-loop tends to be oscillatory.  



 
Introduction to PID Controllers – Theory, Tuning and Application to Frontier Areas 

 

10

No. Method, 
year 

Cont-
roller K Ti Td Performance for 

29. (Suyama, 
1992)  PID 4 5

4 42
T T

K D
  T4+T5 4 5

4 5

T T
T T

 Closed-loop step response 
overshoot max=10% 

30. Vítečková, 
(1999), 
Vítečková  
et al., (2000)

PID 4 5
4

4 4

T Tx
K D
  T4+T5 4 5

4 5

T T
T T

 
Overdamped plants; T5>T4 
max=0%: x4=0,368 
max=30%: x4=0,801 

31. PID 6 6 6

6 6

x T
K D
  26T6 

6

62
T


 
Underdamped plants (0,5<61) 
max=0%: x6=0,736 
max=30%: x6=1,602 

32. (Wang & 
Shao, 1999) PID 6 6 6

6 6

x T
K D
  26T6 

6

62
T


 [GM=2, M=45]: x6=1,571 
[GM=5, M=72]: x6=0,628 

33. (Chen  
et al., 1999) PID 6 6 6

6 6

x T
K D
  26T6 

6

62
D


 [GM;M;Ms]=[3,14;61,4;1]: x6=1,0 
[GM;M;Ms]=[1,96;44,1;1,5]: x6=1,6 

Table 5. Tuning rules based on SOPDT model parameters 

2.6 PID controller design based on optimization techniques 
Optimal PID controller tuning can be found by minimizing the performance index  

 
2

0
( , , ) ( , , , )n

i d i dI K T T t e K T T t dt

      (11) 

Its particular cases are known as integral square error (ISE) for n=0; integral squared time 
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Table 6. Tuning rules based on minimizing performance indices 
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leading to simple tuning rules for PID controller (4a) (No. 42 – 44 in Tab. 7). Tuning rules 
No. 45 and 46 for PID controller (4c) show that settling time ts increases with growing 
normed time delay 1=D1/T1 of the FOPDT model (12). 
 
No. Method, year K Ti Td Tf Performance 
42. (Visoli, 2001), 

Regulator 
tuning 

1,371/K1 2,42T111,18  0,60T1 - Minimum ISE 
43. 1,371/K1 4,12T110,90  0,55T1 - Minimum ISTE 
44. 1,701/K1 4,52T111,13  0,50T1 - Minimum IST2E 
45. (Chandrashekar 

et al., 2002) 
10,3662/K1 0,3874T1 0,0435T1 0,0134T1 ts=0,1T1: 1=0,1 

46. 2,0217/K1 4,65T1 0,2366T1 0,0696T1 ts=0,8T1: 1=0,5 

Table 7. Tuning rules for unstable FOPDT model 

Using tuning methods shown in Tab. 2 – 7, achieved performance is a priori given by the 
chosen metod (e.g. a quarter decay ratio if using Ziegler-Nichols methods No. 11 – 13 in 
Tab. 3), or guaranteed performance however not specified by the designer (e.g. in Chen 
method No. 33 in Tab. 5, a gain margin GM=1,96, a phase margin M=44,1, and a maximum 
peak of the sensitivity to disturbance d(t) Ms=1,5). 

2.8 PID controller design for specified performance  
These methods provide tuning rules are based on a single tuning parameter that enables to 
systematically affect closed-loop performance by step response shaping. 

2.8.1 Performance measures used as a PID tuning parameter 
Most frequent parameters for tuning PID controllers are following performance measures 
(Åström & Hägglund, 1995):  
 M and GM:  phase and gain margins, respectively, 
 Ms and Mt:  maximum peaks of sensitivity S(j) and complementary sensitivity T(j) 

magnitudes, respectively, 
 :  required closed-loop time constant.   
If a controller GR(j) guarantees that S(j) or T(j) do not overrun prespecified values Ms 
or Mt, respectively, defined by 

 1sup ( ) sup
1 ( )sM S j
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
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over 0,), then the Nyquist plot L(j) of the open-loop L(s)=G(s)GR(s) avoids the 
respective circle MS or MT , each given by the their center and radius as follows  
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If L(j) avoids entering the circles corresponding to MS or MT, a safe distance from the point 
CS is kept (Fig. 6a). Typical S(j) and T(j) plots for properly designed controller are 
plotted in Fig. 6b. The disturbance d(t) is sufficiently rejected if Ms(1,2;2). The reference 
w(t) is properly tracked by the process output y(t) if Mt(1,3;2,5). With further increasing of 
Mt the closed-loop tends to be oscillatory.  
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Fig. 6. a) Definition and geometrical interpretation of M and GM in the complex plane;  
b) Sensitivity and complementary sensitivity magnitudes S(j), T(j) and performance 
measures Ms, Mt 

From Fig. 6a results, that increasing open-loop phase margin M causes moving the gain 
crossover L(ja*) lying on the unit circle M1 away from the critical point (-1,j0). Increasing 
open-loop gain margin GM causes moving the phase crossover L(jf*) away from (-1,j0). 
Therefore, parameters M or GM given by 

 *180 arg ( )M aL    ;   
*

1
( )

M
f

G
L j

  (15) 

are frequently used performance measures, their typical values are M(20;90), GM(2;5). 
Relations between them are given by following inequalities 
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The point at which the Nyquist plot L(j) touches the MT circle defines the closed-loop 
resonance frequency Mt.  

2.8.2 Tuning formulae with performance specification 
Table 8 shows open formulae for PID controller design. The coefficients tuning is carried out 
with respect to closed-loop performance specification. Rules No. 47 – 49 consider tuning of 
ideal PID controller (4a). To apply the Rotach method, knowledge of the plant magnitude 
G(j) is supposed as well as of the roll-off of argG() at =Mt, where the maximum peak 
Mt of the complementary sensitivity is required. Method No. 50 is based on so-called 
-tuning, with the resulting closed-loop expressed as a 1st order system with time constant ; 
this rule considers a real PID controller (4b) with filtering constant in the derivative part 
Tf=Td/N=0,5D1/(1+D1) where  is to be chosen to meet following conditions: >0,25D1; 
>0,25T1 (Morari & Zafiriou, 1989). The -tuning technique is used also in the rule No. 51 to 
design interaction PI controller. 
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No. 
Design method, 
year,  
model 

K Ti Td 

47. 
(Hang & Åström,  
1988),  
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(Chen & Seborg, 
2002),  
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Table 8. PID design formulae for specified performance based on tuning parameters M, GM, 
Mt and   

2.8.3 Performance evaluation 
Phase margin M is the most wide-spread performance measure in PID controller design. 
Maximum overshoot max and settling time ts of the closed-loop step response are related 
with M according to Reinisch relations 

 max
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1,53 88,46 12 ;38

M M

M M
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  (17) 

valid for 2nd order closed-loop with relative damping (0,25;0,65) where a* is the gain 
crossover frequency (Hudzovič, 1982). Relations 

 max
1.18 (0)

100
(0)
tM T

T



  [%];   *

3 1,3;1,5s t
a

t for M


   (18) 

(Hudzovič, 1982); (Grabbe et al., 1959-61) are general for any order of the closed-loop T(s); if 
the controller has the integral part then T(0)=T(=0)=1.  
The engineering practice is persistently demanding for PID controller design methods 
simultaneously guaranteeing several performance criteria, especially maximum overshoot 
ηmax and settling time ts. However, we ask the question: how to suitably transform the 
above-mentioned engineering requirements into frequency domain specifications applicable 
for PID controller coefficients tuning? The response can be found in Section 3 where a novel 
original PID controller design method is presented.  
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From Fig. 6a results, that increasing open-loop phase margin M causes moving the gain 
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The point at which the Nyquist plot L(j) touches the MT circle defines the closed-loop 
resonance frequency Mt.  

2.8.2 Tuning formulae with performance specification 
Table 8 shows open formulae for PID controller design. The coefficients tuning is carried out 
with respect to closed-loop performance specification. Rules No. 47 – 49 consider tuning of 
ideal PID controller (4a). To apply the Rotach method, knowledge of the plant magnitude 
G(j) is supposed as well as of the roll-off of argG() at =Mt, where the maximum peak 
Mt of the complementary sensitivity is required. Method No. 50 is based on so-called 
-tuning, with the resulting closed-loop expressed as a 1st order system with time constant ; 
this rule considers a real PID controller (4b) with filtering constant in the derivative part 
Tf=Td/N=0,5D1/(1+D1) where  is to be chosen to meet following conditions: >0,25D1; 
>0,25T1 (Morari & Zafiriou, 1989). The -tuning technique is used also in the rule No. 51 to 
design interaction PI controller. 
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No. 
Design method, 
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Table 8. PID design formulae for specified performance based on tuning parameters M, GM, 
Mt and   

2.8.3 Performance evaluation 
Phase margin M is the most wide-spread performance measure in PID controller design. 
Maximum overshoot max and settling time ts of the closed-loop step response are related 
with M according to Reinisch relations 
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M M

M M
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 
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22

max 100 tb Me   ;  * *
4,s

a a
t  

 

 
  
 

  (17) 

valid for 2nd order closed-loop with relative damping (0,25;0,65) where a* is the gain 
crossover frequency (Hudzovič, 1982). Relations 

 max
1.18 (0)

100
(0)
tM T

T



  [%];   *

3 1,3;1,5s t
a

t for M


   (18) 

(Hudzovič, 1982); (Grabbe et al., 1959-61) are general for any order of the closed-loop T(s); if 
the controller has the integral part then T(0)=T(=0)=1.  
The engineering practice is persistently demanding for PID controller design methods 
simultaneously guaranteeing several performance criteria, especially maximum overshoot 
ηmax and settling time ts. However, we ask the question: how to suitably transform the 
above-mentioned engineering requirements into frequency domain specifications applicable 
for PID controller coefficients tuning? The response can be found in Section 3 where a novel 
original PID controller design method is presented.  
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3. Advanced PID controller design method based on sine-wave identification 
The presented method is applicable for linear stable SISO systems even with unknown 
mathematical model. The control objective is to provide required maximum overshoot max 
and settling time ts of the process variable y(t). The method enables the designer to prescribe 
max and ts within following ranges (Bucz et al., 2010b, 2010c), (Bucz, 2011)  
 max0%; 90% and ts6,5/c; 45/c for systems without integrator, 
 max9,5%; 90% and ts11,5/c; 45/c for systems with integrator,  
where c is the plant critical frequency. The PID controller design provides guaranteed 
phase margin M. The tuning rule parameter is a suitably chosen point of the plant 
frequency response obtained by a sine-wave signal with excitation frequency n. The 
designed controller then moves this point into the gain crossover with the required phase 
margin M. With respect to engineering requirements, the pair (n;M) is specified on the 
closed-loop step response in terms of ηmax and ts according to parabolic dependencies in 
Fig. 11 and Fig. 14-16. A multipurpose loop for the proposed sine-wave method is in Fig. 7. 
 
 
 
 
 
 
 
 

Fig. 7. Multipurpose loop for identification and control using the sine-wave method 

3.1 Plant identification by a sinusoidal excitation input 
By switching SW into “4”, the loop in Fig. 7 opens; a stable plant with unknown model G(s) 
is excited by a persistent sinusoid u(t)=Unsin(nt) (Fig. 8a) where Un denotes the amplitude 
and n excitation frequency. The plant output y(t)=Ynsin(nt+) is also a persistent sinusoid 
with the same frequency n, amplitude Yn and phase shift  with respect to the input 
excitation sinusoid (Fig. 8b). From the stored records of y(t) and u(t) it is possible to read-off 
the amplitude Yn and phase shift n and thus to identify a particular point of the plant 
frequency response G(j) under excitation frequency n with coordinates G≡G(jn)  
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where =argG(n). The point G(jn) can be plotted in the complex plane (Fig. 8c).  
 
 
 
 
 
 
 

Fig. 8. Time responses of a) u(t); b) y(t), and c) location of G(jn) in the complex plane 
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The output sinusoid amplitude Yn can be affected by the amplitude Un of the excitation 
sinusoid generated by the sine wave generator; it is recommended to use Un=37%umax. 
Identified plant parameters are represented by the triple n,Yn(n)/Un(n),φ(n). In the 
SW position „4“, identification is performed in the open-loop. Hence, this method is 
applicable only for stable plants. The excitation frequency n is to be adjusted prior to 
identification and taken from the empirical interval (29) (Bucz et al., 2010a, 2010b, 2011). 

3.2 Sine-wave method tuning rules 
In the control loop in Fig. 7, let us switch SW in „5“and put the PID controller into manual 
mode. The closed-loop characteristic equation 1+L(j)=1+G(j)GR(j)=0 at the gain 
crossover frequency a* can be broken down into the amplitude and phase conditions as 
follows 

 * *( ) ( ) 1a R aG j G j   ;   * *arg ( ) arg ( ) 180a R a MG G         (20) 

where M is the required phase margin, L(jn) is the open-loop transfer function. Denote 
=argGR(a*). We are searching for K, Ti and Td of the ideal PID controller (4a). Comparing 
frequency transfer functions of the PID controller in parallel and polar forms 

 1( )R d
i

G j K jK T
T

 


 
   

 
;   ( ) ( ) ( ) cos ( ) sinj

R R R RG j G j e G j j G j         (21) 

coefficients of PID controller can be obtained from the complex equation 
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* * *

1 cos sin
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d a
i a a a

K jK T j
T G j G j

 
  

 
    

  
,  (22) 

at =a* using the substitution GR(ja*)=1/G(ja*) resulting from the amplitude condition 
(20a). The complex equation (22) is solved as a set of two real equations  
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cos
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K
G j


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 ;   *
* *

1 sin
( )

d a
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T G j


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 
  

  
 (23) 

where (23a) is a general rule for calculation of the controller gain K. Using (23a) and the ratio 
of integration and derivative times =Ti/Td in (23b), a quadratic equation in Td is obtained 
after some manipulations 

  22 * * 1 0d a d aT T tg    


 (24) 

A positive solution of (24) yields the rule for calculating the derivative time Td 
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1 1

42d
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3. Advanced PID controller design method based on sine-wave identification 
The presented method is applicable for linear stable SISO systems even with unknown 
mathematical model. The control objective is to provide required maximum overshoot max 
and settling time ts of the process variable y(t). The method enables the designer to prescribe 
max and ts within following ranges (Bucz et al., 2010b, 2010c), (Bucz, 2011)  
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where c is the plant critical frequency. The PID controller design provides guaranteed 
phase margin M. The tuning rule parameter is a suitably chosen point of the plant 
frequency response obtained by a sine-wave signal with excitation frequency n. The 
designed controller then moves this point into the gain crossover with the required phase 
margin M. With respect to engineering requirements, the pair (n;M) is specified on the 
closed-loop step response in terms of ηmax and ts according to parabolic dependencies in 
Fig. 11 and Fig. 14-16. A multipurpose loop for the proposed sine-wave method is in Fig. 7. 
 
 
 
 
 
 
 
 

Fig. 7. Multipurpose loop for identification and control using the sine-wave method 
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where =argG(n). The point G(jn) can be plotted in the complex plane (Fig. 8c).  
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The output sinusoid amplitude Yn can be affected by the amplitude Un of the excitation 
sinusoid generated by the sine wave generator; it is recommended to use Un=37%umax. 
Identified plant parameters are represented by the triple n,Yn(n)/Un(n),φ(n). In the 
SW position „4“, identification is performed in the open-loop. Hence, this method is 
applicable only for stable plants. The excitation frequency n is to be adjusted prior to 
identification and taken from the empirical interval (29) (Bucz et al., 2010a, 2010b, 2011). 

3.2 Sine-wave method tuning rules 
In the control loop in Fig. 7, let us switch SW in „5“and put the PID controller into manual 
mode. The closed-loop characteristic equation 1+L(j)=1+G(j)GR(j)=0 at the gain 
crossover frequency a* can be broken down into the amplitude and phase conditions as 
follows 

 * *( ) ( ) 1a R aG j G j   ;   * *arg ( ) arg ( ) 180a R a MG G         (20) 

where M is the required phase margin, L(jn) is the open-loop transfer function. Denote 
=argGR(a*). We are searching for K, Ti and Td of the ideal PID controller (4a). Comparing 
frequency transfer functions of the PID controller in parallel and polar forms 
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coefficients of PID controller can be obtained from the complex equation 
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at =a* using the substitution GR(ja*)=1/G(ja*) resulting from the amplitude condition 
(20a). The complex equation (22) is solved as a set of two real equations  
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where (23a) is a general rule for calculation of the controller gain K. Using (23a) and the ratio 
of integration and derivative times =Ti/Td in (23b), a quadratic equation in Td is obtained 
after some manipulations 
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A positive solution of (24) yields the rule for calculating the derivative time Td 
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where =argGR(a*) is found from the phase condition (20b). Thus, using the PID controller 
with coefficients {K;Ti=Td;Td}, the identified point G(jn) of the plant frequency response 
with coordinates (19) can be moved on the unit circle M1 into the gain crossover LA≡L(ja*); 
the required phase margin M is guaranteed if the following identity holds between the 
excitation and amplitude crossover frequencies n and a*, respectively 

 *
a n   (26) 

Thus 

 *( ) ( )a nG j G j  ;   *arg ( ) arg ( )a nG G    ;   180 M        (27) 

and coordinates of the gain crossover LA are 

 *( ) ( ) ,arg ( ) 1 , 180A a n n n ML L j j L j L                 (28) 

Substituting (27a) and (27b) into (23a) and (23b), respectively, and (26) into (25a), tuning 
rules in Table 9 are obtained (Bucz et al., 2010a, 2010b, 2010c, 2011), (Bucz, 2011). Resulting 
PID controller coefficients guarantee required phase margin M for =4. 
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method, year 
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Table 9. PI, PD and PID controller tuning rules according to the sine-wave method 

Note that PI controller tuning rules were derived for Td=0, and PD tuning rules for Ti in 
(21a). The excitation frequency is taken from the interval (Bucz et al., 2011), (Bucz, 2011) 

 0,2 ;0,95n c c    (29) 

obtained empirically by testing the sine-wave method on benchmark examples (Åström & 
Hägglund, 2000). Shifting the point G(jn)=G(jn)ej into the gain crossover LA(jn) on the 
unit circle M1 is depicted in Fig. 9a. 

3.3 Controller structure selection using the „triangle ruler“ rule 
The argument Θ appearing in tuning rules in Tab. 9 indicates, what angle is to be 
contributed to the identified phase φ by the controller at n to obtain the resulting open-loop 
phase (-180°+M) needed to provide the required phase margin M. The working range of 
PID controller argument is the union of PI and PD controllers phase ranges symmetric with 
respect to 0 
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The working range (30) can be interpreted by means of an imaginary transparent triangular 
ruler turned as in Fig. 9b; its segments to the left and right of the axis of symmetry represent 
the PD and PI working ranges, respectively. Put this ruler on Fig. 9a, the middle of the 
hypotenuse on the complex plane origin and turn it so that its axis of symmetry merges with 
the ray (0,G). Thus, the ruler determines in the complex plane the cross-hatched area 
representing the full working range of the PID controller argument. The controller type is 
chosen depending on the situation of the ray (0,LA) forming the angle M with the negative 
real halfaxis: situation of the ray (0,LA) in the left-hand-sector suggests PD controller, and in 
the right-hand sector the PI controller. The case when the phase margin M is achievable 
using both PI or PID controller is shown in Fig. 9b (Bucz et al., 2010b, 2011), (Bucz, 2011).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9. a) Graphical interpretation of M, a* and shifting G into LA at a*=n; b) controller 
structure selection with respect to location of G and LA using the „triangle ruler“ rule 

3.4 Evaluation of closed-loop performance under the sine-wave type PID controller 
This subsection answers the following question: how to transform required the maximum 
overshoot max and settling time ts into the couple of frequency-domain parametres (n,M) 
needed for identification and PID controller coefficients tuning (Bucz, 2011)?  

3.4.1 Systems without integrator 
Looking for appropriate transformation : (max,ts)(n,M) we have considered typical 
phase margins M given by the set 
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split into 5 equal sections n=0,15c; let us generate the set of excitation frequencies 
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Elements of (32) divided by the plant critical frequency c determine the set of so-called 
excitation levels  
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where =argGR(a*) is found from the phase condition (20b). Thus, using the PID controller 
with coefficients {K;Ti=Td;Td}, the identified point G(jn) of the plant frequency response 
with coordinates (19) can be moved on the unit circle M1 into the gain crossover LA≡L(ja*); 
the required phase margin M is guaranteed if the following identity holds between the 
excitation and amplitude crossover frequencies n and a*, respectively 

 *
a n   (26) 

Thus 

 *( ) ( )a nG j G j  ;   *arg ( ) arg ( )a nG G    ;   180 M        (27) 

and coordinates of the gain crossover LA are 

 *( ) ( ) ,arg ( ) 1 , 180A a n n n ML L j j L j L                 (28) 

Substituting (27a) and (27b) into (23a) and (23b), respectively, and (26) into (25a), tuning 
rules in Table 9 are obtained (Bucz et al., 2010a, 2010b, 2010c, 2011), (Bucz, 2011). Resulting 
PID controller coefficients guarantee required phase margin M for =4. 
 

No. Design 
method, year 

Cont- 
roller K Ti Td Range of ; 

=180+M 

52. Sine-wave 
method, 2010 PI 

cos
( )nG j



 1

ntg 
   ;0

2
  

 
 

53. Sine-wave 
method, 2010 PD 

cos
( )nG j



  
1

n
tg


 0;

2
 

 
 

 

54. Sine-wave 
method, 2010 PID 

cos
( )nG j



 dT  
21 1

2 4n n

tg tg 
  

   ;
2 2
   

 
 

Table 9. PI, PD and PID controller tuning rules according to the sine-wave method 

Note that PI controller tuning rules were derived for Td=0, and PD tuning rules for Ti in 
(21a). The excitation frequency is taken from the interval (Bucz et al., 2011), (Bucz, 2011) 

 0,2 ;0,95n c c    (29) 

obtained empirically by testing the sine-wave method on benchmark examples (Åström & 
Hägglund, 2000). Shifting the point G(jn)=G(jn)ej into the gain crossover LA(jn) on the 
unit circle M1 is depicted in Fig. 9a. 

3.3 Controller structure selection using the „triangle ruler“ rule 
The argument Θ appearing in tuning rules in Tab. 9 indicates, what angle is to be 
contributed to the identified phase φ by the controller at n to obtain the resulting open-loop 
phase (-180°+M) needed to provide the required phase margin M. The working range of 
PID controller argument is the union of PI and PD controllers phase ranges symmetric with 
respect to 0 
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      90 ,0 0 , 90 90 , 90PID PI PD                  (30) 

The working range (30) can be interpreted by means of an imaginary transparent triangular 
ruler turned as in Fig. 9b; its segments to the left and right of the axis of symmetry represent 
the PD and PI working ranges, respectively. Put this ruler on Fig. 9a, the middle of the 
hypotenuse on the complex plane origin and turn it so that its axis of symmetry merges with 
the ray (0,G). Thus, the ruler determines in the complex plane the cross-hatched area 
representing the full working range of the PID controller argument. The controller type is 
chosen depending on the situation of the ray (0,LA) forming the angle M with the negative 
real halfaxis: situation of the ray (0,LA) in the left-hand-sector suggests PD controller, and in 
the right-hand sector the PI controller. The case when the phase margin M is achievable 
using both PI or PID controller is shown in Fig. 9b (Bucz et al., 2010b, 2011), (Bucz, 2011).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9. a) Graphical interpretation of M, a* and shifting G into LA at a*=n; b) controller 
structure selection with respect to location of G and LA using the „triangle ruler“ rule 

3.4 Evaluation of closed-loop performance under the sine-wave type PID controller 
This subsection answers the following question: how to transform required the maximum 
overshoot max and settling time ts into the couple of frequency-domain parametres (n,M) 
needed for identification and PID controller coefficients tuning (Bucz, 2011)?  

3.4.1 Systems without integrator 
Looking for appropriate transformation : (max,ts)(n,M) we have considered typical 
phase margins M given by the set 

    20 ,30 ,40 ,50 ,60 ,70 ,80 ,90Mj          ,  j=1...8 (31) 

split into 5 equal sections n=0,15c; let us generate the set of excitation frequencies 

    0,2 ;0,35 ;0,5 ;0,65 ;0,8 ;0,95nk c c c c c c       , k=1...6 (32) 

Elements of (32) divided by the plant critical frequency c determine the set of so-called 
excitation levels  
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  k nk c      0,2;0,35;0,5;0,65;0,8;0,95k  ,  k=1...6 (33) 

Fig. 10 shows closed-loop step responses under PID controllers designed for the plant  

 1
1( )

( 1)(0,5 1)(0,25 1)(0,125 1)
G s

s s s s


   
 (34) 

for three different phase margins M=40,60,80 each on three excitation levels 
1=n1/c=0,2; 3=n3/c=0,5 and 5=n5/c=0,8. Qualitative effect of nk and Mj on 
closed-loop step response is demonstrated. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10. Closed-loop step responses of G1(s) under PID controllers designed for various M 
and n 

Achieving ts and ηmax was tested by designing PID controller for a vast set of benchmark 
examples (Åström & Hägglund, 2000) at excitation frequencies and phase margins 
expressed by a Cartesian product Mj×nk of (31) and (32) for j=1...8, k=1...6. Acquired 
dependencies ηmax=f(M,n) and ts=(M,n) are plotted in Fig. 11 (Bucz et al., 2010b, 2011). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11. Dependencies: a) ηmax=f(M,n); b) τs=cts=f(M,n) for nk×Mj, j=1...8, k=1...6 
(relative settling time τs is ts weighed by the critical frequency c of the plant) 
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Dependencies max=f(M,n), for systems without integrator, =4 Dependencies τs=f(M,n), for systems without integrator, =4 
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Considering (26) resulting from the assumptions of the engineering method, the settling 
time can be expressed by the relation 

 s
n

t 


  (35) 

similar to (17c) (Hudzovič, 1989),  is the curve factor of the step response. In (17c) valid for 
a 2nd order closed-loop,is from the interval (1;4) and depends on the relative damping 
(Hudzovič, 1989). In case of the proposed sine-wave method,  varies in a considerably 
broader interval (0,5;16) found empirically, and strongly depends on M, i.e. =f(M) at the 
given  excitation  frequency  n. To examine closed-loop settling times of plants with various 
dynamics, it is advantageous to define the relative settling time (Bucz et al., 2011) 

 s s ct   (36) 

Substituting n=c into (35), the following relation for the relative settling time is obtained 

 s ct  


  s
 


  (37) 

where ts is related to the critical frequency c. By substituting c in (37) its left-hand side is 
constant for the given plant, independent of n. Fig. 11b depicts (37b) empirically evaluated 
for different excitation frequencies nk; it is evident that at every excitation level k with 
increasing phase margin M the relative settling time τs first decreases and after achieving its 
minimum s_min it increases again. Empirical dependencies in Fig. 11 were approximated by 
quadratic regression curves and called B-parabolas. B-parabolas are a useful design tool to 
carry out the transformation :(max,ts)(n,M) that enables choosing appropriate values of 
phase margin and excitation frequencies M and n, respectively, to provide performance 
specified in terms of maximum overshoot max and settling time ts (Bucz et al., 2011). Note 
that pairs of B-parabolas at the same level (Fig. 11a, Fig. 11b) are always to be used. 

Procedure 1. Specification of M and n from max and ts from B-parabolas prior to 
designing the controller  

1. Set the PID controller into manual mode. Find the plant critical frequency c using the 
multipurpose loop in Fig. 7 (SW in position „3“). 

2. From the required settling time ts calculate the relative settling time τs=cts. 
3. On the vertical axis of the plot in Fig. 11b find the value of τs calculated in Step 2. 
4. Choose the excitation level  (e.g. 5=n5/c=0,8). 
5. For τs, find the corresponding phase margin M on the parabola τs=f(M,n) with the 

chosen excitation level found in Step 4.  
6. Find M from Step 5 on the horizontal axis of the plot in Fig. 11a. 
7. For M, find the corresponding maximum overshoot ηmax on the parabola ηmax=f(M,n) 

with the chosen excitation level found in Step 4. 
8. If the found ηmax is inappropriate, repeat Steps 4 to 7 for other parabolas τs=f(M,n) and 

ηmax=f(M,n) corresponding to other levels k=nk/c (related with the choice 
5=n5/c=0,8 for k=0,2;0,35;0,50;0,65;0,95, k=1...4,6). Repeat until both the required 
performance measures ηmax and ts are satisfied. 
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  k nk c      0,2;0,35;0,5;0,65;0,8;0,95k  ,  k=1...6 (33) 

Fig. 10 shows closed-loop step responses under PID controllers designed for the plant  
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for three different phase margins M=40,60,80 each on three excitation levels 
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closed-loop step response is demonstrated. 
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Achieving ts and ηmax was tested by designing PID controller for a vast set of benchmark 
examples (Åström & Hägglund, 2000) at excitation frequencies and phase margins 
expressed by a Cartesian product Mj×nk of (31) and (32) for j=1...8, k=1...6. Acquired 
dependencies ηmax=f(M,n) and ts=(M,n) are plotted in Fig. 11 (Bucz et al., 2010b, 2011). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11. Dependencies: a) ηmax=f(M,n); b) τs=cts=f(M,n) for nk×Mj, j=1...8, k=1...6 
(relative settling time τs is ts weighed by the critical frequency c of the plant) 
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Considering (26) resulting from the assumptions of the engineering method, the settling 
time can be expressed by the relation 

 s
n

t 


  (35) 

similar to (17c) (Hudzovič, 1989),  is the curve factor of the step response. In (17c) valid for 
a 2nd order closed-loop,is from the interval (1;4) and depends on the relative damping 
(Hudzovič, 1989). In case of the proposed sine-wave method,  varies in a considerably 
broader interval (0,5;16) found empirically, and strongly depends on M, i.e. =f(M) at the 
given  excitation  frequency  n. To examine closed-loop settling times of plants with various 
dynamics, it is advantageous to define the relative settling time (Bucz et al., 2011) 

 s s ct   (36) 

Substituting n=c into (35), the following relation for the relative settling time is obtained 

 s ct  


  s
 


  (37) 

where ts is related to the critical frequency c. By substituting c in (37) its left-hand side is 
constant for the given plant, independent of n. Fig. 11b depicts (37b) empirically evaluated 
for different excitation frequencies nk; it is evident that at every excitation level k with 
increasing phase margin M the relative settling time τs first decreases and after achieving its 
minimum s_min it increases again. Empirical dependencies in Fig. 11 were approximated by 
quadratic regression curves and called B-parabolas. B-parabolas are a useful design tool to 
carry out the transformation :(max,ts)(n,M) that enables choosing appropriate values of 
phase margin and excitation frequencies M and n, respectively, to provide performance 
specified in terms of maximum overshoot max and settling time ts (Bucz et al., 2011). Note 
that pairs of B-parabolas at the same level (Fig. 11a, Fig. 11b) are always to be used. 

Procedure 1. Specification of M and n from max and ts from B-parabolas prior to 
designing the controller  

1. Set the PID controller into manual mode. Find the plant critical frequency c using the 
multipurpose loop in Fig. 7 (SW in position „3“). 

2. From the required settling time ts calculate the relative settling time τs=cts. 
3. On the vertical axis of the plot in Fig. 11b find the value of τs calculated in Step 2. 
4. Choose the excitation level  (e.g. 5=n5/c=0,8). 
5. For τs, find the corresponding phase margin M on the parabola τs=f(M,n) with the 

chosen excitation level found in Step 4.  
6. Find M from Step 5 on the horizontal axis of the plot in Fig. 11a. 
7. For M, find the corresponding maximum overshoot ηmax on the parabola ηmax=f(M,n) 

with the chosen excitation level found in Step 4. 
8. If the found ηmax is inappropriate, repeat Steps 4 to 7 for other parabolas τs=f(M,n) and 

ηmax=f(M,n) corresponding to other levels k=nk/c (related with the choice 
5=n5/c=0,8 for k=0,2;0,35;0,50;0,65;0,95, k=1...4,6). Repeat until both the required 
performance measures ηmax and ts are satisfied. 
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9. Calculate the excitation frequency n according to the relation n=c using the critical 
frequency c (from Step 1) and the chosen excitation level  (from Step 4). 

Discussion 

When choosing M=40 on the B-parabola corresponding to the excitation level 
5=n5/c=0,8 (further denoted as B0,8 parabola), maximum overshoot max=40% and 
relative settling time τs10 are expected. Point  corresponding to these parameters is 
located on the left (falling) portion of B0,8 yielding oscillatory step response (see response  
in Fig. 10c). If the phase margin increases up to M=60, the relative settling time decreases 
up to the point  on the right (rising) portion of the B0,8 parabola; the corresponding step 
response  in Fig. 10c is weakly-aperiodic. For the phase margin M=80 the B0,8 parabola 
indicates a zero maximum overshoot, the relative settling time τs=20 corresponds to the 
position  on the B0,8 parabola with aperiodic step response  (Fig. 10c). If the maximum 
overshoot max=20% is acceptable then M=53 yields the least possible relative settling time 
τs=6,5 on the given level 5=0,8 (“at the bottom” of B0,8) (Bucz et al., 2011), (Bucz, 2011).  
Procedure 2. PID controller design using the sine-wave engineering method  

1. From the required values (ηmax,ts) specify the couple (n;M) using Procedure 1. 
2. Identify the plant using the sinusoidal excitation signal with frequency n specified in 

Procedure 1. The switch SW is in position „4“. 
3. Specify =argG(n), andG(jn). Calculate the controller argument  by substituting  

and M into (27c); if  is within the range shown in the last column of Tab. 9, go to 
Step 4, if not, change (n;M) and repeat Steps 1-3. 

4. Substitute the identified values =argG(n), G(jn) and specified M into the tuning 
rules in Tab. 9 to calculate PID controller parameters. 

5. Adjust the resulting PID controller values, switch into automatic mode and complete 
the controller by switching SW into position „5“. 

Example 1 
Using the sine-wave method, ideal PID controller (4a) is to be designed for the operating 
amplifier modelled by the transfer function GA(s)  

 3 3
1 1( )

( 1) (0,01 1)A
A

G s
T s s

 
 

 (38) 

The controller has to be designed for two values of the maximum overshoot of the closed-
loop step response max1=30% (Design No. 1) and max2=5% (Design No. 2) and maximum 
relative settling time τs=12 in both cases. 
Solution 

1. Critical frequency of the plant identified by the Rotach test is c=173,216[rad/s] (the 
process is “fast”). The prescribed settling time is ts=τs/c=12/173,216[s]=69,3[ms]. 

2. For the Design No. 1 (max1;τs)=(30%;12), a suitable choice is (M1;n1)=(50;0,5c) 
resulting from the B0,5 parabola in Fig. 11. The performance in Design No. 2 
(max2;τs)=(5%;12) can be achieved for (M2;n2)=(70;0,8c) chosen from the B0,8 parabola 
in Fig. 11. 

3. Identified points for the Designs No. 1 and No. 2 are GA(j0,5c)=0,43e-j120 and 
GA(j0,8c)=0,19e-j165, respectively. According to Fig. 12a, both points are located in the 
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Quadrant II of the complex plane, on the Nyquist plot GA(j) (solid line) which verifies 
the identification. 

4. Using the PID controller designed for (M1;n1)=(50;0,5c), the point GA(j0,5c) is moved 
into the gain crossover LA1(j0,5c)=1e-j130 on the unit circle M1, which verifies achieving the 
phase margin M1=180-130=50 (dashed line in Fig. 12a). The point GA(j0,8c) has been 
moved into LA2(j0,8c)=1e-j110 by the PID controller designed for (M2;n2)=(80;0,8c) 
yielding the phase margin M2=180-110=70 (dotted line in Fig. 12a). 

5. Achieved performance according to the closed-loop step response in Fig. 12b (dashed 
line) is max1*=29,7%, ts1*=58,4[ms]. Performance in terms of max2*=4,89%, ts2*=60,5[ms] 
identified from the closed-loop step response in Fig. 12b (dotted line) fulfils the 
performance requirements.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 12. a) Open-loop Nyquist plots; b) closed-loop step responses of the operational 
amplifier, required performance max1=30%, max2=5% and τs=12 

3.4.2 Systems with time delay 
The sine-wave method is applicable also for plants with time delay considered as difficult-
to-control systems. It is a well-known fact, that the time delay D turns the phase at each 
frequency n0,) by nD with respect to the delay-free system. For time delayed plants, 
phase condition of the sine-wave method (20b) is extended by additional phase φD=-nD  

  ´ 180D M          (39) 

where φ´ is the phase of the delay-free system and  

 ´
D     (40) 

is the identified phase of the plant including the time delay. The added phase φD=-nD can 
be associated with the required phase margin M  
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9. Calculate the excitation frequency n according to the relation n=c using the critical 
frequency c (from Step 1) and the chosen excitation level  (from Step 4). 

Discussion 

When choosing M=40 on the B-parabola corresponding to the excitation level 
5=n5/c=0,8 (further denoted as B0,8 parabola), maximum overshoot max=40% and 
relative settling time τs10 are expected. Point  corresponding to these parameters is 
located on the left (falling) portion of B0,8 yielding oscillatory step response (see response  
in Fig. 10c). If the phase margin increases up to M=60, the relative settling time decreases 
up to the point  on the right (rising) portion of the B0,8 parabola; the corresponding step 
response  in Fig. 10c is weakly-aperiodic. For the phase margin M=80 the B0,8 parabola 
indicates a zero maximum overshoot, the relative settling time τs=20 corresponds to the 
position  on the B0,8 parabola with aperiodic step response  (Fig. 10c). If the maximum 
overshoot max=20% is acceptable then M=53 yields the least possible relative settling time 
τs=6,5 on the given level 5=0,8 (“at the bottom” of B0,8) (Bucz et al., 2011), (Bucz, 2011).  
Procedure 2. PID controller design using the sine-wave engineering method  

1. From the required values (ηmax,ts) specify the couple (n;M) using Procedure 1. 
2. Identify the plant using the sinusoidal excitation signal with frequency n specified in 

Procedure 1. The switch SW is in position „4“. 
3. Specify =argG(n), andG(jn). Calculate the controller argument  by substituting  

and M into (27c); if  is within the range shown in the last column of Tab. 9, go to 
Step 4, if not, change (n;M) and repeat Steps 1-3. 

4. Substitute the identified values =argG(n), G(jn) and specified M into the tuning 
rules in Tab. 9 to calculate PID controller parameters. 

5. Adjust the resulting PID controller values, switch into automatic mode and complete 
the controller by switching SW into position „5“. 

Example 1 
Using the sine-wave method, ideal PID controller (4a) is to be designed for the operating 
amplifier modelled by the transfer function GA(s)  

 3 3
1 1( )

( 1) (0,01 1)A
A

G s
T s s

 
 

 (38) 

The controller has to be designed for two values of the maximum overshoot of the closed-
loop step response max1=30% (Design No. 1) and max2=5% (Design No. 2) and maximum 
relative settling time τs=12 in both cases. 
Solution 

1. Critical frequency of the plant identified by the Rotach test is c=173,216[rad/s] (the 
process is “fast”). The prescribed settling time is ts=τs/c=12/173,216[s]=69,3[ms]. 

2. For the Design No. 1 (max1;τs)=(30%;12), a suitable choice is (M1;n1)=(50;0,5c) 
resulting from the B0,5 parabola in Fig. 11. The performance in Design No. 2 
(max2;τs)=(5%;12) can be achieved for (M2;n2)=(70;0,8c) chosen from the B0,8 parabola 
in Fig. 11. 

3. Identified points for the Designs No. 1 and No. 2 are GA(j0,5c)=0,43e-j120 and 
GA(j0,8c)=0,19e-j165, respectively. According to Fig. 12a, both points are located in the 
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Quadrant II of the complex plane, on the Nyquist plot GA(j) (solid line) which verifies 
the identification. 

4. Using the PID controller designed for (M1;n1)=(50;0,5c), the point GA(j0,5c) is moved 
into the gain crossover LA1(j0,5c)=1e-j130 on the unit circle M1, which verifies achieving the 
phase margin M1=180-130=50 (dashed line in Fig. 12a). The point GA(j0,8c) has been 
moved into LA2(j0,8c)=1e-j110 by the PID controller designed for (M2;n2)=(80;0,8c) 
yielding the phase margin M2=180-110=70 (dotted line in Fig. 12a). 

5. Achieved performance according to the closed-loop step response in Fig. 12b (dashed 
line) is max1*=29,7%, ts1*=58,4[ms]. Performance in terms of max2*=4,89%, ts2*=60,5[ms] 
identified from the closed-loop step response in Fig. 12b (dotted line) fulfils the 
performance requirements.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 12. a) Open-loop Nyquist plots; b) closed-loop step responses of the operational 
amplifier, required performance max1=30%, max2=5% and τs=12 

3.4.2 Systems with time delay 
The sine-wave method is applicable also for plants with time delay considered as difficult-
to-control systems. It is a well-known fact, that the time delay D turns the phase at each 
frequency n0,) by nD with respect to the delay-free system. For time delayed plants, 
phase condition of the sine-wave method (20b) is extended by additional phase φD=-nD  

  ´ 180D M          (39) 

where φ´ is the phase of the delay-free system and  

 ´
D     (40) 

is the identified phase of the plant including the time delay. The added phase φD=-nD can 
be associated with the required phase margin M  
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  ´ 180 M nD          (41) 

The only modification in using the PID tuning rules in Tab. 9 is that increased required 
phase margin is to be specified (Bucz, 2011) 

 ´
M M nD     (42) 

and the controller working angle Θ is computed using the relation 

  ´180 M nD          (43) 

The phase delay nD increases with increasing frequency of the sinusoidal signal n.  
To lessen the impact of time delay on closed-loop dynamics, it is recommended to use the 
smallest possible added phase φD=-nD.  

Discussion 
Time delay D can easily be specified during critical frequency identification as the time 
D=Ty-Tu, that elapses since the start of the test at time Tu until time Ty, when the system 
output starts responding to the excitation signal u(t). A small added phase φD=-nD due to 
time delay can be secured by choosing the smallest possible n attenuating effect of D in (43) 
and subsequently in the PID controller design. 
Therefore, when designing PID controller for time delayed systems according to Procedure 
1, in Step 4 it is recommended to choose the lowest possible excitation level on the 
performance B-parabolas (most frequently n/c=0,2 resp. 0,35) and corresponding couples 
of B-parabolas in Fig. 11. Procedure 2 is used for plant identification and PID controller 
design. M is specified from the given couple (max;ts) using the chosen couple of B-
parabolas, however its increased value M´ given by (42) is to be supplied in the design 
algorithm thus minimizing effect of the time delay on closed-loop dynamics.  

Example 2 
Using the sine-wave method, ideal PID controllers (4a) are to be designed for the distillation 
column modelled by the transfer function GB(s)  

 
6,51,11( )

1 3,25 1

BD s s
B

B
B

K e eG s
T s s

 
 

 
 (44) 

Control objectives are the same as in Example 1. 
Solution 

1. Critical frequency of the plant is c=0,3521[rad/s]. Based on comparison of critical 
frequencies, GB(s) is 500-times slower than GA(s). Required settling time is ts=τs/c= 
=12/0,3521[s]=34,08[s]. 

2. Because DB/TB=2>1, the plant is a so-called „dead-time dominant system“. Due to a 
large the time delay, it is necessary to choose the lowest possible excitation frequency 
n to minimize the added phase nDB in (43). Hence, for the required performance 
(max2;τs)=(5%;12) (Design No. 2) we choose the B0,2 parabolas in Fig. 11 at the lowest 
possible level n/c=0,2 to find (M2;n2)=(70;0,2c). The added phase is 
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n2DB(180/)=0,2cDB(180/)=0,2.0,3521.6,5.180/=26,2, hence the phase supplied 
to the PID design algorithm is ´M2=M2+n2DB(180/)=70+26,2=96,2 (instead of 
M2=70 for a delay-free system). The required performance (max1;τs)=(30%;12) (Design 
No. 1) can be achieved by choosing (M1;n1)=(55;0,35c) from the B0,35 parabolas in  
Fig. 11 (i.e. n/c=0,35). The phase margin ´M1=55+45,9 supplied into the design 
algorithm was increased by n1DB(180/)=0,35cDB(180/)=0,35.0,3521.6,5.180/= 
=45,9 compared with M1=55 in case of delay-free system. 

3. Identified points GB(j0,35c)=1,03e-j23 and GB(j0,2c)=1,09e-j13 in Fig. 13a are located in 
the Quadrant I of the complex plane at the beginning of the frequency response GB(j) 
(solid line). The point GB(j0,2c) (Design No. 2) was shifted by the PID controller to the 
open-loop gain crossover LB2(j0,2c)=1e-j110 (dotted line in Fig. 13a). Note that LB2 has 
the same location in the complex plane as LA2 in Fig. 12a, however at a considerably 
lower frequency n2B=0,2.0,3521=0,07[rad/s] compared to n2A=0,8.173,216= 
=138,6[rad/s] (ts2_B*=28,69[s] is almost 500 times larger than ts2_A*=0,0584[s] which 
demonstrates the key role of the excitation frequency n in achieving required closed-
loop dynamics). The identified point GB(j0,35c) (Design No. 1) was moved into the 
gain crossover LB1(j0,35c)=1e-j125 (dashed line in Fig. 13a).  

4. Achieved performances (max1*=18,6%, ts1*=24,78[s], dashed line), (max2*=0,15%, 
ts2*=28,69[s], dotted line) in terms of closed-loop step responses in Fig. 13b comply with 
the required performance specification. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13.  a) Open-loop Nyquist plots; b) closed-loop step responses of the distillation column, 
required performance max1=30%, max2=5% and τs=12 

3.4.3 Systems with 1st order integrator  
By testing the sine-wave method on benchmark systems with 1st order integrator, the 
B-parabolas in Fig. 14 – 16 were obtained (for Cartesian product Mj×nk of sets (31) and (32), 
j=1...8, k=1...6 and three various ratios Ti/Td: =4, 8 and 12). 
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  ´ 180 M nD          (41) 

The only modification in using the PID tuning rules in Tab. 9 is that increased required 
phase margin is to be specified (Bucz, 2011) 

 ´
M M nD     (42) 

and the controller working angle Θ is computed using the relation 

  ´180 M nD          (43) 

The phase delay nD increases with increasing frequency of the sinusoidal signal n.  
To lessen the impact of time delay on closed-loop dynamics, it is recommended to use the 
smallest possible added phase φD=-nD.  

Discussion 
Time delay D can easily be specified during critical frequency identification as the time 
D=Ty-Tu, that elapses since the start of the test at time Tu until time Ty, when the system 
output starts responding to the excitation signal u(t). A small added phase φD=-nD due to 
time delay can be secured by choosing the smallest possible n attenuating effect of D in (43) 
and subsequently in the PID controller design. 
Therefore, when designing PID controller for time delayed systems according to Procedure 
1, in Step 4 it is recommended to choose the lowest possible excitation level on the 
performance B-parabolas (most frequently n/c=0,2 resp. 0,35) and corresponding couples 
of B-parabolas in Fig. 11. Procedure 2 is used for plant identification and PID controller 
design. M is specified from the given couple (max;ts) using the chosen couple of B-
parabolas, however its increased value M´ given by (42) is to be supplied in the design 
algorithm thus minimizing effect of the time delay on closed-loop dynamics.  

Example 2 
Using the sine-wave method, ideal PID controllers (4a) are to be designed for the distillation 
column modelled by the transfer function GB(s)  

 
6,51,11( )
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 
 (44) 

Control objectives are the same as in Example 1. 
Solution 

1. Critical frequency of the plant is c=0,3521[rad/s]. Based on comparison of critical 
frequencies, GB(s) is 500-times slower than GA(s). Required settling time is ts=τs/c= 
=12/0,3521[s]=34,08[s]. 

2. Because DB/TB=2>1, the plant is a so-called „dead-time dominant system“. Due to a 
large the time delay, it is necessary to choose the lowest possible excitation frequency 
n to minimize the added phase nDB in (43). Hence, for the required performance 
(max2;τs)=(5%;12) (Design No. 2) we choose the B0,2 parabolas in Fig. 11 at the lowest 
possible level n/c=0,2 to find (M2;n2)=(70;0,2c). The added phase is 
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n2DB(180/)=0,2cDB(180/)=0,2.0,3521.6,5.180/=26,2, hence the phase supplied 
to the PID design algorithm is ´M2=M2+n2DB(180/)=70+26,2=96,2 (instead of 
M2=70 for a delay-free system). The required performance (max1;τs)=(30%;12) (Design 
No. 1) can be achieved by choosing (M1;n1)=(55;0,35c) from the B0,35 parabolas in  
Fig. 11 (i.e. n/c=0,35). The phase margin ´M1=55+45,9 supplied into the design 
algorithm was increased by n1DB(180/)=0,35cDB(180/)=0,35.0,3521.6,5.180/= 
=45,9 compared with M1=55 in case of delay-free system. 

3. Identified points GB(j0,35c)=1,03e-j23 and GB(j0,2c)=1,09e-j13 in Fig. 13a are located in 
the Quadrant I of the complex plane at the beginning of the frequency response GB(j) 
(solid line). The point GB(j0,2c) (Design No. 2) was shifted by the PID controller to the 
open-loop gain crossover LB2(j0,2c)=1e-j110 (dotted line in Fig. 13a). Note that LB2 has 
the same location in the complex plane as LA2 in Fig. 12a, however at a considerably 
lower frequency n2B=0,2.0,3521=0,07[rad/s] compared to n2A=0,8.173,216= 
=138,6[rad/s] (ts2_B*=28,69[s] is almost 500 times larger than ts2_A*=0,0584[s] which 
demonstrates the key role of the excitation frequency n in achieving required closed-
loop dynamics). The identified point GB(j0,35c) (Design No. 1) was moved into the 
gain crossover LB1(j0,35c)=1e-j125 (dashed line in Fig. 13a).  

4. Achieved performances (max1*=18,6%, ts1*=24,78[s], dashed line), (max2*=0,15%, 
ts2*=28,69[s], dotted line) in terms of closed-loop step responses in Fig. 13b comply with 
the required performance specification. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13.  a) Open-loop Nyquist plots; b) closed-loop step responses of the distillation column, 
required performance max1=30%, max2=5% and τs=12 

3.4.3 Systems with 1st order integrator  
By testing the sine-wave method on benchmark systems with 1st order integrator, the 
B-parabolas in Fig. 14 – 16 were obtained (for Cartesian product Mj×nk of sets (31) and (32), 
j=1...8, k=1...6 and three various ratios Ti/Td: =4, 8 and 12). 
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Discussion 

Inspection of Fig. 14a, 15a and 16a reveals, that increasing  results in decreasing of the 
maximum overshoot max, narrowing of the B-parabolas of relative settling times τs=f(M,n) 
for each identification level n/c, and consequently settling time increasing. Consider e.g. 
the B0,95 parabolas in Fig. 14b, Fig. 15b and Fig. 16b: if M=70 and =4, relative settling time 
is τs=30, for =8 it grows to τs=40, and for =12 even to τs=45. If a 10% maximum overshoot 
is acceptable, then the standard interaction PID controller can be used with no need to use a 
setpoint filter; however a larger settling time is to be expected. 
Procedure 1 is used to specify the performance in terms of (M,n) from (max,ts) using 
pertinent B-parabolas in Fig. 14 – 16. Procedure 2 is used for plant identification and PID 
controller design. 

Example 3 
Using the sine-wave method, design ideal PID controller for the flow valve modelled by the 
transfer function GC(s) (system with integrator and time delay)  

 
2,11,3( )

( 1) (7,51 1)
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Control objective is to provide the maximum overshoots of the closed-loop step response 
max1=30%, max2=20% and a maximum relative settling time τs=20. 
Solution 

1. Critical frequency of the plant identified by the Rotach test is c=0,2407[rad/s]. Then, 
the required settling time is ts=τs/c=20/0,2407[s]=83,09[s]. 

2. For GC(s) the time delay/time constant ratio is DC/TC=2,1/7,51=0,28<1, hence, the 
influence of the time constant prevails - GC(s) is a so-called „lag-dominant system“ with 
integrator, therefore B-parabolas are to be chosen carefully. From one side, due to time 
delay it would be desirable to choose B-parabolas from Fig. 14, Fig. 15 or Fig. 16 with 
the lowest identification level n/c=0,2. However, the minima of B0,2 parabolas in 
Fig. 14b (for =4), Fig. 15b (for =8) and Fig. 16b (for =12) indicate the smallest 
achievable relative settling time τs=36,5 (for =4), τs=33 (for =8) and τs=34 (for =12), 
which do not satisfy the required value τs=20. 

3. Identified points GC(j0,35c)=12,7e-j122 and GC(j0,5c)=8,10e-j129 are located on the plant 
frequency response GC(j) (solid line) in Fig. 17a, verifying correctness of the sine-wave 
type identification. 

4. The first performance specification (max1;τs)=(30%;20) can be provided using the B0,35 
parabolas for =12 (Fig. 16b) at the level n/c=0,35 and for parameters (M1;n1)= 
=(53;0,35c) (Design No. 1), supplying the augmented open-loop phase margin 
´M1=M1+(180/)n1DC=53+10,1=63,1 into the controller design algorithm. The 
second performance specification (max2;τs)=(20%,20) is achievable using the B0,5 
parabolas in Fig. 16 for =12 and n/c=0,5 and parametres (M2;n2)=(62;0,5c) 
(Design No. 2). To reject the influence of DC, instead of M2=62 the augmented open-
loop phase margin ´M2=M2+(180/)n2DC=62+14,5=76,5 was supplied into the PID 
controller design algorithm. 
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Fig. 14. B-parabolas: a) ηmax=f(M,n); b) τs=cts=f(M,n) for systems with integrator, =4 

 
Fig. 15. B-parabolas: a) ηmax=f(M,n); b) τs=cts=f(M,n) for systems with integrator, =8 

 
Fig. 16. B-parabolas: a) ηmax=f(M,n); b) τs=cts=f(M,n) for systems with integrator, =12 
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Discussion 

Inspection of Fig. 14a, 15a and 16a reveals, that increasing  results in decreasing of the 
maximum overshoot max, narrowing of the B-parabolas of relative settling times τs=f(M,n) 
for each identification level n/c, and consequently settling time increasing. Consider e.g. 
the B0,95 parabolas in Fig. 14b, Fig. 15b and Fig. 16b: if M=70 and =4, relative settling time 
is τs=30, for =8 it grows to τs=40, and for =12 even to τs=45. If a 10% maximum overshoot 
is acceptable, then the standard interaction PID controller can be used with no need to use a 
setpoint filter; however a larger settling time is to be expected. 
Procedure 1 is used to specify the performance in terms of (M,n) from (max,ts) using 
pertinent B-parabolas in Fig. 14 – 16. Procedure 2 is used for plant identification and PID 
controller design. 

Example 3 
Using the sine-wave method, design ideal PID controller for the flow valve modelled by the 
transfer function GC(s) (system with integrator and time delay)  
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Control objective is to provide the maximum overshoots of the closed-loop step response 
max1=30%, max2=20% and a maximum relative settling time τs=20. 
Solution 

1. Critical frequency of the plant identified by the Rotach test is c=0,2407[rad/s]. Then, 
the required settling time is ts=τs/c=20/0,2407[s]=83,09[s]. 

2. For GC(s) the time delay/time constant ratio is DC/TC=2,1/7,51=0,28<1, hence, the 
influence of the time constant prevails - GC(s) is a so-called „lag-dominant system“ with 
integrator, therefore B-parabolas are to be chosen carefully. From one side, due to time 
delay it would be desirable to choose B-parabolas from Fig. 14, Fig. 15 or Fig. 16 with 
the lowest identification level n/c=0,2. However, the minima of B0,2 parabolas in 
Fig. 14b (for =4), Fig. 15b (for =8) and Fig. 16b (for =12) indicate the smallest 
achievable relative settling time τs=36,5 (for =4), τs=33 (for =8) and τs=34 (for =12), 
which do not satisfy the required value τs=20. 

3. Identified points GC(j0,35c)=12,7e-j122 and GC(j0,5c)=8,10e-j129 are located on the plant 
frequency response GC(j) (solid line) in Fig. 17a, verifying correctness of the sine-wave 
type identification. 

4. The first performance specification (max1;τs)=(30%;20) can be provided using the B0,35 
parabolas for =12 (Fig. 16b) at the level n/c=0,35 and for parameters (M1;n1)= 
=(53;0,35c) (Design No. 1), supplying the augmented open-loop phase margin 
´M1=M1+(180/)n1DC=53+10,1=63,1 into the controller design algorithm. The 
second performance specification (max2;τs)=(20%,20) is achievable using the B0,5 
parabolas in Fig. 16 for =12 and n/c=0,5 and parametres (M2;n2)=(62;0,5c) 
(Design No. 2). To reject the influence of DC, instead of M2=62 the augmented open-
loop phase margin ´M2=M2+(180/)n2DC=62+14,5=76,5 was supplied into the PID 
controller design algorithm. 
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Fig. 14. B-parabolas: a) ηmax=f(M,n); b) τs=cts=f(M,n) for systems with integrator, =4 

 
Fig. 15. B-parabolas: a) ηmax=f(M,n); b) τs=cts=f(M,n) for systems with integrator, =8 

 
Fig. 16. B-parabolas: a) ηmax=f(M,n); b) τs=cts=f(M,n) for systems with integrator, =12 
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Fig. 17. a) Open-loop Nyquist plots; b) closed-loop step responses of the flow valve, required 
performance max1=30%, max2=20% and τs=20 

5. Using the PID controller, the first identified point GC(j0,35c) (Design No. 1) was moved 
into the gain crossover LC1(j0,35c)=1e-j127 located on the unit circle M1; this verifies 
achieving the phase margin M1=180-127=53 (dashed line in Fig. 17a). Achieved 
performance in terms of the closed-loop step response in Fig. 17b is max1*=29,6%, 
ts1*=81,73[s] (dashed line). The second identified point GC(j0,5c) (Design No. 2) was 
moved into LC2(j0,5c)=1e-j118 achieving the phase margin M2=180-118=62 (dotted 
line in Fig. 17a). Achieved performance in terms of the closed-loop step response 
parameters max2*=19,7%, ts2*=82,44[s] (dotted line in Fig. 17b) meets the required 
specification. Frequency characteristics LC1(j), LC2(j) begin near the negative real half-
axis of the complex plane, because both open-loops contain a 2nd order integrator. 

Discussion 
All data necessary to design two PID controllers of all three plants GA(s), GB(s) and GC(s) 
along with specified and achieved performance measure values are summarized in Tab. 10 
where max and ts in the last two columns marked with „*“ indicate closed-loop performance 
complying with the required one. 
 
Model max;τs c[rad/s] ts[s] B-par. M n/c G(jn) GR(jn) max* ts*[s] 
GA(s) 30%;12 173,22 0,0693 Fig. 11 50 0,5 0,43e-j120 2,31e-j10 29,7% 0,0584 
GA(s) 5%;12 173,22 0,0693 Fig. 11 70 0,8 0,19e-j165 5,20ej55 4,89% 0,0605 
GB(s) 30%;12 0,3521 34,08 Fig. 11 55+45,9 0,35 1,03e-j23 0,97e-j56 18,6% 24,78 
GB(s) 5%;12 0,3521 34,08 Fig. 11 70+26,2 0,2 1,09e-j13 0,92e-j71 0,15% 28,69 
GC(s) 30%;20 0,2407 83,09 Fig. 16 53+10,1 0,35 12,7e-j122 0,08ej5,8 29,6% 81,73 
GC(s) 20%;20 0,2407 83,09 Fig. 16 62+14,5 0,5 8,10e-j129 0,12e-j28 19,7% 82,44 

Table 10. Summary of required and achieved performance measure values, identification 
parametres and PID controller tunings for GA(s), GB(s) and GC(s) 
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4. Conclusion 
The proposed new engineering method based on the sine-wave identification of the plant 
provides successful PID controller tuning. The main contribution has been construction of 
empirical charts to transform engineering time-domain performance specifications 
(maximum overshoot and settling time) into frequency domain performance measures 
(phase margin). The method is applicable for shaping the closed-loop response of the 
process variable using various combinations of excitation signal frequencies and required 
phase margins. Using B-parabolas, it is possible to achieve optimal time responses  
of processes with various types of dynamics and improve their performance. When 
applying digital PID controller, it is recommended to set the sampling period Ts from the 
interval  

 0 2 0 6
s

c c

, ,T ,
 

 (46) 

where c is the critical frequency of the controlled plant (Wittenmark, 2001). 
By applying appropriate PID controller design methods including the above presented 51+3 
tuning rules for prescribed performance, it is possible to achieve cost-effective control of 
industrial processes. The presented advanced sine-wave design method offers one possible 
way to turn the unfavourable statistical ratio between properly tuned and all implemented 
PID controllers in industrial control loops. 
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Fig. 17. a) Open-loop Nyquist plots; b) closed-loop step responses of the flow valve, required 
performance max1=30%, max2=20% and τs=20 

5. Using the PID controller, the first identified point GC(j0,35c) (Design No. 1) was moved 
into the gain crossover LC1(j0,35c)=1e-j127 located on the unit circle M1; this verifies 
achieving the phase margin M1=180-127=53 (dashed line in Fig. 17a). Achieved 
performance in terms of the closed-loop step response in Fig. 17b is max1*=29,6%, 
ts1*=81,73[s] (dashed line). The second identified point GC(j0,5c) (Design No. 2) was 
moved into LC2(j0,5c)=1e-j118 achieving the phase margin M2=180-118=62 (dotted 
line in Fig. 17a). Achieved performance in terms of the closed-loop step response 
parameters max2*=19,7%, ts2*=82,44[s] (dotted line in Fig. 17b) meets the required 
specification. Frequency characteristics LC1(j), LC2(j) begin near the negative real half-
axis of the complex plane, because both open-loops contain a 2nd order integrator. 

Discussion 
All data necessary to design two PID controllers of all three plants GA(s), GB(s) and GC(s) 
along with specified and achieved performance measure values are summarized in Tab. 10 
where max and ts in the last two columns marked with „*“ indicate closed-loop performance 
complying with the required one. 
 
Model max;τs c[rad/s] ts[s] B-par. M n/c G(jn) GR(jn) max* ts*[s] 
GA(s) 30%;12 173,22 0,0693 Fig. 11 50 0,5 0,43e-j120 2,31e-j10 29,7% 0,0584 
GA(s) 5%;12 173,22 0,0693 Fig. 11 70 0,8 0,19e-j165 5,20ej55 4,89% 0,0605 
GB(s) 30%;12 0,3521 34,08 Fig. 11 55+45,9 0,35 1,03e-j23 0,97e-j56 18,6% 24,78 
GB(s) 5%;12 0,3521 34,08 Fig. 11 70+26,2 0,2 1,09e-j13 0,92e-j71 0,15% 28,69 
GC(s) 30%;20 0,2407 83,09 Fig. 16 53+10,1 0,35 12,7e-j122 0,08ej5,8 29,6% 81,73 
GC(s) 20%;20 0,2407 83,09 Fig. 16 62+14,5 0,5 8,10e-j129 0,12e-j28 19,7% 82,44 

Table 10. Summary of required and achieved performance measure values, identification 
parametres and PID controller tunings for GA(s), GB(s) and GC(s) 
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4. Conclusion 
The proposed new engineering method based on the sine-wave identification of the plant 
provides successful PID controller tuning. The main contribution has been construction of 
empirical charts to transform engineering time-domain performance specifications 
(maximum overshoot and settling time) into frequency domain performance measures 
(phase margin). The method is applicable for shaping the closed-loop response of the 
process variable using various combinations of excitation signal frequencies and required 
phase margins. Using B-parabolas, it is possible to achieve optimal time responses  
of processes with various types of dynamics and improve their performance. When 
applying digital PID controller, it is recommended to set the sampling period Ts from the 
interval  

 0 2 0 6
s

c c

, ,T ,
 

 (46) 

where c is the critical frequency of the controlled plant (Wittenmark, 2001). 
By applying appropriate PID controller design methods including the above presented 51+3 
tuning rules for prescribed performance, it is possible to achieve cost-effective control of 
industrial processes. The presented advanced sine-wave design method offers one possible 
way to turn the unfavourable statistical ratio between properly tuned and all implemented 
PID controllers in industrial control loops. 
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1. Introduction  
The PID controllers (P, PD, PI, PID) are very widely used, very well and successfully 
applied controllers to many applications, for many years, almost from the beginning of 
controls applications (D'Azzo & Houpis, 1988)(Franklin et al., 1994). (The facts of their 
successful application, good performance, easiness of tuning are speaking for themselves 
and are sufficient rational for their use, although their structure is justified by heuristics: 
"These ... controls - called proportional-integral-derivative (PID) control - constitute the 
heuristic approach to controller design that has found wide acceptance in the process 
industries." (Franklin et al., 1994, pp. 168)). 
 In this chapter we state a problem whose solution leads to the PID controller architecture 
and structure, thus avoiding heuristics, giving a systematic approach for explanation of the 
excellent performance of the PID controllers and gives insight why there are cases the PID 
controllers do not work well. Namely, by the use of Linear Quadratic Tracking (LQT) theory 
(Kwakernaak & Sivan, 1972)(Anderson & Moore, 1989) control-tracking problems are 
formulated and those cases when their solution gives the PID controllers are shown. 
Further, problem of controlling-tracking high order polynomial inputs and rejecting high 
order polynomial disturbances is formulated. By applying the LQT theory extended family 
of PID controllers – the family of generalized PID controllers denoted PImDn-1 is derived. 
This provides tool for application of optimal controllers for those systems that the 
conventional PID controllers are not satisfactory, for generalization and derivation of further 
results. The notation of generalized PID controllers, PImDn-1, is consistent with the notation 
of controllers for fractional order systems (Podlubny, 1999). 
The present work is strongly motivated by problems-question tackled by the author during 
a continuous work on high performance servo and motion control applications. Some of the 
theoretical results that have had motivated and led to the present work have been 
documented in (Rusnak, 1998, 1999, 2000a, 2000b). Some of the presented architectures 
appear and are recommended for use in (Leonhard, 1996, pp. 80, 347) without rigorous 
rationale and were partial trigger for the presented approach. 
By Architecture we mean, loosely, the connections between the outputs/sensors and the 
inputs/actuators; Structure deals with the specific realization of the controllers' blocks; and 
Configuration is a specific combination of architecture and structure. These issues fall within 
the control and feedback organization theory that have been reviewed and presented in a 
concise form in (Rusnak, 2002, 2005) and in a widened form in (Rusnak, 2006, 2008). It is 
beyond the scope of this chapter. It is used here as a basis at a system theoretic level to 
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order polynomial disturbances is formulated. By applying the LQT theory extended family 
of PID controllers – the family of generalized PID controllers denoted PImDn-1 is derived. 
This provides tool for application of optimal controllers for those systems that the 
conventional PID controllers are not satisfactory, for generalization and derivation of further 
results. The notation of generalized PID controllers, PImDn-1, is consistent with the notation 
of controllers for fractional order systems (Podlubny, 1999). 
The present work is strongly motivated by problems-question tackled by the author during 
a continuous work on high performance servo and motion control applications. Some of the 
theoretical results that have had motivated and led to the present work have been 
documented in (Rusnak, 1998, 1999, 2000a, 2000b). Some of the presented architectures 
appear and are recommended for use in (Leonhard, 1996, pp. 80, 347) without rigorous 
rationale and were partial trigger for the presented approach. 
By Architecture we mean, loosely, the connections between the outputs/sensors and the 
inputs/actuators; Structure deals with the specific realization of the controllers' blocks; and 
Configuration is a specific combination of architecture and structure. These issues fall within 
the control and feedback organization theory that have been reviewed and presented in a 
concise form in (Rusnak, 2002, 2005) and in a widened form in (Rusnak, 2006, 2008). It is 
beyond the scope of this chapter. It is used here as a basis at a system theoretic level to 
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enable formulation of the control-feedback loops organization problem that leads to the 
family of generalized PID controllers. This article does not deal with the numerical values of 
the controllers' filters coefficients/gains; rather it concentrates in organization of the control 
loop and structure of the filters. This is the way the optimal LQT theory is used. 
The LQT theory requires a reference trajectory generator. The reference trajectory is 
generated by a system that reflects the nominal behavior of the plant. The differences are the 
initial conditions, the input to the reference trajectory generator and the deviation of the 
actual plant from the nominal one. The zero steady state error is imposed by integral action 
of a required order on the state tracking error. 
The generalized controllers derived by the presented methodology have been applied to 
high performance motion control in (Nanomotion, 2009a, 2009b) and to high performance 
missile autopilot in (Rusnak and Weiss, 2011).  
The novelty of the results in this approach is that it shows for what problems a controller 
from the family of PID controllers is the optimal controller and for which it is not. 
The importance of this result is: 
1. From theoretical point of view it is important to know that widely used control 

architecture can be derived from an optimal control/tracking problem. 
2. The solution shows for what kind of systems the PID controller is optimal and for 

which systems it is not, thus showing why a PID controller does not perform well for all 
systems. This will enable to forecast what control designs not to apply a PID controller. 

3. For those systems that the PID is not the controller architecture derived from the 
optimal control approach shows what is the optimal controller architecture and 
structure, thus achieving generalization. 

4. The present approach advises how to design PID controller on finite time interval, i.e. 
when the gains are time varying. 

5. The generalization can be used in deriving generalized PID controllers for high order 
SISO systems, for SIMO and MIMO systems (Rusnak, 1999, 2000a), for time–varying 
and non-linear systems; thus enabling a systematic generalization of the PID controller 
paradigm. 

6. The design procedures of PID controllers are assuming noise free environment. The 
presented approach advises how to generalize the PID controller configuration in 
presence of noises by the use of the Linear Quadratic Gaussian Tracking-LQGT theory 
(Rusnak, 2000b). 

7. The conventional PID paradigm introduces integral action in order to drive the steady 
state tracking errors in presence of constant reference trajectory or disturbance. The 
present approach enables to systematically generalize the controller to drive the steady 
state tracking errors to zero for high order polynomial inputs and disturbances. 

8. Choosing the optimal generalized PID controller reduces the quantity of controller 
parameters-gains that are required for tuning, Thus saving time during the design process. 

9. The LQT motivated architecture enables separate treatment of the transient, by the 
trajectory generator, and the steady state performance by introducing integrators into 
the controllers (Rusnak and Weiss, 2011).  

The results on the architecture and structure of the PID controllers' family for 1st and 2nd 
order are rederived in the article. Specifically, it is shown that the classical one block PID 
controller is optimal for Linear Quadratic Tracking problem of a 2nd order minimum phase 
plant. For plants with non-minimum phase zero the family of PID controllers is only 
suboptimal. Multi output single input architectures are proposed that are optimal.  
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Throughout this chapter the same notation for time domain and Laplace domain is used, 
and the explicit Laplace variable (s) is stated to avoid confusion wherever necessary. 

2. The optimal tracking problem 
The optimal tracking problem is introduced in (Kwakernaak & Sivan, 1972) (Anderson & 
Moore, 1989). The nth order system is 
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where x is the state; u is the input and y is the measured output, xo is a zero mean random 
vector. 
The th order reference trajectory generator is 
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where xr is the state; wr is the input and yr is the reference output; wr is a zero mean 
stochastic process, xro  is zero mean random vector. Further it is assumed that n=. The case 
n≠ is beyond the scope of this chapter. 
The integral action is introduced into the control in order to “force” zero tracking errors for 
polynomial inputs, and to attenuate disturbances (Kwakernaak & Sivan, 1972)(Anderson & 
Moore, 1989). This is done by introducing the auxiliary variables, integrals of the tracking 
error. This way the generalized PID controller, denoted PImDn-1, is created. That is, the state 
is augmented by 
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where (m) is the number of integrators that are introduced on the tracking error. 
The control objective is 
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enable formulation of the control-feedback loops organization problem that leads to the 
family of generalized PID controllers. This article does not deal with the numerical values of 
the controllers' filters coefficients/gains; rather it concentrates in organization of the control 
loop and structure of the filters. This is the way the optimal LQT theory is used. 
The LQT theory requires a reference trajectory generator. The reference trajectory is 
generated by a system that reflects the nominal behavior of the plant. The differences are the 
initial conditions, the input to the reference trajectory generator and the deviation of the 
actual plant from the nominal one. The zero steady state error is imposed by integral action 
of a required order on the state tracking error. 
The generalized controllers derived by the presented methodology have been applied to 
high performance motion control in (Nanomotion, 2009a, 2009b) and to high performance 
missile autopilot in (Rusnak and Weiss, 2011).  
The novelty of the results in this approach is that it shows for what problems a controller 
from the family of PID controllers is the optimal controller and for which it is not. 
The importance of this result is: 
1. From theoretical point of view it is important to know that widely used control 

architecture can be derived from an optimal control/tracking problem. 
2. The solution shows for what kind of systems the PID controller is optimal and for 

which systems it is not, thus showing why a PID controller does not perform well for all 
systems. This will enable to forecast what control designs not to apply a PID controller. 

3. For those systems that the PID is not the controller architecture derived from the 
optimal control approach shows what is the optimal controller architecture and 
structure, thus achieving generalization. 

4. The present approach advises how to design PID controller on finite time interval, i.e. 
when the gains are time varying. 

5. The generalization can be used in deriving generalized PID controllers for high order 
SISO systems, for SIMO and MIMO systems (Rusnak, 1999, 2000a), for time–varying 
and non-linear systems; thus enabling a systematic generalization of the PID controller 
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6. The design procedures of PID controllers are assuming noise free environment. The 
presented approach advises how to generalize the PID controller configuration in 
presence of noises by the use of the Linear Quadratic Gaussian Tracking-LQGT theory 
(Rusnak, 2000b). 

7. The conventional PID paradigm introduces integral action in order to drive the steady 
state tracking errors in presence of constant reference trajectory or disturbance. The 
present approach enables to systematically generalize the controller to drive the steady 
state tracking errors to zero for high order polynomial inputs and disturbances. 

8. Choosing the optimal generalized PID controller reduces the quantity of controller 
parameters-gains that are required for tuning, Thus saving time during the design process. 

9. The LQT motivated architecture enables separate treatment of the transient, by the 
trajectory generator, and the steady state performance by introducing integrators into 
the controllers (Rusnak and Weiss, 2011).  

The results on the architecture and structure of the PID controllers' family for 1st and 2nd 
order are rederived in the article. Specifically, it is shown that the classical one block PID 
controller is optimal for Linear Quadratic Tracking problem of a 2nd order minimum phase 
plant. For plants with non-minimum phase zero the family of PID controllers is only 
suboptimal. Multi output single input architectures are proposed that are optimal.  
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Throughout this chapter the same notation for time domain and Laplace domain is used, 
and the explicit Laplace variable (s) is stated to avoid confusion wherever necessary. 

2. The optimal tracking problem 
The optimal tracking problem is introduced in (Kwakernaak & Sivan, 1972) (Anderson & 
Moore, 1989). The nth order system is 
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where xr is the state; wr is the input and yr is the reference output; wr is a zero mean 
stochastic process, xro  is zero mean random vector. Further it is assumed that n=. The case 
n≠ is beyond the scope of this chapter. 
The integral action is introduced into the control in order to “force” zero tracking errors for 
polynomial inputs, and to attenuate disturbances (Kwakernaak & Sivan, 1972)(Anderson & 
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where (m) is the number of integrators that are introduced on the tracking error. 
The control objective is 
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The optimal tracking problem (Kwakernaak & Sivan, 1972) is to find an admissible input 
u(t) such that the tracking objective (5) is minimized subject to the dynamic constraints (1-
4). 
All vectors and matrices are of the proper dimension. 

3. Solution of the optimal tracking problem 
In order to solve the Optimal Tracking Problem we augment the state variables 
(Kwakernaak & Sivan, 1972) and further assume that A=Ar, B=Br and C=Cr. This assumption 
states that the nominal values of the plant's parameters are known. The case A≠Ar, B≠Br and 
C≠Cr is beyond the scope of this chapter. 
We have the error system 
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then the problem is minimization of (5) subject to (1-4) is the problem of minimization of 
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The solution is (Kwakernaak & Sivan, 1972) (Bryson & Ho, 1969) 

 
1

1 , ( ) .T
f

u R BP X

P PA A P Q PBR BP P t G





 

       (11) 

If we appropriately partition P, then 

    1
11 12 1 2

x xT e e
u = R B P P K K

 
    

   
   

 (12) 

Notice that the solution is independent of the reference trajectory generator input, rw .  
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4. Architectures 
As stated in the introduction Architecture deals with the connections between the 
outputs/sensors and the inputs/actuators; Structure deals with the specific realization of 
the controllers' blocks; and Configuration is a specific combination of architecture and 
structure. These issues fall within the of control and feedback organization theory (Rusnak, 
2006, 2008), and are beyond the scope of this chapter. 
In this chapter we deal with three specific architectures. These are: 
1. Parallel controller architecture; 
2. Cascade controller architecture; 
3. One block controller architecture. 

4.1 Parallel controller architecture 
This control architecture is directly derived from the Solution of the Optimal Tracking 
Problem as derived in (Asseo, 1970) and in (12). The parallel controller can be written 
directly from (12) in Laplace domain as 
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For 2nd order system the parallel controller architecture takes the form. 
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Figure 1 presents the block diagram of the parallel controller architecture for a 2nd order 
system. 
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Fig. 1. Parallel controller architecture for 2nd order system. 

4.2 Cascade controller architecture 
By elementary block operation (13) can be written as 
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The optimal tracking problem (Kwakernaak & Sivan, 1972) is to find an admissible input 
u(t) such that the tracking objective (5) is minimized subject to the dynamic constraints (1-
4). 
All vectors and matrices are of the proper dimension. 

3. Solution of the optimal tracking problem 
In order to solve the Optimal Tracking Problem we augment the state variables 
(Kwakernaak & Sivan, 1972) and further assume that A=Ar, B=Br and C=Cr. This assumption 
states that the nominal values of the plant's parameters are known. The case A≠Ar, B≠Br and 
C≠Cr is beyond the scope of this chapter. 
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This is the cascade controller architecture. For 2nd order system the cascade controller 
architecture takes the form. 
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Figure 2 presents the block diagram of the cascade controller architecture for a 2nd order 
system. The rationale for the notation of Cp (position) and Cv (velocity) will be presented in 
the sequel. 
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Fig. 2. Cascade controller architecture for 2nd order system. 

4.3 One block controller architecture 
By elementary operation on (13), and exploiting the relations between the state space 
variables, the one block controller architecture can be written as  

  1 1( ) ( ) ( ) ( )ru s  =C s x s x s  (17) 

Figure 3 presents the block diagram of the one block controller architecture. 
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Fig. 3. One block controller architecture. 

4.4 Discussion 
Although from input-output transfer function point-of-view, there is no formal difference 
between the different architectures, there is difference with respect to the response to initial 
conditions, effects of saturation and nonlinearities, robustness, and more.  
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5. Controllers for first order system 
As a first order system is considered, this leads to the one block controller architecture only. 

5.1 P controller 
Here we have 

  1 1x ru = k e k x x   (18) 

This is the proportional - P controller. 

 1( )C s  = k  (19) 

5.2 PI controller 
Here we have 
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This is the proportional + Integral - PI controller. 
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5.3 PI2 controller 
Here we have 
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This is the proportional + double integrator - PI2 controller. 
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5.4 PIm controller 
Here we have 
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This is the cascade controller architecture. For 2nd order system the cascade controller 
architecture takes the form. 

   1
2 2 2 1 1 2 2 1 1

2
( ) ( ) {( ) ( )}r r v r p r

Cu s C x x x x C x x C x x
C

 
        

 
 (16) 

Figure 2 presents the block diagram of the cascade controller architecture for a 2nd order 
system. The rationale for the notation of Cp (position) and Cv (velocity) will be presented in 
the sequel. 
 
 
 

2x

2rx

1rx

vCpC

1x
u

 
 

Fig. 2. Cascade controller architecture for 2nd order system. 

4.3 One block controller architecture 
By elementary operation on (13), and exploiting the relations between the state space 
variables, the one block controller architecture can be written as  

  1 1( ) ( ) ( ) ( )ru s  =C s x s x s  (17) 

Figure 3 presents the block diagram of the one block controller architecture. 
 
 
 

rx1 1xu

 
 

Fig. 3. One block controller architecture. 

4.4 Discussion 
Although from input-output transfer function point-of-view, there is no formal difference 
between the different architectures, there is difference with respect to the response to initial 
conditions, effects of saturation and nonlinearities, robustness, and more.  
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This is the proportional + (m) integrators -  PIm controller. 
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Table 1 summarizes the one block generalized PID controller structure for first order system. 
 

controller  
P 1k  
PI 1 2k s k

s
  

PI2 2
1 21 22

2
k s k s k

s
   

PIm 1
1 21 2

m m
m

m
k s k s k

s

  

Table 1. One block generalized PID controllers for 1st order system. 

6. Controllers for second order system 
Second order plant and the trajectory generator are assumed and are represented in the 
companion form 

 
2 1
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rA A

a a
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b
B

b
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 ,  1 0rC C  , (27) 

and we have 
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 The plant's and trajectory's state generator are denoted 

 
Family of the PID Controllers  

 

39 

 1 1

2 2 2 2
; r r

r r

x y x y
x x x x
       

        
       

 (31) 

The reason for selecting the state space representation (27) is that plant without zero, i.e. 
1 0b  , is a case that is often met in motion control with electrical and PZT motors (Rusnak, 

2000a). For plant without zero 2x y  , so that 
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and one can deal with position feedback, feedback on y , and velocity feedback, feedback on 
y . For this reason in this chapter we will call, with slight abuse of nomenclature, the 
feedback loop on y  the position loop and the feedback loop on 2 ,( ),x y  the velocity loop. 

6.1 PD controller 
Feedback without integral action is implemented. The tracking errors are  

 1 r 1r 1

2 2r 2
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x

e e
e
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The controller is 
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6.1.1 Parallel controller  

    1 r 2 2r 2y -y x -xu k k   (35) 

6.1.2 Cascade controller  
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6.1.3 One block controller 
To get the one block controller we substitute (30) and get (in Laplace domain) 
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and one can deal with position feedback, feedback on y , and velocity feedback, feedback on 
y . For this reason in this chapter we will call, with slight abuse of nomenclature, the 
feedback loop on y  the position loop and the feedback loop on 2 ,( ),x y  the velocity loop. 

6.1 PD controller 
Feedback without integral action is implemented. The tracking errors are  
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6.1.1 Parallel controller  

    1 r 2 2r 2y -y x -xu k k   (35) 

6.1.2 Cascade controller  
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6.1.3 One block controller 
To get the one block controller we substitute (30) and get (in Laplace domain) 
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This is the PD controller. 

6.1.4 Discussion 
1. We used the assumption that 2 1 2 1( ) / ( ) ( ) / ( )r rx s x s x s x s  and ignored the response to 

initial conditions. 
2. For 2nd order plant with a stable zero the optimal controller is a proper PD controller, 

i.e. no direct derivative is required. 
3. The pole/filter of the derivative in (37) cancels out the zero of the plant (28). This is 

optimal/correct for deterministic (noiseless) systems. For systems with noisy 
measurements this cancelation is no more optimal (Rusnak, 2000b). 

4. The cancellation of the plant's zero by the optimal controller creates an uncontrollable 
system. This may work (although is not good practice) for stable zero. However, when 
the plant has non-minimum phase (unstable) zero the optimal PD controller induces 
uncontrollable unstable mode, which means that the Optimal PD controller 
cannot/should not be implemented in the one block controller architecture. 

5. As for a plant with unstable zero the optimal one block PID controller cannot be 
realized, then measurement of the two states, or an observer is required if one wishes to 
build the optimal controller. 

6. If stable controller is required it is possible to implement the optimal PD one block 
architecture controller only for minimum phase plants! 

7. For 2nd order system without zero the deterministic optimal controller is not proper, i.e. 
requires pure derivative. 

6.2 PID controller 
Zero steady state tracking error on the output is required. The tracking errors are 

  
1 r r 1r 1

2 2r 2

1 1

 y -y  x -x
 x -x
=  

x

x

x

e e
e

e

  



 (38) 

The controller is 
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e
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 
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  (39) 

and the controller in Laplace domain  

   3
1 2 2r 2( ) x -x ku s  = k e k e

s
    (40) 

6.2.1 Parallel controller 

    3
1 r 2 2r 2y -y x -xku k k

s
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 (41) 
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6.2.2 Cascade controller 

    1 3
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 (42) 

6.2.3 One block controller 
To get the one block output controller derive we substitute (30) and get (in Laplace domain) 
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 (43) 

This is the PID controller. 

6.2.4 Discussion 
1. Remarks in section 6.1.4 apply here mutatis mutandis. 
2. For 2nd order plant with a stable zero, the optimal controller with one integrator is a 

stable proper PID controller, i.e. no direct derivative is required. 

6.3 PID controller in PIV configuration  
Zero steady state tracking error on the output and the second state (velocity) is required. 
The tracking errors are 

 1 ,1r 1 x1

2r 2 x2

x - x e
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The controller is 
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and in Laplace domain 

 3 4
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s s

 (46) 

6.3.1 Parallel controller  
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6.2.2 Cascade controller 
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stable proper PID controller, i.e. no direct derivative is required. 

6.3 PID controller in PIV configuration  
Zero steady state tracking error on the output and the second state (velocity) is required. 
The tracking errors are 
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2r 2 x2

x - x e
x - x e
   

    
   
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 
 
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

 (44) 

The controller is 
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 
 

     
 
 
 

 


 (45) 

and in Laplace domain 

 3 4
1 x1 2 x2 x1 x2( ) e e e e  

k ku s  = k k
s s

 (46) 

6.3.1 Parallel controller  

    3 4
1 r 2 2r 2( ) y -y x -xk ku s  = k k
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  
 (47) 
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6.3.2 Cascade controller - the PIV configuration  

    1 34
2 2r 2 r

2 4
( ) x -x y -yk s kku s = k

s k s k
         

 (48) 

This is called the PIV configuration (Proportional feedback in position loop and 
proportional+integral feedback in the velocity loop) (configuration=combination of 
architecture and structure) as there is almost proportional feedback (Lead-Lag) on the position 

1x  and then in the velocity loop on 2x  there is proportional and one integral feedback. 

6.3.3 One block output controller 
To get the one block controller we substitute (30) and get (in Laplace domain) 
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 (49) 

This is the PID controller. 

6.3.4 Discussion 
1. Remarks in section 6.1.4 apply here mutatis mutandis. 
2. Two different tracking problems (38, 44) lead to the same one block controller. 
3. In the parallel architecture there is a PI controller in each of the errors (47). 
4. Although formally the cascade architecture controller requires the tuning of six 

parameters in (48), the deterministic optimal PIV controller needs the tuning of four 
parameters only, as can be deduced from (46). 

6.4 PI2D controller 
Zero steady state tracking error on the output for ramp input or disturbance is required. The 
tracking errors are  
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The controller is 
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 (51) 

and in Laplace domain  
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6.4.1 Parallel controller 
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6.4.2 Cascade controller 
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Two integrators in the position loop and proportional feedback in the velocity loop. 

6.4.3 One block output controller 
To get the one block controller we substitute (30) and get (in Laplace domain) 
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 (55) 

This is the PI2D controller. 

6.4.4 Discussion 
1. Remarks in section 6.1.4 apply here mutatis mutandis. 

6.5 PI2D controller in IPIV configuration  
Here we want to force zero steady state tracking error on the second state, as well, however 
in different configuration, i.e. 
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The controller is 
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6.3.2 Cascade controller - the PIV configuration  
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This is called the PIV configuration (Proportional feedback in position loop and 
proportional+integral feedback in the velocity loop) (configuration=combination of 
architecture and structure) as there is almost proportional feedback (Lead-Lag) on the position 

1x  and then in the velocity loop on 2x  there is proportional and one integral feedback. 

6.3.3 One block output controller 
To get the one block controller we substitute (30) and get (in Laplace domain) 
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This is the PID controller. 

6.3.4 Discussion 
1. Remarks in section 6.1.4 apply here mutatis mutandis. 
2. Two different tracking problems (38, 44) lead to the same one block controller. 
3. In the parallel architecture there is a PI controller in each of the errors (47). 
4. Although formally the cascade architecture controller requires the tuning of six 

parameters in (48), the deterministic optimal PIV controller needs the tuning of four 
parameters only, as can be deduced from (46). 

6.4 PI2D controller 
Zero steady state tracking error on the output for ramp input or disturbance is required. The 
tracking errors are  
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1 2 2r 2 2( ) x -x k ku s  = k e k e e
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6.4.1 Parallel controller 
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6.4.2 Cascade controller 
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Two integrators in the position loop and proportional feedback in the velocity loop. 

6.4.3 One block output controller 
To get the one block controller we substitute (30) and get (in Laplace domain) 
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 (55) 

This is the PI2D controller. 

6.4.4 Discussion 
1. Remarks in section 6.1.4 apply here mutatis mutandis. 

6.5 PI2D controller in IPIV configuration  
Here we want to force zero steady state tracking error on the second state, as well, however 
in different configuration, i.e. 
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and in Laplace domain  

    3 54
1 2 2r 2 2r 2 2( ) x -x x -xk kku s  = k e k e e

s s s
     (58) 

6.5.1 Parallel implementation 
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s s
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6.5.2 Cascade controller – the IPIV configuration  

      
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1 3 52 4
2r 2 r

2 4
( ) x -x y -yk s k s kk s ku s
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 (60) 

This is called the IPIV configuration (Proportional +integral feedback in position loop and 
proportional +integral feedback in the velocity loop) as there is almost proportional 
feedback on the position loop, y, and then in the velocity loop on, x2, there is proportional 
and one integral feedback. 

6.5.3 One block output controller 
To get the one block output controller we substitute (30) and get (in Laplace domain) 
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 (61) 

This is the PI2D controller. 

6.5.4 Discussion 
1. Remarks in section 6.1.4 apply here mutatis mutandis. 

6.6 PI2D controller in PI2V configuration  
Here we want to force zero steady state tracking error on the rate of the output as well, 
and 
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 (63) 

and in Laplace domain  

      3 5 64
1 2 2r 2 2r 2 2r 22 2( ) x -x x -x x -xk k kku s k e k e e

s s s s
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6.6.1 Parallel controller 
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 (65) 

6.6.2 Cascade controller – the PI2V configuration 
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 (66) 

This is called the PI2V configuration (Proportional feedback in position loop and 
proportional +double integral feedback in the velocity loop) as there is almost proportional 
feedback (Lead-Lag) in the position loop, on y, and then in the velocity loop, on x2, there is 
proportional and two integrals feedback. 

6.6.3 One block output controller 
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 (67) 

This is the PI2D controller. 

6.6.4 Discussion 
1. Remarks in section 6.1.4 apply here mutatis mutandis. 

6.7 Summary 
This section presented the family of the generalized PID controllers for 2nd order systems. 
The following tables summarize the structure of the controllers in the different architectures. 
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and in Laplace domain  
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6.5.2 Cascade controller – the IPIV configuration  
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This is called the IPIV configuration (Proportional +integral feedback in position loop and 
proportional +integral feedback in the velocity loop) as there is almost proportional 
feedback on the position loop, y, and then in the velocity loop on, x2, there is proportional 
and one integral feedback. 

6.5.3 One block output controller 
To get the one block output controller we substitute (30) and get (in Laplace domain) 
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This is the PI2D controller. 

6.5.4 Discussion 
1. Remarks in section 6.1.4 apply here mutatis mutandis. 

6.6 PI2D controller in PI2V configuration  
Here we want to force zero steady state tracking error on the rate of the output as well, 
and 
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and in Laplace domain  
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6.6.1 Parallel controller 
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6.6.2 Cascade controller – the PI2V configuration 
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This is called the PI2V configuration (Proportional feedback in position loop and 
proportional +double integral feedback in the velocity loop) as there is almost proportional 
feedback (Lead-Lag) in the position loop, on y, and then in the velocity loop, on x2, there is 
proportional and two integrals feedback. 
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This is the PI2D controller. 

6.6.4 Discussion 
1. Remarks in section 6.1.4 apply here mutatis mutandis. 

6.7 Summary 
This section presented the family of the generalized PID controllers for 2nd order systems. 
The following tables summarize the structure of the controllers in the different architectures. 
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Table 2 presents the family of generalized PID controllers for 2nd order systems in the 
parallel architecture that are able to drive the tracking error to zero for up to constant 
acceleration input and disturbance. Formally, if all possible parallel configurations are 
enumerated then there are three more parallel structures as detailed in Table 3. However 
these additional structures are equivalent to the respective structures in Table 2 as 
detailed in the rightmost column. Therefore these configurations are not considered in the 
following. 
 
 
 

Generalized PID controller - Parallel architecture (Figure 1) 
 Cx1 Cx2 § 
PD k1 k2 6.1 
PID k1+k3/s k2 6.2 
PID- PIV k1+k3/s k2+k4/s 6.3 
PI2D k1+k3/s+k4/s2 k2 6.4 
PI2D-IPIV k1+k3/s+k5/s2 k2+k4/s 6.5 
PI2D- PI2V k1+k3/s+k5/s2 k2+k4/s+k6/s2 6.6 

Table 2. The structure of the parallel architecture controllers for 2nd order plant. 

 
 
 

Generalized PID controller - Parallel architecture (Figure 1) 
 Cx1 Cx2 § 
PID k1 k2+k4/s 6.2 
PI2D k1 k2+k4/s+k6/s2 6.4 
PI2D-IPIV k1+k3/s k2+k4/s+k6/s2 6.5 

Table 3. The structure of the parallel architecture controllers for 2nd order plant. 

Tables 4 and 5 present the family of generalized PID controllers for 2nd order systems in 
the cascade architecture and in the one block controller architecture, respectively, that are 
able to drive the tracking error to zero for up to constant acceleration input and 
disturbance. 
 
 

Generalized PID controller - Cascade architecture (Figure 2) 
 Cp (position-outer loop) Cv (velocity-inner loop) § 
PD k1 k1/k2 6.1 
PID  (k1s+k3)/k2/s k2 6.2 
PIV  (k1s+k3)/(k2s+k4) (k2s+k4)/s 6.3 
PI2D  (k1s2+k3s+k4)/k2/s2 k2 6.4 
IPIV  (k1s2+k3s+k5)/s(k2s+k4) (k2s+k4)/s 6.5 
PI2V  (k1s2+k3s+k5)/(k2s2+k4s+k6) (k2s2+k2s+k6)/s2 6.6 

Table 4. The structure of the cascade architecture controllers for 2nd order plant. 
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One block PD, PID and generalized PID controller (Figure 3) 
Controller type plant integral action(m) § 
PD kP+kD s no zero 0 6.1 
PD kP+kD s/(s D+1) zero 0 6.1 
PID kP + kI/s+kDs no zero 1 6.2,3 
PID kP+ kI/s+kD s/(sD+1) zero 1 6.2,3 
PI2D kP +kI1/s+kI2/s2+kDs no zero 2 6.4,5,6 
PI2D kP+kI/s+kI1/s+kI2/s2+kDs/(s D+1) zero 2 6.4,5,6 

Table 5. The structure of one block generalized PID controller for 2nd order plant with and 
without minimum phase zero. 

7. Reference trajectory generator 
The reference trajectory generator encapsulates the required closed loop behavior as stated 
by the system specification-requirements. There can be two cases: the trajectory is either 
unknown or known in advance. The former case gives the well known pre-filter that creates 
the feed-forward as well. In the second case, for example, minimum time trajectories for 
limited acceleration or jerk, minimum acceleration or jerk energy trajectories, or any other 
profile can be required. Both cases are presented in (Leonhard, 1996, pp. 80, 347, 363-364, 
367) and in many other publications. 

8. Discussion 
In this chapter the generalized PID controllers for 1st and 2nd order system that are able to 
drive the tracking error to zero for up to second order polynomials inputs and disturbances 
have been derived. This presented in detail a methodology to derive additional members of 
the family of generalized PID controllers for high order system (Rusnak, 1999) and high 
order polynomial inputs and disturbances. These are the PImDn-1 controllers. 
Following the theory and the author's experience the full state feedback, especially the 
cascade architecture, Figure 2, is preferable over the one block controller, Figure 3. This may 
come at the expense of higher cost. However in modern digital control loop that are using 
absolute or incremental encoders the position and velocity information is derived at the 
same cost.    
The motion control engineers prefer the cascade controller because of implementation and 
tuning easiness. The most important feature is that in the cascade architecture the feedback 
loop can be tuned sequentially. That is, start with the velocity-inner loop, that is usually 
high bandwidth, and then to proceed to the position-outer loop. The same apply to higher 
order generalized PID controllers. 

9. Conclusions 
By the use of LQR theory we formulated a control-tracking problem and showed those cases 
when their solution gives members of the PImDm-1 family of controllers. This way heuristics 
are avoided and a systematic approach to explanation for the excellent performance of the 
PID controllers is given. The well known one block PID controller architecture is optimal for 
Linear Quadratic Tracking problem of 2nd order systems with no zero or stable zero.  
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the family of generalized PID controllers for high order system (Rusnak, 1999) and high 
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Following the theory and the author's experience the full state feedback, especially the 
cascade architecture, Figure 2, is preferable over the one block controller, Figure 3. This may 
come at the expense of higher cost. However in modern digital control loop that are using 
absolute or incremental encoders the position and velocity information is derived at the 
same cost.    
The motion control engineers prefer the cascade controller because of implementation and 
tuning easiness. The most important feature is that in the cascade architecture the feedback 
loop can be tuned sequentially. That is, start with the velocity-inner loop, that is usually 
high bandwidth, and then to proceed to the position-outer loop. The same apply to higher 
order generalized PID controllers. 

9. Conclusions 
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when their solution gives members of the PImDm-1 family of controllers. This way heuristics 
are avoided and a systematic approach to explanation for the excellent performance of the 
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1. Introduction 
Several processes encountered in various fields of engineering exhibit an inherently 
unstable behaviour coupled with time delays. To approximate the open loop dynamics of 
such systems for the purpose of designing controllers, many of these processes can be 
satisfactorily described by unstable transfer function models. The most widely used 
models of this type is the unstable first order plus dead-time (UFOPDT) and the unstable 
second order plus dead-time (USOPDT) transfer function models, which take into account 
dead times that might appear in the model, due to measurement delay or due to the 
approximation of higher order dynamics of the process, by a simple transfer function 
model.  
Research on tuning methods of two or three-term controllers for unstable dead-time 
processes has been very active in the last 20 years. The most widely used feedback schemes 
for the control of such processes are the Proportional-Integral-Differential (PID) controller 
with set-point filter (Jung et al, 1999; Lee et al, 2000), the Pseudo-Derivative Feedback (PDF) 
or I-PD controller (Paraskevopoulos et al, 2004), and the Proportional plus Proportional–
Integral–Derivative (P-PID) controller (Jacob & Chidambaram, 1996; Park et al, 1998). These 
control schemes are identical in practice, provided that the parameters of the controllers and 
of the pre-filters needed in some cases are selected appropriately. Controller tuning for 
unstable dead-time processes has been performed according to several methods, the most 
popular of them being various modifications of the Ziegler-Nichols method (De Paor & O’ 
Malley, 1989; Venkatashankar & Chidambaram, 1994; Ho & Xu, 1998), several variations of 
the direct synthesis tuning method (Jung et al, 1999; Prashanti & Chidambaram, 2000; 
Paraskevopoulos et al, 2004; Padma Sree & Chidambaram, 2004), the ultimate cycle method 
(Poulin & Pomerleau, 1997), the pole placement method (Clement & Chidambaram, 1997), 
the method based on the minimization of various integral criteria, the Internal Model 
Control (IMC) tuning method (Rotstein & Lewin, 1991; Lee et al, 2000; Yang et al, 2002; Tan 
et al, 2003), the optimization method (Jhunjhunwala & Chidambaram, 2001; Visioli, 2001), 
the two degrees of freedom method (Huang & Chen, 1997; Liu et al, 2005; Shamsuzzoha et 
al, 2007), etc. (see the work (O’Dwyer, 2009), and the references cited therein). Moreover, 
due to the wide practical acceptance of the gain and phase margins (GPM) in characterizing 
system robustness, some tuning methods for unstable dead-time models, based on the 
satisfaction of GPM specifications, have also been reported (Ho & Xu, 1998; Fung et al, 1998; 
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Wang & Cai, 2002; Lee & Teng, 2002; Paraskevopoulos et al, 2006). The vast majority of the 
tuning methods mentioned above refer to the design of controllers for UFOPDT models and 
less attention has been devoted to USOPDT models (Lee et al, 2000; Rao & Chidambaram, 
2006). Usually these models are further simplified to second order ones without delay, or to 
UFOPDT models, in order to design controllers for this type of processes. However, this 
simplification is not possible when the time delay of the system and/or the stable dynamics 
(stable time constant) are significant.  
The aim of this work is to present a variety of innovative tuning rules for designing PID-
like controllers for USOPDT processes. These tuning rules are obtained by imposing 
various specifications on the closed-loop system, such as the appropriate assignment of its 
dominant poles, the satisfaction of several time response criteria (like the fastest settling 
time and the minimization of the integral of squared error), as well as the simultaneous 
satisfaction of stability margins specifications. In particular, the development of the 
proposed tuning methods relying on the assignment of dominant poles as well as on time 
response criteria is performed on the basis of the fact that (under appropriate selection of 
the derivative term), the delayed open loop response of a 3rd order system, with poles 
equal to the three dominant poles of the closed loop system, is identical to the closed loop 
step response of an USOPDT system. Simple numerical algorithms are, then, used to 
obtain the solution of the tuning problem. To reduce the computational effort and to 
obtain the controller settings in terms of the process parameters (a fact that permits on-
line tuning), the obtained solution is further approximated by analytical functions of these 
parameters. Moreover, in the case of the method that relies on the satisfaction of stability 
margin specifications, the controller parameters are obtained using iterative algorithms, 
whose solutions, in a particular case, are further approximated quite accurately by 
analytic functions of the process parameters. The obtained approximate solutions have 
been obtained using appropriate curve-fitting optimization techniques. Furthermore, the 
admissible values of the stability robustness specifications for a particular process are also 
given in analytic forms. Finally, the tuning rules proposed in this work, are applied to the 
control of an experimental magnetic levitation system that exhibits highly nonlinear 
unstable behaviour. The experimental results obtained clearly illustrate the practical 
efficiency of the proposed tuning methods. 

2. PID-like controller structures for USOPDT processes 
The three main feedback configurations applied in the extant literature in order to control 
unstable processes with time delay are depicted in Fig. 1 (see Jacob & Chidambaram, 1996; 
Park et al, 1998, Paraskevopoulos et al, 2004). As it can easily verified, the loop transfer 
functions obtained by these control schemes are identical, provided that the following 
relations hold 

,( ) / (1 )C C I D I c c i PK K k k K         

 (1 ) / /I I D i c c P Ik k K K          (1) 
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where CK , I   and D   are the three controller parameters of the conventional PID 
controller in its parallel form. In the case of the series PID controller, the pre-filter GF,PID is 
used in order to cancel out all or some of the zeros introduced by the controller and to 
smoothen the set-point step response of the closed loop system. The pre-filters GF,P-PID and 
GF,PDF are the equivalent pre-filters of the corresponding control schemes. Note that, the 
pre-filter GF,PDF can be used only when the reference input is a known and differentiable 
signal. Therefore, is seldom used in real practice. From Fig. 1, one can easily recognize 
that in the case of regulatory control the three control schemes are identical when the 
controller parameters are chosen as suggested by (1), even if there are no pre-filters used. 
Moreover, one can also see that the stability properties of the closed loop system are not 
affected, in any case, by the respective pre-filter used, which is applied here, only to filter 
the set point and to prevent excessive overshoot in closed-loop responses to set-point 
changes, which are common in the case of unstable time-delay systems (Jacob & 
Chidambaram, 1996). Thus, the loop transfer functions obtained for the above three 
alternative control schemes are identical.  
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Wang & Cai, 2002; Lee & Teng, 2002; Paraskevopoulos et al, 2006). The vast majority of the 
tuning methods mentioned above refer to the design of controllers for UFOPDT models and 
less attention has been devoted to USOPDT models (Lee et al, 2000; Rao & Chidambaram, 
2006). Usually these models are further simplified to second order ones without delay, or to 
UFOPDT models, in order to design controllers for this type of processes. However, this 
simplification is not possible when the time delay of the system and/or the stable dynamics 
(stable time constant) are significant.  
The aim of this work is to present a variety of innovative tuning rules for designing PID-
like controllers for USOPDT processes. These tuning rules are obtained by imposing 
various specifications on the closed-loop system, such as the appropriate assignment of its 
dominant poles, the satisfaction of several time response criteria (like the fastest settling 
time and the minimization of the integral of squared error), as well as the simultaneous 
satisfaction of stability margins specifications. In particular, the development of the 
proposed tuning methods relying on the assignment of dominant poles as well as on time 
response criteria is performed on the basis of the fact that (under appropriate selection of 
the derivative term), the delayed open loop response of a 3rd order system, with poles 
equal to the three dominant poles of the closed loop system, is identical to the closed loop 
step response of an USOPDT system. Simple numerical algorithms are, then, used to 
obtain the solution of the tuning problem. To reduce the computational effort and to 
obtain the controller settings in terms of the process parameters (a fact that permits on-
line tuning), the obtained solution is further approximated by analytical functions of these 
parameters. Moreover, in the case of the method that relies on the satisfaction of stability 
margin specifications, the controller parameters are obtained using iterative algorithms, 
whose solutions, in a particular case, are further approximated quite accurately by 
analytic functions of the process parameters. The obtained approximate solutions have 
been obtained using appropriate curve-fitting optimization techniques. Furthermore, the 
admissible values of the stability robustness specifications for a particular process are also 
given in analytic forms. Finally, the tuning rules proposed in this work, are applied to the 
control of an experimental magnetic levitation system that exhibits highly nonlinear 
unstable behaviour. The experimental results obtained clearly illustrate the practical 
efficiency of the proposed tuning methods. 

2. PID-like controller structures for USOPDT processes 
The three main feedback configurations applied in the extant literature in order to control 
unstable processes with time delay are depicted in Fig. 1 (see Jacob & Chidambaram, 1996; 
Park et al, 1998, Paraskevopoulos et al, 2004). As it can easily verified, the loop transfer 
functions obtained by these control schemes are identical, provided that the following 
relations hold 

,( ) / (1 )C C I D I c c i PK K k k K         

 (1 ) / /I I D i c c P Ik k K K          (1) 
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affected, in any case, by the respective pre-filter used, which is applied here, only to filter 
the set point and to prevent excessive overshoot in closed-loop responses to set-point 
changes, which are common in the case of unstable time-delay systems (Jacob & 
Chidambaram, 1996). Thus, the loop transfer functions obtained for the above three 
alternative control schemes are identical.  
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Parameters 
Normalized 
Parameters 

Original 
Parameters 

Normalized 
Parameters 

U  τU=1 ω Uw   

S  /S S U    s ˆ Us s  

d  / Ud d   K  Κ=1 

  /I U    CK  C CK KK  

D  /D D U    

Table 1. Normalized vs. original system parameters. 

In the sequel, our focus of interest is the design of PID-like controllers when applied to 
control USOPDT process, with the following transfer function model 
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where K , d , S  and U  are the process gain, the time delay and the stable and unstable 
time constants, respectively. In order to simplify the analysis and in order to facilitate 
comparisons, all system and controller parameters are normalized with respect to U  and 

K . Thus, the original process and controller parameters are replaced with the dimensionless 
parameters shown in Table 1.  
Observe now that, the loop transfer function of an USOPDT system in connection with a 
PID-like controller, is given by 
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while, using the pre-filter GF, PID(ŝ)=(τΙŝ+1)-1, the closed-loop transfer function becomes  
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Relations (2) and (5) are next elaborated for the derivation of the tuning methods proposed 
in this work. 

3. Frequency domain analysis of closed-loop USOPDT processes 
The argument and the magnitude of the loop transfer function (4) are given by 

 φL(w)= -3π/2 – dw - atan(w) - atan(τSw) + atan(τIw) + atan(τDw) (6) 
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It is not difficult to recognize that the Nyquist plot of the GL(ŝ) has tow crossover points with 
the real axis, which determine the critical (or crossover) frequencies wmin and wmax, and the 
critical gains KC,min=1/AL(wmin) and KC,max=1/AL(wmax). These crossover frequencies are 
obtained as the solutions of the equation φL(wC)=-π, or equivalently, of the equation  

 -π/2-dwC+atan(wC)+atan(τΙwC)+atan(τDwC)-atan(τSwC)=0 (8) 

when the values of the atan function are assigned in the range (-π/2, π/2). Having computed 
wmin and wmax, one can determine the acceptable values for the controller gain KC, for which 
the closed-loop system is stable. In particular KC,min<KC<KC,max, where, with subscript “M” 
used for either “min” or “max” 
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We next define the increasing gain margin GMinc, the decreasing gain margin GMdec and the 
gain margin product of the closed-loop system as follows 

 GMinc=KC,max/KC  ,  GMdec=KC/KC,min (10) 

 GMprod= GMincGMdec=KC,max/KC,min (11) 

Obviously for the closed loop system to be stable GMinc and GMdec should be grater than one. 
Note that, the largest the values of GMprod, the more robust the system becomes with respect 
to the gain uncertainty, if the controller gain KC is appropriately selected. Furthermore, the 
phase margin of the closed loop system is defined by PM=φL(wG)+π, where wG is the 
frequency at which AL(wG)=1. From (7), one can easily conclude that wG is given by the 
maximum real root of the equation 
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In order to obtain the maximum phase margin for given d, τS, τI and τD, the controller gain 
KC should be selected as 

 
 

   

22

2 2

1 1

1 1

I p p S p
C

I p D p

w w w
K

w w

 

 

 


 
 (13) 

where wp is the frequency at which the argument of the loop transfer function is maximized. 
From (6), one can easily conclude that wp is given by the solution of dφL/dωw=wp =0, or 
equivalently of the equation 
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 (14) 

that results in a fourth order linear equation with respect to wp2, with only one acceptable 
positive real root. Substituting wp in (6), the respective maximum argument φL(wp) is 
calculated. 
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It is not difficult to recognize that the Nyquist plot of the GL(ŝ) has tow crossover points with 
the real axis, which determine the critical (or crossover) frequencies wmin and wmax, and the 
critical gains KC,min=1/AL(wmin) and KC,max=1/AL(wmax). These crossover frequencies are 
obtained as the solutions of the equation φL(wC)=-π, or equivalently, of the equation  
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We next define the increasing gain margin GMinc, the decreasing gain margin GMdec and the 
gain margin product of the closed-loop system as follows 

 GMinc=KC,max/KC  ,  GMdec=KC/KC,min (10) 
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Obviously for the closed loop system to be stable GMinc and GMdec should be grater than one. 
Note that, the largest the values of GMprod, the more robust the system becomes with respect 
to the gain uncertainty, if the controller gain KC is appropriately selected. Furthermore, the 
phase margin of the closed loop system is defined by PM=φL(wG)+π, where wG is the 
frequency at which AL(wG)=1. From (7), one can easily conclude that wG is given by the 
maximum real root of the equation 

    2 2 6 2 2 2 2 2 2 4 2 2 2 2 2 2 0S G S C D G C D G CK K K                            (12) 

In order to obtain the maximum phase margin for given d, τS, τI and τD, the controller gain 
KC should be selected as 

 
 

   

22

2 2

1 1

1 1

I p p S p
C

I p D p

w w w
K

w w

 

 

 


 
 (13) 

where wp is the frequency at which the argument of the loop transfer function is maximized. 
From (6), one can easily conclude that wp is given by the solution of dφL/dωw=wp =0, or 
equivalently of the equation 
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that results in a fourth order linear equation with respect to wp2, with only one acceptable 
positive real root. Substituting wp in (6), the respective maximum argument φL(wp) is 
calculated. 
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When the maximum phase margin is zero, then the closed-loop system (with the 
appropriate selection of KC) is marginally stable. The solution of max(PM(d,τI,τD,τS))=0, yields 
the acceptable values of the controller parameters τI and τD, which render the close-loop 
system stable. Obviously these values depend on the rest of the system parameters. From (8) 
and for τI→∞, one can easily verify that wmin=0 and φL(0)=-π. If, at wmin=0, the derivative of 
φL is positive, then, it is obvious that the system has a maximum phase margin grater than 
zero and can be stabilized with the appropriate KC. With this observation, using (14), one 
can easily verify that, for τD>τD,min≡1-d-τS, the closed-loop system can be stabilized. Note 
here that, when τS≤1, τD,min is also the smallest τD that renders the closed-loop system stable, 
while when τS>1, the system can be stabilized with smaller values of τD. Moreover, although 
the function φL(τD) is strictly increasing, the function GMprod(τD) is not strictly monotonous. 
In fact, there exists a very large value of τD for which GMprod(τD)=1 and the system is no 
longer stabilizable. In the case where τI→∞, then KC,min=1. Solving the equation KC,min(τD)=1, 
one can determine the maximum value of τD, say τD,max, for which the system can be 
stabilized. Unfortunately, the solution of KC,min(τD)=1 involves nonlinear equations that can 
only be solved using iterative algorithms. A simple and quite accurate approximate solution 
for τD,max has been obtained through fitting, using the optimization toolbox of MATLAB® 
and is given by 

  ,maxˆ 0.85 0.46 1.5 /D S d      (15) 

The maximum normalized error of this approximation is 6%, when 0.1<τD<10 and 
0.01<d<0.9. In general, it is plausible to obtain a stable closed-loop system by selecting 
τD,min<τD<τD,max. In real practice, when τD is close to τD,min or τD,max, the stability region of the 
closed-loop system is very small. After extensive search, it has been found that a more 
suitable range for the selection of τD is the following 

 τSτDτS+d/2 (16) 

When τD is selected in the range defined by (16), very large PMmax and GMprod can be 
obtained. Moreover, with this selection the functions max(PM(τΙ)) and GMprod(τΙ) are strictly 
increasing with respect to τΙ. This is a very useful property for the design of PID-like 
controllers for USOPDT processes. It is worth noticing, at this point, that in order to tune 
PID-like controllers for USOPDT processes one can distinguish three cases depending on the 
values of d and τS. In the case where τS<0.1 the PID-type controllers can be tuned using 
tuning rules for UFOPDT systems, assuming that the new normalized dead time is equal to 
d+τS. On the other hand, if τS>10, then it is possible to tune the PID-type controller assuming 
that the system is a second order one with no time delay. In this particular case, the inverse 
of the eigen-frequency of the closed loop system (without delay) must be at least five times 
larger than the time delay of the USOPDT system. Finally, in the case where 0.1<τS<10, the 
above approximate solutions do not provide accurate results, and it is recommended to use 
the more accurate tuning rules presented in the following Sections.  

4. Controller tuning by assigning the closed-loop system dominant poles 
A first method of tuning PID-like controllers for USOPDT processes is based on the appro-
priate placement of the dominants poles of the closed-loop system. This method is designa-
ted here as the DPC method, since it relies on the satisfaction of dominant poles criteria. In 
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order to systematically present the DPC method, we start by selecting the derivative time 
constant τD equal to the lowest value in the range defined by (16). That is, τD= τS. With this 
selection, relations (4) and (5) take the forms 
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Clearly, in this case, the closed-loop transfer function has no zeroes. Note also that, if 
initially τS>>1, then, the controller parameter τD takes very large values, a fact that is not 
desirable, for reasons of noise amplification. Unfortunately, as suggested by (16), in this 
case, large values of τD are inevitable and an appropriate filtered derivative should be 
considered.  
Let us now select the controller gain KC as the geometric middle point of the two ultimate 
gains, KC,min and KC,max, of the closed loop system, that is 

 ,min ,maxC C CK K K  (19) 

Note that this selection of KC provides the same robustness against both increasing and 
decreasing parametric uncertainty of the system gain. This is particularly useful for systems 
with large values of d (i.e. d>0.3) where the region of stability is reduced significantly 
(Paraskevopoulos et al, 2006).  
On the basis of (17), the two ultimate gains are, in this case, given by 
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In (20), wmin and wmax are the two critical frequencies given by the two solutions of the 
equation (8), when τD=τS and when the values of the atan function are assigned in the range 
(-π/2,π/2). For given d, the solution of (8), for τD=τS, exists only if τI is larger than a critical 
value τI,min(d) (Paraskevopoulos et al, 2006). Since there are no analytical solutions for (8), 
two very accurate approximations for wmin and wmax that are obtained by using optimization 
techniques are proposed here. These approximations are 
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When the maximum phase margin is zero, then the closed-loop system (with the 
appropriate selection of KC) is marginally stable. The solution of max(PM(d,τI,τD,τS))=0, yields 
the acceptable values of the controller parameters τI and τD, which render the close-loop 
system stable. Obviously these values depend on the rest of the system parameters. From (8) 
and for τI→∞, one can easily verify that wmin=0 and φL(0)=-π. If, at wmin=0, the derivative of 
φL is positive, then, it is obvious that the system has a maximum phase margin grater than 
zero and can be stabilized with the appropriate KC. With this observation, using (14), one 
can easily verify that, for τD>τD,min≡1-d-τS, the closed-loop system can be stabilized. Note 
here that, when τS≤1, τD,min is also the smallest τD that renders the closed-loop system stable, 
while when τS>1, the system can be stabilized with smaller values of τD. Moreover, although 
the function φL(τD) is strictly increasing, the function GMprod(τD) is not strictly monotonous. 
In fact, there exists a very large value of τD for which GMprod(τD)=1 and the system is no 
longer stabilizable. In the case where τI→∞, then KC,min=1. Solving the equation KC,min(τD)=1, 
one can determine the maximum value of τD, say τD,max, for which the system can be 
stabilized. Unfortunately, the solution of KC,min(τD)=1 involves nonlinear equations that can 
only be solved using iterative algorithms. A simple and quite accurate approximate solution 
for τD,max has been obtained through fitting, using the optimization toolbox of MATLAB® 
and is given by 

  ,maxˆ 0.85 0.46 1.5 /D S d      (15) 

The maximum normalized error of this approximation is 6%, when 0.1<τD<10 and 
0.01<d<0.9. In general, it is plausible to obtain a stable closed-loop system by selecting 
τD,min<τD<τD,max. In real practice, when τD is close to τD,min or τD,max, the stability region of the 
closed-loop system is very small. After extensive search, it has been found that a more 
suitable range for the selection of τD is the following 

 τSτDτS+d/2 (16) 

When τD is selected in the range defined by (16), very large PMmax and GMprod can be 
obtained. Moreover, with this selection the functions max(PM(τΙ)) and GMprod(τΙ) are strictly 
increasing with respect to τΙ. This is a very useful property for the design of PID-like 
controllers for USOPDT processes. It is worth noticing, at this point, that in order to tune 
PID-like controllers for USOPDT processes one can distinguish three cases depending on the 
values of d and τS. In the case where τS<0.1 the PID-type controllers can be tuned using 
tuning rules for UFOPDT systems, assuming that the new normalized dead time is equal to 
d+τS. On the other hand, if τS>10, then it is possible to tune the PID-type controller assuming 
that the system is a second order one with no time delay. In this particular case, the inverse 
of the eigen-frequency of the closed loop system (without delay) must be at least five times 
larger than the time delay of the USOPDT system. Finally, in the case where 0.1<τS<10, the 
above approximate solutions do not provide accurate results, and it is recommended to use 
the more accurate tuning rules presented in the following Sections.  

4. Controller tuning by assigning the closed-loop system dominant poles 
A first method of tuning PID-like controllers for USOPDT processes is based on the appro-
priate placement of the dominants poles of the closed-loop system. This method is designa-
ted here as the DPC method, since it relies on the satisfaction of dominant poles criteria. In 
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order to systematically present the DPC method, we start by selecting the derivative time 
constant τD equal to the lowest value in the range defined by (16). That is, τD= τS. With this 
selection, relations (4) and (5) take the forms 
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Clearly, in this case, the closed-loop transfer function has no zeroes. Note also that, if 
initially τS>>1, then, the controller parameter τD takes very large values, a fact that is not 
desirable, for reasons of noise amplification. Unfortunately, as suggested by (16), in this 
case, large values of τD are inevitable and an appropriate filtered derivative should be 
considered.  
Let us now select the controller gain KC as the geometric middle point of the two ultimate 
gains, KC,min and KC,max, of the closed loop system, that is 

 ,min ,maxC C CK K K  (19) 

Note that this selection of KC provides the same robustness against both increasing and 
decreasing parametric uncertainty of the system gain. This is particularly useful for systems 
with large values of d (i.e. d>0.3) where the region of stability is reduced significantly 
(Paraskevopoulos et al, 2006).  
On the basis of (17), the two ultimate gains are, in this case, given by 
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In (20), wmin and wmax are the two critical frequencies given by the two solutions of the 
equation (8), when τD=τS and when the values of the atan function are assigned in the range 
(-π/2,π/2). For given d, the solution of (8), for τD=τS, exists only if τI is larger than a critical 
value τI,min(d) (Paraskevopoulos et al, 2006). Since there are no analytical solutions for (8), 
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     max

24
,minˆ( , ) 1 0.22 1 0.1 0.3 /wf d d d          

 (22) 

where ,minˆI is an approximation of τI,min, given by 

   2
,minˆ ( ) 0.0029-0.0682 d 1.4941d /(1.003-d)d    (23) 

The normalized errors of the ultimate gains, defined by ,min ,min ,min ,min
ˆ( ) /C C C CK K K K   

and ,max ,max ,max ,max
ˆ( ) /C C C CK K K K  , where ,max

ˆ
CK  and ,min

ˆ
CK  are the approximations 

of KC,max and KC,min, respectively, obtained using (21), never exceed 2.2% for d≤0.9 and τI> 
1.2 ,minˆI . Moreover the normalized error relative to ,minˆI  never exceeds 1.4% for d≤0.9. 
Since, here τD=τS, and KC is obtained according to relations (19)-(23) as a function of τΙ, in 
order to tune a PID-like controller it only remains to specify τΙ. In the present Section, we 
propose to select the controller parameter τI, in order to maximize the real part of the 
slowest dominant pole (i.e. the pole with the smallest real part). This way the resulting 
closed loop system will have a very fast settling time and, at the same time, a very smooth 
(non-oscillatory) response.  
In order to obtain a pole-zero description of (18), the exponential term in (18) is 
approximated by the relation 

  ˆ ˆexp( ) lim ( / ) 1 n

n
ds d n s 


    (24) 

From (24), it can be easily recognized that the exponential term exp(-dŝ) is equivalent to an 
infinite number of poles at ŝ=–n/d+j0. A typical example of the root locus of (18) is shown in 
Fig. 2 (for d=0.5, n=25, KC given by (19) and 1.1τI,min<τI<10τI,min). From this figure, it becomes 
clear that, there exist three dominant poles that are responsible for the shape of the closed-
loop system response. The rest of the poles contribute only to the delay of the response. 
Extensive simulation analysis (for 0<d<0.9, τI>τI,min and KC,min<KC<KC,max) shows that the step 
response of an USOPDT system controlled by a PID-like controller (when τD= τS) cannot be 
easily distinguished from that of a 3rd order system with the same dominant poles and the 
same initial delay, when n>20 in (24). This fact is illustrated in Fig. 3. 
 

Range of d Estimated τΙ(d) M.N.E. 
0<d<0.17 23.06 4.19 12.66d d d   1.5% 

0.17<d<0.9    12 53.47 -2.9 8.37 18.28 0.95   d d d d d  2% 

Table 2. Approximate expressions of τΙ(d) for the DPC method.  

In order to solve the tuning problem presented above, MATLAB® control toolbox was used 
to estimate the poles of a 27th order closed loop system (n=25 in (24)). Moreover, a simple 
algorithm based on the dissection method was used to find the value of τI that maximizes 
the real part of the slowest dominant pole. Since this procedure cannot be applied on-line 
due to its computational burden, the function τI(d) obtained by the DPC method has been 
approximated by analytical functions ˆ ( )d . The parameters involved in these functions 
have been estimated using the optimization toolbox of MATLAB®, in order to minimize the 
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maximum normalized error (M.N.E.), defined by ˆ( ) /        . These approximate 
expressions are given in Table 2, together with their maximum normalized error. The 
response obtained by the DPC method can be distinguished as follows: For d<0.157 the 
method gives three real dominant poles (the two slowest are identical) and the response 
approximates that of a critical second-order system response. For d>0.157 the method gives 
two complex and one real poles all with the same real part (see also Fig. 4). 
 

  
Fig. 2. A typical root locus of (18) for d=0.5, n=25, 1.1τI,min<τI<10τI,min and KC given by (19). 
 

 
Fig. 3. A typical closed loop set-point step response of the USOPDT process and the 
response of the 3rd order system. 
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where ,minˆI is an approximation of τI,min, given by 
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of KC,max and KC,min, respectively, obtained using (21), never exceed 2.2% for d≤0.9 and τI> 
1.2 ,minˆI . Moreover the normalized error relative to ,minˆI  never exceeds 1.4% for d≤0.9. 
Since, here τD=τS, and KC is obtained according to relations (19)-(23) as a function of τΙ, in 
order to tune a PID-like controller it only remains to specify τΙ. In the present Section, we 
propose to select the controller parameter τI, in order to maximize the real part of the 
slowest dominant pole (i.e. the pole with the smallest real part). This way the resulting 
closed loop system will have a very fast settling time and, at the same time, a very smooth 
(non-oscillatory) response.  
In order to obtain a pole-zero description of (18), the exponential term in (18) is 
approximated by the relation 
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From (24), it can be easily recognized that the exponential term exp(-dŝ) is equivalent to an 
infinite number of poles at ŝ=–n/d+j0. A typical example of the root locus of (18) is shown in 
Fig. 2 (for d=0.5, n=25, KC given by (19) and 1.1τI,min<τI<10τI,min). From this figure, it becomes 
clear that, there exist three dominant poles that are responsible for the shape of the closed-
loop system response. The rest of the poles contribute only to the delay of the response. 
Extensive simulation analysis (for 0<d<0.9, τI>τI,min and KC,min<KC<KC,max) shows that the step 
response of an USOPDT system controlled by a PID-like controller (when τD= τS) cannot be 
easily distinguished from that of a 3rd order system with the same dominant poles and the 
same initial delay, when n>20 in (24). This fact is illustrated in Fig. 3. 
 

Range of d Estimated τΙ(d) M.N.E. 
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Table 2. Approximate expressions of τΙ(d) for the DPC method.  

In order to solve the tuning problem presented above, MATLAB® control toolbox was used 
to estimate the poles of a 27th order closed loop system (n=25 in (24)). Moreover, a simple 
algorithm based on the dissection method was used to find the value of τI that maximizes 
the real part of the slowest dominant pole. Since this procedure cannot be applied on-line 
due to its computational burden, the function τI(d) obtained by the DPC method has been 
approximated by analytical functions ˆ ( )d . The parameters involved in these functions 
have been estimated using the optimization toolbox of MATLAB®, in order to minimize the 
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maximum normalized error (M.N.E.), defined by ˆ( ) /        . These approximate 
expressions are given in Table 2, together with their maximum normalized error. The 
response obtained by the DPC method can be distinguished as follows: For d<0.157 the 
method gives three real dominant poles (the two slowest are identical) and the response 
approximates that of a critical second-order system response. For d>0.157 the method gives 
two complex and one real poles all with the same real part (see also Fig. 4). 
 

  
Fig. 2. A typical root locus of (18) for d=0.5, n=25, 1.1τI,min<τI<10τI,min and KC given by (19). 
 

 
Fig. 3. A typical closed loop set-point step response of the USOPDT process and the 
response of the 3rd order system. 
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5. Controller tuning based on closed-loop time-response criteria 
In this Section, we consider again that τD=τS as well as that KC is obtained through (19)-(23), 
and we present three alternative methods for the selection of the parameter τI. These 
methods are based on some very useful closed-loop set-point step response criteria. 
A first, widely used, criterion for tuning PID-like controllers is the fastest settling time (FST) 
method. In the case of an oscillatory response, the settling time is usually estimated from the 
envelope of the response. Since for systems with time delay the closed-loop response is not 
known in analytical form, to estimate here the envelope of the response, we use the response 
of a third-order system having the dominant poles of the closed-loop USOPDT system. In 
particular, the response of a third order system, with two complex poles (pI,1=a+jb and pI,2=a-
jb) and one real pole (pR), is given by 

  0( ) 1 cos( ) sin( ) Rp tw t
n ny t e A w t B w t Ce        (25) 

where 2 2
0w a b  , ζ=a/w0, 2

0 1nw w   , A=pR(-pR+2ζw0)/D, B=pRw0(-ζpR+2ζ2w0-

w0)/(Dwn), 2
0w /DC    and 2 2

R R 0 0-p +2p ζw -wD  . The two envelopes (top and bottom) of 
(25) are given by 

  0 2 2
1,2( ) 1 Rp tw t

gy t e A B Ce       
 (26) 

Therefore, for the application of the FST method, a simple algorithm based on the dissection 
method, is used to estimate the value of parameter τI that minimizes the time tstl required for 
obtaining 11 ( ) 0.01g stly t  . 

A second criterion, on the basis of which the tuning of the PID-like controller is performed, 
stems from the need to provide the fastest possible set-point step response of the closed loop 
system with a maximum overshoot of 1% (OPOS method). Also in this case a search 
algorithm is used to estimate the smallest value of the parameter τI (and hence the fastest 
response) for which the maximum of y(t), given by (25), is smaller than 1.01 for all t>0. 
Finally, the third method is based on the minimization of the integral of squared errors due 
to a unit step change in the set point (ISE-Sp method). The first part of the response, for t<d, 
can not be affected by the controller. Hence, for the optimization problem of minimizing the 
integral of squared errors, one can use the response obtained by (25). The integral of (1-y(t))2 
can then be calculated analytically, and it is given by 
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 (27) 

Then, using (27) in combination with a simple search algorithm, the parameter τI that 
minimizes the value of ISESp can be estimated. 
All three methods presented above cannot be applied on-line because of the excessive 
computational burden required to calculate the values of the three dominant poles. For this 
reason, the parameter τI obtained by the application of these methods, is next calculated for 
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all values of d<0.9 and the function τI(d) is approximated using the optimization toolbox of 
MATLAB®. The resulting approximations ˆ ( )d are given in Table 3. The M.N.E. in the 
estimation of the function τI(d) is less than 2.8%, for all these approximations. This error in τI 
does not produce a significant change in the response of the closed loop system.  
 

Method Range of d Estimated τΙ(d) M.N.E. 

FST 
0<d<0.17 0.017 0.42 8.08d d   1.5% 

0.17<d<0.9 
2 53.26 -1.96 5.55 15.47

0.96
 


d d d d

d
 2% 

OPOS 0<d<0.9 
2 52.29 +0.69 2.29 15.07

0.96
 


d d d d

d
 2.8% 

ISE-Sp 0<d<0.9 
2 50.1 +2.47 2.78 5.59

0.95
 


d d d d

d
 2.7% 

Table 3. Estimates of τΙ(d) for the tuning methods based on closed-loop time-domain criteria. 

 
Method d=0.1 d=0.5 d=0.9 
DPC -12.61, -2.502±j0.175 -0.425, -0.412±j1.312 -0.0377, -0.0377±j0.412 
FST -12.949, -2.326±j1.641 -0.516, -0.368±j1.302 -0.0550, -0.0291±j0.411 
OPOS -12.964, -2.318±j1.675 -0.556, -0.349±j1.299 -0.0609, -0.0262±j0.410 
ISE-Sp -14.765, -1.378±j4.231 -0.785, -0.237±j1.298 -0.0883, -0.0129±j0.409 

Table 4. Locations of dominant poles for some typical examples. 

 

 
Fig. 4. Characteristic set-point step responses obtained by the proposed tuning methods. 
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5. Controller tuning based on closed-loop time-response criteria 
In this Section, we consider again that τD=τS as well as that KC is obtained through (19)-(23), 
and we present three alternative methods for the selection of the parameter τI. These 
methods are based on some very useful closed-loop set-point step response criteria. 
A first, widely used, criterion for tuning PID-like controllers is the fastest settling time (FST) 
method. In the case of an oscillatory response, the settling time is usually estimated from the 
envelope of the response. Since for systems with time delay the closed-loop response is not 
known in analytical form, to estimate here the envelope of the response, we use the response 
of a third-order system having the dominant poles of the closed-loop USOPDT system. In 
particular, the response of a third order system, with two complex poles (pI,1=a+jb and pI,2=a-
jb) and one real pole (pR), is given by 

  0( ) 1 cos( ) sin( ) Rp tw t
n ny t e A w t B w t Ce        (25) 

where 2 2
0w a b  , ζ=a/w0, 2

0 1nw w   , A=pR(-pR+2ζw0)/D, B=pRw0(-ζpR+2ζ2w0-

w0)/(Dwn), 2
0w /DC    and 2 2

R R 0 0-p +2p ζw -wD  . The two envelopes (top and bottom) of 
(25) are given by 

  0 2 2
1,2( ) 1 Rp tw t

gy t e A B Ce       
 (26) 

Therefore, for the application of the FST method, a simple algorithm based on the dissection 
method, is used to estimate the value of parameter τI that minimizes the time tstl required for 
obtaining 11 ( ) 0.01g stly t  . 

A second criterion, on the basis of which the tuning of the PID-like controller is performed, 
stems from the need to provide the fastest possible set-point step response of the closed loop 
system with a maximum overshoot of 1% (OPOS method). Also in this case a search 
algorithm is used to estimate the smallest value of the parameter τI (and hence the fastest 
response) for which the maximum of y(t), given by (25), is smaller than 1.01 for all t>0. 
Finally, the third method is based on the minimization of the integral of squared errors due 
to a unit step change in the set point (ISE-Sp method). The first part of the response, for t<d, 
can not be affected by the controller. Hence, for the optimization problem of minimizing the 
integral of squared errors, one can use the response obtained by (25). The integral of (1-y(t))2 
can then be calculated analytically, and it is given by 

 
 

 

2
2 0

2 20
0 0

12 2 2 2 2
0

( )1 ( ) 2
2 2

(1 ) (1 ) 2 1 4

R n
Sp

R R R

w p BwCISE y t dt C
p p w w p

A w

 


     





 
   

 

        


 (27) 

Then, using (27) in combination with a simple search algorithm, the parameter τI that 
minimizes the value of ISESp can be estimated. 
All three methods presented above cannot be applied on-line because of the excessive 
computational burden required to calculate the values of the three dominant poles. For this 
reason, the parameter τI obtained by the application of these methods, is next calculated for 
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all values of d<0.9 and the function τI(d) is approximated using the optimization toolbox of 
MATLAB®. The resulting approximations ˆ ( )d are given in Table 3. The M.N.E. in the 
estimation of the function τI(d) is less than 2.8%, for all these approximations. This error in τI 
does not produce a significant change in the response of the closed loop system.  
 

Method Range of d Estimated τΙ(d) M.N.E. 

FST 
0<d<0.17 0.017 0.42 8.08d d   1.5% 

0.17<d<0.9 
2 53.26 -1.96 5.55 15.47

0.96
 


d d d d

d
 2% 

OPOS 0<d<0.9 
2 52.29 +0.69 2.29 15.07

0.96
 


d d d d

d
 2.8% 

ISE-Sp 0<d<0.9 
2 50.1 +2.47 2.78 5.59

0.95
 


d d d d

d
 2.7% 

Table 3. Estimates of τΙ(d) for the tuning methods based on closed-loop time-domain criteria. 

 
Method d=0.1 d=0.5 d=0.9 
DPC -12.61, -2.502±j0.175 -0.425, -0.412±j1.312 -0.0377, -0.0377±j0.412 
FST -12.949, -2.326±j1.641 -0.516, -0.368±j1.302 -0.0550, -0.0291±j0.411 
OPOS -12.964, -2.318±j1.675 -0.556, -0.349±j1.299 -0.0609, -0.0262±j0.410 
ISE-Sp -14.765, -1.378±j4.231 -0.785, -0.237±j1.298 -0.0883, -0.0129±j0.409 

Table 4. Locations of dominant poles for some typical examples. 

 

 
Fig. 4. Characteristic set-point step responses obtained by the proposed tuning methods. 

For example, when ˆ ( )d  is used instead of τI, to apply the FST method, the maximum 
normalized error in the settling time is less than 0.5%. 
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In Table 4, the locations of the three dominant poles of the closed loop system are given in 
the case where the normalized dead time takes the values 0.1, 0.5 and 0.9, for all methods 
presented above. The corresponding closed loop responses obtained from a unit change in 
the set-point are illustrated in Fig. 4. From these responses and the locations of the dominant 
poles reported in Table 4, one can easily recognize that the FST and the OPOS methods 
provide us controllers with similar performance. Moreover, the response obtained when the 
ISE_Sp method is used is the fastest, although very oscillatory. Finally, in the case where the 
DPC method is used, the response obtained is sluggish and smooth. Moreover, since this 
method yields a large value of τI, it provides a very robust controller. 
Table 5 presents a stability robustness comparison with other existing PID tuning methods. 
In particular, the tuning methods presented in Sections 4 and 5 are compared with the R&L 
method with λ=2.2 (Rotstein & Lewin, 1991), the P&M method (De Paor and O’Malley, 
1989), the H&X method with specifications Am=1.3 and φm=10o (Ho & Xu, 1998), the P&P 
method based on the ITAE criterion (Poulin & Pomerleau, 1997) and the J&C method based 
on the IMC tuning rule with λ=2.5 (Jacob & Chidambaram, 1996), in the special case where 
d=0.5 and τS=1. Table 5 presents the increasing and decreasing gain margins GMinc and 
GMdec as well as the phase margin PM. Moreover, it presents the maximum simultaneous 
multiplicative uncertainty Aa of all system parameters (i.e. when the system parameters d, τS, 
K are increased by Aa and τU is decreased by Aa) and the maximum multiplicative 
uncertainty Ad of the time delay (i.e. when only d is increased by Ad), for which the closed 
loop system remains stable. The results presented in Table 5 show that the DPC method 
provides more robust controllers than most other methods (except the J&C method with 
λ=2.5, that gives a significantly slower response in both set point tracking and regulatory 
control). The aim of the other three methods, presented in this Section, is to provide faster 
responses and hence they provide lesser robustness. Finally, it is worth noticing that all the 
other methods used in robustness comparison are not applicable in cases where d>0.7. 
 

Method KC τI τD PM(rad) GMinc GMdec aa ad 

DPC 1.618 8.150 1 0.172 1.469 1.462 1.101 1.268 
FST 1.622 6.948 1 0.155 1.446 1.436 1.091 1.240 
OPOS 1.623 6.539 1 0.148 1.436 1.425 1.088 1.225 
ISE-SP 1.632 4.834 1 0.107 1.372 1.353 1.064 1.163 
R&L (λ=2.2) 2.116 10.24 0.902 0.087 1.173 1.860 1.043 1.103 
P&M 1.357 6.960 1 0.133 1.729 1.202 1.103 1.288 
H&X 1.518 6.543 1 0.148 1.536 1.332 1.095 1.255 
P&P 1.798 8.431 1 0.154 1.325 1.631 1.082 1.204 
J&C (λ=2.5) 1.573 9.495 1 0.188 1.528 1.443 1.113 1.307 

Table 5. Robustness performance comparison with other existing tuning methods.  

6. Controller tuning based on closed-loop stability margins specifications 
When a PID-like controller is used to control an USOPDT process, it is possible, in some 
cases, to simultaneously satisfy the design specifications GMdec, GMinc, and PM exactly. The 
PID-like controller sought can be found from the solution of the system of equations (8)-(14). 
Unfortunately, this system of equations is too complicated to be solved on-line and it is not 
always solvable. Furthermore, the solution might not be appropriate or useful, especially if 
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the derivative term is too large. For this reason, we propose here, to select a priori the 
derivative term τD of the controller, on the basis of the designer’s knowledge relative to the 
process. If there are no restrictions imposed by the process, then it is recommended to select 
τD as large as possible in the range proposed by (16). This way, the resulting closed-loop 
system has the fastest possible response, for both, the set-point tracking and the load 
attenuation case, a well as the smallest possible maximum error in the case of regulatory 
control. Having selected τD, as previously mentioned, three methods are then proposed, in 
order to tune the rest of the controller parameters. 

6.1 The Phase Margin (PM) tuning method 
In the case where, the only specification for the closed loop system is the desired phase 
margin PMdes, then it is recommended to tune the PID-like controller in such a way that this 
single specification is achieved at the maximum phase margin corresponding to the 
frequency wp, namely, when wG=wp. This way, the integral reset time τI is the smallest 
possible that satisfies the specification and, hence, the obtained controller provides the 
fastest possible response, for both set-point tracking and regulatory control. The main steps 
of this tuning method are the following: 

6.1.1 The PM algorithm 
Step 1. Given the system parameters d, τS, the controller derivative term τD and the phase 
margin specification PMdes, set initially τΙ=0. 
Step 2. With this value of τΙ, calculate wp as the maximum real root of (14). 
Step 3. Select the new value of τI from the solution of PMdes=φL(wp)+π, with respect to τI, 
which is given by 

 1 tan an( ) an( ) an( )
2

des
I p p S p p D pw PM dw at w at w at w          

 (28) 

Step 4. Repeat Steps 2 and 3 until convergence. 
Step 5. With known τI, calculate the corresponding frequency wp from (14) and the controller  
gain KC from (13). This completes the method. 
The above algorithm converges to the correct solution, if such a solution exists, i.e. if for 
given d, τS, τD there exists a value of τI for which PM(d,τS,τD,τI)=PMdes. 

6.2 The Gain Margin (GM) tuning method 
This method is applicable in the case where the specifications of the closed loop system are 
described in the form of increasing and decreasing gain margins (GMinc,des and GMdec,des). To 
present the method, two iterative algorithms for the calculation of the crossover frequencies 
wmin and wmax are first presented. 

6.2.1 The wmin algorithm 
Step 1. Start with an initial estimate for wmin. An appropriate value for fast convergence is 

  
min

1(1 )init
I Iw d      (29) 

Step 2. Calculate the error of this approximation using the relation 
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In Table 4, the locations of the three dominant poles of the closed loop system are given in 
the case where the normalized dead time takes the values 0.1, 0.5 and 0.9, for all methods 
presented above. The corresponding closed loop responses obtained from a unit change in 
the set-point are illustrated in Fig. 4. From these responses and the locations of the dominant 
poles reported in Table 4, one can easily recognize that the FST and the OPOS methods 
provide us controllers with similar performance. Moreover, the response obtained when the 
ISE_Sp method is used is the fastest, although very oscillatory. Finally, in the case where the 
DPC method is used, the response obtained is sluggish and smooth. Moreover, since this 
method yields a large value of τI, it provides a very robust controller. 
Table 5 presents a stability robustness comparison with other existing PID tuning methods. 
In particular, the tuning methods presented in Sections 4 and 5 are compared with the R&L 
method with λ=2.2 (Rotstein & Lewin, 1991), the P&M method (De Paor and O’Malley, 
1989), the H&X method with specifications Am=1.3 and φm=10o (Ho & Xu, 1998), the P&P 
method based on the ITAE criterion (Poulin & Pomerleau, 1997) and the J&C method based 
on the IMC tuning rule with λ=2.5 (Jacob & Chidambaram, 1996), in the special case where 
d=0.5 and τS=1. Table 5 presents the increasing and decreasing gain margins GMinc and 
GMdec as well as the phase margin PM. Moreover, it presents the maximum simultaneous 
multiplicative uncertainty Aa of all system parameters (i.e. when the system parameters d, τS, 
K are increased by Aa and τU is decreased by Aa) and the maximum multiplicative 
uncertainty Ad of the time delay (i.e. when only d is increased by Ad), for which the closed 
loop system remains stable. The results presented in Table 5 show that the DPC method 
provides more robust controllers than most other methods (except the J&C method with 
λ=2.5, that gives a significantly slower response in both set point tracking and regulatory 
control). The aim of the other three methods, presented in this Section, is to provide faster 
responses and hence they provide lesser robustness. Finally, it is worth noticing that all the 
other methods used in robustness comparison are not applicable in cases where d>0.7. 
 

Method KC τI τD PM(rad) GMinc GMdec aa ad 

DPC 1.618 8.150 1 0.172 1.469 1.462 1.101 1.268 
FST 1.622 6.948 1 0.155 1.446 1.436 1.091 1.240 
OPOS 1.623 6.539 1 0.148 1.436 1.425 1.088 1.225 
ISE-SP 1.632 4.834 1 0.107 1.372 1.353 1.064 1.163 
R&L (λ=2.2) 2.116 10.24 0.902 0.087 1.173 1.860 1.043 1.103 
P&M 1.357 6.960 1 0.133 1.729 1.202 1.103 1.288 
H&X 1.518 6.543 1 0.148 1.536 1.332 1.095 1.255 
P&P 1.798 8.431 1 0.154 1.325 1.631 1.082 1.204 
J&C (λ=2.5) 1.573 9.495 1 0.188 1.528 1.443 1.113 1.307 

Table 5. Robustness performance comparison with other existing tuning methods.  

6. Controller tuning based on closed-loop stability margins specifications 
When a PID-like controller is used to control an USOPDT process, it is possible, in some 
cases, to simultaneously satisfy the design specifications GMdec, GMinc, and PM exactly. The 
PID-like controller sought can be found from the solution of the system of equations (8)-(14). 
Unfortunately, this system of equations is too complicated to be solved on-line and it is not 
always solvable. Furthermore, the solution might not be appropriate or useful, especially if 
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the derivative term is too large. For this reason, we propose here, to select a priori the 
derivative term τD of the controller, on the basis of the designer’s knowledge relative to the 
process. If there are no restrictions imposed by the process, then it is recommended to select 
τD as large as possible in the range proposed by (16). This way, the resulting closed-loop 
system has the fastest possible response, for both, the set-point tracking and the load 
attenuation case, a well as the smallest possible maximum error in the case of regulatory 
control. Having selected τD, as previously mentioned, three methods are then proposed, in 
order to tune the rest of the controller parameters. 

6.1 The Phase Margin (PM) tuning method 
In the case where, the only specification for the closed loop system is the desired phase 
margin PMdes, then it is recommended to tune the PID-like controller in such a way that this 
single specification is achieved at the maximum phase margin corresponding to the 
frequency wp, namely, when wG=wp. This way, the integral reset time τI is the smallest 
possible that satisfies the specification and, hence, the obtained controller provides the 
fastest possible response, for both set-point tracking and regulatory control. The main steps 
of this tuning method are the following: 

6.1.1 The PM algorithm 
Step 1. Given the system parameters d, τS, the controller derivative term τD and the phase 
margin specification PMdes, set initially τΙ=0. 
Step 2. With this value of τΙ, calculate wp as the maximum real root of (14). 
Step 3. Select the new value of τI from the solution of PMdes=φL(wp)+π, with respect to τI, 
which is given by 

 1 tan an( ) an( ) an( )
2

des
I p p S p p D pw PM dw at w at w at w          

 (28) 

Step 4. Repeat Steps 2 and 3 until convergence. 
Step 5. With known τI, calculate the corresponding frequency wp from (14) and the controller  
gain KC from (13). This completes the method. 
The above algorithm converges to the correct solution, if such a solution exists, i.e. if for 
given d, τS, τD there exists a value of τI for which PM(d,τS,τD,τI)=PMdes. 

6.2 The Gain Margin (GM) tuning method 
This method is applicable in the case where the specifications of the closed loop system are 
described in the form of increasing and decreasing gain margins (GMinc,des and GMdec,des). To 
present the method, two iterative algorithms for the calculation of the crossover frequencies 
wmin and wmax are first presented. 

6.2.1 The wmin algorithm 
Step 1. Start with an initial estimate for wmin. An appropriate value for fast convergence is 

  
min

1(1 )init
I Iw d      (29) 

Step 2. Calculate the error of this approximation using the relation 
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 min min min min min/ 2 an( ) an( ) an( ) an( )init init init init init
r I D Se dw at w at w at w at w           (30) 

Step 3. Take the new value of wmin as  
min min

1new old
rw w e  . 

Step 4. Repeat Steps 2 and 3 until a convergence. 

6.2.2 The wmax algorithm 
Step 1. Start with a very large initial estimate of wmax, say 

max

initw =104. 

Step 2. Using (8), calculate the new value of wmax as 

 1
max max max max maxan( ) an( ) an( ) an( )

2
new old old old old

I D Sw d at w at w at w at w           
 (30) 

Step 3. Repeat Steps 2 and 3 until convergence. 
These two algorithms always converge to the correct values of wmin and wmax, if for given d, 
τS, τD and τI there exists a solution of (8), with respect to wC, when the atan function takes 
values in the range (-π/2,π/2). We are now able to present the main steps of proposed GM 
tuning method. 

6.2.3 The GM algorithm 
Step 1. Given the system parameters d, τS, the controller derivative term τD and the desired 
gain matrix product GMprod,des, solve max(PM(d,τI,τD,τS))=0 to obtain τI,min. 
Step 2. Set τI,1= τI,min and τI,2= 103τI,min. 
Step 3. Take the new value of τΙ as the average of τI,1 and τI,2, i.e. τΙ=( τI,1+ τI,2)/2. 
Step 4. Calculate the values of wmin and wmax using the wmin Algorithm and the wmax 
Algorithm, respectively, for the obtained τI, and obtain KC,min and KC,max from (9). 
Step 5. Calculate the value of GMprod from (11). 
Step 6. If GMprod<GMprod,des or wmin0 or wmax0, then τI,1=τI or else τI,2=τI. 
Step 7. Repeat Steps 3 to 6 until convergence. 
Step 8. The controller gain is evaluated from either KC=KC,max/Ginc,des or KC=KC,minGdec,des. This 
completes the algorithm.  
The above algorithm converges to the correct solution, if such a solution exists, i.e. if for 
given d, τS, τD there exists a value of τI for which GMprod(d,τS,τD,τI)=GMprod,des. 

6.3 The Phase and Gain Margin (PGM) tuning method 
If the derivative term is a priori selected, then it is not possible, in general, to simultaneously 
satisfy the specifications on GMdec, GMinc, and PM exactly, with the remaining two free 
controller parameters. This is due to the fact that, it is not possible to assign three 
independent specifications with only two independent controller parameters, namely KC 
and τI. Indeed, with the controller parameters KC and τI obtained from the GM Algorithm, in 
order to satisfy GMdec and GMinc, then a specific value of the phase margin PM(d,KC,τI,τD) is 
obtained, and, hence, in this case the phase margin cannot be selected independently. 
Keeping these in mind, we propose here a tuning method, in order to achieve simultaneous, 
although not exact, satisfaction of all three specifications PM, GMdec and GMinc. This method 
is based on the tuning methods presented in the previous two subsections. The basic steps, 
for the selection of the parameters of a PID-like controller that satisfy all three specifications, 
are the following: 
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6.3.1 The PGM algorithm 
Step 1. For the selected value of τD, check if there exists a value of KC that is able satisfy all 
three specifications, when τI→ ∞. 
Step 2. Calculate the two controllers obtained by the PM and the GM methods. If the 
controller with the largest value of τI satisfies all three specifications, then this is the 
controller sought. In the opposite case continue with Step 3. 
Step 3. Assume that KC,PM and τI,PM are the controller parameters obtained form the 
application of the PM tuning method and KC,GM and τI,GM are the controller parameters 
obtained from the GM tuning method. Then, if none of these two controllers satisfy all 
specifications, check which controller gives the largest gain KC, and distinguish the 
following two cases: 
1. If KC,PM>KC,GM, then in order to satisfy all specifications with the smallest value of τI, 

gradually increase τI (starting from the max(τI,GM,τI,PM)), while maintaining the same 
increasing gain margin GMinc (by selecting KC=KC,max(d,τS,τI,τD)/GMinc,des), until the phase 
margin specification is also satisfied. 

2. If KC,PM<KC,GM, then gradually increase τI (starting from the max(τI,GM,τI,PM)), while 
maintaining the same decreasing gain margin GMdec (by selecting KC= 
KC,min(d,τS,τI,τD)GMdec,des), until the phase margin specification is also satisfied. 

This completes the algorithm.  
Although there are several ways to select the controller parameters in order to satisfy all 
three specifications (although not exactly), the method presented here is preferred, because 
it requires the smallest computational effort, since for a given τI, the phase margin can be 
calculated exactly without the use of iterative algorithms (using (12) and PM=φL(wG)+π). It is 
noted here that, in all PID tuning methods presented above, if the response obtained is too 
oscillatory (due to the small value of τI), then, by increasing the value of τI, the damping of 
the closed-loop system increases. From the analysis presented in Section 3, it becomes clear 
that, when τI is increased, the resulting closed-loop system is more robust, and hence all the 
stability robustness specifications are still satisfied (although not exactly). 

6.4 Simplification of the tuning rules for on-line tuning 
The tuning rules presented in the previous sections can significantly be simplified, in the 
case where τD=τS. In this case, the loop transfer function is given by (17), and the solutions of 
the algorithms presented in Subsections 6.1.1 and 6.2.1-6.2.3, can easily be approximated 
with satisfactory accuracy for all systems with 0<d<0.9. In particular, the solutions for wmin 
and wmax, can be approximated by relations (21)-(23). Note that, here, ,minˆ ( )I d  is an accurate 
approximation of the smallest value of the integral term τI, for which (8) has a solution, 
when τD=τS, and when the atan function takes values in the range (-π/2, π/2). Table 6 
summarizes useful approximations of some other parameters involved in the aforementio-
ned algorithms. Note that the maximum normalized errors for the parameters KC,min and 
KC,max, when their estimates are obtained by (20), using minŵ  and maxŵ  as given by (21), 
never exceed 2.2%  for d≤0.9 and τI>1.2 ,minˆI . 
In Table 7, numerical applications of the PM, GM and PGM tuning methods are presented 
for three processes with normalized dead time 0.1, 0.5 and 0.9. The controller parameters 
obtained from the application of these tuning methods are presented in the left section of 
Table 7 for both the exact (KC, τI) and the approximated controller parameters ( ˆ

CK , ˆI ). In 
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 min min min min min/ 2 an( ) an( ) an( ) an( )init init init init init
r I D Se dw at w at w at w at w           (30) 

Step 3. Take the new value of wmin as  
min min

1new old
rw w e  . 

Step 4. Repeat Steps 2 and 3 until a convergence. 

6.2.2 The wmax algorithm 
Step 1. Start with a very large initial estimate of wmax, say 

max

initw =104. 

Step 2. Using (8), calculate the new value of wmax as 

 1
max max max max maxan( ) an( ) an( ) an( )

2
new old old old old

I D Sw d at w at w at w at w           
 (30) 

Step 3. Repeat Steps 2 and 3 until convergence. 
These two algorithms always converge to the correct values of wmin and wmax, if for given d, 
τS, τD and τI there exists a solution of (8), with respect to wC, when the atan function takes 
values in the range (-π/2,π/2). We are now able to present the main steps of proposed GM 
tuning method. 

6.2.3 The GM algorithm 
Step 1. Given the system parameters d, τS, the controller derivative term τD and the desired 
gain matrix product GMprod,des, solve max(PM(d,τI,τD,τS))=0 to obtain τI,min. 
Step 2. Set τI,1= τI,min and τI,2= 103τI,min. 
Step 3. Take the new value of τΙ as the average of τI,1 and τI,2, i.e. τΙ=( τI,1+ τI,2)/2. 
Step 4. Calculate the values of wmin and wmax using the wmin Algorithm and the wmax 
Algorithm, respectively, for the obtained τI, and obtain KC,min and KC,max from (9). 
Step 5. Calculate the value of GMprod from (11). 
Step 6. If GMprod<GMprod,des or wmin0 or wmax0, then τI,1=τI or else τI,2=τI. 
Step 7. Repeat Steps 3 to 6 until convergence. 
Step 8. The controller gain is evaluated from either KC=KC,max/Ginc,des or KC=KC,minGdec,des. This 
completes the algorithm.  
The above algorithm converges to the correct solution, if such a solution exists, i.e. if for 
given d, τS, τD there exists a value of τI for which GMprod(d,τS,τD,τI)=GMprod,des. 

6.3 The Phase and Gain Margin (PGM) tuning method 
If the derivative term is a priori selected, then it is not possible, in general, to simultaneously 
satisfy the specifications on GMdec, GMinc, and PM exactly, with the remaining two free 
controller parameters. This is due to the fact that, it is not possible to assign three 
independent specifications with only two independent controller parameters, namely KC 
and τI. Indeed, with the controller parameters KC and τI obtained from the GM Algorithm, in 
order to satisfy GMdec and GMinc, then a specific value of the phase margin PM(d,KC,τI,τD) is 
obtained, and, hence, in this case the phase margin cannot be selected independently. 
Keeping these in mind, we propose here a tuning method, in order to achieve simultaneous, 
although not exact, satisfaction of all three specifications PM, GMdec and GMinc. This method 
is based on the tuning methods presented in the previous two subsections. The basic steps, 
for the selection of the parameters of a PID-like controller that satisfy all three specifications, 
are the following: 
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6.3.1 The PGM algorithm 
Step 1. For the selected value of τD, check if there exists a value of KC that is able satisfy all 
three specifications, when τI→ ∞. 
Step 2. Calculate the two controllers obtained by the PM and the GM methods. If the 
controller with the largest value of τI satisfies all three specifications, then this is the 
controller sought. In the opposite case continue with Step 3. 
Step 3. Assume that KC,PM and τI,PM are the controller parameters obtained form the 
application of the PM tuning method and KC,GM and τI,GM are the controller parameters 
obtained from the GM tuning method. Then, if none of these two controllers satisfy all 
specifications, check which controller gives the largest gain KC, and distinguish the 
following two cases: 
1. If KC,PM>KC,GM, then in order to satisfy all specifications with the smallest value of τI, 

gradually increase τI (starting from the max(τI,GM,τI,PM)), while maintaining the same 
increasing gain margin GMinc (by selecting KC=KC,max(d,τS,τI,τD)/GMinc,des), until the phase 
margin specification is also satisfied. 

2. If KC,PM<KC,GM, then gradually increase τI (starting from the max(τI,GM,τI,PM)), while 
maintaining the same decreasing gain margin GMdec (by selecting KC= 
KC,min(d,τS,τI,τD)GMdec,des), until the phase margin specification is also satisfied. 

This completes the algorithm.  
Although there are several ways to select the controller parameters in order to satisfy all 
three specifications (although not exactly), the method presented here is preferred, because 
it requires the smallest computational effort, since for a given τI, the phase margin can be 
calculated exactly without the use of iterative algorithms (using (12) and PM=φL(wG)+π). It is 
noted here that, in all PID tuning methods presented above, if the response obtained is too 
oscillatory (due to the small value of τI), then, by increasing the value of τI, the damping of 
the closed-loop system increases. From the analysis presented in Section 3, it becomes clear 
that, when τI is increased, the resulting closed-loop system is more robust, and hence all the 
stability robustness specifications are still satisfied (although not exactly). 

6.4 Simplification of the tuning rules for on-line tuning 
The tuning rules presented in the previous sections can significantly be simplified, in the 
case where τD=τS. In this case, the loop transfer function is given by (17), and the solutions of 
the algorithms presented in Subsections 6.1.1 and 6.2.1-6.2.3, can easily be approximated 
with satisfactory accuracy for all systems with 0<d<0.9. In particular, the solutions for wmin 
and wmax, can be approximated by relations (21)-(23). Note that, here, ,minˆ ( )I d  is an accurate 
approximation of the smallest value of the integral term τI, for which (8) has a solution, 
when τD=τS, and when the atan function takes values in the range (-π/2, π/2). Table 6 
summarizes useful approximations of some other parameters involved in the aforementio-
ned algorithms. Note that the maximum normalized errors for the parameters KC,min and 
KC,max, when their estimates are obtained by (20), using minŵ  and maxŵ  as given by (21), 
never exceed 2.2%  for d≤0.9 and τI>1.2 ,minˆI . 
In Table 7, numerical applications of the PM, GM and PGM tuning methods are presented 
for three processes with normalized dead time 0.1, 0.5 and 0.9. The controller parameters 
obtained from the application of these tuning methods are presented in the left section of 
Table 7 for both the exact (KC, τI) and the approximated controller parameters ( ˆ

CK , ˆI ). In 
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the right section of Table 7, the polar plots of the resulting closed-loop systems are 
presented. Solid and dashed lines are used for the exact and the approximate controller, 
respectively. The gain margin specifications are indicated by the symbol ‘o’ and the point on 
the unit circle which determines the phase margin specification is indicated by the symbol 
‘’. From all these polar plots, it becomes obvious that the approximate solution is very 
accurate and in most cases cannot be distinguished from the exact solution. Note that, since 
the proposed tuning methods provide a controller that satisfies the required stability 
robustness specifications with significant accuracy, it is possible to design a closed loop 
system with any desired design specifications. The most robust (but slow) closed loop 
system possible (when τD=τS) can be obtained when PMdes→PMmax or when GMprod,des→ 
GMpred,max (i.e. τI→∞), while it is possible to design a faster but less robust system with less 
conservative stability margins specifications. 
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d<0.9 and 
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g(d)=10-2[-0.18+5 d -32d+75d2-51d3+(-2.3d2+3d4)/(1-d)3] 

Table 6. Approximations of parameters involved in the PM, GM and PGM algorithms, when 
τD=τS. 
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Table 7. Some characteristic numerical examples of the proposed tuning methods reported 
in Section 6.  

7. Application to an experimental magnetic levitation system 
In this section the tuning methods presented above will be applied to the experimental 
magnetic levitation system shown in Figure 5. This experimental system is a popular 
gravity-biased one degree of freedom magnetic levitation system in which an 
electromagnet exerts attractive force to levitate a steel ball. The dynamics of the MagLev 
system can be described by the following simplified state space model (Yang & Tateishi, 
2001) 

 /dx dt v  ,    2 2/ / /( )dv dt g c M i x x      (31) 

where x, v and M are the air gap (vertical position), the velocity and the mass of the steel ball 
respectively, g is the gravity acceleration, i is the coil current, c and x∞ are constants that are 
determined by the magnetic properties of the electromagnet and the steel ball. Moreover the 
coil of the electromagnet has an inductance L and a total resistance R.  
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the right section of Table 7, the polar plots of the resulting closed-loop systems are 
presented. Solid and dashed lines are used for the exact and the approximate controller, 
respectively. The gain margin specifications are indicated by the symbol ‘o’ and the point on 
the unit circle which determines the phase margin specification is indicated by the symbol 
‘’. From all these polar plots, it becomes obvious that the approximate solution is very 
accurate and in most cases cannot be distinguished from the exact solution. Note that, since 
the proposed tuning methods provide a controller that satisfies the required stability 
robustness specifications with significant accuracy, it is possible to design a closed loop 
system with any desired design specifications. The most robust (but slow) closed loop 
system possible (when τD=τS) can be obtained when PMdes→PMmax or when GMprod,des→ 
GMpred,max (i.e. τI→∞), while it is possible to design a faster but less robust system with less 
conservative stability margins specifications. 
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Table 6. Approximations of parameters involved in the PM, GM and PGM algorithms, when 
τD=τS. 
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Table 7. Some characteristic numerical examples of the proposed tuning methods reported 
in Section 6.  

7. Application to an experimental magnetic levitation system 
In this section the tuning methods presented above will be applied to the experimental 
magnetic levitation system shown in Figure 5. This experimental system is a popular 
gravity-biased one degree of freedom magnetic levitation system in which an 
electromagnet exerts attractive force to levitate a steel ball. The dynamics of the MagLev 
system can be described by the following simplified state space model (Yang & Tateishi, 
2001) 

 /dx dt v  ,    2 2/ / /( )dv dt g c M i x x      (31) 

where x, v and M are the air gap (vertical position), the velocity and the mass of the steel ball 
respectively, g is the gravity acceleration, i is the coil current, c and x∞ are constants that are 
determined by the magnetic properties of the electromagnet and the steel ball. Moreover the 
coil of the electromagnet has an inductance L and a total resistance R.  
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Fig. 5. MagLev system diagrams: (a) Schematic diagram, (b) Control diagram and (c) Block 
diagram. 

Linearizing (31) about an operating point x0, the following second order transfer function for 
the MagLev system is obtained 

 1 ( )
( 1)( 1)

M m

Um Sm

KH s
s s 


 

 (32) 

where, Km, τUm, and τSm are the gain, the unstable and the stable time constants of the system 
given by 

 /( )mK c Mg   ,   00.5 /Um Sm x x g      (33) 

For the MagLev system used in the following experiments the current i is controlled by a PI 
controller (see Figure 5c). Moreover, to reduce measurement noise additional first order 
filters with time constants τF are used for the measurement of x and i (Figure 5c). The 
unmodelled dynamics of the current control loop, the measurement filters and the dynamics 
of the electrical circuitry (amplifiers, drivers etc.) is modelled here as a time delay dm. 
Therefore, the complete transfer function of the linearized MagLev system is given by 
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 1
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 (34) 

The model parameters c and x∞ are obtained from measurements of the steady state value of 

the coil current (which is given by 2
0 0( / )( )i g M c x x  ), for several values of x0 

(3mm<x0<11mm), using a stabilizing PID controller. Since the model parameters Km, τUm and 
τSm can be obtained from (33), to identify the time delay dm of the system, a single closed 
loop relay-feedback experiment can be used. The control diagram for this experiment is 
shown in Figure 5b. Using a PD stabilizing controller with derivative time τDs=τUm, one can 
easily verify that dm is given by 

  1 2 2in /( 1)m C Um C m Cs Um Cd as K K          (35) 

where ωC is the ultimate frequency of the closed loop system, which is measured by the 
relay experiment. The values of the model parameters for the linearized system given by 
(33), about the operating point x0=7mm, are listed in Table 8 together with the parameters of 
the PI-current controller and the time constant of the two measurement filters used. It is 
noted here that the selection of the filter time constant τF and the gains of the PI current 
controller are performed intentionally in order to produce a significant time delay to the 
MagLev system. Finally, it is mentioned that the sampling intervals for all experiments is 
chosen as τst=0.5ms, which is fast enough to assume a continuous-time system. 
 

Physical parameters 
M=0.068 Kg , g=9.81 m/sec2 , c=8.068·10-5Hm, x∞=0.00215m , L=0.4125 , R=11Ω 

Linearized Model parameters (around x0=0.007m) 
Km=0.008474 m/A , τUm= τSm =0.0216 sec, dm=0.01037 sec , i0=1.08 A 

Current controller and measurement filter parameters
KCi=200 , τIi=1 , τF=0.005 

Parameters of the designed PID controller 
OPOS KCm=196.7  ,  τIm =0.1273  ,  τDm =0.0216 
ISE-Sp KCm=197.9  ,  τIm=0.0936  ,  τDm =0.0216 
DPC KCm=196.1  ,  τIm=0.1565  ,  τDm=0.0216 
FST KCm=196.5  ,  τIm=0.1346  ,  τDm=0.0216 
GM KCm=118.5  ,  τIm= 0.428  ,  τDm =0.0216 
PM KCm= 147.5  ,  τIm=0.1162  ,  τDm=0.0216 

Table 8. System and controller parameters for the experiments in the MagLev system.  

A series of experiments have been performed by applying all four methods reported in 
Sections 4 and 5 to the MagLev system. In Fig. 6, the set-point and load step responses 
around the operating point x0=7mm are presented. In particular, in Figs 6a and 6b, the 
response of the MagLev to a pulse waveform with amplitude 1 mm and period 5 sec is 
shown in the case where the PID controller is tuned using the OPOS and ISE-Sp methods, 
respectively. Fig. 6c shows the tracking response in the case where the DPC method is used. 
In this case the amplitude of the pulse waveform used as reference input is 7mm (from 
3.5mm to 10.5mm). Finally, Fig. 6d shows the regulatory control response, in the case where 
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Fig. 5. MagLev system diagrams: (a) Schematic diagram, (b) Control diagram and (c) Block 
diagram. 
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where, Km, τUm, and τSm are the gain, the unstable and the stable time constants of the system 
given by 
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The model parameters c and x∞ are obtained from measurements of the steady state value of 

the coil current (which is given by 2
0 0( / )( )i g M c x x  ), for several values of x0 

(3mm<x0<11mm), using a stabilizing PID controller. Since the model parameters Km, τUm and 
τSm can be obtained from (33), to identify the time delay dm of the system, a single closed 
loop relay-feedback experiment can be used. The control diagram for this experiment is 
shown in Figure 5b. Using a PD stabilizing controller with derivative time τDs=τUm, one can 
easily verify that dm is given by 

  1 2 2in /( 1)m C Um C m Cs Um Cd as K K          (35) 

where ωC is the ultimate frequency of the closed loop system, which is measured by the 
relay experiment. The values of the model parameters for the linearized system given by 
(33), about the operating point x0=7mm, are listed in Table 8 together with the parameters of 
the PI-current controller and the time constant of the two measurement filters used. It is 
noted here that the selection of the filter time constant τF and the gains of the PI current 
controller are performed intentionally in order to produce a significant time delay to the 
MagLev system. Finally, it is mentioned that the sampling intervals for all experiments is 
chosen as τst=0.5ms, which is fast enough to assume a continuous-time system. 
 

Physical parameters 
M=0.068 Kg , g=9.81 m/sec2 , c=8.068·10-5Hm, x∞=0.00215m , L=0.4125 , R=11Ω 

Linearized Model parameters (around x0=0.007m) 
Km=0.008474 m/A , τUm= τSm =0.0216 sec, dm=0.01037 sec , i0=1.08 A 

Current controller and measurement filter parameters
KCi=200 , τIi=1 , τF=0.005 

Parameters of the designed PID controller 
OPOS KCm=196.7  ,  τIm =0.1273  ,  τDm =0.0216 
ISE-Sp KCm=197.9  ,  τIm=0.0936  ,  τDm =0.0216 
DPC KCm=196.1  ,  τIm=0.1565  ,  τDm=0.0216 
FST KCm=196.5  ,  τIm=0.1346  ,  τDm=0.0216 
GM KCm=118.5  ,  τIm= 0.428  ,  τDm =0.0216 
PM KCm= 147.5  ,  τIm=0.1162  ,  τDm=0.0216 

Table 8. System and controller parameters for the experiments in the MagLev system.  

A series of experiments have been performed by applying all four methods reported in 
Sections 4 and 5 to the MagLev system. In Fig. 6, the set-point and load step responses 
around the operating point x0=7mm are presented. In particular, in Figs 6a and 6b, the 
response of the MagLev to a pulse waveform with amplitude 1 mm and period 5 sec is 
shown in the case where the PID controller is tuned using the OPOS and ISE-Sp methods, 
respectively. Fig. 6c shows the tracking response in the case where the DPC method is used. 
In this case the amplitude of the pulse waveform used as reference input is 7mm (from 
3.5mm to 10.5mm). Finally, Fig. 6d shows the regulatory control response, in the case where 
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the FST method is used with a change in the system input (current set-point) produced by a 
pulse waveform with amplitude 0.2A (i.e. 20% change in the steady state value of the coil 
current). Fig. 6 verifies the efficiency and good performance of the proposed methods. As 
expected, the ISE-Sp method provides the fastest response, but with an overshoot of about 
20%. The FST and OPOS methods produce very smooth and fast regulatory and set-point 
tracking responses. Finally, the DPC method provides a very robust controller that can 
control the MagLev system in a large operating region. However, this controller provides a 
rather sluggish response. 
As a second application of the proposed tuning methods, a robust PID controller is designed 
in order to guarantee a stable closed loop system in a wide operating region (3.5mm< 
x<10.5mm) and in the case of ±20% uncertainty in the parameters c, x∞ and 10% uncertainty 
in the time delay dm. The problem of converting the parametric uncertainties into gain and 
phase margin specifications is a very complicated problem that remains unsolved, in the 
general case. Here, in order to select appropriate specifications for the design of the 
controller, the following observations are made: (a) From (8), it is clear that the uncertainty 
in the model parameters τUm and τSm (which depend on x∞ and x0) does not affect the 
argument of the loop transfer function. The only term which influences the phase 
uncertainty is the uncertainty in the identification of the time delay. (b) Assuming that 
τΙ>5τΙ,min, (this assumption is in accordance with our desire to design a very robust controller 
as suggested in the work (Paraskevopoulos et al, 2006)) one can easily verify from ,minˆ ( )I d  
(given in Table 6), that a ±10% change in dm produces a change in ωmin and ωmax smaller than  
 

 
Fig. 6. Experimental MagLev position responses. Set-point tracking response: (a) using 
OPOS method, (b) using ISE-Sp method, (c) using DPC method. (d) Regulatory control step 
response using FST method (current load disturbance amplitude 20% or 0.2 A). 
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5% and 15%, respectively. (c) The magnitude of the loop transfer function is affected by all 
parameters, as well as the operating point. The two extreme worst cases are obtained when 
d and c are maximized and x0, x∞ are minimized (scenario A) and when d, x0, x∞ are 
maximized and c is minimized (scenario B). From scenario A, we obtain the smallest 
maximum ultimate gain min(KC,max), while from scenario B, we obtain the largest minimum 
ultimate gain max(KC,min). Obviously, for the closed loop system to be stable under the 
assumed uncertainty and for the whole desired operating region, there must be min(KC,max)> 
max(KC,min). Based on the above observation one can easily verify that for τΙ>5τΙ,min, the 
inequalities min(KC,max)>0.53KC,max,0 and max(KC,min)<1.2KC,min,0, must hold, where KC,max,0 and 
KC,min,0 are the nominal values of KC,max and KC,min at the operating point x0=0.007m, i.e. the 
case where there is no uncertainty. To guarantee stability, the increasing and decreasing 
gain margins must be selected grater than 1/0.53 and 1.2, respectively.  
Based on the above results and observations, in order to tune the PID controller, the GM 
tuning method is next applied with specifications GMinc=2 and GMdec=1.25. The obtained 
controller gains are listed in Table 8. The Nyquist plots for the two extreme scenarios A and 
B and for the nominal system, using the obtained robust controller, are shown in Fig. 7, 
which verifies that the closed loop system is always stable.  
 

 
Fig. 7. Nyquist plots of the MagLev system using the robust controller designed with the 
GM method. 
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in the time delay dm. The problem of converting the parametric uncertainties into gain and 
phase margin specifications is a very complicated problem that remains unsolved, in the 
general case. Here, in order to select appropriate specifications for the design of the 
controller, the following observations are made: (a) From (8), it is clear that the uncertainty 
in the model parameters τUm and τSm (which depend on x∞ and x0) does not affect the 
argument of the loop transfer function. The only term which influences the phase 
uncertainty is the uncertainty in the identification of the time delay. (b) Assuming that 
τΙ>5τΙ,min, (this assumption is in accordance with our desire to design a very robust controller 
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5% and 15%, respectively. (c) The magnitude of the loop transfer function is affected by all 
parameters, as well as the operating point. The two extreme worst cases are obtained when 
d and c are maximized and x0, x∞ are minimized (scenario A) and when d, x0, x∞ are 
maximized and c is minimized (scenario B). From scenario A, we obtain the smallest 
maximum ultimate gain min(KC,max), while from scenario B, we obtain the largest minimum 
ultimate gain max(KC,min). Obviously, for the closed loop system to be stable under the 
assumed uncertainty and for the whole desired operating region, there must be min(KC,max)> 
max(KC,min). Based on the above observation one can easily verify that for τΙ>5τΙ,min, the 
inequalities min(KC,max)>0.53KC,max,0 and max(KC,min)<1.2KC,min,0, must hold, where KC,max,0 and 
KC,min,0 are the nominal values of KC,max and KC,min at the operating point x0=0.007m, i.e. the 
case where there is no uncertainty. To guarantee stability, the increasing and decreasing 
gain margins must be selected grater than 1/0.53 and 1.2, respectively.  
Based on the above results and observations, in order to tune the PID controller, the GM 
tuning method is next applied with specifications GMinc=2 and GMdec=1.25. The obtained 
controller gains are listed in Table 8. The Nyquist plots for the two extreme scenarios A and 
B and for the nominal system, using the obtained robust controller, are shown in Fig. 7, 
which verifies that the closed loop system is always stable.  
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case, the PM tuning method is used with a specification PMdes=0.15 rad. The obtained 
controller is presented in Table 6. Figures 9a and 9b, show the set-point step response 
from 6.5mm to 7.5mm and the regulatory control around the operating point x0=7mm 
using the new controller. Clearly, the obtained responses are significantly faster, as it was 
expected from the design of the PID controller (smaller τIm, larger KCm). Moreover, in the 
case of regulatory control the maximum error produced in the present case is significantly 
smaller (at least three times smaller) than the maximum error produced when the robust 
controller is used. 
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Fig. 8. Position response of MagLev system using the robust controller designed with the 
GM-method: (a) Set-point response and (b) Load step response (current load disturbance 
amplitude 20% or 0.2 A). 
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Fig. 9. Position response of MagLev system using a fast controller designed with the PM-
method. Other legend as in Fig. 8. 
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8. Conclusions 
New methods for tuning PID-like controllers for USOPDT systems have been developed in 
this work. These methods are based on various criteria, such as the appropriate assignment 
of the dominant poles of the closed-loop system, the attainment of various time-domain 
closed-loop characteristics, as well as the satisfaction of gain and phase margins 
specifications of the closed-loop system. In the general case, where the derivative action of 
the controller is selected arbitrarily, the tuning methods require the use of iterative 
algorithms for the solution of nonlinear systems of equations. In the special case where the 
controller derivative time constant is selected equal to the stable time constant of the system, 
the solutions of the nonlinear system of equations involved in the tuning methods are given 
in the form of quite accurate analytic approximations and, thus, the iterative algorithms can 
be avoided. In this case the tuning methods can readily be used for on-line applications. The 
proposed tuning methods have successfully been applied to the control of an experimental 
magnetic levitation system that is modelled as an USOPDT process. The obtained 
experimental results verify the efficiency of the proposed tuning methods that provide a 
very satisfactory performance of the closed-loop system. 
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decreased for lower-order processes. This is one of the most serious disadvantages of the 

MO method, since in process control disturbance rejection performance is often more 

important than tracking performance.  

The mentioned deficiency has been recently solved by modifying the original MO criteria 

(Vrančić et al., 2004b; Vrančić et al., 2010). The modified criteria successfully optimised the 

disturbance rejection response instead of the tracking response. Hence, the concept of 

moments (multiple integrations) has been applied to the modified MO criteria as well, and 

the new tuning method has been called the “Disturbance Rejection Magnitude Optimum” 

(DRMO) method (Vrančić et al., 2004b; Vrančić et al., 2010).  

The MOMI and DRMO tuning methods are not only limited to the self-regulating processes. 

They can also be applied to integrating processes (Vrančić, 2008) and to unstable processes 

(Vrančić & Huba, 2011). The methods can also be applied to different controller structures, 

such as Smith predictors (Vrečko et al., 2001) and multivariable controllers (Vrančić et al., 

2001b). However, due to the limited space and scope of this book, they will not be 

considered further. 

2. System description 

A stable process may be described by the following process transfer function: 
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where KPR denotes the process steady-state gain, and a1 to an and b1 to bm are the 

corresponding parameters (m≤n) of the process transfer function, whereby n can be an 

arbitrary positive integer value and Tdelay represents the process pure time delay. Note that 

the denominator in (1) contains only stable poles.  

The PID controller is defined as follows: 
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where U, R and Y denote the Laplace transforms of the controller output, the reference and 

the process output, respectively. The transfer functions GR(s) and GC(s) are the feed-forward 

and the feedback controller paths, respectively: 
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The PID controller parameters are proportional gain KP, integral gain KI, derivative gain 

KD, filter time constant TF, proportional reference weighting factor b and derivative 

reference weighting factor c (Åström & Hägglund, 1995). Note that the first-order filter is 

applied to all three controller terms instead of only the D term in order to reduce noise 

amplitude at the controller output and to simplify the derivation of the PID controller 

parameters. The range of parameters b and c is usually between 0 and 1. Since the feed-
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forward and the feedback paths are generally different, the PID controller (2) is a two-

degrees-of-freedom (2-DOF) controller. Note that controller (2) becomes a 1-DOF 

controller when choosing b=c=1.  

The PID controller in a closed-loop configuration with the process is shown in Figure 1. 
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Fig. 1. The closed-loop system with the PID controller 

Signals e, d and ur denote the control error, disturbance and process input, respectively. The 

closed-loop transfer function with the PID controller is defined as follows: 
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For the 1-DOF PID controller (b=c=1), the closed-loop transfer function becomes: 
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The deficiency of 1-DOF controllers is that they usually cannot achieve optimal tracking and 

disturbance rejection performance simultaneously. 2-DOF controllers may achieve better 

overall performance by keeping the optimal disturbance rejection performance while 

improving tracking performance. 

3. Magnitude Optimum (MO) criteria 

One possible means of control system design is to ensure that the process output (y) follows 

the reference (r). The ideal case is that of perfect tracking without delay (y=r). In the 

frequency domain, the closed-loop system should have an infinite bandwidth and zero 

phase shift. However, this is not possible in practice, since every system features some time 

delay and dynamics while the controller gain is limited due to physical restrictions.   



 

Introduction to PID Controllers – Theory, Tuning and Application to Frontier Areas 

 

76

decreased for lower-order processes. This is one of the most serious disadvantages of the 

MO method, since in process control disturbance rejection performance is often more 

important than tracking performance.  

The mentioned deficiency has been recently solved by modifying the original MO criteria 

(Vrančić et al., 2004b; Vrančić et al., 2010). The modified criteria successfully optimised the 

disturbance rejection response instead of the tracking response. Hence, the concept of 

moments (multiple integrations) has been applied to the modified MO criteria as well, and 

the new tuning method has been called the “Disturbance Rejection Magnitude Optimum” 

(DRMO) method (Vrančić et al., 2004b; Vrančić et al., 2010).  

The MOMI and DRMO tuning methods are not only limited to the self-regulating processes. 

They can also be applied to integrating processes (Vrančić, 2008) and to unstable processes 

(Vrančić & Huba, 2011). The methods can also be applied to different controller structures, 

such as Smith predictors (Vrečko et al., 2001) and multivariable controllers (Vrančić et al., 

2001b). However, due to the limited space and scope of this book, they will not be 

considered further. 

2. System description 

A stable process may be described by the following process transfer function: 

 ( )

2

1 2

2

1 2

1

1

delay

m

sT
m

P PR
n

n

b s b s b s

G s K e

a s a s a s

−
+ + + +

=

+ + + +

⋯

⋯

, (1) 

where KPR denotes the process steady-state gain, and a1 to an and b1 to bm are the 

corresponding parameters (m≤n) of the process transfer function, whereby n can be an 

arbitrary positive integer value and Tdelay represents the process pure time delay. Note that 

the denominator in (1) contains only stable poles.  

The PID controller is defined as follows: 

 ( ) ( ) ( ) ( ) ( )
R C

U s G s R s G s Y s= −  , (2) 

where U, R and Y denote the Laplace transforms of the controller output, the reference and 

the process output, respectively. The transfer functions GR(s) and GC(s) are the feed-forward 

and the feedback controller paths, respectively: 

 

( )

( )

( )

( )

2

2

1

1

I P D

R

F

I P D

C

F

K bK s cK s

G s

s sT

K K s K s

G s

s sT

+ +

=

+

+ +

=

+

 . (3) 
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reference weighting factor c (Åström & Hägglund, 1995). Note that the first-order filter is 

applied to all three controller terms instead of only the D term in order to reduce noise 
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The deficiency of 1-DOF controllers is that they usually cannot achieve optimal tracking and 

disturbance rejection performance simultaneously. 2-DOF controllers may achieve better 

overall performance by keeping the optimal disturbance rejection performance while 

improving tracking performance. 

3. Magnitude Optimum (MO) criteria 

One possible means of control system design is to ensure that the process output (y) follows 

the reference (r). The ideal case is that of perfect tracking without delay (y=r). In the 

frequency domain, the closed-loop system should have an infinite bandwidth and zero 

phase shift. However, this is not possible in practice, since every system features some time 

delay and dynamics while the controller gain is limited due to physical restrictions.   
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The new design objective would be to maintain the closed-loop magnitude (amplitude) 

frequency response (GCL) from the reference to the process output as flat and as close to 

unity as possible for a large bandwidth (see Figure 2) (Whiteley, 1946; Hanus, 1975; Åström 

& Hägglund, 1995; Umland & Safiuddin, 1990). Therefore, the idea is to find a controller that 

makes the frequency response of the closed-loop amplitude as close as possible to unity for 

lower frequencies.  

 

 

 

 

 

 

Fig. 2. The amplitude (magnitude) frequency response of the closed-loop system 

These requirements can be expressed in the following way:  
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for as many k as possible (Åström & Hägglund, 1995). 

This technique is called “Magnitude Optimum” (MO) (Umland & Safiuddin, 1990), 

“Modulus Optimum” (Åström & Hägglund, 1995), or “Betragsoptimum” (Åström & 

Hägglund, 1995; Kessler, 1955), and it results in a fast and non-oscillatory closed-loop time 

response for a large class of process models. 

If the closed-loop transfer function is described by the following equation: 
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then expression (7) can be met by satisfying the following conditions (Vrančić et al., 2010): 
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Before calculating the parameters of the 1-DOF PID controller, according to the given MO 

criteria, the pure time delay in expression (1) has to be developed into an infinite Taylor 

series:  
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or Padé series: 
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Then, the closed-loop transfer function (5) is calculated from expressions (1), (3) and (10) or 

else (11). The closed-loop parameters ei and fi can be obtained by comparing expressions (8) 

and (5). The PID controller parameters are then obtained by solving the first three equations 

(n=1, 2 and 3) in expression (9) (Vrančić et al., 1999): 

 ( )1 1 2 5 1 2 5
, , , , , , , , , ,

P PR delay F
K f K a a a b b b T T= … …  (12) 

 ( )2 1 2 5 1 2 5
, , , , , , , , , ,
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K f K a a a b b b T T= … …  (13) 

 ( )3 1 2 5 1 2 5
, , , , , , , , , ,

D PR delay F
K f K a a a b b b T T= … …  (14) 

The expressions (12)-(14) are not explicitly given herein, since they would cover several 

pages. In order to calculate the three PID controller parameters – according to the given MO 

tuning criteria – only the parameters KPR, a1, a2, a3, a4, a5, b1, b2, b3, b4, b5, and Tdelay of the 

process transfer function (1) are required, even though the process transfer function can be 

of a higher-order. However, accurately estimating such a high number of process 

parameters from real measurements could be very problematic. Moreover, if one identifies 

the fifth-order process model from the actually higher-than-fifth-order process, a systematic 

error in the estimated process parameters would be obtained, therefore leading to the 

calculation of non-optimal controller parameters. Accordingly, the accuracy of the estimated 

process parameters in practice remains questionable. 

Note that the actual expressions (12)-(14) remain exactly the same when the process with 

pure time-delay is developed into a Taylor (10) or Padé (11) series (Vrančić et al., 1999). 

4. Magnitude Optimum Multiple Integration (MOMI) tuning method 

The problems with original MO tuning method just mentioned can be avoided by using the 

concept of ‘moments’, known from identification theory (Ba Hli, 1954; Preuss, 1991). 
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series:  
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or Padé series: 
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Then, the closed-loop transfer function (5) is calculated from expressions (1), (3) and (10) or 

else (11). The closed-loop parameters ei and fi can be obtained by comparing expressions (8) 

and (5). The PID controller parameters are then obtained by solving the first three equations 

(n=1, 2 and 3) in expression (9) (Vrančić et al., 1999): 

 ( )1 1 2 5 1 2 5
, , , , , , , , , ,

P PR delay F
K f K a a a b b b T T= … …  (12) 

 ( )2 1 2 5 1 2 5
, , , , , , , , , ,

I PR delay F
K f K a a a b b b T T= … …  (13) 

 ( )3 1 2 5 1 2 5
, , , , , , , , , ,

D PR delay F
K f K a a a b b b T T= … …  (14) 

The expressions (12)-(14) are not explicitly given herein, since they would cover several 

pages. In order to calculate the three PID controller parameters – according to the given MO 

tuning criteria – only the parameters KPR, a1, a2, a3, a4, a5, b1, b2, b3, b4, b5, and Tdelay of the 

process transfer function (1) are required, even though the process transfer function can be 

of a higher-order. However, accurately estimating such a high number of process 

parameters from real measurements could be very problematic. Moreover, if one identifies 

the fifth-order process model from the actually higher-than-fifth-order process, a systematic 

error in the estimated process parameters would be obtained, therefore leading to the 

calculation of non-optimal controller parameters. Accordingly, the accuracy of the estimated 

process parameters in practice remains questionable. 

Note that the actual expressions (12)-(14) remain exactly the same when the process with 

pure time-delay is developed into a Taylor (10) or Padé (11) series (Vrančić et al., 1999). 

4. Magnitude Optimum Multiple Integration (MOMI) tuning method 

The problems with original MO tuning method just mentioned can be avoided by using the 

concept of ‘moments’, known from identification theory (Ba Hli, 1954; Preuss, 1991). 
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Namely, the process transfer function (1) can be developed into an infinite Taylor series 

around s=0, as follows: 

 ( )
2 3

0 1 2 3P
G s A A s A s A s= − + − +⋯ , (15) 

where parameters Ai (i=0, 1, 2, …) represent time-weighted integrals of the process impulse 

response h(t) (Ba Hli, 1954; Preuss, 1991; Åström & Hägglund, 1995): 

 ( )

0
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k
A t h t dt

k

∞

= ∫ . (16) 

However, the process impulse response cannot be obtained easily in practice since – due to 

several restrictions – we cannot apply an infinite impulse signal to the process input. 

Fortunately, the moments Ai can also be obtained by calculating repetitive (multiple) 

integrals of the process input (u) and output (y) signals during the change of the process 

steady-state (Strejc, 1960; Vrančić et al., 1999; Vrančić, 2008): 
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. (17) 

The moments (integrals, areas) can be calculated as follows: 
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⋮

. (18) 

It is assumed that: 

 ( ) ( ) ( )0 0 0 0y y y= = = =ɺ ɺɺ ɺɺɺ ⋯ . (19) 

Given that in practice the integration horizon should be limited, there is no need to wait 

until t=∞. It is enough to integrate until the transient of y0(t) in (17) dies out. Note that the 

first impulse (A0) equals the steady-state process gain, KPR.  

In order to clarify the mathematical derivation, a graphical representation of the first 

moment (area) is shown in Figure 3. Note that u0 and y0 represent scaled process input and 

process output time responses, respectively. 
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Fig. 3. Graphical representation of the moment (area) A1 measured from the process steady-

state change time response (see shadowed area). 

Therefore, in practice the process can be easily parameterised by the moments Ai from the 

process step-response or else from any other change of the process steady-state.  

On the other hand, the moments can also be obtained directly from the process transfer 

function (1), as follows (Vrančić et al., 1999; Vrančić et al., 2001a): 
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⋮ . (20) 

Let us now calculate the 1-DOF PID controller parameters by using the process transfer 

function parameterised by moments (15). In order to simplify derivation of the PID 

controller parameters, the filter within the PID controller (3) is considered to be a part of the 

process (1): 

 ( )
( )

*

1

P

P

F

G s

G s

sT

=

+

. (21) 
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Given that in practice the integration horizon should be limited, there is no need to wait 

until t=∞. It is enough to integrate until the transient of y0(t) in (17) dies out. Note that the 

first impulse (A0) equals the steady-state process gain, KPR.  

In order to clarify the mathematical derivation, a graphical representation of the first 

moment (area) is shown in Figure 3. Note that u0 and y0 represent scaled process input and 

process output time responses, respectively. 
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state change time response (see shadowed area). 

Therefore, in practice the process can be easily parameterised by the moments Ai from the 

process step-response or else from any other change of the process steady-state.  

On the other hand, the moments can also be obtained directly from the process transfer 

function (1), as follows (Vrančić et al., 1999; Vrančić et al., 2001a): 
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Let us now calculate the 1-DOF PID controller parameters by using the process transfer 

function parameterised by moments (15). In order to simplify derivation of the PID 

controller parameters, the filter within the PID controller (3) is considered to be a part of the 

process (1): 

 ( )
( )

*

1

P

P

F

G s

G s

sT

=

+

. (21) 
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Therefore, GC(s) (3) simplifies into the “schoolbook” PID controller without a filter: 

 ( ) ( )
* 2

I P D
K K s K s /s

C
G s = + + . (22) 

Since a filter is considered as a part of the process, the measured moments (18) should be 

changed accordingly. One solution to calculate any new moments is to filter the process 

output signal: 

 ( )
( )

1

F

F

Y s

Y s

sT

=

+

 (23) 

and use signal yF(t) instead of y(t) in expression (17). However, a much simpler solution is to 

recalculate the moments as follows: 

 

*

0 0

*

1 1 0

* 2

2 2 1 0

F

F F

A A

A A A T

A A A T A T

=

= +

= + +

⋮

, (24) 

where Ai* denote the moments of the process with included the filter (21). 

The parameters ei and fi in expression (8) can be obtained by placing expressions (22) and 

(15) (by replacing moments Ai with Ai*) into (5). By solving the first three equations in (9), 

the following PID controller parameters are obtained (Vrančić et al., 2001a): 

 

1

* *

1 0

* * *

3 2 1

* * *

5 4 3

0
0.5

0

0

I

P

D

A A
K

K A A A

K
A A A

−

 −
−   

 
   

 = − −
   

 
   

− −    
 

. (25) 

The expression for the PID controller parameters is now much simpler when compared to 

expressions (12)-(14). There are several other advantages to using expression (25) instead of 

expressions (12)-(14) for the calculation of the PID controller parameters.  

First, only the steady-state process gain A0=KPR and five moments (A1 to A5) instead of the 

12 transfer function parameters (KPR, a1..a5, b1..b5, and Tdelay) are needed as input data. 

Second, the expression for KI, KP, and KD is simplified, which makes it more transparent and 

simpler to handle. 

Third, the moments A1 to A5 can be calculated from the process time-response using 

numerical integration, whilst the gain A0=KPR can be determined from the steady-state value 

of the process steady-state change in the usual way. This procedure replaces the much more 

demanding algorithm for the estimation of the transfer function parameters. 

In addition, it is important to note that the mapping of expressions (12)-(14) into expression 

(25) results in exact (rather than approximate) controller parameters. This means that the 

frequency-domain control criterion can be achieved with a model parameterised in the time-

domain. Thus the proposed tuning procedure is a simple and very effective way for 

controller tuning since no background in control theory is needed. 
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Note that the calculation of the filtered PID controller parameters is based on the fact that 

the filter time constant is given a priori. In practice this is often not entirely true, since the 

usual way is rather to define the ratio (N) between the derivative time constant (TD=KD/KP) 

and the filter time constant: 

 
D D

F P F

T K

N

T K T

= = . (26) 

Typical values of N are 8 to 20 (Åström & Hägglund, 1995).  

The controller parameters can be calculated iteratively by first choosing TF=0 (or any 

relatively small positive value) and then calculating the controller parameters by using 

expression (25). In the second iteration, the filter time constant can be calculated from (26), 

as follows: 

 
D

F

P

K

T

K N

= . (27) 

The moments are recalculated according to expression (24) and the new controller 

parameters from (25). By performing a few more iterations, quite accurate results can be 

obtained for the a priori chosen ratio N. 

The PI controller parameters can be calculated in a similar manner to those of the PID 

controller by choosing KD=0. Since a filter is usually not needed in a PI controller (TF=0), the 

original moments (Ai) are applied in the calculation. Repeating the same procedure as 

before and solving the first two equations in (9), the following PI controller parameters are 

obtained (Vrančić et al., 2001a):  
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=
     
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. (28) 

Note that the vectors and matrices in (28) are just sub-vectors and sub-matrices of 

expression (25). Similarly, the I (integral-term only) controller gain is the following: 

 

1

0.5

I
K

A

= . (29) 

The proportional (P) controller gain can be obtained by fixing KI=0 and KD=0, repeating the 

procedure and solving the first equation in (9): 
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2

0 2 1

2

0 1 0 2

2

2
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A A A

K

A A A A

−

=

−

. (30) 

However, condition (6) is not satisfied, since proportional controllers cannot achieve closed-

loop gain equal to one at lower frequencies. Therefore the proportional controller does not 

entirely fulfil the MO conditions and will not be used in any further derivations.  

In some cases, the controller parameters have to be re-tuned for certain practical reasons. In 

particular, when tuning the PID controllers for the first-order or the second-order process, 

the controller gain is theoretically infinite. In practice (when there is process noise), the 
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Therefore, GC(s) (3) simplifies into the “schoolbook” PID controller without a filter: 
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Since a filter is considered as a part of the process, the measured moments (18) should be 

changed accordingly. One solution to calculate any new moments is to filter the process 

output signal: 
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and use signal yF(t) instead of y(t) in expression (17). However, a much simpler solution is to 

recalculate the moments as follows: 
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where Ai* denote the moments of the process with included the filter (21). 

The parameters ei and fi in expression (8) can be obtained by placing expressions (22) and 

(15) (by replacing moments Ai with Ai*) into (5). By solving the first three equations in (9), 

the following PID controller parameters are obtained (Vrančić et al., 2001a): 
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The expression for the PID controller parameters is now much simpler when compared to 

expressions (12)-(14). There are several other advantages to using expression (25) instead of 

expressions (12)-(14) for the calculation of the PID controller parameters.  

First, only the steady-state process gain A0=KPR and five moments (A1 to A5) instead of the 

12 transfer function parameters (KPR, a1..a5, b1..b5, and Tdelay) are needed as input data. 

Second, the expression for KI, KP, and KD is simplified, which makes it more transparent and 

simpler to handle. 

Third, the moments A1 to A5 can be calculated from the process time-response using 

numerical integration, whilst the gain A0=KPR can be determined from the steady-state value 

of the process steady-state change in the usual way. This procedure replaces the much more 

demanding algorithm for the estimation of the transfer function parameters. 

In addition, it is important to note that the mapping of expressions (12)-(14) into expression 

(25) results in exact (rather than approximate) controller parameters. This means that the 

frequency-domain control criterion can be achieved with a model parameterised in the time-

domain. Thus the proposed tuning procedure is a simple and very effective way for 

controller tuning since no background in control theory is needed. 
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Note that the calculation of the filtered PID controller parameters is based on the fact that 

the filter time constant is given a priori. In practice this is often not entirely true, since the 

usual way is rather to define the ratio (N) between the derivative time constant (TD=KD/KP) 

and the filter time constant: 
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Typical values of N are 8 to 20 (Åström & Hägglund, 1995).  

The controller parameters can be calculated iteratively by first choosing TF=0 (or any 

relatively small positive value) and then calculating the controller parameters by using 

expression (25). In the second iteration, the filter time constant can be calculated from (26), 

as follows: 
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The moments are recalculated according to expression (24) and the new controller 

parameters from (25). By performing a few more iterations, quite accurate results can be 

obtained for the a priori chosen ratio N. 

The PI controller parameters can be calculated in a similar manner to those of the PID 

controller by choosing KD=0. Since a filter is usually not needed in a PI controller (TF=0), the 

original moments (Ai) are applied in the calculation. Repeating the same procedure as 

before and solving the first two equations in (9), the following PI controller parameters are 

obtained (Vrančić et al., 2001a):  
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Note that the vectors and matrices in (28) are just sub-vectors and sub-matrices of 

expression (25). Similarly, the I (integral-term only) controller gain is the following: 
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The proportional (P) controller gain can be obtained by fixing KI=0 and KD=0, repeating the 

procedure and solving the first equation in (9): 
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However, condition (6) is not satisfied, since proportional controllers cannot achieve closed-

loop gain equal to one at lower frequencies. Therefore the proportional controller does not 

entirely fulfil the MO conditions and will not be used in any further derivations.  

In some cases, the controller parameters have to be re-tuned for certain practical reasons. In 

particular, when tuning the PID controllers for the first-order or the second-order process, 

the controller gain is theoretically infinite. In practice (when there is process noise), the 
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calculated controller gain can have a very high positive or negative value. In this case, the 

controller gain should be limited to some acceptable value, which would depend on the 

controller and the process limitations (Vrančić et al., 1999). Note that the sign of the 

proportional gain is usually the same to the sign of the process gain: 

 ( ) ( )sgn sgn
P PR

K K= . (31) 

The recommended values of the proportional gain are: 
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1 10

P
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A A

≤ ≤ . (32) 

The remaining two controller parameters can now be calculated according to the limited 

(fixed) controller gain from expression (25). If the chosen controller gain is: 
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then: 
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and: 
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 
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. (35) 

If expression (33) is not true:  

 0
D

K = . (36) 

When limiting the proportional gain of the PI controller, only Eq. (34) is used. Note that 

proposed re-tuning can also be used in cases when a slower and more robust controller 

should be designed (by decreasing KP), or if a faster but more oscillatory response is 

required (by increasing KP).   

The PID controller tuning procedure, according to the MOMI method, can therefore proceed 

as follows: 

• If the process model is not known a priori, modify the steady-state process by changing 

the process input signal. 

• Find the steady-state process gain KPR=A0 and moments A1-A5 by using numerical 

integration (summation) from the beginning to the end of the process time response 

according to expressions (17) and (18). If the process model is known, calculate the 

moments from expression (20). 

• Fix the filter time constant TF to some desired value and calculate the PID controller 

parameters from (25). If needed, change the filter time constant and recalculate the PID 

controller parameters. If the proportional gain KP is too high or has a different sign to 
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the process gain (KPR=A0), set KP manually to some desired value (32) and recalculating 

remaining parameters according to expressions (33)-(36). 

• The PI or I parameters can be calculated from expressions (28) or (29), respectively. 

The proposed tuning procedure will be illustrated by the following process models: 
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 (37) 

The process models have been chosen in order to cover a range of different processes, 

including higher-order processes, highly non-minimum phase processes and dominantly 

delayed processes. The models have the same process gain (A0=1) and the first moment A1=6. 

If the process transfer function is not known in advance, the moments (areas) can be calculated 

according to the time-domain approach given above. The ramp-like input signal has been 

applied to the process inputs. The process open-loop responses are shown in Figure 4. 
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Fig. 4. The process input (--) and the process output (__) signals during an open-loop 

experiment for processes GP1 to GP4.  
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calculated controller gain can have a very high positive or negative value. In this case, the 

controller gain should be limited to some acceptable value, which would depend on the 

controller and the process limitations (Vrančić et al., 1999). Note that the sign of the 

proportional gain is usually the same to the sign of the process gain: 

 ( ) ( )sgn sgn
P PR

K K= . (31) 

The recommended values of the proportional gain are: 
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If expression (33) is not true:  

 0
D

K = . (36) 

When limiting the proportional gain of the PI controller, only Eq. (34) is used. Note that 

proposed re-tuning can also be used in cases when a slower and more robust controller 

should be designed (by decreasing KP), or if a faster but more oscillatory response is 

required (by increasing KP).   

The PID controller tuning procedure, according to the MOMI method, can therefore proceed 

as follows: 

• If the process model is not known a priori, modify the steady-state process by changing 

the process input signal. 

• Find the steady-state process gain KPR=A0 and moments A1-A5 by using numerical 

integration (summation) from the beginning to the end of the process time response 

according to expressions (17) and (18). If the process model is known, calculate the 

moments from expression (20). 

• Fix the filter time constant TF to some desired value and calculate the PID controller 

parameters from (25). If needed, change the filter time constant and recalculate the PID 

controller parameters. If the proportional gain KP is too high or has a different sign to 
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the process gain (KPR=A0), set KP manually to some desired value (32) and recalculating 

remaining parameters according to expressions (33)-(36). 

• The PI or I parameters can be calculated from expressions (28) or (29), respectively. 

The proposed tuning procedure will be illustrated by the following process models: 
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The process models have been chosen in order to cover a range of different processes, 

including higher-order processes, highly non-minimum phase processes and dominantly 

delayed processes. The models have the same process gain (A0=1) and the first moment A1=6. 

If the process transfer function is not known in advance, the moments (areas) can be calculated 

according to the time-domain approach given above. The ramp-like input signal has been 

applied to the process inputs. The process open-loop responses are shown in Figure 4. 
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experiment for processes GP1 to GP4.  
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The moments are calculated by using expressions (17) and (18) and the controller 

parameters by using expressions (25), (28) and (29). The calculated parameters are given in 

Table 1.  

 

 Moments (areas) PID PI I 

 A1 A2 A3 A4 A5 KI KP KD TF KI KP KI 

GP1 6 23 72 201 521 0.31 1.45 1.76 0.2 0.17 0.55 0.08 

GP2 6 21 56 126 252 0.22 0.87 0.96 0.2 0.15 0.4 0.08 

GP3 6 11 16 21 26 0.12 0.25 0.13 0.2 0.11 0.16 0.08 

GP4 6 18.5 39.3 65.4 91.3 0.16 0.49 0.45 0.2 0.13 0.27 0.08 

Table 1. The values of moments and controller parameters for processes (37) when using a 

time-domain approach (by applying multiple integration of the process time-response). 

The closed-loop responses for all the processes, when using different types of controllers 

tuned by the MOMI method, are shown in Figure 5. As can be seen, the responses are stable 

and relatively fast, all according to the MO tuning criteria. 
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Fig. 5. Closed-loop responses for processes GP1 to GP4 when using PID controller (__), PI 

controller (--) and I controller (-.-) tuned by the MOMI method.  

The results can be verified by calculating the moments and controller parameters directly 

from the process transfer functions (37). The moments can be calculated from expression 

(20). The controller parameters are calculated as before. The obtained parameters are given 
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in Table 2. It can be seen that the values are practically equivalent, so the closed-loop 

responses are the same to those shown in Figure 5. 

 

 Moments (areas) PID PI I 

 A1 A2 A3 A4 A5 KI KP KD TF KI KP KI 

GP1 6 23 72 201 522 0.31 1.44 1.76 0.2 0.17 0.55 0.08 

GP2 6 21 56 126 252 0.22 0.87 0.96 0.2 0.15 0.4 0.08 

GP3 6 11 16 21 26 0.12 0.25 0.13 0.2 0.11 0.16 0.08 

GP4 6 18.5 39.3 65.4 91.4 0.16 0.49 0.45 0.2 0.13 0.27 0.08 

Table 2. The values of moments and controller parameters for processes (37) by using direct 

calculation from the process model. 

The MOMI tuning method will be illustrated by the three-water-column laboratory setup 

shown in Figure 6. It consists of two water pumps, a reservoir and three water columns. 

The water columns can be connected by means of electronic valves. In our setup, two 

water columns have been used (R1 and R2), as depicted in the block diagram shown in 

Figure 7.  

 

 

 

 

 

Fig. 6. Picture of the laboratory hydraulic setup (taken in stereoscopic side-by-side format).  

The selected control loop consists of the reservoir R0, the pump P1, an electronic valve V1 

(open), a valve V3 (partially open) and water columns R1 and R2. The valve V2 is closed and 

the pump P2 is switched off. The process input is the voltage on pump P1 and the process 

output is the water level in the second tank (h2), measured by the pressure to voltage 

transducer. The actual process input and output signals are voltages measured by an A/D 

and a D/A converter (NI USB 6215) via real-time blocks in Simulink (Matlab). 
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Fig. 7. Block diagram of the laboratory hydraulic setup.  

First, the linearity of the system was checked by applying several steps at the process input. 

The process input and output responses are shown in Figure 8. It can be seen that both – the 

process steady-state gain and the time-constants – change according to the working point. In 

order to partially linearise the process, the square-root function has been placed between the 

controller output (u) and the process input (ur) signals: 

 10

r

u u= ⋅ , (38) 

The control output signal u is limited between values 0 and 10. The pump actually starts 

working when signal ur becomes higher than 1V. 

Note that artificially added non-linearity cannot ideally linearise the non-linearity of the 

process gain. Moreover, the process time constants still differ significantly at different 

working points. 

After applying the non-linear function (38), the open-loop process response has been 

measured (see Figure 9). The moments (areas) have been calculated by using expressions 

(17) and (18): 

      3 4 6 8

0 1 2 3 4 5
0.507, 33.9, 1.76 10 , 8.44 10 , 3.9 10 , 1.78 10A A A A A A= = = ⋅ = ⋅ = ⋅ = ⋅  (39) 
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Fig. 8. The process input and process output responses over the entire working region.  

The calculated PID controller parameters, for an a priori chosen filter parameter TF=1s, were 

the following (the proportional gain has been limited to the value KP=10/A0): 

   0.305, 19.7, 264
I P D

K K K= = =  (40) 
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Fig. 9. Process open-loop response.  
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First, the linearity of the system was checked by applying several steps at the process input. 

The process input and output responses are shown in Figure 8. It can be seen that both – the 

process steady-state gain and the time-constants – change according to the working point. In 

order to partially linearise the process, the square-root function has been placed between the 

controller output (u) and the process input (ur) signals: 
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u u= ⋅ , (38) 

The control output signal u is limited between values 0 and 10. The pump actually starts 

working when signal ur becomes higher than 1V. 

Note that artificially added non-linearity cannot ideally linearise the non-linearity of the 

process gain. Moreover, the process time constants still differ significantly at different 

working points. 

After applying the non-linear function (38), the open-loop process response has been 

measured (see Figure 9). The moments (areas) have been calculated by using expressions 

(17) and (18): 
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The calculated PID controller parameters, for an a priori chosen filter parameter TF=1s, were 

the following (the proportional gain has been limited to the value KP=10/A0): 
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The closed-loop response of the process with the controller was calculated in the previous 

step, as shown in Figure 10. At t=300s, the set-point has been changed from 1.2 to 1.5 and at 

t=900s it is returned back to 1.2. A step-like disturbance has been added to the process input 

at t=700s and t=1300s. It can be seen that the closed-loop response is relatively fast (when 

compared to the open-loop response) and without oscillations. 
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Fig. 10. The process closed-loop response in the hydraulic setup when using the PID 

controller tuned by the MOMI method.  

5. Disturbance-Rejection Magnitude Optimum (DRMO) tuning method 

The efficiency of the MOMI method has been demonstrated on several process models 

(Vrančić, 1995). The MO criteria, according to expressions (6) and (7), optimises the closed-

loop transfer function between the reference (r) and the process output (y). However, this 

may lead to the poor attenuation of load disturbances (Åström & Hägglund, 1995). The 

disturbance-rejection performance is particularly degraded when controlling lower-order 

processes.  
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Let us observe the disturbance-rejection performance of the following process models:  
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 (41) 

Two of them (GP3 and GP4) are the same as in the previous section (37) while we added two 

lower-order processes in order to clearly show the degraded disturbance-rejection 

performance. The moments and controller parameters for the chosen processes are given in 

Table 3. Note that the proportional gain has been limited to 10 for GP1 and GP2.  

 

 Moments (areas) PID PI I 

 A1 A2 A3 A4 A5 KI KP KD TF KI KP KI 

GP1 6 36 216 1296 7776 1.75 10 0 0 1.75 10 0.08 

GP2 6 27 108 405 1458 1.69 10 14.5 0.2 0.25 1 0.08 

GP3 6 21 56 126 252 0.22 0.87 0.96 0.2 0.15 0.4 0.08 

GP4 6 18.5 39.3 65.4 91.4 0.16 0.49 0.45 0.2 0.13 0.27 0.08 

Table 3. The values of the moments and controller parameters for processes (41) using the 

MOMI method. 

A step-like disturbance (d) has been applied to the process input (see Figure 1). The process 

output responses are shown in Figure 11. It is clearly seen that the closed-loop responses of 

the processes GP1 and GP2, when using the PI and the PID controllers, are relatively slow 

with visible “long tails” (exponential approaching to the reference).  

It is obvious that the MO criteria should be modified in order to achieve a more optimal 

disturbance rejection. The closed-loop transfer function between the disturbance (d) and the 

process output (y) is the following: 

 ( )
( )

( )

( )

( ) ( )1

P

CLD

C P

Y s G s

G s

D s G s G s

= =

+

 (42) 

However, the function GCLD (42) cannot be applied instead of GCL in expressions (6) and (7), 

since GCLD has zero gain in the steady-state (s=0). However, by adding integrator to function 

(42) and multiplying it with KI, it complies with the MO requirements (Vrančić et al., 2004b; 

2010): 

 ( ) ( )
( )

( ) ( )( )1

I PI

CLI CLD

C P

K G sK

G s G s

s s G s G s

= =

+

 (43) 

Therefore, in order to achieve optimal disturbance-rejection properties, the function GCLI 

should be applied instead of GCL in the MO criteria (6) and (7).  
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(Vrančić, 1995). The MO criteria, according to expressions (6) and (7), optimises the closed-

loop transfer function between the reference (r) and the process output (y). However, this 

may lead to the poor attenuation of load disturbances (Åström & Hägglund, 1995). The 
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s s G s G s

= =

+

 (43) 

Therefore, in order to achieve optimal disturbance-rejection properties, the function GCLI 

should be applied instead of GCL in the MO criteria (6) and (7).  
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However, the expression for the PID controller parameters – due to higher-order equations – 

is not analytic and the optimisation procedure should be used (Vrančić et al., 2010). Initially, 

the derivative gain KD is calculated from expression (25). As such, the proportional and 

integral term gains are calculated as follows (Vrančić et al., 2010): 
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The optimisation iteration steps consist of modifying the derivative gain KD and re-

calculating the remaining two parameters from (44) until the following expression becomes 

true (Vrančić et al., 2010): 
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Any method that employs an iterative search for a numeric solution – that solves the system 

of nonlinear equations – can be applied. However, in Vrančić et al. (2004a) it was shown that 

the initially calculated parameters of the PID controller are usually very close to optimal 

ones. Therefore, a simplified (sub-optimal) solution is to use only the initial PID parameters. 

In the following text, the simplified version will be applied and denoted as the DRMO 

tuning method. 

Note that the PI controller parameters do not require any optimisation procedure. The 

derivative gain is fixed at KD=0 and the PI controller parameters are then calculated from 

expression (44). 

The PID controller tuning procedure, according to the DRMO method, can therefore 

proceed as follows: 

• If the process model is not known a priori, modify the process steady-state by changing 

the process input signal. 

• Find the steady-state process gain KPR=A0 and moments A1-A5 by using numerical 

integration (summation) from the beginning to the end of the process step response 

according to expressions (17) and (18). If the process model is defined, calculate the gain 

and moments from expression (20). 

• Fix the filter time constant TF to some desired value and calculate moments and the 

derivative gain KD from (24) and (25). Calculate the remaining controller parameters 

from expression (44). If the value α=0 or if the proportional gain KP is too high or has a 
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different sign to the process gain (KPR=A0), set KP manually to some more suitable value 

and then recalculate KI from (44). 

• The PI controller parameters can be calculated by fixing KD=0 and using expression 

(44). If the value α=0 or if the proportional gain KP is too high or has a different sign to 

the process gain (KPR=A0), set KP manually to some more suitable value and then 

recalculate KI from (44). 
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Fig. 11. Closed-loop responses to step-like input disturbance (d) for processes GP1 to GP4 

when using a PID controller (__), a PI controller (--) and an I controller (-.-) tuned by the 

MOMI method.  

The proposed DRMO tuning procedure will be illustrated by the same four process models 

(41), as before. The PID and PI controllers’ parameters are calculated by the procedure given 

above. Note that the I controller parameters remain the same as with the MOMI method 

(29). The parameters for all of the controllers are given in Table 4. 

  

 Moments (areas) PID PI I 

 A1 A2 A3 A4 A5 KI KP KD TF KI KP KI 

GP1 6 36 216 1296 7776 10.1 10 0 0 1.75 10 0.08 

GP2 6 27 108 405 1458 2.92 10 14.5 0.2 0.25 1 0.08 

GP3 6 21 56 126 252 0.27 0.97 0.96 0.2 0.17 0.43 0.08 

GP4 6 18.5 39.3 65.4 91.4 0.18 0.52 0.45 0.2 0.14 0.29 0.08 

Table 4. The values of moments and controller parameters for processes (41) using the 

DRMO method. 
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However, the expression for the PID controller parameters – due to higher-order equations – 
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The optimisation iteration steps consist of modifying the derivative gain KD and re-

calculating the remaining two parameters from (44) until the following expression becomes 

true (Vrančić et al., 2010): 
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Any method that employs an iterative search for a numeric solution – that solves the system 

of nonlinear equations – can be applied. However, in Vrančić et al. (2004a) it was shown that 

the initially calculated parameters of the PID controller are usually very close to optimal 

ones. Therefore, a simplified (sub-optimal) solution is to use only the initial PID parameters. 

In the following text, the simplified version will be applied and denoted as the DRMO 

tuning method. 

Note that the PI controller parameters do not require any optimisation procedure. The 

derivative gain is fixed at KD=0 and the PI controller parameters are then calculated from 

expression (44). 

The PID controller tuning procedure, according to the DRMO method, can therefore 

proceed as follows: 

• If the process model is not known a priori, modify the process steady-state by changing 

the process input signal. 

• Find the steady-state process gain KPR=A0 and moments A1-A5 by using numerical 

integration (summation) from the beginning to the end of the process step response 

according to expressions (17) and (18). If the process model is defined, calculate the gain 

and moments from expression (20). 

• Fix the filter time constant TF to some desired value and calculate moments and the 

derivative gain KD from (24) and (25). Calculate the remaining controller parameters 

from expression (44). If the value α=0 or if the proportional gain KP is too high or has a 
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different sign to the process gain (KPR=A0), set KP manually to some more suitable value 

and then recalculate KI from (44). 

• The PI controller parameters can be calculated by fixing KD=0 and using expression 

(44). If the value α=0 or if the proportional gain KP is too high or has a different sign to 

the process gain (KPR=A0), set KP manually to some more suitable value and then 

recalculate KI from (44). 
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Fig. 11. Closed-loop responses to step-like input disturbance (d) for processes GP1 to GP4 

when using a PID controller (__), a PI controller (--) and an I controller (-.-) tuned by the 

MOMI method.  

The proposed DRMO tuning procedure will be illustrated by the same four process models 

(41), as before. The PID and PI controllers’ parameters are calculated by the procedure given 

above. Note that the I controller parameters remain the same as with the MOMI method 

(29). The parameters for all of the controllers are given in Table 4. 

  

 Moments (areas) PID PI I 

 A1 A2 A3 A4 A5 KI KP KD TF KI KP KI 

GP1 6 36 216 1296 7776 10.1 10 0 0 1.75 10 0.08 

GP2 6 27 108 405 1458 2.92 10 14.5 0.2 0.25 1 0.08 

GP3 6 21 56 126 252 0.27 0.97 0.96 0.2 0.17 0.43 0.08 

GP4 6 18.5 39.3 65.4 91.4 0.18 0.52 0.45 0.2 0.14 0.29 0.08 

Table 4. The values of moments and controller parameters for processes (41) using the 

DRMO method. 
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A step-like disturbance (d) has been applied to the process input. The process output 

responses, when using the PID and the PI controllers, are shown in Figures 12 and 13. It can 

be clearly seen that the closed-loop performance for processes GP1 and GP2 is now improved 

when compared with the original MOMI method.  

However, improved disturbance-rejection has its price. Namely, the optimal controller 

parameters for disturbance-rejection are usually not optimal for reference following. 

Deterioration in tracking performance, in the form of larger overshoots, can be expected for 

the lower-order processes. A possible solution for improving deteriorated tracking 

performance, while retaining the obtained disturbance-rejection performance, is to use a 2-

DOF PID controller, as shown in Figure 1. Namely, it has been shown that tracking 

performance can be optimised by choosing b=c=0 (Vrančić et al., 2010). The closed-loop 

responses on a step-wise reference changes and input disturbances (at the mid-point of the 

experiment) are shown in Figures 14 and 15. It can be seen that the overshoots are reduced 

when using b=c=0 while retaining disturbance-rejection responses. 
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Fig. 12. A comparison of process output disturbance-rejection performance for processes GP1 

to GP4 when using a PID controller tuned by the MOMI (__) and DRMO (--) tuning methods.   
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Fig. 13. A comparison of process output disturbance rejection performance for processes GP1 

to GP4 when using a PI controller tuned the by MOMI (__) and DRMO (--) tuning methods.  
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performance can be optimised by choosing b=c=0 (Vrančić et al., 2010). The closed-loop 

responses on a step-wise reference changes and input disturbances (at the mid-point of the 

experiment) are shown in Figures 14 and 15. It can be seen that the overshoots are reduced 

when using b=c=0 while retaining disturbance-rejection responses. 

 

 

 

 

 

0 10 20 30 40
−0.02

0

0.02

0.04

0.06

0.08

Process G
P1

: Closed−loop responses

MOMI method
DRMO method

0 10 20 30 40
−0.02

0

0.02

0.04

0.06

0.08

Process G
P2

: Closed−loop responses

MOMI method
DRMO method

0 10 20 30 40
−0.5

0

0.5

1

1.5

Process G
P3

: Closed−loop responses

MOMI method
DRMO method

0 10 20 30 40
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Process G
P4

: Closed−loop responses

time [s]

MOMI method
DRMO method

 

 

 

Fig. 12. A comparison of process output disturbance-rejection performance for processes GP1 

to GP4 when using a PID controller tuned by the MOMI (__) and DRMO (--) tuning methods.   

 

Magnitude Optimum Techniques for PID Controllers 

 

95 

 

 

 

 

 

 

 

 

 

 

 

 

0 10 20 30 40
−0.02

0

0.02

0.04

0.06

0.08

Process G
P1

: Closed−loop responses

MOMI method
DRMO method

0 10 20 30 40
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Process G
P2

: Closed−loop responses

MOMI method
DRMO method

0 10 20 30 40
−0.5

0

0.5

1

1.5

Process G
P3

: Closed−loop responses

MOMI method
DRMO method

0 10 20 30 40
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Process G
P4

: Closed−loop responses

time [s]

MOMI method
DRMO method

 

 

 

 

 

 

 

 

 

 

Fig. 13. A comparison of process output disturbance rejection performance for processes GP1 

to GP4 when using a PI controller tuned the by MOMI (__) and DRMO (--) tuning methods.  



 

Introduction to PID Controllers – Theory, Tuning and Application to Frontier Areas 

 

96

 

 

 

 

 

 

 

 

 

 

 

 

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Process G
P1

 output: Closed−loop response

b=0
b=1

0 20 40 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Process G
P2

 output: Closed−loop response

b=0
b=1

0 20 40 60 80
0

0.5

1

1.5

2

Process G
P3

 output: Closed−loop response

b=0
b=1

0 20 40 60 80
0

0.5

1

1.5

2

Process G
P4

 output: Closed−loop response

time [s]

b=0
b=1

 

 

 

 

 

 

 

 

Fig. 14. Process output tracking and disturbance-rejection performance for processes GP1 to 

GP4 when using a PID controller tuned by the DRMO tuning method for the controller 

parameters b=c=0 and b=c=1.  
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Fig. 15. Process output tracking and disturbance-rejection performance for processes GP1 to 

GP4 when using a PI controller tuned by the DRMO tuning method for the controller 

parameters b=c=0 and b=c=1.  

The DRMO tuning method will be illustrated on the same three-water-column laboratory 

setup, described in the previous section. According to the previously calculated values of 

moments (39), the PID controller parameters are the following (the proportional gain has 

been limited to value KP=10/A0) for the chosen TF=1s: 

   0.59, 19.7, 264
I P D

K K K= = =  (47) 

The closed-loop responses, when setting the parameter b=c=0.1, are shown in Figure 16. 

Similarly, as with the MOMI method, the set-point has been changed from 1.2 to 1.5 at 

t=300s and is returned to 1.2 at t=900s. A step-like disturbance has been added to the process 

input at t=700s and t=1300s. The disturbance rejection performance is now improved when 

compared with Figure 10. A comparison of responses obtained by the MOMI and the 

DRMO methods with PID controllers is shown in Figure 17. It is clear that the tracking 

response is slower and with a smaller overshoot, while the disturbance-rejection is 

significantly improved.  
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The DRMO tuning method will be illustrated on the same three-water-column laboratory 

setup, described in the previous section. According to the previously calculated values of 

moments (39), the PID controller parameters are the following (the proportional gain has 

been limited to value KP=10/A0) for the chosen TF=1s: 
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The closed-loop responses, when setting the parameter b=c=0.1, are shown in Figure 16. 

Similarly, as with the MOMI method, the set-point has been changed from 1.2 to 1.5 at 

t=300s and is returned to 1.2 at t=900s. A step-like disturbance has been added to the process 

input at t=700s and t=1300s. The disturbance rejection performance is now improved when 

compared with Figure 10. A comparison of responses obtained by the MOMI and the 

DRMO methods with PID controllers is shown in Figure 17. It is clear that the tracking 

response is slower and with a smaller overshoot, while the disturbance-rejection is 
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Fig. 16. The process closed-loop response in the hydraulic setup when using the PID 

controller tuned by the DRMO method.  
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Fig. 17. A comparison of the process closed-loop responses in the hydraulic setup with PID 

controllers tuned by the MOMI and DRMO methods.  

6. Conclusion  

The purpose of this Chapter is to present tuning methods for PID controllers which are 

based on the Magnitude Optimum (MO) method. The MO method usually results in fast 

and stable closed-loop responses. However, it is based on demanding criteria in the 

frequency domain, which requires the reliable estimation of a large number of the process 

parameters. In practice, such high demands cannot often be satisfied.  

It was shown that the same MO criteria can be satisfied by performing simple time-domain 

experiments on the process (steady-state change of the process). Namely, the process can be 

parameterised by the moments (areas) which can be simply calculated from the process 

steady-state change by means of repetitive integrations of time responses. Hence, the 

method is called the “Magnitude Optimum Multiple Integration” (MOMI) method. The 

measured moments can be directly used in the calculation of the PID controller parameters 

without making any error in comparison with the original MO method. Besides this, from 

the time domain responses, the process moments can also be calculated from the process 

transfer function (if available). Therefore, the MOMI method can be considered to be a 

universal method which can be used either with the process model or the process time-

responses. 
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and stable closed-loop responses. However, it is based on demanding criteria in the 

frequency domain, which requires the reliable estimation of a large number of the process 

parameters. In practice, such high demands cannot often be satisfied.  

It was shown that the same MO criteria can be satisfied by performing simple time-domain 

experiments on the process (steady-state change of the process). Namely, the process can be 

parameterised by the moments (areas) which can be simply calculated from the process 

steady-state change by means of repetitive integrations of time responses. Hence, the 

method is called the “Magnitude Optimum Multiple Integration” (MOMI) method. The 

measured moments can be directly used in the calculation of the PID controller parameters 

without making any error in comparison with the original MO method. Besides this, from 

the time domain responses, the process moments can also be calculated from the process 

transfer function (if available). Therefore, the MOMI method can be considered to be a 

universal method which can be used either with the process model or the process time-

responses. 
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The MO (and therefore the MOMI) method optimises the closed-loop tracking performance 

(from the reference to the process output). This may lead to a degraded disturbance-

rejection performance, especially for lower-order processes. In order to improve the 

disturbance-rejection performance, the MO criteria have been modified. The modification 

was based on optimising the integral of the closed-loop transfer function from the process 

input (load disturbance) to the process output. Hence, the method is called the 

“Disturbance-Rejection Magnitude Optimum” (DRMO) method.  

The MOMI and the DRMO tuning methods have been tested on several process models 

and on one hydraulic laboratory setup. The results of the experiments have shown that 

both methods give stable and fast closed-loop responses. The MOMI method optimises 

tracking performance while the DRMO method improves disturbance-rejection 

performance. By using a two-degrees-of-freedom (2-DOF) PID controller structure, the 

optimal disturbance-rejection and improved tracking performance have been obtained 

simultaneously.  

The MOMI and DRMO methods are not limited to just PID controller structures or stable 

(self-regulatory) processes. The reader can find more information about different controller 

structures and types of processes in Vrančić (2008), Vrančić & Huba (2011), Vrečko et al., 

(2001), Vrančić et al., (2001b) and in the references therein. 

The drawback of the MO method (and therefore the MOMI method and, to an extent, the 

DRMO method) is that stability is not guaranteed if the controller is of a lower-order than 

the process. Therefore, unstable closed-loop responses may be obtained on some processes 

containing stronger zeros or else complex poles. Although the time-domain implementation 

of the method is not very sensitive to high-frequency process noise (due to multiple 

integrations of the process responses), the method might give sub-optimal results if low-

frequency disturbances are present during the measurement of the process steady-state 

change. 
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1. Introduction 
Batch and continuous systems are of multivariable in nature. A multivariable system is 
one in which one input not only affects its own outputs but also one or more other 
outputs in the plant. Multivariable processes are difficult to control due to the presence of 
the interactions. Increase in complexity and interactions between inputs and outputs yield 
degraded process behavior. Such processes are found in process industries as they arise 
from the design of plants that are subject to rigid product quality specifications, are more 
energy efficient, have more material integration, and have better environmental 
performance. Most of the unit operations in process industry require control over product 
rate and quality by adjusting one/more inputs to the process; thus making multivariable 
systems. For example, chemical reactors, distillation column, heat exchanger, fermenters 
are typical multivariable processes in industry. In case of chemical reactor, the output 
variables are product composition and temperature of reaction mass. The input variables 
are reactant or feed flow rate and energy added to the system by heating/ cooling 
through jackets. Product composition can be controlled by manipulating feed rate 
whereas rate of reaction (thereby temperature) can be controlled by changing addition/ 
removal rate of energy. But, while controlling product composition, temperature is 
affected; similarly, while controlling temperature of reaction mass, the composition gets 
affected, thus, exhibiting interactions between input and output variables. Distillation is 
widely used for separating components from mixture in refineries. Composition of top 
and bottom products are controlled by adjusting energy input to the column. A common 
scheme is to use reflux flow to control top product composition whilst heat input is used 
to control bottom product composition. However, changes in reflux also affect bottom 
product composition and component fractions in the top product stream are also affected 
by changes in heat input. Hence, loop interactions occur in composition control of 
distillation column. Thus, unless proper precautions are taken in terms of control system 
design, loop interactions can cause performance degradation and instability. Control 
system design needs availability of linear models for the multivariable system. 
The basic and minimum process model for multivariable system is considered here as 2x2 
system. The outputs of the loops are given by 
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where yi are system outputs and ui are the system inputs, G is system transfer functions. 
Eqn (1) can be expressed as Py G u where 
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In order to achieve desired quality, specified output characteristics at the cost of spending 
optimum inputs one needs to design a controller and run the plant under closed loop so that 
optimal production of product under safe operation. The first thing we need is to select 
input-output pairs, i.e., which output should be controlled by which input? This needs 
knowledge in control structure selection or interaction analysis. In the next section, a brief 
state of art on interaction analysis is presented. 
Relative gain array (RGA) (Bristol 1966) is the most discussed method for analyzing 
interactions and it is based on steady state gain information of MIMO processes. Control 
loops should have input-output pairs which give positive relative gains that have values 
which are as close as unity as possible. It is dependent on process models, independent of 
scaling of inputs and outputs and can include all ways of pairing in a single matrix. 
Niederlinski index (NI) is a useful tool to analyse interactions and stability of the control 
loop pairings determined using process gain matrix. NI is found by the following formula, 
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 where each element of GP is rational and is openloop stable. The values of 

NI need to be positive. A negative value of NI will imply that the system is un-stable. Ni is 
used to check if the system (more than 2x2) is unstable or not. NI will detect instability 
introduced by closing the other control loops. Generally, NI is not used for systems with 
time delays. Any loop pairing is unacceptable if it leads to a control system conguration for 
which the NI is negative. But both RGA & NI do not provide dynamic information on the 
process transients. They do not give information on change in in/op pairing for instances 
when there is a sudden load disturbance. Singular value decomposition (SVD) is a useful 
tool to determine whether a system will be prone to control loop interactions resulting in 
sensitivity problems that rises from model mismatch in process gains. SVD considers 
directional changes in the disturbances. SVD is applied to steady state gain matrix that is 
decomposed into product of three matrices,  

TS U V  where U is matrix of normalized eigen vectors of T
PGG ,  is diagonal matrix of 

eigenvalues and V is matrix of normalized eigenvectors of T
P PG G The condition number 

(CN) is defined as ratio between maximum and minimum eigenvalues. Generally if the CN 
< 50 then the system is not prone to sensitivity problems (a small error in process gain will 
not cause a large error in the controller’s reactions). The greater the CN value, the harder it 
is for the system in question to be decoupled. An ideal system would have a CN number of 
one, where each control variable controls a single distinct output variable. CN value tells us 
how easy it is to decouple a system. Though SVD has good geometric interpretation in terms 
of selection of measurement and pairing of variables, SVD depends on input-output scaling. 
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Moreover, with weak interactions and with large dimensional systems they induce to go for 
more criteria for selection of pairs. Morari resiliency index (MRI) is also used to select in/out 
pairs.  ( )PMRI G j  where  is eigenvalue. The MRI is the minimum singular value (g) 
of the plant transfer function matrix G(iw). The set of  manipulated variables that gives the 
largest minimum singular value over the frequency range of interest is the best. The MRI is a 
measure of the inherent ability of the process (control structure) to handle disturbances, 
model plant mismatches, changes in operating conditions, etc. The larger the value of MRI, the 
more resilient the control structure. Dynamic Relative Gain Array (DRGA) is defined to extend 
the RGA notion to non-zero frequencies. The RGA provides only limited knowledge about 
when to use multivariable controllers and gives no indication of how to choose multivariable 
controller structures. A somewhat different approach for investigating channel interaction was 
therefore employed by Conley and Salgado (2000) and Salgado and Conley (2004) when 
considering observability and controllability gramians in so called Participation Matrices (PM). 
In a similar approach Wittenmark and Salgado (2002) introduced the Hankel Interaction Index 
Array (HIIA). These gramian based interaction measures seem to overcome most of the 
disadvantages of the RGA. One key property of these is that the whole frequency range is 
taken into account in one single measure. Furthermore, these measures seem to give 
appropriate suggestions for controller structures selection. The use of the system H2 norm as a 
base for an interaction measure has been proposed by Birk and Medvedev (2003) as an 
alternative to the HIIA. But, dynamic simulation is a powerful tool to be used to test the 
viability of a control scheme during various process disturbances. Controllers for MIMO 
systems can be of either multiloop (controllers are designed only for diagonal elements of 
process TF) or multivariable (controllers are designed for all the elements of the MIMO TF). 
Multiloop control scheme has an edge over multivariable as the former can work even if a 
single loop fails. In presence of interactions between input/output, the process need to be 
decoupled and then multiloop controllers can be designed. When interaction effects produce a 
significant deterioration in control system performance, decoupling control should be 
considered. One of the most powerful and simplest ways of reducing or eliminating 
interaction is by altering manipulated and / or controlled variables. Improvement of closed-
loop performance needs proper tuning of controller parameters that requires process model 
structure and estimation of respective parameters. There are many methods to select 
input/output pairs or to design control structures, design control strategy (either PID or IMC 
or predictive or heuristics etc.) and tuning of controller parameters in literature. But because of 
hazy pictures on above selections, till today, it is difficult to choose correct pairs, carryout 
interaction analysis and choose tuning rules. Thus the aim of this chapter is to bring out a clear 
picture of identifying process parameters and designing controller for MIMO systems. The rest 
of the chapter is carried out as follows: section 2 discusses identification methods of 
multivariable systems. Interaction analysis is explained in section 3. Control structure selection 
and determination of input/output pairs are given in section 4. Tuning of controllers is 
presented in section 5. Stability analysis for multivariable systems is provided in section 6. At 
the end, conclusion is drawn. 

2. System identification  
Most of the chemical and bio-chemical processes are multivariable in nature, having more 
than one input and outputs. Estimation of process parameters is a key element in 
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Moreover, with weak interactions and with large dimensional systems they induce to go for 
more criteria for selection of pairs. Morari resiliency index (MRI) is also used to select in/out 
pairs.  ( )PMRI G j  where  is eigenvalue. The MRI is the minimum singular value (g) 
of the plant transfer function matrix G(iw). The set of  manipulated variables that gives the 
largest minimum singular value over the frequency range of interest is the best. The MRI is a 
measure of the inherent ability of the process (control structure) to handle disturbances, 
model plant mismatches, changes in operating conditions, etc. The larger the value of MRI, the 
more resilient the control structure. Dynamic Relative Gain Array (DRGA) is defined to extend 
the RGA notion to non-zero frequencies. The RGA provides only limited knowledge about 
when to use multivariable controllers and gives no indication of how to choose multivariable 
controller structures. A somewhat different approach for investigating channel interaction was 
therefore employed by Conley and Salgado (2000) and Salgado and Conley (2004) when 
considering observability and controllability gramians in so called Participation Matrices (PM). 
In a similar approach Wittenmark and Salgado (2002) introduced the Hankel Interaction Index 
Array (HIIA). These gramian based interaction measures seem to overcome most of the 
disadvantages of the RGA. One key property of these is that the whole frequency range is 
taken into account in one single measure. Furthermore, these measures seem to give 
appropriate suggestions for controller structures selection. The use of the system H2 norm as a 
base for an interaction measure has been proposed by Birk and Medvedev (2003) as an 
alternative to the HIIA. But, dynamic simulation is a powerful tool to be used to test the 
viability of a control scheme during various process disturbances. Controllers for MIMO 
systems can be of either multiloop (controllers are designed only for diagonal elements of 
process TF) or multivariable (controllers are designed for all the elements of the MIMO TF). 
Multiloop control scheme has an edge over multivariable as the former can work even if a 
single loop fails. In presence of interactions between input/output, the process need to be 
decoupled and then multiloop controllers can be designed. When interaction effects produce a 
significant deterioration in control system performance, decoupling control should be 
considered. One of the most powerful and simplest ways of reducing or eliminating 
interaction is by altering manipulated and / or controlled variables. Improvement of closed-
loop performance needs proper tuning of controller parameters that requires process model 
structure and estimation of respective parameters. There are many methods to select 
input/output pairs or to design control structures, design control strategy (either PID or IMC 
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2. System identification  
Most of the chemical and bio-chemical processes are multivariable in nature, having more 
than one input and outputs. Estimation of process parameters is a key element in 
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multivariable controller design. Thus, as better performance is achieved by model based 
tuning algorithms, estimation of model structures are necessary from either open-loop or 
closed-loop data. This is due to the fact that tuning rules are based on model structures & 
parameters. As their exist advantages and disadvantages in both of these identification 
strategies, for example, open-loop responses may show unstable behavior with certain 
inputs, whereas, closed-loop strategy needs more excitation to yield observable response. 
Here we use mostly used methods of identification for multivariable systems. Least square 
method (Tungnait 1998) is an old but reliable technique that was in use to estimate 
multivariable parameters of open-loop systems. But, MIMO systems with interactions may 
not yield satisfactory transfer function estimates with these techniques. Overschee and Moor 
(1994) proposed subspace method of identification that mostly applies to identification of 
multivariable state space models. This method involves more computational time. Practical 
industrial plants are easy to identify in closed-loop using relay feedback method (Astrom 
and Hagguland 1984) and Yu (1999) explains advances in autotuning using sequential 
identification. System identification is the method of estimating parameters from system’s 
input/output data using numerical techniques: 

2.1 Transfer function identification 
Model structures and parameters of transfer function are constructed from observed plant 
input output data. Transfer function models are developed using three schemes: (a) Least 
square (b) subspace and (c) sequential identification method. These approximations made 
out through each of the methods carry errors that propagate to controller tuning and in turn 
deteriorates the overall performance. 

2.1.1 Least-squares method 
Least-squares method, used to reduce the mean square error, is very simple and more 
numerically stable and can be used to identify the unknown parameters of the 2x2 MIMO 
transfer function model from the input (u) and output (y) data. Though any type of forcing 
function (step, pulses or a sequence of positive and negative pulses) can be used, a very 
popular sequence of inputs, “Pseudo-random binary sequence” (PRBS) is made use of in the 
present work. 
Let us consider a process with continuous transfer function 
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The discrete transfer function has three parameters that need to be identified: dead time (D) 
contained in nk, and other two parameters of the model (kp and ) contained in b1, and a1. 
The discrete output can be represented in the following form: 

 1 1 2 2 1 1 2 2.... ....n n n nb n nb n n na n nay b u b u b u a y a y a y                (2.3) 

where ny  is the predicted value of the current output of the process. For a FOPDT process, 
equation (2.3) can be written as 

      1 11 1y k a y k b u k      (2.4) 

which can be written in matrix form as 

 y e     (2.5) 
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The parameters a1 and b1 are calculated using  

   1T T y   


   (2.6) 

where   is the parameter vector   is state matrix and y is outputs. 

2.2 State-space model 
In the state space form the relationship between the input, noise and output signals are 
written as a system of first-order differential or difference equations using auxillary state 
vectors. Transfer function in laplace domain is converted to state space form using a 
sampling period of 0.1s 

2.2.1 Subspace method 
The beginning of the 1990s witnesses the birth of a new type of linear system identification 
algorithms, called subspace method. Subspace identification methods are indeed attractive 
since a state-space realization can be directly estimated from input/output data without 
nonlinear optimization. Furthermore, these techniques are characterized by the use of robust 
numerical tools such as RQ factorization and the singular values decomposition (SVD). 
Interesting from numerical point of view, the batch subspace model identification (SMI) 
algorithms are not usable for online implementation because of the SVD computational 
complexity. Indeed, in many online identification scenarios, it is important to update the 
model as time goes on with a reduced computational cost. 
Linear subspace identification methods are concerned with systems and models of the form 

 1k k k kx Ax Bu w      (2.7) 
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The discrete transfer function has three parameters that need to be identified: dead time (D) 
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The discrete output can be represented in the following form: 

 1 1 2 2 1 1 2 2.... ....n n n nb n nb n n na n nay b u b u b u a y a y a y                (2.3) 

where ny  is the predicted value of the current output of the process. For a FOPDT process, 
equation (2.3) can be written as 

      1 11 1y k a y k b u k      (2.4) 

which can be written in matrix form as 

 y e     (2.5) 

where 

   
   

   

0 0
1 1

................ ..........
1 1

y u
y u

y N u N



 
    
 
    

     and 1

1

a
b


 

  
 

 

The parameters a1 and b1 are calculated using  

   1T T y   


   (2.6) 

where   is the parameter vector   is state matrix and y is outputs. 

2.2 State-space model 
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 k k k ky Cx Du v     (2.8) 

with 
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  (2.9) 

The vectors 1mx
ku R  and 1lx

ky R  are the measurements at time instant k of, respectively, 
the m inputs and l outputs of the process. The vector xk is the state vector of the process at 
discrete time instant k, 1lx

kv R  and 1nx
kw R  are unobserved vector signals, vk is called 

the measurement noise and wk is called the process noise. It is assumed that they are zero 
mean, stationary white noise vector sequences and uncorrelated with the inputs uk. 

nxnA R  is the system matrix, nxmB R  is the input matrix, lxnC R  is the output matrix 
while lxmD R  is the direct feed-through matrix. The matrices nxnQ R , nxlS R and 

lxlR R are the covariance matrices of the noise sequences wk and vk. 
In subspace identification it is typically assumed that the number of available data points 
goes to infinity, and that the data is ergodic. The main problem of identification is arranged 
as follows: 
Given a large number of measurements of the input uk and the output yk generated by the 
unknown system described by equations (2.7)-(2.9). The task is to determine the order n of 
the unknown system, the system matrices A, B, C, D up to within a similarity 
transformation and an estimate of the matrices Q, S and R. 
Subspace identification algorithms always consist of two steps: 
Step 1: Make a weighted projection of certain subspace generated from the data, to find an 

estimate of the extended observability matrix, i  and/or an estimate iX


of the state 
sequence iX of the unknown system 
Step 2: Retrieve the system matrices (A, B, C, D and Q, S, R) and from either this extended 
observability matrix ( i ) or the estimated states. 
 

 
Fig. 1. Flow chart of subspace algorithm. 
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All the above identification methods involve more computations and many offline methods. 
These difficulties can be avoided easily by using another method of estimation technique, 
namely, relay feedback method as explained below: 

2.3 Sequential identification 
Based on the concept of sequential auto tuning (Shen & Yu, 1994) method each controller is 
designed in sequence. Let’s consider a 2-by-2 MIMO system with a known pairing   1 1y u  
and  2 2y u  under decentralized PI control (Figure 1). Initially, an ideal / biased relay is 
placed between 1y  and 1u , while loop 2 is on manual (Figure 2a). Following the relay-
feedback test, a controller can be designed from the ultimate gain and ultimate frequency. 
The next step is to perform relay-feedback test between 2y  and 2u  while loop 1 is on 
automatic (Figure 2b). A controller can also be designed for loop 2 following the relay-
feedback test. Once the controller on the loop 2 is put on automatic, another relay-feedback 
experiment is performed between 1y  and 1u , (Figure 2c). Generally, a new set of tuning 
constants is found for the controller in loop 1. This procedure is repeated until the controller 
parameters converge. Typically, the controller parameters converge in 3 - 4 relay-feedback 
tests for 2 x 2 systems. 
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Fig. 2. Sequential method of tuning for 2x2 multivariable system. Steps are: (a) followed by 
(b) and followed by (c). 

In order to proceed with sequential identification, it is necessary to derive closed-loop 
transfer functions for the above mentioned schemes. The following notations will be used 
for 2-by- 2 MIMO system: 
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Thus, when perturbation is introduced in the second input u2, transfer functions for the 
input u2(s) are 
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By applying the above identification method to the 2nd loop (by collecting output y2 for the 
change in input u1), we can obtain models for Gp12,CL(s) and Gp22,CL(s). Then, we have 
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From the identified step response models of Gp12,CL(s) and Gp22,CL(s), we can obtain their 
frequency response data and, by fitting them, we can get approximate low order models. 
Time domain modeling is obtained using equations (2.15) and (2.16) for 2x2 and 3x3 MIMO 
process with FOPDT models using relay feedback test as: 
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2.4 Process dynamics of example under study  
Wood and Berry (1973) (WB) reported a column for methanol-water separation with transfer 
function as given below 
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The compositions of top (xD) and bottom (xB) products expressed in wt% of methanol are 
controlled variables. The reflux (L) and the reboiler (V) steam flow rates are the manipulated 
inputs are expressed in lb/min. time constants are in minutes. Feed flow rate is disturbance. 
Here the input variables are liquid (L) and vapour (V) flow rates (where as feed (F) flow rate 
is the load); outputs are distillate (xD) and bottom (xB) compositions. This plant given by 
Eq.(2.15) is considered as actual or real plant-model in present work. 
On applying least square algorithms to individual transfer function elements of an 
unknown 2x2 MIMO process (WB column) the estimated transfer function is obtained as 
shown in Table 1.The output (y) and input data (to original WB plant transfer function) are 
used to form matrix. The parameters a1 and b1 were calculated using Eq.(2.6). 
On applying subspace algorithms to an unknown 2x2 MIMO process (WB column) the 
following steps are followed 
Step 1: From the transfer function matrix State space representation matrices are calculated. 
Step 2: A, B, C and D matrices are simulate to get output data for a random input signal. 
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Fig. 2. Sequential method of tuning for 2x2 multivariable system. Steps are: (a) followed by 
(b) and followed by (c). 

In order to proceed with sequential identification, it is necessary to derive closed-loop 
transfer functions for the above mentioned schemes. The following notations will be used 
for 2-by- 2 MIMO system: 
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Thus, when perturbation is introduced in the second input u2, transfer functions for the 
input u2(s) are 
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By applying the above identification method to the 2nd loop (by collecting output y2 for the 
change in input u1), we can obtain models for Gp12,CL(s) and Gp22,CL(s). Then, we have 
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From the identified step response models of Gp12,CL(s) and Gp22,CL(s), we can obtain their 
frequency response data and, by fitting them, we can get approximate low order models. 
Time domain modeling is obtained using equations (2.15) and (2.16) for 2x2 and 3x3 MIMO 
process with FOPDT models using relay feedback test as: 
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2.4 Process dynamics of example under study  
Wood and Berry (1973) (WB) reported a column for methanol-water separation with transfer 
function as given below 
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The compositions of top (xD) and bottom (xB) products expressed in wt% of methanol are 
controlled variables. The reflux (L) and the reboiler (V) steam flow rates are the manipulated 
inputs are expressed in lb/min. time constants are in minutes. Feed flow rate is disturbance. 
Here the input variables are liquid (L) and vapour (V) flow rates (where as feed (F) flow rate 
is the load); outputs are distillate (xD) and bottom (xB) compositions. This plant given by 
Eq.(2.15) is considered as actual or real plant-model in present work. 
On applying least square algorithms to individual transfer function elements of an 
unknown 2x2 MIMO process (WB column) the estimated transfer function is obtained as 
shown in Table 1.The output (y) and input data (to original WB plant transfer function) are 
used to form matrix. The parameters a1 and b1 were calculated using Eq.(2.6). 
On applying subspace algorithms to an unknown 2x2 MIMO process (WB column) the 
following steps are followed 
Step 1: From the transfer function matrix State space representation matrices are calculated. 
Step 2: A, B, C and D matrices are simulate to get output data for a random input signal. 
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Step 3: From the output and input data Henkel matrix are formed and LQ decomposition 
method is used to spilt the matrix 
Step 4: Then Singular value decomposition method is used to estimate A, B, C and D 
matrices. 
Step 5: From estimated matrices the transfer function were found. 
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Fig. 3. Comparison of responses between actual (solid) and identified (Sequential 
identification, dashed line) models of WB column 

Mostly, the purpose of identification of transfer functions is to design controller for the 
system in order to achieve desired performance. Three methods of identifications (two in 
openloop mode and the other in closed-loop mode) are used to identify the two-input-two-
output process, WB column. Least square and subspace methods have been used to identify 
the process in openloop and sequential identification technique is used to estimate the 
process in closedloop. 
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The identified models and actual plant model are compared (Table-2.1). It is found that 
subspace identification method gives better result/  
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Table 2.1. Actual and estimated multivariable transfer functions using different methods 

After identifying the model structures and estimating process parameters of the models, 
next work is to select a suitable control strategy for the process. 

3. Different control strategies 
MIMO systems came into use in chemical industries as the processes were redesigned to 
improve efficiency. Multivariable control involves the objective of maintaining several 
controlled variables at independent set points. Interaction between inputs and output 
cause a manipulated variable to affect more than one controlled variable. The various 
control schemes studied here are the decentralized, centralized and decoupled systems. In 
decentralized structure, diagonal controllers are used. Hence they result in systems 
having n controllers. The centralized control systems have n x n controllers. In decoupled 
systems the process interactions are decoupled before they can actually reach and affect 
the processes. 

3.1 Centralized structure 
Centralized control scheme is a full multivariable controller where the controller matrix is 
not a diagonal one. The decentralized control scheme is preferred over the centralized 
control scheme mainly because the control system has only n controlling n output variables, 
and the operator can easily understand the control loops. However, the design methods of 
such decentralized controllers require first pairing of input-output variables, and tuning of 
controllers requires trial and error steps. The centralized control system requires n x n 
controllers for controlling n output variables using n manipulated variables. But if we are 
calculating the control action using a computer, then this problem of requiring n x n 
controllers does not exist. The advantage of the centralized controller is easy to tune even 
with the knowledge of the steady state gain matrix alone, multivariable PI controllers can be 
easily designed. 
For the centralized structure, Internal model control-proportional integral tuning is adopted, 
based on  studies on the studies and recommendations of Reddy et al (1997) on the design of 
centralized PI controllers for a Multi-stage flash desalination plant using Davison, 
Maciejowski and Tanttu-Lieslehto methods.  
The IMC-PID tuning relations are used in tuning the controller. For a first order system of 

the form
 1

Ds
pk e
s




, the PI controller settings are as follows: 
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Step 3: From the output and input data Henkel matrix are formed and LQ decomposition 
method is used to spilt the matrix 
Step 4: Then Singular value decomposition method is used to estimate A, B, C and D 
matrices. 
Step 5: From estimated matrices the transfer function were found. 
 

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

7

8

Time   in    Sec

O
ut

pu
t  

R
es

po
ns

e

 

 

identified  model
actual model

 

 
Fig. 3. Comparison of responses between actual (solid) and identified (Sequential 
identification, dashed line) models of WB column 

Mostly, the purpose of identification of transfer functions is to design controller for the 
system in order to achieve desired performance. Three methods of identifications (two in 
openloop mode and the other in closed-loop mode) are used to identify the two-input-two-
output process, WB column. Least square and subspace methods have been used to identify 
the process in openloop and sequential identification technique is used to estimate the 
process in closedloop. 
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next work is to select a suitable control strategy for the process. 
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improve efficiency. Multivariable control involves the objective of maintaining several 
controlled variables at independent set points. Interaction between inputs and output 
cause a manipulated variable to affect more than one controlled variable. The various 
control schemes studied here are the decentralized, centralized and decoupled systems. In 
decentralized structure, diagonal controllers are used. Hence they result in systems 
having n controllers. The centralized control systems have n x n controllers. In decoupled 
systems the process interactions are decoupled before they can actually reach and affect 
the processes. 

3.1 Centralized structure 
Centralized control scheme is a full multivariable controller where the controller matrix is 
not a diagonal one. The decentralized control scheme is preferred over the centralized 
control scheme mainly because the control system has only n controlling n output variables, 
and the operator can easily understand the control loops. However, the design methods of 
such decentralized controllers require first pairing of input-output variables, and tuning of 
controllers requires trial and error steps. The centralized control system requires n x n 
controllers for controlling n output variables using n manipulated variables. But if we are 
calculating the control action using a computer, then this problem of requiring n x n 
controllers does not exist. The advantage of the centralized controller is easy to tune even 
with the knowledge of the steady state gain matrix alone, multivariable PI controllers can be 
easily designed. 
For the centralized structure, Internal model control-proportional integral tuning is adopted, 
based on  studies on the studies and recommendations of Reddy et al (1997) on the design of 
centralized PI controllers for a Multi-stage flash desalination plant using Davison, 
Maciejowski and Tanttu-Lieslehto methods.  
The IMC-PID tuning relations are used in tuning the controller. For a first order system of 
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, the PI controller settings are as follows: 
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 c
p

k
k



   (3.1) 

 i    (3.2) 

where  max 1 /0.7 ,0.2D   
These tuning relations are derived by comparing IMC control with the conventional PID 
controller and solving to determine the proportional gain and integral time. 

3.2 Decentralized structure 
In spite of developments of advanced controller synthesis for multivariable controllers, 
decentralized controller remain popular in industries because of the following: 
1. Decentralized controllers are easy to implement. 
2. They are easy for operators to understand. 
3. The operators can easily retune the controllers to take into account the change in 

process conditions. 
4. Some manipulated variables may fail. Tolerances to such failures are more easily 

incorporated into the design of decentralized controllers than full controllers. 
5. The control system can be bought gradually into service during process start up and 

taken gradually out of service during shut down. 
The design of a decentralized control system consists of two main steps: 
Step 1 is control structure selection and step 2 is the design of a SISO controller for each 
loop. 
In decentralized control of multivariable systems, the system is decomposed into a number 
of subsystems and individual controllers are designed for each subsystem.  
For tuning the controller, Biggest Log Modulus Tuning (BLT) method (Lubed 1986) is used, 
which is an extension of the Multivariable Nyquist Criterion and gives a satisfactory 
response. A detuning factor F (typical values are said to vary between 2 and 5) is chosen so 
that closed-loop log modulus, Lcmmax >= 2n, 

 20log
1cm

wL
w




  (3.3) 

  1 det p cw I G G      (3.4) 

where Gc is an n x n diagonal matrix of PI controller transfer functions, Gp is an n x n matrix 
containing the process transfer functions relating the n controlled variables to n 
manipulated variables. 
Now the PI controller parameters are given as, 

 ciZ N
ci

kk F
   (3.5) 

 Ii IiZ NF      (3.6)     

where ciZ Nk   and IiZ N   are Zeigler-Nichols tuning parameters which are calculated from 
the system perturbed in closed loop by a relay of amplitude h, reaches a limit cycle whose 
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amplitude a and period of oscillation P, are correlated with the ultimate gain (ku) and 
frequency (wu) by the following relationships: 

 4
u

hk
a

   (3.7) 

 2
u

uP
    (3.8) 

Detuning factor F determines the stability of each loop. The larger the value of F, more 
stable the system is but set point and load responses are sluggish. This method yields 
settings that give a reasonable compromise between stability and performance in 
multivariable systems. 
The decentralized scheme is more advantageous in the fact that the system remains stable 
even when one controller goes down and is easier to tune because of the less number of 
tuning parameters. But however pairing (interaction) analysis  needs to be done as n! 
pairings between input/output are possible. 

3.3 Decoupled structure 
This structure has additional elements called decouplers to compensate for the interaction 
phenomenon. When Relative gain Array shows strong interaction then a decoupler is 
designed. But however decouplers are designed only for orders less than 3 as the design 
procedure becomes more complex as order increases. 
The BLT (Luyben 1986) procedure of tuning the decentralized structure follows the 
generalized way for all n x n systems as mentioned above. The centralized controllers are 
tuned using the IMC-PI tuning relations which are appropriately selected for first order and 
second order systems. 
The decoupled structure adopts the various methods like partial, static and dynamic 
decoupling to procedure the best results. The design equations for a general decoupler for n 
x n systems are conveniently summarized using matrix notations defined as follows: 
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where  max 1 /0.7 ,0.2D   
These tuning relations are derived by comparing IMC control with the conventional PID 
controller and solving to determine the proportional gain and integral time. 
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incorporated into the design of decentralized controllers than full controllers. 
5. The control system can be bought gradually into service during process start up and 

taken gradually out of service during shut down. 
The design of a decentralized control system consists of two main steps: 
Step 1 is control structure selection and step 2 is the design of a SISO controller for each 
loop. 
In decentralized control of multivariable systems, the system is decomposed into a number 
of subsystems and individual controllers are designed for each subsystem.  
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  1 det p cw I G G      (3.4) 

where Gc is an n x n diagonal matrix of PI controller transfer functions, Gp is an n x n matrix 
containing the process transfer functions relating the n controlled variables to n 
manipulated variables. 
Now the PI controller parameters are given as, 

 ciZ N
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where ciZ Nk   and IiZ N   are Zeigler-Nichols tuning parameters which are calculated from 
the system perturbed in closed loop by a relay of amplitude h, reaches a limit cycle whose 
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amplitude a and period of oscillation P, are correlated with the ultimate gain (ku) and 
frequency (wu) by the following relationships: 

 4
u

hk
a
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Detuning factor F determines the stability of each loop. The larger the value of F, more 
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The equation (3.10) becomes, 

 C GDu    (3.11) 

The equation (3.11) becomes, 

 C Hu    (3.12) 

where, 

  GD H   (3.13) 

or  

 1D G H   (3.14) 

which defines the decoupler 
For a 2 x 2 system, equations are derived for decouplers, taking that loop and the other 
interacting loops into account. 

3.4 Examples 
3.4.1 Centralized controller 
A first order plus dead time process with 1pk  , 1p   and 0.25pD   is chosen for 

simulation study. The controller is designed with a first order filter with 1.4286  , 0.7ck   
and 1I  . Closed loop responses with the present controller are obtained. The results are 
shown below: 
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Fig. 4. Closed-loop response of example -processes using PID controller 
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3.4.2 Decentralized controller 
The wood and berry distillation column process whose transfer function 
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is chosen for simulation study. The controller is designed using BLT method with F=2.55, 
1 0.375ck  , 1 8.29I   (loop 1 controller settings) and 2 0.075ck   , 2 23.6I  (loop 2 

controller settings). With these settings, the closed loop responses are obtained and are 
shown below. 
 

 
Fig. 5. Closed-loop response with BLT tuning for WB -Column using PID controller (solid 
line is loop 1 response and dashed line is loop 2 response) 

3.4.3 Decoupled PID controller 
The Wood and Berry binary distillation column is a multivariable system that has been 
studied extensively. The process has transfer function 
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. (3.15) 

The decoupler is given by  
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3.4.2 Decentralized controller 
The wood and berry distillation column process whose transfer function 
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3.4.3 Decoupled PID controller 
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The decoupler is given by  
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The transfer function of the statistically decoupled system is given by  

 Q GD  or  1 0Q GG  (3.17) 
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4. Input-output pairing 
Many control systems are multivariable in nature. In such systems, each manipulated 
variable (input signal) may affect several controlled variables (output signals) causing 
interaction between the input/output loops. Due to these interactions, the system becomes 
more complex as well as the control of multivariable systems is typically much more 
difficult compared to the single-input single-output case. 

4.1 The Relative Gain Array analysis 
The RGA is a matrix of numbers. The i jth element in the array is called ij . It is the ratio of 
the steady-state gain between the ith controlled variable and the jth manipulated variable 
when all other manipulated variables are constant, divided by the steady-state gain between 
the same two variables when all other controlled variables are constant. 
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For example, suppose we have a 2 X 2 system with the steady-state gains pijk  

 1 11 1 12 2p py k m k m   (4.2) 

2 21 1 22 2p py k m k m   

For this system, the gain between y1 and m1 when m2 constant is 
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The gain between y1 and m1 when y2 is constant (y2 = 0) is found from solving the equations 
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Therefore the term 11  in RGA is  
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Example: Calculate 11  element of RGA for the wood and berry column 
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4.2 Singular Value Decomposition 
SVD is a numerical algorithm developed to minimize computational errors involving large 
matrix operations. The singular value decomposition of matrix K results in three component 
matrices as follows: 

 Tk U V    (4.6) 

where K is an n x m matrix. U is an n x n orthonormal matrix, the columns of which are 
called the ‘left singular vectors’. V is an m x m orthonormal matrix, the columns of which 
are called the ‘right singular vectors’.   is an n x m diagonal matrix of scalars called the 
“singular values” 
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The transfer function of the statistically decoupled system is given by  
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4.2 Singular Value Decomposition 
SVD is a numerical algorithm developed to minimize computational errors involving large 
matrix operations. The singular value decomposition of matrix K results in three component 
matrices as follows: 
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SVD is designed to determine the rank and the condition of a matrix and to show 
geometrically the strengths and weaknesses of a set of equations so that the errors during 
computation can be avoided. 

4.2.1 Example 
Consider a very simple mixing example, a multivariable process whose gain matrix is as 
follows: 

0.7778 0.3889
1.0000 1.0000

k
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which decomposes to 
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1.4531 0
0 0.8029
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   
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At this point these singular values and vectors are merely numbers; however, consider the 
relationship between these values and an experimental procedure that could be applied to 
measure the steady-state process characteristics. 

4.3 Niederlinski index 
A fairly useful stability analysis method is the Niederlinski index. It can eliminate 
unworkable pairings of variables at an early stage in the design. The controller settings need 
not be known, but it applies only when integral action is used in all the loops. It utilizes only 
the steady state gains of the process transfer function matrix. The method is necessary but 
not the sufficient condition for stability of a closed loop system with integral action. If the 
index is negative, the system will be unstable for any controller settings. If the index is 
positive, the system may or may not be stable. Further analysis is necessary. 
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   (4.7)  

where,  kp is a matrix of steady state gains from the process openloop transfer function 
             kpjj is the diagonal elements in steady state gain matrix 
Example: Calculate the Niederlinski index for the wood and berry column: 

12.8 18.9
6.6 19.4pk
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Since NI is positive, the closed loop system with the specified pairing may be stable.  

4.4 Gramian based interaction measures 
In 2004, Salgado and Conley investigated the channel interaction by considering 
controllability and observability gramians so called participation matrix. Similarly, 
Wittenmark and Salgado (2002) introduced Hankel Interaction Index array. These gramian 
measures namely HIIA, PM overcome the disadvantages of RGA. One key property of these 
is that the whole frequency range is taken into account in one single measure. Interaction 
measures recommend the input-output pairings that result in the largest sum when adding 
the corresponding elements in the measure. HIIA and PM give appropriate suggestions for 
decentralized multivariable controller. 
The controllability Gramian, P, defined for stable time-invariant systems as 
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If P has full rank, the system is state controllable. 
A stable system will be state observable if the observability Gramian, Q, defined as 
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If Q has full rank, the system is state observable 
These Gramians can be obtained by solving the following continuous time Lyapunov 
equations: 
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   (4.11) 

Hankel singular values with controllability and observability gramians P and Q is given by 

 ( )i
H i                       1,2,.......i n   (4.12)                      

The Hankel norm of the system with the transfer function G is 

  (1)
maxHHG PQ     (4.13) 

Hankel interaction index array 
The normalized version is the HIIA given by 
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G
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  (4.14) 



 
Introduction to PID Controllers – Theory, Tuning and Application to Frontier Areas 

 

122 

SVD is designed to determine the rank and the condition of a matrix and to show 
geometrically the strengths and weaknesses of a set of equations so that the errors during 
computation can be avoided. 

4.2.1 Example 
Consider a very simple mixing example, a multivariable process whose gain matrix is as 
follows: 

0.7778 0.3889
1.0000 1.0000

k
 

  
 

  

which decomposes to 

0.2758 0.9612
0.9612 0.2758

U
 

  
 

 

0.8091 0.5877
0.8091

0.5877 1.0000
V

 
  
 

 

1.4531 0
0 0.8029

 
   

 
 

At this point these singular values and vectors are merely numbers; however, consider the 
relationship between these values and an experimental procedure that could be applied to 
measure the steady-state process characteristics. 

4.3 Niederlinski index 
A fairly useful stability analysis method is the Niederlinski index. It can eliminate 
unworkable pairings of variables at an early stage in the design. The controller settings need 
not be known, but it applies only when integral action is used in all the loops. It utilizes only 
the steady state gains of the process transfer function matrix. The method is necessary but 
not the sufficient condition for stability of a closed loop system with integral action. If the 
index is negative, the system will be unstable for any controller settings. If the index is 
positive, the system may or may not be stable. Further analysis is necessary. 

 
1

Niederlinski index NI p
N
j pjj

Det k

k

   


   (4.7)  

where,  kp is a matrix of steady state gains from the process openloop transfer function 
             kpjj is the diagonal elements in steady state gain matrix 
Example: Calculate the Niederlinski index for the wood and berry column: 

12.8 18.9
6.6 19.4pk

 
   
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      
  1

12.8 19.4 18.9 6.6
NI 0.498

12.8 19.4
p

N
j pjj

Det k

k

       


  (4.8) 

Since NI is positive, the closed loop system with the specified pairing may be stable.  

4.4 Gramian based interaction measures 
In 2004, Salgado and Conley investigated the channel interaction by considering 
controllability and observability gramians so called participation matrix. Similarly, 
Wittenmark and Salgado (2002) introduced Hankel Interaction Index array. These gramian 
measures namely HIIA, PM overcome the disadvantages of RGA. One key property of these 
is that the whole frequency range is taken into account in one single measure. Interaction 
measures recommend the input-output pairings that result in the largest sum when adding 
the corresponding elements in the measure. HIIA and PM give appropriate suggestions for 
decentralized multivariable controller. 
The controllability Gramian, P, defined for stable time-invariant systems as 

 
0
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

     (4.9) 

If P has full rank, the system is state controllable. 
A stable system will be state observable if the observability Gramian, Q, defined as 
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If Q has full rank, the system is state observable 
These Gramians can be obtained by solving the following continuous time Lyapunov 
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Participation matrix 
Hankel norm is the largest singular values. For elementary SISO subsystems with several 
HSVs it can be argued that a more relevant way of quantifying the interaction is to take into 
account all of the HSVs, atleast if there are several HSVs that are of magnitudes close to 
maximum HSV. 
Each element in PM is defined by  

    
 

j i
ij

tr P Q

tr PQ
    (4.15) 

 j itr P Q  is the sum of squared HSVs of the subsystems with input and output. 

 tr PQ  equals the sum of all  j itr P Q  

Gramian based interaction measures are calculated and these values for benchmark 2-by-2 
MIMO process is given in table 4.1. 
 

2X2 MIMO 
PROCESS HIIA PM 

WB 0.2218    0.3276 
0.1144    0.3362 

0.1741    0.3796 
0.463 0.4000 

Table 4.1. HIIA and PM for benchmark 2-by-2 MIMO process 

5. Tuning of controller 

Consider a process with transfer function  
1

pD s
p

p
p

k e
G s

s






. This transfer function has two 

parts. One invertible: pG   and the other containing non-invertible part pG  (time delay or 

right half plane zero that gives non-minimum phase behaviour). The IMC controller can be 

expressed as: 1IMC
c

p
G

G   where 
1

p
p

p

k
G

s
 


 and pD s

pG e  . 

Let us consider the desired closed loop response as 
   1 1

pD s
pGy e

R s s 

 

 
 

 which can be 

equated to complimentary sensitive function as
1

true
c p

true
c p

G Gy
R G G



. Thus the true controller 

can be expressed as: 

 
 

1

11

IMC
ptrue c

c
IMC pc

d

GGG
y s GGR





 
     
 

  (5.1) 
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The right hand side of this equation can be written or rearranged to 

 
 

1

1 p

ptrue
c D s

G
G

s e




 

    (5.2) 

In fact, the standard form of a PID controller can be given as 

  true
c

f s
G

s
   Or  

   
 

 
 

1
1 1

true
c

s f s s
G

s s s s
 

 


 
 

 where D     (5.3) 

This true controller can be expanded near the vicinity of s=0 using Laurent series as 

              
2
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   
       

      
   (5.4) 

By comparing the coefficients of s in equation (5.4) with the standard PID controller, we get 
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   (5.5) 

where  
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c
s
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s

s s f s


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

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  (5.6) 

The method described in earlier section is applied to some standard transfer functions and 
the comprehensive results are presented in Table 5.1 and selection of  is given in Table 5.2. 
Detailed analysis on synthesis of PID tuning rules can be seen in Panda (2008 & 2009). 
Example 5.1: The wood and berry binary distillation column is a multivariable system that 
has been studied extensively. The process has transfer function  

 

3

7 3

12.8 18.9
16.7 1 21 1
6.6 19.4

10.9 1 14.4 1

s s

s s

e e
s s
e e
s s

 

 

 
 

  
 
 

  

.  (5.7) 

The closed loop response is given in Figure 5.1. 
Example 5.2: The transfer function of multiproduct plant distillation column for the 
separation of binary mixture of ethanol-water (Ogunnaike-Ray (OR) column) is given by 
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Participation matrix 
Hankel norm is the largest singular values. For elementary SISO subsystems with several 
HSVs it can be argued that a more relevant way of quantifying the interaction is to take into 
account all of the HSVs, atleast if there are several HSVs that are of magnitudes close to 
maximum HSV. 
Each element in PM is defined by  
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Gramian based interaction measures are calculated and these values for benchmark 2-by-2 
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The right hand side of this equation can be written or rearranged to 
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In fact, the standard form of a PID controller can be given as 
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This true controller can be expanded near the vicinity of s=0 using Laurent series as 

              
2

' ''1 1 ... 0 0 0 ...
1 1 2!

j
true

c j
j

sG s c s s
s s s s

  
 





   
       

      
   (5.4) 
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The method described in earlier section is applied to some standard transfer functions and 
the comprehensive results are presented in Table 5.1 and selection of  is given in Table 5.2. 
Detailed analysis on synthesis of PID tuning rules can be seen in Panda (2008 & 2009). 
Example 5.1: The wood and berry binary distillation column is a multivariable system that 
has been studied extensively. The process has transfer function  
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The closed loop response is given in Figure 5.1. 
Example 5.2: The transfer function of multiproduct plant distillation column for the 
separation of binary mixture of ethanol-water (Ogunnaike-Ray (OR) column) is given by 
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The closed loop response is given in Figure 5.2. 
 

 
Table 5.1. Analytical expressions for PID controller parameters for standard transfer 
functions 

 
 FOPDT SOPDT IPDT 

PI  max 1.7 ,0.2p pD    max 0.25 ,0.2p pD   =DP10 

PID  max 0.25 ,0.2p pD    max 0.25 ,0.2p pD   =DP10 

Table 5.2.   selection rule 

6. Stability analysis 
6.1 INA and DNA methods 
Rosenbrock extended the nyquist stability and design concepts to MIMO systems containing  
significant interaction. The methods are known as the inverse and direct Nyquist array (INA 
and DNA) methods. As an extension from the SISO nyquist stability and design concepts, 
these methods use frequency response approach. These techniques are used because of their 
simplicity, high stability, and low noise sensitivity. In actual applications, there will be a 
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region of uncertainty for interaction, as the process transfer function can be different from 
what was used in the controller design (due to modeling errors and process variations). 
 

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

R
es

po
ns

e,
y1

 
(a) 

 

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

R
es

po
ns

e,
y2

 
(b) 

Fig. 5.1. Closed-loop responses (a: Loop-1 and b: Loop-2) to setpoint changes of example 
(5.1) -processes using PID controller 
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The closed loop response is given in Figure 5.2. 
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region of uncertainty for interaction, as the process transfer function can be different from 
what was used in the controller design (due to modeling errors and process variations). 
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Fig. 5.1. Closed-loop responses (a: Loop-1 and b: Loop-2) to setpoint changes of example 
(5.1) -processes using PID controller 
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6.2 Nyquist Stability Theorem 
Suppose that  G s  is an n x n system with a decentralized control system 

      1 ,....., nC s diag c s c s  and that the matrix,    1 G s C s , is column diagonally 
dominant on the nyquist contour, i.e. 

        1 ll l l lg s c s R s c s   (6.1) 

where  

    
1, 1

n

l kl
k k

R s g s
 

   (6.2) 

for 1,2,........,l n  and for all s on the Nyquist contour 
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Fig. 5.2. Closed-loop responses (a: loop-1; b: loop-2 and c: loop-3) to setpoint changes of 
example 5.2 -processes using PID controller 
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6.2 Nyquist Stability Theorem 
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Fig. 5.2. Closed-loop responses (a: loop-1; b: loop-2 and c: loop-3) to setpoint changes of 
example 5.2 -processes using PID controller 
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6.3 INA design methodology 
The following is the design procedure for the INA technique: 

1. Obtain  G s  and calculate its inverse,  G s


. 
2. Select an appropriate frequency range; usually 0 c   , where c is the frequency 

above which the response is certain to become and remain negligible. 
3. Obtain the inverse nyquist array, which is the 2m nyquist diagrams of the elements of 

 G s


. 

4. Design compensators, which transform the non dominant  G s


 to a diagonally 
dominant. 

5. To verify dominance, calculate the appropriate gershgorin circles for the diagonal 
elements of the INA at various frequencies. The size of the gershgorin circles 
measures the importance of off-diagonal (interacting) elements relative to diagonal 
elements.  

6. The INA and gershgorin bands provide the amount of gain that may be applied to each 
of the loops without violating the stability requirement. 

6.4 Example 
Johansson and Koivo designed a multivariable controller for a boiler subsystem where the 
boiler was a 1.6MW water boiler using solid fuel. Significant interaction was present 
between the loops in the subsystem, which consisted of the boiler underpressure and flue 
gas oxygen content as outputs with damper position and motor speed of the secondary 

blower as associated inputs. The output vector is  1 2
Ty y y where y1 is the normalized 

boiler underpressure and y2 is the percentage flue gas oxygen content. The input vector is 

 1 2
Tu u u where u1 is the damper position (%) and u2 is secondary blower speed (rpm). 

The dynamics of the subsystem were determined from step response experiments. First 
order plus dead time responses were obtained, which produced the transfer function 
matrix: 
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 (6.3) 

The response of the flue gas oxygen content to step change in damper position was very 
slow and small in amplitude; therefore g21(s) was taken as zero. However, the secondary 
blower speed, u2, affects both outputs. 
The inverse of G can be written immediately as: 
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Consider the g11 element, first replace s with jw which produces: 

 2 (10 1)se s  = 2 (10 1)je j    (6.5) 

Using Euler’s relation, 

 2 (10 1) (10 sin 2 cos2 ) ( 10 cos2 sin 2 )je j j               (6.6) 

Consider w=0, g11(0)=-1 
To compute the radius, g12(w) is calculated as: 

   12 (cos12 60 sin 12 ) (60 cos sin 12 )g j            

Recall that the magnitude of a complex number is the square root of the sum of real part 
squared and the imaginary part squared. Therefore, g12(0) =1 
A constant pre-compensator was designed to obtain dominance. This was 
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k
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 (6.7) 

7. Conclusion 
Thus in this chapter, it was found that least square and subspace methods have been used to 
identify process in open loop and sequential identification technique is used to estimate the 
process in closed loop. And the decentralized controllers are tuned using BLT method 
results in a stable controller. Finally, all the interaction tools are discussed as well the 
stability of the MIMO processes. The IMC-PID tuning rule suggested in this article yields 
fast and robust responses. 
The following step-by-step procedure may be employed to solve a multi-variable control 
problem: 
1. Choose an appropriate pairings of controlled and manipulated variables, by interaction 

analysis. 
2. If interaction is modest, one may consider SISO controllers for the multi-variable 

system. 
3. If interaction is significant, it may be possible to use decouplers to reduce interaction in 

conjunction with PID-type controllers. 
4. An alternative to steps 2 and 3 is to use a full multi-variable control technique that 

inherently compensates for interactions. 
Based on the concept of sequential identification-design, an approach for the automatic 
tuning of multivariable systems is discussed. Several system identification methods like 
subspace identification, least squares, relay feedback methods are used to determine 
dynamic parameters of a specific model structure from plant data (real time). 
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1. Introduction 
Robust stability of uncertain dynamic systems has major importance when real world 
system models are considered. A realistic approach has to consider uncertainties of various 
kinds in the system model. Uncertainties due to inherent modelling/identification 
inaccuracies in any physical plant model specify a certain uncertainty domain, e.g. as a set of 
linearized models obtained in different working points of the plant considered. Thus, a basic 
required property of the system is its stability within the whole uncertainty domain denoted 
as robust stability. Robust control theory provides analysis and synthesis approaches and 
tools applicable for various kinds of processes, including multi input – multi output 
(MIMO) dynamic systems. To reduce multivariable control problem complexity, MIMO 
systems are often considered as interconnection of a finite number of subsystems. This 
approach enables to employ decentralized control structure with subsystems having their 
local control loops. Compared with centralized MIMO controller systems, decentralized 
control structure brings about certain performance deterioration, however weighted against 
by important benefits, such as design simplicity, hardware, operation and reliability 
improvement. Robustness is one of attractive qualities of a decentralized control scheme, 
since such control structure can be inherently resistant to a wide range of uncertainties both 
in subsystems and interconnections. Considerable effort has been made to enhance 
robustness in decentralized control structure and decentralized control design schemes and 
various approaches have been developed in this field both in time and frequency domains 
(Gyurkovics & Takacs, 2000; Zečevič & Šiljak, 2004; Stankovič et al., 2007).  
Recently, the algebraic approach has gained considerable interest in robust control, (Boyd et 
al., 1994; Crusius & Trofino, 1999; de Oliveira et al., 1999; Ming Ge et al., 2002; Grman et al., 
2005; Henrion et al., 2002). Algebraic approach is based on the fact that many different 
problems in control reduce to an equivalent linear algebra problem (Skelton et al., 1998). By 
algebraic approach, robust control problem is formulated in algebraic framework and 
solved as an optimization problem, preferably in the form of Linear Matrix Inequalities 
(LMI). LMI techniques enable to solve a large set of convex problems in polynomial time 
(see Boyd et al., 1994). This approach is directly applicable when control problems for linear 
uncertain systems with a convex uncertainty domain are solved. Still, many important 
control problems even for linear systems have been proven as NP hard, including structured 
linear control problems such as decentralized control and simultaneous static output 
feedback (SOF) designs. In these cases the prescribed structure of control feedback matrix 
(block diagonal for decentralized control) results in nonconvex problem formulation. There 
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are basically two approaches to solve the respective nonconvex control problem: 1) to 
reformulate the problem as LMI using certain convex relaxations (e.g. deOliveira et al., 2000; 
Rosinová & Veselý, 2003) or, alternatively, adopt an iterative procedure; 2) to formulate and 
solve the bilinear matrix inequalities (BMI) respective to robust control design problem. A 
nice review and basic characteristics of LMI and BMI in various control problems can be 
found in (Van Antwerp & Braatz, 2000). 
To reduce the problem size in decentralized control design for large scale systems, the 
diagonal dominance or block diagonal dominance concept can be adopted. Recently, the so 
called Equivalent Subsystems Method has been developed for decentralized control in 
frequency domain, (Kozáková & Veselý, 2009). The main concept of the Equivalent 
Subsystems Method, originally developed as a Nyquist based frequency domain 
decentralized controller design technique, is the so called equivalent subsystem; equivalent 
subsystems are generated by shaping Nyquist plot of each decoupled subsystem using any 
selected characteristic locus of the matrix of interactions. The point of this approach consists 
in that local controllers of equivalent subsystems can be independently tuned for stability 
and required performance specified in terms of a suitable (preferably frequency domain) 
performance measure  (e.g. degree of stability, phase margin, bandwidth), so that the 
resulting decentralized controller guarantees equivalent performance of  the full system.  
When designing decentralized control, besides robust stability, performance requirements 
have to be considered. Performance objectives can be of two basic types: a) achieving 
required performance in different subsystems; or b) achieving plant-wide desired 
performance. In this chapter two alternative approaches belonging to the latter group are 
presented, based on recent research results on robust decentralized PID controller design in 
the frequency and time domains. 
The present chapter further extends the robust decentralized PID controller design 
techniques from (Kozáková et al., 2009; 2010; 2011; Rosinová et al., 2003; Rosinová & Veselý, 
2007; 2011), bringing novel robust control design approaches. The results are illustrated on 
the case study dealing with robust decentralized controller design for the quadruple tank 
process. This laboratory process recently presented in (Johansson, 2000; Johansson et al., 
1999) is an illustrative two input - two output laboratory plant for studying multivariable 
dynamic systems for both minimum and nonminimum-phase configurations.  
The first presented approach is based on formulation and solution of BMI or LMI for 
uncertain linear polytopic system to design robust controller in the state space. In the time 
domain, we introduce the augmented model for closed-loop linear uncertain system with 
PID controller; this model is in general form, comprising both continuous- and discrete-time 
cases. For both cases, a general robust stability condition is formulated; the particular design 
procedures differ only in parameterization of augmented model matrices. A decentralized 
control design strategy is adopted, where robust PID control design approach is applied for 
structured - block diagonal controller matrices respective to decentralized controller. 
The second approach is based on the Nyquist-type decentralized control design technique 
for uncertain MIMO systems described by a transfer function matrix. The decentralized 
controller is designed on subsystem level using the recently developed Equivalent 
Subsystem Method (Kozáková et al., 2009). Application of this method in the design for 
robust stability and nominal performance can be found e.g. in (Kozáková & Veselý, 2009) 
within a two-stage design scheme: 1. design of decentralized controller for nominal 
performance; 2. controller redesign with modified performance requirements to meet the 
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robust stability conditions. A direct “one-shot” robust DC design methodology based on 
integration of robust stability conditions in the Equivalent Subsystems Method enables to 
design local controllers of equivalent subsystems with regard to robust stability of the full 
system. The frequency domain approach is applicable for both continuous- and discrete-
time PID controller designs. 

2. Motivation: Case study - Quadruple tank process 
This section aims at description, and analysis of two input - two output process from 
literature, which will be later used to demonstrate our proposed methods for 
decentralized PID controller design. The quadruple-tank process shown in Fig.1 has been 
introduced in (Johansson et al., 1999; Johansson, 2000) to provide a case study to analyze 
both minimum and nonminimum phase MIMO systems on the same plant. The aim is to 
control the level in the lower two tanks using two pumps. The inputs 1  and 2  are 
pump 1 and 2 flows respectively, the controlled outputs y1 and y2 are levels in lower tanks 
1 and 2 respectively.  
 

 
Fig. 1. Quadruple tank process scheme. 

The nonlinear model of the four tanks can be described by state equations 
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introduced in (Johansson et al., 1999; Johansson, 2000) to provide a case study to analyze 
both minimum and nonminimum phase MIMO systems on the same plant. The aim is to 
control the level in the lower two tanks using two pumps. The inputs 1  and 2  are 
pump 1 and 2 flows respectively, the controlled outputs y1 and y2 are levels in lower tanks 
1 and 2 respectively.  
 

 
Fig. 1. Quadruple tank process scheme. 
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where Ai is cross-section of tank i, ai is cross-section of the outlet hole of tank i, hi is water 
level in tank i, g is acceleration of gravity, the flow corresponding to pump i is kivi. 
Parameter 1  denotes position of the valve dividing the pump 1 flow into the lower tank 1 
and related upper tank 4 and similarly 2  divides flow from pump 2 to the tanks 2 and 3. 
The flow to tank 1 is 1 1 1k v  and to tank 4 it is 1 1 1(1 )k v , analogically for the tanks 2 and 3. 
The nonlinear model (1) can be linearized around the working point given by the water 
levels in tanks 10 20 30 40, , ,h h h h . The deviation state space model was considered with 

0i i ix h h   and the respective control variables 0i i iu v v  . The linearized state space 
model for quadruple tank (1) is then 
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where 02 , 1,..., 4i i
i

i

A hT i
a g

  . 

The argument t has been omitted; the state variables corresponding to levels in tanks 2 and 3 
have been interchanged in state vector so that subsystems respective to input u1 from pump 
1 (tanks 1 and 3) and  u2 from pump 2 (tanks 2 and 4) are more apparent. This 
decomposition into two subsystems is used for decentralized control design. 
The respective transfer function matrix having inputs v1 and v2 and outputs y1 and y2 is 
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The plant can be shifted from minimum to nonminimum phase configuration and vice versa 
simply by changing a valve controlling the flow ratios 1  and 2 between lower and upper 
tanks. The minimum-phase configuration corresponds to 1 21 2     and the 
nonminimum-phase one to 1 20 1    . 

2.1 Decentralized control of quadruple tank – problem formulation and pairing 
selection 
The basic control aim for quadruple tank is to reach the given level in the lower two tanks, 
i.e. prescribed values of y1 and y2 by controlling input flows v1 and v2 delivered by two 
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pumps. To achieve this aim, the decentralized control structure is employed, with two 
control loops respective to output values y1 and y2.  
Decentralized control design consists of several steps, the crucial ones for controller design 
are 
- choice of appropriate pairing of inputs to outputs; 
- structural stability test respective to chosen pairing; 
- robust decentralized controller design.  
We consider the standard approach for the former two steps presented below; in Sections 3 
and 4 we concentrate on the last step – robust decentralized control design.  

Pairing and structural stability 

Frequently used index to assess input-output pairing is the Relative Gain Array (RGA) 
index, see e.g. (Ogunnaike & Ray, 1994), (Skogestad & Postletwhaite, 2009), computed  
as 

 1( ) ( ). * [ ( ) ]TRGA s G s G s   (4) 

where G(s) is a square transfer function matrix of the linearized system. 
Individual subsystems are then specified by the chosen pairing and their transfer functions 
are placed in the diagonal of the transfer function matrix. To check structural stabilizability 
using the chosen control configuration, the Niederlinski index is applied: 
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  (5) 

If 0NI  , the system cannot be stabilized using the chosen pairing and the pairing must be 
modified. 
In our case study, the steady state RGA(0) is considered to choose appropriate pairing with 
the respective RGA elements positive and closest possible to 1. 
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 
depends on valve parameters 1 and 2 exclusively. The diagonal 

elements λ are positive for 1 21 2     (minimum phase system) and the respective 
pairing is 1 1 2 2,v y v y  . For 1 20 1     (nonminimm phase system), the opposite 
pairing 1 2 2 1,v y v y   is indicated. This result is approved by Niederlinski index. 

2.2 Quadruple tank process – uncertainty domain 
For quadruple tank system (1), we consider the uncertainty to be a change of valve position, 
i.e. change of 1  and 2 , uncertainty domain is specified by three working points.  
In minimum phase region:                               In nonminimum phase region:  
WP1: 1 = 0.4, 2 = 0.8; WP2: 1 = 0.8, 2 = 0.4   WP1: 1 = 0.1, 2 = 0.3; WP2: 1 = 0.3, 2 = 0.1 
WP3:  1 = 0.8, 2 = 0.8           (7)                               WP3:  1 = 0.1, 2 = 0.1  (8) 
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pumps. To achieve this aim, the decentralized control structure is employed, with two 
control loops respective to output values y1 and y2.  
Decentralized control design consists of several steps, the crucial ones for controller design 
are 
- choice of appropriate pairing of inputs to outputs; 
- structural stability test respective to chosen pairing; 
- robust decentralized controller design.  
We consider the standard approach for the former two steps presented below; in Sections 3 
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 a) minimum phase configuration                b) nonminimum phase configuration 

Fig. 2. Uncertainty domain specified by working points 

3. Robust decentralized PID controller design in the time domain 
In this section, robust decentralized controller in time domain is designed based on robust 
stability conditions formulated and solved as linear (or bilinear) matrix inequalities. To 
include performance evaluation, the quadratic performance index is used. Decentralized 
robust control problem is formulated in general framework for augmented system, 
including the model of controlled system as well as controller dynamics. The robust stability 
conditions from literature are recalled, using D-stability concept which enables unified 
formulation for continuous-time and discrete-time cases. Our modification of these results 
includes derivative term of PID controller as well as a term for guaranteed cost.  Thus, the 
decentralized control design procedure is presented in the general form comprising both 
continuous and discrete-time system models.  
Notation: for a symmetric square matrix X, X > 0 denotes positive definiteness; * in matrices 
denotes the respective transposed term to make the matrix symmetric, 0 in matrices denotes 
zero block of the corresponding dimensions, In denotes identity matrix of dimensions nxn; 
dimension index is often omitted, when the dimension is clear from the context. Argument t 
denotes either continuous time for continuous-time, or sampled time for discrete-time 
system models; we intentionally use the same symbol t for both cases to underline that the 
formulation of developed results is general, applicable for both cases. 

3.1 Preliminaries and problem formulation  
3.1.1 Decentralized control of uncertain system, guaranteed cost control 
Consider a linearized model of interconnected system, where subsystems with polytopic 
uncertainty are assumed, described by 
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where ( ) ( )x t x t   for continuous-time system model; ( ) ( 1)x t x t    for discrete-time 
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The whole interconnected system model in the compact form is  

   S: ( ) ( ) ( ) ( ) ( )x t A x t B u t     
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where ( )kA  has diagonal blocks ikA and off-diagonal blocks ijkA , ( )kB  has diagonal blocks 
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A closed loop system performance is assessed considering the guaranteed cost notion; the 
quadratic cost function known from LQ theory is used.  
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 ( ) ( )dy t C x t  (11) 

uncertain system matrix   ( ) ( )d mA A A    ,    ( ) ( )d mB B B     and 

 ( )
1 1

( ) , 1, 0
K K

k k k k
k k

A A   
 

     
  
  , ( )

1 1
( ) , 1, 0

K K

k k k k
k k

B B   
 

     
  
   (12) 

where ( )kA  has diagonal blocks ikA and off-diagonal blocks ijkA , ( )kB  has diagonal blocks 

ikB and off-diagonal blocks ijkB respective to (10); and 

1 2 1 2 1 2( ) ( ... ), ( ) ( ... ), ( ) ( ... )T T T T T T T T T
N N Nx t x x x u t u u u y t y y y    are state, control and output vectors 

of the overall system S;  
1( ) { ( ),..., ( )},d NA diag A A   1( ) { ( ),..., ( )},d NB diag B B   1{ ,..., }d NC diag C C  are overall 

system matrices of corresponding dimensions respective to the subsystems, matrices 
( )mA  , ( )mB  correspond to interconnections. 

A closed loop system performance is assessed considering the guaranteed cost notion; the 
quadratic cost function known from LQ theory is used.  

          
0

[ ( ) ( ) ( ) ( )]T T
cJ x t Qx t u t Ru t dt



        for a continuous-time and 

 
0
[ ( ) ( ) ( ) ( )]T T

d
k

J x t Qx t u t Ru t



   for a discrete-time systems  (13) 
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where ,n n m mQ R R R   are symmetric positive semidefinite and positive definite block 
diagonal matrices respectively, with block dimensions respective to the subsystems. The 
concept of guaranteed cost control is used in a standard way: let there exist a control law 

( )u t  and a constant 0J   such that  

 0J J  (14) 

holds for the closed loop system (9). Then the respective control ( )u t  is called the guaranteed 
cost control and the value 0J  is the guaranteed cost.  

Decentralized Control Problem 

The control design aim is to find decentralized control law ( ( ))i iu x t , or ( ( ))i iu y t , i=1,…,N , 
i.e. the overall system is controlled using local control loops for subsystems, such that 
uncertain dynamic system (11) is robustly stable in uncertainty domain (12) with guaranteed 
cost.  
Basically, control design problem will be transformed into the output feedback form: 

( ) ( )i i iu t F y t , employing augmented system model to include controller dynamics, as it is 
using PID controller.   

3.1.2 Augmented system model for continuous and discrete-time PID controller 
The augmented system model including PID controller dynamics is developed in this 
section in general form appropriate both for continuous and discrete-time PID controllers. 
Firstly, recall PID control algorithms for both cases.   
Control algorithm for continuous-time PID is  

 
0

( ) ( ) ( ) ( )
t

P I Du t K e t K e t dt K e t     (15) 

where ( ) ( ) ( )e t y t w t  is control error, ( )w k  is reference value (negative feedback sign is 
included in matrices , ,P I DK K K ); , ,P I DK K K  are controller parameter matrices (for SISO 
system they are scalars) to be designed.  
Generally, different output variables can be considered for proportional, integral and 
derivative controller terms, for better readability we assume that all outputs enter all three 
controller terms. We further assume that the reference value is constant, ( )w k w  and that 
the system states in model (11) correspond to the deviations from working point (these 
assumptions correspond to step change of reference value). Then the control law (15) can be 
rewritten as  

 
0

( ) ( ) ( ) ( )
t

P I Du t K y t K y t dt K y t    . (16) 

Integral term can be included into the state vector in the common way defining the auxiliary 

state 
0

( )
t

z y t  , i.e. ( ) ( ) ( )dz t y t C x t   and PID controller algorithm is 
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 ( ) ( ) ( ) ( )P d I d D du t K C x t K C z t K C x t    . (17) 

Then the closed-loop system (11) with PID controller (17) can be described by augmented 
model 

   
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or 
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D d
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I z C z z
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                               




 

which in a compact form yields 

 ( ) ( )d n C nM x A x   (18) 

where 

 
 

 

0 ( ) 0
( ) 0 ,

0 0 0

( ) 0 ( ) 0
( )

0 0 0

d
d D

d

d
C P I

d d

I B C
M K

I C

A B C
A K K

C C




 


      
              
     

      
     

 (19) 

argument t is omitted for brevity.  
A discrete-time PID (often denoted as PSD) controller is described by control algorithm 

 
0

( ) ( ) ( ) [ ( ) ( 1)]
t

P I D
i

u t k e t k e i k e t e t


      (20) 

where ( )u t , ( ) ( ) ( )e t y t w t  , ( )w t  are discrete time counterparts to the continuous time 
signals; , ,P I Dk k k  are controller parameter matrices to be designed. By analogy with 
continuous time case, for constant ( )w t  we write 

 
0

( ) ( ) ( ) [ ( ) ( 1)]
t

P I D
i

u t k y t k y i k y t y t


      (21) 

State space description of PID controller can be derived in the following way. The dynamics 

of PID controller (21) requires two state variables, since besides 
0

( )
t

i
y i


 , also y(t-1) is 

needed. One possible choice of controller state variables is: 1 2( ) [ ( ) ( )]T T Tz t z t z t , 
2 1

1 2
0 0

( ) ( ), ( ) ( )
t t

i i
z t y i z t y i

 

 
   , then 2 1( 1) ( ) ( )y t z t z t   . Rewriting (21) as  
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where ,n n m mQ R R R   are symmetric positive semidefinite and positive definite block 
diagonal matrices respectively, with block dimensions respective to the subsystems. The 
concept of guaranteed cost control is used in a standard way: let there exist a control law 

( )u t  and a constant 0J   such that  

 0J J  (14) 

holds for the closed loop system (9). Then the respective control ( )u t  is called the guaranteed 
cost control and the value 0J  is the guaranteed cost.  

Decentralized Control Problem 

The control design aim is to find decentralized control law ( ( ))i iu x t , or ( ( ))i iu y t , i=1,…,N , 
i.e. the overall system is controlled using local control loops for subsystems, such that 
uncertain dynamic system (11) is robustly stable in uncertainty domain (12) with guaranteed 
cost.  
Basically, control design problem will be transformed into the output feedback form: 

( ) ( )i i iu t F y t , employing augmented system model to include controller dynamics, as it is 
using PID controller.   

3.1.2 Augmented system model for continuous and discrete-time PID controller 
The augmented system model including PID controller dynamics is developed in this 
section in general form appropriate both for continuous and discrete-time PID controllers. 
Firstly, recall PID control algorithms for both cases.   
Control algorithm for continuous-time PID is  

 
0

( ) ( ) ( ) ( )
t

P I Du t K e t K e t dt K e t     (15) 

where ( ) ( ) ( )e t y t w t  is control error, ( )w k  is reference value (negative feedback sign is 
included in matrices , ,P I DK K K ); , ,P I DK K K  are controller parameter matrices (for SISO 
system they are scalars) to be designed.  
Generally, different output variables can be considered for proportional, integral and 
derivative controller terms, for better readability we assume that all outputs enter all three 
controller terms. We further assume that the reference value is constant, ( )w k w  and that 
the system states in model (11) correspond to the deviations from working point (these 
assumptions correspond to step change of reference value). Then the control law (15) can be 
rewritten as  

 
0

( ) ( ) ( ) ( )
t

P I Du t K y t K y t dt K y t    . (16) 

Integral term can be included into the state vector in the common way defining the auxiliary 

state 
0

( )
t

z y t  , i.e. ( ) ( ) ( )dz t y t C x t   and PID controller algorithm is 
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 ( ) ( ) ( ) ( )P d I d D du t K C x t K C z t K C x t    . (17) 

Then the closed-loop system (11) with PID controller (17) can be described by augmented 
model 

   
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or 
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d

I B K C x A x B x
K C K C

I z C z z
                

                               




 

which in a compact form yields 

 ( ) ( )d n C nM x A x   (18) 

where 

 
 

 
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( ) 0 ,

0 0 0
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              
     

      
     

 (19) 

argument t is omitted for brevity.  
A discrete-time PID (often denoted as PSD) controller is described by control algorithm 

 
0

( ) ( ) ( ) [ ( ) ( 1)]
t

P I D
i

u t k e t k e i k e t e t


      (20) 

where ( )u t , ( ) ( ) ( )e t y t w t  , ( )w t  are discrete time counterparts to the continuous time 
signals; , ,P I Dk k k  are controller parameter matrices to be designed. By analogy with 
continuous time case, for constant ( )w t  we write 

 
0

( ) ( ) ( ) [ ( ) ( 1)]
t

P I D
i

u t k y t k y i k y t y t


      (21) 

State space description of PID controller can be derived in the following way. The dynamics 

of PID controller (21) requires two state variables, since besides 
0

( )
t

i
y i


 , also y(t-1) is 

needed. One possible choice of controller state variables is: 1 2( ) [ ( ) ( )]T T Tz t z t z t , 
2 1

1 2
0 0

( ) ( ), ( ) ( )
t t

i i
z t y i z t y i

 

 
   , then 2 1( 1) ( ) ( )y t z t z t   . Rewriting (21) as  
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1

0

2 2 1

( ) ( ) ( ) ( ) [ ( ) ( 1)]

( ) ( ) ( ) ( ( ) ( ))

t

P I I D
i

P I D I D

u t k y t k y i k y t k y t y t

k k k y t k z t k z t z t




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     

  (21) 

we obtain the respective description of the discrete-time PID controller in state space as 

  

0 0
( 1) ( ) ( ) ( ) ( )

0

( ) ( ) ( ) ( )
( ) ( )

R R

D I D P I D

R R

I
z t z t y t A z t B y t

I I

u t k k k z t k k k y t
C z t D y t

   
       

   
     

 

 (22) 

where z(t) is controller dynamics state vector, 2( ) pz t R . 
The respective augmented model for discrete-time version of system (11) with PID 
controller is 

  ( 1) ( ) 0 ( ) ( ) ( )
( 1) (

( 1) ( ) 0 ( )n R d R
R d R

x t A x t B x t
x t D C C

z t B C A z t z t
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 (23) 

where 2 2 0
,

0
p p

R R
I

A R A
I

  
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 
, 2 0

,p p
R RB R B

I
  

   
 

,  2 ,m p
R R D I DC R C k k k   , 

R P I DD k k k   . 
Analogically as in continuous time case, the augmented system (23) can be rewritten in a 
compact form as 

 ( 1) ( ) ( )n C nx t A x t   (24) 

where   
2

0( ) 0 ( )
( ) 00

d
C R R
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 

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      

      
.      (25) 

Summarizing the augmented closed loop system models (18), (19) and (24), (25) for 
continuous and discrete-time PID controllers respectively, we can finally, using denotation 

( )x t , introduced in (9), rewrite both of them in general form 

 ( ) ( ) ( ) ( )d n C nM x t A x t    (26) 

where ( )dM   is assumed to be invertible, 
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 for a discrete-time PID: 
( ) 0

( )aug
R d R

A
A

B C A



 

  
 

, 
2

0
0
d

aug
p

C
C I

 
  
  

  and ( )dM I  . (27b) 

PID controller parameters are:  

    1 2 P IF F F K K   and DK included in ( )dM  for a continuous-time case; (28a) 

    1 2 1 2; ,P I D D I DF F F F k k k F k k k       for a discrete-time case. (28b) 

In a decentralized PID controller design, controller gain matrices are restricted to block 
diagonal structure respective to subsystem dimensions. 
The presented general closed loop augmented system polytopic model (26) is 
advantageously used in next developments.  

3.1.3 Robust stability  
In this section we recall several recent results on robust stability for linear uncertain systems 
with polytopic model. These results are formulated as robust stability conditions in LMI 
form. Let us start with basic notions concerning Lyapunov stability and D-stability concept 
(Peaucelle et al., 2000; Henrion et al., 2002), used to receive the robust stability conditions in 
more general form. 
Definition 3.1 (D-stability) 
Consider the D-domain in the complex plain defined as 

 
*

11 12
*
12 22

1 1
{ iscomplex  number : 0}

r r
D s

s sr r
    

     
     

 (29) 

Linear system is D-stable if and only if all its poles lie in the D-domain.  
(For simplicity, we use in Def. 3.1 scalar values of parameters rij, in general, the stability 
domain can be defined using matrix values of parameters rij with the respective 
dimensions.) The standard choice of rij  is r11 = 0, r12 = 1, r22 = 0 for a continuous-time system; 
r11 = -1, r12 = 0, r22 = 1 for a discrete-time system, corresponding to open left half plane and 
unit circle respectively.  
The D-stability concept enables to formulate robust stability condition for uncertain 
polytopic system in general way, (deOliveira et al., 1999; Peaucelle et al., 2000).  The 
following robust stability condition is based on the existence of Lyapunov function 

( ) ( ) ( ) ( )V t x t P x t for linear uncertain polytopic system 

 ( ) ( ) ( )x t A x t   (30) 

where ( )A  is from uncertainty domain (12). 

Definition 3.2 (Robust stability) 

Uncertain system (30) is robustly D-stable in the convex uncertainty domain (12) if and only if 
there exists a matrix ( ) ( ) 0TP P   such that 

 *
12 12 11 22( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0T Tr P A r A P r P r A P A            (31) 
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we obtain the respective description of the discrete-time PID controller in state space as 
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where z(t) is controller dynamics state vector, 2( ) pz t R . 
The respective augmented model for discrete-time version of system (11) with PID 
controller is 

  ( 1) ( ) 0 ( ) ( ) ( )
( 1) (

( 1) ( ) 0 ( )n R d R
R d R

x t A x t B x t
x t D C C

z t B C A z t z t
          

                     
 (23) 

where 2 2 0
,

0
p p

R R
I

A R A
I

  
   

 
, 2 0

,p p
R RB R B

I
  

   
 

,  2 ,m p
R R D I DC R C k k k   , 

R P I DD k k k   . 
Analogically as in continuous time case, the augmented system (23) can be rewritten in a 
compact form as 

 ( 1) ( ) ( )n C nx t A x t   (24) 

where   
2

0( ) 0 ( )
( ) 00

d
C R R

pR d R

CA B
A D C IB C A

 


    
      

      
.      (25) 

Summarizing the augmented closed loop system models (18), (19) and (24), (25) for 
continuous and discrete-time PID controllers respectively, we can finally, using denotation 

( )x t , introduced in (9), rewrite both of them in general form 

 ( ) ( ) ( ) ( )d n C nM x t A x t    (26) 

where ( )dM   is assumed to be invertible, 

 1 2
( )

( ) ( ) ( ) ( )
0C aug aug aug aug aug

B
A A F F C A B FC


   

 
    

 
 and  

for a continuous PID:  
( ) 0

( )
0aug

d

A
A

C



 

  
 

, 
0

0
d

aug
d

C
C

C
 

  
 

 and   

 
0 ( ) 0

( )
0 0 0

D d
d

I B K C
M

I



    

          
; (27a) 
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 for a discrete-time PID: 
( ) 0

( )aug
R d R

A
A

B C A



 

  
 

, 
2

0
0
d

aug
p

C
C I

 
  
  

  and ( )dM I  . (27b) 

PID controller parameters are:  

    1 2 P IF F F K K   and DK included in ( )dM  for a continuous-time case; (28a) 

    1 2 1 2; ,P I D D I DF F F F k k k F k k k       for a discrete-time case. (28b) 

In a decentralized PID controller design, controller gain matrices are restricted to block 
diagonal structure respective to subsystem dimensions. 
The presented general closed loop augmented system polytopic model (26) is 
advantageously used in next developments.  

3.1.3 Robust stability  
In this section we recall several recent results on robust stability for linear uncertain systems 
with polytopic model. These results are formulated as robust stability conditions in LMI 
form. Let us start with basic notions concerning Lyapunov stability and D-stability concept 
(Peaucelle et al., 2000; Henrion et al., 2002), used to receive the robust stability conditions in 
more general form. 
Definition 3.1 (D-stability) 
Consider the D-domain in the complex plain defined as 

 
*

11 12
*
12 22

1 1
{ iscomplex  number : 0}

r r
D s

s sr r
    

     
     

 (29) 

Linear system is D-stable if and only if all its poles lie in the D-domain.  
(For simplicity, we use in Def. 3.1 scalar values of parameters rij, in general, the stability 
domain can be defined using matrix values of parameters rij with the respective 
dimensions.) The standard choice of rij  is r11 = 0, r12 = 1, r22 = 0 for a continuous-time system; 
r11 = -1, r12 = 0, r22 = 1 for a discrete-time system, corresponding to open left half plane and 
unit circle respectively.  
The D-stability concept enables to formulate robust stability condition for uncertain 
polytopic system in general way, (deOliveira et al., 1999; Peaucelle et al., 2000).  The 
following robust stability condition is based on the existence of Lyapunov function 

( ) ( ) ( ) ( )V t x t P x t for linear uncertain polytopic system 

 ( ) ( ) ( )x t A x t   (30) 

where ( )A  is from uncertainty domain (12). 

Definition 3.2 (Robust stability) 

Uncertain system (30) is robustly D-stable in the convex uncertainty domain (12) if and only if 
there exists a matrix ( ) ( ) 0TP P   such that 

 *
12 12 11 22( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0T Tr P A r A P r P r A P A            (31) 
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For one Lyapunov function for the whole uncertainty domain, i.e. ( ) 0P P   , the 
quadratic D-stability is guaranteed by (31). Generally, robust stability condition (31) with 
parameter dependent matrix ( )P   is less conservative (provides bigger stability domain 
for ( )A  than quadratic stability one), however stability is guaranteed only for relatively 
slow changes of system parameters within uncertainty domain (12) (in comparison with 
system dynamics). On the other hand, quadratic stability guards against arbitrary quick 
changes of system parameters within uncertainty domain (12) at the expense of sufficient, 
relatively strong, stability condition; which can be overly conservative for the case of slow 
parameter changes.  
We consider the parameter dependent Lyapunov function (PDLF) defined as 

 ( ) ( ) ( ) ( )V t x t P x t  (32) 

 
1

( ) where 0
K

T
k k k k

k
P P P P 


    (33) 

PDLF given by (32), (33) enables to transform robust stability condition (31) for uncertain 
linear polytopic system (9), (10) into the set of N Linear Matrix Inequalities (LMIs). Several 
respective sufficient robust stability conditions have been developed in the literature, e.g. 
(deOliveira et al., 1999; Peaucelle et al., 2000; Henrion et al., 2002).  Recall the sufficient 
robust D-stability condition proposed in (Peaucelle et al., 2000), which to the authors best 
knowledge belongs to the least conservative (Grman et al., 2005). 
Lemma 3.1 

If there exist matrices ,nxn nxnH R G R   and K symmetric positive definite matrices 
nxn

kP R  such that for all k = 1,…, K: 

 11 ( ) ( ) 12 ( )
*
12 ( ) 22

0
( )

T T T
k k k k k

T T T
k k k

r P A H HA r P H A G

r P H G A r P G G

    
  
     

  


 (34) 

then uncertain system (30) is robustly D-stable in uncertainty domain (12). 
Note that matrices H and G are not restricted to any special form; they were included to 
relax the conservatism of the sufficient condition. Robust stability condition for more 
general dynamic system model (26), including also the term for guaranteed cost will be 
presented in the next section. 

3.2 Robust decentralized PID controller design 
In this section, the robust decentralized PID controller is designed, based on robust stability 
condition developed in our recent papers, (Rosinová & Veselý, 2007; Veselý & Rosinová, 
2011). Robust stability condition with guaranteed cost for closed loop uncertain system (26) 
is provided in the next theorem. 
Theorem 3.1 

Consider uncertain linear system (26) with cost function (13). If there exist symmetric matrix 
( ) 0P    and matrices H, G and F of the respective dimensions such that  
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 11 12
*
12 22

( ) ( ) ( ) ( ) ( ) ( )
0

( ) ( ) ( ) ( ) ( )

T T T T T
C C d C

T T T T T
d C k d d

r P A H HA Q C F RFC r P HM A G

r P M H G A r P M G G M

     

    

      
 

     
 (35) 

then the system (26) is robustly D-stable with  guaranteed cost: 0 (0) ( ) (0)TJ J x P x  . 
Proof.  The proof is analogical to the one presented in (Rosinová & Veselý, 2007) for the 
continuous-time PID. Firstly, we formulate the sufficient stability condition for uncertain 
system (26) using the respective Lyapunov function. The assumption that ( )dM  is 

invertible, enables us to rewrite (26) as 1( ) ( ) ( ) ( )dx t M A x t   and use parameter 
dependent Lyapunov function (32) to write robust stability condition.  
Denote ( ) ( )V t V t    for a continuous-time system, ( ) ( 1) ( )V t V t V t    for a discrete-time 
system.  Then the sufficient D-stability condition (31) can be rewritten in the following form 
(known from LQ theory, for details see e.g. Rosinová et al., 2003)  

 
 

 

1 * 1
12 12 11

1 1
22

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) 0

TT
d d

TT T T
d d d d

r P M A r A M P r P

r A M P M A Q C F RFC

      

    

 

 

  

  
 (36) 

where the term T T
d dQ C F RFC has been appended to ( )V t to consider the guaranteed cost. 

To prove Theorem 3.1, it is sufficient to prove that (35) implies (36). This can be shown 
applying congruence transformation on (35): 

      
1

1( ) ( ) (35) 0
( ) ( )

TT
C d

d C

I
I A M left handside of

M A
 

 




           
 (37) 

which immediately yields (36).  
It is important to note that robust stability condition (35) is linear with respect to 
parameter . Therefore, for convex polytopic uncertainty domain (12) and PDLF (33), 
matrix inequality (35) is equivalent to the set of matrix inequalities respective to the 
polytope vertices, as summarized in Corollary 3.1. 
Corollary 3.1 
Uncertain linear system (26) with cost function (13) is robustly D-stable with parameter 
dependent Lyapunov function (32), (33) and guaranteed cost 0 (0) ( ) (0)TJ J x P x   if the 
following matrix inequalities hold 

 11 12
*
12 22

0
T T T T T

k Ck Ck k dk Ck
T T T T T

k dk Ck k dk dk

r P A H HA Q C F RFC r P HM A G

r P M H G A r P M G G M

      
 

     
,  k=1,...,K (38) 

  where 
1 1

( ) ( ) ( ) , 1, 0
K K

C aug aug aug k Ck k k
k k

A A B FC A     
 

       
  
  , 

Ck aug k aug k augA A B FC  ,  and aug kA , aug kB  correspond to the k-th vertex of uncertainty 

domain of the overall system (10), (12); 
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For one Lyapunov function for the whole uncertainty domain, i.e. ( ) 0P P   , the 
quadratic D-stability is guaranteed by (31). Generally, robust stability condition (31) with 
parameter dependent matrix ( )P   is less conservative (provides bigger stability domain 
for ( )A  than quadratic stability one), however stability is guaranteed only for relatively 
slow changes of system parameters within uncertainty domain (12) (in comparison with 
system dynamics). On the other hand, quadratic stability guards against arbitrary quick 
changes of system parameters within uncertainty domain (12) at the expense of sufficient, 
relatively strong, stability condition; which can be overly conservative for the case of slow 
parameter changes.  
We consider the parameter dependent Lyapunov function (PDLF) defined as 

 ( ) ( ) ( ) ( )V t x t P x t  (32) 

 
1

( ) where 0
K

T
k k k k

k
P P P P 


    (33) 

PDLF given by (32), (33) enables to transform robust stability condition (31) for uncertain 
linear polytopic system (9), (10) into the set of N Linear Matrix Inequalities (LMIs). Several 
respective sufficient robust stability conditions have been developed in the literature, e.g. 
(deOliveira et al., 1999; Peaucelle et al., 2000; Henrion et al., 2002).  Recall the sufficient 
robust D-stability condition proposed in (Peaucelle et al., 2000), which to the authors best 
knowledge belongs to the least conservative (Grman et al., 2005). 
Lemma 3.1 

If there exist matrices ,nxn nxnH R G R   and K symmetric positive definite matrices 
nxn

kP R  such that for all k = 1,…, K: 

 11 ( ) ( ) 12 ( )
*
12 ( ) 22

0
( )

T T T
k k k k k

T T T
k k k

r P A H HA r P H A G

r P H G A r P G G

    
  
     

  


 (34) 

then uncertain system (30) is robustly D-stable in uncertainty domain (12). 
Note that matrices H and G are not restricted to any special form; they were included to 
relax the conservatism of the sufficient condition. Robust stability condition for more 
general dynamic system model (26), including also the term for guaranteed cost will be 
presented in the next section. 

3.2 Robust decentralized PID controller design 
In this section, the robust decentralized PID controller is designed, based on robust stability 
condition developed in our recent papers, (Rosinová & Veselý, 2007; Veselý & Rosinová, 
2011). Robust stability condition with guaranteed cost for closed loop uncertain system (26) 
is provided in the next theorem. 
Theorem 3.1 

Consider uncertain linear system (26) with cost function (13). If there exist symmetric matrix 
( ) 0P    and matrices H, G and F of the respective dimensions such that  
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 11 12
*
12 22

( ) ( ) ( ) ( ) ( ) ( )
0

( ) ( ) ( ) ( ) ( )

T T T T T
C C d C

T T T T T
d C k d d

r P A H HA Q C F RFC r P HM A G

r P M H G A r P M G G M

     

    

      
 

     
 (35) 

then the system (26) is robustly D-stable with  guaranteed cost: 0 (0) ( ) (0)TJ J x P x  . 
Proof.  The proof is analogical to the one presented in (Rosinová & Veselý, 2007) for the 
continuous-time PID. Firstly, we formulate the sufficient stability condition for uncertain 
system (26) using the respective Lyapunov function. The assumption that ( )dM  is 

invertible, enables us to rewrite (26) as 1( ) ( ) ( ) ( )dx t M A x t   and use parameter 
dependent Lyapunov function (32) to write robust stability condition.  
Denote ( ) ( )V t V t    for a continuous-time system, ( ) ( 1) ( )V t V t V t    for a discrete-time 
system.  Then the sufficient D-stability condition (31) can be rewritten in the following form 
(known from LQ theory, for details see e.g. Rosinová et al., 2003)  

 
 

 

1 * 1
12 12 11

1 1
22

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) 0

TT
d d

TT T T
d d d d

r P M A r A M P r P

r A M P M A Q C F RFC

      

    

 

 

  

  
 (36) 

where the term T T
d dQ C F RFC has been appended to ( )V t to consider the guaranteed cost. 

To prove Theorem 3.1, it is sufficient to prove that (35) implies (36). This can be shown 
applying congruence transformation on (35): 

      
1

1( ) ( ) (35) 0
( ) ( )

TT
C d

d C

I
I A M left handsideof

M A
 

 




           
 (37) 

which immediately yields (36).  
It is important to note that robust stability condition (35) is linear with respect to 
parameter . Therefore, for convex polytopic uncertainty domain (12) and PDLF (33), 
matrix inequality (35) is equivalent to the set of matrix inequalities respective to the 
polytope vertices, as summarized in Corollary 3.1. 
Corollary 3.1 
Uncertain linear system (26) with cost function (13) is robustly D-stable with parameter 
dependent Lyapunov function (32), (33) and guaranteed cost 0 (0) ( ) (0)TJ J x P x   if the 
following matrix inequalities hold 

 11 12
*
12 22

0
T T T T T

k Ck Ck k dk Ck
T T T T T

k dk Ck k dk dk

r P A H HA Q C F RFC r P HM A G

r P M H G A r P M G G M

      
 

     
,  k=1,...,K (38) 

  where 
1 1

( ) ( ) ( ) , 1, 0
K K

C aug aug aug k Ck k k
k k

A A B FC A     
 

       
  
  , 

Ck aug k aug k augA A B FC  ,  and aug kA , aug kB  correspond to the k-th vertex of uncertainty 

domain of the overall system (10), (12); 
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1 1
( ) , 1, 0

K K

d k dk k k
k k

M M   
 

     
  
  , dkM is for PID controller given by (27a) or (27b), and 

( )B   is given by (12). 
Robust stability condition (38) is LMI for stability analysis, for controller synthesis it is in the 
BMI form. Therefore, (38) can be used for robust controller design either directly – using 
appropriate BMI solver (Henrion et al., 2005) or using some convexifying approach, (for 
discrete-time case see e.g. (Crusius & Trofino, 1999; deOliveira et al., 1999)). We have 
relatively good experience with the following simple convexified LMI procedure for static 
output feedback discrete-time controller design, which is directly applicable for discrete-
time PID controller design problem formulated by (26), (27b), (28b). 
The controller gain block diagonal matrix F is obtained by solving LMIs (39) for unknown 
matrices F, M, G and Pk of appropriate dimensions, the Pk being block diagonal symmetric, 
and M, G block diagonal with block dimensions conforming to subsystem dimensions. This 
convexifying approach does not allow including a term corresponding to performance 
index, therefore the resulting control guarantees only robust stability within considered 
uncertainty domain. 

0,
k aug k aug k aug

T T T T T T
aug k aug k k

P A G B KC

G A C K B G G P

  
  
     

,  k=1,...,K 

 aug augMC C G  (39) 

1F KM  

F is the corresponding output feedback gain matrix. 
The main advantage of the use of LMI (39) for controller design is its simplicity. The major 
drawbacks are, that the performance index cannot be considered, and that due to 
convexifying constraint ( aug augMC C G ), it need not provide a solution even in a case when 
feasible solution is received through BMI (38). (This is the case in our example in Section 3.3, 
in nonminimum phase configuration.) 
To conclude this section we summarize the described decentralized PID controller design 
procedure, assuming that the state space model is in the form of (9) with polytopic 
uncertainty domain given by (10), where columns of control input matrix B are arranged 
respectively to chosen pairing. 
Design procedure for decentralized PID design in time domain 
Step 1. Formulate the augmented state space model (26) for given system and chosen type of 
PID controller. 
Step 2. Compute decentralized PID controller parameters using one of design alternatives: 
 LMI alternative for discrete-time case – guarantees robust stability: solve LMI (39) for 

unknown block diagonal matrices F, M, G and Pk>0, of appropriate dimensions; PID 
controller parameters are given by F respectively to (28b). 

 BMI alternative – guarantees robust stability and guaranteed cost for quadratic 
performance index (13): solve BMI (38) for unknown block diagonal matrices F, Pk>0 
and matrices G, H, of appropriate dimensions, PID controller parameters are given by F 
and dkM respectively to (28) and (27), dkM is for PID controller given by (27).  
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3.3 Decentralized PID controller design for the Quadruple tank process 
We consider quadruple tank linearized model (2) with parameters: 

2
1 3 30[ ];A A cm  2

2 4 35 [ ];A A cm    

2
1 3 0.0977 [ ];a a cm  2

2 4 0.0785 [ ]a a cm  ; 

10 20 30 4020 [ ]; 2.75 [ ]; 2.22 [ ]h h cm h cm h cm   
; 

 
2981 [ / ];g cm s  1 21.790; 1.827k k  . 

1 1 1

3 3 2 1

2 22 2

14 4

0.0161 0.0435 0 0 0.0596 0
0 0.0435 0 0 0 0.0595(1 )
0 0 0.0111 0.0333 0 0.0522
0 0 0 0.0333 0.052(1 ) 0

x x
x x u

ux x
x x







      
                                  

          






  

1

1 2

2 3

4

1 0 0 0
0 0 1 0

x
y x
y x

x

 
                
 

 

Subsystems are indicated via the splitting dashed lines. Polytope vertices respective to 
working points (7) or (8) for minimum phase or nonminimum phase configurations 
respectively determine the corresponding uncertainty domains indicated in Fig.2. State 
space model has been discretized with sampling period  5[ ]sT s  (sampling period was 
chosen with respect to the process dynamics). 

Minimum phase configuration 

In the minimum phase case, robust decentralized controller is designed for chosen pairing 
1 1 2 2,v y v y  (see Section 2.1) using alternatively solution of LMI (39) or BMI (38) for 

decentralized discrete-time PI controller design. The resulting controller parameters are in 
Tab.1, the respective simulation results are illustrated and compared on step responses in 
one tested point from uncertainty domain, in Fig. 3. 
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Table 1. Decentralized PID controller parameters – minimum phase case 
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  , dkM is for PID controller given by (27a) or (27b), and 

( )B   is given by (12). 
Robust stability condition (38) is LMI for stability analysis, for controller synthesis it is in the 
BMI form. Therefore, (38) can be used for robust controller design either directly – using 
appropriate BMI solver (Henrion et al., 2005) or using some convexifying approach, (for 
discrete-time case see e.g. (Crusius & Trofino, 1999; deOliveira et al., 1999)). We have 
relatively good experience with the following simple convexified LMI procedure for static 
output feedback discrete-time controller design, which is directly applicable for discrete-
time PID controller design problem formulated by (26), (27b), (28b). 
The controller gain block diagonal matrix F is obtained by solving LMIs (39) for unknown 
matrices F, M, G and Pk of appropriate dimensions, the Pk being block diagonal symmetric, 
and M, G block diagonal with block dimensions conforming to subsystem dimensions. This 
convexifying approach does not allow including a term corresponding to performance 
index, therefore the resulting control guarantees only robust stability within considered 
uncertainty domain. 

0,
k aug k aug k aug

T T T T T T
aug k aug k k

P A G B KC

G A C K B G G P

  
  
     

,  k=1,...,K 

 aug augMC C G  (39) 

1F KM  

F is the corresponding output feedback gain matrix. 
The main advantage of the use of LMI (39) for controller design is its simplicity. The major 
drawbacks are, that the performance index cannot be considered, and that due to 
convexifying constraint ( aug augMC C G ), it need not provide a solution even in a case when 
feasible solution is received through BMI (38). (This is the case in our example in Section 3.3, 
in nonminimum phase configuration.) 
To conclude this section we summarize the described decentralized PID controller design 
procedure, assuming that the state space model is in the form of (9) with polytopic 
uncertainty domain given by (10), where columns of control input matrix B are arranged 
respectively to chosen pairing. 
Design procedure for decentralized PID design in time domain 
Step 1. Formulate the augmented state space model (26) for given system and chosen type of 
PID controller. 
Step 2. Compute decentralized PID controller parameters using one of design alternatives: 
 LMI alternative for discrete-time case – guarantees robust stability: solve LMI (39) for 

unknown block diagonal matrices F, M, G and Pk>0, of appropriate dimensions; PID 
controller parameters are given by F respectively to (28b). 

 BMI alternative – guarantees robust stability and guaranteed cost for quadratic 
performance index (13): solve BMI (38) for unknown block diagonal matrices F, Pk>0 
and matrices G, H, of appropriate dimensions, PID controller parameters are given by F 
and dkM respectively to (28) and (27), dkM is for PID controller given by (27).  
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3.3 Decentralized PID controller design for the Quadruple tank process 
We consider quadruple tank linearized model (2) with parameters: 
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Subsystems are indicated via the splitting dashed lines. Polytope vertices respective to 
working points (7) or (8) for minimum phase or nonminimum phase configurations 
respectively determine the corresponding uncertainty domains indicated in Fig.2. State 
space model has been discretized with sampling period  5[ ]sT s  (sampling period was 
chosen with respect to the process dynamics). 

Minimum phase configuration 

In the minimum phase case, robust decentralized controller is designed for chosen pairing 
1 1 2 2,v y v y  (see Section 2.1) using alternatively solution of LMI (39) or BMI (38) for 

decentralized discrete-time PI controller design. The resulting controller parameters are in 
Tab.1, the respective simulation results are illustrated and compared on step responses in 
one tested point from uncertainty domain, in Fig. 3. 
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Table 1. Decentralized PID controller parameters – minimum phase case 
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Fig. 3. Step response of y1 and y2  to setpoint step changes: w1 in 400s and w2 in 800s; 
comparison of LMI and BMI design results from Tab.1 

Obviously, the results for the BMI solution including performance index outperform the 
ones obtained using simpler LMI approach. 
Nonminimum phase configuration 
In the nonminimum phase case, robust decentralized controller is designed for chosen pairing 

1 2 2 1,v y v y  (see Section 2.1) using a solution of BMI (38) for decentralized discrete-time PI 
controller design, (in this case LMI procedure (39) does not provide a feasible solution). The 
resulting controller parameters are in Tab.2, the respective simulation results are illustrated on 
step responses in one tested point from uncertainty domain, in Fig. 4. 
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Table 2. Decentralized PID controller parameters – nonminimum phase case 
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Fig. 4. Step response of y1 and y2  to setpoint step changes: w1 (for y2) in 1000s and w2  
(for y1) in 2000s 
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Comparison of simulation results for minimum and nonminimum phase cases shows the 
deteriorating influence of nonminimum phase on settling time.  

4. Robust decentralized PID controller design in the frequency domain 
This section deals with an original frequency domain robust decentralized controller design 
methodology applicable for uncertain systems described by a set of transfer function 
matrices. The design methodology is based on the Equivalent Subsystems Method (ESM) - a 
frequency domain decentralized controller design technique to guarantee stability and 
specified performance of multivariable systems and is applicable for both continuous- and 
discrete-time controller designs (Kozáková et al., 2009). In contrast to the two stage robust 
decentralized controller design method based on the M-structure stability conditions 
(Kozáková & Veselý, 2009), the recent innovation (Kozáková et al., 2011) consists in that 
robust stability conditions are directly integrated into the ESM, thus providing a one-step 
(direct) robust decentralized controller design for robust stability and plant-wide 
performance.  

4.1 Preliminaries and problem formulation  
Consider a MIMO system described by a transfer function matrix ( ) m mG s R  and a 

controller ( ) m mR s R  in the standard feedback configuration according to Fig. 5,  
 

w e yu
d

R(s) G(s) 

 
Fig. 5. Standard feedback configuration 

where w, u, y, e, d are respectively vectors of reference, control, output, control error and 
disturbance of compatible dimensions. Necessary and sufficient conditions for closed-loop 
stability are given by the Generalized Nyquist Stability Theorem applied to the closed-loop 
characteristic polynomial   

 det ( ) det[ ( )]F s I Q s   (40) 

where ( ) ( ) ( )Q s G s R s m mR  is the open-loop transfer function matrix. 
Characteristic functions of ( )Q s are the set of m algebraic functions ( ), 1,...,iq s i m defined 
as follows: 

 det[ ( ) ( )] 0 1,...,i mq s I Q s i m    (41) 

Characteristic loci (CL) are the set of loci in the complex plane traced out by the 
characteristic functions of  Q(s), s j .  

Theorem 4.1 (Generalized Nyquist Stability Theorem) 

The closed-loop system in Fig. 1 is stable if and only if  
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comparison of LMI and BMI design results from Tab.1 

Obviously, the results for the BMI solution including performance index outperform the 
ones obtained using simpler LMI approach. 
Nonminimum phase configuration 
In the nonminimum phase case, robust decentralized controller is designed for chosen pairing 

1 2 2 1,v y v y  (see Section 2.1) using a solution of BMI (38) for decentralized discrete-time PI 
controller design, (in this case LMI procedure (39) does not provide a feasible solution). The 
resulting controller parameters are in Tab.2, the respective simulation results are illustrated on 
step responses in one tested point from uncertainty domain, in Fig. 4. 
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Comparison of simulation results for minimum and nonminimum phase cases shows the 
deteriorating influence of nonminimum phase on settling time.  

4. Robust decentralized PID controller design in the frequency domain 
This section deals with an original frequency domain robust decentralized controller design 
methodology applicable for uncertain systems described by a set of transfer function 
matrices. The design methodology is based on the Equivalent Subsystems Method (ESM) - a 
frequency domain decentralized controller design technique to guarantee stability and 
specified performance of multivariable systems and is applicable for both continuous- and 
discrete-time controller designs (Kozáková et al., 2009). In contrast to the two stage robust 
decentralized controller design method based on the M-structure stability conditions 
(Kozáková & Veselý, 2009), the recent innovation (Kozáková et al., 2011) consists in that 
robust stability conditions are directly integrated into the ESM, thus providing a one-step 
(direct) robust decentralized controller design for robust stability and plant-wide 
performance.  

4.1 Preliminaries and problem formulation  
Consider a MIMO system described by a transfer function matrix ( ) m mG s R  and a 

controller ( ) m mR s R  in the standard feedback configuration according to Fig. 5,  
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Fig. 5. Standard feedback configuration 

where w, u, y, e, d are respectively vectors of reference, control, output, control error and 
disturbance of compatible dimensions. Necessary and sufficient conditions for closed-loop 
stability are given by the Generalized Nyquist Stability Theorem applied to the closed-loop 
characteristic polynomial   

 det ( ) det[ ( )]F s I Q s   (40) 

where ( ) ( ) ( )Q s G s R s m mR  is the open-loop transfer function matrix. 
Characteristic functions of ( )Q s are the set of m algebraic functions ( ), 1,...,iq s i m defined 
as follows: 

 det[ ( ) ( )] 0 1,...,i mq s I Q s i m    (41) 

Characteristic loci (CL) are the set of loci in the complex plane traced out by the 
characteristic functions of  Q(s), s j .  

Theorem 4.1 (Generalized Nyquist Stability Theorem) 

The closed-loop system in Fig. 1 is stable if and only if  
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a. det ( ) 0F s s   

b. 
1

[0,det ( )] {0,[1 ( )]}
m

i q
i

N F s N q s n


    
(42)

where ( ) ( ( ))F s I Q s  and nq is the number of unstable poles of Q(s).   
Let the uncertain plant be given as a set  of N transfer function matrices  

 { ( )}, 1,2,...,kG s k N      where    ( ) ( )k k
ij m m

G s G s


  (43) 

The simplest uncertainty model is the unstructured perturbation. A set of unstructured 
perturbations DU is defined as  

 max max: { ( ) : [ ( )] ( ), ( ) max [ ( )]}U
k

D E j E j E j           (44) 

where ( ) is a scalar weight on the norm-bounded perturbation   m ms R  , 

max[ ( )] 1j     over given frequency range, max( )  is the maximum singular value of (.), 
hence 

 ( ) ( ) ( )E j j      (45) 

Using unstructured perturbation, the set  can be generated by either additive (Ea), 
multiplicative input (Ei) or multiplicative output (Eo) uncertainties, or their inverse 
counterparts (Skogestad & Postlethwaite, 2009) thus specifying pertinent uncertainty 
regions. In the sequel, just additive (a) and multiplicative output (o) perturbations will be 
considered; results for other uncertainty types can be obtained by analogy. 
Denote ( )G s any member of a set of possible plants , ,k k a i  ; 0( )G s the nominal model 
used to design the controller, and ( )k  the scalar weight on a normalized perturbation. The 
sets k generated by the two considered uncertainty forms are: 
Additive uncertainty: 

 
0

max 0

: { ( ) : ( ) ( ) ( ), ( ) ( ) ( )}

( ) max [ ( ) ( )], 1,2, ,
a a a a

k
a k

G s G s G s E s E j j

G j G j k N

    

   

   

  



   (46) 

Multiplicative output uncertainty: 

 
0

1
max 0 0

: { ( ) : ( ) [ ( )] ( ), ( ) ( ) ( )}

( ) max {[ ( ) ( )] ( )}, 1,2, ,
o o o

k
o k

G s G s I E s G s j j j

G j G j G j k N

     

    

   

  



   (47) 

Standard feedback configuration with uncertain plant modelled using any unstructured 
uncertainty form can be recast into the M   structure (for additive perturbation see  
Fig. 6) where M(s) is the nominal model and  s is the norm-bounded complex 
perturbation.  
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Fig. 6. Standard feedback configuration with additive perturbation (left) recast into the 
M   structure (right) 

According to the general robust stability condition (Skogestad & Postlethwaite, 2009), if both 
the nominal closed-loop system M(s) and the perturbations ( )s  are stable, the M   
system in Fig. 2 is stable for all perturbations ( )s : max( ) 1    if and only if   

 max[ ( )] 1 ,M j     (48) 

For individual uncertainty forms ( ) ( ), ,k kM s M s k a o   the corresponding matrices 
( )kM s are given by (49) and (50), respectively (disregarding negative signs which do not 

affect resulting robustness condition). The nominal model 0( )G s is usually obtained as a 
model of mean parameter values.  

 1
0( ) ( ) ( )[ ( ) ( )] ( ) ( )a a aM s s R s I G s R s s M s      (49) 

 1
0 0( ) ( ) ( ) ( )[ ( ) ( )] ( ) ( )o o oM s s G s R s I G s R s s M s      (50) 

4.1.1 Problem formulation 
Consider an uncertain system that consists of m subsystems and is given as a set of N 
transfer function matrices obtained in N working points of plant operation. Let the 
uncertain system be described by a nominal model 0( )G s  and any unstructured uncertainty 
form (46), (47). Consider the following splitting of 0( )G s : 

 0( ) ( ) ( )d mG s G s G s   (51) 

where  

 ( ) { ( )} , det ( ) 0d i m m dG s diag G s G s   (52) 

 0( ) ( ) ( )m dG s G s G s   (53) 

A decentralized controller  

 ( ) { ( )}i m mR s diag R s      det ( ) 0R s   (54) 

is to be designed to guarantee stability over the whole operating range of the plant specified 
by (46) or (47) (robust stability) and a specified plant-wide performance (nominal 
performance).  

u 

M(s) 

y 
(s) 
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counterparts (Skogestad & Postlethwaite, 2009) thus specifying pertinent uncertainty 
regions. In the sequel, just additive (a) and multiplicative output (o) perturbations will be 
considered; results for other uncertainty types can be obtained by analogy. 
Denote ( )G s any member of a set of possible plants , ,k k a i  ; 0( )G s the nominal model 
used to design the controller, and ( )k  the scalar weight on a normalized perturbation. The 
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Standard feedback configuration with uncertain plant modelled using any unstructured 
uncertainty form can be recast into the M   structure (for additive perturbation see  
Fig. 6) where M(s) is the nominal model and  s is the norm-bounded complex 
perturbation.  
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Fig. 6. Standard feedback configuration with additive perturbation (left) recast into the 
M   structure (right) 

According to the general robust stability condition (Skogestad & Postlethwaite, 2009), if both 
the nominal closed-loop system M(s) and the perturbations ( )s  are stable, the M   
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 1
0( ) ( ) ( )[ ( ) ( )] ( ) ( )a a aM s s R s I G s R s s M s      (49) 
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4.1.1 Problem formulation 
Consider an uncertain system that consists of m subsystems and is given as a set of N 
transfer function matrices obtained in N working points of plant operation. Let the 
uncertain system be described by a nominal model 0( )G s  and any unstructured uncertainty 
form (46), (47). Consider the following splitting of 0( )G s : 

 0( ) ( ) ( )d mG s G s G s   (51) 
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 ( ) { ( )} , det ( ) 0d i m m dG s diag G s G s   (52) 
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A decentralized controller  

 ( ) { ( )}i m mR s diag R s      det ( ) 0R s   (54) 
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performance).  
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To solve this problem, a frequency domain robust decentralized controller design technique 
has been developed (Kozáková and Veselý, 2009; Kozáková et. al., 2011); the core of it is the 
Equivalent Subsystems Method (ESM). 

4.2 Decentralized controller design for performance: Equivalent Subsystems Method 
The Equivalent Subsystems Method (ESM) is a Nyquist-based technique to design 
decentralized controller for stability and specified plant-wide performance. According to it, 
local controllers ( ), 1,...,iR s i m  are designed independently for so-called equivalent 
subsystems obtained from frequency responses of decoupled subsystems by shaping each of 
them using one of m characteristic loci of the interactions matrix Gm(s). If local controllers 
are independently tuned for specified degree-of-stability of equivalent subsystems, the 
resulting decentralized controller guarantees the same degree-of-stability plant-wide 
(Kozáková et al., 2009). Unlike standard robust approaches, the proposed technique 
considers full nominal model of mean parameter values, thus reducing conservatism of 
resulting robust stability conditions. In the context of robust decentralized controller design, 
the Equivalent Subsystems Method is directly applicable to design DC for the nominal 
model (Fig. 3). 
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Fig. 7. Standard feedback loop under decentralized controller  

The key idea behind the method is factorization of the closed-loop characteristic polynomial 
(40) in terms of the nominal system (51) under the decentralized controller (54). Then 

 1det ( ) det[ ( ) ( ) ( )]det ( )d mF s R s G s G s R s    (55) 

Denote the sum of the diagonal matrices in (55) as 

 1( ) ( ) ( )dR s G s P s    (56) 

where  ( ) { ( )}i m mP s diag p s  . 
In order to “counterbalance” interactions ( )mG s , consider the closed-loop being at the limit 
of instability and choose the diagonal matrix ( ) ( )kP s p s I  to have identical entries pk(s); 
then by similarity with (41)  the bracketed term  in (55) defines the k-th of the m 
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characteristic functions of [ ( )]mG s  (the set of characteristic functions are denoted  
( ), 1,2,...,ig s i m ); thus 

 
1

det[ ( ) ( )] det[ ] [ ( ) ( )] 0, 1,2,...
m

m k m k i
i

P s G s p I G g s g s k m


         (57) 

With respect to stability, the interactions matrix ( )mG s can thus be replaced by [-P(s)] 
yielding the important relationship 

 1

det[ ( ) ( )] det{ [ ( ) ( )] ( )}

det[ ( ) ( ) ( )]det ( ) det[ ( ) ( )]
d m

eq
d

I G s R s I G s G s R s

R s G s P s R s I G s R s

    

    
 (58) 

where 

 ( ) { ( )}eq eq
m miG s diag G s   (59) 

is a diagonal matrix of m equivalent subsystems generated as follows 

 ( ) ( ) ( ), 1,2, ,eq
i kikG s G s g s i m     (60) 

As all matrices are diagonal, on subsystems level (58) breaks down into m equivalent closed-
loop characteristic polynomials (CLCP) 

 ( ) 1 ( ) ( ) 1,2,... ,eq eq
ii iCLCP s R s G s i m    (61) 

Considering (58)-(61), stability conditions stated in the Generalized Nyquist Stability 
Theorem modify as follows: 

Corollary 4.1  

The closed-loop in Fig. 3 comprising the system (51) and the decentralized controller (54) is 
stable if and only if there exists a diagonal matrix ( ) ( ) ( )kP s p s I s  such that 

1. det[ ( ) ] 0,k mp s I G  for a fixed {1,..., }k m  

2. all equivalent characteristic polynomials (61) have roots with Re{ } 0s  ; 

3. [0,det ( )] qN F s n  

(62)

where N[0,g(s)] is number of anticlockwise encirclements of the complex plane origin by the 
Nyquist plot of g(s);  qn is number of open loop poles with Re{ } 0s  . 

The decentralized controller design technique for nominal stability resulting from Corollary 
4.1 enables to independently design stabilizing local controllers for individual single input-
single output equivalent subsystems using any standard frequency-domain design method, 
e.g. (Bucz et al., 2010; Drahos, 2000). In the originally developed ESM version (Kozáková et 
al., 2009) it was proved that local controllers tuned for a specified feasible degree-of-stability 
of equivalent subsystems constitute the decentralized controller guaranteeing the same 
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degree-of-stability plant-wide. To design local controllers of equivalent subsystems, the 
general conditions in Corollary 4.1 allow using any frequency domain performance measure 
that can appropriately be interpreted for the full system. In the next subsection, the plant 
wide performance is specified in terms of maximum overshoot which is closely related to 
phase margins of equivalent subsystems. 

4.2.1 Decentralized controller design for guaranteed maximum overshoot and 
specified settling time 
The ESM can be applied to design decentralized controller to guarantee specified maximum 
overshoot of output variables of the multivariable system. The design procedure evolves 
from the known relationship between the phase margin (PM) and the maximum peak of the 
complementary sensitivity (Skogestad & Postlethwaite, 2009) 

1 12arcsin [ ]
2 T T

PM rad
M M

 
  

 
 (63) 

where  

 max[ ( )]TM T j   (64) 

is the maximum peak of the complementary sensitivity T(s) defined as  

 1( ) ( ) ( )[ ( ) ( )]T s G s R s I G s R s    (65) 

Relation between the maximum overshoot max  and  MT is given by (Bucz et al., 2010) 

 max
1.18 (0)

100[%]
(0)

TM T
T




  (66) 

According to the ESM philosophy, local controllers are designed using frequency domain 
methods; if PID controller is considered, the most appropriate ones are e.g. the Bode 
diagram design or the Neymark D-partition method. If using the Bode diagram design, in 
addition to max it is also possible to specify the required settling time ts related with the 
closed-loop bandwidth frequency 0 defined as the gain crossover frequency. The following 
relations between ts and 0  are useful (Reinisch, 1974). 

0

3
st 
 for (1.3; 1.5)TM   

 0
4

s st t
    (67) 

In general, a larger bandwidth corresponds to a smaller rise time, since high frequency 
signals are more easily passed on to the outputs. If the bandwidth is small, the time 
response will generally be slow and the system will usually be more robust.  
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Design procedure: 

1. Generating frequency responses of equivalent subsystems. 
2. Specification of performance requirements in terms of max , ts and MT using (66), (67). 
3. Specification of  a minimum phase margin PM for equivalent subsystems using (63). 
4. Local controller design for specified PM in equivalent subsystems using appropriate 

frequency domain method. 
5. Verification of achieved performance by evaluating frequency domain performance 

measure and via simulation. 

4.3 Decentralized controller design for robust stability using the Equivalent 
Subsystems Method  
In the context of robust control approach, the ESM method in its original version is 
inherently appropriate to design decentralized controller guaranteeing stability and 
specified performance of the nominal model (nominal stability, nominal performance). If, in 
addition, the decentralized controller has to guarantee closed-loop stability over the whole 
operating range of the plant specified by the chosen uncertainty description (robust 
stability), the ESM can be used either within a two-stage design procedure or a direct design 
procedure for robust stability and nominal performance. 
1. Two stage robust decentralized controller design for robust stability and nominal 

performance 
In the first stage, the decentralized controller for the nominal system is designed using ESM, 
afterwards, fulfilment of the M-stability condition (48) is examined; if satisfied, the design 
procedure stops, otherwise in the second stage the controller parameters are modified to 
satisfy robust stability conditions in the tightest possible way, or local controllers are 
redesigned using modified performance requirements (Kozáková & Veselý, 2009). 
2. Direct decentralized controller design for robust stability and nominal performance 
By direct integration of robust stability condition (48) in the ESM, a “one-shot” design of 
local controllers for both nominal performance and robust stability can be carried out. In 
case of decentralized controller design for guaranteed maximum overshoot and specified 
settling time, the upper bound for the maximum peak of the nominal complementary 
sensitivity over the given frequency range 

 0T maxM max{ [T ( j )]}


        1
0 0 0( ) ( ) ( )[ ( ) ( )]T s G s R s I G s R s    (68) 

can be obtained using the singular value properties in manipulations of the M-condition 
(48) considering (49) or (50). The following bounds for the nominal complementary 
sensitivity have been derived: 

 min 0
max 0

[ ( )][ ( )] ( )
( ) A

a

G jT j L 
   


  


 additive uncertainty  (69) 

 max 0
1[ ( )] ( )
( ) O

o
T j L   


  


  multiplicative output uncertainty  (70) 

Expressions on the r.h.s. of (69) and (70) do not depend on a particular controller and can be 
evaluated prior to designing the controller. In this way, if  
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 max 0max{ [ ( )]}TM T j


    (71) 

is used in the Design procedure, the resulting decentralized controller will simultaneously 
guarantee achieving the required maximum overshoot of all output variables (nominal 
performance) and stability over the whole operating range of the plant specified by selected 
working points (robust stability). 

4.4 Discrete-time robust decentralized controller design using the Equivalent 
Subsystems Method  
Controllers for continuous-time plants are mostly implemented as discrete-time controllers. 
A common approach to discrete-time controller design is the continuous controller redesign 
i.e. conversion of the already designed continuous controller into its discrete counterpart. 
This approach, however, is only an approximate scheme; performance under these 
controllers deteriorates with increasing sampling period. This drawback may be improved 
by modifying the continuous controller design before it is discretized which can often allow 
significantly larger sampling periods (Lewis, 1992). Then, the ESM design methodology can 
be applied in a similar way as in the continuous-time case using discrete characteristic loci, 
discrete Nyquist plots and discrete Bode diagrams of equivalent subsystems. Local 
controllers designed as continuous-time ones are subsequently converted into their discrete-
time counterparts. Closed-loop performance under a discrete-time controller is verified 
using simulations and the discrete-time maximum singular value of the sensitivity [ ( )]M S z  
where 

 1( ) [ ( ) ( )] , sj TS z I G z R z z e     (72) 

The maximum singular value j T
maxmax [S( e )]


  plotted as function of frequency  should 

be small at low frequencies where feedback is effective, and approach 1 at high 
frequencies, as the system is strictly proper, having a peak larger than 1 around the 
crossover frequency. The peak is unavoidable for real systems. Bandwidth frequency is 

defined as frequency where [ ( )]sj T
M S e  crosses 0.7 from below (Skogestad & 

Postlethwaite, 2009). Similarly, a discretized version of robust stability conditions (69), 
(70) based on (46) and (47) is applied.  

4.4.1 Design of continuous controllers for discretization  
The crucial step for the discrete controller design is proper choice of the sampling time T. 
Then, frequency response of the discretized system matches the one of the continuous time 
system up to a certain frequency / 2S  , and the discrete controller can be obtained by 
converting the continuous–time controller designed from the discrete frequency responses 
to its discrete-time counterpart. 
The sampling period T is to be selected according to the Shannon-Kotelnikov sampling 
theorem, or using common rules of thumb, e.g. as ~ 1/10 of the settling time of the plant 
step response, or from control system bandwidth according to the relation 
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0

20 40s


   (72) 

where s is sampling frequency, and 0 is control system bandwidth, i.e. the maximum 
frequency at which the system output still tracks and input sinusoid in a satisfactory 
manner (Lian et al., 2002). A proper choice of sampling period is crucial for achievable 
bandwidth and feasibility of the required phase margin. Given a discrete-time transfer 
function ( )G z , the frequency response can be studied by plotting Nyquist or  Bode plots of 

( ) j Tz eG z   . The discrete-time robust controller design for maximum overshoot and settling 
time is described in the next Section. 

4.5 Decentralized discrete-time PID Controller design for the Quadruple tank process 
In the frequency domain, the direct robust decentralized PID design procedure has been 
applied for the transfer function matrix (3) identified in three working points within the 
minimum and nonminimum phase regions (7) and (8), respectively. In both cases the 
nominal model is a mean value parameter model.  
Minimum phase configuration 
From three plant models (3) evaluated in working points taken from the minimum phase 
uncertainty region as specified in (7), the resulting continuous-time nominal model is  

 0

2.4667 1.2333
62 1 (23 1)(62 1)

( )
1.5667 3.1333

(30 1)(90 1) 90 1

s s s
G s

s s s

 
    
 
    

 (73) 

All three transfer function matrices were discretized using the sampling period 
30ST s chosen as approx. 1/10 of the settling time of plant step responses in Fig. 8. 
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Fig. 8. Step response of the quadruple tank process 

Discrete-time transfer function matrix of the nominal plant is 
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4.4 Discrete-time robust decentralized controller design using the Equivalent 
Subsystems Method  
Controllers for continuous-time plants are mostly implemented as discrete-time controllers. 
A common approach to discrete-time controller design is the continuous controller redesign 
i.e. conversion of the already designed continuous controller into its discrete counterpart. 
This approach, however, is only an approximate scheme; performance under these 
controllers deteriorates with increasing sampling period. This drawback may be improved 
by modifying the continuous controller design before it is discretized which can often allow 
significantly larger sampling periods (Lewis, 1992). Then, the ESM design methodology can 
be applied in a similar way as in the continuous-time case using discrete characteristic loci, 
discrete Nyquist plots and discrete Bode diagrams of equivalent subsystems. Local 
controllers designed as continuous-time ones are subsequently converted into their discrete-
time counterparts. Closed-loop performance under a discrete-time controller is verified 
using simulations and the discrete-time maximum singular value of the sensitivity [ ( )]M S z  
where 

 1( ) [ ( ) ( )] , sj TS z I G z R z z e     (72) 

The maximum singular value j T
maxmax [S( e )]


  plotted as function of frequency  should 

be small at low frequencies where feedback is effective, and approach 1 at high 
frequencies, as the system is strictly proper, having a peak larger than 1 around the 
crossover frequency. The peak is unavoidable for real systems. Bandwidth frequency is 

defined as frequency where [ ( )]sj T
M S e  crosses 0.7 from below (Skogestad & 

Postlethwaite, 2009). Similarly, a discretized version of robust stability conditions (69), 
(70) based on (46) and (47) is applied.  

4.4.1 Design of continuous controllers for discretization  
The crucial step for the discrete controller design is proper choice of the sampling time T. 
Then, frequency response of the discretized system matches the one of the continuous time 
system up to a certain frequency / 2S  , and the discrete controller can be obtained by 
converting the continuous–time controller designed from the discrete frequency responses 
to its discrete-time counterpart. 
The sampling period T is to be selected according to the Shannon-Kotelnikov sampling 
theorem, or using common rules of thumb, e.g. as ~ 1/10 of the settling time of the plant 
step response, or from control system bandwidth according to the relation 
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0

20 40s


   (72) 

where s is sampling frequency, and 0 is control system bandwidth, i.e. the maximum 
frequency at which the system output still tracks and input sinusoid in a satisfactory 
manner (Lian et al., 2002). A proper choice of sampling period is crucial for achievable 
bandwidth and feasibility of the required phase margin. Given a discrete-time transfer 
function ( )G z , the frequency response can be studied by plotting Nyquist or  Bode plots of 

( ) j Tz eG z   . The discrete-time robust controller design for maximum overshoot and settling 
time is described in the next Section. 

4.5 Decentralized discrete-time PID Controller design for the Quadruple tank process 
In the frequency domain, the direct robust decentralized PID design procedure has been 
applied for the transfer function matrix (3) identified in three working points within the 
minimum and nonminimum phase regions (7) and (8), respectively. In both cases the 
nominal model is a mean value parameter model.  
Minimum phase configuration 
From three plant models (3) evaluated in working points taken from the minimum phase 
uncertainty region as specified in (7), the resulting continuous-time nominal model is  

 0

2.4667 1.2333
62 1 (23 1)(62 1)

( )
1.5667 3.1333

(30 1)(90 1) 90 1

s s s
G s

s s s

 
    
 
    

 (73) 

All three transfer function matrices were discretized using the sampling period 
30ST s chosen as approx. 1/10 of the settling time of plant step responses in Fig. 8. 
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Fig. 8. Step response of the quadruple tank process 

Discrete-time transfer function matrix of the nominal plant is 
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 (74) 

From the discretized transfer function matrices and the nominal model (74), upper bounds 
for max 0[ ( )]T j  were evaluated according to (69) and (70). 
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Fig. 9. Upper bounds  for max 0[ ( )]T j  evaluated according to (69) and (70) 

Inspection of Fig. 9 reveals, that _ min 0.77 1T A AM L


    is not feasible for the local controller 

design (closed-loop design magnitude less than 1 does not guarantee proper setpoint tracking, 
even at =0); hence  _ min 1.22T T O OM M L


    has been considered in the sequel.  

Characteristic loci g1(z), g2(z) of  Gm(z) were calculated; 2( )g z  was selected to generate the 
equivalent subsystems according to (60). Bode plots of resulting equivalent subsystems are 
shown in Fig. 10. 
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Fig. 10. Discrete Bode plots of equivalent subsystems generated by g2(z): 12( )eqG z (left),  

22( )eqG z  (right) (min. phase case) 
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Relevant parameters read form discrete Bode plots of uncompensated equivalent 
subsystems in Fig. 10 are summarized in Tab. 3. 
 
 
 
 

Equivalent 
subsystem PM Crossover 

frequency 

12( )eqG z  53.90 0.048 rad/ s-1 

22( )eqG z  58.350 0.0448 rad/s-1 

 
 

Table 3. Relevant parameters of equivalent subsystems generated by g2(z) 

For both equivalent subsystems the required settling time and maximum overshoot were 
chosen with respect to plant dynamics: 600 , 1.05s Tt s M   corresponding to max 5%  . 
Related values of other design parameters obtained from (63) and (67) respectively are: 

0
min 56.87PM   and required crossover frequency 0 0.0131  . The required phase margin 

minreqPM PM  was chosen 065reqPM  .  To design local controllers, Bode design procedure 

(Kuo, 2003) has been applied independently for each equivalent subsystem to achieve the 
required phase margin: 0( )PM  is found on the magnitude Bode plot; if 0( ) reqPM PM  , a 

PI controller ( ) I
PI P

KG s K
s

   is designed. If 0( ) reqPM PM  , a PD controller 

( ) 1PD DG s K s   is designed first, to provide 0( )reqPM  , and subsequently a PI controller is 

designed. The resulting PID controller is obtained in the series form 

( ) ( )(1 )I
PID P D

KG s K K s
s

   . Achieved design results are summarized in Tab. 4. 

 
 
 
 

Eq. 
subsyst. Ri(s) Ri(z) PMachieved achieved 

12( )eqG z  1
0.0039( ) 0.1988R s

s
   

1

1 1
0.199 0.082( )

1
zR z

z









 58.350 0.0122 
rad/s-1 

22( )eqG z  2
0.0034( ) 0.2212R s

s
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1

2 1
0.221 0.119( )

1
zR z

z




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
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 65.70 0.0121 
rad/s-1 

 
 

Table 4. Design results and achieved frequency domain performance measures (minimum 
phase configuration) 
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Inspection of Fig. 9 reveals, that _ min 0.77 1T A AM L
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    is not feasible for the local controller 

design (closed-loop design magnitude less than 1 does not guarantee proper setpoint tracking, 
even at =0); hence  _ min 1.22T T O OM M L
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    has been considered in the sequel.  

Characteristic loci g1(z), g2(z) of  Gm(z) were calculated; 2( )g z  was selected to generate the 
equivalent subsystems according to (60). Bode plots of resulting equivalent subsystems are 
shown in Fig. 10. 
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Fig. 10. Discrete Bode plots of equivalent subsystems generated by g2(z): 12( )eqG z (left),  

22( )eqG z  (right) (min. phase case) 
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Relevant parameters read form discrete Bode plots of uncompensated equivalent 
subsystems in Fig. 10 are summarized in Tab. 3. 
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minreqPM PM  was chosen 065reqPM  .  To design local controllers, Bode design procedure 

(Kuo, 2003) has been applied independently for each equivalent subsystem to achieve the 
required phase margin: 0( )PM  is found on the magnitude Bode plot; if 0( ) reqPM PM  , a 

PI controller ( ) I
PI P

KG s K
s
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designed. The resulting PID controller is obtained in the series form 
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Table 4. Design results and achieved frequency domain performance measures (minimum 
phase configuration) 
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Design results in Tab. 4 along with Bode plots of compensated equivalent subsystems in 
Fig.11 prove achieving required design parameters. Closed-loop step responses are in  
Fig. 12. 
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Fig. 11. Discrete Bode plots of equivalent subsystems under designed PI controllers: 

12( )eqG z (left),  22( )eqG z  (right) 
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Fig. 12. Nominal closed-loop step responses of the quadruple tank process (reference steps 
0.1m occurred at t=0s at the input of the 1st subsystem, and at t=300s and t=10s, respectively, 
at the input of the 2nd subsystem). Maximum overshoot and settling time (600s) were kept in 
both cases. 

Nominal closed-loop stability was verified both by calculating closed-loop poles and using 
the Generalized Nyquist encirclement criterion (Fig. 13).   

 Roots_of_CLCP { 0.7019  0.2572i,0.8313, 0.7167, 0.7165, 0.6164, 0.3720, 0.2637                
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Fig. 13. Stability test using the Nyquist plot of det[ ( ) ( )]I G z R z  

Achieved nominal performance was verified via plotting sensitivity magnitude plot in Fig. 
14. Sensitivity peak  max{ [ ( )]} 2M S j


    around the crossover frequency proves good 

closed-loop performance. 
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Fig. 14. [ ( )] j TM z eS z   - versus –frequency plot  

Fulfilment of robust stability condition (70) is examined in Fig. 15. The closed-loop system is 
stable over the whole minimum phase region (7). 
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0.1m occurred at t=0s at the input of the 1st subsystem, and at t=300s and t=10s, respectively, 
at the input of the 2nd subsystem). Maximum overshoot and settling time (600s) were kept in 
both cases. 

Nominal closed-loop stability was verified both by calculating closed-loop poles and using 
the Generalized Nyquist encirclement criterion (Fig. 13).   
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Achieved nominal performance was verified via plotting sensitivity magnitude plot in Fig. 
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closed-loop performance. 
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Fulfilment of robust stability condition (70) is examined in Fig. 15. The closed-loop system is 
stable over the whole minimum phase region (7). 
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Fig. 15. Verification of the robust stability condition  max 0
1[ ( )] ( )
( ) O

o
T j L  


 


 

Non-minimum phase configuration 
To design robust decentralized PI controller for the non-minimum phase configuration, the 
continuous-time nominal model was evaluated for 1 2,  taken from the non-minimum 
phase uncertainty region (8) and interchanged columns of the transfer function matrix (due 
to opposite pairing as suggested in Section 2):  

 0

3.0830 0.6167
(23 1)(62 1) 62 1

( )
0.7833 3.9170
90 1 (30 1)(90 1)

s s s
G s

s s s

 
    
 
    

 (73) 

Discrete-time transfer function matrix of the nominal plant obtained for 30ST s  is 

 

1 2 1

1 2 1

1 1 2

1 1 2

0.5554 0.3065 0.2366
1 0.8877 0.1673 1 0.6164( )

0.2220 0.4275 0.2743
1 0.7165 1 1.0840 0.2636

z z z
z z zG z

z z z
z z z

  

  

  

  

 
 

   
  
    

 (74) 

Upper bounds for max 0[ ( )]T j  evaluated according to (69) and (70) are in Fig. 16. 
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Fig. 16. Upper bounds  for max 0[ ( )]T j  evaluated according to (69) and (70) 
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Obviously, proper setpoint tracking can be guaranteed for both uncertainty types, just on a 
limited frequency range. Hence, 1.05TM   and multiplicative output uncertainty will be 
considered in the sequel.  
Bode plots of equivalent subsystems generated using 2( )g z  are shown in Fig. 17, and their 
relevant parameters are summarized in Tab. 5. 
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Fig. 17. Discrete Bode plots of equivalent subsystems generated by g2(z): 12( )eqG z (left), 

22( )eqG z  (right) (non-minimum phase case) 

 
Equivalent 
subsystem PM Crossover 

frequency 

12( )eqG z  43.810 0.040rad/s-1 

22( )eqG z  44.040 0.0344 
rad/s-1 

Table 5. Relevant parameters of equivalent subsystems generated by g2(z). 

For both equivalent subsystems the required settling time and maximum overshoot were 
chosen the same as in the minimum phase case: 600 , 1.05s Tt s M   corresponding to 

max 5%  . Related values of other design parameters are: 0
min 56.87PM   and required 

crossover frequency 0 0.0131  . The required phase margin minreqPM PM  was chosen 

060reqPM  . Achieved design results are summarized in Tab. 6 and Bode plots of 

compensated equivalent subsystems in Fig.18 prove achieving required design 
parameters. 
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continuous-time nominal model was evaluated for 1 2,  taken from the non-minimum 
phase uncertainty region (8) and interchanged columns of the transfer function matrix (due 
to opposite pairing as suggested in Section 2):  
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Discrete-time transfer function matrix of the nominal plant obtained for 30ST s  is 
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Upper bounds for max 0[ ( )]T j  evaluated according to (69) and (70) are in Fig. 16. 
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Obviously, proper setpoint tracking can be guaranteed for both uncertainty types, just on a 
limited frequency range. Hence, 1.05TM   and multiplicative output uncertainty will be 
considered in the sequel.  
Bode plots of equivalent subsystems generated using 2( )g z  are shown in Fig. 17, and their 
relevant parameters are summarized in Tab. 5. 
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Fig. 17. Discrete Bode plots of equivalent subsystems generated by g2(z): 12( )eqG z (left), 

22( )eqG z  (right) (non-minimum phase case) 

 
Equivalent 
subsystem PM Crossover 

frequency 

12( )eqG z  43.810 0.040rad/s-1 

22( )eqG z  44.040 0.0344 
rad/s-1 

Table 5. Relevant parameters of equivalent subsystems generated by g2(z). 

For both equivalent subsystems the required settling time and maximum overshoot were 
chosen the same as in the minimum phase case: 600 , 1.05s Tt s M   corresponding to 

max 5%  . Related values of other design parameters are: 0
min 56.87PM   and required 

crossover frequency 0 0.0131  . The required phase margin minreqPM PM  was chosen 

060reqPM  . Achieved design results are summarized in Tab. 6 and Bode plots of 

compensated equivalent subsystems in Fig.18 prove achieving required design 
parameters. 
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Eq. 
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Table 6. Design results and achieved frequency domain performance measures for the non-
minimum phase case 
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Fig. 19. Nominal closed-loop step responses of the quadruple tank system in non-minimum 
phase configuration (reference steps 0.1m occurred at t=0s at the input of the 1st subsystem, 
and at t=300s and t=10s, respectively, at the input of the 2nd subsystem). Maximum 
overshoot and settling time (600s) were kept in both cases. 

Nominal closed-loop poles verify nominal stability.   
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Roots_of_CLCP { 0.6768   0.2761i, 0.7335 0.2262i,  0.7165, 0.6164, 0.5876, 0.3313                 

The sensitivity magnitude plot in Fig. 20 with the peak max{ [ ( )]} 2M S j


    around the 

crossover frequency proves good closed-loop nominal performance. 
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Fulfilment of robust stability condition (70) is examined in Fig. 21. The closed-loop system is 
stable over the whole non-minimum phase region (8). 
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5. Conclusion 
The robust decentralized PID controller design procedures have been developed both in 
frequency and time domains. The proposed controller design schemes are based on different 
principles, with the same control aim: to achieve robust stability and specified performance. 
The comparative study of both approaches is presented on robust decentralized discrete-
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5. Conclusion 
The robust decentralized PID controller design procedures have been developed both in 
frequency and time domains. The proposed controller design schemes are based on different 
principles, with the same control aim: to achieve robust stability and specified performance. 
The comparative study of both approaches is presented on robust decentralized discrete-
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time PID controller design for quadruple-tank process model, for minimum and 
nonminimum phase configurations. Both proposed approaches provide promising results 
verified by simulation on nonlinear process model.  
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1. Introduction 
After the development of fuzzy logic, an important application of it was developed in 
control systems and it is known as fuzzy PID controllers. They represent interest in order to 
be applied in practical applications instead of the linear PID controllers, in the feedback 
control of a variety of processes, due to their advantages imposed by the non-linear 
behavior. The design of fuzzy PID controllers remains a challenging area that requires 
approaches in solving non-linear tuning problems while capturing the effects of noise and 
process variations. In the literature there are many papers treating this domain, some of 
them being presented as references in this chapter. 
Fuzzy PID controllers may be used as controllers instead of linear PID controller in all 
classical or modern control system applications. They are converting the error between the 
measured or controlled variable and the reference variable, into a command, which is 
applied to the actuator of a process. In practical design it is important to have information 
about their equivalent input-output transfer characteristics. The main purpose of research is 
to develop control systems for all kind of processes with a higher efficiency of the energy 
conversion and better values of the control quality criteria.  
What has been accomplished by other researchers is reviewed in some of these references, 
related to the chapter theme, making a short review of the related work form the last 
years and other papers. The applications suddenly met in practice of fuzzy logic, as PID 
fuzzy controllers, are resulted after the introduction of a fuzzy block into the structure of 
a linear PID controller (Buhler, 1994, Jantzen, 2007). A related tuning method is presented 
in (Buhler, 1994). That method makes the equivalence between the fuzzy PID controller 
and a linear control structure with state feedback. Relations for equivalence are derived. 
In the paper (Moon, 1995) the author proves that a fuzzy logic controller may be designed 
to have an identical output to a given PI controller. Also, the reciprocal case is proven that 
a PI controller may be obtained with identical output to a given fuzzy logic controller 
with specified fuzzy logic operations. A methodology for analytical and optimal design of 
fuzzy PID controllers based on evaluation approach is given in (Bao-Gang et all, 1999, 
2001). The book (Jantzen, 2007) and other papers of the same author present a theory of 
fuzzy control, in which the fuzzy PID controllers are analyzed. Tuning fuzzy PID 
controller is starting from a tuned linear PID controller, replacing it with a linear fuzzy 
controller, making the fuzzy controller nonlinear and then, in the end, making a fine 
tuning. In the papers (Mohan & Sinha, 2006, 2008), there  are presented some 
mathematical models for the simplest fuzzy PID controllers and an approach to design 
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fuzzy PID controllers. The paper (Santos & all, 1096) shows that it is possible to apply the 
empirical tools to predict the achievable performance of the conventional PID controllers 
to evaluate the performance of a fuzzy logic controller based on the equivalence between 
a fuzzy controller and a PI controller. The paper (Yame, 2006) analyses the analytical 
structure of a simple class of Takagi-Sugeno PI controller with respect to conventional 
control theory. An example shows an approach to Takagi-Sugeno fuzzy PI controllers 
tuning. In the paper (Xu & all, 1998) a tuning method based on gain and phase margins 
has been proposed to determine the weighting coefficients of the fuzzy PI controllers in 
the frame of a linear plant control. There are presented numerical simulations. Mamdani 
fuzzy PID controllers are studied in (Ying, 2000). The author has published his theory on 
tuning fuzzy PID controllers at international conferences and on journals (Volosencu, 
2009). 
This chapter presents some techniques, under unitary vision, to solve the problem of tuning 
fuzzy PID controllers, developed based on the most general structure of Mamdani type of 
fuzzy systems, giving some tuning guidelines and recommendations for increasing the 
quality of the control systems, based on the practical experience of the author. There is given 
a method in order to make a pseudo-equivalence between the linear PID controllers and the 
fuzzy PID controllers. Some considerations related to the stability analysis of the control 
systems based on fuzzy controllers are made. Some methods to design fuzzy PID controllers 
are there presented. The tuning is made using a graphical-analytical analysis based on the 
input-output transfer characteristics of the fuzzy block, the linear characteristic of the fuzzy 
block around the origin and the usage of the gain in origin obtained as an origin limit of the 
variable gain of the fuzzy block. Transfer functions and equivalence relations between 
controller’s parameters are obtained for the common structures of the PID fuzzy controllers. 
Some algorithms of equivalence are there presented. The linear PID controllers may be 
designed based on different methods, for example the modulus or symmetrical criterion, in 
Kessler’s variant. The linear controller may be used for an initial design. Refining calculus 
and simulations must follow the equivalence algorithm. The author used this equivalence 
theory in fuzzy control applications as the speed control of electrical drives, with good 
results. The unitary theory presented in this chapter may be applied to the most general 
fuzzy PID controllers, based on the general Mamdani structure, which may be developed 
using all kind of membership functions, rule bases, inference methods and defuzzification 
methods. A case study of a control system using linear and fuzzy controllers is there also 
presented. Some advantages of this method are emphasized. Better control quality criteria 
are demonstrated for control systems using fuzzy controllers tuned, by using the presented 
approach. 
In the second paragraph there are presented some considerations related to the fuzzy 
controllers with dynamics, the structures of the fuzzy PI, PD and PID controllers. In the 
third paragraph there are presented: the transfer characteristics of the fuzzy blocks, the 
principle of linearization, with the main relations for pseudo-equivalence of the PI, PD and 
PID controllers. A circuit of correction for the fuzzy PI controller, to assure stability, is also 
presented. In the fourth paragraph there are presented some considerations for internal and 
external stability assurance. There is also presented a speed fuzzy control system for 
electrical drives based on a fuzzy PI controller, emphasizing the better control quality 
criteria obtained using the fuzzy PI controller. 
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2. Fuzzy controllers 
2.1 Fuzzy controllers with dynamics 
The basic structure of the fuzzy controllers with dynamics is presented in Fig. 1. 
 

 
Fig. 1. The block diagram of a fuzzy controller with dynamics 

So, the following fuzzy controllers, with dynamics, have, as a central part a fuzzy block FB, 
an input filter and an output filter. The two filters give the dynamic character of the fuzzy 
controller. The fuzzy block has the well-known structure, from Fig. 2. 
 

 
Fig. 2. The structure of fuzzy block  

The fuzzy block does not treat a well-defined mathematical relation (a control algorithm), as 
a linear controller does, but it is using the inference with many rules, based on linguistic 
variables. The inference is treated with the operators of the fuzzy logic. The fuzzy block 
from Fig. 2 has three distinctive parts, in Mamdani type: fuzzyfication, inference and 
defuzzification. The fuzzy controller is an inertial system, but the fuzzy block is a non-
inertial system. The fuzzy controller has in the most common case two input variables x1 
and x2 and one output variable u. The input variables are taken from the control system. The 
inference interface of the fuzzy block releases a treatment by linguistic variables of the input 
variables, obtained by the filtration of the controller input variables. For the linguistic 
treatment, a definition with membership functions of the input variable is needed. In the 
interior of the fuzzy block the linguistic variables are linked by rules that are taking account 
of the static and dynamic behavior of the control system and also they are taking account of 
the limitations imposed to the controlled process. In particular, the control system must be 
stable and it must assure a good amortization. After the inference we obtain fuzzy 
information for the output variable. The defuzzification is used because, generally, the 
actuator that follows the controller must be commanded with a crisp value ud,. The 
command variable u, furnished by the fuzzy controller, from Fig. 1, is obtained by filtering 
the defuzzified variable ud. The output variable of the controller is the command input for 
the process. The fuzzification, the inference and the defuzzification bring a nonlinear 
behavior of the fuzzy block. The nonlinear behavior of the fuzzy block is transmitted also to 
the fuzzy PID controllers. By an adequate choosing of the input and output filters we may 
realize different structures of the fuzzy controllers with imposed dynamics, as are the 
general PI, PD and PID dynamics. 
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2.2 Fuzzy PI controller 
The structure of a PI fuzzy controller with integration at its output (FC-PI-OI) is presented in 
Fig. 3. 
 

 
Fig. 3. The block diagram of the fuzzy PI controller 

The controller is working after the error e between the input variable reference and the 
feedback variable r. In this structure we may notice that two filter were used. One of them is 
placed at the input of the fuzzy block FB and the other at the output of the fuzzy block. In 
the approach of the PID fuzzy controllers the concepts of integration and derivation are 
used for describing that these filters have mathematical models obtained by discretization of 
a continuous time mathematical models for integrator and derivative filters. 
The structure of the linear PI controller may be presented in a modified block diagram from 
Fig. 4. 
 

 
Fig. 4. The modified block diagram of the linear PI controller 

For this structure the following modified form of the transfer function may be written: 
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In the next paragraph we shall show that the fuzzy block BF may be described using its 
input-output transfer characteristics, its variable gain and its gain in origin, as a linear 

function around the origin (
~ ~

0, 0, 0de de u   ). 
The block diagram of the linear PI controller may be put similar as the block diagram of the 
fuzzy PI controller as in Fig. 5. 
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Fig. 5. The block diagram of the linear PI controller with scaling coefficients 

For the transfer function of the linear PI controller with scaling coefficients the following 
relation may be written: 

 1 1 1( ) . ( ) . . .( )l l l
R R du e de

R
H s K s K c c c s

s T s
     (3) 

In the place of the summation block from Fig. 4 the fuzzy block BF from Fig. 2 is inserted. 
The derivation and integration are made in discrete time and specific scaling coefficients are 
there introduced. The saturation elements are introduced because the fuzzy block is 
working on scaled universes of discourse [-1, 1]. 
The filter from the controller input, placed on the low channel, takes the operation of digital 
derivation; at its output we obtain the derivative de of the error e: 

 1( ) ( ) ( ) ( )d zde t e t de z e z
dt hz


     (4) 

where h is the sampling period. In the domain of discrete time the derivative block has the 
input-output model: 
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That shows us that the digital derivation is there accomplished based on the information of 
error at the time moments t=tk=k.h and tk+1=tk+h: 
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So, the digital equipment is making in fact the substraction of the two values. 
The error e and its derivative de are scaled with two scaling coefficients ce and cde, as it 
follows: 

 
~
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The variables xe and xde from the inputs of the fuzzy block FB are obtained by a superior 
limitation to 1 and an inferior limitation to –1, of the scaled variables e and de. This 
limitation is introduced because in general case the numerical calculus of the inference is 
made only on the scaled universe of discourse [-1, 1]. 
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The fuzzy block offers the defuzzified value of the output variable ud. This value is scaled 
with an output scaling coefficient cdu: 

 
~

d du du c u  (9) 

In the case of the PI fuzzy controller with integration at the output the scaled variable 
~

du  is 
the derivative of the output variable u of the controller. The output variable is obtained at 
the output of the second filter, which has an integrator character and it is placed at the 
output of the controller: 
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The input-output model in the discrete time of the output filter is: 

 
~

( 1) ( ) ( 1)du t u t u t     (11) 

The above relation shows that the output variable is computed based on the information 
from the time moments t and t+h: 
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From the above relations we may notice that the “integration” is reduced in fact at a 
summation: 

 
~

11 dkk ku u u     (13) 

This equation could be easily implemented in digital equipments. 
Due to this operation of summation, the output scaling coefficient cdu is called also the 
increment coefficient. 
Observation: The controller presented above could be called “fuzzy controller with 
summation at the output” and not with “integration at the output”. 

2.3 Fuzzy PD controller 
The structure of the fuzzy PD controller (RF-PD) is presented in Fig. 6. 
 

 
Fig. 6. The block diagram of the fuzzy PD controller with scaling coefficients 
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In this case the derivation is made at the input of the fuzzy bock, on the error e. 
For the fuzzy controller FC-PD there is obtained the following relation in the z-domain: 
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With this relation the transfer function results: 
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For the PD linear controller we take the transfer function: 

  ( ) 1RG RG DH s K T s   (16) 

2.4 Fuzzy PID controller 
The structure of the fuzzy PID controller is presented in Fig. 7. 
In this case the derivation and integration is made at the input of the fuzzy bock, on the 
error e. The fuzzy block has three input variables xe, xie and xde. 
 

 
Fig. 7. The block diagram of the fuzzy PID controller 

The transfer function of the PID controller is obtained considering a linearization of the 
fuzzy block BF around the origin, for xe=0, xie=0, xde=0 şi ud=0 with a relation of the 
following form: 

 0( )d e ie deu K x x x    (17) 

A relation, as the fuzzy block from the PID controller - which has 3 input variables - may 
describe, is: 
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where: 
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The value K0 is the limit value in origin of the characteristics of the function: 
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output of the controller: 
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d d
zu t u d u z u z
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The input-output model in the discrete time of the output filter is: 

 
~
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The above relation shows that the output variable is computed based on the information 
from the time moments t and t+h: 
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From the above relations we may notice that the “integration” is reduced in fact at a 
summation: 

 
~

11 dkk ku u u     (13) 

This equation could be easily implemented in digital equipments. 
Due to this operation of summation, the output scaling coefficient cdu is called also the 
increment coefficient. 
Observation: The controller presented above could be called “fuzzy controller with 
summation at the output” and not with “integration at the output”. 

2.3 Fuzzy PD controller 
The structure of the fuzzy PD controller (RF-PD) is presented in Fig. 6. 
 

 
Fig. 6. The block diagram of the fuzzy PD controller with scaling coefficients 
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In this case the derivation is made at the input of the fuzzy bock, on the error e. 
For the fuzzy controller FC-PD there is obtained the following relation in the z-domain: 

 
~ ~ 1( ) [ ( ) ( )] ( )u ue de e de

zu z c x z x z c c c e z
hz
      

 (14) 

With this relation the transfer function results: 

 
~( ) 1( )

( )
uRF e de

u z zH z c c c
e z hz

    
 

 (15) 

For the PD linear controller we take the transfer function: 

  ( ) 1RG RG DH s K T s   (16) 

2.4 Fuzzy PID controller 
The structure of the fuzzy PID controller is presented in Fig. 7. 
In this case the derivation and integration is made at the input of the fuzzy bock, on the 
error e. The fuzzy block has three input variables xe, xie and xde. 
 

 
Fig. 7. The block diagram of the fuzzy PID controller 

The transfer function of the PID controller is obtained considering a linearization of the 
fuzzy block BF around the origin, for xe=0, xie=0, xde=0 şi ud=0 with a relation of the 
following form: 

 0( )d e ie deu K x x x    (17) 

A relation, as the fuzzy block from the PID controller - which has 3 input variables - may 
describe, is: 

 ( ; , 0) , 0d
BF t de ie t

t

uK x x x x
x

    (18) 

where: 

 t e ie dex x x x    (19) 

The value K0 is the limit value in origin of the characteristics of the function: 
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 0 0
lim ( ; , 0)
t

BF t de iex
K K x x x


   (20) 

Taking account of the correction made on the fuzzy block with the incremental coefficient cu, 
the characteristic of the fuzzy block corrected and linearized around the origin is given by 
the relation: 

 0( )u e ie deu c K x x x    (21) 

We are denoting: 

 
~

0u uc c K  (22) 

For the fuzzy controller RF-PID, with the fuzzy block BF linearized, the following input-
output relation in the z domain may be written: 

 
~ ~ 1( ) [ ( ) ( ) ( )] ( )

1
u ue ie de e ie de

z zu z c x z x z x z c c c c e z
z hz

        
 (23) 

With these observations the transfer function of the fuzzy ID controller becomes: 

 
~( ) 1( )

( ) 1
uRF e ie de

u z z zH z c c c c
e z z hz

      
 (24) 

For the linear PID controller, the following relation for the transfer function is considered: 

 
1( ) 1RG RG D
I

H s K T s
T s

 
   

 
 (25) 

3. Pseudo-equivalence 
3.1 Fuzzy block description using I/O transfer characteristics. Linearization 
The fuzzy block has a MISO transfer characteristic: 

 ( , ), , [ , ]d FB e de e deu f x x x x a a    (26) 

From this transfer characteristic, a SISO transfer characteristic may be obtained: 

 ( ; ), [ , ]d e e de eu f x x x a a    (27) 

where xde is a parameter. 
We introduce a composed variable: 

 t e dex x x   (28) 

Using this new, composed variable, a family of translated characteristics may be obtained: 

 ( ; ), [ 2 ,2 ]d t t deu f x x x a a    (29) 
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with xde as a parameter. The passing from a frequency model to the parameter model is 
reduced to the determination of the parameters of the transfer impedance. The steps in such 
identification procedure are: organization and obtaining of experimental data on the 
transducer, interpretation of measured data, model deduction with its structure definition 
and model validation. Using the above translated characteristics we may obtain the 
characteristic of the variable gain of the fuzzy block: 

 ( ; ) ( ; ) / , 0FB t de t t de t tK x x f x x x x   (30) 

The MISO transfer characteristic of the fuzzy block may be written as follows: 

 
( , ) ( , ).

.( ) ( ; ).
d FB e de FB e de

e de FB t de t

u f x x K x x
x x K x x x
 
 

 (31) 

If the fuzzy bloc is linearized around the point of the origin, in the permanent regime: xe=0, 
xde=0 and ud=0, the following relation will be obtained: 

 0( )d e deu K x x   (32) 

The value K0 is the value at the limit, in origin of the characteristic KBF(xt; xde): 
 

u xe 
NB ZE PB

 
xde 

NB NB NB ZE
ZE NB ZE PB
PB ZE PB PB

Table 1. The 3x3 (primary) rule base 

 0 0
lim ( ; ), 0
e

FB t de dex
K K x x x


   (33) 

This value may be determined with a good approximation, at the limit, from the gain 
characteristics. 
We show here an example of the above characteristics for the fuzzy block with max-min 
inference, defuzzification with center of gravity, were the variables have the 3x3 primary 
rule base from Tab. 1 and three membership values from Fig. 8. 
 

 
Fig. 8. Membership functions 
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The MISO characteristic is presented in Fig. 9.a). The SISO characteristics are presented in 
Fig. 9.b). The translated characteristics are presented in Fig. 9.c). The characteristics of the 
variable gain are presented in Fig. 9.d). 
 

 
a)                                                 b) 

 
c)                                                  d) 

Fig. 9. Transfer characteristics: a) MISO transfer characteristic b) SISO transfer characteristic 
c) Translated transfer characteristic d) Gain characteristic 

From the Fig. 9.d) we may notice that the value of the gain in origin is K0 1,2. 
Taking account of the correction made upon the fuzzy block with the scaling coefficient cdu, 
the characteristic of the fuzzy bloc around the origin is given by the relation: 

 
~

0( )d du e deu c K x x   (34) 

We use: 

 
~

0du duc c K  (35) 

3.2 Pseudo-equivalence of the fuzzy PI controller  
For the fuzzy controller with the fuzzy block BF linearized around the origin, we may write 
the following input-output relation in the z-domain: 

 
Tuning Fuzzy PID Controllers 

 

181 

 
~ ~ 1( ) ( ( ) ( )) ( )

1 1
du du e de

z z zu z c e z de z c c c e z
z z hz

        
 (36) 

The transfer function of the PI fuzzy controller with integration at the output becomes: 

 
~( ) 1( )

( ) 1
duRF e de

u z z zH z c c c
e z z hz

      
 (37) 

A pseudo-equivalence may be made for the fuzzy controller with a linear PI controller in the 
continuous time, used in common applications. The equivalence is a false one, because the 
fuzzy controller is not linear, so we use the word “pseudo”. 
The PI controller has the general transfer function: 

 ( ) 1( ) 1
( )RG RG

RG

u sH s K
e s sT

 
   

 
 (38) 

We use the quasi-continual form of the transfer function, obtained by the conversion from 
the discrete time in the continuous time with the transformation: 

 1 / 2
1 / 2

shz
sh





 (39) 

where h is the sampling period for the conversion of the transfer function: 

 
~

1 /2
1 /2

( )( ) ( ) 1
( ) 2 ( / 2)

du eshRF RF de ez
sh de e

cu s c hH s H z c c
e s h c c h s






            
 (40) 

We notice that the above transfer function matches the general transfer function of the linear 
PI controller. 
From the identification of the coefficients of the two transfer functions, the following 
relations results: 

 
~

2
du

RG de e
c hK c c
h
   
 

 (41) 

 2de e
RG

e

hc c
T

c


  (42) 

From relation (41) we may notice that the value of the gain coefficient KRG of the PI fuzzy 
controller depends on the all three scaling coefficients, and what it is the most important, it 
depends on the gain in the origin of the fuzzy block. 
And from the relation (42) we may notice that the time constant TRG depends only on the 
scaling coefficients ce and cde from the inputs of the fuzzy block. At the limit, for h0, the 
gain coefficient of the fuzzy controller has the value 

 0 /RG de duK c K c h  (43) 
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From relation (41) we may notice that the value of the gain coefficient KRG of the PI fuzzy 
controller depends on the all three scaling coefficients, and what it is the most important, it 
depends on the gain in the origin of the fuzzy block. 
And from the relation (42) we may notice that the time constant TRG depends only on the 
scaling coefficients ce and cde from the inputs of the fuzzy block. At the limit, for h0, the 
gain coefficient of the fuzzy controller has the value 

 0 /RG de duK c K c h  (43) 
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and the time constant of the fuzzy controller has the value 

 /RG de eT c c  (44) 

Observations: A great value of ce insures a small value of time constant of the fuzzy controller 
based on the relation (42). The value ce=1/eM, were eM is the superior limit of the universe of 
discourse of the variable e and it insures a dispersion of the values from the input e of the 
fuzzy block on the entire universe of discourse, without limitation for large variations of the 
error e. A great value of cde makes a great value for the time constant of the controller. A 
small value of cde makes smalls values for the time constant and also for the gain. But, by 
increasing cdu , we may compensate the decreasing of the gain due to the decreasing of cde. 
Chosen of other fuzzy block with other membership functions and inference method is 
equivalent to the chosen of other K0, greater or smaller. 
From these relations we obtain the relation for designing the scaling coefficients based on 
the parameters of the linear PI controller: 

 
0

RG
e

du RG

hKc
c K T

  (45) 

 ( / 2)de e RGc c T h   (46) 

We may notice the influence of the gain in origin on ce and also cde. 
The linear PI controller may be designed with different methods taken from the linear 
control theory. 
Because the gain in origin is the main issue in this equivalence, we present the algorithm of 
computation of the gain in origin is: 
1. Obtaining the MIMO transfer characteristic of the fuzzy block. 
2. Obtaining the family of SISO transfer characteristics from the MIMO characteristic, 

using one of the input variables as a parameter. 
3. Obtaining the family of translated characteristic from the SISO characteristic, using a 

compound variable as summation of the two input variables. 
4. Obtaining the gain characteristic by dividing the translated characteristic to the 

compound variable. 
5. Obtaining the gain in origin by computing the limit in origin of the families of gain 

characteristics. 

3.3 Anti-wind-up circuit 
As in the case of the analogue linear PI controllers for the digital fuzzy controllers with 
integration, there is needed an anti-wind-up circuit. For the PI controller with integration at 
the output, an equivalent anti-wind-up circuit may be implemented as it is shown in Fig. 10.  
 

 
Fig. 10. The structure of the fuzzy PI controller with an anti-wind-up circuit 

 
Tuning Fuzzy PID Controllers 

 

183 

This structure is different from the first structure. Because of the integration block, a 
feedback is made with the anti-wind-up circuit AW. The circuit is needed because the 
output of the controller is limited at maximum and minimum values +/-UM. 
The limitations are imposed by the maximum value of the command u of the process. 

3.4 Correction of the fuzzy block 
To assure stability to control systems using fuzzy PI controllers, we need a correction in 
order to modify the input-output transfer characteristic and a quasi-fuzzy controller results, 
with the structure from Fig. 11. 
 

 
Fig. 11. The structure of the fuzzy PI controller (RFC) with an anti-wind-up circuit 

The characteristic of the nonlinear part of the control system is placed only in the I-st and III-
rd quadrants, like in Fig. 12. 
 

 
Fig. 12. The translated characteristics with a correction of Kc = 0,1 

With the correction circuit from Fig. 11, the correction command is given by the relation: 

 
~ ~

[( ) ( )]c cu K e de e de     (47) 

Even if the quasi-fuzzy structure in parallel with the fuzzy block BF a linear structure is 
introduced, the correction will be nonlinear. 

3.5 Pseudo-equivalence of the fuzzy PD controller 
As in the case of the fuzzy PI controller, a quasi-continual form is obtained: 
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~( )( ) 1
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u deuRF e de
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e s c c

 
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 
 (48) 

From the identification of the coefficients, the following relations of tuning result: 
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u
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  (49) 

 de
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From these equations, the expressions of the scaling coefficients results: 
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u
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  (51) 

 
~

uRG
de

RG
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  (52) 

3.6 Pseudo-equivalence of the fuzzy PID controller 
As in the case of the fuzzy PI controller, there is obtained a quasi-continual form: 
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From the identification of the coefficients, the following relations of tuning are: 
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From these equations, the expressions of the scaling coefficients are: 
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4. Stability assurance 
4.1 Internal stability 
For stability analysis, we are working with the structure from Fig. 13. 
 

 
Fig. 13. The structure of the control system with the correction of the non-linear part N 
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The families of characteristics 
~ ~ ~

( ; )tddu f x de  present the sector property to be placed only 
in the quadrants I and III and they are inducing the consideration of the relation (63). 
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The characteristic of the non-linear part has null intervention, due to the limitations placed 
at the inputs of the fuzzy block. To the fuzzy blocks we may attach a fuzzy relation of which 
characteristic is placed only in the quadrants I and III. 
From the relation ( , )BF e def x x , which is describing the fuzzy block, a source of nonlinearity is 
there made by the membership functions. If the block will work on the universe of discourse 
[-1, 1], its characteristic will only be in the sector [K1, K2], 0<K1<K2. By introducing the 
saturation elements with a role of limitation at the inputs of the fuzzy block, the non-linear 

part 
~
N  is placed in a sector [0, K]. To accomplish the sector condition, necessary for the 

stability insurance, a correction is used to the non-linear part. It consists in summation at the 
output dud of the fuzzy block of the quantity du: 
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The value Kc>0 will be chosen in a way that the nonlinearity 
~

cN  characteristic is to be 
framed in an adequate sector [Kmin, Kmax]. 
The design method in order to obtain the value for the gain coefficient is presented as it 
follows: 
The method recommended for stability insurance is as it follows: 
1. For a certain fuzzy block type, the minimum value of Km and the maximum value of KM 

are chosen from the curve families KNc=f(
~
x t), or dudc=f(

~
x t), with 

~
de  as a parameter. 

2. The value of incremental coefficient of the command variable is limited by the capacity 
of control system to furnish the command variable to the process. 

3. The incremental coefficient of the command variable may be determined with the 
relation that is describing the digital integration.  

4. The maximum value of the command variable cannot overpass a maximum value. 
5. At an incremental step, on a sampling period h, for the incremental of the command 

variable, a value is not recommended. For this, there may be chosen maximum a value 
of the incremental coefficient of cduM.KM. 

6. The values of coefficients cdu and Kc may be chosen to insure sector stability. 
7. In the choosing of cdu we must take account to the maximum values of KM of the 

superior limit of the nonlinearity of the fuzzy block. 
8. The chosen of Kc is done by taking account on the rapport rk=Kmin/Kmax. 

4.2 External stability 
To assure external BIBO stability (Khalil, 1991) the following relation may be taken in 
consideration: 
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According to [14], we may write the following conditions: x=0 is a stable point of 
equilibrium with w=0, and fx(0, 0)=0, t0; x=0 is a global equilibrium  point of the system; 
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Jacobian matrix  /xf x  , evaluated for w=0, and  /xf w   are global limited; fy(t, x, w), 
satisfies: 
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global, for k1, k2, k3>0. Then, for any (0)x  , there are the constants >0 şi 3( , ) 0k     
such as: 
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5. Control system example 
A fuzzy control system, as it is in the example, has the block diagram from Fig. 14. A fuzzy 
PI controller RF- is used in a speed control system of an electrical drive with the following 
elements: MCC - DC motor, CONV – power converter, RG-I – current controller, RF- - 
speed controller, Ti – current sensor, T - speed sensor, CAN, CNA - analogue to digital 
and digital to analogue converters. 
The fuzzy controller has the structure from Fig. 15. It is a quasi-fuzzy PI controller with 
summation at the output, with an internal fuzzy block BF with the structure presented at the 
beginning, and a correction circuit to insure stability. The controller has also an anti wind-
up circuit. 
 

 
Fig. 14. The block diagram of the fuzzy control system 
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Fig. 15. The speed fuzzy PI controller, with anti-wind-up and correction circuit 

A method to choose initial scaling coefficients based on the quality criteria of the control 
system is recommended, as it follows. The scaling coefficients were chosen after some 
iterative steps, using the quality criteria of the transient characteristics of the speed fuzzy 
control system at a step speed reference. The speed scaling coefficient ce had the same value 
ce=1/eM. The first value of the derivative scaling coefficient was cde=1/deM. 
1. Initial values are chosen ce1 and cde1, based on operator knowledge. 
2. An initial value for the output scaling coefficient is chosen cdi1, based on controller 

equivalence. 
3. With the above values for ce and cdi it is calculated a value for cde2. 
4. Maintaining the values of ce and cde and increasing the value of cdi. 
5. Maintaining the values of ce and cdi and decreasing cde, and so on. 
The adopted solution contains the values of the scaling coefficients from the sixth step. The 
transient characteristics obtained in the process of choosing the scaling coefficients are there 
presented in Fig. 16. The value of cde was decreased to the final value from the sixth step. 
Decreasing more this scaling coefficient, the fuzzy control system becomes unstable. 
Simulations are made for the control system with fuzzy PI controller and also for linear PI 
controller, for tuned and detuned system parameters. The transient characteristics for the 
current and speed are to be presented in Fig. 17. With continuous line, there are represented 
the characteristics for fuzzy control, and with dash-dot line, there are represented the 
characteristics for conventional control. The regime consists in starting the process unloaded, 
with a constant speed reference. A constant load torque, in the range of the rated process 
torque, is also introduced. Then, the motor is reversed, maintaining the constant load torque. 
 

 
Fig. 16. The transient characteristics for scaling coefficients determination 

The quality criteria of the control system, with linear (l) and fuzzy controller (f), for tuned 
(a) and detuned (d) parameter are there presented in Tab. 2. 

 
Tuning Fuzzy PID Controllers 

 

189 

Case 1 
[%] 

tr 
[s]

1M 
[%]

trM
[s] 

1r 
[%]

trr
[s] 

 
10-5 

1 
[%]

1M 
[%]

tr 
[s] 

trM 
[s] 

l-a 6,7 1 6,1 0,6 4,1 1,5 1,1 6,7 2,3 0,5 0,46 f-a 0 0,5 3,8 0,14 0 1,2 1,03
l-d 8,3 1,5 6,1 0,65 4,1 3 2,0 8,3 2,3 0,7 0,51 f-d 0 0,8 3,8 0,14 0 2,2 1,89

Table 2. The values of the quality criteria for the control system, for linear and fuzzy 
controllers, for tuned and detuned parameters of the electrical drive 

 
Fig. 17. Transient characteristics for the current and speed 

Based on a comparative analysis of the speed performance criteria, better results were there 
obtained with the fuzzy PI controller designed, using the above methods as it follows: 
- better quality criteria: zero overshot and shorter settling time; 
- better performances for detuned parameters; 
- the fuzzy control system is more robust at the identification errors and at the 

disturbance. 

6. Conclusion 
In this chapter, there were analyzed some digital controller, based on fuzzy blocks with 
Mamdani structure and PID dynamics. 
A pseudo-equivalence of them with linear PID controllers was made, based on the input-
output transfer characteristics of the fuzzy block, obtained by digital computer calculation. 
The design of the fuzzy controller is based on the linearization of the fuzzy block around the 
origin, for the permanent regime. There is used the gain in the origin obtained as a limit in 
origin of the gain function, obtained from the translated SISO transfer characteristic. 
For this type of controllers, the design relations were demonstrated. There was made an 
analysis of these design relations. There were also presented some observations related to 
the influences of the scaling coefficients.  
The results presented in this chapter are important in the practice design of the control 
systems based on PID fuzzy controllers. This method for equivalence is valid for all kind of 
fuzzyfication and defuzzification methods, all types of membership functions, all inference 
methods, because it is based on analytic transfer characteristic, which may be obtained using 
computer calculations. 
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If there is a designed linear PID controller for a process control, we may use the equivalent 
fuzzy PID controller in its place in order to control the process with better control quality 
criteria. Based on the above notice, the method may be used also for tuning the fuzzy PID 
controller in a control system. 
The term of “pseudo-equivalence” is used because there is no direct equivalence between 
the nonlinear digital fuzzy PI controller, with linearization only in the origin, and a linear 
analogue PI controller. 
The theory presented in this paper is used and proved by the author in practical control 
applications, as speed control of electrical drives for dc motors, synchronous and induction 
motors. 

7. References 
Bao-Gang, H.; Mann, G.K.I. & Gosine, R.G. New methodology for analytical and optimal 

design of fuzzy PID controllers, IEEE Trans. On Fuzzy Systems, Vol. 7, Issue 5, Oct. 
1999, p. 521. 

Bao-Gang, H., Mann, G.K.I. & Gosine, R.G. A systematic study of fuzzy PID controllers 
function based evaluation approach, IEEE Trans. On Fuzzy Systems, Vol. 9, Issue 5, 
Oct. 2001, p. 699. 

Buhler, H. Reglage par logique floue, Presses Polytechnique et Universitaires Romandes, 
Lausanne, 1994. 

Jantzen, J. Foundations of Fuzzy Control, Wiley, 2007. 
Khalil, H. K. Nonlinear Systems, Macmillan Pub. Co., N. Y., 1991. 
Moon, B.S. Equivalence between fuzzy logic controllers and PI controllers for single input 

systems, Fuzzy Sets and Systems, Vol. 69, Issue 2, 1995, p. 105-113. 
Mohan, B.M. & Sinha, A. The simplest fuzzy PID controllers: mathematical models and 

stability analysis, Soft Computing - A Fusion of Foundations, Methodologies and 
Applications, Springer Berlin / Heidelberg, Volume 10, Number 10 / August, 2006, 
p. 961-975. 

Mohan, B.M. & Sinha, A. Analytical Structures for Fuzzy PID Controllers?, IEEE Trans. On 
Fuzzy Systems, Vol. 16, Issue 1, Feb., 2008. 

Santos, M.; Dormido, S.; de Madrid, A.P.; Morilla F. & de la Cruz, J.M. Tuning fuzzy logic 
controllers by classical techniques, Lecture Notes in Computer Science, Volume 
1105/1996, Springer Berlin/Heidelberg, p. 214-224. 

Volosencu, C. Pseudo-Equivalence of Fuzzy PID Controllers, WSEAS Transactions on Systems 
and Control, Issue 4, Vol. 4, April 2009,  p. 163-176. 

Volosencu, C. Properties of Fuzzy Systems, WSEAS Transactions On Systems, Issue 2, Vol. 8, 
Feb. 2009, pp. 210-228. 

Volosencu, C. Stabilization of Fuzzy Control; Systems, WSEAS Transactions On Systems and 
Control, Issue 10, Vol. 3, Oct. 2008, pp. 879-896. 

Volosencu, C. Control of Electrical Drives Based on Fuzzy Logic, WSEAS Transactions On 
Systems and Control, Issue 9, Vol. 3, Sept. 2008, pp.809-822. 

Yame, J.J. Takagi-Sugeno fuzzy PI controllers: Analytical equivalence and tuning, Journal A, 
Vol. 42, no. 3, p. 13-57, 2001. 

Ying, H. Mamdani Fuzzy PID Controllers, Fuzzy Control and Modeling: Analytical Foundations 
and Applications, IEEE, 2000. 

Xu; J.X.; Pok; Y.M.; Liu; C. & Hang, C.C. Tuning and analysis of a fuzzy PI controller based 
on gain and phase margins, IEEE Transactions on Systems, Man and Cybernetics, Part 
A, Volume 28, Issue 5, Sept. 1998, p. 685 – 691. 

Part 5 

Discrete Intelligent PID Controller 



 
Introduction to PID Controllers – Theory, Tuning and Application to Frontier Areas 

 

190 

If there is a designed linear PID controller for a process control, we may use the equivalent 
fuzzy PID controller in its place in order to control the process with better control quality 
criteria. Based on the above notice, the method may be used also for tuning the fuzzy PID 
controller in a control system. 
The term of “pseudo-equivalence” is used because there is no direct equivalence between 
the nonlinear digital fuzzy PI controller, with linearization only in the origin, and a linear 
analogue PI controller. 
The theory presented in this paper is used and proved by the author in practical control 
applications, as speed control of electrical drives for dc motors, synchronous and induction 
motors. 
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1. Introduction  
PID controller (which is an acronym to “proportional, integral and derivative”) is a type of 
device used for process control. As first practical use of PID controller dates to 1890s 
(Bennett, 1993), PID controllers are spread widely in various control applications till these 
days. In process control today, more than 95% of the control loops are PID type (Astrom et 
al., 1995). PID controllers have experienced many changes in technology, from mechanics 
and pneumatics to microprocessors and computers. 
Especially microprocessors have influenced PID controllers applying significantly. They 
have given possibilities to provide additional features like automatic tuning or continuous 
adaptation – and continuous adaptation of PID controller via neural model of controlled 
system (which is considered to be significantly nonlinear) is the aim of this contribution. 
Artificial Neural Networks have traditionally enjoyed considerable attention in process 
control applications, especially for their universal approximation abilities (Montague et al., 
1994), (Dwarapudi, et al., 2007). In next sections, there is to be explained how to use artificial 
neural networks with piecewise-linear activation functions in hidden layer in controller 
design. To be more specific, there is described technique of controlled plant linearization 
using nonlinear neural model. Obtained linearized model is in a shape of linear difference 
equation and it can be used for PID controller parameters tuning.  

2. Continuous-time and discrete PID controller 
The basic structure of conventional feedback control using PID controller is shown in Fig. 1 
(Astrom et al., 1995), (Doyle et al., 1990). In this figure, the SYSTEM is the object to be 
controlled. The aim of control is to make controlled system output variable yS(t) follow the 
set-point r(t) using the manipulated variable u(t) changes. Variable e(t) is control error and is 
considered as PID controller input and t is continuous time. 
Continuous-time PID controller itself is defined by several different algorithms (Astrom et 
al., 1995), (Doyle et al., 1990). Let us use the common version defined by (Eq. 1). 
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Fig. 1. Conventional feedback control loop 

The control variable is a sum of three parts: proportional one, integral one and derivative 
one – see Fig. 2. The controller parameters are proportional gain Kp, integral time Ti and 
derivative time Td. 
 

e(t) u(t)

 
Fig. 2. Continuous-time PID controller 

In applications, all three parameters have to be tuned to solve certain problem most 
appropriately while both stability and quality of control performance are satisfied. Many 
tuning techniques have been published in recent decades, some of them experimental, the 
others theoretically based. 
As microprocessors started to set widely in all branches of industry, discrete form of PID 
controller was determined. Discrete PID controller computes output signal only at discrete 
time instants k·T (where T is sapling interval and k is an integer). Thus, conventional control 
loop (Fig. 1) has to be upgraded with zero order hold (ZOH), analogue-digital converter 
(A/D) and digital-analogue converter (D/A) – see Fig. 3 (k·T is replaced by k for formal 
simplification). 
 

DISCRETE PID
CONTROLLER SYSTEMu(t)        yS(t)e(t)r(t)  +

-
A/D D/A ZOHu(k)e(k)

 
Fig. 3. Feedback control loop with discrete PID controller 
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Formula of discrete PID controller can be obtained by discretizing of (Eq. 1). From a purely 
numerical point of view, integral part of controller can be approximated by (Eq. 2) and 
derivative part by (Eq. 3). 
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Then, discrete PID controller is defined by (Eq. 4). 
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For practical application, incremental form of discrete controller is more suitable. Let us 
assume 

 ( ) ( ) ( 1)u k u k u k     (5) 

Then, with respect to (Eq. 4) 
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In the Z domain (Isermann, 1991), discrete PID controller has the following transfer 
function. 
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As well as for continuous-time PID controller, there have been introduced several methods 
for q0, q1, q2 tuning (Isermann, 1991). Most of them require mathematical model of controlled 
system (either first principle or experimental one) and if the system is nonlinear, the model 
has to be linearized around one or several operating points. 
In next paragraph, the way how to tune discrete PID controller using Pole Assignment 
technique is described. 
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3. Discrete PID controller tuning using Pole Assignment technique 
Suppose conventional feedback control loop with discrete PID controller (7) and controlled 
system described by nominator B(z-1) and denominator A(z-1) – see Fig. 4.  
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Fig. 4. Feedback control loop with discrete PID controller 

Then, Z – transfer function of closed control loop is 
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Denominator of Z – transfer function (8) is the characteristic polynomial 

 1 1 1 1 1( ) ( ) ( ) ( ) ( )D z A z P z B z Q z       (9) 

It is well known that dynamics of the closed loop behaviour is defined by the characteristic 
polynomial (9). It has three tuneable variables which are PID controller parameters q0, q1, q2. 
The roots of the polynomial (9) are responsible for control dynamics and one can assign 
those roots (so called poles) (see Fig. 5) by suitable tuning of the parameters q0, q1, q2. 
Thus, discrete PID controller tuning using Pole Assignment means choosing desired control 
dynamics (desired definition of characteristic polynomial) and subsequent computing of 
discrete PID controller parameters. 
Let us show an example: suppose we need control dynamics defined by characteristic 
polynomial (10), where d1, d2, … are integers (there are many ways how to choose those 
parameters, one of them is introduced in the case study at the end of this contribution). 

 1 1 2
1 2( ) 1D z d z d z       (10) 

So we have to solve Diophantine equation (11) to obtain all controller parameters. 
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If any solution exists, it provides us expected set of controller parameters. 
Comprehensive foundation to pole assignment technique is described in (Hunt, 1993). 

4. Continuous linearization using artificial neural network 
The tuning technique described in section 3 requires linear model of controlled system in form 
of Z – transfer function. If controlled system is highly nonlinear process, linear model has to be 
updated continuously with operating point shifting. Except some classical techniques of 
continuous linearization (Gain Scheduling, Recurrent Least Squares Method, …), there has 
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been introduced new technique (Doležel et al., 2011), recently. It is presented in next 
paragraphs. 

4.1 Artificial neural network for approximation 
According to Kolmogorov's superposition theorem, any real continuous multidimensional 
function can be evaluated by sum of real continuous one-dimensional functions (Hecht-
Nielsen, 1987). If the theorem is applied to artificial neural network (ANN), it can be said 
that any real continuous multidimensional function can be approximated by certain three-
layered ANN with arbitrary precision. Topology of that ANN is depictured in Fig. 6. Input 
layer brings external inputs x1, x2, …, xP   into ANN. Hidden layer contains S neurons, which 
process sums of weighted inputs using continuous, bounded and monotonic activation 
function. Output layer contains one neuron, which processes sum of weighted outputs from 
hidden neurons. Its activation function has to be continuous and monotonic. 
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Im(z)
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0
1
2

 

 
R(z-1)

YS(z-1)

R(z-1)
YS(z-1)

 
Fig. 5. The effect of characteristic polynomial poles to the control dynamics 

So ANN in Fig. 6 takes P inputs, those inputs are processed by S neurons in hidden layer 
and then by one output neuron. Dataflow between input i and hidden neuron j is gained by 
weight w1j,i. Dataflow between hidden neuron k and output neuron is gained by weight w21,k. 
Output of the network can be expressed by following equations. 



 
Introduction to PID Controllers – Theory, Tuning and Application to Frontier Areas 

 

196 

3. Discrete PID controller tuning using Pole Assignment technique 
Suppose conventional feedback control loop with discrete PID controller (7) and controlled 
system described by nominator B(z-1) and denominator A(z-1) – see Fig. 4.  
 

Q(z-1)
P(z-1)

B(z-1)
A(z-1)

U(z-1)           YS(z-1)E(z-1)R(z-1) +
-

DISCRETE PID 
CONTROLLER

SYSTEM

 
Fig. 4. Feedback control loop with discrete PID controller 

Then, Z – transfer function of closed control loop is 

 
1 1 1

1 1 1 1 1
( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

Y z B z Q z
R z A z P z B z Q z

  

    


 (8) 

Denominator of Z – transfer function (8) is the characteristic polynomial 

 1 1 1 1 1( ) ( ) ( ) ( ) ( )D z A z P z B z Q z       (9) 

It is well known that dynamics of the closed loop behaviour is defined by the characteristic 
polynomial (9). It has three tuneable variables which are PID controller parameters q0, q1, q2. 
The roots of the polynomial (9) are responsible for control dynamics and one can assign 
those roots (so called poles) (see Fig. 5) by suitable tuning of the parameters q0, q1, q2. 
Thus, discrete PID controller tuning using Pole Assignment means choosing desired control 
dynamics (desired definition of characteristic polynomial) and subsequent computing of 
discrete PID controller parameters. 
Let us show an example: suppose we need control dynamics defined by characteristic 
polynomial (10), where d1, d2, … are integers (there are many ways how to choose those 
parameters, one of them is introduced in the case study at the end of this contribution). 

 1 1 2
1 2( ) 1D z d z d z       (10) 

So we have to solve Diophantine equation (11) to obtain all controller parameters. 

 1 2 1 1 1 1
1 21 ( ) ( ) ( ) ( )d z d z A z P z B z Q z           (11) 

If any solution exists, it provides us expected set of controller parameters. 
Comprehensive foundation to pole assignment technique is described in (Hunt, 1993). 

4. Continuous linearization using artificial neural network 
The tuning technique described in section 3 requires linear model of controlled system in form 
of Z – transfer function. If controlled system is highly nonlinear process, linear model has to be 
updated continuously with operating point shifting. Except some classical techniques of 
continuous linearization (Gain Scheduling, Recurrent Least Squares Method, …), there has 

 
Discrete PID Controller Tuning Using Piecewise-Linear Neural Network 

 

197 

been introduced new technique (Doležel et al., 2011), recently. It is presented in next 
paragraphs. 

4.1 Artificial neural network for approximation 
According to Kolmogorov's superposition theorem, any real continuous multidimensional 
function can be evaluated by sum of real continuous one-dimensional functions (Hecht-
Nielsen, 1987). If the theorem is applied to artificial neural network (ANN), it can be said 
that any real continuous multidimensional function can be approximated by certain three-
layered ANN with arbitrary precision. Topology of that ANN is depictured in Fig. 6. Input 
layer brings external inputs x1, x2, …, xP   into ANN. Hidden layer contains S neurons, which 
process sums of weighted inputs using continuous, bounded and monotonic activation 
function. Output layer contains one neuron, which processes sum of weighted outputs from 
hidden neurons. Its activation function has to be continuous and monotonic. 
 

10.5-0.5-1 Re(z)

Im(z)

0 5 10
0
1
2

 

 
R(z-1)

YS(z-1)

R(z-1)
YS(z-1)

 
Fig. 5. The effect of characteristic polynomial poles to the control dynamics 

So ANN in Fig. 6 takes P inputs, those inputs are processed by S neurons in hidden layer 
and then by one output neuron. Dataflow between input i and hidden neuron j is gained by 
weight w1j,i. Dataflow between hidden neuron k and output neuron is gained by weight w21,k. 
Output of the network can be expressed by following equations. 



 
Introduction to PID Controllers – Theory, Tuning and Application to Frontier Areas 

 

198 

 1 1 1
,

1

P

a j j i i j
i

y w x w


    (12) 

  1 1 1
j a jy y  (13) 

 2 2 1 2
1 1, 1

1

S

a i i
i

y w y w


    (14) 

  2 2
1ay y  (15) 

In equations above, φ1(.) means activation functions of hidden neurons and φ2(.) means 
output neuron activation function. 
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Fig. 6. Three-layered ANN 

As it has been mentioned, there are some conditions applicable for activation functions. 
To satisfy those conditions, there is used mostly hyperbolic tangent activation function 
(Eq. 16) for neurons in hidden layer and identical activation function (Eq. 17) for output 
neuron. 

  1 1tanhj a jy y  (16) 
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 2
1ay y  (17) 

Mentioned theorem does not define how to set number of hidden neurons or how to tune 
weights. However, there have been published many papers which are focused especially on 
gradient training methods (Back-Propagation Gradient Descend Alg.) or derived methods 
(Levenberg-Marquardt Alg.) – see (Haykin, 1994). 

4.2 System identification by artificial neural network 
System identification means especially a procedure which leads to dynamic model of the 
system. ANN is used widely in system identification because of its outstanding 
approximation qualities. There are several ways to use ANN for system identification. One 
of them assumes that the system to be identified (with input u and output yS) is determined 
by the following nonlinear discrete-time difference equation. 

 ( ) [ ( 1), , ( ), ( 1), , ( )],S S Sy k y k y k n u k u k m m n        (18) 

In equation (18), ψ(.) is nonlinear function, k is discrete time (formally better would be k·T) 
and n is difference equation order. 
The aim of the identification is to design ANN which approximates nonlinear function ψ(.). 
Then, neural model can be expressed by (eq. 19). 

 ˆ( ) [ ( 1), , ( ), ( 1), , ( )],M M My k y k y k n u k u k m m n        (19) 

In (Eq. 19), ̂  represents well trained ANN and yM is its output. Formal scheme of neural 
model is shown in Fig. 7. It is obvious that ANN in Fig. 7 has to be trained to provide yM as 
close to yS as possible. Existence of such a neural network is guaranteed by Kolmogorov's 
superposition theorem and whole process of neural model design is described in detail in 
(Haykin, 1994) or (Nguyen et al., 2003). 
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In equations above, φ1(.) means activation functions of hidden neurons and φ2(.) means 
output neuron activation function. 
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Fig. 6. Three-layered ANN 

As it has been mentioned, there are some conditions applicable for activation functions. 
To satisfy those conditions, there is used mostly hyperbolic tangent activation function 
(Eq. 16) for neurons in hidden layer and identical activation function (Eq. 17) for output 
neuron. 

  1 1tanhj a jy y  (16) 
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Mentioned theorem does not define how to set number of hidden neurons or how to tune 
weights. However, there have been published many papers which are focused especially on 
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ANN used in neural model. However, if linear saturated activation function (Eq. 20) is used 
instead, ANN features stay similar because of resembling courses of both activation 
functions (see Fig. 8). 
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Fig. 8. Activation functions comparison 

The output of linear saturated activation function is either constant or equal to input so 
neural model which uses ANN with linear saturated activation functions in hidden neurons 
acts as piecewise-linear model. One linear submodel turns to another when any hidden 
neuron becomes saturated or becomes not saturated. 
Let us presume an existence of a dynamical neural model which uses ANN with linear 
saturated activation functions in hidden neurons and identic activation function in output 
neuron – see Fig. 9. Let us also presume m = n = 2 for making process plainer. ANN output 
can be computed using Eqs. (12), (13), (14), (15). However, another way for ANN output 
computing is useful. Let us define saturation vector z of S elements. This vector indicates 
saturation states of hidden neurons – see (Eq. 21). 
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Then, ANN output can be expressed by (Eq. 22). 
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Thus, difference equation (22) defines ANN output and it is linear in some neighbourhood 
of actual state (in that neighbourhood, where saturation vector z stays constant). Difference 
equation (22) can be clearly extended into any order. 
In other words, if the neural model of any nonlinear system in form of Fig. 9 is designed, 
then it is simple to determine parameters of linear difference equation which approximates 
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Then, ANN output can be expressed by (Eq. 22). 

 1 2 1 2( ) ( 1) ( 2) ( 1) ( 2)M M My k a y k a y k b u k b u k c               (22) 

 
Discrete PID Controller Tuning Using Piecewise-Linear Neural Network 

 

201 

where  2 1
1 1, ,1

1
1

S

i i i
i

a w z w


       

 2 1
2 1, ,2

1
1

S

i i i
i

a w z w


      

 2 1
1 1, ,3

1
1

S

i i i
i

b w z w


     

 2 1
2 1, ,4

1
1

S

i i i
i

b w z w


     

  2 2 2 1
1 1, 1,

1
1

S

i i i i i
i

c w w z z w w


        
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system behaviour in some neighbourhood of actual state. This difference equation can be 
used then to the actual control action setting due to many of classical or modern control 
techniques. 
In following examples, discrete PID controller with parameters tuned according to 
algorithm introduced in paragraph 3 is studied. As it is mentioned above, controlled system 
discrete model in form of Z – transfer function is required. So first, difference equation (22) 
should be transformed in following way. Let us define 

 0( ) ( )u k u k u   (23) 

where u0 is constant. Then, (Eq. 22) turns into 

 1 2 1 2 1 2 0( ) ( 1) ( 2) ( 1) ( 2) ( )M M My k a y k a y k b u k b u k c b b u                   (24) 

Equation (24) becomes constant term free, if (Eq. 25) is satisfied. 
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In Z domain, model (24) witch respect to (Eq. 25) is defined by Z – transfer function (26). 

 
1 1 2

1 2
1 1 2

1 2

( )
( ) 1

MY z b z b z
U z a z a z

  

  



   (26) 

5. Algorithm of discrete PID controller tuning using piecewise-linear neural 
network 
Whole algorithm of piecewise-linear neural model usage in PID controller parameters 
tuning is summarized in following terms (see Fig. 10, too). 
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1. Create neural model of controlled plant in form of Fig. 9. 
2. Determine polynomial D(z-1) of (10). 
3. Set k = 0. 
4. Measure system output yS(k). 
5. Determine the parameters ai, bi and c of difference equation (22). 
6. Transform (Eq. 22) into Z – transfer function (26). 
7. Determine discrete PID controller parameters by solving of (Eq. 11) where A(z-1) and 

B(z-1) are denominator and nominator of Z – transfer function (26), respectively. 
8. Determine ( )u k  using discrete PID controller tuned in previous step. 
9. Transform ( )u k  into u(k) using (Eq. 23) and perform control action. 
10. k = k + 1, go to 4. 
Introduced algorithm is suitable to control of highly nonlinear systems, especially. 

6. Case study 
Discrete PID controller tuned continuously by technique introduced above is applied now to 
control of two nonlinear systems. Both of them are compiled by a combination of nonlinear 
static part and linear dynamical system – see Fig. 11. 
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Fig. 11. System to control 

6.1 First order nonlinear system 
The static element of the first demo system is defined by (Eq. 27) and dynamical system is 
defined by differential equation (28). 
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Graphic characteristics of the system are shown in Fig. 12. 
Control loop is designed as shown in paragraph 5. At first, dynamical piecewise-linear 
neural model in shape of Fig. 9 is created. This procedure involves training and testing set 
acquisition, neural network training and pruning and neural model validating. As this 
sequence of processes is illustrated closely in many other publications (Haykin, 1994), 
(Nguyen, 2003) it is not referred here in detail. Briefly, training set is gained by controlled 
system excitation by set of step functions with various amplitudes while both u and yS are 
measured (sampling interval T = 1 s) – see Fig. 13. Then, order of the neural model is set: 
n = 1 (Eq. 19) because the controlled system is first order one, too. After that, artificial neural 
network is trained by Backpropagation Gradient Descent Algorithm repeatedly (see Fig. 14) 
while pruning is applied – optimal neural network topology is determined as two inputs, 
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four neurons in hidden layer and one output neuron. Finally, the neural model is validated 
(Fig. 15). 
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Fig. 12. Graphic characteristics of the first order nonlinear system 
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Fig. 13. Training set for the neural model 
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Fig. 14. Neural network training 
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Fig. 15. Neural model validating 

Next step is to determine polynomial D(z-1). Common ways of D(z-1) determination are 
mentioned below (Hunt, 1993). 
 Dead beat is achieved 
 Quadratic criterion is satisfied 
 Control dynamics of closed loop equals to dynamics of defined second order system 
 Special dynamics of closed control loop (defined by customer) is achieved 
Let us use the c) possibility and define the standard for control dynamics as second order 
system with Z – transfer function (29). 
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four neurons in hidden layer and one output neuron. Finally, the neural model is validated 
(Fig. 15). 
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Polynomial D(z-1) is stable with double pole equal to 0.3679. 
Essential part of next three steps of the control algorithm is to solve Diophantine equation 
(11). In this particular example, (Eq. 31) is to be solved. 

     -1 -2 -1 -1 -1 -1 -2
1 2 1 1 0 1 21 z z 1 z 1 z z z zd d a b q q q         (31) 

Method of undetermined coefficients is one possibility how to solve this equation. The 
initial matrix equation is  
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0 0
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b q d a

b q a
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           
          

 (32) 

And the solution is 
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 (33) 

Now it is possible to perform control simulation. For defined reference variable course 
(combination of step functions and linearly descending and ascending functions), the 
control performance is shown in Fig. 16. Comparison of system output to standard (Eq. 29) 
is shown then in Fig. 17. 
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As shown in Figs. 16 and 17, control performance is stable and desired dynamics of the 
closed loop is close to defined standard. 
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Fig. 17. Comparison to standard – first order nonlinear system 

6.2 Second order nonlinear oscillative system 
Second demo system is structurally identical as the previous one (Fig. 11). Even the static 
element is the same. However, the dynamic system is defined now by differential equation 
(34). 

 
2

2
( ) ( )( ) 5 50 * ( )dy t d y ty t u t

dt dt
    (34) 

Graphic characteristics of the system are shown in Fig. 18. 
The system is controlled on equal terms as previous one. However, the neural model now 
has four inputs as original system is second order one. Thus, Diophantine equation (35) 
should be solved. 
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However, equation (35) is unsolvable. Thus, algorithm of discrete PID controller has to be 
extended into Z – transfer function (36) which is kind a filtered discrete PID controller. 
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 (36) 

Now, Diophantine equation (11) turns to (Eq. 37). 
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Introduction to PID Controllers – Theory, Tuning and Application to Frontier Areas 

 

206 

Polynomial D(z-1) is stable with double pole equal to 0.3679. 
Essential part of next three steps of the control algorithm is to solve Diophantine equation 
(11). In this particular example, (Eq. 31) is to be solved. 

     -1 -2 -1 -1 -1 -1 -2
1 2 1 1 0 1 21 z z 1 z 1 z z z zd d a b q q q         (31) 

Method of undetermined coefficients is one possibility how to solve this equation. The 
initial matrix equation is  

 
1 0 1 1

1 1 2 2

1 2 2

0 0 1
0 0
0 0

b q d a
b q d a

b q a

      
           
          

 (32) 

And the solution is 

 

1 1
0

1

1 2
1

1

2

1

0

d aq
b

a dq
b

q

 







 (33) 

Now it is possible to perform control simulation. For defined reference variable course 
(combination of step functions and linearly descending and ascending functions), the 
control performance is shown in Fig. 16. Comparison of system output to standard (Eq. 29) 
is shown then in Fig. 17. 

0 50 100 150 200 250 300 350 400 450
-5

0

5

k

u

0 50 100 150 200 250 300 350 400 450
-1

-0.5

0

0.5

1

k

r, 
y S

 

 
r
yS

 
Fig. 16. Control performance – first order nonlinear system 

 
Discrete PID Controller Tuning Using Piecewise-Linear Neural Network 

 

207 

As shown in Figs. 16 and 17, control performance is stable and desired dynamics of the 
closed loop is close to defined standard. 
 
 

0 50 100 150 200 250 300 350 400 450
-1

-0.5

0

0.5

1

k

y S, S
ta

nd
ar

d

 

 
yS

Standard

 
Fig. 17. Comparison to standard – first order nonlinear system 

6.2 Second order nonlinear oscillative system 
Second demo system is structurally identical as the previous one (Fig. 11). Even the static 
element is the same. However, the dynamic system is defined now by differential equation 
(34). 

 
2

2
( ) ( )( ) 5 50 * ( )dy t d y ty t u t

dt dt
    (34) 

Graphic characteristics of the system are shown in Fig. 18. 
The system is controlled on equal terms as previous one. However, the neural model now 
has four inputs as original system is second order one. Thus, Diophantine equation (35) 
should be solved. 

      -1 -2 -1 -2 -1 -1 -2 -1 -2
1 2 1 2 1 2 0 1 21 z z 1 z z 1 z z z z zd d a a b b q q q           (35) 

However, equation (35) is unsolvable. Thus, algorithm of discrete PID controller has to be 
extended into Z – transfer function (36) which is kind a filtered discrete PID controller. 

 
1 21

0 1 2
1 1 1

( )
( ) (1 )(1 )

q q z q zQ z
P z z z

 

  
 


 

 (36) 

Now, Diophantine equation (11) turns to (Eq. 37). 

       -1 -2 -1 -2 -1 -1 -1 -2 -1 -2
1 2 1 2 1 2 0 1 21 z z 1 z z 1 z 1 z z z z zd d a a b b q q q            (37) 



 
Introduction to PID Controllers – Theory, Tuning and Application to Frontier Areas 

 

208 

 

0 50 100
0

0.5

1

1.5

t,  s

y S

 
Step response of linear dynamical element (Eq. 34) 

 

-1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0  = 0
 = 0.01

 = 0.1

 = 1

Real axis

Im
ag

. a
xi

s

 
Nyquist plot of linear dynamical element (Eq. 34) 

Fig. 18. Graphic characteristics of the second order nonlinear oscillative system 

After applying of method of undetermined coefficients, solution can be obtained by solving 
of following matrix equation. 

 

1 0 1 1

2 1 1 1 2 1 2

2 1 2 1 2 2
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And the solution is 
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 (39) 

Now it is possible to perform control simulation. For defined reference variable course, the 
control performance is shown in Fig. 19. Comparison of system output to standard (Eq. 29) 
is shown then in Fig. 20. 
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Fig. 19. Control performance – Second order nonlinear oscillative system 
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Fig. 20. Comparison to standard – Second order nonlinear oscillative system 

As shown in Figs. 19 and 20, control performance is stable and satisfying. On the other 
hand, oscillative nature of the controlled system is not fully stifled. 
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As shown in Figs. 19 and 20, control performance is stable and satisfying. On the other 
hand, oscillative nature of the controlled system is not fully stifled. 
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7. Conclusion 
There is introduced the technique above, which performs continuous adaptation of PID 
controller via neural model of controlled system. Neural model is used for controlled system 
continuous linearization and that linearized model is used for discrete PID controller tuning 
using pole assignment. The technique is suitable for highly nonlinear systems control, while 
it brings no advantages to control of the systems which are close to linear ones. 
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1. Introduction 
Feedback control is a control mechanism that uses information from measurements. In a 
feedback control system, the output is sensed. There are two main types of feedback control 
systems: 1) positive feedback 2) negative feedback. The positive feedback is used to increase 
the size of the input but in a negative feedback, the feedback is used to decrease the size of 
the input. The negative systems are usually stable. A PID is widely used in feedback control 
of industrial processes on the market in 1939 and has remained the most widely used 
controller in process control until today. Thus, the PID controller can be understood as a 
controller that takes the present, the past, and the future of the error into consideration. 
After digital implementation was introduced, a certain change of the structure of the control 
system was proposed and has been adopted in many applications. But that change does not 
influence the essential part of the analysis and design of PID controllers. A proportional–
integral–derivative controller (PID controller) is a method of the control loop feedback. This 
method is composing of three controllers [1]: 
1. Proportional controller (PC) 
2. Integral controller (IC) 
3. Derivative controller (DC) 

1.1 Role of a Proportional Controller (PC) 
The role of a proportional depends on the present error, I on the accumulation of past error 
and D on prediction of future error. The weighted sum of these three actions is used to adjust  
Proportional control is a simple and widely used method of control for many kinds of 
systems.  In a proportional controller, steady state error tends to depend inversely upon the 
proportional gain (ie: if the gain is made larger the error goes down). The proportional 
response can be adjusted by multiplying the error by a constant Kp, called the proportional 
gain. The proportional term is given by: 

 . ( )PP K error t  (1) 

A high proportional gain results in a large change in the output for a given change in the 
error. If the proportional gain is very high, the system can become unstable. In contrast, a 
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After digital implementation was introduced, a certain change of the structure of the control 
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1.1 Role of a Proportional Controller (PC) 
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A high proportional gain results in a large change in the output for a given change in the 
error. If the proportional gain is very high, the system can become unstable. In contrast, a 
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small gain results in a small output response to a large input error. If the proportional gain 
is very low, the control action may be too small when responding to system disturbances. 
Consequently, a proportional controller (Kp) will have the effect of reducing the rise time 
and will reduce, but never eliminate, the steady-state error. 
In practice the proportional band (PB) is expressed as a percentage so: 

 100%
P

PB
K

  (2) 

Thus a PB of 10% ⇔ Kp=10 

1.2 Role of an Integral Controller (IC)  
An Integral controller (IC) is proportional to both the magnitude of the error and the 
duration of the error. The integral in in a PID controller is the sum of the instantaneous error 
over time and gives the accumulated offset that should have been corrected previously. 
Consequently, an integral control (Ki) will have the effect of eliminating the steady-state 
error, but it may make the transient response worse. 
The integral term is given by: 

 
0

( )
t

II K error t dt    (3) 

1.3 Role of a Derivative Controller (DC) 
The derivative of the process error is calculated by determining the slope of the error over 
time and multiplying this rate of change by the derivative gain Kd. The derivative term 
slows the rate of change of the controller output.A derivative control (Kd) will have the 
effect of increasing the stability of the system, reducing the overshoot, and improving the 
transient response. The derivative term is given by: 

 ( ).D
derror tD K

dt
  (4) 

Effects of each of controllers Kp, Kd, and Ki on a closed-loop system are summarized in the 
table shown below in tableau 1. 

2. PID controller (PIDC) 
A typical structure of a PID control system is shown in Fig.1. Fig.2 shows a structure of a 
PID control system. The error signal e(t) is used to generate the proportional, integral, and  
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derivative actions, with the resulting signals weighted and summed to form the control 
signal u(t) applied to the plant model. 

 
Fig. 1. A PID control system 

 

 
Fig. 2. A structure of a PID control system 

where u(t) is the input signal to the multivariable processes, the error signal e(t) is defined as 
e(t) =r(t) − y(t), and r(t) is the reference input signal. 
A standard PID controller structure is also known as the ‘‘three-term” controller. This 
principle mode of action of the PID controller can be explained by the parallel connection of 
the P, I and D elements shown in Figure 3.   
 
Block diagram of the PID controller 

 
21 . .( ) (1 )

.
I D

P
I

T T SG s K
T S


   = 1(1 )P D

i
K T s

T s
    (5) 

where KP is the proportional gain, TI is the integral time constant, TD is the derivative time 
constant, KI =KP /TI is the integral gain and KD =KPTD is the derivative gain. The ‘‘three-
term” functionalities are highlighted below. The terms KP , TI and TD definitions are: 
 The proportional term: providing an overall control action proportional to the error 

signal through the all pass gain factor. 
 The integral term: reducing steady state errors through low frequency compensation by 

an integrator. 
 The derivative term: improving transient response through high frequency 

compensation by a differentiator. 
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Fig. 3. Parallel Form of the PID Compensator 

These three variables PK , IT and DT are usually tuned within given ranges. Therefore, they 
are often called the tuning parameters of the controller. By proper choice of these tuning 
parameters a controller can be adapted for a specific plant to obtain a good behaviour of the 
controlled system.  
The time response of the controller output is 

 0
( )

( )( ) ( ( ) )

t

P d
i

e t dt
de tU t K e t T

T dt
  


 (6) 

Using this relationship for a step input of ( )e t , i.e. ( ) ( )e t t , the step response r(t) of the PID 
controller can be easily determined. The result is shown in below. One has to observe that 
the length of the arrow P DK T of the D action is only a measure of the weight of the 
 impulse. 
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Fig. 4. a) Step response of PID ideal formb) Step response of PID real form  

2.1 The transfer function of the PID controller 
The transfer function of the PID controller is            

 ( )( )
( )

U sG s
E s

  (7) 

 ( ) I
P D

KG s K K S
S

    =
2

D P IK S K S K
S

   (8) 

2.2 PID pole zero cancellation 
The PID equation can be written in this form: 

 

2( )
( )

p i
d

d d

K KK s s
K KG s
s

 
  (9) 

When this form is used it is easy to determine the closed loop transfer function. 

 2 2
0 0
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H s
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If 
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Then 
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    (13) 
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This can be very useful to remove unstable poles. 
There are several prescriptive rules used in PID tuning. The most effective methods 
generally involve the development of some form of process model, and then choosing P, I, 
and D based on the dynamic model parameters.  

2.3 Tuning methods 
We present here four tuning methods for a PID controller [2,3]. 
 

Method Advantages Disadvantages
Manual Online method

No math expression
Requires experienced 
personnel 

Ziegler-Nichols Online method
Proven method 

Some trial and error, process 
upset and very aggressive 
tuning

Cohen-Coon Good process models Offline method
Some math  
Good only for first order 
processes

Software tools Online or offline method, 
consistent tuning, Support 
Non-Steady State tuning

Some cost and training 
involved 

 Algorithmic  Online or offline method, 
Consistent tuning, Support 
Non-Steady State tuning, 
Very precise 

Very slow

2.3.1 The Ziegler–Nichols tuning method 
The Ziegler–Nichols tuning method is a heuristic method of tuning a PID controller. It was 
proposed by John G. Ziegler and Nichols in the 1940's. It is performed by setting I (integral) 
and D (derivative) gains to zero. The P (proportional) gain, Kp is then increased (from zero) 
until it reaches the ultimate gain Ku, at which the output of the control loop oscillates with a 
constant amplitude. Ku and the oscillation period Tu are used to set the P, I, and D gains 
depending on the type of controller used [3,4]: 
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We can realise a PID controller by two methods: 
First, an analog PID controller  
Second, a digital PID controller 
1. Circuit diagram below (figure.5) shows an analog PID controller. In this figure, we 

present an analog PID controller with three simple op amp amplifier, integrator and 
differentiator circuits.  

 
 

 
Fig. 5. Electronic circuit implementation of an analog PID controller 
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Finally, we need to add the three PID terms together. Again the summing amplifier OP4 
serves us well. Because the error amp, PID and summing circuits are inverting types, we 
need to add a final op amp inverter OP5 to make the final output positive. 
2. Today, digital controllers are being used in many large and small-scale control systems, 

replacing the analog controllers. It is now a common practice to implement PID 
controllers in its digital version, which means that they operate in discrete time domain 
and deal with analog signals quantized in a limited number of levels. Moreover, in such 
controller we do not need much space and they are not expensive. A digital version of 
the PID controller is shown in figure 6 [5,6]. 

 

 
Fig. 6. Digital PID Controller 

In its digital version, the integral becomes a sum and the deferential a difference. The 
continuous time signal e(t) is sampled in fixed time intervals equals a determined sample 
period, here called Tc (in figure 6 Tc = 1). An A/D (analog to digital) converter interfaces the 
input and a D/A (digital to analog) converter interfaces the output. This sampled and 
digitalized input, called eD[j], exists only in time instants Ct kT  for all 0k  Z . A lower 
bound for the sample period is the computing time of a whole cycle of the digital PID 
(which includes the A/D and D/A conversion). 
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While PID controllers are applicable to many control problems, and often perform 
satisfactorily without any improvements or even tuning, they can perform poorly in some 
applications, and do not in general provide optimal control.  

3. Fractional systems 
Fractional order systems are characterized by fractional-order differential equations. 
Fractional calculus considers any real number for derivatives and integrals. The FOPID 
controller is the expansion of the conventional integer-order PID controller based on 
fractional calculus [7,8]. 

3.1 Fractional-order PID (FOPID) controller 
The PIDs are linear and in particular symmetric and they have difficulties in the presence of 
non-linearities. We can solve this problem by using a fractional-order PID (FOPID) 
controller. A FOPID controller is presented below [7-9]: 

 ( ) I P I D
P D

K K S K K S SG s K K S
S S

  


 
 

     (14) 

Figure.7 describes the possibilities a FOPID for the different controllers. 
 
 
 
 

 
 
 
 

Fig. 7. Generalization of the FOPID controller: from point to plane. 

There are several methods to calculate the fractional order derivative and integrator of a 
fractional order PID controller. For this purpose we present a real order calculus according 
to the Riemann-Liouville definition.  
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3.2 Fractional calculus 
Fractional calculus is a branch of mathematics dealing with real number powers of 
differential or integral operators. It generalizes the common concepts of derivative and 
integral. Among all the different definitions, the definition which has been proposed by 
Riemann and Liouville is the most usual one [9,10]. The definition is as follows: 

 
1( )( ) ( ) ,

( 1)!

x n
n

c x
c

x tD f x f t dt n
n


 

 
  (15) 

The general definition of D is given by (2): 
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


 (16) 

 min ,n K K v    

Where Γ(·) is the well-known Euler's gamma function. 

Function  ( )F s s  (17) 

Function (17) is not only the simplest fractional order transfer function hat may appear but 
is also very important for applications, as shall be seen subsequently. For that reason, we 
analyse its time and frequency responses. 
Time responses of (17) 
The derivatives of the exponential function are given by 

 0 ( , ), 0at
t tD e E a t     (18) 

For negative orders, from definition (16) we have: 
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0 0
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 
      (19) 

By means of the substitution x = t −ξ , in the first place, and of the substitution ax = y, 
in the second place, we obtain 

 

0 ( )1 1
0 0

1 1
0 0

1
( ) ( )

( ) ( , )
( ) ( )

at ta t xat ax
t t

at atat aty y
t

eD e x e dx x e dx

y dye ee y e dy E a
a a a

  

 


   


   

   

  

   

 

 

 
 (20) 

 
PID Control Theory 

 

223 

For positive orders, the same definition gives 

 0 0 ( , ) ( , ), min :
n

at n n at
t t t tn

dD e D D e E n a E a n k N k
dt

                 

If v = 0 , we have: 
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which is the series development of eat. 
Finally, the Laplace transform of Et is: 

  1[ ( , )]
( )tE a

s s a 


  (22) 

The Convolution theorem: 
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For negative orders, applying the convolution theorem (23) and (19) we obtain 
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For positive orders, applying the Laplace transform and we have: 

 1[ ( , )] [ ( , ]
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And when ν = 0 , we find: 

 1[ (0, )] [ ]at
tE a e

s a
 


    (26) 

3.3 Approximation of fractional order 
Approximation of Fractional Order Derivative and Integral There are many different ways 
of finding such approximations but unfortunately it is not possible to say that one of them is 
the best, because even though some are better than others in regard to certain characteristics, 
the relative merits of each approximation depend on the differentiation order, on whether 
one is more interested in an accurate frequency behaviour or in accurate time responses, on 
how large admissible transfer functions may be, and other factors such like these. For that 
reason this section shall present several alternatives and conclude with a comparison of 
them. 
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 min ,n K K v    

Where Γ(·) is the well-known Euler's gamma function. 

Function  ( )F s s  (17) 

Function (17) is not only the simplest fractional order transfer function hat may appear but 
is also very important for applications, as shall be seen subsequently. For that reason, we 
analyse its time and frequency responses. 
Time responses of (17) 
The derivatives of the exponential function are given by 
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By means of the substitution x = t −ξ , in the first place, and of the substitution ax = y, 
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For positive orders, the same definition gives 
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If v = 0 , we have: 
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which is the series development of eat. 
Finally, the Laplace transform of Et is: 
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The Convolution theorem: 
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For negative orders, applying the convolution theorem (23) and (19) we obtain 
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For positive orders, applying the Laplace transform and we have: 
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And when ν = 0 , we find: 
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3.3 Approximation of fractional order 
Approximation of Fractional Order Derivative and Integral There are many different ways 
of finding such approximations but unfortunately it is not possible to say that one of them is 
the best, because even though some are better than others in regard to certain characteristics, 
the relative merits of each approximation depend on the differentiation order, on whether 
one is more interested in an accurate frequency behaviour or in accurate time responses, on 
how large admissible transfer functions may be, and other factors such like these. For that 
reason this section shall present several alternatives and conclude with a comparison of 
them. 
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Approximations are available both in the s-domain and in the z-domain. The former shall 
henceforth be called continuous approximations or approximations in the frequency 
domain; the latter, discrete approximations, or approximations in the time domain. 
There are 32 approximation methods for fractional order derivative and integral, we present 
here Crone approximation method [10, 11].  

3.3.1 Crone approximation method 
The Crone methodology provides a continuous approximation, based on a recursive 
distribution of zeros and poles. Such a distribution, alternating zeros and poles at well-
chosen intervals, allows building a transfer function with a gain nearly linear on the 
logarithm of the frequency and a phase nearly constant being possible for the values of the 
slope of the gain and of the phase for any value of ν [12-14]. 
The functions we are dealing with in this section provide integer-order frequency-domain 
approximation of transfer functions involving fractional powers of s. 
For the frequency-domain transfer function C(s) which is given by: 

 ( ) vC s Ks    (27) 

One of the well-known continuous approximation approaches is called Crone. Crone is a 
French acronym which means 'robust fractional order control'. This approximation 
implements a recursive distribution of N zeros and N poles leading to a transfer function 
as (28). 
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Where K' is an adjusted gain so that both (26) and (27) have unit gain at 1 rad/s. Zeros and 
poles have to be found over  a frequency domain [ ,l h  ] where  the approximation is valid, 
they are given for a positive v, by (29), (30) and (31). 
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Where α and η can be calculated thanks to (32) and (33). 
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For negative values of  , the role of the zeros and the poles is swapped. The number of 
poles and zeros is selected at first and the desired performance of this approximation 
depends on the order N. Simple approximation can be provided with lower order N, but it 
can cause ripples in both gain and phase characteristics. When | |>1, the approximation is 
not satisfactory. The fractional order   usually is separated as (34) and only the first term 

s  needs to be approximated. 

 , , , [0,1]v ns s s v n n         (34) 

3.4 Bode and Nichols plots of sν for real orders 
The frequency response of s  is: 
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Now there are several complex numbers z with different arguments such that z = jν; by 
choosing the one with a lower argument in interval [0; 2π[ , we will obtain: 

  arg ( ) /2F j    (36) 

The gain in decibel shall be 

 ( ) 20log 20 log ( )F j dB      (37) 

Thus the Bode and Nichols plots of F(s) = sν are those shown in Figure 8 and Figure 9:  
 
 
 
 

 
 
 
Fig. 8. Bode diagrams  
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Fig. 9. Nichols diagrams 

4. Conclusions 
Manny industrial processes are nonlinear and thus complicate to describe mathematically. 
However, it is known that a good many nonlinear processes can satisfactory controlled 
using PID controllers providing that controller parameters are tuned well. PID controller 
and its different types such as P, PI and PD controllers are today basic building blocks in 
control of various processes. In spite their simplicity; they can be used to solve even a very 
complex control problems, especially when combined with different functional blocks, 
filters (compensators or correction blocks), selectors etc. One of the ways to improve the 
traditional PID controllers is to use fractional order controllers with non integer derivation 
and integration parts. However, the difficulties of designing Fractional Order PID (FOPID) 
is relatively higher because these controllers include derivative order and integer order in 
comparison with traditional PID controllers. As for a linear system, if the dynamic 
characteristics are basically the same using either integer-order PID controller or FOPID 
controller, the result of using FOPID controller may provide a better robustness. We get the 
optimal control with a FOPID than a conventional PID controller.  

5. Annex 
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1. Introduction  
Portfolio management is the art and science of modifying the asset allocation of a financial 
portfolio in response to and/or in anticipation of market conditions and dynamics of 
financial markets. The modification of the asset allocation is obtained by rebalancing and 
varying the relative weights of the assets comprising the portfolio on a periodic basis. The 
asset manager considers two distinct portfolios: the financial portfolio subject to his 
management technique (referred to here as the experimental portfolio, or Portfolio “A”), 
and a benchmark (or comparison) portfolio called Portfolio “B”. The asset manager 
composes his experimental portfolio, also referred to as the benchmark-based portfolio, 
following, generally, two different types of strategies: active and passive (indexed) strategy. 
In this work, we analyze a fundamental aspect of portfolio management: the active asset 
allocation. The objective of this writing is to illustrate a new asset allocation technique to 
compose an experimental portfolio, which uses the Proportional, Integral, Derivative (PID) 
controller aiming to overcome a benchmarked portfolio. Therefore, the two portfolios taken 
into consideration are the experimental portfolio subject to the PID controlling methodology 
and a buy-and-hold diversified portfolio as the benchmark portfolio. The technique consists 
in managing portfolio asset-allocation revisions through PID control, a tool that is highly 
utilized and implemented in the engineering, industrial processing units and in production 
plants. The goal is to achieve a good portfolio performance trying to control volatility; in 
other words, the goal is to obtain good performance of risk adjusted returns. Thus, in 
finance, financial market assets forming a portfolio or a market benchmark represent the 
process plant controlled by the PID controller. 
A brief literature review covering the comparison between strategic and tactical asset 
allocation introduces the topic, followed by some examples of tactical asset allocation 
techniques. Subsequently, this article illustrates how the PID controller functions. Then, it 
exemplifies the new asset allocation technique, functioning, and methodology. This work 
shows how a portfolio managed by this new technique attains fine results of risk adjusted 
returns compared with a benchmark.  
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2. Strategic and tactical asset allocation 
Asset allocation can be defined as the action of allocating the various components of a financial 
portfolio in different asset classes according to the investor risk/return profile level. The 
portfolio construction is an articulated process based on the identification of the optimal asset 
mix, given a desired time horizon (holding period) and given the investor’s risk aversion level.  
The activity of asset allocation is a 3-phase procedure: analysis of investors’ needs, 
consideration of investor’s choices and inclinations, and investor’s portfolio performance 
monitoring. At first, it is necessary to analyze investor’s needs in order to understand 
his/her risk aversion level. The investment subsequent choices depend on the latter 
analysis, which is not so straightforward and easy to perform. The second phase, illustrated 
in more detail in the following sections, consists in the actual choice of the asset classes in 
which to invest, the determination of the relative weights assigned to each asset class and 
the choice of the securities to be bought and included in the portfolio management process. 
The third phase consists in the monitoring of the portfolio performance through the 
utilization of specific indicators enabling the observation of the return and the risk of the 
managing activity. In this phase, the risk-adjusted return indices (Sharpe Ratio, Sortino 
Ratio, etc) become important; they specify the return of the portfolio adjusted by the implicit 
and inherent risk underlying that specific asset management strategy.   
As specified herein, the central activity of asset allocation is strictly bound to the investment 
choices. The portfolio manager first defines the macro asset classes to be considered. The 
macro asset classes are a set of financial activities or real activities with adequate future 
potential growth. Upon the definition of such macro asset classes, relative weights shall be 
determined strategically in order to obtain a diversified portfolio consistent and in line with 
the return/risk profile of the investor. This asset allocation can be achieved by using 
quantitative strategies, such as the implementation and utilization of Markowitz’s efficient 
frontier technique (Markowitz, 1952), or qualitative approaches and methodologies based on 
the individual managers’ expectations, experience, and estimates on future market 
conditions. This primary activity of asset allocation is called strategic asset allocation.  
The definition of strategic asset allocation is a component of asset allocation, implemented 
by the identification of the optimal long-term mix, in compliance with the investor 
risk/return profile. 
A second component of asset allocation is defined as the tactical asset allocation. This is an 
activity that aims to take, periodically, the most interesting investment opportunities by 
temporarily and partially deviating from the main strategic portfolio structure. 
If in the long term, the adherence to investors’ risk profile levels must be maintained; in the 
short term, the tactical asset allocation manager may deviate from the strategic asset allocation 
technique aiming to take further advantage from certain market conditions. For example, the 
tactical asset allocation manager may slightly vary the weights of the various asset classes or 
the individual securities contained in them, targeting to further increase portfolio returns.  
Relative to strategic asset allocation, a fundamental choice to make is the adoption of a 
particular style of management relative to a benchmark. In defining the strategic asset 
allocation, the manager must decide which style of management to use relative to a 
benchmark. In fact, managers differentiate between active and passive strategies by analyzing 
the portfolio management strategy compared to a benchmark. Passive strategies aim to obtain 
benchmark returns, structuring a portfolio analogous to the benchmark composition. The asset 
manager chooses the same asset classes and the same relative or absolute weights as the 
benchmark. In this case, the risk/return profile level is consistent with the benchmark 
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risk/return level. On the contrary, an active strategy aims to reach an active return compared 
to the benchmark. The active manager can select different asset classes relative to the 
benchmark, or different weights. In this case, it is the manager’s responsibility to construct the 
portfolio based on his expectations. In literature, a vivid debate about the superiority of 
passive vs. active strategies and vice versa, comes forwards. The issue starts with the Efficient 
Market Hypothesis (Fama, 1965, 1970). This theory assumes that under strong efficient 
information conditions, it is not possible to have mispriced securities; all prices in the market 
are fair and balanced; therefore, it is impossible to outperform the market by using active 
strategies (Samuelson, 1974). Another important factor to consider is the transaction costs 
(Sharpe, 1991). In fact, even if active and passive strategies are able to achieve the same returns 
(market returns), the first strategy has unavoidably a diminished total performance, since 
transaction costs and research costs worsen the outcome. Normally, many active managers 
manage portfolios formed by index asset classes and liquidity; hence, outperformance 
compared to the benchmark results. When the market makes a severe downtrend, active 
portfolios achieve a better performance than the market thanks to the liquidity portion of the 
portfolios. Not all authors concur in the use and benefits of active strategies. Some authors 
(Gruber, 1996; Carhart, 1997) state that the active strategies’ outperformance has no persistence 
and exhibits random behavior. Other authors confirm that active strategies produce an 
effective investment methodology (Gold, 2004).  
In order to implement an active strategy, asset managers can apply different tactical asset 
allocation methods. Each of these active strategies aims to take opportunities when markets 
are non-aligned (Anson, 2004). Tactical asset allocation can be defined as “active strategies 
which seek to enhance performance by opportunistically shifting the asset mix of a portfolio in 
response to changing patterns of reward available in capital market” (Arnott & Fabozzi, 1988). 
Tactical asset allocation establishes the variations in the asset weights in a portfolio. The 
rebalancing is performed at different time intervals: on a monthly basis, quarterly or annually. 
Tactical asset allocation methodologies can be divided into two macro categories: dynamic 
asset allocation and pure tactical asset allocation (Sampagnaro, 2006). Dynamic asset allocation 
consists in a series of modifications following a set of precise rules (algorithms).  The manager 
implements such rules such that the portfolio weight rebalancing allows the manager to 
achieve a predetermined target: to regain alignment to the strategic asset allocation weights, or 
to apply portfolio protection strategies (portfolio insurance).  
Pure strategies of tactical asset allocation, on the other hand, include all those methodologies 
in which the manager aims to maximize the absolute return of the portfolio or the relative 
return of the portfolio compared to a benchmark. The manager could change the portfolio 
composition by removing securities and adding others, selecting those securities that 
present the best expected future returns. The manager could also modify the weights of the 
current securities producing a distance from the original strategic allocation weight 
determination.   In literature, an extensive variation of methodologies to take advantage of 
financial markets is available. Some authors (MacBeth & Emanuel, 1993) suggest to use 
dividend yield price/earning ratio and price/book ratio to estimate market overvaluation or 
undervaluation. Others use the spreads between the earning/price ratio of the S&P 500 
index and interest rates (Shen, 2003), or present the use of Beta drivers to decide the 
exposure to the financial market and Alpha drivers to underweight or overweight relative to 
the benchmark (Anson, 2004). As a final point, a research paper (Gandolfi et al., 2007) 
pioneers an innovative tactical asset allocation technique. The novelty embedded in this 
model consists in the application of the well-known PID feedback controlling mechanism, 
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2. Strategic and tactical asset allocation 
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determined strategically in order to obtain a diversified portfolio consistent and in line with 
the return/risk profile of the investor. This asset allocation can be achieved by using 
quantitative strategies, such as the implementation and utilization of Markowitz’s efficient 
frontier technique (Markowitz, 1952), or qualitative approaches and methodologies based on 
the individual managers’ expectations, experience, and estimates on future market 
conditions. This primary activity of asset allocation is called strategic asset allocation.  
The definition of strategic asset allocation is a component of asset allocation, implemented 
by the identification of the optimal long-term mix, in compliance with the investor 
risk/return profile. 
A second component of asset allocation is defined as the tactical asset allocation. This is an 
activity that aims to take, periodically, the most interesting investment opportunities by 
temporarily and partially deviating from the main strategic portfolio structure. 
If in the long term, the adherence to investors’ risk profile levels must be maintained; in the 
short term, the tactical asset allocation manager may deviate from the strategic asset allocation 
technique aiming to take further advantage from certain market conditions. For example, the 
tactical asset allocation manager may slightly vary the weights of the various asset classes or 
the individual securities contained in them, targeting to further increase portfolio returns.  
Relative to strategic asset allocation, a fundamental choice to make is the adoption of a 
particular style of management relative to a benchmark. In defining the strategic asset 
allocation, the manager must decide which style of management to use relative to a 
benchmark. In fact, managers differentiate between active and passive strategies by analyzing 
the portfolio management strategy compared to a benchmark. Passive strategies aim to obtain 
benchmark returns, structuring a portfolio analogous to the benchmark composition. The asset 
manager chooses the same asset classes and the same relative or absolute weights as the 
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risk/return level. On the contrary, an active strategy aims to reach an active return compared 
to the benchmark. The active manager can select different asset classes relative to the 
benchmark, or different weights. In this case, it is the manager’s responsibility to construct the 
portfolio based on his expectations. In literature, a vivid debate about the superiority of 
passive vs. active strategies and vice versa, comes forwards. The issue starts with the Efficient 
Market Hypothesis (Fama, 1965, 1970). This theory assumes that under strong efficient 
information conditions, it is not possible to have mispriced securities; all prices in the market 
are fair and balanced; therefore, it is impossible to outperform the market by using active 
strategies (Samuelson, 1974). Another important factor to consider is the transaction costs 
(Sharpe, 1991). In fact, even if active and passive strategies are able to achieve the same returns 
(market returns), the first strategy has unavoidably a diminished total performance, since 
transaction costs and research costs worsen the outcome. Normally, many active managers 
manage portfolios formed by index asset classes and liquidity; hence, outperformance 
compared to the benchmark results. When the market makes a severe downtrend, active 
portfolios achieve a better performance than the market thanks to the liquidity portion of the 
portfolios. Not all authors concur in the use and benefits of active strategies. Some authors 
(Gruber, 1996; Carhart, 1997) state that the active strategies’ outperformance has no persistence 
and exhibits random behavior. Other authors confirm that active strategies produce an 
effective investment methodology (Gold, 2004).  
In order to implement an active strategy, asset managers can apply different tactical asset 
allocation methods. Each of these active strategies aims to take opportunities when markets 
are non-aligned (Anson, 2004). Tactical asset allocation can be defined as “active strategies 
which seek to enhance performance by opportunistically shifting the asset mix of a portfolio in 
response to changing patterns of reward available in capital market” (Arnott & Fabozzi, 1988). 
Tactical asset allocation establishes the variations in the asset weights in a portfolio. The 
rebalancing is performed at different time intervals: on a monthly basis, quarterly or annually. 
Tactical asset allocation methodologies can be divided into two macro categories: dynamic 
asset allocation and pure tactical asset allocation (Sampagnaro, 2006). Dynamic asset allocation 
consists in a series of modifications following a set of precise rules (algorithms).  The manager 
implements such rules such that the portfolio weight rebalancing allows the manager to 
achieve a predetermined target: to regain alignment to the strategic asset allocation weights, or 
to apply portfolio protection strategies (portfolio insurance).  
Pure strategies of tactical asset allocation, on the other hand, include all those methodologies 
in which the manager aims to maximize the absolute return of the portfolio or the relative 
return of the portfolio compared to a benchmark. The manager could change the portfolio 
composition by removing securities and adding others, selecting those securities that 
present the best expected future returns. The manager could also modify the weights of the 
current securities producing a distance from the original strategic allocation weight 
determination.   In literature, an extensive variation of methodologies to take advantage of 
financial markets is available. Some authors (MacBeth & Emanuel, 1993) suggest to use 
dividend yield price/earning ratio and price/book ratio to estimate market overvaluation or 
undervaluation. Others use the spreads between the earning/price ratio of the S&P 500 
index and interest rates (Shen, 2003), or present the use of Beta drivers to decide the 
exposure to the financial market and Alpha drivers to underweight or overweight relative to 
the benchmark (Anson, 2004). As a final point, a research paper (Gandolfi et al., 2007) 
pioneers an innovative tactical asset allocation technique. The novelty embedded in this 
model consists in the application of the well-known PID feedback controlling mechanism, 
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used in industrial plant production and engineering, to tactical financial portfolio asset 
allocation. The goal of their model was to attain long-term performance steadiness over time 
by controlling the risk adjusted return variable of portfolios. The main attribute to perceive 
was the achieved constancy and consistency of the Sharpe Ratio of the experimental 
portfolio (i.e. the portfolio managed by the PID methodology) in comparison to the 
benchmark. In the present work, the authors build up a new application based on this novel 
strategy. The target here is to seek a portfolio (Portfolio “A”) capable of enhanced long-term 
risk adjusted performance and risk stability than the Buy-and-Hold portfolio (Portfolio “B”).  

3. The PID controller acting on the experimental portfolio  
The most important attributes of the PID controller are illustrated in this section. It is vital to 
understand the functioning of this engineering feedback system since it underlies and stands 
at the basis of the new asset allocation technique presented herein. The PID (Proportional-
Integral-Derivative) controller is broadly used and implemented in several industrial 
production plants; “it is been successfully used for over 50 years and it is used by more than 
95% of the plants processes. It is a robust and easily understood algorithm, which can provide 
excellent control performance in spite of the diverse dynamic characteristics of the process 
plant” (Gandolfi et al., 2007). In industrial environments such as chemical plants, power 
plants, and engineering industries, numerous processes need to be accurately controlled to 
conform to the required specifications of the resulting products. PID control is straightforward, 
easily implementable method, still currently preferred by engineers and scientists to more 
complex systems (Skogestad, 2010). In finance, financial market assets comprising a portfolio 
or a market benchmark represent the process plant, controlled by the PID controller.   
The PID controller is a feedback system. It has an input and returns an output. An iterative 
process forms it. The inputs of the system are the set-point, or desired value, and the 
controlled variable that is subject to the effect of the PID controller. The PID controller, 
working on the input variable, returns as output the same variable operated on by the PID 
operators. The output variable, in turns, is fed back as an input during the following 
iteration. The simplest and most basic PID control is formed by the linear combination of 
three components: the Proportional (P), Integral (I), and Derivative (D) components. During 
each iteration, the current output is compared to the set-point yielding an error. The goal of 
the PID control is to diminish this error to the minimum (Gandolfi et al., 2007). The 
continuous time expression of the PID controller is given by: 
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In this present work, the following recurrence relation, obtained by discrete time 
formulation and simple-lag implementation of the integral part (Gandolfi et al., 2007) yields:  
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A block diagram of the PID controller follow: 
 

 
Fig. 1. PID control block diagram - This figure presents dynamics and processing of the error, 
Set-Point and controlled variable while subjected to the PID control action.  
Set-point = Desired value. Error = (Output – Set-Point). 

4. Mechanisms of action of the new asset allocation technique 
This section presents an original method and system for allocating numerous assets in 
portfolios, via tactical asset allocation in order to achieve better return and long-term target 
stability (volatility control) over a desired time horizon. In particular, the present work 
illustrates a method and system for asset allocation of the 20 securities having each one, its 
own level of risk and return. The methodology consists in stabilizing the portfolio return . 
hence the decreasing of portfolio volatility based on the PID feedback control. By applying 
our strategy to a financial portfolio, financial market assets represent the process plant, 
controlled by PID controlling action. The assets mix of the portfolio determines the total 
portfolio return. The action of rebalancing the portfolio alters its return. In various aspects, 
this work offers methods and systems as an innovative approach to active strategy portfolio 
management. It is worth noting that the rebalancing of the experimental portfolio (Portfolio 
“A”) is not dictated by a forecast analysis of the various prices of the assets belonging to the 
portfolio. There is no use of a vector of expected returns and there is no need of determining 
a variance-covariance matrix. The rebalancing is rather driven by an asset selection 
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used in industrial plant production and engineering, to tactical financial portfolio asset 
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by controlling the risk adjusted return variable of portfolios. The main attribute to perceive 
was the achieved constancy and consistency of the Sharpe Ratio of the experimental 
portfolio (i.e. the portfolio managed by the PID methodology) in comparison to the 
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risk adjusted performance and risk stability than the Buy-and-Hold portfolio (Portfolio “B”).  

3. The PID controller acting on the experimental portfolio  
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understand the functioning of this engineering feedback system since it underlies and stands 
at the basis of the new asset allocation technique presented herein. The PID (Proportional-
Integral-Derivative) controller is broadly used and implemented in several industrial 
production plants; “it is been successfully used for over 50 years and it is used by more than 
95% of the plants processes. It is a robust and easily understood algorithm, which can provide 
excellent control performance in spite of the diverse dynamic characteristics of the process 
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plants, and engineering industries, numerous processes need to be accurately controlled to 
conform to the required specifications of the resulting products. PID control is straightforward, 
easily implementable method, still currently preferred by engineers and scientists to more 
complex systems (Skogestad, 2010). In finance, financial market assets comprising a portfolio 
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working on the input variable, returns as output the same variable operated on by the PID 
operators. The output variable, in turns, is fed back as an input during the following 
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three components: the Proportional (P), Integral (I), and Derivative (D) components. During 
each iteration, the current output is compared to the set-point yielding an error. The goal of 
the PID control is to diminish this error to the minimum (Gandolfi et al., 2007). The 
continuous time expression of the PID controller is given by: 

 

( )( ) ( ) ( )

where:
( ) output

Proportional Constant
Integral Constant
Derivative Constant

( ) error

p i d

p

i

d

de tu t e t e dk k k dt

u t
k
k
k
e t

     
 








 (1) 

 
An Innovative Systematic Approach to Financial Portfolio Management via PID Control 235 

In this present work, the following recurrence relation, obtained by discrete time 
formulation and simple-lag implementation of the integral part (Gandolfi et al., 2007) yields:  
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Fig. 1. PID control block diagram - This figure presents dynamics and processing of the error, 
Set-Point and controlled variable while subjected to the PID control action.  
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4. Mechanisms of action of the new asset allocation technique 
This section presents an original method and system for allocating numerous assets in 
portfolios, via tactical asset allocation in order to achieve better return and long-term target 
stability (volatility control) over a desired time horizon. In particular, the present work 
illustrates a method and system for asset allocation of the 20 securities having each one, its 
own level of risk and return. The methodology consists in stabilizing the portfolio return . 
hence the decreasing of portfolio volatility based on the PID feedback control. By applying 
our strategy to a financial portfolio, financial market assets represent the process plant, 
controlled by PID controlling action. The assets mix of the portfolio determines the total 
portfolio return. The action of rebalancing the portfolio alters its return. In various aspects, 
this work offers methods and systems as an innovative approach to active strategy portfolio 
management. It is worth noting that the rebalancing of the experimental portfolio (Portfolio 
“A”) is not dictated by a forecast analysis of the various prices of the assets belonging to the 
portfolio. There is no use of a vector of expected returns and there is no need of determining 
a variance-covariance matrix. The rebalancing is rather driven by an asset selection 
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technique consisting in the stabilization of return by means of the PID feedback control 
modeling procedure. The new model simply tends to follow and not predict the financial 
market oscillations and market variability, adjusting to such variations and oscillations. It 
takes into consideration past and current portfolio dynamics. It tunes to financial market 
fluctuations by performing smoothing and anticipatory actions in the attempt to hold as 
close as possible to the target, hence minimizing the error generated by the difference 
between the set-value and current portfolio return.  The controlled process plant, namely the 
return variable, does not need to be modeled or defined by a mathematical closed form 
equation; assumptions, linearization, and simplification procedures on the dynamics of the 
plant are not required. The PID control modifies the portfolio asset weights, according to the 
PID algorithm. The methodology starts by presenting two initially identical portfolios: the 
benchmark, namely Portfolio “B”, and the experimental portfolio, or Portfolio “A”. The 
procedure uses a 12-year monthly frequency time-series per each of the securities of the 
Portfolio “B”, covering the period February 1999 - February 2011. Portfolio “A” assets are 
rebalanced at the end of each month, according to the PID procedure. At the end of the 
observation period, namely in February 2011, the two portfolios, the Benchmarked Portfolio 
“B” and the experimental portfolio, Portfolio “A”, are observed and compared, targeting to 
verify the efficiency of the new model compared to benchmarking. In this work, the 
comparison is carried out without taking into consideration tax and transaction costs. 
Portfolio “B” , namely the benchmark is composed by 20 assets chosen in such a way to 
form a well diversified portfolio. In particular, the following assets have been considered: a 
monetary index, 4 fixed-income (or bonds) indices, 7 stocks (equity) indices, 6 commodities 
indices, gold and a risk-free asset class denominated “cash”. The inclusion and use of a risk-
free asset in the experimental portfolio is been indicated by the consideration that the new 
model permits partial disinvestment of the risky portfolio by partially reallocating risky 
assets in risk-free assets (Qian, 2003). The following table illustrates how the strategic asset 
allocation of the well-diversified portfolio has been defined. The right-end-side column 
indicates the respective weights of each asset class: 
 

Asset class Weight 
Monetary 6% 

Bonds 40% 
Equity 35% 

Commodities 12% 
Gold 5% 
Cash 2% 

Table 1. Strategic composition for macro-asset class of Portfolio “B”. The table illustrates 
Portfolio “B” composition, namely the benchmark composition. It specifies the various 
macro-asset classes and their relative assigned weights. 

After having presented which the strategic macro-asset classes are, for the benchmark 
portfolio, the following table is presented. It exhibits for each asset class, which are the selected 
indices in order to form the well diversified portfolio with its respective assigned weights. 
Firstly, Portfolio “A” has the identical composition as that of Portfolio “B”. Next, Portfolio 
“A” asset weights are varied following the PID signals. The rebalancing occurs on a monthly 
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basis. The constraints for rebalancing are the following: every asset can take on a minimum 
or a maximum weight within the portfolio.  The minimal weight has been defined to be 
equal to 1% and the maximal weight has been defined to be equal to 20% under the effect of 
the PID control action.  
The set-point value of this procedure, in order for the new model to achieve its target, is set 
to be equal to 0.5% monthly target portfolio return. The mechanism of action of this model is 
similar to a dynamic Exchanged Traded Fund (ETF), replicating an index in terms of 
underlying assets. On the opposite, it is different in terms of relative weights and, therefore, 
the model is a dynamic strategy.  
The algorithm and implementation of the new model is the outlined in the following steps, 
using the expression: 
 
Asset class Index Weight 

Monetary Deutsche Borse EUROGOV Germany Money Market 
(TR) 6% 

Bonds 

iBoxx Euro Index World Wide Performance Overall 10% 
Market iBoxx € Financials Total Return Index 10% 
Market iBoxx € Non Financials Total Return Index 10% 
Market iBoxx € Euro Sovereign Overall Total Return 
Index 10% 

Equity 

MSCI Daily TR Gross Europe Local Currency  5% 
STOXX 600 Total Return Index EUR 5% 
STOXX Style Index TMI Growth Return Index EUR 5% 
STOXX Europe Total Market Value (Net Return) 
EUR 5% 

MSCI Daily TR Gross Total Return World USD 5% 
MSCI Emerging Markets Daily Gross Total Return 
USD 5% 

MSCI Daily TR Gross North America Total Return 
USD 5% 

Commodities 

S&P GSCI Tot Return Indx 2% 
S&P GSCI Energy Tot Ret 2% 
S&P GSCI Industrial Metals Index Total Return 2% 
S&P GSCI Agricultural Index Total Return CME 2% 
S&P GSCI Livestock Index Total Return. 2% 
S&P GSCI Crude Oil  Total Return CME 2% 

Gold S&P GSCI Gold Index Total Return 5% 
Cash Out of the market 2% 

Table 2. Strategic Portfolio “B” composition: index specification. The table presents, for any 
macro-asset class, the specification of which particular selected indices form each macro-
asset class. Furthermore, the relative weights are indicated.  
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technique consisting in the stabilization of return by means of the PID feedback control 
modeling procedure. The new model simply tends to follow and not predict the financial 
market oscillations and market variability, adjusting to such variations and oscillations. It 
takes into consideration past and current portfolio dynamics. It tunes to financial market 
fluctuations by performing smoothing and anticipatory actions in the attempt to hold as 
close as possible to the target, hence minimizing the error generated by the difference 
between the set-value and current portfolio return.  The controlled process plant, namely the 
return variable, does not need to be modeled or defined by a mathematical closed form 
equation; assumptions, linearization, and simplification procedures on the dynamics of the 
plant are not required. The PID control modifies the portfolio asset weights, according to the 
PID algorithm. The methodology starts by presenting two initially identical portfolios: the 
benchmark, namely Portfolio “B”, and the experimental portfolio, or Portfolio “A”. The 
procedure uses a 12-year monthly frequency time-series per each of the securities of the 
Portfolio “B”, covering the period February 1999 - February 2011. Portfolio “A” assets are 
rebalanced at the end of each month, according to the PID procedure. At the end of the 
observation period, namely in February 2011, the two portfolios, the Benchmarked Portfolio 
“B” and the experimental portfolio, Portfolio “A”, are observed and compared, targeting to 
verify the efficiency of the new model compared to benchmarking. In this work, the 
comparison is carried out without taking into consideration tax and transaction costs. 
Portfolio “B” , namely the benchmark is composed by 20 assets chosen in such a way to 
form a well diversified portfolio. In particular, the following assets have been considered: a 
monetary index, 4 fixed-income (or bonds) indices, 7 stocks (equity) indices, 6 commodities 
indices, gold and a risk-free asset class denominated “cash”. The inclusion and use of a risk-
free asset in the experimental portfolio is been indicated by the consideration that the new 
model permits partial disinvestment of the risky portfolio by partially reallocating risky 
assets in risk-free assets (Qian, 2003). The following table illustrates how the strategic asset 
allocation of the well-diversified portfolio has been defined. The right-end-side column 
indicates the respective weights of each asset class: 
 

Asset class Weight 
Monetary 6% 

Bonds 40% 
Equity 35% 

Commodities 12% 
Gold 5% 
Cash 2% 

Table 1. Strategic composition for macro-asset class of Portfolio “B”. The table illustrates 
Portfolio “B” composition, namely the benchmark composition. It specifies the various 
macro-asset classes and their relative assigned weights. 

After having presented which the strategic macro-asset classes are, for the benchmark 
portfolio, the following table is presented. It exhibits for each asset class, which are the selected 
indices in order to form the well diversified portfolio with its respective assigned weights. 
Firstly, Portfolio “A” has the identical composition as that of Portfolio “B”. Next, Portfolio 
“A” asset weights are varied following the PID signals. The rebalancing occurs on a monthly 
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basis. The constraints for rebalancing are the following: every asset can take on a minimum 
or a maximum weight within the portfolio.  The minimal weight has been defined to be 
equal to 1% and the maximal weight has been defined to be equal to 20% under the effect of 
the PID control action.  
The set-point value of this procedure, in order for the new model to achieve its target, is set 
to be equal to 0.5% monthly target portfolio return. The mechanism of action of this model is 
similar to a dynamic Exchanged Traded Fund (ETF), replicating an index in terms of 
underlying assets. On the opposite, it is different in terms of relative weights and, therefore, 
the model is a dynamic strategy.  
The algorithm and implementation of the new model is the outlined in the following steps, 
using the expression: 
 
Asset class Index Weight 

Monetary Deutsche Borse EUROGOV Germany Money Market 
(TR) 6% 

Bonds 

iBoxx Euro Index World Wide Performance Overall 10% 
Market iBoxx € Financials Total Return Index 10% 
Market iBoxx € Non Financials Total Return Index 10% 
Market iBoxx € Euro Sovereign Overall Total Return 
Index 10% 

Equity 

MSCI Daily TR Gross Europe Local Currency  5% 
STOXX 600 Total Return Index EUR 5% 
STOXX Style Index TMI Growth Return Index EUR 5% 
STOXX Europe Total Market Value (Net Return) 
EUR 5% 

MSCI Daily TR Gross Total Return World USD 5% 
MSCI Emerging Markets Daily Gross Total Return 
USD 5% 

MSCI Daily TR Gross North America Total Return 
USD 5% 

Commodities 

S&P GSCI Tot Return Indx 2% 
S&P GSCI Energy Tot Ret 2% 
S&P GSCI Industrial Metals Index Total Return 2% 
S&P GSCI Agricultural Index Total Return CME 2% 
S&P GSCI Livestock Index Total Return. 2% 
S&P GSCI Crude Oil  Total Return CME 2% 

Gold S&P GSCI Gold Index Total Return 5% 
Cash Out of the market 2% 

Table 2. Strategic Portfolio “B” composition: index specification. The table presents, for any 
macro-asset class, the specification of which particular selected indices form each macro-
asset class. Furthermore, the relative weights are indicated.  
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 Define set-point = Desired Return = 0,005. 
 Calculate portfolio return (controlled variable), return0, for the initial portfolio, given 

current market conditions. 
 At each iteration n, the PID controller designates a controlled value for the portfolio 

return, called returnn given by equation [3]. The making of such rebalancing is 
necessary to minimize the error between current return (determined by current market 
conditions) and returnn and set-point. Since the objective is to reduce the error, en 
defined by the difference between current return, returnn, and the set-point or desired 
return defined as 0,005, each iteration contributes in reducing en.  The error decrease is 
generally counteracted by the dynamics of the markets. Given ideal market conditions, 
en approaches zero after the transient system response has died out. 

 New market data acquisition and corresponding portfolio return, returnn, is calculated 
at end of each period (monthly). 

 The previous items are iteratively re-executed until the end of the observation period. 
 The PID parameters, chosen to be constant for all market conditions, are set to be: 
 Kp = 0,5 
 Ki = 0,6 
 Kd = 0,5 
 In this work, the parameters values were set according to an empirical criterion: under 

risk-free market conditions (portfolio with zero exposure to financial markets), the 
selection of a transient time domain response with a slight oscillatory response, 
exhibiting reasonable overshoot, and approaching set-point value within a small 
number of iterations was adopted.   

 The objective of each iterations is to make returns as stable and consistent as possible 
given the contributions and interactions of the controller and the market dynamics 
influence. The change in asset mix is dictated by the controller indications and the 
market behavior of the underlying securities. 

The main results of this methodology are illustrated in the following paragraph.  

5. Portfolio “A” vs. Portfolio “B” 
This section recapitulates the main results of the new model comparing the returns of 
Portfolio “A” to the returns of Portfolio “B”. The comparison is performed in terms of return 
and volatility for the observation period. 
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Table 3 illustrates information about return and volatility. Portfolio “A” has an annualized 
return of 7,25% compared to 5,14% of Portfolio “B”. The cumulative return in the 
observation period (1999-2011) is 86,96% for Portfolio “A” and 61,66% for the benchmark. In 
terms of portfolio risk, the experimental portfolio realizes an annualized volatility of 7,93%, 
indicatively in line and consistent with 7,01% recorded by Portfolio “B”. Portfolio “A”, with 
only a slightly higher volatility, is able to obtain more satisfying results both in annualized 
and in cumulative data analysis.  
 

 Portfolio "A" Portfolio "B" 

Annualized Return 7,25% 5,14% 

Cumulative Return 86,96% 61,66% 

Annualized Volatility 7,93% 7,01% 

Table 3. Return and Volatility data. This table presents the comparison of annualized return, 
cumulative return and annualized volatility of Portfolio “A” and Portfolio “B”. Period of 
observation: February 1999-February 2011. 

After having analyzed the data in the observation period, it is considered interesting to 
analyze the data on a monthly basis.  
Table 4 demonstrates monthly data; scrupulously, it is evident that the mean monthly return 
of the Portfolio “A”(0,60%) is superior to the Portfolio “B” mean monthly return (0,43%). 
The set-point or target value for the model was 0,5% monthly; thus, the experimental 
portfolio reaches the ideal target. The mean monthly volatility for Portfolio “A” is 2,29%, 
whereas the benchmark (Portfolio “B”) exhibits a volatility of 2,02%. 
 

Portfolio "A" Portfolio "B" 

Mean Monthly Return 0,60% 0,43% 

Mean Monthly Volatility 2,29% 2,02% 

Table 4. Monthly Return and Volatility information. This table presents the comparison of 
average monthly returns and average monthly standard deviations of Portfolio “A” and 
Portfolio “B”. Period of observation: February 1999-February 2011. 

Table 5 shows, in the first and second column respectively, Portfolio “A” returns and 
Portfolio “B” returns for each year of the observation period. It is important to specify that 
each year is considered by counting from February (t-1) to February (t). This allows the 
yearly periods to be defined by 12 periods of 12 month each one, considering that the given 
time series starts in February. This table demonstrates that the new model performance is, in 
most cases, equivalent or better than the benchmark portfolio performance for each 
analyzed year, except for three years 2004-2005, 2006-2007 and 2009-2010, where Portfolio 
“A” underperforms Portfolio “B”. The third and fourth columns of Table 5 display the 
annual volatility for the two portfolios. We can see that in many years, the new model 
presents higher volatility than Portfolio “B”, but it is necessary to remember what 
mentioned herein, that performances are also superior. 
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 Calculate portfolio return (controlled variable), return0, for the initial portfolio, given 

current market conditions. 
 At each iteration n, the PID controller designates a controlled value for the portfolio 

return, called returnn given by equation [3]. The making of such rebalancing is 
necessary to minimize the error between current return (determined by current market 
conditions) and returnn and set-point. Since the objective is to reduce the error, en 
defined by the difference between current return, returnn, and the set-point or desired 
return defined as 0,005, each iteration contributes in reducing en.  The error decrease is 
generally counteracted by the dynamics of the markets. Given ideal market conditions, 
en approaches zero after the transient system response has died out. 

 New market data acquisition and corresponding portfolio return, returnn, is calculated 
at end of each period (monthly). 

 The previous items are iteratively re-executed until the end of the observation period. 
 The PID parameters, chosen to be constant for all market conditions, are set to be: 
 Kp = 0,5 
 Ki = 0,6 
 Kd = 0,5 
 In this work, the parameters values were set according to an empirical criterion: under 

risk-free market conditions (portfolio with zero exposure to financial markets), the 
selection of a transient time domain response with a slight oscillatory response, 
exhibiting reasonable overshoot, and approaching set-point value within a small 
number of iterations was adopted.   

 The objective of each iterations is to make returns as stable and consistent as possible 
given the contributions and interactions of the controller and the market dynamics 
influence. The change in asset mix is dictated by the controller indications and the 
market behavior of the underlying securities. 

The main results of this methodology are illustrated in the following paragraph.  

5. Portfolio “A” vs. Portfolio “B” 
This section recapitulates the main results of the new model comparing the returns of 
Portfolio “A” to the returns of Portfolio “B”. The comparison is performed in terms of return 
and volatility for the observation period. 
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Table 3 illustrates information about return and volatility. Portfolio “A” has an annualized 
return of 7,25% compared to 5,14% of Portfolio “B”. The cumulative return in the 
observation period (1999-2011) is 86,96% for Portfolio “A” and 61,66% for the benchmark. In 
terms of portfolio risk, the experimental portfolio realizes an annualized volatility of 7,93%, 
indicatively in line and consistent with 7,01% recorded by Portfolio “B”. Portfolio “A”, with 
only a slightly higher volatility, is able to obtain more satisfying results both in annualized 
and in cumulative data analysis.  
 

 Portfolio "A" Portfolio "B" 

Annualized Return 7,25% 5,14% 

Cumulative Return 86,96% 61,66% 

Annualized Volatility 7,93% 7,01% 

Table 3. Return and Volatility data. This table presents the comparison of annualized return, 
cumulative return and annualized volatility of Portfolio “A” and Portfolio “B”. Period of 
observation: February 1999-February 2011. 

After having analyzed the data in the observation period, it is considered interesting to 
analyze the data on a monthly basis.  
Table 4 demonstrates monthly data; scrupulously, it is evident that the mean monthly return 
of the Portfolio “A”(0,60%) is superior to the Portfolio “B” mean monthly return (0,43%). 
The set-point or target value for the model was 0,5% monthly; thus, the experimental 
portfolio reaches the ideal target. The mean monthly volatility for Portfolio “A” is 2,29%, 
whereas the benchmark (Portfolio “B”) exhibits a volatility of 2,02%. 
 

Portfolio "A" Portfolio "B" 

Mean Monthly Return 0,60% 0,43% 

Mean Monthly Volatility 2,29% 2,02% 

Table 4. Monthly Return and Volatility information. This table presents the comparison of 
average monthly returns and average monthly standard deviations of Portfolio “A” and 
Portfolio “B”. Period of observation: February 1999-February 2011. 

Table 5 shows, in the first and second column respectively, Portfolio “A” returns and 
Portfolio “B” returns for each year of the observation period. It is important to specify that 
each year is considered by counting from February (t-1) to February (t). This allows the 
yearly periods to be defined by 12 periods of 12 month each one, considering that the given 
time series starts in February. This table demonstrates that the new model performance is, in 
most cases, equivalent or better than the benchmark portfolio performance for each 
analyzed year, except for three years 2004-2005, 2006-2007 and 2009-2010, where Portfolio 
“A” underperforms Portfolio “B”. The third and fourth columns of Table 5 display the 
annual volatility for the two portfolios. We can see that in many years, the new model 
presents higher volatility than Portfolio “B”, but it is necessary to remember what 
mentioned herein, that performances are also superior. 
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Portfolio "A" 

Return 
Portfolio "B" 

Return 

Portfolio "A" 
Annual 

Volatility 

Portfolio "B" 
Annual 

Volatility 
1999-2000 16,05% 19,25% 7,62% 7,49% 
2000-2001 6,07% 2,08% 8,67% 6,38% 
2001-2002 2,97% -1,25% 6,11% 6,90% 
2002-2003 4,54% -8,71% 7,90% 7,63% 
2003-2004 8,27% 13,21% 11,94% 5,82% 
2004-2005 -1,32% 8,06% 4,70% 2,57% 
2005-2006 18,28% 14,74% 8,13% 4,99% 
2006-2007 2,19% 3,55% 5,20% 2,84% 
2007-2008 9,98% 1,99% 7,91% 4,83% 
2008-2009 -16,27% -24,22% 6,21% 9,94% 
2009-2010 19,85% 22,83% 6,77% 5,62% 
2010-2011 16,34% 10,13% 5,35% 4,16% 

Table 5. Portfolio “A” and Portfolio “B” annual returns and volatilities. This table presents 
annual returns and annual standard deviations of Portfolio “A” and Portfolio “B” for each 
observed year. Period of observation: from February 1999 - February 2011. 

The following chart illustrates, graphically, the dynamics of volatility of Portfolios “A” 
and ”B”. It can be noticed that the continuous line representing the volatility of Portfolio 
“A” is often higher than that of the benchmark. However, it is interesting to underline the 
stabilization effect starting from 2004 and becoming evident under the PID control action. 
As it is well known, this instrument needs a history before it can enable its efficient control 
action and make it functional. 
 

 
Fig. 2. Annual Volatility of Portfolio “A“ and Portfolio “B“. This chart presents the annual 
volatility dynamics of the two portfolios in the observation period February 1999-February 
2011. The continuous line represents Portfolio “A”; the dotted line represents Portfolio “B”. 

After having calculated the return and risk of the two portfolios, a comparison of the two 
portfolios is performed by using a risk adjusted return indicator, the Sharpe Ratio.  This 
indicator is defined as the ratio of the difference between return and risk free return at the 
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numerator, divided by the standard deviation of the portfolio returns. In order to define the 
risk free rate the average of the Libor values in the 12 years (1999-2011) of observation 
period are calculated. This calculation has yielded a value equal to 2,80%. The results are 
depicted in the table below: 
 

 Portfolio "A" Sharpe Ratio Portfolio "B" Sharpe Ratio 

1999-2000 1,74 2,20 
2000-2001 0,38 Negative 
2001-2002 0,03 Negative 
2002-2003 0,22 Negative 
2003-2004 0,46 1,79 
2004-2005 Negative 2,05 
2005-2006 1,90 2,39 
2006-2007 Negative 0,26 
2007-2008 0,91 Negative 
2008-2009 Negative Negative 
2009-2010 2,52 3,56 
2010-2011 2,53 1,76 

Table 6. Sharpe Ratio of Portfolio “A“ and Portfolio “B“. This table presents the results of a 
risk adjusted return indicator, namely the Sharpe Ratio applied to the two portfolios for 
every year in the observation period. In bold are illustrated the cases in which Portfolio “A” 
has outperformed Portfolio “B”. 

 

 
Fig. 3. Sharpe Ratio of Portfolio "A" and Portfolio "B". The chart presents, for each 
observation period, the Sharpe Ratio values of the two portfolios. In particular, in black the 
values belonging to Portfolio “A” are represented. In grey, the corresponding values for 
Portfolio “B” are illustrated. The absence of a column shows that the indicator value is 
negative, hence non-interpretable. 

When in table 6, the word “Negative” is present, it means that for that specific year, it was 
not possible to record the indicator due to its negative value. The Sharpe Ratio is not 
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Table 5. Portfolio “A” and Portfolio “B” annual returns and volatilities. This table presents 
annual returns and annual standard deviations of Portfolio “A” and Portfolio “B” for each 
observed year. Period of observation: from February 1999 - February 2011. 

The following chart illustrates, graphically, the dynamics of volatility of Portfolios “A” 
and ”B”. It can be noticed that the continuous line representing the volatility of Portfolio 
“A” is often higher than that of the benchmark. However, it is interesting to underline the 
stabilization effect starting from 2004 and becoming evident under the PID control action. 
As it is well known, this instrument needs a history before it can enable its efficient control 
action and make it functional. 
 

 
Fig. 2. Annual Volatility of Portfolio “A“ and Portfolio “B“. This chart presents the annual 
volatility dynamics of the two portfolios in the observation period February 1999-February 
2011. The continuous line represents Portfolio “A”; the dotted line represents Portfolio “B”. 
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numerator, divided by the standard deviation of the portfolio returns. In order to define the 
risk free rate the average of the Libor values in the 12 years (1999-2011) of observation 
period are calculated. This calculation has yielded a value equal to 2,80%. The results are 
depicted in the table below: 
 

 Portfolio "A" Sharpe Ratio Portfolio "B" Sharpe Ratio 

1999-2000 1,74 2,20 
2000-2001 0,38 Negative 
2001-2002 0,03 Negative 
2002-2003 0,22 Negative 
2003-2004 0,46 1,79 
2004-2005 Negative 2,05 
2005-2006 1,90 2,39 
2006-2007 Negative 0,26 
2007-2008 0,91 Negative 
2008-2009 Negative Negative 
2009-2010 2,52 3,56 
2010-2011 2,53 1,76 

Table 6. Sharpe Ratio of Portfolio “A“ and Portfolio “B“. This table presents the results of a 
risk adjusted return indicator, namely the Sharpe Ratio applied to the two portfolios for 
every year in the observation period. In bold are illustrated the cases in which Portfolio “A” 
has outperformed Portfolio “B”. 

 

 
Fig. 3. Sharpe Ratio of Portfolio "A" and Portfolio "B". The chart presents, for each 
observation period, the Sharpe Ratio values of the two portfolios. In particular, in black the 
values belonging to Portfolio “A” are represented. In grey, the corresponding values for 
Portfolio “B” are illustrated. The absence of a column shows that the indicator value is 
negative, hence non-interpretable. 

When in table 6, the word “Negative” is present, it means that for that specific year, it was 
not possible to record the indicator due to its negative value. The Sharpe Ratio is not 

0,00
0,30
0,60
0,90
1,20
1,50
1,80
2,10
2,40
2,70
3,00
3,30

19
99

-2
00

0

20
00

-2
00

1

20
01

-2
00

2

20
02

-2
00

3

20
03

-2
00

4

20
04

-2
00

5

20
05

-2
00

6

20
06

-2
00

7

20
07

-2
00

8

20
08

-2
00

9

20
09

-2
01

0

20
10

-2
01

1

Portfolio "A" Sharpe Ratio Portfolio "B" Sharpe Ratio



 
Introduction to PID Controllers – Theory, Tuning and Application to Frontier Areas 242 

defined for negative values. Hence, the Sharpe Ratio becomes meaningless since a return 
net of the risk free is negative. The case of a negative numerator in the Sharpe Ratio 
formulation can occur in two situations: when the portfolio return for that period is 
negative, or when the portfolio return for that period is positive but inferior to the risk 
free rate of return. 
The analysis of table 6 allows the reader to notice that Portfolio “A” is able to obtain better 
results than Portfolio “B” in 5 instances out of 11 (the observation for year 2008-2009 is 
eliminated since both portfolios have negative Sharpe Ratios). The consistent returns of 
Portfolio “A” in many cases, allow the overcoming of the risk free return when Portfolio “B” 
is not able to do so; hence, Portfolio “B” presents negative Sharpe Ratios (examples in the 
range 2000-2003). 
Figure 3 represents the trend of Sharpe Ratios of the 2 portfolios.  
When a column of one of the two portfolios is not visible, it means that one of the two 
values is negative. 
It was considered interesting to investigate another risk adjuster return indicator: Sortino. 
This indicator of risk adjusted return, is defined as the ratio of the  difference between the 
return and the risk free return, and, at the denominator, a risk measure defined as the Down 
Side Risk (DSR). The Down Side Risk is a measure of risk that considers only the volatility of 
the returns inferior to the risk free return. By calculating the Down Side Risk, we 
investigated the type of reduced risk, up or downside risk. We have analyzed if the new 
model acts more successfully in decreasing positive risk or downside risk.  
 

 Portfolio "A" Annual DSR Portfolio "B" Annual DSR 

1999-2000 8,84% 8,19% 
2000-2001 11,44% 11,06% 
2001-2002 10,74% 12,20% 
2002-2003 11,43% 14,40% 
2003-2004 13,81% 8,27% 
2004-2005 11,12% 7,81% 
2005-2006 8,64% 7,38% 
2006-2007 10,45% 9,13% 
2007-2008 10,18% 10,33% 
2008-2009 15,68% 19,42% 
2009-2010 7,21% 5,76% 
2010-2011 7,09% 7,87% 

Table 7. The Down Side Risk of Portfolios “A” and “B”. The table represents for every year 
in the observation period the comparison between the Down Side Risk of the two portfolios. 
The DSR is calculated considering the volatility of returns inferior to the risk free rate 
relative to the risk free rate itself. 

The Down Side Risk (DSR) of Portfolio “A” and of Portfolio “B” was calculated and 
analyzed for this purpose. The main results of this study on downside risk are depicted in 
Table 7. As illustrated in this table, the new model exhibits a DSR lower than the benchmark 
in 5 cases out of 12. 
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This situation is interesting and it is visible in figure 4. It illustrates the stabilization effect of 
Portfolio “A” on Down Side Risk. The continuous line (new model) tends visibly to smooth 
out the extreme values better than the movement of the benchmark. 
 

 
Fig. 4. Comparison between the Down Side Risk of Portfolio “A” and Portfolio “B”. In the 
figure, the continuous line illustrates the DSR Portfolio “A”. The dotted line serves for 
Portfolio “B”. 

After having calculated the value of the  Down Side Risk, it is possible to calculate the risk 
adjusted return indicator defined above, Sortino ratio. Differently from Sharpe, this 
indicator has at the denominator, not the standard deviation, hence the volatility of the 
portfolio, but rather uses the DSR, hence the volatility defined for the returns below the risk 
free rate. As it can be observed from table 8, Portfolio “A” obtains better results than 
Portfolio “B” in 6 years out of 11 (the year 2008-2009 is not considered since both portfolios  
 

Portfolio "A" Sortino Portfolio "B" Sortino 
1999-2000 1,50 2,01 
2000-2001 0,29 Negative 
2001-2002 0,02 Negative 
2002-2003 0,15 Negative 
2003-2004 0,40 1,26 
2004-2005 Negative 0,67 
2005-2006 1,79 1,62 
2006-2007 Negative 0,08 
2007-2008 0,71 Negative 
2008-2009 Negative Negative 
2009-2010 2,36 3,48 
2010-2011 1,91 0,93 

Table 8. Sortino ratio for portfolios “A” and “B”. This table presents the results of the risk-
adjusted return Sortino, applied to the two portfolios, for the whole observation period.  
In bold, the cases when Portfolio “A” over performs Portfolio “B” are highlighted. The 
indication “Negative” shows the fact that for a negative numerator, the indicator is not 
defined.  
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defined for negative values. Hence, the Sharpe Ratio becomes meaningless since a return 
net of the risk free is negative. The case of a negative numerator in the Sharpe Ratio 
formulation can occur in two situations: when the portfolio return for that period is 
negative, or when the portfolio return for that period is positive but inferior to the risk 
free rate of return. 
The analysis of table 6 allows the reader to notice that Portfolio “A” is able to obtain better 
results than Portfolio “B” in 5 instances out of 11 (the observation for year 2008-2009 is 
eliminated since both portfolios have negative Sharpe Ratios). The consistent returns of 
Portfolio “A” in many cases, allow the overcoming of the risk free return when Portfolio “B” 
is not able to do so; hence, Portfolio “B” presents negative Sharpe Ratios (examples in the 
range 2000-2003). 
Figure 3 represents the trend of Sharpe Ratios of the 2 portfolios.  
When a column of one of the two portfolios is not visible, it means that one of the two 
values is negative. 
It was considered interesting to investigate another risk adjuster return indicator: Sortino. 
This indicator of risk adjusted return, is defined as the ratio of the  difference between the 
return and the risk free return, and, at the denominator, a risk measure defined as the Down 
Side Risk (DSR). The Down Side Risk is a measure of risk that considers only the volatility of 
the returns inferior to the risk free return. By calculating the Down Side Risk, we 
investigated the type of reduced risk, up or downside risk. We have analyzed if the new 
model acts more successfully in decreasing positive risk or downside risk.  
 

 Portfolio "A" Annual DSR Portfolio "B" Annual DSR 

1999-2000 8,84% 8,19% 
2000-2001 11,44% 11,06% 
2001-2002 10,74% 12,20% 
2002-2003 11,43% 14,40% 
2003-2004 13,81% 8,27% 
2004-2005 11,12% 7,81% 
2005-2006 8,64% 7,38% 
2006-2007 10,45% 9,13% 
2007-2008 10,18% 10,33% 
2008-2009 15,68% 19,42% 
2009-2010 7,21% 5,76% 
2010-2011 7,09% 7,87% 

Table 7. The Down Side Risk of Portfolios “A” and “B”. The table represents for every year 
in the observation period the comparison between the Down Side Risk of the two portfolios. 
The DSR is calculated considering the volatility of returns inferior to the risk free rate 
relative to the risk free rate itself. 

The Down Side Risk (DSR) of Portfolio “A” and of Portfolio “B” was calculated and 
analyzed for this purpose. The main results of this study on downside risk are depicted in 
Table 7. As illustrated in this table, the new model exhibits a DSR lower than the benchmark 
in 5 cases out of 12. 
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This situation is interesting and it is visible in figure 4. It illustrates the stabilization effect of 
Portfolio “A” on Down Side Risk. The continuous line (new model) tends visibly to smooth 
out the extreme values better than the movement of the benchmark. 
 

 
Fig. 4. Comparison between the Down Side Risk of Portfolio “A” and Portfolio “B”. In the 
figure, the continuous line illustrates the DSR Portfolio “A”. The dotted line serves for 
Portfolio “B”. 
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Portfolio “B” in 6 years out of 11 (the year 2008-2009 is not considered since both portfolios  
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adjusted return Sortino, applied to the two portfolios, for the whole observation period.  
In bold, the cases when Portfolio “A” over performs Portfolio “B” are highlighted. The 
indication “Negative” shows the fact that for a negative numerator, the indicator is not 
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exhibited negative values). This indicates that, selecting the criterion of the most negative of 
the risk factors,  the DSR, (that is the returns inferior to the risk free rate) the new model is 
bale to guarantee a better performance in comparison to the benchmark.  
The following chart allows the visualization of the comparison of the two portfolios. It is to 
be remembered that when a column is missing, it indicates that its corresponding value is 
negative. In year 2001-2002, the column of portfolio A since its value is negligible. However, 
Sortino’s value in that year is relevant.  
 

 
Fig. 5. Sortino ratio of portfolios “A” and “B”. The chart represents per each year of 
observation, Sortino values for the two portfolios. In particular, in black the results for 
Portfolio “A” are represented. In grey, the results of Portfolio “B” are illustrated. The 
absence of a column indicates that the indicator value is negative, hence non-interpretable. 

If Sortino and Sharpe Ratio results are compared it is evident the ability of Portfolio "A" to 
better perform in comparison of Portfolio “B”. Since the difference between Sortino and 
Sharpe resides in the definition of the denominator portion of the formula, it is apparent that 
Portfolio “A” acts more efficiently on the DSR than on the total volatility. Hence, this 
selectivity capability of the model is a good feature. The PID control action on financial 
portfolios seems to function as a stabilizer of returns. Above all, it diminishes the worst 
component of the returns, namely the ones inferior to the risk free rate. 

6. Conclusion 
This work illustrates a portfolio management model with the aim to obtain good returns 
and decrease portfolio risk through stabilization of returns, by means of the PID control 
applied to pure returns. As demonstrated in the previous sections, the new model is able to 
obtain returns that are satisfactory in the observation period.  In addition, it is able, in about 
half of the analyzed cases, to diminish the volatility relative to the benchmark. In particular, 
the best results are exhibited when the Down Side Risk is considered instead of the whole 
volatility.  The results illustrated herein relative to the Down Side Risk are of a good quality. 
The new model, through asset rebalancing, in the observation period, successfully reduces 
the negative volatility factor in 5 cases out of 11 more than the negative volatility of the 
benchmark. This research work furthers the analysis of two indicators of risk adjusted 
returns: Sharpe and Sortino.  Confirming and reiterating what just said, Sortino, which uses 
the DSR in its denominator, obtained the best performances. 
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Portfolio “A” presents, in 6 years out of 11, a risk adjusted return value for the Down Side 
Risk better than the benchmark. These initial results confirm that the PID based asset 
allocation technique seems to be a good instrument, adapt for adverse market conditions. It 
effectively controls and bounds negative volatility. At the light of the current results herein 
achieved, the authors desire to further and develop the model in the attempt to seek and 
understand relations, functions and interacting factors among the managed portfolio 
characteristics and intrinsic and endogenous parameters of the model, such as the set-point, 
aiming to maximize returns' stabilization effects.   
The authors will further the model verifying and testing its applicability on various financial 
market indices and diversified portfolios, including the impact of transaction costs. The goal 
is to confirm broad-spectrum negative volatility controllability, steadiness and performance 
stabilization for financial portfolio managers.   
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Portfolio “A” presents, in 6 years out of 11, a risk adjusted return value for the Down Side 
Risk better than the benchmark. These initial results confirm that the PID based asset 
allocation technique seems to be a good instrument, adapt for adverse market conditions. It 
effectively controls and bounds negative volatility. At the light of the current results herein 
achieved, the authors desire to further and develop the model in the attempt to seek and 
understand relations, functions and interacting factors among the managed portfolio 
characteristics and intrinsic and endogenous parameters of the model, such as the set-point, 
aiming to maximize returns' stabilization effects.   
The authors will further the model verifying and testing its applicability on various financial 
market indices and diversified portfolios, including the impact of transaction costs. The goal 
is to confirm broad-spectrum negative volatility controllability, steadiness and performance 
stabilization for financial portfolio managers.   

7. References 
Amenc, N., Malaise P. & Martellini, L. (2004). Revisiting Core-Satellite Investing. A dynamic 

model of relative risk management. The Journal of Portfolio Management, Vol  31, No. 
1, (Fall, 2004), pp- 64-75, ISSN 00954918. 

Amman, M., Kessler, S. & Tobler, J. (2006). Analyzing Active Investment Strategies. Using 
tracking error variance decomposition. The Journal of Portfolio Management, Vol. 33, 
No.1, (Fall, 2006), pp. 56-67, ISSN 00954918. 

Anson, M. (2004). Strategic versus Tactical Asset Allocation. Beta versus alpha drivers. The 
Journal of Portfolio Management. Vol.30, No. 2, (Winter, 2004), pp. 8-22, ISSN 
00954918. 

Arnott, D. R. & Fabozzi, F.J. (eds) (1988). Asset allocation: A Handbook of Portfolio Policies, 
Strategies and Tacties, Probus Professional Publishers, ISBN 1557380139, USA. 

Arshanapalli, B., Switzer, N. L. & Hung, T. S. L. (2004). Active versus Passive Strategies for 
EAFE and the S&P500. The Journal of Portfolio Management. Vol. 30, No. 4, (Summer, 
2004), pp. 51-60, ISSN 00954918. 

Carhart M. (1997). On persistence in mutual funds performance. The Journal of Finance, 
Vol.52, No. 1, (March, 1997), pp. 57-82, ISSN 0022-1082. 

Da Silva, S., A., Lee, W. & Pornrojnangkool, B. (2009). The Black-Litterman Model for Active 
Portfolio Management.  The Journal of Portfolio Management, Vol.35, No. 2, (Winter, 
2009), pp. 61-70, ISSN 00954918. 

Don, P. & Lee, J. (1989) Current issue: Tactical Asset Allocation.  Financial Analyst Journal 
Vol. 45, No. 2, (March-April, 1989), pp. 14-16, ISSN 0015-198X. 

Faff, R., Gallagher, R. D. & Wu, E. (2005). Tactical Asset Allocation: Australian Evidence. 
Australian Journal of Management, Vol. 30, No. 2, (December, 2005), pp. 261-282, ISSN 
1320-5161. 

Fama, F. E. (1965). The Behaviour of Stock Market Prices. The Journal of Business, Vol. 38, 
No.1, (January, 1965), pp. 34-105, ISSN 1573-0697. 

Fama, F. E. (1970). Efficient Capital Markets: review of theory and empirical work. The 
Journal of Finance, Vol. 25, No. 2, (May, 1970), pp. 383-417, ISSN 0022-1082. 

Gandolfi, G., Sabatini, A. & Rossolini, M. (2007) PID feedback controller used as a tactical 
asset allocation technique: The G.A.M. model. Physica A, Vol. 383, No. 1, 
(September, 2007), pp. 71-78, ISSN 0378-4371. 



 
Introduction to PID Controllers – Theory, Tuning and Application to Frontier Areas 246 

Gold, L. M. (2004). Investing in pseudo-science: the active versus passive debate. Journal of 
the Securities Institute of Australia, Vol.3, No. 3, (Summer 2004), pp. 2-6, ISSN 
0313-5934. 

Gruber, J. M. (1996). Another puzzle: the growth in actively managed funds. The Journal of 
Finance, Vol. 51, No. 3, (July, 1996), pp.783-810, ISSN 0022-1082.  

MacBeth, J. & Emanuel, C. D. (1993) Tactical Asset Allocation: Pros and Cons. Financial 
Analysts Journal, Vol. 49, No. 6, (November-December, 1993), pp. 30-43, ISSN 
0015-198X. 

Markowitz, H. (1952). Portfolio Selection. The Journal of Finance, Vol. 7, No. 1, (March, 1952), 
pp. 77-91, ISSN 0022-1082. 

Qian, E. (2003). Tactical Asset Allocation with Pairwise Strategies. Using pairwise 
information to influence weights. The Journal of Portfolio Management, Vol.30, No.1, 
(Fall, 2003), pp. 39-48, ISSN 00954918. 

Sampagnaro, G. (Ed.). (2006). Asset Management: tecniche e stile di gestione di portafoglio, 
Franco  Angeli, ISBN 8846472829, Milan. 

Samuelson, A. P. (1974). Challenge to Judgment. The Journal of Portfolio Management, Vol. 1, 
No. 1, (Fall, 1974), pp.17-19, ISSN 00954918. 

Samuelson, A. P. (2004). The Backward Art of Investing Money. The Journal of Portfolio 
Management, Vol. 30, No. 5, (30th anniversary, 2004), pp- 30-33, ISSN 00954918. 

Sharpe, F. W. (1991). The arithmetic of active management. Financial Analyst Journal, Vol. 47, 
No. 1, (January-February, 1991), pp. 7-9, ISSN 0015-198X. 

Shen, P. (2003). Market Timing Strategies That Worked. Based on the E/P Ratio of the 
S&P500 and interest rates. The Journal of Portfolio Management, Vol. 29, No. 2, 
(Winter, 2003), pp. 57-68, ISSN 00954918. 

Skogestad, S. (2010) Feedback: still the simplest and best solution. Paper presented at 
International Conference Cybernetics and Informatics, 10 February, Bratislava, 
Slovac Republic. 

Part 8 

Practical Applications 



 
Introduction to PID Controllers – Theory, Tuning and Application to Frontier Areas 246 

Gold, L. M. (2004). Investing in pseudo-science: the active versus passive debate. Journal of 
the Securities Institute of Australia, Vol.3, No. 3, (Summer 2004), pp. 2-6, ISSN 
0313-5934. 

Gruber, J. M. (1996). Another puzzle: the growth in actively managed funds. The Journal of 
Finance, Vol. 51, No. 3, (July, 1996), pp.783-810, ISSN 0022-1082.  

MacBeth, J. & Emanuel, C. D. (1993) Tactical Asset Allocation: Pros and Cons. Financial 
Analysts Journal, Vol. 49, No. 6, (November-December, 1993), pp. 30-43, ISSN 
0015-198X. 

Markowitz, H. (1952). Portfolio Selection. The Journal of Finance, Vol. 7, No. 1, (March, 1952), 
pp. 77-91, ISSN 0022-1082. 

Qian, E. (2003). Tactical Asset Allocation with Pairwise Strategies. Using pairwise 
information to influence weights. The Journal of Portfolio Management, Vol.30, No.1, 
(Fall, 2003), pp. 39-48, ISSN 00954918. 

Sampagnaro, G. (Ed.). (2006). Asset Management: tecniche e stile di gestione di portafoglio, 
Franco  Angeli, ISBN 8846472829, Milan. 

Samuelson, A. P. (1974). Challenge to Judgment. The Journal of Portfolio Management, Vol. 1, 
No. 1, (Fall, 1974), pp.17-19, ISSN 00954918. 

Samuelson, A. P. (2004). The Backward Art of Investing Money. The Journal of Portfolio 
Management, Vol. 30, No. 5, (30th anniversary, 2004), pp- 30-33, ISSN 00954918. 

Sharpe, F. W. (1991). The arithmetic of active management. Financial Analyst Journal, Vol. 47, 
No. 1, (January-February, 1991), pp. 7-9, ISSN 0015-198X. 

Shen, P. (2003). Market Timing Strategies That Worked. Based on the E/P Ratio of the 
S&P500 and interest rates. The Journal of Portfolio Management, Vol. 29, No. 2, 
(Winter, 2003), pp. 57-68, ISSN 00954918. 

Skogestad, S. (2010) Feedback: still the simplest and best solution. Paper presented at 
International Conference Cybernetics and Informatics, 10 February, Bratislava, 
Slovac Republic. 

Part 8 

Practical Applications 



 11 

Relay Methods and Process Reaction Curves:  
Practical Applications 

Manuela Souza Leite and Paulo Jardel P. Araújo 
Tiradentes University (UNIT), Aracaju,  

Brazil 

1. Introduction 
Proportional–integral–derivative (PID) controllers are the most adopted controllers in 
industrial settings because of the advantageous cost/benefit ratio they are able to provide 
(Astrom & Hanglund, 2006). Its function is very to explain and in most cases it is the easiest 
controller to adjust. Tuning controllers can significantly improve control performance.  
PID controller is to be applied in practical cases. It is seen that many PID variants have been 
developed in order to improve transient performance, such as biotechnological processes 
and chemical processes. 
Automation and process control can significantly influence the yield and final quality of 
products. However, there are few studies on the application of automatic controllers in the 
experimental plants. Most works focus on results obtained from computational simulations, 
that indeed do not represent these processes in all their complexity. The transient behavior 
and nonlinearities of these processes make the design of classical control dependent on trial-
and-error methodology. 
In this context, this topic concerns in show some practical applications of use PID Controller. 
The development of a design and tuning method for use with PID controllers in 
experimental processes for temperature control. 

2. Tuning methods for pid controller 
The primary function of a close-loop system is to make the controlled variable a desired 
value established by the set-point. Whenever the controlled variable becomes different 
then the set-point, the objective of the closed-loop system is to make then the same as 
quickly as possible. The controlled variable becomes different than the set-point under 
tree conditions:  
 Set-point change; 
 Disturbance; 
 Load demand change. 
One of the traditional ways to design a PID controller was to use empirical tuning rules 
based on measurements made on the real plant. Today is preferable for the PID designer to 
employ model based techniques. There is a large number of tuning methods, but in this 
chapter we describes for calculating proper values of the PID parameters (kc, ti, td) two 
methods: Relay Methods and Process Reaction Curve. 
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3. Relay methods 
To understand the relay method is necessary first to explain the ultimate gain method 
(Oscillation method) proposed by Ziegler Nichols (Z-N). This procedure is only valid for 
open loop stable plants and it is carried out through the following steps: 
a. Set the true plant under proportional control, with a very small gain; 
b. Increase the gain until the loop starts oscillating; 
c. Record the controller critical gain �� = �� and the oscillation period of the controller 

output, �� ; 
d. Adjust the controller parameters according to Table 3.1. 
 

 �� �� �� 
P 0,���   

PI 0,���� 
1
1,2 ��  

PID 0,�0�� 
1
2�� 

1
8�� 

Table 3.1. Ziegler Nichols tuning using the ultimate gain method 

Note that linear oscillation is required and that it should be detected at the controller 
output. In fact the Ziegler - Nichols tuning scheme, where the controller gain is 
experimentally determined to just bring the plant to the brink of instability is a form of 
model identication. This is known as the ultimate gain ��. Relay-based auto tuning is a 
simple way to tune PID controller that minimizes the possibility of operating the plant 
close to the stability limit.  
As it turns out, under relay feedback, most plants oscillate with a modest amplitude 
fortuitously at the critical frequency. The procedure is now the following: 
a.    Substitute a relay with amplitude � for the PID controller as shown in Figure 3.1; 
b.    Kick into action, and record the plant output amplitude � and period � (Fig. 3.2). 
c.   The ultimate period is the observed period, �� = �, while the ultimate gain is inversely 
proportional to the observed amplitude, 

 �� = ��
��   (3.1) 

Having established the ultimate gain and period with a single succinct experiment, we can 
use the Ziegler - Nichols tuning rules (or equivalent) to establish the PID tuning constants.  
The Figure 3.1 shows a plant with the PID regulator temporarily disabled and the Figure 3.2 
shows a plant oscillating under relay feedback.  
The settings in Table 3.1 obtained by Ziegler and Nichols, can be used to make the model 
response of a PID controller: 

 ����(�) = ���(�) + ��
�� � �(�)�� + ���� ��(�)

��
�
��   (3.2) 

Many plants, particularly the ones arising in the process industries, can be satisfactorily 
described by the model in Equation 3.3.  

 ��(�) = ������
����� � ��� > 0  (3.3) 
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Fig. 3.1. Plant with the PID regulator temporarily disabled 

 

 
Fig. 3.2. Plant oscillating under relay feedback 

The one can obtain the PID settings via Ziegler-Nichols tuning for different values of  and 
. These parameters can be calculated using: 
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Ku and Tu parameters are obtained from the experiment using the relay method. 

3.1 Case study 
The use of polymers has been growing gradually in many industrial products, such as: 
automobile, electronic devices, food packaging, and building and medicine materials. Among 
these products stands the polystyrene, usually produced in batch or semi-batch reactors. 
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Temperature variation in polymerization reactor systems greatly affects the kinetics of 
polymerization and consequently changes the physical properties and quality characteristics 
of the produced polymer (Ghasem et al., 2007; Lepore et al., 2007). In order to ensure the 
maintenance of the final product quality is crucial to keep suitable operating conditions 
during the polymerization reaction process. 

3.2 PID controller design 
The PID controller is designed for temperature control of an experimental process of 
polymerization (Leite et al., 2010a; Leite et al., 2011). The developed models will can be 
online implemented to a pilot plant. A pilot plant was built specifically to evaluate the 
polymerization reaction performance. It consists essentially of a stirred batch reactor, an oil 
storage tank, a positive displacement pump and temperature sensors. Thermal oil was used 
as heat transfer medium in the jacket. The polymerization reaction is exothermic.  
Using a PCL (Programable controller logic), a thermal fluid variable speed pump will be 
driven by the controller, to maintain the temperature constant into the reactor. The flow of 
thermal fluid (manipulated variable) was step of 30 and 100%. The maximum pump flow 
rate equivalent to approximately 900 L/H. Disturbances in the manipulated variable were 
performed in a short time interval (P=300 s).  
The Figure 3.3 shows response of the experiment using the relay method. 
 
 
 
 

 
Fig. 3.3. Response of the experiment using the relay method 

 
According to the tuning method used, we found the initial control parameters as shown in 
Table 3.2. 
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Parameter obtained from Relay Method 
a = 3 2d = 70 P=300 

Controller PI PID 
Kc 6,68 %/°C 8,91 %/°C 
i 0,004 s 0,007 s 
d 0 s 37,5 s 

Table 3.2. Initial parameters PID controller (Relay method). 

From these results it is possible to implement an on-line PID controller in the experimental 
polymerization process.  

4. Process reaction curve 
The closed-loop system will respond in a desirable way only if its controller is properly 
tuned. This means that its proportional, integral and derivative (PID) settings are properly 
made. A popular procedure for tuning a controller is the Ziegler-Nichols Reaction Curve 
Tuning Method.  
This procedure requires a step change of the controllers output alters the controlled variable. 
The Figure 4.1 shows the resultant closed loop step.  
The method used to make the step change and measure the controlled variable is called the 
Process Identification Procedure. This controller setting puts the system into an open-loop 
condition. Based on the shape and magnitude of the controlled variable’s reaction curve in 
reference to the step change, value are obtained and used in mathematical formulas. These 
values are then used to determine the PID settings.  
 

 
Fig. 4.1. Resultant closed loop step 

Loop responses for a unit step reference are shown in Figure 2 (similar to Figure 1). A 
linearized quantitative version of the model in Equation 3.3 can be obtained with an open 
loop experiment, using the following procedure: 
a. With the plant in open loop, take the plant manually to a normal operating point. Say 

that the plant output settles at ���� � �� for a constant plant input u (t) =���.  
b. At an initial time, ��, apply a step change to the plant input, from u� to �∞ . 
c. Record the plant output until it settles to the new operating point. Assume you obtain 
 the curve shown in Figure 2. This curve is known as the process reaction curve. 
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This procedure requires a step change of the controllers output alters the controlled variable. 
The Figure 4.1 shows the resultant closed loop step.  
The method used to make the step change and measure the controlled variable is called the 
Process Identification Procedure. This controller setting puts the system into an open-loop 
condition. Based on the shape and magnitude of the controlled variable’s reaction curve in 
reference to the step change, value are obtained and used in mathematical formulas. These 
values are then used to determine the PID settings.  
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d. Compute the parameter model as follows: 

 �� = �����
�����  (4.1) 

 �� = �� � ��  (4.2) 

 �� = �� � ��  (4.3) 
 

 
m.s.t stands for maximum slope tangent 

Fig. 4.2. Reaction curve: Process Identification Procedure 

The model obtained can be used to derive various tuning methods for PID controllers. This 
method was proposed by Ziegler and Nichols. In their proposal the design objective is to 
achieve a particular damping in the loop response to a step reference.  
The parameter setting rules proposed in Table 4.1 are applied to the model (Eq.3.3), where 
we have again normalized time in delay units.  
 

 �� i d 

P 
��
����   

PI 
0,���
����  ���  

PID 
�,���
����  ��� 0,5τ� 

Table 4.1. Ziegler-Nichols tuning using the reaction curve. 

4.1 Case study 
Bromelain is widely used in the chemical and pharmaceutical industries. It is employed not 
only for its pharmacological effects, but also in food industry activities such as brewing and 
meat processing (Kelly, 1996). Currently there were no experimental studies about 
automation and process control in the production of bromelain, despite the growing number 
of scientific papers related to this enzyme. Temperature control during the recovery process 
of the bromelain from pineapple fruits is an extremely important practice, because the 
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temperature directly affects the final activity of the enzyme precipitated. The use of 
controllers to maintain the temperature of this process prevents the denaturation of the 
enzyme, improving the quality of the product. It is also important to emphasize that the 
design of the developed controllers can be easily extended to similar processes in which 
some transient and nonlinear behavior are found.  
The robust PID controller is designed for temperature control of an experimental process of 
enzyme recovery from pineapple rind. To assess the performance of the controllers the 
following parameters were used: ITAE (integral of Time multiplied by Absolute Error), 
response time, saturation of the final element of control, enzymatic activity of the product 
and electric power consumption of the cooling system. 

4.2 PID controller design 
Conventional controller was implemented in experimentally tested in a pilot plant of the 
precipitation process (Leite et al., 2010b; Leite et al., 2010c; Silva et al., 2010). 
The proteolytic enzyme bromelain (EC 3.4.22.4[*]) is precipitated with alcohol at low 
temperature in a fed-batch jacketed tank. Temperature control is crucial to avoid irreversible 
protein denaturation. Using a Fieldbus network architecture, a coolant variable speed pump 
was driven by the controller, to maintain the temperature constant into the tank.  
Tuning the controllers proved to be a difficult task in this fed-batch nonlinear process. To 
tune the controller, by Ziegler and Nichols, a new methodology for the experimental 
procedure was designed and implemented (Leite et al., 2010c). 
In order to evaluate the influence of the variation of the tank volume on the precipitation 
process, and to obtain the process reaction curve samples containing extract and ethanol in 
different proportions (from 1:1 to 1:3 v/v) were used in the pseudo-steady state operation. 
Positive and negative disturbances were then applied (± 30%) to the initial conditions of the 
speed of the coolant pump (manipulated variable). The data obtained from the reaction 
curve (Figure 4.3) for this process allowed to find initial values of the process parameters Kp 
(static gain), τp (time constant) and d (time delay).  
 

 
[*]The Enzyme Commission number (EC number) is a numerical classification scheme for enzymes, based on the 
chemical reactions they catalyze.  

Fig. 4.3. Reaction curves obtained from disturbances in the manipulated variable. 
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was driven by the controller, to maintain the temperature constant into the tank.  
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different proportions (from 1:1 to 1:3 v/v) were used in the pseudo-steady state operation. 
Positive and negative disturbances were then applied (± 30%) to the initial conditions of the 
speed of the coolant pump (manipulated variable). The data obtained from the reaction 
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Fig. 4.3. Reaction curves obtained from disturbances in the manipulated variable. 



 
Introduction to PID Controllers – Theory, Tuning and Application to Frontier Areas 256 

Fine tuning was then conducted to adjust these parameters by trial-and-error procedure. 
In these closed loop experiments, the following indices of performance were considered: 
ITAE, response time and saturation of the final element of control.  
The best parameters found after this fine tuning were: Kc=35%/°C, i = 28s and d = 7s 
(PID2). Figure 4.4 shows the behavior of the tank temperature under well-tuned 
conventional PID. 
 

 
Fig. 4.4. Behavior of the controlled and manipulated variables under PID1 control 
(Kc=8%/°C, i = 28s e d = 1,5s) and PID2 (Kc=35%/°C, i = 28s e d = 7s). 

Table 4.2 presents quantitative and qualitative analyses of the performance of the 
implemented controllers. 
 

Performance parameters Controller 
Open-loop PID1 PID2 

Overshoot (ºC) 5.0 3.9 3.1 
Rise time (s) 281 200 171 
Response time (s) - 710 400 
Pump saturation time (s) - 141 130 
ITAE (x103) 950.5 187 80.3 
Specific enzymatic activity (U/g) 0.32 0.96 1.03 
Eletric energy comsuption (kWh) 42.00 5.75 9.11 

Table 4.2. Performance parameters of the PID controllers. 

From these results, it is clear that PID controllers performed satisfactorily in controlling the 
temperature of the precipitation process. However, the PID2 controller kept the variation 
closer to the set-point, which is important for enzyme activity recovery, since the enzyme is 
highly sensitive to temperature changes. The early stage of ethanol addition is critical. In 
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order to keep the overshoot to a minimum, intense controller response is required, causing 
pump saturation.  
Despite the PID1 controller have lower power consumption, the PID controller showed 
better global performance criteria: small overshoot, small rise time, small ITAE, short 
response time and pump saturation time and higher enzyme activity in the product. 
The adaptative PID tuning procedure, based on the analysis of the process reaction curves, 
can be an attractive strategy to provide a suitable non-linear controller design for transient 
processes. The further development of the adaptive PID controller can contributed to 
improving the performance of the conventional PID controller.  

5. Conclusions 
PID control tuning are popular and offer many benefits such ease of use, new development 
help to implement other PID controller variants, and control for common industry 
applications. 
In this chapter, two techniques from PID tuning were applied for the temperature control of 
the practical applications: 1-polymerization system and 2-bromelain precipitation. The main 
feature of these process is its complex nonlinear behavior, wich poses a challenging control 
system design for the batch reactor.  
In the first case a PID controller experiment was designed to be implemented later in the 
pilot plant. The controller was developed from the relay method proposed by Astrom and 
Haglund. 
In the second case the controller was designed based on reaction curve method of Ziegler 
and Nichols, by disturbances in a real experimental system bromelain precipitation. The 
authors carried out fine-tuning of this controller, which was subsequently implemented 
efficiently in maintaining the process temperature. 
The methods performed well for estimation of the PID controller, easy to apply and prove to 
be an effective option in practical cases will help achieve the proposed objectives. There is a 
large number of tuning methods, but related methods cover most practical cases and 
common industry applications.  

6. References 
Åström, K. J. & Hägglund, T. (2004). Revisiting the Ziegler-Nichols step response method 

for PID control. Journal of Process Control, Vol. 14, pp. 635-650.  
Ghasem, N. M., Sata, S. A. & Hussain, M. A. (2007). Temperature control of a bech-scale 

batch polymerization reactor for polystyrene production. Chemical Engineering 
Technology, Vol. 3, No. 9, pp. 1193-1202. 

Kelly, G. S. (1996). Bromelain: A literature review and discussion of its therapeutic 
applications. Alternative Medicine Review, Vol. 1, No. 4, pp. 243-257. 

Leite, M. S. ; Fileti, A. M. F. & Silva, F. V. (2010c). Development and experimental 
application of fuzzy and conventional controllers to a bioprocess. Revista Controle & 
Automação, Vol. 21, No. 2, March and April 2010, pp. 147-158, ISSN 0103-1759. 

Leite, M. S.; Fileti, A. M. F. & Silva, F. V. (2010a). Design, assembly and instrumentation of 
an experimental prototype for the application of automation techniques and 
development of control strategies in a polymerization process. Proceedings of XVIII 
COBEQ, Brazil, Foz do Iguaçu, 2010, Vol. 1, p. 7539-7548., ISSN 2178-3659. 



 
Introduction to PID Controllers – Theory, Tuning and Application to Frontier Areas 256 
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order to keep the overshoot to a minimum, intense controller response is required, causing 
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response time and pump saturation time and higher enzyme activity in the product. 
The adaptative PID tuning procedure, based on the analysis of the process reaction curves, 
can be an attractive strategy to provide a suitable non-linear controller design for transient 
processes. The further development of the adaptive PID controller can contributed to 
improving the performance of the conventional PID controller.  

5. Conclusions 
PID control tuning are popular and offer many benefits such ease of use, new development 
help to implement other PID controller variants, and control for common industry 
applications. 
In this chapter, two techniques from PID tuning were applied for the temperature control of 
the practical applications: 1-polymerization system and 2-bromelain precipitation. The main 
feature of these process is its complex nonlinear behavior, wich poses a challenging control 
system design for the batch reactor.  
In the first case a PID controller experiment was designed to be implemented later in the 
pilot plant. The controller was developed from the relay method proposed by Astrom and 
Haglund. 
In the second case the controller was designed based on reaction curve method of Ziegler 
and Nichols, by disturbances in a real experimental system bromelain precipitation. The 
authors carried out fine-tuning of this controller, which was subsequently implemented 
efficiently in maintaining the process temperature. 
The methods performed well for estimation of the PID controller, easy to apply and prove to 
be an effective option in practical cases will help achieve the proposed objectives. There is a 
large number of tuning methods, but related methods cover most practical cases and 
common industry applications.  
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