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Preface 

This book represents a sample of recent contributions of researchers all around the 
world in the field of image restoration. 

The book consists of 15 chapters organized in three main sections (Theory, Applications, 
Interdisciplinarity). Topics cover some different aspects of the theory of image 
restoration. But this book is also an occasion to highlight some new topics of research 
related to the emergence of some original imaging devices (see “Applications” 
Section). From this arise some real challenging problems related to image 
reconstruction/restoration that open the way to some new fundamental scientific 
questions closely related with the world we interact with. 

An effort has been made by each author to give a large access to their work: Image 
restoration is not only a problem that interests specialists but also other researchers 
from different areas (like Robotic, AI, etc.) who can find some inspiration in the 
proposed Chapters (let have a look to Chapter 15 for instance!) 

This book is certainly a small sample of the research activity going on around the 
globe as you read it, but it surely covers a good deal of what has been done in the field 
recently, and as such it works as a valuable source for researchers interested in the 
involved subjects. 

Special thanks to all authors who have interested a great deal of time to write such 
interesting chapters and who have accepted to share their work. 

Aymeric Histace 
University of Cergy-Pontoise, Cergy, 

France 
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Space-Variant Image Restoration 
 with Running Sinusoidal Transforms 

Vitaly Kober 
Computer Science Department, CICESE, 

 Mexico 

1. Introduction 
Various restoration methods (linear, nonlinear, iterative, noniterative, deterministic, 
stochastic, etc.) optimized with respect to different criteria have been introduced (Bertero & 
Boccacci, 1998; Biemond et al., 1990; Kundur, & Hatzinakos, 1996; Banham & Katsaggelos, 
1997; Jain, 1989; Bovik, 2005; Gonzalez & Woods, 2008). These techniques may be broadly 
divided in two classes: (i) fundamental algorithms and (ii) specialized algorithms. One of 
the most popular fundamental techniques is a linear minimum mean square error (LMMSE) 
method. It finds the linear estimate of the ideal image for which the mean square error 
between the estimate and the ideal image is minimum. The linear operator acting on the 
observed image to determine the estimate is obtained on the basis of a priori second-order 
statistical information about the image and noise processes. In the case of stationary 
processes and space-invariant blurs, the LMMSE estimator takes the form of the Wiener 
filter (Jain, 1989). The Kalman filter determines the causal LMMSE estimate recursively. 
Specialized algorithms can be viewed as extensions of the fundamental algorithms to 
specific restoration problems. It is based on a state-space representation of the imaging 
system, and image data are used to define the state vectors. Specialized algorithms can be 
viewed as extensions of the fundamental algorithms to specific restoration problems. In this 
paper we deal with restoration of images degraded by space-variant blurs. Basically, all 
fundamental algorithms apply to the restoration of images degraded by space-variant blurs. 
However, because Fourier transforms cannot be utilized when the blur is space-variant, 
space-domain implementations of these algorithms may be computationally formidable due 
to large matrix operations. Several specialized methods were developed to attack the space-
variant restoration problem. The first class referred to as sectioning is based on assumption 
that the blur is approximately space-invariant within local regions of the image. Therefore, 
the entire image can be restored by applying well-known space-invariant techniques to the 
local image regions. A drawback of sectioning methods is the generation of artifacts at the 
region boundaries. The second class is based on a coordinate transformation (Sawchuk, 
1974), which is applied to the observed image so that the blur in the transformed 
coordinates becomes space-invariant. Therefore, the transformed image can be restored by a 
space-invariant filter and then transformed back to obtain the final restored image. However, 
the statistical properties of the image and noise processes are affected by the  
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coordinate transformation. In particular, the stationarity in the original spatial coordinates is 
not preserved in the transform coordinate system. 

In this chapter, we carry out the space-variant restoration using running discrete sinusoidal 
transform coefficients. The running transform is based on the concept of short-time signal 
processing (Oppenheim & Shafer 1989). A short-time orthogonal transform of a signal xk is 
defined as 

  ,k
s k n n

n
X x w n s






  , (1) 

where wn is a window sequence, (n,s) represents the basis functions of an orthogonal 
transform. We use one-dimensional notation for simplicity. Equation (1) can be 
interpreted as the orthogonal transform of xk+n as viewed through the window wn. k

sX  
displays the orthogonal transform characteristics of the signal around time k. Note that 
while increased window length and resolution are typically beneficial in the spectral 
analysis of stationary data, for time-varying data it is preferable to keep the window 
length sufficiently short so that the signal is approximately stationary over the window 
duration. Assume that the window has finite length around n=0, and it is unity for all 
n-N1, N2. Here N1 and N2 are integer values. This leads to signal processing in a 
running window (Vitkus & Yaroslavsky, 1987; Yaroslavsky & Eden, 1996). In other words, 
local filters in the domain of an orthogonal transform at each position of a moving 
window modify the orthogonal transform coefficients of a signal to obtain only an 
estimate of the pixel xk of the window. The choice of orthogonal transform for running 
signal processing depends on many factors. 

We carry out the space-variant restoration using running discrete transform coefficients. The 
discrete cosine transforms (DCT) and discrete sine transforms (DST) are widely used. This is 
because the DCT and DST perform close to the optimum Karhunen-Loeve transform (KLT) 
for the first-order Markov stationary data (Jain, 1989). For signals with the correlation 
coefficient near to unity, the DCT provides a better approximation of the KLT than the DST. 
On the other hand, the DST is closer to the KLT, when the correlation coefficient lies in the 
interval (-0.5, 0.5). Since the KLT is constructed from the eigenvectors of the covariance 
matrix of data, there are neither single unique transform for all random processes nor fast 
algorithms. Unlike the KLT, the DCT and DST are not data dependent, and many fast 
algorithms were proposed. To provide image processing in real time, fast recursive 
algorithms for computing the running sinusoidal transforms are utilized (Kober, 2004, 2007). 
We introduce local adaptive restoration of nonuniform degraded images using several 
running sinusoidal transforms. Computer simulation results using a real image are 
provided and compared with those of common restoration techniques. 

2. Fast algorithms of running discrete sinusoidal transforms 
The discrete cosine and sine transforms are widely used in signal processing applications. 
Recently, forward and inverse algorithms for fast computing of various DCTs ({DCT-I, DCT-II, 
DCT-III, DCT-IV) and DSTs (DST-I, DST-II, DST-III, DST-IV) were proposed (Kober, 2004). 
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2.1 Discrete sinusoidal transforms 

First, we recall the definitions for various discrete sinusoidal transforms. Notation {.} 
denotes a matrix, the order of which is represented by a subscript. For clarity, the 
normalization factor 2 N  for all forward transforms is neglected until the inverse 

transforms. The kernel of the orthogonal DCT-I for the order N+1 is defined as 

 1 cos ,N s n
nsDCT I k k
N


      

  
 (2) 

where n, s=0,…, N;     
1 2    0  ,

1               .m m n or m s
if m or m Nk

otherwise 

   


 

The kernels of the DCT-II, DCT-III, and DCT-IV for the order N are given as 

 
 1 / 2

cosN s
s n

DCT II k
N


        
   

, (3) 

 
 1 / 2

cosN n
n s

DCT III k
N


        
   

, (4) 

 
  1 / 2 1 /2

cosN
n s

DCT IV
N


         
   

, (5) 

where n, s=0, 1,…, N-1. The kernel of the DST-I for the order N-1 is defined as 

 1 sinN
nsDST I
N


      

  
, (6) 

where n, s=1, 2,…, N-1. The kernels of the DST-II, DST-III, and DST-IV for the order N are 
given as follows: 

 
 1 / 2

sinN s
s n

DST II k
N


        
   

, (7) 

 
 1 / 2

sinN n
n s

DST III k
N


        
   

, (8) 

 
  1 / 2 1 / 2

sinN
n s

DST IV
N


         
   

, (9) 

where n, s=1, 2,…, N.  
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2.2 Fast forward algorithms for computing running discrete sinusoidal transforms 

The fast forward algorithms are based on recursive relationships between three subsequent 
local running spectra. These algorithms for running DCTs (SDCTs) and running DSTs 
(SDSTs) are based on the second–order recursive equations summarized in Table I. 
 

N Transforms Recursive equations

1 SDCT-I 
   

  
1

2

2

1

1

1
1 1

2 1 cos

                 1

sk k
s s k N k N

sk
s k N k N

sX X x x
N

X x x


 


   

      
 

  
 

2 SDCT-II 
    1 1 2 2

1 1

1 1

               2 cos

cos 1
2

k k k
s s s

s
k N k N k N k N

sX X X
N

s x x x x
N





 

     

    
 

      
 

 

3 SDCT-III 
   

   

1

1 2

1 1

1 1

1 / 2
2 cos  

1 / 2
              1 sin

k k k
s s k N s

s
k N k N

s
X X x X

N

s
x x

N





 


   

  
    

 
  

   
 

 

4 SDCT-IV 

   
       

1 1

2 2

1 1
1

1

1 / 2
2 cos x

1 / 2 1 / 2
cos 1 sin

2 2

k k k
s s s k N k N

s
k N k N

s
X X X x x

N

s s
x x

N N



 

 
  

  

  
    

 
     

     
   

 

5 SDST-I 
  1 2

1 1

1 1

2 cos

  1 sin

k k k
s s s

s
k N k N

sX X X
N

sx x
N





 

   

    
 

    
 

 

6 SDST-II 
    1 1 2 2

1 1

1 1

            2 cos

1 sin
2

k k k
s s s

s
k N k N k N k N

sX X X
N

sx x x x
N





 

     

    
 

      
 

 

7 SDST-III 

   

     

2

1 2

1 1
1

1

1 / 2
2 cos 1

1 / 2 1 / 2
   sin 1 cos

sk k k
s s s k N

s
k N k N

s
X X X x

N

s s
x x

N N



 

 
 

  

  
     

 
     

    
   

 

8 SDST-IV 

   
       

1

2 2

1
1 1

1

1

1 / 2
2 cos x

1 / 2 1 / 2
sin  1 cos

2 2

k k k
s s s k N k N

s
k N k N

s
X X X x x

N

s s
x x

N N



 

 
  

  

  
    

 
     

     
   

 

Table 1. Recursive equations for the computation of forward running sinusoidal transforms. 
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The number of arithmetic operations required for computing the running discrete cosine 
transforms at a given window position is evaluated as follows. The SDCT-I for the order 
N+1 with N=N1+N2 requires N-1 multiplication operations and 4(N+2) addition operations. 
The SDCT-II for the order N with N= N1+ N2+1 requires 2(N-1) multiplication operations 
and 2N+5 addition operations. A fast algorithm for the SDCT-III for the order N with N=N1+ 
N2+1 is based on the recursive equation given in line 3 of Table 1. Next it is useful to 
represent the equation as  

        
2

1 1
1

1 / 2 1 / 2
cos 1 sinsk k k k

s s s s k N
s s

X X X X x
N N

  
 

     
       

   
  , (10) 

where the array  1
; 0 1 . 1k k

s s k NX X x s , ,.. N     is stored in a memory buffer of N 

elements. From the property of symmetry of the sine function,   sin 1 / 2s N    

  sin 1 / 2 , 0,1,...[ / 2]N s N s N     (here [x/y] is the integer quotient) and Eq. (10), the 
number of operations required to compute the DSCT-III can be evaluated as [3/2N] 
multiplication operations and 4N addition operations. An additional memory buffer of N 
elements is also required. Finally, the SDCT-IV for the order N with N=N1+ N2+1 requires 
3N multiplication operations and 3N+2 addition operations.  

The number of arithmetic operations required for computing the running discrete sine 
transforms at a given window position can be evaluated as follows. The SDST-I for the order 
N-1 with N=N1+ N2+1 requires 2(N-1) multiplication operations and 2N addition operations. 

However, if N is even,       
1 21 11 sins

k N k Nf s x x s N       in line 5 of Table I is 

symmetric on the interval [1, N-1]; that is, f(s)=f(N-s), s=1,..N/2-1. Therefore, only N/2-1 
multiplication operations are required to compute this term. The total number of 
multiplications is reduced to 3N/2-2. The SDST-II for the order N with N=N1+ N2+1 requires 
2(N-1) multiplication operations and 2N+5 addition operations. Taking into account the 
property of symmetry of the sine and cosine functions, the SDST-III for the order N with 
N=N1+ N2+1 requires 2N multiplications and 4N addition operations. However, if N is even, 
the sum        

1 21( ) sin 1 / 2 1 cos 1 / 2s
k N k Ng s x s N x s N         in line 7 of Table I 

is symmetric on the interval [1, N]; that is, g(s)=g(N-s+1), s=1,..N/2. Therefore, only N/2 
addition operations are required to compute the sum. If N is odd, the sum 
      

1 21 1sin 1 / 2 1 s
k N k Np s x s N x        in line 7 of Table I is symmetric on the 

interval [1, N]; that is, p(s)=p(N-s+1), s=1,..[N/2]. Hence, [N/2] addition operations are 
required to compute this sum. So, the total number of additions can be reduced to [7N/2]. 
Finally, the SDST-IV for the order N with N=N1+ N2+1 requires 3N multiplication operations 
and 3N+2 addition operations. The length of a moving window for the proposed algorithms 
may be an arbitrary integer. 

2.3 Fast inverse algorithms for running signal processing with sinusoidal transforms 

The inverse discrete cosine and sine transforms for signal processing in a running window 
are performed for computing only the pixel xk of the window. The running signal 
processing can be performed with the use of the SDCT and SDST algorithms.  
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2.2 Fast forward algorithms for computing running discrete sinusoidal transforms 

The fast forward algorithms are based on recursive relationships between three subsequent 
local running spectra. These algorithms for running DCTs (SDCTs) and running DSTs 
(SDSTs) are based on the second–order recursive equations summarized in Table I. 
 

N Transforms Recursive equations

1 SDCT-I 
   

  
1

2

2

1

1

1
1 1

2 1 cos

                 1

sk k
s s k N k N

sk
s k N k N

sX X x x
N

X x x


 


   

      
 

  
 

2 SDCT-II 
    1 1 2 2

1 1

1 1

               2 cos

cos 1
2

k k k
s s s

s
k N k N k N k N

sX X X
N

s x x x x
N





 

     

    
 

      
 

 

3 SDCT-III 
   

   

1

1 2

1 1

1 1

1 / 2
2 cos  

1 / 2
              1 sin

k k k
s s k N s

s
k N k N

s
X X x X

N

s
x x

N





 


   

  
    

 
  

   
 

 

4 SDCT-IV 

   
       

1 1

2 2

1 1
1

1

1 / 2
2 cos x

1 / 2 1 / 2
cos 1 sin

2 2

k k k
s s s k N k N

s
k N k N

s
X X X x x

N

s s
x x

N N



 

 
  

  

  
    

 
     

     
   

 

5 SDST-I 
  1 2

1 1

1 1

2 cos

  1 sin

k k k
s s s

s
k N k N

sX X X
N

sx x
N





 

   

    
 

    
 

 

6 SDST-II 
    1 1 2 2

1 1

1 1

            2 cos

1 sin
2

k k k
s s s

s
k N k N k N k N

sX X X
N

sx x x x
N





 

     

    
 

      
 

 

7 SDST-III 

   

     

2

1 2

1 1
1

1

1 / 2
2 cos 1

1 / 2 1 / 2
   sin 1 cos

sk k k
s s s k N

s
k N k N

s
X X X x

N

s s
x x

N N



 

 
 

  

  
     

 
     

    
   

 

8 SDST-IV 

   
       

1

2 2

1
1 1

1

1

1 / 2
2 cos x

1 / 2 1 / 2
sin  1 cos

2 2

k k k
s s s k N k N

s
k N k N

s
X X X x x

N

s s
x x

N N



 

 
  

  

  
    

 
     

     
   

 

Table 1. Recursive equations for the computation of forward running sinusoidal transforms. 
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The number of arithmetic operations required for computing the running discrete cosine 
transforms at a given window position is evaluated as follows. The SDCT-I for the order 
N+1 with N=N1+N2 requires N-1 multiplication operations and 4(N+2) addition operations. 
The SDCT-II for the order N with N= N1+ N2+1 requires 2(N-1) multiplication operations 
and 2N+5 addition operations. A fast algorithm for the SDCT-III for the order N with N=N1+ 
N2+1 is based on the recursive equation given in line 3 of Table 1. Next it is useful to 
represent the equation as  

        
2

1 1
1

1 / 2 1 / 2
cos 1 sinsk k k k

s s s s k N
s s

X X X X x
N N

  
 

     
       

   
  , (10) 

where the array  1
; 0 1 . 1k k

s s k NX X x s , ,.. N     is stored in a memory buffer of N 

elements. From the property of symmetry of the sine function,   sin 1 / 2s N    

  sin 1 / 2 , 0,1,...[ / 2]N s N s N     (here [x/y] is the integer quotient) and Eq. (10), the 
number of operations required to compute the DSCT-III can be evaluated as [3/2N] 
multiplication operations and 4N addition operations. An additional memory buffer of N 
elements is also required. Finally, the SDCT-IV for the order N with N=N1+ N2+1 requires 
3N multiplication operations and 3N+2 addition operations.  

The number of arithmetic operations required for computing the running discrete sine 
transforms at a given window position can be evaluated as follows. The SDST-I for the order 
N-1 with N=N1+ N2+1 requires 2(N-1) multiplication operations and 2N addition operations. 

However, if N is even,       
1 21 11 sins

k N k Nf s x x s N       in line 5 of Table I is 

symmetric on the interval [1, N-1]; that is, f(s)=f(N-s), s=1,..N/2-1. Therefore, only N/2-1 
multiplication operations are required to compute this term. The total number of 
multiplications is reduced to 3N/2-2. The SDST-II for the order N with N=N1+ N2+1 requires 
2(N-1) multiplication operations and 2N+5 addition operations. Taking into account the 
property of symmetry of the sine and cosine functions, the SDST-III for the order N with 
N=N1+ N2+1 requires 2N multiplications and 4N addition operations. However, if N is even, 
the sum        

1 21( ) sin 1 / 2 1 cos 1 / 2s
k N k Ng s x s N x s N         in line 7 of Table I 

is symmetric on the interval [1, N]; that is, g(s)=g(N-s+1), s=1,..N/2. Therefore, only N/2 
addition operations are required to compute the sum. If N is odd, the sum 
      

1 21 1sin 1 / 2 1 s
k N k Np s x s N x        in line 7 of Table I is symmetric on the 

interval [1, N]; that is, p(s)=p(N-s+1), s=1,..[N/2]. Hence, [N/2] addition operations are 
required to compute this sum. So, the total number of additions can be reduced to [7N/2]. 
Finally, the SDST-IV for the order N with N=N1+ N2+1 requires 3N multiplication operations 
and 3N+2 addition operations. The length of a moving window for the proposed algorithms 
may be an arbitrary integer. 

2.3 Fast inverse algorithms for running signal processing with sinusoidal transforms 

The inverse discrete cosine and sine transforms for signal processing in a running window 
are performed for computing only the pixel xk of the window. The running signal 
processing can be performed with the use of the SDCT and SDST algorithms.  
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The inverse algorithms for the running DCTs can be written as follows. 

IDCT-I: 

   1
1

1
0

1

1 2 cos 1
N

Nk k k
k s N

s

N sx X X X
N N






       
  

 , (11) 

where N=N1+N2. If xk is the central pixel of the window; that is, N1=N2 then the inverse 
transform is simplified to 

    
1

1
1

2 0
1

1 2 1 1
N

s Nk k k
k s N

s
x X X X

N





 
      

 
 . (12) 

Therefore, in the computation only the spectral coefficients with even indices are involved. 
The number of required operations of multiplication and addition becomes one and N1+1, 
respectively.  

IDCT-II: 

  1
1

0
1

1 /21 2 cos
N

k k
k s

s

N s
x X X

N N






   
      

 , (13) 

where N=N1+N2+1. If xk is the central pixel of the window, that is, N1=N2 then the inverse 
transform is given by 

   
1

2 0
1

1 2 1
N

s k k
k s

s
x X X

N 

 
    

 
 . (14) 

We see that in the computation only the spectral coefficients with even indices are involved. 
The computation requires one multiplication operation and N1+1 addition operations.  

IDCT-III: 

  1
1

0

1 / 22 cos
N

k
k s

s

N s
x X

N N






  
  

 
 , (15) 

where N=N1+N2+1. If xk is the central pixel of the window, that is, N1=N2 then the inverse 
transform is  

       
     1

1
1 1

1

1
1

[ /2]1
1

0

1 1 1 11 / 22 1 cos 1
4

N N
N

N Nk k
k s N s N

s

kN s
x X X X

N N





 


                  
 . (16) 

If N1 is even, then the computation requires N1+1 multiplication operations and 2N1 
addition operations. Otherwise, the complexity is reduced to N1 multiplication operations 
and 2N1 - 1 addition operations. 

IDCT-IV: 
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   1
1

0

1 / 2 1 / 22 cos
N

k
k s

s

N s
x X

N N






   
  

 
 , (17) 

where N=N1+N2+1. If xk is the central pixel of the window, that is, N1=N2 then the inverse 
transform is given by 

    
1

2 2 1 0
1

2 1
N

s k k k
k s s

s
x X X X

N 


 
     

 
 . (18) 

One multiplication operation and N-1 addition operations are required to perform this 
computation.  

The inverse algorithms for the running DSTs are given as follows. 

IDST-I: 

  1
1

1

12 sin
N

k
k s

s

N s
x X

N N






  
  

 
 , (19) 

where N=N1+N2+2. If xk is the central pixel of the window; that is, N1=N2 then the inverse 
transform is simplified to 

  
1

2 1
0

2 1
N

s k
k s

s
x X

N 


  . (20) 

Therefore, in the computation only the spectral coefficients with odd indices are involved. 
The complexity is one multiplication operation and N1 addition operations.  

IDST-II: 

     1
1

1

1

1 / 21 2 sin 1
N

Nk k
k s N

s

N s
x X X

N N






   
       

 , (21) 

where N=N1+N2+1. If xk is the central pixel of the window; that is, N1=N2 then the inverse 
transform is given by 

    
1

1
1

2 1
0

1 2 1 1
N

s Nk k
k s N

s
x X X

N






 
     

 
 . (22) 

In the computation only the spectral coefficients with odd indices are involved. The 
computational complexity is one multiplication operation and N1+1 addition operations.  

IDST-III: 

   1

1

1 1 / 22 sin
N

k
k s

s

N s
x X

N N




   
  

 
 , (23) 
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The inverse algorithms for the running DCTs can be written as follows. 

IDCT-I: 

   1
1

1
0

1

1 2 cos 1
N

Nk k k
k s N

s

N sx X X X
N N






       
  

 , (11) 

where N=N1+N2. If xk is the central pixel of the window; that is, N1=N2 then the inverse 
transform is simplified to 

    
1

1
1

2 0
1

1 2 1 1
N

s Nk k k
k s N

s
x X X X

N





 
      

 
 . (12) 

Therefore, in the computation only the spectral coefficients with even indices are involved. 
The number of required operations of multiplication and addition becomes one and N1+1, 
respectively.  

IDCT-II: 

  1
1

0
1

1 /21 2 cos
N

k k
k s

s

N s
x X X

N N






   
      

 , (13) 

where N=N1+N2+1. If xk is the central pixel of the window, that is, N1=N2 then the inverse 
transform is given by 

   
1

2 0
1

1 2 1
N

s k k
k s

s
x X X

N 

 
    

 
 . (14) 

We see that in the computation only the spectral coefficients with even indices are involved. 
The computation requires one multiplication operation and N1+1 addition operations.  

IDCT-III: 

  1
1

0

1 / 22 cos
N

k
k s

s

N s
x X

N N






  
  

 
 , (15) 

where N=N1+N2+1. If xk is the central pixel of the window, that is, N1=N2 then the inverse 
transform is  

       
     1

1
1 1

1

1
1

[ /2]1
1

0

1 1 1 11 / 22 1 cos 1
4

N N
N

N Nk k
k s N s N

s

kN s
x X X X

N N





 


                  
 . (16) 

If N1 is even, then the computation requires N1+1 multiplication operations and 2N1 
addition operations. Otherwise, the complexity is reduced to N1 multiplication operations 
and 2N1 - 1 addition operations. 

IDCT-IV: 
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   1
1

0

1 / 2 1 / 22 cos
N

k
k s

s

N s
x X

N N






   
  

 
 , (17) 

where N=N1+N2+1. If xk is the central pixel of the window, that is, N1=N2 then the inverse 
transform is given by 

    
1

2 2 1 0
1

2 1
N

s k k k
k s s

s
x X X X

N 


 
     

 
 . (18) 

One multiplication operation and N-1 addition operations are required to perform this 
computation.  

The inverse algorithms for the running DSTs are given as follows. 

IDST-I: 

  1
1

1

12 sin
N

k
k s

s

N s
x X

N N






  
  

 
 , (19) 

where N=N1+N2+2. If xk is the central pixel of the window; that is, N1=N2 then the inverse 
transform is simplified to 

  
1

2 1
0

2 1
N

s k
k s

s
x X

N 


  . (20) 

Therefore, in the computation only the spectral coefficients with odd indices are involved. 
The complexity is one multiplication operation and N1 addition operations.  

IDST-II: 

     1
1

1

1

1 / 21 2 sin 1
N

Nk k
k s N

s

N s
x X X

N N






   
       

 , (21) 

where N=N1+N2+1. If xk is the central pixel of the window; that is, N1=N2 then the inverse 
transform is given by 

    
1

1
1

2 1
0

1 2 1 1
N

s Nk k
k s N

s
x X X

N






 
     

 
 . (22) 

In the computation only the spectral coefficients with odd indices are involved. The 
computational complexity is one multiplication operation and N1+1 addition operations.  

IDST-III: 

   1

1

1 1 / 22 sin
N

k
k s

s

N s
x X

N N




   
  

 
 , (23) 
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where N=N1+N2+1. If xk is the central pixel of the window; that is, N1=N2 then we can 
rewrite 

               1
1

1 1
1

1
21

1 1
1

1 1 1 11 1 22 1 sin 1
4

N N
N

N Nk k
k s N s N

s

kN s
x X X X

N N




  


                   
 . (24) 

If N1 is even, then the computation requires N1+1 multiplication operations and 2N1 
addition operations. Otherwise, the complexity is reduced to N1 multiplication operations 
and 2N1 - 1 addition operations. 

IDST-IV: 

   1

1

1 / 2 1 / 22 sin
N

k
k s

s

N s
x X

N N




   
  

 
 , (25) 

where =N1+N2+1. If xk is the central pixel of the window; that is, N1=N2, then the inverse 
transform is given by 

      
1

11
2 2 1

1

2 1 1
N

s Nk k k
k s s N

s
x X X X

N





 
      

 
 . (26) 

The complexity is one multiplication operation and N-1 addition operations.  

3. Local image restoration with running transforms 
First we define a local criterion of the performance of filters for image processing and then 
derive optimal local adaptive filters with respect to the criterion. One the most used 
criterion in signal processing is the minimum mean-square error (MSE). Since the processing 
is carried out in a moving window, then for each position of a moving window an estimate 
of the central element of the window is computed. Suppose that the signal to be processed is 
approximately stationary within the window. The signal may be distorted by sensor’s noise. 

Let us consider a generalized linear filtering of a fragment of the input one-dimensional 
signal (for instance for a fixed position of the moving window). Let a=[ak] be undistorted 
real signal, x=[xk] be observed signal, k=1,…, N, N be the size of the fragment, U  be the 
matrix of the discrete sinusoidal transform, E{.} be the expected value, superscript T denotes 
the transpose. Let a Hx  be a linear estimate of the undistorted signal, which minimizes 
the MSE averaged over the window 

     a a a aTMMSE E N   . (27) 

The optimal filter for this problem is the Wiener filter (Jain, 1989): 

     1
H a x xxT TE E


    . (28) 

Let us consider the known model of a linear degradation: 

 
Space-Variant Image Restoration with Running Sinusoidal Transforms 

 

11 

 ,k k n n k
n

x w a v  , (29) 

where W=[wk,n] is a distortion matrix, ν=[vk] is additive noise with zero mean, k,n=1,…N, N 
is the size of fragment. The equation can be rewritten as  

 x=Wa+v , (30) 

and the optimal filter is given by 

 
1

H K W WK W KT T
aa aa 


    , (31) 

where      K aa ,  K ,   a 0T T T
aa E E E  νν ν  are the covariance matrices. It is assumed 

that the input signal and noise are uncorrelated. 

The obtained optimal filter is based on an assumption that an input signal within the 
window is stationary. The result of filtering is the restored window signal. This corresponds 
to signal processing in nonoverlapping fragments. The computational complexity of the 
processing is O(N2). However, if the matrix of the optimal filter is diagonal, the complexity 
is reduced to O(N). Such filter is referred as a scalar filter. Actually, any linear filtering can 
be performed with a scalar filter using corresponding unitary transforms. Now suppose that 
the signal is processed in a moving window in the domain of a running discrete sinusoidal 
transform. For each position of the window an estimate of the central pixel should be 
computed. Using the equations for inverse sinusoidal transforms presented in the previous 
section, the point-wise MSE (PMSE) for reconstruction of the central element of the window 
can be written as follows:  

              
2

2

1

N

l
PMSE k E a k a k E l A l A l



           
   
 , (32) 

where      A A l H l X l     is a vector of signal estimate in the domain of a sinusoidal 

transform,  HU H l     is a diagonal matrix of the scalar filter,   l   α  is a diagonal 

matrix of the size xN N  of the coefficients of an inverse sinusoidal transform (see Eqs. (12), 
(14), (16), (18), (20), (22), (24), and (26)). Minimizing Eq. (32), we obtain 

   1
x axH P P IU x 

 , (33) 

where         I 1 , 2 ,...,diag N           is a diagonal matrix of the size xN N , 

  1  if  0,  else 0x x   ,          ax xP ,  PxE A l X k E X l X k        . Note that matrix 

  l   α  is sparse; the number of its non-zero entries is approximately twice less than the 
size of the window signal. Therefore, the computational complexity of the scalar filters in 
Eq. (33) and signal processing can be significantly reduced comparing to the complexity for 
the filter in Eq. (31). For the model of signal distortion in Eq. (30) the filter matrix is given as  
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where N=N1+N2+1. If xk is the central pixel of the window; that is, N1=N2 then we can 
rewrite 

               1
1

1 1
1

1
21

1 1
1

1 1 1 11 1 22 1 sin 1
4

N N
N

N Nk k
k s N s N

s

kN s
x X X X

N N




  


                   
 . (24) 

If N1 is even, then the computation requires N1+1 multiplication operations and 2N1 
addition operations. Otherwise, the complexity is reduced to N1 multiplication operations 
and 2N1 - 1 addition operations. 

IDST-IV: 

   1

1

1 / 2 1 / 22 sin
N

k
k s

s

N s
x X

N N




   
  

 
 , (25) 

where =N1+N2+1. If xk is the central pixel of the window; that is, N1=N2, then the inverse 
transform is given by 

      
1

11
2 2 1

1

2 1 1
N

s Nk k k
k s s N

s
x X X X

N





 
      

 
 . (26) 

The complexity is one multiplication operation and N-1 addition operations.  

3. Local image restoration with running transforms 
First we define a local criterion of the performance of filters for image processing and then 
derive optimal local adaptive filters with respect to the criterion. One the most used 
criterion in signal processing is the minimum mean-square error (MSE). Since the processing 
is carried out in a moving window, then for each position of a moving window an estimate 
of the central element of the window is computed. Suppose that the signal to be processed is 
approximately stationary within the window. The signal may be distorted by sensor’s noise. 

Let us consider a generalized linear filtering of a fragment of the input one-dimensional 
signal (for instance for a fixed position of the moving window). Let a=[ak] be undistorted 
real signal, x=[xk] be observed signal, k=1,…, N, N be the size of the fragment, U  be the 
matrix of the discrete sinusoidal transform, E{.} be the expected value, superscript T denotes 
the transpose. Let a Hx  be a linear estimate of the undistorted signal, which minimizes 
the MSE averaged over the window 

     a a a aTMMSE E N   . (27) 

The optimal filter for this problem is the Wiener filter (Jain, 1989): 

     1
H a x xxT TE E


    . (28) 

Let us consider the known model of a linear degradation: 
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 ,k k n n k
n

x w a v  , (29) 

where W=[wk,n] is a distortion matrix, ν=[vk] is additive noise with zero mean, k,n=1,…N, N 
is the size of fragment. The equation can be rewritten as  

 x=Wa+v , (30) 

and the optimal filter is given by 

 
1

H K W WK W KT T
aa aa 


    , (31) 

where      K aa ,  K ,   a 0T T T
aa E E E  νν ν  are the covariance matrices. It is assumed 

that the input signal and noise are uncorrelated. 

The obtained optimal filter is based on an assumption that an input signal within the 
window is stationary. The result of filtering is the restored window signal. This corresponds 
to signal processing in nonoverlapping fragments. The computational complexity of the 
processing is O(N2). However, if the matrix of the optimal filter is diagonal, the complexity 
is reduced to O(N). Such filter is referred as a scalar filter. Actually, any linear filtering can 
be performed with a scalar filter using corresponding unitary transforms. Now suppose that 
the signal is processed in a moving window in the domain of a running discrete sinusoidal 
transform. For each position of the window an estimate of the central pixel should be 
computed. Using the equations for inverse sinusoidal transforms presented in the previous 
section, the point-wise MSE (PMSE) for reconstruction of the central element of the window 
can be written as follows:  

              
2

2

1

N

l
PMSE k E a k a k E l A l A l



           
   
 , (32) 

where      A A l H l X l     is a vector of signal estimate in the domain of a sinusoidal 

transform,  HU H l     is a diagonal matrix of the scalar filter,   l   α  is a diagonal 

matrix of the size xN N  of the coefficients of an inverse sinusoidal transform (see Eqs. (12), 
(14), (16), (18), (20), (22), (24), and (26)). Minimizing Eq. (32), we obtain 

   1
x axH P P IU x 

 , (33) 

where         I 1 , 2 ,...,diag N           is a diagonal matrix of the size xN N , 

  1  if  0,  else 0x x   ,          ax xP ,  PxE A l X k E X l X k        . Note that matrix 

  l   α  is sparse; the number of its non-zero entries is approximately twice less than the 
size of the window signal. Therefore, the computational complexity of the scalar filters in 
Eq. (33) and signal processing can be significantly reduced comparing to the complexity for 
the filter in Eq. (31). For the model of signal distortion in Eq. (30) the filter matrix is given as  
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   1
H U WK W K U UK W U IT T T T

U aa aa 


    . (34) 

If the matrices  U WK W K UT T
aa   and UK W UT T

aa  in Eq. (34) are close to diagonal, the 

matrix of the scalar filter in (34) is close to diagonal, and the filter can be written as 

    
   

1

2

P l
H l

P l P l



, (35) 

where      1 2,  ,  nnP l P l P l  are diagonal elements of the following matrices 

UK W U I ,T T
aa  U WK W UT T

aa , UK UT
 , l=1,… N . 

For a real symmetric matrix of the covariance function, say K , there exists a unitary matrix 
U  such that U K UT  is a diagonal matrix. Actually, it is the KLT. It was shown (Jain, 1989) 
that some discrete sinusoidal transforms perform close to the optimum KLT for the first-
order Markov stationary data under specific conditions. In our case, the covariance matrices 
K W UT T

aa  and WK WT
aa  are not symmetric. Therefore, under different conditions of 

degradation different discrete sinusoidal transforms can better diagonalize these matrices. 
For instance, if a signal has a high correlation coefficient and a smoothed version of the 
signal is corrupted by additive, weakly-correlated noise, then the matrix 

 U WK W K UT T
aa   is close to diagonal. Figure 1 shows the covariance matrix of the 

smoothed and noisy signal having the correlation coefficient of 0.95 as well as the discrete 
cosine transform of the covariance matrix. The linear convolution between a signal x and the 
matrix K WT

aa  in the domain of the running DCT-II can be well approximated by a 

diagonal matrix  UK W U I XT T
aadiag  . Therefore, the matrix of the scalar filter in Eq. (34) 

will be close to diagonal. 

 
(a) (b) 

Fig. 1. (a) Covariance matrix of a noisy signal, (b) DCT-II of the covariance matrix. 
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For the design of local adaptive filters in the domain of running sinusoidal transforms the 
covariance matrices and power spectra of fragments of a signal are required. Since they are 
often unknown, in practice, these matrices can be estimated from observed signals 
(Yaroslavsky & Eden, 1996). 

4. Computer simulation results 
The objective of this section is to develop a technique for local adaptive restoration of 
images degraded by nonuniform motion blur. Assume that the blur is owing to horizontal 
relative motion between the camera and the image, and it is approximately space-invariant 
within local regions of the image. It is known that point spread functions for motion and 
focus blurs do have zeros in the frequency domain, and they can be uniquely identified by 
the location of these zero crossings (Biemond et al., 1990). We assume also that the 
observation noise is a zero-mean, white Gaussian process that is uncorrelated to the image 
signal. In this case, the noise field is completely characterized by its variance, which is 
commonly estimated by the sample variance computed over a low-contrast local region of 
the observed image. To guarantee statistically correct results, 30 statistical trials of each 
experiment for different realizations of the random noise process were performed. The MSE 
criterion is used for comparing the quality of restoration. Additionally, a subjective visual 
criterion is used. In our computer simulation, the MSE is given by 

  
 2( ) ( )

,

N

i
a i a i

MSE a a
N





, (36) 

where  ( ), 1,..a i i N  is the original image, and  ( ), 1,..a i i N is the restored image. The 
subjective visual criterion is defined as an enhanced difference between original and 
restored images. A pixel is displayed as gray if there is no error between the original image 
and the restored image. For maximum error, the pixel is displayed either black or white 
(with intensity values of 0 and 1, respectively). First, with the help of computer simulation 
we answer to the question: how to choose the best running discrete sinusoidal transform for 
local image restoration?  

4.1 Choice of discrete sinusoidal transform for local image restoration 

The objective of this section is to test the performance of the scalar filter (see Eq. (34)) 
designed with different running sinusoidal transforms for local image restoration while the 
statistics of the degraded image are varied. In our experiments we used realizations of a 
wide-sense colored stationary process, which is completely defined by the second-order 
statistics. The zero-mean process has the bi-exponential covariance function with varying 
correlation coefficient  . 

The generated synthetic image is degraded by running 1D horizontal averaging of 5 pixels, 
and then a white Gaussian noise with a given standard deviation n  is added. The size of 
images is 1024x1024. The quality of restoration is measured in terms of the MSE. The size of 
moving window for local image restoration is 15x15. The best running discrete sinusoidal 
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   1
H U WK W K U UK W U IT T T T

U aa aa 


    . (34) 

If the matrices  U WK W K UT T
aa   and UK W UT T

aa  in Eq. (34) are close to diagonal, the 

matrix of the scalar filter in (34) is close to diagonal, and the filter can be written as 

    
   

1

2

P l
H l

P l P l



, (35) 

where      1 2,  ,  nnP l P l P l  are diagonal elements of the following matrices 

UK W U I ,T T
aa  U WK W UT T

aa , UK UT
 , l=1,… N . 

For a real symmetric matrix of the covariance function, say K , there exists a unitary matrix 
U  such that U K UT  is a diagonal matrix. Actually, it is the KLT. It was shown (Jain, 1989) 
that some discrete sinusoidal transforms perform close to the optimum KLT for the first-
order Markov stationary data under specific conditions. In our case, the covariance matrices 
K W UT T

aa  and WK WT
aa  are not symmetric. Therefore, under different conditions of 

degradation different discrete sinusoidal transforms can better diagonalize these matrices. 
For instance, if a signal has a high correlation coefficient and a smoothed version of the 
signal is corrupted by additive, weakly-correlated noise, then the matrix 

 U WK W K UT T
aa   is close to diagonal. Figure 1 shows the covariance matrix of the 

smoothed and noisy signal having the correlation coefficient of 0.95 as well as the discrete 
cosine transform of the covariance matrix. The linear convolution between a signal x and the 
matrix K WT

aa  in the domain of the running DCT-II can be well approximated by a 

diagonal matrix  UK W U I XT T
aadiag  . Therefore, the matrix of the scalar filter in Eq. (34) 

will be close to diagonal. 

 
(a) (b) 

Fig. 1. (a) Covariance matrix of a noisy signal, (b) DCT-II of the covariance matrix. 
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For the design of local adaptive filters in the domain of running sinusoidal transforms the 
covariance matrices and power spectra of fragments of a signal are required. Since they are 
often unknown, in practice, these matrices can be estimated from observed signals 
(Yaroslavsky & Eden, 1996). 

4. Computer simulation results 
The objective of this section is to develop a technique for local adaptive restoration of 
images degraded by nonuniform motion blur. Assume that the blur is owing to horizontal 
relative motion between the camera and the image, and it is approximately space-invariant 
within local regions of the image. It is known that point spread functions for motion and 
focus blurs do have zeros in the frequency domain, and they can be uniquely identified by 
the location of these zero crossings (Biemond et al., 1990). We assume also that the 
observation noise is a zero-mean, white Gaussian process that is uncorrelated to the image 
signal. In this case, the noise field is completely characterized by its variance, which is 
commonly estimated by the sample variance computed over a low-contrast local region of 
the observed image. To guarantee statistically correct results, 30 statistical trials of each 
experiment for different realizations of the random noise process were performed. The MSE 
criterion is used for comparing the quality of restoration. Additionally, a subjective visual 
criterion is used. In our computer simulation, the MSE is given by 

  
 2( ) ( )

,

N

i
a i a i

MSE a a
N





, (36) 

where  ( ), 1,..a i i N  is the original image, and  ( ), 1,..a i i N is the restored image. The 
subjective visual criterion is defined as an enhanced difference between original and 
restored images. A pixel is displayed as gray if there is no error between the original image 
and the restored image. For maximum error, the pixel is displayed either black or white 
(with intensity values of 0 and 1, respectively). First, with the help of computer simulation 
we answer to the question: how to choose the best running discrete sinusoidal transform for 
local image restoration?  

4.1 Choice of discrete sinusoidal transform for local image restoration 

The objective of this section is to test the performance of the scalar filter (see Eq. (34)) 
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statistics of the degraded image are varied. In our experiments we used realizations of a 
wide-sense colored stationary process, which is completely defined by the second-order 
statistics. The zero-mean process has the bi-exponential covariance function with varying 
correlation coefficient  . 

The generated synthetic image is degraded by running 1D horizontal averaging of 5 pixels, 
and then a white Gaussian noise with a given standard deviation n  is added. The size of 
images is 1024x1024. The quality of restoration is measured in terms of the MSE. The size of 
moving window for local image restoration is 15x15. The best running discrete sinusoidal 



 
Image Restoration – Recent Advances and Applications 

 

14

transform a function of the model parameters ( n  and  ) is presented in Table 2. So, in 
similar degradation circumstances and image model, local adaptive restoration yields the 
best results if the three sinusoidal transforms depending on local statistics of the processed 
image are used. The decision rule for choosing the best sinusoidal transform at each position 
of the moving window is given in Table 2. Next, we carry out adaptive local restoration with 
real images. 

n  0.05 0.1 0.2 0.25 

0.95   SDCT-II SDCT-II SDCT-II SDCT-II 

0.9   SDCT-II SDCT-II SDCT-II SDCT-II 

0.8   SDCT-II SDCT-II SDCT-II SDCT-II 

0.7   SDCT-II SDCT-II SDCT-II SDCT-II 

0.6   SDCT-II SDCT-II SDCT-II SDCT-II 

0.5   SDST-I SDCT-II SDCT-II SDCT-II 

0.3   SDST-I SDST-I SDST-I SDST-I 

0   SDST-I SDST-I SDST-I SDST-I 

0.3    SDST-I SDST-I SDST-I SDST-I 

0.5    SDST-II SDST-II SDST-II SDST-II 

0.7    SDST-II SDST-II SDST-II SDST-II 

0.8    SDST-II SDST-II SDST-II SDST-II 

0.9    SDST-II SDST-II SDST-II SDST-II 

Table 2. Best local restoration with running discrete sinusoidal transforms versus the model 
parameters. 
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4.2 Local adaptive restoration of real degraded image  

A real test aerial image is shown in Fig. 2(a). The size of image is 512x512, each pixel has 256 
levels of quantization. The signal range is [0, 1]. The image quadrants are degraded by 
running 1D horizontal averaging with the following sizes of the moving window: 5, 6, 4, 
and 3 pixels (for quadrants from left to right, from top to bottom). The image is also 
corrupted by a zero-mean additive white Gaussian noise. The degraded image with the 
noise standard deviation of 0.05 is shown in Fig. 2(b). 

In our tests the window length of 15x15 pixels is used, it is determined by the minimal size 
of details to be preserved after filtering. Since there exists difference in spectral distributions 
of the image signal and wide-band noise, the power spectrum of noise can be easily 
measured from the experimental covariance matrix. We carried out three parallel processing 
of the degraded image with the use of SDCT-II, SDST-I, and SDST-II transforms. At each 
position of the moving window the local correlation coefficient is estimated from the 
restored images. On the base of the correlation value and the standard deviation of noise, 
the resultant image is formed from the outputs obtained with either SDCT-II or SDST-I, or 
SDST-II according to Table 2. 

 

 
(a) (b) 

Fig. 2. (a) Test image, (b) space-variant degraded test image. 

The results of image restoration by the global parametric Wiener filtering (Jain, 1989) and 
the proposed method are shown in Figs. 3(a) and 3(b), respectively. Figs. 3(c) and 3(d) show 
differences between the original image and images restored by global Wiener algorithm and 
by the proposed algorithm, respectively. 

We also performed local image restoration using only the SDCT. As expected, the result of 
restoration is slightly worse than that of adaptive local restoration. We see that the proposed 
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transform a function of the model parameters ( n  and  ) is presented in Table 2. So, in 
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algorithm is capable to perform a good space-variant image restoration and noise 
suppression. Finally, we investigate the robustness of the tested restoration techniques to 
additive noise. The performance of the global parametric Wiener filtering and the local 
adaptive filtering is shown in Fig. 4. 

 

 
(a) (b) 

 
(c) (d) 

 
Fig. 3. (a) Global Wiener restoration, (b) local adaptive restoration in domain of running 
transforms, (c) difference between the original image and restored image by Wiener filtering, 
(d) difference between the original image and restored image by proposed algorithm. 
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Fig. 4. Performance of restoration algorithms in terms of MSE versus standard deviation of 
additive noise. 

4. Conclusion 
In this chapter we treated the problem of local adaptive technique for space-variant 
restoring linearly degraded and noisy images. The minimum MSE estimator in the 
domain of running discrete sinusoidal transforms was derived. To provide image 
processing at high rate, fast recursive algorithms for computing the running sinusoidal 
transforms were utilized. Extensive testing using various parameters of degradations 
(nonuniform motion blurring and corruption by noise) has shown that the original image 
can be well restored by proper choice of the parameters of the proposed adaptive local 
restoration algorithm. 
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1. Introduction 
Image restoration methods are used to improve the appearance of an image by the 
application of a restoration process based on a mathematical model to explain the way the 
image was distorted by noise. Examples of types of degradation include blurring caused by 
motion or atmospheric disturbance, geometric distortion caused by imperfect lenses, 
superimposed interference patterns caused by mechanical systems, and noise induced by 
electronic sources. 

Usually, it is assumed that the degradation model is either known or can be estimated from 
data. The general idea is to model the degradation process and then apply the inverse 
process to restore the original image. In cases when the available knowledge does not allow 
to adopt a reasonable model for the degradation mechanism it becomes necessary to extract 
information about the noise directed by data and then to use this information for restoration 
purposes. The knowledge about the particular generation process of the image is application 
specific. For example, it proves helpful to know how a specific lens distorts an image or how 
mechanical vibration from a satellite affects an image. This information can be gathered 
from the analysis of the image acquisition process and by applying image analysis 
techniques to samples of degraded images.  

The restoration can be viewed as a process that attempts to reconstruct or recover a 
degraded image using some available knowledge about the degradation mechanism. 
Typically, the noise can be modeled with either a Gaussian, uniform or salt and pepper 
distribution. The restoration techniques are usually oriented toward modeling the type of 
degradation in order to infer the inverse process for recovering the given image. This 
approach usually involves the option for a criterion to numerically evaluate the quality of 
the resulted image and consequently the restoration process can be expressed in terms of an 
optimization problem.  

The special filtering techniques of mean type prove particularly useful in reducing the 
normal/uniform noise component when the mean parameter is close to 0. In other words, 
the effects determined by the application of mean filters are merely the decrease of the local 
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specific. For example, it proves helpful to know how a specific lens distorts an image or how 
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The restoration can be viewed as a process that attempts to reconstruct or recover a 
degraded image using some available knowledge about the degradation mechanism. 
Typically, the noise can be modeled with either a Gaussian, uniform or salt and pepper 
distribution. The restoration techniques are usually oriented toward modeling the type of 
degradation in order to infer the inverse process for recovering the given image. This 
approach usually involves the option for a criterion to numerically evaluate the quality of 
the resulted image and consequently the restoration process can be expressed in terms of an 
optimization problem.  

The special filtering techniques of mean type prove particularly useful in reducing the 
normal/uniform noise component when the mean parameter is close to 0. In other words, 
the effects determined by the application of mean filters are merely the decrease of the local 
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variance corresponding to each processed window, and consequently to inhibit the variance 
component of the noise. The AMVR algorithm (Adaptive Mean Variance Removal) allows 
the removal of the normal/uniform noise whatever the mean of the noise is (Cocianu, State, 
& Vlamos, 2002). Similar to MMSE (Minimum Mean Square Error) filtering technique 
(Umbaugh, 1998) the application of the AMVR algorithm requires that the noise parameters 
and some additional features are known. 

The multiresolution support set is a data structure suitable for developing noise removal 
algorithms. (Bacchelli & Papi, 2006; Balster et al., 2003). The multiresolution algorithms 
perform the restoration tasks by combining, at each resolution level, according to a certain 
rule, the pixels of a binary support image. Some others use a selective wavelet shrinkage 
algorithm for digital image denoising aiming to improve the performance. For instance 
Balster (Balster, Zheng & Ewing, 2003) proposes an attempt of this sort together with a 
computation scheme, the denoising methodology incorporated in this algorithm involving a 
two-threshold validation process for real time selection of wavelet coefficients.  

A new solution of the denoising problem based on the description length of the noiseless 
data in the subspace of the basis is proposed in (Beheshti & Dahleh, 2003), where the desired 
description length is estimated for each subspace and the selection of the subspace 
corresponding to the minimum length is suggested.  

In (Bacchelli & Papi, 2006), a method for removing Gaussian noise from digital images based 
on the combination of the wavelet packet transform and the PCA is proposed. The method 
leads to tailored filters by applying the Karhunen-Loeve transform in the wavelet packet 
domain and acts with a suitable shrinkage function on these new coefficients, allowing the 
noise removal without blurring the edges and other important characteristics of the images. 

Wavelet thresholding methods modifying the noisy coefficients were proposed by several 
authors (Buades, Coll & Morel, 2005; Stark, Murtagh & Bijaoui, 1995). The attempts are 
based on the idea that images are represented by large wavelet coefficients that have to be 
preserved whereas the noise is distributed across the set of small coefficients that have to be 
canceled. Since the edges lead to a considerable amount of wavelet coefficients of lower 
values than the threshold, the cancellation of these wavelet coefficients may cause small 
oscillations near the edges resulting spurious wavelets in the restored image.  

2. Mathematics behind the noise removal and image restoration algorithms 
2.1 Principal Component Analysis (PCA) and Independent Component Analysis (ICA) 

We assume that the signal is represented by a n-dimensional real-valued random vector X of 
0 mean and covariance matrix Σ. The principal directions of the repartition of X are the 
directions corresponding to the maximum variability, where the variability is expressed in 
terms of the variance.  

Definition. The vector 1 Rn is the first principal direction if 1 1   and 

   1

1

var sup var
n

T T

R
X X


 

   . 

The value 1
T X  is referred as the first principal component of X.  
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Now, recursively, for any k, 2 k n  , if we denote by  1 1,..., kL
  the linear subspace 

orthogonal on the linear subspace generated by the first (k-1) directions, k Rn is the k-th 

principal direction if 1k   and  
 

 
1 1,...,

1

var sup var
k

T T
k

L
X X


  

 

   . 

The value T
k X  is referred as the k-th principal component of the signal X.  

Note that the principal directions 1 ,..., n   of any signal are an orthogonal basis of Rn , and 
TY X  is the signal representation in terms of the principal directions, where 

 1 ,..., n    . Obviously, T T
nI     ,   0E Y   and  , T TCov Y Y    . 

Consequently, if 1 ,..., n  are unit eigen vectors of Σ, then    1, ,...,T
nCov Y Y diag     , 

where 1 ,..., n  are the eigen values of Σ, that is the linear transform of matrix T de-
correlates the components of X. In the particular case of Gaussian signals, X~  0,N  , the 
components of Y are also normal distributed, iY ~  0, iN  , 1 i n  . 

The fundamental result is given by the celebrated Karhunen-Loeve theorem: 

Theorem. Let X be a n-dimensional real-valued random vector such that   0E X   and 
 , TCov X X   . If we denote by 1 2 ... n     the eigen values of Σ, then, for any k, 

1 k n  , the k-th principal direction is an eigen vector of Σ associated to k .  

A series of approaches are based on the assumption that the signal results as a mixture of a 
finite number of hidden independent sources and noise. This sort of attempts are usually 
referred as techniques of Independent Component Analysis type. The simplest model is the 
linear one, given by X=AS+ η , where A is an unknown matrix (mixing matrix), S is the n-
dimensional random vector whose components are independent and  1 2, ,..., T

nη    is a 
random vector representing the noise. The problem is to recover the hidden sources being 
given the signal X without knowing the mixing matrix A. 

For simplicity sake, the noise model is of Gaussian type, that is  ~  0,N  . Then, if we 
denote V AS , then, for any vector w  Rn , T T Tw X w V w   . Consequently, the non-
Gaussianity of Tw V can be maximized on the basis of Tw X  if we use an expression that 
vanishes the component Tw  .  

The kurtosis (the fourth-order cumulant) corresponding to a real-valued random variable Y 
is defined as       24 23kurt Y E Y E Y  . In case Y is normally distributed, we get 

  0kurt Y  . Since  ~  0,N  , for any w  Rn , Tw  ~  0, TN w w , that is   0Tkurt w   . 

The non-Gaussianity can be also measured using the Shannon neg-entropy (mutual 
information). Being given the computational difficulty of evaluating the exact expression of 
neg-entropy, usually an approximation of it is used instead, for instance the approximation 
proposed in (Hyvarinen, Karhunen & Oja, 2001),        
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G is a non-polynomial function and  ~  0,1N . 

Usually the maximization of non-Gaussianity is performed on the pre-processed signal 
version X , applied in order to whiten the original clean signal. In case of the additive noise 
superposition model, 0X X   , where 0X is the original clean signal (unknown) and 
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variance corresponding to each processed window, and consequently to inhibit the variance 
component of the noise. The AMVR algorithm (Adaptive Mean Variance Removal) allows 
the removal of the normal/uniform noise whatever the mean of the noise is (Cocianu, State, 
& Vlamos, 2002). Similar to MMSE (Minimum Mean Square Error) filtering technique 
(Umbaugh, 1998) the application of the AMVR algorithm requires that the noise parameters 
and some additional features are known. 

The multiresolution support set is a data structure suitable for developing noise removal 
algorithms. (Bacchelli & Papi, 2006; Balster et al., 2003). The multiresolution algorithms 
perform the restoration tasks by combining, at each resolution level, according to a certain 
rule, the pixels of a binary support image. Some others use a selective wavelet shrinkage 
algorithm for digital image denoising aiming to improve the performance. For instance 
Balster (Balster, Zheng & Ewing, 2003) proposes an attempt of this sort together with a 
computation scheme, the denoising methodology incorporated in this algorithm involving a 
two-threshold validation process for real time selection of wavelet coefficients.  

A new solution of the denoising problem based on the description length of the noiseless 
data in the subspace of the basis is proposed in (Beheshti & Dahleh, 2003), where the desired 
description length is estimated for each subspace and the selection of the subspace 
corresponding to the minimum length is suggested.  

In (Bacchelli & Papi, 2006), a method for removing Gaussian noise from digital images based 
on the combination of the wavelet packet transform and the PCA is proposed. The method 
leads to tailored filters by applying the Karhunen-Loeve transform in the wavelet packet 
domain and acts with a suitable shrinkage function on these new coefficients, allowing the 
noise removal without blurring the edges and other important characteristics of the images. 

Wavelet thresholding methods modifying the noisy coefficients were proposed by several 
authors (Buades, Coll & Morel, 2005; Stark, Murtagh & Bijaoui, 1995). The attempts are 
based on the idea that images are represented by large wavelet coefficients that have to be 
preserved whereas the noise is distributed across the set of small coefficients that have to be 
canceled. Since the edges lead to a considerable amount of wavelet coefficients of lower 
values than the threshold, the cancellation of these wavelet coefficients may cause small 
oscillations near the edges resulting spurious wavelets in the restored image.  

2. Mathematics behind the noise removal and image restoration algorithms 
2.1 Principal Component Analysis (PCA) and Independent Component Analysis (ICA) 

We assume that the signal is represented by a n-dimensional real-valued random vector X of 
0 mean and covariance matrix Σ. The principal directions of the repartition of X are the 
directions corresponding to the maximum variability, where the variability is expressed in 
terms of the variance.  

Definition. The vector 1 Rn is the first principal direction if 1 1   and 
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The value 1
T X  is referred as the first principal component of X.  
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Now, recursively, for any k, 2 k n  , if we denote by  1 1,..., kL
  the linear subspace 

orthogonal on the linear subspace generated by the first (k-1) directions, k Rn is the k-th 
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The value T
k X  is referred as the k-th principal component of the signal X.  

Note that the principal directions 1 ,..., n   of any signal are an orthogonal basis of Rn , and 
TY X  is the signal representation in terms of the principal directions, where 

 1 ,..., n    . Obviously, T T
nI     ,   0E Y   and  , T TCov Y Y    . 

Consequently, if 1 ,..., n  are unit eigen vectors of Σ, then    1, ,...,T
nCov Y Y diag     , 

where 1 ,..., n  are the eigen values of Σ, that is the linear transform of matrix T de-
correlates the components of X. In the particular case of Gaussian signals, X~  0,N  , the 
components of Y are also normal distributed, iY ~  0, iN  , 1 i n  . 

The fundamental result is given by the celebrated Karhunen-Loeve theorem: 

Theorem. Let X be a n-dimensional real-valued random vector such that   0E X   and 
 , TCov X X   . If we denote by 1 2 ... n     the eigen values of Σ, then, for any k, 

1 k n  , the k-th principal direction is an eigen vector of Σ associated to k .  

A series of approaches are based on the assumption that the signal results as a mixture of a 
finite number of hidden independent sources and noise. This sort of attempts are usually 
referred as techniques of Independent Component Analysis type. The simplest model is the 
linear one, given by X=AS+ η , where A is an unknown matrix (mixing matrix), S is the n-
dimensional random vector whose components are independent and  1 2, ,..., T

nη    is a 
random vector representing the noise. The problem is to recover the hidden sources being 
given the signal X without knowing the mixing matrix A. 

For simplicity sake, the noise model is of Gaussian type, that is  ~  0,N  . Then, if we 
denote V AS , then, for any vector w  Rn , T T Tw X w V w   . Consequently, the non-
Gaussianity of Tw V can be maximized on the basis of Tw X  if we use an expression that 
vanishes the component Tw  .  

The kurtosis (the fourth-order cumulant) corresponding to a real-valued random variable Y 
is defined as       24 23kurt Y E Y E Y  . In case Y is normally distributed, we get 

  0kurt Y  . Since  ~  0,N  , for any w  Rn , Tw  ~  0, TN w w , that is   0Tkurt w   . 

The non-Gaussianity can be also measured using the Shannon neg-entropy (mutual 
information). Being given the computational difficulty of evaluating the exact expression of 
neg-entropy, usually an approximation of it is used instead, for instance the approximation 
proposed in (Hyvarinen, Karhunen & Oja, 2001),        
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G is a non-polynomial function and  ~  0,1N . 

Usually the maximization of non-Gaussianity is performed on the pre-processed signal 
version X , applied in order to whiten the original clean signal. In case of the additive noise 
superposition model, 0X X   , where 0X is the original clean signal (unknown) and 
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 ~  0,N  .  In case 0X and  are independent and  , TCov     is known, we  
g e t   0 0, TCov X X     ,  w h e r e   , TCov X X    a nd  t he  c o v a r i a nc e  m a t r i x    
corresponding to the observed signal X is assumed to be estimated from data. Then  

       
1 1 1 1
2 2 2 2

0 0X X X X    
   

          , where  
1
2

0X


   and 

 are independent and the covariance matrix of  
1
2

0X


   is the unit matrix nI .If 

0X results by the linear transform of matrix A applied to the sources S, 0X AS , then 

X BS    , where  
1
2B A


    . Consequently, the sources S are determined by 

maximizing the non-Gaussianity of X BS    . Usually, for simplicity sake, the matrix B is 
assumed to be orthogonal.  

2.2 The use of concepts and tools of multiresolution analysis for noise removal and 
image restoration purposes 

The multiresolution based algorithms perform the restoration tasks by combining, at each 
resolution level, according to a certain rule, the pixels of a binary support image. The values of 
the support image pixels are either 1 or 0 depending on their significance degree. At each 
resolution level, the contiguous areas of the support image corresponding to 1-value pixels are 
taken as possible objects of the image. The multiresolution support is the set of all support 
images and it can be computed using the statistically significant wavelet coefficients.  

Let j be a certain multiresolution level. Then, for each pixel  ,x y  of the input image I, the 
multiresolution support at the level j is  ; , , 1M I j x y    I contains significant information 
at the level j about the pixel (x,y). 

If we denote by   be the mother wavelet function, then the generic evaluation of the 
multiresolution support set results by computing the wavelet transform of the input image 
using  followed by the computation of  ; , ,M I j x y  on the basis of the statistically 
significant wavelet coefficients for each resolution level j and for each pixel (x,y). 

The computation of the wavelet transform of an one dimensional signal can be performed 
using the algorithm “À Trous” (Stark, Murtagh & Bijaoui, 1995). The algorithm can be 
extended to perform this computation in case of two-dimensional signals as, for instance, 
image signals 

Using the resolution levels 1,2,..., p , where p is a selected level, the “À Trous” algorithm 
computes the wavelet coefficients according to the following scheme (Stark, Murtagh & 
Bijaoui, 1995). 

Input: The sampled signal   0c k  

For j=0,1,…,p do 

Step 1. j=j+1; compute,      1
1 2 j

j j
l

c k h l c k l
  . 

Step 2. Step 2. Compute      1j j jk c k c k    
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End-for 

Output: The set   
1,...,

,j p j p
k c


. 

Note that the computation of  jc k  carried out in Step 1 imposes that either the periodicity 
condition    j jc k N c k   or the continuity property    j jc k N c N   holds. 

Since the representation of the original sampled signal is      0
1

p

p j
j

c k c k k


  , in case of 

images, the values of 0c  are computed for each pixel (x,y) as      0
1

, , ,
p

p j
j

c x y c x y x y


  . 

If the input image I encodes a noise component  , then the wavelet coefficients also encode 
some information about  . A label procedure is applied to each  ,j x y  in order to remove 
the noise component from the wavelet coefficients computed for I. In case for each pixel (x,y) 
of I, the distribution of the coefficients is available, the significance level corresponding to 
each component  ,j x y  can be established using a statistical test. We say that I is local 
constant at the resolution level j in case the amount of noise in I at this resolution level can 
be neglected. Let 0  be the hypothesis 0 : I is local constant at the resolution level j. In 
case there is significant amount of noise in I at the resolution level j, we get that the 
alternative hypothesis  0 :  ,j x y  ~  20, jN  . In order to define the critical region W of 
the statistical test we proceed as follows. Let 0 1   be the a priori selected significance 
level and let z  be such that when  0  is true, 

   
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 
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 
  (1) 

In other words, the probability of rejecting  0  (hence accept 0 ) when  0  is true is   
and consequently, the critical region is  ,W z z   . Accordingly, the significance level of 
the wavelet coefficients is given by the rule:  ,j x y  is a significant coefficient if and only if 

 ,j x y W  . 

Usually, z  is taken as jk , where k is a selected constant 3k  , because 

        , , ,j j j j j jP x y k P x y k P x y k             

      2 , 2 1 ,j j j jP x y k P x y k          

    , 2 1
jk j jz P x y k           

Using the significance level, we set to 1 the statistically significant coefficient and 
respectively we set to 0 the non-significant ones. The restored image I  is, 

         
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p j j j
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where g is defined by 
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 ~  0,N  .  In case 0X and  are independent and  , TCov     is known, we  
g e t   0 0, TCov X X     ,  w h e r e   , TCov X X    a nd  t he  c o v a r i a nc e  m a t r i x    
corresponding to the observed signal X is assumed to be estimated from data. Then  
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   is the unit matrix nI .If 

0X results by the linear transform of matrix A applied to the sources S, 0X AS , then 

X BS    , where  
1
2B A


    . Consequently, the sources S are determined by 

maximizing the non-Gaussianity of X BS    . Usually, for simplicity sake, the matrix B is 
assumed to be orthogonal.  

2.2 The use of concepts and tools of multiresolution analysis for noise removal and 
image restoration purposes 

The multiresolution based algorithms perform the restoration tasks by combining, at each 
resolution level, according to a certain rule, the pixels of a binary support image. The values of 
the support image pixels are either 1 or 0 depending on their significance degree. At each 
resolution level, the contiguous areas of the support image corresponding to 1-value pixels are 
taken as possible objects of the image. The multiresolution support is the set of all support 
images and it can be computed using the statistically significant wavelet coefficients.  

Let j be a certain multiresolution level. Then, for each pixel  ,x y  of the input image I, the 
multiresolution support at the level j is  ; , , 1M I j x y    I contains significant information 
at the level j about the pixel (x,y). 

If we denote by   be the mother wavelet function, then the generic evaluation of the 
multiresolution support set results by computing the wavelet transform of the input image 
using  followed by the computation of  ; , ,M I j x y  on the basis of the statistically 
significant wavelet coefficients for each resolution level j and for each pixel (x,y). 

The computation of the wavelet transform of an one dimensional signal can be performed 
using the algorithm “À Trous” (Stark, Murtagh & Bijaoui, 1995). The algorithm can be 
extended to perform this computation in case of two-dimensional signals as, for instance, 
image signals 

Using the resolution levels 1,2,..., p , where p is a selected level, the “À Trous” algorithm 
computes the wavelet coefficients according to the following scheme (Stark, Murtagh & 
Bijaoui, 1995). 

Input: The sampled signal   0c k  

For j=0,1,…,p do 

Step 1. j=j+1; compute,      1
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Step 2. Step 2. Compute      1j j jk c k c k    
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End-for 

Output: The set   
1,...,

,j p j p
k c


. 

Note that the computation of  jc k  carried out in Step 1 imposes that either the periodicity 
condition    j jc k N c k   or the continuity property    j jc k N c N   holds. 

Since the representation of the original sampled signal is      0
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images, the values of 0c  are computed for each pixel (x,y) as      0
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If the input image I encodes a noise component  , then the wavelet coefficients also encode 
some information about  . A label procedure is applied to each  ,j x y  in order to remove 
the noise component from the wavelet coefficients computed for I. In case for each pixel (x,y) 
of I, the distribution of the coefficients is available, the significance level corresponding to 
each component  ,j x y  can be established using a statistical test. We say that I is local 
constant at the resolution level j in case the amount of noise in I at this resolution level can 
be neglected. Let 0  be the hypothesis 0 : I is local constant at the resolution level j. In 
case there is significant amount of noise in I at the resolution level j, we get that the 
alternative hypothesis  0 :  ,j x y  ~  20, jN  . In order to define the critical region W of 
the statistical test we proceed as follows. Let 0 1   be the a priori selected significance 
level and let z  be such that when  0  is true, 
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In other words, the probability of rejecting  0  (hence accept 0 ) when  0  is true is   
and consequently, the critical region is  ,W z z   . Accordingly, the significance level of 
the wavelet coefficients is given by the rule:  ,j x y  is a significant coefficient if and only if 

 ,j x y W  . 

Usually, z  is taken as jk , where k is a selected constant 3k  , because 
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Using the significance level, we set to 1 the statistically significant coefficient and 
respectively we set to 0 the non-significant ones. The restored image I  is, 
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I x y c x y g x y x y  
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  , (2) 

where g is defined by 
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2.3 Information-based approaches in image restoration 

The basics of the informational-based method for image restoration purposes are given by 
the following theoretical results (State, Cocianu & Vlamos, 2001). 

Lemma 1 Let X  be a continuous n -dimensional random vector and  nA M R  a non-
singular matrix, Y AX . Then,  H X =   lnH Y A , where  

 H X =-    ln
nR

f x f x dx   

is the differential entropy (Shannon), and f  is the density function of X  . 

Lemma 2 Let X  be a continuous n -dimensional normally distributed random vector, 

X   0,N   and let q  be a natural number, 1 q <n. If 
 

 

1

2

X
X

X

 
 
 
 

where  1X  is q -

dimensional, then, for any  2x Rn-q,       1 2 2H X X x =          1 1 2 2H X E X X x  , where  

      1 2 2E X X x   

is the regression function of  1X  on    2 2X x , and       1 2 2H X X x  is the conditional 
entropy of  1X  on    2 2X x . 

Since       1 2 2H X X x  represents a measure of the amount of incertitude still remaining 
with respect to  1X  when  2X  is known, we get that the whole information carried by  2X  
with respect to  1X  is concentrated on       1 2 2E X X x . 

If we denote     1 1
11 cov , TX X  ,     2 2

22 cov , TX X  ,     1 2
12 cov , TX X  , we get 

      1 2 2E X X x =  21
12 22x

   and  1Y   11.20,N  ,  

where               1 1 2 1 1 2 21
12 22Y X x X E X X x       , and  1

11.2 11 12 22 12
T        

Consequently          1 1 2 2H X E X X x  =       1 2 2H X X x = 11.2
1ln 2 ln

2 2
q e    . 

2.4 The image restoration method based on scatter matrices and on bounds on the 
probability of error 

In statistical discriminant analysis, within-class, between-class and mixture scatter matrices 
are used to formulate criteria of class separability.  

In case we need to discriminate between m classes , 1,iH i m  and     1 ,...,i i
NX X  are 

examples of patterns coming respectively from these classes, the within -class scatter matrix  
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shows the scatter of samples around their class expected vectors and it is typically given by 

the expression      
1 1

ˆ ˆ
m N Ti i

w i k i k i
i k

S X X  
 

    , where ˆ i is the prototype of iH  and i  is 

the a priori probability of , 1,iH i m . 

Very often, the a priori probabilities are taken 1
i m
   and each prototype is computed as the 

weighted mean of the patterns belonging to the respective class.  

The between-class scatter matrix is the scatter of the expected vectors around the mixture 

mean as   0 0
1 1

ˆ ˆ
m N

T
b i i i

i k
S     

 

    where 0  represents the expected vector of the 

mixture distribution; usually 0  is taken as 0
1

ˆ
m

i i
i

  


 . 

The mixture scatter matrix is the covariance matrix of all samples regardless of their class 
assignments and it is defined by m w bS S S  . Note that all these scatter matrices are 
invariant under coordinate shifts. 

In order to formulate criteria for class separability, these matrices should be converted into a 
number. This number should be larger when the between-class scatter is larger or the 
within-class scatter is smaller. Typical criteria are  1

1 2 1J tr S S , 1
2 2 1lnJ S S , where 

          1 2, , , , , , , ,b w b m w m m wS S S S S S S S S S and their values can be taken as measures of 
overall class separability. Obviously, both criteria are invariant under linear non-singular 
transforms and they are currently used for feature extraction purposes [8]. When the linear 
feature extraction problem is solved on the base of either 1J or 2J , their values are taken as 
numerical indicators of the loss of information implied by the reduction of dimensionality 
and implicitly deteriorating class separability. Consequently, the best linear feature 
extraction is formulated as the optimization problem   *

arg inf ,
n m k k

A R
J m A J


 where m 

stands for the desired number of features ,  ,kJ m A is the value of the criterion , 1,2kJ k  in 
the transformed m-dimensional space of TY A X , where A is a *n m matrix . 

If the pattern classes are represented by the noisy image  X  and the filtered image   F X   
respectively, the value of each of the criteria , 1,2kJ k  is a measure of overall class 
separability as well as well as a measure of the amount of information discriminating 
between these classes. In other words, , 1,2kJ k  can be taken as measuring the effects of the 
noise removing filter expressing a measure of the quantity of information lost due to the use 
of the particular filter.  

Lemma 3. For any m, 1 m n   ,  

     *

*
1 2arg inf , , ,..., , , 0

n m

m m
k k m

A R
J m A J A A R


          , where 1 ,..., m   are 

unit eigenvectors corresponding to the m largest eigenvalues of 1
2 1S S (Cocianu, State & 

Vlamos, 2004). 

The probability of error is the most effective measure of a classification decision rule 
usefulness, but its evaluation involves integrations on complicated regions in high 
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2.3 Information-based approaches in image restoration 

The basics of the informational-based method for image restoration purposes are given by 
the following theoretical results (State, Cocianu & Vlamos, 2001). 

Lemma 1 Let X  be a continuous n -dimensional random vector and  nA M R  a non-
singular matrix, Y AX . Then,  H X =   lnH Y A , where  

 H X =-    ln
nR

f x f x dx   

is the differential entropy (Shannon), and f  is the density function of X  . 

Lemma 2 Let X  be a continuous n -dimensional normally distributed random vector, 

X   0,N   and let q  be a natural number, 1 q <n. If 
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where  1X  is q -

dimensional, then, for any  2x Rn-q,       1 2 2H X X x =          1 1 2 2H X E X X x  , where  

      1 2 2E X X x   

is the regression function of  1X  on    2 2X x , and       1 2 2H X X x  is the conditional 
entropy of  1X  on    2 2X x . 

Since       1 2 2H X X x  represents a measure of the amount of incertitude still remaining 
with respect to  1X  when  2X  is known, we get that the whole information carried by  2X  
with respect to  1X  is concentrated on       1 2 2E X X x . 

If we denote     1 1
11 cov , TX X  ,     2 2

22 cov , TX X  ,     1 2
12 cov , TX X  , we get 

      1 2 2E X X x =  21
12 22x

   and  1Y   11.20,N  ,  

where               1 1 2 1 1 2 21
12 22Y X x X E X X x       , and  1

11.2 11 12 22 12
T        

Consequently          1 1 2 2H X E X X x  =       1 2 2H X X x = 11.2
1ln 2 ln

2 2
q e    . 

2.4 The image restoration method based on scatter matrices and on bounds on the 
probability of error 

In statistical discriminant analysis, within-class, between-class and mixture scatter matrices 
are used to formulate criteria of class separability.  

In case we need to discriminate between m classes , 1,iH i m  and     1 ,...,i i
NX X  are 

examples of patterns coming respectively from these classes, the within -class scatter matrix  
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shows the scatter of samples around their class expected vectors and it is typically given by 

the expression      
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    , where ˆ i is the prototype of iH  and i  is 

the a priori probability of , 1,iH i m . 

Very often, the a priori probabilities are taken 1
i m
   and each prototype is computed as the 

weighted mean of the patterns belonging to the respective class.  

The between-class scatter matrix is the scatter of the expected vectors around the mixture 

mean as   0 0
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mixture distribution; usually 0  is taken as 0
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The mixture scatter matrix is the covariance matrix of all samples regardless of their class 
assignments and it is defined by m w bS S S  . Note that all these scatter matrices are 
invariant under coordinate shifts. 

In order to formulate criteria for class separability, these matrices should be converted into a 
number. This number should be larger when the between-class scatter is larger or the 
within-class scatter is smaller. Typical criteria are  1

1 2 1J tr S S , 1
2 2 1lnJ S S , where 

          1 2, , , , , , , ,b w b m w m m wS S S S S S S S S S and their values can be taken as measures of 
overall class separability. Obviously, both criteria are invariant under linear non-singular 
transforms and they are currently used for feature extraction purposes [8]. When the linear 
feature extraction problem is solved on the base of either 1J or 2J , their values are taken as 
numerical indicators of the loss of information implied by the reduction of dimensionality 
and implicitly deteriorating class separability. Consequently, the best linear feature 
extraction is formulated as the optimization problem   *

arg inf ,
n m k k

A R
J m A J


 where m 

stands for the desired number of features ,  ,kJ m A is the value of the criterion , 1,2kJ k  in 
the transformed m-dimensional space of TY A X , where A is a *n m matrix . 

If the pattern classes are represented by the noisy image  X  and the filtered image   F X   
respectively, the value of each of the criteria , 1,2kJ k  is a measure of overall class 
separability as well as well as a measure of the amount of information discriminating 
between these classes. In other words, , 1,2kJ k  can be taken as measuring the effects of the 
noise removing filter expressing a measure of the quantity of information lost due to the use 
of the particular filter.  

Lemma 3. For any m, 1 m n   ,  

     *

*
1 2arg inf , , ,..., , , 0
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
          , where 1 ,..., m   are 

unit eigenvectors corresponding to the m largest eigenvalues of 1
2 1S S (Cocianu, State & 

Vlamos, 2004). 

The probability of error is the most effective measure of a classification decision rule 
usefulness, but its evaluation involves integrations on complicated regions in high 
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dimensional spaces. When a closed-form expression for the error probability can not be 
obtained, we may seek either for approximate expressions, or upper/lower bounds for the 
error probability.  

Assume that the design of the Bayes classifier is intended to discriminate between two 
pattern classes and the available information is represented by mean vectors i , 1,2i   and 
the covariance matrices i , 1,2i   corresponding to the repartitions of the classes 
respectively. The Chernoff upper bounds of the Bayesian error (Fukunaga, 1990) are given 
by      11

1 2 1 2

s ss s
s f x f x dx  

   ,  0,1s  , where  1 2,    is the a priori distribution 

and if  is the density function corresponding to the i th class, 1,2i  . When both density 
functions are normal, if   ,i iN    1,2i  , the integration can be carried out to obtain a 

closed-form expression for s , that is      1
1 2

s s
f x f x dx



 =   exp s where  

  s =         1
2 1 1 2 2 1

1
1

2
Ts s

s s   


      +
 1 2

1
1 2

11 ln
2 s s

s s


   

 
 (3) 

The upper bound 1
2

  
 
 

=    
1

1 2
2 1 2 1

1
8 2

T   
     

 
+

1 2

1 2

1 2ln
2

  

 
 is called the 

Bhattacharyya distance and it is frequently used as a measure of the separability between 
two repartitions. Using straightforward computations, the Bhattacharyya distance can be 
written as, 

 1
2

  
 
 

=    1
2 1 2 1

1
8

Ttr       + 1 1
1 2 2 1

1 ln 2
4 nI        - ln 2

4
n  (4) 

where  

1 2

2
  

   

Note that one of the first two terms in (4) vanishes, when 1 2  , 1 2    respectively, that 
is the first term expresses the class separability due to the mean-difference while the second 
one gives the class separability due to the covariance difference.  

The Bhattacharyya distance can be used as criterion function as well to express the quality of 
a linear feature extractor of matrix nxmA R . 

When 1 2   =  , 1
2

J     
 

=    1
2 1 2 1

1
8

Ttr       therefore J  is a particular case of 

the criterion 1J  for 2S    and   1 2 1 2 1
T

bS S        . Consequently the whole 
information about the class separability is contained by an unique feature 

 
 

1
2 1

1 1
2 1

 
 





 
 

 
. When 1 2   and 1 2   ,  
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 J = 1 1
2 1 1 2

1 ln 2
4 nI        - ln 2

4
n =

1

1 12
4

n

j
j j




 
   

 
 - ln 2

4
n  (5) 

where , 1,j j n   are the eigenvalues of 1
1 2
  .  

If the linear feature extractor is defined by the matrix nxmA R , then the value of the 
Bhattacharyya distance in the transformed space TY A X  is given by,  

 J  ,m A =        1 1

2 1 1 2
1 ln 2
4

T T T T
mI A A A A A A A A

 
      - ln 2

4
m . (6) 

The critical points of J  ,m A  are the solutions of the equation  ,
0

J m A
A




  that is, 

         1 1 1
2 2 1 2 1 2B A m m m A m         +         1 1 1

1 2 2 1 2 1B A m m m A m         =0 (7) 

where  

  T
i im A A   , 1,2i   and        

11 1

1 2 2 1 2T T T T
mB A A A A A A A A I

          
. 

Suboptimal solutions can be identified as the solutions of the system 

        
       

1 1 1
2 2 1 2 1 2

1 1 1
1 1 2 1 2 1

0
0

A m m m A m
A m m m A m

  

  

       
       

 (8) 

or equivalently,    1 1
2 1 2 1A A m m      . 

Obviously the criterion function J  is invariant with respect to non-singular transforms and, 

using standard arguments, one can prove that    1 ,...,m
m     can be taken as the 

suboptimal linear feature extractor where , 1,i i m   are unit eigenvectors corresponding to 

the eigenvalues 1, ..., m  of 1
2 1
   such that 1

1

1 1 1... ...m n
m n

  
  

       . 

But, in case of image restoration problem, each of the assumptions 1 2  , 1 2    is 
unrealistic, therefore, we are forced to accept the hypothesis that 1 2   and 1 2   . 
Since there is no known procedure available to optimize the criterion J when 1 2    and 

1 2  , a series of attempts to find suboptimal feature extractors have been proposed 
instead (Fukunaga, 1990) 

3. Noise removal algorithms  
3.1 Minimum mean-square error filtering (MMSE), and the adaptive mean-variance 
removal algorithm (AMVR) 

The minimum mean-square error filter (MMSE) is an adaptive filter in the sense that its 
basic behavior changes as the image is processed. Therefore an adaptive filter could process 
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dimensional spaces. When a closed-form expression for the error probability can not be 
obtained, we may seek either for approximate expressions, or upper/lower bounds for the 
error probability.  

Assume that the design of the Bayes classifier is intended to discriminate between two 
pattern classes and the available information is represented by mean vectors i , 1,2i   and 
the covariance matrices i , 1,2i   corresponding to the repartitions of the classes 
respectively. The Chernoff upper bounds of the Bayesian error (Fukunaga, 1990) are given 
by      11

1 2 1 2

s ss s
s f x f x dx  

   ,  0,1s  , where  1 2,    is the a priori distribution 

and if  is the density function corresponding to the i th class, 1,2i  . When both density 
functions are normal, if   ,i iN    1,2i  , the integration can be carried out to obtain a 

closed-form expression for s , that is      1
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s s
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

 =   exp s where  
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The upper bound 1
2

  
 
 

=    
1

1 2
2 1 2 1

1
8 2

T   
     

 
+

1 2

1 2

1 2ln
2

  

 
 is called the 

Bhattacharyya distance and it is frequently used as a measure of the separability between 
two repartitions. Using straightforward computations, the Bhattacharyya distance can be 
written as, 

 1
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 
 
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2
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   

Note that one of the first two terms in (4) vanishes, when 1 2  , 1 2    respectively, that 
is the first term expresses the class separability due to the mean-difference while the second 
one gives the class separability due to the covariance difference.  

The Bhattacharyya distance can be used as criterion function as well to express the quality of 
a linear feature extractor of matrix nxmA R . 

When 1 2   =  , 1
2
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where , 1,j j n   are the eigenvalues of 1
1 2
  .  

If the linear feature extractor is defined by the matrix nxmA R , then the value of the 
Bhattacharyya distance in the transformed space TY A X  is given by,  

 J  ,m A =        1 1
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4
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The critical points of J  ,m A  are the solutions of the equation  ,
0

J m A
A




  that is, 
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Suboptimal solutions can be identified as the solutions of the system 
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or equivalently,    1 1
2 1 2 1A A m m      . 

Obviously the criterion function J  is invariant with respect to non-singular transforms and, 

using standard arguments, one can prove that    1 ,...,m
m     can be taken as the 

suboptimal linear feature extractor where , 1,i i m   are unit eigenvectors corresponding to 

the eigenvalues 1, ..., m  of 1
2 1
   such that 1

1

1 1 1... ...m n
m n

  
  

       . 

But, in case of image restoration problem, each of the assumptions 1 2  , 1 2    is 
unrealistic, therefore, we are forced to accept the hypothesis that 1 2   and 1 2   . 
Since there is no known procedure available to optimize the criterion J when 1 2    and 

1 2  , a series of attempts to find suboptimal feature extractors have been proposed 
instead (Fukunaga, 1990) 

3. Noise removal algorithms  
3.1 Minimum mean-square error filtering (MMSE), and the adaptive mean-variance 
removal algorithm (AMVR) 

The minimum mean-square error filter (MMSE) is an adaptive filter in the sense that its 
basic behavior changes as the image is processed. Therefore an adaptive filter could process 
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differently on different segments of an image. The particular MMSE filter may act as a mean 
filter on some windows of the image and as a median filter on other windows of the image. 
The MMSE filter allows the removal of the normal/uniform additive noise and its 
computation is carried out as  

     
2

.2
,

, , , l c
l c

X l c Y l c Y l c 


      , 

for ,t l R t t c C t      , where Y is a R C  noisy image, Wl,c is the n n  window 
centered in (l,c), where 2 1, ,n t t l R t t c C t        , 2  is the noise variance, 2

.l c  is the 
local variance (in the window ,l cW ), and 2

.l c  is the local mean (average in the window ,l cW ). 

Note that since the background region of the image is an area of fairly constant value in the 
original uncorrupted image, the noise variance is almost equal to the local variance, and 
consequently the MMSE performs as a mean filter. In image areas where the local variances 
are much larger than the noise variance, the filter computes a value close to the pixel value 
corresponding to the unfiltered image data. The magnitude of the original and local means  

respectively used to modify the initial image are weighted by
2

2
,l c




, the ratio of noise to local 

variance. As the value of the ratio increases, implying primarily noise in the window, the 
filter returns primarily the value of the local average. As this ratio decreases, implying high 
local detail, the filter returns more of the original unfiltered image. Consequently, the MMSE 
filter adapts itself to the local image properties, preserving image details while removing 
noise.(Umbaugh,1998). 

The special filtering techniques of mean type prove particularly useful in reducing the 
normal/uniform noise component when the mean parameter is close to 0. In other words, the 
effects determined by the application of mean filters are merely the decrease of each processed 
window local variance and consequently the removal of the variance component of the noise.  

The AMVR algorithm allows to remove the normal/uniform noise whatever the mean of the 
noise is. Similar to MMSE filtering technique in application of the AMVR algorithm, the 
noise parameters and features are known. Basically, the AMVR algorithm works in two 
stages, namely the removal of the mean component of the noise (Step 1 and Step 2), and the 
decrease of the variance of the noise using the adaptive filter MMSE. The description of the 
AMVR algorithm is (Cocianu, State & Vlamos, 2002) is, 

Input The image Y of dimensions R C , representing a normal/uniform disturbed version 
of the initial image X,     0

,, , l cY l c X l c   , 1 , 1l R c C    , where 0
,l c  is a sample of the 

random variable ,l c  distributed either  2
, ,,l c l cN    or  2

, ,,l c l cU   . 

Step 1. Generate the sample of images  1 2, ,..., nX X X , by subtracting the noise ,l c  from 
the processed image Y, where     ,, , i

i l cX l c Y l c   , 1 , 1l L c C    and ,
i
l c  is a 

sample of the random variable ,l c . 
Step 2.  Compute X , the sample mean estimate of the initial image X, by averaging the 

pixel values,    
1

1, ,
n

i
i

X l c X l c
n 

  , 1 , 1l R c C    . 

Step 3. Compute the estimate X̂  of X using the adaptive filter MMSE,  X̂ MMSE X . 
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Output The image X̂ . 

3.2 Information-based algorithms for noise removal 

Let us consider the following information transmission/processing system. The signal X  
representing a certain image is transmitted through a channel and its noise-corrupted 
version  X   is received. Next, a noise-removing binomial filter is applied to the output  X   
resulting   F X  . Finally, the signal   F X  is submitted to a restoration process producing 

X , an approximation of the initial signal X . In our attempt (Cocianu, State & Vlamos, 2004) 
we assumed that there is no available information about the initial signal X , therefore the 
restoration process should be based exclusively on  X   and   F X  . We assume that the 

message X  is transmitted N  times and we denote by    2 2
1 ,..., NX X  the resulted outputs and 

by    1 1
1 ,..., NX X  their corresponding filtered versions. 

If we denote the given image by X , then we model     2 2
1 ,..., NX X as a Bernoullian sample of 

the random r c -dimensional vector  X X    where    ,N    and     1 1
1 ,..., NX X  is a 

sample of the filtered random vector   F X  . Obviously,  X  and   F X  are normally 

distributed. Let us denote      1 E F X   ,     2 E X    and let 11 , 22  be their 

covariance matrices. We consider the working assumption that the 2 r c -dimensional 

vector      ,X F X  is also normally distributed, therefore the conditional distribution of 

  F X  on  X  is        1 21
12 22 11.2,N X       , where  

      E F X X  =       1 21
12 22 X       (9) 

is the regression function of   F X   on  X  , 

and      12 cov ,F X X    1
11.2 11 12 22 12

T        (see § 2.3). 

It is well known (Anderson, 1958) that         F X E F X X    minimizes the variance and 

maximizes the correlation between   F X   and  X  in the class of linear functions of  X  . 

Moreover,      E F X X   is  X  -measurable and, since         F X E F X X   and 

 X  are independent, the whole information carried by  X  with respect to   F X   is 

contained by      E F X X  .  

As a particular case , using the conclusions established by the lemmas 1 and 2 (§ 2.3), we can 
conclude that                H F X E F X X H F X X      and      E F X X   contains the 
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differently on different segments of an image. The particular MMSE filter may act as a mean 
filter on some windows of the image and as a median filter on other windows of the image. 
The MMSE filter allows the removal of the normal/uniform additive noise and its 
computation is carried out as  

     
2

.2
,

, , , l c
l c

X l c Y l c Y l c 


      , 

for ,t l R t t c C t      , where Y is a R C  noisy image, Wl,c is the n n  window 
centered in (l,c), where 2 1, ,n t t l R t t c C t        , 2  is the noise variance, 2

.l c  is the 
local variance (in the window ,l cW ), and 2

.l c  is the local mean (average in the window ,l cW ). 

Note that since the background region of the image is an area of fairly constant value in the 
original uncorrupted image, the noise variance is almost equal to the local variance, and 
consequently the MMSE performs as a mean filter. In image areas where the local variances 
are much larger than the noise variance, the filter computes a value close to the pixel value 
corresponding to the unfiltered image data. The magnitude of the original and local means  

respectively used to modify the initial image are weighted by
2

2
,l c




, the ratio of noise to local 

variance. As the value of the ratio increases, implying primarily noise in the window, the 
filter returns primarily the value of the local average. As this ratio decreases, implying high 
local detail, the filter returns more of the original unfiltered image. Consequently, the MMSE 
filter adapts itself to the local image properties, preserving image details while removing 
noise.(Umbaugh,1998). 

The special filtering techniques of mean type prove particularly useful in reducing the 
normal/uniform noise component when the mean parameter is close to 0. In other words, the 
effects determined by the application of mean filters are merely the decrease of each processed 
window local variance and consequently the removal of the variance component of the noise.  

The AMVR algorithm allows to remove the normal/uniform noise whatever the mean of the 
noise is. Similar to MMSE filtering technique in application of the AMVR algorithm, the 
noise parameters and features are known. Basically, the AMVR algorithm works in two 
stages, namely the removal of the mean component of the noise (Step 1 and Step 2), and the 
decrease of the variance of the noise using the adaptive filter MMSE. The description of the 
AMVR algorithm is (Cocianu, State & Vlamos, 2002) is, 

Input The image Y of dimensions R C , representing a normal/uniform disturbed version 
of the initial image X,     0

,, , l cY l c X l c   , 1 , 1l R c C    , where 0
,l c  is a sample of the 

random variable ,l c  distributed either  2
, ,,l c l cN    or  2

, ,,l c l cU   . 

Step 1. Generate the sample of images  1 2, ,..., nX X X , by subtracting the noise ,l c  from 
the processed image Y, where     ,, , i

i l cX l c Y l c   , 1 , 1l L c C    and ,
i
l c  is a 

sample of the random variable ,l c . 
Step 2.  Compute X , the sample mean estimate of the initial image X, by averaging the 

pixel values,    
1

1, ,
n

i
i

X l c X l c
n 

  , 1 , 1l R c C    . 

Step 3. Compute the estimate X̂  of X using the adaptive filter MMSE,  X̂ MMSE X . 
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Output The image X̂ . 

3.2 Information-based algorithms for noise removal 

Let us consider the following information transmission/processing system. The signal X  
representing a certain image is transmitted through a channel and its noise-corrupted 
version  X   is received. Next, a noise-removing binomial filter is applied to the output  X   
resulting   F X  . Finally, the signal   F X  is submitted to a restoration process producing 

X , an approximation of the initial signal X . In our attempt (Cocianu, State & Vlamos, 2004) 
we assumed that there is no available information about the initial signal X , therefore the 
restoration process should be based exclusively on  X   and   F X  . We assume that the 

message X  is transmitted N  times and we denote by    2 2
1 ,..., NX X  the resulted outputs and 

by    1 1
1 ,..., NX X  their corresponding filtered versions. 

If we denote the given image by X , then we model     2 2
1 ,..., NX X as a Bernoullian sample of 

the random r c -dimensional vector  X X    where    ,N    and     1 1
1 ,..., NX X  is a 

sample of the filtered random vector   F X  . Obviously,  X  and   F X  are normally 

distributed. Let us denote      1 E F X   ,     2 E X    and let 11 , 22  be their 

covariance matrices. We consider the working assumption that the 2 r c -dimensional 

vector      ,X F X  is also normally distributed, therefore the conditional distribution of 

  F X  on  X  is        1 21
12 22 11.2,N X       , where  

      E F X X  =       1 21
12 22 X       (9) 

is the regression function of   F X   on  X  , 

and      12 cov ,F X X    1
11.2 11 12 22 12

T        (see § 2.3). 

It is well known (Anderson, 1958) that         F X E F X X    minimizes the variance and 

maximizes the correlation between   F X   and  X  in the class of linear functions of  X  . 

Moreover,      E F X X   is  X  -measurable and, since         F X E F X X   and 

 X  are independent, the whole information carried by  X  with respect to   F X   is 

contained by      E F X X  .  

As a particular case , using the conclusions established by the lemmas 1 and 2 (§ 2.3), we can 
conclude that                H F X E F X X H F X X      and      E F X X   contains the 
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whole information existing in  X  with respect to   F X   a part of it being responsible for the 
initial existing noise  and another component being responsible for the quality degradation. 

According to our regression-based algorithm, the rows of the restored image X  are 
computed sequentially on the basis of the samples     2 2

1 ,..., NX X and     1 1
1 ,..., NX X  

representing the available information about  X  and   F X    

If we denote by    p
kX i  the i-th row of   , 1,2, 1p

kX p k N   , then the mean vectors  p are 

estimated by the corresponding sample means           ˆ ˆ ˆ1 ,...,p p p r   , where 
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k
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i X i i r

N




   and the covariance matrices   , , 1,2ts i t s   are estimated 

respectively by their sample covariance matrices counterparts, 

                   
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ts k k
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i X i i X i i

N
 



   
  . Frequently enough it happens that the 

matrices  ˆ , 1,2tt i t   are ill conditioned, therefore in our method the Penrose 

pseudoinverse   ˆ
tt i


 is used instead of    1ˆ

tt i


 .  

Since the aim is to restore as much as possible the initial image X, we have to find out ways 
to improve the quality of   F X  in the same time preventing the introduction additional 

noise.  

Obviously,  

                 1 E F X F X E F X F E F X E             (10) 

      2 E X X E       (11)  

hence      1 2 F X X     and        1X X F X E        . In other words, 
   1 2  can be viewed as measuring the effects of the noise  as well as the quality 

degradation while the term    1X    retains more information about the quality of image 
and less information about   (Cocianu, State & Vlamos, 2004). This argument entails the 
heuristic used by our method (Step 4), the restored image being obtained by applying a 
threshold filter to  1 and adding the correction term     2 11

12 22     , 

    1ˆX T i      2 11
12 22     .  

The heuristic regression -based algorithm (HRBA) for image restoration (Cocianu, State & 
Vlamos, 2004) 

Input: The sample     2 2
1 ,..., NX X of noise corrupted versions of the r c  dimensional image X 

Step 1. Compute the sample     1 1
1 ,..., NX X by applying the binomial filter of mask  
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1 ,..., NX X , 
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Step 3. For each row 1 i r  , compute     1ˆT i by applying a threshold filter to    1ˆ i . 

Step 4. Compute the rows  X i  of the restored image X , 

      1ˆX i T i               2 1
12 22

ˆ ˆ ˆ ˆi i i i  


   , where   is a noise-preventing 

constant conveniently determined to prevent the restoration of the initial noise. By 
experimental arguments, the recommended range of   is  1.5,5.5  . 

Note that since the regression function can be written as, 

                         1 2 1 1 2 11 1 1
12 22 12 22 12 22E F X X X X                         (12) 

the correction term used at Step 4 is precisely the sample mean estimation of the 
     11

12 22E X     . 

The idea of our attempt is to use the most informative features discriminating between 
 X  and   F X  for getting correction terms in restoring the filtered images   F X  . The 

attempt is justified by the argument that besides information about the removed noise, the 
most informative features discriminating between  X  and   F X   would contain 

appropriate information allowing quality improvement of the image   F X   (Cocianu, 

State & Vlamos, 2004). Let     2 2
1 ,..., NX X  be the sample of noise corrupted versions of the 

r c   dimensional image X and     1 1
1 ,..., NX X  their filtered versions, 

    1 2 , 1i iX F X i N   . We assume 1 2 0.5   , therefore the scatter matrices become 

1 2
ˆ ˆ

wS     ,          1 2 1 2ˆ ˆ ˆ ˆ
T
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Since   1brank S  , we get  1 1w brank S S  , that is when 2 wS S  and 1 bS S ,the matrix 
1

2 1S S  has an unique positive eigenvalue, one of its unit eigenvectors being given by  
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whole information existing in  X  with respect to   F X   a part of it being responsible for the 
initial existing noise  and another component being responsible for the quality degradation. 

According to our regression-based algorithm, the rows of the restored image X  are 
computed sequentially on the basis of the samples     2 2

1 ,..., NX X and     1 1
1 ,..., NX X  

representing the available information about  X  and   F X    

If we denote by    p
kX i  the i-th row of   , 1,2, 1p

kX p k N   , then the mean vectors  p are 

estimated by the corresponding sample means           ˆ ˆ ˆ1 ,...,p p p r   , where 
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   and the covariance matrices   , , 1,2ts i t s   are estimated 

respectively by their sample covariance matrices counterparts, 
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  . Frequently enough it happens that the 

matrices  ˆ , 1,2tt i t   are ill conditioned, therefore in our method the Penrose 

pseudoinverse   ˆ
tt i


 is used instead of    1ˆ

tt i


 .  

Since the aim is to restore as much as possible the initial image X, we have to find out ways 
to improve the quality of   F X  in the same time preventing the introduction additional 

noise.  

Obviously,  

                 1 E F X F X E F X F E F X E             (10) 

      2 E X X E       (11)  

hence      1 2 F X X     and        1X X F X E        . In other words, 
   1 2  can be viewed as measuring the effects of the noise  as well as the quality 

degradation while the term    1X    retains more information about the quality of image 
and less information about   (Cocianu, State & Vlamos, 2004). This argument entails the 
heuristic used by our method (Step 4), the restored image being obtained by applying a 
threshold filter to  1 and adding the correction term     2 11

12 22     , 

    1ˆX T i      2 11
12 22     .  

The heuristic regression -based algorithm (HRBA) for image restoration (Cocianu, State & 
Vlamos, 2004) 

Input: The sample     2 2
1 ,..., NX X of noise corrupted versions of the r c  dimensional image X 

Step 1. Compute the sample     1 1
1 ,..., NX X by applying the binomial filter of mask  
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, 4t   to each component of     2 2
1 ,..., NX X , 

    1 2 , 1i iX F X i N   . 
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Step 3. For each row 1 i r  , compute     1ˆT i by applying a threshold filter to    1ˆ i . 

Step 4. Compute the rows  X i  of the restored image X , 

      1ˆX i T i               2 1
12 22

ˆ ˆ ˆ ˆi i i i  


   , where   is a noise-preventing 

constant conveniently determined to prevent the restoration of the initial noise. By 
experimental arguments, the recommended range of   is  1.5,5.5  . 

Note that since the regression function can be written as, 

                         1 2 1 1 2 11 1 1
12 22 12 22 12 22E F X X X X                         (12) 

the correction term used at Step 4 is precisely the sample mean estimation of the 
     11

12 22E X     . 

The idea of our attempt is to use the most informative features discriminating between 
 X  and   F X  for getting correction terms in restoring the filtered images   F X  . The 

attempt is justified by the argument that besides information about the removed noise, the 
most informative features discriminating between  X  and   F X   would contain 

appropriate information allowing quality improvement of the image   F X   (Cocianu, 

State & Vlamos, 2004). Let     2 2
1 ,..., NX X  be the sample of noise corrupted versions of the 

r c   dimensional image X and     1 1
1 ,..., NX X  their filtered versions, 

    1 2 , 1i iX F X i N   . We assume 1 2 0.5   , therefore the scatter matrices become 

1 2
ˆ ˆ

wS     ,          1 2 1 2ˆ ˆ ˆ ˆ
T

bS        and m w bS S S   where  
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Since   1brank S  , we get  1 1w brank S S  , that is when 2 wS S  and 1 bS S ,the matrix 
1

2 1S S  has an unique positive eigenvalue, one of its unit eigenvectors being given by  
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The heuristic scatter matrices-based algorithms (HSBA) for image restoration (Cocianu, 
State & Vlamos, 2004) 

The idea of our attempt is to use the most informative features discriminating between 
 X  and   F X   for getting correction terms in restoring the filtered images   F X   The 

attempt is justified by the argument that besides information about the removed noise, the 
most informative features discriminating between  X   and   F X   would contain 

appropriate information allowing quality improvement of the image   F X  (Cocianu, State 

& Vlamos, 2004). Let     2 2
1 ,..., NX X  be the sample of noise corrupted versions of the 

r c  dimensional image X and     1 1
1 ,..., NX X their filtered versions, 

    1 2 , 1i iX F X i N   . We assume 1 2 0.5   ,therefore the scatter matrices are  
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Since   1brank S  , we get  1 1w brank S S  , that is when 2 wS S  and 1 bS S ,the matrix 
1

2 1S S  has an unique positive eigenvalue, its unit eigenvector being given by  
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a. The variant of the HSBA when 2 wS S  and 1 bS S (Cocianu, State & Vlamos, 2004) 

Input : The sample     2 2
1 ,..., NX X of noise corrupted versions of the r c -dimensional image X 

Step 1. Compute the sample     1 1
1 ,..., NX X  by applying the binomial filter as in Step 1 of 

HRBA. 
Step 2. For each row 1 i r  , do Step 3 until Step 7 
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Step 4. Compute                    1 2 1 2ˆ ˆ ˆ ˆ
T

bS i i i i i      and the Penrose pseudoinverse 

 wS i  of the matrix      1 2
ˆ̂ ˆ

wS i i i      

Step 5. Compute the optimal linear feature extractor  
        
        
1 21

1 1 21

w

w

S i i
i

S i i

 

 






 


 

containing the information about class separability between         2 2
1 ,..., NX i X i and 

        1 1
1 ,..., NX i X i expressed in terms of the criterion function 1J (see §2.4) 

Step 6. Compute     1ˆT i by applying a threshold filter to    1ˆ i  and the correction term 

  1
TY i      1ˆ i   

Step 7. Compute the row  X i of the restored image X  by correcting the filtered image 
    1ˆT i  using the most informative feature,  X i =       1

1ˆT i Y i   ,where   
is a noise-preventing constant conveniently determined to prevent the restoration 
of the initial noise, 0< <1.  

Note that at Step 4, the computation of  wS i  is carried out instead of  1
wS i , this 

modification being needed because the matrix  wS i  could happen to be ill-conditioned. 

b. The variant of the HSBA when 2 mS S  and 1 wS S (Cocianu, State & Vlamos, 2004) 

Let   1 ,..., ndiag   be the eigenvalue matrix of mS  and   the matrix having as columns 

the corresponding unit eigenvectors. According to the algorithm of simultaneous 
diagonalization (Duda & Hart, 1973), the optimal linear feature extractor is given by 

1
2A


    where   is an orthogonal matrix whose columns are unit eigenvectors of 

1 1
2 2

T

wK S
  

   
 

. The most informative features about the separability of the classes 

represented by the samples     2 2
1 ,..., NX X and     1 1

1 ,..., NX X  are the entries of Y A  1̂ , 

therefore the restoration can be performed by adding the correction term AY  to 
    1ˆT i  the filtered prototype of     1 1

1 ,..., NX X . 

The number of significant features is either pre-established or dynamically determined by 
the magnitude of the eigenvalues of 1

2 1S S . 

The variant of HSBA when 2 mS S  and 1 wS S  can be described as follows. 

Input : The sample     2 2
1 ,..., NX X of noise corrupted versions of the r c -dimensional image X 

Step 1. Compute the sample     1 1
1 ,..., NX X as described in Step 1 of the variant (a) of the 

HSBA 
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    
    
1 21

1 1 21

w

w

S

S

 

 






 


.  

The heuristic scatter matrices-based algorithms (HSBA) for image restoration (Cocianu, 
State & Vlamos, 2004) 

The idea of our attempt is to use the most informative features discriminating between 
 X  and   F X   for getting correction terms in restoring the filtered images   F X   The 

attempt is justified by the argument that besides information about the removed noise, the 
most informative features discriminating between  X   and   F X   would contain 

appropriate information allowing quality improvement of the image   F X  (Cocianu, State 

& Vlamos, 2004). Let     2 2
1 ,..., NX X  be the sample of noise corrupted versions of the 

r c  dimensional image X and     1 1
1 ,..., NX X their filtered versions, 

    1 2 , 1i iX F X i N   . We assume 1 2 0.5   ,therefore the scatter matrices are  

1 2
ˆ ˆ

wS     ,          1 2 1 2ˆ ˆ ˆ ˆ
T

bS        and m w bS S S    

where 

   

1

1ˆ
N

i i
k

k
X

N




  ,          
1

1ˆ ˆ ˆ
1

N Ti i i i
i k k

k
X X

N
 



   
  , 1,2i  .  

Since   1brank S  , we get  1 1w brank S S  , that is when 2 wS S  and 1 bS S ,the matrix 
1

2 1S S  has an unique positive eigenvalue, its unit eigenvector being given by  

    
    
1 21

1 1 21

w

w
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
 


  

a. The variant of the HSBA when 2 wS S  and 1 bS S (Cocianu, State & Vlamos, 2004) 

Input : The sample     2 2
1 ,..., NX X of noise corrupted versions of the r c -dimensional image X 

Step 1. Compute the sample     1 1
1 ,..., NX X  by applying the binomial filter as in Step 1 of 

HRBA. 
Step 2. For each row 1 i r  , do Step 3 until Step 7 

Step 3. Compute        
1

1ˆ
N

p p
k

k
i X i

N




  ,                    
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1ˆ ˆ ˆ
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N Tp p p p
p k k

k
i X i i X i i

N
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   
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Step 4. Compute                    1 2 1 2ˆ ˆ ˆ ˆ
T

bS i i i i i      and the Penrose pseudoinverse 

 wS i  of the matrix      1 2
ˆ̂ ˆ

wS i i i      

Step 5. Compute the optimal linear feature extractor  
        
        
1 21

1 1 21

w

w

S i i
i

S i i

 

 






 


 

containing the information about class separability between         2 2
1 ,..., NX i X i and 

        1 1
1 ,..., NX i X i expressed in terms of the criterion function 1J (see §2.4) 

Step 6. Compute     1ˆT i by applying a threshold filter to    1ˆ i  and the correction term 

  1
TY i      1ˆ i   

Step 7. Compute the row  X i of the restored image X  by correcting the filtered image 
    1ˆT i  using the most informative feature,  X i =       1

1ˆT i Y i   ,where   
is a noise-preventing constant conveniently determined to prevent the restoration 
of the initial noise, 0< <1.  

Note that at Step 4, the computation of  wS i  is carried out instead of  1
wS i , this 

modification being needed because the matrix  wS i  could happen to be ill-conditioned. 

b. The variant of the HSBA when 2 mS S  and 1 wS S (Cocianu, State & Vlamos, 2004) 

Let   1 ,..., ndiag   be the eigenvalue matrix of mS  and   the matrix having as columns 

the corresponding unit eigenvectors. According to the algorithm of simultaneous 
diagonalization (Duda & Hart, 1973), the optimal linear feature extractor is given by 

1
2A


    where   is an orthogonal matrix whose columns are unit eigenvectors of 

1 1
2 2

T

wK S
  

   
 

. The most informative features about the separability of the classes 

represented by the samples     2 2
1 ,..., NX X and     1 1

1 ,..., NX X  are the entries of Y A  1̂ , 

therefore the restoration can be performed by adding the correction term AY  to 
    1ˆT i  the filtered prototype of     1 1

1 ,..., NX X . 

The number of significant features is either pre-established or dynamically determined by 
the magnitude of the eigenvalues of 1

2 1S S . 

The variant of HSBA when 2 mS S  and 1 wS S  can be described as follows. 

Input : The sample     2 2
1 ,..., NX X of noise corrupted versions of the r c -dimensional image X 

Step 1. Compute the sample     1 1
1 ,..., NX X as described in Step 1 of the variant (a) of the 

HSBA 
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Step 2. For each row 1 i r  , do Step 3 until Step 8 

Step 3. Compute        
1

1ˆ
N

p p
k

k
i X i

N




  ,                    
1

1ˆ ˆ ˆ
1

N Tp p p p
p k k

k
i X i i X i i

N
 



   
  , 

1,2p   

Step 4. Compute      1 2
ˆ̂ ˆ

wS i i i     and                      1 2 1 2ˆ ˆ ˆ ˆ
T

m wS i S i i i i i        

Step 5. Compute the eigenvalues     1 ,..., ni i  and the corresponding unit eigenvectors 

    1 ,..., ni i  of  mS i . Select the largest t  eigenvalues and let 

      1 ,...,t ti diag i i   ,         1 ,...,t
ti i i   

             
1 1
2 2

T
t t

t w tK i i i S i i
    

       
   

. 

Step 6. Compute   i  a matrix whose columns are unit eigenvectors of K i . The most 
informative feature vectors responsible for the class separability between 

        2 2
1 ,..., NX i X i  and         1 1

1 ,..., NX i X i  are the columns of  

         
1
2t

tA i i i i


    . 

Step 7. Compute     1ˆT i by applying a threshold filter to    1ˆ i  and the correction term 

   Y i A i     1ˆT i  

Step 8. Compute the row  X i of the restored image X  by correcting the filtered image 
    1ˆT i  using the information contained by the selected 

features,  X i =         1ˆT i A i Y i  , where   is a noise-preventing constant 
conveniently determined to prevent the restoration of the initial noise, 0< <1.  

c. The variant of the HSBA when 2 wS S  and 1 mS S (Cocianu, State & Vlamos, 2004) 

In case we take 2 wS S  and 1 mS S  we obtain a variant of the HSBA similar to the variant 
(b). In our approach, for each row 1 i r  of the processed images, the most informative 
features used in getting the correction term are determined using the matrix  M i  whose 
columns are eigenvectors of wS mS such that      T

wM i M i S i . 

Our image restoration algorithm based on the Bhattacharyya distance can be described as 
follows. 

The HBA for image restoration (Cocianu, State & Vlamos, 2004) 

Input : The sample     2 2
1 ,..., NX X of noise corrupted versions of the r c -dimensional image 

X  and the number k  of desired features. 

Step 1. Compute the sample     1 1
1 ,..., NX X as described in Step 1 of the variant (a) of the 

HSBA 
Step 2. For each row 1 i r  , do Step 3 until Step 8 
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Step 3. Compute 

       
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Step 4. Compute  

1 ,
2

i  
 
 

=                      
1

2 1 2 11 2
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1 2
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21 ln
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i i

i i
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Step 5. Compute the eigenvalues  1 ,..., c   of the matrix    1
2 1

ˆ ˆi i  and a matrix  A i  

whose columns i  are eigenvectors of    1
2 1

ˆ ˆi i  such that      1
2

ˆTA i A i i  , 
1,i c . 

Step 6. Arrange the eigenvalues such that for any 1 s j c    , 

                 2 2
2 1 2 1ˆ ˆ ˆ ˆ1 1ln 2 ln 2

1 1
s

T T
s j

s j
s j j

i i i i   
 

   

                           
 

and select the feature matrix    1 ,..., T
kM i    . 

Step 7. Compute     1ˆT i by applying a threshold filter to    1ˆ i   

 and the correction term    TY i M i     1ˆT i  

Step 8. Compute the row  X i of the restored image X  by correcting the filtered image 
    1ˆT i  using the information contained by the selected features, 

 X i =         1ˆT i M i Y i   

where   is a noise-preventing constant conveniently determined to prevent the restoration 
of the initial noise, 0< <1.  

3.3 Wavelet-based denoising  

The multiresolution support provides a suitable framework for noise filtering and image 
restoration by noise removal. Briefly, the idea is to determine a set of statistically significant 
wavelet coefficients from which the multiresolution support is extracted, that is the 
procedure is mainly based on an underlying statistical image model governing the whole 
process. The multiresolution support is the basis of subsequent filtering process. 

We extend the MNR algorithm to the algorithm GMNR to allow the noise removal in more 
general cases when the noise mean can be any real number, and compare the performances 
of the resulted method against the most frequently used restoration algorithms (MMSE and 
AMVR). Briefly, the MNR algorithm is described as follows (Stark, Murtagh & Bijaoui, 
1995). The parameter k used in Step 2 controls the width of the confidence interval, its value 
being set to a value around 3. 

Input: The image 
0X , the number of resolution levels p and the heuristic threshold k. 
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Step 2. For each row 1 i r  , do Step 3 until Step 8 

Step 3. Compute        
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Step 4. Compute      1 2
ˆ̂ ˆ

wS i i i     and                      1 2 1 2ˆ ˆ ˆ ˆ
T

m wS i S i i i i i        

Step 5. Compute the eigenvalues     1 ,..., ni i  and the corresponding unit eigenvectors 

    1 ,..., ni i  of  mS i . Select the largest t  eigenvalues and let 

      1 ,...,t ti diag i i   ,         1 ,...,t
ti i i   
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. 

Step 6. Compute   i  a matrix whose columns are unit eigenvectors of K i . The most 
informative feature vectors responsible for the class separability between 

        2 2
1 ,..., NX i X i  and         1 1

1 ,..., NX i X i  are the columns of  

         
1
2t

tA i i i i


    . 

Step 7. Compute     1ˆT i by applying a threshold filter to    1ˆ i  and the correction term 

   Y i A i     1ˆT i  

Step 8. Compute the row  X i of the restored image X  by correcting the filtered image 
    1ˆT i  using the information contained by the selected 

features,  X i =         1ˆT i A i Y i  , where   is a noise-preventing constant 
conveniently determined to prevent the restoration of the initial noise, 0< <1.  

c. The variant of the HSBA when 2 wS S  and 1 mS S (Cocianu, State & Vlamos, 2004) 

In case we take 2 wS S  and 1 mS S  we obtain a variant of the HSBA similar to the variant 
(b). In our approach, for each row 1 i r  of the processed images, the most informative 
features used in getting the correction term are determined using the matrix  M i  whose 
columns are eigenvectors of wS mS such that      T

wM i M i S i . 

Our image restoration algorithm based on the Bhattacharyya distance can be described as 
follows. 

The HBA for image restoration (Cocianu, State & Vlamos, 2004) 

Input : The sample     2 2
1 ,..., NX X of noise corrupted versions of the r c -dimensional image 

X  and the number k  of desired features. 

Step 1. Compute the sample     1 1
1 ,..., NX X as described in Step 1 of the variant (a) of the 

HSBA 
Step 2. For each row 1 i r  , do Step 3 until Step 8 
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Step 3. Compute 

       
1

1ˆ
N

p p
k

k
i X i

N




  ,                    
1

1ˆ ˆ ˆ
1

N Tp p p p
p k k

k
i X i i X i i

N
 



   
  , 1,2p   

Step 4. Compute  

1 ,
2

i  
 
 

=                      
1

2 1 2 11 2
ˆ ˆ1 ˆ ˆ ˆ ˆ

8 2
T i i

i i i i   


   
   

 
+

   

   

1 2

1 2

ˆ ˆ

21 ln
2 ˆ ˆ

i i

i i

  

 
 

Step 5. Compute the eigenvalues  1 ,..., c   of the matrix    1
2 1

ˆ ˆi i  and a matrix  A i  

whose columns i  are eigenvectors of    1
2 1

ˆ ˆi i  such that      1
2

ˆTA i A i i  , 
1,i c . 

Step 6. Arrange the eigenvalues such that for any 1 s j c    , 

                 2 2
2 1 2 1ˆ ˆ ˆ ˆ1 1ln 2 ln 2

1 1
s

T T
s j

s j
s j j

i i i i   
 

   

                           
 

and select the feature matrix    1 ,..., T
kM i    . 

Step 7. Compute     1ˆT i by applying a threshold filter to    1ˆ i   

 and the correction term    TY i M i     1ˆT i  

Step 8. Compute the row  X i of the restored image X  by correcting the filtered image 
    1ˆT i  using the information contained by the selected features, 

 X i =         1ˆT i M i Y i   

where   is a noise-preventing constant conveniently determined to prevent the restoration 
of the initial noise, 0< <1.  

3.3 Wavelet-based denoising  

The multiresolution support provides a suitable framework for noise filtering and image 
restoration by noise removal. Briefly, the idea is to determine a set of statistically significant 
wavelet coefficients from which the multiresolution support is extracted, that is the 
procedure is mainly based on an underlying statistical image model governing the whole 
process. The multiresolution support is the basis of subsequent filtering process. 

We extend the MNR algorithm to the algorithm GMNR to allow the noise removal in more 
general cases when the noise mean can be any real number, and compare the performances 
of the resulted method against the most frequently used restoration algorithms (MMSE and 
AMVR). Briefly, the MNR algorithm is described as follows (Stark, Murtagh & Bijaoui, 
1995). The parameter k used in Step 2 controls the width of the confidence interval, its value 
being set to a value around 3. 

Input: The image 
0X , the number of resolution levels p and the heuristic threshold k. 



 
Image Restoration – Recent Advances and Applications 

 

36

Step 1.  Compute the sequence of image variants  
1,j j p

X


 using a discrete low-pass filter h 
and get the wavelet coefficients by applying the “À Trous” algorithm  

     1 1
1, , 2 , 2j j

j j
l k

X r c h l k X r l c k 
    ,      1, , ,j j jr c X r c X r c   , 

Step 2. Select the significant coefficients where  ,j r c  is taken as being significant if 

 ,j jr c k  , for 1,...,j p  

Step 3. Use the filter g defined by   
 
 

1, ,
, ,

0, ,

j j
j j

j j

r c k
g r c

r c k

 
 

 

  


 to compute the 

restored image,         
1

, , , , ,
p

p j j j
j

X r c X r c g r c r c  


  , 

Output The restored image X . 

In the following, the algorithm GMNR is an extension of the MNR algorithm aiming to get 
the multiresolution support set in case of arbitrary noise mean, and to use this support set 
for noise removal purposes (Cocianu, State, Stefanescu, Vlamos, 2004). Let us denote by X 
the original “clean” image, and  ~  2,N m   be the additively superimposed noise, that is 
the image to be processed is Y X   . Using the two-dimensional filter  , the sampled 
variants of X, Y and   result by convoluting them with   respectively, 

     0 , , , ,c x y Y l c x l y c   ,      0 , , , ,I x y X l c x l y c   ,  

     0 , , , ,E x y l c x l y c    , 0 0 0c I E  . 

The wavelet coefficients of 0c  computed by the algorithm “À Trous” are, 

 0 ,c
j x y      0 0, ,I E

j jx y x y  , where  1 1
2 2 2 2

x xx         
   

. 

For any pixel  ,x y , we get  ,pc x y    , ,p pI x y E x y  , where p stands for the number of 
the resolution levels, and the image 0c  is  

  0 ,c x y          0 0

1 1
, , , ,

p p
I E

p p j j
j j

I x y E x y x y x y 
 

     (13) 

The noise mean can be inhibited by applying the following “white-wall” type technique. 

Step 1. Get the set of images  iE , 1 i n  , by additively superimposing noise  2,N m   on 
a “white wall” image. 

Step 2. Compute jc , 
 i

jE , and the coefficients 
 

0 ,
ic E

j j  , 1 i n  , 1 j p  , by applying the 
“À Trous” algorithm. 

Step 3. Get the image I  by averaging the resulted versions, 

 
Statistical-Based Approaches for Noise Removal 

 

37 

              0

1 1

1, , , , ,
i

pn
i c E

p p j j
i j

I x y c x y E x y x y x y
n

 
 

     
  .  

Step 4. Compute an approximation of the original image 0I  using the multiresolution 
filtering based on the statistically significant wavelet coefficients. 

Note that I  computed at Step 3 is 0 ',I I E   where E’~  2', 'N m  , ' 0m   and 
 2 2'E   .  

3.4 A combined noise removal method based on PCA and shrinkage functions 

In the following, the data X  is a collection of image representations modeled as a sample 
0X  coming from a multivariate wide sense stationary stochastic process of mean μ  and 

covariance matrixΣ , each instance being affected by additively superimposed random 
noise. In general, the parameters μ  and Σ  can not be assumed as been known and they are 
estimated from data. The most frequently used model for the noise component η  is also a 
wide sense multivariate stationary stochastic process of Gaussian type. Denoting by n the 
dimensionality of the image representations, the simplest noise model is the “white” model, 
that is   , 0,t t  η η , where for any t≥0, η t ~  2N , n0 I . Consequently, the 
mathematical model for the noisy image versions is, 0 X X η .  

The aim is to process the data X  using estimates of μ ,Σ  and 2  to derive accurate 
approximations of 0X .  

The data are preprocessed to get normalized and centered representations. The 
preprocessing step is needed to enable the hypotheses that 20 1  . If 0  Y X μ η , 

then   2Cov , T
n Y Y Σ I . Let 1 2 ... n      be the eigen values of Σ , 

Φ 1 2( , ,..., )n Φ Φ Φ  an orthogonal matrix whose columns are unit eigen vectors of Σ , 

and  1 2diag , ,..., n  Λ  the diagonal matrix whose entries are 
2

1i
i




  .  

We apply the linear transform of matrix
1
2T T

A Λ Φ to Y and get the representation 
 0

T T T   Z A Y A X μ A η . Using the assumptions concerning the noise, 
TA η ~  2 1N , 0 Λ  and consequently, the components of TA η  are independent, each 

component being of Gaussian type.  

By applying the shrinkage function    
2

sign max 0, 2
i

g y y y 


 
  

 
 to Z  (Hyvarinen, 

2001), we get the estimate 0Z  of 0Z =  0
T A X μ . Finally, using the equation AAT=Σ-1, we 

get the estimate 0 0
ˆ  X μ ΣAZ  of X0. 

In the following, we combine the above described estimation process with a 
compression/decompression scheme, in order to remove the noise in a feature space of less 
dimensionality. For given , 1m m n  , we denote by  1 2, ,...,m

mΦ Φ Φ Φ  and 
 1 2diag , ,...,m m  Λ the matrix having as columns the first m columns of  and the 

diagonal matrix having as entries the first m entries of  respectively.  



 
Image Restoration – Recent Advances and Applications 

 

36

Step 1.  Compute the sequence of image variants  
1,j j p

X


 using a discrete low-pass filter h 
and get the wavelet coefficients by applying the “À Trous” algorithm  

     1 1
1, , 2 , 2j j

j j
l k

X r c h l k X r l c k 
    ,      1, , ,j j jr c X r c X r c   , 

Step 2. Select the significant coefficients where  ,j r c  is taken as being significant if 

 ,j jr c k  , for 1,...,j p  

Step 3. Use the filter g defined by   
 
 

1, ,
, ,

0, ,

j j
j j

j j

r c k
g r c

r c k

 
 

 

  


 to compute the 

restored image,         
1

, , , , ,
p

p j j j
j

X r c X r c g r c r c  


  , 

Output The restored image X . 

In the following, the algorithm GMNR is an extension of the MNR algorithm aiming to get 
the multiresolution support set in case of arbitrary noise mean, and to use this support set 
for noise removal purposes (Cocianu, State, Stefanescu, Vlamos, 2004). Let us denote by X 
the original “clean” image, and  ~  2,N m   be the additively superimposed noise, that is 
the image to be processed is Y X   . Using the two-dimensional filter  , the sampled 
variants of X, Y and   result by convoluting them with   respectively, 

     0 , , , ,c x y Y l c x l y c   ,      0 , , , ,I x y X l c x l y c   ,  

     0 , , , ,E x y l c x l y c    , 0 0 0c I E  . 

The wavelet coefficients of 0c  computed by the algorithm “À Trous” are, 

 0 ,c
j x y      0 0, ,I E

j jx y x y  , where  1 1
2 2 2 2

x xx         
   

. 

For any pixel  ,x y , we get  ,pc x y    , ,p pI x y E x y  , where p stands for the number of 
the resolution levels, and the image 0c  is  

  0 ,c x y          0 0

1 1
, , , ,

p p
I E

p p j j
j j

I x y E x y x y x y 
 

     (13) 

The noise mean can be inhibited by applying the following “white-wall” type technique. 

Step 1. Get the set of images  iE , 1 i n  , by additively superimposing noise  2,N m   on 
a “white wall” image. 

Step 2. Compute jc , 
 i

jE , and the coefficients 
 

0 ,
ic E

j j  , 1 i n  , 1 j p  , by applying the 
“À Trous” algorithm. 

Step 3. Get the image I  by averaging the resulted versions, 
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              0

1 1

1, , , , ,
i

pn
i c E

p p j j
i j

I x y c x y E x y x y x y
n

 
 

     
  .  

Step 4. Compute an approximation of the original image 0I  using the multiresolution 
filtering based on the statistically significant wavelet coefficients. 

Note that I  computed at Step 3 is 0 ',I I E   where E’~  2', 'N m  , ' 0m   and 
 2 2'E   .  

3.4 A combined noise removal method based on PCA and shrinkage functions 

In the following, the data X  is a collection of image representations modeled as a sample 
0X  coming from a multivariate wide sense stationary stochastic process of mean μ  and 

covariance matrixΣ , each instance being affected by additively superimposed random 
noise. In general, the parameters μ  and Σ  can not be assumed as been known and they are 
estimated from data. The most frequently used model for the noise component η  is also a 
wide sense multivariate stationary stochastic process of Gaussian type. Denoting by n the 
dimensionality of the image representations, the simplest noise model is the “white” model, 
that is   , 0,t t  η η , where for any t≥0, η t ~  2N , n0 I . Consequently, the 
mathematical model for the noisy image versions is, 0 X X η .  

The aim is to process the data X  using estimates of μ ,Σ  and 2  to derive accurate 
approximations of 0X .  

The data are preprocessed to get normalized and centered representations. The 
preprocessing step is needed to enable the hypotheses that 20 1  . If 0  Y X μ η , 

then   2Cov , T
n Y Y Σ I . Let 1 2 ... n      be the eigen values of Σ , 

Φ 1 2( , ,..., )n Φ Φ Φ  an orthogonal matrix whose columns are unit eigen vectors of Σ , 

and  1 2diag , ,..., n  Λ  the diagonal matrix whose entries are 
2

1i
i




  .  

We apply the linear transform of matrix
1
2T T

A Λ Φ to Y and get the representation 
 0

T T T   Z A Y A X μ A η . Using the assumptions concerning the noise, 
TA η ~  2 1N , 0 Λ  and consequently, the components of TA η  are independent, each 

component being of Gaussian type.  

By applying the shrinkage function    
2

sign max 0, 2
i

g y y y 


 
  

 
 to Z  (Hyvarinen, 

2001), we get the estimate 0Z  of 0Z =  0
T A X μ . Finally, using the equation AAT=Σ-1, we 

get the estimate 0 0
ˆ  X μ ΣAZ  of X0. 

In the following, we combine the above described estimation process with a 
compression/decompression scheme, in order to remove the noise in a feature space of less 
dimensionality. For given , 1m m n  , we denote by  1 2, ,...,m

mΦ Φ Φ Φ  and 
 1 2diag , ,...,m m  Λ the matrix having as columns the first m columns of  and the 

diagonal matrix having as entries the first m entries of  respectively.  
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The noise removal process in the m-dimensional feature space applied to 

   
1
2

Tm
mF  Λ Φ Y  produces the cleaned version 0F , and consequently the estimate of 

0X results by decompressing  

0F ,    
1
2

0 0
ˆ  

Tm
m F


   

 
X Λ Φ . 

The model-free version of CSPCA is a learning from data method that computes estimates 
of the first and second order statistics on the basis of a series of n-dimensional noisy images 

1 2 NX ,X ,..., X ,... (State, Cocianu, Sararu, Vlamos, 2009). Also, the estimates of the eigen 
values and eigen vectors of the sample covariance matrix are obtained using first order 
approximations derived in terms of perturbation theory. The first and second order statistics 
are computed in a classical way, that is  

1

1 N

N i
iN 

 μ X  and   
1

1
1

N
T

N i N i N
iN 

  
 Σ X μ X μ .  

Using staightforward computation, the following recursive equations can be derived 

1 1
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Denoting by 1N N N  Σ Σ Σ , in case the eigen values of NΣ  are pairwise distinct, using 
arguments of perturbation theory type, the recursive equations for the eigen values and 
eigen vectors can be also derived (State, Cocianu, Vlamos, Stefanescu, 2006) 
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Assume that the information is represented by , , ,N N N Nμ Σ Λ Φ , and a new noisy image XN+1 
is presented as input. Then the cleaned version 1

ˆ
NX of XN+1 is computed and supplied as 

output followed by the updating 1, 1 1 1, ,N N N N   μ Σ Λ Φ . The updated values of these 
parameters are fed into the restoration module and they will be used for the next test.  

The restoring algorithm can be described as follows. Assuming that 
01 2 NX ,X ,...,X is the 

initial collection of noisy images, we evaluate 
0 0 0 0, , ,N N N Nμ Σ Λ Φ . On the basis of these 

information, a number of M noisy images 
0 01N N M X ,...,X  are next processed according to 

the following scheme. 

1k   

While  k M  

Get 
0N kX  

Compute 
0 0,N k N k μ Σ

0 0
, ,N k N k Λ Φ  (M1) 

 
Statistical-Based Approaches for Noise Removal 

 

39 

Compute 
0

ˆ
N kX  (M2) 

Output 
0

ˆ
N kX  

1k k   

Endwhile 

The computations carried out in the module M1 involve the stored parameters 

0 01, 1N k N k   μ Σ
0 01 1, ,N k N k   Λ Φ  and the noisy current image 

0N kX to update the new values 
of the parameters 

0 0,N k N k μ Σ
0 0

, ,N k N k Λ Φ . The new values of the parameters are fed into 
the module M2 and they are used to clean the input. The computation of the new values of 
the parameters is performed as, 

0 0 0

0
 1

0 0

1 1
N k N k N k

N k
N k N k   

 
 

 
μ μ X  

0 0 01 1
0

1
1N k N k N kN k      

 
Σ Σ Σ   0 0 0 01 1

0

1 T

N k N k N k N kN k       


X μ X μ   

 0 0 0 0

0

1 1 1
1

TN k N k N k N k
i i i N k i       

   ψ Σ ψ   

 0 0
00 0 0

0 0

1 1
11 1

1 1
1

TN k N kn N kj iN k N k N k
i i jN k N k

j i j
j i

 

   
     

   




 




ψ Σ ψ
ψ ψ ψ  

  0 0

0 1 ,..,N k N k
N k ndiag   

 Λ  

 0 0

0 1 ,...,N k N k
N k n

 
 Φ ψ ψ  
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Let us assume that the L gray levels of the initial image X are affected by noise of Gaussian 
type  ~  0,N  , and denote by  an orthogonal n n matrix whose columns are unit eigen 
vectors of  , where n is the dimension of the input space. If  is known, the matrix   can 
be computed by classical techniques, respectively in cases when  is not known, the 
columns of  can be learned adaptively by PCA networks (Rosca, State, Cocianu, 2008). 

We denote by Y the resulted image, Y X   . The images are represented by RxC matrices, 
they are processed by blocks of size 1R C , 1 , 2C pC p C   . In the preprocessing step, 
using the matrix  , the noise is removed by applying the MNR algorithm to the de-
correlated blocks of ' TY Y  .  

The restoration process of the image Y using the learned features is performed as follows 
(State, Cocianu, 2007) 

Step 1. Compute the image Y’ on the basis of the initial image by de-correlating the noise 
component , , ,' 'T T

i j i j i jY Y X      , 1 i R  , 11 j C  , where   is a matrix of 
unit eigen vectors of the noise covariance matrix. Then ' T   ~  0,N  because 

 1 2, ,...,T
ndiag        , where  1 2, ,..., n    are the eigen values of  . 

Step 2. Remove the noise '  from the image Y’ using its multirezolution support. The 
image Y” results by labeling each wavelet coefficient of each pixel.  

 , , ," ' T
i j i j i jY MNR Y X   , 1,...,i R  , 11,...,j C , 

Step 3. Compute an approximation X X of the initial image X by applying the linear 
transform of matrix   to Y”, , , , ," T

i j i j i j i jX Y X X     , 1,...,i R  , 11,...,j C   

4. Conclusions and experimental comparative analysis on the performances 
of some noise removal and restoration algorithms 
In order to evaluate the performance of the proposed noise removal algorithms, a series of 
experiments were performed on different 256 gray level images. We compare the 
performance of our algorithm NFPCA against MMSE, AMVR, and GMNR. The 
implementation of the GMNR algorithm used the masks 

1

1 1 3 1 1
256 64 128 64 256

1 1 3 1 1
64 16 32 16 64
3 3 9 3 3

128 32 64 32 128
1 1 3 1 1

64 16 32 16 64
1 1 3 1 1

256 64 128 64 256

h

 
 
 
 
 
 
 
 
 
 
 
 
 
 

and 
2

1 1 1
20 10 20
1 2 1

10 5 10
1 1 1

20 10 20

h

 
 
 
   
 
  
 

. 

Some of the conclusions experimentally derived concerning the comparative analysis of the 
restoration algorithms presented in the paper against some similar techniques are presented 
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in Table 1, and Table 2. The aims of the comparative analysis were to establish quantitative 
indicators to express both the quality and efficiency of each algorithm. The values of the 
variances in modeling the noise in images processed by the NFPCA represent the maximum 
of the variances per pixel resulted from the decorrelation process. We denote by U(a,b) the 
uniform distribution on the interval [a,b] and by  2,N    the Gaussian distribution of 
mean   and variance 2 .  

It seems that the AMVR algorithm proves better performances from the point of view of mean 
error per pixel in case of uniform distributed noise as well as in case of Gaussian type noise. 
Also, it seems that at least for 0-mean Gaussian distributed noise, the mask 2h  provides less 
mean error per pixel when the restoration is performed by the MNR algorithm. 

Several tests were performed to investigate the potential of the proposed CSPCA. The tests 
were performed on data represented by linearized monochrome images decomposed in 
blocks of size 8x8. The preprocessing step was included in order to get normalized, centered 
representations. Most of the tests were performed on samples of volume 20, the images of 
each sample sharing the same statistical properties. The proposed method proved good 
performance for cleaning noisy images keeping the computational complexity at a 
reasonable level. An example of noisy image and its cleaned version respectively are 
presented in Figure 1.  

Restoration algorithm Type of noise Mean error/pixel
MMSE U(30,80) 52.08
AMVR 10.94
MMSE U(40,70) 50.58
AMVR 8,07
MMSE 

N(40,200) 

37.51
AMVR 11.54
GMNR 14.65
NFPCA 12.65
MMSE 

N(50,100) 

46.58
AMVR 9.39
GMNR 12.23
NFPCA 10.67

Table 1. Comparative analysis on the performance of the proposed algorithms 

Restoration algorithm Type of noise Mean error/pixel 

MNR  1h  N(0,100) 
11.6 

MNR  2h  9.53 

MNR  1h  N(0,200) 
14.16 

MNR  2h  11.74 

Table 2. Comparative analysis on MNR 

The tests performed on new sample of images pointed out good generalization capacities 
and robustness of CSPCA. The computational complexity of CSPCA method is less than the 
complexity of the ICA code shrinkage method.  
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The tests performed on new sample of images pointed out good generalization capacities 
and robustness of CSPCA. The computational complexity of CSPCA method is less than the 
complexity of the ICA code shrinkage method.  



 
Image Restoration – Recent Advances and Applications 

 

42

A synthesis of the comparative analysis on the quality and efficiency corresponding to the 
restoration algorithms presented in section 3.2 is supplied in Table 3. 

So far, the tests were performed on monochrome images only. Some efforts that are still in 
progress aim to adapt and extend the proposed methodology to colored images. Although 
the extension is not straightforward and some major modifications have to be done, the 
already obtained results encourage the hopes that efficient variants of these algorithms can 
be obtained for noise removal in case of colored images too. 

The tests on the proposed algorithms were performed on images of size 256x256 pixels, by 
splitting the images in blocks of smaller size, depending on the particular algorithm. For 
instance, in case of algorithms MNR and GMNR, the images are processed pixel by pixel, 
and the computation of the wavelet coefficients by the “A Trous” algorithm is carried out 
using 3x3 and 5x5 masks. The tests performed on NFPCA, CSPCA, and the model free 
version of CSPCA processed blocks of 8x8 pixels.  

Restoration
algorithm 

Mean error/pixel
Noise distributed 
N(30,150)

Mean error/pixel
Noise distributed 
N(50,200)

Mean 9.422317 12.346784
HRBA 9.333114 11.747860
HSBA 9.022712 11.500245
HBA 9.370968 11.484837

Table 3. Comparative analysis on the performance of the proposed algorithms 

 

The initial noisy image 

 

The cleaned version of the initial image 

Fig. 1. The performance of model-free version of CSPCA 

The comparison of the proposed algorithm NFPCA and the currently used approaches 
MMSE and AMVR points out better results of NFPCA in terms of the mean error per pixel. 
Some of the conclusions are summarized in Table 1 and Table 2, where the noise was 
modeled using the uniform and normal distributions. As it is shown in Table 1, in case of 
the AMVR algorithm the mean error per pixel is slightly less than in case of using NFPCA, 
but the AMVR algorithm induces some blur effect in the image while the use of the NFPCA 
seems to assure reasonable small errors without inducing any annoying side effects.  
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The tests performed on new sample of images pointed out good generalization capacities 
and robustness of CSPCA. The computational complexity of CSPCA method is less than the 
complexity of the ICA code shrinkage method. The authors aim to extend the work from 
both, methodological and practical points of view. From methodological point of view, some 
refinements of the proposed procedures and their performances are going to be evaluated 
on standard large size image databases are in progress. From practical point of view, the 
procedures are going to be extended in solving specifics GIS tasks.  

So far, the tests were performed on monochrome images only. Some efforts that are still in 
progress aim to adapt and extend the proposed methodology to colored images. Although 
the extension is not straightforward and some major modifications have to be done, the 
already obtained results encourage the hopes that efficient variants of these algorithms can 
be obtained for noise removal in case of colored images too. 

The tests on the proposed algorithms were performed on images of size 256x256 pixels, by 
splitting the images in blocks of smaller size, depending on the particular algorithm. For 
instance, in case of the algorithms MNR and GMNR, the images are processed pixel by 
pixel, and the computation of the wavelet coefficients by the “A Trous” algorithm is carried 
out using 3x3 and 5x5 masks. The tests performed on NFPCA, CSPCA, and the model free 
version of CSPCA processed blocks of 8x8 pixels.  
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A synthesis of the comparative analysis on the quality and efficiency corresponding to the 
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and the computation of the wavelet coefficients by the “A Trous” algorithm is carried out 
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algorithm 

Mean error/pixel
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N(30,150)

Mean error/pixel
Noise distributed 
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Mean 9.422317 12.346784
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Table 3. Comparative analysis on the performance of the proposed algorithms 
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Fig. 1. The performance of model-free version of CSPCA 

The comparison of the proposed algorithm NFPCA and the currently used approaches 
MMSE and AMVR points out better results of NFPCA in terms of the mean error per pixel. 
Some of the conclusions are summarized in Table 1 and Table 2, where the noise was 
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seems to assure reasonable small errors without inducing any annoying side effects.  
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1. Introduction

Entropy and the classical variational principle of the statistical physics are the effective tools
for modeling and solving a lot of applied problems. There are many definitions of "entropy"
functions. The book by Kapur (1989) contains some of them. The classical definition of the
physical entropy was introduced by L.Boltzmann Boltzmann (1871) and was developed for
Fermi- and Einstein-statistics Landau & Livshitz (1964). Notion of entropy was introduced for
para-statistics that have position between Fermi- and Einstein-statistics (Ohnuki & Kamefuchi
(1982), Dorofeev et al. (2008)).

Variation principle of entropy maximization turned out very useful for information theory,
the base of which connected with Shannon (Shannon (1948), Kullback & Leibler (1951)).
This direction is developed in the book Popkov (1995), where introduced generalized
information entropies by Fermi-Dirac and Bose-Einstein (entropy with parameters). Entropy
maximization are applied to image reconstruction from projections Byrne (1993). A large
number of applications of the entropy maximization principle is contained in Fang et al.
(1997), Maslov (2003).

In these papers the entropy conditional maximization problems with linear constraints
equalities were considered only. However there are many problems of entropy maximization
with feasible set that is described by a system of inequalities and not only a linear one.

In this paper we design the models of the entropy image reconstruction from projections
(EIRP) as the entropy linear (ELP) and quadratic maximization problems (EQP), where the
feasible sets are described by the system of the equalities and inequalities of appropriate types
(linear and quadratic one).

The regular procedure for design of multiplicative algorithms with p-active variables with
respect to dual variables and to mixed (dual and primal) variables proposed for the problem
solving. The choice of the active variables is implemented by feedback control with respect to
the current state of the iterative process.

The problem of reconstruction of images of the objects distorted by noises and hidden
from direct observation arises in the different fields. One of the trends in the solution of
the problem is based on the tomographic investigation of an object, i.e., the construction
of its layer-by-layer projections. The projections can be formed as external irradiation
sources(X-ray, ultrasonic sources) and internal ones (positron emission) as also with the aid of
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Entropy and the classical variational principle of the statistical physics are the effective tools
for modeling and solving a lot of applied problems. There are many definitions of "entropy"
functions. The book by Kapur (1989) contains some of them. The classical definition of the
physical entropy was introduced by L.Boltzmann Boltzmann (1871) and was developed for
Fermi- and Einstein-statistics Landau & Livshitz (1964). Notion of entropy was introduced for
para-statistics that have position between Fermi- and Einstein-statistics (Ohnuki & Kamefuchi
(1982), Dorofeev et al. (2008)).

Variation principle of entropy maximization turned out very useful for information theory,
the base of which connected with Shannon (Shannon (1948), Kullback & Leibler (1951)).
This direction is developed in the book Popkov (1995), where introduced generalized
information entropies by Fermi-Dirac and Bose-Einstein (entropy with parameters). Entropy
maximization are applied to image reconstruction from projections Byrne (1993). A large
number of applications of the entropy maximization principle is contained in Fang et al.
(1997), Maslov (2003).

In these papers the entropy conditional maximization problems with linear constraints
equalities were considered only. However there are many problems of entropy maximization
with feasible set that is described by a system of inequalities and not only a linear one.

In this paper we design the models of the entropy image reconstruction from projections
(EIRP) as the entropy linear (ELP) and quadratic maximization problems (EQP), where the
feasible sets are described by the system of the equalities and inequalities of appropriate types
(linear and quadratic one).

The regular procedure for design of multiplicative algorithms with p-active variables with
respect to dual variables and to mixed (dual and primal) variables proposed for the problem
solving. The choice of the active variables is implemented by feedback control with respect to
the current state of the iterative process.

The problem of reconstruction of images of the objects distorted by noises and hidden
from direct observation arises in the different fields. One of the trends in the solution of
the problem is based on the tomographic investigation of an object, i.e., the construction
of its layer-by-layer projections. The projections can be formed as external irradiation
sources(X-ray, ultrasonic sources) and internal ones (positron emission) as also with the aid of
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their combination (nuclear magnetic resonance) (Herman (1980), Dhawan (2003)). In Popkov
(1997) is shown that a distribution of the absobed photons in slab maximizes the generalized
entropy by Fermi-Dirac under the set of projections. A generalization consists in the inclusion
of an additional parameters in entropy function, through which it is possible to take into
account prior information on the object.

Our contribution to the theory and applications of the EIRP consists in three parts.

The first contribution is the general entropy models in the terms of entropy linear programming
(ELP) or entropy quadratic programming (EQP) that underlie in the static procedures of
computer tomography. At the beginning of the static procedure, it is occured an accumulation
of a complete set of the projections by means of the external irradiation of the object. Then
it is solved the ELP or EQP. As a result, for the prescribed prior image, we obtain an
entropy-optimal restored image, which we will be called a posterior image.

It calls for a rather high irradiation intensity so as to afford a sufficient noise immunity
of a reconstructed image. However, for some classes of tomographic investigations a high
irradiation intensity is extremely undesirable.

Multiplicative procedures represent to the ELP and EQP solving. Apparently, the first
general approach for synthesis of such procedures was proposed in (Dubov et al. (1983)).
Simple multiplicative algorithm was applied to minimization of strictly convex functions on
nonnegative orthant. Later, the multiplicative algorithms with respect to dual variables are
used for solving conditional minimization and mathematical programming problems (Aliev
et al. (1985), Popkov (1988), Popkov (1995a)). Also, the multiplicative algorithms are used
for solving nonlinear equations (Popkov (1996)). The multiplicative procedures for finding
nonnegative solutions of the minimization problems over nonnegative optant were proposed
again in the paper (Iusem et al. (1996)).

Some types of the multiplicative algorithms are derived from approach based on the Bregman
function and generalized projections with Shannon’s entropy. In this case we obtain so-called
row-action algorithms, iterations of which have a multiplicative form. The algorithms of this
type was developed and modified (Herman (1982), Censor (1981), Censor (1987), Byrne (1996),
Censor & Zenios (1997)).

It is necessary to note that in the most cited works the multiplicative algorithms are applied
to the problems of entropy maximization with linear constraints equalities. We consider
the ELP problem, where a feasible set is described by the system of the linear equalities
and inequalities. The regular procedure for design of multiplicative algorithms with p-active
variables is proposed for solving of this problem. On the basis of the procedure above we
sinthesize the algorithms with respect to dual variables and to mixed (dual and primal)
variables simultaneously. The choice of the active variables is implemented by feedback
control with respect to the current state of the iterative process. Convergence study of
the multiplicative algorithms is based on the continuous analogues of the algorithms and
equivalence of the iterative sequences generated by the dual and mixed type algorithms.
(Popkov (2006)).

Our second contribution is connected with a basically another approach to the EIRP. It is a dynamic
procedure consisting in the sequential refinement in time of the image synthesized. The
suggested procedures do not require a high irradiation intensity and display a high noise
stability.
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On the each step t of the dynamic procedure t-posterior image is build up as a solution of the
ELP or EQP, using the current t-prior image and the current projection. The (t − s), (t − s +
1), . . . , t-posterior images take part in formation of (t+1)-prior image. So the dynamic procedures
are procedures with feedback.

The dynamic procedures are closed in the sense that at each stage for the current t-prior image
and the t-projection, the entropy-optimal t-posterior image is built up, by which the (t+1)-prior
image is corrected.

We consider a diverse structures of the dynamic procedures with feedback and investigate
their properties. The example of application of these procedures is presented.

It is shown that the proposed dynamic procedures of the EIRP represent the dynamic systems
with entropy operator (DSEO). And our third contribution is an elements of the qualitative
analysis of the DSEO. We consider the properties of the entropy operator (boundedness,
Lipschitz constant).

2. Mathematical model of the static EIRP procedure

Consider a common diagram of monochrome tomographic investigation (fig. 1), where
external beams of photons S irradiate the flat object in the direction AB. The object is
monochromatic, and is described by the two-dimensional function of optical density ψ(x, y)
in the system of Cartesian coordinates. Positive values of the density function are limited:

0 < a ≤ ψ(x, y) ≤ b < 1. (2.1)

The intensity of irradiation (projection) w at the point B of the detector D (fig. 1) is related by
the Radon transformation:

w(B) = exp
(
−

∫

l∈AB
ψ(x, y)dl

)
, (2.2)

where the integration is realized along straight AB.

It is common to manipulate the digital representation of the density function ψ(l, s), (l =
1, L, s = 1, S). Introduce i = S(l − 1) + s, i = 1, m, m = LS, and martix Ψ = [ψ(l, s)| l =
1, L, s = 1, S] as a vector ψ̄ = {ψ1, . . . , ψm}.

The tomographic procedure form some feasible sets for the vector ψ̄:

L = {ψ̄ : L(ψ̄) ≤ g}, (2.3)

where L(ψ̄) is the h-vector function, and g is the h-vector. We consider the quadratic
approximation of the function L:

L(ψ̄) = L ψ̄ + Q(ψ̄), (2.4)

where L is the (h × m)-matrix with nonnegative elements lki ≥ 0; Q(ψ̄) is the h-vector of the
quadratic forms:

Q(ψ̄) = ψ̄� Qk ψ̄, (2.5)

where Qk is the symmetric (m × m)-matrix with elements qk
ij ≥ 0.
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their combination (nuclear magnetic resonance) (Herman (1980), Dhawan (2003)). In Popkov
(1997) is shown that a distribution of the absobed photons in slab maximizes the generalized
entropy by Fermi-Dirac under the set of projections. A generalization consists in the inclusion
of an additional parameters in entropy function, through which it is possible to take into
account prior information on the object.

Our contribution to the theory and applications of the EIRP consists in three parts.

The first contribution is the general entropy models in the terms of entropy linear programming
(ELP) or entropy quadratic programming (EQP) that underlie in the static procedures of
computer tomography. At the beginning of the static procedure, it is occured an accumulation
of a complete set of the projections by means of the external irradiation of the object. Then
it is solved the ELP or EQP. As a result, for the prescribed prior image, we obtain an
entropy-optimal restored image, which we will be called a posterior image.

It calls for a rather high irradiation intensity so as to afford a sufficient noise immunity
of a reconstructed image. However, for some classes of tomographic investigations a high
irradiation intensity is extremely undesirable.

Multiplicative procedures represent to the ELP and EQP solving. Apparently, the first
general approach for synthesis of such procedures was proposed in (Dubov et al. (1983)).
Simple multiplicative algorithm was applied to minimization of strictly convex functions on
nonnegative orthant. Later, the multiplicative algorithms with respect to dual variables are
used for solving conditional minimization and mathematical programming problems (Aliev
et al. (1985), Popkov (1988), Popkov (1995a)). Also, the multiplicative algorithms are used
for solving nonlinear equations (Popkov (1996)). The multiplicative procedures for finding
nonnegative solutions of the minimization problems over nonnegative optant were proposed
again in the paper (Iusem et al. (1996)).

Some types of the multiplicative algorithms are derived from approach based on the Bregman
function and generalized projections with Shannon’s entropy. In this case we obtain so-called
row-action algorithms, iterations of which have a multiplicative form. The algorithms of this
type was developed and modified (Herman (1982), Censor (1981), Censor (1987), Byrne (1996),
Censor & Zenios (1997)).

It is necessary to note that in the most cited works the multiplicative algorithms are applied
to the problems of entropy maximization with linear constraints equalities. We consider
the ELP problem, where a feasible set is described by the system of the linear equalities
and inequalities. The regular procedure for design of multiplicative algorithms with p-active
variables is proposed for solving of this problem. On the basis of the procedure above we
sinthesize the algorithms with respect to dual variables and to mixed (dual and primal)
variables simultaneously. The choice of the active variables is implemented by feedback
control with respect to the current state of the iterative process. Convergence study of
the multiplicative algorithms is based on the continuous analogues of the algorithms and
equivalence of the iterative sequences generated by the dual and mixed type algorithms.
(Popkov (2006)).

Our second contribution is connected with a basically another approach to the EIRP. It is a dynamic
procedure consisting in the sequential refinement in time of the image synthesized. The
suggested procedures do not require a high irradiation intensity and display a high noise
stability.
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On the each step t of the dynamic procedure t-posterior image is build up as a solution of the
ELP or EQP, using the current t-prior image and the current projection. The (t − s), (t − s +
1), . . . , t-posterior images take part in formation of (t+1)-prior image. So the dynamic procedures
are procedures with feedback.

The dynamic procedures are closed in the sense that at each stage for the current t-prior image
and the t-projection, the entropy-optimal t-posterior image is built up, by which the (t+1)-prior
image is corrected.

We consider a diverse structures of the dynamic procedures with feedback and investigate
their properties. The example of application of these procedures is presented.

It is shown that the proposed dynamic procedures of the EIRP represent the dynamic systems
with entropy operator (DSEO). And our third contribution is an elements of the qualitative
analysis of the DSEO. We consider the properties of the entropy operator (boundedness,
Lipschitz constant).

2. Mathematical model of the static EIRP procedure

Consider a common diagram of monochrome tomographic investigation (fig. 1), where
external beams of photons S irradiate the flat object in the direction AB. The object is
monochromatic, and is described by the two-dimensional function of optical density ψ(x, y)
in the system of Cartesian coordinates. Positive values of the density function are limited:

0 < a ≤ ψ(x, y) ≤ b < 1. (2.1)

The intensity of irradiation (projection) w at the point B of the detector D (fig. 1) is related by
the Radon transformation:

w(B) = exp
(
−

∫

l∈AB
ψ(x, y)dl

)
, (2.2)

where the integration is realized along straight AB.

It is common to manipulate the digital representation of the density function ψ(l, s), (l =
1, L, s = 1, S). Introduce i = S(l − 1) + s, i = 1, m, m = LS, and martix Ψ = [ψ(l, s)| l =
1, L, s = 1, S] as a vector ψ̄ = {ψ1, . . . , ψm}.

The tomographic procedure form some feasible sets for the vector ψ̄:

L = {ψ̄ : L(ψ̄) ≤ g}, (2.3)

where L(ψ̄) is the h-vector function, and g is the h-vector. We consider the quadratic
approximation of the function L:

L(ψ̄) = L ψ̄ + Q(ψ̄), (2.4)

where L is the (h × m)-matrix with nonnegative elements lki ≥ 0; Q(ψ̄) is the h-vector of the
quadratic forms:

Q(ψ̄) = ψ̄� Qk ψ̄, (2.5)

where Qk is the symmetric (m × m)-matrix with elements qk
ij ≥ 0.
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Fig. 1. Tomography scheme

Now it is returned to the projection function (2.2), and we use its quadratic approximation:

w(B) � T ψ̄ + F(ψ̄) = u, (2.6)

where: w(B) = {w(B1), . . . , w(Bn)}, T is the (n × m)-matrix with elements tki ≥ 0; F(ψ̄) is the
n-vector function with components Frψ̄) = ψ̄� Fr ψ̄, where Fr is the symmetric (m×m)-matrix
with elements f r

ij ≥ 0.

Any tomographic investigation occurs in the presence of noises. So the n-projections vector
u is a random vector with independent components un, n = 1, m, Mu = u0 ≥ 0,M (u −
u0)2 = diag [σ2], where u0 is the ideal projections vector (without noise), and σ2 is the
dispersion of the noise. It is assumed that the dispersions of the noise components are equal.

Thus, the feasible set D(ψ̄) is described the following expressions:

- the projections are
Tψ̄ + F(ψ̄) = u, (2.7)

- the possible set of the density vectors is

L ψ̄ + Q(ψ̄) ≤ g. (2.8)
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The class P of the density vectors is characterized by the following inequalities:

0 < a ≤ ψ̄ ≤ b < 1. (2.9)

It is assumed that among dimensions of the density vectors (m), the projection vectors (n), and
the possible set (h) the following inequality exists:

m > n + h. (2.10)

It is assumed that the feasible set is nonempty for the class (2.9), and there exists a set of the
density vectors ψ̄ (2.9), that belong to the feasible set D (2.7, 2.8).

We will use the variation principle of the EIRP Popkov (1997), according to which the
realizable density vector (function) ψ̄ maximizes the entropy (the generalized information
entropy by Fermi-Dirac):

H(ψ̄ | a, b, E) = −[ψ̄ − a]� ln
ψ̄ − a

E
− [b − ψ̄]� ln[b − ψ̄], (2.11)

where:

- E = {E1, . . . , Em} is the m-vector characterizing the prior image (prior probabilities of photon
absorption in the object);

- ln[(ψ̄ − a) / E] is the vector with components ln[(ψi − ai) / Ei];

- ln[b − ψ̄] is the vector with components ln(bi − ψi).

If there is information about more or less "grey" object then we can use the next entropy
function (the generalized information entropy by Boltzmann):

H(ψ̄ |E) = −ψ̄� ln
ψ̄

eE
, (2.12)

where e = 2, 73.

Thus, the problem of the EIRP can be formulated in the next form:

H(ψ̄ | a, b, E) ⇒ max
ψ̄

, ψ̄ ∈ D(ψ̄)
⋂P , (2.13)

where the feasible set D(ψ̄) is described by the expressions (2.7 - 2.8) and the class P is
described by the inequalities (2.9). This problem is related to the EQP or the ELP depend
on the feasible set construction.

3. Statements and algorithms for the ELP and the EQP

Transform the problem (2.13) to the general form, for that introduce the following
designations:

x = ψ̄ − a, b̃ = b − a,

g̃ = g − {a� Qk a, k = 1, h} − La, (3.1)

ũ = u − {a� Fr a, r = 1, n} − Ta.
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Then the problem (2.13) takes a form:

H(x, b̃, E) = −x� ln
x
E
− [b̃ − x]� ln[b̃ − x] ⇒ max, (3.2)

under the following constraints:

- the projections
T̃x + {x� Fr x, r = 1, n} = ũ, (3.3)

- the possible set
L̃x + {x� Qk x, k = 1, h} ≤ g̃, (3.4)

where

T̃ = T + AF, , AF = 2[ a� Fr, r = 1, n],

L̃ = L + AQ, AQ = 2[ a� Qk, k = 1, h] (3.5)

Remark that the constraints (2.9) are absent in the problem (3.2, 3.4), as they are included to
the goal function.

3.1 The ELP problem

1. Optimality conditions. The feasible set in the ELP problem is described by the next
expressions:

Tx = û, Lx ≤ ĝ, (3.6)

where
û = u − Ta, ĝ = g − La. (3.7)

Consider the Lagrange function for the ELP (3.2, 3.6):

L(x, λ̄, μ̄) = H(x, b̃, E) + [û − Tx]� λ̄ + [ĝ − Lx]� μ̄, (3.8)

where λ̄, μ̄ are the Lagrange multipliers for constraints-equalities and -inequalities (3.6)
correspondingly. Assume that the Slater conditions are valid, i.e., there exists a vector x0

such that Lx0 < ĝ, Tx0 = û.

According to Polyak (1987) the following expressions give the necessary and sufficient
conditions optimality of the triple (x, λ̄, μ̄) for the problem (3.2 - 3.5):

∇xL = 0, ∇λ̄L = 0, ∇μ̄L ≥ 0, (3.9)

μ̄ ⊗ ∇μL = 0, μ̄ ≥ 0, (3.10)

where ⊗ designates a coordinate-wise multiplication.

The following designations are used in these expressions:

∇xL =
∂H
∂x

− T� λ̄ − L� μ̄, (3.11)

∇λ̄L = û − Tx, (3.12)

∇μ̄L = ĝ − Lx, (3.13)

(3.14)
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From the optimality conditions (3.9) we have:

xi(z, μ̄) = yi(z) di(μ̄),

yi(z) = b̃i

⎡
⎣1 +

1
Ei

n

∏
j=1

z
tji

j

⎤
⎦
−1

, (3.15)

di(μ̄) = b̃i

�
1 +

1
Ei

exp

�
h

∑
k=1

μklki

��−1

,

b̃i =
�

bi, i = 1, m.

The Lagrange multipliers μ̄ and the exponential Lagrange multipliers z = exp(λ̄) are defined
by the next equations and inequalities:

Θj(z, μ̄) =
1
uj

m

∑
i=1

tjiyi(z)di(μ̄) = 1, j = 1, n,

Γk(z, μ̄) = gk −
m

∑
i=1

lkiyi(z)di(μ̄) ≥ 0, (3.16)

μkΓk(z, μ̄) = 0, μk ≥ 0, k = 1, h.

2. Multiplicative algorithms with (p+q)-active variables An active variables are vary at
the sth iteration, and the remaining variables are not vary. We will consider multiplicative
algorithms with respect to dual variables (z, μ̄) for solution of the system (3.16). At the each
step of iteration it will be used p components of the vector z, and q components of the vector
μ̄. The number of the active variables is valid to the next relation:

p + q ≤ n + h. (3.17)

The multiplicative algorithms with p+q-active variables can be represented in the following
form:

(a)initial step
z0 ≥ 0, μ̄0 ≥ 0;

(b)iterative step

zs+1
j1(s)

= zs
j1(s)Θ

γ
j1(s)

(zs, μ̄s),

· · · · · · · · · · · · , (3.18)

zs+1
jp(s)

= zs
jp(s)Θ

γ
jp(s)

(zs, μ̄s),

zs+1
j = zs

j , j = 1, n, j �= j1(s), . . . , jp(s);

μs+1
t1(s)

= μs
t1(s)[1 − αΓt1(s)(z

s, μ̄s),

· · · · · · · · · · · · , (3.19)

μs+1
tq(s)

= μs
tq(s)[1 − αΓtq(s)(z

s, μ̄s),

μs+1
t = μs

t , t = 1, h, t �= t1(s), . . . , tq(s);
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jp(s)

(zs, μ̄s),

zs+1
j = zs

j , j = 1, n, j �= j1(s), . . . , jp(s);
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The parameters γ, α are the step coefficients. In Popkov (2006) the multiplicative algorithms
in respect to the mixed type (prime and dual variables) are introduced, and the method of the
convergence of these algorithms are proposed.

3.2 The EQL problem 

1. Optimality condition. Consider the EQL problem (3.2 - 3.5), and introduce the Lagrange
function:

L(x, λ̄, μ̄) = H(x, b̃, E) + λ̄�[ ũ − T̃x − {x� Fr x, r = 1, n}] + (3.20)

+ μ̄�[ g̃ − L̃x − {x� Qk x, k = 1, h} ].
According to the optimality conditions (3.9, 3.10) we have:

∇xL =
∂H
∂x

− [ T + Φ(x) ]�λ̄ − [ L + Π(x) ]�μ̄ = 0,

∇λ̄L = ũ − Tx − {x� Fr x, r = 1, n}, (3.21)

∇μ̄L = g̃ − Lx − {x� Qk x, k = 1, n} ≥ 0,

μ̄ ⊗ ∇μ̄L = 0, x ≥ 0, μ̄ ≥ 0,

where

Φ(x) = [ϕri(x) | r = 1, n, i = 1, m], ϕri(x) = 2
m

∑
j=1

xj f r
ij,

Π(x) = [πki(x) | k = 1, h, i = 1, m], πkj(x) = 2
m

∑
j=1

xjqk
ij.

Transform these equations and inequalities to the conventional form in which all variables are
nonnegative one:

Aj(x, z, μ̄) Ej

xj[1 + Aj(x, z, μ̄) Ej]
= Aj(x, z, μ̄) = 1, j = 1, m,

1
ũr

(
m

∑
i=1

t̃rixi +
m

∑
i,l=1

xi xl f r
il

)
= Br(x) = 1, r = 1, n, (3.22)

μk
g̃k

(
m

∑
i=1

l̃kixi +
m

∑
i,l=1

xi xl qk
il

)
= Ck(x) = 0, k = 1, h,

x ≥ 0, z = exp(−λ̄) ≥ 0, μ̄ ≥ 0,

where

Aj(x, z, μ̄) =
n

∏
r=1

z
t̃rj
r

n

∏
p=1

z
ϕrj(x)
r ×

× exp

(
−

h

∑
k=1

μk l̃kj

)
exp

(
−

h

∑
k=1

μk

m

∑
l=1

xlq
k
jl

)
. (3.23)
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2. Multiplicative algorithms of the mixed type with (p+q+w)-active variables. We use p
active prime x variables, q active dual variables z for the constraints-equalities, and w active
dual μ̄ variables for the the constraints-inequalities. The algorithm takes a form:

(a)initial step
x0 ≥ 0, z0 ≥ 0, μ̄0 ≥ 0;

(b)iterative step

xs+1
j1(s)

= xs
j1(s)A

β

j1(s)
(xs, zs, μ̄s),

· · · · · · · · · · · · , (3.24)

xs+1
jp(s)

= xs
jp(s)A

β

jp(s)
(xs, zs, μ̄s),

xs+1
j = xs

j , j = 1, m, j �= j1(s), . . . , jp(s);

zs+1
t1(s)

= zs
t1(s)B

γ
t1
(xs),

· · · · · · · · · · · · , (3.25)

zs+1
tq(s)

= zs
tq(s)B

γ
tq
(x)s,

zs+1
t = zs

t , t = 1, n, t �= t1(s), . . . , tq(s);

μs+1
k1(s)

= μs
k1(s)[1 − αCk1

(xs)],

· · · · · · · · · · · · , (3.26)

μs+1
kw(s)

= μs
kw(s)[1 − αCkw (x

s)],

μs+1
k = μs

k, k = 1, h, k �= k1(s), . . . , kw(s);

The parameters β, γ, α are the step coefficients.

3. Active variables. To choice active variables we use feedback control with respect to the
residuals on the each step of iteration. Consider the choosing rule of the active variables for
the ELP problem (3.2, 3.3, 3.4). Introduce the residuals

ϑi(z
s, μ̄s) = |1 − Θi(z

s, μ̄s)|, i = 1, n;

εk(z
s, μ̄s) = μkΓk(z

s, μ̄s), k = 1, h. (3.27)

One of the possible rules is a choice with respect the maximum residual. In this case it is
necessary to select p maximum residual ϑi1 , . . . , ϑip and q maximum residual εk1

, . . . , εkq for
the each iterative step s. The numbers i1, . . . , ip and k1, . . . , kq belong to the intervals [1, n] and
[1, h] respectively.

Consider the step s and find the maximal residual ϑi1 (z
s, μ̄s) among ϑ1(zs, μ̄s), . . . , ϑn(zs, μ̄s).

Exclude the residual ϑi1 (z
s, μ̄s) from the set ϑ1(zs, μ̄s),

. . . , ϑn(zs, μ̄s), and find the maximal residual ϑi2 (z
s, μ̄s) among ϑ1(zs, μ̄s), . . . ,

ϑi1−1(zs, μ̄s), ϑi1+1(zs, μ̄s)ϑn(zs, μ̄s), and etc., until all p maximal residuals will be found.
Selection of the maximal residuals εk1

(zs, μ̄s), . . . , εkq (z
s, μ̄s) is implemented similary.
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+ μ̄�[ g̃ − L̃x − {x� Qk x, k = 1, h} ].
According to the optimality conditions (3.9, 3.10) we have:

∇xL =
∂H
∂x

− [ T + Φ(x) ]�λ̄ − [ L + Π(x) ]�μ̄ = 0,

∇λ̄L = ũ − Tx − {x� Fr x, r = 1, n}, (3.21)
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where

Φ(x) = [ϕri(x) | r = 1, n, i = 1, m], ϕri(x) = 2
m

∑
j=1

xj f r
ij,

Π(x) = [πki(x) | k = 1, h, i = 1, m], πkj(x) = 2
m

∑
j=1

xjqk
ij.

Transform these equations and inequalities to the conventional form in which all variables are
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Aj(x, z, μ̄) Ej

xj[1 + Aj(x, z, μ̄) Ej]
= Aj(x, z, μ̄) = 1, j = 1, m,

1
ũr

(
m

∑
i=1

t̃rixi +
m

∑
i,l=1

xi xl f r
il

)
= Br(x) = 1, r = 1, n, (3.22)

μk
g̃k

(
m

∑
i=1

l̃kixi +
m

∑
i,l=1

xi xl qk
il

)
= Ck(x) = 0, k = 1, h,

x ≥ 0, z = exp(−λ̄) ≥ 0, μ̄ ≥ 0,

where

Aj(x, z, μ̄) =
n

∏
r=1

z
t̃rj
r

n

∏
p=1

z
ϕrj(x)
r ×

× exp

(
−

h

∑
k=1

μk l̃kj

)
exp

(
−

h

∑
k=1

μk

m

∑
l=1

xlq
k
jl

)
. (3.23)
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2. Multiplicative algorithms of the mixed type with (p+q+w)-active variables. We use p
active prime x variables, q active dual variables z for the constraints-equalities, and w active
dual μ̄ variables for the the constraints-inequalities. The algorithm takes a form:

(a)initial step
x0 ≥ 0, z0 ≥ 0, μ̄0 ≥ 0;

(b)iterative step

xs+1
j1(s)

= xs
j1(s)A

β

j1(s)
(xs, zs, μ̄s),

· · · · · · · · · · · · , (3.24)

xs+1
jp(s)

= xs
jp(s)A

β

jp(s)
(xs, zs, μ̄s),

xs+1
j = xs

j , j = 1, m, j �= j1(s), . . . , jp(s);

zs+1
t1(s)

= zs
t1(s)B

γ
t1
(xs),

· · · · · · · · · · · · , (3.25)

zs+1
tq(s)

= zs
tq(s)B

γ
tq
(x)s,

zs+1
t = zs

t , t = 1, n, t �= t1(s), . . . , tq(s);

μs+1
k1(s)

= μs
k1(s)[1 − αCk1

(xs)],

· · · · · · · · · · · · , (3.26)

μs+1
kw(s)

= μs
kw(s)[1 − αCkw (x

s)],

μs+1
k = μs

k, k = 1, h, k �= k1(s), . . . , kw(s);

The parameters β, γ, α are the step coefficients.

3. Active variables. To choice active variables we use feedback control with respect to the
residuals on the each step of iteration. Consider the choosing rule of the active variables for
the ELP problem (3.2, 3.3, 3.4). Introduce the residuals

ϑi(z
s, μ̄s) = |1 − Θi(z

s, μ̄s)|, i = 1, n;

εk(z
s, μ̄s) = μkΓk(z

s, μ̄s), k = 1, h. (3.27)

One of the possible rules is a choice with respect the maximum residual. In this case it is
necessary to select p maximum residual ϑi1 , . . . , ϑip and q maximum residual εk1

, . . . , εkq for
the each iterative step s. The numbers i1, . . . , ip and k1, . . . , kq belong to the intervals [1, n] and
[1, h] respectively.

Consider the step s and find the maximal residual ϑi1 (z
s, μ̄s) among ϑ1(zs, μ̄s), . . . , ϑn(zs, μ̄s).

Exclude the residual ϑi1 (z
s, μ̄s) from the set ϑ1(zs, μ̄s),

. . . , ϑn(zs, μ̄s), and find the maximal residual ϑi2 (z
s, μ̄s) among ϑ1(zs, μ̄s), . . . ,

ϑi1−1(zs, μ̄s), ϑi1+1(zs, μ̄s)ϑn(zs, μ̄s), and etc., until all p maximal residuals will be found.
Selection of the maximal residuals εk1

(zs, μ̄s), . . . , εkq (z
s, μ̄s) is implemented similary.
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Now we represent the formalized procedure of selection. Introduce the following
designations:

n
p
= I + δ, I =

�
n
p

�
, 0 ≤ δ ≤ p − 1;

h
q
= J + ω, J =

�
h
q

�
, 0 ≤ ω ≤ q − 1. (3.28)

� = s (mod (I + 1)), κ = s (mod (J + 1)). (3.29)

Consider the index sets:

N = {1, . . . , n} Nr(s) = {i1(s), . . . , ir(s)};

K = {1, . . . , h} Kv(s) = {k1(s), . . . , kv(s)}, (3.30)

where

r =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[1, p], if � < I;

[1, δ], if � = I;

0, if δ = 0

, v =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[1, q], if κ < J;

[1, ω] if κ = J;

0, if ω = 0.

(3.31)

Introduce the following sets:

Pr−1(s) =

�
��

l=1

Np(s − l)

�
�

Nr−1(s), Gr−1 = N \ Pr−1(s).

Qv−1(s) =

�
κ�

l=1

Kv(s − l)

�
�

Kv−1(s), Rv−1 = K \ Qv−1(s).

(3.32)

The numbers r and v are determined by the equalities (3.31), and

N0(s) = K0(s) = P0(s) = G0(s) = Q0(s) = R0(s) = ∅, for all s.

Now we define the rule of the (p+q)-maximal residual in the following form:

ij(s) = arg max
[i∈Gj−1(s)]

ϑi(z
s, μ̄s),

kl(s) = arg max
[k∈Rl−1(s)]

εk(z
s, μ̄s). (3.33)

According to this rule we have the chain of inequalities:

ϑip (z
s, μ̄s) < ϑip−1 (z

s, μ̄s) < · · · < ϑi1 (z
s, μ̄s),

εkq (z
s, μ̄s) < εkq−1

(zs, μ̄s) < · · · < εk1
(zs, μ̄s). (3.34)

We can see that all dual variables are sequentially transformed to active ones during I + J + 2
iterations It is repeated with a period of I + J + 2.
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4. Dynamic EIRP procedure with feedback

The basic idea of the dynamic procedure lies in the sequential (stage by stage) obtaining of
the projections and the solution of the sequence of the appropriate ELP or EQP. The feasible
sets in these problems consist on two subsets. One of them describes the class of the possible
density functions (2.7), and it is not depends from irradiation of the object. The other subset
depends on the measured projections (2.8).

On the stage t we have the t-prior image Et, the projection’s vector ut, measured with noise ξ̄.
The problem (2.7 - 2.9, 2.13) is solved and we have t-posteriori image

ψ̄t∗(Et|ut) = arg max
ψ̄

{
H(ψ̄, Et)|ψ̄t ∈ D(ut)

}
. (4.1)

On the next (t + 1)-stage the prior image E(t+1) is formed on the basis of t, (t − 1), . . . , (t −
s)-posterior images ψ̄(t,∗), ψ̄((t−1),∗), . . . , ψ̄((t−s),∗). Each of posterior images are reconstructed
by the rule (4.1).

In the general case the procedure holds

E(t+1) = L̃(Et, ψ̄(t,∗), . . . , ψ̄((t−s),∗)), (4.2)

where L is the feedback operator, which characterizes the transformation of the t-prior image,
and t, (t − 1), . . . , (t − s)-posterior images to the (t + 1)-prior image.

Represent the operator L̃ in the following form:

L̃(Et, ψ̄(t,∗), . . . , ψ̄((t−s),∗)) = Et + �L(Et, ψ̄(t,∗), . . . , ψ̄((t−s),∗)), (4.3)

where � is a small positive real number.

Then the dynamic EIRP procedure (the discrete procedure) takes a form:

E(t+1) = Et + �L(Et, ψ̄(t,∗), . . . , ψ̄((t−s),∗)). (4.4)

Now let the variable t is continuous one. Then under � → 0 we will have the continuous
dynamic EIRP that is described be the differential equation:

dE(t)
dt

= L(Et, ψ̄(t,∗), . . . , ψ̄((t−s),∗)). (4.5)

The t, (t − 1), . . . , (t − s)-posterior images are defined by the ELP or EQP problems, which
represent the appropriate entropy operators (4.1). So the dynamic EIRP procedure (4.1, 4.2, (4.4))
represents the discrete dynamic system with entropy operator (the discrete DSEO) and its the
continuous analog (4.5) represents the continuous dynamic system with entropy operator (the
continuous DSEO). Some general properties of the DSEO will be described in the next section.

4.1 Structures of the dynamic EIRP procedures

Let us consider some partial cases. One of them relates to the examination of a Markov version
of the procedure when the information only on the t-posterior image is used to shape up
E(t+1):

E(t+1) = L(Et, ψ̄t,∗). (4.6)
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4. Dynamic EIRP procedure with feedback

The basic idea of the dynamic procedure lies in the sequential (stage by stage) obtaining of
the projections and the solution of the sequence of the appropriate ELP or EQP. The feasible
sets in these problems consist on two subsets. One of them describes the class of the possible
density functions (2.7), and it is not depends from irradiation of the object. The other subset
depends on the measured projections (2.8).

On the stage t we have the t-prior image Et, the projection’s vector ut, measured with noise ξ̄.
The problem (2.7 - 2.9, 2.13) is solved and we have t-posteriori image

ψ̄t∗(Et|ut) = arg max
ψ̄

{
H(ψ̄, Et)|ψ̄t ∈ D(ut)

}
. (4.1)

On the next (t + 1)-stage the prior image E(t+1) is formed on the basis of t, (t − 1), . . . , (t −
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Then the dynamic EIRP procedure (the discrete procedure) takes a form:

E(t+1) = Et + �L(Et, ψ̄(t,∗), . . . , ψ̄((t−s),∗)). (4.4)

Now let the variable t is continuous one. Then under � → 0 we will have the continuous
dynamic EIRP that is described be the differential equation:

dE(t)
dt

= L(Et, ψ̄(t,∗), . . . , ψ̄((t−s),∗)). (4.5)

The t, (t − 1), . . . , (t − s)-posterior images are defined by the ELP or EQP problems, which
represent the appropriate entropy operators (4.1). So the dynamic EIRP procedure (4.1, 4.2, (4.4))
represents the discrete dynamic system with entropy operator (the discrete DSEO) and its the
continuous analog (4.5) represents the continuous dynamic system with entropy operator (the
continuous DSEO). Some general properties of the DSEO will be described in the next section.

4.1 Structures of the dynamic EIRP procedures

Let us consider some partial cases. One of them relates to the examination of a Markov version
of the procedure when the information only on the t-posterior image is used to shape up
E(t+1):

E(t+1) = L(Et, ψ̄t,∗). (4.6)
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In the second case, information collections at t, t− 1, . . . , t− s stages are used for the estimation
of the current mean ¯̄ψt of the posterior image:

E(t+1) = L(Et, ¯̄ψt). (4.7)

Finally, in the third case, information collections at t, t − 1, . . . , t − s stages are used for the
estimation of the current mean ¯̄ψt and dispersion dt of the posterior image:

E(t+1) = L(Et, ¯̄ψt, dt). (4.8)

We will introduce the following types of the dynamic procedures of the EIRP:

• the identical feedback (I − f eedback)

E(t+1) = arg max
ψt

H(ψ̄t)|Et) | ψ̄t ∈ D(ut); (4.9)

• the feedback with respect to the current mean of image (CM − f eedback)

E(t+1) = Et + α(Et − ¯̄ψt), (4.10)

¯̄ψ(t+1) = ¯̄ψt +
1

t + 1

(
ψ(t,∗) − ¯̄ψt

)
;

ψ̄(t,∗) = arg max
ψ

{H(ψ̄t, Et)|ψ̄t ∈ D(ut)};

(4.11)

• the feedback with respect to the current mean and dispersion of image (CMD − f eedback)

E(t+1) = Et + α(dt)(Et − ¯̄ψt), (4.12)

¯̄ψ(t+1) = ¯̄ψt +
1

t + 1

(
ψ̄(t,∗) − ¯̄ψt

)
, (4.13)

d(t+1) = dt +
1

t + 1

(
dt + [ψ̄(t,∗) − ¯̄ψt]2

)
,

ψ̄(t,∗) = arg max
ψ

{H(ψ̄, Et) | ψ̄t ∈ D(ut)}.

(4.14)

4.2 Investigation of the dynamic EIRP procedure with I-feedback

Consider the problem (2.13) in which the feasible set is the polyhedron, a = 0, b = 1, and the
constraints to the possible density functions (2.7) are absent. In this case t-posterior density
function hold:

ψt,∗
i =

Et
i

Et
i + ∏n

j=1[z
t
j ]

tji
, i = 1, m. (4.15)

The exponential Lagrange multipliers z1, . . . , zn are defined from the following equations:

Φj(z
t) =

m

∑
i=1

tjiEt
i

Et
i + ∏n

j=1[z
t
j ]

tji
= uj, j = 1, n. (4.16)
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According to the definition of the I-feedback procedure we have:

Et+1
i = Ψi(E

t) =
Et

i
Et

i + ϕi[zt(Et)]
, i = 1, m, (4.17)

where

ϕi[z
t(Et)] =

n

∏
j=1

[zt
j ]

tji ≥ 0. (4.18)

The iterative process (4.17) can be considered as the method of the simple iteration applying
to the eguations:

Ei =
Ei

Ei + ϕi[z(E)]
, i = 1, m. (4.19)

Theorem 1.Let ϕi[z(E)] ≤ 1 for all i = 1, m, z ≥ 0, 0 ≤ E ≤ 1.

Then the system of equations (4.19) has the unique solution E∗.

Proof. Consider the auxiliary equation:

x = Ψ(x) =
x

x + a
, x ≥ 0.

We can see that the function Ψ(x) is strictly monotone increasing (Ψ�(x) > 0 for all x > 0 and Ψ(∞) = 0),
and is strictly convex (Ψ� �(x) < 0, x > 0 and Ψ� �(∞) = 0).

If Ψ�(0) = 1/a ≥ 1, (a ≤ 1), then the auxiliary equation has the unique solution, and the method of the
simple iteration is converged to this solution.

Now it is necessary to find a conditions when ϕi[z(E)] ≤ 1. The sufficient conditions for it is
formed by the following theorem.

Theorem 2. Let the matrix T in (2.7) has the complete rank n, and the following conditions be valid:

max
j∈[1,n]

(
m

∑
i=1

tji

)
− umax > 0, umax = max

j∈[1,n]
uj; (4.20)

min
j∈[1,n]

(
m

∑
i=1

tji

(
Et

i
Et

i + 1

))
− umin < 0, umin = min

j∈[1,n]
uj. (4.21)

Then ϕi[z(E)] ≤ 1 for all i = 1, m.

Proof. Consider the Jacobian of the vector-function Φ̄(zt). Its elements take a form:

∂Φj(zt)

∂zk
= − 1

zk

m

∑
i=1

tji tki Et
i ϕi(zt)

[Et
i + ϕi(zt)]2

≤ 0, (j, k) = 1, n.

The equality to zero is reached when z → ∞. So, the functions Φ1, . . . , Φn are strictly monotone
decreasing.

Therefore, under the theorem’s conditions, the solution of the equations (4.16) z∗j ∈ [0, 1], j = 1, n, and
the functions 0 < φj(z(E)) ≤ 1.
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max
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(
m

∑
i=1

tji

)
− umax > 0, umax = max

j∈[1,n]
uj; (4.20)

min
j∈[1,n]

(
m

∑
i=1

tji

(
Et

i
Et

i + 1

))
− umin < 0, umin = min

j∈[1,n]
uj. (4.21)
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∂zk
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zk

m

∑
i=1

tji tki Et
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[Et
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57Entropic Image Restoration as a Dynamic System with Entropy Operator



14 Will-be-set-by-IN-TECH

Fig. 2. Test image 1

4.3 Computer experiment

Consider the dynamic EIRP when the tomographic device gives the orthogonal linear
projections with the matrix

T =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 · · · 1 · · · 0 · · · 0
· · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 · · · 1 · · · 1
1 · · · 0 · · · 1 · · · · · ·
· · · · · · · · · · · · · · · · · · · · ·
0 · · · 1 · · · 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎠

(4.22)

As a test image, use is made of the LENA test (IEEE Image Processing), on which the spot is
placed (fig. 2, the left upper window).

To the right and below window, the projections with noise are shown. In the example, the
noise/signal ratio amounted to 0.3.

It is necessary to restored the LENA with the spot having the noisy projections. We use "the pure
LENA", which is shown in the second upper window, as the 0-prior image E0 = {E0

1, . . . , E0
m}.

This problem of the EIRP is described by the ELP with the constrains-equalities. The
multiplicative algorithms with 1-active dual variable (3.18) is used for solution of the problem.
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Fig. 3. Test image 2

The modification of the dynamic procedure with I- feedback involved the following. At each
stage t we shaped up the auxiliary vector

ψ̃
(t,∗)
i =

{
ψ
(t,∗)
i , if |Et

i − ψ
(t,∗)
i | ≥ δ,

Et
i , if |Et

i − ψ
(t,∗)
i | < δ

, (4.23)

i = 1, m. (4.24)

In parallel, the current mean of the components of the vector ψ̃t,∗ are calculated:

¯̃ψ(t+1)
i = ¯̃ψt

i +
1

t + 1
(ψ̃t,∗

i − ¯̃ψt). (4.25)

The modified dynamic procedure takes the form:

Et+1
i = ¯̃ψ(t+1)

i , i = 1, m. (4.26)

In fig. 2, in the right upper window, the result of the EIRP with the static procedure is shown.
In the middle lower window, fig. 2 shows results of the EIRP by the dynamic procedure with I
-feedback, and in the right lower window results of the modified dynamic procedure is shown.
The quality of the right image is obvious.

The test image 2 is shown in the fig. 3.

5. Dynamic systems with entropy operator (DSEO)

We can see that dynamic procedures of the image restoration from projections represent a
dynamic discrete system with the particular type of the entropy operator with the generalized
entropy Fermi-Dirac (3.2), and the feasible set that is described by the inequality and the
equality (3.4).
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In general case the class of the continuous DSEO is described by the following differential
equations:

du(t)
dt

= U (u(t), v(t), y[t, u(t), v(t)]) , u(0) = u0. (5.1)

dv(t)
dt

= V (u(t), v(t), y[t, u(t), v(t)]) , v(0) = v0. (5.2)

with the entropy operator:

y[t, u(t), v(t)] = arg max
y

{H(t, y, u(t)) | y ∈ D[t, v(t)]} , (5.3)

where: H(t, y |u) is an entropy function with the H-parameters u; the vectors (y, u) ∈
Rn, v ∈ Rm , and D(t, v) is a feasible set depended from the D-parameters v.

In these equations U is the n-vector-function, and V is the m-vector-function.

5.1 Classification of the DSEO

Some physical analogues we will use for construction of the classificatory graph. In particular,
from the equations (5.1, 5.2) it is seen the rates of parameters is proportional to the flows. The
entropy function is a probability characteristics of a stochastic process. So the H-parameters
are the parameters of this process.

We will use the following classificatory indicators:

• (A), types of the state coordinates (�H�-coordinates u, �D�-coordinates v,
�HD�-coordinates u, v);

• (B), flows (�Add� - an additive flow, �Mlt� - a multiplicative flow);
• (C), entropy functions (�F�-Fermi-, �E�-Einstein-, �B�-Boltzmann-entropy functions);
• (D), models of the feasible sets (�Eq�-equalities, �Ieq�-inequalities, �Mx�-mixed);
• (F), types of the feasible sets (�Plh�- polyhedron, �Cnv�-convex, �nCnv�-non-convex).

The classificatory graph is shown in the fig. 4.

At the beginning we consider some properties of the entropy operator, notably, the
�HD, B, Eq, Plh�-entropy operator that is included to the �HD�-DSEO:

y[u, v] = arg max
{

HB[y, u] | y ∈ D̃[v]
}

, (5.4)

where Boltzmann-entropy function is

H(y |u) = −
(

y� ln
y
eu

)
, y ∈ Rm

+, (5.5)

and the feasible set is
D̃[v] = {y : T̃ y = v, y ≥ 0}. (5.6)

In these expressions the vector ln y
eu = {ln y1

eu1
, . . . , ln ym

eum
}, and the vectors

u ∈ Um
+(u

−, u+) ⊂ Rm
+, v ∈ Vn

+(v
−, v+) ⊂ Rn

+, n < m, (5.7)

and

Um
+(u

−, u+) = {u : 0 < u− ≤ u ≤ u+ ≤ 1},

Vn
+(v

−, v+) = {v : 0 < v− ≤ v ≤ v+}. (5.8)

The (n × m)-matrix T̃ = [t̃ki ≥ 0] has a full rank equal n.
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Fig. 4. Classificatory graph

5.2 Estimation of the local Lipschitz-constants for the �HD, B, Eq, Plh�-entropy operator.

The �HD, B, Eq, Plh�-entropy operator describes the mapping of the sets Um
+(u

−, u+) and
Vn
+(v

−, v+) into the set Y ⊂ Rm
+ of the operator’s values. We will characterize this mapping

by two local Lipschitz-constants - LU and LV , i.e.

�y[u(1), v(1)]− y[u(2), v(2)]� ≤ LU �u(1) − u(2)�+ LV �v(1) − v(2)�. (5.9)

We will use the upper estimations of local Lipschitz-constant:

LU ≤ max
Um

+

�YU�, LV = max
Vn
+

�YV�, (5.10)

where YU and YV are the U-Jacobian and the V-Jacobian of the operator y[u, v] respectively.

Evaluate the normalized entropy operator in the following form:

x(u, v) = arg max (H[x, u] | Tx = v, x ≥ 0) , (5.11)

where
H(x |u) = −

�
x� ln

x
eu

�
. (5.12)

ti =
n

∑
k=1

t̃ki, tki =
t̃ki
ti

, i = 1, m. (5.13)

The matrix T in (5.11) has a full rank n and the normalized elements, i.e. ∑n
k=1 tki = 1 for

all i = 1, m. Also it is assumed that the condition of the dominating diagonal is valid for the
quadratic matrix T T�, i.e. the following inequalities take a form:

m

∑
i=1

⎛
⎝t2

ki −
n

∑
j �=k

tkitji

⎞
⎠ ≥ � > 0, k = 1, n. (5.14)
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The feasible set D = {x : T x = v, x ≥ 0} is not empty, notable, there exists some subset of
the nonnegative vectors x ∈ D.

Designate the Lipschitz-constant for the normalized operator (5.11) as L̃U and L̃V respectively,
i.e.

�x[u(1), v(1)]− x[u(2), v(2)]� ≤ L̃U �u(1) − u(2)�+ L̃V �v(1) − v(2)�. (5.15)

We will use the upper estimations of local Lipschitz-constant:

L̃U ≤ max
Um

+

�XU�, L̃V = max
Vn
+

�XV�, (5.16)

where XU and XV are the U-Jacobian and the V-Jacobian of the operator x[u, v] respectively.

According to (5.13), the following relation between the operators y(u, v) (5.4) and x(u, v) (5.11)
exists:

y(u, v) = t−1 ⊗ x(u, v), (5.17)

where the vector t−1 = {t−1
1 , . . . , t−1

m }, where the components ti are defined by the equalities
(5.13), and ⊗ implies the coordinate-wise multiplication of the vectors.

Thus we have the following equalities:

LU = �t−1�L̃U , LV = �t−1�L̃V , (5.18)

Thus, we will calculate the local Lipschitz-constants estimations for the normalized entropy
operator (5.11, 5.12) and then apply the formulas (5.17, 5.18).

The normalized entropy operator x(u, v) can be represented by the form:

xi(u, v) = ui exp

⎛
⎝−

n

∑
j=1

λj(u, v) tji

⎞
⎠ , i = 1, m, (5.19)

where the Lagrange multipliers λj(u, v), (j = 1, n) as the implicit functions from u, v define
by the equations:

Φk[u, λ(u, v)] =
m

∑
i=1

uitki exp

⎛
⎝−

n

∑
j=1

λj(u, v) tji

⎞
⎠ = vk, k = 1, n. (5.20)

1. Estimations of the norm’s matrix XU . The (m × m)-matrix XU takes a form:

XU =

�
∂xi
∂uj

, (i, j) = 1, m

�
,

We will use Euclidean vector norm (�y�2), with which two matrix norm are consisted (see Voevodin
(1984)):

- the spectral norm
�A�2 =

√
σmax ,

where σmax is the maximal eigenvalue of the matrix A;

62 Image Restoration – Recent Advances and Applications Entropic Image Restoration as a Dynamic System with Entropy Operator 19

- and the Euclidean norm
�A�E =

�
∑
i,j

|aij|2.

It is known that
�A�2 ≤ �A�E

It is assumed that �XU� = �XU�2. We have from (5.19) the following equality:

XU = Xu + Xλ ΛU , (5.21)

where the (m × m)-matrix

Xu = diag [
xi
ui

| i = 1, m]; (5.22)

the (m × n)-matrix
Xλ = −x ⊗ T�; (5.23)

and the n × m-matrix

ΛU =

�
∂λj

∂ui
, j = 1, n, i = 1, m

�
(5.24)

In these expressions ⊗ is coordinate-wise multiplication of the vector’s components to the
rows of the matrix.

According to (5.21) and the relation between the spectral norm and the Euclidean norm, we
have:

�XU�2 ≤ �Xu�E + �Xλ�E �ΛU�E, (5.25)

where

�Xu�E ≤ √
m

xmax

u−
min

, (5.26)

xmax = max
(i,u,v)

xi(u, v), u−
min = min

i
u−

i . (5.27)

�Xλ�E ≤ xmax�T�E = xmax

����
m,n

∑
i=1,j=1

t2
ij. (5.28)

Now consider the equations (5.20), and differentiate the left and right sides of these equations
by u. We obtain the following matrix equation:

Φλ ΛU = −Φu, (5.29)

From this implies that

ΛU =

�
∂λk
∂ui

| k = 1, n, i = 1, m
�
= −Φ−1

λ Φu. (5.30)

Here the (n × n)-matrix Φλ has elements

φλ
ks = −

m

∑
i=1

uitkitjs exp

⎛
⎝−

n

∑
j=1

λj(u, v)tji

⎞
⎠ , (k, s) = 1, n; (5.31)
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Φλ ΛU = −Φu, (5.29)

From this implies that

ΛU =

�
∂λk
∂ui

| k = 1, n, i = 1, m
�
= −Φ−1

λ Φu. (5.30)

Here the (n × n)-matrix Φλ has elements

φλ
ks = −

m

∑
i=1

uitkitjs exp

⎛
⎝−

n

∑
j=1

λj(u, v)tji

⎞
⎠ , (k, s) = 1, n; (5.31)
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and the (n × m)-matrix Φu has elements

φu
ki = tki exp

⎛
⎝−

n

∑
j=1

λj(u, v)tji

⎞
⎠ , k = 1, n, i = 1, m. (5.32)

According to (5.30) we have

�ΛU�2 ≤ �Φ−1
λ �2

xmax

u−
min

����
n,m

∑
j=1,i=1

t2
ji. (5.33)

Thus the norm’s estimation of the matrix XU takes a form:

�XU�2 ≤ xmax

u−
min

⎛
⎝√

m + xmax �Φ−1
λ �2

m,n

∑
i=1,j=1

t2
ij

⎞
⎠ . (5.34)

2. Estimations of the norm’s matrix XV .The (m × n)-matrix XV takes a form

XV =

�
∂xi
∂vk

, i = 1, m, k = 1, n
�

.

It is assumed that �XV� = �XV�2. We have from (5.19) the following equality:

XU = Xλ ΛV , (5.35)

where the (m × n)-matrix
Xλ = −x ⊗ T�; (5.36)

and the n × n-matrix

ΛV =

�
∂λk
∂vj

, (k, j) = 1, n

�
. (5.37)

According to (5.36) and the relation between the spectral norm and the Euclidean norm, we
have:

�XV�2 ≤ �Xλ�E �ΛV�E, (5.38)

where

�Xλ�E ≤ xmax �T�E = xmax

����
m,n

∑
i=1,j=1

t2
ij. (5.39)

Now consider the equations (5.20), and differentiate the left and right sides of these equations
by v. We obtain the following matrix equation:

Φλ ΛV = I. (5.40)

From this implies that
ΛU = Φ−1

λ . (5.41)

Here the (n × n)-matrix Φλ is defined by (5.31). According to (5.41) we have

�ΛV�2 ≤ �Φ−1
λ �2. (5.42)
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Thus the norm’s estimation of the matrix XV takes a form:

�XV�2 ≤ �Φ−1
λ �2 xmax

����
m,n

∑
i=1,j=1

t2
ij. (5.43)

So, we can see that it is necessary to construct the norm’s estimation for the matrix Φ−1
λ , as

well as for the norm’s estimation of the matrix XU .

3. Estimation of the spectral norm of the matrix Φ−1
λ . The matrix Φλ (5.31) is symmetric and

strictly negative defined for all λ. Therefore, it has n real, various, and negative eigenvalues
(see Wilkinson (1970)). We will order them in the following way:

μ1 = μmin < μ2 < · · · < μn = μmax < 0, |μmax| > M. (5.44)

The spectral norm of an inverse matrix is equal to the inverse value of the modulus of the
maximum eigenvalue μmax of the initial matrix, i.e.

�Φ−1
λ � ≤ M−1. (5.45)

To definite the value M we resort to the Gershgorin theorem (see Wilkinson (1970)). According
to the theorem any eigenvalue of a symmetric strictly negative definite matrix lies at least in
one of the intervals with center −ck(λ) and the width 2 ρk(λ):

− g+k (λ) = −ck(λ)− ρk(λ) ≤ μ ≤ −ck(λ) + ρk(λ) = −g−k (λ), k = 1, n, (5.46)

where according to (5.19)

g+k (λ) =
m

∑
i=1

xi

⎛
⎝t2

ki +
n

∑
j �=k

tkitji

⎞
⎠ ,

g−k (λ) =
m

∑
i=1

xi

⎛
⎝t2

ki −
n

∑
j �=k

tkitji

⎞
⎠ ,

(5.47)

From the conditions (5.46) it follows that

|μmax| ∈ [min
k,λ

g−k (λ) , max
k,λ

g+k (λ)]. (5.48)

We can apply the lower estimation for the left side of this interval using (5.14):

min
k,λ

g−k (λ) ≥ M = � xmin, (5.49)

where
xmin = min

(i,u,v)
xi(u, v). (5.50)

Thus, in a view of (5.28), we have

�Φ−1
λ �2 ≤ (� xmin)

−1. (5.51)
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4. Estimation of the local Lipschitz-constants. According to (5.34) and (5.51), the estimation
of the local U-Lipshitz-constant for the normalized entropy operator (5.19) takes a form:

L̃U ≤ xmax

u−
min

⎛
⎝√

m +
xmax

�xmin

m,n

∑
i=1,j=1

t2
ij

⎞
⎠ . (5.52)

The estimation (5.43) of the local V-Lipschitz-constant for the normalized entropy operator
(5.19) takes a form:

L̃V ≤ xmax

xmin �

����
m,n

∑
i=1,j=1

t2
ij. (5.53)

Using the links (5.18) between the normalized entropy operator (5.19) and the entropy
operator (5.4) we will have:

LU ≤
���� m

∑
i=1

�
n

∑
k=1

tki

�2
xmax

u−
min

⎛
⎝√

m +
xmax

�xmin

m,n

∑
i=1,j=1

t2
ij

⎞
⎠ ,

LV ≤
���� m

∑
i=1

�
n

∑
k=1

tki

�2
xmax

(xmin �)

����
m,n

∑
i=1,j=1

t2
ij. (5.54)

5.3 Boundedness of the normalized entropy operator

Let us consider the normalized entropy operator (5.11, 5.19, 5.20), the parameters of which
u ∈ Um

+(u
−, u+) and , v ∈ Vn

+(v
−, v+).

Rewrite the equations (5.19, 5.20) in respect to the exponential Lagrange multipliers zj =
exp(−λj):

xi(z, u) = ui

n

∏
j=1

z
tji

j , 1, m, (5.55)

Ψk[z, u] =
m

∑
i=1

tki ui

n

∏
j=1

z
tji

j = vk, z ≥ 0, k = 1, n. (5.56)

It is known some properties of the operator (5.55, 5.56) are defined by the Jacobians of the
functions x(z, u) and Φ(z, u) in respect to the variables z, u.

Consider the function x(z, u). We have the Jacobians:

- Gz with the elements

gz
ik = uitki

1
zk

n

∏
j=1

z
tji

j ≥ 0, i = 1, m, k = 1, n; (5.57)

and

- Gu with the elements

gu
is =

n

∏
j=1

z
tji

j ≥ 0, (i, s) = 1, m (5.58)
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We can see that the elements of these Jacobians are nonnegative for all z ≥ 0 and u ∈
Um
+(u

−, u+), where u− > 0, u+ ≤ 1. Thus the functions x(z, u) increase in a monotone
way on these sets.

Now consider the function Ψ(z, u) and its the Jacobians:

- Pz with the elements

pz
kl =

m

∑
i=1

uitki
1
zl

n

∏
j=1

z
tji

j ≥ 0, (k, l) = 1, n; (5.59)

and

- Pu with the elements

pu
ks = tks

n

∏
j=1

z
tjs

j ≥ 0, k = 1, n, s = 1, m. (5.60)

The elements of the matrix Pz and Pu are nonnegative. Thus, the function Ψ(z, u) increase in
a monotone way on the sets z ≥ 0 and u ∈ Um

+(u
−, u+).

According to (5.55) the function x(z, u) is analytical one. The system of the equations define
the unique differentiable implicit function z(u, v) on the sets Um

+(u
−, u+) and Vn

+(v
−, v+) (see

theorem 5, pp. 91-92; theorems 1, 2, pp. 95-96, Popkov (1995)).

1. Estimation of the minimum value of the normalized �HD, B, Eq, Plh�-entropy operator.
The solution of the problem can be represented by the following theorem.

Theorem 2.Let the matrix T (5.11) has a full rank and u ∈ Um
+(u

−, u+).

Then xmin = mini xi(u−, zmin), where:

zmin = min
j

z̃j, j = 1, n,

and z̃1, . . . , z̃n are the components of the solution of the equation

Ψ(z, u−) = v−,

and the vectors u−, v− have enough small components.

Proof. According to (5.55) x(z, 0) = 0 and x(z1, . . . , zi−1, 0, zi+1, . . . , zn; u) = 0. As the function
(5.55) increases in a monotone way and analytical one, then xmin = mini xi(u−, zmin) for
enough small components u−.

Consider the equations (5.56). We have Ψ(z, 0),= Ψ(z1, . . . , zi−1, 0, zi+1, . . . , zn;
u) = 0. As the function Ψ(z, u) increase in a monotone way and analytical one, then the
proposition of the theorem is valid.

2. Estimation of the maximum value of the normalized �HD, B, Eq, Plh�-entropy operator.
This problem is more complicated then the previous one. So, at the beginning we describe the
general procedure of the estimation forming.

On the first step we reduce the equations (5.56) to the equations with a monotone operator,
which also depends on the variable z and parameters u, v.
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and the vectors u−, v− have enough small components.

Proof. According to (5.55) x(z, 0) = 0 and x(z1, . . . , zi−1, 0, zi+1, . . . , zn; u) = 0. As the function
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u) = 0. As the function Ψ(z, u) increase in a monotone way and analytical one, then the
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This problem is more complicated then the previous one. So, at the beginning we describe the
general procedure of the estimation forming.

On the first step we reduce the equations (5.56) to the equations with a monotone operator,
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On the second step we define the variable z0 < zmin, where the vector zmin has the components
zmin (theorem 2). The vector z0 = {z0, . . . , z0} such that the values of the monotone operator
at the point z0 is more or equal to z0.

On the third, we define the vector zmax = {zmax, . . . , zmax} such that the monotone operator is
less then zmax. For determination of the zmax we use the majorant of the monotone operator.

Consider each of the steps in detail.

2.1. Transformation of the equations (5.56). Introduce the monotone increasing operator
A(z, u, v) with the components:

Ak(z, u, v) =
zk
vk

Ψk[z, u], k = 1, n. (5.61)

Represent the equations (5.56) in the form:

A(z, u, v) = z. (5.62)

This equation has the unique zero-solution z∗[u, v] ≡ 0 and the unique nonnegative solution
z∗[u, v] ≥ 0. Also recall that the elements of the matrix T and of the vector v in (5.39) are
nonnegative.

2.2. Choice z0. According to the theorem 2 z̃ is the solution of the equation (5.62) for u−, v−.
So,

∂

∂zj
Ak(z, u−, v−) |z̃ < 1,

It is follows that there exists the vector

z0 = z̃ − ε, (5.63)

where ε is a vector with small components εk > 0, such that in the ε-neighborhood z̃ is valid
the following inequality:

A(z0, u−, v− − ε) > z0. (5.64)

2.3. Choice zmax. Exact value of zmax is defined by the solution of the global optimization
problem Strongin & Sergeev (2000):

zmax = arg max
u∈Um

+ , v∈Vn
+ ,j∈[1,n]

z∗j (u, v),

where z∗(u, v) is a solution of the equation:

Ψ(z, u) = v.

However this problem is very complicated. So we will calculate an upper estimation of the
value zmax.

Let us assume that we can find the vector ẑ such that

A(ẑ, u, v) ≤ ẑ.

Choice zmax is equal to maxj ẑj. Then the nonzero-solution z∗ of the equation (5.62) will belong
to the following vector interval (see Krasnoselskii et al. (1969)):

zmin ≤ z∗ ≤ zmax, (5.65)
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where the vector zmax has the components zmax.

For realization of the this way it is necessary to construct the majorant of the operator (5.61,
5.62). We use the following inequality Bellman (1961):

n

∏
j=1

h
αj

j ≤
n

∑
j=1

αjhj, (αj, hj) ≥ 0,
n

∑
j=1

αj = 1. (5.66)

Then for the operator (5.62) the following estimate is valid:

A(z, u, v) ≤ v−1 ⊗ C z, (5.67)

where the matrix C has the elements

ckj = max
u

m

∑
i=1

uitki tji =
m

∑
i=1

tki tji, (k, j) = 1, n. (5.68)

It is follows from (5.68) that the matrix C takes a form:

C = T T�, (5.69)

Thus, we can consider in the capacity of ẑ the nonnegative solution of the equation:

Cz = v, z ≥ 0. (5.70)

The general solution of the equation (5.70) can be represented in the following form:

ẑk(v) =
det Ck

det C
≥ 0, k = 1, n, (5.71)

where
det C �= 0, (5.72)

as the matrix T has the full rank, and

det Ck =
n

∑
j=1

akjvj, k = 1, n, (5.73)

where
akj = (−1)(k+j)Mkj, (5.74)

and Mkj is the (k, j)-minor of the matrix C.

Introduce the following polyhedral sets:

W+ =

⎧⎨
⎩v :

n

∑
j=1

akjvj ≥ 0, k = 1, n

⎫⎬
⎭ ,

W− =

⎧⎨
⎩v :

n

∑
j=1

akjvj < 0, k = 1, n

⎫⎬
⎭ . (5.75)
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Represent the equations (5.56) in the form:

A(z, u, v) = z. (5.62)

This equation has the unique zero-solution z∗[u, v] ≡ 0 and the unique nonnegative solution
z∗[u, v] ≥ 0. Also recall that the elements of the matrix T and of the vector v in (5.39) are
nonnegative.

2.2. Choice z0. According to the theorem 2 z̃ is the solution of the equation (5.62) for u−, v−.
So,

∂

∂zj
Ak(z, u−, v−) |z̃ < 1,

It is follows that there exists the vector

z0 = z̃ − ε, (5.63)

where ε is a vector with small components εk > 0, such that in the ε-neighborhood z̃ is valid
the following inequality:

A(z0, u−, v− − ε) > z0. (5.64)

2.3. Choice zmax. Exact value of zmax is defined by the solution of the global optimization
problem Strongin & Sergeev (2000):

zmax = arg max
u∈Um

+ , v∈Vn
+ ,j∈[1,n]

z∗j (u, v),

where z∗(u, v) is a solution of the equation:

Ψ(z, u) = v.

However this problem is very complicated. So we will calculate an upper estimation of the
value zmax.

Let us assume that we can find the vector ẑ such that

A(ẑ, u, v) ≤ ẑ.

Choice zmax is equal to maxj ẑj. Then the nonzero-solution z∗ of the equation (5.62) will belong
to the following vector interval (see Krasnoselskii et al. (1969)):

zmin ≤ z∗ ≤ zmax, (5.65)

68 Image Restoration – Recent Advances and Applications Entropic Image Restoration as a Dynamic System with Entropy Operator 25

where the vector zmax has the components zmax.

For realization of the this way it is necessary to construct the majorant of the operator (5.61,
5.62). We use the following inequality Bellman (1961):

n

∏
j=1

h
αj

j ≤
n

∑
j=1

αjhj, (αj, hj) ≥ 0,
n

∑
j=1

αj = 1. (5.66)

Then for the operator (5.62) the following estimate is valid:

A(z, u, v) ≤ v−1 ⊗ C z, (5.67)

where the matrix C has the elements

ckj = max
u

m

∑
i=1

uitki tji =
m

∑
i=1

tki tji, (k, j) = 1, n. (5.68)

It is follows from (5.68) that the matrix C takes a form:

C = T T�, (5.69)

Thus, we can consider in the capacity of ẑ the nonnegative solution of the equation:

Cz = v, z ≥ 0. (5.70)

The general solution of the equation (5.70) can be represented in the following form:

ẑk(v) =
det Ck

det C
≥ 0, k = 1, n, (5.71)

where
det C �= 0, (5.72)

as the matrix T has the full rank, and

det Ck =
n

∑
j=1

akjvj, k = 1, n, (5.73)

where
akj = (−1)(k+j)Mkj, (5.74)

and Mkj is the (k, j)-minor of the matrix C.

Introduce the following polyhedral sets:

W+ =

⎧⎨
⎩v :

n

∑
j=1

akjvj ≥ 0, k = 1, n

⎫⎬
⎭ ,

W− =

⎧⎨
⎩v :

n

∑
j=1

akjvj < 0, k = 1, n

⎫⎬
⎭ . (5.75)
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and the set

Q =

{
Vn
+

⋂
W+, if det C ≥ 0,

Vn
+

⋂
W−, if det C < 0.

(5.76)

From this definition it follows that the set Q is the set of the vectors v for which the equation
(5.70) has the nonnegative solutions. Therefore

zmax = max
j

max
v∈Q

ẑj(v). (5.77)

Thus we proved the following theorem 3: Let the matrix T (5.11) has a full rank and v ∈ Q (5.76).

Then xmax = maxi xi(1, zmax), where:

zmax = max
j

max
v∈Q

ẑj(v),

and ẑj(v) are the solution of the linear equation

(T� T)z = v.

6. Conclusions

Many applied problems can be formulated as the ELP or EQP, models of which it is proposed
in the paper. The multiplicative algorithms with p-active variables and feedback are the
effective methods of their solution. The dynamic procedure of the image restoration from
projections (IRP) increase appreciably the quality of the restored image in the presence of
noise in the measurements. It is represented a classification of the dynamic procedures and
it is investigated a stability of the procedure with I-feedback. Also it is shown that in general
case the dynamic procedure of the IRP is the dynamic system with entropy operator (EO).
The analytical- numerical methods investigation the problem of the EO-boundedness and
calculation of the Lipschitz constant for EO are proposed.
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1. Introduction

Observing through any optical imaging device with traditional lens system is often “stained”
by restricted depth-of-field. Such a simplified optical imaging system consisting of a convex
lens (objective), a spherical diaphragm and a sensor plane (image plane) is depicted in Fig.
1. Let (O,�x, �y,�z) denote a Cartesian coordinate system: O is the optical center and the z-axis
is along the optical axis. Imaging with this optical system effectively presents a common
characteristic: the limited depth-of-field δz around its so-called object focal plane1:

δz =
niλ

NA2 , (1)

moreover when the numerical aperture NA becomes larger:

NA = ni sin(α) , (2)

where λ is the wavelength of illumination, ni is the refractive index of the medium in
front of the objective and α is the angular semi-aperture of the diaphragm (Born & Wolf,
1991; Horn, 2001). Consider a scene surface, either opaque and observed in reflected light
or sufficiently transparent and observed in transmitted light, whose profile covers more
than this attainable depth-of-field (then described as “thick”). Thus, only portions of the
observed surface that lie within the depth-of-field appear in-focus and sharp on the acquired
image, whereas the remaining out-of-focus parts are blurred2 by the point spread function
(PSF) of the system (Born & Wolf, 1991; Horn, 2001). The PSF results from the contribution
of many blur factors, such as the defocusing, the optical diffraction and aberrations and
the sampling, principally. Many theoretical models of PSF have been proposed, with

1 A Gaussian convex lens of focal length f theoretically focuses on a fixed image plane at zi only the light
rays arising from a single object plane at zo, the so-called object focal plane, obeying the Snell’s formula:
1/zi − 1/zo = 1/ f for the same medium refractive indexes in both front and back of the lens.

2 By regarding the illumination as incoherent, blurring can be modelled by a 2-D shift-variant linear
convolution of the “ideal” sharp image of the object with the point spread function (i.e. with the
response of the system to a purely impulsive point object that notably varies with the distance of
defocus for x, y-shifting).
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Fig. 1. Illustration of the basic image formation geometry. The green light rays radiated by an
in-focus point of the observed surface are well refracted by the convex lens onto the sensor
plane contrary to red light rays arising from an out-of-focus point, which converge forward
and whose energies are distributed over the “blur circle” patch.

accuracies that depend on considered factors and used approximations3 (Mahajan, 1998;
2001). Introduced by Pentland, a 2-D Gaussian function is often suggested as a PSF model
with a widening standard deviation as the distance of defocus increases (Pentland, 1987).
Ultimately, the PSF always behaves as a low-pass filter, whose cut-off spatial frequency falls
when the degree of defocus raises. In order to fully observe such a “thick” scene surface, a
common way then consists in scanning it with the object focal plane of the optical system,
more formally by acquiring a large sequence of 2-D images by optical sectioning (Agard,
1984). The final sequence of 2-D images is thus collected by gradually moving the object
focal plane along the z-direction throughout the surface. Each 2-D optical section joins
out-of-focus blurred and in-focus sharp portions, respectively related to parts of the object
surface outside and inside the depth-of-field. Less damaged by the low-pass PSF, the latter
exhibit much more of high-spatial frequency components corresponding to surface textural
details. From such an image sequence, this chapter then focuses on image restoration of both
topographical and textural information of the observed surface through the common concepts
of Shape-From-Focus (or Depth-From-focus) and Extended Depth-of-Field. Importantly, both

3 According to geometrical optics, a first-order approximation of the defocusing PSF consists in a
homogeneous patch, the so-called blur circle in the case of a spherical diaphragm whose radius
increases with the distance of defocus.
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concepts require an original sequence with image sections spatially registered, principally by
considering magnification variations due to changes in focus setting through the perspective
projection of most optical imaging system4 (as in Fig. 1) (Willson & Shafer, 1991). These
magnification changes can be corrected using optical approaches, such as zoom adjustments
based on system calibration (Willson, 1994), or computational techniques, commonly referred
to as image warping (Darrell & Wohn, 1988). Notice that acquiring the image sequence by
displacing either the scene or the imaging system along the z-direction with respect to a fixed
focus setting ensures at least a constant magnification γ for all successive object focal planes,
but not for the out-of-focus object planes that always suffer different magnifications than the
focal ones (Nayar & Nakagawa, 1994). Otherwise, an all-over constant magnification can be
reached through orthographic projection of telecentric optics (Watanabe & Nayar, 1997).

After briefly describing both Shape-From-Focus (SFF) and Extended Depth-of-Field (EDF)
concepts in section 2, their linchpin step consisting in a focus measurement will be
particularly studied, reviewed and finally “morphed” in section 3. Indeed, this work
especially strives to make changes to classical state-of-the-art focus measurements through
different strategies into new evolved approaches that are custom-made to cope with
frequently encountered issues, such as ill-illuminated/poor textured or noisy/disturbed
acquisitions. An ill-illuminated/poor textured observed surface effectively exhibits few focus
cues (high-spatial frequency components) on which the restoration process is based. On
the contrary, noisy/disturbed data introducing during the acquisitions produce “false focus
cues” that misleads the restoration process. Such issues thus require rather opposite focus
measurement behaviours: a high sensitivity to focus cues and a strong robustness to noise,
respectively. Thereafter, several tests will be conducted, illustrated and discussed in section 4
on both simulated data and real acquisitions from different application fields (metallography,
granulometry, ophthalmology) in conventional optical microscopy. Through such optical
imaging system, the inherent use of large magnifications γ ∼ NA significantly limits the
offered depth-of-field and the performed projection tends towards an orthographic behaviour
(and therefore an all-over constant magnification) since the working distance WD = |zo| is
much larger than the profile thickness of the observed surface (Horn, 2001). Finally, the
new introduced approaches (2-D LIP-based focus measurements and 3-D statistical focus
measurements) will be compared to classical state-of-the-art ones and will clearly show their
efficiency in presence of aforementioned acquisition issues.

2. Surface topography and texture restoration

The Shape-From-Focus (SFF) concept exploits the limited depth-of-field to infer the
topography of the observed surface by maximizing a focus measurement throughout the
z-direction of the image sequence. Likewise, the Extended depth-of-field (EDF) concept
conversely tries to overcome the depth-of-field limitation by joining through a focus
measurement the most in-focus information from the image sequence into a single image:
the so-called “texture image”. Both complementary approaches work similarly and foremost
rely upon an essential preliminary focus measurement that mainly interests this work and will
be more closely studied in the next section 3. They are graphically summarized in Fig. 2 and

4 Since the intersections of the so-called principal rays (the ones passing undeflected through the center of
the lens O) with the sensor plane vary with the position of this latter, the image magnification changes
with defocus.
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topographical and textural information of the observed surface through the common concepts
of Shape-From-Focus (or Depth-From-focus) and Extended Depth-of-Field. Importantly, both

3 According to geometrical optics, a first-order approximation of the defocusing PSF consists in a
homogeneous patch, the so-called blur circle in the case of a spherical diaphragm whose radius
increases with the distance of defocus.
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concepts require an original sequence with image sections spatially registered, principally by
considering magnification variations due to changes in focus setting through the perspective
projection of most optical imaging system4 (as in Fig. 1) (Willson & Shafer, 1991). These
magnification changes can be corrected using optical approaches, such as zoom adjustments
based on system calibration (Willson, 1994), or computational techniques, commonly referred
to as image warping (Darrell & Wohn, 1988). Notice that acquiring the image sequence by
displacing either the scene or the imaging system along the z-direction with respect to a fixed
focus setting ensures at least a constant magnification γ for all successive object focal planes,
but not for the out-of-focus object planes that always suffer different magnifications than the
focal ones (Nayar & Nakagawa, 1994). Otherwise, an all-over constant magnification can be
reached through orthographic projection of telecentric optics (Watanabe & Nayar, 1997).

After briefly describing both Shape-From-Focus (SFF) and Extended Depth-of-Field (EDF)
concepts in section 2, their linchpin step consisting in a focus measurement will be
particularly studied, reviewed and finally “morphed” in section 3. Indeed, this work
especially strives to make changes to classical state-of-the-art focus measurements through
different strategies into new evolved approaches that are custom-made to cope with
frequently encountered issues, such as ill-illuminated/poor textured or noisy/disturbed
acquisitions. An ill-illuminated/poor textured observed surface effectively exhibits few focus
cues (high-spatial frequency components) on which the restoration process is based. On
the contrary, noisy/disturbed data introducing during the acquisitions produce “false focus
cues” that misleads the restoration process. Such issues thus require rather opposite focus
measurement behaviours: a high sensitivity to focus cues and a strong robustness to noise,
respectively. Thereafter, several tests will be conducted, illustrated and discussed in section 4
on both simulated data and real acquisitions from different application fields (metallography,
granulometry, ophthalmology) in conventional optical microscopy. Through such optical
imaging system, the inherent use of large magnifications γ ∼ NA significantly limits the
offered depth-of-field and the performed projection tends towards an orthographic behaviour
(and therefore an all-over constant magnification) since the working distance WD = |zo| is
much larger than the profile thickness of the observed surface (Horn, 2001). Finally, the
new introduced approaches (2-D LIP-based focus measurements and 3-D statistical focus
measurements) will be compared to classical state-of-the-art ones and will clearly show their
efficiency in presence of aforementioned acquisition issues.

2. Surface topography and texture restoration

The Shape-From-Focus (SFF) concept exploits the limited depth-of-field to infer the
topography of the observed surface by maximizing a focus measurement throughout the
z-direction of the image sequence. Likewise, the Extended depth-of-field (EDF) concept
conversely tries to overcome the depth-of-field limitation by joining through a focus
measurement the most in-focus information from the image sequence into a single image:
the so-called “texture image”. Both complementary approaches work similarly and foremost
rely upon an essential preliminary focus measurement that mainly interests this work and will
be more closely studied in the next section 3. They are graphically summarized in Fig. 2 and

4 Since the intersections of the so-called principal rays (the ones passing undeflected through the center of
the lens O) with the sensor plane vary with the position of this latter, the image magnification changes
with defocus.
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will be further described below. Notice that a 3-D reconstruction of the surface can finally be
obtained by mapping the texture image onto the topography, as illustrated in Fig. 3. Before
going on, let us introduce some notations. Let I(x, y, z) denotes the sequence of images
acquired by optical sectioning, defined on the spatial support D = Dx × Dy × Dz ⊂ R3 and
valued into a positive real range [0, M) of intensity values. Applying a focus measurement
function (FM) on I(x, y, z) yields a 3-D focus degree measure F (x, y, z) as follows:

F : D → R+

(x, y, z) �→ FM(I(x, y, z)) , (3)

wherein the profile at location (x, y) along the z-direction is designated as F |x,y : Dz → R+.

2.1 Topographical information: Shape-From-Focus (SFF)

The z-coordinates (referred to as depths) of the voxels that exhibit the largest degrees of focus
infer the topography (or the so-called depth map) D of the observed surface from its image
sequence I(x, y, z) as follows:

D : Dx × Dy → Dz

(x, y) �→ argmax
z∈Dz

F |x,y(z) . (4)

Because of the significant thickness δz of the depth-of-field, the recovered topography D
shows inherent “staircase” effects and an interpolation approach must then be embedded in
this basic process of reconstruction. Introduced by Nayar and Nakagawa, the traditional one
consists in fitting a Gaussian distribution, whose mean finally constitutes the interpolated
depth value, to the three degrees of focus lying on the largest mode (Nayar & Nakagawa,
1994). Similarly, a quadratic (or even more) polynomial model can be fitted, sometimes
regarding more than three degrees of focus (Niederöst et al., 2003; Subbarao & Choi, 1995).
A subsequent approach (referred to as Focused Image Surface) locally tries to refine the initial
recovered topography D by optimizing both position and orientation of 2-D planar (then
curved) windows throughout the 3-D measure F so as to maximize the covered degrees of
focus (Ahmad & Choi, 2005; Asif & Choi, 2001; Subbarao & Choi, 1995; Yun & Choi, 1999).
Finally, the topography is often smoothed through average, median or recently bilateral
filters (Helmli & Scherer, 2001; Khan et al., 2010; Mahmood et al., 2008; Niederöst et al., 2003).
Interpolation techniques lying beyond the scope of this paper, only the traditional one will be
used herein, sometimes finalised by a median filter.

2.2 Textural information: Extended Depth-of-Field (EDF)

Throughout the image sequence I(x, y, z), the texture image T of the observed surface is
restored by joining the intensity voxels with the largest degrees of focus:

T : Dx × Dy → [0, M)

(x, y) �→ I(x, y, argmax
z∈Dz

F |x,y(z)) . (5)
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Fig. 2. Basic illustrated diagram representing both complementary Shape-From-Focus (left)
and Extended Depth-of-Field (right) concepts.

When the optical sectioning step is larger than the depth-of-field δz, some regions of the
observed surface may never appear in-focus throughout the image sequence and therefore on
the restored texture image. Pradeed and Ragajolan then proposed to perform a non-stationary
Wiener filter to locally deconvolve the texture image T (Pradeep & Rajagopalan, 2007). Note
that no deconvolution process will be used herein.

3. Focus measurements

Let us now focus on the essential step of focus measurement, firstly through a literature review
that will yield the retention of some classical and recent methods making a representative
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Finally, the topography is often smoothed through average, median or recently bilateral
filters (Helmli & Scherer, 2001; Khan et al., 2010; Mahmood et al., 2008; Niederöst et al., 2003).
Interpolation techniques lying beyond the scope of this paper, only the traditional one will be
used herein, sometimes finalised by a median filter.

2.2 Textural information: Extended Depth-of-Field (EDF)

Throughout the image sequence I(x, y, z), the texture image T of the observed surface is
restored by joining the intensity voxels with the largest degrees of focus:
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When the optical sectioning step is larger than the depth-of-field δz, some regions of the
observed surface may never appear in-focus throughout the image sequence and therefore on
the restored texture image. Pradeed and Ragajolan then proposed to perform a non-stationary
Wiener filter to locally deconvolve the texture image T (Pradeep & Rajagopalan, 2007). Note
that no deconvolution process will be used herein.

3. Focus measurements

Let us now focus on the essential step of focus measurement, firstly through a literature review
that will yield the retention of some classical and recent methods making a representative
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Fig. 3. 3-D reconstruction of a human corneal graft by the 2-D SML� LIP-based focus
measurement from a sequence of 32 image sections acquired in conventional optical
microscopy by steps of 9.33 μm through a × 4 / 0.1 NA objective in air immersion. Each
image section composed of 1932 × 2029 pixels representing 10.62 × 11.11 mm is an
undersampled version of a registered mosaic of 5 × 7 image acquisitions.

sample group from a strategic as well as chronological point of view. Some of them
will then be developed into novel evolved approaches designated as 2-D LIP-based focus
measurements and 3-D statistical focus measurements.

3.1 State-of-the-art focus measurements

In view of the fact that the PSF of defocus acts as a low-pass filter, focus measurements thus
try to locally emphasize and quantify high-spatial frequency components of the original image
sequence I . They can be classified according to the dimensionality of the adopted strategy to
do that.

3.1.1 One-dimensional (point-based) approaches

From the early 1980s, some methods using maximum or minimum selection rules throughout
single-voxel stacks along the z-direction of the image sequence are first proposed I
(Pieper & Korpel, 1983; Sugimoto & Ichioka, 1985), therefore not offering a large robustness.

3.1.2 Two-dimensional approaches

For the last 40 years, a lot of more reliable focus measurements independently acting (in
2-D) on each image section of the sequence I then arose, categorized below as either
neighborhood-based or multiresolution-based methods.

3.1.2.1 Neighborhood-based methods

Neighborhood-based focus measurements work over local sectional fixed-size windows,
described herein by the size value r corresponding to an operating window of (2r + 1) ×
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(2r + 1) pixels. Given this local behaviour, a certain depth regularity of the observed surface
is implicitly assumed. On the one hand, the considered neighborhood has to be as small as
possible to guarantee an approximately constant depth within itself and therefore to avoid
too much “smoothing” the restoration process around sharp depth slopes and even depth
discontinuities (Malik & Choi, 2007). On the other hand, it has to be as large as possible both to
always capture focus cues (i.e. high-spatial frequency components) within wide homogeneous
textural contents of the surface and to average out noise. Consequently, the selection of
the optimal window size r appears as a trade-off. These approaches classically include two
successive steps aiming to emphasize and quantify focus cues, respectively. The second one is
simply an energy measurement that is commonly the sum over the considered neighborhoods
of the absolute values resulting from the first one, therefore improving the robustness to noise
and/or to wide textural contents of the measurement. The first step differs in the specialized
literature. Most are based on high-pass filtering (norms of derivatives), such as Laplacian
energy (Subbarao et al., 1993), sum-modified-Laplacian (Nayar & Nakagawa, 1994), Brenner
(Brenner et al., 1976) or Tenenbaum (Krotkov, 1987) gradients, among others... Others,
usually more robust to noise, use statistical tools in the considered neighborhoods, such as
(normalized) variance (Groen et al., 1985; Sugimoto & Ichioka, 1985), autocorrelation (Vollath,
1987), sum of eigenvalues (Wee & Paramesran, 2007) or various moments (Yap & Raveendran,
2004; Zhang et al., 2000). Remark that some of them directly combine the two aforementioned
steps, e.g. the variance in the neighborhoods. The last ones work in different frequency
domains through discrete cosine (Kristan et al., 2006) or Fourier (Boddeke et al., 1994;
Malik & Choi, 2008) transforms. The latter exploit more robust band-pass filters but lack
sensitivity in return. At first, note that neighborhood-based focus measurements was often
employed to computationally autofocus imaging system.

Throughout these state-of-the-art section, some fundamental and recent methods will be
retained; their designations, details and references will be summarized as follows:

2-D VAR VARiance in a 2-D window (Groen et al., 1985; Sugimoto & Ichioka, 1985).
2-D TEN Sum over a 2-D window of the squared L2-norms of the first derivatives

approximated by the horizontal and vertical Sobel operators (TENengrad) (Krotkov, 1987).
2-D SML Sum over a 2-D window of the L1-norms of the second derivatives approximated

by the Laplacian operator (Sum-Modified-Laplacian) (Nayar & Nakagawa, 1994).
2-D OPT Sum over a 2-D window of the absolute values of the real part responses in the

spatial domain to an “OPTical” band-pass filter applied in the Fourier domain and based
on bipolar incoherent image processing (Malik & Choi, 2008).

3.1.2.2 Multiresolution-based methods

Other 2-D approaches rely on some form of multiresolution analysis: e.g. Laplacian
(Burt & Adelson, 1983), ratio-of-low-pass (Toet, 1989), gradient (Burt & Kolczynski, 1993) and
steerable pyramids (Liu et al., 2001), and wavelet (Forster et al., 2004; Pajares & de la Cruz,
2004; Valdecasas et al., 2001), shapelet (Meneses et al., 2008) and curvelet (Minhas et al., 2011)
transforms, in order to perform high-pass filtering at different resolution level. Contrary
to afore-described neighborhood-based methods, these ones thus avoid the choice of a
fixed-size filter. They are regularly introduced in the practical context of image fusion that
consists in combining information from some (generally between 2 and 5) multi-focus or
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multimodal images of the same scene into a single composite representation. An overview of
multiresolution-based schemes for image fusion can be found in (Zhang & Blum, 1999). First,
each image section of the original sequence is decomposed into a collection of sub-images at
different scales, called a pyramid structure, through alternate combination of convolution and
sub-sampling. Different types of details (focus cues) are thus put forward at different levels in
the associated pyramid structure. Note that the original image section can be reconstructed by
the reverse procedure. A (pixel-based, window-based or region-based (Piella, 2003)) salience
measurement (absolute value, sum or variance of absolute values) then tries to quantify focus
cues throughout every pyramid structures. The depth map is thus inferred from the largest
salience measures. Besides, a composite pyramid structure is constructed by combining
coefficients of the original pyramid structures in function of their exhibited salience measures
(choose-max or weighted average). Next, a (window-based or region-based) consistency
verification is performed on the composite pyramid structure (and on the recovered depth
map) so as to check that best salience measures come from the same original image sections,
which is equivalent to a smoothing post-processing step. Once the composite pyramid
structure is fused, the final texture image is lastly restored by reverse decomposition.

2-D DWT Use of the Discrete Wavelet Transform (DWT) based on complex Daubechies
wavelets as multiresolution analysis, of the largest absolute value of the wavelet
coefficients in the subbands (up to 10 levels) as (pixel-based) salience measurement and
of both spatial (window of size r = 1) and typical subband consistency checks on the
wavelet coefficients. (Forster et al., 2004).

By independently working on each individual image section of the sequence I , these 2-D
methods are inevitably misled by a rather isolated sectional noisy/disturbance data that
appears sharpest, in theory contrary to the following 3-D approaches.

3.1.3 Three-dimensional approaches

Recently, a 3-D focus measurement has been introduced by Mahmood & Choi (2008) takes
fully advantage of the three spatial dimensions of the original image sequence I . It
is locally based on a Principal Component Analysis (PCA) within a stack of collected
sectional neighborhoods along the z-direction. Consequently, it simultaneously exploits
all focus cues along the axial (or cross-sectional) z-direction in order to estimate sectional
degrees of focus. Contrary to 1-D/2-D ones, this novel 3-D strategy would allow to
improve the robustness. However, it actually appears ineffective due to a severe loss of
sensitivity. Indeed, it finally uses the largest principal component to discriminate in-focus
information, which represents the global content of the data. Hence, the authors combine
it with various previous transforms, such as discrete wavelet (Mahmood, Shim & Choi,
2009) or cosine (Mahmood et al., 2008) transforms, and lately kernel function (Khan et al.,
2010). Alternatively, they perform pre- or post-processings through bilateral filtering
(Mahmood, Khan & Choi, 2009) or kernel regression (Mahmood & Choi, 2010), respectively.

3-D DCT-PCA Discrete cosine transformation (DCT) over sectional 2-D/3-D windows and
discrimination of all axially-collected sectional AC5 data by the first feature of a Principal
Component Analysis (PCA) (Mahmood et al., 2008).

5 By analogy with an electrical signal, the alternating components of the discrete cosine transform.
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3.2 Two-dimensional LIP-based focus measurements

This first work aims at improving sensitivity to focus cues of usual measurements in order
to well operate in difficult regions of the observed surface, such as its ill-illuminated/poor
textured parts. Let us start with a brief introduction of the Logarithmic Image Processing
(LIP) framework.

3.2.1 Logarithmic image processing (LIP) framework

An original mathematical framework, the LIP model, has been introduced in the middle of
the 1980s for the processing of intensity images valued in a bounded range (Jourlin & Pinoli,
1987; 1988; 2001). This model is mathematically well defined as well as physically consistent.
The reader can refer to Pinoli (1997a;b) for a complete mathematical theory and many physical
and/or psychophysical connections and justifications about the LIP framework.

3.2.1.1 Mathematical fundamentals

In the LIP model, the intensity of an image is completely represented by its associated
gray tone function f . Such a function is defined on the spatial suppport D and valued in
the real number range interval [0, M), called the gray tone range. Thereafter, this class of
gray tone functions, extended to the real number interval (−∞, M) and structured with the
after-specified vector addition +�, scalar multiplication ×� and scalar subtraction −� defines a
real vector space denoted S:

∀ f , g ∈ S f +�g = f + g − f g
M ,

∀ f ∈ S, ∀a ∈ R a ×� f = M − M
(

1 − f
M

)a
,

∀ f , g ∈ S f −�g = M f−g
M−g .

(6)

This gray tone vector space S is algebraically and topologically isomorphic to the classical
vector space defined on the spatial support D with values in the real number set R through
the mapping ϕ (called the isomorphic transformation) defined as:

∀ f ∈ S ϕ( f ) = −M ln
(

1 − f
M

)
, (7)

which is the isomorphic transform of the gray tone f . The inverse isomorphic transformation
ϕ−1 is then defined as:

f = ϕ−1(ϕ( f )) = M
(

1 − exp
(
− ϕ( f )

M

))
. (8)

In addition to abstract linear algebra, this class of (extended) gray tone functions is an ordered
real vector space with the classical order relation ≥ (Pinoli, 1997a).

3.2.1.2 Physical connections

The LIP framework has been proved to be consistent with the transmittance image
formation model (Jourlin & Pinoli, 1988), the multiplicative reflectance and transmittance
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coefficients in the subbands (up to 10 levels) as (pixel-based) salience measurement and
of both spatial (window of size r = 1) and typical subband consistency checks on the
wavelet coefficients. (Forster et al., 2004).
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appears sharpest, in theory contrary to the following 3-D approaches.
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is locally based on a Principal Component Analysis (PCA) within a stack of collected
sectional neighborhoods along the z-direction. Consequently, it simultaneously exploits
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degrees of focus. Contrary to 1-D/2-D ones, this novel 3-D strategy would allow to
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discrimination of all axially-collected sectional AC5 data by the first feature of a Principal
Component Analysis (PCA) (Mahmood et al., 2008).

5 By analogy with an electrical signal, the alternating components of the discrete cosine transform.
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3.2 Two-dimensional LIP-based focus measurements

This first work aims at improving sensitivity to focus cues of usual measurements in order
to well operate in difficult regions of the observed surface, such as its ill-illuminated/poor
textured parts. Let us start with a brief introduction of the Logarithmic Image Processing
(LIP) framework.

3.2.1 Logarithmic image processing (LIP) framework

An original mathematical framework, the LIP model, has been introduced in the middle of
the 1980s for the processing of intensity images valued in a bounded range (Jourlin & Pinoli,
1987; 1988; 2001). This model is mathematically well defined as well as physically consistent.
The reader can refer to Pinoli (1997a;b) for a complete mathematical theory and many physical
and/or psychophysical connections and justifications about the LIP framework.

3.2.1.1 Mathematical fundamentals

In the LIP model, the intensity of an image is completely represented by its associated
gray tone function f . Such a function is defined on the spatial suppport D and valued in
the real number range interval [0, M), called the gray tone range. Thereafter, this class of
gray tone functions, extended to the real number interval (−∞, M) and structured with the
after-specified vector addition +�, scalar multiplication ×� and scalar subtraction −� defines a
real vector space denoted S:

∀ f , g ∈ S f +�g = f + g − f g
M ,

∀ f ∈ S, ∀a ∈ R a ×� f = M − M
(

1 − f
M

)a
,

∀ f , g ∈ S f −�g = M f−g
M−g .

(6)

This gray tone vector space S is algebraically and topologically isomorphic to the classical
vector space defined on the spatial support D with values in the real number set R through
the mapping ϕ (called the isomorphic transformation) defined as:

∀ f ∈ S ϕ( f ) = −M ln
(

1 − f
M

)
, (7)

which is the isomorphic transform of the gray tone f . The inverse isomorphic transformation
ϕ−1 is then defined as:

f = ϕ−1(ϕ( f )) = M
(

1 − exp
(
− ϕ( f )

M

))
. (8)

In addition to abstract linear algebra, this class of (extended) gray tone functions is an ordered
real vector space with the classical order relation ≥ (Pinoli, 1997a).

3.2.1.2 Physical connections

The LIP framework has been proved to be consistent with the transmittance image
formation model (Jourlin & Pinoli, 1988), the multiplicative reflectance and transmittance
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Fig. 4. Basic diagram representing both theoritical and practical (in red) computation of the
LIP-based focus measurements.

image formation models (Pinoli, 1997a) and with several laws and characteristics of human
brightness perception (Pinoli, 1997b). In the LIP approach, the gray tone range is inverted
contrary to the classical grayscale convention. The relationship between a gray tone function
f (x, y) and its corresponding classical grayscale function, denoted f̄ (x, y), is given by:

f (x, y) = M − f̄ (x, y) . (9)

Indeed, the limits of the gray tone range [0, M) are anticlassically defined: 0 designates
the total whiteness, while the real number M represents the absolute blackness. This
scale inversion has been justified on mathematical reasons (Pinoli, 1997a), and physical
(in the setting of transmitted light imaging processes) (Jourlin & Pinoli, 1988; 2001) and
psychophysical grounds (Pinoli, 1997b).

3.2.2 Two-dimensional LIP-based focus measurements

LIP-based focus measurements simply consist in reinterpretations of classical ones using
the LIP fremawork (i.e. by popularizing, from usual operations +,×,− to respective LIP
ones +�, ×�, −� (Eq. 6)). For the sake of convenience, we only consider the three more
widely used 2-D focus measurements: 2-D VAR, 2-D TEN and 2-D SML. Among all
retained methods, other 2-D ones work through various frequency transforms that make their
reinterpretations less obvious and the selected 3-D strategy strongly damages the sensitivity.
These reinterpretations, denoted 2-D VAR�, 2-D TEN� and 2-D SML�, can be clearly
simplified through the use of the LIP fundamental isomorphic ϕ (see Fig. 4). Nevertheless,
they involve a practical subtlety to succeed from a computional point of view. Indeed,
LIP-based focus measurements imply some costly operations (typically such as raising to the
square) that are not enough distinguishable in the digitized case. The machine precision does
not enable to well discriminate such arithmetics, notably in terms of the classical order relation
≥ for maximizing the resulted degrees of focus. In view of the strictly increasing behaviour
of the inverse isomorphic transformation ϕ−1 (Eq. 8), the LIP-based focus measurements can
thus be computationally reduced to the computation of the respective classical ones (with
usual operations +,×,−) on isomorphic transform ϕ of the gray tone function (see Fig. 4).

In the context of human brightness perception, a gray tone function f (x, y) corresponds to an
incident light intensity function F(x, y) by the following relationship:

f (x, y) = M
(

1 − F(x, y)
Fmax

)
, (10)
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Fig. 5. Illustrations for the 3-D EIG and 3-D N-EIG statistical focus measurements: (a)
creation of the multivariate data matrix X, (b) canonical basis vs. eigenbasis.

where Fmax is the saturating light intensity level (“glare limit”) (Pinoli, 1997b). First, Weber
described the human visual detection between two light intensity values F and G with a
“just noticeable difference”. The LIP subtraction f −�g is consistent with Weber’s law (Pinoli,
1997b). In fact, the LIP model defines specific operations acting directly on the physical
light intensity function (stimulus) through the gray tone function notion. A few years after
Weber, Fechner established logarithmic relationship between the light intensity F (stimulus)
and the subjectively perceived brightness B (light intensity sensation). It has been shown
in Pinoli (1997b) that B is an affine map of the isomorphic transform ϕ( f ) of the gray tone
f . Consequently, the fundamental isomorphism ϕ (Eq. 7) of the LIP model should enable
to deal with brightness (via the usual operations). About human brightness perception,
the aforegiven practical limitation accordingly results in revisited measurements attempting
to estimate degree of focus in terms of brightness (intensity sensation from physical light
stimuli). Further details about these 2-D LIP-based focus measurements can be found in
Fernandes et al. (2011a).

3.3 Three-dimensional statistical focus measurements

This second work conversely aims at creating novel 3-D focus measurements offering a large
robustness to noise, while preserving a sufficient sensitivity to focus cues (contrary to the 3-D
DCT-PCA method), in order to well operate through noisy/disturbed acquisitions. In spite
of a similar basic tool, the after-described multivariate statistical analyses are totally different
than the state-of-the-art 3-D DCT-PCA method. Moreover, they do not require any previous
transformations or processings.

From a stack of single-voxels along the z-direction of the original sequence I(x, y, z) of n
image sections, 2-D sectional windows of m pixels are considered and a multivariate m-by-n
data matrix X is formed as shown in Fig. 5(a). The rows of this data matrix X referred to as the
cross-sectional responses are constituted by the same components of all considered sectional
windows. Let (ei)i∈[1,n] denotes the canonical basis of these cross-sectional responses, whose
each canonical vector ei thus abstracts a different depth zi throughout the image sequence.
Alternatively, each of the columns referred to as the sectional observations fully corresponds
to a different original window at depth z. Note that the variability in variance of these
sectional observations along the z-direction matches with the degree of focus, which is
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image formation models (Pinoli, 1997a) and with several laws and characteristics of human
brightness perception (Pinoli, 1997b). In the LIP approach, the gray tone range is inverted
contrary to the classical grayscale convention. The relationship between a gray tone function
f (x, y) and its corresponding classical grayscale function, denoted f̄ (x, y), is given by:

f (x, y) = M − f̄ (x, y) . (9)

Indeed, the limits of the gray tone range [0, M) are anticlassically defined: 0 designates
the total whiteness, while the real number M represents the absolute blackness. This
scale inversion has been justified on mathematical reasons (Pinoli, 1997a), and physical
(in the setting of transmitted light imaging processes) (Jourlin & Pinoli, 1988; 2001) and
psychophysical grounds (Pinoli, 1997b).

3.2.2 Two-dimensional LIP-based focus measurements

LIP-based focus measurements simply consist in reinterpretations of classical ones using
the LIP fremawork (i.e. by popularizing, from usual operations +,×,− to respective LIP
ones +�, ×�, −� (Eq. 6)). For the sake of convenience, we only consider the three more
widely used 2-D focus measurements: 2-D VAR, 2-D TEN and 2-D SML. Among all
retained methods, other 2-D ones work through various frequency transforms that make their
reinterpretations less obvious and the selected 3-D strategy strongly damages the sensitivity.
These reinterpretations, denoted 2-D VAR�, 2-D TEN� and 2-D SML�, can be clearly
simplified through the use of the LIP fundamental isomorphic ϕ (see Fig. 4). Nevertheless,
they involve a practical subtlety to succeed from a computional point of view. Indeed,
LIP-based focus measurements imply some costly operations (typically such as raising to the
square) that are not enough distinguishable in the digitized case. The machine precision does
not enable to well discriminate such arithmetics, notably in terms of the classical order relation
≥ for maximizing the resulted degrees of focus. In view of the strictly increasing behaviour
of the inverse isomorphic transformation ϕ−1 (Eq. 8), the LIP-based focus measurements can
thus be computationally reduced to the computation of the respective classical ones (with
usual operations +,×,−) on isomorphic transform ϕ of the gray tone function (see Fig. 4).

In the context of human brightness perception, a gray tone function f (x, y) corresponds to an
incident light intensity function F(x, y) by the following relationship:

f (x, y) = M
(

1 − F(x, y)
Fmax

)
, (10)
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where Fmax is the saturating light intensity level (“glare limit”) (Pinoli, 1997b). First, Weber
described the human visual detection between two light intensity values F and G with a
“just noticeable difference”. The LIP subtraction f −�g is consistent with Weber’s law (Pinoli,
1997b). In fact, the LIP model defines specific operations acting directly on the physical
light intensity function (stimulus) through the gray tone function notion. A few years after
Weber, Fechner established logarithmic relationship between the light intensity F (stimulus)
and the subjectively perceived brightness B (light intensity sensation). It has been shown
in Pinoli (1997b) that B is an affine map of the isomorphic transform ϕ( f ) of the gray tone
f . Consequently, the fundamental isomorphism ϕ (Eq. 7) of the LIP model should enable
to deal with brightness (via the usual operations). About human brightness perception,
the aforegiven practical limitation accordingly results in revisited measurements attempting
to estimate degree of focus in terms of brightness (intensity sensation from physical light
stimuli). Further details about these 2-D LIP-based focus measurements can be found in
Fernandes et al. (2011a).

3.3 Three-dimensional statistical focus measurements

This second work conversely aims at creating novel 3-D focus measurements offering a large
robustness to noise, while preserving a sufficient sensitivity to focus cues (contrary to the 3-D
DCT-PCA method), in order to well operate through noisy/disturbed acquisitions. In spite
of a similar basic tool, the after-described multivariate statistical analyses are totally different
than the state-of-the-art 3-D DCT-PCA method. Moreover, they do not require any previous
transformations or processings.

From a stack of single-voxels along the z-direction of the original sequence I(x, y, z) of n
image sections, 2-D sectional windows of m pixels are considered and a multivariate m-by-n
data matrix X is formed as shown in Fig. 5(a). The rows of this data matrix X referred to as the
cross-sectional responses are constituted by the same components of all considered sectional
windows. Let (ei)i∈[1,n] denotes the canonical basis of these cross-sectional responses, whose
each canonical vector ei thus abstracts a different depth zi throughout the image sequence.
Alternatively, each of the columns referred to as the sectional observations fully corresponds
to a different original window at depth z. Note that the variability in variance of these
sectional observations along the z-direction matches with the degree of focus, which is
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the concept of the traditional 2-D VAR focus measurement. Each sectional observation is
centered, and normalized or not by their means (that will finally yield a couple of different
focus measurements denoted 3-D EIG and 3-D NEIG, respectively). The normalization
enables to locally compensate for differences in intensity means between the image sections of
the sequence. The covariance matrix CX of the sectional observations of X is then calculated
as follows:

CX =
1

m − 1
tXX , (11)

where t denotes the transpose operation. Afterwards, CX is diagonalized such as:

CXG = ΛG , (12)

in order to obtain both its eigenvalues (λi)i∈[1,n] in increasing order and its eigenvectors
(gi)i∈[1,n], diagonal components and columns of the matrixes Λ and G respectively. The
eigenvectors form a novel orthornormal basis (EIGenbasis) for the cross-sectional responses
of X. Each of them is associated with a particular eigenvalue that reveals its captured
amount of variance among the total one ∑i∈[1,n] λi exhibited by the sectional observations
of X. During the decomposition process of the covariance matrix CX, the first eigenvector g1
accounts for as much of this total variance as possible and the next ones then maximize the
remaining total variance, in order and subject to the orthogonality condition. Furthermore,
less influential noisy information is, to the greatest extent possible, pushed into least dominant
(last) eigenvectors, whereas one of interest remains within the first eigenvectors. Finally, the
degree of focus at the depth zi (with i ∈ [1, n]) is the norm of the orthogonal projection of
the first eigenvector g1 onto the corresponding canonical vector ei, that is simply equal to
the absolute value of the ith component of g1. In the simple schematic example of Fig. 5(b),
the largest degree of focus is clearly assigned to the depth z of index 3 that maximizes the
orthogonal projection norm of the first eigenvector g1. Obviously, several first eigenvectors
can be considered, e.g. the first K eigenvectors, hence the sum of their orthogonal projection
norms respectively weighted by their eigenvalues is regarded. The 3-D EIG and 3-D NEIG
focus analyses then become less robust to noise but relatively gain sensitivity to focus cues.
Further details about these 3-D statistical focus measurements can be found in Fernandes et al.
(2011b; n.d.).

4. Results

Both retained state-of-the-art and novel developed focus measurements will now be
illustrated, tested and compared through various simulation and real experiments.

4.1 Performance comparison in simulation

A first serie of experiments using simulated data is conducted in order to dispose of ground
truths for carrying out quantitative assessments of the results produced by all aforementioned
methods.

4.1.1 Simulation process & performance assessment

By first mapping an arbitrary texture onto a simulated depth map (that constitutes the ground
truth), an artificial 3-D surface is constructed. This virtual surface is then discretized along the
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Fig. 6. (a) Generation of a simulated sequence of images: Brodatz texture D111 (Brodatz,
1966) and artificial depth map (upper left), 3-D synthetic surface (upper right) and four
individual image sections (sections 1, 11, 20 and 30 respectively) of the simulated sequence
(lower). (b) Performances (RMSE) of the studied 2-D focus measurements for the simulated
data in (a) as a function of the size r of the used neighborhood. Graph key: � 2-D VAR �
2-D VAR� � 2-D TEN � 2-D TEN� � 2-D SML � 2-D SML� � 2-D OPT � 2-D DWT.
Note that the multiresolution-based 2-D DWT method is put into the r = 1 bin, as the size of
the window used for the spatial consistency check. The 2-D psychophysical LIP-based focus
measurements undoubtedly make fewer errors of restoration than their respective traditional
ones as well as the other state-of-the-art 2-D approaches.

z-direction by constant steps as successive locations of the object focal plane. Afterwards,
a sequence is collected by making an image for each of these locations through the 2-D
shift-variant linear convolution of the “ideal” image of the surface (i.e. the texture image)
with a modelled PSF function of the distance of defocus (i.e. the distance between the
considered location and the depth map). The 2-D PSF is approximated by a 2-D Gaussian
function (Pentland, 1987) normalized to account for an uniform illumination (e.g. a Köhler
illumination) (Forster et al., 2004), whose standard deviation is proportional to the distance
of defocus. Two different simulated image sequences are generated with various textural
and topographical properties: a first exhibiting some discontinuities to assess accuracy and
sensitivity of the studied focus measurements (Fig. 6(a)), and a second one imaging a smoother
surface but with additive Gaussian or impulse noises to theoretically test their robustness
(Fig. 7(a)). Finally, performances are measured in terms of the root-mean-square-error (RMSE)
metric with respect to the ground truth (Gonzalez & Woods, 2008).

4.1.2 Results & discussion

The first simulated experiment in Fig. 6 puts most sensitive studied 2-D focus measurements
to the test, as a function of the used neighborhood size r. It notably aims at evaluating the
2-D psychophysical LIP-based focus measurements (2-D VAR�, 2-D TEN� and 2-D SML�)
versus their respective traditional ones (2-D VAR, 2-D TEN and 2-D SML). The LIP-based
reinterpretations clearly outperform their traditional ones (for any of the intances of r). They
are more sensivite, that is to say they offer a better capacity to distinguish focus cues of
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can be considered, e.g. the first K eigenvectors, hence the sum of their orthogonal projection
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truths for carrying out quantitative assessments of the results produced by all aforementioned
methods.

4.1.1 Simulation process & performance assessment
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shift-variant linear convolution of the “ideal” image of the surface (i.e. the texture image)
with a modelled PSF function of the distance of defocus (i.e. the distance between the
considered location and the depth map). The 2-D PSF is approximated by a 2-D Gaussian
function (Pentland, 1987) normalized to account for an uniform illumination (e.g. a Köhler
illumination) (Forster et al., 2004), whose standard deviation is proportional to the distance
of defocus. Two different simulated image sequences are generated with various textural
and topographical properties: a first exhibiting some discontinuities to assess accuracy and
sensitivity of the studied focus measurements (Fig. 6(a)), and a second one imaging a smoother
surface but with additive Gaussian or impulse noises to theoretically test their robustness
(Fig. 7(a)). Finally, performances are measured in terms of the root-mean-square-error (RMSE)
metric with respect to the ground truth (Gonzalez & Woods, 2008).

4.1.2 Results & discussion

The first simulated experiment in Fig. 6 puts most sensitive studied 2-D focus measurements
to the test, as a function of the used neighborhood size r. It notably aims at evaluating the
2-D psychophysical LIP-based focus measurements (2-D VAR�, 2-D TEN� and 2-D SML�)
versus their respective traditional ones (2-D VAR, 2-D TEN and 2-D SML). The LIP-based
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Fig. 7. (a) Generation of a simulated sequence of images: Brodatz texture D5 (Brodatz, 1966)
and artificial depth map (upper left), 3-D synthetic surface (upper right) and four individual
image sections (sections 1, 11, 20 and 30 respectively) of the simulated sequence (lower). (b-c)
Performances (RMSE) of the most robust studied focus measurements for the simulated data
in (a) under various noisy conditions (r = 8 pixels). The proposed 3-D statistical analyses
3-D EIG and 3-D NEIG with K set to 1 make fewer errors of restoration in presence of
artificial impulsive or Gaussian noises.

poor contrasted/textured or ill-illuminated regions, but at the expense of a sligh loss of
robustess. Notice that the improvements are even more obvious for smaller neighborhood
sizes. This enables to employ smaller operating windows that smooth less the restoration
process, most notably around sharp depth slopes or even discontinuities of the observed
surface. Incidentally, LIP-based focus measurements also make fewer restoration errors than
the other 2-D retained methods. On account of its multiresolution analysis, the 2-D DWT
approach avoids operating over fixed-size windows, but does not guarantee stability in
return. As for the 2-D OPT focus measurement, its band-pass filter designed for offering
robustess inevitably damages the sensitivity, a bit like 3-D approaches that favour robustness
to sensitivity.

In Fig. 7, the second simulated test studies most robust aforementioned focus measurements
under various artificial noisy conditions. In view of the fact that the synthetic depth map
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Fig. 8. Some individual 2-D image sections among the 42 constituting the image sequence of
the grain of sand. This sequence was imaged in steps of 3.2 μm through a reflected
white-light microscope equipped with a × 20 / 0.46 NA objective in air immersion. Each
image section is 766 × 573 pixels, representating 635 × 475 μm.
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Fig. 9. Some individual 2-D image sections among the 50 constituting the image sequence of
the Vickers hardness test. This sequence was imaged in steps of 9 μm through a reflected
white-light microscope equipped with a × 10 / 0.3 NA objective in air immersion. Each
image section is 766 × 573 pixels, representating 1262 × 944 μm. The marked regions A and B
will be used as sites for comparing the different restored textures.
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Fig. 10. Some individual 2-D image sections among the 40 constituting the image sequence of
the human ex-vivo corneal endothelium. This sequence was imaged in steps of 4.5 μm
through a transmitted white-light microscope equipped with a × 10 / 0.25 NA objective in
air immersion. Each image section is 1040 × 772 pixels, representating 718 × 533 μm. Note
that both bottom left corner and right edge regions never appear in-focus throughout the
sequence. The marked regions A, B and C will be used as sites for comparing the different
restored textures. Some cell fragments present in the immersion biochemical solution are
clearly visible on (a) and (b) as small dark spots, e.g. throughout the region B. Futhermore,
some contrast reversals emerge: the endothelial cell borders, which are normally darker than
the cell bodies, look brighter for a specific range of distances of defocus.
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Fig. 7. (a) Generation of a simulated sequence of images: Brodatz texture D5 (Brodatz, 1966)
and artificial depth map (upper left), 3-D synthetic surface (upper right) and four individual
image sections (sections 1, 11, 20 and 30 respectively) of the simulated sequence (lower). (b-c)
Performances (RMSE) of the most robust studied focus measurements for the simulated data
in (a) under various noisy conditions (r = 8 pixels). The proposed 3-D statistical analyses
3-D EIG and 3-D NEIG with K set to 1 make fewer errors of restoration in presence of
artificial impulsive or Gaussian noises.
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Fig. 11. Reconstructed depth maps for the image sequence of the Vickers hardness test
presented in Fig. 8 (r = 3 pixels) after a median filtering (r = 2 pixels). The color z-scale is: 0
• • 30 • • 60 • • 90 • • 120 μm •. The depth maps recovered by our proposed methods (b),(e),
(g) and (h) more reveal the pyramid-shaped structure of the sample.

exhibits neither sharp depth slopes nor discontinuities, we opt for a rather large neighborhood
size r (r = 8 pixels), moreover necessary to average out noise. In presence of noise,
the proposed 3-D EIG and 3-D NEIG methods with K set to 1 clearly outperform the
state-of-the-art other ones. The adopted 3-D statistical strategies make possible a better
discrimination of focus cues “drowned” in noise. Notice that the 3-D EIG version offers
a more robust behaviour than the normalized 3-D NEIG one. As for the other 3-D focus
measurement (3-D DCT-PCA), it shows the weakest performances by lack of sensitivity, the
previous transformation being not sufficient to improve it.

4.2 Results on experimental data

We now illustrate the potential of the suggested focus measurements on real image sequence
acquisitions.

4.2.1 Experimental setup

The real test dataset is made up of three image sequences exclusively acquired in conventional
optical microscopy by gradually shifting the samples along the optical axis direction with a
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Fig. 12. Details of the restored textures in the regions A and B for the image sequence of the
grain of sand presented in Fig. 9 (r = 4 pixels). In the details (b) and (f) resulting from our
suggested methods, there are less bright artefacts and the grain borders appear darker and
sharper.

motorized stage, but through different configurations (using reflected or transmitted light)
and magnifications. Related to various application fields, three samples with varying textural
and topographical properties are regarded so as to rigorously test both selected and proposed
methods. The first two ones are a Vickers hardness test6 performed on a polished aluminium
plate surface and a grain of sand; their reflected white-light acquisitions are illustrated and
described in Fig. 8 and Fig. 9, respectively. These real image sequences exhibit some difficult
regions: e.g. around the sharp borders of the sand grain and at the bottom of the Vickers
pyramid-shaped indentation, thus requiring a good sensitivity from the focus measurements.
Moreover, they are necessarly degraded by some noisy data introduced by the imaging
system during the acquisition, but in much lesser extent than the third one. This latter,
illustrated and described in Fig. 10, images using transmitted white-light an human ex-vivo
corneal endothelium7 folded after storage of the graft in a specific preservation medium
(Pels & Schuchard, 1983). Effectively, it appears very disturbed by intense contrast reversals
and some cell fragments present in the graft immersion solution. For these real image
sequences, the assessment will be only qualitative, i.e. by visually examining and comparing
the restored depth maps and/or textures; these latter will be highlighted in some crucial
regions for a better visibility.

4.2.2 Results & discussion

The topography of the Vickers hardness test reconstructed by the major part of the
aforementioned focus measurements are shown in Fig. 11. Those related to proposed methods
clearly exhibit less artefacts (e.g. wrong sharp peaks), notably at the bottom and the edges of

6 The test of Vickers consists in examining the deformation of a material from a standard pyramid-shaped
diamond indenter to deduce a measure of hardness (Tabor, 2000).

7 The endothelium is the innermost layer of the cornea and is constituted of a monolayer and hexagonal
mosaic of cells. Given that those non-regenerative cells make keeping the cornea clear, the estimation
of its cell density is essential in the corneal transplant process (Thuret et al., 2004; 2003).
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(a) (b)

Fig. 13. 3-D surface reconstructions (a) of the grain of sand using the 3-D NEIG method and
(b) of the Vickers hardness test using the 2-D VAR� method.

the pyramid-shaped indentation. Compared to classical 2-D VAR and 2-D SML methods,
the respective psyschophysical LIP-based reinterpretations (2-D VAR� and 2-D SML�) are
able to deal with more difficult regions, such as poorly textured and/or ill-illuminated ones.
Moreover, they offer a relative robustness to noise sufficient for most real usual cases. In same
cases, the more sensitive normalized 3-D NEIG method with K set to 1 will be preferred to 3-D
EIG K=1 one, except for much noisier acquisitions as encountered in the last example below.
The normalization effectively provides some accuracy and stability to the analysis, up to a
certain degree of noise in the image sequence. A 3-D reconstruction of the Vickers hardness
test is shown in Fig. 13(a).

Concerning the grain of sand, the textures resulting from a more restricted set of
aforementioned focus measurements are highlighted and compared in Fig. 12. First, the
light-gray stains around the grain corner of the region A that designate false textural
restorations are much less frequent with our suggested 2-D TEN� and, even more so, 3-D
NEIG K=1 methods. Second, the inspection of the grain borders within B clearly reveals
marked improvements with the same 2-D TEN� and 3-D NEIG K=1 methods. As previously,
there are less bright artefacts in and around the borders, which moreover appear much darker
and sharper. As previously, a 3-D reconstruction of the grain of sand is shown in Fig. 13(b), in
which a binary mask is used so as to exclude the background from the reconstruction process
(Niederöst et al., 2003).

In Fig. 14, we compare both depth map and texture obtained with the most robust
studied focus measurements from the noisy and disturbed image sequence of the corneal
endothelium. Contrary to above real examples, a larger neighborhood size (r = 10 pixels)
is used, because of both wider textural content and noisier aspect of the image sequence.
Moreover, this is here non-prejudicial in view of the complete absence of discontinuities
and sharp slopes. First, the depth map recovered by the proposed 3-D EIG K=1 method
clearly exhibits less artefacts, anatomically impossible as the endothelial surface is necessarily
continuous. Indeed, it distinctly contains less underestimated (over-red) and overestimated
(blue) regions caused by cell fragments and contrast reversals, respectively. As for the restored
textures, their inspection corroborates the above appreciation (moreover knowing that each of
them is intimately related to its respective depth map). The texture tagged with 3-D EIG K=1
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Fig. 14. Reconstructed depth maps (left) and details of the restored textures in the regions A,
B and C (right) for the image sequence of the human ex-vivo corneal endothelium presented
in Fig. 10 (r = 10 pixels). The color z-scale is: 0 • • 29.25 • • 58.5 • • 87.75 • • 117 • • 146.25 •
• 175.5 μm. The 3-D EIG K=1 depth map in (d) distincly contains fewer blue spots and
over-red regions respectively caused by moving cell fragments and cell border contrast
reversals, moreover attested by the details of its respective texture in (d) that noticeably
exhibit less artefacts attributed to both disturbances.

is not too much damaged by disturbances, like dark steaks and bright cell borders due to
moving cell fragments and contrast reversals, respectively.
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5. Conclusions

This chapter has focused on image restoration of both topographical and textural information
of an observed surface from a registered image sequence acquired by optical sectioning
through the common concepts of Shape-From-Focus (SFF) and Extended Depth-of-Field
(EDF). More particularly, the essential step of these complementary processes of restoration:
the focus measurement, has been examined. After a brief specialized review, we have
introduced novel evolved focus measurements that push the limits of state-of-the-art ones
in terms of sensitivity and robustness, in order to cope with various frequently encountered
acquisition issues.

On the one hand, reinterpretations with the LIP framework (2-D VAR�, 2-D TEN� and
2-D SML�) of three traditional 2-D focus measurements (2-D VAR, 2-D TEN and 2-D SML)
have been suggested. From a computational point of view, they involve some subtleties
to succeed that, about human brightness perception, accordingly result in revisited focus
measurements attempting to work in terms of brightness (intensity sensation from physical
light stimuli). Firstly designed to deal with difficult ill-illuminated and poor textured parts of
the obserbed surface, the strategy of using the LIP model effectively confers higher sensitivity
to focus cues, at the expense of a slight loss of noise robustness that nevertheless remains
sufficient in most usual cases. On the other hand, novel 3-D statistical focus measurements
(3-D EIG and 3-D NEIG) have been developed in order to conversely handle noisy and
disturbed acquisitions. Contrary to 2-D sectional way adopted by the major part of the
current methods, a 3-D strategy is originally achieved throughout the image sequence via
multivariate statistical analyses within local stacks of collected 2-D sectional windows along
the axial direction, thereby offering a strong robustness to noise while preserving a sufficient
sensitivity (contrary to the state-of-the-art 3-D DCT-PCA one). The efficiency of all proposed
focus measurements have been clearly demonstrated on simulated data and real experimental
acquisitions.

The concept of reinterpreting traditional focus measurements through the LIP framework
is obviously restricted to neither image processing frameworks nor to specific focus
measurements. While the studied focus measurements are illustrated in the context
of conventional optical microscopy, they are also applicable to the wider range of
imaging systems offering a limited depth-of-field, provided the acquired image sequence
is previously registered. Morever, they can be used for all application issues requiring
focus degree information (obviously after considering the focus measurement strategy and
dimensionality), such as autofocusing. Finally, we believe that the use of adaptive windows
instead of fixed-size ones for measuring degrees of focus could improve the restoration
process, with a view to always capturing focus cues (whatever the textural content of the
observed surface) while reducing the inherent smoothing effect (around sharp depth slopes
and discontinuities of the observed surface).
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the focus measurement, has been examined. After a brief specialized review, we have
introduced novel evolved focus measurements that push the limits of state-of-the-art ones
in terms of sensitivity and robustness, in order to cope with various frequently encountered
acquisition issues.

On the one hand, reinterpretations with the LIP framework (2-D VAR�, 2-D TEN� and
2-D SML�) of three traditional 2-D focus measurements (2-D VAR, 2-D TEN and 2-D SML)
have been suggested. From a computational point of view, they involve some subtleties
to succeed that, about human brightness perception, accordingly result in revisited focus
measurements attempting to work in terms of brightness (intensity sensation from physical
light stimuli). Firstly designed to deal with difficult ill-illuminated and poor textured parts of
the obserbed surface, the strategy of using the LIP model effectively confers higher sensitivity
to focus cues, at the expense of a slight loss of noise robustness that nevertheless remains
sufficient in most usual cases. On the other hand, novel 3-D statistical focus measurements
(3-D EIG and 3-D NEIG) have been developed in order to conversely handle noisy and
disturbed acquisitions. Contrary to 2-D sectional way adopted by the major part of the
current methods, a 3-D strategy is originally achieved throughout the image sequence via
multivariate statistical analyses within local stacks of collected 2-D sectional windows along
the axial direction, thereby offering a strong robustness to noise while preserving a sufficient
sensitivity (contrary to the state-of-the-art 3-D DCT-PCA one). The efficiency of all proposed
focus measurements have been clearly demonstrated on simulated data and real experimental
acquisitions.

The concept of reinterpreting traditional focus measurements through the LIP framework
is obviously restricted to neither image processing frameworks nor to specific focus
measurements. While the studied focus measurements are illustrated in the context
of conventional optical microscopy, they are also applicable to the wider range of
imaging systems offering a limited depth-of-field, provided the acquired image sequence
is previously registered. Morever, they can be used for all application issues requiring
focus degree information (obviously after considering the focus measurement strategy and
dimensionality), such as autofocusing. Finally, we believe that the use of adaptive windows
instead of fixed-size ones for measuring degrees of focus could improve the restoration
process, with a view to always capturing focus cues (whatever the textural content of the
observed surface) while reducing the inherent smoothing effect (around sharp depth slopes
and discontinuities of the observed surface).
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96 Image Restoration – Recent Advances and Applications

1. Introduction

The problem of image restoration has deserved considerable attention in resent years.
For the visual analysis of images, clarity and visibility of details are important factors,
but for advanced processing, a high signal-to-noise ratio (SNR) is essential, as further
processing steps (such as segmentation and classification) are sensitive to noise. Though
the years, different techniques have been studied to improve the SNR or a degraded image.
Techniques based on post-processing have the advantage of not affecting the acquisition
process (Gonzalez & Woods (2001); Jain (1989); Weickert (1995)). More recently, the work
of Tschumperle (2006) has explored the more extensive use of curve-preserving PDE’s for
restoration of images. The calculation of mean intensities over neighboring pixels, equivalent
to isotropic diffusion, considerably increases the SNR, but degrades the quality of image
features (edges, lines and dots). This effect can be reduced with non-linear filters. The median
filter has the characteristic of maintaining these features, but details are lost, degrading the
image resolution. Perhaps the most popular technique introduced in the last couple of years
is anisotropic diffusion, initially proposed by Perona and Malik (Black et al. (1998); Perona &
Malik (1990)).

This problem has motivated interdisciplinary research and the use of techniques actually
born in other areas, as is the case of the Topological Derivative (TD). The TD has been
originally conceived for the study of topology optimization and property identification
problems. Since 1994 different works proposed this new paradigm for the study of such
problems. The pioneer works of Eschenauer in 1994 (Eschenauer et al. (1994)) and Schumacher
in 1995 (Schumacher (1995)) introduced a way to obtain the optimal shape and topology
using Topological Sensitivity Analysis. In summary, this new concept called asymptotical
topological expansion is posed as follows. Let J (Ω) = F (u(Ω)) be an arbitrary cost function
that measures the “quality" associated to a given topology characterized by the state function
u(Ω), which is restricted to be the solution of a variational equation defined in Ω. Given a
sufficiently small positive number ε, a positive function f (ε) that goes to zero with ε, we call
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Ω� the perturbed domain after the inclusion at x̂ of a hole of infinitesimal size governed by �.
Therefore, the asymptotical topological expansion

J (Ω�) = J (Ω) + f (�)DT(x̂) +O( f (�)) (1)

provides an estimate of the cost function value in the perturbed domain for a sufficiently small
�, where DT is known as the TD. The Topological Derivative can then be defined as (Novotny
(2003))

A scalar function, defined in Ω, indicating in each point x̂ ∈ Ω the sensitivity of a cost function
when a hole of infinitesimal size � is introduced at that point.

1.1 Motivation for the use of Topological Derivative in image restoration

In 2005 appeared the first papers using the TD in image processing: restoration by Belaid
et al. (2007) and Larrabide et al. (Larrabide, Novotny, Feijóo & Taroco (2005; 2006)), where
the objective was to recover an image that suffered some kind of degradation; segmentation
by Larrabide et al. (Larrabide, Feijóo, Novotny, Taroco & Masmoudi (2005); Larrabide,
Feijóo, Taroco & Novotny (2006)) and Hintermüler (2005), in medical images where the
interest is in the identification of different organs for posterior reconstruction; and image
classification by Auroux et al. (2006). He & Osher (2006) established a relation between the
TD and other techniques broadly used in image processing as is the case of level sets. A
remarkable feature of the TD is that it allows to compute the variation of a cost function
with respect to a parameter that changes non-smoothly (e.g., characteristic function of the
domain, material properties or non-continuous change of the forces acting on the problem).
This derivative can be used to identify, according to some criterion, the characteristic function
of an optimal domain, the material properties and their distribution in a given domain, or
even the forces acting on a given domain and how they are distributed. This problem appears
frequently in the context of image processing. As examples we can mention identification of
edges, identification of objects, object tracking, decomposition of texture and geometry and
reconstruction from projections, where the use of the TD appears as a natural way to solve
these problems.

Regarding image restoration, the stationary heat equation has been used for this purpose
(Kornprobst et al. (1997)). In this approach, the diffusion coefficient is usually given by

c(|∇u|) = φ�(|∇u|)
|∇u| .

The problem consists in determining the function φ that allowed to remove noise preserving
edges in the image. One property that characterized restoration methods based on non-linear
isotropic diffusion was removing noise along the edges in the image. This unwanted property
of non-linear diffusion, but still isotropic, was partially reduced when a non-linear anisotropic
diffusion tensor was introduced (Frangakis & Hegerl (2001)). In this case, a diffusivity tensor
c(|∇u|) was constructed from two eigenvectors and eigenvalues of tensor J = ∇u⊗∇u. Still,
as diffusion across edges is not completely stopped, heuristic criterion must be introduced to
avoid the loss of image details.

Stoping the diffusion in the direction orthogonal to the intensity iso-lines of u is somehow
equivalent to introducing a crack in the same direction. In this way, the use of the TD in
image restoration appears naturally as it allows to analyze abrupt variations in the material
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properties. For instance, the TD can be used to determine the diffusion tensor, which in
the following we recall as K. To formalize this, we consider the image characterized by its
intensity u0 ∈ L2(Ω) defined in a limited open domain Ω ∈ R2 (the extension to R3 is
straightforward). For each restored image, characterized by the intensity u ∈ H1(Ω), we
can associate the cost function

J (u) =
∫

Ω
∇u · ∇u dΩ ,

measuring the “quality" of the restoration given by the solution of the following variational
problem: Determine u ∈ H1(Ω) such that

∫

Ω
k∇u · ∇η dΩ +

∫

Ω
(u − u0)η dΩ = 0 ∀η ∈ H1(Ω) .

Different methods exist to remove noise and enhance edges of a degraded image. We can
distinguish two types: based on the solution of a stationary problem and based on the
solution of an evolutionary problem. Both types of methods are based on the application of
non-linear/anisotropic diffusion on the image. In both cases, the diffusion coefficient or tensor
is computed as a function of the local image gradient. This coefficient takes small values for
high gradients (edges) thus stoping diffusion, and higher values when the gradient is small
(homogeneous regions) promoting a higher diffusion. Both methods have two parameters.
The stationary method has a parameter determining which gradients will be considered as
edges and which ones not, and a second one characterizing the intensity of the diffusion to
be applied. In the case of evolutionary methods, the first parameter is in some way similar
to the one used by the stationary method to determine the threshold for gradients that are
considered edges, and the number of iterations. For both methods, the parameter determining
the gradient threshold can be estimated. But this does not happen for the other parameters,
which need to be set depending on the noise type and intensity. In both cases, the the selection
of this parameter will determine the quality of the result.

2. Topological Derivative

Topological sensitivity analysis allows to characterize the sensitivity of a problem when the
domain Ω where the problem is defined is perturbed in some way. This perturbation can be
a:

• change in topology: the domain Ω is perturbed introducing a hole of an arbitrary shape
ω� at the point x̂ ∈ Ω, and the TD provides the sensitivity of a cost function when � → 0
(see Eq. (1)).

• change in material properties: a perturbation in the material properties at point x̂ ∈ Ω of
an arbitrary shape ω� is introduced and the TD provides the sensitivity of the cost function
when � → 0 (see Eq. (1)). By “material properties" is meant the coefficients that define the
variational problem associated to the problem.

• change in the forces/sources acting on Ω: similar to the previous case, but perturbing the
forces/sources.

In the following, and for the sake of simplicity, only the first case will be considered, namely
the perturbation of the domain by the introduction of a hole. The extension to the other two
cases is straightforward.
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(homogeneous regions) promoting a higher diffusion. Both methods have two parameters.
The stationary method has a parameter determining which gradients will be considered as
edges and which ones not, and a second one characterizing the intensity of the diffusion to
be applied. In the case of evolutionary methods, the first parameter is in some way similar
to the one used by the stationary method to determine the threshold for gradients that are
considered edges, and the number of iterations. For both methods, the parameter determining
the gradient threshold can be estimated. But this does not happen for the other parameters,
which need to be set depending on the noise type and intensity. In both cases, the the selection
of this parameter will determine the quality of the result.
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Topological sensitivity analysis allows to characterize the sensitivity of a problem when the
domain Ω where the problem is defined is perturbed in some way. This perturbation can be
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• change in topology: the domain Ω is perturbed introducing a hole of an arbitrary shape
ω� at the point x̂ ∈ Ω, and the TD provides the sensitivity of a cost function when � → 0
(see Eq. (1)).

• change in material properties: a perturbation in the material properties at point x̂ ∈ Ω of
an arbitrary shape ω� is introduced and the TD provides the sensitivity of the cost function
when � → 0 (see Eq. (1)). By “material properties" is meant the coefficients that define the
variational problem associated to the problem.

• change in the forces/sources acting on Ω: similar to the previous case, but perturbing the
forces/sources.

In the following, and for the sake of simplicity, only the first case will be considered, namely
the perturbation of the domain by the introduction of a hole. The extension to the other two
cases is straightforward.
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Fig. 1. Topological derivative - Change in topology

2.1 Topological shape sensitivity analysis

Let a problem be defined in Ω where the quality/performance is characterized by a cost
function J (Ω) = F (Ω, u(Ω)) where Ω ⊂ Rn, n = 2, 3, is a regular domain of open boundary
∂Ω with exterior normal n. With the notation (Ω, u(Ω)) we empathize that F depends on Ω
explicitly and implicitly through u(Ω), solution of the variational equation (state equation),
that can be written in the abstract form as: determine u ∈ U = U (Ω) such that

a(u, η) = l(η) ∀η ∈ V , (2)

where U characterizes a set (usually a linear manifold of V) of admissible functions defined
in Ω e V = V(Ω) the vector space of admissible variations. Also, a(., .) : U × V �→ R is
a symmetrical bilinear form and l(.) : V �→ R a linear form. These forms also satisfy the
properties of continuity and coercivity to warrant existence and uniqueness of solution u.

Let ω be a open domain arbitrarily shaped and of regular boundary ∂ω containing the origin.
Given � > 0 sufficiently small it can be defined for any point x ∈ Ω the domain ω� given
by ω� = x̂ + �ω. In this way, the introduction of a hole ω� centered in x̂ ∈ Ω allows to
characterize the perturbed domain Ω� (Fig. 1) given by

Ω� = Ω \ ω�. (3)

From Eq. (1), DT in x̂ ∈ Ω can be defined as

DT(x̂) = lim
�→0

J (Ω�)−J (Ω)

f (�)
(4)

where f (�) is a positive monotone decreasing function ( f (�) → 0 with � → 0). Furthermore,
J (Ω�) = F (Ω�, u�(Ω�)), being u� the solution of the same state equation now defined in the
perturbed domain, namely in Ω�: Determine u� ∈ U� = U (Ω�) such that

aΩ�
(u�, η) = lΩ�

(η) ∀η ∈ V� = V(Ω�). (5)

In the work of Novotny et al. (2003) a relation between the TD and classical shape sensitivity
analysis (Haug et al. (1986); Murat & Simon (1976)) is established. This result permits to
use tools developed in classical sensitivity analysis for the computation of the TD. This new
approach can be stated in the form of theorem as:
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Theorem 1. Let f (�) be a function chosen such that 0 < |DT(x̂)| < ∞, then the limit when � → 0
appearing in (4), can be written as

DT(x̂) = lim
�→0

1
f �(�)

dJ (Ωτ)

dτ

∣∣∣∣
τ=0

(6)

where
dJ (Ωτ)

dτ
is the classical shape sensitivity.

Proof 1. The proof of this theorem can be found in the work of Novotny et al. (2003).

In the previous expression is implicit the domain transformation (deformation) χτ : x� ∈
Ω� → xτ ∈ Ωτ defined as

xτ = x� + τv(x�) (7)

where v is the velocity field characterizing the shape change and Ωτ |τ=0 = Ω�. The field v is
characterized by

v(x) = −n ∀x ∈ ∂ω� e v(x) = 0 ∀x ∈ ∂Ω� \ ∂ω�. (8)

For further information on this type of transformation see the work of Haug et al. (1986) and
Haug & Céa (1981), Pironneau (1984), Sokolowski & Zolésio (1992) and Zolésio (1981).

From this theorem is naturally deduced the Topological-Shape Sensitivity Method, which will be
explored in the following. The shape change derivative of the cost function in relation to the
parameter τ can be written as

{
Compute :

d
dτ

Jτ(uτ)

subject to : aτ (uτ , η) = lτ(η) ∀ η ∈ Vτ .
(9)

where aΩτ
(·, ·) is given by aτ(·, ·), lΩτ

(·) with lτ(·) and where the notation Jτ(uτ) evidences
the dependency of the cost function on uτ and on Ωτ .

To compute the derivative to change in shape considering the state equation as a restriction,
the Lagrangian method is used (i.e., relaxing the restriction by the introduction of a Lagrange
multiplier). The Lagrangian of this problem is written as

Lτ(v, η) = Jτ(v) + aτ(v, η)− lτ(η) ∀ η ∈ Vτ e v ∈ Uτ . (10)

We verify, for v = uτ , that

Lτ(uτ , η) = Jτ(uτ) + aτ(uτ , η)− lτ(η)︸ ︷︷ ︸
=0, solution of the state equation

∀ η ∈ Vτ

= Jτ(uτ) ∀ η ∈ Vτ . (11)

We compute the derivative with respect to τ in Eq. (10), then

dLτ(v, η)

dτ
=

∂Lτ

∂τ
+

〈
∂Lτ

∂v
;

dv
dτ

〉
+

〈
∂Lτ

∂η
;

dη

dτ

〉
. (12)

We then work term by term on Eq. (12). Starting by the third term on the right-hand side we
have

〈
∂Lτ

∂η
;

dη

dτ

〉
= aτ

(
v,

dη

dτ

)
− lτ

(
dη

dτ

)
∀ dη

dτ
∈ Vτ (13)
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where U characterizes a set (usually a linear manifold of V) of admissible functions defined
in Ω e V = V(Ω) the vector space of admissible variations. Also, a(., .) : U × V �→ R is
a symmetrical bilinear form and l(.) : V �→ R a linear form. These forms also satisfy the
properties of continuity and coercivity to warrant existence and uniqueness of solution u.

Let ω be a open domain arbitrarily shaped and of regular boundary ∂ω containing the origin.
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by ω� = x̂ + �ω. In this way, the introduction of a hole ω� centered in x̂ ∈ Ω allows to
characterize the perturbed domain Ω� (Fig. 1) given by

Ω� = Ω \ ω�. (3)
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where f (�) is a positive monotone decreasing function ( f (�) → 0 with � → 0). Furthermore,
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(η) ∀η ∈ V� = V(Ω�). (5)

In the work of Novotny et al. (2003) a relation between the TD and classical shape sensitivity
analysis (Haug et al. (1986); Murat & Simon (1976)) is established. This result permits to
use tools developed in classical sensitivity analysis for the computation of the TD. This new
approach can be stated in the form of theorem as:
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Theorem 1. Let f (�) be a function chosen such that 0 < |DT(x̂)| < ∞, then the limit when � → 0
appearing in (4), can be written as
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where
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is the classical shape sensitivity.
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where v is the velocity field characterizing the shape change and Ωτ |τ=0 = Ω�. The field v is
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For further information on this type of transformation see the work of Haug et al. (1986) and
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explored in the following. The shape change derivative of the cost function in relation to the
parameter τ can be written as
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Jτ(uτ)
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(9)

where aΩτ
(·, ·) is given by aτ(·, ·), lΩτ

(·) with lτ(·) and where the notation Jτ(uτ) evidences
the dependency of the cost function on uτ and on Ωτ .

To compute the derivative to change in shape considering the state equation as a restriction,
the Lagrangian method is used (i.e., relaxing the restriction by the introduction of a Lagrange
multiplier). The Lagrangian of this problem is written as

Lτ(v, η) = Jτ(v) + aτ(v, η)− lτ(η) ∀ η ∈ Vτ e v ∈ Uτ . (10)

We verify, for v = uτ , that

Lτ(uτ , η) = Jτ(uτ) + aτ(uτ , η)− lτ(η)︸ ︷︷ ︸
=0, solution of the state equation
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We compute the derivative with respect to τ in Eq. (10), then
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+
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have
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Then, for the particular case v = uτ , Eq. (13) is zero. Considering the second term of Eq. (12),
we have

〈
∂Lτ

∂v
;

dv
dτ

〉
=

〈
∂Jτ

∂v
;

dv
dτ

〉
+ aτ

(
η,

dv
dτ

)
∀ dv

dτ
∈ Vτ (14)

where the symmetry of aτ(·, ·) was used. In this expression, η can be chosen arbitrarily. In
articular, it will be selected η = qτ , being qτ ∈ Vτ the solution to the adjoint equation given
by 〈

∂Jτ

∂v
;

dv
dτ

〉∣∣∣∣
v=uτ

+ aτ

(
qτ ,

dv
dτ

)
= 0 ∀ dv

dτ
∈ Vτ . (15)

The previous equation is known as “(variational) adjoint equation", and its solution qτ (or
q� and q if the adjoint equation is defined in the domain Ω� and Ω respectively) as “adjoint
solution". We note that, because of the properties of a(·, ·), the adjoint equation is of the same
kind as the state equation (Eq. (2), or its counterpart in the perturbed domain Eq. (5)). From
the computational point of view, the former means that the same computational system used
to compute the solution of the state equation u (or u�) can be used to compute q (or q�).

The total derivative with respect to parameter τ of the Lagrangian is given by

dJ (Ωτ)

dτ

∣∣∣∣
τ=0

=
∂Lτ(v, η)

∂τ

∣∣∣∣v=uτ
η=qτ

∣∣∣∣∣
τ=0

=

[
∂Jτ(v)

∂τ
+

∂aτ(v, η)

∂τ
− ∂lτ(η)

∂τ

]
v=uτ
η=qτ

∣∣∣∣∣
τ=0

. (16)

We notice that uτ |τ=0 = u� and qτ |τ=0 = q�. Therefore, the former expression results in
a function of u� and q� and its derivatives. As we noted before, only the boundary ∂ω� is
perturbed by a uniform expansion (Eq. (8)). Then, the derivative to shape change results in
an integral only defined on the boundary ∂ω�. Therefore, the topological derivative is given
by an expression of the form

DT(x̂) = −lim
�→0

1
f �(�)

∫

∂ω�

Σ�n · n d∂ω� (17)

where Σ� depends on u� and q�, and it can be interpreted as a generalization of the Eshelby
momentum energy tensor proposed by Eshelby (1985). The tensor Σ� must be identified for
each particular problem, which depends on the cost function adopted and the state equation
associated to u�.

Finally, its necessary to compute the limit when � → 0 to obtain the DT expression. For
this, it is necessary to study the behavior of solutions u� and q� when � → 0. This behavior
can be obtained with asymptotical analysis on the neighborhood of the hole. At this point,
different alternatives can be used depending on the problem under consideration (boundary
conditions, type of perturbation, etc.). In all these cases, asymptotical analysis allows to
express u� and q� as a function of �, u(x̂), q(x̂) and there derivatives in x̂, respectively. Namely,
as a function of the solutions of the state and adjoint equation defined in the domain without
perturbation providing as well the function f (�). In this way, substituting these equation in
Eq. (17) and from the computation of the limit for � → 0 the final expression of the DT at point
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x̂ is obtained. As mentioned, this expression will only depend on the values of u and q and
its derivatives at point x̂. The former has consequences from the computational point of view
and in fact, once u and q are obtained, the computation of the TD is just a post processing.

Then, for a given cost function F (Ω, u(Ω)) the Topological-Shape Sensitivity Method can be
summarized in the following steps:

1. Compute the shape change derivative for the cost function F (Ω�, u�(Ω�)), using the
Lagrangian method.

2. Identify the Eshelby momentum tensor Σ� and write the sensitivity expression as an
integral defined on the boundary ∂ω�.

3. Do the asymptotical analysis to study the behavior of u� and q� when � → 0.
4. From the asymptotical analysis, chose f (�).
5. Compute the DT using Eq. (17).

This is a general and systematic way to compute the DT for an arbitrary cost function. The
particular case presented in this chapter is applied to the introduction of a perturbation in
the domain Ω in the shape of a crack, which is then presented as part of an algorithm for the
restoration of degraded images.

3. Topological Derivative in image restoration

The concept of the TD, allows to quantify the sensitivity of a performance measure of cost
function when the problem definition domain is perturbed. Therefore, if the cost function
is associated to the noise present in the image, it will be possible to use its TD to develop
appropriate image restoration algorithms. In this context, two state equations are studied: the
first one based on a stationary problem and the second one on the evolutionary problem. The
TD will allow to determine the location and orientation of the cracks that should be introduced
in the domain to minimize the cost function. From the point of view of the state equation, the
cracks will stop diffusion in the orthogonal direction, only allowing diffusion in the tangent
direction. In other words, the TD provides a procedure to compute the diffusion anisotropic
tensorial field that will be used to restore the image preserving the image edges.

3.1 Continuous approach - RDT -continuous

This approach is based in introducing cracks in an image under the effect of diffusion. These
cracks are introduced at specific locations in the image using the information provided by
the TD. For a small �, let Ω� = Ω \ γ� be the domain perturbed by the insertion of a crack
γ� = x̂+ �γ, where x̂ ∈ Ω and γ(m) is a straight crack, being m the normal direction of γ (Fig.
2). Let u� be the solution of the same variational problem in the perturbed domain Ω� and
J (u�) a cost function associated to it. Then, we obtain the following asymptotic topological
expansion of J�(u�) when � → 0, i.e.,

J�(u�) = J (u) + f (�)DT(x̂, m) +O( f (�)),

where

DT(x̂, m) = M m · m
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=

〈
∂Jτ

∂v
;

dv
dτ

〉
+ aτ

(
η,

dv
dτ

)
∀ dv

dτ
∈ Vτ (14)

where the symmetry of aτ(·, ·) was used. In this expression, η can be chosen arbitrarily. In
articular, it will be selected η = qτ , being qτ ∈ Vτ the solution to the adjoint equation given
by 〈

∂Jτ

∂v
;

dv
dτ

〉∣∣∣∣
v=uτ

+ aτ

(
qτ ,

dv
dτ

)
= 0 ∀ dv

dτ
∈ Vτ . (15)

The previous equation is known as “(variational) adjoint equation", and its solution qτ (or
q� and q if the adjoint equation is defined in the domain Ω� and Ω respectively) as “adjoint
solution". We note that, because of the properties of a(·, ·), the adjoint equation is of the same
kind as the state equation (Eq. (2), or its counterpart in the perturbed domain Eq. (5)). From
the computational point of view, the former means that the same computational system used
to compute the solution of the state equation u (or u�) can be used to compute q (or q�).

The total derivative with respect to parameter τ of the Lagrangian is given by

dJ (Ωτ)

dτ

∣∣∣∣
τ=0

=
∂Lτ(v, η)

∂τ

∣∣∣∣v=uτ
η=qτ

∣∣∣∣∣
τ=0

=

[
∂Jτ(v)

∂τ
+

∂aτ(v, η)

∂τ
− ∂lτ(η)

∂τ

]
v=uτ
η=qτ

∣∣∣∣∣
τ=0

. (16)

We notice that uτ |τ=0 = u� and qτ |τ=0 = q�. Therefore, the former expression results in
a function of u� and q� and its derivatives. As we noted before, only the boundary ∂ω� is
perturbed by a uniform expansion (Eq. (8)). Then, the derivative to shape change results in
an integral only defined on the boundary ∂ω�. Therefore, the topological derivative is given
by an expression of the form

DT(x̂) = −lim
�→0

1
f �(�)

∫

∂ω�

Σ�n · n d∂ω� (17)

where Σ� depends on u� and q�, and it can be interpreted as a generalization of the Eshelby
momentum energy tensor proposed by Eshelby (1985). The tensor Σ� must be identified for
each particular problem, which depends on the cost function adopted and the state equation
associated to u�.

Finally, its necessary to compute the limit when � → 0 to obtain the DT expression. For
this, it is necessary to study the behavior of solutions u� and q� when � → 0. This behavior
can be obtained with asymptotical analysis on the neighborhood of the hole. At this point,
different alternatives can be used depending on the problem under consideration (boundary
conditions, type of perturbation, etc.). In all these cases, asymptotical analysis allows to
express u� and q� as a function of �, u(x̂), q(x̂) and there derivatives in x̂, respectively. Namely,
as a function of the solutions of the state and adjoint equation defined in the domain without
perturbation providing as well the function f (�). In this way, substituting these equation in
Eq. (17) and from the computation of the limit for � → 0 the final expression of the DT at point
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x̂ is obtained. As mentioned, this expression will only depend on the values of u and q and
its derivatives at point x̂. The former has consequences from the computational point of view
and in fact, once u and q are obtained, the computation of the TD is just a post processing.

Then, for a given cost function F (Ω, u(Ω)) the Topological-Shape Sensitivity Method can be
summarized in the following steps:

1. Compute the shape change derivative for the cost function F (Ω�, u�(Ω�)), using the
Lagrangian method.

2. Identify the Eshelby momentum tensor Σ� and write the sensitivity expression as an
integral defined on the boundary ∂ω�.

3. Do the asymptotical analysis to study the behavior of u� and q� when � → 0.
4. From the asymptotical analysis, chose f (�).
5. Compute the DT using Eq. (17).

This is a general and systematic way to compute the DT for an arbitrary cost function. The
particular case presented in this chapter is applied to the introduction of a perturbation in
the domain Ω in the shape of a crack, which is then presented as part of an algorithm for the
restoration of degraded images.

3. Topological Derivative in image restoration

The concept of the TD, allows to quantify the sensitivity of a performance measure of cost
function when the problem definition domain is perturbed. Therefore, if the cost function
is associated to the noise present in the image, it will be possible to use its TD to develop
appropriate image restoration algorithms. In this context, two state equations are studied: the
first one based on a stationary problem and the second one on the evolutionary problem. The
TD will allow to determine the location and orientation of the cracks that should be introduced
in the domain to minimize the cost function. From the point of view of the state equation, the
cracks will stop diffusion in the orthogonal direction, only allowing diffusion in the tangent
direction. In other words, the TD provides a procedure to compute the diffusion anisotropic
tensorial field that will be used to restore the image preserving the image edges.

3.1 Continuous approach - RDT -continuous

This approach is based in introducing cracks in an image under the effect of diffusion. These
cracks are introduced at specific locations in the image using the information provided by
the TD. For a small �, let Ω� = Ω \ γ� be the domain perturbed by the insertion of a crack
γ� = x̂+ �γ, where x̂ ∈ Ω and γ(m) is a straight crack, being m the normal direction of γ (Fig.
2). Let u� be the solution of the same variational problem in the perturbed domain Ω� and
J (u�) a cost function associated to it. Then, we obtain the following asymptotic topological
expansion of J�(u�) when � → 0, i.e.,

J�(u�) = J (u) + f (�)DT(x̂, m) +O( f (�)),

where

DT(x̂, m) = M m · m
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Fig. 2. Topological Derivative concept for cracks.

being M a symmetric tensor given by

M = −
(
∇u ⊗∇u + k(∇u ⊗s ∇q)

)
. (18)

and q the solution of the adjoint equation
∫

Ω
(k∇q · ∇η + qη) dΩ = −

∫

Ω
∇u · ∇η dΩ ∀ η ∈ V .

For any point x̂, DT(x̂, m) reaches its minimum when m is an eigenvector associated to the
smallest eigenvalue κmin of M. Then, it is considered as the optimal direction of the crack
γ�(m) the eigenvector corresponding to the eigenvalue κmin. This value will be adopted as
the TD associated to the creation of a crack at the point x̂. In Fig. 3 is presented an example
for the Lena image (SNR = 26dB).

As mentioned, for any x̂ , DT(x̂, m) takes the minimal value when m is the eigenvector
associated to the smallest eigenvalue κmin of M. Then, by considering the orientation of the
crack γ�(m) the eigenvector corresponding to the eigenvalue κmin. This minimal value will be
adopted as the TD associated to the creation of a crack at the point x̂. The algorithm proposed
here consists in computing the TD and introducing small cracks in the locations where the
derivative is smaller than a given value DT Lim. Two algorithms are presented: isotropic and
anisotropic.

To solve the numerical problem, the introduction of a small diffusion coefficient (or a
conductivity tensor that acts on one direction) is interpreted as the presence of a crack. In
the proposed algorithms, the tensor K(x) for the isotropic and anisotropic case are computed
as a function of the TD, namely K = K(x, DT):

• Isotropic diffusion based on the TD (RDT -Continuous (Iso)):
– K(x) = kε I if DT(x) ≤ DT Lim;
– K(x) = k0 I otherwise.

• Anisotropic diffusion based on the TD (RDT -Continuous (Aniso)):
– K(x) = kε(n ⊗ n) + k0(t ⊗ t) if DT(x) ≤ DT Lim;
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Fig. 3. Image restoration with the continuous TD algorithm RDT -Continuous (Iso) of the Lena
image with k0 = 2, upper row: α = 0.10, 0.20, lower row: α = 0.30 and TD value for each
pixel.

– K(x) = k0 I otherwise.
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Fig. 3. Image restoration with the continuous TD algorithm RDT -Continuous (Iso) of the Lena
image with k0 = 2, upper row: α = 0.10, 0.20, lower row: α = 0.30 and TD value for each
pixel.

– K(x) = k0 I otherwise.
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Fig. 4. Image restoration with the continuous TD algorithm RDT -Continuous (Aniso) for the
Lena image with k0 = 2, upper row: α = 0.10, 0.20, lower row: α = 0.30 and TD value for
each pixel.

for k� � 1, k0 a positive real number, n and t the normal ad tangent directions to the crack,
respectively.

With this diffusion tensor the restored image is obtained by solving the following variational
problem: Determine u∗ ∈ H1(Ω) such that

∫

Ω
K∇u∗ · ∇η dΩ +

∫

Ω
(u∗ − u0)η dΩ = 0 ∀η ∈ H1(Ω) . (19)

As the solution u∗ of the variational problem given by Eq. (19) cannot be explicitly known
in general, its necessary to compute an approximate solution. The Finite Element Method
is used for this purpose Hughes (2000). Then, using the simplest finite element given by
quadrilateral bilinear element (for the 2 dimensional case) or a trilinear parallelepiped (for
the 3 dimensional case) whose nodal points coincide with the centers of the image elements,
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(a) Lena image. (b) Lena image with low contrast.

(c) Topological derivative for the previous images.

Fig. 5. Lena image with different contrast. The second row corresponds to the TD for each
image using the same color scale in both cases.

approximate solutions uh of u, qh of q and u∗h of u∗ can be easily obtained for any image
u0 ∈ L2(Ω). Using these solution, an approximation by finite elements Mh of the tensor M is
given by

Mh = −
(
∇uh ⊗∇uh + k(∇uh ⊗s ∇qh)

)
. (20)

To find the restored image, three boundary value problems need to be computed. These
correspond to the scalar fields of uh the isotropic problem, qh the adjoint problem and u∗h

the problem with the diffusivity tensor K(x) computed using RDT -Continuous (Iso or Aniso).
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Fig. 4. Image restoration with the continuous TD algorithm RDT -Continuous (Aniso) for the
Lena image with k0 = 2, upper row: α = 0.10, 0.20, lower row: α = 0.30 and TD value for
each pixel.
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With this diffusion tensor the restored image is obtained by solving the following variational
problem: Determine u∗ ∈ H1(Ω) such that
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Ω
K∇u∗ · ∇η dΩ +

∫

Ω
(u∗ − u0)η dΩ = 0 ∀η ∈ H1(Ω) . (19)

As the solution u∗ of the variational problem given by Eq. (19) cannot be explicitly known
in general, its necessary to compute an approximate solution. The Finite Element Method
is used for this purpose Hughes (2000). Then, using the simplest finite element given by
quadrilateral bilinear element (for the 2 dimensional case) or a trilinear parallelepiped (for
the 3 dimensional case) whose nodal points coincide with the centers of the image elements,
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(c) Topological derivative for the previous images.

Fig. 5. Lena image with different contrast. The second row corresponds to the TD for each
image using the same color scale in both cases.

approximate solutions uh of u, qh of q and u∗h of u∗ can be easily obtained for any image
u0 ∈ L2(Ω). Using these solution, an approximation by finite elements Mh of the tensor M is
given by

Mh = −
(
∇uh ⊗∇uh + k(∇uh ⊗s ∇qh)

)
. (20)

To find the restored image, three boundary value problems need to be computed. These
correspond to the scalar fields of uh the isotropic problem, qh the adjoint problem and u∗h

the problem with the diffusivity tensor K(x) computed using RDT -Continuous (Iso or Aniso).
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Algorithm 1 Image restoration based in the continuous topological derivative -
RDT -Continuous

Require: Degraded image u0 ∈ L2(Ω), parameters DT Lim e k0.
Ensure: Restored image u∗ ∈ H1(Ω).

compute u and q, solutions of the state and adjoint equation, respectively,
compute the matrix 2 × 2 M and its minimal eigenvalue κmin for each point in Ω,
find K using RDT -Continuous (Iso or Aniso),
compute u∗, a restored image, using K(x) previously obtained.

This algorithm uses one parameter (DT Lim) to select the elements in the image that will have
their coefficients with a modified diffusivity. Then, depending on the TD value of the image
being processed, this coefficient will be modified in a different number of points (e.g., two
similar images with different contrast will produce a different TD, as it depends on ∇u, see
Fig. 5). It is easy to verify that the parameter DT Lim must be a value in the interval [DT MIN , 0)
(being DT MIN the minimum value of the DT). DT MIN and the distribution of values of the TD
in this interval can vary considerably for different images. This will require readjusting this
parameter for different images making its estimation more complex.

A different alternative, presented in Larrabide, Feijóo, Novotny & Taroco (2008), is to modify
the diffusivity coefficient using a fixed point algorithm. This consists in sorting in growing
order the values of the TD and selecting a percentage α of the most negative values and use
this value as threshold for the insertion of cracks in the image. We then define the set Mα as

Mα := {DT(s) : DT(s) < 0

and DT(s) is in the α% most negative values of the DT}. (21)

For s between one and the number of elements in the image. This alternative provides a better
control on the algorithm (Algorithm 2).

Algorithm 2 Image restoration based on the continuous TD II

Require: Degraded image u0 ∈ L2(Ω), parameters α e k0.
Ensure: Restored image u∗ ∈ H1(Ω).

compute u and q, solutions of the state and adjoint equation, respectively,
compute the matrix 2 × 2 M and its minimal eigenvalue κmin for each point in Ω,
find K using RDT -Continuous (Iso or Aniso) and Eq. (21),
compute u∗, the restored image, using K(x) previously obtained.

3.2 Continuous approach results

It can be observed in Fig. 3 the result obtained with Algorithm 2 for DT-Iso using the tensor
K for the Lena image degraded wit white Gaussian noise (degraded image is presented in
Fig. 3). For all the experiments presented k0 = 2 was used. Visually, we observe that the
noise is removed in the 3 cases. The results obtained in the three experiments, namely α =
0.10, 0.20 and 0.30, present considerable improvement in the SNR, going from 26.92 in the
degraded image to 29.57, 30.36 and 30.88 in the processed images, respectively. By analyzing
in detail these images, we observe that as other non-linear isotropic methods, it has difficulties
to remove noise along edges. In Fig. 4 are presented the results corresponding to K computed
using DT-Aniso and the same Lena image. The same values of α (namely α = 0.10, 0.20 and
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(a) Detail of degraded Lena image. (b) Detail of the TD.

(c) Detail of the crack normal and tangent
directions.

(d) Detail of the restored image.

Fig. 6. Detail of Lena’s image topological derivative, crack normal (black) and tangent
(white) directions and final result.

0.30) where used. Again, the SNR improves going from 26.92 in the degraded image to 28.47,
28.85 and 29.05 in the processed images, respectively. This time, and even if the SNR of the
isotropic case are not reached, the noise along edges is more efficiently removed. Finally, in
Fig. 6 is presented a detail of the TD, the vectors normal (in black) and tangent (in white) to
the cracks and the restored image.

3.3 Discrete approach - RDT -discrete

The discrete approach relies on an auxiliary transient heat equation. In this case, cracks are
introduced in the image to stop the diffusion in given points and directions. In this way, the
information provided by the TD is used to determine the location of these cracks.
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It can be observed in Fig. 3 the result obtained with Algorithm 2 for DT-Iso using the tensor
K for the Lena image degraded wit white Gaussian noise (degraded image is presented in
Fig. 3). For all the experiments presented k0 = 2 was used. Visually, we observe that the
noise is removed in the 3 cases. The results obtained in the three experiments, namely α =
0.10, 0.20 and 0.30, present considerable improvement in the SNR, going from 26.92 in the
degraded image to 29.57, 30.36 and 30.88 in the processed images, respectively. By analyzing
in detail these images, we observe that as other non-linear isotropic methods, it has difficulties
to remove noise along edges. In Fig. 4 are presented the results corresponding to K computed
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0.30) where used. Again, the SNR improves going from 26.92 in the degraded image to 28.47,
28.85 and 29.05 in the processed images, respectively. This time, and even if the SNR of the
isotropic case are not reached, the noise along edges is more efficiently removed. Finally, in
Fig. 6 is presented a detail of the TD, the vectors normal (in black) and tangent (in white) to
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3.3 Discrete approach - RDT -discrete

The discrete approach relies on an auxiliary transient heat equation. In this case, cracks are
introduced in the image to stop the diffusion in given points and directions. In this way, the
information provided by the TD is used to determine the location of these cracks.
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In the discrete approach, the image is characterized by a matrix of pixels with an intensity
associated to them. We consider a bi-dimensional image u given by a set of M × N pixels s. In
each pixel s, the image u intensity will be denoted as us. Then, the image belongs to the space
U d

U d :={u; us = constant in ωs, s = 1 · · · M × N} , (22)

with Ω = ∪sωs, being ωs the domain of s. The set of neighbors ns of pixel s was defined as
the four pixels1

The cost function adopted by the discrete approach is

J d(us
t ) = ∑

s
∑

p∈ns
ks,pΔ̂us,p

t · Δ̂us,p
t ,

which can be interpreted as a discrete approximation of the energy norm of the field u. In
this expression the term ks,p is the diffusion coefficient of pixel s with its neighbor p, ns =

{n, s, e, w} are the neighbors of pixel s and Δ̂us,p
t is defined as

Δ̂us,p
t = up

t − us
t . (23)

In this case, us
t is explicitly computed as

us
t (k

s) = us
t−1 + Δt ∑

p∈ns
ks,pΔ̂us,p

t−1 (24)

where the index t ≥ 1 represents the iteration number, being us
0 the intensity at pixel s, ks =

{ks,o, ks,l , ks,n, ks,s} characterizes the set of coefficients associated to pixel s, Δt is the artificial
step size in time.

As opposed to the continuous case, because us
t is an explicit function and given the discrete set

ks, it is possible to compute the exact total variation of the cost function for each perturbation in
ks,p. Also, we call ks

� the perturbed configuration of pixel s diffusivity coefficients. The value
of the cost function when the perturbation is introduced is given by

J d(us
t (k

s
�)) = J d(us

t (k
s)) + DT(s, ks

�), (25)

where DT(s, ks
�) represents the total variation of the cost function due to a perturbation in the

diffusivity coefficients of pixel s characterized by the set ks
�. Likewise in the continuous case,

the introduction of a perturbation to pixel s where DT is negative, will produce a decrease
in the value of the cost function J d. Using this information we can select the best candidate
pixels for perturbations.

We assume ks,p ∈ {kε, k0}, so the set of all possible configurations for ks is defined as

C(s) :={ks = (ks,w, ks,e, ks,n, ks,s); ks,p ∈ {kε, k0}, p = {w,e,n,s}}.

We see that 16 possible combinations for ks exist (values are ks,p = kε or ks,p = k0, for each
neighbor, then 24 = 16 cases are possible). The case ks,w = ks,e = ks,n = ks,s = kε is not
taken into account as it does not change the value of the cost function. The 15 remaining
combinations are

1 i.e. north, south, east e west of pixel s.
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Algorithm 3 Image restoration based on a discrete version of the TD - RDT -Discrete

Require: The 2D image u0 ∈ U , a diffusivity coefficient k0 and a parameter α.
Ensure: The restored image us ∈ U .

make t=1; stop = FALSE; ks = ks
iso, s = 1..M × N

while stop = FALSE do
for each pixel s do

for each ks
� ∈ Cσ do

compute DT(s, ks
�) following Eq. (27)

end for
end for
for each pixel s ∈ Mα do

make DT(s) = min
�∗

{DT(s, ks
�), ks

� ∈ Cσ}
make ks = ks

�∗ the diffusivity coefficient associated to DT(s)
end for
compute us

t (k
s) using Eq. (24).

if |J d
� us

t )−J d(�us
t−1)| > tol then

t = t + 1
else

us = us
t , s = 1, · · · , M × N, stop = TRUE

end if
end while

• no diffusion with one neighbor,
• no diffusion with two neighbors sharing one vertex,
• no diffusion with three neighbors,
• diffuse on x direction,
• diffuse in y direction,
• diffuse in all directions.

The last case corresponds to isotropic diffusion and is defined as ks
iso = {k0, k0, k0, k0}.

To compute the value of DT for a determined pixel, its necessary to introduce a perturbation.
This is done by changing, for one pixel s, the set ks for ks

� ∈ Cσ. Then, the cost function
J d

� (�us
t ) takes the value

J d
� (�us

t ) = J d(us
t ) − ∑

p∈ns
ks,pΔ̂us,p

t · Δ̂us,p
t + ∑

p∈ns
ks,p

� Δ̂ �us,p
t · Δ̂ �us,p

t ,

(26)

for us
t = us

t (k
s) and �us

t = us
t (k

s
�) computed using Eq. (24) and Δ̂ �us,p

t = up
t −� us

t ,
respectively.

For Eqs. (25) and (26) the total variation of the cost function J d due to the perturbation ks
� is

written as
DT(s, ks

�) = ∑
p∈ns

ks,p
� Δ̂ �us,p

t · Δ̂ �us,p
t − ∑

p∈ns
ks,pΔ̂us,p

t · Δ̂us,p
t . (27)

As in the continuous case, it will be considered a perturbation ks
� that minimizes the value

of DT(s, ks
�). Using this information is proposed the following discrete image restoration

algorithm based on the TD 3).
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In the discrete approach, the image is characterized by a matrix of pixels with an intensity
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U d

U d :={u; us = constant in ωs, s = 1 · · · M × N} , (22)

with Ω = ∪sωs, being ωs the domain of s. The set of neighbors ns of pixel s was defined as
the four pixels1

The cost function adopted by the discrete approach is

J d(us
t ) = ∑

s
∑

p∈ns
ks,pΔ̂us,p

t · Δ̂us,p
t ,

which can be interpreted as a discrete approximation of the energy norm of the field u. In
this expression the term ks,p is the diffusion coefficient of pixel s with its neighbor p, ns =

{n, s, e, w} are the neighbors of pixel s and Δ̂us,p
t is defined as

Δ̂us,p
t = up

t − us
t . (23)

In this case, us
t is explicitly computed as

us
t (k

s) = us
t−1 + Δt ∑

p∈ns
ks,pΔ̂us,p

t−1 (24)

where the index t ≥ 1 represents the iteration number, being us
0 the intensity at pixel s, ks =

{ks,o, ks,l , ks,n, ks,s} characterizes the set of coefficients associated to pixel s, Δt is the artificial
step size in time.

As opposed to the continuous case, because us
t is an explicit function and given the discrete set

ks, it is possible to compute the exact total variation of the cost function for each perturbation in
ks,p. Also, we call ks

� the perturbed configuration of pixel s diffusivity coefficients. The value
of the cost function when the perturbation is introduced is given by

J d(us
t (k

s
�)) = J d(us

t (k
s)) + DT(s, ks

�), (25)

where DT(s, ks
�) represents the total variation of the cost function due to a perturbation in the

diffusivity coefficients of pixel s characterized by the set ks
�. Likewise in the continuous case,

the introduction of a perturbation to pixel s where DT is negative, will produce a decrease
in the value of the cost function J d. Using this information we can select the best candidate
pixels for perturbations.

We assume ks,p ∈ {kε, k0}, so the set of all possible configurations for ks is defined as

C(s) :={ks = (ks,w, ks,e, ks,n, ks,s); ks,p ∈ {kε, k0}, p = {w,e,n,s}}.

We see that 16 possible combinations for ks exist (values are ks,p = kε or ks,p = k0, for each
neighbor, then 24 = 16 cases are possible). The case ks,w = ks,e = ks,n = ks,s = kε is not
taken into account as it does not change the value of the cost function. The 15 remaining
combinations are

1 i.e. north, south, east e west of pixel s.
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Algorithm 3 Image restoration based on a discrete version of the TD - RDT -Discrete

Require: The 2D image u0 ∈ U , a diffusivity coefficient k0 and a parameter α.
Ensure: The restored image us ∈ U .
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iso, s = 1..M × N
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� ∈ Cσ do
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end for
end for
for each pixel s ∈ Mα do

make DT(s) = min
�∗

{DT(s, ks
�), ks

� ∈ Cσ}
make ks = ks

�∗ the diffusivity coefficient associated to DT(s)
end for
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t (k
s) using Eq. (24).

if |J d
� us

t )−J d(�us
t−1)| > tol then

t = t + 1
else

us = us
t , s = 1, · · · , M × N, stop = TRUE

end if
end while
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p∈ns
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� Δ̂ �us,p
t · Δ̂ �us,p

t ,

(26)
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t . (27)
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� that minimizes the value
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Fig. 7. Image restoration with the RDT -Discrete algorithm of the Lena image. Results
correspond to k0 = 1 and α = 0.05, 0.15 e 0.25 respectively.

3.4 Discrete approach results

The set Mα is defined as in Eq. (21). As in the continuous case, the parameter α allows to
control the values of the TD that will introduce changes in ks. In all the cases it was used
�t = 1

4 e k0 = 1, the maximum values that warrant the Courant-Friedrichs-Levy (stability)
of the iterative solution algorithm. In Fig. 7 are presented some results obtained with this
technique. The three images presented (corresponding to the results for values of α = 0.05,
0.15 e 0.25 respectively) present a considerable improvement of SNR (going from 26.91 in the
degraded image to 28.49, 29.61 and 29.53 in the processed images, respectively).

In Figs. 8 are presented the results after different number of iterations. The edges introduced
in the image are highlighted in white. We observe that after some iterations, the image has
edges in almost all the edges. In this way, the variation of the cost function is practically null
in two consecutive iterations, stopping the algorithm. The number of edges that are added to
the image in each iteration is controlled by parameter α. In Fig. 9 is presented the detail of a
region of the image before and after the processing.
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Fig. 8. Detail of the crack configuration introduced to the image during the processing
(k0 = 1 and α = 0.20).
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Fig. 9. Detail of Lena image before and after the processing (k0 = 1 and α = 0.20).

(a) Perona & Malik (b) Black et al. (c) Selective smoothing

(d) Semi-quadratic
minimization

(e) RDT -Discrete (f) RDT -Continuous

Fig. 10. Results for the Lena image restored using different methods.

4. Results

The methods based on the TD have been compared to other methods proposed in the literature

• Evolutionary methods:
– Perona & Malik (Perona & Malik (1990)),
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– Black. et al. (Black et al. (1998)),
– Selective smoothing (Alvarez et al. (1992)) and
– Discrete RDT .

• Stationary methods:
– Semi-quadratic minimization (Kornprobst et al. (1997)),
– Continuous RDT (Belaid et al. (2007)).

In Fig. 10 are presented results for classical and TD image restoration methods. The processed
image corresponds to the artificially degraded image of Lena (see Fig. 3) with uniform noise
(r = 20), with an approximate SNR of 27 dB. All the classical methods depend on a parameter
σ with equivalent meaning. This parameter is used to control the diffusion on the edges of the
image to preserve relevant characteristics. For the classical methods, σ was adjusted using the
technique proposed by Black et al. (1998), which allows to estimate the value of σ as a function
of the gradient of the image processed. In the case of the evolutionary methods, the number
of iterations was fixed to 10, 20 and 30. The results for 20 iterations where found to shield
the lowest SNR and, thus, these are reported. For the semi-quadratic minimization, the same
analysis was performed for parameter λ and the best SNR was obtained with λ ≈ 10 in this
case.

Parameter selection in the case of TD methods is different. Both, the Discrete and Continuous
RDT methods, depend on parameter α (a real value between 0 and 1), that determines the
amount of cracks to be introduced in the image. This parameter determines the quantity (as a
%) of the pixels that will be introduced in cracks to stop diffusion. As before, parameter α was
analyzed to select the value that provides the best SNR (in the case of Discrete RDT α = 0.18
and for Continuous RDT α = 0.80.

As presented, the proposed restoration methods use information of the cost function
sensitivity to a change in the topology. This information is used to find the optimal domain
topology that, in the presence of diffusion, will eliminate noise preserving image features.
In the continuous case, we observe that this technique eliminates most of the noise but has
difficulties to remove noise in regions of elevated gradients. For the Discrete RDT , we observe
that the noise is removed from the whole image, even from the edges. This algorithm is also
capable of improving the sharpness of the edges, enhancing the image features.

In Table 1 are presented qualitative results for the Lena image. The different columns present
the PSNR, SNR, μ(e) (mean error) and σ(e) (error standard deviation) between the processed
image and the original one (i.e., without degradation). We observe similar results for the
different methods, where the best performers were the evolutive method proposed by Black
et al. with respect to PSNR (30.58dB) and SNR (30.37dB) and the one by Perona & Malik with
respect to σ(e) (6.807). The proposed methods, Discrete RDT and Continuous RDT , provide
results of similar quality to the existing methods.

The proposed methods provide an intuitive tool for image restoration based on the concept of
the TD. These methods are intended to modify the topology of the image by inserting cracks
in selected location that, in the presence of diffusion, will improve the quality of a degraded
image. The diffusion will eliminate noise while preserving edges and details in the image.
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image to preserve relevant characteristics. For the classical methods, σ was adjusted using the
technique proposed by Black et al. (1998), which allows to estimate the value of σ as a function
of the gradient of the image processed. In the case of the evolutionary methods, the number
of iterations was fixed to 10, 20 and 30. The results for 20 iterations where found to shield
the lowest SNR and, thus, these are reported. For the semi-quadratic minimization, the same
analysis was performed for parameter λ and the best SNR was obtained with λ ≈ 10 in this
case.
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RDT methods, depend on parameter α (a real value between 0 and 1), that determines the
amount of cracks to be introduced in the image. This parameter determines the quantity (as a
%) of the pixels that will be introduced in cracks to stop diffusion. As before, parameter α was
analyzed to select the value that provides the best SNR (in the case of Discrete RDT α = 0.18
and for Continuous RDT α = 0.80.

As presented, the proposed restoration methods use information of the cost function
sensitivity to a change in the topology. This information is used to find the optimal domain
topology that, in the presence of diffusion, will eliminate noise preserving image features.
In the continuous case, we observe that this technique eliminates most of the noise but has
difficulties to remove noise in regions of elevated gradients. For the Discrete RDT , we observe
that the noise is removed from the whole image, even from the edges. This algorithm is also
capable of improving the sharpness of the edges, enhancing the image features.

In Table 1 are presented qualitative results for the Lena image. The different columns present
the PSNR, SNR, μ(e) (mean error) and σ(e) (error standard deviation) between the processed
image and the original one (i.e., without degradation). We observe similar results for the
different methods, where the best performers were the evolutive method proposed by Black
et al. with respect to PSNR (30.58dB) and SNR (30.37dB) and the one by Perona & Malik with
respect to σ(e) (6.807). The proposed methods, Discrete RDT and Continuous RDT , provide
results of similar quality to the existing methods.

The proposed methods provide an intuitive tool for image restoration based on the concept of
the TD. These methods are intended to modify the topology of the image by inserting cracks
in selected location that, in the presence of diffusion, will improve the quality of a degraded
image. The diffusion will eliminate noise while preserving edges and details in the image.
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PSNR (dB) SNR (dB) μ(e) σ(e)
Degraded image 26.88 26.67 0.6005 11.535
Perona & Malik 30.36 30.15 1.1013 6.8077
Black et al. 30.58 30.37 1.1003 7.1221
Selective smoothing 29.68 29.27 1.0106 8.0220
Semi-quadratic minimization 30.15 30.04 1.0968 7.3185
Discrete RDT 29.98 29.73 1.1463 8.0455
Continuous RDT 29.93 29.89 1.0944 8.3446

Table 1. Comparison between the proposed and classical image restoration methods.

5. Online material

The computational implementation of these methods in Matlab is available online at Matlab
Central 2. A more complete description of the mathematical and numerical methods used in
this work can be found in the work of Larrabide (2007).
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1. Introduction

Image restoration or deconvolution of a blurred natural image is a mature research
activity with a rich set of available techniques and algorithms, well-summarised in review
articles, Banham & Katsaggelos (1997); Kundur & Hatzinakos (1996). Despite this history and
volume of work, there is current research activity motivated by the desire to find yet superior
methods to restore the ground truth image (GTI). Important performance metrics to assess the
efficacy of restoration methods include: restoration accuracy, computational complexity and
convergence speed. In this chapter we use these performance metrics in the development of
restoration methods of greatest utility for real-world applications where complexity/speed is
a major concern and the evaluation of image restoration needs to take into account the highly
structured features of natural images and, to a lesser extent, the human visual system.

The scope of this work focusses on non-blind image restoration where the point spread
function (PSF) of the blur convolutional kernel is known. Blind deconvolution is, by its
nature, a more challenging problem, Haykin (1994); Kundur & Hatzinakos (1996). However
with effective and efficient PSF estimation techniques, Fergus et al. (2006); Joshi et al. (2008);
Krahmer et al. (2006); Nayar & Ben-Ezra (2004); Oliveira et al. (2007), the research trend has
been to handling blind deconvolution in two steps, with PSF estimation as the first step and
image estimation as the second step, Levin et al. (2009). This motivates us to focus on efficient
algorithms for image restoration where the blur convolutional kernel is known.

In this chapter, we first analyze existing linear deterministic restoration models and develop a
class of novel models with better performance. Then using regularization as the basis, we link
linear deterministic and stochastic restoration models. By introducing a previously developed
novel visual metric to image regularization analysis, we study the purported superior
performance of stochastic prior models and demonstrate that those models are not superior
to simpler linear deterministic prior models. In addition, we show that the high complexity
“derivative likelihood” models under the maximum a posteriori (MAP) framework offer no
significant advantage to a properly configured, efficient “normal likelihood” model.

2. Quadratic regularization in image restoration

2.1 Regularization

Image acquisition being an inverse problem can be modeled by a continuous model in an
infinite dimensional space, which is categorized as a (linear) Fredholm integral equation of
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the first kind, Demoment (1989). In the sense of Hardamard, Hadamard (1952), a solution
to a well-posed problem satisfies the conditions of existence, uniqueness and stability. As
Fredholm integral equations of the first kind do not meet the criteria for a well-posed problem,
image restoration belongs into the general class of problems which are classified as ill-posed
problems, Tikhonov & Arsenin (1977). The ill-posed nature of image restoration problem
implies that, small bounded perturbations in the data may lead to unbounded deviations in
the solution, Phillips (1962).

For images defined on a discrete set, linear algebra can be used to find solutions for
ill-posed problems such as image restoration. One of the simplest methods to restore images
affected by a linear distortion is the use of the pseudo inverse, Albert (1972), for which the
solution fulfils the first two conditions (existence and uniqueness) of Hardamard’s well-posed
problem, Hadamard (1952), but fails in meeting the stability condition. This motivates or
leads to regularization as one of the most widely accepted and used techniques, in which
the solution fulfils all three conditions of a well-posed problem. The concept underlying
regularization is to find an acceptable solution from imperfect data, for which, the problem
should be stated more completely by including some extra or priori information, Miller (1970);
Tikhonov & Arsenin (1977).

Regularization approaches to image restoration are classified broadly in two ways: stochastic
regularization which uses the knowledge of covariance matrices of the GTI and noise; and
deterministic regularization which deems that most natural images are relatively featureless
with limited high-frequency activity, Banham & Katsaggelos (1997). While stochastic
regularization has been used extensively in the past, with important contributions to the field
such as Wiener filter, Wiener (1942), recently, much emphasis has been on the use of derivative
filters with deterministic regularization, Fergus et al. (2006); Levin et al. (2007). Thus, our
contribution in this chapter relates to deterministic regularization and the term regularization,
henceforth, refers to deterministic regularization techniques.

Among many regularization techniques, Tikhonov, Tikhonov & Arsenin (1977) regularization
is one of the first and best-known techniques for stabilization. It was proposed in Tikhonov &
Arsenin (1977), that the solution for

b = Kg + n, (1)

where b is the measured data, g is the original data (ground truth), K is the distortion
operator or the transformation and n represents additive random noise, can be achieved
by constrained minimization of a functional Φ(g), which is called the stabilizing functional.
Under the stabilizing functional approach, the image restoration problem is formulated as
determining an estimate ĝ of g, which minimizes the functional Φ(g) under the condition that
the estimate ĝ satisfies

�b −Kg�2 = δ, (2)

where δ is a positive constant and � · � denotes the Frobenius norm

�A� =

√√√√
m1

∑
i=1

m2

∑
j=1

a2
ij (3)
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for some matrix A and aij is the (i, j) entry. The constrained minimization problem in (2)
can be solved by the method of Lagrange multipliers, which is to determine ĝ, an estimate of
ground truth g, by minimizing the functional

�b −Kg�2 + λ Φ(g), (4)

where λ > 0 is the Lagrange multiplier and is often called as the regularization parameter.
As the regularization parameter, λ, controls the tradeoff between the solution accuracy �b −
Kg�2 and its degree of regularity Φ(g), choosing a proper value for λ is important in image
restoration.

The first term in (4), named as data-fidelity term fits to the data, while stabilizing functional
incorporates “believed” properties of the GTI. Generally the data-fidelity term is a standard
fixed choice. In contrast, the richness and variety of image restoration techniques comes
down to different choices of the regularization term, reflecting different implicit models. As
the choice of the stabilizing functional can take a variety of forms, in this chapter, we selected
two widely used model classes for our analysis: the fast quadratic stabilizing functionals
introduced in section 2.2, and Sparse and Laplacian prior methods in section 3.2. The latter
model class can be developed from relating the stabilizing functional to the priori knowledge
using a probabilistic viewpoint and is claimed to have better performance, Levin et al. (2007).

When the stabilizing functional Φ(g) in (4) belongs to the class of nonnegative quadratic
functionals, the minimization problem can be expressed as

ĝ = arg min
g

�b −Kg�2 + λ �Dg�2, (5)

where D is a bounded linear operator, Miller (1970) and is often called the regularization
operator or stabilizing operator. It is shown in Hunt (1973), that the minimization problem in (5)
can be formulated as a constrained least squares image restoration problem when the solution
g satisfies the necessary and sufficient condition of

(KTK+ λDTD)g = KTb. (6)

This leads to the closed form solution for (5) in the form

ĝ =
(KTK+ λ(DTD)

)−1KTb. (7)

We extend, in a trivial way, the above formulation by considering D as the combination of R
component regularization operators, in the form of

Dg �
(DT

1 ,DT
2 , . . . ,DT

R
)T g. (8)

With the introduction of R Lagrange multipliers, the general form of (5) can be expressed as

ĝ = arg min
g

�b −Kg�2 +
R

∑
r=1

λr�Drg�2, (9)

for which, the closed form solution is given by

ĝ =
(KKT +

R

∑
r=1

λr(DT
r Dr)

)−1KTb. (10)
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As the images are of limited support and when the corresponding hypothesis of uniformity
on image edges can be made, the matrices K and D in (10) have a special structure and are
called block circulant matrices, Hunt (1971). As circulant matrices can be diagonalized by the
discrete Fourier transform, the minimization in (9) can be solved extremely quickly using the
Fourier domain techniques, Hunt (1973).

2.2 Regularization operators as components in quadratic stabilizing functionals

The generality of the regularization operator allows the development of a class of linear
operators and the minimization in (9) will be the source of many regularizing solutions
for (1) depending on the choice of the regularization operator. This choice is usually based
on the known details of the image formation process and plays an important role in the
regularization.

The simplest regularization operator is when D is an identity matrix, where Dg = g, and
the regularized solution for this was referred as minimum norm restoration, Hunt & Andrews
(1977). In general, D often takes the form of a sparsifying operator such as a discrete
approximation of a derivative operator. Through the experiments in Zhu & Mumford (1997),
it was shown that even though the statistics of natural images vary from image to image, the
histograms for the response of derivative filters are relatively consistent and scale invariant
across the images. Taking these factors into consideration, in this section, we discuss a class
of regularization operators based on the partial derivative operators (PDO), which could be
used in the quadratic stabilizing functional.

2.2.1 First order partial derivative operator

When first order partial derivative operators (FOPDO) are considered as the regularization
operators, Dg in (8) can be expressed as

Dg =

(
∂x
∂y

)
g,

where ∂x and ∂y are any discrete space, spatially invariant linear operators that emulate
first order derivative in x and y directions, respectively, Levin et al. (2007). This type of
regularization uses two component regularization operators.

2.2.2 Second order partial derivative operator

Second order partial derivative operators (SOPDO), can be derived mainly in two forms.

1. Isotropic SOPDO – When the regularization operator takes the form

Dg =

(
∂xx
∂yy

)
g,

it is called the isotropic SOPDO. Though the SOPDO defined above cannot be considered
as a true isotropic differential operator, such as the continuous Laplacian operator, it gives
the simplest possible isotropic operator with even-order derivatives, Leung & Lu (1995).
Similar to FOPDO, ∂xx and ∂yy represent any discrete space, spatially invariant linear
operators that emulate second order derivatives.
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2. Non-isotropic SOPDO – The non-isotropic SOPDO is formed by

Dg =

⎛
⎝

∂xx
∂xy
∂yy

⎞
⎠ g.

As the edges and lines in images may occur in any direction, when the differential operator
is isotropic it would give better results than a non-isotropic differential operator, Leung & Lu
(1995).

2.2.3 Mixed partial derivative operator

In general, considering only even-order derivatives, the use of directional derivatives in more
than one dimensional can be expressed as

Dg =
�
∂

p
sp

1
, ∂

p
sp

2
, . . . , ∂

p
sp

m

�
g. (11)

where p is the order of the derivatives, m is the number of dimensions and s1 to sm represent
the direction of the derivatives.

Using the above general model, we introduce a new regularization operator, with different
combinations of higher order derivative operators. In this discussion, we limit the use of
higher order derivative operators up to the second order, and the new PDO is called first and
second order derivative operator (FSOPDO). With FSOPDO, Dg in (11) takes the form

Dg =

⎛
⎜⎜⎝

∂x
∂y
∂xx
∂yy

⎞
⎟⎟⎠ g.

These quadratic regularization functionals are compared in a new perspective with the widely
used prior models which are believed to result in better performance in section 3.5.

2.3 Non-blind image restoration through SOPDO

2.3.1 Noisy image deconvolution

Although most previous image restoration algorithms have considered FOPDO as the
regularization model, Levin et al. (2007), we claim that SOPDO has better performance in
terms of the difference between the ground truth and the estimated data on images which
are susceptible to noise. Here, we deal only with additive Gaussian noise, as it effectively
models the noise in many different imaging scenarios. In this section, we study in detail a few
simulation results which are used to do comparison evaluations with other existing image
restoration techniques.

We take non-isotropic SOPDO as the regularization operator for image restoration through
least squares restoration as given in section 2.2. In order to compare the performance of
the non-isotropic SOPDO prior model, we take two regularization models, FOPDO and
a sparse stabilizing functional defined in Levin et al. (2007). Relating regularization to
probability, the stabilizing functional in image restoration is also referred as prior model and
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Smoo- Non-isotropic SOPDO FOPDO Sparse
thing MSE Time MSE Time Itera- MSE Time

weight ×10−4 in seconds ×10−4 in seconds tions ×10−4 in seconds
0.1 4.978 0.43 5.168 0.44 10 8.050 27

0.05
4.646 0.42 4.730 0.44 10 6.899 27

50 6.153 117
100 6.128 231

0.01 6.043 0.42 7.561 0.44 10 4.289 27

Table 1. Comparison of stabilizing functional model.

a detailed discussion of the Bayesian interpretation to regularization, including the Sparse
prior model, is covered in section 3.2. The deconvolution with non-isotropic SOPDO and
FOPDO regularization lead to closed form solutions with highly efficient computation, while
the Sparse prior cannot be minimized in closed form, Levin et al. (2007). In all the simulations
discussed in this section we use

λr = λ, ∀ r ∈ 1 . . . R, (12)

for the quadratic regularization functionals, where the value of R depends on the respective
model such as R = 2 for FOPDO and R = 3 for non-isotropic SOPDO model.

We claim, using non-isotropic SOPDO prior gives better results for images which
are susceptible to noise over the FOPDO. When comparing the non-isotropic SOPDO
regularization with the Sparse prior, we found that the non-isotropic SOPDO regularization
outperforms Sparse prior significantly in speed. These results are shown in Table 1.

For the experiment in Table 1, we added “Gaussian” noise to the original “Picasso”
image, Shan et al. (2008) with a standard deviation of 0.0001 (relative to the image value range
of 0 to 1). The original colored image was first converted to greyscale with the pixel values
resulting in the range from 0 to 1 and the original image was considered to be periodic. The
term MSE stands for mean square error and for a two dimensional image, MSE is defined as

MSE � 1
L1L2

L1

∑
�1=1

L2

∑
�2=1

(
g(�1, �2)− ĝ(�1, �2)

)2 (13)

where g and ĝ represent GTI and the estimated GTI, respectively while L1 and L2 represent
the size of the image in x and y directions, respectively. The MSE values in Table 1 are in
multiples of 10−4 while the time is given in seconds. The results show that the non-isotropic
SOPDO outperforms FOPDO on MSE and has a significant advantage over Sparse prior on
speed performance.

2.3.2 Efficiency in deconvolution

As SOPDO can use frequency domain deconvolution techniques, it can be implemented
highly efficiently than most of the recent non-blind deblurring techniques. The comparison
was done with the Sparse deconvolution algorithm in Levin et al. (2007) named as “Levin
Sparse deconvolution” and the non blind deconvolution of, Shan et al. (2008) (distributed
online) named as “Shan executable”. The results in Table 2 support the claim that
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Restoration Technique Efficiency in seconds
Levin Sparse deconvolution (50 iterations) 556
Levin Sparse deconvolution (10 iterations) 124
Shan executable 39
Non-isotropic SOPDO deconvolution 2

Table 2. Efficiency in non-blind image deconvolution

Restoration Image size Kernel size Efficiency
Technique in pixels in pixels in seconds

Levin Sparse deconv. 484 × 752
19 × 27 576

(50 iterations)
99 × 99 556

910 × 903 99 × 99 1240
1107 × 1694 99 × 99 2429

Shan executable
484 × 752

19 × 27 40
99 × 99 73

910 × 903 99 × 99 166
1107 × 1694 99 × 99 Error

Non-isotropic SOPDO 484 × 752
19 × 27 2.34

regularization
99 × 99 2.44

910 × 903 99 × 99 5.54
1107 × 1694 99 × 99 13.17

Table 3. Efficiency results on scaling

non-isotropic SOPDO regularization model results in the best speed performance when
compared with “Levin Sparse deconvolution” and “Shan executable” methods.

Further, we tested for the robustness of non-isotropic SOPDO regularization by using different
sized images with varying sized kernels. The detailed results are shown in Table 3. All the
images used for this experiment are color images, having separate rgb (red, green, blue)
channels. The image and kernel sizes are given in pixels and the efficiency was measured
in seconds. The results clearly show the robustness and the efficiency of the non-isotropic
SOPDO regularization model with respect to different scales of image and kernel.

2.3.3 Performance in deconvolution

Several computational experiments were carried out in order to compare non-isotropic
SOPDO regularization with “Levin Sparse deconvolution” and “Shan executable”. The
performance of these deconvolution techniques on a naturally blurred, highly textured image,
given in Shan et al. (2008), are shown in Fig. 1 and Fig. 2. The blur kernel used in this
experiment was retrieved through the blind deconvolution package of, Shan et al. (2008)
distributed online. Closer visual inspection of the image results show that non-isotropic
SOPDO technique best shows the tree branches and leaves while the other techniques have
a blurring effect still remaining on the estimated result. This fact is further discussed and
evidenced by evaluating the deconvolution in a new perspective in section 3.5.
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(a) 27 × 27 Blur Kernel scaled upwards (b) Blurred Image

Fig. 1. Image results for a highly textured image

3. Comparison of sparse prior models to quadratic regularization

3.1 Key issues

While the development of regularized solutions for ill-posed problems is widely discussed in
the signal processing literature, recently by looking at the ill-posed image restoration problem
from a probabilistic view point, some researchers claim that the Sparse prior model, Fergus
et al. (2006); Levin et al. (2007) (discussed in more detail below in section 3.2.1) outperforms
quadratic regularization models (discussed in section 2.2). The analytical study in this section
addresses the following problems:

1. Are sparse prior models superior to quadratic regularization models?
2. What is the source of better performance of sparse prior models?
3. Are fast quadratic regularization models good enough for image restoration?

3.2 Regularization – Bayesian interpretation

Inverse problems such as image restoration are seen as probabilistic inference problems,
where lack of information is compensated by assumptions. Therefore, it is not surprising,
when the nature of the regularization detailed above is taken into consideration, to see that
there is a close relationship between regularization and Bayesian estimation. Applying Bayes
theorem to the image restoration problem in (1), for a known blur kernel, the posterior
distribution can be written as

p(g|b) ∝ p(b|g) p(g), (14)

where p(b|g) represents the likelihood and p(g) represents the prior for the ground truth
image. The estimation of the GTI based on posterior distribution can be classified in several
ways. The minimum mean-square error estimate represents the mean of the posterior density,
the MAP estimate stands for the mode of the posterior density while the maximum likelihood

126 Image Restoration – Recent Advances and Applications Regularized Image Restoration 9

(a) Shan executable (b) Levin Sparse deconvolution –
10 iterations

(c) Levin Sparse deconvolution –
50 iterations

(d) non-isotropic SOPDO
regularization

Fig. 2. Image results for a highly textured image

(ML) estimate may be viewed as a special case of MAP where no prior distribution is
used, Hunt (1977).

Under the MAP technique, estimation of the GTI simplifies to

ĝ = arg max
g

p(g|b). (15)

Considering the non-blind image deconvolution process, we convert (15) to an energy
minimization problem, where the energy is defined as

E(g) � − log
(

p(g|b)). (16)

Different likelihood and prior models on the ground truth have been applied for image
restoration in literature. An analysis of existing prior models can be found in Mignotte (2006).

127Regularized Image Restoration



8 Will-be-set-by-IN-TECH

(a) 27 × 27 Blur Kernel scaled upwards (b) Blurred Image

Fig. 1. Image results for a highly textured image

3. Comparison of sparse prior models to quadratic regularization

3.1 Key issues

While the development of regularized solutions for ill-posed problems is widely discussed in
the signal processing literature, recently by looking at the ill-posed image restoration problem
from a probabilistic view point, some researchers claim that the Sparse prior model, Fergus
et al. (2006); Levin et al. (2007) (discussed in more detail below in section 3.2.1) outperforms
quadratic regularization models (discussed in section 2.2). The analytical study in this section
addresses the following problems:

1. Are sparse prior models superior to quadratic regularization models?
2. What is the source of better performance of sparse prior models?
3. Are fast quadratic regularization models good enough for image restoration?

3.2 Regularization – Bayesian interpretation

Inverse problems such as image restoration are seen as probabilistic inference problems,
where lack of information is compensated by assumptions. Therefore, it is not surprising,
when the nature of the regularization detailed above is taken into consideration, to see that
there is a close relationship between regularization and Bayesian estimation. Applying Bayes
theorem to the image restoration problem in (1), for a known blur kernel, the posterior
distribution can be written as

p(g|b) ∝ p(b|g) p(g), (14)

where p(b|g) represents the likelihood and p(g) represents the prior for the ground truth
image. The estimation of the GTI based on posterior distribution can be classified in several
ways. The minimum mean-square error estimate represents the mean of the posterior density,
the MAP estimate stands for the mode of the posterior density while the maximum likelihood

126 Image Restoration – Recent Advances and Applications Regularized Image Restoration 9

(a) Shan executable (b) Levin Sparse deconvolution –
10 iterations

(c) Levin Sparse deconvolution –
50 iterations

(d) non-isotropic SOPDO
regularization

Fig. 2. Image results for a highly textured image

(ML) estimate may be viewed as a special case of MAP where no prior distribution is
used, Hunt (1977).

Under the MAP technique, estimation of the GTI simplifies to
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Considering the fact that for a given g, the variation in b is due to the noise n, Hunt (1977),
together with the above definitions, non-blind image restoration problem can be recast as
seeking the unknown GTI, g(i, j), that minimizes the functional

∥∥b −Kg
∥∥2

+
R

∑
r=1

∑
ij

λr ρ
(Drg(i, j)

)
, (17)

where Dr is the rth of R linear operators, i, j are pixel indices, λr > 0 are the regularization
parameters,

∥∥ · ∥∥ stands for the Frobenius norm and ρ(·) is a scalar memoryless nonlinear
mapping, generally taking the form

ρ(z) � |z|α (18)

for judicious choice of real parameter α (not necessarily integer).

Many techniques belong to this class and differ only in: the set of linear operators Dr, r =
1, 2, . . . , R, and the nonlinear mapping ρ(z) (or choice of α). Numerous image restoration
techniques have been developed under this framework from the early work, Geman & Geman
(1984); Greig et al. (1989) to the most recent research, Fergus et al. (2006); Levin et al. (2007;
2009); Shan et al. (2008).

3.2.1 Sparse prior model

In recent literature, it is shown that, when derivative filters are applied to natural images,
the filter outputs tend to be sparse, Olshausen et al. (1996); Simoncelli (1997). That is, the
histogram of the derivative filtered image peaks at zero and falls off much faster than a
Gaussian distribution. These heavy tailed natural image priors are used in a number of
applications in image processing literature, such as denoising, Roth & Black (2005); Simoncelli
(1999), reflection separation, Levin & Weiss (2007); Weiss (2001) and deconvolution, Levin
(2007); Shan et al. (2008) in which, they are implemented in various ways such as student-t
distributions, Roth & Black (2005) and scale mixtures of Gaussian distributions, Fergus et al.
(2006); Portilla et al. (2003).

In Levin et al. (2007), sparsity is incorporated by having Dr as the derivative filters and α = 0.8
in (18) as the prior term, which results in

∥∥b −Kg
∥∥2

+
R

∑
r=1

∑
ij

λr
(Drg(i, j)

)0.8. (19)

This can be solved in the spatial domain using the Conjugate Gradient algorithm, Barrett et al.
(1994).

3.2.2 Laplacian prior model

Although not as close as the Sparse prior to the natural image priors, Laplacian prior with
α = 1 in (18) is expected to result in a less smooth solution than the Gaussian prior. With the
Laplacian prior, the optimization becomes

∥∥b −Kg
∥∥2

+
R

∑
r=1

λr�Drg�1. (20)

128 Image Restoration – Recent Advances and Applications Regularized Image Restoration 11

Recently, much attention has been paid in solving L1 norm regularization problems through
compressed sensing. in Kim et al. (2007), an efficient method for optimizing a solution to a
problem similar to (20) was discussed when Dr are invertible.

3.2.3 Gaussian prior model

When α = 2, minimization in (17) is called the Gaussian prior deconvolution in Levin et al.
(2007) and is equivalent to the quadratic regularization problem in (9). Thus, in this chapter,
we use the terms Gaussian prior and quadratic (specifically isotropic SOPDO) regularization
interchangeably.

3.3 Image restoration evaluation

3.3.1 Visual metric for evaluation

For all the restoration performance analysis and comparisons in this paper, we use a recently
developed visual metric called SSIM (Structured SIMilarity) index, Wang et al. (2004), which
has not been used for the comparison of prior models in the image restoration literature to
date. The approach of SSIM is motivated by the highly structured characteristics of the natural
image, where the strong neighborhood dependencies carry important information about the
structures of the objects in the visual scene, Wang & Bovik (2009).

Assuming x and y are local image patches representing the same patch in the original and
estimated images, the local SSIM index measures the similarities of three elements of the
image patches: the similarity �(x, y) of the local patch luminances (brightness values), the
similarity c(x, y) of the local patch contrasts, and the similarity s(x, y) of the local patch
structures. These local similarities are expressed using simple, easily computed statistics, and
combined together to form local SSIM, S(x, y), Wang & Bovik (2009).

S(x, y) = �(x, y) · c(x, y) · s(x, y)

=
( 2μxμy + C1

μ2
x + μ2

y + C1

) · ( 2σxσy + C2

σ2
x + σ2

y + C2

) · ( σxy + C3

σxσy + C3

)
, (21)

where μx and μy are the local sample means of x and y, respectively, σx and σy are the local
sample standard deviations of x and y, respectively, and σxy is the sample cross correlation of
x and y after removing their means. The items C1, C2, and C3 are small positive constants that
stabilize each term, so that near zero sample means, variances or correlations do not lead to
numerical instability.

Due to the fact that the underlying principle of SSIM is to extract the structural information
which complies with the human visual system, SSIM maps are asserted to be a better signal
fidelity measurement over MSE, Wang & Bovik (2009). In evaluating images through MSE,
all image pixels are treated equally and content dependent variations in image fidelity are
not accounted for. The two main indicators in SSIM evaluations, mean SSIM (MSSIM) and
SSIM maps have values in the range from 0 to 1, where 1 indicates the best restoration.
Although MSSIM and SSIM maps are generally used as visual fidelity metrics, we evaluate
image restoration with the histogram of the SSIM map, as it provides an accurate view of the
local restoration.
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g K b L ĝ

Fig. 3. Image restoration model, where g is the ground truth image, b is the distorted image,
K is the blur operator, L is the deblur process and ĝ is the estimated image.

Model artifacts Process artifacts

g K + b L + ĝ

Fig. 4. Simulated image restoration model.

3.3.2 Image restoration models

Ignoring the presence of noise in image acquisition represented by (1), general image
restoration could be represented by the model shown in Fig. 3, where L represents the deblur
process. The notation in (1) and the representation in Fig. 3 may be an over-simplification.
From physical intuition, we could see that even though g is continuous by nature, image
recording imposes limitations on the spatial extent of g and b, leading to artifacts which impact
on the final estimate of image restoration.

As illustrated in Fig. 4, we categorize these spatial artifacts in two ways. The “Model
artifacts” are those, which are not present on naturally blurred images, but introduced in
blur simulations as a result of sharp intensity transitions at the boundary of a finite image.
Generating a blur image from a finite GTI causes unnatural blur distortions in the vicinity of
the boundary of the image. Suppression of these “Model artifacts” could be accomplished by
preprocessing the observed degraded image with techniques such as truncation and reducing
the size of the blurred image. On the other hand, “Process artifacts” come along with
the deblur process L due to finite b, which affect the performance of most deconvolution
algorithms.

In order to show the effect of “Process artifacts”, we restore an image, originally, of size
255 × 255 pixels, but truncated in order to remove the “Model artifacts” introduced by
a 13 × 13 pixels blur kernel, making the final image of size 242 × 242. The results of
restoration with Sparse, Laplacian and Gaussian priors are shown in Fig. 5. In this experiment,
deconvolution with Sparse and Laplacian priors were carried out using iterative re-weighted
least squares (IRLS) method, Meer (2004), through the code available online, Levin et al.
(2007), while the Gaussian prior is processed with both IRLS and fast Fourier techniques (FFT)
separately. In our simulations, we processed IRLS for 150 iterations beyond which there were
no further improvements. Analyzing the results of the performance of the Gaussian prior
model with the FFT and IRLS techniques, we see that process artifacts are better handled by
the IRLS technique than the FFT and this result is justified by the IRLS processing of Sparse
and Laplacian prior models.

Both the “Model” and “Process” artifacts discussed above are not part of natural images, but
are imposed artificially by the image modeling and processing techniques. Thus we claim that
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Fig. 5. Image restoration results with prior models.

Regularization operator r λr

FOPDO 1, 2 β1

SOPDO 3, 4 β2

FSOPDO
1, 2 β1

3, 4 β2

Table 4. Choice of regularization parameter (λ) values for different quadratic regularization
operators used in the simulations of Table 5

the evaluation of image restoration should be carried out excluding these artifacts to properly
assess the performance of any image restoration method.

3.4 Performance of quadratic regularization operators

In order to achieve the objective of studying the performance of different operators in the
quadratic regularization as detailed in section 2.2, we carried out some simulations, where
we avoided the effect of “Model artifacts” by taking a boundary strip off from the blurred
image. In our evaluations, we used FOPDO, SOPDO and FSOPDO models to compare the
performance. From this point onwards the term SOPDO refers to isotropic-SOPDO unless
stated otherwise.

The simulations, for which the results are demonstrated in Fig. 6, are executed in the
same environment as the simulation for Fig. 5, but with quadratic regularization models.
We evaluated the performance of the regularization models under varying regularization
parameter (λ) values as discussed in section 2.2. While the choice of parameters representing
λ for FOPDO, SOPDO and FSOPDO are given in Table 4, the actual values for the respective
parameters are given in Table 5.

While the overall SSIM values for few of the simulation results under varying λ values are
shown in Table 5, the histogram distribution representing the first line of Table 5 is shown
in Fig. 7. Overall, by analyzing these results, we claim that, in the presence of “Process
artifacts”, a better performance could be achieved with FSOPDO over FOPDO and SOPDO
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g K b L ĝ

Fig. 3. Image restoration model, where g is the ground truth image, b is the distorted image,
K is the blur operator, L is the deblur process and ĝ is the estimated image.

Model artifacts Process artifacts

g K + b L + ĝ

Fig. 4. Simulated image restoration model.

3.3.2 Image restoration models

Ignoring the presence of noise in image acquisition represented by (1), general image
restoration could be represented by the model shown in Fig. 3, where L represents the deblur
process. The notation in (1) and the representation in Fig. 3 may be an over-simplification.
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on the final estimate of image restoration.
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blur simulations as a result of sharp intensity transitions at the boundary of a finite image.
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the boundary of the image. Suppression of these “Model artifacts” could be accomplished by
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the deblur process L due to finite b, which affect the performance of most deconvolution
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Both the “Model” and “Process” artifacts discussed above are not part of natural images, but
are imposed artificially by the image modeling and processing techniques. Thus we claim that
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Fig. 5. Image restoration results with prior models.
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FSOPDO
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Table 4. Choice of regularization parameter (λ) values for different quadratic regularization
operators used in the simulations of Table 5

the evaluation of image restoration should be carried out excluding these artifacts to properly
assess the performance of any image restoration method.

3.4 Performance of quadratic regularization operators

In order to achieve the objective of studying the performance of different operators in the
quadratic regularization as detailed in section 2.2, we carried out some simulations, where
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performance. From this point onwards the term SOPDO refers to isotropic-SOPDO unless
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We evaluated the performance of the regularization models under varying regularization
parameter (λ) values as discussed in section 2.2. While the choice of parameters representing
λ for FOPDO, SOPDO and FSOPDO are given in Table 4, the actual values for the respective
parameters are given in Table 5.

While the overall SSIM values for few of the simulation results under varying λ values are
shown in Table 5, the histogram distribution representing the first line of Table 5 is shown
in Fig. 7. Overall, by analyzing these results, we claim that, in the presence of “Process
artifacts”, a better performance could be achieved with FSOPDO over FOPDO and SOPDO
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Regularization parameter FOPDO SOPDO FSOPDO

β1 = β2 = 0.001 0.9412 0.9597 0.9626
β1 = 0.001, β2 = 0.003 0.9596 0.9597 0.9657
β1 = 0.003, β2 = 0.001 0.9412 0.9674 0.968

Table 5. Performance of quadratic regularization operators under varying regularization
parameter values
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Fig. 7. Image restoration results for simulations in Table 5

models. In the next section we compare the performance of these quadratic regularization
models by removing the “Process” and “Model” artifacts.

3.5 Regularization model performance comparison

As shown earlier in section 2.2, we modeled the regularization of image restoration based
on the quadratic regularization terms (sometimes called as the least squares regularization)
and in section 3.2, we discussed the existing probabilistic models under a MAP framework.
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g K b L z PM (z) ĝ

Fig. 8. Image restoration model for a naturally blurred image, where K is the blur process, L
is the deblur process, g, b, z, ĝ stand for GTI, blur image, deblurred image with artifacts, and
the final estimated GTI respectively. The process PM(z) decouples “Model” and “Process”
artifacts from the deblurred image .

These models form a method of regularization in image restoration. This section is devoted
for the comparison of these models. The comparison in this section will guide us for making
recommendations for the appropriate regularization technique and is discussed at the end of
this section.

3.5.1 SSIM performance comparison

As the objective of our simulations is to evaluate the contribution of the regularization models
towards image restoration, we use the restoration model shown in Fig. 8, where we decouple
artifact effects from restoration by projecting the estimated image with

PM(z)(i, j) =

{
z(i, j), if i, j ∈ M
0, otherwise

(22)

where M is a region without “Model” and “Process” artifacts.

To be consistent with the SSIM map region in Fig. 5, we take a large image of support
1024 × 1024 and project the final image to a 242 × 242 region within the inner region of the
estimated image, which is least affected by the artifacts. The restoration was carried out with
FFT processing of the Gaussian prior and IRLS processing of Sparse and Laplacian priors. The
comparison of the performance of the priors is shown in Fig. 9. In it we note that Gaussian
prior with FFT processing has performed as well as or better to the Sparse and Laplacian prior
models.

As the literature claims that iterative algorithms such as conjugate gradient algorithms
suppress noise and perform better in noisy blur image restoration, we simulated a
noisy blurred restoration under the same conditions given for Fig. 9, but with different
regularization parameter values, as more weight should now be given to the prior over data.
The noise added was Gaussian with zero mean and 0.01 variance. The optimal results we
obtained for varying λ are shown in Fig. 10. With these results, we claim that Gaussian prior
handles noisy images as better as the Sparse and Laplacian prior models.

Thus, these results pave a new path of thinking and we claim that quadratic regularization
with SOPDO model, when appropriately configured and used in a realistic context, free
from unnatural artifacts, is comparable to Sparse prior model in terms of image restoration
performance under the SSIM criterion.

3.5.2 Efficiency comparison

As the optimization problem in least-squares regularization is convex and as the fast Fourier
techniques could be applied for the computation, for an image of size L × L pixels, the
restoration through least-squares regulation has a complexity of O(L log L) operations. In
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and in section 3.2, we discussed the existing probabilistic models under a MAP framework.

132 Image Restoration – Recent Advances and Applications Regularized Image Restoration 15

g K b L z PM (z) ĝ
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the final estimated GTI respectively. The process PM(z) decouples “Model” and “Process”
artifacts from the deblurred image .

These models form a method of regularization in image restoration. This section is devoted
for the comparison of these models. The comparison in this section will guide us for making
recommendations for the appropriate regularization technique and is discussed at the end of
this section.

3.5.1 SSIM performance comparison

As the objective of our simulations is to evaluate the contribution of the regularization models
towards image restoration, we use the restoration model shown in Fig. 8, where we decouple
artifact effects from restoration by projecting the estimated image with

PM(z)(i, j) =

{
z(i, j), if i, j ∈ M
0, otherwise

(22)

where M is a region without “Model” and “Process” artifacts.

To be consistent with the SSIM map region in Fig. 5, we take a large image of support
1024 × 1024 and project the final image to a 242 × 242 region within the inner region of the
estimated image, which is least affected by the artifacts. The restoration was carried out with
FFT processing of the Gaussian prior and IRLS processing of Sparse and Laplacian priors. The
comparison of the performance of the priors is shown in Fig. 9. In it we note that Gaussian
prior with FFT processing has performed as well as or better to the Sparse and Laplacian prior
models.

As the literature claims that iterative algorithms such as conjugate gradient algorithms
suppress noise and perform better in noisy blur image restoration, we simulated a
noisy blurred restoration under the same conditions given for Fig. 9, but with different
regularization parameter values, as more weight should now be given to the prior over data.
The noise added was Gaussian with zero mean and 0.01 variance. The optimal results we
obtained for varying λ are shown in Fig. 10. With these results, we claim that Gaussian prior
handles noisy images as better as the Sparse and Laplacian prior models.

Thus, these results pave a new path of thinking and we claim that quadratic regularization
with SOPDO model, when appropriately configured and used in a realistic context, free
from unnatural artifacts, is comparable to Sparse prior model in terms of image restoration
performance under the SSIM criterion.

3.5.2 Efficiency comparison

As the optimization problem in least-squares regularization is convex and as the fast Fourier
techniques could be applied for the computation, for an image of size L × L pixels, the
restoration through least-squares regulation has a complexity of O(L log L) operations. In

133Regularized Image Restoration



16 Will-be-set-by-IN-TECH

0.94 0.95 0.96 0.97 0.98 0.99 1
0

2

4

6

8

10

12

SSIM map values

Lo
g 

di
st

rib
ut

io
n

Sparse prior model
Laplacian prior model
Gaussian prior model − FFT processing

Fig. 9. Image restoration results for the system in Fig. 8 with FFT processing of Gaussian
Prior and IRLS processing of Sparse and Laplacian prior models.
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Fig. 10. Image restoration results for a noisy image under the same environment in Fig. 9.

contrast, when a Sparse prior is used, the optimization problem is no longer convex and
cannot be minimized in closed form. Using the conjugate gradient method, Barrett et al.
(1994), or IRLS method, the optimization can be solved in O(L imax) where imax represent
the maximum number of iterations.

A few simulation results on efficiency are shown in Table 6, where all the values are in seconds
and represent the time taken for the restoration using each of the respective model. While the
quadratic regularization deconvolution was carried out using Fourier domain techniques, the
Sparse deconvolution was carried out using the IRLS method. Under the IRLS algorithm, it is
experienced that in order to achieve an acceptable result, the number of iterations should be
at least 50 and better results could be achieved when the number of iterations are above 100.
From the results shown, it is evident that when the size of the image increases, the relative
efficiency of the restoration through Sparse prior model becomes extremely low.
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Image size Time for Quadratic Time for Sparse prior
in pixels regularization with FFT 50 iterations 100 iterations

grey-scale 255 × 255 0.08 30 60
grey-scale 1024 × 1024 1.1 303 596

colored 484 × 752 1.7 371 730
colored 1107 × 1694 9.0 2180 4292

Table 6. Efficiency of regularization operators. The times taken for restoration of grey-scale
and colored images are given in seconds for each of the regularization operators.

3.5.3 Regularization recommendations

In addition to lower efficiency and not-superior performance, Sparse prior models lack in
proper theoretical guidelines for selecting the best regularization parameter. In contrast,
the quadratic regularization models can use well-established methods such as L-curve
criterion, Hansen (1998) and the Generalized Cross Validation criterion, Hansen (1998) for
choosing the value of λ. Difficulties in selecting the optimal converging point in non-convex
minimization techniques such as IRLS also is an issue.

According to the theoretical and experimental details provided above, we propose that
if we could decouple image restoration and “Process artifact” handling, then the use of
quadratic regularization models will result in more efficient and effective image restoration
in comparison to Sparse and Laplacian prior models. The decoupling of image restoration
and “Process” artifact handling could be achieved through techniques such as tiling, Liu & Jia
(2008), which enables the uses of the efficient least squares regularization.

Thus, coming back to our problem formulation in section 3.1, we claim that:

1. Sparse prior models are not superior to quadratic regularization models in terms of
performance in image restoration.

2. In terms of efficiency, Sparse prior models are significantly inferior to quadratic
regularization models.

3. The performance through Sparse prior model increases over quadratic regularization
models when boundary effects are not addressed and processing artifacts are not
compensated for.

4. Quadratic regularization models provide the best image restoration for large images in
terms of efficiency and effectiveness while they provide a good enough solution for other
images when the boundary artifacts are taken care of.

Analyzing the above items further, if the improvements of the Sparse prior model are in
artifact handling, not in image restoration, we can pose the following questions.

“Do more complicated prior models such as Sparse, which are asserted be better matched
to natural images, actually help image restoration in terms of restoring natural image
features?”

“If those complicated prior models hold no significant advantage, is it worth the effort spend
on them compared to simple and efficient prior models which restore closer or better than
those prior models?”
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contrast, when a Sparse prior is used, the optimization problem is no longer convex and
cannot be minimized in closed form. Using the conjugate gradient method, Barrett et al.
(1994), or IRLS method, the optimization can be solved in O(L imax) where imax represent
the maximum number of iterations.

A few simulation results on efficiency are shown in Table 6, where all the values are in seconds
and represent the time taken for the restoration using each of the respective model. While the
quadratic regularization deconvolution was carried out using Fourier domain techniques, the
Sparse deconvolution was carried out using the IRLS method. Under the IRLS algorithm, it is
experienced that in order to achieve an acceptable result, the number of iterations should be
at least 50 and better results could be achieved when the number of iterations are above 100.
From the results shown, it is evident that when the size of the image increases, the relative
efficiency of the restoration through Sparse prior model becomes extremely low.
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and colored images are given in seconds for each of the regularization operators.
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In addition to lower efficiency and not-superior performance, Sparse prior models lack in
proper theoretical guidelines for selecting the best regularization parameter. In contrast,
the quadratic regularization models can use well-established methods such as L-curve
criterion, Hansen (1998) and the Generalized Cross Validation criterion, Hansen (1998) for
choosing the value of λ. Difficulties in selecting the optimal converging point in non-convex
minimization techniques such as IRLS also is an issue.

According to the theoretical and experimental details provided above, we propose that
if we could decouple image restoration and “Process artifact” handling, then the use of
quadratic regularization models will result in more efficient and effective image restoration
in comparison to Sparse and Laplacian prior models. The decoupling of image restoration
and “Process” artifact handling could be achieved through techniques such as tiling, Liu & Jia
(2008), which enables the uses of the efficient least squares regularization.

Thus, coming back to our problem formulation in section 3.1, we claim that:

1. Sparse prior models are not superior to quadratic regularization models in terms of
performance in image restoration.

2. In terms of efficiency, Sparse prior models are significantly inferior to quadratic
regularization models.

3. The performance through Sparse prior model increases over quadratic regularization
models when boundary effects are not addressed and processing artifacts are not
compensated for.

4. Quadratic regularization models provide the best image restoration for large images in
terms of efficiency and effectiveness while they provide a good enough solution for other
images when the boundary artifacts are taken care of.

Analyzing the above items further, if the improvements of the Sparse prior model are in
artifact handling, not in image restoration, we can pose the following questions.

“Do more complicated prior models such as Sparse, which are asserted be better matched
to natural images, actually help image restoration in terms of restoring natural image
features?”

“If those complicated prior models hold no significant advantage, is it worth the effort spend
on them compared to simple and efficient prior models which restore closer or better than
those prior models?”
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4. Likelihood model analysis

Different likelihood models in the prior model in (14) have been studied in various ways. The
fact that most of these models are not justified with proper theoretical foundations encouraged
us to analyze and understand the variations and the validity and accuracy of the (implicit)
underlying assumptions, which could explain the different performances.

This investigation guides our development of a new scheme for the multiple image likelihood
model described in section 4.1.2. The likelihood model analysis is carried out using this new
model and the theoretical analysis is corroborated by the computational experiments detailed
in section 4.3.

4.1 Likelihood models in image restoration

4.1.1 Likelihood model for a single image

In image restoration literature, the likelihood for a single image is defined by modeling the
image noise (n) as a set of independently and identically distributed (i.i.d.) random variables
following a Gaussian distribution for all pixels, which is given by

p(b|g) =
L1

∏
�1=1

L2

∏
�2=1

N
(
n(�1, �2)|0, σ

)
, (23)

where N(·|μ, σ) denotes a Gaussian distribution with mean μ and variance σ2, while L1 and
L2 represent the image support.

4.1.2 Likelihood model for multiple images

Based on the above likelihood model for a single image, we develop a new model for the
likelihood of multiple images as detailed below.

Given a set of R degraded images of a common GTI g, the posterior distribution for the GTI
can be derived by extending (14), resulting in

p(g|b1, b2, . . . , bR) ∝ p(b1, b2, . . . , bR|g) p(g), (24)

where, generalizing (1),

br = Krg + nr, r = 1, 2, 3, . . . , R (25)

and Kr are operators representing possibly different but known blurs, and nr are noise images.
Under the assumption that np is independent of nq for all p �= q, the likelihood in (24) is

p(b1, b2, . . . , bR|g) =
R

∏
r=1

N(nr). (26)

Thus, for a group of R images satisfying the noise independency condition in (26), the
likelihood can be modeled as

p(b1, b2, . . . , bR|g) =
R

∏
r=1

L1

∏
�1=1

L2

∏
�2=1

N
(
nr(�1, �2)|0, σr

)
, (27)

where σr represent the standard deviation of the Gaussian distribution for nr. This new model
for the likelihood of multiple images will be used for the analysis of likelihood models in the
next section.
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r ∂r ∂rn ω(∂r)

1 ∂1 ∂xn 1
2 ∂2 ∂yn 1
3 ∂3 ∂xxn 2
4 ∂4 ∂xyn 2
5 ∂5 ∂yyn 2

Table 7. An example of set Θ in (30) with R = 5

4.1.3 Likelihood models for analysis

Out of the various likelihood models introduced in the literature of image restoration, we
consider two recent approaches in Levin et al. (2007) and, Shan et al. (2008) for our analysis.

In Levin et al. (2007), the single image likelihood conforms to (23) and is explicitly given by

p(b|g) ∝ e−
1

2σ2 �Kg−b�2
, (28)

where � · � stands for the Frobenius norm.

In Shan et al. (2008), the likelihood is defined with different orders of partial derivatives,
denoted by operator ∂r, of a single degraded image. For ease of understanding, we represent
their model in the form

p(b|g) = ∏
∂r∈Θ

L1

∏
�1=1

L2

∏
�2=1

N
(
n(�1, �2)|0, σ

)
N
(
∂rn(�1, �2)|0, σω(∂r)

)
, r = 1, 2, 3, . . . , R (29)

where Θ is a set of partial derivative operators given by

Θ � {∂1, ∂2, ∂3, . . . , ∂R}. (30)

For example, in Shan et al. (2008), the set Θ has the elements {∂x, ∂y, ∂xx, ∂xy, ∂yy}, in which,
∂x is the first order derivative in x direction and ∂y is the first order derivative in y direction
and similar interpretations hold for higher order derivatives.

Further, Shan et al. (2008) shows that the partial derivatives of n also follow Normal
distributions with standard deviation values based on the order of the partial derivative
operator. The standard deviations of the partial derivatives are specified in the form

σω(∂r) = (
√

2)ω(∂r)σ, (31)

where ω(∂r) represents the order of the partial derivative operator ∂r. Few example elements
of the set Θ in (30) with the respective standard deviation values are given in Table 7.

As there was no analysis presented behind using the higher order partial derivatives of noise
in Shan et al. (2008) leading to (29), we provide an interpretation of formula, based on our new
general likelihood model for a group of degraded images of a common ground truth g in (27).

Guided by the likelihood expression (27), we can define a virtual group of images for the
likelihood model in (29) as

br = ∂rb, r = 1, 2, 3, . . . , R (32)
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where σr represent the standard deviation of the Gaussian distribution for nr. This new model
for the likelihood of multiple images will be used for the analysis of likelihood models in the
next section.
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r ∂r ∂rn ω(∂r)

1 ∂1 ∂xn 1
2 ∂2 ∂yn 1
3 ∂3 ∂xxn 2
4 ∂4 ∂xyn 2
5 ∂5 ∂yyn 2

Table 7. An example of set Θ in (30) with R = 5

4.1.3 Likelihood models for analysis

Out of the various likelihood models introduced in the literature of image restoration, we
consider two recent approaches in Levin et al. (2007) and, Shan et al. (2008) for our analysis.

In Levin et al. (2007), the single image likelihood conforms to (23) and is explicitly given by

p(b|g) ∝ e−
1

2σ2 �Kg−b�2
, (28)

where � · � stands for the Frobenius norm.

In Shan et al. (2008), the likelihood is defined with different orders of partial derivatives,
denoted by operator ∂r, of a single degraded image. For ease of understanding, we represent
their model in the form

p(b|g) = ∏
∂r∈Θ

L1

∏
�1=1

L2

∏
�2=1

N
(
n(�1, �2)|0, σ

)
N
(
∂rn(�1, �2)|0, σω(∂r)

)
, r = 1, 2, 3, . . . , R (29)

where Θ is a set of partial derivative operators given by

Θ � {∂1, ∂2, ∂3, . . . , ∂R}. (30)

For example, in Shan et al. (2008), the set Θ has the elements {∂x, ∂y, ∂xx, ∂xy, ∂yy}, in which,
∂x is the first order derivative in x direction and ∂y is the first order derivative in y direction
and similar interpretations hold for higher order derivatives.

Further, Shan et al. (2008) shows that the partial derivatives of n also follow Normal
distributions with standard deviation values based on the order of the partial derivative
operator. The standard deviations of the partial derivatives are specified in the form

σω(∂r) = (
√

2)ω(∂r)σ, (31)

where ω(∂r) represents the order of the partial derivative operator ∂r. Few example elements
of the set Θ in (30) with the respective standard deviation values are given in Table 7.

As there was no analysis presented behind using the higher order partial derivatives of noise
in Shan et al. (2008) leading to (29), we provide an interpretation of formula, based on our new
general likelihood model for a group of degraded images of a common ground truth g in (27).

Guided by the likelihood expression (27), we can define a virtual group of images for the
likelihood model in (29) as

br = ∂rb, r = 1, 2, 3, . . . , R (32)
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and in order to align with model (25), define

Krg � ∂r(g ∗ k), r = 1, 2, 3, . . . , R (33)

nr � ∂rn, r = 1, 2, 3, . . . , R (34)

where ∗ stands for the convolution operator and k is the blur kernel.

From this, we infer that the likelihood (29) implicitly assumes ∂pn is independent of ∂qn for
all p �= q. Since all virtual images are derived from a single degraded image, we can infer this
is a strong assumption made to simplify the likelihood expression. In principle, it should be
possible to formulate a model without recourse to the derivative images which add limited
new information. We corroborate this claim in section 4.3 with experiments.

4.2 Frequency domain deconvolution

In this section we approach image deconvolution with FOPDO regularization and with
different likelihood models discussed above. For our analysis, we consider the likelihood
models of (23) and (29) using terminology “normal likelihood” and “derivative likelihood”
with the notation using subscripts “n” and “d”, respectively. With our experiments, we limit
the set Θ in (30), going up to second order partial derivative operators in (29) and we take
elements of Θ from the following values

Θ = {∂x, ∂y, ∂xx, ∂xy, ∂yy}. (35)

4.2.1 Normal likelihood deconvolution

Under FOPDO regularization as detailed in section 2.2, the stabilizing functional Φ(g) takes
the form

Φ(g) � �∂xg�2 + �∂yg�2. (36)

Applying this stabilizing functional to the MAP framework detailed in section 4, the energy
functional under “normal likelihood”, can be derived as

En(g) = �g ∗ k − b�2 + λ Φ(g). (37)

According to the convolution theorem, the convolution operation in the spatial domain
becomes an element-wise product in the frequency domain making F (g ∗ k) = G � K
where F (·) stands for discrete Fourier transform, G for F (g), K for F (k) and “�” denotes
element-wise product. Based on the above property, transforming (37) into frequency domain
and applying Plancherels theorem, Bracewell & Kahn (1966), we derive the energy in the
frequency domain for (37) as follows.

F (En(g)) = �G � K − B�2 + λF (Φ(g)), (38)

where
F (Φ(g)) = �F (∂x) � G�2 + �F (∂y) � G�2,

B stands for F (b) and given ∂x takes the form of a (convolution) matrix, then F (∂x) denotes
its Fourier transform.
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Minimizing the energy in (38) and solving for estimated G denoted as Ĝ results in

Ĝn =
B � K

K � K + λ Ψ
, (39)

where

Ψ = F (∂x) �F (∂x) +F (∂y) �F (∂y),

Ĝn is the Fourier transform of the estimated GTI under “normal likelihood”, (·) stands for the
complex conjugate and the division is performed element-wise. The estimated ground truth
image ĝn can be derived by taking the inverse Fourier transform of Ĝn.

With the above derivations, it is evident that Fourier domain expression used to estimate the
GTI is:

1. simple and leads to a closed form solution and
2. amenable to Fast Fourier Techniques leading to a highly efficient solution.

4.2.2 Derivative likelihood deconvolution

We now give an analogous derivation for the “derivative likelihood”.

The energy functional in this case is derived similar to (37),

Ed(g) = ∑
∂r∈Θ

1
2ω(∂r)

�∂r(g ∗ k)− ∂rb�2 + λ Φ(g). (40)

Transforming (40) into the frequency domain results in

F (Ed(g)) = ∑
∂r∈Θ

1
2ω(∂r)

(�F (∂r) � G � K −F (∂r) � B�2)+ λF(
Φ(g)

)
, (41)

where, ∂r is a matrix convolution operator representing a partial order derivative operator
and F (∂r) denotes its Fourier transformation.

By minimizing the energy (41), we compute the estimated G,

Ĝd =
B � K � Ω

K � K � Ω + λ Ψ
, (42)

where

Ω � ∑
∂r∈Θ

1
2ω(∂r)

F (∂r) �F (∂r).

By taking the inverse Fourier transforms of (42), we could get the estimated GTI, ĝd, under
“derivative likelihood” model similar to “normal likelihood” model.
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λ
MSE MSE

Normal likelihood Derivative likelihood

×10−5 ×10−4 ×10−4

100 2.8448 4.4371

5 2.4148 4.0862

0.25 2.2292 4.1852

Table 8. Comparison of likelihood models

4.3 Likelihood model analysis

In order to come up with the most effective and efficient restoration algorithm, we investigate
the contribution of each of the likelihood models for estimating the GTI: (39) corresponding
to “normal likelihood” and (42) corresponding to “derivative likelihood”, respectively.

We used the same “Picasso” image which was used in Shan et al. (2008) for experiments using
the likelihood model in (29). The ground truth images are estimated using the Fourier domain
techniques, specifically applying (39) and (42) for the “Normal” and “Derivative” likelihood
models respectively. The experiment results are given in Table 8. In order to eliminate
the “Model” and “Process” artifacts as discussed in section 3.3.2, in all our simulations, the
blurring was carried out under the assumption that the images are periodic.

The MSE values in the table are given as multiples of 10−4, while the value of λ is given
in multiples of 10−5. The values in bold in Table 8 refer to the optimal MSE values the
respective likelihood model could reach for varying λ. As the results show clearly, the “normal
likelihood” model has a better estimate for the GTI than the “derivative likelihood” model, we
claim that applying “normal likelihood” in the image restoration algorithm results in a better
restoration.

Our investigation was further extended to analyze whether higher order derivatives of noise
contribute to the spatial randomness of noise as claimed in Shan et al. (2008). The noise maps
given in Fig. 11 are computed for different values of λ in (39) and (42).

As per the results Fig. 11(c) and Fig. 11(d), when the effect of the prior becomes smaller (i.e.,
the weight on the data fitting term or the likelihood becomes larger), the noise estimate is
more spatially random, but with the increase in the weight of the prior, the noise estimate
becomes structured (signal dependant), see Fig. 11(e) and Fig. 11(f). We experienced these
results regardless of the likelihood model we used. Based on the above results, we claim that
using higher order partial derivatives in the likelihood model for non-blind deconvolution
does not result in a better noise map estimation while the same noise map estimation can be
achieved through the normal likelihood model with the appropriate Lagrange multiplier.

Hence, through the likelihood model analysis based on benchmark image, we conclude that
higher order derivatives in the likelihood model are not required for better performance
whereas applying single image likelihood model with appropriate regularization results in
a more effective non-blind image restoration.
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(a) Ground Truth Image (b) 19 × 27 Blur kernel scaled upwards

(c) Normal likelihood (λ = 0.001) (d) Derivative likelihood (λ = 0.001)

(e) Normal likelihood (λ = 0.8) (f) Derivative likelihood (λ = 0.8)

Fig. 11. Noise maps for Likelihood models

5. Contributions

In this chapter, we have contributed to regularization based image restoration techniques in
the following:

1. We have developed a general class of quadratic regularization models based on partial
derivative operators (PDO), section 2.2. Out of those models, we have shown that the
Second Order Partial Derivative Operator (SOPDO) model performs better than First
Order Partial Derivative Operator (FOPDO) model for images susceptible to noise, while
the novel First and Second Order Partial Derivative Operator (FSOPDO) model performs
better than both FOPDO and SOPDO models.
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2. We have used the Structured Similarity index (SSIM) map, Mean SSIM (MSSIM) value
and histograms of SSIM maps as novel visual metrics for comparison and evaluation of
regularization models in image restoration, section 3.3.2.

3. We have critically evaluated Sparse and Laplacian prior models against Quadratic
regularization models using the novel visual metrics discussed in section 3.5. By
eliminating the effects of processing and modeling artifacts, not present when capturing
actual blurred natural images, we have shown that Sparse and Laplacian derivative prior
models, which are claimed to be consistent with natural images, do not significantly
contribute in restoring natural image features and have significantly slower relative
restoration performance.

4. Finally, we have analyzed and evaluated multiple derivative operator based restoration
methods under MAP/ML framework with a novel model to represent the likelihood based
on multiple images, section 4.1.2. By using this novel model, we demonstrate that complex
higher order derivative likelihood models are not required for better performance in image
restoration.
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1. Introduction 
Image restoration is a classical area of digital image processing, appearing in many 
applications such as remote sensing, medical imaging, astronomy or computerized 
tomography (González & Woods, 2007). Simply put, the aim is to recover an original image 
which has been degraded due to the imperfections in the acquisition system: blurring and 
noise. Restoring this degradation leads to an ill-posed problem since the simple inverse 
using least-squares yields highly noise-sensitive solutions. A large number of techniques 
have been developed to cope with this issue, most of them under the regularization or the 
Bayesian frameworks (a complete review can found in Banham & Katsaggelos, 1997; Bovik, 
2005; Chan & Shen, 2005).  

Mathematical regularization is used to include prior knowledge about the original image in 
the restoration process which allows stabilizing the solution in the face of noise. However, 
two main problems arise for such a regularization approach. First, the non-local property of 
the underlying convolution implies that part of the blurred image near the boundary 
integrates information of the original scenery outside the field of view. However, this 
information is not available in the deconvolution process and may cause strong ringing 
artifacts on the restored image, i.e., the well-known boundary problem (Woods et al., 1985). 
Typical methods to counteract the boundary effect is to make assumptions about the 
behavior of the original image outside the field of view such as Dirichlet, Neuman, periodic 
or other recent conditions in Calvetti & Somersalo, 2005; Martinelli et al., 2006; Liu & Jia, 
2008. Secondly, restoration methods depend on a wide set of parameters which can be 
roughly grouped into three categories: parameters with respect to the degradation process, 
the noise and the original image. All parameters require an accurate prior estimation 
because small errors in their values lead to important deviations in the restoration results. In 
fact, classical restoration methods tend to improve the estimation of those parameters 
without prior knowledge about the real scenery, which is known as blind deconvolution 
(Campisi & Egiazarian, 2007; Molina et al., 2006). The boundary problem and the sensitivity 
to estimations are the issues to solve in this chapter by means of two iterative algorithms. 



26 Will-be-set-by-IN-TECH

Portilla, J., Strela, V., Wainwright, M. J. & Simoncelli, E. P. (2003). Image denoising using scale
mixtures of Gaussians in the wavelet domain, IEEE Transactions on Image processing
12(11): 1338–1351.

Roth, S. & Black, M. (2005). Fields of experts: A framework for learning image priors,
Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’05) - Volume 2, IEEE Computer Society, Washington, DC, USA,
pp. 860–867.

Shan, Q., Jia, J. & Agarwala, A. (2008). High-quality motion deblurring from a single image,
International Conference on Computer Graphics and Interactive Techniques SIGGRAPH
2008, Vol. 27, ACM, New York, NY, USA, pp. 1–10.

Simoncelli, E. P. (1997). Statistical models for images: compression, restoration and synthesis,
Conference Record of the Thirty-First Asilomar Conference on Signals, Systems and
Computers, Vol. 1, pp. 673–678.

Simoncelli, E. P. (1999). Bayesian denoising of visual images in the wavelet domain, Lecture
Notes in Statistics 141: 291–308.

Tikhonov, A. N. & Arsenin, V. Y. (1977). Solutions of ill-posed problems, John Wiley, New York.
Wang, Z. & Bovik, A. C. (2009). Mean squared error: love it or leave it? - A new look at signal

fidelity measures, IEEE Signal Processing Magazine 26(1): 98–117.
Wang, Z., Bovik, A. C., Sheikh, H. R. & Simoncelli, E. P. (2004). Image quality assessment:

From error visibility to structural similarity, IEEE Transactions on Image Processing
13(4): 600–612.

Weiss, Y. (2001). Deriving intrinsic images from image sequences, 9th International Conference
on Computer Vision, ICCV, IEEE Computer Society, pp. 68–75.

Wiener, N. (1942). Extrapolation, Interpolation, and Smoothing of Stationary Time Series.
Zhu, S. C. & Mumford, D. (1997). Prior learning and Gibbs reaction-diffusion, IEEE

Transactions on Pattern Analysis and Machine Intelligence 19(11): 1236–1250.

144 Image Restoration – Recent Advances and Applications

7 

Iterative Restoration Methods 
 to Loose Estimations Dependency 

 of Regularized Solutions 
Miguel A. Santiago1, Guillermo Cisneros1 and Emiliano Bernués2  

1Polythecnic University of Madrid, Department of Signals, 
 Systems and Radiocommunications 

2University of Zaragoza, Department of Electronic Engineering and Communications 
Spain 

1. Introduction 
Image restoration is a classical area of digital image processing, appearing in many 
applications such as remote sensing, medical imaging, astronomy or computerized 
tomography (González & Woods, 2007). Simply put, the aim is to recover an original image 
which has been degraded due to the imperfections in the acquisition system: blurring and 
noise. Restoring this degradation leads to an ill-posed problem since the simple inverse 
using least-squares yields highly noise-sensitive solutions. A large number of techniques 
have been developed to cope with this issue, most of them under the regularization or the 
Bayesian frameworks (a complete review can found in Banham & Katsaggelos, 1997; Bovik, 
2005; Chan & Shen, 2005).  

Mathematical regularization is used to include prior knowledge about the original image in 
the restoration process which allows stabilizing the solution in the face of noise. However, 
two main problems arise for such a regularization approach. First, the non-local property of 
the underlying convolution implies that part of the blurred image near the boundary 
integrates information of the original scenery outside the field of view. However, this 
information is not available in the deconvolution process and may cause strong ringing 
artifacts on the restored image, i.e., the well-known boundary problem (Woods et al., 1985). 
Typical methods to counteract the boundary effect is to make assumptions about the 
behavior of the original image outside the field of view such as Dirichlet, Neuman, periodic 
or other recent conditions in Calvetti & Somersalo, 2005; Martinelli et al., 2006; Liu & Jia, 
2008. Secondly, restoration methods depend on a wide set of parameters which can be 
roughly grouped into three categories: parameters with respect to the degradation process, 
the noise and the original image. All parameters require an accurate prior estimation 
because small errors in their values lead to important deviations in the restoration results. In 
fact, classical restoration methods tend to improve the estimation of those parameters 
without prior knowledge about the real scenery, which is known as blind deconvolution 
(Campisi & Egiazarian, 2007; Molina et al., 2006). The boundary problem and the sensitivity 
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The first algorithm copes with the boundary problem taking a blurred image defined in the 
field of view, but with neither any image information nor prior assumption on the boundary 
conditions. Furthermore, the objective is not only to reduce the ringing artifacts on the 
whole image, but also reconstruct the missed boundaries of the original image which 
becomes a significant step of the research. Neural networks are very well suited to combine 
both processes in the same restoration algorithm and thus we provide a solution based on a 
Multilayer Perceptron (MLP) in line with a backpropagation strategy. Other neural-net-
based restoration techniques (Paik & Katsaggelos, 1992; Sun, 2000; Han & Wu, 2004) have 
been proposed in the literature with the Hopfield’s model, but they are typically time-
consuming and large scaled. In the light of the good results of the total variation (TV) 
regularizer in recent deconvolution (Wang et al., 2005; Wu et al., 2007; Bioucas-Dias et al., 
2006; Oliveira et al., 2009; Molina et al., 2006), we have used it to set the minimization 
mechanism of the net. The proposed scheme is then an iterative method which performs 
repeatedly a cycle of two steps: forward and backward, simulating respectively restoration 
and degradation processes at each iteration. 

Following the same iterative concept of restoration-degradation, we present a second 
algorithm in the frequency domain to reduce the dependency on the estimation of 
parameters. Hence, a novel desensitized restoration filter is designed by applying an 
iterative algorithm over the original filter. Analyzing the sensitivity properties of this filter 
and setting a criterion to choose the number of iterations, we come up with an expression 
for the desensitized algorithm for traditional filters such as Wiener and Tikhonov (González 
& Woods, 2007). The results of this algorithm pretend to increase the robustness of the 
restoration methods when estimating parameters such as the noise variance or degradation 
related parameters. 

The chapter is organized as follows. In the next section, we provide a detailed formulation 
of the two restoration problems of the chapter, establishing naming conventions and the 
mathematical basis of the respective algorithms. In Sec. 3, we present the architecture of the 
iterative methods under analysis: MLP and desensitized filter, going into details about the 
adjustment of the synaptic weights of the net in every layer and the computation of the 
number of iterations for the desensitized scheme respectively. We present some 
experimental results in Sec. 4 and, finally, concluding remarks are given in Sec. 5.  

2. Problem formulation 

To start with image restoration a better understanding of the acquisition system is required. 
Because of physical limitations or human errors in operating imaging systems, the observed 
image is actually a degraded version of the original scene. For instance, deterministic 
degradations such as motion blurs, out of focus lens or effects of atmospheric turbulence in 
remote sensing cause a bandwidth reduction of the original image. In a linear acquisition 
scenario this distortion is mathematically described as a point spread function (PSF) denoted 
by ( , )h i j , which represents a two dimensional filter mask of size 1 2M M . For sake of 
simplicity we consider spatially invariant functions such that the degradation is 
independent of the position. In addition to blurring, noise is always present in the observed 
image due to stochastic variations in the process of image formation, the transmission 
medium or the recording system. We assume a common additive zero-mean Gaussian white 
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noise ( , )n i j  of variance 2
n , which also represents the quantization error coming from 

digitalizing images. The statistical descriptors of the noise are likewise assumed to not vary 
spatially.  

Let ( , )x i j  be the unknown gray-scaled original image of size 1 2L L , degraded by a PSF 
( , )h i j  and corrupted by a noise sample ( , )n i j . Therefore, we can express the observed 

image ( , )y i j  as 

 ( , ) ( , ) ( , ) ( , )y i j h i j x i j n i j    (1) 

where   represents the two dimensional convolution operator. In order to simplify 
expressions, we shall use lexicographic notation by stacking the columns of a matrix in a 
vector. Then, the equation (1) is rewritten as  

  y Hx n  (2) 

defined by the original image x  of length 1 2L L L  , whereas the degraded image y  is a 
L  sized vector bigger than the original image as result of the non-local property of the 
convolution operation (see 2.1). In terms of blurring, H  is known as the convolution matrix 
of size L L  built from the PSF and using the so-called boundary conditions that we will 
discuss later.  

Another way to represent the equation (1) is through its spectral equivalence. By applying 
discrete Fourier transform (González & Woods, 2007) to that expression, we obtain  

 ( , ) ( , ) ( , ) ( , )i j i j i j i jY H X N          (3) 

where ( , )i j   are the spatial frequency coordinates, and the capital letters represent 
Fourier transforms. In the frequency domain it is assumed that the observed image is a 
circular period that wraps around the edges, what it is not physically true but typically used 
for computational convenience.  

In view of the above equations, image restoration is defined as an inverse problem that tries 
to estimate the original image x̂  from the observed image y  using the blurring model H . 
However, a simple least-squares solution is not possible since the presence of noise or the 
singularity of the matrix H  make it an ill-conditioned problem. Thus, a regularization 
method is needed to control the high sensitivity to noise as explained in Banham & 
Katsaggelos, 1997. Quite a few examples have been presented in the literature by means of 
the classical Tikhonov regularization which establishes 
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zz  denotes the 2  norm, x̂  is the restored image and D  is the 

regularization operator, built on the basis of a high pass filter mask d  of size 1 2N N N  . 
The first term in (4) is the 2  residual norm appearing in the least-squares approach and 
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ensures fidelity to data. The second term is the so-called regularizer which captures prior 
knowledge about x  through an additional 2  penalty term involving the image. The hyper-
parameter (or regularization parameter)   is a critical value which measures the trade-off 
between a good fit and a regularized solution. 

Alternatively, the total variation (TV) regularization proposed by Rudin et al., 1992, has 
become very popular in recent research as it achieves to preserve edges in the restored 
image. A discrete version of the TV deblurring problem is given by 

 
2
2 1

1ˆ arg min
2

     
 x

x y Hx x  (5) 

where 1z  denotes the 1  norm (i.e., the sum of the absolute value of the elements) and   
stands for the discrete gradient operator. The   operator is defined by the matrices ξD  and 

μD  as 

   ξ μx D x D x  (6) 

built on the basis of the respective masks ξd  and μd  of size 1 2N N N  , which turn out 
the horizontal and vertical first order differences of the image. Compared to the expression 
(4), the TV regularization provides a 1  penalty term which can be thought as a measure of 
signal variability. Once again,   is the critical regularization parameter to control the 
weight assigned to the regularizer with respect to the data mist term. 

Significant amount of work has been addressed to solve any of the above regularizations 
and mainly the TV deblurring in recent times (Chan & Shen, 2005). However, there are two 
important issues in those algorithms which require making assumptions and constraining 
the regularized solution: boundary conditions and parameters estimations. This chapter 
provides two novel iterative methods aimed to loose this dependency and achieve a more 
robust solution in terms of estimations. Let us analyze each problem separately.  

2.1 Boundary conditions 

As defined in González & Woods, 2007, the convolution operator of equation (1) integrates a 
portion of the original scenery x  into a single point by weighting the nearby pixels by a 180 
degrees rotated mask h . When computing the pixels near the boundary and depending on 
the size of the PSF, many pixels of y  contain information coming from the original scenery 
outside the field of view (FOV) which is indeterminate. We refer to this phenomenon and to 
its consequences as boundary effect. It is well known that if the boundary effect is not 
properly taken into account, it may cause strong ringing artifacts on the deconvolved image. 
For that reason, various methods of the literature try to counteract this effect by selecting 
appropriate boundaries conditions (BCs). These boundary conditions are included in the 
model of H  used in deconvolution as  

  H T B  (7) 
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where T  has a Toeplitz structure and B  is often structured, sparse and low rank, and 
specifically defined for every BC. Common cases are the Zero (Bertero & Bocacci, 1998), 
Periodic (Bertero & Bocacci, 1998), Reflective (Ng et al., 1999) or Anti-reflective (Martinelly et 
al., 2006) boundary conditions. 

As a result of the convolution, it can be easily demonstrated (see Fig. 1) that the degraded 
image y  increases its size with respect to the original image x  from L  to L  as 

    1 1 2 22 2L L B L B     (8) 

where 1B  and 2B  are the respective horizontal and vertical bandwidths of the PSF, then the 
length of h  is    1 2 1 22 1 2 1M M M B B      . We have gray colored the pixels affected 
by the boundary conditions which are not actually present in a real observation. Therefore, a 
real observed image realy  is a truncated version of the convolution process to the region 
called field of view  
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Fig. 1. Real observed image defined in the field of view (left). Restored image which 
indicates the boundary reconstruction area (right). 

Common deblurring methods deal with this real image realy  and try to restore it 
minimizing the boundary ringing as much as possible using BCs on the model H  like (7). 
However, the restored image is only obtained within the FOV domain, that is smaller than 
the original image size L . Our goal is to not only improve the restoration on the whole 
image but also reconstruct the boundaries that are missed in the observation, without 
neither any image information nor prior assumption on the boundary conditions.  

Let us define an image truy which represents this observed image realy using a trunc   
operator that removes (zero-fixes) the pixels of the boundary region, that is to say 
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ensures fidelity to data. The second term is the so-called regularizer which captures prior 
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where 1z  denotes the 1  norm (i.e., the sum of the absolute value of the elements) and   
stands for the discrete gradient operator. The   operator is defined by the matrices ξD  and 
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neither any image information nor prior assumption on the boundary conditions.  
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where aH  denotes the Toeplitz matrix when not using boundary conditions (aperiodic 
model). Therefore, we aim to restore this truncated image truy  in spite of the discontinuity 
at the boundaries and reconstruct the region B  depicted in Fig. 1 

 B L FOV   (11) 

whose area is calculated by  1 1 14B L B B   , if we consider square dimensions such that 
1 2B B  and 1 2L L . 

Particulary, we intend to study an iterative algorithm using the TV regularizer which loose 
the dependency on the boundary conditions. So we redefine the restoration problem (5) 
including the trunc   operator as 
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1ˆ arg min trunc trunc
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where the subscript a denotes the aperiodic formulation of every matrix operator. An 
equivalent analysis for the Tikhonov regularizer can be found in Santiago et al., 2010.  

2.2 Estimations dependency 

If we have a look to any restoration method of the literature, we come up with their 
dependency on a wide set of parameters which must be estimated a priori. We can group 
them basically into three classes 

 Parameters with respect to the blurring process. 
 Parameters with respect to the noise. 
 Parameters with respect to the original image. 

In terms of blurring, the convolution matrix H  is not always available in the restoration 
process and thus it is required to make assumptions about its parameters, such as the length 
of motion or the radius of out-of-focus among others. We can find a lot of articles devoted to 
estimate the PSF which are normally referred to as blind deconvolution. Regarding noise we 
have assumed a Gaussian white noise from the very beginning, so the concrete parameter is 
just the variance 2

n . Finally, the parameters related to the original image have to do with 
the regularization term of the equations (4) or (5) and, in turn, with the regularization 
parameter  . 

Blind deconvolution methods try to obtain the more accurate parameters but deal with a 
problem known as sensitivity to estimations, that is to say, relatively small deviations from 
the real (unknown) values have a severe impact on the restoration quality. Therefore, we 
aim to define an algorithm that improves the results of a restoration scheme when having 
wrong estimates of the said parameters, namely, a desensitization process.  

We shall work in the frequency domain for this issue so we take for granted the circular 
boundary conditions of the previous section. In particular, our goal is to desensitize two 
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common algorithms of the literature defined in the Fourier space: Wiener and Tikhonov 
(Bovik, 2005). Both methods are completely linear so described by a restoration filter as 

 ˆ ( , ) ( , ) ( , )i j i j i jX G Y       (13) 

where ( , )i jG    denotes the Fourier transform of the restoration filter. In order to simplify 
notation, the reference to the element ( , )i j   of the matrices in the frequency domain will 
be removed from all formulae throughout the remainder of the chapter. They are 
differentiated from the variables of the boundary problem because those are in bold. 
Besides, it must be taken into account that all mathematical expressions involving matrices 
in the Fourier Transform domain are scalar computations for each frequency component 
( , )i j  . 

From González & Woods, 2007, it is demonstrated that 

 Wiener Filter 
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where H  represents the complex conjugate of H , xxS  and nnS  are the respective spectral 
densities of the original image x  and the noise n .  

 Tikhonov Filter 
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where D  is the Fourier transform of the regularization operator D  in (4).  

Let us symbolize the restoration filter as Ĝ  when calculated by estimations (not real values) 
as well as the rest of variables involved in (14) and (15) such as Ĥ , ˆ

xxS , ˆ
yyS  and ̂ . 

Therefore, we shall define an iterative method which achieves a filter G  based on the 
original Ĝ  with less sensitivity to wrong estimations.  

3. Iterative methods 
In this section we propose two algorithms to cope with the aforementioned constraints of a 
restoration problem: boundary conditions and estimation dependency. Both methods are 
iterative and lead to various restoration-degradation processes repeated a certain number of 
times. A detailed analysis is devoted to each algorithm in the following sections. 

3.1 MLP approach 

The main issues addressed by this algorithm are 

 Restore a real observed image realy  without neither any image information nor prior 
assumption on the boundary conditions. 
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common algorithms of the literature defined in the Fourier space: Wiener and Tikhonov 
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where D  is the Fourier transform of the regularization operator D  in (4).  

Let us symbolize the restoration filter as Ĝ  when calculated by estimations (not real values) 
as well as the rest of variables involved in (14) and (15) such as Ĥ , ˆ
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Therefore, we shall define an iterative method which achieves a filter G  based on the 
original Ĝ  with less sensitivity to wrong estimations.  

3. Iterative methods 
In this section we propose two algorithms to cope with the aforementioned constraints of a 
restoration problem: boundary conditions and estimation dependency. Both methods are 
iterative and lead to various restoration-degradation processes repeated a certain number of 
times. A detailed analysis is devoted to each algorithm in the following sections. 

3.1 MLP approach 

The main issues addressed by this algorithm are 

 Restore a real observed image realy  without neither any image information nor prior 
assumption on the boundary conditions. 
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 Remove boundary ringing in spite of the discontinuity at the boundaries. 
 Reconstruct the boundary region B  so that the restored image has the same size L  as 

the original image. 
 Make use of the TV regularizer. 

To go around this problem we know that neural networks are particularly well-suited as 
their ability to nonlinear mapping and self-adaptiveness. In fact, the Hopfield network has 
been used in the literature to solve the optimization problem (4) and recently some neural 
network solutions as in Wang, 2005 and Wu, 2007 deal with the TV regularization (5).  

Our proposal is a MLP (Multiplayer Perceptron) with back-propagation as illustrated inFig. 
2. The input layer of the net consists of L  neurons with inputs 1 2, ,..., Ly y y   being 
respectively the L  pixels of the truncated image truy . At any generic iteration m , the 
output layer is defined by L  neurons whose outputs 1 2ˆ ˆ ˆ( ), ( ),..., ( )Lx m x m x m  are respectively 
the L  pixels of an approach ˆ(m)x  to the restored image. After m  iterations, the neural net 
outcomes the actual restored image ˆ ˆ(m)x x . On the other hand, the hidden layer consists 
of only two neurons, although being enough to achieve good restoration results while 
keeping low complexity of the network.  
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Fig. 2. MLP scheme adopted for image restoration. 

The neural network undertakes two processes iteratively: forward and backward. The 
former is the result of applying from left to right the equations of every layer. It is actually 
the restoration step. The latter is the back-propagation process where the network must 
minimize a regularized error function which we will set to the expression (12). It means to 
adjust the synaptic coefficients of every single neuron from right to left and can be thought 
as a reblurring step. Since the trunc   operator is involved in all those expressions, the 
truncation of the boundaries is performed at every iteration but also their reconstruction as 
indicated by the L  size at the output. What deserves attention is that no a priori knowledge, 
assumption or estimation concerning the unknown borders is needed to perform the 
regeneration. Generally speaking it could be explained by the neural net nature which is 
able to learn about the degradation model.  
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A restored image is therefore obtained in real conditions on the basis of a global energy 
minimization strategy, with reconstructed borders while adapting the center of the image to 
the optimum solution and thus making the ringing artifact negligible. Finally, we recall that 
the input to the net is always the image truy  as no net training is required.  

3.1.1 Adjustment of the neural net 

Let us define each layer of Fig. 2 as an input vector p  of size 1R , a synaptic weight matrix 
W  of S R  in size, and a 1S  output vector z  of the layer. We utilize a log-sigmoid 
expression for the transfer function   and a null bias vector. A superscript is used to 
denote the number of layer, but it will be removed when deduced by context. So we can 
redraw our MLP as depicted in Fig. 3 where we have symbolized the variation of the 
synaptic matrixes of every layer.  
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Fig. 3. MLP algorithm with matrix-vector notation. 

A variant of the well-known algorithm of back-propagation is used to adjust those matrixes 
with the truncated cost function of (12). Let ( 1)i m W  be the correction applied to the 
weight matrix iW  of the layer i  at the   thm 1  iteration. Then,  
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where ( )E m  stands for the cost error function after m  iterations at the output of the net and 
the constant   indicates the learning speed. Defining the vectors ( )me  and ( )mr  for the 
respective error and regularization terms at the output layer after m  iterations 
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Now we aim to compute the so-called gradient matrix ( )
( )i

E m
m


W

 in the layers of the MLP. A 

high detailed analysis can be found in Santiago et al., 2010 based on the algorithm of 
majorization-minimization developed by Bioucas-Dias et al., 2006 when facing a TV 
regularization problem like (5). Let us summarize the main results below:  

  1( 1) ( ) ( )
Ti i im m m    W δ z  (20) 

where ( )mδ  stands for the local gradient vector and is defined for a MLP of J  layers as:  

 Output layer ( i J ) 

    ( ) ( ) ( ) ( ) ( )T Tm m m m m  a aδ v H e D Ω r   (21) 

where   denotes the Hadamard (elementwise) product, aD  is a composition of the matrices 

ξ
aD  and μ

aD  as     
TT T    

ξ μ
a a aD D D  and ( )mΩ  represents a weigh matrix which controls 

the influence of regions with high intensity variation 

 

   2 2

( ) 0
( )  

0 ( )

1with ( ) diag
ˆ ˆ2 ( ) ( )

m
m

m

m
m m ε

 
  
 

 
 

  
   
 

ξ μ
a a

Λ
Ω

Λ

Λ
D x D x

 (22) 

 Any hidden layer ( i J ) 

    1 1( ) diag ( ) ( ) ( )
Ti i i im m m m δ v W δ  (23) 

3.1.2 Algorithm parameters 

Due to the iterative nature of the algorithm the first parameter to establish has to do with 
the stop rule. It is a condition such that either the number of iterations is more than a 
maximum; or the error ( )E m  converges and, thus, the error change ( )E m  is less than a 
threshold; or, even, this error ( )E m  starts to increase. If one of these conditions comes true, 
the algorithm concludes and the final outgoing image is the restored image ˆ ˆ( )mx x . 

In the image restoration field it is remarked the importance of the parameter  . Low values 
of   yield oscillatory solutions because of the presence of noise or discontinuities; high 
values of   yield over smoothed results though. For that reason, the literature has given 
significant attention to it with popular approaches such as the unbiased predictive risk 
estimator (UPRE), the generalized cross validation (GCV), or the L-curve method; see Vogel, 
2002 for an overview and references. Most of them were particularized for a Tikhonov 
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regularizer, but lately researches aim to provide solutions for the TV regularization. 
Specifically, the Bayesian framework leads to successful approaches in this respect. 

In Santiago et al., 2010 we adjusted   with solutions coming from the Bayesian state-of-art. 
However, we still need to investigate a particular algorithm for the MLP since those 
Bayesian approaches work only for circulant degradation models, but not for the truncated 
image of this chapter. So we shall compute yet a hand-tuned   which optimizes the results. 

As for learning speed it was already demonstrated that   shows lower sensitivity 
compared to  . In fact, its main purpose is to speed up or slow down the convergence of 
the algorithm. Then, for the sake of simplicity, we shall assume 2   for the images of 
256 256  in size. 

3.2 Desensitization approach 

The second of our methods go around the following issues 

 Desensitize the restoration filter (assumed linear) with respect to wrong parameter 
estimations. 

 Counteract the effects of mistaking parameters in order to achieve a better restoration 
quality compared to that without desensitization. 

 Alternative to classic restoration approaches which focus on obtaining accurate 
estimations. 

 Particularization to Wiener and Tikhonov filters 

Let us define an expression for the desensitized filter G  based on the original Ĝ  in the 
frequency domain. Again our approach is an iterative algorithm as illustrated in Fig. 4.  
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Fig. 4. Desensitized restoration scheme. 

The input at any iteration m  ( 1,2,...,m m ) is an image ˆ ( )Y m  computed by its previous 
iteration ˆ ( 1)Y m   after going through the restoration filter Ĝ  and the estimated transfer 
function Ĥ . In a first step the image ˆ (0)Y  is equal to the degraded image Y  and, after the 
total number of iterations, the image ˆ ( )Y m  is restored again by the filter Ĝ  leading to the 
the output image ˆ ˆ ( )X X m . This algorithm is somehow based on the same iterative concept 
of restoration-degradation processes of the MLP but applied to the Fourier domain. Let us 
recall that the mathematical expressions for this algorithm are particular for each frequency 
component ( , )i j   and, in fact, we put forward that the number of iterations is also a 
function of these elements, i.e., ( , )i jm   . 

It can be easily demonstrated that the filter G  of Fig. 4 is expressed as  
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 Any hidden layer ( i J ) 
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regularizer, but lately researches aim to provide solutions for the TV regularization. 
Specifically, the Bayesian framework leads to successful approaches in this respect. 

In Santiago et al., 2010 we adjusted   with solutions coming from the Bayesian state-of-art. 
However, we still need to investigate a particular algorithm for the MLP since those 
Bayesian approaches work only for circulant degradation models, but not for the truncated 
image of this chapter. So we shall compute yet a hand-tuned   which optimizes the results. 

As for learning speed it was already demonstrated that   shows lower sensitivity 
compared to  . In fact, its main purpose is to speed up or slow down the convergence of 
the algorithm. Then, for the sake of simplicity, we shall assume 2   for the images of 
256 256  in size. 

3.2 Desensitization approach 

The second of our methods go around the following issues 

 Desensitize the restoration filter (assumed linear) with respect to wrong parameter 
estimations. 

 Counteract the effects of mistaking parameters in order to achieve a better restoration 
quality compared to that without desensitization. 

 Alternative to classic restoration approaches which focus on obtaining accurate 
estimations. 

 Particularization to Wiener and Tikhonov filters 

Let us define an expression for the desensitized filter G  based on the original Ĝ  in the 
frequency domain. Again our approach is an iterative algorithm as illustrated in Fig. 4.  
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the output image ˆ ˆ ( )X X m . This algorithm is somehow based on the same iterative concept 
of restoration-degradation processes of the MLP but applied to the Fourier domain. Let us 
recall that the mathematical expressions for this algorithm are particular for each frequency 
component ( , )i j   and, in fact, we put forward that the number of iterations is also a 
function of these elements, i.e., ( , )i jm   . 

It can be easily demonstrated that the filter G  of Fig. 4 is expressed as  
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  ˆ ˆ ˆ m
G G GH   (24) 

where ˆ ˆGH is known as the regularization product. In Santiago et al., 2007 we verified that 
the higher the regularization is, the lower the product ˆ ˆGH  becomes with a dynamic range 

ˆ ˆ0 1GH  . 

3.2.1 Sensitivity criteria 

So far we have referred to sensitivity as a concept, but now we put it on mathematical 
expressions. Let us consider that the restoration filter G  depends on a set of parameters 

1 2, ,..., rP P P  which can be grouped into the three groups of Section 2.2: blurring, noise and 
original image. Then we can define the sensitivity GS  regarding the filter G  as  

 1 2
1 2

...G r
r

G G GS dP dP dP
P P P
  

   
  

 (25) 

Analogously, the sensitivity concerning the proposed filter G  can be expressed as follows 

 1 2
1 2

...G r
r

G G GS dP dP dP
P P P
    

   
  

 (26) 

To compare the sensitivity of both filters we make use of a relative function G GZ S S  
which sets the desensitization criteria as 1Z  . After differentiating the filter G  of (24) with 
respect to G  we come up with an expression for the relative sensitivity function (see 
Santiago et al., 2007 for further details) 

 ˆ ˆ( ) ( 1)( ) 1mG

G

SZ m m GH
S

     (27) 

As  ˆ ˆˆ ˆ0 1
m

GH GH    we can foresee that the function ( )Z m  of (27) is neither 
monotonically increasing nor decreasing with the number of iterations m , but it may show 
a relative maximum extreme depending on the value of the term ˆ ˆGH  for a particular pair 
( , )i j  . This is illustrated in Fig. 5 for several regularization values 

Looking into this plot we can observe that the expected maximum extremes of ( )Z m  
depend on the value of ˆ ˆGH . The lower the product ˆ ˆGH  is, the less iterations m  are 
required to reach the maximum; even high regularization conditions make ( )Z m  strictly 
decreasing monotonic. In any case, the main conclusion has to do with the sensitivity 
condition (27) illustrated by the straight line of the figure. Regardless of the value of the 
product ˆ ˆGH , G  is less sensitive than G  if the number of iterations m  is high enough. We 
might therefore increase the value of m  as needed to prevent poor restoration results of 
wrong estimates. However, that is not possible as the restoration error is significantly 
affected as demonstrated in Santiago et al., 2007. 

In González & Woods, 2007 the restoration error is divided into the ringing (or image-
dependent) component and the noise-dependent component. What we found out in our 
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previous analysis is that the trend of both errors is contrary for the desensitized filter G . 
Whereas the noise-dependent error is lower as the number of iterations increases, the 
ringing component gets higher. Consequently, we need to look for a trade-off between the 
error components while keeping the desensitization criteria true. 

 
Fig. 5. Relative sensitivity function ( )Z m . 

3.2.2 Number of iterations 

Since the relative sensitivity function ( )Z m  does not have a local minimum as viewed in Fig. 
5, let us optimize another ( )Z m  property which also fulfills the desensitization criteria. In 
particular, we shall look for a maximum of efficiency for the complexity introduced in the 
restoration process by increasing the number of iterations from m  to 1m  . In other words, 
let us seek a value of m  from that on the improvement on desensitization is lower than the 
incremental complexity. In mathematical terms we can express this efficiency change as the 
second derivative of ( )Z m  denoted by ( ) ( )R m Z m . It can be easily derived from (27) that 

 ˆ ˆ ˆˆ ˆ ˆ( ) ( ) ln( ) 2 ( 1)ln( )mR m GH GH m GH      (28) 

The purpose is to maximize this function as well as constrain it to the desensitization 
condition of ( ) 1Z m  . In Santiago et al., 2007 we came up to a number of iterations as 
follows 

 31  ˆ ˆln( )
m round

GH

       
    

 (29) 

subject to a constraint on the regularization term ˆ ˆ0.14 0.84GH  . 

Finally, let us compute some numeric results of the main variables of the desensitization 
algorithm for different regularization products ˆ ˆGH : m , ( )Z m , ( )r m  and ( )n m , where 
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these delta functions are respectively the relative error components (ringing and noise) 
expressed in dB. 

ˆ ˆGH  m  ( )Z m  ( )r m ( )n m

0.20 1 0.40 9.15 -13.98

0.30 1 0.60 8.41 -10.46

0.40 2 0.48 9.43 -15.92

0.50 3 0.50 9.66 -18.06

0.60 5 0.47 9.97 -22.18

0.70 7 0.66 9.94 -21.69

0.80 12 0.89 10.03 -23.26

Table 1. Numeric results for the main functions of the desensitized filter. 

Looking at the figures of Table 1 we can see that the improvements achieved for ( )n m  are 
greater than the impairments obtained from ( )r m , always satisfying the desensitization 
condition ( ) 1Z m  . For that reason, we may expect to have good restoration results with a 
rough estimation of noise in a very wide range, much better than other kind of wrong 
parameters. 

4. Experimental results 
In this section we aim to validate the properties of the previous algorithms using a variety of 
experiments with very well-known 256 256  sized images such as Lena, Barbara or 
Cameraman, or PSFs widely used in the field as the motion, Gaussian or uniforms blurs. 
Furthermore, we shall compare the results with classic approaches of image restoration to 
ensure the good performance of our iterative methods.  

4.1 MLP experiments 

Let us see our problem formulation by means of an example. Fig. 6 depicts the original 
Barbara image blurred by a motion blur of 15 pixels and 45º of inclination, which turns out a 
PSF mask of 11 11  in size ( 1 2 5B B  ). We have represented the truncated image truy  on 
the right which reflects the zeros at the boundaries and the size of 266 266L   . A real 
model would consist of the FOV 246 246   region of this image which we named as realy  
so far. Most recent algorithms deal with this real image but making assumptions about the 
boundaries and yielding a restored image of 246 246 . Consequently, the boundaries 
marked with the white broken line on the left are never restored. In contrast, our MLP 
outcomes a 256 256  sized image x̂  reconstructing the boundary area 251 20B   . 

To resolve this sort of problems we have implemented the MLP according to the following 
parameters. In the light of the expression (18) we have used the horizontal and vertical Sobel 
masks ( 3 3N   ) of Bovik, 2005 for the filters ξd  and μd . We already commented that the 
learning speed of the net is set to 2   and the regularization parameter   relies on a hand 
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tuning basis. Regarding the interconnection weights, they do not require any network 
training so the weigh matrices are all initialized to zero. Finally, we set the stopping criteria 
as a maximum number of 500 iterations (though never reached) or when the relative 
difference of the restoration error ( )E m  falls below a threshold of 310  in a temporal 
window of 10 iterations. 

  
Fig. 6. Degraded and truncated image by diagonal motion blur (right) and the expected 
boundary region to be reconstructed (left). 

In order to measure the performance of our algorithm, we compute the standard deviation 
e  of the error image ˆ e x x  since it does not depend on the blurred image y  as in the 

ISNR (Banham and Katsaggelos, 1997). Regarding the boundary reconstruction process we 
particularize the standard deviation to the pixels of the boundary region B . 

4.1.1 Experiment 1 

Our first experiment takes the Lena image degraded by several motion and uniform blurs. 
Regarding the motion blur, we establish 45º of inclination and the length of pixels is varied 
between 5 and 15. We have used the approximation of Matlab to construct the filter of 
motion which leads to masks between 5 5  and 11 11  in size. Analogously, the uniform 
blur is defined with odd sizes between 5 5  and 11 11 . In terms of Gaussian noise we set 
a ratio of BSNR 20 dB . 

The results of the MLP are shown in Table 2. As presumable, the quality of restoration is 
getting worse as the size of the blur increases, but let us remark that the boundary 
reconstruction area is also expanding. If we compare the results between blurs we can 
observe that the uniform mask achieves better values at the boundaries, but lower in the 
center for the same size. It can be thought of a spatial varying restoration process of the MLP 
in the center with respect to the boundaries. 

To visually assess the performance of the MLP we select some of the results indicated in the 
previous table. On the left of Fig. 7 we depict the Lena restored image for a diagonal motion 
blur of 10 pixels. The restored boundary area is 252 16  in size marked by a white broken 
line and reveals how the borders are successfully regenerated without neither any image 
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these delta functions are respectively the relative error components (ringing and noise) 
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tuning basis. Regarding the interconnection weights, they do not require any network 
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as a maximum number of 500 iterations (though never reached) or when the relative 
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Fig. 6. Degraded and truncated image by diagonal motion blur (right) and the expected 
boundary region to be reconstructed (left). 
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information nor prior assumption on the boundary conditions. Likewise, we illustrate the 
restored image with a uniform blur of 7 7  on the right and a boundary region of 253 12 . 

Motion   
Length Size e  eB      

5 5 5 8.70 24.59     
6 5 5 8.70 20.58     
7 7 7 10.35 27.23  Uniform
8 7 7  10.25 24.05  Size e  eB  
9 7 7 10.26 20.96  5 5 8.90 17.29 

10 9 9 11.62 26.04  7 7 11.32 19.64 
11 9 9 11.50 23.36  9 9 13.20 20.64 
12 9 9 11.51 20.85  11 11 14.69 22.27 
13 11 11 12.78 25.85     
14 11 11 12.61 23.15     
15 11 11 12.63 21.10     

Table 2. Numeric values of e  and eB  for different sizes of degradation. 

  
Fig. 7. Restored images of the MLP when using motion (left) and uniform (right) blurs. 

4.1.2 Experiment 2 

This experiment aims to compare the performance of the MLP with other restoration 
algorithms which need BCs to deal with a realistic capture model: zero, periodic, reflective 
and anti-reflective as commented in Section 2.1. We have used the RestoreTools, 2007 library 
patched with the anti-reflective modification which implements the matrix-vector 
operations for every boundary condition. In particular, we have selected an algorithm of this 
library named as HyBR (hybrid bidiagonalization regularization) that is a modified version 
of the Tikhonov regularization. 

Let us consider the Barbara image degraded by a 7 7  Gaussian blur and the same additive 
white noise of the previous experiments with BSNR 20 dB . Fig. 8 shows the restored 
images of the HyBR method from a real acquisition of FOV 250 250   in size (field of 
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view). We can observe that the restored images for each boundary condition are all 
250 250  sized images which miss the information of the boundaries up to 256 256 . 
Furthermore, a remarkable boundary ringing can be appreciated for the periodic BCs as 
result of the discontinuity of the image in the boundaries. As demonstrated in Martinelli et 
al., 2006 the reflexive and the anti-reflexive conditions perform considerably better 
removing that boundary effect. 

The restored image of our MLP algorithm is shown on the bottom-right of Fig. 8 and makes 
obvious the good performance of the neural net. First, the boundary ringing is negligible 
without prior assumption on the boundary condition. Moreover, the visual aspect is better 
compared to the others which recalls the good properties of the TV regularizer. To 
numerically contrast the results, the parameter e  of the MLP is measured only in the FOV 
region. It leads to 12.47eF   which is notably lower to the values of the HyBR algorithm 
(e.g. 12.99eF   for the reflexive BCs). Finally, the MLP is able to reconstruct the 253 12  
sized boundary region and outcomes the original image size of 256 256 . 

 

  

Fig. 8. Restored images with HyBR under periodic (upper-left), reflective (upper-right) and 
anti-reflective (bottom-left) BCs. Restored image with our MLP (bottom-right). 
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4.1.3 Experiment 3 

Finally, let us compare with other algorithms of the literature which deal with the boundary 
problem in a different sense from the typical BCs and that reconstruct the area B  bordering 
the field of view. In recent research Bishop, 2008 proposed a method based on the Bayesian 
model and treated the truncation effect as modeling error. To make a better comparison we 
have updated the MLP to leverage the concept of extended image of this method by 
removing the operator trunc   from all formulae of Section 3.1 and setting the observed 
image realy  at the input of the MLP instead of the truncated image truy . 

 

  

Fig. 9. Restored images with Bishop’s method: uniform (upper-left) and Gaussian (bottom-
left) blurs. Likewise for MLP: uniform (upper-right) and Gaussian (bottom-right). 

Looking at Table 3 we find out that the values of e  are quite similar for both methods, being 
the MLP which outperforms in the Gaussian and motion blurs. But what really deserves 
attention are the results in the boundary region B . The MLP is considerably better 
reconstructing the missed boundaries as indicated by the lower values of eB . Then, it reveals 
the outstanding properties of the neural net in terms of learning about the unknown image.  

 
Iterative Restoration Methods to Loose Estimations Dependency of Regularized Solutions 

 

163 

Bishop MLP 

Blur e  eB  eF  e  eB  eF  

Uniform 13.23 17.43 12.99 13.53 15.05 13.45 

Gaussian 12.49 17.79 12.18 12.33 14.13 12.24 

Motion 11.37 17.63 10.97 11.33 12.58 11.27 

Table 3. Comparison between Bishop’s method and MLP for various PSFs 

Let us visually assess the performance of both methods for some experiments of Table 3. In 
particular, we have used two 250 250  sized images degraded by uniform and Gaussian 
blurs of 7 7 . The restored images appear in Fig. 9 with 256 256  in size and thus 
reconstructing the boundary area 253 12B   . Despite the fact that the value of e  is lower 
for the Bishop’s method in the uniform blur, we can observe that the subjective quality of 
the MLP output is better. As for the Gaussian blur the restored images look similar although 
the value of e  is in favor of the neural net. 

4.2 Desensitization experiments 

In this case our experiments aim to compare the performance of the desensitization filter G  
with respect to the classical filters G  Wiener and Tikhonov when having errors on the 
estimations. So let us define a way to measure the deviations from the real value of the 
parameters. Let P  be the relative error of a generic parameter P  defined as follows 

 100real estimated
P

real

P P
P

 
   (30) 

where realP  and estimatedP  stand for the respective real and estimated values of the parameter 
P . Provided that these parameters are real variables, the relative error P  is also extended 
along the range P    , even though we only consider the significant values ranged 
between 100  and 100 %. 

The types of parameters for these experiments have to do with the noise and blurs of 
previous experiments. As for the noise we shall deal with the variance 2

n  of a Gaussian 
additive sample (  ). On the other hand, we shall focus on the motion blur so that we can 
observe the effects of mistaking the angle   (  ). 

In terms of implementation let us recall that the proposed desensitization algorithm yields a 
different number of iterations m  for every pair ( , )i j   due to its dependence on the 
product ˆ ˆGH . By using the expression (29) we obtain a value of m  for those pairs whose 
regularization term ˆ ˆGH  is within the range ˆ ˆ0.14 0.84GH  . Thus, a criterion will be 
adopted for choosing a number of iterations for the rest of frequencies. Owing to the 
increasing trend of m  with respect to ˆ ˆGH  (see Table 1), all pairs whose corresponding 
regularization value exceeds 0.84 are associated to the upper bound of iterations and 
likewise the minimum value (cero) if ˆ ˆGH  is below 0.14. 
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In view of the expressions (14) and (15) let us do some remarks. First, the spectral density of 
the Gaussian white noise is just its variance 2

nn nS  . As for the spectral density xxS  it is 
commonly estimated by means of the spectral density of the observed image yyS , which in 
turn is estimated by the periodogram approximation (Marple, 1987)  

 2
2
1

yyS Y
L

  (31) 

Finally, the parameter   of (15) is typically computed by the discrepancy principle 
(Bonesky, 2009) which establishes that  

 2 2 2
2 2

ˆ nL  y Hx n  (32) 

In these experiments we do use the common ISNR (improvements on the signal-to-noise 
ratio) as the objective metric. 

4.2.1 Experiment 1 

In a first simulation we shall execute the desensitization filter for the whole range 
100 100Pε     of the relative error of the parameters 2

n  and  . The original motion blur 
is described by a length of 15 pixels and an angle of 45 degrees in a counter-clockwise 
direction. And the Gaussian noise is added according to a specific BSNR of 20 dB . This 
experiment is computed for the two original filters Wiener and Tikhonov when facing a 
degraded image Cameraman. 

In Fig. 10 we can observe the regions of desensitization for the Wiener filter. As for the noise 
estimation the desensitization filter outperforms from a specific value   on. Regarding the 
angle estimation   our method achieves better results outside a bandwidth. In Santiago, 
2007 it is demonstrated that the desensitization method may completely outperform in case 
of high enough noise conditions. 

If we look into the results of the Tikhonov filter in Fig. 11 we come up with better results as 
it is required a lower value of   to be in the desensitization region (with less than 10%). 
This situation may be typical in a method of estimation of the noise variance and therefore 
our iterative scheme means a successful solution. With regard to the blur estimation   the 
region of desensitization is practically the same as in the Wiener example, so it reveals the 
better behavior of our algorithm in case of the noise. 

4.2.2 Experiment 2 

Finally, we devote this section to visually analyze the results of the desensitization filter for 
the optimum case: noise estimation and Tikhonov filter. We shall use the Barbara and Lena 
images degraded by a Gaussian blur of size 10 10 , and we keep the same noise level as in 
previous experiments with BSNR 20 dB . The estimation error   is fixed to 10%. 

We have printed in Fig. 12 the restored images obtained by the Tikhonov and the 
desensitization filter in each case. It is remarkable how the Tikhonov algorithm is highly 
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affected by the small error in noise estimation with a significant noise-dependent error on 
the textures of Barbara and Lena. However, our algorithm is able to counteract this effect 
and provide a restored image with a better visual aspect. The numeric figures of ISNR also 
make evidence of this situation. In Barbara we obtain a value of ISNR 2.46 dB   for the 
Tikhnov filter whereas the desensitization clearly improves it with ISNR 2.38 dB . 
Analogously, we end up with ISNR 3.53 dB   and ISNR 2.45 dB  in the Lena example. 

 
Fig. 10. ISNR for errors on estimations 2

n  and   of Wiener filter. 
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Fig. 11. ISNR for errors on estimations 2

n  and   of Tikhonov filter. 
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Fig. 12. Restored images with Tikhonov filter (upper-left and bottom-left) compared to the 
restored images of the desensitization filter (upper-right and bottom-right). 

5. Conclusion 
This chapter has addressed two well-known problems of the regularization solutions in 
image restoration: dependency of boundary conditions and sensitivity to parameters 
estimations. Following a similar iterative concept of restoration-degradation we have 
provided two algorithms in the spatial and frequency domain respectively. 

On the one hand, we have presented a neural network which aims to restore a real observed 
image where the borders outside the field of view (FOV) have been truncated. The idea is to 
apply a TV-based regularization function in an iterative minimization of a MLP (Multilayer 
perceptron) according to a backpropagation strategy. It achieves to not only restore the 
center of the image following the optimum linear solution (the ringing artifact thus being 
negligible), but also reconstruct the boundary area without any prior.  



 
Image Restoration – Recent Advances and Applications 

 

166 

 
Fig. 11. ISNR for errors on estimations 2

n  and   of Tikhonov filter. 

 
Iterative Restoration Methods to Loose Estimations Dependency of Regularized Solutions 

 

167 

 

  

Fig. 12. Restored images with Tikhonov filter (upper-left and bottom-left) compared to the 
restored images of the desensitization filter (upper-right and bottom-right). 

5. Conclusion 
This chapter has addressed two well-known problems of the regularization solutions in 
image restoration: dependency of boundary conditions and sensitivity to parameters 
estimations. Following a similar iterative concept of restoration-degradation we have 
provided two algorithms in the spatial and frequency domain respectively. 

On the one hand, we have presented a neural network which aims to restore a real observed 
image where the borders outside the field of view (FOV) have been truncated. The idea is to 
apply a TV-based regularization function in an iterative minimization of a MLP (Multilayer 
perceptron) according to a backpropagation strategy. It achieves to not only restore the 
center of the image following the optimum linear solution (the ringing artifact thus being 
negligible), but also reconstruct the boundary area without any prior.  



 
Image Restoration – Recent Advances and Applications 

 

168 

The proposed restoration scheme has been validated by means of several tests. As a result, 
we can conclude the ability of our neural net to deal with the non-linearity of border 
truncation and its learning properties about the degradation model so as to regenerate the 
missed boundaries. In fact, it clearly outperforms when comparing with other methods of 
the state-of-the-art which also try to inpaint the boundary area.  

The second algorithm of this chapter outcomes a frequency-based restoration filter which 
desensitizes an original method when having errors on its parameters. By means of an 
iterative sequence of restoration-degradation processes for each frequency pair we come up 
with a trade-off between desensitization and restoration error. In particular, the noise-
dependent error is more robust to estimations than the ringing error which gets higher as 
the iterations increase.  

Various tests demonstrate that the region of desensitization is located from a low value of 
parameters errors, being more evident in the noise variance and using the Tikhonov filter. 
We observed the undesirable effects on the original filter in spite of the low error, while our 
desensitized filter counteract this noise error with successful results. 
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1. Introduction

Shooting a real world image with a camera through an optical device gives a 2-D image
where at least some parts are affected by a blur and noise. Images can be blurred by
atmospheric turbulence, relative motion between sensors and objects, longer exposures, and
so on, but the exact cause of blurring may be unknown. Restoration of blurred noisy images
(Spiros et al., 2009; 2010; Su et al., 2007) is one of the main topics in many processing.
The literatures Alonso et al. (2008; 2005); Bar et al. (2006) have given good methods to
improve image qualities. The purpose of image restoration is to reconstruct an unobservable
true image from a degraded observation. An observed image can be written, ignoring
additive noise, as the two-dimensional (2-D) convolution of the true image with a linear
space-invariant (LSI) blur, known as the PSF. Restoration in the case of known blur,
assuming the linear degradation model, is called linear image restoration and it has been
presented extensively in the last three decades giving rise to a variety of solutions Chen et
al. (2000); Suyash et al. (2006); Gu et al. (2009); Lu et al. (2009) . In many practical situations,
however, the blur is unknown. Hence, both blur identification and image restoration must
be performed from the degraded image. Restoration in the case of unknown blur is called
blind image restoration Filip et al. (2003); Mario et al. (2003); Liao et al. (2005) . Existing
blind restoration methods can be categorized into two main groups: (i) those which estimate
the PSF a priori independent of the true image so as to use it later with one of the linear
image restoration methods, such as zero sheet separation, generalized cross validation, and
maximum likelihood and expectation maximization based on the ARMA image model Chang
et al., (1991); Reeves et al. (1992); Lagendijk et al. (1990) , and (ii) those which estimate the PSF
and the true image simultaneously, such as nonnegative sand support constraints recursive
inverse filtering, maximum likelihood and conjugate gradient minimization, and simulated
annealing Kundur et al. (1998); Katsaggelos et al. (1991) . Algorithms belonging to the first
class are computationally simple, but they are limited to situations in which the PSF has a
special form, and the true image has certain features. Algorithms belonging to the second
class, which are computationally more complex, must be used for more general situations. In
this paper, a kind of semi-blind image restoration algorithm is proposed in case of known the
blur type (defocused blurring).

In general, discrete model for a linear degradation caused by blurring can be given by the
following equation

y(i, j) = h(i, j) ∗ f (i, j) + n(i, j) (1)

8



 
Image Restoration – Recent Advances and Applications 

 

170 

Wu, Y. D.; Sun, Y.; Zhang, H. Y. & Sun, S. X. (2007). Variational PDE based image restoration 
using neural network. IET Image Processing, Vol. 1, No. 1, pp. 85–93, ISSN 1751-9659 

0

Defocused Image Restoration with Local
Polynomial Regression and IWF

Liyun Su
School of Mathematics and Statistics, Chongqing University of Technology

China

1. Introduction

Shooting a real world image with a camera through an optical device gives a 2-D image
where at least some parts are affected by a blur and noise. Images can be blurred by
atmospheric turbulence, relative motion between sensors and objects, longer exposures, and
so on, but the exact cause of blurring may be unknown. Restoration of blurred noisy images
(Spiros et al., 2009; 2010; Su et al., 2007) is one of the main topics in many processing.
The literatures Alonso et al. (2008; 2005); Bar et al. (2006) have given good methods to
improve image qualities. The purpose of image restoration is to reconstruct an unobservable
true image from a degraded observation. An observed image can be written, ignoring
additive noise, as the two-dimensional (2-D) convolution of the true image with a linear
space-invariant (LSI) blur, known as the PSF. Restoration in the case of known blur,
assuming the linear degradation model, is called linear image restoration and it has been
presented extensively in the last three decades giving rise to a variety of solutions Chen et
al. (2000); Suyash et al. (2006); Gu et al. (2009); Lu et al. (2009) . In many practical situations,
however, the blur is unknown. Hence, both blur identification and image restoration must
be performed from the degraded image. Restoration in the case of unknown blur is called
blind image restoration Filip et al. (2003); Mario et al. (2003); Liao et al. (2005) . Existing
blind restoration methods can be categorized into two main groups: (i) those which estimate
the PSF a priori independent of the true image so as to use it later with one of the linear
image restoration methods, such as zero sheet separation, generalized cross validation, and
maximum likelihood and expectation maximization based on the ARMA image model Chang
et al., (1991); Reeves et al. (1992); Lagendijk et al. (1990) , and (ii) those which estimate the PSF
and the true image simultaneously, such as nonnegative sand support constraints recursive
inverse filtering, maximum likelihood and conjugate gradient minimization, and simulated
annealing Kundur et al. (1998); Katsaggelos et al. (1991) . Algorithms belonging to the first
class are computationally simple, but they are limited to situations in which the PSF has a
special form, and the true image has certain features. Algorithms belonging to the second
class, which are computationally more complex, must be used for more general situations. In
this paper, a kind of semi-blind image restoration algorithm is proposed in case of known the
blur type (defocused blurring).

In general, discrete model for a linear degradation caused by blurring can be given by the
following equation

y(i, j) = h(i, j) ∗ f (i, j) + n(i, j) (1)

8



2 Image Restoration

where * indicates two-dimensional convolution, f (i, j) represents on original image, y(i, j) is
the degraded image, h(i, j) represents the two-dimensional PSF, and n(i, j) is the additive
noise. In this article, we deal only with additive Gaussian noise, as it effectively models the
noise in many different imaging scenarios. The difficulty in solving the restoration problem
with a spatially varying blur commonly motivates the use of a stationary model for the blur.
This leads to the following expression for the degradation system,

y(i, j) = h(i, j) ∗ f (i, j) + n(i, j) =
M

∑
k=1

N

∑
l=1

h(i − k, j − l) f (k, l) + n(i, j) (2)

The use of linear techniques for solving the restoration problem is facilitated by using
space-invariant model. Models that utilize space-variant degradations are also common, but
lead to more complex solutions. As for defocused blur, PSF is modeled as a uniform intensity
distribution within a circular disk,

h(i, j) =

{
1

πR2 if
√

i2 + j2 ≤ R
0 otherwise

(3)

where disk radius R is the only unknown parameter for this type of blur.

Many existing image restoration algorithms assume that the PSF is known, but in practical
it is not always the case. The restoration without knowing of the PSF is called blind image
restoration. Fourier methods can be used to estimate the defocused parameter R through
calculating a ratio of power of high frequencies portion to that of low frequencies portion.
However, a main drawback of the method is its bad noise immunity. To solve this problem, a
novel algorithm is proposed to overcome this shortcoming based on RBF neural network and
iterative Wiener filtering. The RBF neural network is applied to fit R. This scheme has good
fitting, but bad prediction. To avoid the weak generalization ability, a more efficient method
for estimating parameter R is also proposed. The prediction ability of these two methods is
compared with the trained five images. The steps of the presented algorithm in this chapter
is as follows: Firstly we construct feature vectors of several blurred images with known
defocused radius R in wavelet domain, then a RBF neural network or a multivariate local
polynomial estimation model is trained using the vectors as inputs and defocused parameters
as outputs. After the model is trained, the new defocused images are applied to the trained
model for predicting the parameter R. For a semi-blind defocused image, R can be estimated
through calculating the feature vectors and using it as input of the trained model. With known
radius R, many traditional algorithm could be applied to restore the degraded image. In this
chapter, iterative Wiener filtering(IWF) is adopted to image restoration.

2. Relationship between wavelet coefficients and R

The wavelet transform provides a powerful and versatile framework for image processing.
It is widely used in the fields of image de-noising, compression, fusion, image restoration
Patrick et al. (2004); Zhou et al. (2007); Guo et al. (2007), etc.

The two-dimensional discrete wavelet transform (DWT) Li et al. (2009; 2010) hierarchically
decompose an input image into a series of successively lower resolution images and their
associated detail images. DWT is implemented by a set of filters, which are convolved with
the image rows and columns. An image is convolved with low-pass and high-pass filters and
the odd samples of the filtered outputs are discarded resulting in down sampling the image
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by a factor of 2. The l level wavelet decomposition of an image I results in an approximation
image Xl and three detail images Hl , Vl , and Dl in horizontal, vertical, and diagonal directions
respectively. Decomposition into l levels of an original image results in a down sampled image
of resolution 2l with respect to the image as well as detail images.

When an image is defocused, edged in it are smoothed and widened. The amount of high
frequency band decreased, and that corresponding to low frequency band increases.

In order to denote the relationship between wavelet coefficients and defocused radius R, we
define five variables named v1, v2, v3, v4, and v5 as:

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

v1 = |V2|s/|H2|s
v2 = |H2|s/|X2|s
v3 = |H1|s/num{H1}
v4 = |H2|s/num{H2}
v5 = |D1|s/num{D1}

(4)

where | · |s represents the summation of all coefficients’ absolute value, num{·} is total number
of coefficients.

An original image is blurred artificially by a uniform defocus PSF with R whose value ranging
from 1 to 20. The relationship between v1, v2, v3, v4, v5 and R are shown in Fig.1, where
the curves are normalized in [0,1] interval. When R increases, v2, v3, v4 and v5 decrease
monotonously.
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Fig. 1. Relationship Between v1−5 and R

In order to estimate defocus parameter R, only known the roughly similar relationship is not
enough. As shown in Fig. 2, every image has monotonous curve between v2, v5 and R, but
they are not superposition. For a degraded unknown PSF image, R can not be calculated
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Fig. 2. Curve v2, and v5 of Different Images

because the curve of the given image is not known. For example, if v2 of image "rice" has
been calculated, and then we estimate R according curve if "ic" in Fig. 2, wrong results are
obtained obviously. To solve this problem, one of the methods is to choose neural networks.
Computational artificial neural networks are known to have the capability for performing
complex mappings between input and output data, but neural network method has bad
generalization ability. Here we also propose another multivariate local polynomial regression
model to estimate R. The variables v1−5 are chosen to train the RBF neural network and
multivariate local polynomial estimation model. Prediction Comparisons are made to verify
the advantages of multivariate local polynomial fitting.

3. Training RBF neural network and multivariate local polynomial estimation model

3.1 RBF neural network for defocused parameter

We propose and implement a parameter estimation technique in this section. Fig. 3 shows the
description of this technique. In the first phase a RBF neural network is designed and trained.
In the second phase R can be estimated using the trained neural network. A brief description
of this technique is given in the following paragraphs.

RBF neural network is a most commonly-used feed-forward network. It usually has one
hidden layer, and the basis function is radial symmetry. The output of the network looks
like:

yk(χ) =
α

∑
j=1

wkj ϕj(χ) + wk0 ⇔ y(χ) = Wϕ(χ) (5)

where χ is a put vector, wk0 is a set of bias constants, ϕ0(� χ − μj �) ≡ 1, α is the number of
RBF hidden neurons and W holds both weights and bias. In the experiments, the radial basis

174 Image Restoration – Recent Advances and Applications Defocused Image Restoration with Local Polynomial Regression and IWF 5

Fig. 3. Defocus Parameter Estimation Process

functions are chosen as of Gaussian type:

ϕj(� χ − μj �) = exp[− 1
2γ2

j
� χ − μj �2] (6)

where μj is the center and γj is the standard deviation of the Gaussian function, respectively.

Sixteen original images are chosen to train the RBF net. The images are defocused artificially
with R whose value ranging from 2 to 7. So the total number of training samples are 96. Then
feature vectors are constructed using variables p1−5 of each image:

χ = (p1, p2, p3, p4, p5) (7)

For the network output vector, we use one-of-k encoding method, that is, for R =2, t =
(0, 0, 0, 0, 0, 1)T ; for R = 3, t = (0, 0, 0, 0, 1, 0)T , and so on.

When training samples {χi, ti}96
i=1 are given, the weights matrix W can be obtained as W =

TΦ†, Φ† is pseudo-inverse of Φ, where Φ is a matrix:

Φ =

⎛
⎜⎜⎜⎝

1 · · · 1
ϕ(||χ1 − μ1||) · · · ϕ(||χ96 − μ1||)

...
...

...
ϕ(||χ1 − μα||) · · · ϕ(||χ96 − μα||)

⎞
⎟⎟⎟⎠ (8)

and T = (t1, t2, · · · , t96).

After obtaining weights matrix W, the defocused parameter R can be calculated using the
trained RBF network.
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3.2 Multivariate local polynomial regression for defocused parameter

Multivariate local polynomial fitting is an attractive method both from theoretical and
practical point of view. Multivariate local polynomial method has a small mean squared error
compared with the Nadaraya − Watson estimator which leads to an undesirable form of the
bias and the Gasser − Muller estimator which has to pay a price in variance when dealing
with a random design model. Multivariate local polynomial fitting also has other advantages.
The method adapts to various types of designs such as random and fixed designs, highly
clustered and nearly uniform designs. Furthermore, there is an absence of boundary effects:
the bias at the boundary stays automatically of the same order as the interior, without use
of specific boundary kernels. The local polynomial approximation approach is appealing on
general scientific grounds: the least squares principle to be applied opens the way to a wealth
of statistical knowledge and thus easy generalizations. In this Section, we briefly outline and
review the idea of the extension of multivariate local polynomial fitting Kantz et al. (1997);
Fan et al. (1996); Su (2010) to the parameter R of defoused PSF.

3.2.1 Multivariate kernel function

To localize data in the m-dimension, we need a multi kernel function. Generally speaking, a
multivariate kernel function refers to a m-variate function satisfying

∫ +∞

−∞
· · ·

∫ +∞

−∞
K(x)dx = 1 (9)

Here and hereafter, we use
∫

to indicate multivariate integration over the m-dimensional
Euclidean space.

There are two common methods for constructing multivariate kernel functions. For a
univariate kernel k(x), the product kernel is given by

K(x) =
m

∏
i=1

k(xi), (10)

and the spherically symmetric kernel is defined as

K(x) = cK,mK(�x�). (11)

where cK,m = {∫ K(�x�)dx}−1 is a normalization constant and �x� = (x2
1 + x2

2 + · · · +
x2

m)
−1/2. Popular choices of K(x) include the standard d-variate normal density

K(x) = (2π)−m/2exp(−�x�2/2) (12)

and the spherical Epanechnikov kernel

K(x) = {d(d + 2)Γ(m/2)/(4πm/2)}(1 − �x�2)+ (13)

The latter is the optimal kernel, according to Fan et al Fan et al. (1996); Su (2010).

The localization in multivariate nonparametric regression is frequently carried out by the
kernel weighting. Let H be a symmetric positive-definite matrix called a bandwidth matrix.
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The localization scheme at a point x assigns the weight

KH(Xi − x), with KH(x) = |H|−1K(H−1x), (14)

where |H| is the determinant of the matrix H. The bandwidth matrix is introduced to
accommodate the dependent structure in the independent variables. For practical problems,
the bandwidth matrix H is taken to be a diagonal matrix. The different independent variables
will be accommodated into different scales. For simplification, the bandwidth matrix is
designed into H = hIm (Im denoting the identity matrix of order m).

3.2.2 Multivariate predictor with local polynomial fitting

Suppose that the input vector is V = (v1, v2, v3, v4, v5). The model is fitted by the function

R = f (V). (15)

Our purpose is to obtain the estimation R̂ = f̂ (V) of function f . This paper, we use the dth
order multivariate local polynomial f (V) to predict the defocused parameter RT value based
on the point VT of the test image. The polynomial function can be described as

f (V) ≈ ∑
0≤|j|≤d

1
j!

D(j) fi(VT)(V − VT)
j = ∑

0≤|j|≤d
bj(VT)(V − VT)

j (16)

where

m = 5, j = (j1, j2, · · · , jm), j! = j1!j2! · · · jm!, |j| =
m

∑
l=1

jl , (17)

∑
0≤|j|≤d

=
d

∑
|j|=0

(

|j|
∑

j1=0

|j|
∑

j2=0
· · ·

|j|
∑

jm=0
)

|j|=j1+j2+···+jm

, Vj = vj1
1 vj2

2 · · · vjm
m , (18)

D(j) fi(VT) =
∂|j| fi(V)

∂vj1
1 ∂vj2

2 · · · ∂vjm
m
|V=VT , bj(VT) =

1
j!

D(j) fi(VT). (19)

In the multivariate prediction method, VTa (a = 1, 2, · · · , A) denoting the trained image feature
vectors. Using A pairs of (VTa , Ra), for which the values are already known, the coefficients of
fi is determined by minimizing

A

∑
a=1

[Ra − ∑
0≤|j|≤d

bj(VT)(VTa − VT)
j]2 · KH(VTa − VT) (20)

For the weighted least squared problem, a matrix form can be described by

W1/2 · Y = W1/2 · X · B + ε (21)

where
Y = (y1, y2, · · · , yA)

T , ya = Ra, (22)

B = (b0(VT), b1(VT), · · · , bd(VT))
T , (23)
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W = diag{KH(VT1 − VT), KH(VT2 − VT), · · · , KH(VTA − VT)} (24)

and X is the A × S (S = ∑
0≤|j|≤d

|j|
j! )

X =

⎛
⎜⎜⎜⎜⎝

1 (VT1 − VT)
1 · · · (VT1 − VT)

d

1 (VT2 − VT)
1 · · · (VT2 − VT)

d

...
...

. . .
...

1 (VTA − VT)
1 · · · (VTA − VT)

d

⎞
⎟⎟⎟⎟⎠

(25)

We then have the least squared solution with multivariate local polynomial fitting.

B̂ = (W1/2X)†Y (26)

or, when XTWX is inverse, the estimation can be written by

B̂ = (XTWX)−1XTWY (27)

then, we can get the estimation R̂T = f̂ (VT)

R̂T = f̂ (VT) = E1(XTWX)−1XTWY (28)

where E1 = (1, 0, 0, · · · , 0)1×S.

Computing the B̂ will suffer from large computational cost. we can use the recursive least
squared method to reduce the computation complexity, and it is very powerful especially in
the real time prediction problems. There are several important issues about the bandwidth,
the order of multivariate local polynomial function and the kernel function which have to be
discussed. The three problems will be presented in Section 3.2.3.

3.2.3 Parameters selections

For the multivariate local polynomial predictor, there are three important problems which
have significant influence to the prediction accuracy and computational complexity. First
of all, there is the choice of the bandwidth matrix, which plays a rather crucial role. The
bandwidth matrix H is taken to be a diagonal matrix. For simplification, the bandwidth
matrix is designed into H = hIm. So the most important thing is to find the bandwidth h.
A too big bandwidth under-parameterizes the regression function, causing a large modeling
bias, while a too small bandwidth over-parameterizes the unknown function and results in
noisy estimates. In theory, there exists a optimal bandwidth hopt in the meaning of mean
squared error, such that

hopt = arg min
h

�
( f (x)− f̂ (x))2dx (29)

But the optimal bandwidth can not be solved directly. So we discuss how to get the
asymptotically optimal bandwidth. There are quite a few important techniques for selecting
the bandwidth. such as cross-validation and plug-in bandwidth selectors. a conceptually
simple technique, with theoretical justification and good empirical performance , is the plug-in
technique.
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Another issue in multivariate local polynomial fitting is the choice of the order of the
polynomial. Since the modeling bias is primarily controlled by the bandwidth, this issue is
less crucial however. For a given bandwidth h, a large value of d would expectedly reduce the
modeling bias, but would cause a large variance and a considerable computational cost. Since
the bandwidth is used to control the modeling complexity, and due to the sparsity of local
data in multi-dimensional space, a higher-order polynomial is rarely used. We use the local
quadratic regression to indicate the flavor of the multivariate local polynomial fitting, that is
to say, d = 2.

The third issue is the selection of the kernel function. In this paper, of course, we choose the
optimal spherical Epanechnikov kernel function, which minimizes the asymptotic MSE of the
resulting multivariate local polynomial estimators, as our kernel function.

3.2.4 Estimating the defocused parameter

Twenty original images are chosen to train the model. The images are defocused artificially
with R whose value ranging from 2 to 7. So the total number of training samples are 120. Then
feature vectors are constructed using variables v1−5 of each image:

V = (v1, v2, v3, v4, v5) (30)

The defocused parameters R is the model output.

When training samples {VTa , Ra}120
a=1 are given, obtaining weights matrix B, according to the

relationship between the V and R, then the defocused parameter R can be calculated using
the trained model.

4. Iterative Wiener filter

Wiener filtering (minimizing mean square error ) is commonly used to restore
linearly-degraded images. To obtain optimal results,there must be accurate knowledge of
the covariance of the ideal image. In this section, the so-called iterative Wiener filter Su et al.
(2008); Allen et al. (1990)is used to restore the original image.

The imaging system H is assumed to be linear shift invariant with additive, independent,
white noise processes of known variance. the model for the observed image y is given in
matrix notation by

y = H f + n (31)

where f is the ideal image. The optimal linear minimum mean-squared error, or Wiener
restoration filter given by

f̂ = By (32)

where B = R f f HT [HR f f HT + Rnn]−1, requires accurate knowledge of R f f , the
autocorrelation of ideal image f . However, in practical situations f is usually not available
and only a single copy of the blurred image to be restored, y, is provided. In the absence
of a more accurate knowledge of the ideal image f , the blurred image y is often used in its
place simply because there is no other information about f readily available. The signal y is
subsequently used to compute an estimate of R f f and this estimate is used in place of R f f in
Equation (32).

The following summarizes the iterative Wiener filtering procedure.
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step 1 Initialization: Use y to compute an initial (i=0) estimate of R f f by

R f f (0) = Ryy = E{yyT} (33)

Step 2 Filter construction: Use R f f (i), the ith estimate of R f f to construct the (i + 1)th

restoration filter B(i + 1) given by

Bi+1 = R f f HT [HR f f HT + Rnn]
−1 (34)

Step 3 Restoration: Restore y by the B(i + 1) filter to obtain f̂ (i + 1), the (i + 1)th estimate of f

f̂ (i + 1) = B(i + 1)y (35)

Step 4 Update: Use f̂ (i + 1) to compute an improved estimate of R f f , given by

R f f (i + 1) = E{ f̂ (i + 1) f̂ T(i + 1)} (36)

Step 5 Iteration: Increment i and repeat steps 2,3,4, and 5.

5. Experimental results and analysis

The experiments are carried out by using the Matlab image processing toolbox. The
performance of the proposed image restoration algorithm has been evaluated using the
classical gray-scale Moon image, Coins image, Saturn image, and Tire image in Matlab
toolbox. To verify the good ability of restoration of the proposed algorithm, one real blurred
image is used for the deconvolution procedure. The results show our method is very
successful for this kind of blurred image.

In image restoration studies, the degradation modelled by blurring and additive noise is
referred to in terms of the metric blurred signal-to-noise ratio (BSNR). This metric for a
zero-mean M × N image is given by

BSNR = 10log10{
1

MN ∑M
m=1 ∑N

n=1 z2(m, n)
σ2

v
} (37)

where z(m, n) is the noise free blurred image and σ2
v is the additive noise variance.

For the purpose of objectively testing the performance of linear image restoration algorithms,
the improvement in signal-to-noise ratio (ISNR) is often used. ISNR is defined as

ISNR = 10log10{∑M
m=1 ∑N

n=1[ f (m, n)− y(m, n)]2

∑M
m=1 ∑N

n=1[ f (m, n)− f̂ (m, n)]2
} (38)

where f (m, n) and y(m, n) are the original and degraded image pixel intensity values and
f̂ (m, n) is the restored true image pixel intensity value. ISNR cannot be used when the true
image is unknown, but it can be used to compare different methods in simulations when the
true image is known.

In order to find the good performance of the proposed multivariate local polynomial
Regression method (MLPR) compared with the RBF neural network algorithm (RBFNN) Su
et al. (2008), the same defocused blurred images are used for the experiments. Mean squared
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prediction errors are shown in Table1. From Table 1, we can conclude that the prediction
results of MLPR predictor are significantly better than the RBF neural network method in the
same simulated data.

training image different methods eMSE
Moon RBFNN 4.81 ×10−6

Moon MLPR 4.13 ×10−8

Coins RBFNN 5.06 ×10−6

Coins MLPR 3.97 ×10−8

Saturn RBFNN 6.62 ×10−6

Saturn MLPR 5.65 ×10−9

Tire RBFNN 8.04 ×10−6

Tire MLPR 7.19 ×10−8

Table 1. MSE using both methods

Fig. 4. RBFNN method result of Coins. True image(left); blurred image(middle); estimated
image(right), BSNR=12.35, ISNR=22.56

Fig. 5. RBFNN method result for Tire. True image(left); blurred image (middle); restored
image(right), BSNR=11.22, ISNR=23.14

Figures 4 and 5, in which the true images, blurred images and estimated true images are
depicted in the left, middle and right column, respectively, illustrate how the method behaves
in Coins and Tire images. It is clear from Figs. 4 and 5 that performance of the RBFNN
method is effective in different images. Figures 6, 7, 8 and 9, in which the true images,

Fig. 6. Result of Moon. True image(left); blurred image(middle); estimated image(right),
BSNR=12.35, ISNR=22.56

blurred images and estimated true images are depicted in the left, middle and right column,
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Fig. 7. Result for Coins. True image(left); blurred image (middle); restored image(right),
BSNR=11.22, ISNR=23.14

Fig. 8. Result for Saturn. True image(left); blurred image (middle); restored image(right),
BSNR=13.17, ISNR=24.31

Fig. 9. Result for Tire. True image(left); blurred image (middle); restored image(right),
BSNR=11.56, ISNR=22.09

Fig. 10. Result for real blurred image. blurred image (left); restored image(right)

respectively, illustrate how the method behaves in Moon, Coins, Saturn and Tire images. It is
clear from Figs.6-9 that performance of the new method is effective in different images. Figure
10 also shows that the presented MLPR algorithm is good for real blurred image. And from
the BSNR and ISNR in Figures 4, 5, 7, 9 we can see that the MLPR defocused image restoration
method is better than RBFNN algorithm.

6. Conclusions

Two new methods that are based on RBF neural network, multivariate local polynomial
regression model and iterative Wiener filtering for semi-blind restoration of blurred noisy
images were proposed in this chapter. Defocused parameter was estimated by a RBF neural
network or multivariate local polynomial regression model trained in wavelet domain. The
main advantages of the proposed techniques are that they are not only robust to noise because
wavelet transform have an excellent de-noising ability, but also effective to artificially and
practically defocused blurred image. Restoration is successfully realized by the iterative
Wiener filter, resulting in improved the image quality. The algorithm was justified via
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simulation and real image. Defocused image parameter can be successfully estimated by
using trained model. Experimental results show the proposed schemes are reliable and robust
for defocused blurred image restoration. Comparisons are made to verify the advantages of
multivariate local polynomial regression based method.

7. Acknowledgment

This work was supported by Chongqing CSTC foundation of China (CSTC2010BB2310,
CSTC2011jjA40033), Chongqing CMEC foundation of China (KJ080614,KJ100810,KJ100818),
CQUT foundation of China (2007ZD16).

8. References

Spiros C., Vasilios N. K., and Dimitrios P. (2009). Applications of the Moore-Penrose Inverse
in Digital Image Restoration. Mathematical Problems in Engineering, 2009:1-12.

Spiros C., Vasilios N. K., and Dimitrios P. Digital Image Reconstruction in the Spectral
Domain Utilizing the Moore-Penrose Inverse. Mathematical Problems in Engineering,
2010, Article ID 750352, 14 pages.

Su L., Ma H., Li Z., and Ju S. Blind image restoration based on constant modulus with
averaging and ANFIS. in Proceedings of Fourth International Conference on Image and
Graphics (ICIG’07), pp.143-148, Chengdu, China.

Alonso M., and Adjouadi M., Digital image inverse filtering for improving visual acuity for
computer users with visual aberrations. Inverse Problems in Science and Engineering,
16(8): 957-966.

Alonso M., Cremades J. G., Jacko J., and Adjouadi M., Image Pre-compensation to facilitate
computer access for users with refractive errors. Behaviour & Information Technology,
24(3):161-173.

Bar L., Sochen N., and Kiryati N., Semi-blind image restoration via Mumford-Shah
regularization. IEEE Trans. Image Process, 15(2):483-493.

Chen W., Chen M., and Zhou J., Adaptively Regularized Constrained Total Least-Squares
Image Restoration. IEEE Trans. on Image Processing, 9(4):588-596.

Suyash P. A. and Ross T. W., Unsupersived, Information-Theoretic, Adaptive Image Filtering
for Image Restoration. IEEE Trans. on Pattern Analysis and Machine Intellgence,
28(3):364-375.

Gu X. and Li G., A new method for parameter estimation of edge-preserving regularization in
image restoration. Journal of Computational and Applied Mathematics, 225(2):478-486.

Lu L., Michael K. N., and Lin F., Approximation BFGS methods for nonlinear image
restoration. Journal of Computational and Applied Mathematics, 226(1):84-91.

Filip S. and Jan F., Multichannel Blind Iterative Image Restoration. IEEE Trans. on Image
Processing, 12(9):1094-1106.

Mario A. T. F., Robert D. N., An EM Algorithm for Wavelet-Based Image Restoration. IEEE
Trans. on Image Processing, 12(8):906-916.

Yehong Liao and Xueyin Lin, "Blind Image Restoration with Eigen-Face Subspace," IEEE Trans.
on Image Processing, vol. 14, no. 11, pp. 1766-1772, 2005.

M. M. Chang, A. M. Tekalp, and A. T. Erdem, "Blur Identification using the Bi-Spectrum," IEEE
Trans. on Image Processing, vol. 39, no. 10, pp.2323-2325, 1991.

Reeves S. J. and Mersereau R. M. , Blur Identification by the Method of Generalized
Cross-Validation. IEEE trans. on Image Processing, 1(7):301-311.

183Defocused Image Restoration with Local Polynomial Regression and IWF



12 Image Restoration

Fig. 7. Result for Coins. True image(left); blurred image (middle); restored image(right),
BSNR=11.22, ISNR=23.14

Fig. 8. Result for Saturn. True image(left); blurred image (middle); restored image(right),
BSNR=13.17, ISNR=24.31

Fig. 9. Result for Tire. True image(left); blurred image (middle); restored image(right),
BSNR=11.56, ISNR=22.09

Fig. 10. Result for real blurred image. blurred image (left); restored image(right)

respectively, illustrate how the method behaves in Moon, Coins, Saturn and Tire images. It is
clear from Figs.6-9 that performance of the new method is effective in different images. Figure
10 also shows that the presented MLPR algorithm is good for real blurred image. And from
the BSNR and ISNR in Figures 4, 5, 7, 9 we can see that the MLPR defocused image restoration
method is better than RBFNN algorithm.

6. Conclusions

Two new methods that are based on RBF neural network, multivariate local polynomial
regression model and iterative Wiener filtering for semi-blind restoration of blurred noisy
images were proposed in this chapter. Defocused parameter was estimated by a RBF neural
network or multivariate local polynomial regression model trained in wavelet domain. The
main advantages of the proposed techniques are that they are not only robust to noise because
wavelet transform have an excellent de-noising ability, but also effective to artificially and
practically defocused blurred image. Restoration is successfully realized by the iterative
Wiener filter, resulting in improved the image quality. The algorithm was justified via

182 Image Restoration – Recent Advances and Applications Defocused Image Restoration with Local Polynomial Regression and IWF 13

simulation and real image. Defocused image parameter can be successfully estimated by
using trained model. Experimental results show the proposed schemes are reliable and robust
for defocused blurred image restoration. Comparisons are made to verify the advantages of
multivariate local polynomial regression based method.

7. Acknowledgment

This work was supported by Chongqing CSTC foundation of China (CSTC2010BB2310,
CSTC2011jjA40033), Chongqing CMEC foundation of China (KJ080614,KJ100810,KJ100818),
CQUT foundation of China (2007ZD16).

8. References

Spiros C., Vasilios N. K., and Dimitrios P. (2009). Applications of the Moore-Penrose Inverse
in Digital Image Restoration. Mathematical Problems in Engineering, 2009:1-12.

Spiros C., Vasilios N. K., and Dimitrios P. Digital Image Reconstruction in the Spectral
Domain Utilizing the Moore-Penrose Inverse. Mathematical Problems in Engineering,
2010, Article ID 750352, 14 pages.

Su L., Ma H., Li Z., and Ju S. Blind image restoration based on constant modulus with
averaging and ANFIS. in Proceedings of Fourth International Conference on Image and
Graphics (ICIG’07), pp.143-148, Chengdu, China.

Alonso M., and Adjouadi M., Digital image inverse filtering for improving visual acuity for
computer users with visual aberrations. Inverse Problems in Science and Engineering,
16(8): 957-966.

Alonso M., Cremades J. G., Jacko J., and Adjouadi M., Image Pre-compensation to facilitate
computer access for users with refractive errors. Behaviour & Information Technology,
24(3):161-173.

Bar L., Sochen N., and Kiryati N., Semi-blind image restoration via Mumford-Shah
regularization. IEEE Trans. Image Process, 15(2):483-493.

Chen W., Chen M., and Zhou J., Adaptively Regularized Constrained Total Least-Squares
Image Restoration. IEEE Trans. on Image Processing, 9(4):588-596.

Suyash P. A. and Ross T. W., Unsupersived, Information-Theoretic, Adaptive Image Filtering
for Image Restoration. IEEE Trans. on Pattern Analysis and Machine Intellgence,
28(3):364-375.

Gu X. and Li G., A new method for parameter estimation of edge-preserving regularization in
image restoration. Journal of Computational and Applied Mathematics, 225(2):478-486.

Lu L., Michael K. N., and Lin F., Approximation BFGS methods for nonlinear image
restoration. Journal of Computational and Applied Mathematics, 226(1):84-91.

Filip S. and Jan F., Multichannel Blind Iterative Image Restoration. IEEE Trans. on Image
Processing, 12(9):1094-1106.

Mario A. T. F., Robert D. N., An EM Algorithm for Wavelet-Based Image Restoration. IEEE
Trans. on Image Processing, 12(8):906-916.

Yehong Liao and Xueyin Lin, "Blind Image Restoration with Eigen-Face Subspace," IEEE Trans.
on Image Processing, vol. 14, no. 11, pp. 1766-1772, 2005.

M. M. Chang, A. M. Tekalp, and A. T. Erdem, "Blur Identification using the Bi-Spectrum," IEEE
Trans. on Image Processing, vol. 39, no. 10, pp.2323-2325, 1991.

Reeves S. J. and Mersereau R. M. , Blur Identification by the Method of Generalized
Cross-Validation. IEEE trans. on Image Processing, 1(7):301-311.

183Defocused Image Restoration with Local Polynomial Regression and IWF



14 Image Restoration

Lagendijk R. L., J. Biemond, and B. E. Boekee, Identification and Restoration of Noisy Blurred
Images using the Expectation-Maximization Algorithm. IEEE Trans. on Acoustics,
Speech, Signal Processing, 38(7):1180-1191.

D. Kundur and D. Hatzinakos, A Novel Blind Deconvolution Scheme for Image Restoration
using Recurisive Filtering. IEEE Trans. on Signal Processing, 46(2):375-390.

A. K. Katsaggelos and K. T. Lay, Maximum Likelihood Blur Identification and Image
Restoration using the EM Algorithm," IEEE Trans. on Signal Processing, 39(3):729-733.

Su L., Li F., Xu F., and Liu Y., Defocused Image Restoration Using RBF Network and Iterative
Wiener Filter in Wavelet Domain. in Proceedings of 2008 International congress on image
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1. Introduction 
In many applications (consumer and commercial imaging, medical imaging, robotics, space 
research, and etc.) observed images are often degraded due to atmospheric turbulence, 
relative motion between a scene and a camera, nonuniform illumination, wrong focus, etc. 
Image restoration refers to the problem of estimating the ideal image from its observed 
degraded one. Numerous restoration techniques (linear, nonlinear, deterministic, stochastic, 
etc.) optimized with respect to different were introduced (Banham & Katsaggelos, 1997 ; 
Jain, 1989; Sezan & Tekalp, 1990; Bovik, 2005; Gonzalez & Woods 2008). The amount of a 
priori information about degradation such as the size and shape of blurs, noise level 
determines how mathematically ill-posed the problem is. A priori information can be used in 
a variety of ways in modeling and algorithm development. The information about the 
nature of blur (e.g., linear or nonlinear and space-variant or space-invariant) and noise 
(additive or multiplicative) is used in modeling the input-output relation of imaging 
systems. In blur modeling, when the type of blur is known (e.g., out of focus, motion, 
turbulence), the blurring operator can be parameterized using only a few parameters. In 
image modeling, the ideal image can be modeled, for instance, on the basis of a priori 
Markovian assumption. In algorithm development, a priori information is used in defining 
constraints on the solution and in defining a criterion or a quantitative description of the 
solution. The blind and non-blind deconvolutions were extensively studied, and many 
techniques were proposed for their solution (Kundur & Hatzinakos, 1996; Bertero & 
Boccacci, 1998; Biemond et al., 1990; Sroubek & Flusser, 2003). They usually involve some 
regularization which assures various statistical properties of the image or constrains on the 
estimated image and restoration filter according to some assumptions. This regularization is 
required to guarantee a unique solution and stability against noise and some model 
discrepancies. One of the most popular fundamental techniques is a linear minimum mean 
square error method. It finds the linear estimate of the ideal image for which the mean 
square error between the estimate and the ideal image is minimal. This linear operator 
acting on the observed image to determine the estimate on the base of a priori second-order 
statistical information about the image and noise processes. For images with sharp changes 
of intensity, the appropriate regularization is based on variational integrals (Rudin, et al., 
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of intensity, the appropriate regularization is based on variational integrals (Rudin, et al., 
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1992; Perona & Malik, 1990; Chan & Wong, 1998). Minimization of the variational integrals 
preserves edges and fine details in the image. It is obvious that quality of the restored image 
depends on accuracy of mathematical model of image formation process. In particular, a 
good estimation of distortion parameters such as speed of camera movement, transparency 
of atmosphere or water, etc. is very important for restoration (Biemond et al., 1990).  

Recently, restoration methods based on image variations were proposed (Milukova et al., 
2010a, 2010b, 2011). In this chapter, image restoration with two-dimensional variations is 
presented. The restored image minimizes two-dimensional variations defined by Kronrod 
(Kronrod, 1950). We also consider the identification of distortion operator and estimation of 
its parameters. It is assumed that a monochrome stationary image distorted by 
homogeneous integrated transformation. Various physical problems can be modeled by 
such transformation. The spectral method of identification of distortion parameters uses 
only degraded image. Computer simulation results illustrate the performance of the 
proposed method for restoration of blurred images. 

2. Restoration of linear degraded images with variation methods 
2.1 Variation concept for image restoration 

Image restoration problem is usually formulated as follows. Undistorted (original) image z 
is recovered from the given equation: 

 v Az n  , (1) 

where : Z QA  ( Z,Q are metric spaces) is linear or nonlinear operator, Ζz , n is noise, 
v is observed distorted image. A general approach for image restoration can be 
formulated using statistical estimation methods and the theory of solving of ill-posed 
problems (Tikhonov & Arsenin, 1977). The restoration problem is a typical inverse 
problem of mathematical physics, and, therefore, it can be correctly solved on the base of 
mathematical methods. The restored image can be obtained by minimization of the 
following functional:  

 * inf ( , )Qz Z
z Az v


 , (2) 

where Q  is a metric in Q . Note that various definitions of a distance Q  between two 
images may be used. It is easy to show that the solution of the optimization problem in Eq. 
(2) is not unique even when the operator A and the distorted image v are exactly known, 
and no additive noise. A priori information about the original image should be used to 
obtain a unique and stable solution from the set of solutions. The simplest way to guarantee 
uniqueness and stability of the solution is to describe the image model with a functional 

( )z  that possesses stabilizing properties. In this case the image restoration problem can be 
reduced to conditional or unconditional optimization problem, in particular to the 
Tikhonov’s minimization (Tikhonov & Arsenin, 1977), 

 * inf{ ( , ) ( )}Qz Z
z Az v z 


   , (3) 
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where   is a parameter of regularization. Note that the statistical methods used in image 
restoration lead to optimization problems, which are similar to that of Eq. (3). For instance, 
using Bayes’ strategy (Kay, 1993) we can obtain the optimal estimation in the following form: 

 *
2 1inf{ ln ( ) ln ( )}

z Z
z p Az v p z


    , (4) 

where 1( )p   and 2( )p   are a priori probability densities of the original image z  and 
additive noise .n Az v   The main difference between the regularization method of image 
restoration in Eq. (3) and the statistical method in Eq. (4) is the regularization parameter  . 
This leads to a family of solutions as a function of the parameter . The best restored image 
can be chosen from the set of solutions using, for instance, a subjective criterion. If the space 
Q in Eq. (3) is the Euclidian space with the norm (v, Bv), where B is a positive defined 
operator, we obtain, 

 2* inf{ ( )}Bz Z
z Az v z


    . (5) 

It is commonly assumed that the original image is a smooth function with respect to the 
Sobolev space (Adams, 1975), and the stabilization functional in Eq. (5) is ( ) p

q

q
Wz z  . 

Quadratic forms can be used in order to avoid nonlinear restoration algorithms. Note that a 
Gaussian image model leads to minimization of a quadratic form. In discrete case it 
corresponds to the Sobolev norm for 2p   in Eq. (5). On the other hand, the use of 
quadratic forms in image restoration often yields undesirable results because of real images 
are not Gaussian. Now suppose that an image to be restored is a function of bounded 
variations. Therefore, it may be written as 

 * inf{ ( , ) ( )}Qz Z
z Az v Var z 


  . (6) 

The variation of a 1D function ( ), [ , ]f x x a b  is defined as follows:  

 
1....

1
2

( ) sup ( ) ( )
n

nb

k ka x x k
V f f x f x 


  . (7) 

It can be shown, that if the image ( , )z x y , ( , )x y D  consists of 1D functions of bounded 
variation along its rows and columns then the image is also a 2D function of bounded 
variation. Different multidimensional variations were proposed such as variations of Arzela, 
Vitali, Tonelly, etc. (Vitushkin, 1955). A different approach was suggested by Kronrod, who 
introduced two functionals in order to describe an image as a function of two variables 
(Kronrod, 1950). The functionals are given as follows: 

 1 0( ) ( )td z m e dt




  , and 2 1( ) ( )td z m e dt




  , (8) 

where te  is t - level set of the function ( , )z x y , i.e. a set of points ( , )x y  with function values 
equal to t, 0( )tm e  is the number of components of te , and 1( )tm e  is the length of the set te . 
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where   is a parameter of regularization. Note that the statistical methods used in image 
restoration lead to optimization problems, which are similar to that of Eq. (3). For instance, 
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 *
2 1inf{ ln ( ) ln ( )}

z Z
z p Az v p z


    , (4) 

where 1( )p   and 2( )p   are a priori probability densities of the original image z  and 
additive noise .n Az v   The main difference between the regularization method of image 
restoration in Eq. (3) and the statistical method in Eq. (4) is the regularization parameter  . 
This leads to a family of solutions as a function of the parameter . The best restored image 
can be chosen from the set of solutions using, for instance, a subjective criterion. If the space 
Q in Eq. (3) is the Euclidian space with the norm (v, Bv), where B is a positive defined 
operator, we obtain, 

 2* inf{ ( )}Bz Z
z Az v z


    . (5) 

It is commonly assumed that the original image is a smooth function with respect to the 
Sobolev space (Adams, 1975), and the stabilization functional in Eq. (5) is ( ) p

q

q
Wz z  . 

Quadratic forms can be used in order to avoid nonlinear restoration algorithms. Note that a 
Gaussian image model leads to minimization of a quadratic form. In discrete case it 
corresponds to the Sobolev norm for 2p   in Eq. (5). On the other hand, the use of 
quadratic forms in image restoration often yields undesirable results because of real images 
are not Gaussian. Now suppose that an image to be restored is a function of bounded 
variations. Therefore, it may be written as 

 * inf{ ( , ) ( )}Qz Z
z Az v Var z 


  . (6) 

The variation of a 1D function ( ), [ , ]f x x a b  is defined as follows:  

 
1....

1
2

( ) sup ( ) ( )
n

nb

k ka x x k
V f f x f x 


  . (7) 

It can be shown, that if the image ( , )z x y , ( , )x y D  consists of 1D functions of bounded 
variation along its rows and columns then the image is also a 2D function of bounded 
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 1 0( ) ( )td z m e dt




  , and 2 1( ) ( )td z m e dt




  , (8) 

where te  is t - level set of the function ( , )z x y , i.e. a set of points ( , )x y  with function values 
equal to t, 0( )tm e  is the number of components of te , and 1( )tm e  is the length of the set te . 
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The class of functions of bounded variations given in Eq. (8) is very extensive. These functions 
possess the following attractive properties: they are differentiable almost everywhere and their 
Fourier series are convergent almost everywhere. Note that numerous attempts to create a 
mathematical image model with the help of one functional were unsatisfactory. It can be done 
on the base of two (independent in a certain way) functionals. It is interesting to point out, that 
the first variation d1 in Eq. (8) is a topological characteristic of the image. If the original image is 
a continuous differentiable function, then the second variation can be represented as  

 2 ( ) ( , )
gb

a c

d z grad z x y dx dy   . (9)  

If only the second variation is used, the image restoration can be carried out as follows 
(Perona & Malik,1990):  

  2* inf { ( , ) }
gb

Bz Z
a c

z Az v grad z x y dx dy


     , (10) 

where grad(.) is a gradient operator. 

It is of interest to note that this nonlinear method of image restoration minimizes the 
functional that is identical to the Kronrod’s second variation. We propose to minimize the 
functional in Eq. (10) subject to constraint on the first Kronrod’s variation of the image. This 
approach is referred to as conditional variation approach (Milukova et al., 2010). Next with 
the help of computer simulation we illustrate the difference in the performance of two 
variation methods: minimization of the functional in Eq. (10) and conditional minimization 
of the same functional. Additionally, the performance of minimum norm image restoration 
from Eq. (10) without considering variations is also provided. 

2.2 Restoration of uniformly blurred image with spatial variations 

The impulse response of the 1D uniform blur can be expressed as follows: 

  
1 , if 0 1

0, otherwiseL
L x L

h x
  

 


, (11) 

where L determines a blur extension. It is known that point spread functions for such blurs 
do have zeros in the frequency domain, and they can be uniquely identified by the location 
of these zero crossings (Cannon, 1976; Gennery, 1973). If the original image is blurred and 
noiseless then the blur matrix A in Eq. (1) is given as 

 

2

1

1 1 ... 1
1 1 ... 1

1 1 ... 1
1 /

1 1 ... 1
. . . . .

1 1 ... 1
MxN

D

A L

D

 , (12) 
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and the linear system of equations in Eq. (1) is rewritten as  

 1 2 +L RAz D z D z v  ,  (13) 

where  1 -1= ,...,  L Lz z z ,  = ,...,  R L Nz z z , M=N-L+1. A general solution of Eq. (13) can be 
written as  

 *

1

B
p

m m
m

z z 


   e ,  (14) 

where me  is a basis of kernel A,  m  are real variables,   1
2 1,p

L Lz z D v D z   is a 
particular solution of linear system of equations in Eq. (13). Suppose that 0Lz  , the 
particular solution can be expressed as  

  1
20,pz D v . (15) 

The basis me  can be found from Eq. (13) as 

  1
2 1,m m

m L Le D D e e , (16) 

where  1 2 1, ,...,m
L m m L me     , ij  is the Kronecker delta function. The basis of kernel A has 

the following form: 

1 11 1 1 1
1 1 1 1 1 1

....
. . . . . .

1 1 1 1 1 1

  
  

  

. 

It is of interest to note that the basis of kernel A contains vertical columns of unities; 
therefore, a general solution of Eq. (13) could contain a periodic structure with the period of 
blurring (Buades et al., 2006). In our computer simulation we compared three methods: 1) 
first, substituting Eq. (15) into Eq. (10) and minimizing the functional with respect to  m ; 
2) the second method minimizes the same functional subject to the first Kronrod’s variation 
given in Eq. (8), which is taken close to that of the original image; 3) minimum norm image 
restoration from Eq. (10) without considering variations. Actually, if the inverse of the blur 
operator exists, it can be applied to the observed image to obtain an estimate. This is called 
inverse filtering. The estimate differs from the actual image by the additional error of 
amplified noise, and depending on the nature of the blur operator and the noise, it may 
drastically obscure the desired image information. Hence, inverse filtering is extremely 
noise sensitive. If the inverse operator does not exist, a solution can be found on the basis of 
a least squares criterion. A least squares solution minimizes the norm of the residual signal 
Az-v. The least squares solution with minimum norm (energy) is called also the 
pseudoinverse filtering (Jain, 1989). The first tested method is referred to as Grad method, 
the second one is called Grad-conditional method, and the last method is named Min-norm 
method. Fig. 1(a) shows a test input image used in experiments. The size of the image is 
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amplified noise, and depending on the nature of the blur operator and the noise, it may 
drastically obscure the desired image information. Hence, inverse filtering is extremely 
noise sensitive. If the inverse operator does not exist, a solution can be found on the basis of 
a least squares criterion. A least squares solution minimizes the norm of the residual signal 
Az-v. The least squares solution with minimum norm (energy) is called also the 
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256×256 pixels, N=256. The signal range is [0-255]. The test input scene is homogeneously 
blurred with L=7. The blurred image is shown in Fig. 1(b). 

(a) 

(b) 

Fig. 1. (a) Test image, (b) test image uniformly blurred in horizontal direction with L=7. 

The original image has the following values of the Kronrod variations: d1=2105, d2=12210. 
The results of image restoration with the variation methods are shown in Figs. 2(a) and 2(b), 
respectively. The restoration result with the Min-norm algorithm is shown in Fig. 2(c). 
Subjective visual criterion is defined as an enhanced difference between original and 
restored images. A pixel is displayed as gray if there is no error between the original image 
and the restored image. For maximum error, the pixel is displayed either black or white 
(with intensity values of 0 and 255, respectively).  
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(a) (b) 

(c) 

Fig. 2. Image restoration with (a) Grad method, (b) Grad-conditional method, and (c) Min-
norm method. 

Figs. 3(a), 3(b), and 3(c) show differences between the original image and that of restored 
with the Grad algorithm, the Grad-conditional algorithm, and the Min-norm algorithm, 
respectively. We see that the second algorithm, which takes into account two Kronrod’s 
variations yields the best recognition performance. A quantitative comparison is given by 
the peak signal-to-noise ratio (PSNR), 

 *
10 *

255( , ) 20logPSNR z z
z z

 
 
  

. (17) 
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(a) (b) 

(c) 
Fig. 3. Differences between the original image and restored with (a) Grad method, (b) Grad-
conditional method, and (c) Min-norm method. 

The image restored with the Grad method has d1=2050, d2=12015, the image restored with 
Grad-conditional method has d1=2103, d2=12120, and finally, the image restored by the 
Min-norm method possesses d1=2218, d2=12343. Table 1 shows the restoration performance 
of the tested methods in terms of the PSNR versus the blur extension.  

L Min-norm Grad Grad-conditional
3 28.3 34.5 35.2
5 25.1 30.2 31.3
7 22.2 28.5 29.4
9 18.4 26.2 27.3

Table 1. PSNR (dB) results for the tested methods. 
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So, in order to achieve a good restoration, it is important take into account topological 
characteristics of the image to be restored. These characteristics can be described by the first 
Kronrod’s variation. 

3. Identification of degradation operators and estimation parameters in the 
Fourier domain 
In this section, identification of operator degradation type and estimation of distortion 
parameters is discussed. Monochrome stationary image distorted by homogeneous linear 
transformation is considered. Various physical problems can be modeled by such 
degradations (Bertero & Boccacci, 1998). Identification of the distortion operator is carried 
out using the Fourier spectrum of the distorted image. Automatic image restoration is 
performed in three steps, that is, i) identification of distortion operator, ii) estimation of 
distortion parameters, and iii) image restoration with estimated parameters. Certain types 
of distortion operators are completely characterized by attributes such as the location of 
frequency-domain zeros. The techniques (Cannon, 1976; Gennery, 1973) make the 
following two assumptions: (i) the blurring produces zero crossings in the frequency 
domain and it can be completely characterized by the location of these zero crossings, and 
(ii) the location of zero crossings can be determined from the Fourier transform or power 
cepstrum (the logarithm of the power spectrum) of the observed image. These methods 
are very simple to use and they can successfully applied in many real-life situations. It is 
indeed true that the models for motion and focus blurs do have zeros in the frequency 
domain, and they can be uniquely identified by the location of these zero crossings. On 
the other hand, blurring models that do not have zero crossings in the frequency domain 
(e.g., Gaussian modeling atmospheric turbulence) cannot be identified by these 
techniques. Furthermore, the identification of the zero crossings from the observed image 
may be quite difficult due to the presence of strong observation noise. Almost all practical 
implementations of the restoration algorithms assume that the observation noise is a zero-
mean, white Gaussian process that is uncorrelated to the image signal. In this case, the 
noise field is completely characterized by its variance, which is commonly estimated by 
the sample variance computed over a low-contrast local region of the observed image 
(Yaroslavsky & Eden, 1996). 

Let us consider an observed image degraded with a linear spatially invariant system and 
additive sensor noise, that is,  
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(c) 
Fig. 3. Differences between the original image and restored with (a) Grad method, (b) Grad-
conditional method, and (c) Min-norm method. 

The image restored with the Grad method has d1=2050, d2=12015, the image restored with 
Grad-conditional method has d1=2103, d2=12120, and finally, the image restored by the 
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L Min-norm Grad Grad-conditional
3 28.3 34.5 35.2
5 25.1 30.2 31.3
7 22.2 28.5 29.4
9 18.4 26.2 27.3

Table 1. PSNR (dB) results for the tested methods. 
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So, in order to achieve a good restoration, it is important take into account topological 
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1989). Motion blur occurs when there is relative motion between the object and camera 
during exposure. In this case the impulse response and the frequency response of the linear 
system of horizontal motion blur are given, respectively, as 

    1 1, ,
2

xh x y rect y
L L

   
 

 (20) 

   1
1 2 1, sinc( ) i w LH e w L  , (21) 

where L is the motion path,      1,   0,1 ,   0,  y  rect x if x else   is the Dirac delta function.  

Atmospheric turbulence is a common blur in remote sensing and aerial imaging. For long 
term exposure through the atmosphere Gaussian model is used. So, the impulse response 
and the frequency response of the linear system of turbulence blur are given, respectively, as 

    2 2 2

,
a x y

h x y e
 

 , (22) 

  
 2 2

1 2
2

1 2 2
1,

 

 aH e
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  

  , (23) 

where α is the parameter that determines the severity of blur.  

Defocusing is another common type of blurring owing to the finite size of the camera aperture. 
When the defocusing blur is large, the following uniform model is used. The impulse response 
and the frequency response of the linear system can be expressed, respectively, as 

  
2 2 2

2
1 ,

,   
0, elsewhere

x y r
h x y r

   


, (24) 

    1 2 2
1 2 1 2, ,  

J rp
H p

rp
      , (25) 

where J1 is the first-order Bessel function.  

Image blurring also occurs in image acquisition by scanners in which the image pixels are 
integrated over the scanning aperture. Example of such degradations can be found in image 
capturing by radar, beam-forming arrays, and display systems using television raster. The 
impulse response and the frequency response of the linear system can be written, 
respectively, as 

  , ,   ,yxh x y rect
a b

   
 

 (26) 

      1 2 1 2, sinc sinc ,H ab a b     (27) 
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where axb is the rectangular aperture. 

It is of interest to compare the spectra of the original and degraded images. From numerous 
experiments it is known, that the spectral magnitude of a realistic image is not very 
informative. It contains information about distribution of the signal energy in the frequency 
domain. For instance, if we exchange the spectral magnitudes of two similar images 
belonging to the same class and perform the inverse Fourier transform, then the difference 
in visual appearance of the original and obtained images will be negligible (Yaroslavsky & 
Eden, 1996). However, the difference between the spectral magnitudes of the original and 
degraded images may be significant due to the spectral magnitude of the frequency 
response of the linear system. Figs. 4(a) and 4(b) show a test original image and its spectral 
magnitude.  
 

 

 
(a) (b) 

 

Fig. 4. (a)Test original image, (b) spectral magnitude of the original image.  

In order to identify the distortion operator a database containing various images of spectral 
magnitudes was created. Training elements of database were obtained on the base of 
mathematical modeling or computer simulation. In practice, the number of degradation 
operators is not very large. Next, the spectral magnitude of a degraded image is matched to 
those of the database. This simple recognition system works well to identify the type of 
degradation operator for common blurs. Figs. 5 illustrate spectral magnitudes for different 
common blurring operators. One can observe that spectral magnitudes of distorted images 
contain mainly the information about distortion operators such as zero crossings on the 
plane  1 2,  . 
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where axb is the rectangular aperture. 
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informative. It contains information about distribution of the signal energy in the frequency 
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belonging to the same class and perform the inverse Fourier transform, then the difference 
in visual appearance of the original and obtained images will be negligible (Yaroslavsky & 
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Fig. 4. (a)Test original image, (b) spectral magnitude of the original image.  

In order to identify the distortion operator a database containing various images of spectral 
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mathematical modeling or computer simulation. In practice, the number of degradation 
operators is not very large. Next, the spectral magnitude of a degraded image is matched to 
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(g) (h) 

Fig. 5. Spectral magnitudes of the test original image shown in Fig. 4(a) degraded by: (a) 
atmosphere turbulence defocusing (Eq. 23) with α = 2, (b) atmosphere turbulence defocusing 
(Eq. (23) with α = 4, (c) isotropic defocusing (Eq. 25) with r = 4, (d) isotropic defocusing (Eq. 
25) with r = 6, (e) 1D motion blur (Eq. 21) with L = 4, (f) 1D motion blur (Eq. 21) with L= 6, 
(g) convolution with rectangular aperture (Eq. 27) with a=4, b=2, and (h) convolution with 
rectangular aperture (Eq. 27) with a=8, b=4.  

Actually, composite degradations can be considered as a combination of the basic distortion 
operators. In this case, the Fourier spectrum of a new composite operator is the product of 
the spectra of used basic operators. Figs. 6(a) and 6(b) show the spectral magnitudes of the 
test original image degraded with isotropic blur and horizontal motion. 

 
(a) (b) 

Fig. 6. Spectral magnitudes of the test original image shown in Fig. 4(a) with composite 
degradations: (a) isotropic defocusing (Eq. 25) with r = 6 and 1D motion blur (Eq. 21) with L 
= 4, (b) isotropic defocusing (Eq.25) with r = 6 and 1D motion blur (Eq. 21) with L = 6. 
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One can observe that since one of the distortion operators dominates, the spectral 
magnitudes of composite degradations cannot be synthesized by a simple combination of 
those of the basic degradation operators. This means that the number of training elements of 
a matching system should be drastically increased.  

In the Fourier representation of images, spectral magnitude and phase tend to play different 
roles (Oppenheim & Lim, 1981). For instance, in some situations many of the important 
features of an image are preserved if only the phase is retained. Furthermore, under a 
variety of conditions, phase information alone is sufficient to completely reconstruct an 
image to within a scale factor.  

 
(a) (b) 

 
(c) (d) 

Fig. 7. (a) Cepstrum of the original image degraded by convolution with rectangular 
aperture (Eq. 27) with a=2, b=4, (b) the difference of phases of the original and distorted (Fig. 
7(a)) images, (c) cepstrum of the original image degraded by convolution with circular 
aperture with radius of 4, and (d) the difference of phases of the original and distorted (Fig. 
7(c)) images.  
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If noise fluctuation in Eq. (19) is small, the phase of the distortion operator is equal to the 
difference between the phases of the degraded and original images. If the distortion 
operator is Gaussian, its phase is zero, and the phases of the distorted and original images 
coincide If the distortion operator is a finite function, e.g. ( , )x y W , then the phase of the 
distorted image may differ from the phase of the original image by ±π, and points at which 
the phase jumps by ±π coincide with the location of zeros of the spectral magnitude of the 
degraded image. These zeros, for even functions are all located on the real axis. So, the 
phase of the original image either coincides with that of the distorted image or differs from 
that of the distorted image by ±π. Fig. 7 shows the differences between the phases of the 
distorted and original images for rectangular and circular aperture blurs. Therefore, under 
certain conditions, we can identify the type of the distortion operator and estimate its 
spectral phase from the observed degraded image. 

4. Conclusion 
In this chapter we treated the problem of restoring linearly degraded image using two-
dimensional image variations. The restored image minimizes the objective functional subject 
to the Kronrod’s variations. In order to achieve a good restoration, it is important take into 
account topological characteristics of the original image, which are well described by the 
first Kronrod’s variation. The first step in restoring a degraded image is the identification of 
the type of degradation operator. It can be done by matching of the spectral magnitude of 
the degraded image with those of created database. Under certain conditions, the phase of 
the distortion operator may be also estimated from the distorted image. Extensive testing it 
was shown that the original image can be automatically restored by proper choice of the 
parameters of the proposed method. 
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1. Introduction

Images contain a wealth of information. The advances in modern technology makes it easier
to deal with different kinds of images. As a result, its applications have been increasing and
spreading out to different fields of research. Despite these, degradations are unavoidable
owing to the fact that the acquisition systems are imperfect and the environment can highly
vary. One of the most studied type of degradation is the blur. The process of removing this
from an image is known as image deconvolution, restoration or reconstruction. We illustrate
its importance in the field of image processing with an example in Fig. 1. In Fig. 1(a), an
image is acquired but degradations make it difficult for further processing. Reconstruction is
applied and the resulting image in Fig. 1(b) can now be used in order to obtain an accurate
representation of the original bar code as shown in Fig. 1(c). In essence, reconstruction is
necessary as a preprocessing step for degraded images in order to extract more information
from it. As a result, this has been studied in various fields of applications such as bar
code interpretation (Choksi & van Gennip, 2010; Esedoglu, 2004; Yahyanejad & Strom, 2010),
fingerprint identification (Cappelli et al., 2007), iris recognition (Kang & Park, 2007), face
identification (Chu, Yang & Chen, 2010; Nishiyama et al., 2010; Xin et al., 2003), among others.

In the two-dimensional domain, degradation is mathematically modelled as (Lagendijk &
Biemond, 2005):

g(x, y) = f (x, y) ∗ h(x, y) + n(x, y) (1)

where the symbol ∗ is the two-dimensional convolution process. On the other hand, the
variables g(x, y), f (x, y), h(x, y), and n(x, y) represent the degraded image, original image,

(a) degraded image (b) reconstructed image (c) reconstructed code

Fig. 1. Reconstruction of 2D bar code images in (Chu, Yang, Pan & Chen, 2010).
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1. Introduction

Images contain a wealth of information. The advances in modern technology makes it easier
to deal with different kinds of images. As a result, its applications have been increasing and
spreading out to different fields of research. Despite these, degradations are unavoidable
owing to the fact that the acquisition systems are imperfect and the environment can highly
vary. One of the most studied type of degradation is the blur. The process of removing this
from an image is known as image deconvolution, restoration or reconstruction. We illustrate
its importance in the field of image processing with an example in Fig. 1. In Fig. 1(a), an
image is acquired but degradations make it difficult for further processing. Reconstruction is
applied and the resulting image in Fig. 1(b) can now be used in order to obtain an accurate
representation of the original bar code as shown in Fig. 1(c). In essence, reconstruction is
necessary as a preprocessing step for degraded images in order to extract more information
from it. As a result, this has been studied in various fields of applications such as bar
code interpretation (Choksi & van Gennip, 2010; Esedoglu, 2004; Yahyanejad & Strom, 2010),
fingerprint identification (Cappelli et al., 2007), iris recognition (Kang & Park, 2007), face
identification (Chu, Yang & Chen, 2010; Nishiyama et al., 2010; Xin et al., 2003), among others.

In the two-dimensional domain, degradation is mathematically modelled as (Lagendijk &
Biemond, 2005):

g(x, y) = f (x, y) ∗ h(x, y) + n(x, y) (1)

where the symbol ∗ is the two-dimensional convolution process. On the other hand, the
variables g(x, y), f (x, y), h(x, y), and n(x, y) represent the degraded image, original image,

(a) degraded image (b) reconstructed image (c) reconstructed code

Fig. 1. Reconstruction of 2D bar code images in (Chu, Yang, Pan & Chen, 2010).
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blur point spread function (PSF), and noise, respectively. In most cases, it is assumed that
noise is negligible and the model is simplified to a purely convolutional process. Thus, the
vector-matrix form of the model in the image domain is:

g = H f (2)

and
g = Fh (3)

in the blur domain. The small letters are vectors that represent their respective quantities,
which are lexicographically ordered. On the other hand, the capital letters are Toeplitz
matrices constructed from their corresponding quantities. We adapt the terms image and blur
domain as used in (He et al., 2009) to indicate the quantity being estimated and the direction
to which the reconstruction cost function is being projected. In this way, derivations can be
more succinct. Based on these equations, the unblurred image can be easily computed if the
models for the degraded image and PSF are known. However, this is not the case in actual
applications. Images cannot be modelled in a straightforward manner thus, their features
and properties are usually utilized. For some applications, probability models are created
based on the imaging conditions and type of scenes (Simoncelli, 2005). On the other hand,
blurring functions can be mathematically modelled (Lagendijk & Biemond, 2005). Exploiting
the characteristics of these models can decrease the complexity of determining the unblurred
image.

The reconstruction of a degraded image undergoes the following major steps: blur detection
and identification; reference PSF (RPSF) determination; deconvolution; and image quality
assessment. In this chapter, we will explore the various characteristics of image extrema
that make it useful in each step. These are tested on numerous natural color images
wherein synthetic and actual blurs are also considered. Experimental data will illustrate the
effectiveness of the methods.

2. Blur detection and identification

Reconstruction algorithms assume that blurs are always present. However, subjecting an
unblurred image to this will only waste resources. To avoid this, preprocessing the image
with a blur detection method is a must. Some methods are based on edge information
(Chung et al., 2004; Marziliano et al., 2002; Rooms et al., 2002; Tong et al., 2004) or frequency
domain characteristics (Aizenberg et al., 2002; n.d.; 2006; 2008). A downside to these is its
restrictiveness towards image size and orientation. Aside from this, most edge-based methods
are only limited to detection and are not capable of identifying the type of degradation.
Transform-based methods have promising results but are mostly applicable to non-Gaussian
types since these exploit the null patterns. These limitations can be overcome by using the
characteristics of image extrema (Chong & Tanaka, 2008; 2009). This method can be applied
to images with different sizes and orientations. Additional parameters or settings are not
necessary and different types of degradations can be included.

2.1 Images and their extrema

The presence of blurs will lessen the perception of details in an image. The method herein
will show that the loss of details is not only obvious in edges but also in the extrema. For this
reason, we can generally call this as image extrema analysis (IEXA)(Chong & Tanaka, 2009).
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Fig. 2. Sample plots of extrema values in a row.

The plots in Fig. 2 show a row of pixel values where the extrema are marked. Fig.2(a) is from
the unblurred image while its Gaussian blurred version is shown in Fig. 2(b). These illustrate
that there are more extrema values in an unblurred image than its blurred version. Thus, the
presence of blur makes some extrema disappear resulting to a decrease in its number. Aside
from this, the unblurred images have pixel values that are highly separated from each other.
In other words, the extrema are non-neighbouring pixels with distances that are only small.

On the other hand, the blurred images have more neighbouring extrema because the presence
of blur flattened the image pixels. This results to extrema values that are more clustered
with greater separation from each other. This is illustrated in Fig. 3. It can be seen that
the minima and maxima values have the same behaviour in the presence of blur. Similarly,
these characteristics can also be observed not only in the image’s rows but also in its columns.

2.2 Detection and identification technique

Taking into account the above-mentioned observations, blur detection and identification can
be accomplished by extracting the features and using a classifier. Consider a blur classification
problem with K categories consisting of unblurred images and K − 1 types of blurs. For each
extrema in an image, the distances and plateaus are counted by rows then by columns. In
the context of this work, we define distance as the number of pixels between extrema while
plateau as the number of consecutive extrema values. Let hS(i) be an extrema histogram
of S with S ∈ {dn, dx, pn, px} and the letters i, d, p, n, and x stand for histogram index,
distance, plateau, minima, and maxima, respectively. Since there are two possible directions
in populating the histogram, S is appended with _c or _r to indicate column-wise or row-wise,
respectively. For each extrema histogram, the feature values are defined as follows:

1. dispersion, dispS
This reflects the closeness between extrema for distances. On the other hand, it also
quantifies the number of standalone extrema or those that do not have neighbours for
plateaus.

dispS = ĥS(1) =
hS(1)

mS

∑
i=1

hS(i)
(4)
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necessary and different types of degradations can be included.
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Fig. 2. Sample plots of extrema values in a row.

The plots in Fig. 2 show a row of pixel values where the extrema are marked. Fig.2(a) is from
the unblurred image while its Gaussian blurred version is shown in Fig. 2(b). These illustrate
that there are more extrema values in an unblurred image than its blurred version. Thus, the
presence of blur makes some extrema disappear resulting to a decrease in its number. Aside
from this, the unblurred images have pixel values that are highly separated from each other.
In other words, the extrema are non-neighbouring pixels with distances that are only small.

On the other hand, the blurred images have more neighbouring extrema because the presence
of blur flattened the image pixels. This results to extrema values that are more clustered
with greater separation from each other. This is illustrated in Fig. 3. It can be seen that
the minima and maxima values have the same behaviour in the presence of blur. Similarly,
these characteristics can also be observed not only in the image’s rows but also in its columns.

2.2 Detection and identification technique

Taking into account the above-mentioned observations, blur detection and identification can
be accomplished by extracting the features and using a classifier. Consider a blur classification
problem with K categories consisting of unblurred images and K − 1 types of blurs. For each
extrema in an image, the distances and plateaus are counted by rows then by columns. In
the context of this work, we define distance as the number of pixels between extrema while
plateau as the number of consecutive extrema values. Let hS(i) be an extrema histogram
of S with S ∈ {dn, dx, pn, px} and the letters i, d, p, n, and x stand for histogram index,
distance, plateau, minima, and maxima, respectively. Since there are two possible directions
in populating the histogram, S is appended with _c or _r to indicate column-wise or row-wise,
respectively. For each extrema histogram, the feature values are defined as follows:

1. dispersion, dispS
This reflects the closeness between extrema for distances. On the other hand, it also
quantifies the number of standalone extrema or those that do not have neighbours for
plateaus.

dispS = ĥS(1) =
hS(1)
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(4)
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(a) Unblurred image (b) Blurred image

(c) Minima values of 3(a) (d) Minima values of 3(b)

(e) Maxima values of 3(a) (f) Maxima values of 3(b)

Fig. 3. Example of an unblurred image with its Gaussian blurred version.
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where mS is the maximum histogram index in S.
2. concentration, ctnS

This is the density of the highest count with respect to the total count either for distances
or plateaus.

ctnS = max{ĥS(i) : 1 ≤ i ≤ mS} (5)

3. arithmetic mean of the counts, h̄S
This is the average distance or plateau count for a given histogram.

h̄S =
1

mS

mS

∑
i=1

ĥS(i). (6)

4. histogram width, hwS
This measures the range of distances or plateaus where its counts are considered
significant. The histogram indices with significant counts are determined by:

iw ∈ {i : ĥS(i) ≥ h̄S}
thus, hwS can be computed as follows:

hwS = max{iw} − min{iw} (7)

5. variance of the counts, σ2
S

This is the measure of count dispersion of a histogram.

σ2
S =

1
mS

mS

∑
i=1

(
ĥS(i)− h̄S

)2
(8)

In summary, there are 5 feature values for each S where the directions for counting the
distances (or plateaus) are row- and column-wise in order to completely account the extrema
behaviour. Thus, each image must have a total of 40 features. Finally, all quantities are
normalized with their respective maximum feature values for the training and testing sets.

The blur classification is accomplished by using nearest neighbour (Cover & Hart, 1967).It is
noteworthy to mention that other more sophisticated classifiers are also applicable that may
yield better performance. In this section, the discriminative power of the proposed features
will be demonstrated despite the simplicity of the classifier. Through the experimental data,
it will be shown that high values of accuracy are attainable.

2.3 Experimental results

2.3.1 Experiment descriptions

The images in the experiments were coloured however, we prefer to use the green channel.
This is based on the fact that cameras have twice as much green sensors than the red or blue
and that computations will be lesser as opposed to using the three channels. As a result,
the experiment starts with the extraction of green component for each image. A database
of different coloured natural images is used. This is composed of 300 unblurred images
with sizes that randomly varies between 640 × 480 and 480 × 640. These images are then
synthetically blurred using (1). We consider the following models for the synthetic blurs
(Banham & Katsaggelos, 1997; Lagendijk & Biemond, 2005):
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(a) Unblurred image (b) Blurred image

(c) Minima values of 3(a) (d) Minima values of 3(b)

(e) Maxima values of 3(a) (f) Maxima values of 3(b)

Fig. 3. Example of an unblurred image with its Gaussian blurred version.

204 Image Restoration – Recent Advances and Applications Harnessing the Potentials of Image Extrema for Blind Restoration 5

where mS is the maximum histogram index in S.
2. concentration, ctnS

This is the density of the highest count with respect to the total count either for distances
or plateaus.
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In summary, there are 5 feature values for each S where the directions for counting the
distances (or plateaus) are row- and column-wise in order to completely account the extrema
behaviour. Thus, each image must have a total of 40 features. Finally, all quantities are
normalized with their respective maximum feature values for the training and testing sets.

The blur classification is accomplished by using nearest neighbour (Cover & Hart, 1967).It is
noteworthy to mention that other more sophisticated classifiers are also applicable that may
yield better performance. In this section, the discriminative power of the proposed features
will be demonstrated despite the simplicity of the classifier. Through the experimental data,
it will be shown that high values of accuracy are attainable.

2.3 Experimental results

2.3.1 Experiment descriptions

The images in the experiments were coloured however, we prefer to use the green channel.
This is based on the fact that cameras have twice as much green sensors than the red or blue
and that computations will be lesser as opposed to using the three channels. As a result,
the experiment starts with the extraction of green component for each image. A database
of different coloured natural images is used. This is composed of 300 unblurred images
with sizes that randomly varies between 640 × 480 and 480 × 640. These images are then
synthetically blurred using (1). We consider the following models for the synthetic blurs
(Banham & Katsaggelos, 1997; Lagendijk & Biemond, 2005):
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1. Gaussian or atmospheric turbulence blur:

h(x, y) = K exp
(
− x2 + y2

2σ2

)
(9)

where K is a normalizing constant and σ is the variance. This is generally used to model a
variety of imaging devices as well as long-term atmospheric exposure.

2. Horizontal motion (HM) blur:

h(b, d) =
{ 1

L , b = 0, |d| ≤ L−1
2

0, otherwise
(10)

where L is the length of motion. The variables b and d represent the PSF coordinates. This
models the effect on the acquired image when the camera or object is horizontally moving
faster than the camera’s exposure period.

3. uniform out-of-focus (OOF) blur:

h(b, d) =
{ 1

πR2 ,
√

b2 + d2 ≤ R2

0, otherwise
(11)

where R is the blur radius. This blur is observable as defocus in images and is caused by
the finite size of camera aperture.

The Gaussian blurs have standard deviations of σ ∈ {1, 1.33, 1.66, 2, 2.33, 2.66, 3} with a spread
determined by 6σ. The uniform HM are set to have lengths of L ∈ {3, 5, 7, 9, 11, 13}. The radii
for the OOF blur are R ∈ {1, 2, . . . , 6}.

The synthetically degraded images are subjected to extrema extraction and histogram
creation. The required features can then be computed from the histograms. The training
set consisted of 2,660 images that is composed of 133 images with their corresponding 20
variations. The testing set also has 20 variations for 167 images for a total of 3,340 images.
In the classification process, the Euclidean distances from the test image to all of the training
images are first calculated. The training image with the minimum distance from the test image
is considered as the nearest neighbour. The unknown object’s class is then identified by the
class of this neighbour.

There are two IEXA experiments being compared. The first (IEXA1) used the complete 40
features while IEXA2 had only 20. The reduction in number is achieved by applying forward
selection (Theodoridis & Koutroumbas, 2006). Since this is computationally expensive and
time consuming, a naive method is first applied in order to determine the order of features to
be added. The resulting required features are:

1. dS : S ∈{dx_c, dn_r, dx_r, pn_r, px_r}
2. cS : S ∈{dx_c, px_c, dn_r, dx_r, pn_r, px_r}
3. ĥS : S ∈{dx_c, dn_r, dx_r}
4. hwS : S ∈{dx_c, dn_r, dx_r}
5. σ2

S : S ∈{dn_r, dx_r, pn_r}

It is important to note that features from dn_c and pn_c are not included so these need not be
determined.

206 Image Restoration – Recent Advances and Applications Harnessing the Potentials of Image Extrema for Blind Restoration 7

Input No. of Accuracy ( % )
Images IEXA1 IEXA2 BDHWT

Unblurred 167 99.40 99.40 98.80
Gaussian 1,169 100.00 100.00 NA

HM 1,002 100.00 100.00 13.17
OOF 1,002 99.90 100.00 98.80

TOTAL 3,340 99.94 99.97 59.28

Table 1. Comparison of blur detection accuracy.

Input No. of Accuracy ( % )
Images IEXA1 IEXA2

Unblurred 167 99.40 99.40
Gaussian 1,169 90.16 95.21

HM 1,002 99.40 98.90
OOF 1,002 93.61 96.01

TOTAL 3,340 94.43 96.77

Table 2. Comparison of blur classification accuracy.

2.3.2 Data and results

The blur detection performance in this section is compared with the work in (Tong et al., 2004),
which detects blur with Haar wavelet transform (BDHWT). This involves the creation of an
edge map based on a three-level decomposition of an image. The different edge types are then
identified and counted by using a threshold and comparative conditions. The resulting ratio
between the counts is used to detect the blur by comparing it with another threshold.

The accuracy of the detection algorithms are shown in Table 1. The NA in the table indicates
not applicable since the method in (Tong et al., 2004) is only for unblurred, motion, and OOF
blurs. It can be observed that accuracies are consistently higher when extrema analysis is
used. Furthermore, the result after feature selection yielded a better performance than using
all the features.

The classification accuracies for IEXA1 and IEXA2 are in Table 2. Only the accuracy for the
unblurred images did not change after feature selection. Motion classification performance
slightly decreased however, Gaussian and OOF have higher values. As a result, the decrease
became negligible and the overall accuracy improved.

This section shows the effectiveness of using extrema features for blur detection and
identification. Furthermore, the accuracy is further improved by feature selection. In the
next section, maxima and RPSF will be presented.

3. RPSF: Characteristics and extraction methods

The previous section shows that maxima and minima can be exploited to determine and
identify the blur in an image. In contrast, this section will only use maxima in order to
determine a quantity that closely resembles the PSF that is present in an image. We call this
quantity as reference PSF (RPSF) (Chong & Tanaka, 2010a). Its purpose is to yield a rough
idea regarding the blurring function by exploiting the effect of blurs on the maxima values
and locations. Additional uses of RPSF will be discussed in the next section. In comparison
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1. Gaussian or atmospheric turbulence blur:

h(x, y) = K exp
(
− x2 + y2

2σ2

)
(9)

where K is a normalizing constant and σ is the variance. This is generally used to model a
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{ 1

L , b = 0, |d| ≤ L−1
2

0, otherwise
(10)
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h(b, d) =
{ 1

πR2 ,
√

b2 + d2 ≤ R2

0, otherwise
(11)
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determined by 6σ. The uniform HM are set to have lengths of L ∈ {3, 5, 7, 9, 11, 13}. The radii
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1. dS : S ∈{dx_c, dn_r, dx_r, pn_r, px_r}
2. cS : S ∈{dx_c, px_c, dn_r, dx_r, pn_r, px_r}
3. ĥS : S ∈{dx_c, dn_r, dx_r}
4. hwS : S ∈{dx_c, dn_r, dx_r}
5. σ2

S : S ∈{dn_r, dx_r, pn_r}

It is important to note that features from dn_c and pn_c are not included so these need not be
determined.
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between the counts is used to detect the blur by comparing it with another threshold.
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not applicable since the method in (Tong et al., 2004) is only for unblurred, motion, and OOF
blurs. It can be observed that accuracies are consistently higher when extrema analysis is
used. Furthermore, the result after feature selection yielded a better performance than using
all the features.

The classification accuracies for IEXA1 and IEXA2 are in Table 2. Only the accuracy for the
unblurred images did not change after feature selection. Motion classification performance
slightly decreased however, Gaussian and OOF have higher values. As a result, the decrease
became negligible and the overall accuracy improved.

This section shows the effectiveness of using extrema features for blur detection and
identification. Furthermore, the accuracy is further improved by feature selection. In the
next section, maxima and RPSF will be presented.

3. RPSF: Characteristics and extraction methods

The previous section shows that maxima and minima can be exploited to determine and
identify the blur in an image. In contrast, this section will only use maxima in order to
determine a quantity that closely resembles the PSF that is present in an image. We call this
quantity as reference PSF (RPSF) (Chong & Tanaka, 2010a). Its purpose is to yield a rough
idea regarding the blurring function by exploiting the effect of blurs on the maxima values
and locations. Additional uses of RPSF will be discussed in the next section. In comparison
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with the previous section, this does not require a classifier or image features. It is extracted
from the given image assuming only a PSF size.

3.1 Motion blurs and maxima

The presence of blur has the effect of flattening the pixel values. As a result, the locations
of the maxima values are influenced by the blurring function. In (Chong & Tanaka, 2010a;
2011b) the extraction of RPSF has been tested on motion and OOF blurred images. However,
the most commonly encountered type of blur is motion. Thus, more focus will be given to this
type. In this case we will consider the general model of the motion blur given by:

h(b, d; L, θ) =

{ 1
L ,

√
b2 + d2 ≤ L

2 and b
d = − tan θ

0, otherwise
(12)

where the parameter θ represents motion angle in degrees.

Figure 4 shows images blurred by motion in different directions. Each degraded image
consists of two maxima images based on the direction of scanning. These are shown as binary
images in Figs. 4(c)-4(f) where the white pixels indicate the maxima. It can be observed that
the locations are influenced by the direction of motion that is present. As a result, the maxima
locations tend to be arranged in the direction of motion. Considering a small window in the
image where the maxima are present, it is obvious that this will give us an idea regarding
the direction of motion. This is indicated by the larger pixel values located at the direction
of motion. To detect the direction Hough transform has been utilized in (Chong & Tanaka,
2010b; 2011a). In image processing, this is commonly used to detect lines and circles in binary
images. For a straight line, all of its points will intersect in the parameter space [(Gonzales &
Woods, 2008)]. The parameters (ζ and θ) are specified from the representation of a line in the
PSF space domain:

b cos θ + d sin θ = ζ (13)

where parameter θ can be interpreted as the direction of motion. Since the PSFs are discrete
and have sizes smaller than the image, the parameter space can be easily subdivided. For
practical purposes, we set θ = {0◦, 45◦, 90◦, 135◦}. The accumulator for a certain combination
of ζ and θ is incremented based on the point located at (b, d). The detection of the motion
direction is accomplished by selecting the accumulator with the maximum number of points.

3.2 RPSF extraction

The RPSF can be extracted from motion blurred images by the following steps:

1. Scan the green channel of the image for local maxima locations in the horizontal and
vertical directions.

2. Determine the number of locations for each scanning direction and let Z be the total count.
3. If z is the index of the maxima locations and assuming a blur support size of s × s, create

a set of windows {wz}Z
z=1 of the same size whose elements are the pixel values with the

maxima value at the center.
4. Compute the sum of these windows by

w = ω
Z

∑
z=1

wz. (14)
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(a) Blurred with L = 5 and θ = 0◦ (b) Blurred with L = 5 and θ = 45◦

(c) Horizontal scanning of 4(a) (d) Horizontal scanning of 4(b)

(e) Vertical scanning of 4(a) (f) Vertical scanning of 4(b)

Fig. 4. Blurry images and their maxima locations.
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Fig. 4. Blurry images and their maxima locations.
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Determine the value of the constant ω that will normalize w such that:

∑
∀(b,d)

w(b, d) = 1 (15)

where (b, d) ∈ {0, 1, . . . , s − 1}.
5. Create a binary matrix (o) that will mask out unnecessary values

o(b, d) =
{

1, w(b, d) ≥ t
0, otherwise (16)

where t is the threshold that can be determined by the mean of the central and outermost
elements of w.

6. Non-zero elements of o must satisfy the symmetry condition:

o(b, d) = o(−b,−d). (17)

7. Apply Hough transform on binary matrix o using θ = {0o, 45o, 90o, 135o}. When there are
η accumulators with maximum number of points:
(a) Create η binary masks, oη,θ , that correspond with θ represented by the accumulator.
(b) For each η, compute:

aη,θ = w · oη,θ .

(c) The direction is selected by:
θ = arg max

θ
{aη,θ}

8. Determine the matrix form of the RPSF (r) by

r(b, d) = w(b, d)o(b, d) (18)

where the matrix must satisfy the conditions in equations (15) and (17).

3.3 Experimental results

3.3.1 Experiment descriptions

The experiment herein uses 300 unblurred images with sizes that may be 640 × 480 or 480 ×
640. These are then motion blurred with L ∈ {3, 5, 7, 9, 11, 13} and θ ∈ {0◦, 45◦, 90◦, 135◦}.
The detection process was also applied only to the green channels to minimize computational
time.

3.3.2 Data and results

The data in Table 3 shows the accuracy of the method in detecting the direction of motion. It
can be seen that horizontal and vertical motions have consistently high values for different
PSF sizes. On the other hand, slanting directions (45◦ and 135◦) yielded lower values, which
are fluctuating as the PSF size increases. These are attributed by the direction in scanning
for the maxima. When the motion has the same direction as the scanning, the chances of
preserving the blur’s effects are higher.

These results show that RPSF is capable of giving us an idea of the PSF’s characteristics using
only the maxima of the degraded image. Although only one colour channel was processed,
a high accuracy in detecting the motion direction was manifested in the experiment with
various natural images. Due to these we can also use it for image deconvolution, which will
be discussed in the next section.
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angle no. of Accuracy (%)
(◦) images 3 5 7 9 11 13
0 300 100.0 100.0 100.0 100.0 100.0 100.0

45 300 97.0 87.0 94.3 96.7 94.0 96.3
90 300 99.7 99.7 99.7 99.7 100.0 100.0
135 300 97.7 86.7 96.0 97.0 95.0 96.3

Table 3. Accuracy (%) in determining the motion direction with different PSF sizes.

4. Image deconvolution

In this section, we consider the deconvolution of a degraded image. This involves the
estimation of f and h given only g. Since it is highly ill-posed, we use the alternating
minimization (AM) technique. This enables the incorporation of information about f and
h so that the solution is more stable. AM is a technique that is used in the minimization of
a cost function involving two variables. In each cycle, one variable is set constant while the
other is being solved. The roles are then reversed and the cycle repeats until a criterion is
achieved.

4.1 Cost function

The estimation process involves the minimization of a cost function generally defined by:

J =
1
2

(
(g − Ĥ f̂ )T(g − Ĥ f̂ ) + J f̂ + Jĥ

)
(19)

where J f̂ is the image smoothness term and Jĥ is the PSF characterization term. The symbol
·̂ represents an estimated quantity. The first term is known as the fidelity term and is a
basic term in most reconstruction cost functions. This was proposed in (Yang et al., 1994)
wherein minimization was accomplished by projection-based blind deconvolution. The
results showed good convergence properties and high flexibility for incorporation of prior
knowledge. The image smoothness term is based on the concept of total variation (TV)
proposed in (Rudin et al., 1992), which can be modelled by:

JTV =
∫

Ω
|∇ f |. (20)

The work of (Chan et al., 1999) added a variable to avoid its non-differentiability. Thus, the
equation becomes

Jγ =
∫

Ω

√
|∇ f |2 + γ2. (21)

TV in vector-matrix form was derived in (He et al., 2009) to make the minimization process
simpler. We will be employing here the TV norm in equation (20) instead of the commonly
used L2 norm. This can be reformulated as

∫
|∇ f | =

∫ |∇ f |2
ε

(22)

where ε is an auxiliary variable, ε = |∇ f |. By following the fixed point scheme in (Chan &
Wong, 1998), ε can be computed using the value from the previous iteration of the AM loop.
For simplicity, consider the gradients of the image in the x direction

∑
∀(x,y)

( f (x + 1, y)− f (x, y))2 = ||V f ||22 = f TVTV f (23)
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where

V =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 −1 0 · · · 0

0 1 −1 · · · ...
...

...
...

. . . −1

0 0 0
... 1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Applying the concept of equation (22) to equation (23)

∑
∀(x,y)

( f (x + 1, y)− f (x, y))2 = ∑
∀(x,y)

1

ε(
⇀
x )

( f (x + 1, y)− f (x, y))2

= f TVTWV f (24)

where

W = diag

�
1

ε(
⇀
x )

�
.

For practical purposes, we also implement the following conditions:

1

ε(
⇀
x )

=

�
1

ε(
⇀
x )

, ε(
⇀
x ) �= 0

0 , otherwise
.

From equation (24), let Tx(ε) = VTWV. The same derivation will follow for the y direction.
The result of using the two directions will be T(ε) = Tx(ε) + Ty(ε) and equation (24) can be
rewritten as

∑
∀(x,y)

( f (x + 1, y)− f (x, y))2 = f TT(ε) f . (25)

Thus, the image smoothness term will be

J( f̂ ) = λ f̂ TTf̂ (ε) f̂ (26)

where λ is the image regularization parameter. On the other hand, the PSF characterization
term in (He et al., 2008; 2009) uses a reinforcement blur estimation (RBE) framework. This
assumes that real-life blurs satisfy a certain degree of parametric structure. Mathematically,
this can be modelled by

Jĥ_RBE =
�

ĥ − t
�T �

ĥ − t
�

(27)

where t is the best-fit parametric PSF selected from a training set. This is highly dependent
on the current estimate as well as the contents of the training set. As a result, failure of
reinforced learning is possible when the estimate changes as the iteration progresses. In some
cases, learning can also be erroneous when the selected model does not match the actual PSF.
Furthermore, the learning set must be exhaustive to ensure an accurate model selection. To
overcome these problems, RPSF can be used in its place. Thus,

J(ĥ) = αĥTTĥ(ε)ĥ + β(ĥ − r)T(ĥ − r) (28)

where α and β are the regularization parameters and r is RPSF. The first term is the PSF
smoothness term while the second is PSF learning term. The image and PSF smoothness
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terms have the same derivations. These are employed for the reason that the TV norm is
known for edge preservation and robustness in the presence of noise. The use of RPSF will
yield a rough idea on the blurring function using only the degraded image. As a result, the
need for a training set is eliminated, the learning model is determined only once and it is
independent from other estimated values.

The cost function that will be minimized is defined in equation 19 where J f̂ is in equation 26

and Jĥ is in equation 28. As a whole, this is not convex however, iterative projection into f̂ and
ĥ will result in convex functions. Thus, we use the AM technique to solve the two unknowns.
The first step is the partial differentiation of the cost function with respect to f̂ where ĥ is set
as constant:

∂J( f̂ , ĥ)
∂ f̂

=
(

ĤT Ĥ + λTf̂ (ε)
)

f̂ − ĤT g. (29)

Equating this with zero will yield f̂ at (n + 1)-th iteration:

f̂n+1 =
(

ĤT
n Ĥn + λTf̂n

(ε)
)−1

ĤT
n g. (30)

Reversing the roles will yield:

∂J( f̂ , ĥ)
∂ĥ

=
(

F̂T F̂ + αTĥ(ε) + βI
)

ĥ −
(

F̂T g + βr
)

(31)

where I is an identity matrix. Thus,

ĥn+1 =
(

F̂T
n+1 F̂n+1 + αTĥn

(ε) + βI
)−1 (

F̂T
n+1g + βr

)
. (32)

To summarize, the AM technique involves solving equations 30 and 32 alternately until
convergence or when the desired number of iterations is reached.

4.2 Regularization parameters

The computations of f̂ and ĥ involve λ, α, and β, which are collectively called as regularization
parameters. These are positive values that measure the trade off between a good fit and
the regularity of the solutions. These can be accurately determined using many methods.
However, these are usually computationally expensive and time consuming. To make the
selection process less complicated, we will follow the concept used in (Sroubek & Flusser,
2003; You & Kaveh, 1996). The idea is based on the fact that the partial derivatives of the cost
function are zero assuming that we are given the correct values of f and h. Thus equations 29
and 31 will become:

HT H f − HT g + λTf (ε) f = 0 (33)

and
FT Fh − FT g + αTh(ε)h + β(h − r) = 0, (34)

respectively. The resulting equations are overdetermined system of linear equations (OSLE).
In general, an OSLE with E linear equations and N unknowns can be expressed as:

c = Aχ (35)
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where
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...
...
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0 0 0
... 1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Applying the concept of equation (22) to equation (23)

∑
∀(x,y)

( f (x + 1, y)− f (x, y))2 = ∑
∀(x,y)

1

ε(
⇀
x )

( f (x + 1, y)− f (x, y))2

= f TVTWV f (24)

where

W = diag

�
1

ε(
⇀
x )

�
.

For practical purposes, we also implement the following conditions:

1

ε(
⇀
x )

=

�
1

ε(
⇀
x )

, ε(
⇀
x ) �= 0

0 , otherwise
.

From equation (24), let Tx(ε) = VTWV. The same derivation will follow for the y direction.
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∑
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Thus, the image smoothness term will be
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where λ is the image regularization parameter. On the other hand, the PSF characterization
term in (He et al., 2008; 2009) uses a reinforcement blur estimation (RBE) framework. This
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this can be modelled by

Jĥ_RBE =
�

ĥ − t
�T �

ĥ − t
�

(27)

where t is the best-fit parametric PSF selected from a training set. This is highly dependent
on the current estimate as well as the contents of the training set. As a result, failure of
reinforced learning is possible when the estimate changes as the iteration progresses. In some
cases, learning can also be erroneous when the selected model does not match the actual PSF.
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where α and β are the regularization parameters and r is RPSF. The first term is the PSF
smoothness term while the second is PSF learning term. The image and PSF smoothness
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terms have the same derivations. These are employed for the reason that the TV norm is
known for edge preservation and robustness in the presence of noise. The use of RPSF will
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ĤT
n g. (30)
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(ε) + βI
)−1 (

F̂T
n+1g + βr

)
. (32)

To summarize, the AM technique involves solving equations 30 and 32 alternately until
convergence or when the desired number of iterations is reached.

4.2 Regularization parameters
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parameters. These are positive values that measure the trade off between a good fit and
the regularity of the solutions. These can be accurately determined using many methods.
However, these are usually computationally expensive and time consuming. To make the
selection process less complicated, we will follow the concept used in (Sroubek & Flusser,
2003; You & Kaveh, 1996). The idea is based on the fact that the partial derivatives of the cost
function are zero assuming that we are given the correct values of f and h. Thus equations 29
and 31 will become:

HT H f − HT g + λTf (ε) f = 0 (33)

and
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In general, an OSLE with E linear equations and N unknowns can be expressed as:

c = Aχ (35)
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where c is a vector of given values with c ∈ �E×1 , A is a matrix of coefficients with A ∈ �E×N ,
and χ is a vector of unknown variables with χ ∈ �N×1. Using minimum sum of squared error
approximation (Cadzow, 2002), the solution can be determined by:

χ = (AT A)−1 ATc. (36)

Based on equation 33, λ can then be computed by:

λ = (AT
f A f )

−1 AT
f c f (37)

where A f = −Tf (ε) f and c f = HT H f − HT g. Similarly, α and β can be solved from equation
34:

[ α β ]T = (AT
h Ah)

−1 AT
h ch (38)

where Ah = −[Th(ε)h (h − r)] and ch = FT Fh − FT g.

In practical applications, the correct values of f and h are unknown. The estimated values, f̂
and ĥ, may be utilized in lieu of the unknown correct values then equations 37 and 38 can be
used to compute approximate values of the regularization parameters. In this case, parameter
tuning is done iteratively with a stopping criterion that may be based on the maximum PSNR;
a fixed iteration count; or the minimum cost function, among others.

4.3 Experimental results

4.3.1 Experiment descriptions

The experiment in this section will investigate the effects of integrating the RPSF during the
deconvolution of synthetically blurred images. An unblurred image shown in Fig. 5(c) has
a size of 60 × 60 pixels. This is synthetically blurred with a PSF defined by equation 10 with
the following parameters: L ∈ {3, 5, 7} and θ ∈ {0◦, 45◦, 90◦, 135◦}. The unblurred image and
PSF are known thus, the results can be easily monitored and verified. In this way, a reference
can be established for cases when both the unblurred image and PSF are unknown.

The regularization parameters are computed for 50 iterations. The selection is based on the
maximum peak signal-to-noise ratio (PSNR) in dB, which can be computed as follows:

PSNRdB = 10 log10

(
2b − 1

)2

MSE
(39)

where MSE is defined by

MSE =
1

XY ∑
∀(x,y)

(
f (x, y)− f̂ (x, y)

)2
(40)

and b is the number of bits used to represent a pixel value. The selected parameters are shown
in Table 4. Using these values, f̂ and ĥ are computed for 20 iterations. The initial estimated
image is equated to the given degraded image while the PSF is composed of positive real
random numbers.

The quality of the estimated image is quantitatively evaluated by computing its PSNR. On
the other hand, the estimated PSF is compared with the actual PSF by mean squared error
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Motion Regularization Parameters
Direction λ α β

(s = 3)
0◦ 0.47 3.35 × 103 9.06 × 104

45◦ 1.21 2.59 × 104 7.26 × 105

90◦ 1.13 1.09 × 104 2.13 × 105

135◦ 1.05 1.85 × 104 4.34 × 105

(s = 5)
0◦ 0.79 1.06 × 104 2.45 × 105

45◦ 1.83 3.25 × 103 1.64 × 106

90◦ 1.16 1.69 × 104 3.68 × 105

135◦ 2.03 2.62 × 103 1.77 × 106

(s = 7)
0◦ 1.55 1.61 × 104 6.56 × 105

45◦ 1.68 3.63 × 103 1.79 × 106

90◦ 2.44 1.91 × 103 3.58 × 106

135◦ 1.84 1.84 × 103 3.08 × 106

Table 4. Selected regularization parameters.

(MSE). To demonstrate the effectiveness of using the cost function in equation 26, three
techniques are compared. These have cost functions wherein the image term uses TV while
the PSF term is varied. The first technique uses TV on PSF as proposed in (Chan & Wong,
1998). The second uses reinforced blur estimation (RBE) as in (He et al., 2009) with a
training set containing the same number of parameters as previously mentioned. The third,
maxima-based deconvolution (MXB), uses the cost function in equation 28.

4.3.2 Data and results

The PSNRs of the estimated images with various motion directions and PSF sizes are shown
in Table 5. It can be observed that MXB values are mostly higher in contrast with the other
methods. Furthermore, the horizontal and vertical directions tend to have higher PSNRs than
the diagonal motions. This is attributed by the fact that the gradients used in the TV prior are
also in the same directions. The PSF estimation errors for the three methods can be compared
in Table 6. The lower values demonstrate the method’s effectiveness in estimating the PSF in
different conditions. Notice that when the error is low in Table 6, a high PSNR in Table 5 can
be observed. A sample image reconstructed by MXB is shown in Fig. 5. It shows the method’s
capability in recovering the details of the image.

This section shows the effects of integrating the RPSF during image deconvolution. The PSF
smoothness and learning terms resulted to a lesser PSF estimation error with a larger PSNR
value. Furthermore, we can see the importance of monitoring the image quality. This is very
useful in selecting the regularization parameters as well as the estimated image. In the next
section, we consider the case wherein the unblurred image is unknown making it impossible
for the computation of the PSNR.
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(MSE). To demonstrate the effectiveness of using the cost function in equation 26, three
techniques are compared. These have cost functions wherein the image term uses TV while
the PSF term is varied. The first technique uses TV on PSF as proposed in (Chan & Wong,
1998). The second uses reinforced blur estimation (RBE) as in (He et al., 2009) with a
training set containing the same number of parameters as previously mentioned. The third,
maxima-based deconvolution (MXB), uses the cost function in equation 28.

4.3.2 Data and results

The PSNRs of the estimated images with various motion directions and PSF sizes are shown
in Table 5. It can be observed that MXB values are mostly higher in contrast with the other
methods. Furthermore, the horizontal and vertical directions tend to have higher PSNRs than
the diagonal motions. This is attributed by the fact that the gradients used in the TV prior are
also in the same directions. The PSF estimation errors for the three methods can be compared
in Table 6. The lower values demonstrate the method’s effectiveness in estimating the PSF in
different conditions. Notice that when the error is low in Table 6, a high PSNR in Table 5 can
be observed. A sample image reconstructed by MXB is shown in Fig. 5. It shows the method’s
capability in recovering the details of the image.

This section shows the effects of integrating the RPSF during image deconvolution. The PSF
smoothness and learning terms resulted to a lesser PSF estimation error with a larger PSNR
value. Furthermore, we can see the importance of monitoring the image quality. This is very
useful in selecting the regularization parameters as well as the estimated image. In the next
section, we consider the case wherein the unblurred image is unknown making it impossible
for the computation of the PSNR.
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Motion PSNR (dB)
Direction TV RBE MXB

(s = 3)
0◦ 28.82 28.22 31.63
45◦ 25.32 24.85 26.65
90◦ 28.76 28.64 29.51

135◦ 25.47 24.75 26.76
(s = 5)

0◦ 22.99 19.22 26.43
45◦ 22.29 21.45 23.65
90◦ 21.96 20.64 25.06

135◦ 22.57 23.66 23.68
(s = 7)

0◦ 19.30 17.19 23.97
45◦ 20.74 20.47 21.81
90◦ 21.56 23.34 23.32

135◦ 19.60 18.15 21.83

Table 5. Comparison of the image PSNR (dB)for different methods.

Motion Method
Direction TV RBE MXB

(s = 3)
0◦ 1.8 × 10−2 2.0 × 10−2 9.9 × 10−4

45◦ 7.0 × 10−2 4.1 × 10−2 7.3 × 10−3

90◦ 1.9 × 10−2 1.0 × 10−2 4.2 × 10−3

135◦ 7.1 × 10−2 4.1 × 10−2 4.2 × 10−3

(s = 5)
0◦ 5.9 × 10−3 8.4 × 10−3 4.4 × 10−4

45◦ 5.4 × 10−3 7.2 × 10−3 2.2 × 10−4

90◦ 1.1 × 10−2 1.0 × 10−2 9.2 × 10−4

135◦ 7.6 × 10−3 1.9 × 10−4 2.0 × 10−4

(s = 7)
0◦ 4.8 × 10−3 4.2 × 10−3 1.5 × 10−4

45◦ 2.1 × 10−3 3.1 × 10−3 1.3 × 10−4

90◦ 3.9 × 10−3 3.9 × 10−5 3.9 × 10−5

135◦ 3.3 × 10−3 4.4 × 10−3 2.4 × 10−5

Table 6. Comparison of the PSF estimation error.
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(a) degraded (b) estimated (c) unblurred

Fig. 5. An image degraded with L = 5 and θ = 90◦.

5. Quality assessment

As mentioned in the previous section, image reconstruction is highly ill-posed. This results to
the solution being solved through an iterative method wherein several images and PSFs will
be produced. In most cases, the image quality is given more priority. Comparison between
them can be easily achieved if the unblurred image is known or given. However, this is not
the case in practical applications. It is, therefore, crucial to establish a method of evaluating
an image that is independent of its unblurred version.

The most common approach of evaluating an image is through a measure based on the edges.
An image is composed of different types of edges whose number is affected by the type of
blur that is present. Haar Wavelet Transforms (HWT) can discriminate these edges and can
be used for blur extent measurement as proposed in (Tong et al., 2004). Another technique
is to employ edge active measure on 8 × 8 blocks of the wavelet coefficients as proposed in
(Xin et al., 2003). A downside to these is that it requires a transformation with at least three
levels of decompositions. Thus, it greatly increases the computational cost when considering
an iterative reconstruction method. A technique that does not require a transform has been
proposed in (Marziliano et al., 2002; 2004) where the blur metric is computed using the edge
points and their local extrema. The metric’s accuracy is dependent on the edges that can
be detected. However, when blur increases edge points will decrease and in turn result to
inaccurate values.

In (Li et al., 2005) selection of the best deblurred image with Wiener filter is achieved by
kurtosis minimization. It has been shown that the results are similar to those of PSNR
maximization. However, it can be empirically shown that this is not consistent in natural
images (Chong & Tanaka, 2011c). A different objective criterion using variance and kurtosis
will be discussed next.

5.1 Maxima and image quality

The variance and kurtosis will be considered for the characterization of images. The variance
can be computed by

v =
1
N ∑

∀(x,y)

(
f (x, y)− f̄

)2 (41)
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Fig. 5. An image degraded with L = 5 and θ = 90◦.

5. Quality assessment

As mentioned in the previous section, image reconstruction is highly ill-posed. This results to
the solution being solved through an iterative method wherein several images and PSFs will
be produced. In most cases, the image quality is given more priority. Comparison between
them can be easily achieved if the unblurred image is known or given. However, this is not
the case in practical applications. It is, therefore, crucial to establish a method of evaluating
an image that is independent of its unblurred version.

The most common approach of evaluating an image is through a measure based on the edges.
An image is composed of different types of edges whose number is affected by the type of
blur that is present. Haar Wavelet Transforms (HWT) can discriminate these edges and can
be used for blur extent measurement as proposed in (Tong et al., 2004). Another technique
is to employ edge active measure on 8 × 8 blocks of the wavelet coefficients as proposed in
(Xin et al., 2003). A downside to these is that it requires a transformation with at least three
levels of decompositions. Thus, it greatly increases the computational cost when considering
an iterative reconstruction method. A technique that does not require a transform has been
proposed in (Marziliano et al., 2002; 2004) where the blur metric is computed using the edge
points and their local extrema. The metric’s accuracy is dependent on the edges that can
be detected. However, when blur increases edge points will decrease and in turn result to
inaccurate values.

In (Li et al., 2005) selection of the best deblurred image with Wiener filter is achieved by
kurtosis minimization. It has been shown that the results are similar to those of PSNR
maximization. However, it can be empirically shown that this is not consistent in natural
images (Chong & Tanaka, 2011c). A different objective criterion using variance and kurtosis
will be discussed next.
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Name Conditions
Cond A vp,z �=4 < vp,z=4
Cond B km,z �=4 < km,z=4
Cond C vp,z < vp,z+1
Cond D km,z < km,z+1

Table 7. Conditions for experiment 1.

where f̄ is the mean of the image and N represents the total number of pixels. On the other
hand, kurtosis can be represented by

k =
1
N ∑∀(x,y)

(
f (x, y)− f̄

)4

v2 − 3. (42)

These quantities can be used to describe the distribution of the values for a given image. To
demonstrate this, the unblurred image shown in Fig. 6 is synthetically blurred with OOF.
The PSF sizes are {7 × 7, 5 × 5, 3 × 3} and these are indexed by an integer number where the
smallest index represents the largest size. Thus, a large index number indicates a smaller PSF
size and an image with better quality. For each image, the maxima values are scanned from left
to right and from top to bottom. The variance and kurtosis are computed using the pixel and
maxima values. This means that every degraded image will have four quantities. Fig. 7 shows
that the variance of the pixel values monotonically increases as the size becomes smaller or as
the index becomes larger. This trend is also the same for the kurtosis of the maxima values.
Although kurtosis of the pixel values decreased, this trend is not monotonic. Therefore, the
decrease in blur can be described by the increase of pixel variance (vp) and maxima kurtosis
(km). The subscripts are used to indicate the values that are used i.e., p for pixel values and
m for maxima values. These characteristics are empirically proven to be consistent in many
images as will be shown by the data. Due to this, the trends of vp and km can be used for
the selection of the regularization parameters and the deblurred image. For a method with n
iterations, vp and km will be composed of a set with n values. Each set is first scaled such that
the minimum value is zero and the maximum is one. The average (q) for each iteration is then
computed as

q =
vp + km

2
. (43)

Thus, the criterion for selection is the maximum q among the n values.

5.2 Experimental results

5.2.1 Experiment descriptions

There are three experiments that are being considered here. The first will investigate the effect
of the different PSF sizes to the distribution of the pixel and maxima values. The latter are
extracted by scanning the green channel from left to right and from top to bottom. The
variances and kurtoses are compared for different conditions (Cond) as shown in Table 7.
The subscript z ∈ {1, 2, ..., 4} is the index of the PSF support size where z = 4 indicates an
unblurred image. The support sizes are {7 × 7, 5 × 5, 3 × 3}. There are 300 unblurred images
with natural scenes that may be 640 × 480 or 480 × 640 pixels in size. Synthetic blurs include
horizontal motion (HM), vertical motion (VM), and OOF.
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Fig. 6. An unblurred image.

The second experiment is the evaluation of the parameter selection and the resulting
reconstructed images. For practical purposes, the image size is 60 × 60 and degradations
are the same with the previous experiment but the support sizes are {3 × 3, 5 × 5}. The
regularization parameters are computed for 100 iterations using the PSF sizes {3 × 3, 5 ×
5, 7 × 7}. RGB images are used so that subtle changes in the images can be seen easily. As
a result, the modified cost function in (Chong & Tanaka, 2010b) is used. The final PSF size and
parameters are selected using the maximum value of q. These values are then used for the
reconstruction of the degraded image computed for 50 iterations. Although this experiment
deals with RGB, the images are evaluated using only the green channel.

The third experiment involves the selection of the motion blur parameters, L and θ, through
image deconvolution with Wiener filter. We follow the procedure in (Li et al., 2005) where
deconvolution is computed over a set of parameters. In this experiment, the values are
L = {3, 5, 7, 9, 11, 13, 15} and θ = {0◦, 45◦, 90◦, 135◦}. The selection is based on a criterion
specifically, maximum PSNR, minimum kp, and maximum q.
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Name Conditions
Cond A vp,z �=4 < vp,z=4
Cond B km,z �=4 < km,z=4
Cond C vp,z < vp,z+1
Cond D km,z < km,z+1

Table 7. Conditions for experiment 1.

where f̄ is the mean of the image and N represents the total number of pixels. On the other
hand, kurtosis can be represented by

k =
1
N ∑∀(x,y)

(
f (x, y)− f̄

)4

v2 − 3. (42)

These quantities can be used to describe the distribution of the values for a given image. To
demonstrate this, the unblurred image shown in Fig. 6 is synthetically blurred with OOF.
The PSF sizes are {7 × 7, 5 × 5, 3 × 3} and these are indexed by an integer number where the
smallest index represents the largest size. Thus, a large index number indicates a smaller PSF
size and an image with better quality. For each image, the maxima values are scanned from left
to right and from top to bottom. The variance and kurtosis are computed using the pixel and
maxima values. This means that every degraded image will have four quantities. Fig. 7 shows
that the variance of the pixel values monotonically increases as the size becomes smaller or as
the index becomes larger. This trend is also the same for the kurtosis of the maxima values.
Although kurtosis of the pixel values decreased, this trend is not monotonic. Therefore, the
decrease in blur can be described by the increase of pixel variance (vp) and maxima kurtosis
(km). The subscripts are used to indicate the values that are used i.e., p for pixel values and
m for maxima values. These characteristics are empirically proven to be consistent in many
images as will be shown by the data. Due to this, the trends of vp and km can be used for
the selection of the regularization parameters and the deblurred image. For a method with n
iterations, vp and km will be composed of a set with n values. Each set is first scaled such that
the minimum value is zero and the maximum is one. The average (q) for each iteration is then
computed as

q =
vp + km

2
. (43)

Thus, the criterion for selection is the maximum q among the n values.

5.2 Experimental results

5.2.1 Experiment descriptions

There are three experiments that are being considered here. The first will investigate the effect
of the different PSF sizes to the distribution of the pixel and maxima values. The latter are
extracted by scanning the green channel from left to right and from top to bottom. The
variances and kurtoses are compared for different conditions (Cond) as shown in Table 7.
The subscript z ∈ {1, 2, ..., 4} is the index of the PSF support size where z = 4 indicates an
unblurred image. The support sizes are {7 × 7, 5 × 5, 3 × 3}. There are 300 unblurred images
with natural scenes that may be 640 × 480 or 480 × 640 pixels in size. Synthetic blurs include
horizontal motion (HM), vertical motion (VM), and OOF.
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Fig. 6. An unblurred image.

The second experiment is the evaluation of the parameter selection and the resulting
reconstructed images. For practical purposes, the image size is 60 × 60 and degradations
are the same with the previous experiment but the support sizes are {3 × 3, 5 × 5}. The
regularization parameters are computed for 100 iterations using the PSF sizes {3 × 3, 5 ×
5, 7 × 7}. RGB images are used so that subtle changes in the images can be seen easily. As
a result, the modified cost function in (Chong & Tanaka, 2010b) is used. The final PSF size and
parameters are selected using the maximum value of q. These values are then used for the
reconstruction of the degraded image computed for 50 iterations. Although this experiment
deals with RGB, the images are evaluated using only the green channel.

The third experiment involves the selection of the motion blur parameters, L and θ, through
image deconvolution with Wiener filter. We follow the procedure in (Li et al., 2005) where
deconvolution is computed over a set of parameters. In this experiment, the values are
L = {3, 5, 7, 9, 11, 13, 15} and θ = {0◦, 45◦, 90◦, 135◦}. The selection is based on a criterion
specifically, maximum PSNR, minimum kp, and maximum q.
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Fig. 7. Variances and kurtoses for OOF degraded versions of Fig. 6.

Setting Number of Accuracy (%) Total
Images HM VM OOF

Cond A 900 100.0 100.0 100.0 100.0
Cond B 900 100.0 100.0 100.0 100.0
Cond C 300s 100.0 100.0 100.0 100.0
Cond D 300s 98.7 98.3 95.3 97.4

Table 8. Condition consistency with vp and km (%).

5.2.2 Data and results

Table 8 shows the consistency of specific conditions using image pixels and maxima values.
The consistency here refers to the trueness of a condition when tested to a number of images.
The letter s indicates sets where each set consists of four images with increasing PSF size.
Cond A shows that all vp of the degraded images are lower than the unblurred image. This
means that a high vp is expected in the absence of blur. The same is observable for km as
shown by the data for Cond B. The monotonicity of the increase in vp is evaluated by Cond
C. The percentage indicates that this is true for all the tested images. This shows that the vp
value consistently increases as the PSF size decreases. On the other hand, monotonicity of km
is not true for all the tested images. However, these only affect a few images as manifested by
the high consistency values in row Cond D. With reference to the conditions in Table 7, it can
be observed that these indicate that both vp and kp will increase as blur decreases. Since their
behaviour are similar, integration will be easier in order to produce a single quantity that can
reflect an image’s quality.
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PSF maximum q Regularization Parameters
Type 3 × 3 5 × 5 7 × 7 λ α β

(s = 3)
HM 0.56 0.69 0.84 0.60 3.68 × 105 5.17 × 106

VM 0.87 0.74 0.64 0.22 3.09 × 102 4.51 × 105

OOF 0.94 0.89 0.75 0.51 2.46 × 104 1.32 × 106

(s = 5)
HM 0.72 0.73 0.72 0.50 9.40 × 104 3.42 × 106

VM 0.89 0.73 0.68 0.13 4.51 × 102 2.33 × 105

OOF 0.72 0.70 0.66 0.41 2.26 × 104 7.38 × 105

Table 9. Selection of the PSF size and regularization parameters using maximum q.

For the second experiment, the PSF size and regularization parameters are chosen by the
maximum value of q. This is shown in Table 9 for each PSF size. The emphasized number is the
maximum considering a certain degraded image. The underlined number indicates correct
identification of the PSF size. Based on the emphasized values, the resulting regularization
parameters are also shown in Table 9. It can be observed that when s = 3, the correct size
is selected for those blurred with VM and OOF. For HM, the selected size is larger than
the actual. In contrast, this reverses when s = 5. Only HM is correct while VM and OOF
have smaller sizes than the actual. The parameters are employed during reconstruction and
the image quality measures are computed and shown in Table 10. The PSNR and q values
are compared when one of these is the maximum. The rows with emphasized values are
those with correct PSF sizes. It can be seen that when the size is incorrect the PSNRs are
approximately the same. These are consistent despite the fact that when s = 3 the selected
size is larger and when s = 5 the size is smaller. The same can be observed with the values of q
except for VM when s = 5. On the other hand, when the size is correct both values (PSNR and
q) are different. If we consider maximum PSNR then q is smaller and vice versa. To illustrate
the difference in values, the corresponding images, when s = 3, are shown in Fig. 8. It can
be observed, from the first row in Fig. 8, that reconstruction with an incorrect PSF size will
yield images with a higher contrast. The second and third rows used correct PSF sizes. The
reconstructed images show more details than the degraded versions. The difference is with
the perceptible focus of the image. When PSNR is maximum the image appears smoother.
However, when q is maximum the image appears sharper. The same observations are true
even if the blur types are different. Thus, a q with higher value indicates a sharper image and
low indicates a smoother image. This is due to the fact that the statistical distributions of the
pixels and maxima are taken into consideration.

The data in Table 11 show the selected parameters using different criteria. It can be observed
that only the angle, θ = 0◦, are correctly identified by the maximum PSNR criterion. In
contrast, θ = 90◦ and L = 3 are selected by minimum kp. Finally, for maximum q all
parameters are correct for small PSFs while only θ are correct for larger PSFs.

This section shows the effects of blur on the pixel variance and maxima kurtosis. The values
are highest when the image is unblurred and these decrease as the PSF size increases. A new
criterion for comparing images is also discussed. This does not require the unblurred image,
which makes it useful for the reconstruction of images. By exploiting the pixel variance and
maxima kurtosis, perceptible focus can be quantized. Higher values have sharper images
while lower ones have smoother images.
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5.2.2 Data and results

Table 8 shows the consistency of specific conditions using image pixels and maxima values.
The consistency here refers to the trueness of a condition when tested to a number of images.
The letter s indicates sets where each set consists of four images with increasing PSF size.
Cond A shows that all vp of the degraded images are lower than the unblurred image. This
means that a high vp is expected in the absence of blur. The same is observable for km as
shown by the data for Cond B. The monotonicity of the increase in vp is evaluated by Cond
C. The percentage indicates that this is true for all the tested images. This shows that the vp
value consistently increases as the PSF size decreases. On the other hand, monotonicity of km
is not true for all the tested images. However, these only affect a few images as manifested by
the high consistency values in row Cond D. With reference to the conditions in Table 7, it can
be observed that these indicate that both vp and kp will increase as blur decreases. Since their
behaviour are similar, integration will be easier in order to produce a single quantity that can
reflect an image’s quality.
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Table 9. Selection of the PSF size and regularization parameters using maximum q.

For the second experiment, the PSF size and regularization parameters are chosen by the
maximum value of q. This is shown in Table 9 for each PSF size. The emphasized number is the
maximum considering a certain degraded image. The underlined number indicates correct
identification of the PSF size. Based on the emphasized values, the resulting regularization
parameters are also shown in Table 9. It can be observed that when s = 3, the correct size
is selected for those blurred with VM and OOF. For HM, the selected size is larger than
the actual. In contrast, this reverses when s = 5. Only HM is correct while VM and OOF
have smaller sizes than the actual. The parameters are employed during reconstruction and
the image quality measures are computed and shown in Table 10. The PSNR and q values
are compared when one of these is the maximum. The rows with emphasized values are
those with correct PSF sizes. It can be seen that when the size is incorrect the PSNRs are
approximately the same. These are consistent despite the fact that when s = 3 the selected
size is larger and when s = 5 the size is smaller. The same can be observed with the values of q
except for VM when s = 5. On the other hand, when the size is correct both values (PSNR and
q) are different. If we consider maximum PSNR then q is smaller and vice versa. To illustrate
the difference in values, the corresponding images, when s = 3, are shown in Fig. 8. It can
be observed, from the first row in Fig. 8, that reconstruction with an incorrect PSF size will
yield images with a higher contrast. The second and third rows used correct PSF sizes. The
reconstructed images show more details than the degraded versions. The difference is with
the perceptible focus of the image. When PSNR is maximum the image appears smoother.
However, when q is maximum the image appears sharper. The same observations are true
even if the blur types are different. Thus, a q with higher value indicates a sharper image and
low indicates a smoother image. This is due to the fact that the statistical distributions of the
pixels and maxima are taken into consideration.

The data in Table 11 show the selected parameters using different criteria. It can be observed
that only the angle, θ = 0◦, are correctly identified by the maximum PSNR criterion. In
contrast, θ = 90◦ and L = 3 are selected by minimum kp. Finally, for maximum q all
parameters are correct for small PSFs while only θ are correct for larger PSFs.

This section shows the effects of blur on the pixel variance and maxima kurtosis. The values
are highest when the image is unblurred and these decrease as the PSF size increases. A new
criterion for comparing images is also discussed. This does not require the unblurred image,
which makes it useful for the reconstruction of images. By exploiting the pixel variance and
maxima kurtosis, perceptible focus can be quantized. Higher values have sharper images
while lower ones have smoother images.
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(a) degraded by HM (b) PSNR=18.58, q = 0.92 (c) PSNR=18.56, q = 0.93

(d) degraded by VM (e) PSNR=22.95, q = 0.53 (f) PSNR=20.55, q = 0.84

(g) degraded by OOF (h) PSNR=27.54, q = 0.17 (i) PSNR=22.88, q = 1.00

Fig. 8. Degraded images and their reconstructed versions based on Table 10 when s = 3.
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PSF maximum PSNR maximum q
Type PSNR q PSNR q

(s = 3)
HM 18.58 0.92 18.56 0.93
VM 22.95 0.53 20.55 0.84
OOF 27.54 0.17 22.88 1.00

(s = 5)
HM 20.05 0.64 19.53 0.86
VM 18.26 0.54 17.59 0.80
OOF 21.87 0.99 21.87 1.00

Table 10. Comparison between PSNR and q (dB).

Type of Criterion
Motion PSNRmax kp_min qmax
L = 3 L = 15 L = 3 L = 3
θ = 0◦ θ = 0◦ θ = 90◦ θ = 0◦
L = 3 L = 15 L = 3 L = 3

θ = 90◦ θ = 0◦ θ = 90◦ θ = 90◦
L = 5 L = 15 L = 15 L = 3
θ = 0◦ θ = 0◦ θ = 135◦ θ = 0◦
L = 5 L = 15 L = 3 L = 3

θ = 90◦ θ = 0◦ θ = 90◦ θ = 90◦

Table 11. Motion parameter selection with a Wiener filter.

6. Summary

This chapter explores the different aspects of image deconvolution and the uses of extrema.
For an efficient usage of resources, the whole deconvolution process is divided into several
tasks. This begins with the detection and identification of blurs followed by the determination
of RPSF. The resulting quantity is integrated into the cost function that is used to estimate the
unblurred image. Since the method is iterative, several images will result and these must be
compared to determine the best one.

Section 1 introduces image deconvolution and its importance in different fields of
applications. Some variations of its mathematical model are also mentioned as a
backgrounder. The next section discusses image extrema and its exploitation for blur detection
and identification. The concept is based on how blur changes the extrema locations and
distributions. A histogram is first created and from which, specific features are computed. By
using a classifier, the presence of the blur can be detected. Aside from this, it is also possible
to identify its type. This has been tested to have high accuracy for Gaussian, motion and OOF
blurs.

Degraded images must be processed further in order for them to yield more information. An
initial step is to extract some details regarding its blurring function. This is accomplished by
exploiting the maxima and computing for the RPSF as shown in section 3. This is especially
applicable for motion blurs because the maxima locations also align with the motion direction.
By employing the Hough transform, a single direction is detected and the resulting RPSF will
be more similar to the actual PSF. Testing the accuracy of detecting the direction involved
various natural images that are blurred synthetically with different PSF sizes. High values
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using a classifier, the presence of the blur can be detected. Aside from this, it is also possible
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be more similar to the actual PSF. Testing the accuracy of detecting the direction involved
various natural images that are blurred synthetically with different PSF sizes. High values
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indicate the efficacy of the method. An advantage of this is that it can reveal the nature of the
embedded PSF using only the degraded image. It does not require a training set to determine
the direction of motion.

RPSF can also be used during the estimation of the unblurred image. In section 4 the classical
cost function for deconvolution is reformulated. It contains the terms for fidelity, image
smoothness , and PSF characterization, which consists of the PSF smoothness and learning
terms. The smoothness terms are included due to the fact that images as well as piecewise
PSFs have edges. The PSF learning term integrates the RPSF during deconvolution. In this
way, RPSF provides a way of reinforcement without the need for a training set. During the
estimation process, RPSF also eliminates the dependence of learning on the current computed
PSF. The cost function requires three regularization parameters that can be solved using
the OSLEs. All equations have been expressed in the vector-matrix form to facilitate easier
derivations. The resulting data show consistently high PSNRs for different motion directions
and PSF sizes. This means that the image quality are improved. Furthermore, the MSEs of the
PSFs are also very low, which indicates a high accuracy in estimating the PSF.

Lastly, a method to compare images is discussed in section 5. Iterative methods for
deconvolution will naturally result in several estimated images and PSFs. When image
quality is given more importance, an assessment technique is needed to choose the best one.
Classical methods require the unblurred version however, this is not applicable in practical
applications. Thus, the pixel variance and maxima kurtosis have been exploited to overcome
this problem. It has been shown that both quantities are low when the blur is high and these
monotonically increase as the blur decreases. Their combination resulted to a single value
that can be used to compare several images. Experimental results have shown that this is high
when an image is sharp. In contrast, when the value is low the image is smooth.

The extrema considered in this chapter are extracted by horizontal and vertical scanning.
The effects of using other scanning directions are still unknown. Additionally, the degraded
images are all invariantly blurred. This means that the PSF is assumed to be uniform all
throughout the image. In practical applications, the variant case is also possible. The results
for this case remain an open problem at this time. Finally, the image comparison technique is
capable of differentiating images based on the sharpness of the details without the unblurred
image. However, it cannot indicate the presence of distortions such as ringing and color
artefacts. Quantizing these is not only important in image deconvolution but also in other
applications of image processing.
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indicate the efficacy of the method. An advantage of this is that it can reveal the nature of the
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the OSLEs. All equations have been expressed in the vector-matrix form to facilitate easier
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PSFs are also very low, which indicates a high accuracy in estimating the PSF.
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Classical methods require the unblurred version however, this is not applicable in practical
applications. Thus, the pixel variance and maxima kurtosis have been exploited to overcome
this problem. It has been shown that both quantities are low when the blur is high and these
monotonically increase as the blur decreases. Their combination resulted to a single value
that can be used to compare several images. Experimental results have shown that this is high
when an image is sharp. In contrast, when the value is low the image is smooth.

The extrema considered in this chapter are extracted by horizontal and vertical scanning.
The effects of using other scanning directions are still unknown. Additionally, the degraded
images are all invariantly blurred. This means that the PSF is assumed to be uniform all
throughout the image. In practical applications, the variant case is also possible. The results
for this case remain an open problem at this time. Finally, the image comparison technique is
capable of differentiating images based on the sharpness of the details without the unblurred
image. However, it cannot indicate the presence of distortions such as ringing and color
artefacts. Quantizing these is not only important in image deconvolution but also in other
applications of image processing.
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1. Introduction  
1.1 Overview 

Basically, the quality of an image can be evaluated on its spatial and spatial-frequency 
resolutions, image interpolation and superresolution are perhaps the way to respectively 
produce high spatial and spatial-frequency resolutions of images especially for a single down-
sampled image. For convenience, the term “hyper-resolution” used here represents the 
approach to enhancing both the spatial and the spatial-frequency resolutions of an image.  

As known, the process of decimation or down-sampling is an effective way often used to 
reduce image sizes, thus, reducing the amount of information transmitted through the 
communication channels and the local storage requirements, while trying to preserve as 
much as possible the image quality. Conversely, the reverse procedure of this, referred to as 
interpolation or up-sampling, is useful in restoring the original high resolution image from 
its decimated version or for resizing or zooming a digital image. Decimation and 
interpolation are used for several purposes in many practical applications, such as 
progressive image transmission systems, multimedia applications, and so forth. A number 
of conventional interpolation techniques [Hou & Andrews, 1978; Jain, 1989; Keys, 1981] have 
been proposed to increase the spatial resolution of an image. Undoubtedly, these techniques 
degrade the quality of the magnified image.  

Furthermore, images may be corrupted by degradation such as blurring distortion, noise, and 
blocking artifacts. These sources of degradation may arise during image capture or processing 
and have a direct bearing on visual quality. Various methods of restoration have been 
described in the literature; this diversity reveals the importance of the problem and its great 
difficulty. The purpose of image deconvolution or restoration is to recover degraded images 
by removing noise, highlighting image contrast, and preserving edge features of image. 

Image superresolution was developed in 1950s to improve image quality and pilot research 
of this field is derived from the early work (Toraldo di Francia, 1952, 1955) where the term 
“superresolution” was used in the paper. Following that, clear definition, description and 
some of the obvious contribution to this field can be found in the work (Gerchberg, 1974; 
Hunt & Sementilli, 1992) in which their work, superresolution, was meant to seek to recover 
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object information from above the spatial-frequency limit of diffraction. Originally, 
superresolution referred to a technique of one-frame-to-one-frame and its interest was in the 
spatial-frequency domain, neither for multi-frames-to-one-frame nor for interpolation. Since 
then, signal/image restoration/superresolution has been concerned for the spatial-
frequency domain from one low-resolution frame to one high-resolution frame; basically, the 
distinct nature of those algorithms is iterative and nonlinear. A process of interpolation along 
with restoration/superresolution was used with one frame to enhance the spatial and spatial-
frequency resolution of the frame (Pan, 2006). Else, the processing of multi-frame-to-one-frame 
has been quite concerned (Gillette et al., 1995; Ng et al., 2003; Segal et al., 2003), where a single 
high-resolution frame was reconstructed from multiple low-resolution frames.  

1.2 Long-wavelength imaging system 

Image restoration is able to be applied to the long-wavelength imaging systems, millimeter-
wave (mm-wave) and near-infrared diffuse optical tomography (NIR DOT) imaging 
systems, shown as Fig. 1.1.. The advantage of long-wavelength imaging systems is to provide 
special information with no radioactive characteristics but the physical property of long 
wavelength with diffraction or scattering results in lower spatial-frequency resolution images, 
however, which can be improved using image restoration to enhance its applicability.  
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Fig. 1.1. Long Wavelength Imaging Systems v.s. Image Restoration 

Images acquired from millimeter-wave imaging system for the fog or rain weather can be 
applied to navigation; its image resolution of 2D image can be improved with the 
technology of image restoration. NIR DOT imaging system provides computed tomography 
(CT) images of the human body or biological tissue/organ, used in medical diagnosis; 
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image processing techniques can improve the image quality of tomographic images between 
iterations of image reconstruction.  

The technique using image restoration gradually becomes popular for an mm-wave or an 
NIR DOT imaging system; the difference of both imaging systems is that the former is post-
processing and the latter is inter-processing. 

1.3 Varied algorithms of Image restoration 

There are two categories of restoration methods for improving image quality: (i) 
noniterative restoration such as the inverse filter, the Wiener filter (Wiener, 1942) and (ii) 
nonlinear iterative restoration/superresolution techniques such as Lorentzian restoration 
method (Lettington & Hong, 1995), maximum a posteriori (MAP) (Hunt & Sementilli, 1992), 
Richardson-Lucy (RL) deconvolution method (Richardson, 1972; Lucy, 1974), maximum 
entropy (Frieden, 1972), projection onto convex sets (Sezan & Tekalp, 1988), Gerchberg error 
energy reduction process (Gerchberg, 1974), and edge-preserving regularization (Teboul et 
al., 1998). In these methods, it is essential to use the adequate blurring function (a low-pass 
filter) to restore a degraded image. 

1.4 Remark 

In this section, we have described a number of terms such as spatial resolution, spatial-
frequency resolution, interpolation, restoration, superresolution, hyper-resolution, inter-
processing, and post-processing. In addition, advantages and drawbacks of long wavelength 
imaging systems were addressed and general description of restoration algorithms was made. 
It is worth emphasizing that long wavelength imaging systems have the same problem to be 
dealt with so image restoration can be used to improve such an imaging system. 

Following this introduction, this chapter is organized as follows. Section 2 describes 
mathematical model of image formation; image restoration algorithms and further 
consideration on image restoration are explained in Sec. 3 and Sec. 4, respectively. 
Subsequently, Sec. 5 demonstrates related applications of image restoration. Finally, 
conclusion is drawn in Sec. 6. 

2. Mathematical model of Image formation 
In this section, imaging systems, image formation model, and forward problem and inverse 
problem are described in the following. 

2.1 Imaging systems  

2.1.1 Common imaging system 

Usually, the imaging process of a common imaging system is formed as follows. Suppose 
we have a scene of interest that is going to pass through a common imaging system where it 
has been corrupted by a linear blurring function and some additive noise. The blurring 
function h accounts for the imperfectness of the imaging system including optical lens or the 
human factors in shooting the images. Some typical examples are a diffraction-limited or 
defocused lens and camera motion or shaking during the exposure. The noise arises from 
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the inherent characteristics of the recording media, e.g., electronic noise and quantization 
noise when the images are digitized (or discretized).  

In practice, the available blurred image not only follows exactly the above description but 
also is constrained with the film size, in most cases the images have to be truncated at the 
boundaries. Instead, what is available now becomes a windowed blurred image where a 
rectangular window is usually accounting for the film aperture shape and size. One inherent 
problem with this is that many ringing artifacts are introduced into the restored image when 
the linear or nonlinear filter is applied directly to the truncated blurred image. 

2.1.2 Medical imaging system 

Here, we use NIR DOT imaging system as an example. Basically, an NIR DOT imaging system 
is composed of a measuring instrument associated with image reconstruction scheme for the 
purpose of reconstructing the NIR optical-property tomographic images of phantoms/tissue 
of interest. The reconstructed images reveal the NIR optical properties of tissue computed by 
using measured radiances emitted from the circumference of the object. A schematic diagram 
of the NIR DOT measuring system in the frequency domain is shown in Fig. 2.1.  

 
Fig. 2.1. Schematic diagram of NIR DOT measuring system in the frequency domain. 

2.2 Image formation model 

The image formation is modelled as 

 g f h n    (2.1) 

where f is the original scene, h is the point-spread function (p.s.f.) of the imaging system,   
is the convolution operator, n is the noise, and g is the corrupted image. Subsequently, the 
corrupted image is windowed due to the film size/support area and sampled for 
digitization. 

Aliasing is arising, which causes different signals to become indistinguishable when 
sampled. It also refers to the distortion or artifact that results when the signal reconstructed 
from samples is different from the original continuous signal. 
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2.3 Forward problem & inverse problem 

In a common imaging system, the image is formed as the above description in which finding 
an estimated original signal/image (f) is an inverse problem for a given corrupted 
signal/image (g) while the reverse process is a forward problem. In tomographic imaging, the 
reconstruction of optical-property images is done iteratively using a Newton method, 
requiring inversion of a highly ill-posed and ill-conditioned matrix. The goal of DOT is to 
estimate the distribution of the optical properties in tissue from non-invasive boundary 
measurements. For the purpose of determining the optical properties (the absorption 
coefficient and the diffusion/scattering coefficient) from measurement data, which is an 
inverse problem in DOT, a forward model is needed to describe the physical relation between 
the boundary measurements of tissue and the optical properties that characterize the tissue.  

2.3.1 Forward problem in DOT 

In general, such a forward model of NIR DOT that gives the description of this physical 
relation is the diffusion equation, 
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where  , r  is the photon density at position r  and   is the light modulation frequency. 
 ,S r  is the isotropic source term and c  is the speed of light in tissue. a  and   denote 

the optical absorption and diffusion coefficients, respectively. In addition, the finite element 
method (FEM) and a Robin (type-III) [Brendel & Nielsen, 2009; Holboke et al., 2000] 
boundary condition are applied on Eq. (2.2) to solve this forward problem, i.e., calculating 
the photon density for a given set of optical property within the tissue. 

2.3.2 Inverse problem in DOT 

Owing to the non-linearity with respect to the optical properties, an analytic solution to the 
inverse problem in DOT is absent. Instead, the numerical way of obtaining the inverse 
solution is to iteratively minimize the difference between the measured diffusion photon 
density data, MΦ , around the tissue and the calculated model data, CΦ , from solving the 
forward problem with the current estimated optical properties. This data-model misfit 
difference is typically defined as follows,  
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where MN  is the number of measurements.  

By means of the first order Taylor series to expandΦ , one can get Eq. (2.4),  
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the inherent characteristics of the recording media, e.g., electronic noise and quantization 
noise when the images are digitized (or discretized).  
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problem with this is that many ringing artifacts are introduced into the restored image when 
the linear or nonlinear filter is applied directly to the truncated blurred image. 
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purpose of reconstructing the NIR optical-property tomographic images of phantoms/tissue 
of interest. The reconstructed images reveal the NIR optical properties of tissue computed by 
using measured radiances emitted from the circumference of the object. A schematic diagram 
of the NIR DOT measuring system in the frequency domain is shown in Fig. 2.1.  
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where f is the original scene, h is the point-spread function (p.s.f.) of the imaging system,   
is the convolution operator, n is the noise, and g is the corrupted image. Subsequently, the 
corrupted image is windowed due to the film size/support area and sampled for 
digitization. 

Aliasing is arising, which causes different signals to become indistinguishable when 
sampled. It also refers to the distortion or artifact that results when the signal reconstructed 
from samples is different from the original continuous signal. 
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2.3 Forward problem & inverse problem 

In a common imaging system, the image is formed as the above description in which finding 
an estimated original signal/image (f) is an inverse problem for a given corrupted 
signal/image (g) while the reverse process is a forward problem. In tomographic imaging, the 
reconstruction of optical-property images is done iteratively using a Newton method, 
requiring inversion of a highly ill-posed and ill-conditioned matrix. The goal of DOT is to 
estimate the distribution of the optical properties in tissue from non-invasive boundary 
measurements. For the purpose of determining the optical properties (the absorption 
coefficient and the diffusion/scattering coefficient) from measurement data, which is an 
inverse problem in DOT, a forward model is needed to describe the physical relation between 
the boundary measurements of tissue and the optical properties that characterize the tissue.  

2.3.1 Forward problem in DOT 

In general, such a forward model of NIR DOT that gives the description of this physical 
relation is the diffusion equation, 
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the optical absorption and diffusion coefficients, respectively. In addition, the finite element 
method (FEM) and a Robin (type-III) [Brendel & Nielsen, 2009; Holboke et al., 2000] 
boundary condition are applied on Eq. (2.2) to solve this forward problem, i.e., calculating 
the photon density for a given set of optical property within the tissue. 

2.3.2 Inverse problem in DOT 

Owing to the non-linearity with respect to the optical properties, an analytic solution to the 
inverse problem in DOT is absent. Instead, the numerical way of obtaining the inverse 
solution is to iteratively minimize the difference between the measured diffusion photon 
density data, MΦ , around the tissue and the calculated model data, CΦ , from solving the 
forward problem with the current estimated optical properties. This data-model misfit 
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where MN  is the number of measurements.  

By means of the first order Taylor series to expandΦ , one can get Eq. (2.4),  
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since the goal is to reach MΦ  from the current CΦ , and, thus, MΦ  and CΦ  have been 
used in the left and right parts of Eq. (2.4), respectively. As well, the vector  aμ  and  κ  
denote the updates respectively for a  and   with dimension NN , the number of total 
nodes in the finite element mesh, and the dimension of the matrices C

a   Φ μ  or 
C   Φ κ  is M NN N . From Eq. (2.4), the inverse problem in DOT can be formulated as 
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or simply denoted as   J χ Φ , where C C
a      J Φ μ Φ κ  is the Jacobian matrix, the 

rate of change of model data with respect to optical parameters.  

However, solving this linearized inverse problem from Eq. (2.5) usually runs into difficulty 
with an ill-conditioned problem which typically happens as the number of model 
parameters increases, so as to solve the inverse problem by means of regularization to 
remedy such a drawback. 

2.4 Remark 

In this section, we have explained a common imaging system which includes the operation of 
convolution, support area, sampling, and noise as well as a medical imaging system of which 
the optical-property images are formed with the reconstruction algorithm from 1D signals. 

3. Image restoration algorithms  
This section will discuss non-iterative, iterative and statistical methods; in addition, 
regularization is also used frequently in image restoration algorithms. More descriptions are 
explained in the following. 

As known, the image degradation is basically modelled as 

 g f h n    (3.1) 

where f is the original scene, h is the point-spread function (p.s.f.) of the imaging system,   
is the convolution operator, n is the noise, and g is the corrupted image.  

Generally, the non-linear iterative restoration algorithms (Archer & Titterington, 1995; Hunt, 
1994; Meinel, 1986; Singh et al., 1986; Stewart & Durrani, 1986) to enhance image quality by 
restoring the high frequency spectrum of the corrupted images can be simply modelled as 
the following form: 

 1~n n nf f f    (3.2) 

 1( , , , )n nf f g h     (3.3) 

where the subscript n is the n-th iteration, Eqs. (3.2) and (3.3) represent that a new update 
(fn) is equal to a previous one (fn-1) plus an updating increment ( nf ). Furthermore, the 
update ( nf ) is related to the function (Ψ) of the previous update, the corrupted image, 
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p.s.f., and a user-defined weight (α). Ψ can have various forms derived from the different 
algorithms. As known, there are several approaches to enhancing image quality including 
non-iterative restoration algorithms such as a Gaussian filter and non-linear iterative 
algorithms such as Poisson maximum a posteriori superresolution algorithm.  

3.1 Non-iterative methods  

Non-iterative restoration algorithms are described in this sub-section such as the inverse 
and Wiener filters usually recovering the spatial-frequencies below the diffraction limit. 
Filters in the Fourier domain are respectively given by the following expressions: 

 Inverse Filter = 1
H

 (3.4) 

However, Eq. (3.4) is not able to be directly implemented; usually, one uses a so called 
pseudo-inverse filter with a small constant ε as below. 

 Pseudo-inverse Filter = 1
H 

 (3.5) 

Wiener filter is described as Eq. (3.6) in the following. 

 Wiener Filter = 
2

n f
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where H is the modulation transfer function (MTF) of p.s.f.; the superscript asterisk (*) 
denotes the complex conjugate; [n/f], the ratio of noise-to-signal. n and f represent the 
power spectral densities for noise and the true images, respectively. Apparently, applying 
the Wiener filter to the restoration problem has to know the power spectral densities for the 
noise and the original image (or more precisely, their ratio). Unfortunately, this a priori 
knowledge is not available in most cases. Nevertheless, the noise-to-signal ratio (NSR), 
[n/f], is usually approximated by a small constant ε. In such a case, the Wiener filter 
becomes  
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Wiener filtering achieves a compromise between the improvement obtained by boosting the 
amplitude of spatial-frequency coefficients up to the diffraction limit and the degradation 
that occurs because of the noise amplification of the inverse filtering. Noise propagation 
tends to be reduced by the convolution with p.s.f.; this has a smoothing effect in the result. 
This fact reveals that Wiener filtering is more immune to noise than inverse filtering.  

3.2 Iterative methods 

3.2.1 Recursive wiener filter  

This technique is briefly described here; further, a more detailed description of the im-
plementation of this algorithm can be found in the literature [Kundur & Hatzinakos, 1998]. 
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since the goal is to reach MΦ  from the current CΦ , and, thus, MΦ  and CΦ  have been 
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However, solving this linearized inverse problem from Eq. (2.5) usually runs into difficulty 
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p.s.f., and a user-defined weight (α). Ψ can have various forms derived from the different 
algorithms. As known, there are several approaches to enhancing image quality including 
non-iterative restoration algorithms such as a Gaussian filter and non-linear iterative 
algorithms such as Poisson maximum a posteriori superresolution algorithm.  

3.1 Non-iterative methods  

Non-iterative restoration algorithms are described in this sub-section such as the inverse 
and Wiener filters usually recovering the spatial-frequencies below the diffraction limit. 
Filters in the Fourier domain are respectively given by the following expressions: 

 Inverse Filter = 1
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However, Eq. (3.4) is not able to be directly implemented; usually, one uses a so called 
pseudo-inverse filter with a small constant ε as below. 
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Wiener filtering achieves a compromise between the improvement obtained by boosting the 
amplitude of spatial-frequency coefficients up to the diffraction limit and the degradation 
that occurs because of the noise amplification of the inverse filtering. Noise propagation 
tends to be reduced by the convolution with p.s.f.; this has a smoothing effect in the result. 
This fact reveals that Wiener filtering is more immune to noise than inverse filtering.  

3.2 Iterative methods 

3.2.1 Recursive wiener filter  

This technique is briefly described here; further, a more detailed description of the im-
plementation of this algorithm can be found in the literature [Kundur & Hatzinakos, 1998]. 
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Briefly, such a recursive Wiener-like filtering operation in the Fourier domain can be 
expressed as Eqs. (3.8) and (3.9). 
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The real constant α represents the energy of the additive noise and is determined by prior 
knowledge of the noise contamination level, if available. The algorithm is run for a specified 
number of iterations or until the estimates begin to converge. The method is popular for its 
low computational complexity. The major drawback of the method is its lack of reliability. 
The uniqueness and convergence properties are, as yet, uncertain.  

3.2.2 Lucy-Richardson method 

The Richardson–Lucy algorithm, also known as Lucy–Richardson deconvolution, is an 
iterative procedure for recovering a latent image that has been blurred by a known point 
spread function. 

The Richardson-Lucy (RL) algorithm has been widely used for the data from astronomical 
imaging. The RL algorithm (Richardson, 1972; Lucy, 1974) generates a restored image 
through an iterative method, which is derived using a Bayesian statistical approach to guess 
the original image (f ), to convolute it (fn-1) with the p.s.f. (h) and to compare the result with 
the real image (g). Usually the guessed image for the first iteration is the blurred image. It 
uses such an iterative approach: 
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3.3 Statistical methods 

3.3.1 Poisson MAP algorithm 

The Poisson MAP superresolution algorithm begins with Bayes’ law associated with Poisson 
models for the statistics of image and object to estimate the object by finding the maximum 
probability on the object (f) given the image (g). Mathematically, the Poisson MAP (Hunt & 
Sementilli, 1992) is given by  
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where  represents a convolution; *, a correlation; nf , the restored signal/image; g is the 
blurred signal/image; h, p.s.f.; 0f , the initial guess signal/image; subscript n, the iteration 
number. Here,  
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C can be regard as the correction term during the iterative restoration process. In terms of 
the operation of the Poisson MAP, it is an iterative algorithm where successive estimate of 
the restored image is obtained by multiplication of the current estimate by a quantity close 
to one. The quantity close to one is a function of the detected image divided by a 
convolution of the current estimate with p.s.f.. Indeed, one can replace the exponential in 
Eq. (3.12) by the first order approximation ex ~ 1+x because of low contrast in a blurred 
signal/image to achieve Eq. (3.13).  
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Thus, Eq. (3.11) can approach to Eq. (3.14).  
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Equation (3.14) shows that the Poisson MAP superresolution is consistent with Eq. (3.2). 
Experience reveals that when implemented for simple point objects, the Poisson MAP 
algorithm is able to expand the bandwidth much more than done for more complex objects 
and the Poisson MAP superresolution algorithm requires hundreds of iterations for a final 
solution.  

3.3.2 Improved P-MAP 

Following that, the Poisson MAP can be improved by itself by operating upon the edge map 
with a re-blurring technique; that is, the g and fn-1 of the Poisson MAP are replaced by the 
corresponding gradients of the g ⊗ h and fn-1 along with the integrated p.s.f. (h ⊗ h). 
Mathematically, it is shown that 
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Thus, the final hyper-resolved image f can be obtained by integrating (fn)’. The whole 
process of this improved Poisson MAP includes re-blurring, differentiation, restoration, 
integration, and then correction for a DC offset. More details concerning this algorithm can 
be found in the author’s previous work [Pan, 2003]. 

3.4 Regularization 

Regularization presents a very general methodology for image restoration. The main 
technique of a regularization procedure is to transform this ill-posed problem into a well-
posed one. Roughly speaking, restoration problem with regularization comes down to the 
minimization problem [Chen et al., 2000; Landi, 2007].  
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Briefly, such a recursive Wiener-like filtering operation in the Fourier domain can be 
expressed as Eqs. (3.8) and (3.9). 
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The real constant α represents the energy of the additive noise and is determined by prior 
knowledge of the noise contamination level, if available. The algorithm is run for a specified 
number of iterations or until the estimates begin to converge. The method is popular for its 
low computational complexity. The major drawback of the method is its lack of reliability. 
The uniqueness and convergence properties are, as yet, uncertain.  

3.2.2 Lucy-Richardson method 

The Richardson–Lucy algorithm, also known as Lucy–Richardson deconvolution, is an 
iterative procedure for recovering a latent image that has been blurred by a known point 
spread function. 

The Richardson-Lucy (RL) algorithm has been widely used for the data from astronomical 
imaging. The RL algorithm (Richardson, 1972; Lucy, 1974) generates a restored image 
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3.3 Statistical methods 

3.3.1 Poisson MAP algorithm 

The Poisson MAP superresolution algorithm begins with Bayes’ law associated with Poisson 
models for the statistics of image and object to estimate the object by finding the maximum 
probability on the object (f) given the image (g). Mathematically, the Poisson MAP (Hunt & 
Sementilli, 1992) is given by  
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where  represents a convolution; *, a correlation; nf , the restored signal/image; g is the 
blurred signal/image; h, p.s.f.; 0f , the initial guess signal/image; subscript n, the iteration 
number. Here,  
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C can be regard as the correction term during the iterative restoration process. In terms of 
the operation of the Poisson MAP, it is an iterative algorithm where successive estimate of 
the restored image is obtained by multiplication of the current estimate by a quantity close 
to one. The quantity close to one is a function of the detected image divided by a 
convolution of the current estimate with p.s.f.. Indeed, one can replace the exponential in 
Eq. (3.12) by the first order approximation ex ~ 1+x because of low contrast in a blurred 
signal/image to achieve Eq. (3.13).  
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Thus, Eq. (3.11) can approach to Eq. (3.14).  
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Equation (3.14) shows that the Poisson MAP superresolution is consistent with Eq. (3.2). 
Experience reveals that when implemented for simple point objects, the Poisson MAP 
algorithm is able to expand the bandwidth much more than done for more complex objects 
and the Poisson MAP superresolution algorithm requires hundreds of iterations for a final 
solution.  

3.3.2 Improved P-MAP 

Following that, the Poisson MAP can be improved by itself by operating upon the edge map 
with a re-blurring technique; that is, the g and fn-1 of the Poisson MAP are replaced by the 
corresponding gradients of the g ⊗ h and fn-1 along with the integrated p.s.f. (h ⊗ h). 
Mathematically, it is shown that 
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Thus, the final hyper-resolved image f can be obtained by integrating (fn)’. The whole 
process of this improved Poisson MAP includes re-blurring, differentiation, restoration, 
integration, and then correction for a DC offset. More details concerning this algorithm can 
be found in the author’s previous work [Pan, 2003]. 

3.4 Regularization 

Regularization presents a very general methodology for image restoration. The main 
technique of a regularization procedure is to transform this ill-posed problem into a well-
posed one. Roughly speaking, restoration problem with regularization comes down to the 
minimization problem [Chen et al., 2000; Landi, 2007].  
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In our real life, one cannot get the whole blurred and noisy images but only can get part of 
blurred and noisy images because of the limited support size. According to the part of blurred 
and noisy image, ones want to reconstruct an approximate true image by deconvolving the 
part of blurred and noisy image. Thus, noise (n) in general meaning should include both 
additive noise (nadd) and the effect of the limited support size (nlimited) at least. 

 
Fig. 3.1. A schematic diagram of forming a real image and proposing our algorithm. 

To develop the novel algorithm with regularization, we plot a schematic diagram, Fig. 3.1, 
to show the mechanism of the concept proposed here and thus define the following 
functions, Equation (3.16).  
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nQ g f h    (3.16) 

Normally, Q1 is usually used with a true h which is, however, not known and optimal, 
whereas Q2 is expected to be used with an ĥ , which is supposed to be optimal in practice. 
Here, Q2 is proposed for the purpose of reducing the error energy coming from noise and 
ringing artifacts while only Q1 is considered. Thus, a new objective function combines Q1 
with Q2, and its regularization term is 2

nf ; it is approaching to null when iteration is 
increasing. Finally, we define an objective function as Eq. (3.17)  
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where λ is the regularization parameter and then minimize Eq. (3.17) with respect to fn-1; i. e. ,  
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Then, we can find Eq. (3.20) 
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Following that, an approximate equation is obtained as Eq. (3.21) 

 hp~n nf h f   (3.21) 

where 1 1
ˆ

n n nf g f h or g f h        , α ~ 1/λ and hhp = ĥ - h ( ˆ ˆ *h h and *h h  because 
of the symmetry of p.s.f.) have been introduced. Furthermore, hhp can be designed as a high-
pass filter such as hlp1 – hlp2 in general or δ- hlp in the extreme case where hlp1,2 are low-pass 
filters.  

Subsequently, we substitute 

 1n n nf f f     (3.22) 

into the left part of Eq. (3.21) and use the projection of the right pat in Eq. (3.21) on Δf n for 
the purpose of true value invariance. Consequently, the new relation function, Eq. (3.23), can 
be achieved for our novel method and expressed as 
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 1n nf g f h      (3.25) 

Note that h  in Eq. (3.25), normally, is equal to h but it is chosen as a user-guess p.s.f. when 
h is unknown. Here, hhp is chosen as δ – h , where a delta function and a Gaussian function 
adopted for hlp1 and hlp2 in numerical simulation, respectively. Equations (3.23)–(3.25) show 
that the restored signal/image can be obtained from the increment iteratively updated using 
the projection of the high frequency spectra of the increment. As discussed, hhp is defined as 
the difference of a delta function and a Gaussian function; in addition, an edge operator like 
a Laplacian operator defined as Eq. (3.26) is adopted for hhp in the following experimental 
verification.  
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3.5 Remark 

In this section, we have established a framework of image restoration/superresolution 
including (pseudo) inverse filter, Wiener filter, recursive Wiener filter, Lucy-Richardson 
method, Poisson MAP algorithm, and improved P-MAP algorithm. Of restoring image 
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Note that h  in Eq. (3.25), normally, is equal to h but it is chosen as a user-guess p.s.f. when 
h is unknown. Here, hhp is chosen as δ – h , where a delta function and a Gaussian function 
adopted for hlp1 and hlp2 in numerical simulation, respectively. Equations (3.23)–(3.25) show 
that the restored signal/image can be obtained from the increment iteratively updated using 
the projection of the high frequency spectra of the increment. As discussed, hhp is defined as 
the difference of a delta function and a Gaussian function; in addition, an edge operator like 
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3.5 Remark 

In this section, we have established a framework of image restoration/superresolution 
including (pseudo) inverse filter, Wiener filter, recursive Wiener filter, Lucy-Richardson 
method, Poisson MAP algorithm, and improved P-MAP algorithm. Of restoring image 
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quality and reducing ringing artifacts, the error-energy-reduction-based regularization 
algorithm has been proposed here for long-wavelength imaging systems as well. 

4. Further consideration on image restoration 
In this section, the topics of improvement of spatial resolution, rapid convergence, and 
inverse pitfall for image restoration are described. 

4.1 Improvement of spatial resolution 

Usually, hyper-resolution of a noisy image is considered as an interpolation followed with 
restoration/superresolution; generally, the procedure for processing noisy images is shown 
in Fig. 4.1(a), that is, noise removal, interpolation, and then superresolution, whereas the 
proposed scheme is dealing with interpolation and noise removal simultaneously, as shown 
in Fig. 4.1(b). 

 
Fig. 4.1. The block diagram of hyper-resolution for a noisy image. (a) Conventional 
approach and (b) proposed approach. 

 
Fig. 4.2. Demonstration of hyper-resolution for a single down-sampled gray-level image. (a) 
Down-sampled image, (b) hyper-resolved image incorporated with bilinear interpolation, 
(c) hyper-resolved image incorporated with cubic spline interpolation, and (d) hyper-
resolved image incorporated with probability-filtering-based interpolation. 
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In this section, we address an approach to simultaneous image interpolation and smoothing 
by exploiting the probability filter [Pan & Lettington, 1998] coupled with a pyramidal 
decomposition, thereby extending the conventional applications of the probability filter 
originally designed for noise removal. Then, the improved Poisson maximum a posteriori 
(MAP) superresolution [Pan & Lettington, 1999; Pan, 2002] is performed to reconstruct the 
high spatial-frequency spectrum of the interpolated image. Thus, the hybrid scheme shown 
in Fig. 4.1(b) is proposed for enhancing the spatial and the spatial-frequency resolutions of a 
down-sampled image. For more detailed description and examples, readers can refer to the 
previous work [Pan, 2006]. To illustrate the performance of this proposed scheme, 
comparisons are shown among the superresolution coupled with different interpolators as 
the following examples, Fig. 4.2 and Fig. 4.3. 

 
Fig. 4.3. Demonstration of hyper-resolution for a single down-sampled noisy gray-level 
image. (a) Down-sampled image, (b) hyperresolved image incorporated with bilinear 
interpolation, (c) hyper-resolved image incorporated with cubic spline interpolation, and (d) 
hyper-resolved image incorporated with probability-filtering-based interpolation. 

4.2 Rapid convergence  

As known, restoration/superresolution or the reconstruction of optical-property images 
with an iteration procedure is usually computed off-line and computationally expensive. 
Most of studies, however, focused mainly on improving the spatial and spatial-frequency 
resolutions. If a real-time resolution processing is required, dedicated reconstruction 
hardwares or specialized computers are mandatory. Moreover, fast reconstruction 
algorithms should also be considered to reduce the computation load. It is worth 
emphasizing that our proposed method can reduce computation time with the 
regularization term which is designed on the viewpoint of the update characteristics in the 
iteration procedure but not utilizing any spatial/spectral a priori knowledge or constraints; 
some results can be found in the author’s work [M.-Cheng & M.-Chun Pan, 2010]. Here, we 
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iteration procedure but not utilizing any spatial/spectral a priori knowledge or constraints; 
some results can be found in the author’s work [M.-Cheng & M.-Chun Pan, 2010]. Here, we 
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show how to speed up the computation to find an inverse solution for reconstructing 
optical-property images by using regularization with an iteration domain technique; 
similarly, this proposed method is capable of being applied to image 
restoration/superresolution for other imaging systems. 

4.2.1 Algorithm of rapid convergence  

Image reconstruction tasks contain forward modeling and inverse problem. The forward 
computation consists in obtaining the intensity out of a subject under investigation for a 
given source, and the initial-guess (or iterated result) on scattering and absorption 
coefficients. The inverse computation is to compute the scattering and absorption 
coefficients for a known light source and measured intensities in an iterative manner.  

Since we utilize cw light illumination or DC data, the physical process of NIR light 
illuminating through a highly-scattering medium can be approximated by the steady-state 
diffusion equation 

 ( ) ( ) ( ) ( ) ( )      r r r r raD S , (4.1) 

where ( )S r  and ( ) r  denote the source and the intensity, respectively, as well as ( )a r , c 
and ( )rD  are the absorption coefficient and the diffusion coefficient, respectively. For 
solving Eq. (4.1), the boundary condition, ˆ    D n Flux  , and finite element method 
are employed. Thus, the following discrete equations can be obtained [Paulsen and Jiang, 
1995] 

 A C  , (4.2) 

where A and C are matrices dependent on the optical properties and the source-detection 
locations, respectively. The forward solution, , can be explicitly evaluated by Eq. (4.2). 
Partially differentiating Eq. (4.2) with D


  and 


 , respectively, yields 

 ' 1 ' 1 'A A A C      . (4.3) 

With an approximation to applying the Newton-Raphson method and ignoring higher order 
terms, we obtain 

 J     (4.4) 

where the Jacobian matrix J denotes the matrix consisting of b

kD

  and b

l

 ,  is the vector 

composed of Dk and l, and  is the vector with differences between calculated 
intensities (Φcal.) and measured intensities (Φmeas.). Also, Dk for k = 1, 2, …, K and μl for l = 1, 
2, …, L are the reconstruction parameters for the optical-property profile. The optical-
property image reconstruction is actually a process of successively updating the distribution 
of optical coefficients so as to minimize the difference between measured intensities and 
computed ones from the forward process. More details can be found in [Paulsen and Jiang, 
1995] where the Levenberg-Marquardt procedure was adopted to update the diffusion and 
absorption coefficients iteratively. 
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It is known that to solve Eq. (4.4) is an ill-posed problem. Tikhonov regularization is a 
method stabilizing the inverse problem through incorporating a priori assumptions to 
constraint the desired solution. It is able to convert an ill-posed problem into a well-posed 
one, and further to improve an ill-conditioned problem. The regularization term (penalty 
term) introduced in the process regularizes the problem and makes the update stable. It also 
strengthens the robustness of algorithm to noisy data with the adequate design of the 
regularization term. Generally, Tikhonov regularization is to optimize this ill-conditioned 
problem as 

 2min J





    subject to ( ) E    (4.5) 

where () is a constraint on the estimate , and E is a quantity confining the constraint 
to be an energy bound. Applying Lagrange optimization technique, we seek a solution to 
the constrained objective function 

 2J          (4.6) 

with the condition 

    2min min J
 

 
 

       , (4.7) 

where λ is referred to as the regularization parameter. A solution to Eq. (4.7) is given by 

 2 ( ) 0TJ J  



    


, (4.8) 

and equivalently 

 ( )
2

T TJ J J



   


 (4.9) 

where Eq. (4.9) is a constrained estimate of , but becomes an unconstrained one when λ 
equals to zero. It is noted that the minus sign in Eq. (4.6), the objective function, corresponds 
to the regularization term proposed here as the term is constrained to an energy bound.  

4.2.2 Constraints on the spatial domain 

A constraint on the spatial domain can generally be expressed as  

 2( ) L      (4.10) 

where L can be the identity matrix (I) or the discrete Laplacian matrix [Pogue et al., 1999; 
Davis et al., 2007].  

If L is the identity matrix (I), a solution to Eq. (4.9) is given by  

 1( - )T TJ J I J     . (4.11) 
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1995] 

 A C  , (4.2) 

where A and C are matrices dependent on the optical properties and the source-detection 
locations, respectively. The forward solution, , can be explicitly evaluated by Eq. (4.2). 
Partially differentiating Eq. (4.2) with D


  and 


 , respectively, yields 

 ' 1 ' 1 'A A A C      . (4.3) 

With an approximation to applying the Newton-Raphson method and ignoring higher order 
terms, we obtain 

 J     (4.4) 

where the Jacobian matrix J denotes the matrix consisting of b

kD

  and b

l

 ,  is the vector 

composed of Dk and l, and  is the vector with differences between calculated 
intensities (Φcal.) and measured intensities (Φmeas.). Also, Dk for k = 1, 2, …, K and μl for l = 1, 
2, …, L are the reconstruction parameters for the optical-property profile. The optical-
property image reconstruction is actually a process of successively updating the distribution 
of optical coefficients so as to minimize the difference between measured intensities and 
computed ones from the forward process. More details can be found in [Paulsen and Jiang, 
1995] where the Levenberg-Marquardt procedure was adopted to update the diffusion and 
absorption coefficients iteratively. 
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It is known that to solve Eq. (4.4) is an ill-posed problem. Tikhonov regularization is a 
method stabilizing the inverse problem through incorporating a priori assumptions to 
constraint the desired solution. It is able to convert an ill-posed problem into a well-posed 
one, and further to improve an ill-conditioned problem. The regularization term (penalty 
term) introduced in the process regularizes the problem and makes the update stable. It also 
strengthens the robustness of algorithm to noisy data with the adequate design of the 
regularization term. Generally, Tikhonov regularization is to optimize this ill-conditioned 
problem as 

 2min J





    subject to ( ) E    (4.5) 

where () is a constraint on the estimate , and E is a quantity confining the constraint 
to be an energy bound. Applying Lagrange optimization technique, we seek a solution to 
the constrained objective function 

 2J          (4.6) 

with the condition 

    2min min J
 

 
 

       , (4.7) 

where λ is referred to as the regularization parameter. A solution to Eq. (4.7) is given by 

 2 ( ) 0TJ J  



    


, (4.8) 

and equivalently 

 ( )
2

T TJ J J



   


 (4.9) 

where Eq. (4.9) is a constrained estimate of , but becomes an unconstrained one when λ 
equals to zero. It is noted that the minus sign in Eq. (4.6), the objective function, corresponds 
to the regularization term proposed here as the term is constrained to an energy bound.  

4.2.2 Constraints on the spatial domain 

A constraint on the spatial domain can generally be expressed as  

 2( ) L      (4.10) 

where L can be the identity matrix (I) or the discrete Laplacian matrix [Pogue et al., 1999; 
Davis et al., 2007].  

If L is the identity matrix (I), a solution to Eq. (4.9) is given by  

 1( - )T TJ J I J     . (4.11) 
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On the other hand, if L is the discrete Laplacian matrix, substituting Eq. (4.10) into Eq. (4.9), 
the corresponding solution is  

 1( - )T T TJ J L L J     . (4.12) 

Equation (4.11) is usually a primary inverse solution to optical-property image 
reconstruction, which is also Levenberg’s contribution to the inverse problem; and Eq. (4.12) 
is a constrained inverse solution implemented to improve the quality of the reconstructed 
NIR DOT images, which is identical to Marquardt’s work. 

4.2.3 Constraints on the iteration domain 

In NIR DOT, it is also crucial to accelerate the computation. But, up to now, speeding up the 
computation in the iteration domain has not been explored yet. Here we consider this issue 
through the use of a Lorentzian distributed function taking a natural logarithm computation 
as a constraint, i.e. 

 2 2
1

/( )
( )

K L

p p
n  


 




  

 
  , (4.13) 

where p is the calculated nodes in the subject under investigation and γ is a user defined 
positive parameter. As can be seen, 1( ) ln( )

p
   ,  , meets the requirement of Eq. 

(4.5). Performing the differentiation indicated in Eq. (4.9), we can obtain the solution in an 
iterative formality 
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1
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n

T T
n

n

IJ J J
I


 





 
   
   

. (4.14) 

For further inspection in Eqs. (4.13) and (4.14), as known, μa and D are generally searched in 
a range of [10-3:10-1] mm-1and mm, respectively; and thus Δχ is much smaller than a unit. It 
can be proven that even the use of the natural logarithm in the constraint Ψ(Δχ) still makes 
it a positive and finite value. The other reason to use ln is because the regularization term in 
Eq. (4.14) still remains in a form of the Lorentzian distributed function derived from the 
constraint associated with the Lorentzian distributed function in Eq. (4.13). 

The Lorentzian distributed function, as depicted in Fig. 4.4, is employed here owing to its 
following two characteristics:  

a. Lorentzian distributed function has a sharp peak with a long tail, describing the 
histogram distribution of Δχ, many of Δχ (~0) at its peak and a small rest of Δχ 
distributing along its long tail, and  

b. its histogram distribution can be further tuned with the parameter (γ) as iteration 
increasing. Related to the consideration in convergence, the updated quantity, Δχ, 
decreases, ranging from the peak to the tail, as the iteration increases whereas it has a 
smooth distribution in the beginning stage of iteration.  
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In addition, as the shape of the histogram would be affected, it is smooth with a big value of 
γ and sharp with a small value of γ. Thus, Lorentzian distributed function can characterize 
the nature of Δχ in the iterative process as the distribution from a smooth to a sharp 
distribution to be used as a constraint for the purpose of speeding up computation. 
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Fig. 4.4. Charts of the Lorentzian distributed functions ( 22)(
/
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
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) at various γ. As can be 

seen, it has a smooth distribution for a big γ and a sharp distribution as γ is small. 

4.3 Inverse pitfall 

The ill-posed nature of inverse problems means that any restoration or reconstruction 
algorithm will have limitations on what images it can accurately reconstruct and that the 
images degrade with noise in the data. When developing a restoration or reconstruction 
algorithm it is usual to test it initially on simulated data. Moreover, the restoration or 
reconstruction algorithm typically incorporates a forward solver. A natural first test is to use 
the same forward model to generate simulated data with no simulated noise and to then 
find that the simulated data can be recovered fairly well. If one is fortunate enough to have a 
good data collection system and phantom, and someone skilled enough to make some 
accurate measurements with the system, one could then progress to attempting to 
reconstruct images from experimental data. However, more often the next stage is to test 
further with simulated data and it at this stage that one must take care not to cheat and 
commit a so-called inverse pitfall or inverse crime. Simply to say, inverse pitfall or inverse 
crime arises from the reason of ‘limited for infinite’, e.g., limited support area for infinite 
scenery, finite elements for continuous zone, or given noise for unknown noise. The best 
practice is to use a forward model independent of an inverse model. For example, in the 
case of a finite element forward model one would use a much finer mesh while a coarse 
mesh is used in the inverse model. 
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On the other hand, if L is the discrete Laplacian matrix, substituting Eq. (4.10) into Eq. (4.9), 
the corresponding solution is  
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Equation (4.11) is usually a primary inverse solution to optical-property image 
reconstruction, which is also Levenberg’s contribution to the inverse problem; and Eq. (4.12) 
is a constrained inverse solution implemented to improve the quality of the reconstructed 
NIR DOT images, which is identical to Marquardt’s work. 

4.2.3 Constraints on the iteration domain 

In NIR DOT, it is also crucial to accelerate the computation. But, up to now, speeding up the 
computation in the iteration domain has not been explored yet. Here we consider this issue 
through the use of a Lorentzian distributed function taking a natural logarithm computation 
as a constraint, i.e. 
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where p is the calculated nodes in the subject under investigation and γ is a user defined 
positive parameter. As can be seen, 1( ) ln( )
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   ,  , meets the requirement of Eq. 

(4.5). Performing the differentiation indicated in Eq. (4.9), we can obtain the solution in an 
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For further inspection in Eqs. (4.13) and (4.14), as known, μa and D are generally searched in 
a range of [10-3:10-1] mm-1and mm, respectively; and thus Δχ is much smaller than a unit. It 
can be proven that even the use of the natural logarithm in the constraint Ψ(Δχ) still makes 
it a positive and finite value. The other reason to use ln is because the regularization term in 
Eq. (4.14) still remains in a form of the Lorentzian distributed function derived from the 
constraint associated with the Lorentzian distributed function in Eq. (4.13). 

The Lorentzian distributed function, as depicted in Fig. 4.4, is employed here owing to its 
following two characteristics:  

a. Lorentzian distributed function has a sharp peak with a long tail, describing the 
histogram distribution of Δχ, many of Δχ (~0) at its peak and a small rest of Δχ 
distributing along its long tail, and  

b. its histogram distribution can be further tuned with the parameter (γ) as iteration 
increasing. Related to the consideration in convergence, the updated quantity, Δχ, 
decreases, ranging from the peak to the tail, as the iteration increases whereas it has a 
smooth distribution in the beginning stage of iteration.  
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In addition, as the shape of the histogram would be affected, it is smooth with a big value of 
γ and sharp with a small value of γ. Thus, Lorentzian distributed function can characterize 
the nature of Δχ in the iterative process as the distribution from a smooth to a sharp 
distribution to be used as a constraint for the purpose of speeding up computation. 
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4.3 Inverse pitfall 

The ill-posed nature of inverse problems means that any restoration or reconstruction 
algorithm will have limitations on what images it can accurately reconstruct and that the 
images degrade with noise in the data. When developing a restoration or reconstruction 
algorithm it is usual to test it initially on simulated data. Moreover, the restoration or 
reconstruction algorithm typically incorporates a forward solver. A natural first test is to use 
the same forward model to generate simulated data with no simulated noise and to then 
find that the simulated data can be recovered fairly well. If one is fortunate enough to have a 
good data collection system and phantom, and someone skilled enough to make some 
accurate measurements with the system, one could then progress to attempting to 
reconstruct images from experimental data. However, more often the next stage is to test 
further with simulated data and it at this stage that one must take care not to cheat and 
commit a so-called inverse pitfall or inverse crime. Simply to say, inverse pitfall or inverse 
crime arises from the reason of ‘limited for infinite’, e.g., limited support area for infinite 
scenery, finite elements for continuous zone, or given noise for unknown noise. The best 
practice is to use a forward model independent of an inverse model. For example, in the 
case of a finite element forward model one would use a much finer mesh while a coarse 
mesh is used in the inverse model. 
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4.4 Remark 

In this section, we have proposed some extra points about image restoration. Interpolator 
with noise removal, design of regularization term for reducing computational burden, and 
inverse pitfall/crime have been illustrated and discussed. 

5. Related application 
In this section, application to a mm-wave imaging system or near infrared diffuse optical 
tomography using image restoration is demonstrated for post-processing or inter-
processing. To verify the proposed method in the previous section (Sec. 3.4), a computer-
generated signal/image and an image of real scene were tested. 

5.1 Post-processing: Application to a millimeter-wave imaging system [Pan, 2010] 

A 1-D noiseless signal and a 2-D noisy image were used, originally blurred with a p.s.f. of 
Gaussian function plus additive white Gaussian noise. White Gaussian noise is defined with 
a zero mean and variance, σ2, specified by a blurred signal-to-noise ratio (BSNR). Recall that 
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where M, N are the dimension of the processed image and i, j are the indexes of a pixel and 
X  means the average value of X. In many practical situations, the blur is often unknown 
and little information is available about the true image; therefore, several h   of the 
Gaussian blur around the true σh were tested in the following examples; fo and α are chosen  

to g and g , respectively. In this work, the stopping criterion is 
0

nf
f





0.01% (for 1-D  

signal) or 1% (for 2-D image). The mean square error (MSE) of the restored signal/image 
relative to the original signal/image is provided here for the evaluation of image quality, 
thus supporting the visual assessment.  

The proposed algorithm was applied to a 1-D signal as well as both simulated and real 
atmospherically degraded images, one of a simulated blur and one of a real blur. The 
purpose of the simulation was to enable a comparative evaluation of the results given the 
original signal/image and to explain the algorithm characteristics. In the real-blur example 
shown here, a 256 × 400 pixel millimeter-wave image was tested and the image was 
captured at 94 GHz by the Defence Evaluation and Research Agency, Malvern, UK.  

For a comparison purpose, non-iterative Gaussian filtering was used in the case of 1-D 
signal and the common Richardson–Lucy (RL) deconvolution method was implemented 
using a built-in MATLAB function deconvlucy in the cases of both 1-D signal and 2-D 
images. This RL method employs an iterative procedure to estimates the original 
signal/image, and therefore requires an initial guess of it as well.  
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5.1.1 Results for synthetically blurred signal and image 

Figure 5.1(a) and (c) present an original signal containing 256 pixels and a blurred version of 
this signal, obtained by convolving it with a Gaussian function with h  equal to 1.5, Fig. 
5.1(b), which approximates an atmospheric blur. Figure 5.1(d)-(f) show a comparison 
between the results obtained from the implementation of Gaussian filtering, the RL 
deconvolution method and our proposed algorithm, the MSEs of which are 188.29, 210.23, 
and 184.50, respectively. The resulting Wiener-filtered restored signal (with ε = 0.001) is 
shown in Fig. 5.1(d). It is clear that this restored signal is considerably better than the 
blurred signal shown in Fig. 5.1(c) whereas the restored signal using the RL method reveals 
lots of ringing artifacts. Figure 5.1(f) shows that the result using the proposed algorithm 
with hhp equal to δ – h ( h   =1.5) presents higher contrast and less ringing artifact than other 
two methods.  
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Fig. 5.1. Comparison among the deconvolution for 1-D signal. (a) Original signal, (b) p.s.f. ( 
σh = 1.5), (c) blurred signal, and restored signals by using (d) Gaussian filter, (e) the RL 
algorithm and σh = 1.5, and (f) our proposed algorithm with δ – h and h   =1.5.  

Following the above discussion, Fig. 5.2 shows the iterations used by the RL method and the 
proposed algorithm satisfying with the stopping criterion. In the case of 1-D signal, our 
algorithm usually converges within fewer iterations than the RL method, the former using 
34 iterations and the latter using 187 iterations.  
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Fig. 5.2. Convergence rate vs. iteration no. of Fig. 5.1 for (a) the RL algorithm, and (b) our 
proposed algorithm. 
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4.4 Remark 

In this section, we have proposed some extra points about image restoration. Interpolator 
with noise removal, design of regularization term for reducing computational burden, and 
inverse pitfall/crime have been illustrated and discussed. 

5. Related application 
In this section, application to a mm-wave imaging system or near infrared diffuse optical 
tomography using image restoration is demonstrated for post-processing or inter-
processing. To verify the proposed method in the previous section (Sec. 3.4), a computer-
generated signal/image and an image of real scene were tested. 

5.1 Post-processing: Application to a millimeter-wave imaging system [Pan, 2010] 

A 1-D noiseless signal and a 2-D noisy image were used, originally blurred with a p.s.f. of 
Gaussian function plus additive white Gaussian noise. White Gaussian noise is defined with 
a zero mean and variance, σ2, specified by a blurred signal-to-noise ratio (BSNR). Recall that 
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where M, N are the dimension of the processed image and i, j are the indexes of a pixel and 
X  means the average value of X. In many practical situations, the blur is often unknown 
and little information is available about the true image; therefore, several h   of the 
Gaussian blur around the true σh were tested in the following examples; fo and α are chosen  
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signal) or 1% (for 2-D image). The mean square error (MSE) of the restored signal/image 
relative to the original signal/image is provided here for the evaluation of image quality, 
thus supporting the visual assessment.  

The proposed algorithm was applied to a 1-D signal as well as both simulated and real 
atmospherically degraded images, one of a simulated blur and one of a real blur. The 
purpose of the simulation was to enable a comparative evaluation of the results given the 
original signal/image and to explain the algorithm characteristics. In the real-blur example 
shown here, a 256 × 400 pixel millimeter-wave image was tested and the image was 
captured at 94 GHz by the Defence Evaluation and Research Agency, Malvern, UK.  

For a comparison purpose, non-iterative Gaussian filtering was used in the case of 1-D 
signal and the common Richardson–Lucy (RL) deconvolution method was implemented 
using a built-in MATLAB function deconvlucy in the cases of both 1-D signal and 2-D 
images. This RL method employs an iterative procedure to estimates the original 
signal/image, and therefore requires an initial guess of it as well.  
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5.1.1 Results for synthetically blurred signal and image 

Figure 5.1(a) and (c) present an original signal containing 256 pixels and a blurred version of 
this signal, obtained by convolving it with a Gaussian function with h  equal to 1.5, Fig. 
5.1(b), which approximates an atmospheric blur. Figure 5.1(d)-(f) show a comparison 
between the results obtained from the implementation of Gaussian filtering, the RL 
deconvolution method and our proposed algorithm, the MSEs of which are 188.29, 210.23, 
and 184.50, respectively. The resulting Wiener-filtered restored signal (with ε = 0.001) is 
shown in Fig. 5.1(d). It is clear that this restored signal is considerably better than the 
blurred signal shown in Fig. 5.1(c) whereas the restored signal using the RL method reveals 
lots of ringing artifacts. Figure 5.1(f) shows that the result using the proposed algorithm 
with hhp equal to δ – h ( h   =1.5) presents higher contrast and less ringing artifact than other 
two methods.  
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Fig. 5.1. Comparison among the deconvolution for 1-D signal. (a) Original signal, (b) p.s.f. ( 
σh = 1.5), (c) blurred signal, and restored signals by using (d) Gaussian filter, (e) the RL 
algorithm and σh = 1.5, and (f) our proposed algorithm with δ – h and h   =1.5.  

Following the above discussion, Fig. 5.2 shows the iterations used by the RL method and the 
proposed algorithm satisfying with the stopping criterion. In the case of 1-D signal, our 
algorithm usually converges within fewer iterations than the RL method, the former using 
34 iterations and the latter using 187 iterations.  
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Fig. 5.2. Convergence rate vs. iteration no. of Fig. 5.1 for (a) the RL algorithm, and (b) our 
proposed algorithm. 
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Figure 5.3 shows that the nature of our proposed method possesses the ability to 
reconstructing frequency spectrum beyond the diffraction limit, where a 1-D noiseless signal 
was used. Figure 5.3(a)-(c) shows the original signal, p.s.f. and its modulation transfer 
function (MTF); the degraded (σh = 1.5) and the restored signals are shown in Fig. 5.3(d)–(f) 
with h   equal to 1.2, 1.5, and 1.8, respectively; and the MTFs of the original and the restored 
signals are depicted in Fig. 5.3(g)–(i). The restored signals in Fig. 5.3(e) and (f) display the 
performance of high resolution and the two peaks are separated in Fig. 5.3(d) even with a 
small h  . Compared with that of the original signal, high-frequency information of the 
restored signals was definitely generated beyond the diffraction limit as shown between the 
two dashed lines in Fig. 5.3(g)–(i), explaining that the proposed method possesses the high-
resolution ability.  
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Fig. 5.3. Demonstration of the high resolution of the proposed algorithm. (a) Original signal, 
(b) Gaussian form (solid line) and MTF (dotted line) of the blurring function (σh = 1.5), (c) 
blurred signal, (d)–(f) restored signals with δ – h and h   =1.2, 1.5, and 1.8, respectively, and 
(g)–(i) MTFs of the blurred (solid line) and the restored (dotted line) signals. Note that the 
region between two dashed lines is the high frequency beyond the diffraction limit.  

Figure 5.4 represents an image (256 × 256) of clown which is a built-in image in MatLab. 
Figure 5.4 displays a comparison between the results obtained from the implementation of 
the RL deconvolution method and our proposed algorithm. Figure 5.4(a) shows the original 
image, convolving it with a 2-D Gaussian function with h  equal to 2.5 to obtain a blurred 
image shown in Fig. 5.4(b). Figure 5.4(c)-(e) show the images restored with the RL 
deconvolution method and our proposed algorithm with δ- h  and the Laplacian filter where 

,h h  =2.5 was used; the MSEs of these three results are 181.17, 49.45, and 52.61, respectively. 
These three restored images demonstrate high quality but Fig. 5.4(c) still shows ringing 
artifact especially in the boundary of the image. In Fig. 5.4(d), simultaneously, the image 
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quality can also be improved by reducing most of the ringing artifact and preserving more 
edge information. Also, it can be seen that our method with a Laplacian filter still works 
well, shown in Fig. 5.4(e).  
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Fig. 5.4. Comparison among the deconvolution for 2-D image. (a) Original image, (b) blurred 
image (σh = 2.5), and restored images by using (c) the RL algorithm and σh = 2.5, and our 
proposed algorithm with (d) δ – h and h   =2.5 and (f) 2-D Laplacian filter and h   =2.5, 
respectively.  

Corresponding to Fig. 5.4(c)-(e), Fig. 5.5 shows the iterations used by the RL method and the 
proposed algorithm where fewer iterations was used in the RL method than our algorithm, the 
former using 46 iterations and the latter two using about 200 iterations. It should be noted that 
the proposed algorithm is considerably more computationally expensive than the RL method. 
However, in our experiments we did not find any significant improvement but even more 
ringing artifacts when the RL method was employed for a further iteration number.  
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Fig. 5.5. Convergence rate vs. iteration no. of Fig. 5.4 for (a) the RL algorithm, and our 
proposed algorithm with (b) δ – h and (c) 2-D Laplacian filter, respectively.  
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Figure 5.3 shows that the nature of our proposed method possesses the ability to 
reconstructing frequency spectrum beyond the diffraction limit, where a 1-D noiseless signal 
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Fig. 5.3. Demonstration of the high resolution of the proposed algorithm. (a) Original signal, 
(b) Gaussian form (solid line) and MTF (dotted line) of the blurring function (σh = 1.5), (c) 
blurred signal, (d)–(f) restored signals with δ – h and h   =1.2, 1.5, and 1.8, respectively, and 
(g)–(i) MTFs of the blurred (solid line) and the restored (dotted line) signals. Note that the 
region between two dashed lines is the high frequency beyond the diffraction limit.  

Figure 5.4 represents an image (256 × 256) of clown which is a built-in image in MatLab. 
Figure 5.4 displays a comparison between the results obtained from the implementation of 
the RL deconvolution method and our proposed algorithm. Figure 5.4(a) shows the original 
image, convolving it with a 2-D Gaussian function with h  equal to 2.5 to obtain a blurred 
image shown in Fig. 5.4(b). Figure 5.4(c)-(e) show the images restored with the RL 
deconvolution method and our proposed algorithm with δ- h  and the Laplacian filter where 

,h h  =2.5 was used; the MSEs of these three results are 181.17, 49.45, and 52.61, respectively. 
These three restored images demonstrate high quality but Fig. 5.4(c) still shows ringing 
artifact especially in the boundary of the image. In Fig. 5.4(d), simultaneously, the image 
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quality can also be improved by reducing most of the ringing artifact and preserving more 
edge information. Also, it can be seen that our method with a Laplacian filter still works 
well, shown in Fig. 5.4(e).  
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proposed algorithm where fewer iterations was used in the RL method than our algorithm, the 
former using 46 iterations and the latter two using about 200 iterations. It should be noted that 
the proposed algorithm is considerably more computationally expensive than the RL method. 
However, in our experiments we did not find any significant improvement but even more 
ringing artifacts when the RL method was employed for a further iteration number.  
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Fig. 5.5. Convergence rate vs. iteration no. of Fig. 5.4 for (a) the RL algorithm, and our 
proposed algorithm with (b) δ – h and (c) 2-D Laplacian filter, respectively.  
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For further inspection into our proposed algorithm, we investigated the effect of this 
algorithm using the high pass filter, δ- h  , with varied h  . Figure 5.6 demonstrates this case 
where the original and the noisy (σh = 2.5 and BSNR=30 dB) images are displayed in Fig. 
5.6(a), (b), and the restored images are shown in Fig. 5.6(c)–(e) obtained with the use of h   
equal to 2, 2.5, and 3, respectively. The MSEs of these results are 163.77, 76.82, and 97.97, 
respectively. Of all the restored images, Fig. 5.6(c) shows a worse image quality than the 
others, in which noise was intensively produced and hard to be removed although the 
contrast of the restored image was enhanced. Figure 5.6(d) and (e) show the promising 
results where high contrast was generated and noise was suppressed. As a result, it is 
recommended that a small 

h~ , together with adequate iterations, should be avoided to use 
in the restoration process of the proposed algorithm.  

(a) (b) 

 
(c) (d) (e) 

 
Fig. 5.6. Demonstration of the deconvolution for a 2-D image using the proposed algorithm. 
(a) Original image, (b) noisy image (σh = 2.5 and BSNR=30 dB), and restored images by 
using our proposed algorithm incorporating δ – h with (c) h  = 2, (d) h  = 2.5 and (f) h  = 3, 
respectively. 

5.1.2 Results for a real degraded image 

It is always expected that a novel algorithm can be implemented on a real image; Fig. 5.7(a) 
presents a real degraded image captured by an mm-wave imaging system. Figure 5.7(b) was 
restored using the RL method and Fig. 5.7(c), (d) were obtained by using our proposed 
method where Fig. 5.7(b)-(d) were obtained with ,h h   equal to 3. It is obvious that the restored 
images, Fig. 5.7(c) reveals sharp edges, high contrast and much more details like a number 2, 
two cars, and three lamps of the floodlight, etc., but Fig. 5.7(b) has shown ringing artifact 
spreading through the whole image. Furthermore, it is worth mentioning that Fig. 5.7(d) also 
shows a good image quality which was achieved with the use of a 3 × 3 Laplacian operator.  

Corresponding to Fig. 5.7(c)-(e), Fig. 5.8 shows the iterations used by the RL method and the 
proposed algorithm satisfying with the stopping criterion. In the case of 2-D image, the RL 
method used less iteration than our algorithm, the former using 35 iterations and the latter 
two using about 150 iterations.  
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Fig. 5.7. Comparison among image deconvolution for a 94 GHz millimeter-wave image. (a) 
Real degraded image, and restored images by using (b) the RL algorithm and σh =3, and our 
proposed algorithm with (c) δ – h and h   =3 and (d) 2-D Laplacian filter and h   =3, 
respectively.  
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Fig. 5.8. Convergence rate vs. iteration no. of Fig. 5.7 for (a) the RL algorithm, and our 
proposed algorithm with (b) δ – h and (c) 2-D Laplacian filter, respectively.  
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Fig. 5.8. Convergence rate vs. iteration no. of Fig. 5.7 for (a) the RL algorithm, and our 
proposed algorithm with (b) δ – h and (c) 2-D Laplacian filter, respectively.  
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5.2 Inter-processing: Application to near infrared diffuse optical tomography 

5.2.1 Rapid convergence algorithm applied to NIR DOT 

Corresponding to Eq. (4.14), some parameters are chosen as  

 0.75max{ }TJ J  , 
0

2( ) I  , 22.5 n
n or e   , (5.2) 

where the subscript n is the n-th iteration, “max” means the maximum value, and the 
superscript T denotes a transposition operation. One way to improve the convergence rate is 
using n   as the Type-1 soft prior and using 22.5 n

n e  , an exponentially decreasing 
form, as the Type-2 soft prior, where Type-1 is a parameter related to the system function 
(Jacobian matrix) and Type-2 is a user-defined parameter. Both values of n have been 
respectively employed to seek an inverse solution for comparison.  
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Fig. 5.9. Reconstruction data through various priors with intensity signals corrupted by 
Gaussian white noise (SNR=20 dB). Left column: constrained inverse solution with soft prior 
1; middle column: constrained inverse solution with soft prior 2; right column: constrained 
inverse solution with hard prior. 

Figure 5.9 illustrates the comparisons between constrained solutions using soft priors (Type 
1 and 2) and a hard prior, where the left, middle and right columns are the constrained 
inverse solutions with soft prior 1, soft prior 2, and hard prior [M.-Cheng & M.-Chun Pan, 
2010], respectively. Figure 5.9 (a-f) shows the 2D reconstructions of phantoms with two and 
three inclusions, where slight discrepancy can be observed. Figure 5.9 (g-l) depicts their 
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corresponding 1D circular transection profiles to reveal noticeable differences. Basically, 
there is a better separation resolution but a lower intensity owing to a highly suppressed 
signal by a hard prior rather than a soft prior. Additionally, Fig. 5.9 (m-o) exhibits good 
convergences obtained by using both soft and hard priors.  

5.2.2 Image restoration applied to NIR DOT 

The phantoms employed for justifying our proposed technique (Sec. 3.4) incorporate two or 
three inclusions with various sizes, locations and separations, illustrated in Fig. 5.10, where 
R denotes radius in the unit of mm. Of the phantom, the background absorption (μa) and 
reduced scattering (μ’s ) values are about 0.0025 mm-1 and 0.25 mm-1, respectively, while the 
maximum absorption and reduced scattering for the inclusion are 0.025 mm-1 and 2.5 mm-1, 
thereby assuming the contrast ratio of the inclusion to background 10:1, because high 
contrast results in much more overlapping effects than low contrast although a contrast of 
2~10 were used throughout other published works.  

(a) (b) 

Fig. 5.10. Schematic diagram for the dimensions of two different test cases in simulation. (a) 
and (b) are Case 1, 2, respectively, where R is radius in the unit of mm. 

As depicted in Fig. 5.10, Case 1, 2, respectively, have two inclusions separated with a similar 
distance but different sizes. As the separation resolution of inclusions is examined, several 
(two or three) embedded inclusions are necessary, and different inclusion sizes are 
considered as well. For the convenience in discussion latter, we denote M0-4 as the 
reconstructions with the schemes using non-filtering, δ-g2 (σ2=1.5), g1-g2(σ1=0.75, σ2=1.5), 
wavelet (a dilated factor a=0.5), and Laplacian high-pass filter (HPF) in their 2D form, 
respectively. Currently, absorption-coefficient images are presented for our continuous 
wave image reconstruction algorithm.  

In FEM-based image reconstruction, the homogeneous background (μa = 0.0025mm-1, μ’s = 
0.25mm-1) was adopted as an initial guess. Thirty-iteration assignment was employed for 

each case as the normalized increasing rate, i.e. mean value of 
2

1n n

n

 


, reaches smaller 

than 10-2.  
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Fig. 5.9. Reconstruction data through various priors with intensity signals corrupted by 
Gaussian white noise (SNR=20 dB). Left column: constrained inverse solution with soft prior 
1; middle column: constrained inverse solution with soft prior 2; right column: constrained 
inverse solution with hard prior. 

Figure 5.9 illustrates the comparisons between constrained solutions using soft priors (Type 
1 and 2) and a hard prior, where the left, middle and right columns are the constrained 
inverse solutions with soft prior 1, soft prior 2, and hard prior [M.-Cheng & M.-Chun Pan, 
2010], respectively. Figure 5.9 (a-f) shows the 2D reconstructions of phantoms with two and 
three inclusions, where slight discrepancy can be observed. Figure 5.9 (g-l) depicts their 

 
Image Restoration for Long-Wavelength Imaging Systems 

 

253 

corresponding 1D circular transection profiles to reveal noticeable differences. Basically, 
there is a better separation resolution but a lower intensity owing to a highly suppressed 
signal by a hard prior rather than a soft prior. Additionally, Fig. 5.9 (m-o) exhibits good 
convergences obtained by using both soft and hard priors.  
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three inclusions with various sizes, locations and separations, illustrated in Fig. 5.10, where 
R denotes radius in the unit of mm. Of the phantom, the background absorption (μa) and 
reduced scattering (μ’s ) values are about 0.0025 mm-1 and 0.25 mm-1, respectively, while the 
maximum absorption and reduced scattering for the inclusion are 0.025 mm-1 and 2.5 mm-1, 
thereby assuming the contrast ratio of the inclusion to background 10:1, because high 
contrast results in much more overlapping effects than low contrast although a contrast of 
2~10 were used throughout other published works.  
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Fig. 5.10. Schematic diagram for the dimensions of two different test cases in simulation. (a) 
and (b) are Case 1, 2, respectively, where R is radius in the unit of mm. 

As depicted in Fig. 5.10, Case 1, 2, respectively, have two inclusions separated with a similar 
distance but different sizes. As the separation resolution of inclusions is examined, several 
(two or three) embedded inclusions are necessary, and different inclusion sizes are 
considered as well. For the convenience in discussion latter, we denote M0-4 as the 
reconstructions with the schemes using non-filtering, δ-g2 (σ2=1.5), g1-g2(σ1=0.75, σ2=1.5), 
wavelet (a dilated factor a=0.5), and Laplacian high-pass filter (HPF) in their 2D form, 
respectively. Currently, absorption-coefficient images are presented for our continuous 
wave image reconstruction algorithm.  

In FEM-based image reconstruction, the homogeneous background (μa = 0.0025mm-1, μ’s = 
0.25mm-1) was adopted as an initial guess. Thirty-iteration assignment was employed for 

each case as the normalized increasing rate, i.e. mean value of 
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5.2.3 Examples illustration 

5.2.3.1 Case 1 

This case was designed as a phantom with three smaller inclusions. Several improved 
images were obtained by using appropriate filtering, as shown in Fig. 5.11(b-e) of 1D 
circular profiles passing through the centers of inclusions. Likewise, M2 resulted in worse 
resolved image than others with HP filtering. Negative artifacts occurred in each 
reconstructed image, as depicted in Fig. 5.11(g-j). It is well noted that M4 overestimated the 
inclusion amplitudes, which yields a higher inclusion-to-background contrast. 
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Fig. 5.11. Case 1- 2D reconstructed absorption images (a) without HPF (M0) and (b)-(e) with 
M1, M2, M3, M4 filtering, respectively; (f)-(j) are 1D circular profiles corresponding to (a)-
(e), where solid lines are the designed, and dotted lines represent the reconstructed.  

5.2.3.2 Case 2 

In this highly challenging case, a phantom with two closest-separation inclusions was 
designed. As shown in Fig. 5.12(a-e), all reconstructed images underestimated inclusions, 
and offered relatively bad resolution for two separate inclusions. It is rather competitive for 
these employed filters. Based upon a quantitative comparison, as depicted in Fig. 5.12(i) and 
(j), M3 and M4 schemes demonstrate better resolution discrimination to separate bigger and 
closer inclusions in comparison of Case 1. 

From the results of Case 1 and 2 for a phantom with inclusions of both small size and close 
separation, it can be concluded that the wavelet-like HP filtering (M3) demonstrates the best 
spatial-frequency resolution capability to the inclusions. 

It evidently shows that the enhancement of reconstruction through the incorporation of our 
proposed HPF approach can effectively improve computed images. As illustrated above, the 
wavelet-like HP filtering schemes (M3, M4) further yields better results than the LPF-
combined HP filtering schemes (M1, M2). In the aspects of sensitivity and stability of 
evaluation, M3 yielded results closest to the true absorption property than other schemes. 
However, M4 visually characterizes the inclusion-to-background contrast best. 
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Fig. 5.12. Case 2- 2D reconstructed absorption images (a) without HPF (M0) and (b)-(e) with 
M1, M2, M3, M4 filtering, respectively; (f)-(j) are 1D circular profiles corresponding to (a)-
(e), where solid lines are the designed, and dotted lines represent the reconstructed.  

5.2.4 Performance investigation 

In terms of the optical properties within the inclusion and background, it is worth noted that 
the image reconstruction is not only pursuing qualitative correctness but also obtaining 
favorably quantitative information about the optical properties of either the inclusions or 
background. Parameters of interest such as size, contrast and location variations associated 
image quantification measures are most frequently investigated and discussed. Readers can 
refer to the research work [Pan et al., 2008]. 

5.3 Remark 

In this section, we have demonstrated the performance of our proposed image restoration 
algorithms exactly applied in the imaging process for ‘inter-processing’ and to corrupted 
images for ‘post-processing.’  

6. Conclusions  
6.1 Concluding remark  

In this chapter, we have explained the background and the mathematical model of image 
formation and image restoration for long-wavelength imaging systems; as well, image 
restoration algorithms, further consideration on image restoration, and their related 
application have been described and demonstrated. In the meanwhile, a promising method 
to restore images has been proposed. As discussed in this chapter, the proposed algorithm 
was applied to both simulated and real atmospherically degraded images. Restoration 
results show significantly improved images. Especially, the restored millimeter-wave image 
highlights the superior performance of the proposed method in reality. The main novelty 
here is that error energy resulting from noise and ringing artifact is highly suppressed with 
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5.2.3 Examples illustration 

5.2.3.1 Case 1 

This case was designed as a phantom with three smaller inclusions. Several improved 
images were obtained by using appropriate filtering, as shown in Fig. 5.11(b-e) of 1D 
circular profiles passing through the centers of inclusions. Likewise, M2 resulted in worse 
resolved image than others with HP filtering. Negative artifacts occurred in each 
reconstructed image, as depicted in Fig. 5.11(g-j). It is well noted that M4 overestimated the 
inclusion amplitudes, which yields a higher inclusion-to-background contrast. 
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Fig. 5.11. Case 1- 2D reconstructed absorption images (a) without HPF (M0) and (b)-(e) with 
M1, M2, M3, M4 filtering, respectively; (f)-(j) are 1D circular profiles corresponding to (a)-
(e), where solid lines are the designed, and dotted lines represent the reconstructed.  

5.2.3.2 Case 2 

In this highly challenging case, a phantom with two closest-separation inclusions was 
designed. As shown in Fig. 5.12(a-e), all reconstructed images underestimated inclusions, 
and offered relatively bad resolution for two separate inclusions. It is rather competitive for 
these employed filters. Based upon a quantitative comparison, as depicted in Fig. 5.12(i) and 
(j), M3 and M4 schemes demonstrate better resolution discrimination to separate bigger and 
closer inclusions in comparison of Case 1. 

From the results of Case 1 and 2 for a phantom with inclusions of both small size and close 
separation, it can be concluded that the wavelet-like HP filtering (M3) demonstrates the best 
spatial-frequency resolution capability to the inclusions. 

It evidently shows that the enhancement of reconstruction through the incorporation of our 
proposed HPF approach can effectively improve computed images. As illustrated above, the 
wavelet-like HP filtering schemes (M3, M4) further yields better results than the LPF-
combined HP filtering schemes (M1, M2). In the aspects of sensitivity and stability of 
evaluation, M3 yielded results closest to the true absorption property than other schemes. 
However, M4 visually characterizes the inclusion-to-background contrast best. 
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Fig. 5.12. Case 2- 2D reconstructed absorption images (a) without HPF (M0) and (b)-(e) with 
M1, M2, M3, M4 filtering, respectively; (f)-(j) are 1D circular profiles corresponding to (a)-
(e), where solid lines are the designed, and dotted lines represent the reconstructed.  

5.2.4 Performance investigation 

In terms of the optical properties within the inclusion and background, it is worth noted that 
the image reconstruction is not only pursuing qualitative correctness but also obtaining 
favorably quantitative information about the optical properties of either the inclusions or 
background. Parameters of interest such as size, contrast and location variations associated 
image quantification measures are most frequently investigated and discussed. Readers can 
refer to the research work [Pan et al., 2008]. 
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highlights the superior performance of the proposed method in reality. The main novelty 
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the algorithm proposed in this chapter. Also, we have used such a resolution-enhancing 
technique with HP filtering incorporated with the FEM-based inverse computation to obtain 
highly resolved tomographic images of optical-property.  

In addition, we have developed and realized the schemes for expediting NIR DOT image 
reconstruction through the inverse solution regularized with the constraint of a Lorentzian 
distributed function. Substantial improvements in reconstruction have been achieved 
without incurring additional hardware cost. With the introduction of constraints having a 
form of the Lorentzian distributed function, rapid convergence can be achieved owing to the 
fact that decreasing Δχ results in the increase of λ as the iteration process proceeds, and vice 
versa. It behaves like a criterion in the sense of a rapid convergence that the optimal 
iteration number is founded as seeking an inverse solution regularized with the Lorentzian 
distributed function.  

6.2 Future work 

It is anticipated that of regularizing mean square error (residual term) with error energy 
reduction and rapid convergence (a priori terms) an algorithm is explored to restore images 
effectively and efficiently. In addition, it is no doubt that image restoration for inter-
discipline application is the focus in the future research. 
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1. Introduction  
According to blackbody radiation theory [1], all substances at a finite absolute temperature 
will radiate electromagnetic energy. Passive millimeter-wave (PMMW) imaging system 
forms images by detecting the millimeter-wave radiation energy from the scene and 
utilizing the differences of the radiation intensity[2,3]. Although such imaging has been 
performed for decades (or more, if one includes microwave radiometric imaging), new 
sensor technology in the millimeter-wave regime has enabled the generation of PMMW 
imaging at video rates and has renewed interest in this area. Clouds and fog are effectively 
transparent to millimeter-wave and the cold sky is reflected by metallic objects on the 
ground making PMMW images similar to infrared (IR) and visible images. Due to being 
able to perform well under adverse weather conditions, PMMW imaging offers advantages 
over IR and visible imaging. It is widely used in airport security, scene monitoring, plane 
blind landing, medical diagnosis and environmental detection, et al [4-8]. 

However, the obtained images usually have the inherent problem of poor resolution, which is 
caused by limited aperture dimensions and the consequent diffraction limit. Images acquired 
from practical sensing operations usually suffer from poor resolution due to the finite size 
limitations of the antenna, or the lens, and the consequent imposition of diffraction limits. The 
fundamental operation underlying the sensing operation is the “low-pass” filtering effect due 
to the finite size of the antenna lens. The image at the output of the imaging system is a low-
pass filtered version of the original scene. There is no useful signal beyond the cut-off 
frequency in the measured data, and the information lost by the imaging system are the fine 
details, i.e. high-frequency spectral components. In order to restore the details and improve the 
resolution of the image, some methods of image restoration will be needed. As is well-known 
that the problem of image restoration is a inverse problem and inverse problem is always 
singular or ill-posed. Traditional image restoration methods based on de-convolution 
approaches principally try to restore the information of the pass band and eliminate the effect 
of additive noise components. Therefore, these methods have merely limited resolution 
enhancement capabilities. Greater resolution improvements can only be achieved through a 
class of more sophisticated algorithms, called super-resolution algorithmsor image 
reconstruction algorithms, before the PMMW imaging can be employed.Some studies have 
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resolution of the image, some methods of image restoration will be needed. As is well-known 
that the problem of image restoration is a inverse problem and inverse problem is always 
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indicated that the cost of an imager increases as (1/Resolution) raised to the power 2.5. Hence, 
a possible two-fold improvement in resolution by super resolution processing, roughly 
translates into a cost reduction of an imager by more than 5 times. 

Super-resolution algorithms can be classified into iterative and non-iterative algorithms. 
Iterative algorithms are generally the preferred approach due to their numerous advantages 
and also since the iteration can be terminated once a solution of a reasonable quality is 
achieved. Non-iterative algorithms nvolves convolution operations in the spatial domain, 
direct inverse methods, regularizedpseudo inverse techniques [9].The existing iterative 
super-resolution methods include Lucy-Richardson method [10-11], MAP method [12], 
steepest descent, conjugate gradients[13] and projection on convex set (POCS) method[14]. 

This chapter considers the general problem of super-resolution restoration and image 
reconstruction. While our focus will be on application to PMMW imaging. This chapter is 
based on work presented in [15], portions of which appeared in [13,15-19]. To solve the 
inherent problem of poor resolution which is caused by limited aperture dimensions and the 
consequent diffraction limit, this chapter presents system model, analyses the theoretical 
research results and design specifically for PMMW imaging. Firstly, we estimate the PSF of 
the PMMW imaging system by a variational Bayesian blind restoration algorithm. Secondly, 
we focus on mainly four algorithms, including Conjugate-Gradient algorithm (CG), 
Adaptive Projected Landweber super-resolution algorithm(APL), and Undedicated 
Steerable Pyramid Transform Projected Landweber algorithm (USPTPL), and Two-step 
Projection Iteration Thresholding (tw-PIT) supper resolution using compressed sensing 
architecture. Finally, we have verified the system model and super-resolution algorithms by 
experiment in different plane using differentsystem.  

2. PMMW image formulation model 
Passive millimeter-wave (PMMW) imaging is a method of forming images through the 
passive detection ofnaturally occurring millimeter-wave radiation from a scene.According 
toblackbody radiation theory[1], all substances with a finite absolute temperature will 
radiate electromagnetic energy. The radiated energy spectral intensitycan be described as a 
Brightness Temperature Bf 
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where 346.63 10h   (J) is the Plank's Constant; f (Hz) is the frequency; 
231.38 10K   (J.K-1) is Boltzmann's Constant; c is velocity of light and the T represents 

the absolute temperature. The brightness temperature can be assigned a gray level to 
generate a millimeter wave image. For the convenience of analyzing, we introduce a 
simplified focal plane model to calculate the imaging process, as illustrated in Fig.1 and 
Fig.2. The noise power can be received by sensor in the data Plane or in the image plane. 
Thus the millimeter wave image can be formed in the data plane or in the image plane. 

Fig.1 shows the imaging process of PMMW Focal Plane Array (FPA) imaging. The process is 
Space-variant by the non-uniformity of the antenna beam and inconsistencies of channels. 
Fig.2 shows the principle of imaging in different planes. System will obtain the higher 
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resolution and rate near to video when lens or reflectors are used in focal plane real-time 
imaging. 

In Fig.2, the propagation process from object-plane to data-plane is two-dimensional (2D) 
spatial Fourier transformation (FT), while the propagation process from data-plane to focal-
plane is 2D spatial inverse Fourier transformation (IFT). FPA system forms images in the 
image-plane by receiving object-radiation energy, without 2D FT and IFT in post-data 
processing. Thus, the system is high real-time. 

According to Fresnel and Fraunhofer diffraction theory [20], the incoherent image is given by 

 1( , ) [ ( , ) ( , ; , ) ] ( , )g u v S f x y h u v x y dxdy n u v   (2) 

where ( , )f x y denotes the object's intensity function on the region ( , )x y , ( , )g x y denotes the 
gray level function on the region ( , )u v ,  1 , , ,h u v x y denotes the PSF (Point Spread function) 
of the imaging sensor, and ( , )n u v is the noise of image plane,  S  denotes the non-
uniformity of the antenna beams and inconsistencies of channels. 

 

Object plane Data plane Focal plane Image plane Image plane’

Space-variant of  the imaging process  

Non-uniform of  beam Non-uniform of channel 

Array receiver Multiple-beam antenna Super-resolution 

iinitial data  Energy distribution image result  

Focal Plane Array  

Imaging 

Brightness temperature 

 
Fig. 1. Space-variant-model of Focal Plane Array imaging 
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Practically, the system model above can be improved appropriately according to certain 
conditions. For example, if the gain consistency of the channels is well, the model can be 
expressed space-variant model 
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 0( , ) ( , ) ( , ; , ) ( , )g u v S f x y h u v x y dxdy n u v   (3) 

Where 0S  is the gain consistency of the receiver-channels. This model only considers the 
non-uniform effects of array antenna beams. 

The imaging system is linear space-invariant when the non-uniformity of antenna beams 
and the inconsistencies of channels can be ignored together. Fig.2 can be shown as a 
simplified convolution model 

 ( , ) ( , ) ( , ) ( , )g u v f u v h u v n u v    (4) 

Where the function ( , )h u v  is the PSF of the imaging, which determines the radiant energy 
distribution in the image plane from a point source of radiant energy located in the object 
plane. 

In matrix and vector form, we can write the problem as 

 g Hf n   (5) 

Where g , f , n  are lexicographically ordered vectors created from the observed image, 
original image, noise image respectively and H is the matrix resulting from the PSF. If the 
original image is represented by a N N  matrix, these vectors represent image of 2 1N   
and the size of H  is 2 2N N . 

The corresponding imaging model in frequency domain is 

 ˆ ˆ ˆ ˆ( , ) ( , ) ( , ) ( , )G u v H u v F u v N u v   (6) 

Where u , v  are the discrete frequency variables,  ˆ ,G u v , ˆ( , )F u v ,  ˆ ,N u v  signify the FFT 
transform of ( , )G x y , ( , )F x y , ( , )N x y respectively. 

The so-called image restoration problem is solving for ( , )f x y  based on the above 
mathematic model, namely the inverse problem of equation (5). And the inverse problem is 
usually bizarre or morbid. According to equation (6), there is: 

 ˆˆ ˆ ˆ ˆ( , ) ( , ) / ( , ) ( , ) / ( , )F u v G u v H u v N u v H u v   (7) 

From the equation (6) we know, when using the wrong or inaccurate PSF, the solution of 
ˆ( , )F u v  would be wrong. And under the effect of system noise, using the inaccurate PSF can 

seriously influence the imaging quality. So on condition that it’s unable to accurately 
determine the PSF of the imaging system, the way which according to the obtained blurred 
image, using blind processing method to estimate more accurate PSF, and then utilizing the 
classic image restoration algorithm to recover the image, can improve the passive millimeter 
wave imaging quality. 

As the ˆ ( , )H u v is zero outside the cut-off frequency of the imaging system. Only from the 
frequency domain point of view, to restore high-frequency components outside the cutoff 
frequency appears to be impossible. 
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The analytical continuation theory is the theoretical basis for to achieve super-resolution. 
Analytic continuation theory includes two aspects, 1) The Fourier transform of any airspace 
bounded function is analytic functions. 2) For any analytic function, as long as we can 
accurately know the part information in a limited range , we can uniquely determine the 
entire function. Given the values of analytic function in a range, the overall reconstruction of 
the function is called analytic continuation [21]. 

3. Variational bayesian estimate the PSF of the imaging system 
In passive millimeter wave imaging signal processing, using accurate point spread function 
(PSF) is important for getting high quality restored image. In the process of imaging, the PSF 
is decided by antenna beam, atmospheric transmission, system noise etc. So the real PSF can 
not be substituted by a simple model. We can't use a simple model to replace the real PSF. 
And the PSF will change due to the specific imaging environment so that it is difficult to 
acquire the exact PSF. The common methods to obtain the PSF include direct measurement 
and model parameter estimation. In order to improve the quality of image restoration, a 
variational Bayesian blind restoration algorithm for PMMW imaging is proposed in this 
section, which combines the posterior probability model of the PMMW imaging to obtain 
accurate point spread function by variational Bayesian estimation 

The variational Bayesian estimation algorithm is based on Bayesian framework [22]. The idea 
of this algorithm is according to the known priori information and assumptions establish a 
posteriori distribution model of the imaging system first. And then under a certain criterion, 
use the variational [23,24] method to obtain a optimal distribution which approximates with 
the posteriori distribution, so that reducing the complexity of the model and make the problem 
more analytic. Finally work out the estimation under the restriction of the cost function. 

According to the Bayesian theorem, the posteriori distribution of passive millimeter wave 
imaging system is decided by the prior distribution of original image, the prior distribution 
of PSF, noise probability distribution and likelihood probability distribution. Because of the 
prior distribution of original image is established on its gradient value of the statistical 
distribution, according to the linear relationship of the above imaging model we can get 

 G( , ) ( , ) ( , ) ( , )x y H x y F x y N x y     (8) 

The   is the gradient operator. Assuming that every point value of original image is 
independent, , ( , )i jf F i j  is the gradient value of each point. The prior distribution of 
original image can be expressed by c-th order zero mean mixture gaussian distribution, the 
mathematical expressed as 
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Where cv  is the variance of the c-th Gaussian distribution, c is the weight of the c-th 
Gaussian distribution. 

Also, assuming that every point value of PSF is independent , ( , )m nh H m n is the point value 
of the PSF. In passive millimeter wave imaging, the receive antenna’s power pattern is 
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nonnegative, its side lobe attenuate quickly, and can be treated as limited support domain. 
So The prior distribution of the PSF can be expressed by modified Gaussian distribution, the 
mathematical expressed as 
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Where Rv  is the variance of the Gaussian distribution, S is the support domain of the PSF. 

The probability distribution of the system noise’s gradient can be expressed as a Gaussian 
distribution the mean is zero and the variance is 2 . Due to the different scene, the variance 
of the noise distribution is different, so the Gamma distribution is used to simulate the 
variance’s distribution of different scene, the mathematical expressed as 

 2 2( | , ) ( | , )P Gamma        (11) 

 ,   is the parameters of Gamma distribution. The likelihood distribution of the system 
can be obtained through the formulation G F H N     , assumption that , ( , )i jg G i j   
is the gradient of the blurred image, so the likelihood distribution is 

 2

,
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i j
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Combine the equation (5), (6), (7), (8), the posteriori distribution of the passive millimeter 
wave imaging system is 
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 (13) 

After getting the posteriori distribution of the system, use the variational method to find an 
optical distribution 2( , , )optQ H F     that minimizes the Kullback-Leibler (K-L) distance 

KLD  (K-L distance is the value that describes the difference between two probability 
distributions, KLD  is nonnegative, and ( ) 0KLD Q P   if and only if P Q )between 

2( , , )Q H F    and ( , , )P H F G  . 2( , , )Q H F    is the approximation of the real posteriori 
distribution ( , )P H F G  . Assumption that 2, ,H F    is independent of each other, namely: 

 ( , | ) ( | ) ( | )P H F G P H G P F G       (14) 

 2 2( , , ) ( ) ( ) ( )Q H F Q H Q F Q      (15) 

The K-L distance between 2( , , )Q H F    and ( , )P H F G   can be deserved by the 
definition of KLD : 
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Due to it is uncorrelated between ( )P G  and 2, ,H F   , so the new definition of K-L 
distance is: 
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In order to minimize KLD , the minimum value can be deserved by partial derivate the 
equation (13), so that we can get the ( )optQ H , the expression is: 

 2( , | )
1( ) ( )exp( log[ ( | , )] )opt Q F H
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Q H P H P G H F
Z  

    (18) 

Where HZ  is a normalized variable. And then the optimum estimation of PSF can be 
obtained by ( )optE Q H   . 

The estimation ( )optQ H  is not analytical, it has the form of ( ) exp( ( ))i i
i

P x a f x  , so we can 

use the iteration method to get the ( )optQ H . The solution procedure is as follows:  

Obtain the parametric expression of ( )Q H  from the form of the known ( )P H . Factor ( )Q H  
into KLD , and get the update equations.Use the gradient descent method to get 
the ( )optQ H .Get the expected value of ( )optQ H  so that get the estimation of the PSF.  

For PMMW imaging, the power pattern of the antenna is similar to gaussian function, so at 
the beginning of the iteration we could use the gaussian function as its initial value, and 
then through variational bayesian estimation to get more accurate PSF. That can reduce the 
iteration times, and estimate the PSF faster. 

According to the above analysis and derivation, the process of variational bayesian blind 
restoration algorithm as shown in figure 3. First input blurred image and compute its 
gradient value. Second set the initial value of variational bayesian iteration algorithm. Then 
begin the variational bayesian estimation through the known priori information, when the 
K-L distance less than the threshold, stop the iteration and output the estimated PSF. At last 
use the Lucy-Richardson algorithm to restore the image, get the millimeter image of the 
scene. 
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nonnegative, its side lobe attenuate quickly, and can be treated as limited support domain. 
So The prior distribution of the PSF can be expressed by modified Gaussian distribution, the 
mathematical expressed as 
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Where Rv  is the variance of the Gaussian distribution, S is the support domain of the PSF. 

The probability distribution of the system noise’s gradient can be expressed as a Gaussian 
distribution the mean is zero and the variance is 2 . Due to the different scene, the variance 
of the noise distribution is different, so the Gamma distribution is used to simulate the 
variance’s distribution of different scene, the mathematical expressed as 
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 ,   is the parameters of Gamma distribution. The likelihood distribution of the system 
can be obtained through the formulation G F H N     , assumption that , ( , )i jg G i j   
is the gradient of the blurred image, so the likelihood distribution is 
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Combine the equation (5), (6), (7), (8), the posteriori distribution of the passive millimeter 
wave imaging system is 
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After getting the posteriori distribution of the system, use the variational method to find an 
optical distribution 2( , , )optQ H F     that minimizes the Kullback-Leibler (K-L) distance 

KLD  (K-L distance is the value that describes the difference between two probability 
distributions, KLD  is nonnegative, and ( ) 0KLD Q P   if and only if P Q )between 

2( , , )Q H F    and ( , , )P H F G  . 2( , , )Q H F    is the approximation of the real posteriori 
distribution ( , )P H F G  . Assumption that 2, ,H F    is independent of each other, namely: 

 ( , | ) ( | ) ( | )P H F G P H G P F G       (14) 

 2 2( , , ) ( ) ( ) ( )Q H F Q H Q F Q      (15) 

The K-L distance between 2( , , )Q H F    and ( , )P H F G   can be deserved by the 
definition of KLD : 
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Due to it is uncorrelated between ( )P G  and 2, ,H F   , so the new definition of K-L 
distance is: 
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In order to minimize KLD , the minimum value can be deserved by partial derivate the 
equation (13), so that we can get the ( )optQ H , the expression is: 
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Where HZ  is a normalized variable. And then the optimum estimation of PSF can be 
obtained by ( )optE Q H   . 

The estimation ( )optQ H  is not analytical, it has the form of ( ) exp( ( ))i i
i

P x a f x  , so we can 

use the iteration method to get the ( )optQ H . The solution procedure is as follows:  

Obtain the parametric expression of ( )Q H  from the form of the known ( )P H . Factor ( )Q H  
into KLD , and get the update equations.Use the gradient descent method to get 
the ( )optQ H .Get the expected value of ( )optQ H  so that get the estimation of the PSF.  

For PMMW imaging, the power pattern of the antenna is similar to gaussian function, so at 
the beginning of the iteration we could use the gaussian function as its initial value, and 
then through variational bayesian estimation to get more accurate PSF. That can reduce the 
iteration times, and estimate the PSF faster. 

According to the above analysis and derivation, the process of variational bayesian blind 
restoration algorithm as shown in figure 3. First input blurred image and compute its 
gradient value. Second set the initial value of variational bayesian iteration algorithm. Then 
begin the variational bayesian estimation through the known priori information, when the 
K-L distance less than the threshold, stop the iteration and output the estimated PSF. At last 
use the Lucy-Richardson algorithm to restore the image, get the millimeter image of the 
scene. 
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Fig. 3. Variational Bayesian Blind Restoration  

  

 

  

   

(a) original image (b) experimental PSF 

(c) blurred image (d) estimated PSF  
Fig. 4. Experiment 1 verify the accurate  

In order to testify the effect of variational bayesian algorithm, we hold three experimentsto 
verify the accurate of the variational bayesian blind restoration algorithm. Fig4-a is 
stimulated original image, the pixel size is 110 231 . Fig4-b is the experimental PSF, the 
pixel size is 21 21 . Let the experimental PSF convolute with the original image to get the 
blurred image which is showed in fig4-c. Utilize the variational bayesian estimate algorithm 
to get the PSF, the result is showed in fig4-d. Compare the estimated PSF with experimental 
one, we can find that the shapes are roughly same, only a few details are different. 

In order to illustrate the correct of the variational bayesian estimation, we restore the image 
through the Lucy-Richardson algorithm using experimental PSF and estimated PSF separately. 
Each restoration process iterates 20 times, the recovery results are showed in fig5.  
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The image restoration effect is assessed by sum of squared differences (SSD) between 
recovery image and original scene, the formula is as follows: 

 2

1 1
( , ) ( ( , ) ( , ))

n n

i j
SSD M N M i j N i j

 
   (19) 

M, N are two images. The SSD error is smaller the recovery image is more approximate to 
the original one, namely the restoration effect is better. The SSD error of fig3-a is 179, the 
SSD error of fig3-b is 184. We can find that the SSD errors of the images which restored by 
two kind of PSF are proximate, so verifying the correct of the estimated PSF. 

 (a) experimental PSF recovery (b) estimated PSF recovery  
Fig. 5. The cooperation of two PSF recovery effect 

The second experiment is the variational bayesian blind restoration of the simulated passive 
millimeter wave image. Assumption that the view field is 30 50  , the 3dB  power beam 
angle of the scan antenna 3dB  is 0.57 degree. Due to diffraction cut-off characteristics of the 
system, the sample interval is 3 / 2dB . Considering the follow-up image processing, we set 
pixel interval 3 / 4dB , so the original image of the scene is 210 350  pixels, showed in fig6-
a. The blurred image obtained through simulation is also 210 350  pixels, showed in fig6-b. 

 
Fig. 6. Blurred image through simulated passive millimeter 

The PSF that deserved through variational bayesian estimation, showed in fig7-a, and then 
use the Lucy-Richardson algorithm through 20 iteration to get the recovery image, showed 
in fig7-b. And for PMMW image processing, we can also get the estimated PSF through the 
parameter model method that according to the diffractiFon cut-off characteristics of the 
image system, utilizing the spectrum of the blurred image to get the parameters of the 
gaussian-form PSF. The result showed in fig7-c. Then uses the same restoration algorithm to 
get the recovery image. 
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Fig. 6. Blurred image through simulated passive millimeter 

The PSF that deserved through variational bayesian estimation, showed in fig7-a, and then 
use the Lucy-Richardson algorithm through 20 iteration to get the recovery image, showed 
in fig7-b. And for PMMW image processing, we can also get the estimated PSF through the 
parameter model method that according to the diffractiFon cut-off characteristics of the 
image system, utilizing the spectrum of the blurred image to get the parameters of the 
gaussian-form PSF. The result showed in fig7-c. Then uses the same restoration algorithm to 
get the recovery image. 
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Fig. 7. The restoration of two methods 

According to the results of the above experiment, the PSF estimated by variational bayesian 
method is more approximate to the antenna power pattern, the recovery image is more 
clearer. Also compute the SSD error between recovery image and original image. For fig7-b 
the SSD error is 878, and for fig7-d the SSD error is 1088. We can find that the SSD error is 
smaller and the recovery image is more approximate to the original scene when using the 
variational bayesian blind restoration algorithm rather than the parameter model method.  

The third experiment uses the measured data that from PMMW imaging system to verify 
the algorithms availability. We use a single-channel scanning radiometer for imaging. Due 
to the limitation of scanning angle in pitch direction, the PMMW image isstitched 
together.Fig8-a is the optical image of the scene, fig8-b is the obtained millimeter wave 
image which is blurred, fig8-c is the estimated PSF, and fig8-d is the recovery image from 
variational bayesian blind restoration algorithm. We can find that the recovery image’s 
contour and details are clearer, the imaging quality is improved effectively. 

4. Super-resolution restoration and image reconstruction 
In order to improve the resolution of the image, some methods of image restoration will be 
needed. The image restoration is an inverse problem in general, which is always ill posed. 
Traditional de-convolution approaches restore the information of the pass band and 
eliminate the effect of additive noise components. Therefore, these methods have only 
limited resolution enhancement capabilities. Greater resolution improvements can only be 
achieved through a class of more sophisticated algorithms, called super-resolution 
algorithms, including Lucy-Richardson algorithm, Conjugate-gradient (CG) 
algorithm,Adaptive Projected Landweber (APL) super-resolution algorithm, Undecimated 
Steerable Pyramid Transform Projected Landweber (USPTPL) algorithm and Two-step 
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Projection Iteration Thresholding (tw-PIT) supper resolution using compressed sensing 
architecture algorithm. In this section,wepresentthe image restoration algorithms. 

  
 
 

(a) optical image (b) blurred image 

(c) estimated PSF (d) recovery image  
Fig. 8. Measured data restoration 

Stochastic super-resolution image restoration, typically a Bayesian approach, provides a 
flexible and convenient way to model a priori knowledge concerning the solution. Bayesian 
estimation methods are used when the a posteriori probability density function (PDF) of the 
original image can be established. Using maximum-a-posteriori estimation, we can obtain an 
exact solution of the formula. 

4.1 Conjugate-gradient algorithm 

The Conjugate-gradient (CG) algorithm is an effective Krylov subspace method of solving 
an unconstrained large-scale optimization problem, which is equivalent to solve the 
quadratic minimization problem[25, 26]. 

 2
1min , 0
2

J Hf g f    (20) 

2 The target function can be denoted as 

 1 1( )
2 2

T T T TJ f f H Hf g Hf H H    (21) 

And the gradient function is  

 ( ( )) T Tgrad J f H Hf H g   (22) 

The kf  is the k-th iteration estimate of the original scene, it generates a descent direction kd , 
n~ is conjugate to all previous search directions: 1 2, ...... nd d d with respect to matrix TH H ; 
that is T T

n kd H Hd , k.=0,1,…n-1. In other words, conjugate gradient algorithm deals with 
problem of 1D searching: 
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 1k k k kf f d    (23) 

where k denotes optimal size at searching directions, which is decided by 
min ( ); ( )k k k k kJ f d d J f   . 

Because the standard conjugate gradient algorithm is a linear restoration method, it has only 
limited capability of super-resolution, that is, spectral extrapolation. Furthermore, during 
each iteration, we can not guarantee the nonnegative constraint of estimated images. An 
interesting feature of the CG method is that it can be modified in order to take into account 
the additional priori-information about the solution. The information can be expressed as a 
number of closed convex sets. 

An example of a constraint which is rather natural in many problems of image restoration is 
the positivity of the solution. The constraint can also be projected as a closed convex set. 
Thus we can impose the constraint that the image is nonnegative on the iteration. Because 
the projection operation is non-linear operations, it introduces frequencies beyond the pass-
band. Thus, the modified CG algorithm has the capacity of spectrum extrapolation. It can be 
shown as 

 1
1[ ]k

P C k k k kf P f f d
    (24) 

where cP denotes the projection operator on the constraint set C . Then the projection 
operator is given by  

 0
0 0C
f if f

P f
if f


  

 (25) 

Other convex and closed sets include finite support constraint, band limited constraint, and 
spatial limited constraint[27]. The super-resolution performance of the modified CG 
algorithm can be verified from subsequent experiments. 

Along with the increase of image size( n n ), the dimensions of matrix H is larger( 2 2n n ), 
it is bad for calculating and storage. However, H is Toeplitz matrix, a circulant convolution 
matrix hB can be produced by H , it has features as follow[26]: 

 1
h hB W W   , * 1T

h hB W W    (26) 

where 

 2
21( , ) exp( ), , 0,1,... 1j mnW m n m n L
LL


    , ( ( ))h diag DFT h   (27) 

The relationship between W, W-1and Discrete Fourier Transform (DFT) is as follows: 

 ( ( ))Wp IDFT p n , 1 ( ( ))W p DFT p n   (28) 

In image processing, n is selected in the 2-power, such as 28-2128, etc. The amount of 
calculation of image direct iteration restoring is very great at this time. However, H is 
Toeplitz matrix(BTTB), so the matrix H (BTTB) can be continued to circulant matrix 
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structure (BCCB) by the above mentioned matrix-vector computing and Fast Fourier 
Transform (FFT). Thus, the CG algorithm has quick convergence. 

4.1.1 Simulation and experiments 

To verify the super-resolution capability of the CG algorithm, representative results of 
restoring blurred images is shown in Figs. 10a-c. The simulation image is a 
256 256 synthetic image composed of a series of concentric disks with the background 
(dark) at intensity value zero and the disks (bright) at intensity value one. 

The simulation image and its spectrum are shown in Fig.10a and Fig.11a, respectively. To 
simulate the blurring caused by a diffraction limited imaging sensor, we blur the ideal 
image by the PSF of a circular aperture antenna which is equivalent to a low-pass filter. 
Zero-mean Gaussian noise is added to the blurred image to get the noisy blurred image. The 
blurred image and its spectrum are shown in Fig.4b and Fig.5b, respectively. The simulation 
results of the CG algorithms are shown Fig.4c, and its spectrum are shown in Fig.5c. 

 
Fig. 9. (a) Original Image, (b) Blurred Image (c) Conjugate gradient after 50 iterations 

From Fig.9 and Fig.10, we can see that the super resolution capability (spectral-
extrapolation) of the CG algorithm is improvement remarkable. Furthermore, the CG 
algorithm can effectively reduce rings effects. 

To evaluate the capacity of the recovery algorithm, the simplest common assessment criteria 
is to calculate the 2L norms of the deviation between the original image and restore image, 
that is the Mean Square Error (MSE), which is expressed as 

 
2

2
1 kMSE f f

N
    (29) 

where f denotes the ideal image, kf represents the k-th restoration result, 2 is 2L  norms. 
Fig. 11 plots the MSE of the CG algorithms versus iteration numbers. Obviously, the CG 
algorithm has a fast convergence of the MSE. Generally, the MSE will be below 0.065 when the 
iterations number is 6. Clearly, the CG algorithm has the good convergence performance. 

In the second experiment, a small number of 32x32 gun images are collected by 91.5GHz 
mechanically scanned mono-channel radiometer with horn antenna in the lab and around 
surroundings, as shown in Fig.12. The captured PMMW image is shown in Fig.12b. The 
restored image is shown in Fig.12c. From Fig.12, we can see that the super-resolution 
performance and spatial resolution are enhanced by the algorithm. 



 
Image Restoration – Recent Advances and Applications 

 

270 

 1k k k kf f d    (23) 
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An example of a constraint which is rather natural in many problems of image restoration is 
the positivity of the solution. The constraint can also be projected as a closed convex set. 
Thus we can impose the constraint that the image is nonnegative on the iteration. Because 
the projection operation is non-linear operations, it introduces frequencies beyond the pass-
band. Thus, the modified CG algorithm has the capacity of spectrum extrapolation. It can be 
shown as 

 1
1[ ]k

P C k k k kf P f f d
    (24) 

where cP denotes the projection operator on the constraint set C . Then the projection 
operator is given by  

 0
0 0C
f if f

P f
if f


  

 (25) 

Other convex and closed sets include finite support constraint, band limited constraint, and 
spatial limited constraint[27]. The super-resolution performance of the modified CG 
algorithm can be verified from subsequent experiments. 

Along with the increase of image size( n n ), the dimensions of matrix H is larger( 2 2n n ), 
it is bad for calculating and storage. However, H is Toeplitz matrix, a circulant convolution 
matrix hB can be produced by H , it has features as follow[26]: 

 1
h hB W W   , * 1T

h hB W W    (26) 

where 

 2
21( , ) exp( ), , 0,1,... 1j mnW m n m n L
LL


    , ( ( ))h diag DFT h   (27) 

The relationship between W, W-1and Discrete Fourier Transform (DFT) is as follows: 

 ( ( ))Wp IDFT p n , 1 ( ( ))W p DFT p n   (28) 

In image processing, n is selected in the 2-power, such as 28-2128, etc. The amount of 
calculation of image direct iteration restoring is very great at this time. However, H is 
Toeplitz matrix(BTTB), so the matrix H (BTTB) can be continued to circulant matrix 
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structure (BCCB) by the above mentioned matrix-vector computing and Fast Fourier 
Transform (FFT). Thus, the CG algorithm has quick convergence. 

4.1.1 Simulation and experiments 

To verify the super-resolution capability of the CG algorithm, representative results of 
restoring blurred images is shown in Figs. 10a-c. The simulation image is a 
256 256 synthetic image composed of a series of concentric disks with the background 
(dark) at intensity value zero and the disks (bright) at intensity value one. 

The simulation image and its spectrum are shown in Fig.10a and Fig.11a, respectively. To 
simulate the blurring caused by a diffraction limited imaging sensor, we blur the ideal 
image by the PSF of a circular aperture antenna which is equivalent to a low-pass filter. 
Zero-mean Gaussian noise is added to the blurred image to get the noisy blurred image. The 
blurred image and its spectrum are shown in Fig.4b and Fig.5b, respectively. The simulation 
results of the CG algorithms are shown Fig.4c, and its spectrum are shown in Fig.5c. 

 
Fig. 9. (a) Original Image, (b) Blurred Image (c) Conjugate gradient after 50 iterations 

From Fig.9 and Fig.10, we can see that the super resolution capability (spectral-
extrapolation) of the CG algorithm is improvement remarkable. Furthermore, the CG 
algorithm can effectively reduce rings effects. 

To evaluate the capacity of the recovery algorithm, the simplest common assessment criteria 
is to calculate the 2L norms of the deviation between the original image and restore image, 
that is the Mean Square Error (MSE), which is expressed as 

 
2

2
1 kMSE f f

N
    (29) 

where f denotes the ideal image, kf represents the k-th restoration result, 2 is 2L  norms. 
Fig. 11 plots the MSE of the CG algorithms versus iteration numbers. Obviously, the CG 
algorithm has a fast convergence of the MSE. Generally, the MSE will be below 0.065 when the 
iterations number is 6. Clearly, the CG algorithm has the good convergence performance. 

In the second experiment, a small number of 32x32 gun images are collected by 91.5GHz 
mechanically scanned mono-channel radiometer with horn antenna in the lab and around 
surroundings, as shown in Fig.12. The captured PMMW image is shown in Fig.12b. The 
restored image is shown in Fig.12c. From Fig.12, we can see that the super-resolution 
performance and spatial resolution are enhanced by the algorithm. 
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Fig. 10. Spectrum of Fig. 10 (a) Original Image, (b) Blurred Image (c) Result after CG 

 
Fig. 11. MSE of the CG 

  
(a)   (b)   (c)  

Fig. 12. (a) Visible Image (b) Captured Image (c) Result of CG after 50 iterations 

Experiment results demonstrate that the CG super-resolution algorithm has fast convergent 
rate and the good spectral-extrapolation capacity. The CG algorithm improves the spatial 
resolution and reduce the ringing effects which are caused by regularizing the image 
restoration. Thus, the CG algorithm can be used in image restoration and PMMWI to 
enhance the super-resolution performance and eliminate most of the effects of blurring. 

4.2 Adaptive projected Landweber super-resolution algorithm  

It is well-known that the problem of image restoration is the computation of f , given the 
image data g  and the PSF h . Some iterative methods have been introduced to solve 
equation (5) [28]. Thebasic feature is that the number of iterations plays the role of a 
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regularization parameter because semi-convergence holds true in the case of noisy images. 
Iterative methods of image restoration have an advantage over one-step methods in that the 
partial solution may be examined at each step of the iteration and any constraints on the 
solution can be enforced at that time. 

4.2.1 Landweber algorithm 

The Landweber method (successive-approximation method) [29] is the simplest iterative 
regularizing algorithm to solve linear ill-posed problems. Because standard Landweber 
algorithm is a linear restoration method, it has only limited capability of super-resolution 
(spectral extrapolation). Furthermore, during each iteration, we cannot guarantee the 
nonnegative constraint of estimated image. Other disadvantages of the Standard Landweber 
method are slow convergence and the difficulty of choosing proper update parameter. 

Landweber algorithm is the simplest iterative method for approximating the least-square 
solutions of equation (5). It is characterized by the equation 

 1 ( )k k T kf f H g Hf     (30) 

Where TH  is the transpose of the blurring operator H ; superscript k  denotes the 
thk iteration;   is a relaxation parameter controlling the convergence, in order to guarantee 

the convergence of kf , the value of   are given by 

 2
1

20 


   (31) 

Where 1  is the largest singular value of matrix H [30]. The initial guess 0f is usually set to 0. 

4.2.2 Projected Landweber super-resolution algorithm  

Because standard Landweber algorithm is a linear restoration method, it has only limited 
capability of super-resolution, that is, spectral extrapolation. Furthermore, during each 
iteration, we cannot guarantee the nonnegative constraint of estimated image.  

An interesting feature of the Landweber method is that it can be modified in order to take 
into account additional priori information about the solution. Fundamental of reliable 
estimation of high frequencies is the utilization of a priori known information during the 
processing iteration. In fact, since image restoration is inherently an ill-posed problem, the 
quality of restoration and the extent for achievable super-resolution depend on the accuracy 
and the amount of a priori information. As shown there, many physical constraints on the 
unknown object can be expressed by requiring that it belong to some given closed and 
convex sets. While efforts at the modeling of constraint sets and the use of these in 
projection-based set theoretic image recovery constitutes a popular direction for current 
research, it seems that the idea of combining the strong point of Landweber schemes and 
that of the projection-based methods has not been paid much attention to. The modified 
Landweber method, also called the Projected Landweber Algorithm[31] is as follows 

 1 *( )k k k
Cf P f H g Hf     

  (32) 
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regularization parameter because semi-convergence holds true in the case of noisy images. 
Iterative methods of image restoration have an advantage over one-step methods in that the 
partial solution may be examined at each step of the iteration and any constraints on the 
solution can be enforced at that time. 

4.2.1 Landweber algorithm 

The Landweber method (successive-approximation method) [29] is the simplest iterative 
regularizing algorithm to solve linear ill-posed problems. Because standard Landweber 
algorithm is a linear restoration method, it has only limited capability of super-resolution 
(spectral extrapolation). Furthermore, during each iteration, we cannot guarantee the 
nonnegative constraint of estimated image. Other disadvantages of the Standard Landweber 
method are slow convergence and the difficulty of choosing proper update parameter. 

Landweber algorithm is the simplest iterative method for approximating the least-square 
solutions of equation (5). It is characterized by the equation 
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Where TH  is the transpose of the blurring operator H ; superscript k  denotes the 
thk iteration;   is a relaxation parameter controlling the convergence, in order to guarantee 

the convergence of kf , the value of   are given by 
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1

20 

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Where 1  is the largest singular value of matrix H [30]. The initial guess 0f is usually set to 0. 

4.2.2 Projected Landweber super-resolution algorithm  

Because standard Landweber algorithm is a linear restoration method, it has only limited 
capability of super-resolution, that is, spectral extrapolation. Furthermore, during each 
iteration, we cannot guarantee the nonnegative constraint of estimated image.  

An interesting feature of the Landweber method is that it can be modified in order to take 
into account additional priori information about the solution. Fundamental of reliable 
estimation of high frequencies is the utilization of a priori known information during the 
processing iteration. In fact, since image restoration is inherently an ill-posed problem, the 
quality of restoration and the extent for achievable super-resolution depend on the accuracy 
and the amount of a priori information. As shown there, many physical constraints on the 
unknown object can be expressed by requiring that it belong to some given closed and 
convex sets. While efforts at the modeling of constraint sets and the use of these in 
projection-based set theoretic image recovery constitutes a popular direction for current 
research, it seems that the idea of combining the strong point of Landweber schemes and 
that of the projection-based methods has not been paid much attention to. The modified 
Landweber method, also called the Projected Landweber Algorithm[31] is as follows 

 1 *( )k k k
Cf P f H g Hf     

  (32) 
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Where CP  denotes the projection operator onto the constraint set C . 

An example of a constraint which is rather natural in many problems of image restoration is 
the positivity of the solution. We can impose the constraint that the image is nonnegative on 
the iteration. Because this constraint is non-linear operation, it introduces frequencies 
beyond the passband. The super-resolution performance of the Projected Landweber 
algorithm can be verified from subsequent experiments. Then the projection operator is 
given by  

 
0

0 0C
f if f

P f
if f


  

 (33) 

Other convex and closed set C  include finite support constraint, band limited constraint 
and spatial limited constraint[27]. 

4.2.3 Adaptive projected Landweber Super-resolution alogithm  

One disadvantage of the Landweber method is slow convergence and the difficulty to 
choose proper update parameter. If   is too large, the iterative process may diverge. If   is 
too small, the iterative process would be slow. Therefore, it is necessary to determine a 
suitable   for the iterative algorithm. Lie Liang and Yuanchang Xu proposed modification 
of this method, Adaptive Landweber method [32], in which constant   is calculated 
adaptively in each iteration. The Adaptive Landweber algorithm has a better result and 
faster convergence than standard Landweber algorithm. Instead of using a constant update 
parameter, the Adaptive Landweber method computes the update parameter at each 
iteration and chooses the maximum of the computed parameter and the preset 
constantparameter to use in the next iteration. 

Then we proposed a hybrid algorithm that attempt to combine the strong points of both 
Projected Landweber scheme (simplicity of execution, Super-resolution, etc.) and the 
Adaptive adjustments relax parameter   (faster convergence rate, lower mean square error, 
etc.). For a brief description, each cycle of this “Adaptive Projected Landweber algorithm” 
consists of executing the three steps: 

Step 1. Implement standard Landweber algorithm with initial relax parameter 0  and 
0 0f   

 1 ( )k k T k
kf f H g Hf     (34) 

Step 2. Implement projection onto the convex set C  

 1 1k k
Cf P f   (35) 

Step 3. Implement relax parameter 1k   updating algorithm 
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Where kf  denotes the first order derivative of kf . The algorithm hence adaptively updates 
the relax parameter   to speed up convergence and obtain improved object estimation after 
each cycle of implementation. A flow-chart depicting the various step is shown in Fig. 13. 

 
Fig. 13. Flow-chart for implementation of Adaptive Projected Landweber algorithm 

4.2.4 Simulation and experiments 

In order to verify the super-resolution capability of this algorithm mentioned above, two 
images have been adopted in simulation experiments, one is a 256x256 synthetic image 
composed of a series of concentric disks, and the other is an 32x32 gun image captured by 
91.5 GHz mechanically scanned mono channel radiometer. 

In the first experiment, the ideal image and its spectrum are shown in Fig.14a and Fig.16a, 
respectively. For simulating the blurring caused by a diffraction limited imaging sensor, we 
blur the ideal image by the PSF of a low-pass filter that simulates a sensor with a circular 
aperture of diameter 8 pixels. The blurred image and its spectrum are shown in Fig.14b and 
Fig.15b respectively. the simulation results of these algorithms are shown Fig.14c-14e, and 
their spectrum are shown in Fig.15c-15e, respectively. It is clear that from Fig.14 and Fig.15 
the results obtained by the Adaptive Porjected Landweber algorithm are better than the 
results obtained by the Porjected Landweber algorithm and the standard Landweber 
algorithm. The super-resolution capabilities (spectrum extrapolation) of these projection-
based methods are obvious. However, the convergence of the standard Landweber method 
is slow compared to the Adaptive Porjected Landweber algorithm and the Porjected 
Landweber algorithm, mainly because the standard Landweber algorithm is a linear 
method, and it has hardly super-resolution capability.  
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Where kf  denotes the first order derivative of kf . The algorithm hence adaptively updates 
the relax parameter   to speed up convergence and obtain improved object estimation after 
each cycle of implementation. A flow-chart depicting the various step is shown in Fig. 13. 

 
Fig. 13. Flow-chart for implementation of Adaptive Projected Landweber algorithm 
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In order to verify the super-resolution capability of this algorithm mentioned above, two 
images have been adopted in simulation experiments, one is a 256x256 synthetic image 
composed of a series of concentric disks, and the other is an 32x32 gun image captured by 
91.5 GHz mechanically scanned mono channel radiometer. 

In the first experiment, the ideal image and its spectrum are shown in Fig.14a and Fig.16a, 
respectively. For simulating the blurring caused by a diffraction limited imaging sensor, we 
blur the ideal image by the PSF of a low-pass filter that simulates a sensor with a circular 
aperture of diameter 8 pixels. The blurred image and its spectrum are shown in Fig.14b and 
Fig.15b respectively. the simulation results of these algorithms are shown Fig.14c-14e, and 
their spectrum are shown in Fig.15c-15e, respectively. It is clear that from Fig.14 and Fig.15 
the results obtained by the Adaptive Porjected Landweber algorithm are better than the 
results obtained by the Porjected Landweber algorithm and the standard Landweber 
algorithm. The super-resolution capabilities (spectrum extrapolation) of these projection-
based methods are obvious. However, the convergence of the standard Landweber method 
is slow compared to the Adaptive Porjected Landweber algorithm and the Porjected 
Landweber algorithm, mainly because the standard Landweber algorithm is a linear 
method, and it has hardly super-resolution capability.  
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Fig. 14. (a) Original Image (b) Blurred (c) Standard Landweber after 100 iterations 
(d)Projected Landweber (e) Adaptive Projected Landweber  

 
Fig. 15. Spectrum of Fig. 1 (a) Original Image, (b) Blurred (c) Standard Landweber after 100 
iterations (d) Projected Landweber (e) Adaptive Projected Landweber  

Fig. 16 plots the MSE of the three algorithms. It can be observed that the Adaptive Porjected 
Landweber algorithm has a faster decrease of the MSE than the other two algorithms. Also, 
the MSE of the Adaptive Porjected Landweber algorithm is lower than that of the other two 
algorithms. 
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Fig. 16. MSE of the Adaptive Projected Landweber(solid line). MSE of the Projected 
Landweber(dash-dot line). MSE of the Standard Landweber(dash line). 

In the second experiment, the visual image is shown in Fig.17a. The blurred image is shown 
in Fig.17b acquired by the PMMW radiometer. The restored images are shown in Fig.17c-17e 
respectively. The Adaptive Projected Landweber algorithm gives better result than standard 
Landweber algorithm. The results obtained by the Adaptive Projected Landweber algorithm 
are very similar to (slightly better than) the results obtained by the Projected Landweber 
algorithm. Furthermore, Gibbs rings of standard Landweber algorithm aggravate as the 
iteration increases. 

 

 
Fig. 17. (a) Visible Image (b) Captured Image (c) Standard Landweber (d) Projected 
Landweber (e) Adaptive Projected Landweber  

The APL algorithm, which iteratively applies a cycle of Projected Landweber algorithm 
followed by a relax parameter adaptive adjustment, combines the strong points of the two 
approaches and hence possesses a number of implementation benefits. The adaptive update 
parameter aims to emphasize speed and stability. Experiment results demonstrate that the  
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results of Adaptive Projected Landweber algorithm are better than those of standard 
Landweber algorithm and Projected Landweber algorithm. The Adaptive Projected 
Landweber Super-resolution algorithm has lower MSE and produces sharper images. These 
constraints and adaptive character speed up the convergence of the Landweber estimation 
process. The superior restoration of the object features observed in the image domain and 
the significant extrapolation of spatial frequencies observed in the spectral domain lead to 
the conclusion that the Adaptive Prejected Landweber super-resolution algorithm can be 
used for restoration and super-resolution processing for PMMW imaging. 

4.3 Undecimated steerable pyramid transform projected Landweber algorithm 

Super resolution algorithms have two tasks: restoring the spectrum components within the 
passband (by reversing the effects of convolution with the point spread function of imaging 
system) and re-create the lost frequencies due to the imposition of sensor diffraction limits 
by spectral extrapolation. Recently, a more sophisticated spectrum decomposition technique 
is adopted. Using multi-scale technique, an image is decomposed into a hierarchical manner 
where each level corresponds to a reduced-resolution approximation of the image. It is 
equivalent to a filter bank that decomposes an image into different frequency components. 
By such decomposition, one can restore the passband firstly and then extrapolate high 
frequency components stage by stage. The most commonly used multi-scale methods are 
based on the Pyramid transform (such as Laplacian Pyramid, steerable Pyramid), the 
wavelets transform, the contourlets transform and so on [33-36]. The multi-scale transforms 
mentioned above belong to linear transform, but they are not shift invariant due to the 
down sampling. The lack of shift-invariance is a problem for many applications such as 
image restoration and image denoising because it causes pseudo-Gibbs phenomena around 
singularities [33]. Undecimated multi-scale methods can avoid such problem thus it has 
been introduced in several studies [34-36]. 

4.3.1 Undecimated pyramid transform 

The Undecimated Pyramid transform (UPT) uses filter bank ( 10H , 11H ) in the analysis part 
and ( 10G , 11G ) in the synthesis part. The ideal frequency response of the building block of 
the UPT is shown in Fig. 18(a). The perfect reconstruction condition is given as 

 10 10 11 11 1H G H G   (37) 

Filters of the UPT do not need to be orthogonal or bi-orthogonal and this lack of the need for 
orthogonality or bi-orthogonality is beneficial for design freedom.  
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Fig. 18. Undecimated Pyramid transform. (a) The structure of the two-channel undecimated 
filter bank (b) Two stage Pyramid decomposition. 
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To perform the multi-scale decomposition, we construct non-subsampled pyramids by 
iterated non-subsampled filter banks. For the next level, we upsample all filters by 2 in both 
dimensions. Therefore, they also satisfy the perfect reconstruction condition. The cascading 
of the analysis part is shown in Fig. 18(b).  

Seen from frequency domain, the UPT decomposes an image into different frequency bands. 
Suppose N  is the order of the cascading decomposition, 0NH  is a low frequency band and 

1nH (1 )n N   corresponds to high frequency component of the thn  stage. Let n  be the 
passband of 0nH , we have 1 2 3...     . If the UTP is designed to acquire low 
frequency component contained in , we can easily determine N  by the inclusion relation 
in frequency domain: 1N N     . 

In above mentionProjection Landweber algorithm, essentially the property of semi-
convergence indicates that the Landweber algorithm is a regularization method. Suppose a 
perturbed linear equation is given as below 

 Ax b  (38) 

Where A is an m n system matrix, which describes the system geometry, x is an 1n  
vector of the image pixels and b is an 1m  vector of the measured data with perturbation 
 . Let kx be the solution of equation (35) acquired by the Landweber after the thk iteration, 

kx  be the solution of Ax b . If ( )b D A  , the Landweber algorithm has [37] 

 || ||k kx x k    (39) 

Where A  is the Moore-Penrose inverse of A . For a given  , the data error || ||k kx x   is 
amplified with the increase of iterative steps k . The algorithm stops at the semi-
convergence point when the data error reaches the magnitude of approaching error 
|| ||kx x  , where x A b  . 

Known from equation (36), the Landweber stops more quickly if it is used to restore an 
image with a bigger  . In the restoration of a badly contaminated image, the Landweber 
may have not plenty iterative steps to restore or re-create the frequency components that we 
need. Unfortunately, signal-to-noise ratio of PMMW image is quite low due to limited 
integral time and bandwidth. Because of this, the PL algorithms can not provide a satisfied 
resolution improvement in most practical applications. The practical performance of the PL 
algorithm is shown in Fig. 23(c).  

The denoising technique can avoid the fast termination of the Landweber algorithm. 
Because PSF of a PMMW imaging system is approximately band-limited, a low passband 
filter can perform the function. By such pre-procession, the high-frequency component of   
is attenuated thus the Landweber algorithm avoid the adverse effect of the amplification of 
high-frequency noise. 

4.3.2 Undecimated Pyramid Projected Landweber (UPPL) super-resolution algorithm 

The basic strategy of image super-resolution based on the UPT is to use a band-limit 
frequency selection rule to construct a multilevel Pyramid-like restoration model from the 
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 10 10 11 11 1H G H G   (37) 

Filters of the UPT do not need to be orthogonal or bi-orthogonal and this lack of the need for 
orthogonality or bi-orthogonality is beneficial for design freedom.  
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Fig. 18. Undecimated Pyramid transform. (a) The structure of the two-channel undecimated 
filter bank (b) Two stage Pyramid decomposition. 

 
Super–Resolution Restoration and Image Reconstruction for Passive Millimeter Wave Imaging 

 

279 

To perform the multi-scale decomposition, we construct non-subsampled pyramids by 
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may have not plenty iterative steps to restore or re-create the frequency components that we 
need. Unfortunately, signal-to-noise ratio of PMMW image is quite low due to limited 
integral time and bandwidth. Because of this, the PL algorithms can not provide a satisfied 
resolution improvement in most practical applications. The practical performance of the PL 
algorithm is shown in Fig. 23(c).  

The denoising technique can avoid the fast termination of the Landweber algorithm. 
Because PSF of a PMMW imaging system is approximately band-limited, a low passband 
filter can perform the function. By such pre-procession, the high-frequency component of   
is attenuated thus the Landweber algorithm avoid the adverse effect of the amplification of 
high-frequency noise. 

4.3.2 Undecimated Pyramid Projected Landweber (UPPL) super-resolution algorithm 

The basic strategy of image super-resolution based on the UPT is to use a band-limit 
frequency selection rule to construct a multilevel Pyramid-like restoration model from the 
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Pyramid representations of the original data. The UPT of an image can be described as 
collection of low- or band-pass copies of an original image. For a band-limited image, the 
decomposition of UPT can implement the function of image denoising.  

The framework of the UPPL algorithm is shown in Fig. 19. First the UPPL algorithm 
decomposes a PMMW images by the UPT. Sub images  1 2 1, , , jy y y     acquired by the 
decomposition correspond to the frequency bands shown in Fig. 18(b). Then the UPPL 
restores these frequency components from the lowest frequency band to the highest. 
Because the UPT has the capability to attenuate noise in higher frequency bands, the UPPL 
is able to improve the restoration of lower frequency bands by providing the PL algorithm 
plenty iterate steps. In each stage the initial guess of the current PL iterations is the restored 
result of the last stage. So the restoration of current frequency band is always based on a 
sufficient restoration of lower frequency components.  
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Fig. 19. The UPPL algorithm framework 

The UPPL algorithm is summarized as below: 

Step 1. Compute the UPT of the input image for J  levels  1 2 1, , , Jy y y    . 

Step 2. Implement 1K  PL iterations with initial update parameter 1  , 0
1 0f   and 1 1g y . 

Step 3. Implement jK  PL iterations with initial update parameter j  , 10
1
jK

j jf f 
  

and 1j j jg y g   , where 1
1
jK

jf 
 denotes the restored image of the ( 1)thj   scale, 

 1,2, ,j J    . 
Step 4. Repeat step 3 to the highest scale of 1J  .  

In each stage, the UPPL restores a frequency band by an independent PL algorithm, which 
has its own update parameter. Known from equation (36), a big update parameter 
accelerates the amplification of the data error || ||k kx x   thus it decreases the number of 
iterative steps. Because of this, the UPPL enjoys the flexibility of controlling the convergence 
speed of different frequency bands. The principle for choosing a suitable j  is that the 
number of iterative steps should be sufficient but not excessive. Commonly the concrete 
value of j  is acquired by a number of experiments.  
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4.3.3 Simulation and experiments 

In comparison with PL algorithm, two images have been adopted in simulation 
experiments, one is a 256x256 synthetic image composed of a series of disks, and the other is 
an 32x32 gun image captured by 91.5 GHz mechanically scanned mono channel radiometer.  

 

 

(a)  (b)  

(c)  (d)   
Fig. 20. (a) Original Image, (b) Original Image Spectrum, (c) Blurred Image, (d) Blurred 
Image Spectrum 

In the first experiment, the ideal image and its spectrum are shown in Fig. 20(a) and Fig. 
20(b), respectively. For simulating the blurring caused by a diffraction limited imaging 
sensor, we blur the ideal image by the PSF of a low-pass filter that simulates a sensor with a 
circular aperture of diameter 16 pixels. Zero-mean Gaussian noise was added to the blurred 
image to get the observed noisy blurred image at 30 dB Blurred Signal-to-Noise Ratio 
(BSNR). The blurred image and its spectrum are shown in Fig. 20(c) and Fig. 20(d), 
respectively. 

In the experiment, scale number of UPT is 3. The update parameters are 1 1.5  , 2 1.2  , 
3 1.0  and 4 0.4  respectively. The simulation results of the PL algorithm and UPPL 

algorithm are shown in Fig. 21(a) and 21(c) after 200 iterations, and their spectrum are 
shown in Fig. 21(b) and 21(d), respectively. It is clear that the results obtained by the UPPL 
algorithm are better than the results of the PL algorithm. The super-resolution capability 
(spectrum extrapolation) of the UPPL algorithm is more obvious.  

Fig. 22 plots the MSE of the two algorithms. It is clear that the UPPL algorithm has a faster 
decrease of the MSE than the PL algorithm. The MSE of UPPL algorithm is lower than that 
of the PL algorithm.  
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Fig. 21. (a) Result of PL, (b) Spectrum of PL, (c) Result of UPPL, (d) Spectrum of UPPL  
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Fig. 22. MSE vs Iterations 

In the second experiment, the visual image is shown in Fig. 23(a). The blurred image is 
shown in Fig. 23(b) acquired by a 91.5 GHz mechanically scanned radiometer. We use the 
same experimental parameter as the first experiment. The restored images are shown in Fig. 
23(c) and 23(d) respectively. It is clear that a significant resolution improvement is achieved 
by the UPPL algorithm. 

A reasonable frequency decomposition scheme, the UPT is also presented. Experiment 
results demonstrate that the result of UPPL is better than that of the PL algorithm. The 
UPPL algorithm has lower MSE and produces sharper images. The effectiveness of the 
UPPL algorithm for practical PMMW images is also validated. 
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(a)   (b)   

(c) (d)  
Fig. 23. (a) Visible Image, (b) Captured Image, (c) Result of PL, (d) Result of UPPL. 

Undecimated steerable pyramid decomposition of the image generates a number of 
different sub-band frequency images. As these details and the differences between the 
useful signals and noise in the approximate sub-band images, we can use different 
relaxation parameters and iterations in order to suppress the noise. The UPPL algorithm 
combines the advantages of the PL algorithms and multi-level pyramid recovery methods. 
The acquired image are first decomposed by non-sampling pyramid transform into some 
sub-images. Then we operate the super-resolution process to each grade low-pass image 
using the PL algorithm. Since each sub-image contains different frequency content, we 
select different relaxation parameters and iterations in the super-resolution processing. 
The algorithm improves the ability of spectral extrapolation, and makes the restored 
image more sharpen. 

4.4 Two-step projection iteration thresholding supper-resolution using compressed 
sensing architecture 

For passive millimeter wave image, it has certain structure, which can be sparse 
decomposed in a particular base. Therefore, we can use the sparse prior information of 
PMMW images for the image reconstruction process. Because the noise is not sparse, the 
supper-resolution based on sparse prior information can suppress noise. The low-pass 
effect of the PMMW imaging system make the space resolution very poor. The tw-PIT 
algorithm uses the sparse prior information and the non-negative finite value information 
of PMMW images, which can separate the noise from the signals in the iteration process. 
The algorithm is very effective when the image noise is existed which can also has good 
super-resolution performance. 
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Fig. 22. MSE vs Iterations 

In the second experiment, the visual image is shown in Fig. 23(a). The blurred image is 
shown in Fig. 23(b) acquired by a 91.5 GHz mechanically scanned radiometer. We use the 
same experimental parameter as the first experiment. The restored images are shown in Fig. 
23(c) and 23(d) respectively. It is clear that a significant resolution improvement is achieved 
by the UPPL algorithm. 

A reasonable frequency decomposition scheme, the UPT is also presented. Experiment 
results demonstrate that the result of UPPL is better than that of the PL algorithm. The 
UPPL algorithm has lower MSE and produces sharper images. The effectiveness of the 
UPPL algorithm for practical PMMW images is also validated. 
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sub-images. Then we operate the super-resolution process to each grade low-pass image 
using the PL algorithm. Since each sub-image contains different frequency content, we 
select different relaxation parameters and iterations in the super-resolution processing. 
The algorithm improves the ability of spectral extrapolation, and makes the restored 
image more sharpen. 

4.4 Two-step projection iteration thresholding supper-resolution using compressed 
sensing architecture 

For passive millimeter wave image, it has certain structure, which can be sparse 
decomposed in a particular base. Therefore, we can use the sparse prior information of 
PMMW images for the image reconstruction process. Because the noise is not sparse, the 
supper-resolution based on sparse prior information can suppress noise. The low-pass 
effect of the PMMW imaging system make the space resolution very poor. The tw-PIT 
algorithm uses the sparse prior information and the non-negative finite value information 
of PMMW images, which can separate the noise from the signals in the iteration process. 
The algorithm is very effective when the image noise is existed which can also has good 
super-resolution performance. 
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4.4.1 Projection Iteration Threshold (PIT) supper-resolution 

In the compressed sensing(CS) theory, we use sparsity to describe a signal’s feature or 
structure. Passive millimeter wave(PMMW) images have a certain structure so that they can 
have sparse representation on some basis. Therefore, during the processing of super-
resolution, we can use the prior that the PMMW images can be sparse represented to 
reconstruct them. And in image restoration, the introduction of l1-norm optimization can 
proform a more effective way to recover a original image. 

In the CS theory, we take advantage of the signal’s sparsity by bringing p-norm restrict 
condition in solving the objective function. So far, using iterative way to solve nonlinear 
reconstruct problem has achieved remarkable results in the field of CS. So in the field of 
image restoration, we can also bring in p-norm restriction to obtain images’ sparse prior 
information. The process of image degradation as shown in section 2, for the model of 
PMMW imaging system which is supposed space-invariable, the operator K is simplified a 
convolution process. And the solution of this problem requires minimizing the difference 
between the optimal solution and the real one: 

 2f Kf g    (40) 

Unlike classical regularization way, we add regularization to the sparse prior information of 
image, where the constraint is not quadric, but the lp-norm( 1 2p  ) of signal f. It is here 
that the introduction of p-norm make the solution of objective function have sparsity. 

The objective function to be optimized is: 
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Where   is the orthogonal basis which f could be sparse represented with, and ( )w w   
is the weight of the coefficients in transform-domain. When K is a identitymatrix, and   is 
a wavelet basii function, the objective function mentioned above turns to denoising via 
wavelet transform based on Besov priori information . 

Then, the corresponding variational equation is: 

 1
: , , , ( , ) 0

2
pH H w p

K Kf K g f sign f
       


      (42) 

The nonlinear equation shown above which involved symbolic function is a tricky one in 
practice. Define constant C satisfies: 

 HK K C  (43) 

And the function as follow: 

 2 2( ; )sur f a C f a Kf Ka     (44) 

 
Super–Resolution Restoration and Image Reconstruction for Passive Millimeter Wave Imaging 

 

285 

According the definition of C, HCI K K  is a strictly positive definite matrix. So function 
( ; )sur f a  is a strictly convex function for any value a. For image degradation, we can always 

have 1K  . So let C equal to value 1, and we can replace objective function by: 
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To acquire the solution of the equation above, the process of iteration is shown as follows. 
For any initial point 0f , 

 1
,arg min( ( ; ) 1,2,...n sur n

w pf f f n     (46) 

In equation (43), when w 0 , it means the objective function doesn’t include any sparse 
priori information. Therefore, the algorithm is degraded to a process of landweber iteration 
algorithm. 

When p=1, the variational equation of the objective function is expressed as: 

 2 ( ) 2( [ ( ] )Hf w sign f a K g Ka         (47) 

For the process of symbolic function, when f >0, the solution is: 

 [ ( )] / 2Hf a K g Ka w        (48) 

Under the condition of [ ( )] / 2Ha K g Ka w     , when f <0, the solution turns to: 

 [ ( )] / 2Hf a K g Ka w        (49) 

otherwise, when the equation do not satisfy the two conditions mentioned above, which is 

 0f   (50) 

In conclusion, the iterating thresholding algorithm based on sparse prior is described as 
follow 
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Where   is the orthogonal basis which f could be sparse represented with, and ( )w w   
is the weight of the coefficients in transform-domain. When K is a identitymatrix, and   is 
a wavelet basii function, the objective function mentioned above turns to denoising via 
wavelet transform based on Besov priori information . 

Then, the corresponding variational equation is: 
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The nonlinear equation shown above which involved symbolic function is a tricky one in 
practice. Define constant C satisfies: 

 HK K C  (43) 

And the function as follow: 

 2 2( ; )sur f a C f a Kf Ka     (44) 
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According the definition of C, HCI K K  is a strictly positive definite matrix. So function 
( ; )sur f a  is a strictly convex function for any value a. For image degradation, we can always 

have 1K  . So let C equal to value 1, and we can replace objective function by: 
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To acquire the solution of the equation above, the process of iteration is shown as follows. 
For any initial point 0f , 

 1
,arg min( ( ; ) 1,2,...n sur n

w pf f f n     (46) 

In equation (43), when w 0 , it means the objective function doesn’t include any sparse 
priori information. Therefore, the algorithm is degraded to a process of landweber iteration 
algorithm. 

When p=1, the variational equation of the objective function is expressed as: 
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For the process of symbolic function, when f >0, the solution is: 
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otherwise, when the equation do not satisfy the two conditions mentioned above, which is 

 0f   (50) 

In conclusion, the iterating thresholding algorithm based on sparse prior is described as 
follow 
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Fig. 24. Flow-chart for PIT super-resolution algorithm 

The sparse prior iterating thresholding algorithm will achieve a better effect in image 
restoration, which is introducted l1-norm restricted condition and the sparse priori 
information. And in the PMMW imaging system, the non-negative limitation of the image 
can be used as a prior in image super-resolution process. So we add that in our algorithm, 
and we have the sparse prior super-resolution algorithm restricted by l1-norm – projected 
iterating thresholding(PIT) algorithm. The iterative formula is shown as follows: 

1. Updating sparse coefficients of image by a additive term 
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2. Computing soft threshold by the coefficients acquired above 
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3. Projecting onto a non-negative limited convex set 

 1 1( )k k
Cf P     (55) 

Where the definition of operator uS  is soft threshold operation, and   is the coefficient of 
the image’s sparse representation on a certain orthogonal basis function.  

Passive millimeter wave images can be sparsely represented. Assuming the orthogonal basis 
is 1 2[ , ,..., ]N     , the sparsity of image is expressed as follows: 

 f    (56) 

Where, f  is the scene signal,   is the sparse coefficient in orthogonal basis. 

A flow chart depicting the various steps of Projected Iterating Thresh-holding (PIT) super-
resolution algorithm is shown as Fig. 24.  

 

           (a)                                  (b) 

 

              (c)                             (d)  
Fig. 25. (a) Original Image, (b) BlurredImage, (c) After Projected Landweber , (d) After twPIT 
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After the above steps, one iteration is finished. Depending on the specific situation, the 
algorithm can perform multiple iterations until reaching design requirement. The PIT 
algorithm taking advantage of the sparse prior of the image, can have a better recovery 
performance. Because of the isotropy, the noise has no sparsity in transform-domain. Since 
we keep projecting to the l1-ball in every iteration, the algorithm can effectively eliminate 
the impact of the noise’s amplification. We will verify it in the later simulation. 

In one iteration, there are two convolutions of images, two wavelet transform operations, 
two plus-minus operation and thresholding operation. The convolutions of images can 
perform in frequency-domain, which could reduce calculations by using FFT, and wavelet 
transform could achieve quickly by using Mallat algorithm. 

4.4.2 tw-PIT supper-resolution 

To improve the above algorithm, we can modify equation (52) by updating algorithm two-
step projection iteration [38-41]. Thus we can get two-step Projected Iterating Thresh-
holding, which is tw-PIT supper-resolution. 

For a brief description, each cycle of this “tw-PIT supper-resolution algorithm” consists of 
executing the four steps: 

Step 1. The iterative principal process 

 1 ( ) ( )k k T kH g H         (57) 

Where H is the PSF of system, g  is the Captured PMMW image,   is the sparse coefficient 
in orthogonal basis  . 

Step 2. Soft threshold procedure: 
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  is the given parameters. 

Step 3. Updating algorithm two-step projection iteration 

 1 1 1(1 ) ( )k k k kf f f             (59) 

The designation “two-step” stems from the fact that depends on both kf and 1kf  , rather 
than only on kf . 

Step 4. Projection process 
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Tw-PIT supper-resolution algorithm can finish one iteration though the above four steps. 
The algorithm converges very fast. The convergence is much faster with 1  is much smaller. 
But it does not guarantee optimal performance of the reconstruction algorithm. 

4.4.3 Simulation and experiments 

In order to verify the super-resolution capability of thetw-PITalgorithm mentioned above, 
two images have been adopted in simulation and experiments, one is a lena image, and the 
other is an 210×96 University of ElectronicScience and Technology of China (UESTC) 
library’s image captured by 94 GHz mechanically scanned mono channel radiometer. 

In the first experiment, the optical lena image and the blurred image are shown in Fig.25a 
and Fig.25b respectively. The blurred image is from the lena image via a 5×5 Gaussian 
templates convolution. Zero-mean Gaussian white noise is added to the blurred image. The 
noise variance is 10. The Blurred Signal-to-Noise Ratio (BSNR) is 30 dB of the noisy blurred 
image. The experimental parameters 1  is 0.1. The results obtained by the Projected 
Landweber and twPIT are shown in Fig.25c and Fig.25d. This metric is given by[42] 
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Where,      , , ,y i j g i j n i j   is the noise free blurred image,  ( , )y m n E y , 2  is the 
additive noise variance. 

It is clear from Fig.25 that the results obtained by the twPIT algorithm are better than the 
results obtained by the PL algorithm. 

When the ideal image is available for comparison, various distance metrics can be readily 
postulated to compare the images and their spectra. Straightforward measure is the Mean 
Square Error (MSE), which given by 
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1 kMSE f f

N
    (62) 

Where f  denotes the ideal image, kf  represents the thk  restoration result, 2 is 2L  norms. 
Fig. 26 plots the MSE of the three algorithms.  

It can be observed that the twPIT algorithm has a faster decrease of the MSE than the PL 
algorithm and PIT algorithm from Fig.27. Also, the MSE of the twPIT algorithm is lower 
than that of the other two algorithms. Clearly, the twPIT algorithm has the best convergence 
performance and lowest MSE. This is because the twPIT algorithm suppress the noise in an 
iterative process. The experiments show that the twPIT algorithm convergence faster, which 
is suitable for the required real-time applications, such as airport security and Concealed 
Weapons Detection. 

In the second experiment, the visual image is shown in Fig.28a. The PMMW image is shown 
in Fig.28b, which is captured by a 3mm Passive millimeter wave focal plane linear array 
scanning imaging system. The restored images are shown in Fig.28c-28e, respectively. Fig.27 
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For a brief description, each cycle of this “tw-PIT supper-resolution algorithm” consists of 
executing the four steps: 

Step 1. The iterative principal process 

 1 ( ) ( )k k T kH g H         (57) 

Where H is the PSF of system, g  is the Captured PMMW image,   is the sparse coefficient 
in orthogonal basis  . 

Step 2. Soft threshold procedure: 

 1

/ 2 / 2

0 / 2

/ 2 / 2

k k
i i

k k
i i

k k
i i

   

  

   



   
 


 

 (58) 

  is the given parameters. 

Step 3. Updating algorithm two-step projection iteration 

 1 1 1(1 ) ( )k k k kf f f             (59) 

The designation “two-step” stems from the fact that depends on both kf and 1kf  , rather 
than only on kf . 

Step 4. Projection process 

 1 1( )k k
Cf P f   (60) 

Where
2 1

2 2,
1 1 N

 
 

 
 

, 1

1
, 1N

N
N

 
 

 


 


, 1 can be 0.1,0.01,0.001,0.0001, et al. 

 
Super–Resolution Restoration and Image Reconstruction for Passive Millimeter Wave Imaging 

 

289 

Tw-PIT supper-resolution algorithm can finish one iteration though the above four steps. 
The algorithm converges very fast. The convergence is much faster with 1  is much smaller. 
But it does not guarantee optimal performance of the reconstruction algorithm. 
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is the PSF which is estimated by variational bayesian. In captured image, the image are 
assembled together by three times mechanically scanned mono-channel radiometer, as a 
single mechanical scan pitch direction field limit. 

 
Fig. 26. Mean square error of the reconstructed image 

   
Fig. 27. Variational bayesian estimated PSF 

The MSE is a global evaluation criterion for super-resolution algorithm. We can use the local 
image variance method to estimate the image noise level. This approach is based on the 
assumption, which the image is a large number of small pieces of uniform composition, and 
image noise to additive noise based. The captured passive millimeter wave images meet this 
requirement, which there are many flat background and noise is mainly additive noise, 
basically meet the above assumptions. Local variance calculated as follows [43]: 

1. The image is divided into many small block, such as 4×4, 5×5. Then, we calculated the 
local mean and local variance of each block. The local variance is defined as: 
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The y is the local mean, which is defined as: 
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Where, ( , )i j  indicates the location of the image. ,P Q  is the local variance calculation 
window size. 

2. The equally spaced intervals are created between the maximum local variance and 
minimum local variance. The each local variance is enclosed into the appropriate 
interval. The local variance average of which contains the largest number of extents is 
used as the image noise variance. For the simulation image and the actual millimeter 
wave image, we set the block number is 100. 

 
Fig. 28. (a) Visible Image, (b) Captured PMMW image, (c) Result of Projected Landweber, 
(d) Result of PIT, (e) Result of twPIT  

In our experiments, the three kinds of super-resolution algorithm including PL, PIT and 
twPIT are executed for low resolution PMMW images.The symmetric extension technology 
is adopted in the image boundaries convolution for eliminating shock ringing. The restored 
result of PL, PIT and twPIT are shown in Fig.28c-28e after 20 iterations, respectively. 

The calculated local noise variance is 55.3552, 24.2451 and 34.6997 by PL, PIT and twPIT 
algorithm, while the 2P Q  and the window size of the local variance is 5×5. 

From above the results, we can see that PL algorithm can effectively perform super-resolution 
processing, but the noise is magnified in the recovery process. PIT and twPIT algorithm can 
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effectively suppress high frequency noise and make the flat region of original image maintain 
its flatness in the iterative process and maintain high-resolution of the images. 

In the second experiment, the scene is relatively simple millimeter-wave imaging image 
processing. The Point Spread Function of the imaging system is estimated by the variational 
Bayesian method. For the PIT algorithm, the parameter   is chosen as 1. For tw-PIT 
algorithm, the parameter   is settled to 2, the parameter p is set to 0.5. All the algorithms are 
iterative 100 times, the experimental results as shown below: the covered the car visual 
image is shown in Fig. 29(a),the unobstructed visual image is shown in Fig. 29(b). The 
obtainedPMMW image is shown in Fig. 29(c), which is acquired by a W band mechanically 
scanned radiometer. The spectrum of the PMMW image is shown in Fig. 29(d). The result 
and its spectrum after100 iterations PL algorithm are shown in Fig. 29(e) and Fig. 29(f). The 
result and its spectrum after100 iterations PIT are shown in Fig. 29(g) and Fig.29 h). The 
result and its spectrum after100 iterations tw-PIT are shown in Fig. 29(i) and Fig. 29(j). 
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minimize the impact of noise for image restoration. Thus, the twPIT algorithm can be used 
in the occasion which requires PMMW imaging quality and real-time such as airports and 
Concealed Weapons Detection (CWD). 

In the second experiment, due to the limited field of view, the single-channel scanning 
process has introduced a certain artifacts. So eliminate and abate the artifacts is the problem 
that need to be researched and solved in our follow-up work. 
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1. Introduction 
Image restoration is an important topic in the area of image processing because its 
techniques are useful to recover images degraded during a capturing process (Bovik, 2005). 
There are a wide range of degradations in real world, such as blurring (i.e. camera motion 
capture process), nonuniform illumination, cloud environments (fog, clouds, smoke), noise 
(white noise, impulse noise, etc.), and damaged elements in imaging array sensors 
(Gonzalez & Woods, 2008; Hautiere & Aubert, 2005; Jain, 1989; Narasimhan & Nayar, 2002). 

Common restoration methods are based on a priori knowledge of the degradation process. 
They usually use the degradation model and a single observed scene to carry out restoration 
(Banham & Katsaggelos, 1997; Kundur & Hatzinakos, 1996). There are also methods of 
restoration based on unknown functions of degradation referred to as blind methods 
(Jain,1989). Although there are numerous algorithms, the process of restoration is still open 
problem. 

Image restoration methods described in this chapter belong to the class of blind adaptive 
methods. The techniques use camera microscanning (Shi et al., 2006) for the restoration of 
images degraded with nonuniform additive, nonuniform multiplicative interferences, and 
sensor noise. 

The spatial nonuniform additive interference is present in infrared focal-plane array sensors 
(IFPA), because each photodetector has a variation in its photoresponse as intrinsic result of 
the IFPA’s fabrication stage (Hayat et al., 1999; Ratliff et al., 2002). On the other hand, the 
nonuniform illumination may be characterized as multiplicative interference. Nonuniform 
illumination limits the performance of others algorithms of image processing such as pattern 
recognition (Lee & Kim, 2009). 

Microscanning is a technique to acquire time-sequential images of the same scene with a slight 
shifting between the scene and camera. Recently, restoration methods for different models of 
observed scenes using three images anisotropically captured with a microscanning imaging 
system were investigated (López-Martínez & Kober, 2008, 2010; López-Martínez et al., 2010). 
In order to carry out restoration, we consider three degraded images captured with a 
microscanning imaging system. Next, an explicit system of equations is derived and solved. 
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(IFPA), because each photodetector has a variation in its photoresponse as intrinsic result of 
the IFPA’s fabrication stage (Hayat et al., 1999; Ratliff et al., 2002). On the other hand, the 
nonuniform illumination may be characterized as multiplicative interference. Nonuniform 
illumination limits the performance of others algorithms of image processing such as pattern 
recognition (Lee & Kim, 2009). 

Microscanning is a technique to acquire time-sequential images of the same scene with a slight 
shifting between the scene and camera. Recently, restoration methods for different models of 
observed scenes using three images anisotropically captured with a microscanning imaging 
system were investigated (López-Martínez & Kober, 2008, 2010; López-Martínez et al., 2010). 
In order to carry out restoration, we consider three degraded images captured with a 
microscanning imaging system. Next, an explicit system of equations is derived and solved. 
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The proposed method is analyzed in terms of restoration accuracy, execution time, and 
computational complexity. Experimental results are also provided.  

2. Image restoration methods for a microscanning system 
Microscanning acquires multiple images of the same scene by slight shifting image 
acquisition system (Shi et al., 2006). Microscanning can be implemented either with a 
controlled movement of a sensor array that captures images or with a controlled motion of a 
light source, for example in the case of nonuniform illumination. 

Microscanning is usually used for supper-resolution (Milanfar, 2011). However, controlled 
camera microscanning can be also used for image restoration, if the original image and 
interferences are spatially displaced relatively each other during the microscanning process. 
At least three observed images should be captured. The first image is taken without any 
displacement, the second one is captured with shift of one pixel down, and finally the third 
one is obtained with shift of one pixel to the right. In practice, microscanning may be 
implemented using a piezoelectric actuator to precision positioning of a sensor array. In the 
case of nonuniform illumination, controlled motion performs a light source. 

Let us introduce some useful notation and definitions. Let  ( , ), 1,2,..,ts i j t T  be a set of 
observed images, where t is the index of time-sequential images captured during 
microscanning, T is the number of observed images captured around the origin with a small 
displacement of a camera, and (i, j) are the pixel coordinates. Without loss of generality, 
suppose that each image has the size of M N pixels. Let ( , )f i j , ( , )a i j and ( , )b i j  
denote an original image, an additive interference, and a multiplicative interference, 
respectively. Assume that these images are time-invariant during the capture process. Let 
 ( , )tn i j  be a time-varying zero-mean white Gaussian noise.  

2.1 Additive degradation model 

An example of spatially nonuniform additive interference is IFPA with a low gain variation 
(Hayat et al., 1999; Ratliff et al., 2002). IFPA sensor is a mosaic of photodetectors placed at 
the focal plane of an imaging system. It is known that the performance of IFPA sensors is 
affected by the presence of fixed-pattern noise (spatially nonuniform noise). The 
nonuniform noise occurs because each detector has the photoresponse slightly different 
from that of its neighbors. 

When image degradation is caused by additive nonuniform interference and additive noise, 
the observed scene can be described as 

 1 1( , ) ( , ) ( , ) ( , ), 1 ,1s i j a i j f i j n i j i M j N       . (1) 

With a help of the technique of microscanning, two frames with vertical and horizontal 
displacements of one pixel can be obtained as follows: 

 2 2( 1,( , ) ( , )) ( , ) , 1 , 1 , s a i j f i j n ii j i M j Nj         (2) 

and  
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 3 3( , 1) ( , ) (( , ), 1 , 1 ., )s a i j f i j n i j i Mj ji N         (3) 

The additive interference and the original image are spatially displaced by the 
microscanning. Let us compute gradient matrices as follows: 
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We want to minimize the additive noise variance contained in these matrices. So, the 
objective function to be minimized using the least-squares approach (Kay, 1993), is given as  
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 (8) 

where the first terms takes into account the noise information present in the most part of the 
image, and the last two terms are inserted to the objective function in order to take into 
account the noise information in the bottom row and the right column of the image, 
respectively. To solve the minimization problem, we differentiate the objective function with 
respect to elements of the image  ( , )f i j  and set derivatives equal to zero. The 
minimization of the objective function leads to a linear system of equations. In matrix-vector 
notation the linear system is given by 

 Ax u , (9) 

where matrix A has the size MN MN , x  is a vector version of  ( , )f i j of size 1MN  , 
and vector r c u u u has the size 1MN  . The vectors ru and cu are computed as follows 
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The proposed method is analyzed in terms of restoration accuracy, execution time, and 
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light source, for example in the case of nonuniform illumination. 

Microscanning is usually used for supper-resolution (Milanfar, 2011). However, controlled 
camera microscanning can be also used for image restoration, if the original image and 
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displacement, the second one is captured with shift of one pixel down, and finally the third 
one is obtained with shift of one pixel to the right. In practice, microscanning may be 
implemented using a piezoelectric actuator to precision positioning of a sensor array. In the 
case of nonuniform illumination, controlled motion performs a light source. 

Let us introduce some useful notation and definitions. Let  ( , ), 1,2,..,ts i j t T  be a set of 
observed images, where t is the index of time-sequential images captured during 
microscanning, T is the number of observed images captured around the origin with a small 
displacement of a camera, and (i, j) are the pixel coordinates. Without loss of generality, 
suppose that each image has the size of M N pixels. Let ( , )f i j , ( , )a i j and ( , )b i j  
denote an original image, an additive interference, and a multiplicative interference, 
respectively. Assume that these images are time-invariant during the capture process. Let 
 ( , )tn i j  be a time-varying zero-mean white Gaussian noise.  

2.1 Additive degradation model 

An example of spatially nonuniform additive interference is IFPA with a low gain variation 
(Hayat et al., 1999; Ratliff et al., 2002). IFPA sensor is a mosaic of photodetectors placed at 
the focal plane of an imaging system. It is known that the performance of IFPA sensors is 
affected by the presence of fixed-pattern noise (spatially nonuniform noise). The 
nonuniform noise occurs because each detector has the photoresponse slightly different 
from that of its neighbors. 

When image degradation is caused by additive nonuniform interference and additive noise, 
the observed scene can be described as 

 1 1( , ) ( , ) ( , ) ( , ), 1 ,1s i j a i j f i j n i j i M j N       . (1) 

With a help of the technique of microscanning, two frames with vertical and horizontal 
displacements of one pixel can be obtained as follows: 

 2 2( 1,( , ) ( , )) ( , ) , 1 , 1 , s a i j f i j n ii j i M j Nj         (2) 
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The additive interference and the original image are spatially displaced by the 
microscanning. Let us compute gradient matrices as follows: 
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We want to minimize the additive noise variance contained in these matrices. So, the 
objective function to be minimized using the least-squares approach (Kay, 1993), is given as  
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where the first terms takes into account the noise information present in the most part of the 
image, and the last two terms are inserted to the objective function in order to take into 
account the noise information in the bottom row and the right column of the image, 
respectively. To solve the minimization problem, we differentiate the objective function with 
respect to elements of the image  ( , )f i j  and set derivatives equal to zero. The 
minimization of the objective function leads to a linear system of equations. In matrix-vector 
notation the linear system is given by 

 Ax u , (9) 

where matrix A has the size MN MN , x  is a vector version of  ( , )f i j of size 1MN  , 
and vector r c u u u has the size 1MN  . The vectors ru and cu are computed as follows 
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 ( ) (1, ), 1r j r j j M  u , (10) 

 ( ) ( 1, ) ( , ), 1 2, 1r iN j r i j r i j i M j N        u , (11) 

 ( ) ( 1, ), 0 1,r NM j r M N j j N       u  (12) 

 ( 1) ( 1,1), 0 1,c iM c i i M     u  (13) 

 ( ) ( 1, ) ( 1, 1), 2 1, 0 1,c iN j c i j c i j j N i M           u  (14) 

 ( ) ( , 1), 1 .c iN c i N i M    u  (15) 

The matrix A is sparse, and it is calculated as 
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where the matrices 1A , 2A , and 3A , of the size N N , are given by 

 1

4 2 0 0 0 0
2 6 2 0 0 0

0 2 6 2 0 0
0 0 0
0 0 0 2 6 2
0 0 0 0 2 4

 
   
  

  
 
  
 

  

A
  

, (17) 

 2

6 2 0 0 0 0
2 8 2 0 0 0

0 2 8 2 0 0
0 0 0
0 0 0 2 8 2
0 0 0 0 2 6

 
   
  

  
 
  
 

  

A
  

, (18) 

and 

  3 2, 2,..., 2 .diag   A  (19) 

The rank of the matrix A is 1MN  , therefore the original image can be restored if one pixel 
of the image is a priori assigned to a constant, for instance the last pixel of the image is set to 
zero. So, the matrix A associated to the lineal system has the size 1 1MN MN   , and it 
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becomes symmetric and positive-definite. In this case there exists a unique solution. After 
solving the linear system, the obtained image is point-wise processed to have the same mean 
value (assumed to be known) with original image. To solve the linear system, iterative 
conjugate gradient method is used (Golub & Van Loan, 1996). 

The computational complexity of the algorithm is given by the execution order of conjugate 
gradient and the size of an image to be restored. It is estimated as  kp operations, where p 
is the number of nonzero entries in the matrix associated to lineal system, and k is the 
number of iterations required for solving the system of equations. Without loss of 
generality, we assume that M N . Therefore, p=  25M  and k qM  where q depends on 
precision of the solution. The computational complexity of the method can be estimated as 
 35qM . 

Impulse noise is caused by sensor failures in a camera or transmission through a noisy 
channel. The proposed method is able to interpolate implicitly the pixel values corrupted 
with impulsive noise based on the information contained in neighboring pixels. This is 
because, during the microscanning the information of each pixel of the original image is 
captured in three different observed images. If one of sensors is damaged, partial 
information about the pixel intensity of the original image could be available in the other 
observed images. 

2.2 Multiplicative degradation model 

A typical example of multiplicative interference is nonuniform illumination. When an input 
image degraded by a multiplicative nonuniform interference and additive noise, the 
observed scene can be described as 

 1 1( , ) ( , ) ( , ) ( , ), 1 ,1s i j b i j f i j n i j i M j N       (20) 

Suppose that microscanning is able to separate the original image and the interference, and 
then the shifted frames are obtained as follows: 

 2 2( 1, ) ( , )( , ) ( , , 1) , 1 ,i j i js b i j f i j n i M j N        (21) 

 3 3( , 1) ( , )( , ( , ), 1 , 1 .)s b i j f i j n ii j j i M j N        (22) 

Now we define two quotient matrices using spatial information between rows and columns 
of the images, 

 2
1

1

( , )( , ) , 1 , 1 , ( 1, ) 0
( 1, )
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s i j
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Hence, the matrices  ( , )h i j and  ( , )v i j  as defined as 
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The rank of the matrix A is 1MN  , therefore the original image can be restored if one pixel 
of the image is a priori assigned to a constant, for instance the last pixel of the image is set to 
zero. So, the matrix A associated to the lineal system has the size 1 1MN MN   , and it 
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becomes symmetric and positive-definite. In this case there exists a unique solution. After 
solving the linear system, the obtained image is point-wise processed to have the same mean 
value (assumed to be known) with original image. To solve the linear system, iterative 
conjugate gradient method is used (Golub & Van Loan, 1996). 

The computational complexity of the algorithm is given by the execution order of conjugate 
gradient and the size of an image to be restored. It is estimated as  kp operations, where p 
is the number of nonzero entries in the matrix associated to lineal system, and k is the 
number of iterations required for solving the system of equations. Without loss of 
generality, we assume that M N . Therefore, p=  25M  and k qM  where q depends on 
precision of the solution. The computational complexity of the method can be estimated as 
 35qM . 

Impulse noise is caused by sensor failures in a camera or transmission through a noisy 
channel. The proposed method is able to interpolate implicitly the pixel values corrupted 
with impulsive noise based on the information contained in neighboring pixels. This is 
because, during the microscanning the information of each pixel of the original image is 
captured in three different observed images. If one of sensors is damaged, partial 
information about the pixel intensity of the original image could be available in the other 
observed images. 

2.2 Multiplicative degradation model 

A typical example of multiplicative interference is nonuniform illumination. When an input 
image degraded by a multiplicative nonuniform interference and additive noise, the 
observed scene can be described as 

 1 1( , ) ( , ) ( , ) ( , ), 1 ,1s i j b i j f i j n i j i M j N       (20) 

Suppose that microscanning is able to separate the original image and the interference, and 
then the shifted frames are obtained as follows: 

 2 2( 1, ) ( , )( , ) ( , , 1) , 1 ,i j i js b i j f i j n i M j N        (21) 

 3 3( , 1) ( , )( , ( , ), 1 , 1 .)s b i j f i j n ii j j i M j N        (22) 
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Hence, the matrices  ( , )h i j and  ( , )v i j  as defined as 
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The multiplicative interference in the matrices  ( , )h i j and  ( , )v i j  is eliminated when the 
observed images have no additive noise. However, for small standard deviation of noise the 
matrices are close to the correspondent quotient matrices constructed with the original 
image and its shifted versions. In a similar manner, the objective function can be written as  
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Since it is difficult to solve the system of nonlinear equation then a logarithm transformation 
to the system of nonlinear equations is applied. In this way the system can be converted to 
the linear system as follows:  
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In a similar manner, the iterative conjugate gradient method can be used for solving this 
linear system. Finally, the restored image is obtained by applying the exponential function 
to the solution of the linear system. Since this method is based on the conjugate gradient 
method, its computational complexity is close to that of for the additive degradation. 
Additional expenses are required for logarithm and exponential transformations.  

3. Computer simulation results 
In this section computer simulation results for restoration of images degraded by additive 
and multiplicative interferences are presented. The root mean square error (RMSE) criterion 
is used for comparison of quality of restoration. Additionally, a subjective visual criterion is 
used. The RMSE is given by 
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where  ( , )f i j  is the original image and  ( , )f i j is the restored image. The size of images 
used in our experiments is 256 256  pixels. The intensity values are in the range of [0,255]. 
The experiments were performed using a laptop computer (Intel Core 2 Duo 2.26 GHz with 
2GB of RAM). To guarantee statistically correct results, 30 statistical trials of each 
experiment for different realizations of the random noise process were performed. The 
conjugate gradient method is used to solve the linear system. The convergence criterion is 
when the residual value drops below 1010 . The subjective visual criterion is defined as an 
enhanced difference between original and restored images. This enhanced difference 
(Kober, 2001) is defined as follows: 

 1 2( , ) ( ( , ) ( , )) ,EDF i j f i j f i j     (30) 

where 1  and 2  are predetermined constants. In our experiments we set 1 4  and 1 1   
for additive and multiplicative models, respectively, and 2 128  . A pixel is displayed as 
gray if there is no error between the original image and the restored image. For maximum 
error, the pixel is displayed either black or white (with intensity values of 0 and 255, 
respectively). 

The linear minimum mean square error method is a popular technique in image restoration. 
In the case of stationary processes and in the absence of any blur, the method takes a 
simplified form of the Wiener smoothing filtering (Jain, 1989). The frequency response of the 
empirical Wiener filter is 
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where ( , )sP u v  is the power spectral density of the observed degraded input scene and 
( , )NoiseP u v  is the power spectral density of additive interference. It is assumed that all 

degradation parameters for the Wiener filter are exactly known. Note that the proposed 
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Since it is difficult to solve the system of nonlinear equation then a logarithm transformation 
to the system of nonlinear equations is applied. In this way the system can be converted to 
the linear system as follows:  
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In a similar manner, the iterative conjugate gradient method can be used for solving this 
linear system. Finally, the restored image is obtained by applying the exponential function 
to the solution of the linear system. Since this method is based on the conjugate gradient 
method, its computational complexity is close to that of for the additive degradation. 
Additional expenses are required for logarithm and exponential transformations.  

3. Computer simulation results 
In this section computer simulation results for restoration of images degraded by additive 
and multiplicative interferences are presented. The root mean square error (RMSE) criterion 
is used for comparison of quality of restoration. Additionally, a subjective visual criterion is 
used. The RMSE is given by 
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where  ( , )f i j  is the original image and  ( , )f i j is the restored image. The size of images 
used in our experiments is 256 256  pixels. The intensity values are in the range of [0,255]. 
The experiments were performed using a laptop computer (Intel Core 2 Duo 2.26 GHz with 
2GB of RAM). To guarantee statistically correct results, 30 statistical trials of each 
experiment for different realizations of the random noise process were performed. The 
conjugate gradient method is used to solve the linear system. The convergence criterion is 
when the residual value drops below 1010 . The subjective visual criterion is defined as an 
enhanced difference between original and restored images. This enhanced difference 
(Kober, 2001) is defined as follows: 
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where 1  and 2  are predetermined constants. In our experiments we set 1 4  and 1 1   
for additive and multiplicative models, respectively, and 2 128  . A pixel is displayed as 
gray if there is no error between the original image and the restored image. For maximum 
error, the pixel is displayed either black or white (with intensity values of 0 and 255, 
respectively). 

The linear minimum mean square error method is a popular technique in image restoration. 
In the case of stationary processes and in the absence of any blur, the method takes a 
simplified form of the Wiener smoothing filtering (Jain, 1989). The frequency response of the 
empirical Wiener filter is 

 ( , ) ( , )( , )
( , )

S Noise
Wiener

S

P u v P u vH u v
P u v


 , (31) 

where ( , )sP u v  is the power spectral density of the observed degraded input scene and 
( , )NoiseP u v  is the power spectral density of additive interference. It is assumed that all 

degradation parameters for the Wiener filter are exactly known. Note that the proposed 
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method does not need any information about the degradation function. When observed 
images are degraded by multiplicative interference, first we apply a logarithm function to 
the degraded images to convert the multiplicative interference to additive one (ignoring 
the sensor noise). Then the empiric Wiener filtering with known parameters is utilized. 
Finally, the exponential function is applied to the Wiener restored image to obtain the 
output image. 

3.1 Restoration of noisy image degraded with additive interference 

Figs. 1(a), 1(b), and 1(c) show a test original image, a nonuniform additive interference, and 
the original image degraded with the interference and a zero-mean white Gaussian noise 
with a standard deviation of 2, respectively. The mean value and standard deviation of the 
interference are 118.8 and 59.7, respectively. Fig. 2(a) shows restored images with the 
proposed method. Fig. 2(b) shows enhanced difference between the original image and the 
restored image.  

 
(a) (b) 

(c) 

Fig. 1. (a) Original image, (b) additive interference, (c) observed image degraded with 
additive interference and white noise with standard deviation of 2. 
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(a) (b) 

Fig. 2. Performance of the proposed method for additive degradation and additive noise 
with standard deviation of 2: (a) restored image, (b) enhanced difference between the 
original image and the restored image. 

Fig. 3 shows the performance in terms of the RMSE of the proposed methods using three 
images (Am3), and the Wiener filter versus the standard deviation of additive noise. It can 
be seen that the performance of the proposed method is much better than that of the Wiener 
filtering with known parameters. It happens because the additive interference is spatially 
inhomogeneous, and therefore, it cannot be considered as a realization of a stationary 
process and correctly used in the filtering. The time required to restore the image with the 
proposed method is approximately 46 sec. The iterative conjugate gradient algorithm 
requires about 1070 iterations. 

 
Fig. 3. Performance of the proposed method for additive degradation: RMSE versus a 
standard deviation of additive noise. 
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Fig. 4(a) shows the observed scene degraded by nonuniform additive interference, zero-
mean white Gaussian noise with a standard deviation of 2, and impulse noise with the 
occurrence probability of 0.03. The value of impulse noise is zero (physical meaning is 
defective sensor element). Figs. 4(b) and 4(c) show the restored image and the enhanced 
difference between the original and restored images, respectively. 

 
(a) (b) 

(c) 

Fig. 4. (a) Observed image degraded with additive interference, white noise with standard 
deviation of 2, and impulse noise with probability of 0.03, (b) restored image, and (c) 
enhanced difference between the original image and restored image. 

Finally, we show computer simulation results when the original image additional degraded 
by impulse noise cluster of size 15x15 elements. Figs. 5(a), 5(b), and 5(c) show the observed 
image, the restored image, and enhanced difference between the original and restored 
images, respectively. 
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(a) (b) 

(c) 

Fig. 5. (a) Observed image degraded with additive interference, white noise with standard 
deviation of 2, and impulse noise cluster (15x15 pixels), (b) restored image, and (c) enhanced 
difference between the original image and restored image. 

Note that outside of damaged elements the restoration performance of the proposed method 
is good. At the location of the damaged elements the method carries out a smooth 
interpolation using information containing in neighboring pixels. 

3.2 Restoration of noisy image degraded with nonuniform illumination 

Nonuniform illumination is an example of multiplicative interference. In our experiments 
we use the Lambertian model of illumination, which reflects light equally in all directions. 
Its reflectance map (Diaz-Ramirez & Kober, 2009) can be expressed as 
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where  is the slant angle,  is the tilt angle, and r is the magnitude of the vector from point-
light source to surface. These parameters define the position of the light source with respect 
to the surface origin. In our simulations, we set 5   , 245   , and  1.1,1.5,2r  . Table 1 
shows the values taken by the illumination function in our experiments. 
 

r  Range of values taken by the illumination 
function 

Mean 
value 

Standard 
deviation Shading 

1.1 0.35-1 0.60 0.14 65% 
1.5 0.45-1 0.70 0.12 55% 
2 0.55-1 0.79 0.10 45% 

Table 1. Values of the illumination function. 

The mean value and standard deviation of the original image are 112.3 and 50, respectively, 
with maximum and minimum values of 237 and 17, respectively. Fig. 6 shows a test original 
image.  

 
Fig. 6. Test original image. 

Figs. 7(a), 9(a), and 11(a) show degraded images with different illuminations functions 
shown in Figs. 7(b), 9(b), and 11(b) (  1.1,1.5,2r  ). The degraded image also contains a 
zero-mean Gaussian noise with a standard deviation of 1. Figs. 7(c), 9(c), and 11(c) show the 
restored images using the proposed method. Figs. 7(d), 9(d), and 11(d) show enhanced 
difference between the original image and the restored images.  

Figs. 8, 10, and 12 show the performance in terms of the RMSE of the proposed methods 
using three images (Mm3) and the Wiener filter versus the standard deviation of additive 
noise with different parameters of illumination. One can observe that the proposed method 
is useful when the standard deviation of additive noise is low. Note that the performance of 
the proposed method is essentially better than that of the Wiener filter, which is designed 
with known parameters. Time required to restore the image using the Mm3 is 
approximately 51 sec. In this case, the iterative conjugate gradient algorithm requires about 
1070 iterations. 
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Fig. 7. Nonuniform illumination correction with the proposed method: (a) observed image 
degraded with multiplicative interference and white noise with a standard deviation of 1, 
(b) multiplicative interference with 1.1r  , (c) restored image, (d) enhanced difference 
between the original image and the restored image. 

 
Fig. 8. Performance of the proposed method when 5   , 245   , and 1.1r  : RMSE 
versus a standard deviation of additive noise. 
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Fig. 7. Nonuniform illumination correction with the proposed method: (a) observed image 
degraded with multiplicative interference and white noise with a standard deviation of 1, 
(b) multiplicative interference with 1.1r  , (c) restored image, (d) enhanced difference 
between the original image and the restored image. 

 
Fig. 8. Performance of the proposed method when 5   , 245   , and 1.1r  : RMSE 
versus a standard deviation of additive noise. 
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Fig. 9. Nonuniform illumination correction with the proposed method: (a) observed image 
degraded with multiplicative interference and white noise with a standard deviation of 1, 
(b) multiplicative interference with 1.5r  , (c) restored image, (d) enhanced difference 
between the original image and the restored image. 

 
Fig. 10. Performance of the proposed method when 5   , 245   , and 1.5r   : RMSE 
versus a standard deviation of additive noise. 
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(c) (d) 

Fig. 11. Nonuniform illumination correction with proposed method: (a) observed image 
degraded with multiplicative interference and white noise with a standard deviation of 1, 
(b) multiplicative interference with 2.0r  , (c) restored image, (d) enhanced difference 
between the original image and the restored image. 

 
Fig. 12. Performance of the proposed method for multiplicative degradation with 
parameters of illumination of 5   , 245   , and 2.0r   : RMSE versus a standard 
deviation of additive noise. 
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4. Experimental results 
Here we present experimental results with a real-life image degraded by a multiplicative 
interference. The observed images were obtained as follows. A test image was displayed on 
a LCD screen. A printed transparency was placed between a camera and the screen in order 
to simulate a multiplicative degradation. Microscanning was performed by shifting the test 
image on the screen. Finally, the three observed images were captured with the camera. The 
observed images have the size of 256 × 256 pixels. First, the observed images were passed 
through the logarithmic transformation. Next, the proposed method was utilized to obtain a 
resulting image. Finally, the exponential transformation was applied to the resulting image 
to restore the original image. The original image, multiplicative degradation, and one of the 
observed images taken by a camera are shown in Figs. 13(a), 13(b), and 13(c), respectively. 
The restored image is presented in Fig. 13(d).  

Since in the experiment the level of additive noise is low, the quality of the restoration with 
the proposed method is very good. 

 
(a) (b) 

 
(c) (d) 

Fig. 13. (a) Original image, (b) multiplicative interference, (c) observed image degraded with 
multiplicative interference, and (d) restored image. 
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5. Conclusion 
In this chapter we presented methods for restoration of images degraded with additive and 
multiplicative interferences, and corrupted by sensor noise. Using three observed images 
taken with a microscanning imaging system, an explicit system of equations for additive 
and multiplicative signal models was derived. The restored image is a solution of the 
system. With the help of computer simulations we demonstrated the performance of the 
proposed method in terms of restoration accuracy and execution time. The performance of 
the proposed method is essentially better than that of the Wiener filter, which is designed 
with known parameters 
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1. Introduction

Image capturing is corrupted by numerous perturbing influences. These influences are
divisible to time-invariant and temporal. The typical time-invariant influence is an image
blurring, rising from various causes, that can be mathematically understood as deterministic
2D ISI channel or FSM (Finite state machine). Among temporal influences pertain especially
noises on the other hand. There are four significant noise sources in the case of a camera
with CCD (CMOS) sensor: photon noise (signal dependent additive Poisson stochastic
process), thermal noise (additive Poisson stochastic process), readout noise (additive Gaussian
stochastic process) and quantization noise (J. van Vliet L. et al., 1998). The photon noise
is caused by the time inhomogeneous photon emission, incident to the lens in individual
par-axial light rays, with the mean value and squared standard deviation μP equal to the
averaged intensity of these rays. The photon noise cannot be compensated because its origin is
located front of the lens. Therefore we will not take it into account. The thermal noise, readout
noise and quantization noise together create one composite noise of the CCD/CMOS sensor
that affects on the captured blurred image as the random IECS-ML channel. Such channel
is biased by three parameters μR, σR (mean value and standard deviation of the readout
noise), depending on the sensor readout rate, and μT (mean value and squared standard
deviation of the thermal noise), exponentially raising according to the sensor temperature Ts.
All mentioned influences can be eliminated by iterative detection network (IDN). Such system
solves effectively the 2D MAP criterion through feedback process based on the exchange
and precision of certain probability density functions (PDFs). Similar networks (simpler
one-dimensional alternatives) have found utilization in the sphere of Turbo code detection
(Chugg et al., 2001; Vucetic & Juan, 2003; 2000). There will be discussed de facto theirs
generalization to the two-dimensional form. The explanation begins by decomposition of the
2D MAP criterion that elucidates the essential principle of IDNs functioning. The necessary
conditions for this decomposition will be defined too. Consequently, we focus closer to the
IDNs dedicated for restoration of dichromatic images and using PDFs marginalization at the
symbol level and symbol block level.

2. System model

We assume the model of image capturing system in Fig. 1 including three major sections.
The first and second section are emulating all perturbing influences affecting the captured
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image. The first section presents the hypothetical model of the time-invariant image blurring
(2D ISI channel). The second one is image capturing section (IECS-ML channel) modeling all
significant noises incident this kind of capturing systems. Such noises rise especially in the
camera sensor with on-chip electronics, but no only there. The last section is the MAP criterion
based iterative detector (restorative circuits) containing IDN with its front-end, so-called soft
output demodulator (SODEM).

Restorative
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Fig. 1. Block diagram of a CCD/CMOS camera with dichromatic image restorative section.

3. Deterministic 2D ISI channel (blurring model)

A time-invariant image blurring can be emulated by the signal transmission through the 2D
ISI channel defined via convolution

q̃(i, j) = f (A,Nd(i, j) ⊂ D)

= ∑
0≤i� ,j�≤HA ,WA

a(i�, j�)d(i + i�, j + j�), (1)

where Nd(i, j) = {d(i + i�, j + j�)}0≤i� ,j�≤HA ,WA denotes the convolution region and D =

[d(i, j)]i,j the page of black and white pixels d(i, j) ∈ {d(�)}Md
�=1 = {0, 1} (relative photon

quantity impacting at the lens in several par-axial rays). The discrete 2D finite impulse
response A = [a(i�, j�)]0≤i� ,j�≤HA ,WA with the high HA and width WA model time-invariant
image blurring. There we focus closer to the two basic time-invariant distortion — defocusing
in the imperfectly adjusted lens and blurring due to object moving.

3.1 Defocusing in the inperfectly adjusted lens

The image blurring in a defocused lens can be mathematically imitated as the Gaussian
blurring channel (GBC). It is defined by the point spread function PSF(x, y) = Δ

π e−Δ(x2+y2),
where Δ is the spread parameter. Two examples of PSF(x, y) with different Δ shows Fig. 2.

If we want transform such PSF to the 2D ISI channel, we have to assume approximation,
that the distribution of light is uniform on the flats with the size and shape congruous to the
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sensor cells. Thereafter, the discrete convolution kernel can be got by the integration a(i, j) =� i+1/2

i−1/2

� j+1/2

j−1/2
PSF(x, y)dxdy = Δ

4 (erf(i − 1/2) − erf(i + 1/2))(erf(j − 1/2) − erf(j + 1/2)) of the
PSF(x, y) over the individual sensor cells. They are marked in Fig. 2 by the carnation lines
and adjusted, without detriment to generality, as the unit size areas. Concretely, the results of
the mentioned integration in our examples are two kernels

AGBC,3/10 =

⎡
⎣

0.0458 0.1172 0.0458
0.1172 0.3000 0.1172
0.0458 0.1172 0.0458

⎤
⎦ , ASGBC,6/10 =

⎡
⎣

0 0.0872 0
0.0872 0.6000 0.0872

0 0.0872 0

⎤
⎦ , (2)

marked in the given figure by red stem graphs. The first is 9-ray kernel and the second one is
5-ray kernel with suppressed insignificant rays.

(a) AGBC,3/10. (b) ASGBC,6/10.

Fig. 2. The two examples of GBCs with corresponding convolutional kernels.

a(0, 0) = 1a(0, 0) = 0.2 a(0, 0) = 0.3 a(0, 0) = 0.4 a(0, 0) = 0.5 a(0, 0) = 0.7

Fig. 3. Examples of the defocusing by GBC on the QR code snapshot.

3.2 Blurring due to object moving

We have an object moving on the certain known trajectory as well as in Fig. 4. Each point
of this object pass the curve s(t�) = [sx(t�) sy(t�)] with the starting ss = s(t) and ending
se = s(t + Te) point. These points are projected through the lens (it is not included to Fig. 4
for simplicity) to the plane {bx, by} of the CCD/CMOS sensor, where Te is the exposure
time. We denote impulse response of the channel emulating blurring due to object moving
as ABOM,α and with respect to discrete character of this response let us approximate the
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image. The first section presents the hypothetical model of the time-invariant image blurring
(2D ISI channel). The second one is image capturing section (IECS-ML channel) modeling all
significant noises incident this kind of capturing systems. Such noises rise especially in the
camera sensor with on-chip electronics, but no only there. The last section is the MAP criterion
based iterative detector (restorative circuits) containing IDN with its front-end, so-called soft
output demodulator (SODEM).
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Fig. 1. Block diagram of a CCD/CMOS camera with dichromatic image restorative section.

3. Deterministic 2D ISI channel (blurring model)

A time-invariant image blurring can be emulated by the signal transmission through the 2D
ISI channel defined via convolution

q̃(i, j) = f (A,Nd(i, j) ⊂ D)

= ∑
0≤i� ,j�≤HA ,WA

a(i�, j�)d(i + i�, j + j�), (1)

where Nd(i, j) = {d(i + i�, j + j�)}0≤i� ,j�≤HA ,WA denotes the convolution region and D =

[d(i, j)]i,j the page of black and white pixels d(i, j) ∈ {d(�)}Md
�=1 = {0, 1} (relative photon

quantity impacting at the lens in several par-axial rays). The discrete 2D finite impulse
response A = [a(i�, j�)]0≤i� ,j�≤HA ,WA with the high HA and width WA model time-invariant
image blurring. There we focus closer to the two basic time-invariant distortion — defocusing
in the imperfectly adjusted lens and blurring due to object moving.

3.1 Defocusing in the inperfectly adjusted lens

The image blurring in a defocused lens can be mathematically imitated as the Gaussian
blurring channel (GBC). It is defined by the point spread function PSF(x, y) = Δ

π e−Δ(x2+y2),
where Δ is the spread parameter. Two examples of PSF(x, y) with different Δ shows Fig. 2.

If we want transform such PSF to the 2D ISI channel, we have to assume approximation,
that the distribution of light is uniform on the flats with the size and shape congruous to the
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sensor cells. Thereafter, the discrete convolution kernel can be got by the integration a(i, j) =� i+1/2

i−1/2

� j+1/2

j−1/2
PSF(x, y)dxdy = Δ

4 (erf(i − 1/2) − erf(i + 1/2))(erf(j − 1/2) − erf(j + 1/2)) of the
PSF(x, y) over the individual sensor cells. They are marked in Fig. 2 by the carnation lines
and adjusted, without detriment to generality, as the unit size areas. Concretely, the results of
the mentioned integration in our examples are two kernels

AGBC,3/10 =

⎡
⎣

0.0458 0.1172 0.0458
0.1172 0.3000 0.1172
0.0458 0.1172 0.0458

⎤
⎦ , ASGBC,6/10 =

⎡
⎣

0 0.0872 0
0.0872 0.6000 0.0872

0 0.0872 0

⎤
⎦ , (2)

marked in the given figure by red stem graphs. The first is 9-ray kernel and the second one is
5-ray kernel with suppressed insignificant rays.

(a) AGBC,3/10. (b) ASGBC,6/10.

Fig. 2. The two examples of GBCs with corresponding convolutional kernels.

a(0, 0) = 1a(0, 0) = 0.2 a(0, 0) = 0.3 a(0, 0) = 0.4 a(0, 0) = 0.5 a(0, 0) = 0.7

Fig. 3. Examples of the defocusing by GBC on the QR code snapshot.

3.2 Blurring due to object moving

We have an object moving on the certain known trajectory as well as in Fig. 4. Each point
of this object pass the curve s(t�) = [sx(t�) sy(t�)] with the starting ss = s(t) and ending
se = s(t + Te) point. These points are projected through the lens (it is not included to Fig. 4
for simplicity) to the plane {bx, by} of the CCD/CMOS sensor, where Te is the exposure
time. We denote impulse response of the channel emulating blurring due to object moving
as ABOM,α and with respect to discrete character of this response let us approximate the
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realization of par-axial intensity on the plane {bx, by}, in the time t, as the mosaic D(x, y) =

∑i,j d(i, j) fp(i, j, x, y) of pixels d(i, j) ∈ {d(�)}Md
�=1 shaped by square function

fp(i, j, x, y) =

�
1 iff |x − iLp| ≤ Lp

2 ∧ |y − jLp| ≤ Lp
2

0 otherwise
, (3)

where Lp establish their size, that is equal or less then size Lc of the sensor cell (potential well).

Light
rays

Object

Sensor

by

bx

v

t

t+ Te

ss

se

Fig. 4. The projection of the moving object point to the CCD/CMOS sensor plane.

On the basis of declared definitions and approximations, we can subsequently express useful
signal impacting the sensor by the convolution Eq. 1 emulating the situation, when the
snapshot D, gained in the time t, is slided on the sensor surface and stepwise trapped to
the its cells. The said fact can be also conceived from the opposite side, when potential well
sliding on the immovable pattern D. If the velocity radial component is insignificant in the
comparison with axial component (expansion of the object is negligible between times t and
t + Te) and starting time t is equated to zero, we can obtain the impulse response coefficients
by the integration

a(i�, j�) ∝
� Te

0

� sy(t�)+ 1
2 Lp

sy(t�)− 1
2 Lp

� sx(t�)+ 1
2 Lp

sx(t�)− 1
2 Lp

fp(i(ss) + i�, j(ss) + j�, x�, y�)dx�dy�dt�. (4)

This situation illustrate Fig. 5a or Fig. 5b. The responses

ABOM,0 = [ 1
12

1
6

1
6

1
6

1
6

1
6

1
12 ]T , ABOM,π/4 =

⎡
⎢⎢⎢⎢⎣

1
6

1
12 0

1
12

1
3

1
12

0 1
12

1
6

⎤
⎥⎥⎥⎥⎦

(5)

can be stated as the examples of such distortion channels that come from Eq. 4 biased by
angles ϕ = 0, ϕ = π

4 and with confinement only to equable movement, when s(t�) is linear
function of time t�.
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If the object expansion on the plane {bx, by}, between the times t and t+Te, is not insignificant
the situation in Fig. 5c occurs. Computation of the constants

a(i�, j�) ∝
∫ Te

0

∫ sy(t�)+ 1
2 Lc(t�)

sy(t�)− 1
2 Lc(t�)

∫ sx(t�)+ 1
2 Lc(t�)

sx(t�)− 1
2 Lc(t�)

fp(i(ss) + i�, j(ss) + j�, x�, y�)dx�dy�dt� (6)

is analogical to Eq. 4, only with the difference that size of sliding sensor cell will not be equal
to pixel size Lp anymore, but it will present the function Lc(t�) linearly (Fig. 5c) or non-linearly
dependent on the time t� in compliance with the movement of scanning object.

Sliding
CCD cell

a(1, 3)
a(1, 2)

a(0, 1)

a(1, 1)

a(1, 0)

a(0, 2)a(0, 0)

se

ss

Pattern

Lp
ϕ

j = j(ss)

i = i(ss)

a(2, 1)

a(2, 2)

a(2, 3)

(a) The example with ss situated inside of the
pixel (i(ss), j(ss)). Negligible radial component
of the velocity.

se

ss

a(0, 0) a(0, 1)

a(1, 0)

j = j(ss)

i = i(ss)

a(1, 1)

a(2, 1)

a(1, 2)

a(2, 2)

a(2, 3)

a(3, 2) a(3, 3)

a(0, 2)

(b) The example with ss situated on the edge
of the pixel (i(ss), j(ss)). Negligible radial
component of the velocity.

a(1, 1)
a(1, 0)

ss

a(3, 3)

a(0, 2)
a(0, 1)

a(0, 0)

j = j(ss)

se

Lc(t)
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a(2, 3)

a(3, 2)a(3, 1)
a(2, 2)

a(1, 3)

a(2, 1)a(2, 0)

a(1, 2)

i = i(ss)

(c) The example with ss situated on the edge of the
pixel (i(ss), j(ss)). Indispensable radial component of
the velocity.

Fig. 5. The equivalent movement trajectory of the sensor sensing cell sliding on the pattern D
(snapshot of the straight-line moving object with negligible and indispensable radial
component of the velocity v).
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realization of par-axial intensity on the plane {bx, by}, in the time t, as the mosaic D(x, y) =

∑i,j d(i, j) fp(i, j, x, y) of pixels d(i, j) ∈ {d(�)}Md
�=1 shaped by square function

fp(i, j, x, y) =

�
1 iff |x − iLp| ≤ Lp

2 ∧ |y − jLp| ≤ Lp
2

0 otherwise
, (3)

where Lp establish their size, that is equal or less then size Lc of the sensor cell (potential well).
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Fig. 4. The projection of the moving object point to the CCD/CMOS sensor plane.

On the basis of declared definitions and approximations, we can subsequently express useful
signal impacting the sensor by the convolution Eq. 1 emulating the situation, when the
snapshot D, gained in the time t, is slided on the sensor surface and stepwise trapped to
the its cells. The said fact can be also conceived from the opposite side, when potential well
sliding on the immovable pattern D. If the velocity radial component is insignificant in the
comparison with axial component (expansion of the object is negligible between times t and
t + Te) and starting time t is equated to zero, we can obtain the impulse response coefficients
by the integration

a(i�, j�) ∝
� Te

0

� sy(t�)+ 1
2 Lp

sy(t�)− 1
2 Lp

� sx(t�)+ 1
2 Lp

sx(t�)− 1
2 Lp

fp(i(ss) + i�, j(ss) + j�, x�, y�)dx�dy�dt�. (4)

This situation illustrate Fig. 5a or Fig. 5b. The responses

ABOM,0 = [ 1
12

1
6

1
6

1
6

1
6

1
6

1
12 ]T , ABOM,π/4 =

⎡
⎢⎢⎢⎢⎣

1
6

1
12 0

1
12

1
3

1
12

0 1
12

1
6

⎤
⎥⎥⎥⎥⎦

(5)

can be stated as the examples of such distortion channels that come from Eq. 4 biased by
angles ϕ = 0, ϕ = π

4 and with confinement only to equable movement, when s(t�) is linear
function of time t�.
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If the object expansion on the plane {bx, by}, between the times t and t+Te, is not insignificant
the situation in Fig. 5c occurs. Computation of the constants

a(i�, j�) ∝
∫ Te

0

∫ sy(t�)+ 1
2 Lc(t�)

sy(t�)− 1
2 Lc(t�)

∫ sx(t�)+ 1
2 Lc(t�)

sx(t�)− 1
2 Lc(t�)

fp(i(ss) + i�, j(ss) + j�, x�, y�)dx�dy�dt� (6)

is analogical to Eq. 4, only with the difference that size of sliding sensor cell will not be equal
to pixel size Lp anymore, but it will present the function Lc(t�) linearly (Fig. 5c) or non-linearly
dependent on the time t� in compliance with the movement of scanning object.
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Fig. 5. The equivalent movement trajectory of the sensor sensing cell sliding on the pattern D
(snapshot of the straight-line moving object with negligible and indispensable radial
component of the velocity v).
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3.3 Hypothetical cellular model of a 2D ISI channel — Encoding network (EN)

The convolution Eq. 1 can be emulated by certain 2D hypothetical encoding network (EN).
The assembly of this EN is variable and contains specific, relatively simple, functional blocks
fG(). We denote these functional blocks as general processing elements (GPEs) and one such
elements is illustrated in Fig. 6a.

In principle, a GPE presents a simple FSM whose inputs as well as outputs are variables S(k)
discrete in values, that are derivable from alphabets {S (�)(k)}�. The inputs together with the
outputs consequently create the set N =

⋃
k S(k) flowing from the alphabet {N (�)}�.

/

S(k)

S(K)

S(k + 1)

S(2) S(K − 1)

S(1)

fG( )

(a) A GPE.
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SO[Š(1)]

SI[Š(2)]
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SO[Š(K − 1)]

SO[Š(K)]

SI[Š(K)]

f−1
G ( )

(b) A SISO module.
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−1() C� ()

SO[Š(k)]

()C�() −1

SI[Š(k)]

() C� ()

S[
N

(
�
)
]

()C�() −1

{S
[N

(�
)
]} �

−1() C� ()M�
Ň :Š(k)

SI[Š(2)]
SO[Š(2)]

−1

C�
Š(k)∈Ň

(c) Structure of a SISO module.

Fig. 6. A general processing element (GPE) and its soft inversion (SISO module).

4. Random IECS-ML channel (noise model)

4.1 Composite noise of the CCD/CMOS sensor

The presence of the signal independent composite CCD/CMOS sensor noise in mutually
correlated rays 0 ≤ q̃(i, j) ≤ 1 can be expressed as the blurred image transmission through
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the random IECS-ML channel with I/O equation r(i, j) = Cq̃(i, j) + wT(i, j) + wR(i, j), where
r(i, j) is the channel output, wT(i, j) is the total thermal noise accumulated with the useful
signal q(i, j) = Cq̃(i, j) as a charge in the CCD sensor cell at the position (i, j) and wR(i, j)
is the readout noise. The constant C (above limited by a full well capacity FWC of the CCD
sensor) defines a quantity of generated charge and it is directly proportional to the exposure
time Te.

4.2 Quantization noise of the A/D converter

The output r(i, j) (IECS-ML channel output also registrable in the matrix form R = Q +
WT + WR for entire sensor) is further quantized in the Nb-bit A/D converter that can be
approximated by the random channel rd(i, j) = r(i, j) + wQ(i, j) with uniformly distributed
noise wQ(i, j) in light of probability theory. We denote the output of this converter as
rd(i, j) = Q(r(i, j)), where Q(ξ) = ∑1≤�≤2Nb H(ξ − tQ(�)) and H(ξ) = { 0

1
iff ξ<0

otherwise is a
Heaviside step function. For simplicity we will assume the linear quantization only with
threshold values

tQ(�) =

{
0

(�− 1)ΔQ + 1/2

iff
iff

� = 1
1 < � ≤ 2Nb

(7)

and quantization step ΔQ, where for the highest quantization level tQ(2Nb ) ≤ FWC is applied.

5. Image restoration — Symbol and page 2D MAP detection

5.1 Optimal MAP detection

The channel has independent eliminated states (IECS), if noise sources in CCD sensor cells are
mutually independent. It makes joint probability density function (PDF) pW(Ξ) = ∏i,j pw(ξ)

as the product of marginal densities. The channel is memory-less (ML), if the current x(i, j)
depends only on the corresponding q(i, j). The fulfillment of both conditions creates the
likeli-hood function

pR(Ξ|Q̌) =
∫

W

pR|Q,W(Ξ|Q̌, Ξ�)pW(Ξ�)dΞ�

= ∏
i,j

∫

w(i,j)

pr|q,w(ξ|q̌(i, j), ξ �)pw(ξ
�)dξ �

︸ ︷︷ ︸
pr(ξ|q̌(i,j))

(8)

factorizable that is necessary to transition from a single-stage detector to an IDN.

The optimal 2D MAP detector is based on the criterion

d̂(i, j) = arg M©
ď(i,j)

[
M©

Ď:ď(i,j)
S[Rd, Ď]

]
, (9)

where d̂(i, j) denotes the wanted estimation, ď(i, j) denotes a testing estimator (takes
individual values from data alphabet), Ď : ď(i, j) denotes the set of possible image realizations
containing the estimator ď(i, j) and M© with M© denote certain types of marginalization
operators.
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3.3 Hypothetical cellular model of a 2D ISI channel — Encoding network (EN)

The convolution Eq. 1 can be emulated by certain 2D hypothetical encoding network (EN).
The assembly of this EN is variable and contains specific, relatively simple, functional blocks
fG(). We denote these functional blocks as general processing elements (GPEs) and one such
elements is illustrated in Fig. 6a.

In principle, a GPE presents a simple FSM whose inputs as well as outputs are variables S(k)
discrete in values, that are derivable from alphabets {S (�)(k)}�. The inputs together with the
outputs consequently create the set N =
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SI[Š(1)]
SO[Š(1)]
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Fig. 6. A general processing element (GPE) and its soft inversion (SISO module).

4. Random IECS-ML channel (noise model)

4.1 Composite noise of the CCD/CMOS sensor

The presence of the signal independent composite CCD/CMOS sensor noise in mutually
correlated rays 0 ≤ q̃(i, j) ≤ 1 can be expressed as the blurred image transmission through
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the random IECS-ML channel with I/O equation r(i, j) = Cq̃(i, j) + wT(i, j) + wR(i, j), where
r(i, j) is the channel output, wT(i, j) is the total thermal noise accumulated with the useful
signal q(i, j) = Cq̃(i, j) as a charge in the CCD sensor cell at the position (i, j) and wR(i, j)
is the readout noise. The constant C (above limited by a full well capacity FWC of the CCD
sensor) defines a quantity of generated charge and it is directly proportional to the exposure
time Te.

4.2 Quantization noise of the A/D converter

The output r(i, j) (IECS-ML channel output also registrable in the matrix form R = Q +
WT + WR for entire sensor) is further quantized in the Nb-bit A/D converter that can be
approximated by the random channel rd(i, j) = r(i, j) + wQ(i, j) with uniformly distributed
noise wQ(i, j) in light of probability theory. We denote the output of this converter as
rd(i, j) = Q(r(i, j)), where Q(ξ) = ∑1≤�≤2Nb H(ξ − tQ(�)) and H(ξ) = { 0

1
iff ξ<0

otherwise is a
Heaviside step function. For simplicity we will assume the linear quantization only with
threshold values

tQ(�) =

{
0

(�− 1)ΔQ + 1/2

iff
iff

� = 1
1 < � ≤ 2Nb

(7)

and quantization step ΔQ, where for the highest quantization level tQ(2Nb ) ≤ FWC is applied.

5. Image restoration — Symbol and page 2D MAP detection

5.1 Optimal MAP detection

The channel has independent eliminated states (IECS), if noise sources in CCD sensor cells are
mutually independent. It makes joint probability density function (PDF) pW(Ξ) = ∏i,j pw(ξ)

as the product of marginal densities. The channel is memory-less (ML), if the current x(i, j)
depends only on the corresponding q(i, j). The fulfillment of both conditions creates the
likeli-hood function

pR(Ξ|Q̌) =
∫

W

pR|Q,W(Ξ|Q̌, Ξ�)pW(Ξ�)dΞ�
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i,j

∫
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pr|q,w(ξ|q̌(i, j), ξ �)pw(ξ
�)dξ �
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pr(ξ|q̌(i,j))

(8)

factorizable that is necessary to transition from a single-stage detector to an IDN.

The optimal 2D MAP detector is based on the criterion

d̂(i, j) = arg M©
ď(i,j)

[
M©

Ď:ď(i,j)
S[Rd, Ď]

]
, (9)

where d̂(i, j) denotes the wanted estimation, ď(i, j) denotes a testing estimator (takes
individual values from data alphabet), Ď : ď(i, j) denotes the set of possible image realizations
containing the estimator ď(i, j) and M© with M© denote certain types of marginalization
operators.
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The quantity S[Rd, Ď] is to be understood as some kind of the joint soft measure and due to
IECS-ML condition fulfillment

S[Rd|Ď] = C©
i,j

S[rd(i, j)|Ď]

= C©
i,j

S[rd(i, j)|Ňd(i, j) ⊂ Ď] (10)

with assumption of a statistically independent data S[Ď] = C©
i,j

S[ď(i, j)] can be decomposed to

the form

S[Rd, Ď] = S[Rd|Ď] C©S[Ď]

=

(
C©
i,j

S[rd(i, j)|Ňd(i, j) ⊂ Ď]

)
C©
(

C©
i,j

S[ď(i, j)]

)
(11)

that is joined by certain types of combination operators ( C©, C©). On the basis of
marginalization and combination operators, we can split detectors into four groups in light
of detection technique (symbol or page) and implementing domain (probability P[ ] or
equivalent logarithmic metric M[ ] = − ln(P[ ])). All possibilities are summarized in Table 1.

The symbol technique (SyD) seeks to minimize of the actual symbol detection error only.
The page detection (PgD) has tendency to minimization the entire page detection error.
The most numerically effective is the Md-PgD alternative, because it contains the simple
combination operator as well as the simple marginalization operator. Close to the Md-PgD,
the Md-SyD conjunction with the relatively simple marginalization operator min∗(x, y) =

min(x, y)− ln(1 + e−|x−y|).

Domain S[ ] Detection M© M© C© C© C©−1

Probability (Pd) P[ ] Page (PgD) max max Π × ÷
Probability (Pd) P[ ] Symbol (SyD) max Σ Π × ÷

Metric (Md) M[ ] Page (PgD) min min Σ + −
Metric (Md) M[ ] Symbol (SyD) min min∗ Σ + −

Table 1. Summary of combination and marginalization operators.

5.2 Suboptimal MAP detection

The direct evaluation of the D̂ from the criterion (9) (single-stage detection) is impossible,
because it requires a sequent substitution of all potential image realizations Ď. But Eq. 10
(IECS-ML condition) makes possible decomposition of the detection problem from the entire
page D to the level of individual (mutually overlapping) convolution regions Nd(i, j),
corresponding to individual captured pixels. Therefore, we can substitute the single-stage
MAP detector by the sub-optimal iterative detection network (IDN).

Such network is formed from a definite number of functional blocks, so-called soft inversions
(SISO modules), that exchange the soft measures with each other. The SISO modules present
statistical devices complementary to the GPEs in the appropriately designed hypothetical EN
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emulating the image blurring. The fulfillment of the condition IECS-ML enables a usage of
such GPEs that compose the hypothetical realization Ď of a sensing image even by smallest
parts (by individual pixels ď(i, j)) if this yields a implementation benefits in light of concrete
modeled distortion.

The IDN output can be regarded as a optimal (identical with the output of single-stage
detector) after the execution of infinite number of iterations (information interchange between
inversions). It is not practicable. Therefore, the IDN with the finite number of iterations
is sub-optimal detector, that generally provides an inferior estimation to the single-stage
detector. Roughly speaking the IDN contains simpler SISO modules, the IDN is more
numerically effective and more sub-optimal (it includes more iteratively refining variables).

In the course of each iteration I of the IDN, from count NI , is every SISO module once
activated at the least. The activation rests in the reading of soft measures (whole probability
or metric densities {SI[S (�)(k)]}�, corresponding to certain random variable S(k) in the
hypothetical model) on inputs of a SISO module, followed by the enumeration of output soft
measures (whole densities {SO[S (�)(k)]}�). The current iteration concludes the exchange of
soft measures

{SO[S (�)(k)]}�
{SI[S (�)(k)]}�

→
←

{SI[S (�)(k)]}�
{SO[S (�)(k)]}�

(12)

among the neighboring modules. After execution of all iteration NI , the estimations of all
wanted (output) random variables are performed from the formula

Ŝ(k) = arg M©
Š(k)

[SI[Š(k)] C©SO[Š(k)]]. (13)

We express this operation as a hard decision provided by a decision block (DEC).

6. Iterative detection networks

6.1 IDN topology and soft inversion f−1
G () (SISO module) of general processing element

fG() (FSM)

An IDN presents a soft inversion of an arbitrary EN formed from certain mutually
concatenated GPEs that jointly execute an arbitrary processing with input signal. In the our
case, as was said in the paragraph 3.3, such EN executes the convolution Eq. 1 and due to
fulfillment of the IECS-ML condition can contain the simplest GPEs working on the level
of individual pixels. The IDN topology exactly agrees to the EN topology only with the
difference, that each of GPE is substituted by its SISO module, just like in Fig. 6a, 6b. The
signal processing in the soft inversion is implied in Fig. 6c and takes place in two steps. Firstly,
the inputs {SI[S (�)(k)]}�,k are combined to particular joint soft measures

S[Ň ] = C©
Š(k)∈Ň

SI[Š(k)] for ∀Ň . (14)

Consequently, all joint measures {S[N (�)]}�, corresponding to the set ∀Ň of possible
realizations N (�), are marginalized to outputs {SO[S (�)(k)]}�,k

SO[Š(k)] =
(

M©
Ň :Š(k)

S[Ň ]

)
C©−1SI[Š(k)] for ∀Š(k) (15)
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The quantity S[Rd, Ď] is to be understood as some kind of the joint soft measure and due to
IECS-ML condition fulfillment

S[Rd|Ď] = C©
i,j

S[rd(i, j)|Ď]

= C©
i,j

S[rd(i, j)|Ňd(i, j) ⊂ Ď] (10)

with assumption of a statistically independent data S[Ď] = C©
i,j

S[ď(i, j)] can be decomposed to

the form

S[Rd, Ď] = S[Rd|Ď] C©S[Ď]

=

(
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i,j

S[rd(i, j)|Ňd(i, j) ⊂ Ď]

)
C©
(

C©
i,j

S[ď(i, j)]

)
(11)

that is joined by certain types of combination operators ( C©, C©). On the basis of
marginalization and combination operators, we can split detectors into four groups in light
of detection technique (symbol or page) and implementing domain (probability P[ ] or
equivalent logarithmic metric M[ ] = − ln(P[ ])). All possibilities are summarized in Table 1.

The symbol technique (SyD) seeks to minimize of the actual symbol detection error only.
The page detection (PgD) has tendency to minimization the entire page detection error.
The most numerically effective is the Md-PgD alternative, because it contains the simple
combination operator as well as the simple marginalization operator. Close to the Md-PgD,
the Md-SyD conjunction with the relatively simple marginalization operator min∗(x, y) =

min(x, y)− ln(1 + e−|x−y|).

Domain S[ ] Detection M© M© C© C© C©−1

Probability (Pd) P[ ] Page (PgD) max max Π × ÷
Probability (Pd) P[ ] Symbol (SyD) max Σ Π × ÷

Metric (Md) M[ ] Page (PgD) min min Σ + −
Metric (Md) M[ ] Symbol (SyD) min min∗ Σ + −

Table 1. Summary of combination and marginalization operators.

5.2 Suboptimal MAP detection

The direct evaluation of the D̂ from the criterion (9) (single-stage detection) is impossible,
because it requires a sequent substitution of all potential image realizations Ď. But Eq. 10
(IECS-ML condition) makes possible decomposition of the detection problem from the entire
page D to the level of individual (mutually overlapping) convolution regions Nd(i, j),
corresponding to individual captured pixels. Therefore, we can substitute the single-stage
MAP detector by the sub-optimal iterative detection network (IDN).

Such network is formed from a definite number of functional blocks, so-called soft inversions
(SISO modules), that exchange the soft measures with each other. The SISO modules present
statistical devices complementary to the GPEs in the appropriately designed hypothetical EN
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emulating the image blurring. The fulfillment of the condition IECS-ML enables a usage of
such GPEs that compose the hypothetical realization Ď of a sensing image even by smallest
parts (by individual pixels ď(i, j)) if this yields a implementation benefits in light of concrete
modeled distortion.

The IDN output can be regarded as a optimal (identical with the output of single-stage
detector) after the execution of infinite number of iterations (information interchange between
inversions). It is not practicable. Therefore, the IDN with the finite number of iterations
is sub-optimal detector, that generally provides an inferior estimation to the single-stage
detector. Roughly speaking the IDN contains simpler SISO modules, the IDN is more
numerically effective and more sub-optimal (it includes more iteratively refining variables).

In the course of each iteration I of the IDN, from count NI , is every SISO module once
activated at the least. The activation rests in the reading of soft measures (whole probability
or metric densities {SI[S (�)(k)]}�, corresponding to certain random variable S(k) in the
hypothetical model) on inputs of a SISO module, followed by the enumeration of output soft
measures (whole densities {SO[S (�)(k)]}�). The current iteration concludes the exchange of
soft measures

{SO[S (�)(k)]}�
{SI[S (�)(k)]}�

→
←

{SI[S (�)(k)]}�
{SO[S (�)(k)]}�

(12)

among the neighboring modules. After execution of all iteration NI , the estimations of all
wanted (output) random variables are performed from the formula

Ŝ(k) = arg M©
Š(k)

[SI[Š(k)] C©SO[Š(k)]]. (13)

We express this operation as a hard decision provided by a decision block (DEC).

6. Iterative detection networks

6.1 IDN topology and soft inversion f−1
G () (SISO module) of general processing element

fG() (FSM)

An IDN presents a soft inversion of an arbitrary EN formed from certain mutually
concatenated GPEs that jointly execute an arbitrary processing with input signal. In the our
case, as was said in the paragraph 3.3, such EN executes the convolution Eq. 1 and due to
fulfillment of the IECS-ML condition can contain the simplest GPEs working on the level
of individual pixels. The IDN topology exactly agrees to the EN topology only with the
difference, that each of GPE is substituted by its SISO module, just like in Fig. 6a, 6b. The
signal processing in the soft inversion is implied in Fig. 6c and takes place in two steps. Firstly,
the inputs {SI[S (�)(k)]}�,k are combined to particular joint soft measures

S[Ň ] = C©
Š(k)∈Ň

SI[Š(k)] for ∀Ň . (14)

Consequently, all joint measures {S[N (�)]}�, corresponding to the set ∀Ň of possible
realizations N (�), are marginalized to outputs {SO[S (�)(k)]}�,k

SO[Š(k)] =
(

M©
Ň :Š(k)

S[Ň ]

)
C©−1SI[Š(k)] for ∀Š(k) (15)
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that are connected to the inputs {SI[S (�)(k)]}�,k of neighboring soft inversions. This update of
soft information is known as a soft inversion activation. The activation accomplishment of all
soft inversions in the IDN afterwards makes one iteration of the IDN.

6.2 Soft-output demodulator

The IDN closely cooperates with the SODEM (Soft output demodulator) providing
fundamental hypothesis about captured signal Rd. This functional block presents a gateway
between the domain of a real realizations (realizations of certain random variables), where are
operated with scalars (factual realizations), and the probability (metric) domain of the IDN,
where are operated with whole densities. The SODEM includes the likeli-hood function (or
transfer function) of the IECS-ML channel emulating all noises incident in the image capturing
system chain (in the our case it is CCD/CMOS camera). The SODEM input forms realization
rd(i, j) that is inside transformed to the discrete a posteriori density {SI[q(�)(i, j)]}� presenting
the input (sufficient statistic) of the IDN.

Before the sufficient statistic derivation as such, it should be noted that the derivation is purely
theoretical and does not correspond to any particular type of CCD / CMOS sensor. We start
the SODEM derivation with the definition of discrete cut off Gaussian PDF

pN FWC
0

(ξ, μ, σ) ≈ 1√
2πσ

FWC

∑
�=0

δ(ξ − �) exp
�
− (�− μ)2

2σ2

�

+
1
2

δ(ξ − FWC)erfc
�

2FWC + 1 − 2μ√
8σ

�

+δ(ξ)

�
1 − 1

2
erfc

�
−1 + 2μ√

8σ

��
. (16)

All parameters FWC, ξ, μ, σ, etc. in all densities, we will assume in terms of number of
electrons [-] either directly or as equivalent quantities related to number of electrons (for
example: the quantization noise occurring in the A/D converter, we will consider as if
the equivalent electron noise source deteriorative in the sensor, etc.). On the basis of the
mentioned definition can be formed thermal and readout noise PDFs as

pwT (ξ) ≈

⎧⎪⎪⎨
⎪⎪⎩

0 iff μT<40
ξ≥70

e−μT ∑�∈N0

μ�
T
�! δ(ξ − �) iff μT<40

ξ<70
pN FWC

0
(ξ, μT ,

√
μT) iff μT ≥ 40

(17)

and
pwR (ξ) = pN FWC

0
(ξ, μR, σR). (18)

Both noises together then create the composite noise w(i, j) = wT(i, j) +wR(i, j) and examples
of theirs densities, for certain parameters μT , μR and σR, is shown in Fig. 7.

The mentioned PDFs are biased by three parameters μR, σR and μT . First two parameters are
known, because depend on the sensor readout rate that is also known. The last one is the
nuisance unknown parameter consisting in the unknown CCD/CMOS sensor temperature
and has to be estimated by a suitable way. A ML estimation μ̂ = N−1 ∑K

k=1 w(k) can be used
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Fig. 7. The example of the thermal and readout noise PDF for μT = 1, μR = 5, σR = 5 and
FWC = 50.

for such purpose, which represents the solution of the equation

d
dμ

K

∑
k=1

ln

(
e−μ μw(k)

w(k)!

)∣∣∣∣∣
μ=μ̂

= 0 (19)

derived from the ML criterion. The set of values {w(1), w(2), . . . , w(k), . . . , w(K)} is the
realization of the composite noise on the blacked out CCD sensor strip. The average value
of the composite noise μ̂, obtained by the measurement from the blacked out area is used for
the computation of μ̂T = μ̂ − μR. That, substituted back to the density pwT (ξ), produces its
estimation p̂wT (ξ).

Statistical properties of the composite noise w(i, j) presents the wanted noise model, that
controls the IECS-ML channel (channel with additive noise) behavior and results from the
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Fig. 8. The p̂r(ξ|q̌(i, j)) and p̂rd (ξ|q̌(i, j)) PDF corresponding to the given examples densities
of the thermal and readout noise. Nb = 4 and ΔQ = 3.
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that are connected to the inputs {SI[S (�)(k)]}�,k of neighboring soft inversions. This update of
soft information is known as a soft inversion activation. The activation accomplishment of all
soft inversions in the IDN afterwards makes one iteration of the IDN.

6.2 Soft-output demodulator

The IDN closely cooperates with the SODEM (Soft output demodulator) providing
fundamental hypothesis about captured signal Rd. This functional block presents a gateway
between the domain of a real realizations (realizations of certain random variables), where are
operated with scalars (factual realizations), and the probability (metric) domain of the IDN,
where are operated with whole densities. The SODEM includes the likeli-hood function (or
transfer function) of the IECS-ML channel emulating all noises incident in the image capturing
system chain (in the our case it is CCD/CMOS camera). The SODEM input forms realization
rd(i, j) that is inside transformed to the discrete a posteriori density {SI[q(�)(i, j)]}� presenting
the input (sufficient statistic) of the IDN.

Before the sufficient statistic derivation as such, it should be noted that the derivation is purely
theoretical and does not correspond to any particular type of CCD / CMOS sensor. We start
the SODEM derivation with the definition of discrete cut off Gaussian PDF

pN FWC
0

(ξ, μ, σ) ≈ 1√
2πσ

FWC

∑
�=0

δ(ξ − �) exp
�
− (�− μ)2

2σ2
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+
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δ(ξ − FWC)erfc
�

2FWC + 1 − 2μ√
8σ

�

+δ(ξ)

�
1 − 1

2
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�
−1 + 2μ√

8σ

��
. (16)

All parameters FWC, ξ, μ, σ, etc. in all densities, we will assume in terms of number of
electrons [-] either directly or as equivalent quantities related to number of electrons (for
example: the quantization noise occurring in the A/D converter, we will consider as if
the equivalent electron noise source deteriorative in the sensor, etc.). On the basis of the
mentioned definition can be formed thermal and readout noise PDFs as

pwT (ξ) ≈

⎧⎪⎪⎨
⎪⎪⎩

0 iff μT<40
ξ≥70

e−μT ∑�∈N0

μ�
T
�! δ(ξ − �) iff μT<40

ξ<70
pN FWC

0
(ξ, μT ,

√
μT) iff μT ≥ 40

(17)

and
pwR (ξ) = pN FWC

0
(ξ, μR, σR). (18)

Both noises together then create the composite noise w(i, j) = wT(i, j) +wR(i, j) and examples
of theirs densities, for certain parameters μT , μR and σR, is shown in Fig. 7.

The mentioned PDFs are biased by three parameters μR, σR and μT . First two parameters are
known, because depend on the sensor readout rate that is also known. The last one is the
nuisance unknown parameter consisting in the unknown CCD/CMOS sensor temperature
and has to be estimated by a suitable way. A ML estimation μ̂ = N−1 ∑K

k=1 w(k) can be used
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for such purpose, which represents the solution of the equation
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= 0 (19)

derived from the ML criterion. The set of values {w(1), w(2), . . . , w(k), . . . , w(K)} is the
realization of the composite noise on the blacked out CCD sensor strip. The average value
of the composite noise μ̂, obtained by the measurement from the blacked out area is used for
the computation of μ̂T = μ̂ − μR. That, substituted back to the density pwT (ξ), produces its
estimation p̂wT (ξ).

Statistical properties of the composite noise w(i, j) presents the wanted noise model, that
controls the IECS-ML channel (channel with additive noise) behavior and results from the
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cut off PDF

p̂w(ξ) ≈ p̂�w(ξ) + δ(ξ − FWC)

(
1 −

∫ FWC+ 1
2

− 1
2

p̂�w(ξ �)dξ �
)

, (20)

based on the convolution

p̂�w(ξ) =
FWC

∑
�=0

δ(ξ − �)
∫ ξ+ 1

2

− 1
2

p̂wT (�− ξ �)pwR (ξ
�)dξ � (21)

of densities p̂wT (ξ) and pwT (ξ).

The procedure obtaining the metric SI[q̌(i, j)] from the derived noise model begins with the
elimination Eq. 10 of the noise density p̂w(ξ) out of the likeli-hood function of a channel with
additive noise pR|Q,W(Ξ|Q̌, Ξ�) = δ(Ξ− (Q̌+Ξ�)) or pr|q,w(ξ|q̌(i, j), ξ �) = δ(ξ − (q̌(i, j) + ξ �)),
assuming perfect knowledge of the noise realization W. The result of this elimination is the
density p̂r(ξ|q̌(i, j)) = p̂w(q̌(i, j)− ξ). Along with the thermal noise, another source of noise is
found in the chain. It is the quantization noise with the uniform PDF pwQ which is added to
the signal in the A/D converter. It can be eliminated out of the density p̂r by the integrating

p̂rd (ξ|q̌(i, j)) = δ(ξ − 2Nb ) lim
�→0+

∫ FWC+ 1
2

tQ(2Nb )−�
p̂r(ξ

� |q̌(i, j))dξ �

+
2Nb−1

∑
�=1

δ(ξ − �) lim
�→0+

∫ tQ(�+1)−�

tQ(�)−�
p̂r(ξ

� |q̌(i, j))dξ � (22)

over individual quantization steps (by averaging with the density pwQ ) of the size ΔQ
expressed in the number of electrons and defined, in our case, by Eq. 7. In Fig. 8 you
can see the examples of the densities p̂r(ξ|q̌(i, j)) and p̂rd (ξ|q̌(i, j)) coming out of the given

demonstrations in Fig. 7 if and only if q̌(i, j) ∈ {q(�)}Mq

�=1 = {0, 10, 20, 30, 40}. We would like

to emphasize that it is just a simple example and actually the cardinality of set {q(�)}Mq

�=1 =

f (A, {Nd(i, j)}MNd
�=1 ) is much larger then 5. Blue lines on Fig. 8 represent boundaries of the

individual quantization steps.

The SODEM output can be obtained from the derived density by the integration

PI[q̌(i, j)] =
∫ rd(i,j)+ 1

2

rd(i,j)− 1
2

p̂rd (ξ
� |q̌(i, j))dξ �. (23)

On the following Fig. 9a, 9c, 9e, 9g are introduced four examples of the SODEM transfer
function constituting the derived composite CCD/CMOS noise model for the blurring
channel AGBC,3/10 (Eq. 2) and ABOM,π/4 (Eq. 5). For the purpose of higher lucidity was
chosen continuous plotting, although the transfer functions have a discrete domain of
definition. The individual demonstrations of transfer functions afterwards construe with
samples (realizations) of captured images on Fig. 9b, 9d, 9f, 9h.
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7. Distributed iterative detection networks

7.1 Distributed IDN marginalizing at the symbol block level

Firstly we focus on the IDNs marginalizing at the symbol block level with horizontal and
vertical state variable. These IDNs result from the EN [1] in Fig. 10a where each node (GPE),
shown in Fig. 11b, creates a one functional block with the fixed system of inputs and outputs
N f (i, j) = {R(i, j), C(i, j), d(i + HA, j + WA),R(i, j + 1), C(i + 1, j), q(i, j)}, where R(i, j) and
C(i, j) present auxiliary state variables containing more symbols together. Shapes of these
variables are established by the condition

Nd(i, j) � R(i, j) ∪ C(i, j) ∪ d(i + HA, j + WA)

⊃ R(i, j + 1), C(i + 1, j). (24)

The optimal decomposition of the convolution region is Nd(i, j) = R(i, j) ∪ C(i, j) ∪ d(i +
HA, j + WA) and it is possible when a(HA, WA) �= 0.

In the case of a channel AGBC,a(0,0), with regard to the condition Eq. 24, the variables are
R(i, j) = {d(i, j), d(i, j + 1), d(i + 1, j), d(i + 1, j + 1), d(i + 2, j), d(i + 2, j + 1)} and C(i, j) =
{d(i, j), d(i, j + 1), d(i, j + 2), d(i + 1, j), d(i + 1, j + 1), d(i + 1, j + 2)}. Their shapes you can see
in Fig. 12a. In a similar way we can get decomposition of the Nd(i, j) for a channel AGBC,a(0,0).
One of possible results is shown in Fig. 12b.

The IDN has same topology as the EN and each its node forms SISO module, illustrated in
Fig. 11b, performing the combination

S[Ň f (i, j)] = SI[Ř(i, j)] C©SI[Č(i, j)] C©SI[ď(i + HA, j + WA)] C©SI[Ř(i, j + 1)]

C©SI[Č(i + 1, j)] C©SI[q̌(i, j)] (25)

with marginalizations

SO[Ř(i, j + j�)] =
(

M©
Ň f (i,j):Ř(i,j+j�)

S[Ň f ()(i, j)]

)
C©−1SI[Ř(i, j + j�)] for j� ∈ {0, 1}, (26)

SO[Č(i + i�, j)] =

(
M©

Ň f (i,j):Č(i+i� ,j)
S[Ň f ()(i, j)]

)
C©−1SI[Č(i + i�, j)] for i� ∈ {0, 1}, (27)

SO[ď(i + HA, j + WA)] =

(
M©

Ň f (i,j):ď(i+HA ,j+WA)
S[Ň f ()(i, j)]

)
C©−1SI[ď(i + HA, j + WA)], (28)

and

SO[q̌(i, j)] =

(
M©

Ň f (i,j):q̌(i,j)
S[Ň f ()(i, j)]

)
C©−1SI[q̌(i, j)]. (29)

One iteration of such IDN rests in the serial activation of each SISO module from the upper
left corner to the lower right corner in the IDN as is marked by the light blue curve in Fig. 10a.
After finishing all iterations, of the chosen count NI , the IDN makes hard decisions d̂(i, j) per
Eq. 13.
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cut off PDF

p̂w(ξ) ≈ p̂�w(ξ) + δ(ξ − FWC)

(
1 −

∫ FWC+ 1
2

− 1
2

p̂�w(ξ �)dξ �
)

, (20)

based on the convolution

p̂�w(ξ) =
FWC

∑
�=0

δ(ξ − �)
∫ ξ+ 1

2

− 1
2

p̂wT (�− ξ �)pwR (ξ
�)dξ � (21)

of densities p̂wT (ξ) and pwT (ξ).

The procedure obtaining the metric SI[q̌(i, j)] from the derived noise model begins with the
elimination Eq. 10 of the noise density p̂w(ξ) out of the likeli-hood function of a channel with
additive noise pR|Q,W(Ξ|Q̌, Ξ�) = δ(Ξ− (Q̌+Ξ�)) or pr|q,w(ξ|q̌(i, j), ξ �) = δ(ξ − (q̌(i, j) + ξ �)),
assuming perfect knowledge of the noise realization W. The result of this elimination is the
density p̂r(ξ|q̌(i, j)) = p̂w(q̌(i, j)− ξ). Along with the thermal noise, another source of noise is
found in the chain. It is the quantization noise with the uniform PDF pwQ which is added to
the signal in the A/D converter. It can be eliminated out of the density p̂r by the integrating

p̂rd (ξ|q̌(i, j)) = δ(ξ − 2Nb ) lim
�→0+

∫ FWC+ 1
2

tQ(2Nb )−�
p̂r(ξ

� |q̌(i, j))dξ �

+
2Nb−1

∑
�=1

δ(ξ − �) lim
�→0+

∫ tQ(�+1)−�

tQ(�)−�
p̂r(ξ

� |q̌(i, j))dξ � (22)

over individual quantization steps (by averaging with the density pwQ ) of the size ΔQ
expressed in the number of electrons and defined, in our case, by Eq. 7. In Fig. 8 you
can see the examples of the densities p̂r(ξ|q̌(i, j)) and p̂rd (ξ|q̌(i, j)) coming out of the given

demonstrations in Fig. 7 if and only if q̌(i, j) ∈ {q(�)}Mq

�=1 = {0, 10, 20, 30, 40}. We would like

to emphasize that it is just a simple example and actually the cardinality of set {q(�)}Mq

�=1 =

f (A, {Nd(i, j)}MNd
�=1 ) is much larger then 5. Blue lines on Fig. 8 represent boundaries of the

individual quantization steps.

The SODEM output can be obtained from the derived density by the integration

PI[q̌(i, j)] =
∫ rd(i,j)+ 1

2

rd(i,j)− 1
2

p̂rd (ξ
� |q̌(i, j))dξ �. (23)

On the following Fig. 9a, 9c, 9e, 9g are introduced four examples of the SODEM transfer
function constituting the derived composite CCD/CMOS noise model for the blurring
channel AGBC,3/10 (Eq. 2) and ABOM,π/4 (Eq. 5). For the purpose of higher lucidity was
chosen continuous plotting, although the transfer functions have a discrete domain of
definition. The individual demonstrations of transfer functions afterwards construe with
samples (realizations) of captured images on Fig. 9b, 9d, 9f, 9h.
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7. Distributed iterative detection networks

7.1 Distributed IDN marginalizing at the symbol block level

Firstly we focus on the IDNs marginalizing at the symbol block level with horizontal and
vertical state variable. These IDNs result from the EN [1] in Fig. 10a where each node (GPE),
shown in Fig. 11b, creates a one functional block with the fixed system of inputs and outputs
N f (i, j) = {R(i, j), C(i, j), d(i + HA, j + WA),R(i, j + 1), C(i + 1, j), q(i, j)}, where R(i, j) and
C(i, j) present auxiliary state variables containing more symbols together. Shapes of these
variables are established by the condition

Nd(i, j) � R(i, j) ∪ C(i, j) ∪ d(i + HA, j + WA)

⊃ R(i, j + 1), C(i + 1, j). (24)

The optimal decomposition of the convolution region is Nd(i, j) = R(i, j) ∪ C(i, j) ∪ d(i +
HA, j + WA) and it is possible when a(HA, WA) �= 0.

In the case of a channel AGBC,a(0,0), with regard to the condition Eq. 24, the variables are
R(i, j) = {d(i, j), d(i, j + 1), d(i + 1, j), d(i + 1, j + 1), d(i + 2, j), d(i + 2, j + 1)} and C(i, j) =
{d(i, j), d(i, j + 1), d(i, j + 2), d(i + 1, j), d(i + 1, j + 1), d(i + 1, j + 2)}. Their shapes you can see
in Fig. 12a. In a similar way we can get decomposition of the Nd(i, j) for a channel AGBC,a(0,0).
One of possible results is shown in Fig. 12b.

The IDN has same topology as the EN and each its node forms SISO module, illustrated in
Fig. 11b, performing the combination

S[Ň f (i, j)] = SI[Ř(i, j)] C©SI[Č(i, j)] C©SI[ď(i + HA, j + WA)] C©SI[Ř(i, j + 1)]

C©SI[Č(i + 1, j)] C©SI[q̌(i, j)] (25)

with marginalizations

SO[Ř(i, j + j�)] =
(

M©
Ň f (i,j):Ř(i,j+j�)

S[Ň f ()(i, j)]

)
C©−1SI[Ř(i, j + j�)] for j� ∈ {0, 1}, (26)

SO[Č(i + i�, j)] =

(
M©

Ň f (i,j):Č(i+i� ,j)
S[Ň f ()(i, j)]

)
C©−1SI[Č(i + i�, j)] for i� ∈ {0, 1}, (27)

SO[ď(i + HA, j + WA)] =

(
M©

Ň f (i,j):ď(i+HA ,j+WA)
S[Ň f ()(i, j)]

)
C©−1SI[ď(i + HA, j + WA)], (28)

and

SO[q̌(i, j)] =

(
M©

Ň f (i,j):q̌(i,j)
S[Ň f ()(i, j)]

)
C©−1SI[q̌(i, j)]. (29)

One iteration of such IDN rests in the serial activation of each SISO module from the upper
left corner to the lower right corner in the IDN as is marked by the light blue curve in Fig. 10a.
After finishing all iterations, of the chosen count NI , the IDN makes hard decisions d̂(i, j) per
Eq. 13.
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(a) The PDF for the blurring channel
AGBC,3/10: C = 612, μT = 60, μR = 40,
σR = 35.

(b) The PDF for the blurring channel
AGBC,3/10: C = 542, μT = 150, μR =
50, σR = 25.

(c) (d)

(e) The PDF for the blurring channel
ABOM,π/4: C = 612, μT = 60, μR = 40,
σR = 35.

(f) The PDF for the blurring channel
ABOM,π/4: C = 542, μT = 150, μR =
50, σR = 25.

(g) (h)

Fig. 9. The examples of SODEM transfer (likeli-hood) functions with the corresponding

realization Rd of the A/D converter output: Nb = 8, ΔQ = 3. All alphabets {q(�)}Mq

�=1 are
sorted according to the size (q(1) is the least element and q(Mq) is the greatest element).
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SI[Ř(i, j + 1)]
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Fig. 11. The cells in the node (i, j) of the EN and IDN marginalizing at the symbol block level.
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Fig. 12. The primary layout of auxiliary state variables R(i, j) and C(i, j) for the ISI channel
AGBC,a(0,0) .

The quantities
SI[Ř(i, j)] = C�

ď(i,j)∈Ř(i,j)
SI[ď(i, j)] (30)
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σR = 35.

(b) The PDF for the blurring channel
AGBC,3/10: C = 542, μT = 150, μR =
50, σR = 25.
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ABOM,π/4: C = 612, μT = 60, μR = 40,
σR = 35.
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ABOM,π/4: C = 542, μT = 150, μR =
50, σR = 25.

(g) (h)

Fig. 9. The examples of SODEM transfer (likeli-hood) functions with the corresponding

realization Rd of the A/D converter output: Nb = 8, ΔQ = 3. All alphabets {q(�)}Mq

�=1 are
sorted according to the size (q(1) is the least element and q(Mq) is the greatest element).
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SI[Ř(i, j)] = C�

ď(i,j)∈Ř(i,j)
SI[ď(i, j)] (30)
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and
SI[Č(i, j)] = C©

ď(i,j)∈Č(i,j)
SI[ď(i, j)], (31)

before the first iteration of the IDN, are adjusted via combination of the a priori measures
SI[ď(i, j)] corresponding to testing estimators ď(i, j), that form block estimators Ř(i, j) and
Č(i, j).

7.2 Distributed IDN marginalizing at the symbol block level with bias state variables

The fundamental disadvantage of IDNs described in the previous paragraph rests in
cardinality of state variables. For example decomposition in Fig. 12a has cardinality for
dichromatic pictures 26 per variable and therefore both bidirectional concatenations of all SISO
modules have to transfer 2× 26 = 128 soft measures in the each direction. However, this is not
only one disadvantage. The another rests in potential absence of the optimal decomposition
for irregular kernels which can extremely gross up computational exigencies of the algorithm.

Impacts of both mentioned disadvantages can be reduced by the suggestion of EN structure in
Fig. 10b that is expanded by the bias state variable B(i, j). All inputs and outputs of each node,
shown in Fig. 13a, forms the set N f (i, j) = {R(i, j), C(i, j),B(i, j), d(i + HA, j + WA),R(i, j +
1), C(i + 1, j),B(i, j), q(i, j)}, where state variables are shaped by more liberal condition

Nd(i, j) � R(i, j) ∪ C(i, j) ∪ B(i, j) ∪ d(i + HA, j + WA)

⊃ R(i, j + 1), C(i + 1, j),B(i + 1, j + 1). (32)

In Fig. 12 are expressed three examples of decompositions for two different cores. Concretely,
in the case of 1st version of kernel AGBC,a(0,0) partitioning, where state variables are R(i, j) =
{d(i + 1, j), d(i + 1, j + 1), d(i + 2, j), d(i + 2, j + 1)}, C(i, j) = {d(i, j + 1), d(i, j + 2), d(i + 1, j +
1), d(i + 1, j + 2)} and B(i, j) = {d(i, j), d(i + 1, j), d(i, j + 1), d(i + 1, j + 1)}, is necessary to
transfer and store only 3 × 24 = 48 soft measures in the each direction. In the 2nd version for
same kernel this number is smaller, namely 2 × 23 + 22 = 20.

The IDN topology copies the EN topology as in the previous case and activation schedule is
identical too. A SISO module used in this IDN is approached in Fig. 13b.

7.3 Distributed IDN marginalizing at the symbol level

The topology of the IDN marginalizing at the symbol level is dependent on the shape of
the response A. It is the basic difference from the IDN marginalizing at the symbol block
level, whose topology is invariable. There are two possible kinds of the topology. Either the
topology centered on the response central coefficient or the shifted topology, that is fixed on
the coefficient other than the central coefficient.

Firstly, we focus on the IDN example with the centered topology for the ISI channel AGBC,a(0,0)
with order L = HA + 1 = WA + 1 = 3. Let us suppose the source EN in Fig. 15a emulating
the convolution

q(i, j) = C f (AGBC,a(0,0),Nd(i − 1, j − 1) ⊂ D)

= C ∑
|i� |,|j� |≤1

a(i�, j�)d(i + i�, j + j�) (33)
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[Č
(i
,
j
)]

SI
[Č
(i
,
j
)]

SO
[B̌

(i
,
j
)]

SI
[B̌

(i
,
j
)]

SI
[Č
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Fig. 13. The cells in the node (i, j) of the EN and IDN marginalizing at the symbol block level
with bias state variables.
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Fig. 14. The two possible layouts of auxiliary state variables R(i, j), C(i, j) and B(i, j) for the
ISI channel AGBC,a(0,0).

centered on the central (dominant) coefficient a(0, 0). Each node (GPE) in this EN contains two
functional blocks (broadcaster and combining element) with the generally variable system of
inputs and outputs. In the our current example, each node has the framework shown in
Fig. 15b and it is connected to the eight nearest neighbors. All these cells together creating the
convolutional region Nd(i − 1, j − 1). An input and outputs of each broadcaster make the set

NB(i, j) = {d(i, j), c(i, j, k) = d(i, j)}1≤k≤9. (34)

The outputs of nine neighboring broadcasters create inputs for one combining element. These
inputs with the output

q(i, j) = C ∑
0≤k≤7

a(�1/2 + sin(πk/4)� , �1/2 − cos(πk/4)�)c(i + �1/2 + sin(πk/4)� ,

j + �1/2 − cos(πk/4)� , k + 1) + Ca(0, 0)c(i, j, 9) (35)

make the set

N f (i, j) = {c(i + �1/2 + sin(πk/4)� , j + �1/2 − cos(πk/4)� , k + 1), c(i, j, 9), q(i, j)}0≤k≤7. (36)
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and
SI[Č(i, j)] = C©

ď(i,j)∈Č(i,j)
SI[ď(i, j)], (31)

before the first iteration of the IDN, are adjusted via combination of the a priori measures
SI[ď(i, j)] corresponding to testing estimators ď(i, j), that form block estimators Ř(i, j) and
Č(i, j).

7.2 Distributed IDN marginalizing at the symbol block level with bias state variables

The fundamental disadvantage of IDNs described in the previous paragraph rests in
cardinality of state variables. For example decomposition in Fig. 12a has cardinality for
dichromatic pictures 26 per variable and therefore both bidirectional concatenations of all SISO
modules have to transfer 2× 26 = 128 soft measures in the each direction. However, this is not
only one disadvantage. The another rests in potential absence of the optimal decomposition
for irregular kernels which can extremely gross up computational exigencies of the algorithm.

Impacts of both mentioned disadvantages can be reduced by the suggestion of EN structure in
Fig. 10b that is expanded by the bias state variable B(i, j). All inputs and outputs of each node,
shown in Fig. 13a, forms the set N f (i, j) = {R(i, j), C(i, j),B(i, j), d(i + HA, j + WA),R(i, j +
1), C(i + 1, j),B(i, j), q(i, j)}, where state variables are shaped by more liberal condition

Nd(i, j) � R(i, j) ∪ C(i, j) ∪ B(i, j) ∪ d(i + HA, j + WA)

⊃ R(i, j + 1), C(i + 1, j),B(i + 1, j + 1). (32)

In Fig. 12 are expressed three examples of decompositions for two different cores. Concretely,
in the case of 1st version of kernel AGBC,a(0,0) partitioning, where state variables are R(i, j) =
{d(i + 1, j), d(i + 1, j + 1), d(i + 2, j), d(i + 2, j + 1)}, C(i, j) = {d(i, j + 1), d(i, j + 2), d(i + 1, j +
1), d(i + 1, j + 2)} and B(i, j) = {d(i, j), d(i + 1, j), d(i, j + 1), d(i + 1, j + 1)}, is necessary to
transfer and store only 3 × 24 = 48 soft measures in the each direction. In the 2nd version for
same kernel this number is smaller, namely 2 × 23 + 22 = 20.

The IDN topology copies the EN topology as in the previous case and activation schedule is
identical too. A SISO module used in this IDN is approached in Fig. 13b.

7.3 Distributed IDN marginalizing at the symbol level

The topology of the IDN marginalizing at the symbol level is dependent on the shape of
the response A. It is the basic difference from the IDN marginalizing at the symbol block
level, whose topology is invariable. There are two possible kinds of the topology. Either the
topology centered on the response central coefficient or the shifted topology, that is fixed on
the coefficient other than the central coefficient.

Firstly, we focus on the IDN example with the centered topology for the ISI channel AGBC,a(0,0)
with order L = HA + 1 = WA + 1 = 3. Let us suppose the source EN in Fig. 15a emulating
the convolution

q(i, j) = C f (AGBC,a(0,0),Nd(i − 1, j − 1) ⊂ D)

= C ∑
|i� |,|j� |≤1

a(i�, j�)d(i + i�, j + j�) (33)
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with bias state variables.
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ISI channel AGBC,a(0,0).

centered on the central (dominant) coefficient a(0, 0). Each node (GPE) in this EN contains two
functional blocks (broadcaster and combining element) with the generally variable system of
inputs and outputs. In the our current example, each node has the framework shown in
Fig. 15b and it is connected to the eight nearest neighbors. All these cells together creating the
convolutional region Nd(i − 1, j − 1). An input and outputs of each broadcaster make the set

NB(i, j) = {d(i, j), c(i, j, k) = d(i, j)}1≤k≤9. (34)

The outputs of nine neighboring broadcasters create inputs for one combining element. These
inputs with the output

q(i, j) = C ∑
0≤k≤7

a(�1/2 + sin(πk/4)� , �1/2 − cos(πk/4)�)c(i + �1/2 + sin(πk/4)� ,

j + �1/2 − cos(πk/4)� , k + 1) + Ca(0, 0)c(i, j, 9) (35)

make the set

N f (i, j) = {c(i + �1/2 + sin(πk/4)� , j + �1/2 − cos(πk/4)� , k + 1), c(i, j, 9), q(i, j)}0≤k≤7. (36)
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As is known, the IDN has topology corresponding with the EN topology. One of the composite
SISO modules creating the present IDN is illustrated in Fig. 15c, where the SISO module B−1

performing the combination

SO[ď(i, j)] = C©
k

SI[č(i, j, k) = ď(i, j)] (37)

with the marginalization

SO[č(i, j, k)] =
(

C©
k� �=k

SI[č(i, j, k�) = č(i, j, k)]
)

C©SI[ď(i, j) = č(i, j, k)] (38)

and the SISO module f−1() performing combination

S[Ň f (i, j)] =

(
C©

č(i� ,j� ,k)∈Ň f (i,j)
SI[č(i�, j�, k)]

)
C©SI[q̌(i, j)] (39)

with the marginalizations

SO[č(i�, j�, k)] =

(
M©

Ň f (i,j):č(i� ,j� ,k)
S[Ň f (i, j)]

)
C©−1SI[č(i�, j�, k)] (40)

and SO[q̌(i, j)] acquisitionable from Eq. 29.

A soft measure processing in the composite SISO modules is mirrored to the signal processing
in the EN nodes (from d(i, j) to q(i, j)) and begins with activation all SISO modules f−1().
Consequently, the activations of the SISO modules B−1 take place. Both activations, intimated
by activation loops in Fig. 15a, form one iteration of the entire IDN. After finishing of all
required iterations, the IDN makes hard decisions d̂(i, j) in accordance with Eq. 13.

The quantities SI[č(i, j, k)], before the first iteration of the IDN, are adjusted pursuant to the
a priori measures SI[ď(i, j)], because the c(i, j, k) constitute copies of the d(i, j). Henceforth,
we come up to the IDN example again for the AGBC,3/10 , but now it will be the IDN with the
shifted topology. In this case, the source EN in Fig. 16a implements the convolution Eq. 1
centered on the upper left coefficient. One of the EN cells is shown in Fig. 16b. In comparison
with the previous example, there is a difference only in the combining element. It has the I/O
set

N f (i, j) = {c(i − �k/3�+ 3, j + 3 �k/3� − k, k), q(i, j)}1≤k≤9 (41)

where

q(i, j) = C ∑
1≤k≤9

a(i − �k/3�+ 3, j + 3 �k/3� − k)c(i − �k/3�+ 3, j + 3 �k/3� − k, k). (42)

The soft inversion of the mentioned EN cell is represented by Fig. 16c and along with other
cooperative SISO modules forming the resulting IDN. A similar IDN can be synthesized by
the analogical way for any other ISI channel.
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SO[č(i, j, 2)]
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Fig. 15. The EN and IDN marginalizing at the symbol level with the centered topology for
the ISI channelAGBC,a(0,0).

7.4 Simplified distributed IDN marginalizing at the symbol level

If the response A has a dominant coefficient and the IDN topology is centered on this
coefficient, then such IDN can be further numerically simplified by the approximation
SO[ď(i, j)] ≈ SO[č(i, j, max(k))] (Chugg et al., 2001). It reduces a number of marginalizations
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As is known, the IDN has topology corresponding with the EN topology. One of the composite
SISO modules creating the present IDN is illustrated in Fig. 15c, where the SISO module B−1

performing the combination

SO[ď(i, j)] = C©
k

SI[č(i, j, k) = ď(i, j)] (37)

with the marginalization

SO[č(i, j, k)] =
(
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SI[č(i, j, k�) = č(i, j, k)]
)

C©SI[ď(i, j) = č(i, j, k)] (38)

and the SISO module f−1() performing combination
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)
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(
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Ň f (i,j):č(i� ,j� ,k)
S[Ň f (i, j)]

)
C©−1SI[č(i�, j�, k)] (40)

and SO[q̌(i, j)] acquisitionable from Eq. 29.

A soft measure processing in the composite SISO modules is mirrored to the signal processing
in the EN nodes (from d(i, j) to q(i, j)) and begins with activation all SISO modules f−1().
Consequently, the activations of the SISO modules B−1 take place. Both activations, intimated
by activation loops in Fig. 15a, form one iteration of the entire IDN. After finishing of all
required iterations, the IDN makes hard decisions d̂(i, j) in accordance with Eq. 13.

The quantities SI[č(i, j, k)], before the first iteration of the IDN, are adjusted pursuant to the
a priori measures SI[ď(i, j)], because the c(i, j, k) constitute copies of the d(i, j). Henceforth,
we come up to the IDN example again for the AGBC,3/10 , but now it will be the IDN with the
shifted topology. In this case, the source EN in Fig. 16a implements the convolution Eq. 1
centered on the upper left coefficient. One of the EN cells is shown in Fig. 16b. In comparison
with the previous example, there is a difference only in the combining element. It has the I/O
set

N f (i, j) = {c(i − �k/3�+ 3, j + 3 �k/3� − k, k), q(i, j)}1≤k≤9 (41)

where

q(i, j) = C ∑
1≤k≤9

a(i − �k/3�+ 3, j + 3 �k/3� − k)c(i − �k/3�+ 3, j + 3 �k/3� − k, k). (42)

The soft inversion of the mentioned EN cell is represented by Fig. 16c and along with other
cooperative SISO modules forming the resulting IDN. A similar IDN can be synthesized by
the analogical way for any other ISI channel.
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SI[č(i, j + 1, 5)]
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SO[č(i + 1, j + 1, 4)]
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Fig. 15. The EN and IDN marginalizing at the symbol level with the centered topology for
the ISI channelAGBC,a(0,0).

7.4 Simplified distributed IDN marginalizing at the symbol level

If the response A has a dominant coefficient and the IDN topology is centered on this
coefficient, then such IDN can be further numerically simplified by the approximation
SO[ď(i, j)] ≈ SO[č(i, j, max(k))] (Chugg et al., 2001). It reduces a number of marginalizations
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[č

(
i
+

1
,
j
,
6
)
]
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č(
i,
j,
9)
]

SI[č
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(c) The IDN cell in the node (i, j).

Fig. 16. The EN and IDN marginalizing at the symbol level with the shifted topology for ISI
channel AGBC,a(0,0).

in the SISO modules f−1() only to the variable č(i, j, max(k)) and enables removing of all SISO
modules B−1.

Let us approach the principle of this approximation at the first IDN example in the
paragraph 7.3. There had A the dominant coefficient a(0, 0). Therefore, the SO[ď(i, j)]
can be approximated by the SO[č(i, j, 9)] and inputs {SI[č(i + �1/2 + sin(πk/4)� , j +
�1/2 − cos(πk/4)� , k + 1)]}0≤k≤7 of associated SISO modules will be directly equal to
SO[č(i, j, 9)], as is shown in Fig. 17.
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SO[č(i, j, 2)]

SI
[č
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Fig. 17. The cell in the node (i, j) of the simplified IDN marginalizing at the symbol level
with centered topology for the ISI channel AGBC,a(0,0).

7.5 Layered IDN for an ISI channel with a decomposition-able impulse response

Finally, we focus on the Layered IDN for ISI channels with a decomposition-able impulse
response to the horizontal h = [ h� h h� ] and vertical g = [ g� g g� ] direction. For example, the
GBC has this property and therefore we assume, without detriment to generality, the GBC

AGBC,gh = hgT

=

⎡
⎣

h�g� hg� h�g�
h�g hg h�g
h�g� hg� h�g�

⎤
⎦ (43)

with size L × L = 3× 3 that will be used for exemplary construction of the layered EN, shown
in Fig. 18a, and mutually corresponding IDN, shown in Fig. 18b.

The signal processing (two-step convolution) starts on the EN bottom layer c(i, j) =
fR(h, {d(i, j − 2), d(i, j − 1), d(i, j)}) = h�d(i, j − 2) + hd(i, j − 1) + h�d(i, j) and continues on
the EN top layer q̃(i, j) = fC(g, {c(i − 2, j), c(i − 1, j), c(i, j)}) = g�c(i − 2, j) + gc(i − 1, j) +
g�c(i, j)). Each row-wise or column-wise concatenated node (GPE) creates a one functional
block with the fixed system of inputs and outputs N fR (i, j) = {R(i, j), d(i, j),R(i, j+ 1), c(i, j)}
or N fC (i, j) = {C(i, j), c(i, j), C(i, j + 1), q(i, j)}, where R(i, j) = {d(i, j − 2), d(i, j − 1)} and
C(i, j) = {c(i − 2, j), c(i − 1, j)} present auxiliary state variables containing two symbols
together, as in the case of the distributed IDN marginalizing at the symbol block level.

This specific case of the 2D ISI channel makes 2D detection, through the chosen EN topology,
decomposition-able into double 1D detection, when in separate rows and columns can be used
the well known Fixed interval forward-backward algorithm (FI FBA) Chugg et al. (2001). Let
us elucidate the FI FBA principle on the IDN top layer. Its current recursion, in the node
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Fig. 16. The EN and IDN marginalizing at the symbol level with the shifted topology for ISI
channel AGBC,a(0,0).

in the SISO modules f−1() only to the variable č(i, j, max(k)) and enables removing of all SISO
modules B−1.

Let us approach the principle of this approximation at the first IDN example in the
paragraph 7.3. There had A the dominant coefficient a(0, 0). Therefore, the SO[ď(i, j)]
can be approximated by the SO[č(i, j, 9)] and inputs {SI[č(i + �1/2 + sin(πk/4)� , j +
�1/2 − cos(πk/4)� , k + 1)]}0≤k≤7 of associated SISO modules will be directly equal to
SO[č(i, j, 9)], as is shown in Fig. 17.
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Fig. 17. The cell in the node (i, j) of the simplified IDN marginalizing at the symbol level
with centered topology for the ISI channel AGBC,a(0,0).

7.5 Layered IDN for an ISI channel with a decomposition-able impulse response

Finally, we focus on the Layered IDN for ISI channels with a decomposition-able impulse
response to the horizontal h = [ h� h h� ] and vertical g = [ g� g g� ] direction. For example, the
GBC has this property and therefore we assume, without detriment to generality, the GBC

AGBC,gh = hgT

=

⎡
⎣

h�g� hg� h�g�
h�g hg h�g
h�g� hg� h�g�

⎤
⎦ (43)

with size L × L = 3× 3 that will be used for exemplary construction of the layered EN, shown
in Fig. 18a, and mutually corresponding IDN, shown in Fig. 18b.

The signal processing (two-step convolution) starts on the EN bottom layer c(i, j) =
fR(h, {d(i, j − 2), d(i, j − 1), d(i, j)}) = h�d(i, j − 2) + hd(i, j − 1) + h�d(i, j) and continues on
the EN top layer q̃(i, j) = fC(g, {c(i − 2, j), c(i − 1, j), c(i, j)}) = g�c(i − 2, j) + gc(i − 1, j) +
g�c(i, j)). Each row-wise or column-wise concatenated node (GPE) creates a one functional
block with the fixed system of inputs and outputs N fR (i, j) = {R(i, j), d(i, j),R(i, j+ 1), c(i, j)}
or N fC (i, j) = {C(i, j), c(i, j), C(i, j + 1), q(i, j)}, where R(i, j) = {d(i, j − 2), d(i, j − 1)} and
C(i, j) = {c(i − 2, j), c(i − 1, j)} present auxiliary state variables containing two symbols
together, as in the case of the distributed IDN marginalizing at the symbol block level.

This specific case of the 2D ISI channel makes 2D detection, through the chosen EN topology,
decomposition-able into double 1D detection, when in separate rows and columns can be used
the well known Fixed interval forward-backward algorithm (FI FBA) Chugg et al. (2001). Let
us elucidate the FI FBA principle on the IDN top layer. Its current recursion, in the node
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[Ř

(i
,
j
)]

SI
[Ř
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Fig. 18. The layered EN and IDN for an ISI channel with a decomposition-able impulse
response.

(i, j), is performed by following the sequence of operations: the combination (preprocessing
— enumeration of auxiliary variables

S[Ň fC (i, j) \ {Č(i, j), Č(i + 1, j)}] = S[č(i, j)] C�SI[q̌(i, j)] (44)

and
S[Ň fC (i, j) \ {č(i, j), q̌(i, j)}] = S[Č(i, j)] C�S[Č(i + 1, j)] (45)

with their storage), the forward recursion 3� (top-down)

SO[Č(i + 1, j)] = M�
Ň fC (i,j):Č(i+1,j)

S[Ň fC (i, j) \ {Č(i, j), Č(i + 1, j)}] C�SI[Č(i, j)], (46)

the backward recursion 4� (bottom-up)

SO[Č(i, j)] = M�
Ň fC (i,j):Č(i,j)

S[Ň fC (i, j) \ {Č(i, j), Č(i + 1, j)}] C�SI[Č(i + 1, j)] (47)

and the completion operation (postprocessing — enumeration of output variables

SO[č(i, j)] = M�
Ň fC (i,j):č(i,j)

S[Ň fC (i, j) \ {č(i, j), q̌(i, j)}] C�SI[q̌(i, j)] (48)

and
SO[q̌(i, j)] = M�

Ň fC (i,j):q̌(i,j)
S[Ň fC (i, j) \ {č(i, j), q̌(i, j)}] C�SI[č(i, j)] (optional) (49)
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with their distribution to cooperative SISO modules). On the bottom layer is done identical
process, directed by the rotated activation schedule merging the forward recursion 1© and
the backward recursion 2©. The several iteration of the entire layered IDN creates firstly the
FBA initiation on the top layer, terminated by the inter-marginalization {SO[č(i, j)]}i,j, and
subsequently the same procedure on the bottom layer.

The hard decision d̂(i, j) and primary adjustment of the input soft measures SI[Ř(i, j)] and
SI[Č(i, j)] (before first iteration of the IDN) is similar as in the previous cases and they are
directed by Eq. 13, Eq. 30 and Eq. 31.

7.6 Summary of IDNs properties

The introduced IDNs can be evaluated in four angles: computation exigences, implementation
complexity, application flexibility and performance.

A distributed IDN marginalizing at the symbol level in comparison with the distributed IDN
marginalizing at the symbol block level has less computation exigences and it is effectively
applicable at whatever kind of the impulse response A. However it has plenty of jumpers on
the other hand and its structure changes in accordance with the shape of the A. Each jumper
presents one inside (auxiliary) variable, thus this IDN is highly suboptimal and with respect
to marginalizations at the level of individual symbols (pixels) it fails on lower signal to noise
ratios.

The structure of the distributed IDN marginalizing at the symbol block level is invariable
for all responses A. Each SISO module always has the same inputs and outputs. Only
shapes of the estimators Ř(i, j), Č(i, j) and B(i, j) are various and for certain special responses
A don’t have to exist in the optimal form that leads to the computationally simplest IDN.
Therefore this IDN can have considerably more exacting computational complexity than IDN
marginalizing at the symbol level, but due to marginalizations at the level of symbol (pixel)
blocks it offers a quality output, even as the signal to noise ratio is very low.

The advantage of the layered IDN for an ISI channels with a decomposition-able impulse
responses rests in the inter-marginalization between both layers, that makes its computational
complexity ∝ ML

d + (Md(2Md − 1)
L−1

2 )L lower than complexity ∝ ML2

d of the both distributed
IDNs. The worst properties has in the angle of application flexibility, because it can be applied
only to some few ISI channels. In term of implementation complexity it is a structure relatively
simple.

8. Implementation and complexity reduction issue

8.1 Tree-structured enumeration of combinations and marginalizations

We should use the tree-structured enumeration everywhere it is possible. It represents de
facto a pipeline signal processing based upon an intermediate data usage. Fig. 19 shows this
principle.

As the example using tree-structured implementation, let us expose the simple SISO module
f−1() in Fig. 20, where Ň f (i, j) = {č(i, j − 1, 1), č(i, j, 3), č(i, j + 1, 2), q̌(i, j)}. Such soft
inversion is a component of the IDN marginalizing at the symbol level in Fig. 21.
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Fig. 18. The layered EN and IDN for an ISI channel with a decomposition-able impulse
response.

(i, j), is performed by following the sequence of operations: the combination (preprocessing
— enumeration of auxiliary variables

S[Ň fC (i, j) \ {Č(i, j), Č(i + 1, j)}] = S[č(i, j)] C�SI[q̌(i, j)] (44)

and
S[Ň fC (i, j) \ {č(i, j), q̌(i, j)}] = S[Č(i, j)] C�S[Č(i + 1, j)] (45)

with their storage), the forward recursion 3� (top-down)

SO[Č(i + 1, j)] = M�
Ň fC (i,j):Č(i+1,j)

S[Ň fC (i, j) \ {Č(i, j), Č(i + 1, j)}] C�SI[Č(i, j)], (46)

the backward recursion 4� (bottom-up)

SO[Č(i, j)] = M�
Ň fC (i,j):Č(i,j)

S[Ň fC (i, j) \ {Č(i, j), Č(i + 1, j)}] C�SI[Č(i + 1, j)] (47)

and the completion operation (postprocessing — enumeration of output variables

SO[č(i, j)] = M�
Ň fC (i,j):č(i,j)

S[Ň fC (i, j) \ {č(i, j), q̌(i, j)}] C�SI[q̌(i, j)] (48)

and
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336 Image Restoration – Recent Advances and Applications 2D Iterative Detection Network Based Image Restoration: Principles, Applications and Performace Analysis 23

with their distribution to cooperative SISO modules). On the bottom layer is done identical
process, directed by the rotated activation schedule merging the forward recursion 1© and
the backward recursion 2©. The several iteration of the entire layered IDN creates firstly the
FBA initiation on the top layer, terminated by the inter-marginalization {SO[č(i, j)]}i,j, and
subsequently the same procedure on the bottom layer.

The hard decision d̂(i, j) and primary adjustment of the input soft measures SI[Ř(i, j)] and
SI[Č(i, j)] (before first iteration of the IDN) is similar as in the previous cases and they are
directed by Eq. 13, Eq. 30 and Eq. 31.

7.6 Summary of IDNs properties

The introduced IDNs can be evaluated in four angles: computation exigences, implementation
complexity, application flexibility and performance.

A distributed IDN marginalizing at the symbol level in comparison with the distributed IDN
marginalizing at the symbol block level has less computation exigences and it is effectively
applicable at whatever kind of the impulse response A. However it has plenty of jumpers on
the other hand and its structure changes in accordance with the shape of the A. Each jumper
presents one inside (auxiliary) variable, thus this IDN is highly suboptimal and with respect
to marginalizations at the level of individual symbols (pixels) it fails on lower signal to noise
ratios.

The structure of the distributed IDN marginalizing at the symbol block level is invariable
for all responses A. Each SISO module always has the same inputs and outputs. Only
shapes of the estimators Ř(i, j), Č(i, j) and B(i, j) are various and for certain special responses
A don’t have to exist in the optimal form that leads to the computationally simplest IDN.
Therefore this IDN can have considerably more exacting computational complexity than IDN
marginalizing at the symbol level, but due to marginalizations at the level of symbol (pixel)
blocks it offers a quality output, even as the signal to noise ratio is very low.

The advantage of the layered IDN for an ISI channels with a decomposition-able impulse
responses rests in the inter-marginalization between both layers, that makes its computational
complexity ∝ ML

d + (Md(2Md − 1)
L−1

2 )L lower than complexity ∝ ML2

d of the both distributed
IDNs. The worst properties has in the angle of application flexibility, because it can be applied
only to some few ISI channels. In term of implementation complexity it is a structure relatively
simple.

8. Implementation and complexity reduction issue

8.1 Tree-structured enumeration of combinations and marginalizations

We should use the tree-structured enumeration everywhere it is possible. It represents de
facto a pipeline signal processing based upon an intermediate data usage. Fig. 19 shows this
principle.

As the example using tree-structured implementation, let us expose the simple SISO module
f−1() in Fig. 20, where Ň f (i, j) = {č(i, j − 1, 1), č(i, j, 3), č(i, j + 1, 2), q̌(i, j)}. Such soft
inversion is a component of the IDN marginalizing at the symbol level in Fig. 21.
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Fig. 19. The tree-structured enumeration of combinations and marginalizations.

8.2 Fixation of the arithmetics

The most sensitive arithmetics have the IDNs implemented in the Pd. A large number of
quantities less than 1 are multiplied in the SISO modules of such IDNs and the underflow
of the arithmetics can happen. Therefore the Pd requires the regular scaling of the output
measures

PO[S (�)(k)] =
PO[S (�)(k)]

∑� PO[S (�)(k)]
(50)

and so, the Md is preferable to a real implementation of the IDN. The arithmetics of the Md is
relatively stable and can be protected from the incidental overflow by the scaling

MO[S (�)(k)] = MO[S (�)(k)]− min
�

MO[S (�)(k)]. (51)

But since the overflow is rare as the better scaling is MO[S (�)(k)] = MO[S (�)(k)] −
MO[S (1)(k)] that allows discount the number of swapped measures by the fixed measure
MO[S (1)(k)] = 0.

8.3 Additional sub-optimality embedding complexity reduction

The distributed IDNs can be simplified in addition by the approximation neglecting least
significant rays in the original response of the blurring channel. For example, the

AGBC,0.2574 =

⎡
⎣

0.0607 0.1250 0.0607
0.1250 0.2574 0.1250
0.0607 0.1250 0.0607

⎤
⎦ . (52)
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Fig. 20. The implementation of the SISO module f−1() using tree-structured enumeration of
combinations and marginalizations, where f (): q(i, j) = h�c(i, j − 1, 1) + hc(i, j, 3)
+h�c(i, j + 1, 2)
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8.2 Fixation of the arithmetics

The most sensitive arithmetics have the IDNs implemented in the Pd. A large number of
quantities less than 1 are multiplied in the SISO modules of such IDNs and the underflow
of the arithmetics can happen. Therefore the Pd requires the regular scaling of the output
measures
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and so, the Md is preferable to a real implementation of the IDN. The arithmetics of the Md is
relatively stable and can be protected from the incidental overflow by the scaling
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But since the overflow is rare as the better scaling is MO[S (�)(k)] = MO[S (�)(k)] −
MO[S (1)(k)] that allows discount the number of swapped measures by the fixed measure
MO[S (1)(k)] = 0.

8.3 Additional sub-optimality embedding complexity reduction

The distributed IDNs can be simplified in addition by the approximation neglecting least
significant rays in the original response of the blurring channel. For example, the
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Ň

f
(i
,j
)
=

{1
,0

,0
,h

′ }
]

S[
Ň
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[č
(i
,j

+
1
,2

)
=

1
]

SI
[č
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Fig. 20. The implementation of the SISO module f−1() using tree-structured enumeration of
combinations and marginalizations, where f (): q(i, j) = h�c(i, j − 1, 1) + hc(i, j, 3)
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339
2D Iterative Detection Network Based 
Image Restoration: Principles, Applications and Performance Analysis



26 Will-be-set-by-IN-TECH

can be simplified to the form

ASGBC,0.3399 =

⎡
⎣

0 0.1650 0
0.1650 0.3399 0.1650

0 0.1650 0

⎤
⎦ . (53)
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(c) The IDN cell in the node (i, j).

Fig. 21. The EN and IDN marginalizing at the symbol level with the centered topology for
the horizontal ISI channel A = [ h� h h� ].

by the truncation of last four insignificant rays. The consequences of such approximation are
illustrated in Fig. 23 and Fig. 22. In the both cases it reduces computational complexity to 1

16 .
Moreover, it lowers the number of jumpers to one half in the case of the IDN marginalizing at
the symbol level. The price paid for this rapid simplification rests in a quality degradation of
the reconstructed picture.
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(i,j)

(a) Layouts for the IDN without bias state
variable.
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d(i+2,j+2)

(b) Layouts for the IDN with bias state
variable.

Fig. 22. The layouts of auxiliary state variables R(i, j), C(i, j) and B(i, j) in the IDN
marginalizing at the symbol block level for the ISI channel ASGBC,a(0,0).
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SI[č(i, j, 5)]
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SO[ď(i, j)]

SI
[č
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(c) The IDN cell in the node (i, j).

Fig. 23. The EN and IDN marginalizing at the symbol level with the centered topology for
the ISI channel ASGBC,a(0,0).

Can happen the situation, when the channel truncation causes the original 2D ISI channel
atypical. Therefore, such kind of approximation is suitable especially for the IDN
marginalizing at the symbol level, because it is a very flexible structure, applicable to the
absolutely arbitrary 2D ISI channel. In case of the IDN marginalizing at the symbol block
level can occur the problem with fulfillment of the condition Nd(i, j) = R(i, j)∪ C(i, j)∪ d(i +
HA, j + WA) and the estimators Ř(i, j) and Č(i, j) don’t have to exist in the optimal shapes
that lead to the computationally simplest IDN.
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Fig. 21. The EN and IDN marginalizing at the symbol level with the centered topology for
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by the truncation of last four insignificant rays. The consequences of such approximation are
illustrated in Fig. 23 and Fig. 22. In the both cases it reduces computational complexity to 1

16 .
Moreover, it lowers the number of jumpers to one half in the case of the IDN marginalizing at
the symbol level. The price paid for this rapid simplification rests in a quality degradation of
the reconstructed picture.
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Fig. 22. The layouts of auxiliary state variables R(i, j), C(i, j) and B(i, j) in the IDN
marginalizing at the symbol block level for the ISI channel ASGBC,a(0,0).
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SO[č(i, j, 1)]
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Fig. 23. The EN and IDN marginalizing at the symbol level with the centered topology for
the ISI channel ASGBC,a(0,0).

Can happen the situation, when the channel truncation causes the original 2D ISI channel
atypical. Therefore, such kind of approximation is suitable especially for the IDN
marginalizing at the symbol level, because it is a very flexible structure, applicable to the
absolutely arbitrary 2D ISI channel. In case of the IDN marginalizing at the symbol block
level can occur the problem with fulfillment of the condition Nd(i, j) = R(i, j)∪ C(i, j)∪ d(i +
HA, j + WA) and the estimators Ř(i, j) and Č(i, j) don’t have to exist in the optimal shapes
that lead to the computationally simplest IDN.
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9. Examples of dichromaric picture restoration, performance analyses and
conclusions

9.1 Suppression of the defocusing in the imperfectly adjusted lens (GBC) with BER
performance analyses

We will demonstrate the IDNs functionality on QR code snapshot restorations by the IDNs
marginalizing at the symbol block level that were described in paragraphs 7.1 and 7.2. In
Fig. 24 and Fig. 25 are shown example restorations of two different QR codes by the 1st

and 2nd version of IDNs with bias state variables. Additionally, all versions of these IDNs
has been tested with the Monte Carlo method for performance and compared with simple
threshold detector, based on the relation d̂TD(i, j) = arg minď(i,j)∈{0,1} |

xd(i,j)−μ̂T
C − ď(i, j)|. The

result of this analysis is the set of BER curves shown in Fig. 26 and Fig. 27. As we can see
in the BER curves, all tested IDNs have almost same performance and especially in the area
of higher defocusing the usage is expedient. However, the performance slightly falls down
in the focusation rising and at the beginning of iterative process. It is caused by diminishing
corelation among individual neighboring pixels when iteratively precised state variables do
not carry so fundamental and strong information worth to the current node of the network.

Rd D̂, I = 1,
BER = 0.208

D̂, I = 3,
BER = 0.033

D̂, I = 5,
BER = 0.022

D̂, I = 7,
BER = 0.018

D̂TD ,
BER = 0.141

Fig. 24. The example of the QR code restoration by the distributed IDN marginalizing at the
symbol block level with bias state variables (Pd-SyD, 1st version): Kernel AGBC,2/10, Nb = 8,
ΔQ = 3, C = 612, μT = 50, μR = 25, σR = 10.

Rd D̂, I = 1,
BER = 0.168

D̂, I = 3,
BER = 0.021

D̂, I = 5,
BER = 0.006

D̂, I = 7,
BER = 0.004

D̂TD ,
BER = 0.085

Fig. 25. The example of the QR code restoration by the distributed IDN marginalizing at the
symbol block level with bias state variables (Pd-SyD, 2nd version): Kernel AGBC,2/10, Nb = 8,
ΔQ = 3, C = 612, μT = 50, μR = 25, σR = 10.

In other words, the output {SI[d(�)(i + HA, j + WA)]}� of current node strongly depends only
on the input {SI[q(�)(i, j)]}� (product of the SODEM) and not so much on the state information
{SI[R(�)(i, j)]}�, {SI[R(�)(i, j + 1)]}�, {SI[C(�)(i, j)]}�, {SI[C(�)(i + 1, j)]}�, {SI[B(�)(i, j)]}� and
{SI[B(�)(i + 1, j + 1)]}� from other nodes as in the case of high defocusing.
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Mentioned BER curves leads to conclusion, that the application of IDNs with bias state
variables is better than standard IDNs marginalizing at the symbol block level, because
bring evident implementation advantages beside performance preservation. In the case of 1st

version it is consensus in the output state variables R(i, j + 1) = C(i + 1, j) = B(i + 1, j + 1),
that warrants equation SI[Ř(i, j + 1)] C©SI[Ř(i, j + 1)] = SI[Č(i + 1, j)] C©SI[Č(i + 1, j)] =
SI[B̌(i + 1, j + 1)] C©SI[B̌(i + 1, j + 1)] and allows only one and same marginalization for whole
triplet of the state variables. On the other hand, the 2nd version is visible significant reduction
of state variable cardinalities.
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Fig. 26. The BER curves (1st, 2nd, 3th and 7th iteration) of the distributed IDN marginalizing at
the symbol block level (Pd-SyD, black line with squares) and distributed IDN marginalizing
at the symbol block level with bias state variables (Pd-SyD, 1st version — red line with
triangles, 2nd version — black line with triangles): Kernel AGBC,a(0,0), Nb = 8, ΔQ = 3,
C = 612. The comparison with BER curves (dot line with circles) of the threshold detector.
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9. Examples of dichromaric picture restoration, performance analyses and
conclusions

9.1 Suppression of the defocusing in the imperfectly adjusted lens (GBC) with BER
performance analyses

We will demonstrate the IDNs functionality on QR code snapshot restorations by the IDNs
marginalizing at the symbol block level that were described in paragraphs 7.1 and 7.2. In
Fig. 24 and Fig. 25 are shown example restorations of two different QR codes by the 1st

and 2nd version of IDNs with bias state variables. Additionally, all versions of these IDNs
has been tested with the Monte Carlo method for performance and compared with simple
threshold detector, based on the relation d̂TD(i, j) = arg minď(i,j)∈{0,1} |

xd(i,j)−μ̂T
C − ď(i, j)|. The

result of this analysis is the set of BER curves shown in Fig. 26 and Fig. 27. As we can see
in the BER curves, all tested IDNs have almost same performance and especially in the area
of higher defocusing the usage is expedient. However, the performance slightly falls down
in the focusation rising and at the beginning of iterative process. It is caused by diminishing
corelation among individual neighboring pixels when iteratively precised state variables do
not carry so fundamental and strong information worth to the current node of the network.
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Fig. 24. The example of the QR code restoration by the distributed IDN marginalizing at the
symbol block level with bias state variables (Pd-SyD, 1st version): Kernel AGBC,2/10, Nb = 8,
ΔQ = 3, C = 612, μT = 50, μR = 25, σR = 10.
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Fig. 25. The example of the QR code restoration by the distributed IDN marginalizing at the
symbol block level with bias state variables (Pd-SyD, 2nd version): Kernel AGBC,2/10, Nb = 8,
ΔQ = 3, C = 612, μT = 50, μR = 25, σR = 10.

In other words, the output {SI[d(�)(i + HA, j + WA)]}� of current node strongly depends only
on the input {SI[q(�)(i, j)]}� (product of the SODEM) and not so much on the state information
{SI[R(�)(i, j)]}�, {SI[R(�)(i, j + 1)]}�, {SI[C(�)(i, j)]}�, {SI[C(�)(i + 1, j)]}�, {SI[B(�)(i, j)]}� and
{SI[B(�)(i + 1, j + 1)]}� from other nodes as in the case of high defocusing.
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Mentioned BER curves leads to conclusion, that the application of IDNs with bias state
variables is better than standard IDNs marginalizing at the symbol block level, because
bring evident implementation advantages beside performance preservation. In the case of 1st

version it is consensus in the output state variables R(i, j + 1) = C(i + 1, j) = B(i + 1, j + 1),
that warrants equation SI[Ř(i, j + 1)] C©SI[Ř(i, j + 1)] = SI[Č(i + 1, j)] C©SI[Č(i + 1, j)] =
SI[B̌(i + 1, j + 1)] C©SI[B̌(i + 1, j + 1)] and allows only one and same marginalization for whole
triplet of the state variables. On the other hand, the 2nd version is visible significant reduction
of state variable cardinalities.
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Fig. 26. The BER curves (1st, 2nd, 3th and 7th iteration) of the distributed IDN marginalizing at
the symbol block level (Pd-SyD, black line with squares) and distributed IDN marginalizing
at the symbol block level with bias state variables (Pd-SyD, 1st version — red line with
triangles, 2nd version — black line with triangles): Kernel AGBC,a(0,0), Nb = 8, ΔQ = 3,
C = 612. The comparison with BER curves (dot line with circles) of the threshold detector.
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Fig. 27. The BER curves (1st, 2nd, 3th and 7th iteration) of the distributed IDN marginalizing at
the symbol block level (Pd-PgD, black line with squares) and distributed IDN marginalizing
at the symbol block level with bias state variables (Pd-PgD, 1st version — red line with
triangles, 2nd version — black line with triangles): Kernel AGBC,a(0,0), Nb = 8, ΔQ = 3,
C = 612. The comparison with BER curves (dot line with circles) of the threshold detector.

9.2 Suppression of the blurring due to object moving (BOM)

In this case we use for functionality demonstration the IDNs marginalizing at the symbol
level. The following Fig. 31 shows the sample pictures restored by these IDNs for two different
combination of the BOM. Used IDNs (theirs topologies) are represented in Fig 29 and Fig 30.
Of course the IDNs marginalizing at the symbol block level can be used for this issue too.
Theirs state variables are shown in Fig. 28.

The usage without whatever other supporting aids (external synchronization) demands the
perfect knowledge about the scanned moving object (ss and velocity vector). But, if all
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mentioned conditions are fulfilled, the IDN produces a high quality output (estimation D̂)
on the other hand.

C(
i,
j)

d(i+6,j)

ABOM,0

(a) ABOM,0.

d(i+2,j+2)

C(
i,
j)

R(i, j)

ABOM,π/4

(b) ABOM,π/4.

Fig. 28. The shapes of auxiliary state variables R(i, j) and C(i, j) in the IDN marginalizing at
the symbol block level for the ISI channel ABOM,ϕ.

The example of the IDN malfunction, caused by the wrong movement parameters adjustment,
is demonstrated in Fig. 32. Suppose that the true starting point is s�s and corresponds with the
correct impulse response

A�
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, (54)

This response makes the blurring in Fig. 32b. If the IDN is consequently fed by the
wrong impulse response A0 coming from the shifted point ss , then its failure, shown in
Fig. 32c, is going to happen. It presents a serious problem, because we mostly have not
available so accurate information about the movement of the scanned object. Thus, in the
overwhelming majority of real applications, the IDN will have been supplemented by the
auxiliary synchronizer performing the reliable estimation ŝ�s of the s�s placement inside the
blue square in Fig. 32a.

The section vehicle speed measurement appears to be the most suitable application of the
described method, because it is based on the signplate detection at the beginning and at
the end of the monitored section, where the scanned vehicles have the same direction of
the movement. So, the synchronization of the IDN will not represent a serious issue in this
application.
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Fig. 27. The BER curves (1st, 2nd, 3th and 7th iteration) of the distributed IDN marginalizing at
the symbol block level (Pd-PgD, black line with squares) and distributed IDN marginalizing
at the symbol block level with bias state variables (Pd-PgD, 1st version — red line with
triangles, 2nd version — black line with triangles): Kernel AGBC,a(0,0), Nb = 8, ΔQ = 3,
C = 612. The comparison with BER curves (dot line with circles) of the threshold detector.

9.2 Suppression of the blurring due to object moving (BOM)

In this case we use for functionality demonstration the IDNs marginalizing at the symbol
level. The following Fig. 31 shows the sample pictures restored by these IDNs for two different
combination of the BOM. Used IDNs (theirs topologies) are represented in Fig 29 and Fig 30.
Of course the IDNs marginalizing at the symbol block level can be used for this issue too.
Theirs state variables are shown in Fig. 28.

The usage without whatever other supporting aids (external synchronization) demands the
perfect knowledge about the scanned moving object (ss and velocity vector). But, if all
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mentioned conditions are fulfilled, the IDN produces a high quality output (estimation D̂)
on the other hand.
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Fig. 28. The shapes of auxiliary state variables R(i, j) and C(i, j) in the IDN marginalizing at
the symbol block level for the ISI channel ABOM,ϕ.

The example of the IDN malfunction, caused by the wrong movement parameters adjustment,
is demonstrated in Fig. 32. Suppose that the true starting point is s�s and corresponds with the
correct impulse response
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This response makes the blurring in Fig. 32b. If the IDN is consequently fed by the
wrong impulse response A0 coming from the shifted point ss , then its failure, shown in
Fig. 32c, is going to happen. It presents a serious problem, because we mostly have not
available so accurate information about the movement of the scanned object. Thus, in the
overwhelming majority of real applications, the IDN will have been supplemented by the
auxiliary synchronizer performing the reliable estimation ŝ�s of the s�s placement inside the
blue square in Fig. 32a.

The section vehicle speed measurement appears to be the most suitable application of the
described method, because it is based on the signplate detection at the beginning and at
the end of the monitored section, where the scanned vehicles have the same direction of
the movement. So, the synchronization of the IDN will not represent a serious issue in this
application.

345
2D Iterative Detection Network Based 
Image Restoration: Principles, Applications and Performance Analysis



32 Will-be-set-by-IN-TECH

i − 3

i − 2

i − 1

i

i + 1

i + 2

i + 3

j

(a) The topology of the EN and
IDN.

c
(
i
,
j
,
4
)

c
(
i
,
j
,
5
)

c
(
i
,
j
,
6
)

c
(
i
,
j
,
3
)

c
(
i
,
j
,
2
)

c
(
i
,
j
,
1
)

c
(
i
−

3
,
j
,
6
)

c
(
i
−

1
,
j
,
5
)

c
(
i
−

2
,
j
,
4
)

c
(
i
+

2
,
j
,
1
)

c
(
i
+

1
,
j
,
2
)

c
(
i
+

3
,
j
,
3
)

q(i, j)

d(i, j)

c(i, j, 7)
f( )

B

(b) The EN cell in the node
(i, j).

SI
[č
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[č

(
i
,
j
,
6
)
]

SI
[č
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[č

(
i
,
j
,
3
)
]

SO
[č
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SO[č(i, j, 7)]
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Fig. 29. The EN and IDN marginalizing at the symbol level with the centered topology for
the ISI channel ABOM,0.
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SI[č(i, j − 1, 1)]
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[č
(i
,
j,

5
)]

SO
[č
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Fig. 30. The EN and IDN marginalizing at the symbol level with the centered topology for
the ISI channel ABOM,π/4.
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[č

(
i
+

1
,
j
,
2
)
]

SO
[č
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Fig. 29. The EN and IDN marginalizing at the symbol level with the centered topology for
the ISI channel ABOM,0.
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Fig. 30. The EN and IDN marginalizing at the symbol level with the centered topology for
the ISI channel ABOM,π/4.
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(a.1) The realization Rd of
the A/D converter output.

(a.2) The hard decision D̂ after
3th iteration of the IDN.

(a.3) The hard decision D̂ after
7th iteration of the IDN.

(b.1) The realization Rd of the
A/D converter output.

(b.2) The hard decision D̂ after
3th iteration of the IDN.

(b.3) The hard decision D̂ after
7th iteration of the IDN.

Fig. 31. The examples of image restorations by the distributed IDN marginalizing at the
symbol level (Pd-PgD) for the channels ABOM,0(a) and ABOM,π/4(b) merged with the simple
noise model including the thermal noise and the quantization noise: Nb = 8, ΔQ = 3,
C = 768, μT = 200.

ss s′s

(a) The trajectory starting
point displacement.

(b) The realization Rd of the
A/D converter output.

(c) The hard decision D̂ after 7th

iteration of the wrong adjusted
IDN.

Fig. 32. The example of the wrong image restoration by the distributed IDN marginalizing at
the symbol level (Pd-PgD), that was incorrectly set by the ABOM,0 at the true blurring A′

BOM,0
merged with the simple noise model including the thermal noise and the quantization noise:
C = 768, Nb = 8, Δd = 3, μT = 200.
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9.3 Conclusions and open problems

The IDNs are based on the optimal (the best) MAP detector and so they are mostly able to
obtain the optimal estimation. The IDN, analogous to the optimal detector, forms all possible
variants of the input image and compares them with the corrupted image by the decision
metric perfectly matched to the noise distribution. There is the difference only in fact, that
the IDN solves this issue smartly by the suitable image segmentation and with minimal
computational exigencies. This can be considered as the greatest advantage of the IDNs.

The important disadvantage rests in the application limitations, because the contemporary
IDNs are able to restore a dichromatic (or black and white) patterns only (texts, car sign plates,
QR codes, etc.). For restoration of grayscale or color image restorations and larger 2D ISI
channels, where the number of all possible realizations of current convolution region {N (�)}�
extremely grows, the IDN will require the another sub-optimality embedding simplification
(generalization). Although the IDNs perform the segmental image processing, the numerical
complexity is extreme. Individual SISO modules in the IDN can not be implemented directly
as was shown on the simple example in Fig. 20, but must be realized also as the certain
iterative system. This would establish an iterative detection network where each inner cell
presents iterative subnet. The question remains how a single-shot SISO can be approximated
to the iterative subnet. If it is possible and what level of sub-optimality this establish and
whether this sub-optimality allows the good and fast convergence of the entire system to
the correct solution. At present it is only surmise without concrete and functional results.
But it is clear, that such network will be more suboptimal and its performace will not be so
good as in the case of black & white images, where SISO module can be implemented as a
single-shot (optimal) system. The next problem rests in fact, that is not possible analytically
predicate the behaviour of such network due to extreme quantity of functional blocks and
interconnections. Therefore the computer simulation and debuging will be very difficult and
based on the labour principle. However, this method has very good application in the case
of black & white images and it is completely different from classical methods like adaptive
filtration, minimum mean square errors, etc. Because it is perfectly matched to the noise
distribution and reconstruct image from all possible images by the intelligent way. Thanks
to this ability the IDN is very powerful and can find good use in the area of image halftoning
(Chugg et al., 2001), text detection, QR code detection, number plate detection of cars (traffic
monitoring system), etc.

The last problem rests in the iterative detection network synchronization. In all cases it was
considered that the IDN has perfect knowledge about kernel of the 2D ISI channel. This
information, however, in reality it is not known and must be estimated. A Soft decision
directed (SDD) Channel state estimator (CSE) can be used for this purposes. One of the most
suitable CSEs for an IDN synchronization is the Expectation-Maximization (EM) algorithm.
Its greatest benefit rests in the implementation simplicity and additional information about
the algorithm can be found in (Noels et al., 2003).

10. References

Chugg, K.; Anastasopoulos, A. & Chen, X. (2001). Iterative detection : Adaptivity, Complexity
reduction and Applications, Kluwer Academic Publishers, ISBN 0-470-84757-3.

349
2D Iterative Detection Network Based 
Image Restoration: Principles, Applications and Performance Analysis



34 Will-be-set-by-IN-TECH

(a.1) The realization Rd of
the A/D converter output.

(a.2) The hard decision D̂ after
3th iteration of the IDN.

(a.3) The hard decision D̂ after
7th iteration of the IDN.

(b.1) The realization Rd of the
A/D converter output.

(b.2) The hard decision D̂ after
3th iteration of the IDN.

(b.3) The hard decision D̂ after
7th iteration of the IDN.

Fig. 31. The examples of image restorations by the distributed IDN marginalizing at the
symbol level (Pd-PgD) for the channels ABOM,0(a) and ABOM,π/4(b) merged with the simple
noise model including the thermal noise and the quantization noise: Nb = 8, ΔQ = 3,
C = 768, μT = 200.

ss s′s

(a) The trajectory starting
point displacement.

(b) The realization Rd of the
A/D converter output.

(c) The hard decision D̂ after 7th

iteration of the wrong adjusted
IDN.

Fig. 32. The example of the wrong image restoration by the distributed IDN marginalizing at
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An Application of Digital Image Restoration
Techniques to Error Control Coding

Pål Ellingsen
Department of Computer Science

University College of Bergen
Norway

1. Introduction

Digital image restoration has been a field of very active research for many years, and digital
image restoration techniques has been put to use in a lot of different contexts including
astronomy, medicine, intelligence work and many others (Banham & Katsaggelos (1997)).
Common to these fields of application is that the restoration techniques are applied to image
data of some kind true to the original intentions of the algorithms. In this text we present an
application of principles from digital image restoration to the field of coding theory, and the
objects of application are not images but rather general information data.

Information can be represented in many different ways. A typical approach in information
theory is to represent information as binary vectors, but there are many situations where
information can rather be represented as a matrix or grid containing the information symbols
giving rise to the concept of two-dimensional channels. Good examples of this can be found
in the fields of magnetic and optical storage, bar codes and others.

When transmitting information of any kind, a central problem is how to deal with errors that
result from the transmission process, and a solution to this problem is to add redundancy
to the information in such a way that it is possible to detect and eventually also correct the
errors that occur. Adding this redundancy is called error control coding, and the techniques
for doing so is called error correcting or detecting codes. There exists a huge variety of
error control coding techniques for channels with different characteristics and for fulfilling
different sets of requirements. However, most of the channel coding techniques assumes the
information that is to be encoded, are one-dimensional vectors or a stream of information
symbols. Channel coding for two-dimensional channels on the other hand, is a part of coding
theory that has only recently attracted attention from the coding theory community.

There are different models for describing how errors occur in a two-dimensional
communication channel.

• The errors can be modeled as independent and identically distributed over the information
symbols. In this case the problem of error control coding is reduced to the case of error
control coding for a one-dimensional channel with an equal information rate.

• The errors can be modeled by considering two-dimensional intersymbol interference,
which is the effect of the information symbols interfering with their neighboring
information symbols. This error model applies to many practical communication
channels, most notably magnetic and optical storage media (which can be seen as
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2 Image Restoration

communication channels). This error model has been studied extensively, see for example
Singla & O’Sullivan (2005) and Kurkoski (2008).

• The errors can be modeled as spatially contagious areas bounding a cluster of errors. The
underlying channel model assumes that the information symbols are affected by some
physical process that affects a limited part of the information. Error that result from such
processes would form error bursts that may take the form of clusters or be concentrated to a
limited area. Such error clusters are defined differently in the literature, but a very common
approach is to define an error cluster as a rectangular area of a given size n1 × n2. Code
constructions for this type of cluster errors can be found in Farrell (1982) Schwartz & Etzion
(2005) and Breitbach et al. (1998). More recently, error clusters of arbitrary form has
been considered in several works, and most of these use interleaving strategies to correct
cluster errors. This approach is used in Blaum et al. (1998), Schwartz & Etzion (2003) and
Xu & Golomb (2007).

In the following we take the latter perspective on the nature of errors on a two-dimensional
channel, and we apply techniques from digital image restoration to support the decoding
process since these methods can exploit the information inherent in the two-dimensional
cluster error model. The core element in this application of digital image restoration is looking
at the encoded information as "noise" and the areas affected by burst errors as the "original
image" that we want to restore. The strategy is to first encode the information at the source
using ordinary error control coding. At the receiver, ordinary decoding and detection of the
error clusters are combined in an iterative system where the decoding process produces an
estimate of the probability of error in each information symbol, and this estimate is then used
as input to a component that produces an estimate of the size and shape of the error burst
based on image restoration techniques. The information that is extracted from this process is
then used to support the decoding process as a priori information about the error clusters.

Decoder Detector

Error probability estimate

Error cluster estimate

Fig. 1. Basic principle of iterative process

2. General overview over relevant image restoration techniques

In our application we are concerned with describing the statistical properties of context
dependent entities such as neighboring bits in a two-dimensional representation of digital
information. One technique for describing such properties is the use of Markov random
field theory which uses conditional probabilities to describe spatial dependencies in an
n-dimensional system. This approach is based on the results of Shridhar, Ahmadi and
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El-Gabali who developed the applied techniques in Shridhar et al. (1989), El-Gabali et al.
(1987), El-Gabali et al. (1988) and El-Gabali et al. (1990) but similar techniques are also
presented in Geman & Geman (1993), Zhang (1993), Jeng & Woods (1991) and Chalmond
(1988). The basis for all of these image restoration techniques is that simulated annealing
is used to produce an estimate of the maximum a posteriori probability of the original
image and the techniques has been extensively used for different purposes within the field
of image processing, including image restoration, image segmentation, object identification
and texture analysis. Using a system model based on Markov random field theory, one
wants to find the joint distribution of the variables representing the image (e.g. pixels) and
then use this distribution as basis for detecting the original scene and eliminate or reduce
noise in the image. However, finding the joint distribution directly from a Markov random
field model is mathematically intractable, so one needs to compute the distribution by aid of
the so-called Hammersley-Clifford theorem which states the equivalence between the joint
distribution of the variables in a Markov random field and Gibbs distribution which can
be treated mathematically in an efficient way. Given this distribution one common method
for performing the actual detection of the original image is to find the maximum a priori
probability for the image given the observed output.

3. General overview of the iterative decoding and detection process

two-dimensional channels are subjected to different kinds of errors, but in this setting we
are interested in sources of errors that will affect spatially limited parts of a two-dimensional
codeword. This is called an error cluster or equivalently a burst error. Burst error correction
is a well known and much studied problem, but none of the classical techniques in this field
are able to take into account the fact that such spatially correlated error clusters gives rise
to a statistical correlation on the error probability for neighboring positions in the codeword.
Using the above mentioned techniques from digital image restoration is one way one can
exploit this extra information given in the error model.

Several different approaches are possible when trying to use the information gleaned from the
image restoration to enhance the decoding process. However, our approach is based on the
use of so-called soft input - soft output (SISO) decoding. The principle behind this decoding
strategy is that the decoder should accept input values in the form of conditional probabilities
as a measure of the reliability of the corresponding channel value, and as output produce
a new measure of reliability for the corresponding channel value. Such a decoder can take
advantage of the information produced by the restoration process in a very natural way by
supplying conditional probabilities resulting from the estimation process described below.

Based on results from our papers Ellingsen et al. (2004) Ellingsen & Kvamme (2010) we show
how this principle can be used to implement an actual decoding system based on the
techniques described above. We study two different channel models, the two-dimensional
binary asymmetric channel and the two-dimensional binary symmetric channel, and use
LDPC-codes for error correction. Then we show how the redundant information of the code
can be used to provide prior information to an image restoration process, while the results
from the image restoration process is used to assist the decoding process by providing a priori
information to the decoder. Thus we construct an iterative decoding process where estimates
in the form of conditional probabilities for each bit in the codeword is exchanged back and
forth between the LDPC-decoder and the image restoration module. The results from this
process are compared to the results when using the LDPC decoder alone and we see that
there is a significant gain in performance.
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Fig. 1. Basic principle of iterative process

2. General overview over relevant image restoration techniques

In our application we are concerned with describing the statistical properties of context
dependent entities such as neighboring bits in a two-dimensional representation of digital
information. One technique for describing such properties is the use of Markov random
field theory which uses conditional probabilities to describe spatial dependencies in an
n-dimensional system. This approach is based on the results of Shridhar, Ahmadi and
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El-Gabali who developed the applied techniques in Shridhar et al. (1989), El-Gabali et al.
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is used to produce an estimate of the maximum a posteriori probability of the original
image and the techniques has been extensively used for different purposes within the field
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and texture analysis. Using a system model based on Markov random field theory, one
wants to find the joint distribution of the variables representing the image (e.g. pixels) and
then use this distribution as basis for detecting the original scene and eliminate or reduce
noise in the image. However, finding the joint distribution directly from a Markov random
field model is mathematically intractable, so one needs to compute the distribution by aid of
the so-called Hammersley-Clifford theorem which states the equivalence between the joint
distribution of the variables in a Markov random field and Gibbs distribution which can
be treated mathematically in an efficient way. Given this distribution one common method
for performing the actual detection of the original image is to find the maximum a priori
probability for the image given the observed output.

3. General overview of the iterative decoding and detection process

two-dimensional channels are subjected to different kinds of errors, but in this setting we
are interested in sources of errors that will affect spatially limited parts of a two-dimensional
codeword. This is called an error cluster or equivalently a burst error. Burst error correction
is a well known and much studied problem, but none of the classical techniques in this field
are able to take into account the fact that such spatially correlated error clusters gives rise
to a statistical correlation on the error probability for neighboring positions in the codeword.
Using the above mentioned techniques from digital image restoration is one way one can
exploit this extra information given in the error model.

Several different approaches are possible when trying to use the information gleaned from the
image restoration to enhance the decoding process. However, our approach is based on the
use of so-called soft input - soft output (SISO) decoding. The principle behind this decoding
strategy is that the decoder should accept input values in the form of conditional probabilities
as a measure of the reliability of the corresponding channel value, and as output produce
a new measure of reliability for the corresponding channel value. Such a decoder can take
advantage of the information produced by the restoration process in a very natural way by
supplying conditional probabilities resulting from the estimation process described below.

Based on results from our papers Ellingsen et al. (2004) Ellingsen & Kvamme (2010) we show
how this principle can be used to implement an actual decoding system based on the
techniques described above. We study two different channel models, the two-dimensional
binary asymmetric channel and the two-dimensional binary symmetric channel, and use
LDPC-codes for error correction. Then we show how the redundant information of the code
can be used to provide prior information to an image restoration process, while the results
from the image restoration process is used to assist the decoding process by providing a priori
information to the decoder. Thus we construct an iterative decoding process where estimates
in the form of conditional probabilities for each bit in the codeword is exchanged back and
forth between the LDPC-decoder and the image restoration module. The results from this
process are compared to the results when using the LDPC decoder alone and we see that
there is a significant gain in performance.
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4. Details of restoration technique

4.1 Modelling a two-dimensional channel using Markov Random Fields

A channel with memory is characterized by the existence of dependencies in the noise
generating process. Such dependencies can e.g. be described by a Markov chain in the case
of one-dimensional channels as is the case for the Gilbert-Elliott channel Gilbert et al. (1960).
This implies that the channel will have characteristics that are varying with time. We want
to extend this line of thinking to the case of two-dimensional channels and look at spatial
dependencies in the noise generating process rather than temporal dependencies as in the
one-dimensional case. Such spatial dependencies can be modeled using a Markov Random
Field (MRF).

An MRF can be seen as a generalization of Markov chains, but while a Markov chain is often
defined over a domain of time as a sequence of random variables, an MRF can be defined in
space to describe dependencies between variables on a grid of dimension 2 or higher.

4.2 Markov Random Fields

Consider a set of random variables A = {Ai|i ∈ I} for some index set I, where the variables
are organized in a two dimensional grid. Let the variables correspond to the vertices and the
statistical dependencies between the variables correspond to edges in an undirected graph G.
We shall use this setup to model both codewords and errors in our system. Two connected
vertices in G are said to be neighbors, and a neighborhood Ni of a vertex ai can be defined as the
set of vertices that are connected to ai in G. Different sizes of neighborhoods can be defined
for an MRF. By convention, a node is not a neighbor of itself. On a regular lattice we define
the first order neighborhood to be the four closest neighbors of a node as seen below, the
second order neighborhood as the eight closest neighbors and so on. The collection of all
neighborhoods N = {Ni | ∀i ∈ I} in a graph, is called a neighborhood system.
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Within the neighborhood of a vertex ai, we define a clique to be any collection of vertices that
contains ai and forms a fully connected subgraph of G, i. e. that the vertices are mutual
neighbors relative to the neighborhood system N . In the case of a first order neighborhood,
all nodes within distance 1 of the center are said to be neighbors, and the cliques become
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the center node ai and all pairs of (ai, aj) where aj is a neighbor of ai. In a second order
neighborhood, all nodes within distance

√
2 are defined as neighbors:
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The collection of all cliques of size i in a neighborhood system N is called Ci. The set C of all
cliques in a graph can then be partitioned into the subsets Ci for 1 ≤ i ≤ n

Now, based on the concept of neighborhoods we can then proceed to define a Markov Random
Field. Just as a Markov chain {. . . , ak, ak−1, ak−2, . . .} satisfies

P(ai|ai−1, ai−2, . . .) = P(ai|ai−1, ai−2, . . . , ai−n)

for some n, a Markov Random Field should satisfy

P(ai|aI−{i}) = P(ai | Ni)

where I is the set of indices of a and Ni is the neighborhood of ai as defined above.

4.3 Probability distribution

The fact that the errors of our channel can be represented by an MRF does not immediately
enable us to analyze the error patterns statistically. By assuming that the dependencies in
a collection of random variables can be represented by an MRF, the joint probability of the
variables is given by the so called Gibbs distribution.

357An Application of Digital Image Restoration Techniques to Error Control Coding



4 Image Restoration

4. Details of restoration technique

4.1 Modelling a two-dimensional channel using Markov Random Fields

A channel with memory is characterized by the existence of dependencies in the noise
generating process. Such dependencies can e.g. be described by a Markov chain in the case
of one-dimensional channels as is the case for the Gilbert-Elliott channel Gilbert et al. (1960).
This implies that the channel will have characteristics that are varying with time. We want
to extend this line of thinking to the case of two-dimensional channels and look at spatial
dependencies in the noise generating process rather than temporal dependencies as in the
one-dimensional case. Such spatial dependencies can be modeled using a Markov Random
Field (MRF).

An MRF can be seen as a generalization of Markov chains, but while a Markov chain is often
defined over a domain of time as a sequence of random variables, an MRF can be defined in
space to describe dependencies between variables on a grid of dimension 2 or higher.

4.2 Markov Random Fields

Consider a set of random variables A = {Ai|i ∈ I} for some index set I, where the variables
are organized in a two dimensional grid. Let the variables correspond to the vertices and the
statistical dependencies between the variables correspond to edges in an undirected graph G.
We shall use this setup to model both codewords and errors in our system. Two connected
vertices in G are said to be neighbors, and a neighborhood Ni of a vertex ai can be defined as the
set of vertices that are connected to ai in G. Different sizes of neighborhoods can be defined
for an MRF. By convention, a node is not a neighbor of itself. On a regular lattice we define
the first order neighborhood to be the four closest neighbors of a node as seen below, the
second order neighborhood as the eight closest neighbors and so on. The collection of all
neighborhoods N = {Ni | ∀i ∈ I} in a graph, is called a neighborhood system.

�
�
�

�
�
�

�
�
�

��� � ���

�
�
� � ��� � ���

�
�
�

��� �

�
�
� ai � ���

�
�
�

��� � ���

�
�
� � ���

�
�
� � ���

�
�
�

Within the neighborhood of a vertex ai, we define a clique to be any collection of vertices that
contains ai and forms a fully connected subgraph of G, i. e. that the vertices are mutual
neighbors relative to the neighborhood system N . In the case of a first order neighborhood,
all nodes within distance 1 of the center are said to be neighbors, and the cliques become

356 Image Restoration – Recent Advances and Applications An Application of Digital Image Restoration Techniques to Error Control Coding 5

the center node ai and all pairs of (ai, aj) where aj is a neighbor of ai. In a second order
neighborhood, all nodes within distance

√
2 are defined as neighbors:

�
�
�

�
�
�

�
�
�

��� �

��
��

��
��

� � ���

��� � ai

��
��

��
��

�������� � ���

��� �

�
�
�

��������
�

�
�
� � ���

�
�
�

and in this case the cliques becomes any configuration of

ai ai �

ai � ai

��
��

��
��

�

�

�������

�

�
�

�
�

�

The collection of all cliques of size i in a neighborhood system N is called Ci. The set C of all
cliques in a graph can then be partitioned into the subsets Ci for 1 ≤ i ≤ n

Now, based on the concept of neighborhoods we can then proceed to define a Markov Random
Field. Just as a Markov chain {. . . , ak, ak−1, ak−2, . . .} satisfies

P(ai|ai−1, ai−2, . . .) = P(ai|ai−1, ai−2, . . . , ai−n)

for some n, a Markov Random Field should satisfy

P(ai|aI−{i}) = P(ai | Ni)

where I is the set of indices of a and Ni is the neighborhood of ai as defined above.

4.3 Probability distribution

The fact that the errors of our channel can be represented by an MRF does not immediately
enable us to analyze the error patterns statistically. By assuming that the dependencies in
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Definition 1 (Gibbs distribution). A set of random variables is said to be a Gibbs random field
(GRF) if the joint distribution of the variables takes the following form:

P(X = x) =
1
Z

exp
[
− 1

T
U(X)

]
(1)

This distribution is called a Gibbs distribution.

• Z is a constant called the partition function and can be expressed as Z = ∑x∈X e− 1
T U(x), so

that Z−1 becomes a normalizing constant in the expression.
• U(x) is called the energy function and is a function of the values of the variables forming

cliques in the field. It can be written as

U(x) = ∑
c∈C

Vc(x) (2)

We can expand (2) further by summing over the cliques of the same degree separately

∑
c∈C

Vc(x) = ∑
a∈C1

V1(a) + ∑
a,b∈C2

V2(a, b) + ∑
a,b,c∈C3

V3(a, b, c) + . . . (3)

where Ci is the collection of all cliques of degree i, so that Vi is a function of i variables
forming a clique, and ∑Ci

Vi mean that we sum over all possible cliques in the field of
degree i.

• T is called the temperature (this is a legacy from the distribution’s origin in statistical
physics). The parameter T influences the degree of cohesion between the variables on
a grid, so that a higher temperature corresponds to a lower degree of cohesion in the
sense that the values of the variables becomes more and more independent, while a lower
temperature gives a higher probability of the formation of large clusters of variables with
the same value. We shall assume that the temperature is 1 in our simulations, even if the
parameter will be used in the theoretical treatment of the decoding algorithm.

The Clifford-Hammersley theorem states that for a set of variables F with a neighborhood
system N , F is an MRF with respect to N if and only if F is a GRF with respect to N . See
Kindermann & Snell (1980).

Unfortunately, Z is very hard to compute. Since we have to consider all possible of values of x
in order to find Z, the computational complexity of the task is a formidable O(2n), effectively
preventing us from computing the absolute probabilities for the configurations of X. It is
nevertheless possible to use the Gibbs distribution to find an estimate of the error patterns
generated by the channel.

4.4 MAP estimation

We want to find an estimate of the error pattern that was added to the codeword, based on the
assumptions about the dependence between errors given in the previous sections. In order to
avoid computing the constant Z in the Gibbs distribution, we will do a MAP estimation of the
errors. That is, given a received word Y, we want to find an estimate of the most likely error
pattern X that was added to C. Some terminology is needed in order to develop this.

Let A be a set of random variables defined on the set L, and let the elements of A be indexed
by 1 ≤ i ≤ n. If Ai = ai for each variable Ai, where ai ∈ L, we call {a1, . . . , an} = a a
configuration of A
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MAP estimation of the error pattern X based on the received word Y can be formulated as the
optimization of the a posteriori probability P(X = x|Y = y) with respect to x. That is, we want
to find a configuration x that makes the probability P(X = x|Y = y) as high as possible.

Bayes rule gives us

P(X = x|Y = y) =
P(X = x)P(Y = y|X = x)

P(Y = y)

Since P(Y = y) does not depend on P(X = x), we can maximize over

P(X = x)P(Y = y|X = x) (4)

To find the probabilities P(Y = y|X = x), we must take care to remember that the error pattern
X is now considered as the original information that we want to estimate, and the codeword C
is to be considered as errors obscuring the information. In the following, we shall make some
assumptions about X and C.

• The variables are bipolar, with 1 corresponding to 0 and −1 corresponding to 1 in the
channel model.

• The codeword C, when treated as errors, can be seen as random bipolar variables so that

P(C = c) = ∏
i

P(ci) = (
1
2
)n

The conditional probabilities must then be expressed by by using the characteristics of the
channel and this expression must then be optimized with respect to the input configuration.
In chapter 5.3 and 6.3 we show two examples of how this optimization can be done for a given
channel. In both of our cases, finding a global maximum of the conditional probabilities with
respect to x would become computationally infeasible as the size of x increases. Instead, we
use the local dependencies between bits to do a local optimization along the lines of the PDFE
in Neifeld & King (1998); Neifield et al. (1996) or the partial binary segmentation algorithm of
Shridhar et al. (1989).

4.5 Error generation

Generation of two dimensional burst errors for simulation purposes is done by the use of a
Monte Carlo Markov chain technique called the Metropolis algorithm. We do not have very
strict requirements for the generated sample configurations, other than that they should be
"somewhat likely" to occur given the condition that the variables’ distribution is given by the
Gibbs distribution.

The Metropolis algorithm is a general method for generating samples from a joint distribution
of two or more variables, and can be applied to distributions that are either continuous
or discrete as long as it is possible to compute the difference of the likelihoods for two
configurations of the variables.

We would like to sample the joint distribution A = {A1, . . . , An}. This is achieved by
generating random changes to the components Ai of A, and accepting or rejecting these
changes based on how they affect the likelihood of the configuration. In our case, the natural
change to a component of a configuration would be to flip the bit value.
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Given an initial configuration A, a new configuration A∗ is obtained as explained above by
flipping a bit. Then, the difference of the likelihood of the new configuration and the old
configuration is calculated by

ΔU = U(A∗)− U(A) = ∑
a∗∈C1

V1(a
∗) + ∑

a∗,b∗∈C2

V2(a
∗, b∗) + ∑

a∗,b∗,c∗∈C3

V3(a
∗, b∗, c∗) + . . .

− ∑
a∈C1

V1(a) + ∑
a,b∈C2

V2(a, b) + ∑
a,b,c∈C3

V3(a, b, c) + . . .

and the new configuration is accepted with probability 1 if the new likelihood is higher than
the old one. Otherwise, the new configuration is accepted with probability e−ΔU/T, so the
probability of accepting the new configuration becomes:

P(A → A∗) =
{

1 ΔU ≥ 0
e−ΔU/T ΔU < 0

A pass through all the components in A in this way is called a sweep over the variables in A.
In our case, we generate a sample from the distribution by doing 4 sweeps over A, resulting
in the evaluation of a total of 4n new configurations. This should result in a sample that has
high enough probability to be detected by the estimation algorithm described above.

5. Application to the two-dimensional binary asymmetric channel

5.1 Channel model

In this section, we will apply this general method for cluster error detection and correction to
the binary asymmetric channel As the name of the channel implies, we will assume that errors
are asymmetric so that only the transition −1 → 1 occurs in a received codeword.

Definition 2 (Matrix OR). Assume A and B are matrices with dimensions d1 × d2 where d1 · d2 = n,
and with coordinates ai and bi respectively. Then the OR of these matrices is defined as

A ∨ B � ai ∨ bi, 1 ≤ i ≤ n

The received word Y can then be defined as the combination of

Y = C ∨ X

Y - received word
C - original codeword
X - error pattern
∨ - OR operator on matrices as defined above

5.2 System model

Information I is encoded, producing a codeword C. For each generated codeword C, the
channel induces two-dimensionally correlated noise X and the resulting word Y is passed to
the decoder. Information is converted to likelihood ratios and sent to the SISO. The output
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likelihood values L from the SISO are then sent to the detector. Based on these values, the
detector produces an estimate of the error pattern that was multiplied with the codeword.
This information is subsequently fed back into the SISO in the next iteration. The decoding
process continues until either the SISO finds a valid codeword, or a set of stopping criteria is
reached. The final estimate of the codeword is produced by the SISO. See figure 2.

SISO

Ĉ

X̂

IEncoder
C

X

Y

Noise gen.

Decoder

Detector
L

Fig. 2. System model

5.3 MAP estimation

To optimize the maximum a priori probability, we need to find some expression for the
conditional probability P(Y = y|X = x) as noted in chapter 4.4. Based on the assumptions in
chapter 4.4, the conditional probabilities P(Yi = yi|Xi = xi) for each information symbol is
given in Table 1.

Table 1. Transition probabilities

The conditional probabilities in the table can be expressed as an exponential function by

P(Yi = yi|Xi = xi) = lim
ε→0

1
2

exp
[−yi(1 − xi) ln 2

1 − yi + ε

]

We can then express the probability of a given y conditioned on a configuration x by

P(Y = y|X = x) = ∏
i

lim
ε→0

1
2

exp
[−yi(1 − xi) ln 2

1 − yi + ε

]
(5)
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V3(a, b, c) + . . .

and the new configuration is accepted with probability 1 if the new likelihood is higher than
the old one. Otherwise, the new configuration is accepted with probability e−ΔU/T, so the
probability of accepting the new configuration becomes:

P(A → A∗) =
{

1 ΔU ≥ 0
e−ΔU/T ΔU < 0

A pass through all the components in A in this way is called a sweep over the variables in A.
In our case, we generate a sample from the distribution by doing 4 sweeps over A, resulting
in the evaluation of a total of 4n new configurations. This should result in a sample that has
high enough probability to be detected by the estimation algorithm described above.

5. Application to the two-dimensional binary asymmetric channel

5.1 Channel model

In this section, we will apply this general method for cluster error detection and correction to
the binary asymmetric channel As the name of the channel implies, we will assume that errors
are asymmetric so that only the transition −1 → 1 occurs in a received codeword.

Definition 2 (Matrix OR). Assume A and B are matrices with dimensions d1 × d2 where d1 · d2 = n,
and with coordinates ai and bi respectively. Then the OR of these matrices is defined as

A ∨ B � ai ∨ bi, 1 ≤ i ≤ n

The received word Y can then be defined as the combination of

Y = C ∨ X

Y - received word
C - original codeword
X - error pattern
∨ - OR operator on matrices as defined above

5.2 System model

Information I is encoded, producing a codeword C. For each generated codeword C, the
channel induces two-dimensionally correlated noise X and the resulting word Y is passed to
the decoder. Information is converted to likelihood ratios and sent to the SISO. The output
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likelihood values L from the SISO are then sent to the detector. Based on these values, the
detector produces an estimate of the error pattern that was multiplied with the codeword.
This information is subsequently fed back into the SISO in the next iteration. The decoding
process continues until either the SISO finds a valid codeword, or a set of stopping criteria is
reached. The final estimate of the codeword is produced by the SISO. See figure 2.

SISO

Ĉ

X̂

IEncoder
C

X

Y

Noise gen.

Decoder

Detector
L

Fig. 2. System model

5.3 MAP estimation

To optimize the maximum a priori probability, we need to find some expression for the
conditional probability P(Y = y|X = x) as noted in chapter 4.4. Based on the assumptions in
chapter 4.4, the conditional probabilities P(Yi = yi|Xi = xi) for each information symbol is
given in Table 1.

Table 1. Transition probabilities

The conditional probabilities in the table can be expressed as an exponential function by

P(Yi = yi|Xi = xi) = lim
ε→0

1
2

exp
[−yi(1 − xi) ln 2

1 − yi + ε

]

We can then express the probability of a given y conditioned on a configuration x by

P(Y = y|X = x) = ∏
i

lim
ε→0

1
2

exp
[−yi(1 − xi) ln 2

1 − yi + ε

]
(5)
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Substituting (1) and (5) into (4), we can find the joint probability by

P(X = x, Y = y) =
[

Z−1e−
1
T U(x)

]
∏

i
lim
�→0

1
2

exp
[−yi(1 − xi) ln 2

1 − yi + �

]
(6)

Since the natural logarithm is strictly increasing, the following equality holds:

arg max
X

(P(X, Y)) = arg max
X

(ln(P(X, Y))) (7)

In order to avoid computing Z in (6), we take the logarithm of both sides and eliminate
constants to get

V(x) = U(x) + ∑
i

lim
�→0

[−yi(1 − xi) ln 2
1 − yi + �

]

where V(x) = ln [P(X = x, Y = y)].

We define the partial functions Vi of U(x) according to Li (2000); Shridhar et al. (1989)

V1(xi) = αxi

V2(xi, xi� ) = βi,i� xixi�

V3(xi , xi� , xi�� ) = · · · = 0

Note that the expression for V2 implies that V2(xi, xi� ) = βi,i� for xi = xi�and V2(xi, xi� ) =
−βi,i� for xi �= xi� .

From this we get a new expression for V(x):

V(x) = ∑
i

[
αxi + βi,i� ∑

i�∈Ni

xixi� + lim
�→0

[−yi(1 − xi) ln 2
1 − yi + �

]]
,

and splitting the last term into a constant and a non-constant term yields

V(x) = ∑
i

[
αxi + βi,i� ∑

i�∈Ni

xixi� + lim
�→0

[
xiyi ln 2

1 − yi + �

]
+ lim

�→0

[ −yi ln 2
1 − yi + �

]]
.

Since the last term only depends on y, we can find the MAP configuration by simplifying the
expression to:

V(x) = ∑
i

[
αxi + β ∑

i�∈Ni

xixi� + lim
�→0

[
xiyi ln 2

1 − yi + �

]]

= ∑
i

[
α + β ∑

i�∈Ni

xi� + lim
�→0

[
yi ln 2

1 − yi + �

]]
xi (8)

Having obtained an estimate
X̂ = {X̂1, . . . , X̂i, . . . , X̂n}
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of the error pattern, it can be used to find likelihood ratios for input to the decoder. For each
bit, we set the likelihood ratio to

Li =
P(Ci = −1|Yi, X̂i)

P(Ci = 1|Yi, X̂i)

The resulting probabilities can be seen in Table 2. In the table, ρ is the probability that a bit

Table 2. Input probabilities to the decoder

belonging to the error pattern is incorrectly estimated as a 1-bit. The parameter ρ must be
estimated by simulation, but should in general be small, indicating a relatively certain −1-bit.

5.4 Performance of estimation algorithm

The performance of the estimation algorithm depends heavily on the value of β, which
determines the degree of clustering in the error pattern. A critical performance parameter is
the probability ε that not all bits in the error pattern are detected by the estimation algorithm.
A bit that belongs to the error pattern, but is not detected as such, is given a high probability
of being correct, and can hence be the source of errors that are hard to correct. Therefore, ε is
an important measure of the reliability of the algorithm. As can be seen in Fig. 3, P(ε) is high
for β < 0.5, reflecting the fact that small and very irregular error clusters appear in this range.
P(ε) drops sharply initially, but levels out when β > 1 as a result of the clusters becoming
bigger and more coherent. As we shall see later, this is also reflected in the performance of the
algorithm.
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P
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)

β

Fig. 3. P(ε) for fixed β = 0.2 in the estimation algorithm.
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of the error pattern, it can be used to find likelihood ratios for input to the decoder. For each
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belonging to the error pattern is incorrectly estimated as a 1-bit. The parameter ρ must be
estimated by simulation, but should in general be small, indicating a relatively certain −1-bit.

5.4 Performance of estimation algorithm

The performance of the estimation algorithm depends heavily on the value of β, which
determines the degree of clustering in the error pattern. A critical performance parameter is
the probability ε that not all bits in the error pattern are detected by the estimation algorithm.
A bit that belongs to the error pattern, but is not detected as such, is given a high probability
of being correct, and can hence be the source of errors that are hard to correct. Therefore, ε is
an important measure of the reliability of the algorithm. As can be seen in Fig. 3, P(ε) is high
for β < 0.5, reflecting the fact that small and very irregular error clusters appear in this range.
P(ε) drops sharply initially, but levels out when β > 1 as a result of the clusters becoming
bigger and more coherent. As we shall see later, this is also reflected in the performance of the
algorithm.
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Fig. 3. P(ε) for fixed β = 0.2 in the estimation algorithm.
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5.5 Results

A regular LDPC code was used as the error correcting code component , with different values
of β in the simulations, and α = γ = · · · = 0 in the estimation algorithm. We assumed that the
receiver does not know the value of β used by the noise generating process. The components
of the simulator was then connected as shown in Fig. 6 The simulations show that there is
a large performance gain for some choices of parameter using the LDPC-MRF combination
described above. The value of β has great influence over the relative performance of the
two decoding methods. Looking in Fig. 5 at the performance of a code in combination with
the MAP error estimate and alone, under varying β, we can observe that the performance
difference between the two decoders increases as β increases. This is due to the effect
described in Section 5.4: as β increases, the reliability of the error estimate also increases.
We also notice that the drop in BER levels off at about β = 1 corresponding to the reliability of
the estimate leveling off from the same point. The performance of the decoder could also be
measured under varying bit error probabilities, but because the bit error probability depends
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Fig. 4. Performance under varying rate with β = 0.2 and β = 1.0
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on the parameter β in the Gibbs distribution in a way that makes it hard to predict the average
error probability over codewords, we fix the value of β to β = 0.2 and β = 1.0 which gives
an average error rate of about 0.12 and 0.02 respectively, and study the performance of joint
LDPC - MRF decoding for different code rates using these parameters. We see in Fig. 4 that
the effect of the MRF estimator gives very good results in combination with the LDPC code
when the code rate is sufficiently low, while the performance gap between the two decoders
gets smaller as the code rate grows. This occurs because the MRF-LDPC decoder needs a
certain amount of information from the code itself to determine the value of the bits in the
error pattern, even if the MRF estimator provides a perfect estimate of the errors.

6. Application to the two-dimensional binary symmetric channel

6.1 Channel model

In this section we will see how the outlined cluster detection technique can be applied to the
two-dimensional binary symmetric channel. On this channel, both the transition 1 → −1 and
−1 → 1 may take place.

Definition 3 (Componentwise product). Assume A and B are matrices with the same dimensions
d1 × d2 where d1 · d2 = n, and with coordinates ai and bi respectively. Then the componentwise
product of these matrices is defined as

A ∗ B = ai · bi, 1 ≤ i ≤ n

Now assuming X, Y and C are d1 × d2 matrices with bipolar coordinates, the effect of the
channel can be described as:

Y = C ∗ X

where
Y - received word
C - original codeword
X - error pattern
∗ - multiplicative operator on matrices defined as above

6.2 System model

Like in chapter 5.2, information I is encoded, producing a codeword C. Two-dimensionally
correlated noise X is applied to the codeword and the result Y is passed to the decoder. The
decoding process is different in this case, however. The likelihood values L from the SISO
are used to find some values δ that measures the distance between the received input and the
output of the SISO, multiplied by the channel value. The δ value can be seen as an estimate of
the value of the corresponding bit in X. These values are sent to the cluster detector to be used
as basis for producing an estimate of the error cluster which is in turn fed back to the SISO.
As in 5.2, the iterative process continues until a valid codeword is found or a set of stopping
criteria is met.

6.3 MAP estimation

6.3.1 distribution of Δi

The values Y received from the channel is used to compute likelihood ratios LI =
{LI

1, LI
2, . . . , LI

n} for the bits. Since we assume that the variables are bipolar, the likelihood
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on the parameter β in the Gibbs distribution in a way that makes it hard to predict the average
error probability over codewords, we fix the value of β to β = 0.2 and β = 1.0 which gives
an average error rate of about 0.12 and 0.02 respectively, and study the performance of joint
LDPC - MRF decoding for different code rates using these parameters. We see in Fig. 4 that
the effect of the MRF estimator gives very good results in combination with the LDPC code
when the code rate is sufficiently low, while the performance gap between the two decoders
gets smaller as the code rate grows. This occurs because the MRF-LDPC decoder needs a
certain amount of information from the code itself to determine the value of the bits in the
error pattern, even if the MRF estimator provides a perfect estimate of the errors.

6. Application to the two-dimensional binary symmetric channel

6.1 Channel model

In this section we will see how the outlined cluster detection technique can be applied to the
two-dimensional binary symmetric channel. On this channel, both the transition 1 → −1 and
−1 → 1 may take place.

Definition 3 (Componentwise product). Assume A and B are matrices with the same dimensions
d1 × d2 where d1 · d2 = n, and with coordinates ai and bi respectively. Then the componentwise
product of these matrices is defined as

A ∗ B = ai · bi, 1 ≤ i ≤ n

Now assuming X, Y and C are d1 × d2 matrices with bipolar coordinates, the effect of the
channel can be described as:

Y = C ∗ X

where
Y - received word
C - original codeword
X - error pattern
∗ - multiplicative operator on matrices defined as above

6.2 System model

Like in chapter 5.2, information I is encoded, producing a codeword C. Two-dimensionally
correlated noise X is applied to the codeword and the result Y is passed to the decoder. The
decoding process is different in this case, however. The likelihood values L from the SISO
are used to find some values δ that measures the distance between the received input and the
output of the SISO, multiplied by the channel value. The δ value can be seen as an estimate of
the value of the corresponding bit in X. These values are sent to the cluster detector to be used
as basis for producing an estimate of the error cluster which is in turn fed back to the SISO.
As in 5.2, the iterative process continues until a valid codeword is found or a set of stopping
criteria is met.

6.3 MAP estimation

6.3.1 distribution of Δi

The values Y received from the channel is used to compute likelihood ratios LI =
{LI

1, LI
2, . . . , LI

n} for the bits. Since we assume that the variables are bipolar, the likelihood
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Fig. 6. System model

ratios can be expressed as

LI
i =

P(Ci = −1|Yi)

P(Ci = +1|Yi)
.

These values are the channel values used in the SISO. The soft output from the
SISO-component in the decoder is LO = {LO

1 , LO
2 , . . . , LO

n }. The output LO of the SISO also has
the form of likelihood ratios. We now take the logarithm of LI and LO giving us the values
L̃I and L̃O. These variables are now real valued in the range �−∞, ∞�, with a negative value
indicating a possible −1 bit and a positive value indicating a possible +1 bit. The difference
L̃I

i − L̃O
i measures the distance between the input- and output values, and multiplication by

Yi gives the relative direction Δi of the change.

Fig. 7. Negative Δi

As an example, in figure 7 the distance between the input and the output d is positive, but
Yi = −1, so the relative direction Δi = −1 · d = −d is negative. This corresponds to a higher
probability that the bit was flipped by the channel.

Fig. 8. Positive Δi

In figure 8 on the other hand, the distance d is negative and Yi = −1 so the relative distance
Δi = −d is positive, indicating a higher probability that the bit is correct.

366 Image Restoration – Recent Advances and Applications An Application of Digital Image Restoration Techniques to Error Control Coding 15

The values Δi = Yi(L̃I
i − L̃O

i ) are sent to the detector, which computes the MAP estimate of the
configuration of X, i.e. the most likely X to produce the observed values. As is shown below,
knowing the distribution of P(Δi = δi | Xi = xi) is essential to the MAP estimate calculation,
so we shall make the assumption that the information from the SISO, Δi, conditioned on Xi has
a normal distribution with variance σ and mean Xiμ. The conditional probabilities can then
be expressed as an exponential function by approximating them with the normal distribution
with mean xiμ so that

P(Δi = δi | Xi = xi) =
1

σ
√

2π
e−

(δi−xiμ)2

2σ2 . (9)

As an example of this, we can see in Fig. 9(a) and Fig. 9(b) the distribution of the Δi’s for
Xi = −1 and Xi = +1 respectively, compared with the normal distribution with μ = ±0.55
and σ = 1.4. We can see that this approximation is reasonably good. MAP estimation of the
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Fig. 9. Distribution of the Δi’s

error pattern X based on the values Δ from the SISO, can be formulated as the maximization
of the a posteriori probability P(X = x|Δ = δ) with respect to x. That is, we want to find a
configuration x that makes the probability P(X = x|Δ = δ) as high as possible for a given δ.
Bayes rule gives us

P(X = x|Δ = δ) =
P(X = x)P(Δ = δ|X = x)

P(Δ = δ)
(10)

Since we are optimizing the expression for a given value of δ, we can maximize over

P(X = x)P(Δ = δ|X = x) (11)

instead of (10).

Based on the assumption that the distribution of P(Δi = δi | Xi = xi) is given by (9), we can
express the probability of a given δ conditioned on a configuration x by

P(Δ = δ | X = x) = ∏
i

P(δi | xi) = ∏
i

1
σ
√

2π
e−

(δi−xiμ)2

2σ2 (12)

Substituting (1) and (12) into (11), and taking T = 1, we can express the product of the
probabilities as:

P(X = x)P(Δ = δ | X = x) =
[

Z−1e−U(x)
]
∏

i

1
σ
√

2π
e−

(δi−xiμ)2

2σ2
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Substituting (1) and (12) into (11), and taking T = 1, we can express the product of the
probabilities as:

P(X = x)P(Δ = δ | X = x) =
[

Z−1e−U(x)
]
∏

i

1
σ
√

2π
e−

(δi−xiμ)2

2σ2
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In order to avoid computing Z in the above expression, we take the logarithm of both sides
and eliminate the constants to get

V(x) = U(x)− ∑
i

(δi − xiμ)
2

2σ2 . (13)

Since the natural logarithm is strictly increasing, optimizing (13) with respect to x also
optimizes (5).

We define the partial functions Vt of U(x) in (3) according to Li (2000) and Shridhar et al.
(1989):

∑
c∈C1

V1(c) = ∑
i

αxi

∑
c∈C2

V2(c) = ∑
i

∑
xi� ∈Ni

βxixi� i �= i�

Vt(·) = 0 ∀t > 2

This implies that we let the total probability depend on the value of each bit represented by
αxi and the value of each neighboring bit represented by βxixi� , while we do not consider
more complex dependencies like three-ways dependencies and up. Note that the expression
for V2 implies that V2(xi, xi� ) = β for xi = xi�and V2(xi, xi� ) = −β for xi �= xi� .

From this we get a new expression for V(x):

V(x) = ∑
i

⎡
⎣αxi + β ∑

xi� ∈Ni

xixi� − (δi − xiμ)
2

2σ2

⎤
⎦ ,

and expanding the last term of the sum yields

V(x) = ∑
i

⎡
⎣αxi + β ∑

xi� ∈Ni

xixi� −
(δ2

i − 2xiδiμ + x2
i μ2)

2σ2

�
.

The variables xi are bipolar so x2
i = 1 and we can simplify the expression to:

V(x) = ∑
i

⎡
⎣αxi + β ∑

xi� ∈Ni

xixi� −
(δ2

i − 2xiδiμ + μ2)

2σ2

⎤
⎦

= ∑
i

⎡
⎣αxi + β ∑

xi� ∈Ni

xixi� −
δ2

i
2σ2 +

2xiδiμ

2σ2 − μ2

2σ2

⎤
⎦

As we are doing a maximization with respect to xi, any term in the sum that does not contain

or otherwise depend on xi will not affect the result, and hence we cancel the terms − δ2
i

2σ2 and
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− μ2

2σ2 , and the expression to maximize over becomes:

V(x) = ∑
i

⎡
⎣αxi + β ∑

xi� ∈Ni

xixi� +
2xiδiμ

2σ2

⎤
⎦

= ∑
i

⎡
⎣α + β ∑

xi� ∈Ni

xi� +
μ

σ2 δi

⎤
⎦ xi (14)

6.3.2 Optimization of V(x)
To do a global optimization of the expression above with respect to x would become
computationally infeasible as the size of x increases. Instead we can use the local dependencies
between bits to do a local optimization along the lines of the PDFE in Neifeld & King (1998);
Neifield et al. (1996) or the partial binary segmentation algorithm of Shridhar et al. (1989). It is
apparent that when V(x) is expressed as in (14), we can always choose the value of xi so that
each term in the sum becomes positive, and thus the sum is non-decreasing. For each node
we compute the value of

αxi + β ∑
xi� ∈Ni

xi� +
δiμ

σ2

and set the value of xi so that the product is positive. This procedure is iterated until we
converge on a solution where all terms in the sum are positive, or a maximum number of
iterations is reached. Normally the process arrives at a solution after less than 10 iterations.

Having obtained an estimate
X̂ = {X̂1, . . . , X̂i, . . . , X̂n}

of the error pattern, it can be used to find likelihood ratios for input to the SISO. For each bit,
we set the likelihood ratio to

Li =
P(Ci = −1|Yi, X̂i)

P(Ci = 1|Yi, X̂i)

The resulting probabilities can be seen in Fig. 10. In the table, ρ is the probability that a bit

Fig. 10. Input probabilities to the decoder

detected as belonging to the error pattern is actually a −1-bit, i.e. ρ = P(Xi = −1 | X̂i = −1).
For a given channel, the parameter ρ must be found experimentally by sending some known
codewords over the channel. When the receiver knows the value of X, the value of ρ can be
computed based on the value of the estimates X̂. ρ should in general be large indicating a
relatively certain −1-bit.
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6.4 Results

We have implemented the system with an LDPC decoder as the SISO component, and we
assume a priori knowledge of the values α, β and ρ. The error-simulation process allows
upper bounding of the overall error rate of the channel, and the performance of the decoder
is measured for two different upper bounds on the error rate, denoted Eh, to investigate the
effect of varying error rates on the performance of the joint decoding and estimation. The
parameter β in the Gibbs distribution should ideally depend on the the bit error probability
of the channel, but in the simulations we have chosen to fix the value of β to β = 0.2 which
corresponds to an average error rate of about 0.12, and study the performance of joint LDPC
- MRF decoding for different code rates under this assumption. This is a rather "harsh"
assumption in the sense that in practice it should be possible to find an estimate of the value
of β before transmission takes place. The performance of the joint decoding and estimation
algorithm is compared to decoding of the same received information using the same LDPC
decoder component but under a random error assumption, i.e., the decoder assumes that there
are no dependencies in the error generating process. The LDPC codes used in the simulations
are generic regular LDPC codes that were not optimized for use on this particluar type of
channel. We see in Fig. 11 that the effect of the MRF estimator gives very good results in
combination with the LDPC code when the code rate is sufficiently low, while the performance
gap between the two decoders gets smaller as the code rate grows. This indicates that even
if the MRF estimator provides a perfect estimate of the errors, the MRF-LDPC decoder still
needs a certain amount of information from the code itself to determine the value of the bits
in the error pattern, and therefore the mutual gain when exchanging information between the
LDPC component and the channel detector component decreases as the code rate increases.

Fig. 12 shows that the performance of an LDPC-decoder in combination with the MAP error
estimate, relative to an LDPC code alone. We see that the gain is even greater for a higher
upper bound on the error rate, mainly because the MRF-estimate makes the most difference
in face of a high number of errors.
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7. Conclusion

By applying principles known form digital image restoration, we have introduced a
channel model for two-dimensional channels with memory based on Markov random
fields which allows us to describe spatially dependent errors. We have showed that a
significant performance gain over an ordinary error correcting code can be achieved , for
both the symmetric and the asymmetric binary two-dimensional channel by combining an
error-correcting component with an MRF-based burst detection algorithm. We have also
demonstrated that this decoding technique gives the most gain for larger clusters and for
lower information rates.
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